
MobiLink
Server Administration

February 2009

Version 11.0.1

Copyright and trademarks
Copyright © 2009 iAnywhere Solutions, Inc. Portions copyright © 2009 Sybase, Inc. All rights reserved.

This documentation is provided AS IS, without warranty or liability of any kind (unless provided by a separate written agreement between
you and iAnywhere).

You may use, print, reproduce, and distribute this documentation (in whole or in part) subject to the following conditions: 1) you must retain
this and all other proprietary notices, on all copies of the documentation or portions thereof, 2) you may not modify the documentation, 3) you
may not do anything to indicate that you or anyone other than iAnywhere is the author or source of the documentation.

iAnywhere®, Sybase®, and the marks listed at http://www.sybase.com/detail?id=1011207 are trademarks of Sybase, Inc. or its subsidiaries.
® indicates registration in the United States of America.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

http://www.sybase.com/detail?id=1011207

Contents

About this book ... xiii

About the SQL Anywhere documentation ... xiv

Using MobiLink Server Technology ... 1

MobiLink consolidated databases .. 3
Introduction to consolidated databases ... 4
Setting up a consolidated database ... 6
RDBMS-dependent synchronization scripts .. 8
Adaptive Server Enterprise consolidated database ... 10
IBM DB2 LUW consolidated database .. 12
IBM DB2 mainframe consolidated database ... 15
Microsoft SQL Server consolidated database ... 20
MySQL consolidated database .. 22
Oracle consolidated database ... 25
SQL Anywhere consolidated database .. 28

MobiLink server .. 29
Running the MobiLink server ... 30
Stopping the MobiLink server .. 32
Logging MobiLink server actions ... 33
Running the MobiLink server outside the current session 35
Running the MobiLink server in a server farm ... 40
Troubleshooting MobiLink server startup ... 41

MobiLink server options .. 43
mlsrv11 syntax ... 45
@data option ... 50
-a option ... 51
-b option ... 52
-bn option ... 53
-c option ... 54
-cm option .. 55
-cn option ... 56
-cr option .. 57

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 iii

-cs option ... 58
-ct option .. 59
-dl option .. 60
-dr option .. 61
-ds option ... 62
-dsd option ... 63
-dt option .. 64
-e option ... 65
-esu option ... 66
-et option .. 67
-f option .. 68
-fips option ... 69
-fr option ... 70
-ftr option .. 71
-lsc option .. 72
-m option .. 73
-nba option ... 74
-nc option ... 75
-notifier option .. 76
-o option ... 77
-on option ... 78
-oq option ... 79
-os option ... 80
-ot option .. 81
-ppv option ... 82
-q option ... 86
-r option .. 87
-rd option .. 88
-s option ... 89
-sl dnet option .. 90
-sl java option ... 92
-sm option .. 94
-ss option ... 95
-tc option .. 96
-tf option ... 97

MobiLink - Server Administration

iv Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-tx option .. 98
-ud option ... 99
-ui option .. 100
-ux option ... 101
-v option ... 102
-w option .. 105
-wu option .. 106
-x option ... 107
-xo option ... 113
-zp option ... 118
-zs option ... 119
-zt option .. 120
-zu option ... 121
-zus option ... 122
-zw option .. 123
-zwd option .. 124
-zwe option .. 125

Synchronization techniques ... 127
MobiLink development tips .. 128
Timestamp-based downloads .. 129
Snapshot synchronization .. 133
Partitioning rows among remote databases .. 135
Upload-only and download-only synchronizations ... 138
Maintaining unique primary keys ... 139
Handling conflicts ... 146
Forced conflicts .. 154
Data entry .. 155
Handling deletes .. 156
Handling failed downloads ... 158
Download acknowledgement ... 161
Downloading a result set from a stored procedure call 162
Uploading data from self-referencing tables .. 164
MobiLink isolation levels .. 165

MobiLink performance ... 169
Performance tips .. 170
Key factors influencing MobiLink performance .. 174

MobiLink - Server Administration

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 v

Monitoring MobiLink performance ... 178
MobiLink Monitor .. 179

Introduction to the MobiLink Monitor .. 180
Starting the MobiLink Monitor .. 181
Using the MobiLink Monitor ... 184
Saving MobiLink Monitor data ... 193
Customizing your statistics .. 194
MobiLink statistical properties .. 195

SQL Anywhere Monitor for MobiLink .. 201
Introducing the SQL Anywhere Monitor ... 202
Monitor quick start ... 205
Tutorial: Using the Monitor ... 206
Start the Monitor .. 211
Exit the Monitor .. 212
Connect to the Monitor .. 213
Disconnect from the Monitor .. 214
Monitoring resources ... 215
Administering resources .. 222
Working with Monitor users ... 228
Alerts .. 232
Installing the SQL Anywhere Monitor on a separate computer 236
Troubleshooting the Monitor .. 237

The Relay Server .. 239
Introduction to the Relay Server .. 240
Relay Server configuration file ... 243
Outbound Enabler .. 247
Relay Server State Manager ... 250
Deploying the Relay Server ... 253
Updating a Relay Server farm configuration .. 258
Sybase Relay Server hosting service .. 260
Using MobiLink with the Relay Server ... 262

Redirector (deprecated) .. 265
Introduction to the Redirector (deprecated) ... 266
Setting up the Redirector ... 268
Configuring MobiLink clients and servers for the Redirector 269
Configuring Redirector properties .. 271

MobiLink - Server Administration

vi Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

NSAPI Redirector for Netscape/Sun web servers on Windows (deprecated) ... 277
NSAPI Redirector for Netscape/Sun web servers on Unix (deprecated) 280
ISAPI Redirector for Microsoft web servers (deprecated) 282
Servlet Redirector (deprecated) ... 284
Apache Redirector (deprecated) .. 287
M-Business Anywhere Redirector (deprecated) .. 289

MobiLink file-based download .. 293
Introduction to file-based download ... 294
Setting up file-based download .. 295
Validation checks ... 298
File-based download examples ... 301

MobiLink Events ... 311

Writing synchronization scripts ... 313
Introduction to synchronization scripts ... 314
Scripts and the synchronization process ... 317
Script types .. 318
Script parameters .. 320
Script versions ... 324
Required scripts ... 326
Adding and deleting scripts .. 327
Writing scripts to upload rows .. 330
Writing scripts to download rows ... 333
Writing scripts to handle errors .. 338

Synchronization events ... 341
Overview of MobiLink events ... 343
authenticate_file_transfer connection event .. 353
authenticate_parameters connection event ... 355
authenticate_user connection event .. 358
authenticate_user_hashed connection event .. 363
begin_connection connection event .. 367
begin_connection_autocommit connection event .. 368
begin_download connection event .. 369
begin_download table event .. 371
begin_download_deletes table event .. 374

MobiLink - Server Administration

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 vii

begin_download_rows table event .. 377
begin_publication connection event ... 380
begin_synchronization connection event ... 383
begin_synchronization table event .. 385
begin_upload connection event ... 387
begin_upload table event ... 389
begin_upload_deletes table event ... 391
begin_upload_rows table event ... 394
download_cursor table event ... 396
download_delete_cursor table event ... 400
download_statistics connection event ... 403
download_statistics table event ... 406
end_connection connection event ... 409
end_download connection event ... 411
end_download table event ... 414
end_download_deletes table event ... 417
end_download_rows table event ... 420
end_publication connection event ... 423
end_synchronization connection event .. 426
end_synchronization table event ... 428
end_upload connection event .. 431
end_upload table event ... 433
end_upload_deletes table event .. 436
end_upload_rows table event .. 439
handle_DownloadData connection event .. 442
handle_error connection event .. 446
handle_odbc_error connection event .. 450
handle_UploadData connection event ... 454
modify_error_message connection event .. 460
modify_last_download_timestamp connection event .. 463
modify_next_last_download_timestamp connection event 466
modify_user connection event ... 469
nonblocking_download_ack connection event .. 471
prepare_for_download connection event ... 473
publication_nonblocking_download_ack connection event 475

MobiLink - Server Administration

viii Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

report_error connection event .. 477
report_odbc_error connection event .. 480
resolve_conflict table event ... 483
synchronization_statistics connection event .. 486
synchronization_statistics table event ... 489
time_statistics connection event .. 492
time_statistics table event .. 495
upload_delete table event .. 498
upload_fetch table event .. 500
upload_fetch_column_conflict table event ... 502
upload_insert table event ... 504
upload_new_row_insert table event .. 506
upload_old_row_insert table event .. 509
upload_statistics connection event .. 512
upload_statistics table event .. 517
upload_update table event .. 522

MobiLink Server APIs .. 525

Writing synchronization scripts in Java ... 527
Introduction to Java synchronization logic ... 528
Setting up Java synchronization logic .. 529
Writing Java synchronization logic ... 531
Java synchronization example ... 538
MobiLink server API for Java reference ... 543

Writing synchronization scripts in .NET ... 589
Introduction to .NET synchronization logic .. 590
Setting up .NET synchronization logic ... 591
Writing .NET synchronization logic .. 593
.NET synchronization techniques .. 600
Loading shared assemblies ... 601
.NET synchronization example .. 604
MobiLink server API for .NET reference .. 606

Direct row handling ... 649
Introduction to direct row handling ... 650
Handling direct uploads ... 654

MobiLink - Server Administration

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 ix

Handling direct downloads ... 660

MobiLink Reference ... 661

MobiLink server system procedures ... 663
MobiLink system procedures ... 664

MobiLink utilities ... 687
Introduction to MobiLink utilities ... 688
MobiLink stop utility (mlstop) ... 689
MobiLink user authentication utility (mluser) .. 690

MobiLink server system tables ... 693
Introduction to MobiLink system tables .. 695
IBM DB2 mainframe system table name conversions 696
ml_active_remote_id .. 697
ml_column ... 698
ml_connection_script ... 699
ml_database .. 700
ml_device ... 701
ml_device_address .. 703
ml_listening .. 705
ml_passthrough ... 707
ml_passthrough_repair .. 708
ml_passthrough_script ... 709
ml_passthrough_status .. 711
ml_property .. 712
ml_qa_clients ... 713
ml_qa_delivery ... 714
ml_qa_delivery_archive ... 716
ml_qa_global_props .. 718
ml_qa_notifications .. 719
ml_qa_repository ... 720
ml_qa_repository_archive .. 721
ml_qa_repository_props .. 722
ml_qa_repository_props_archive ... 723
ml_qa_repository_staging .. 724
ml_qa_status_history ... 725

MobiLink - Server Administration

x Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ml_qa_status_history_archive ... 726
ml_qa_status_staging .. 727
ml_script .. 728
ml_script_version ... 729
ml_scripts_modified ... 730
ml_server ... 731
ml_sis_sync_state ... 732
ml_subscription .. 733
ml_table ... 735
ml_table_script ... 736
ml_user .. 737

MobiLink data mappings between remote and consolidated databases 739
Adaptive Server Enterprise data mapping ... 740
IBM DB2 LUW data mapping ... 749
IBM DB2 mainframe data mapping .. 756
Microsoft SQL Server data mapping .. 767
MySQL data mapping .. 774
Oracle data mapping ... 779

Character set considerations ... 789
Character set considerations ... 790

iAnywhere Solutions ODBC drivers for MobiLink ... 793
ODBC drivers supported by MobiLink ... 794
iAnywhere Solutions Oracle driver ... 795

Deploying MobiLink applications .. 799
Introduction to MobiLink deployment ... 800
Deploying the MobiLink server .. 801
Deploying SQL Anywhere MobiLink clients ... 813
Deploying UltraLite MobiLink clients .. 815
Deploying QAnywhere applications ... 816

Glossary .. 821

Glossary .. 823

Index .. 853

MobiLink - Server Administration

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 xi

xii

About this book
Subject

This book describes how to set up and administer MobiLink servers, consolidated databases and MobiLink
applications. It also describes the SQL Anywhere Monitor for MobiLink, a web browser-based
administration tool that provides information about the health and availability of MobiLink servers, and the
Relay Server, which enables secure communication between mobile devices and MobiLink, Afaria and
iAnywhere Mobile Office servers through a web server.

Audience
This book is for anyone who wants to create distributed information systems. The central data source and
remote data stores can be, but are not restricted to, relational database systems.

Before you begin
For a comparison of MobiLink with other SQL Anywhere synchronization and replication technologies, see
“Comparing synchronization technologies” [SQL Anywhere 11 - Introduction].

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 xiii

About the SQL Anywhere documentation
The complete SQL Anywhere documentation is available in four formats that contain identical information.

● HTML Help The online Help contains the complete SQL Anywhere documentation, including the
books and the context-sensitive help for SQL Anywhere tools.

If you are using a Microsoft Windows operating system, the online Help is provided in HTML Help
(CHM) format. To access the documentation, choose Start » Programs » SQL Anywhere 11 »
Documentation » Online Books.

The administration tools use the same online documentation for their Help features.

● Eclipse On Unix platforms, the complete online Help is provided in Eclipse format. To access the
documentation, run sadoc from the bin32 or bin64 directory of your SQL Anywhere 11 installation.

● DocCommentXchange DocCommentXchange is a community for accessing and discussing SQL
Anywhere documentation.

Use DocCommentXchange to:

○ View documentation

○ Check for clarifications users have made to sections of documentation

○ Provide suggestions and corrections to improve documentation for all users in future releases

Visit http://dcx.sybase.com.

● PDF The complete set of SQL Anywhere books is provided as a set of Portable Document Format
(PDF) files. You must have a PDF reader to view information. To download Adobe Reader, visit http://
get.adobe.com/reader/.

To access the PDF documentation on Microsoft Windows operating systems, choose Start »
Programs » SQL Anywhere 11 » Documentation » Online Books - PDF Format.

To access the PDF documentation on Unix operating systems, use a web browser to open install-dir/
documentation/en/pdf/index.html.

About the books in the documentation set
The SQL Anywhere documentation consists of the following books:

● SQL Anywhere 11 - Introduction This book introduces SQL Anywhere 11, a comprehensive
package that provides data management and data exchange, enabling the rapid development of database-
powered applications for server, desktop, mobile, and remote office environments.

● SQL Anywhere 11 - Changes and Upgrading This book describes new features in SQL Anywhere
11 and in previous versions of the software.

● SQL Anywhere Server - Database Administration This book describes how to run, manage, and
configure SQL Anywhere databases. It describes database connections, the database server, database

About this book

xiv Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://dcx.sybase.com/
http://get.adobe.com/reader/
http://get.adobe.com/reader/

files, backup procedures, security, high availability, replication with the Replication Server, and
administration utilities and options.

● SQL Anywhere Server - Programming This book describes how to build and deploy database
applications using the C, C++, Java, PHP, Perl, Python, and .NET programming languages such as Visual
Basic and Visual C#. A variety of programming interfaces such as ADO.NET and ODBC are described.

● SQL Anywhere Server - SQL Reference This book provides reference information for system
procedures, and the catalog (system tables and views). It also provides an explanation of the SQL
Anywhere implementation of the SQL language (search conditions, syntax, data types, and functions).

● SQL Anywhere Server - SQL Usage This book describes how to design and create databases; how
to import, export, and modify data; how to retrieve data; and how to build stored procedures and triggers.

● MobiLink - Getting Started This book introduces MobiLink, a session-based relational-database
synchronization system. MobiLink technology allows two-way replication and is well suited to mobile
computing environments.

● MobiLink - Client Administration This book describes how to set up, configure, and synchronize
MobiLink clients. MobiLink clients can be SQL Anywhere or UltraLite databases. This book also
describes the Dbmlsync API, which allows you to integrate synchronization seamlessly into your C++
or .NET client applications.

● MobiLink - Server Administration This book describes how to set up and administer MobiLink
applications.

● MobiLink - Server-Initiated Synchronization This book describes MobiLink server-initiated
synchronization, a feature that allows the MobiLink server to initiate synchronization or perform actions
on remote devices.

● QAnywhere This book describes QAnywhere, which is a messaging platform for mobile, wireless,
desktop, and laptop clients.

● SQL Remote This book describes the SQL Remote data replication system for mobile computing,
which enables sharing of data between a SQL Anywhere consolidated database and many SQL Anywhere
remote databases using an indirect link such as email or file transfer.

● UltraLite - Database Management and Reference This book introduces the UltraLite database
system for small devices.

● UltraLite - C and C++ Programming This book describes UltraLite C and C++ programming
interfaces. With UltraLite, you can develop and deploy database applications to handheld, mobile, or
embedded devices.

● UltraLite - M-Business Anywhere Programming This book describes UltraLite for M-Business
Anywhere. With UltraLite for M-Business Anywhere you can develop and deploy web-based database
applications to handheld, mobile, or embedded devices, running Palm OS, Windows Mobile, or
Windows.

● UltraLite - .NET Programming This book describes UltraLite.NET. With UltraLite.NET you can
develop and deploy database applications to computers, or handheld, mobile, or embedded devices.

● UltraLiteJ This book describes UltraLiteJ. With UltraLiteJ, you can develop and deploy database
applications in environments that support Java. UltraLiteJ supports BlackBerry smartphones and Java
SE environments. UltraLiteJ is based on the iAnywhere UltraLite database product.

About the SQL Anywhere documentation

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 xv

● Error Messages This book provides a complete listing of SQL Anywhere error messages together
with diagnostic information.

Documentation conventions
This section lists the conventions used in this documentation.

Operating systems
SQL Anywhere runs on a variety of platforms. In most cases, the software behaves the same on all platforms,
but there are variations or limitations. These are commonly based on the underlying operating system
(Windows, Unix), and seldom on the particular variant (AIX, Windows Mobile) or version.

To simplify references to operating systems, the documentation groups the supported operating systems as
follows:

● Windows The Microsoft Windows family includes Windows Vista and Windows XP, used primarily
on server, desktop, and laptop computers, and Windows Mobile used on mobile devices.

Unless otherwise specified, when the documentation refers to Windows, it refers to all Windows-based
platforms, including Windows Mobile.

● Unix Unless otherwise specified, when the documentation refers to Unix, it refers to all Unix-based
platforms, including Linux and Mac OS X.

Directory and file names

In most cases, references to directory and file names are similar on all supported platforms, with simple
transformations between the various forms. In these cases, Windows conventions are used. Where the details
are more complex, the documentation shows all relevant forms.

These are the conventions used to simplify the documentation of directory and file names:

● Uppercase and lowercase directory names On Windows and Unix, directory and file names
may contain uppercase and lowercase letters. When directories and files are created, the file system
preserves letter case.

On Windows, references to directories and files are not case sensitive. Mixed case directory and file
names are common, but it is common to refer to them using all lowercase letters. The SQL Anywhere
installation contains directories such as Bin32 and Documentation.

On Unix, references to directories and files are case sensitive. Mixed case directory and file names are
not common. Most use all lowercase letters. The SQL Anywhere installation contains directories such
as bin32 and documentation.

The documentation uses the Windows forms of directory names. In most cases, you can convert a mixed
case directory name to lowercase for the equivalent directory name on Unix.

● Slashes separating directory and file names The documentation uses backslashes as the directory
separator. For example, the PDF form of the documentation is found in install-dir\Documentation\en
\PDF (Windows form).

About this book

xvi Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

On Unix, replace the backslash with the forward slash. The PDF documentation is found in install-dir/
documentation/en/pdf.

● Executable files The documentation shows executable file names using Windows conventions, with
a suffix such as .exe or .bat. On Unix, executable file names have no suffix.

For example, on Windows, the network database server is dbsrv11.exe. On Unix, it is dbsrv11.

● install-dir During the installation process, you choose where to install SQL Anywhere. The
environment variable SQLANY11 is created and refers to this location. The documentation refers to this
location as install-dir.

For example, the documentation may refer to the file install-dir\readme.txt. On Windows, this is
equivalent to %SQLANY11%\readme.txt. On Unix, this is equivalent to $SQLANY11/readme.txt or $
{SQLANY11}/readme.txt.

For more information about the default location of install-dir, see “SQLANY11 environment variable”
[SQL Anywhere Server - Database Administration].

● samples-dir During the installation process, you choose where to install the samples included with
SQL Anywhere. The environment variable SQLANYSAMP11 is created and refers to this location. The
documentation refers to this location as samples-dir.

To open a Windows Explorer window in samples-dir, from the Start menu, choose Programs » SQL
Anywhere 11 » Sample Applications And Projects.

For more information about the default location of samples-dir, see “SQLANYSAMP11 environment
variable” [SQL Anywhere Server - Database Administration].

Command prompts and command shell syntax

Most operating systems provide one or more methods of entering commands and parameters using a
command shell or command prompt. Windows command prompts include Command Prompt (DOS prompt)
and 4NT. Unix command shells include Korn shell and bash. Each shell has features that extend its
capabilities beyond simple commands. These features are driven by special characters. The special characters
and features vary from one shell to another. Incorrect use of these special characters often results in syntax
errors or unexpected behavior.

The documentation provides command line examples in a generic form. If these examples contain characters
that the shell considers special, the command may require modification for the specific shell. The
modifications are beyond the scope of this documentation, but generally, use quotes around the parameters
containing those characters or use an escape character before the special characters.

These are some examples of command line syntax that may vary between platforms:

● Parentheses and curly braces Some command line options require a parameter that accepts
detailed value specifications in a list. The list is usually enclosed with parentheses or curly braces. The
documentation uses parentheses. For example:

-x tcpip(host=127.0.0.1)

Where parentheses cause syntax problems, substitute curly braces:

-x tcpip{host=127.0.0.1}

About the SQL Anywhere documentation

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 xvii

If both forms result in syntax problems, the entire parameter should be enclosed in quotes as required
by the shell:

-x "tcpip(host=127.0.0.1)"
● Quotes If you must specify quotes in a parameter value, the quotes may conflict with the traditional

use of quotes to enclose the parameter. For example, to specify an encryption key whose value contains
double-quotes, you might have to enclose the key in quotes and then escape the embedded quote:

-ek "my \"secret\" key"

In many shells, the value of the key would be my "secret" key.

● Environment variables The documentation refers to setting environment variables. In Windows
shells, environment variables are specified using the syntax %ENVVAR%. In Unix shells, environment
variables are specified using the syntax $ENVVAR or ${ENVVAR}.

Graphic icons
The following icons are used in this documentation.

● A client application.

● A database server, such as Sybase SQL Anywhere.

● A database. In some high-level diagrams, the icon may be used to represent both the database and the
database server that manages it.

● Replication or synchronization middleware. These assist in sharing data among databases. Examples are
the MobiLink server and the SQL Remote Message Agent.

About this book

xviii Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● A programming interface.

Contacting the documentation team
We would like to receive your opinions, suggestions, and feedback on this Help.

To submit your comments and suggestions, send an email to the SQL Anywhere documentation team at
iasdoc@sybase.com. Although we do not reply to emails, your feedback helps us to improve our
documentation, so your input is welcome.

DocCommentXchange
You can also leave comments directly on help topics using DocCommentXchange. DocCommentXchange
(DCX) is a community for accessing and discussing SQL Anywhere documentation. Use
DocCommentXchange to:

● View documentation

● Check for clarifications users have made to sections of documentation

● Provide suggestions and corrections to improve documentation for all users in future releases

Visit http://dcx.sybase.com.

Finding out more and requesting technical support
Additional information and resources are available at the Sybase iAnywhere Developer Community at http://
www.sybase.com/developer/library/sql-anywhere-techcorner.

If you have questions or need help, you can post messages to the Sybase iAnywhere newsgroups listed below.

When you write to one of these newsgroups, always provide details about your problem, including the build
number of your version of SQL Anywhere. You can find this information by running the following command:
dbeng11 -v.

The newsgroups are located on the forums.sybase.com news server.

About the SQL Anywhere documentation

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 xix

mailto:iasdoc@sybase.com
http://dcx.sybase.com/
http://www.sybase.com/developer/library/sql-anywhere-techcorner
http://www.sybase.com/developer/library/sql-anywhere-techcorner

The newsgroups include the following:

● sybase.public.sqlanywhere.general
● sybase.public.sqlanywhere.linux
● sybase.public.sqlanywhere.mobilink
● sybase.public.sqlanywhere.product_futures_discussion
● sybase.public.sqlanywhere.replication
● sybase.public.sqlanywhere.ultralite
● ianywhere.public.sqlanywhere.qanywhere

For web development issues, see http://groups.google.com/group/sql-anywhere-web-development.

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information, or ideas on its newsgroups, nor is
iAnywhere Solutions obliged to provide anything other than a systems operator to monitor the service and
ensure its operation and availability.

iAnywhere Technical Advisors, and other staff, assist on the newsgroup service when they have time. They
offer their help on a volunteer basis and may not be available regularly to provide solutions and information.
Their ability to help is based on their workload.

About this book

xx Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

news://forums.sybase.com/sybase.public.sqlanywhere.general
news://forums.sybase.com/sybase.public.sqlanywhere.linux
news://forums.sybase.com/sybase.public.sqlanywhere.mobilink
news://forums.sybase.com/sybase.public.sqlanywhere.product_futures_discussion
news://forums.sybase.com/sybase.public.sqlanywhere.replication
news://forums.sybase.com/sybase.public.sqlanywhere.ultralite
news://forums.sybase.com/ianywhere.public.sqlanywhere.qanywhere
http://groups.google.com/group/sql-anywhere-web-development

Using MobiLink Server Technology

This section introduces MobiLink technology and describes how to use it to synchronize data between two or more
data sources.

MobiLink consolidated databases .. 3
MobiLink server .. 29
MobiLink server options .. 43
Synchronization techniques ... 127
MobiLink performance ... 169
MobiLink Monitor .. 179
SQL Anywhere Monitor for MobiLink .. 201
The Relay Server .. 239
Redirector (deprecated) .. 265
MobiLink file-based download .. 293

MobiLink consolidated databases

Contents
Introduction to consolidated databases ... 4
Setting up a consolidated database .. 6
RDBMS-dependent synchronization scripts .. 8
Adaptive Server Enterprise consolidated database ... 10
IBM DB2 LUW consolidated database .. 12
IBM DB2 mainframe consolidated database ... 15
Microsoft SQL Server consolidated database ... 20
MySQL consolidated database .. 22
Oracle consolidated database ... 25
SQL Anywhere consolidated database ... 28

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 3

Introduction to consolidated databases
Your consolidated database holds system objects that are required by MobiLink. In most cases it also holds
your application data, but you can hold all or part of your application data in other forms as well.

MobiLink supports consolidated databases for Windows and Linux on 32-bit and 64-bit environments. Your
consolidated database can be one of the following ODBC-compliant RDBMSs:

● Adaptive Server Enterprise (no 64-bit Linux support provided)
● IBM DB2 LUW
● IBM DB2 mainframe
● Microsoft SQL Server
● MySQL
● Oracle
● SQL Anywhere

For version support information, http://www.sybase.com/detail?id=1002288.

Your SQL Anywhere installation includes a setup script for each type of RDBMS. You need to run the
appropriate setup script to use that RDBMS with MobiLink. The setup script adds tables and stored
procedures that are required by MobiLink.

For information about setting up each type of database as a consolidated database, see “Setting up a
consolidated database” on page 6.

For information about writing synchronization scripts for particular consolidated databases, see “RDBMS-
dependent synchronization scripts” on page 8.

Synchronizing to other data sources
Your MobiLink environment must have a database that has been set up as a consolidated database. However,
you can synchronize data sources other than the consolidated database. The other data sources can be almost
anything: a text file, web service, non-relational database, spreadsheet, and so on. You can:

● Create a hybrid application in which you synchronize to both a consolidated database and some other
data source.

● Synchronize to only a consolidated database.

● Synchronize to only another data source.

See “Direct row handling” on page 649.

Restrictions on modifying your consolidated database
Some users find it difficult to change the schema of their consolidated database. For these situations,
MobiLink provides solutions, where possible, to keep changes to the consolidated database to a minimum.
For example, MobiLink offers a variety of solutions for maintaining unique primary keys, some of which
have minimal impact on the consolidated database schema.

In addition, you can avoid almost all impact on your consolidated database by putting your MobiLink system
objects in a separate database. See “MobiLink system database” on page 7.

MobiLink consolidated databases

4 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.sybase.com/detail?id=1002288

How remote tables relate to consolidated tables
Your synchronization design specifies mappings between tables and columns in the remote databases with
tables and columns in the consolidated database. Typically, tables and columns in remote databases either
exactly match the tables and columns in the consolidated database or are subsets of them.

Arbitrary relationships permitted
Tables in a remote database need not be identical to those in the consolidated database. Synchronized data
in one remote application table can be distributed between columns in different tables, and even between
tables in different consolidated databases. You specify these relationships using synchronization scripts.

Direct relationships are simple
The simplest and most common design uses a table structure in the remote database that is a subset of that
in the consolidated database. Using this design, every table in the remote database exists in the consolidated
database. Corresponding tables have the same structure and foreign key relationships as those in the
consolidated database.

The consolidated database frequently contains columns and tables that are not synchronized. Some of these
columns or tables may be used for synchronization. For example, a timestamp column can identify new or
updated rows in the consolidated database; or a shadow table can be used to track deletes. Non-synchronized
columns or tables in the consolidated database can also hold information that is not required at remote sites.

Remote databases also frequently hold tables or columns that aren't synchronized.

See also
● “MobiLink data mappings between remote and consolidated databases” on page 739

Introduction to consolidated databases

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 5

Setting up a consolidated database
Setup scripts

To set up a database so that it can be used as a MobiLink consolidated database, you must run a setup script.
Your SQL Anywhere installation includes a script for each of the supported RDBMSs. These scripts are all
located in install-dir\MobiLink\setup. You can also use the following methods to update the MobiLink
system setup:

● In the MobiLink plug-in for Sybase Central, choose Mode » Admin and connect to your server database.
Right-click the database name and choose Check MobiLink System Setup. If your database requires
setup, you are prompted to continue.

● When you use the Create Synchronization Model Wizard or Deploy Synchronization Model
Wizard, system setup is checked when you connect to your server database. If your database requires
setup, you are prompted to continue. See “Introduction to MobiLink models” [MobiLink - Getting
Started].

The MobiLink setup script adds MobiLink system tables, stored procedures, triggers, and views to your
database. These tables and procedures are required for MobiLink synchronization.

For information about the MobiLink system tables that are installed, see “MobiLink server system
tables” on page 693.

For information about the stored procedures that are installed, see “MobiLink system
procedures” on page 664.

You can view each setup script in a text editor if you want to check what it does.

Caution
The database user who runs the setup scripts is given permission to update the MobiLink system tables,
which is required to start the MobiLink server and to configure MobiLink. See “Required
permissions” on page 30.

For instructions on how to run the setup scripts, see the section for your RDBMS:

● “Adaptive Server Enterprise consolidated database” on page 10
● “IBM DB2 LUW consolidated database” on page 12
● “IBM DB2 mainframe consolidated database” on page 15
● “Microsoft SQL Server consolidated database” on page 20
● “MySQL consolidated database” on page 22
● “Oracle consolidated database” on page 25
● “SQL Anywhere consolidated database” on page 28

Note
If the consolidated database you are setting up is to be used as a QAnywhere Server Store, the database
should be configured to be case insensitive for comparisons and string operations.

MobiLink consolidated databases

6 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ODBC connection
The MobiLink server needs an ODBC connection to your consolidated database. You must configure the
appropriate ODBC driver for your server and create an ODBC data source for the database on the computer
where your MobiLink server is running.

For more information about MobiLink ODBC drivers, see “iAnywhere Solutions ODBC drivers for
MobiLink” on page 793.

For updated information and complete functional specifications of the ODBC drivers you can use with
MobiLink, see Recommended ODBC Drivers for MobiLink.

MobiLink system database
In some rare cases, you may want to split your consolidated database into two: one database for data and
one for the MobiLink system information. When you do this you do not have to add MobiLink system objects
to your consolidated database. All MobiLink system objects can be stored in a separate database called the
MobiLink system database.

Your MobiLink system database can be any database that is supported as a consolidated database. It does
not have to be the same RDBMS as your consolidated database.

It is easy to set up a MobiLink system database. Simply apply MobiLink setup scripts to a database other
than your consolidated database. When you start the MobiLink server, connect to both databases:

Notes
● You can only run the MobiLink server on Windows.

● You cannot use a MobiLink system database with the MobiLink Create Synchronization Model
Wizard or Model mode.

● There is a performance penalty for storing MobiLink system objects in a separate database.

Setting up a consolidated database

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 7

http://www.sybase.com/detail?id=1011880

RDBMS-dependent synchronization scripts
MobiLink uses synchronization scripts to define the rules you use to synchronize data. Synchronization
scripts define:

● How data uploaded from the remote database is to be applied to the consolidated database.

● What data should be downloaded from the consolidated database to the remote database.

See “Writing synchronization scripts” on page 313.

For a complete list of events you can write scripts for, see “Synchronization events” on page 341.

For specific information about each type of consolidated database, see:

● “SQL Anywhere consolidated database” on page 28
● “Adaptive Server Enterprise consolidated database” on page 10
● “IBM DB2 LUW consolidated database” on page 12
● “IBM DB2 mainframe consolidated database” on page 15
● “Microsoft SQL Server consolidated database” on page 20
● “MySQL consolidated database” on page 22
● “Oracle consolidated database” on page 25

.NET and Java synchronization scripts
You can write your synchronization logic in the version of the SQL language used by your database. You
can also write more portable and powerful scripts using Java or .NET. Both Java and .NET offer flexibility
beyond what each RDBMS provides via SQL, while also providing full SQL compatibility. When you use
Java or .NET synchronization logic, you can hold session-wide variables, create user-defined procedures,
integrate authentication to external servers, and so on.

For information about Java synchronization logic, see “Writing Java synchronization logic” on page 531.

For information about .NET synchronization logic, see “Writing synchronization scripts
in .NET” on page 589.

Invoking procedures from scripts
Some databases, such as Microsoft SQL Server, require that procedure calls with parameters be written using
the ODBC syntax.

{ CALL procedure_name({ml param1}, {ml param2}, ...) }

You can return values by defining the parameters as OUT or INOUT in the procedure definition.

CHAR columns
In many other RDBMSs, CHAR data types are fixed length and blank-padded to the full length of the string.
In SQL Anywhere or UltraLite remote MobiLink databases, CHAR is the same as VARCHAR: values are
not blank-padded to a fixed width. If you are not using SQL Anywhere as your consolidated database, It is
strongly recommended that you use VARCHAR in the consolidated database rather than CHAR. If you must
use CHAR, the mlsrv11 -b command line option can be used to remove trailing blanks from strings during
synchronization. This option is important for string comparisons used to detect conflicts.

MobiLink consolidated databases

8 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See “-b option” on page 52.

Data conversion
For information about the conversion of data that must take place when a MobiLink server communicates
with a consolidated database that isn't SQL Anywhere, see “MobiLink data mappings between remote and
consolidated databases” on page 739.

RDBMS-dependent synchronization scripts

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 9

Adaptive Server Enterprise consolidated database
Setting up Adaptive Server Enterprise as a consolidated database

To set up Adaptive Server Enterprise to work as a MobiLink consolidated database, you must run a setup
procedure that adds MobiLink system tables, stored procedures, triggers, and views that are required for
MobiLink synchronization. There are multiple ways you can do this:

● Run the syncase.sql setup script, located in install-dir\MobiLink\setup.

● In the MobiLink plug-in for Sybase Central, choose Mode » Admin and connect to your server database.
Right-click the database name and choose Check MobiLink System Setup. If your database requires
setup, you are prompted to continue.

● When you use the Create Synchronization Model Wizard or Deploy Synchronization Model
Wizard, system setup is checked when you connect to your server database. If your database requires
setup, you are prompted to continue.

Note
The database user who runs the setup script is the only user who has permission to change the MobiLink
system tables, which is required for configuring MobiLink applications. See “Required
permissions” on page 30.

The RDBMS user that the MobiLink server uses to connect to the consolidated database must be able to able
to use the MobiLink system tables, procedures, and so on, without any qualifiers (for example, SELECT *
from ml_user). See “MobiLink server system tables” on page 693.

ODBC driver
You must set up an ODBC DSN for your Adaptive Server Enterprise consolidated database using the ODBC
driver that is provided with your Adaptive Server Enterprise database. See:

● Recommended ODBC Drivers for MobiLink
● Your Adaptive Server Enterprise documentation

Adaptive Server Enterprise issues

● BLOB sizes To download BLOB data with a data size greater than 32 KB (the default), do the
following:

○ On Windows, set Text Size on the Advanced page of the Adaptive Server Enterprise ODBC
Driver Configuration window to be greater than the largest expected BLOB.

○ On Linux, set the TextSize entry in the obdc.ini file to be greater than the largest expected BLOB.

● CHAR columns In Adaptive Server Enterprise, CHAR data types are fixed length and blank-padded
to the full length of the string. In MobiLink remote databases (SQL Anywhere or UltraLite), CHAR is
the same as VARCHAR: values are not blank-padded to a fixed width. It is strongly recommended that
you use VARCHAR in the consolidated database rather than CHAR. If you must use CHAR, the mlsrv11

MobiLink consolidated databases

10 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.sybase.com/detail?id=1011880

-b command line option can be used to remove trailing blanks from strings during synchronization. This
option is important for string comparisons used to detect conflicts.

For more information, see “-b option” on page 52.

● Data type mapping The data types of columns must map correctly between your consolidated and
remote database. See “Adaptive Server Enterprise data mapping” on page 740.

● Special considerations for version 11.5 and earlier You cannot use MobiLink system procedures
such as ml_add_connection_script to add scripts longer than 255 bytes to Adaptive Server Enterprise
11.5 or earlier. To define longer scripts, use Sybase Central or direct insertion.

● Restrictions on VARBIT MobiLink does not support synchronizing 0 length (empty) VARBIT or
LONG VARBIT values to an Adaptive Server Enterprise consolidated database. Adaptive Server
Enterprise does not support a VARBIT type so these types would normally be synchronized to a
VARCHAR or TEXT column on the Adaptive Server Enterprise database. On Adaptive Server
Enterprise, empty string values are converted into a single space. A space is not allowed in a VARBIT
column on SQL Anywhere, so an attempt to download these values causes an error on the remote
database.

Isolation level
See “MobiLink isolation levels” on page 165.

Adaptive Server Enterprise consolidated database

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 11

IBM DB2 LUW consolidated database
MobiLink supports IBM DB2 LUW for Linux, Unix, and Windows. MobiLink does not support IBM DB2
for AS/400.

Setting up DB2 LUW as a consolidated database
To set up DB2 to work as a MobiLink consolidated database, you must run a setup procedure that adds
MobiLink system tables, stored procedures, triggers, and views that are required for MobiLink
synchronization. There are multiple ways you can do this:

● Run the syncdb2.sql setup script, located in install-dir\MobiLink\setup. Before running the file, you must
copy it to another location and modify it. Instructions follow.

● In the MobiLink plug-in for Sybase Central, choose Mode » Admin and connect to your server database.
Right-click the database name and choose Check MobiLink System Setup. If your database requires
setup, you are prompted to continue. Note that you are required to perform step 1 of the following
procedure.

● When you use the Create Synchronization Model Wizard or Deploy Synchronization Model
Wizard, system setup is checked when you connect to your server database. If your database requires
setup, you are prompted to continue. Note that you are required to perform step 1 of the following
procedure.

Note
The database user who runs the setup script is the only user who has permission to change the MobiLink
system tables, which is required for configuring MobiLink applications. See “Required
permissions” on page 30.

The RDBMS user that the MobiLink server uses to connect to the consolidated database must be able to able
to use the MobiLink system tables, procedures, and so on, without any qualifiers (for example, SELECT *
from ml_user). See “MobiLink server system tables” on page 693.

To run the DB2 setup script

1. To install MobiLink system tables using the setup script, an IBM DB2 LUW tablespace must use a
minimum of 8 KB pages. If a tablespace does not use 8 KB pages, complete the following steps:

● Verify that at least one of your buffer pools has 8 KB pages. If not, create a buffer pool with 8 KB
pages.

● Create a new tablespace and temporary tablespace that use the buffer pool with 8 KB pages.

For more information, consult your DB2 LUW documentation.

2. Customize syncdb2.sql with your connection information:

a. Copy syncdb2.sql to a new location where it can be modified and stored.

b. The syncdb2.sql script contains a default connection statement, connect to DB2Database.
Alter this line to connect to your DB2 database. Use the following syntax:

connect to DB2Database user userid using password ~

MobiLink consolidated databases

12 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

where DB2Database, userid, and password are names you provide. (The syncdb2.sql script uses the
tilde character (~) as a command delimiter.)

3. Run syncdb2.sql:

db2 -c -ec -td~ +s -v -f syncdb2.sql

ODBC driver
You must set up an ODBC DSN for your DB2 consolidated database using the ODBC driver that is provided
with your DB2 database. See:

● Recommended ODBC Drivers for MobiLink
● IBM DB2 LUW documentation

DB2 LUW issues

● Tablespace capacity A tablespace and temporary tablespace of any DB2 LUW database that you
want to use as a consolidated database must use 8 KB pages.

In addition, there are columns that require a LONG tablespace. If there is no default LONG tablespace,
the creation statements for the tables containing these columns must be qualified appropriately, as in the
following example:

CREATE TABLE ... (...)
IN tablespace
LONG IN long-tablespace

For an example using the sample application, see “Exploring the CustDB sample for MobiLink”
[MobiLink - Getting Started].

● Session-wide variables DB2 LUW prior to version 8 does not support session-wide variables. A
convenient solution is to use a base table with columns for the MobiLink user name and other session
data. The base table has rows representing concurrent synchronizations.

● User-defined procedures DB2 LUW prior to version 8.2 requires that you compile SQL procedures
into an executable library (such as a DLL). The resulting DLL/shared library must be copied to a special
directory on the server. Note that you can write procedures using several different languages, including
C/C++ and Java, among others.

For more information about Java and .NET synchronization scripts, see:

○ “Writing synchronization scripts in Java” on page 527
○ “Writing synchronization scripts in .NET” on page 589

● CHAR columns In IBM DB2 LUW, CHAR data types are fixed length and blank-padded to the full
length of the string. In MobiLink remote databases (SQL Anywhere or UltraLite) CHAR is the same as
VARCHAR: values are not blank-padded to a fixed width. It is strongly recommended that you use
VARCHAR in the consolidated database rather than CHAR. If you must use CHAR, the mlsrv11 -b
command line option can be used to remove trailing blanks from strings during synchronization. This
option is important for string comparisons used to detect conflicts.

See “-b option” on page 52.

IBM DB2 LUW consolidated database

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 13

http://www.sybase.com/detail?id=1011880

● Data type mapping The data types of columns must map correctly between your consolidated and
remote database. For details, see “IBM DB2 LUW data mapping” on page 749.

● Double up the quotation marks in system procedure calls When you use a MobiLink system
procedure to add scripts to your DB2 consolidated database, you need to double up the quotation marks.
For example, if the script you are adding with ml_add_table_script includes the line SET
"DELETED"=''Y'' for any other consolidated database, for DB2 you would have to write this as
SET "DELETED" = ''''Y''''.

● Special considerations for version 5 and earlier If you are using IBM DB2 LUW prior to version
6, column names and other identifiers are only supported up to 18 characters. This means that you must
truncate the names of MobiLink system procedures. For example, to call ml_add_connection_script, use
the name ml_add_connection_.

Isolation level
See “MobiLink isolation levels” on page 165.

MobiLink consolidated databases

14 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

IBM DB2 mainframe consolidated database
Setting up DB2 mainframe as a consolidated database

To set up DB2 mainframe to work as a MobiLink consolidated database, you must run a setup procedure
that adds MobiLink system tables, stored procedures, triggers, and views that are required for MobiLink
synchronization. You can perform this task using SQL or JCL methods.

Note
The database user who runs the setup script is the only user who has permission to change the MobiLink
system tables, which is required for configuring MobiLink applications. See “Required
permissions” on page 30.

The RDBMS user that the MobiLink server uses to connect to the consolidated database must be able to able
to use the MobiLink system tables, procedures, and so on, without any qualifiers (for example, SELECT *
from ml_user). See “MobiLink server system tables” on page 693.

Common steps to set up the DB2 mainframe environment

1. Create a buffer pool with a page size of 8K or greater and row-level locking for MobiLink schema. Row-
level locking is required to handle concurrent synchronizations to the same tables. For this example,
name the buffer pool BP8K.

2. Create a tablespace named MLTB8K with an 8K page size buffer pool for MobiLink schema. For
example:

create tablespace MLTB8K in IANY bufferpool BP8K locksize row
grant use of tablespace IANY.MLTB8K to public

3. If you do not already have one, create a Workload Manager environment for MobiLink schema
procedures and name is something like MLWLM.

4. Set up an ODBC DSN for your DB2 mainframe consolidated database using the ODBC driver that is
provided with your DB2 database. See:

● Recommended ODBC Drivers for MobiLink
● IBM DB2 mainframe documentation

To create MobiLink system tables using SQL

Note
The SQL method requires the ability to create stored procedures using DSNTPSMP. If you do not have SQL
stored procedures enabled, use the JCL technique.

1. Set up the DB2 mainframe environment using the common steps listed in “Setting up DB2 mainframe
as a consolidated database” on page 15.

2. Modify the syncd2m.sql setup script, located in install-dir\MobiLink\setup.

IBM DB2 mainframe consolidated database

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 15

http://www.sybase.com/detail?id=1011880

Note
Be sure to make a backup copy of the original syncd2m.sql file before you proceed.

In the syncd2m.sql file, replace all occurrences of

● {MLTABLESPACE} with MLTB8K, the name of the tablespace.

● {WLMENV} with MLWLM, the Workload Manager.

3. Run the syncd2m.sql setup script using the following command line:

dbisql -c "uid=user-id;pwd=password;DSN=dsn-name" -nogui syncd2m.sql

The message log file, syncd2m.txt, gets generated.

4. Open syncd2m.txt to verify that the DSNTPSMP calls succeeded.

To create the MobiLink system tables using JCL

1. Set up the DB2 mainframe environment using the common steps listed in “Setting up DB2 mainframe
as a consolidated database” on page 15.

2. Modify the syncd2m_jcl.sql script, located in install-dir\MobiLink\setup.

Note
Be sure to make a backup copy of the original syncd2m_jcl.sql file before you proceed.

In the syncd2m_jcl.sql file, replace all occurrences of

● {MLTABLESPACE} with your qualified tablespace, for example MYDB.MYTS.

● {WLMENV} with the name of a Workload Manager associated with your DB2 instance.

3. Start DBISQL and connect to DB2 mainframe.

4. Run the edited copy of the syncd2m_jcl.sql setup script, located in install-dir\MobiLink\setup, to create
Mobilink tables and define Mobilink procedures in the DB2 mainframe.

5. From the %SQLANY%\MobiLink\setup directory, FTP to your mainframe and run the following
commands:

bin
 hash
 cd xmit
 quote site recfm=fb lrecl=80
 quote site cyl
 put d2mload.xmit
 put d2mdbrm.xmit
 quit

6. The two xmit files on the mainframe are as follows:

● USERID.XMIT.D2MLOAD.XMIT

● USERID.XMIT.D2MDBRM.XMIT

USERID is the username you gave when connecting via FTP.

MobiLink consolidated databases

16 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

7. Open a terminal session and run the following commands from the ISPF Command Shell:

RECEIVE INDATASET('USERID.XMIT.D2MLOAD.XMIT')
 RECEIVE INDATASET('USERID.XMIT.D2MDBRM.XMIT')

The output is as follows:

● USERID.ML.LOADLIB

● USERID.ML.DBRMLIB

8. Copy the d2mrelod.jcl file and modify it as follows:

● Change USERID to your mainframe userid.

● Change DSNDB0T to your DB2 DSN.

9. Run the edited copy of the d2mrelod.jcl script, located in install-dir\MobiLink\setup.

10. Copy the d2mbdpk.jcl file and modify it as follows:

● Change USERID to your mainframe userid.

● Change DB0T to your DB2 SSID.

11. Bind all SQL procedures by running the edited copy of d2mbdpk.jcl. The following is a reference of
SQL procedure mappings to load module names.

Procedure name Load module name

ml_add_user mlaub

ml_delete_user mldub

ml_del_sstate mldssb

ml_reset_sstate mlrssb

ml_del_sstate_b4 mldssbb

ml_add_lcs_chk mlalcscb

ml_add_lcs mlalcsb

ml_add_cs mlacsb

ml_add_jcs mlajcsb

ml_add_dcs mladcsb

ml_add_lts_chk mlaltscb

ml_add_lts mlaltsb

ml_add_ts mlatsb

IBM DB2 mainframe consolidated database

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 17

Procedure name Load module name

ml_add_jts mlajtsb

ml_add_dts mladtsb

ml_add_property mlapb

ml_add_column mlacb

ml_set_device mlsdb

ml_set_device_nt mlsdnb

ml_set_dev_addr mlsdab

ml_set_dev_addr_int mlsdanb

ml_set_listening mlslb

ml_set_listen_nt mlslnb

ml_set_sis_sstate mlssssb

ml_del_dev_addr mlddab

ml_del_listen mldlb

ml_delete_device mlddb

DB2 mainframe known issues
● DB2 mainframe does not work with Model mode You can not use DB2 mainframe as your

consolidated database when you use the Create Synchronization Model Wizard.

● SELECT statements require the FOR READ ONLY clause SELECT statements in DB2
mainframe are opened for update by default, meaning that the database acquires write locks with the
anticipation of an UPDATE statement after the SELECT statement.

To avoid the write locks and enhance concurrency, append FOR READ ONLY on all SELECT statements
that do not precede UPDATE statements. Use FOR READ ONLY in SELECT statements as often as
possible, specifically in the download_cursor and download_delete_cursor scripts.

● Sysplex requires time synchronization When the DB2 mainframe consolidated database is
running in a Sysplex, the clocks of all LPARs in the Sysplex must be synchronized. Failure to synchronize
the clocks could result in lost data during database synchronization.

● Numbers are approximated Approximate numbers have different possible values. The following
is a table of examples.

MobiLink consolidated databases

18 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Type Entered value DB2 mainframe value ASA value

Real 123.456 123.4559936523 123.4560012817

Float 123.456 123.45599999999999 123.4560012817

Double 123.456 123.45599999999999 123.456

The recommended approach is to avoid synchronization of double and floating point columns with a
DB2 mainframe consolidated database.

Isolation level
See “MobiLink isolation levels” on page 165.

IBM DB2 mainframe consolidated database

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 19

Microsoft SQL Server consolidated database
Setting up Microsoft SQL Server as a consolidated database

Note
The database user that runs the setup script must be able to create tables, triggers, and stored procedures, so
must have the db_owner role.

To set up Microsoft SQL Server to work as a MobiLink consolidated database, you must run a setup
procedure that adds MobiLink system tables, stored procedures, triggers, and views that are required for
MobiLink synchronization. There are multiple ways you can do this:

● Run the syncmss.sql setup script, located in install-dir\MobiLink\setup.

● In the MobiLink plug-in for Sybase Central, choose Mode » Admin; connect to your server database;
right-click the database name and choose Check MobiLink System Setup. If your database requires
setup, you are prompted to continue. If you want to use an existing MobiLink system setup, then your
default_schema should be the schema of the MobiLink system setup.

● When you use the Create Synchronization Model Wizard or Deploy Synchronization Model
Wizard, system setup is checked when you connect to your server database. If your database requires
setup, you are prompted to continue.

Note
The database user who runs the setup script is the only user who has permission to change the MobiLink
system tables, which is required for configuring MobiLink applications. See “Required
permissions” on page 30.

The RDBMS user that the MobiLink server uses to connect to the consolidated database must be able to able
to use the MobiLink system tables, procedures, and so on, without any qualifiers (for example, SELECT *
from ml_user). See “MobiLink server system tables” on page 693.

ODBC driver
You must set up an ODBC DSN for your SQL Server consolidated database using the ODBC driver that is
provided with your SQL Server database. See:

● Recommended ODBC Drivers for MobiLink
● Microsoft SQL Server documentation

SQL Server issues

● SET NOCOUNT ON For Microsoft SQL Server, you should specify SET NOCOUNT ON as the first
statement in all stored procedures or SQL batches executed via ODBC. Without this option, network
buffers can overflow, silently losing data. This is a known SQL Server problem.

● Procedure calls Microsoft SQL Server requires that procedure calls with parameters be written using
the ODBC syntax:

{ CALL procedure_name({ml param1}, {ml param2}, ...) }

MobiLink consolidated databases

20 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.sybase.com/detail?id=1011880

● CHAR columns In Microsoft SQL Server, CHAR data types are fixed length and blank-padded to
the full length of the string. In MobiLink remote databases (SQL Anywhere or UltraLite) CHAR is the
same as VARCHAR: values are not blank-padded to a fixed width. We strongly recommend that you
use VARCHAR in the consolidated database rather than CHAR. If you must use CHAR, the mlsrv11 -
b command line option can be used to remove trailing blanks from strings during synchronization. This
option is important for string comparisons used to detect conflicts.

See “-b option” on page 52.

● Data type mapping The data types of columns must map correctly between your consolidated and
remote database. For details, see “Microsoft SQL Server data mapping” on page 767.

● Sample database issues The SQL Server AdventureWorks sample database contains computed
columns. You can't synchronize a computed column. You can set the column to be download-only, or
you can exclude the column from synchronization.

● Implementing conflict detection in an upload_update script The behavior of the SQL Server
NOCOUNT option means that sometimes the MobiLink server cannot accurately assess how many rows
were changed by an upload script. For SQL Server, it is safer to implement a stored procedure in the
upload_update script for conflict detection.

Isolation level
See “MobiLink isolation levels” on page 165.

Microsoft SQL Server consolidated database

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 21

MySQL consolidated database
The MobiLink server supports MySQL Community and Enterprise servers 5.1.22 or later. QAnywhere and
MobiLink models do not support MySQL.

Setting up MySQL as a consolidated database
To set up MySQL to work as a MobiLink consolidated database, you must run a setup procedure that adds
MobiLink system tables, stored procedures, triggers, and views that are required for MobiLink
synchronization. There are two ways you can do this:

● Using the MySQL command line tool or the MySQL Query Browser, run the syncmys.sql setup script,
located in install-dir\MobiLink\setup. Make sure that your MySQL user ID has privileges to create
triggers.

● In the MobiLink plug-in for Sybase Central, choose Mode » Admin and connect to your server database.
Right-click the database name and choose Check MobiLink System Setup. If your database requires
setup, you are prompted to continue. Note that if you want to use an existing MobiLink system setup,
then your default_schema should be the schema of the MobiLink system setup.

Note
The database user who runs the setup script is the only user who has permission to change the MobiLink
system tables, which is required for configuring MobiLink applications. See “Required
permissions” on page 30.

The RDBMS user that the MobiLink server uses to connect to the consolidated database must be able to able
to use the MobiLink system tables, procedures, and so on, without any qualifiers (for example, SELECT *
from ml_user). See “MobiLink server system tables” on page 693.

ODBC driver
You must set up an ODBC DSN for your MySQL consolidated database using the ODBC driver that is
provided on the MySQL web site. The MobiLink server supports MySQL ODBC driver 5.1.3 or later. See:

● Recommended ODBC Drivers for MobiLink

To specify your ODBC configuration file in Unix, do one of the following,

● Place the ODBC.INI file into the home directory of the current user.
● Create an ODBCINI environment variable and set it to the directory location of the ODBC.INI file.

If any of your synchronization scripts contain batched SQL commands separated by semicolons, you may
need to select the Allow Multiple Statements check box on the Flags 3 page of the MySQL Connector/
ODBC Data Source Configuration window when you configure a DSN for the MobiLink server to make
connections to your MySQL database.

MobiLink consolidated databases

22 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.sybase.com/detail?id=1011880

MySQL issues
● Storage Engine The MobiLink server requires the default storage engine to be ACID compliant. If

the default storage engine is not ACID compliant, make sure that all MobiLink server tables are created
using an ACID compliant storage engine, such as InnoDB and Falcon.

● Stored Procedures You cannot use INOUT or OUT parameters in stored procedure calls. Procedures
that require these parameters must be implemented as functions that return an OUT value.

Server events that require INOUT parameters, such as authenticate_user and modify_user, must be
implemented as functions and run using a SELECT statement instead of a CALL statement.

Since user-defined named parameters are not modified after server events run, they are not supported.

● Cursor Scripts The events upload_fetch, download_cursor, and download_delete_cursor must be
called using a SELECT statement, which the MobiLink server runs using a read-committed isolation
level. A bug in the MySQL ODBC driver causes the server to read uncommitted operations, such as
INSERT, UPDATE, and DELETE statements, which results in inconsistent data between the
consolidated database and the remote database.

To work around this problem, affix a LOCK IN SHARE MODE clause to your SELECT statements.
For example,

SELECT column1 FROM table1 WHERE id > 0 LOCK IN SHARE MODE

This clause protects the SELECT statement from uncommitted operations.

● Bulk upload The MobiLink server relies on the MySQL ODBC driver, which does not currently
support bulk upload.

● MLSD The MobiLink server relies on the MySQL ODBC driver, which does not currently support
MSDTC.

● SQLLEN Datatypes on the 64-bit MobiLink server for Unix The MySQL ODBC driver defines
SQLLEN as a 32-bit integer, causing a discrepancy with the 64-bit MobiLink server, which defines
SQLLEN as a 64-bit integer. If you are running MobiLink on a 64-bit Unix environment, you must add
the following to your ODBC configuration file,

length32=1

This entry forces the server to read SQLLEN as a 32-bit integer. Your configuration should look similar
to the following example,

[a_mysql_dsn]
Driver=full_path/libmyodbc5.so
server=host_name
uid=user_name
pwd=user_password
database=database_name
length32=1

● MySQL Server Configuration The MobiLink synchronization scripts are stored in the ml_script
table as TEXT and are retrieved when needed. You may need to set max_allowed_packet equal to 16m
or greater in the my.ini file.

MySQL consolidated database

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 23

Isolation level
See “MobiLink isolation levels” on page 165.

MobiLink consolidated databases

24 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Oracle consolidated database
Setting up Oracle as a consolidated database

To set up Oracle to work as a MobiLink consolidated database, you must run a setup procedure that adds
MobiLink system tables, stored procedures, triggers, and views that are required for MobiLink
synchronization. There are multiple ways you can do this:

● Run the syncora.sql setup script, located in install-dir\MobiLink\setup.

● In the MobiLink plug-in for Sybase Central, choose Mode » Admin and connect to your server database.
Right-click the database name and choose Check MobiLink System Setup. If your database requires
setup, you are prompted to continue. Note that if you have set up aliases for an existing MobiLink system
setup, you should connect as the user whose schema has the MobiLink system setup.

● When you use the Create Synchronization Model Wizard or Deploy Synchronization Model
Wizard, system setup is checked when you connect to your server database. If your database requires
setup, you are prompted to continue.

Note
The database user who runs the setup script is the only user who has permission to change the MobiLink
system tables, which is required for configuring MobiLink applications. See “Required
permissions” on page 30.

The RDBMS user that the MobiLink server uses to connect to the consolidated database must be able to able
to use the MobiLink system tables, procedures, and so on, without any qualifiers (for example, SELECT *
from ml_user). See “MobiLink server system tables” on page 693.

ODBC driver
You must set up an ODBC DSN for your Oracle consolidated database. See:

● “iAnywhere Solutions Oracle driver” on page 795
● Recommended ODBC Drivers for MobiLink

Oracle issues

● Stored procedures If you are using stored procedures in Oracle, you must select the Procedure
Returns Results option for the Oracle ODBC driver.

See “iAnywhere Solutions Oracle driver” on page 795.

● Session-wide variables Oracle does not provide session-wide variables. You can store session-wide
information in variables within Oracle packages. Oracle packages allow variables to be created, modified
and destroyed; these variables may last as long as the Oracle package is current.

● Autoincrement methods To maintain primary key uniqueness, you can use an Oracle sequence to
generate a list of keys similar to that of an autoincrement field. The CustDB sample database provides
coding examples, which can be found in Samples\MobiLink\CustDB\custora.sql. Unlike autoincrement,
however, you must explicitly reference the sequence. Autoincrement inserts a column value
automatically if the column is not referenced in an INSERT statement.

Oracle consolidated database

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 25

http://www.sybase.com/detail?id=1011880

● Oracle does not support empty strings In Oracle, an empty string is treated as null. In SQL
Anywhere and UltraLite, empty strings have a different meaning from null. Therefore, you should avoid
using empty strings in your client databases when you have an Oracle consolidated database.

● CHAR columns In Oracle, CHAR data types are fixed length and blank-padded to the full length of
the string. In MobiLink remote databases (SQL Anywhere or UltraLite), CHAR is the same as
VARCHAR: values are not blank-padded to a fixed width. It is strongly recommended that you use
VARCHAR in the consolidated database rather than CHAR. If you must use CHAR, the mlsrv11 -b
command line option can be used to remove trailing blanks from strings during synchronization. This
option is important for string comparisons used to detect conflicts.

See “-b option” on page 52.

● Data type mapping The data types of columns must map correctly between your consolidated and
remote database. For details, see “Oracle data mapping” on page 779.

Isolation level
See “MobiLink isolation levels” on page 165.

Using Oracle varray
The iAnywhere Solutions 11 - ODBC driver for Oracle supports the use of Oracle varray in stored procedures.
Using varray in upload scripts (upload_insert, upload_update, and upload_delete) that are written in stored
procedures may improve performance of the MobiLink server, compared with upload scripts written in stored
procedures that do not use varray. Simple SQL statements such as INSERT, UPDATE and DELETE without
stored procedures usually offer the best performance, however using stored procedures, including the varray
technique, provides an opportunity to apply business logic that the simple statements do not.

varray example

The following is a simple example that uses varray:

1. Create a table called my_table that contains 3 columns.

create table my_table (pk integer primary key, c1 number(20), c2
varchar2(4000))

2. Create user-defined collection types using varrays.

create type my_integer is varray(100) of integer;
create type my_number is varray(100) of number(20);
create type my_varchar is varray(100) of varchar2(8000);

my_varchar is defined as a varray that contains 100 elements and each element is a data type of varchar2
and width of 8000. The width is twice as big as that specified for my_table.

3. Create stored procedures for insert.

create or replace procedure my_insert_proc(pk_v my_integer, c1_v
my_number, c2_v my_varchar)
is
c2_value my_varchar;
begin

MobiLink consolidated databases

26 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 c2_value := c2_v; -- Work around an Oracle bug
 FORALL i in 1 .. pk_v.COUNT
 insert into my_table (pk, c1, c2) values(pk_v(i), c1_v(i),
c2_value(i));
end;

varray restrictions

The following restrictions apply when using varray in stored procedures:

● The DSN must have the Enable Microsoft distributed transactions checkbox unchecked.
● BLOB and CLOB varrays are not supported.
● A stored procedure containing a varray must be a standalone procedure, not a packaged procedure.
● If varray is a data type of CHAR, VARCHAR, NCHAR or NVARCHAR, the user-defined varray type

must be twice as big as the length specified for the table column.
● The number of rows in the varray that are sent by the MobiLink server to the Oracle consolidated database

is set by the -s option, not the size of the varray declared in the varray type. The -s option must not be
bigger than the smallest varray type size in use by synchronization scripts. If it is bigger, the MobiLink
server issues an error. See “-s option” on page 89.

Oracle consolidated database

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 27

SQL Anywhere consolidated database
Setting up SQL Anywhere as a consolidated database

To set up SQL Anywhere to work as a MobiLink consolidated database, you must run a setup procedure
that adds MobiLink system tables, stored procedures, triggers, and views that are required for MobiLink
synchronization. There are multiple ways you can do this:

● Run the syncsa.sql setup script, located in install-dir\MobiLink\setup.

● In the MobiLink plug-in for Sybase Central, choose Mode » Admin and connect to your server database.
Right-click the database name and choose Check MobiLink System Setup. If your database requires
setup, you are prompted to continue.

● When you use the Create Synchronization Model Wizard or Deploy Synchronization Model
Wizard, system setup is checked when you connect to your server database. If your database requires
setup, you are prompted to continue.

Note
The database user who runs the setup script is the only user who has permission to change the MobiLink
system tables, which is required for configuring MobiLink applications. See “Required
permissions” on page 30.

The RDBMS user that the MobiLink server uses to connect to the consolidated database must be able to able
to use the MobiLink system tables, procedures, and so on, without any qualifiers (for example, SELECT *
from ml_user). See “MobiLink server system tables” on page 693.

Setting up the ODBC driver
You must set up an ODBC DSN for your SQL Anywhere consolidated database. The ODBC driver for SQL
Anywhere is installed with SQL Anywhere.

For information about the SQL Anywhere ODBC driver, see “Creating ODBC data sources” [SQL Anywhere
Server - Database Administration].

Isolation level
See “MobiLink isolation levels” on page 165.

MobiLink consolidated databases

28 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

MobiLink server

Contents
Running the MobiLink server ... 30
Stopping the MobiLink server .. 32
Logging MobiLink server actions ... 33
Running the MobiLink server outside the current session ... 35
Running the MobiLink server in a server farm ... 40
Troubleshooting MobiLink server startup .. 41

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 29

Running the MobiLink server
All MobiLink clients synchronize through the MobiLink server. None connect directly to a database server.
You must start the MobiLink server before a MobiLink client synchronizes.

For a list of mlsrv11 command line options, see “MobiLink server options” on page 43.

The MobiLink server opens connections, via ODBC, with your consolidated database server. It then accepts
connections from remote applications and controls the synchronization process.

To start the MobiLink server

● Run mlsrv11. Use the -c option to specify the ODBC connection parameters for your consolidated
database.

For information about connection parameters, see “-c option” on page 54.

You must specify connection parameters. Other options are available, but are optional. These options allow
you to specify how the server works. For example, you can specify a cache size and logging options.

For more information about mlsrv11 options, see “mlsrv11 syntax” on page 45.

Note
The mlsrv11 options allow you to specify how the MobiLink server works. To control what the server does,
you define scripts that are invoked at synchronization events. See “Synchronization events” on page 341.

Example
The following command starts the MobiLink server using the ODBC data source SQL Anywhere 11
CustDB to identify the consolidated database. Enter the entire command on one line.

mlsrv11
 -c "dsn=SQL Anywhere 11 CustDB;uid=DBA;pwd=sql"
 -zs MyServer
 -o mlsrv.log
 -vcr
 -x tcpip(port=3303)
 -xo tcpip

In this example, the -c option provides a connection string that contains an ODBC data source name (DSN)
and authentication. The -zs option provides a server name. The -o option specifies that the log file should
be named mlsrv.log. The contents of mlsrv.log are verbose because of the -vcr option. The -x option opens
a port for version 10 and 11 clients, and the -xo option opens a port for version 8 and 9 clients. You must
specify a port with either the -x option or the -xo option, otherwise the command fails because the default
port is used for both options.

You can also start the MobiLink server as a Windows service or Unix daemon. See “Running the MobiLink
server outside the current session” on page 35.

Required permissions

You must specify a database user for the MobiLink server to connect to the database server. You specify
the database user with the mlsrv11 -c option or in the DSN.

MobiLink server

30 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

This database user must have full select, insert, update, and delete permissions on the MobiLink system
tables, and must also have execute permissions on the MobiLink system procedures. By default, the database
user who runs the MobiLink setup script has these permissions. If you want to use another database user to
run the MobiLink server, you must grant permissions for that user on the ml_* tables and the ml_add_*_script
system procedures.

For example, in a SQL Anywhere consolidated database you can grant the required permissions as follows:

CREATE USER DBUser IDENTIFIED BY SQL;
GRANT ALL ON dbo.ml_user to DBUser;
...
GRANT EXECUTE ON dbo.ml_add_table_script TO DBUser;
...

You must grant permission for each MobiLink system table and system procedure. For a list of all MobiLink
system tables and system procedures, see “MobiLink server system tables” on page 693 and “MobiLink
server system procedures” on page 663.

The database user also needs the appropriate permission on all tables referenced in the MobiLink scripts,
ands execute permissions on any procedures referenced in the MobiLink scripts.

For more information about setting permissions, see “GRANT statement” [SQL Anywhere Server - SQL
Reference].

For more information about setup scripts, see “Setting up a consolidated database” on page 6.

Running the MobiLink server

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 31

Stopping the MobiLink server
The MobiLink server is stopped from the computer where the server was started. You can stop the MobiLink
server in the following ways:

● Use the MobiLink stop utility (mlstop).

● Click Shut down on the MobiLink server window.

● On Windows, right-click the icon in the system tray and choose Shut down.

● When running on Unix without the MobiLink server window, type Q.

● Use the shutdown method in the MobiLink server API.

See also
● “MobiLink stop utility (mlstop)” on page 689
● server API for Java: “shutdown method” on page 573
● server API for .NET: “ShutDown method” on page 630

MobiLink server

32 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Logging MobiLink server actions
Logging the actions that the server takes is particularly useful during the development process and when
troubleshooting. Verbose output is not recommended for normal operation of a production environment
because it can slow performance.

Logging output to a file
Logging output is sent to the MobiLink server messages window. In addition, you can send the output to a
message log file using the -o option. The following command sends output to a message log file named
mlsrv.log.

mlsrv11 -o mlsrv.log -c ...

You can control the size of log files, and specify what you want done when a file reaches its maximum size.

● Use the -o option to specify that a log file should be used.

● Use the -ot option to specify that a log file should be used when you want the previous contents of the
file to be deleted before messages are sent to it.

● In addition to -o or -ot, use the -on option to specify the size at which the log file is renamed with the
extension .old and a new file is started with the original name.

● In addition to -o or -ot, use the -os option to specify the size at which a new log file is started with a new
name based on the date and a sequential number.

See:

● “-o option” on page 77
● “-on option” on page 78
● “-os option” on page 80
● “-ot option” on page 81

Controlling the amount of logging output
You can control what information is logged to the message log file and displayed in the MobiLink server
window using the -v option. See “-v option” on page 102.

Controlling which warning messages are reported
You can also control which warning messages are reported.

For more information, see:

● “-zw option” on page 123
● “-zwd option” on page 124
● “-zwe option” on page 125

Logging MobiLink server actions

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 33

Viewing MobiLink server logs
You can view MobiLink logs in the following ways:

● In the MobiLink server messages window

● By opening the log file

● Using the MobiLink Server Log File Viewer in Sybase Central

To view log information outside the MobiLink server messages window, you must log the information to a
file. See “Logging output to a file” on page 33.

MobiLink Server Log File Viewer

To view MobiLink server logs, open Sybase Central and choose Tools » MobiLink 11 » MobiLink Server
Log File Viewer. You are prompted to choose a log file to view. By holding down the shift key, you can
open multiple log files at the same time.

The MobiLink Server Log File Viewer reads information that is stored in MobiLink log files. It does not
connect to the MobiLink server or change the composition of log files.

The MobiLink Server Log File Viewer allows you to filter the information that you view. In addition, it
provides statistics based on the information in the log.

MobiLink server

34 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Running the MobiLink server outside the current
session

You can set up the MobiLink server to be available all the time. To make this easier, you can run the MobiLink
server for Windows and for Unix so that it remains running when you log off the computer. The way you
do this depends on your operating system.

● Unix daemon You can run the MobiLink server as a daemon using the mlsrv11 -ud option, enabling
the MobiLink server to run in the background, and to continue running after you log off.

● Windows service You can run the Windows MobiLink server as a service.

To stop a MobiLink server that is running as a service, you can use mlstop, dbsvc, or the Windows
Service Manager.

See also
● “-ud option” on page 99
● “Service utility (dbsvc) for Linux” [SQL Anywhere Server - Database Administration]
● “Running the server outside the current session” [SQL Anywhere Server - Database Administration]

Running the Unix MobiLink server as a daemon
To run the MobiLink server in the background on Unix, and to enable it to run independently of the current
session, you run it as a daemon.

To run the Unix MobiLink server as a daemon

● Use the -ud option when starting the MobiLink server. For example:

mlsrv11 -c "dsn=SQL Anywhere 11 Demo;uid=DBA;pwd=sql" -ud

See “-ud option” on page 99.

See also
● “Service utility (dbsvc) for Linux” [SQL Anywhere Server - Database Administration]

Running the Windows MobiLink server as a service
To run the Windows MobiLink server in the background, and to enable it to run independently of the current
session, you run it as a service.

You can run the following service management tasks from the command line, or on the Services tab in
Sybase Central:

● Add, edit, and remove services.

Running the MobiLink server outside the current session

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 35

● Start and stop services.

● Modify the parameters governing a service.

See also
● “Service utility (dbsvc) for Windows” [SQL Anywhere Server - Database Administration]

Adding, modifying, and deleting services
The service icons in Sybase Central display the current state of each service using an icon that indicates
whether the service is running or stopped.

To add a new service (Sybase Central)

1. In Sybase Central, in the left pane, click MobiLink 11.

2. In the right pane, click the Services tab.

3. In the right pane, right-click and choose New » Service.

4. Follow the instructions in the Create Service Wizard.

You can also use the dbsvc utility to create the service. See “Service utility (dbsvc) for Windows” [SQL
Anywhere Server - Database Administration].

To delete a service (Sybase Central)

● Choose the service and then click Edit » Delete.

To change the parameters for a service

● Right-click the service and choose Properties.

Changes to a service configuration take effect the next time the service is started.

Setting the startup option
The following options govern startup behavior for MobiLink services. You can set them on the General tab
of the Service Properties window.

● Automatic If you choose Automatic, the service starts whenever the Windows operating system
starts. This setting is appropriate for database servers and other applications running all the time.

● Manual If you choose Manual, the service starts only when a user with Administrator permissions
starts it. For information about Administrator permissions, see your Windows documentation.

● Disabled If you choose Disabled, the service does not start.

The startup option is applied the next time Windows is started.

MobiLink server

36 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Specifying command line options
The Configuration tab of the Service Properties window provides a File name text box for entering the
program executable path and a Parameters text box for entering command line options for a service. Do
not type the name of the program executable in the Parameters box.

For example, to start a MobiLink synchronization service with verbose logging, type the following in the
Parameters box:

-c "dsn=SQL Anywhere 11 Demo;uid=DBA;pwd=sql"
-vc

The command line options for a service are the same as those for the executable. See “MobiLink server
options” on page 43.

Setting account options
You can choose which account the service runs under. Most services run under the special LocalSystem
account, which is the default option for services. You can set the service to log on under another account by
opening the Account tab on the Service Properties window, and entering the account information.

If you choose to run the service under an account other than LocalSystem, that account must have the "log
on as a service" privilege. For information about advanced privileges, see your Microsoft Windows
documentation.

Whether an icon for the service appears on the taskbar or desktop is dependent on the account you select,
and whether Allow Service To Interact with Desktop is checked, as follows:

● If a service runs under LocalSystem, and Allow Service To Interact with Desktop is checked in the
Service Properties window, an icon appears on the desktop of every user logged in to Windows XP/
200x on the computer running the service. Any user can open the application window and stop the
program running as a service.

● If a service runs under LocalSystem, and Allow Service To Interact with Desktop is unchecked in the
Service Properties window, no icon appears on the desktop for any user. Only users with permissions
to change the state of services can stop the service.

● If a service runs under another account, no icon appears on the desktop. Only users with permissions to
change the state of services can stop the service.

Changing the executable file
To change the program executable file associated with a service in Sybase Central, click the
Configuration tab on the Service Properties window and type the new path and file name in the File
Name box.

If you move an executable file to a new directory, you must modify this entry.

Starting and stopping
To start or stop a service

1. In Sybase Central, click MobiLink 11 in the left pane, and then open the Services tab in the right pane.

2. Right-click the service and choose Start or Stop.

Running the MobiLink server outside the current session

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 37

If you start a service, it keeps running until you stop it. Closing Sybase Central or logging off does not stop
the service.

Stopping a service closes all connections to the database and stops the database server. For other applications,
the program closes down.

Running more than one service at a time
Although you can use the Windows Service Manager in the Control Panel for some tasks, you cannot install
or configure a MobiLink service from the Windows Service Manager. You can use Sybase Central to perform
all the service management for MobiLink.

When you open the Windows Service Manager from the Windows Control Panel, a list of services appears.
The names of the SQL Anywhere services are formed from the Service Name you provided when installing
the service, prefixed by SQL Anywhere. All the installed services appear together in the list.

This section describes topics specific to running more than one service at a time.

Service dependencies
In some circumstances you may want to run more than one executable as a service, and these executables
may depend on each other. For example, you must run the MobiLink server and the database server to
synchronize.

In cases such as these, the services must start in the proper order. If a MobiLink synchronization service
starts up before the consolidated database server has started, it fails because it cannot find the consolidated
database server. The sequence must be such that the database server is running when you start the MobiLink
server. (This does not apply if the consolidated database server is on another computer.)

You can prevent these problems using service groups, which you manage from Sybase Central.

Service groups
You can assign each service on your system to be a member of a service group. By default, each service
belongs to a group. The default group for the MobiLink server is SQLANYMobiLink.

Before you can configure your services to ensure they start in the correct order, you must check that your
service is a member of an appropriate group. You can check which group a service belongs to, and change
this group, from Sybase Central.

To check and change which group a service belongs to

1. In Sybase Central, click MobiLink 11 in the left pane, and then open the Services tab in the right pane.

2. Right-click the service and choose Properties.

3. Click the Dependencies tab. The top text box displays the name of the group the service belongs to.

4. Click Change to display a list of available groups on your system.

5. Select one of the groups, or type a name for a new group.

6. Click OK to assign the service to that group.

MobiLink server

38 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Managing service dependencies
With Sybase Central, you can specify dependencies for a service. For example:

● You can ensure that at least one group has started before the current service.

● You can ensure that any service starts before the current service.

To add a service or group to a list of dependencies

1. In Sybase Central, click MobiLink 11 in the left pane, and then open the Services tab in the right pane.

2. Right-click the service and choose Properties.

3. Click the Dependencies tab.

4. Click Add Services or Add Service Groups to add a service or group to the list of dependencies.

5. Select one of the services or groups from the list.

6. Click OK to add the service or group to the list of dependencies.

Running the MobiLink server outside the current session

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 39

Running the MobiLink server in a server farm
Separately licensed component required
Shared state mode is a feature of the MobiLink high availability option, which requires a separate license.
See “Separately licensed components” [SQL Anywhere 11 - Introduction].

A MobiLink server farm is an environment where there is more than one MobiLink server synchronizing
the same set of remote databases with the same consolidated database. This is often required for large scale
deployments or for fail-over capability. These MobiLink server farm deployments require MobiLink to run
in shared state mode and may require the use of the relay server if an HTTP communication link is used.
For TCP based streams, a TCP load balancer should work. When using multiple servers, restartable download
does not work.

MobiLink does not run with shared server state by default.

To enable shared server state

1. Give each MobiLink server a unique name using the -zs command line option. These names are used to
manage the state of the farm in the consolidated database. See “-zs option” on page 119.

2. Use the -ss option to start MobiLink in shared server state mode. If this option is set, MobiLink server
prints the following message to the log at startup: This server is using shared server
state for resource locking. See “-ss option” on page 95.

3. If you are using the notifier with Server Initiated Sync, use the -lsc option to specify the local server
connect settings. These settings are passed to the other servers in the farm so that they can connect to
each other to share the handling of notifications. For example, if running on host farm_host22:
mlsrv11 -x tcpip(port=3245) -zs -ss server5 -lsc
tcpip(host=farm_host22;port=3245) -c ...
If you are not using the notifier you don't need the -lsc option.

See also
● “-lsc option” on page 72
● “-zs option” on page 119
● “-ss option” on page 95

MobiLink server

40 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Troubleshooting MobiLink server startup
This section describes some common problems when starting the MobiLink server.

Ensure that network communication software is running
Appropriate network communication software must be installed and running before you run the MobiLink
server. If you are running reliable network software with just one network installed, this should be
straightforward. You should confirm that other software requiring network communications is working
properly before running the MobiLink server.

If you are running under the TCP/IP protocol, you may want to confirm that ping and telnet are working
properly. The ping and telnet applications are provided with many TCP/IP protocol stacks.

Debug network communications startup problems
If you are having problems establishing a connection across a network, you can use debugging options at
both the client and server to diagnose problems. The startup information appears on the server window: you
can use the -o option to log the results to an output file.

See “Logging MobiLink server actions” on page 33.

Troubleshooting MobiLink server startup

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 41

42

MobiLink server options

Contents
mlsrv11 syntax ... 45
@data option ... 50
-a option ... 51
-b option ... 52
-bn option ... 53
-c option ... 54
-cm option .. 55
-cn option ... 56
-cr option .. 57
-cs option ... 58
-ct option .. 59
-dl option .. 60
-dr option ... 61
-ds option ... 62
-dsd option ... 63
-dt option .. 64
-e option ... 65
-esu option ... 66
-et option .. 67
-f option .. 68
-fips option ... 69
-fr option .. 70
-ftr option ... 71
-lsc option .. 72
-m option .. 73
-nba option ... 74
-nc option ... 75
-notifier option .. 76
-o option ... 77
-on option ... 78
-oq option ... 79

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 43

-os option ... 80
-ot option .. 81
-ppv option ... 82
-q option ... 86
-r option ... 87
-rd option ... 88
-s option ... 89
-sl dnet option .. 90
-sl java option .. 92
-sm option .. 94
-ss option ... 95
-tc option .. 96
-tf option ... 97
-tx option .. 98
-ud option ... 99
-ui option .. 100
-ux option ... 101
-v option ... 102
-w option .. 105
-wu option .. 106
-x option ... 107
-xo option ... 113
-zp option ... 118
-zs option ... 119
-zt option .. 120
-zu option ... 121
-zus option ... 122
-zw option .. 123
-zwd option .. 124
-zwe option .. 125

MobiLink server options

44 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

mlsrv11 syntax
Function

Start a MobiLink server.

Syntax
mlsrv11 -c "connection-string" [options]

Option Description

@data Read in options from the specified environment variable or
configuration file. See “@data option” on page 50.

-a Disable automatic reconnection upon synchronization error.
See “-a option” on page 51.

-b Trim blank padding of strings. See “-b op-
tion” on page 52.

-bn size Specify the maximum number of bytes to consider when
comparing BLOBs for conflict detection. See “-bn op-
tion” on page 53.

-c "keyword=value; ..." Supply ODBC database connection parameters for your
consolidated database. See “-c option” on page 54.

-cm size Specify the server memory cache size. See “-cm op-
tion” on page 55.

-cn connections Set the maximum number of simultaneous connections with
the consolidated database server. See “-cn op-
tion” on page 56.

-cr count Set the maximum number of database connection retries.
See “-cr option” on page 57.

-cs "keyword=value; ..." Supply system database connection parameters for your
MobiLink System Database (MLSD).

-ct connection-timeout Set the length of time a connection may be unused before it
is timed out. See “-ct option” on page 59.

-dl Display all log messages in the MobiLink server messages
window. See “-dl option” on page 60.

mlsrv11 syntax

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 45

Option Description

-dr For Adaptive Server Enterprise only. Ensures that tables in-
volved in synchronization do not use the DataRow locking
scheme. See “-dr option” on page 61.

-ds size Specify the maximum amount of data that can be stored for
use in all restartable downloads. See “-ds op-
tion” on page 62.

-dsd Disable snapshot isolation, which is the default download
isolation level for SQL Anywhere and Microsoft SQL Serv-
er consolidated databases. See “-dsd option” on page 63.

-dt Detect transactions only within the current database. See “-
dt option” on page 64.

-e filename Store remote error logs sent into the named file. See “-e op-
tion” on page 65.

-esu Use snapshot isolation for uploads. See “-esu op-
tion” on page 66.

-et filename Store remote error logs sent into the named file, but delete
the contents first if the file exists. See “-et op-
tion” on page 67.

-f Assume synchronization scripts do not change. See “-f op-
tion” on page 68.

-fips Forces all secure MobiLink streams to be FIPS-compliant.
See “-fips option” on page 69.

-fr If table data scripts are missing, synchronization does not
terminate but just issues a warning. See “-fr op-
tion” on page 70.

-ftr path Creates a location for files that are to be used by the mlfile-
transfer utility. See “-ftr option” on page 71.

-lsc protocol[protocol-options Specifies the local server connect information. See “-lsc op-
tion” on page 72.

-m [filename] Enables QAnywhere messaging. See “-m op-
tion” on page 73.

-nba { + | - } Sets the server download acknowledgement mode of oper-
ation. See “-nba option” on page 74.

MobiLink server options

46 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Option Description

-nc connections Sets maximum number of concurrent connections. See “-nc
option” on page 75.

-notifier Starts a Notifier for server-initiated synchronization. See “-
notifier option” on page 76.

-o logfile Log messages to a file. See “-o option” on page 77.

-on size Set maximum size for log file. See “-on op-
tion” on page 78.

-oq Prevent the popup window on startup error. See “-oq op-
tion” on page 79.

-os size Maximum size of output file. See “-os op-
tion” on page 80.

-ot logfile Log messages to a file, but delete its contents first. See “-ot
option” on page 81.

-q Minimize the MobiLink server messages window. See “-q
option” on page 86.

-r retries Retry deadlocked uploads at most this many times. See “-r
option” on page 87.

-rd delay Set maximum delay, in seconds, before retrying a dead-
locked transaction. See “-rd option” on page 88.

-s count Specify the maximum number of rows to be fetched or sent
at once. See “-s option” on page 89.

-sl dnet script-options Set the .NET CLR options and force loading of the virtual
machine on startup. See “-sl dnet option” on page 90.

-sl java script-options Set the Java virtual machine options and force loading of the
virtual machine on startup. See “-sl java op-
tion” on page 92.

-sm number Set the maximum number of synchronizations that can be
actively worked on. See “-sm option” on page 94.

-ss Puts the server into shared server state mode. See “-ss op-
tion” on page 95.

-tc minutes Set the count down timer for SQL script execution. See “-tc
option” on page 96.

mlsrv11 syntax

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 47

Option Description

-tf Fail the SQL script execution when the count down timer
expires (not for Oracle). See “-tf option” on page 97.

-tx count For transactional uploads, batches groups of transactions
and commits them together. See “-tx option” on page 98.

-ud On Unix platforms, run as a daemon. See “-ud op-
tion” on page 99.

-ui For Linux with X window, starts the MobiLink server in
shell mode if a usable display isn't available. See “-ui op-
tion” on page 100.

-ux Opens the MobiLink server messages window. See “-ux op-
tion” on page 101.

-v [levels] Controls the type of messages written to the log file. See “-
v option” on page 102.

-w count Set the number of database worker threads. See “-w op-
tion” on page 105.

-wu count Set the maximum number of database worker threads per-
mitted to process uploads concurrently. See “-wu op-
tion” on page 106.

-x protocol[(network-parameters)] Specify the communications protocol. Optionally, specify
network parameters in form parameter=value, with multi-
ple parameters separated by semicolons. See “-x op-
tion” on page 107.

-xo protocol[(network-parameters)] For version 8 and 9 clients, specify the communications
protocol. Optionally, specify network parameters in form
parameter=value, with multiple parameters separated by
semicolons. See “-xo option” on page 113.

-zp In the event of a timestamp conflict between the consolida-
ted and remote database, this option allows timestamp val-
ues with a precision higher than the lowest-precision to be
used for conflict detection purposes. See “-zp op-
tion” on page 118.

-zs name Specify a server name. See “-zs option” on page 119.

-zt number Specify the maximum number of processors used to run the
MobiLink server. See “-zt option” on page 120.

MobiLink server options

48 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Option Description

-zu { + | - } Controls the automatic addition of users when the authenti-
cate_user script is undefined. See “-zu op-
tion” on page 121.

-zus Causes MobiLink to invoke upload scripts for tables for
which there is no upload. See “-zus option” on page 122.

-zw 1,...5 Controls which levels of warning message to display. See
“-zw option” on page 123.

-zwd code Disables specific warning codes. See “-zwd op-
tion” on page 124.

-zwe code Enables specific warning codes. See “-zwe op-
tion” on page 125.

Description
The MobiLink server opens connections, via ODBC, with your consolidated database server. It then accepts
connections from client applications and controls the synchronization process.

You must supply connection parameters for the consolidated database using the -c option. The command
line options may be specified in any order. The -c option is shown here as the first item in a command string
as a convention only. It can be anywhere in a list of options, but must precede a connection string.

Unless your ODBC data source is configured to automatically start the consolidated database, the database
must be running before you start the MobiLink server.

See also
● “MobiLink server” on page 29

mlsrv11 syntax

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 49

@data option
Reads in options from the specified environment variable or configuration file.

Syntax
mlsrv11 -c "connection-string" @data ...

Remarks
Use this option to read in mlsrv11 command line options from the specified environment variable or
configuration file. If both exist with the same name that is specified, the environment variable is used.

For more information about configuration files, see “Using configuration files” [SQL Anywhere Server -
Database Administration].

If you want to protect passwords or other information in the configuration file, you can use the File Hiding
utility to obfuscate the contents of the configuration file.

See “File Hiding utility (dbfhide)” [SQL Anywhere Server - Database Administration].

MobiLink server options

50 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-a option
Instructs the MobiLink server to not reconnect on synchronization error.

Syntax
mlsrv11 -c "connection-string" -a ...

Remarks
Should an error occur during synchronization, the MobiLink server automatically disconnects from the
consolidated database, and then re-establishes the connection. Reconnecting ensures that the following
synchronization starts from a known state. When this behavior is not required, you can use this option to
disable it. The maintenance of state information depends on programmer requirements and may vary
depending on the ways in which the programmer configures MobiLink scripting to work with the DBMS.
This applies even if that database is an Oracle, SQL Anywhere database, or other supported product. Some
status information may need to be re-initialized depending on the client application.

-a option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 51

-b option
For columns of type VARCHAR, CHAR, LONG VARCHAR, or LONG CHAR, removes trailing blanks
from strings during synchronization.

Syntax
mlsrv11 -c "connection-string" -b ...

Remarks

Note
It is recommended that you use VARCHAR in the consolidated database rather than CHAR, so that this
problem does not occur.

This option helps resolve differences between the SQL Anywhere CHAR data type and the CHAR or
VARCHAR data type used by the consolidated database. The SQL Anywhere CHAR data type is equivalent
to VARCHAR. However, in most consolidated databases that are not SQL Anywhere, the CHAR(n) data
type is blank-padded to n characters.

When -b is specified, the MobiLink server removes trailing blanks from strings for columns of type CHAR,
VARCHAR, LONG CHAR, or LONG VARCHAR if the column on the remote is a string. It does this before
filtering rows that were uploaded in the current synchronization. The trimmed data is then downloaded to
the remote databases.

This option can also be used to detect conflict updates. For each upload update row, the MobiLink server
fetches the row from the consolidated database for the given primary key, compares the row with the pre-
image of the update, and then determines whether the update is a conflict update. When -b is used, MobiLink
trims trailing blanks from columns of type CHAR, VARCHAR, LONG CHAR, or LONG VARCHAR before
doing the comparison.

See also
● “CHAR columns” on page 8
● “NVARCHAR data type” [SQL Anywhere Server - SQL Reference]

Example
If the -b option is not used, a primary-key value of 'abc' uploaded from a SQL Anywhere or UltraLite remote
to a CHAR(10) column in the consolidated database becomes 'abc' followed by seven blank spaces. If the
same row is downloaded, then it appears on the remote as 'abc' followed by seven spaces. If the remote
database is not blank-padded, then the remote contains two rows: both 'abc' and 'abc' followed by seven
spaces. There is now a duplicate row on the remote.

If the -b option is used, a primary-key value of 'abc' uploaded from a SQL Anywhere or UltraLite remote to
a CHAR(10) column in the consolidated database becomes 'abc' followed by seven spaces. Seven spaces
still pad the value to ten characters, but if the same row is downloaded, then MobiLink server strips the
trailing spaces, and the value appears on the remote as 'abc'. The -b option fixes the duplicate row problem.

MobiLink server options

52 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-bn option
Sets the maximum number of BLOB bytes to compare during conflict detection.

Syntax
mlsrv11 -c "connection-string" -bn size ...

Remarks
When two BLOBs contain similar or identical values, the operation of comparing them for filtering or conflict
detection can be expensive due to the amount of data involved. This option tells the MobiLink server to
consider only the first size bytes of two BLOBs when making the comparison. The default is to compare the
two BLOBs in their entirety.

Under some situations, limiting the maximum amount of data compared can speed synchronization
substantially; however, it can also cause errors. For example, if two large BLOBs differ only in the last few
bytes, the MobiLink server may consider them identical when in fact they are not.

-bn option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 53

-c option
Specifies connection parameters for the consolidated database.

Syntax
mlsrv11 -c "connection-string" ...

Remarks
The connection string must give the MobiLink server enough information to connect to the consolidated
database. The connection string is required.

The connection string must specify connection parameters in the form keyword=value, separated by
semicolons, with no spaces between parameters.

Connection parameters must be included in the ODBC data source specification if not given in the command
line. Check your RDBMS and ODBC data source to determine required connection data.

For a complete list of SQL Anywhere connection parameters, see “Connection parameters” [SQL Anywhere
Server - Database Administration].

For information about how to hide the password, see “File Hiding utility (dbfhide)” [SQL Anywhere Server
- Database Administration].

Example
mlsrv11 -c "dsn=odbcname;uid=DBA;pwd=sql"

MobiLink server options

54 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-cm option
Sets the maximum size for the server memory cache.

Syntax
mlsrv11 -c "connection-string" -cm size[k | m | g] ...

Remarks
The maximum amount of memory the server uses for holding table data, network buffers, cached download
data, and other structures used for synchronization. When the server has more data than can be held in this
memory pool, the data is stored on disk.

The size is the amount of memory to reserve in bytes. Use k, m, or g to specify units of kilobytes, megabytes,
or gigabytes, respectively. The default is 50M.

-cm option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 55

-cn option
Sets the maximum number of simultaneous consolidated database connections.

Syntax
mlsrv11 -c "connection-string" -cn value ...

Remarks
Specifies the maximum number of simultaneous connections that the MobiLink server should make to the
consolidated database. The minimum and the default value are one greater than the number of database
worker threads. A warning is issued if the supplied value is too small.

A MobiLink database connection is only used for synchronizations using one script version. When the
MobiLink server is using all the database connections that it is permitted by the -cn option, if a
synchronization is pending but no database connection for its script version currently exists, the MobiLink
server disconnects a connection and then creates a new database connection for the pending synchronization's
script version.

A value larger than the number of database worker threads may speed performance, particularly if connecting
to the consolidated database is slow or if multiple script versions are in use. The optimum maximum number
of database connections is the number of script versions times the number of database worker threads, plus
one. Connections above this optimum value do not necessarily speed synchronization, and needlessly
consumes resources in both the MobiLink server and the consolidated database server.

See also
● “-w option” on page 105

MobiLink server options

56 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-cr option
Sets the maximum number of database connection retries.

Syntax
mlsrv11 -c "connection-string" -cr value ...

Remarks
Set the maximum number of times that the MobiLink server attempts to connect to the database, before
quitting, when a connection goes bad. The default value is three connection retries.

-cr option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 57

-cs option
Specifies connection parameters for your MobiLink System Database (MLSD).

Syntax
mlsrv11 -c "connection-string" -cs "connection-string" ...

Remarks
MobiLink server system objects, such as system tables, procedures, triggers, and views can be stored in a
database other than the consolidated database. The database that stores the MobiLink system objects is called
MLSD.

When this command option is specified on the command line, the MobiLink server makes connections to
MLSD to fetch user defined scripts and to maintain synchronization status, such as ML user names, remote
IDs, progress offsets, last upload and download timestamps, etc. The MobiLink server uses the original -c
command line option connections to the consolidated database and uses these connections to upload data
from and download data to the client databases. The consolidated database does not need to have any of the
MobiLink server system objects and all the user defined scripts including the error reporting and error
handling scripts are fetched from the MLSD and executed in the consolidated database.

When this option is used, the MobiLink server uses the Microsoft Distributed Transaction Coordinator
(MSDTC).

The consolidated database and MLSD can be any one of the supported MobiLink consolidated databases.
However, the corresponding ODBC drivers must support Microsoft Distributed Transactions.

The consolidated database and MLSD must have a transaction log to use MSDTC.

This option can only be used on Windows operating systems.

MobiLink server options

58 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-ct option
Sets the length of time, in minutes, that a connection may be unused before it is timed out and disconnected
by the MobiLink server.

Syntax
mlsrv11 -c "connection-string" -ct connection-timeout ...

Remarks
MobiLink database connections that go unused for a specified amount of time are freed by the server. The
timeout can be set using the -ct option. A default timeout period of 60 minutes is used.

-ct option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 59

-dl option
Displays all MobiLink server messages on screen.

Syntax
mlsrv11 -c "connection-string" -v -dl ...

Remarks
Display all MobiLink server messages in the MobiLink server messages window. By default, only a subset
of all messages is shown in the window when a MobiLink server message log file is being output (using -
o). In circumstances with many messages, this option can degrade performance.

See also
● “-o option” on page 77
● “Logging database server messages to a file” [SQL Anywhere Server - Database Administration]

MobiLink server options

60 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-dr option
For Adaptive Server Enterprise only. Ensures that tables involved in synchronization do not use the DataRow
locking scheme.

Syntax
mlsrv11 -c "connection-string" -dr ...

Remarks
This option should only be used if none of the synchronization tables were created using the DataRow locking
scheme.

Use of this option reduces duplicate data sent by the MobiLink server.

See also
● “MobiLink isolation levels” on page 165

-dr option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 61

-ds option
For use with restartable downloads. Specifies the maximum amount of data that the MobiLink server can
use to store all restartable downloads.

Syntax
mlsrv11 -c "connection-string" -ds size[k | m | g] ...

Remarks
The MobiLink server holds download data that has not been received by the client for use in a restartable
download. This option limits the amount of data that the server holds for all the synchronizations combined.

If size is too small the server may release download data, making it impossible to restart a download. The
server does not release download data until one of the following occurs:

● The user successfully completes the download.

● The user comes back with a new synchronization request without resume enabled.

● The cache is needed for incoming requests. The oldest unsuccessful download is cleared first.

Use k, m, or g to specify units of kilobytes, megabytes, or gigabytes, respectively. The default is 10m.

See also
● “Resuming failed downloads” on page 158
● “-dc option” [MobiLink - Client Administration]

MobiLink server options

62 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-dsd option
Disables snapshot isolation.

Syntax
mlsrv11 -c "connection-string" -dsd ...

Remarks
When the consolidated database is SQL Anywhere (version 10 or later) or Microsoft SQL Server (2005 or
later), the default isolation level for downloads is snapshot isolation. If the consolidated database is an earlier
version of these databases, the default download isolation level is read committed.

You can also change the default isolation level in a script. However, for SQL Anywhere version 10 and
Microsoft SQL Server 2005 and later databases, the isolation level is set at the start of the upload and
download transactions. This means that if you set the isolation level in the begin_connection script, it may
be overridden in the begin_upload and begin_download scripts.

This option only applies to SQL Anywhere version 10 and Microsoft SQL Server 2005 consolidated
databases.

See also
● “MobiLink isolation levels” on page 165
● “-dt option” on page 64
● “-esu option” on page 66

-dsd option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 63

-dt option
For Microsoft SQL Server and Adaptive Server Enterprise databases only. Causes MobiLink to detect
transactions only within the current database.

Syntax
mlsrv11 -c "connection-string" -dt ...

Remarks
This option makes MobiLink ignore all transactions except ones within the current database. It increases
throughput and reduces duplication of rows that are downloaded.

Use this option if:

● Your consolidated database is running on Microsoft SQL Server or Adaptive Server Enterprise that is
also running other databases.

● You are using snapshot isolation for uploads or downloads with Microsoft SQL Server.

● You are using the DataRow locking scheme for synchronizing tables with Adaptive Server Enterprise.

● Your upload or download scripts do not access any other databases on the server.

This option only applies to Microsoft SQL Server databases using snapshot isolation, and Adaptive Server
Enterprise databases using the DataRow locking scheme for tables involved in synchronization.

See also
● “MobiLink isolation levels” on page 165
● “-dsd option” on page 63
● “-esu option” on page 66

MobiLink server options

64 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-e option
Stores error logs sent from SQL Anywhere MobiLink clients.

Syntax
mlsrv11 -c "connection-string" -e filename ...

Remarks
With no -e option, error logs from SQL Anywhere MobiLink clients are stored in a file named
mlsrv11.mle. The -e option instructs the MobiLink server to store the error logs in the named file. By default,
dbmlsync sends, on the occurrence of an error on the remote site, up to 32 kilobytes of remote log messages
to a MobiLink server.

This option provides centralized access to remote error logs to help diagnose synchronization issues.

The amount of information delivered from a remote site can be controlled by the dbmlsync extended option
ErrorLogSendLimit.

See also
● “-et option” on page 67
● “ErrorLogSendLimit (el) extended option” [MobiLink - Client Administration]

-e option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 65

-esu option
Use snapshot isolation for uploads.

Syntax
mlsrv11 -c "connection-string" -esu ...

Remarks
By default, MobiLink uses the SQL_TXN_READ_COMMITTED isolation level for uploads. In most cases,
this is the optimal isolation level.

If you use snapshot isolation for uploads, you may generate conflicts on snapshot transactions during upload
updates. If this happens, the MobiLink server rolls back the entire upload and retries it. In this case, you
might want to adjust your settings for the MobiLink server options -r or -rd to specify the delay time between
retries and the maximum number of retries.

You can change the default isolation level in a script. To change the upload isolation level, you would
typically use the begin_upload script.

This option only applies to SQL Anywhere version 10 and Microsoft SQL Server 2005 consolidated
databases.

See also
● “MobiLink isolation levels” on page 165
● “-dsd option” on page 63
● “-dt option” on page 64
● “-r option” on page 87
● “-rd option” on page 88

MobiLink server options

66 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-et option
Stores error logs sent from SQL Anywhere MobiLink clients in the named file after truncating the existing
file.

Syntax
mlsrv11 -c "connection-string" -et filename ...

Remarks
The -et option is the same as the -e option, except that the error log file is truncated before any new errors
are added to it.

The amount of information delivered from a remote site can be controlled by the dbmlsync extended option
ErrorLogSendLimit.

See also
● “ErrorLogSendLimit (el) extended option” [MobiLink - Client Administration]
● “-e option” on page 65

-et option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 67

-f option
Loads synchronization scripts only once, for better performance.

Syntax
mlsrv11 -c "connection-string" -f ...

Remarks
Without the -f option, the MobiLink server checks to see if synchronization scripts have changed during
regular operation. This checking is helpful during development, but can have an unnecessary performance
impact in a production environment. With the -f option, the MobiLink server loads the synchronization
scripts only once per MobiLink session.

MobiLink server options

68 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-fips option
Forces all secure MobiLink streams to be FIPS-compliant.

Syntax
mlsrv11 -c connection-string" -fips ...

Remarks
Specifying this option forces all MobiLink encryption to use FIPS-approved algorithms. You can still use
unencrypted connections when the -fips option is specified, but you can't use simple encryption.

When you use this option, FIPS-approved algorithms are used for connections regardless of whether you
specify them or not. For example, if you start the MobiLink server with the option -fips and the option -x
tls(...;fips=no;...), the fips=no setting is ignored and the server starts with fips=yes.

Separately licensed component required
ECC encryption and FIPS-certified encryption require a separate license. All strong encryption technologies
are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 11 - Introduction].

For MobiLink transport-layer security, the -fips option causes the server to use the FIPS-approved RSA
encryption cipher, even if RSA without FIPS is specified. If ECC is specified, an error occurs because a
FIPS-approved elliptic-curve algorithm is not available.

See also
● “Encrypting MobiLink client/server communications” [SQL Anywhere Server - Database

Administration]
● “FIPS-approved encryption technology” [SQL Anywhere Server - Database Administration]

-fips option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 69

-fr option
If required table data scripts are missing, synchronization does not abort, but just issues a warning.

Syntax
mlsrv11 -c "connection-string" -fr ...

Remarks
By default, the MobiLink server aborts if required synchronization scripts are missing. This option causes
MobiLink to issue a warning instead of aborting.

See also
● “Required scripts” on page 326
● “Upload-only and download-only synchronizations” on page 138
● “Synchronization events” on page 341
● “Direct row handling” on page 649

MobiLink server options

70 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-ftr option
Creates a location for files that are to be used by the mlfiletransfer utility.

Syntax
mlsrv11 -c "connection-string" -ftr path ...

Remarks
This option sets the file transfer root directory. Files that are to be transferred to a user can be placed in the
root directory or in a subdirectory with the user name. MobiLink first looks for the requested file in a
subdirectory of the file transfer root directory with the user name of the connected client. If the file is not in
this subdirectory, MobiLink looks in the file transfer root directory.

This option is required if you want to use the mlfiletransfer utility.

See also
● “MobiLink file transfer utility (mlfiletransfer)” [MobiLink - Client Administration]
● “authenticate_file_transfer connection event” on page 353

-ftr option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 71

-lsc option
Specifies the local server connect information. This information is passed to other servers in the server farm.

Syntax
mlsrv11 -c "connection-string" -lsc protocol[protocol-options] ...

protocol : tcpip | tls | http | https

protocol-options : (option=value; ...)

Remarks
This option is only needed when running the notifier in a MobiLink server farm. This information is passed
to other servers when they want to connect to the local MobiLink server.

For example if we have a server running on a host named server_rack10, the command line could start:

mlsrv11 -x tcpip(port=200) -zs -ss server5 -lsc
tcpip(host=server_rack10;port=200) -c ...

In this example another server would use shared state in the consolidated database to get the connect string
tcpip(host=server_rack10;port=200) and use it to connect to the server just started.

See also
● “Running the MobiLink server in a server farm” on page 40
● “-zs option” on page 119
● “-ss option” on page 95
● “Notifiers in a MobiLink server farm” [MobiLink - Server-Initiated Synchronization]

MobiLink server options

72 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-m option
Enables QAnywhere messaging.

Syntax
mlsrv11 -c "connection-string" -m [message-properties-file] ...

Remarks
The optional message-properties-file is deprecated. Properties are now specified via Sybase Central and
stored in the database, or are specified with server management requests.

In the message-properties-file, each property must appear on its own line and consist of a property name,
the = character, and then a property value.

For a list of properties you can set, see “Server properties” [QAnywhere].

See also
● “Introducing QAnywhere technology” [QAnywhere]
● “Starting QAnywhere with MobiLink enabled” [QAnywhere]
● “Server management requests” [QAnywhere]

Example
To start QAnywhere messaging when you are using the sample server message store (samples-dir
\QAnywhere\server\qanyserv.db), run the following command:

mlsrv11 -m -c "dsn=QAnywhere 10 Demo"

For information about samples-dir, see “Samples directory” [SQL Anywhere Server - Database
Administration].

-m option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 73

-nba option
Sets the server download acknowledgement mode of operation.

Syntax
mlsrv11 -c "connection-string" -nba{ + | - } ...

Remarks
When you specify download acknowledgement, you can choose one of two modes: non-blocking (the default,
set by -nba+) or blocking (set by -nba-). Blocking download acknowledgement (-nba-) has been deprecated.
Use non-blocking whenever possible.

Non-blocking download acknowledgement is recommended because it provides a significant performance
advantage over blocking download acknowledgement. However, non-blocking download acknowledgement
cannot be used in the following case:

● Clients prior to 10.0.0 do not support non-blocking acknowledgement.

When you enable QAnywhere messaging with the mlsrv11 -m option, you can not use blocking download
acknowledgement. You cannot specify both -m and -nba-.

See also
● dbmlsync: “SendDownloadACK (sa) extended option” [MobiLink - Client Administration]
● UltraLite: “Send Download Acknowledgement synchronization parameter” [UltraLite - Database

Management and Reference]
● “nonblocking_download_ack connection event” on page 471
● “publication_nonblocking_download_ack connection event” on page 475

MobiLink server options

74 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-nc option
Sets the maximum number of concurrent network connections.

Syntax
mlsrv11 -c "connection-string" -nc connections ...

Remarks
The MobiLink server rejects new synchronization connections when the limit is reached. On the client, a
communication error is issued with a system error code that indicates the connection was refused.

The default is 1024.

To limit the number of concurrent synchronizations for non-persistent HTTP/HTTPS, set -nc significantly
higher than -sm. When the -sm limit is reached, the MobiLink server provides an HTTP error 503 (Service
Unavailable) to the remote client. If the -nc limit is reached, however, a socket error is issued. The greater
the difference between -nc and -sm, the more likely it is that the rejected connections will generate the HTTP
503 error instead of the less descriptive socket error. For example, set -sm to 100 and set -nc to 1000. See
“-sm option” on page 94.

-nc option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 75

-notifier option
Starts the Notifier for server-initiated synchronization.

Syntax
mlsrv11 -c "connection-string" -notifier [notifier-properties-file] ...

Remarks
If you specify a Notifier configuration file name, or if you do not specify a file name but you have a default
Notifier properties file called config.notifier, the Notifier is configured using that file. This overrides any
configuration information that is stored in the ml_properties table in the consolidated database.

Otherwise, MobiLink uses the configuration information that is stored in the ml_properties table in the
consolidated database.

When you use the -notifier option, you start every Notifier that you have enabled.

For more information about enabling Notifiers, see “Notifier properties” [MobiLink - Server-Initiated
Synchronization].

See also
● “MobiLink server settings for server-initiated synchronization” [MobiLink - Server-Initiated

Synchronization]
● “Configuring server-side settings using the Notifier configuration file” [MobiLink - Server-Initiated

Synchronization]
● “Notifiers” [MobiLink - Server-Initiated Synchronization]
● “Notifiers in a MobiLink server farm” [MobiLink - Server-Initiated Synchronization]

MobiLink server options

76 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-o option
Logs output messages to a MobiLink server message log file, and limits the data logged to the MobiLink
server messages window.

Syntax
mlsrv11 -c "connection-string" -o logfile ...

Remarks
Write all log messages to the specified file. Note that the MobiLink server window, if present, usually shows
a subset of all messages logged.

The MobiLink server gives the full error context in its output file if errors occur during synchronization. The
error context may include the following information:

● User Name This is the actual user name that is provided by MobiLink SQL Anywhere applications
during synchronization.

● Modified User Name This is the user name as modified by the modify_user script.

● Transaction This lists the transaction the error occurs in. The transaction could be authenticate_user,
begin_synchronization, upload, prepare_for_download, download, or end_synchronization.

● Table Name This shows the table name if it is available or null.

● Row Operation The operation could be INSERT, UPDATE, DELETE or FETCH.

● Row Data This shows all the column values of the row that caused the error.

● Script Version This is the script version currently used for synchronization.

● Script This is the script that caused the error.

Error context information appears in the log regardless of your chosen level of verbosity.

See also
● “-os option” on page 80
● “-dl option” on page 60
● “-ot option” on page 81
● “-on option” on page 78
● “-v option” on page 102

-o option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 77

-on option
Specifies a maximum size for the MobiLink server message log file, after which the file is renamed with the
extension .old and a new file is started.

Syntax
mlsrv11 -c "connection-string" -on size [k | m]...

Remarks
The size is the maximum file size for the message log, in bytes. Use the suffix k or m to specify units of
kilobytes or megabytes, respectively. The minimum size limit is 10 KB.

When the log file reaches the specified size, the MobiLink server renames the output file with the
extension .old, and starts a new one with the original name.

Note
If the .old file already exists, it is overwritten. To avoid losing old log files, use the -os option instead.

This option cannot be used with the -os option.

See also
● “-o option” on page 77
● “-ot option” on page 81
● “-on option” on page 78
● “-os option” on page 80
● “-v option” on page 102

MobiLink server options

78 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-oq option
On Windows, prevents the appearance of the error window when a startup error occurs.

Syntax
mlsrv11 -c "connection-string" -oq ...

Remarks
By default, the MobiLink server displays a window if a startup error occurs. The -oq option prevents this
window from being displayed.

-oq option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 79

-os option
Sets the maximum size of the MobiLink server message log file, after which a new log file with a new name
is created and used.

Syntax
mlsrv11 -c "connection-string" -os size [k | m] ...

Remarks
The size is the maximum file size for logging output messages. The default unit is bytes. Use the suffix k or
m to specify units of kilobytes or megabytes, respectively. The minimum size limit is 10 KB.

Before the MobiLink server logs output messages to a file, it checks the current file size. If the log message
makes the file size exceed the specified size, the MobiLink server renames the message log file to
yymmddxx.mls, where xx is a number from 00 to 99, and yymmdd represents the current year, month, and
day.

You can use this option to prune old message log files to free up disk space. The latest output is always
appended to the file specified by -o or -ot.

You cannot use this option with the -on option.

Note
This option makes an unlimited number of log files. To avoid this situation, use -o or -on.

See also
● “-o option” on page 77
● “-on option” on page 78
● “-ot option” on page 81
● “-v option” on page 102

MobiLink server options

80 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-ot option
Logs output messages to the MobiLink server message log file, but deletes the contents first.

Syntax
mlsrv11 -c "connection-string" -ot logfilename ...

Remarks
The default is to send output to the screen.

See also
● “-on option” on page 78
● “-os option” on page 80
● “-v option” on page 102
● “-o option” on page 77

-ot option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 81

-ppv option
Causes MobiLink to print new periodic monitoring values according to the period specified. Periods are in
seconds.

Syntax
mlsrv11 -c "connection-string" -ppv period ...

Remarks
These values can provide insight into the state of the server, and are useful for determining the health and
performance of the MobiLink server. For example, one could look at the DB_CONNECTIONS and
LONGEST_DB_WAIT values to look for potential problems with the -w option or in the synchronization
scripts. The values also provide an easy way to track system wide throughput measures, such as the number
of rows uploaded or downloaded per second and the number of successful synchronizations per second.

The suggested period is 60s.

If the period is set too small, the log will grow very quickly.

Each row of output is prefixed with PERIODIC: to aid in searching for and filtering out the values.

The printed values can include the following information:

● CMD_PROCESSOR_STAGE_LEN The length of the queue for synchronization work.

● CPU_USAGE The amount of CPU time used by the MobiLink server in microseconds.

● DB_CONNECTIONS The number of database connections in use.

● FREE_DISK_SPACE The disk space available on the temp disk in bytes.

● HEARTBEAT_STAGE_LEN The length of the queue for periodic, non-sync work.

● LONGEST_DB_WAIT The longest length of time an active synchronization has been waiting for the
database.

● LONGEST_SYNC The age of the oldest synchronization in microseconds.

● MEMORY_USED The bytes of RAM in use (for Windows only).

● ML_NUM_CONNECTED_CLIENTS The number of connected synchronization clients.

● NUM_COMMITS The total number of commits.

● NUM_CONNECTED_FILE_XFERS The number of mlfiletransfers currently connected.

● NUM_CONNECTED_LISTENERS The number of listeners currently connected.

● NUM_CONNECTED_MONITORS The number of monitors currently connected.

● NUM_CONNECTED_PINGS The number of pinging clients currently connected.

● NUM_CONNECTED_SYNCS The number of data synchronizations currently connected.

● NUM_ERRORS The total number of errors.

● NUM_FAILED_SYNCS The total number of failed syncs.

MobiLink server options

82 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● NUM_IN_APPLY_UPLOAD The number of synchronizations currently in the apply upload phase.

● NUM_IN_AUTH_USER The number of synchronizations currently in the authenticate user phase.

● NUM_IN_BEGIN_SYNC The number of synchronizations currently in the begin synchronization
phase.

● NUM_IN_CONNECT The number of synchronizations currently in the connect phase.

● NUM_IN_CONNECT_FOR_ACK The number of synchronizations currently in the connect for
download ack phase.

● NUM_IN_END_SYNC The number of synchronizations currently in the end synchronization phase.

● NUM_IN_FETCH_DNLD The number of synchronizations currently in the fetch download phase.

● NUM_IN_GET_DB_WORKER_FOR_ACK The number of synchronizations currently in the get DB
worker for ack phase.

● NUM_IN_NON_BLOCKING_ACK The number of synchronizations currently in the non-blocking
download ack phase.

● NUM_IN_PREP_FOR_DNLD The number of synchronizations currently in the prepare for download
phase.

● NUM_IN_RECVING_UPLOAD The number of synchronizations currently in the receive upload
phase.

● NUM_IN_SEND_DNLD The number of synchronizations currently in the send download phase.

● NUM_IN_SYNC_REQUEST The number of synchronizations currently in the synchronization
request phase.

● NUM_IN_WAIT_FOR_DNLD_ACK The number of synchronizations currently in the wait for
download ack phase.

● NUM_ROLLBACKS The total number of rollbacks.

● NUM_ROWS_DOWNLOADED The total number of rows sent to remotes.

● NUM_ROWS_UPLOADED The total number of rows received from remotes.

● NUM_SUCCESS_SYNCS The total number of successful syncs.

● NUM_UNSUBMITTED_ERROR_RPTS The number of unsubmitted error reports.

● NUM_UPLOAD_CONNS_IN_USE The number of upload connections currently in use.

● NUM_WAITING_CONS The number of synchronizations currently waiting for the consolidated
database.

● NUM_WARNINGS The total number of warnings.

● PAGES_IN_STREAMSTACK The number of pages held by the network streams.

● PAGES_LOCKED The number of cache pages loaded into memory.

● PAGES_LOCKED_MAX The number of pages in the memory cache. This is set with -cm. See “-cm
option” on page 55.

-ppv option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 83

● PAGES_SWAPPED_IN The total number of pages ever read from disk.

● PAGES_SWAPPED_OUT The total number of pages ever swapped to disk.

● PAGES_USED The number of cache pages used. This includes pages swapped to disk so it may be
larger than the cache size.

● RAW_TCP_STAGE_LEN The length of the network work queue.

● SERVER_IS_PRIMARY Indicates if the server is primary or secondary. Shows 1 if the server is
primary or 0 otherwise.

● STREAM_STAGE_LEN The length of the high level network processing queue.

● TCP_BYTES_READ The total number of bytes ever read.

● TCP_BYTES_WRITTEN The total number of bytes ever written.

● TCP_CONNECTIONS The number of TCP connections currently opened.

● TCP_CONNECTIONS_CLOSED The total number of connections ever closed.

● TCP_CONNECTIONS_OPENED The total number of connections ever opened.

● TCP_CONNECTIONS_REJECTED The total number of connections ever rejected.

Example
Below is sample output showing the periodic monitoring values.

I. 2008-10-14 10:34:43. <Main> PERIODIC: TCP_CONNECTIONS: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: PAGES_USED: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: PAGES_LOCKED: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: PAGES_LOCKED_MAX: 12692
I. 2008-10-14 10:34:43. <Main> PERIODIC: TCP_CONNECTIONS_OPENED: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: TCP_CONNECTIONS_CLOSED: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: TCP_CONNECTIONS_REJECTED: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: TCP_BYTES_READ: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: TCP_BYTES_WRITTEN: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: ML_NUM_CONNECTED_CLIENTS: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: PAGES_SWAPPED_OUT: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: PAGES_SWAPPED_IN: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: PAGES_IN_STREAMSTACK: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: CPU_USAGE: 468750
I. 2008-10-14 10:34:43. <Main> PERIODIC: NUM_COMMITS: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: NUM_ROLLBACKS: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: NUM_SUCCESS_SYNCS: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: NUM_FAILED_SYNCS: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: NUM_ERRORS: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: NUM_WARNINGS: 1
I. 2008-10-14 10:34:43. <Main> PERIODIC: DB_CONNECTIONS: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: RAW_TCP_STAGE_LEN: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: STREAM_STAGE_LEN: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: HEARTBEAT_STAGE_LEN: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: CMD_PROCESSOR_STAGE_LEN: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: NUM_ROWS_DOWNLOADED: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: NUM_ROWS_UPLOADED: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: FREE_DISK_SPACE: 162552295424
I. 2008-10-14 10:34:43. <Main> PERIODIC: LONGEST_DB_WAIT: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: LONGEST_SYNC: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: NUM_UNSUBMITTED_ERROR_RPTS: 247
I. 2008-10-14 10:34:43. <Main> PERIODIC: MEMORY_USED: 94375936

MobiLink server options

84 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

I. 2008-10-14 10:34:43. <Main> PERIODIC: SERVER_IS_PRIMARY: 1
I. 2008-10-14 10:34:43. <Main> PERIODIC: NUM_CONNECTED_SYNCS: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: NUM_CONNECTED_PINGS: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: NUM_CONNECTED_FILE_XFERS: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: NUM_CONNECTED_MONITORS: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: NUM_CONNECTED_LISTENERS: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: NUM_WAITING_CONS: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: NUM_IN_SYNC_REQUEST: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: NUM_IN_RECVING_UPLOAD: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: NUM_IN_CONNECT: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: NUM_IN_AUTH_USER: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: NUM_IN_BEGIN_SYNC: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: NUM_IN_APPLY_UPLOAD: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: NUM_IN_PREP_FOR_DNLD: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: NUM_IN_FETCH_DNLD: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: NUM_IN_END_SYNC: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: NUM_IN_SEND_DNLD: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: NUM_IN_WAIT_FOR_DNLD_ACK: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: NUM_IN_GET_DB_WORKER_FOR_ACK: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: NUM_IN_CONNECT_FOR_ACK: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: NUM_IN_NON_BLOCKING_ACK: 0
I. 2008-10-14 10:34:43. <Main> PERIODIC: NUM_UPLOAD_CONNS_IN_USE: 0

-ppv option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 85

-q option
Instructs MobiLink to run in a minimized window on startup.

Syntax
mlsrv11 -c "connection-string" -q ...

Remarks
Minimize the MobiLink server window.

MobiLink server options

86 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-r option
Sets the maximum number of deadlock retries.

Syntax
mlsrv11 -c "connection-string" -r retries ...

Remarks
By default, MobiLink server retries uploads that are deadlocked, for a maximum of 10 attempts. If the
deadlock is not broken, synchronization fails, since there is no guarantee that the deadlock can be overcome.
This option allows an arbitrary retry limit to be set. To stop the server from retrying deadlocked transactions,
specify -r 0. The upper bound on this setting is 2 to the power 32, minus one.

-r option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 87

-rd option
Sets the maximum delay time between deadlock retries.

Syntax
mlsrv11 -c "connection-string" -rd delay ...

Remarks
When upload transactions are deadlocked, the MobiLink server waits a random length of time before retrying
the transaction. The random nature of the delay increases the likelihood that future attempts succeed. This
option allows you to specify the maximum delay in units of seconds. The value 0 (zero) makes retries
instantaneous, but larger values are recommended because they yield more successful retries. The default
and maximum delay value is 30.

MobiLink server options

88 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-s option
Sets the maximum number of rows that can be uploaded at the same time.

Syntax
mlsrv11 -c "connection-string" -s count ...

Remarks
Set the maximum number of rows that can be inserted, updated, or deleted at the same time to count.

The MobiLink server sends upload rows to the consolidated database through the ODBC driver. This option
controls the number of rows sent to the database server in each batch. Increasing this value can speed up
processing of the upload stream and reduce network time. However, with a higher setting the MobiLink
server may require more resources for applying the upload stream.

The number of rows uploaded at once can be viewed in the log file as rowset size.

The default is 10.

-s option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 89

-sl dnet option
Sets the .NET Common Language Runtime (CLR) options and forces the CLR to load on startup.

Syntax
mlsrv11 -c "connection-string" -sl dnet options ...

Remarks
Sets options to pass directly to the .NET CLR. The options are:

Option Description

-Dname=value Set an environment variable. For example,

-Dsynchtype=far -Dextra_rows=yes

For more information, see the .NET framework class Sys-
tem.Environment.

-MLAutoLoadPath=path Set the location of base assemblies. Only works with private
assemblies. To tell MobiLink where assemblies are located, use
this option or -MLDomConfigFile, but not both. When you use
-MLAutoLoadPath, you cannot specify a domain in the event
script. The default is the current directory.

-MLDomConfigFile=file Set the location of base assemblies. Use when you have shared
assemblies, or you don't want to load all assemblies in the di-
rectory, or you can't use MLAutoLoadPath for some other rea-
son. To tell MobiLink where assemblies are located, use -
MLDomConfigFile or -MLAutoLoadPath, but not both.

-MLStartClasses=

classnames

At server startup, load and instantiate user-defined start classes
in the order listed.

-clrConGC Enable concurrent garbage collection in the CLR.

-clrFlavor=(wks | svr) Flavor of the .NET CLR to load. The flavor is svr for server
and wks for workstation. By default, wks is loaded.

-clrVersion=version Version of the .NET CLR to load. This must be prefixed with
v. For example, v1.0.3705 loads the directory \Microsoft.NET
\Framework\v1.0.3705.

To display this list of options, run the following command:

mlsrv11 -sl dnet (?)

MobiLink server options

90 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “Writing synchronization scripts in .NET” on page 589

-sl dnet option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 91

-sl java option
Sets the Java virtual machine options and forces the virtual machine to load on startup.

Syntax
mlsrv11 -c "connection-string" -sl java (options) ...

Remarks
Sets -jrepath and other options to pass directly to the Java virtual machine. The options are:

Option Description

-hotspot | -server | -classic Override the default choice for the Java VM to use.

-cp location;... Specify a set of directories or JAR files in which to search
for classes. Instead of -cp, you can also use -classpath.

-Dname=value Set a system property. For example,

-Dsynchtype=far -Dextra_rows=yes

-DMLStartClasses=classname, ... At server startup, load and instantiate user-defined start
classes in the order listed.

-jrepath path Override the default JRE path, which is the directory install-
dir\Sun\jre160_chip (where chip can be any supported chip,
such as x86).

-verbose [:class |:gc | :jni] Enable verbose output.

-X vm-option Set a VM-specific option as described in the file install-dir
\Sun\jre160_chip\bin\client\Xusage.txt (where chip can be
any supported chip, such as x86).

To display a list of Java options you can use, type:

java

Unix notes
Options must be enclosed in brackets. These can be round brackets, as shown in the syntax above, or curly
braces { }.

The -jrepath option is only available on Windows. On Unix, if you want to load a specific JRE, you should
set the LD_LIBRARY_PATH (LIBPATH on AIX, SHLIB_PATH on HP-UX) to include the directory
containing the JRE. The directory must be listed before any of the SQL Anywhere installation directories.

On Unix, the -cp options must be separated with colons.

MobiLink server options

92 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “Writing synchronization scripts in Java” on page 527

Examples
For example, on Windows the following partial mlsrv11 command line sets the Java virtual machine option
that enables system asserts:

mlsrv11 -sl java (-cp ;\myclasses; -esa) ...

On Windows, the following partial mlsrv11 command line defines the LDAP_SERVER system property:

mlsrv11 -sl java (-cp ;\myclasses; -DLDAP_SERVER=huron-ldap) ...

The following partial mlsrv11 command line works on Unix:

mlsrv11 -sl java { -cp .:$CLASSPATH:/opt/myclasses:/opt/my.jar: }

-sl java option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 93

-sm option
Sets the maximum number of synchronizations that can be actively worked on, which limits the maximum
number of network connections as well.

Syntax
mlsrv11 -c "connection-string" -sm number ...

Remarks
The MobiLink server performs the following tasks simultaneously:

1. Read upload data from the network and unpack it.

2. Apply uploads to the consolidated database.

3. Fetch rows to be downloaded from the consolidated database.

4. Pack download data and send it to remote databases.

The number of synchronizations for each task is limited as follows:

● The number of synchronizations doing tasks 2 and 3 is less than or equal to the setting for the mlsrv11
-w option.

● The number of synchronizations doing task 2 is less than or equal to the setting for the mlsrv11 -wu
option.

● The number of synchronizations doing all four tasks is less than or equal to the setting for the -sm option.

Higher values for -sm, especially when much greater than -w, allow the MobiLink server to perform more
network tasks (1 and 4) than database tasks (2 and 3). This can help ensure that a database worker doesn't
have to wait for tasks when network performance might otherwise be a bottleneck. This can improve
throughput. However, if -sm is set too high, the MobiLink server can allocate more memory than is directly
available, causing the virtual memory paging of the operating system to be activated, which in turn causes
memory to be swapped to disk—significantly decreasing throughput.

See also
● “-w option” on page 105
● “-wu option” on page 106

MobiLink server options

94 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-ss option
Separately licensed component required
The -ss option is a feature of the MobiLink high availability option, which requires a separate license. See
“Separately licensed components” [SQL Anywhere 11 - Introduction].

Enable the MobiLink server to run in a server farm.

Syntax
mlsrv11 -c "connection string" -ss ...

Remarks
By default, a MobiLink server does not run in a server farm. If you would like to enable the current MobiLink
server to run in the server farm, you need to specify this option. Note that if the MobiLink server starts with
-ss, it adds itself to the ml_server table in the consolidated database and also stops the other Mobilink servers
(if any) that are connected to the same consolidated database, but were not started with -ss. See “Running
the MobiLink server in a server farm” on page 40.

When this option is specified the server must have a name specified using the -zs option. For example, the
server command line could be:

mlsrv11 -c "connection-string" -ss -zs server5

See also
● “Running the MobiLink server in a server farm” on page 40
● “-zs option” on page 119
● “-lsc option” on page 72

-ss option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 95

-tc option
Sets a long running statement threshold for SQL script execution.

Syntax
mlsrv11 -c "connection string" -tc minutes ...

Remarks
By default, the MobiLink server watches the execution time of each SQL script and issues a warning message
when the execution time of the script reaches 10 minutes (the default). If the -tf option is used and the
consolidated database is running on an Oracle server, the MobiLink server fails the script.

The default value can be reset to zero or a positive integer and its units are in minutes. When it is set to zero,
the -tc switch is disabled and the MobiLink server does not watch any script execution.

When the warning time is a non-zero value, the MobiLink server shows the warning message in an
exponential way. The warning is shown when the execution time first passes the time specified; the warning
is shown again when the execution time passes 2 * the given time, then 4 * the given time, and so on.

The warning message contains the connection ID used for the current synchronization and timeout warning
context that includes the following, if they are available: Remote ID, ML User Name, Modified User Name,
Transaction, Table Name, Row Values and Script Version. The timeout warning context is shown regardless
of the verbose settings of the MobiLink server.

When the consolidated database is running on an Oracle database server and the timeout warning message
occurs, a database user with DBA authority may need to check the consolidated database to determine the
cause of the problem. The SID and SERIAL# of the connection used by the synchronization can be found
in the warning message. If the synchronization connection is stopped, the MobiLink server terminates the
current synchronization.

See also
● “-tf option” on page 97

MobiLink server options

96 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-tf option
This option is used to let the MobiLink server fail the SQL script if the execution time passes the time
specified by -tc. This option is not available when the consolidated database is running on an Oracle server.

Syntax
mlsrv11 -c "connection string" -tf ...

Remarks
If the SQL script fails, the MobiLink server may skip the row (if the script is an upload script and if the
handle_error script returns 1000) and continue the synchronization or abort the synchronization.

The MobiLink server shows a warning message if this option is specified and it is running against an Oracle
server.

This option is ignored if -tc 0 is specified.

-tf option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 97

-tx option
When using transactional uploads, this option batches groups of transactions and commits them together.

Syntax
mlsrv11 -c "connection-string" -tx count ...

Remarks
Use this option to improve performance when doing transactional uploads.

count can be any non-negative value. The default is 1, which means commit every transaction separately.
Use a value of zero to perform one commit after all transactions have been uploaded.

See also
● “-tu option” [MobiLink - Client Administration]

MobiLink server options

98 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-ud option
Instructs MobiLink to run as a daemon.

Syntax
mlsrv11 -c "connection-string" -ud ...

Remarks
Unix platforms only.

See also
● “Running the MobiLink server outside the current session” on page 35

-ud option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 99

-ui option
For Linux with X window server support, starts the MobiLink server in shell mode if a usable display isn't
available.

Syntax
mlsrv11 -c "connection-string" -ui ...

Remarks
When this option is used, mlsrv11 tries to start with X Windows. If this fails, it starts in shell mode.

When -ui is specified, the server attempts to find a usable display. If it cannot find one, for example because
the X window server isn't running, then the MobiLink server starts in shell mode.

MobiLink server options

100 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-ux option
For Linux, opens the MobiLink server messages window where messages are displayed.

Syntax
mlsrv11 -c "connection-string -ux ...

Remarks
When -ux is specified, the MobiLink server must be able to find a usable display. If it cannot find one, for
example because the DISPLAY environment variable is not set or because the X window server is not
running, the MobiLink server fails to start.

To run the MobiLink server messages window in quiet mode, use -q.

On Windows, the MobiLink server messages window appears automatically.

See also
● “-q option” on page 86

-ux option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 101

-v option
Allows you to specify what information is logged to the message log file and displayed in the synchronization
window.

Syntax
mlsrv11 -c "connection-string" -v[levels] ...

Remarks
This option is particularly useful when dbmlsync transaction-level uploads are used.

This option controls the type of messages written to the message log file.

If you specify -v alone, the MobiLink server writes a minimal amount of information about each
synchronization.

A high level of verbosity can adversely affect performance and should only be used during development.

The values of levels are as follows. You can use one or more of these options at once; for example, -vnrsu.

● + Turn on all logging options that increase verbosity.

● c Show the content of each synchronization script when it is invoked. This level implies s.

● e Show system event scripts. These system event scripts are used to maintain MobiLink system tables
and the SQL scripts that control the upload.

● f Show first-read errors. This logs errors caused when load-balancing devices check for server liveness
by making connections that don't send any data, and cause failed synchronizations.

For TCP/IP connections, you might be better off using the TCP/IP option ignore. For more information,
see “-x option” on page 107.

● h Show the remote schema as uploaded during synchronization.

● i Display the column values of each row uploaded. Use this option instead of -vr, which displays the
column values of each row uploaded and downloaded, to reduce the amount of data being logged.
Specifying -vi with -vq is the same as specifying -vr.

● m Prints the duration of each synchronization and the duration of each synchronization phase to the
log whenever a synchronization completes. The synchronization phases are shown below. They are the
same as those displayed in the MobiLink Monitor. All times are shown in milliseconds (ms).

○ Synchronization request The time taken between creating the network connection between the
remote database and the MobiLink server, up to receiving the first bytes of the upload stream. This
time is insignificant unless you have set -sm to a smaller value than -nc, in which case this time can
include the time that a synchronization is paused, when the number of synchronizations is larger than
the maximum number of active synchronizations that were specified with -sm.

○ Receive upload The time taken from the first bytes of the upload stream being received by the
MobiLink server until the upload stream from the remote database has been completely received.
The upload stream includes table definitions and the remote database rows being uploaded, so the

MobiLink server options

102 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

time may be significant even for a download-only synchronization. The time depends on the size of
the upload stream and the network bandwidth for the transfer.

○ Get DB worker The time required to acquire a free database worker thread.

○ Connect The time required by the database worker thread to make a database connection if a new
database connection is needed. For example, after an error or if the script version has changed.

○ Authenticate user The time required to authenticate the user.

○ Begin synchronization The time required for the begin_synchronization event if it is defined,
plus the time to fetch the last_upload_time for each subscription (using the shared MobiLink
administrative connection).

○ Apply upload The time required for the uploaded data to be applied to the consolidated database.

○ Prepare for download The time required for the prepare_for_download event.

○ Fetch download The time required to fetch the rows to be downloaded from the consolidated
database to create the download stream.

○ End synchronization The time required for the end_synchronization event, after which the
database worker thread is released. If you are using blocking download acknowledgement, then this
phase occurs after the Wait for download ack phase. Otherwise, it occurs before the download
stream is sent to the remote database.

○ Send download The time required to send the download stream to the remote database. The time
depends on the size of the download stream and the network bandwidth for the transfer. For an upload-
only synchronization, the download stream is simply an upload acknowledgement.

○ Wait for download ack The time spent waiting for the download to be applied to the remote
database and for the remote database to send the download acknowledgement. This phase is only
shown if the remote database has enabled download acknowledgement.

○ Get DB worker for download ack The time spent waiting for a free database worker thread after
the download acknowledgement has been received. This phase is only shown if the remote database
has enabled download acknowledgement and the MobiLink server is using non-blocking download
acknowledgement.

○ Connect for download ack The time required by the database worker thread to make a database
connection if a new database connection is needed. This phase is only shown if the remote database
has enabled download acknowledgement and the MobiLink server is using non-blocking download
acknowledgement.

○ Non-blocking download ack The time required for the
publication_nonblocking_download_ack connection and nonblocking_download_ack connection
events. This phase is only shown if the remote database has enabled download acknowledgement
and the MobiLink server is using non-blocking download acknowledgement.

Each value is prefixed with "PHASE:" to aid in searching for and printing the values.

The following example is sample output showing the durations for the various synchronization phases:

I. 2008-06-05 14:48:36. <1> PHASE: start_time: 2008-06-05 14:48:36.048
I. 2008-06-05 14:48:36. <1> PHASE: duration: 175
I. 2008-06-05 14:48:36. <1> PHASE: sync_request: 0

-v option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 103

I. 2008-06-05 14:48:36. <1> PHASE: receive_upload: 19
I. 2008-06-05 14:48:36. <1> PHASE: get_db_worker: 0
I. 2008-06-05 14:48:36. <1> PHASE: connect: 18
I. 2008-06-05 14:48:36. <1> PHASE: authenticate_user: 51
I. 2008-06-05 14:48:36. <1> PHASE: begin_sync: 69
I. 2008-06-05 14:48:36. <1> PHASE: apply_upload: 0
I. 2008-06-05 14:48:36. <1> PHASE: prepare_for_download: 1
I. 2008-06-05 14:48:36. <1> PHASE: fetch_download: 4
I. 2008-06-05 14:48:36. <1> PHASE: wait_for_download_ack: 0
I. 2008-06-05 14:48:36. <1> PHASE: end_sync: 0
I. 2008-06-05 14:48:36. <1> PHASE: send_download: 10
I. 2008-06-05 14:48:36. <1> PHASE: get_db_worker_for_download_ack: 0
I. 2008-06-05 14:48:36. <1> PHASE: connect_for_download_ack: 0
I. 2008-06-05 14:48:36. <1> PHASE: nonblocking_download_ack: 0

● n Show row-count summaries.

● o Show SQL passthrough activity.

● p Show progress offsets.

● q Display the column values of each row downloaded. Use this option instead of -vr, which displays
the column values of each row uploaded and downloaded, to reduce the amount of data being logged.
Specifying -vi with -vq is the same as specifying -vr.

● r Display the column values of each row uploaded or downloaded. To log only the column values of
each row uploaded, use -vi. To log only the column values of each row downloaded, use -vq.

● s Show the name of each synchronization script as it is invoked.

● t Show the translated SQL that results from scripts that are written in ODBC canonical format. This
level implies c. The following example shows the automatic translation of a statement for SQL
Anywhere.

I. 02/11 11:02:14. [102]: begin_upload synch2
{ call SynchLogLine(?, ?, 'begin_upload') }
I. 02/11 11:02:14. [102]: Translated SQL:
call SynchLogLine(?, ?, 'begin_upload')

The following example shows the translation of the same statement for Microsoft SQL Server.

I. 02/11 11:03:21. [102]: begin_upload synch2
{ call SynchLogLine(?, ?, 'begin_upload') }
I. 02/11 11:03:21. [102]: Translated SQL:
EXEC SynchLogLine ?, ?, 'begin_upload'

● u Show undefined table scripts. This may help new users understand the synchronization process.

See also
● “MobiLink statistical properties” on page 195

MobiLink server options

104 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-w option
Sets the number of database worker threads.

Syntax
mlsrv11 -c "connection-string" -w count ...

Remarks
Each database worker thread accepts synchronization requests one at a time.

Each database worker thread uses one connection to the consolidated database. The MobiLink server opens
one additional connection for administrative purposes. So, the minimum number of connections from the
MobiLink server to the consolidated database is count + 1.

The number of database worker threads has a strong influence on MobiLink synchronization throughput,
and you need to run tests to determine the optimum number for your particular synchronization setup. The
number of database worker threads determines how many synchronizations can be active in the consolidated
database simultaneously; the rest gets queued waiting for database worker threads to become available.
Adding database worker threads should increase throughput, but it also increases the possibility of contention
between the active synchronizations. At some point adding more database worker threads decrease
throughput because the increased contention outweighs the benefit of overlapping synchronizations.

The value set for this option is also the default setting for the -wu option, which can be used to limit the
number of threads that can simultaneously upload to the consolidated database. This is useful if the optimum
number of database worker threads for downloading is larger than the optimum number for uploading. The
best throughput may be achieved with a large number of database worker threads (via -w) with a small
number allowed to apply uploads simultaneously (via -wu). In general, the optimum number for -wu depends
on the consolidated database, and is relatively independent of the processing or network speeds for the remote
databases. Therefore, when you increase the number of threads with -w, you may want to use -wu to restrict
the number that can upload simultaneously. For more information, see “-wu option” on page 106.

The default number of database worker threads is 5.

See also
● “-wu option” on page 106
● “-sm option” on page 94
● “-cn option” on page 56

-w option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 105

-wu option
Sets the maximum number of database worker threads that can apply uploads to the consolidated database
simultaneously.

Syntax
mlsrv11 -c "connection-string" -wu count ...

Remarks
Use the -wu option to limit the number of database worker threads that can simultaneously apply uploads
to the consolidated database. When the limit is reached, a database worker thread that is ready to apply its
upload to the consolidated database must wait until another finishes its upload.

The most common cause of contention in the consolidated database is having too many database worker
threads applying uploads simultaneously. Downloads cause far less contention, so they are limited only be
the mlsrv11 -w option. for this reason, the -w setting must be greater than or equal to the -wu setting.

By default, all database worker threads can apply uploads simultaneously. The number of database worker
threads that are used is set by the -w option. The default is 5.

Example
In a pilot setup using a LAN and remote databases on PCs, you find that the optimum number of database
worker threads is approximately 10 for both upload-only and download-only synchronizations, and that
corresponds to 100% CPU utilization on the consolidated database. With fewer database worker threads you
find that throughput is less and the CPU utilization for the consolidated database is lower. With more database
worker threads, throughput does not increase because the consolidated database is already processing as fast
as it can with 10 workers.

See also
● “-w option” on page 105
● “-sm option” on page 94

MobiLink server options

106 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-x option
Sets network protocol and protocol options for MobiLink clients. These are used by the MobiLink server to
listen for synchronization requests.

Separately licensed component required
ECC encryption and FIPS-certified encryption require a separate license. All strong encryption technologies
are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 11 - Introduction].

Syntax
mlsrv11 -c "connection-string" -x protocol[protocol-options] ...

protocol : tcpip | tls | http | https

protocol-options : (option=value; ...)

Default
The default is TCPIP with port 2439.

Parameters
The allowed values of protocol are as follows:

● tcpip Accept connections using TCP/IP.

● tls Accept connections using TCP/IP using transport-layer security.

● http Accept connections using the standard Web protocol.

● https Accept connections using a variant of HTTP that handles secure transactions. The HTTPS
protocol implements HTTP over SSL/TLS using RSA or ECC encryption.

You can also specify the following network protocol options, in the form option=value. You must separate
multiple options with semicolons.

● TCP/IP options If you specify the tcpip protocol, you can optionally specify the following protocol
options (these options are case sensitive):

TCP/IP proto-
col option

Description

host=hostname The host name or IP number on which the MobiLink server should listen. The
default value is localhost.

-x option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 107

TCP/IP proto-
col option

Description

ignore=host-
name

A host name or IP number that gets ignored by the MobiLink server if it makes a
connection. This option allows you to ignore requests from load balancers at the
lowest possible level, preventing excessive output in the MobiLink server log and
MobiLink Monitor output files. You can specify multiple hosts to ignore; for ex-
ample -x tcpip(ignore=lb1;ignore=123.45.67.89). If you specify
multiple instances of -x on a command line, the host is ignored on all instances; for
example, if you specify -x tcpip(ignore=1.1.1.1) -x http, then connections for 1.1.1.1
are ignored on both the TCP/IP and the HTTP streams. However, this does not
affect connections via the -xo option.

port=portnum-
ber

The socket port number on which the MobiLink server should listen. The default
port is 2439, which is the IANA registered port number for the MobiLink server.

● Options for TCP/IP with transport-layer security If you specify the tls protocol, which is TCP/
IP with transport-layer security, you can optionally specify the following protocol options (these options
are case sensitive):

TLS protocol op-
tions

Description

fips={yes|no} If you specify the TLS protocol with tls_type=rsa, you can specify fips=yes to
accept connections using the TCP/IP protocol and FIPS-approved algorithms
for encryption. FIPS connections use separate FIPS 140-2 certified software.
Servers using RSA encryption without FIPS are compatible with clients using
RSA with FIPS, and servers using RSA with FIPS are compatible with clients
using RSA without FIPS.

host=hostname The host name or IP number on which the MobiLink server should listen. The
default value is localhost.

ignore=hostname A host name or IP number that gets ignored by the MobiLink server if it makes
a connection. This option allows you to ignore requests from load balancers at
the lowest possible level, preventing excessive output in the MobiLink server
log and MobiLink Monitor output files. You can specify multiple hosts to ig-
nore; for example -x tcpip(ignore=lb1;ig-
nore=123.45.67.89).

port=portnumber The socket port number on which the MobiLink server should listen. The de-
fault port is 2439, which is the IANA registered port number for the MobiLink
server.

MobiLink server options

108 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

TLS protocol op-
tions

Description

tls_type={rsa|ecc} If you specify the TCP/IP protocol as tls, you can specify either elliptic-curve
cryptography (ecc) or RSA encryption (rsa). For backward compatibility, ecc
can also be specified as certicom. The default tls_type is rsa.

When you use TLS, you must specify an identity and an identity password:

○ identity=identity-file Specify the path and file name of the identity file
that is to be used for server authentication.

○ identity_password=password Specify the password for the identity

See “Starting the MobiLink server with transport-layer security” [SQL Any-
where Server - Database Administration].

e2ee_type={rsa|
ecc}

The type of the key used to exchange session keys. Must be either rsa or ecc,
and must match the key type in the private key file (see next option). The default
e2ee_type is rsa.

e2ee_pri-
vate_key=file

The PEM-encoded file containing the rsa or ecc private key. This option is
required for end-to-end encryption to take effect.

PEM-encoded files are created using the createkey utility. See “Key Pair Gen-
erator utility (createkey)” [SQL Anywhere Server - Database Administration].

e2ee_pri-
vate_key_pass-
word=password

The password to the private key file. This option is required for end-to-end
encryption to take effect.

● HTTP options If you specify the http protocol, you can optionally specify the following protocol
options (these options are case sensitive):

HTTP options Description

buffer_size=number The maximum body size for an HTTP message sent from MobiLink server,
in bytes. Changing the option decreases or increases the amount of memory
allocated for sending HTTP messages. The default is 65535 bytes.

host=hostname The host name or IP number on which the MobiLink server should listen. The
default value is localhost.

port=portnumber The socket port number on which the MobiLink server should listen. The port
number must match the port the MobiLink server is setup to monitor. The
default port is 80.

-x option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 109

HTTP options Description

version=http-version The MobiLink server automatically detects the HTTP version used by a client.
This parameter is a string specifying the default version of HTTP to use in
case the server cannot detect the method used by the client. You have a choice
of 1.0 or 1.1. The default value is 1.1.

● HTTPS options The HTTPS protocol uses RSA or ECC digital certificates for transport-layer
security. If you specify FIPS encryption, the protocol uses separate FIPS 140-2 certified software that
is compatible with https.

For more information, see “Starting the MobiLink server with transport-layer security” [SQL Anywhere
Server - Database Administration].

If you specify the https protocol, you can optionally specify the following protocol options (these options
are case sensitive):

HTTPS options Description

buffer_size=number The maximum body size for an HTTPS message sent from MobiLink serv-
er, in bytes. Changing the option decreases or increases the amount of
memory allocated for sending HTTPS messages. The default is 65535
bytes.

identity=server-identi-
ty

The path and file name of the identity file that is to be used for server
authentication. For HTTPS, this must be an RSA certificate.

identity_pass-
word=password

An optional parameter that specifies a password for the identity file.

See “Transport-layer security” [SQL Anywhere Server - Database Admin-
istration].

fips={yes|no} You can specify fips=yes to accept connections using the HTTPS protocol
and FIPS-approved algorithms for encryption. FIPS connections use sepa-
rate FIPS 140-2 certified software. Servers using RSA encryption without
FIPS are compatible with clients using RSA with FIPS, and servers using
RSA with FIPS are compatible with clients using RSA without FIPS.

host=hostname The host name or IP number on which the MobiLink server should listen.
The default value is localhost.

port=portnumber The socket port number on which the MobiLink server should listen. The
port number must match the port the MobiLink server is set up to monitor.
The default port is 443.

MobiLink server options

110 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

HTTPS options Description

tls_type={rsa|ecc} If you specify the TCP/IP protocol as tls, you can specify either elliptic-
curve cryptography (ecc) or RSA encryption (rsa). For backward compat-
ibility, ecc can also be specified as certicom. The default tls_type is rsa.

When you use transport-layer security, you must specify an identity and an
identity password:

○ identity=identity-file Specify the path and file name of the identity
file that is to be used for server authentication.

○ identity_password=password Specify the password for the iden-
tity file.

See “Starting the MobiLink server with transport-layer security” [SQL
Anywhere Server - Database Administration].

version=http-version The MobiLink server automatically detects the HTTP version used by a
client. This parameter is a string specifying the default version of HTTP to
use in case the server cannot detect the method used by the client. You have
a choice of 1.0 or 1.1. The default value is 1.1.

e2ee_type={rsa|ecc} The type of the key used to exchange session keys. Must be either rsa or
ecc, and must match the key type in the private key file (see next option).
The default e2ee_type is rsa.

e2ee_private_key=file The PEM-encoded file containing the rsa or ecc private key. This option is
required for end-to-end encryption to take effect.

PEM-encoded files are created using the createkey utility. See “Key Pair
Generator utility (createkey)” [SQL Anywhere Server - Database Admin-
istration].

e2ee_pri-
vate_key_pass-
word=password

The password to the private key file. This option is required for end-to-end
encryption to take effect.

Example
The following command line sets the port to 12345:

mlsrv11 -c "dsn=SQL Anywhere 11 CustDB;uid=DBA;pwd=sql" -x tcpip(port=12345)

The following example specifies the type of security (RSA), the server identity file, and the identity password
protecting the server's private key:

mlsrv11 -c "dsn=my_cons"
 -x tls(tls_type=rsa;identity=c:\test\serv_rsa1.crt;identity_password=pwd)

The following example is similar to the previous, except that there is a space in the identity file name:

-x option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 111

mlsrv11 -c "dsn=my_cons"
 -x "tls(tls_type=rsa;identity=c:\Program Files\test
\serv_rsa1.crt;identity_password=pwd)"

The following example shows the use of end-to-end encryption over HTTPS:

mlsrv11 -c "dsn=my_cons" -x https(tls_type=rsa;identity=my_identity.crt;
identity_password=my_id_pwd;e2ee_type=rsa;e2ee_private_key=my_pk.pem;
e2ee_private_key_password=my_pk_pwd)

MobiLink server options

112 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-xo option
Sets network protocol and protocol options for version 8 and 9 MobiLink clients.

Syntax
mlsrv11 -c "connection-string"
 -xo protocol[protocol-options] ...

protocol-options : (keyword=value; ...)

Remarks
Specify communications protocol through which to communicate with client applications. The default is
TCPIP with port 2439.

The allowed values of protocol are as follows:

● tcpip Accept connections from applications via TCP/IP.

● http Accept connections using the standard Web protocol. Client applications can pick their HTTP
version and the MobiLink server adjusts on a per-connection basis.

● https Accept connections using a variant of HTTP that handles secure transactions. The HTTPS
protocol implements HTTP over SSL/TLS using RSA encryption, and is compatible with any other
HTTPS server.

● https_fips Accept connections using the HTTPS protocol and FIPS-approved algorithms for
encryption. HTTPS_FIPS uses separate FIPS 140-2 certified software. Servers using rsa_tls are
compatible with clients using rsa_tls_fips, and servers using rsa_tls_fips are compatible with clients
using rsa_tls.

Optionally, you can also specify network protocol options, in the form option=value. You must separate
multiple options with semicolons. The options you can specify depends on the protocol you choose.

● TCP/IP options If you specify the tcpip protocol, you can optionally specify the following protocol
options:

○ backlog=number-of-connections The maximum number of remote connections before
MobiLink server should reject new synchronization requests, causing synchronization to fail on the
client side. By specifying a backlog size, you can prevent clients from waiting to synchronize when
the server is busy. If you do not specify a backlog size, MobiLink server accepts as many connections
as possible, potentially reaching or exceeding the operating system limit on network connections.
This may cause slow or erratic behavior.

When a client attempts to synchronize with a MobiLink server that has accepted its maximum number
of remote connections, it receives the error code -85 (SQLE_COMMUNICATIONS_ERROR). The
client application should handle this error and try to connect again in a few minutes.

For more information about SQLE_COMMUNICATIONS_ERROR, see “Communication error”
[Error Messages].

-xo option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 113

If you are using MobiLink in an environment where thousands of simultaneous synchronizations are
possible, use the backlog option to specify a maximum number of remote connections that is less
than the operating system limit. See “Plan for operating system limitations” on page 172.

○ host=hostname The host name or IP number on which the MobiLink server should listen. The
default value is localhost.

○ ignore=hostname A host name or IP number that is ignored by the MobiLink server if it makes
a connection. This option allows you to ignore requests from load balancers at the lowest possible
level, preventing excessive output in the MobiLink server log and MobiLink Monitor output files.
You can specify multiple hosts to ignore; for example -x
tcpip(ignore=lb1;ignore=123.45.67.89).

○ liveness_timeout=n The amount of time, in seconds, after the last communication with a client
before MobiLink terminates the synchronization. A value of 0 means that there is no timeout. The
default is 120 seconds.

○ port=portnumber The socket port number on which the MobiLink server should listen. The
default port is 2439, which is the IANA registered port number for the MobiLink server.

Note
The mlsrv11 -x and -xo options use the same default port, and -x is started even if you don't specify
it. Therefore you must change the port for -xo unless you change it in the -x option.

○ security=cipher(keyword=value;...) All communication through this connection is to be
encrypted and authenticated using transport-layer security. Cipher can be one of:

Cipher Description

rsa_tls RSA encryption.

rsa_tls_fips RSA encryption that is FIPS-approved. rsa_tls_fips uses separate FIPS 140-2 cer-
tified software but is compatible with clients using https (and SQL Anywhere
version 9.0.2 or later).

ecc_tls Elliptic-curve cryptography. For backward compatibility, ecc_tls can also be
specified as certicom_tls.

The security parameters are certificate (the path and file name of the identity file that is to be used
for server authentication), and certificate_password. You must use a certificate that matches the
cipher suite you choose.

For more information, see “Starting the MobiLink server with transport-layer security” [SQL
Anywhere Server - Database Administration].

Separately licensed component required
ECC encryption and FIPS-certified encryption require a separate license. All strong encryption
technologies are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 11 - Introduction].

MobiLink server options

114 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● HTTP options If you specify the http protocol, you can optionally specify the following protocol
options:

○ backlog=number-of-connections The maximum number of remote connections before
MobiLink server should reject new synchronization requests, causing synchronization to fail on the
client side. By specifying a backlog size, you can prevent clients from waiting to synchronize when
the server is busy. If you do not specify a backlog size, MobiLink server accepts as many connections
as possible, potentially reaching or exceeding the operating system limit of network connections.
This may cause slow or erratic behavior.

When a client attempts to synchronize with a MobiLink server that has accepted its maximum number
of remote connections, it receives the error code -85 (SQLE_COMMUNICATIONS_ERROR). The
client application should handle this error and try to connect again in a few minutes.

For more information about SQLE_COMMUNICATIONS_ERROR, see “Communication error”
[Error Messages].

If you are using MobiLink in an environment where thousands of simultaneous synchronizations are
possible, use the backlog option to specify a maximum number of remote connections that is less
than the operating system limit. For more information, see “Plan for operating system
limitations” on page 172.

○ buffer_size=number The maximum body size for an HTTP message sent from MobiLink server,
in bytes. Changing the option decreases or increase the amount of memory allocated for sending
HTTP messages. The default is 65535 bytes.

○ contd_timeout=seconds The number of seconds the MobiLink server waits to receive the next
part of a partially completed synchronization before the synchronization is abandoned. You can tune
this option to free MobiLink server resources when the wait time indicates that the client can not
continue the connection. The default value is 30 seconds.

○ host=hostname The host name or IP number on which the MobiLink server should listen. The
default value is localhost.

○ port=portnumber The socket port number on which the MobiLink server should listen. The port
number must match the port that the MobiLink server is monitoring. The default port is 80.

Note
The mlsrv11 -x and -xo options use the same default port, and -x is started even if you don't specify
it Therefore, you must change the port for -xo unless you change it in the -x option.

○ session_key={ cookie | header } Creates an alternative to the JSESSIONID for tracking
connections. This may be necessary if your network already uses the JSESSIONID.

○ unknown_timeout=seconds The number of seconds the MobiLink server waits to receive
HTTP headers on a new connection before the synchronization is abandoned. You can tune this
option to free MobiLink server resources when the wait time indicates that a network failure has
occurred. The default value is 30 seconds.

○ version=http-version The MobiLink server automatically detects the HTTP version used by a
client. This parameter is a string specifying the default version of HTTP to use in case the server
cannot detect the method used by the client. You have a choice of 1.0 or 1.1. The default value is
1.1.

-xo option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 115

● HTTPS or HTTPS_FIPS options The https protocol uses RSA digital certificates for transport-layer
security. The https_fips protocol uses separate FIPS 140-2 certified software but is compatible with https.

For more information, see “Starting the MobiLink server with transport-layer security” [SQL Anywhere
Server - Database Administration].

Separately licensed component required
ECC encryption and FIPS-certified encryption require a separate license. All strong encryption
technologies are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 11 - Introduction].

If you specify the https protocol, you can optionally specify the following protocol options:

○ backlog=number-of-connections The maximum number of remote connections before
MobiLink should reject new synchronization requests, causing synchronization to fail on the client
side. By specifying a backlog size, you can prevent clients from waiting to synchronize when the
server is busy. If you do not specify a backlog size, clients attempts to synchronize regardless of the
size of the backlog.

○ buffer_size=number The maximum body size for an HTTPS message sent from MobiLink
server, in bytes. Changing the option decreases or increases the amount of memory allocated for
sending HTTPS messages. The default is 65535 bytes.

○ contd_timeout=seconds The number of seconds the MobiLink server waits to receive the next
part of a partially completed synchronization before the synchronization is abandoned. You can tune
this option to free MobiLink server resources when the wait time indicates that the client can not
continue the connection. The default value is 30 seconds.

○ host=hostname The host name or IP number on which the MobiLink server should listen. The
default value is localhost.

○ port=portnumber The socket port number on which the MobiLink server should listen. The port
number must match the port that the MobiLink server is set up to monitor. The default port is 443.

Note
The mlsrv11 -x and -xo options both use the same default port and -x is started even if you don't
specify it, so you must change the port for -xo unless you change it in the -x option.

○ certificate The path and file name of the certificate file that is to be used for server authentication.
This must be an RSA certificate.

○ certificate_password An optional parameter that specifies a password for the certificate file.

For more information about security, see “Transport-layer security” [SQL Anywhere Server -
Database Administration].

○ session_key={ cookie | header } Creates an alternative to the JSESSIONID for tracking
connections. This may be necessary if your network already uses the JSESSIONID.

○ unknown_timeout=seconds The number of seconds the MobiLink server waits to receive
HTTP headers on a new connection before the synchronization is abandoned. You can tune this

MobiLink server options

116 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

option to free MobiLink server resources when the wait time indicates that a network failure has
occurred. The default value is 30 seconds.

○ version=http-version The MobiLink server automatically detects the HTTP version used by a
client. This parameter is a string specifying the default version of HTTP to use in case the server
cannot detect the method used by the client. You have a choice of 1.0 or 1.1. The default value is
1.1.

Example
The following command line sets the backlog size to 10 connections.

mlsrv11 -c "dsn=SQL Anywhere 11 CustDB;uid=DBA;pwd=sql" -xo http(backlog=10)

-xo option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 117

-zp option
Adjusts which timestamp values used for conflict detection purposes.

Syntax
mlsrv11 -c "connection-string" -zp

Remarks
In the event of a timestamp conflict between the consolidated and remote database, this option allows
timestamp values with a precision higher than the lowest precision to be used for conflict detection purposes.
The option is useful when timestamps in the consolidated database are more precise than in the remote, as
updated timestamps on the remote can cause conflicts in the next synchronization. The option allows
MobiLink to ignore these conflicts. When there is a precision mismatch and -zp is not used, a per
synchronization and a schema sensitive per table warning are written to the log to advertise the -zp option.
Another per synchronization warning is also added to tell users to adjust the timestamp precision on the
remote database where possible.

MobiLink server options

118 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-zs option
Specifies a MobiLink server name for mlstop and shared server state in a server farm.

Syntax
mlsrv11 -c "connection-string" -zs name

Remarks
The name that is specified may include ASCII letters and numbers, but no other characters.

When mlstop is used to shut down a MobiLink server started with the -zs option, you must specify the server
name on the mlstop command line. For example, mlstop myMLserver. Shutdown may only be initiated
from the computer where the MobiLink server is installed.

When MobiLink is running in a server farm, this name must be specified to uniquely identify the server.

See also
● “MobiLink stop utility (mlstop)” on page 689
● “Running the MobiLink server in a server farm” on page 40
● “-lsc option” on page 72
● “-ss option” on page 95
● “Notifiers in a MobiLink server farm” [MobiLink - Server-Initiated Synchronization]

-zs option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 119

-zt option
Specifies the maximum number of processors used to run the MobiLink server.

Syntax
mlsrv11 -c "connection-string" -zt number

Remarks
This option may be required for some ODBC drivers. It also gives you fine control of processor resources.

This option can only be used on Windows operating systems. The default is the number of processors on
the computer.

MobiLink server options

120 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-zu option
Controls the automatic addition of users when the authenticate_user script is undefined.

Syntax
mlsrv11 -c "connection-string" -zu{ + | - } ...

Remarks
If this is supplied as -zu+, then unrecognized MobiLink user names are added to the ml_user table on first
synchronizing. If the argument is supplied as -zu-, or not supplied, unrecognized user names are prevented
from synchronizing.

This option is useful during development to register users. It is not recommended for deployed applications.

See also
● “Synchronizations from new users” [MobiLink - Client Administration]
● “MobiLink users” [MobiLink - Client Administration]
● “MobiLink user authentication utility (mluser)” on page 690
● “authenticate_user connection event” on page 358

-zu option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 121

-zus option
Causes the MobiLink server to invoke upload scripts for a table even when no rows are uploaded for the
table.

Syntax
mlsrv11 -c "connection-string" -zus ...

Remarks
By default, if no rows are uploaded for a table, the MobiLink server does not invoke upload scripts for that
table, even if they are defined. This option overrides the default behavior and causes the MobiLink server
to call upload scripts for a table even if no rows are uploaded.

MobiLink server options

122 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-zw option
Controls which levels of warning message to display.

Syntax
mlsrv11 -c "connection-string" -zw levels

Remarks
MobiLink has five levels of warning messages:

Level Description

0 Suppress all warning messages

1 Server and high ODBC level: warning messages when the MobiLink server
starts

2 Synchronization and user level: warning messages when a synchronization
starts

3 Schema level: warning messages when a MobiLink server is processing a client
schema

4 Script and lower ODBC level: warning messages when a MobiLink server
fetches, prepares, or executes scripts

5 Table or row level: warning messages when a MobiLink server performs table
operations in an upload or download

To specify the level of warning messages you want reported, you can separate levels with a comma, or
separate a range with two dots. For example, -zw 1..3,5 is the same as -zw 1,2,3,5.

The reporting of messages has a slight impact on performance. Levels with a higher number tend to produce
more messages.

If -zw is used more than once in the same command line, MobiLink recognizes only the last instance. If
settings of -zw, -zwd, and -zwe conflict, MobiLink gives priority to -zwe, then -zwd, then -zw.

The default is 1,2,3,4,5, which indicates that all levels of warning message should be displayed.

-zw option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 123

-zwd option
Disables specific warning codes.

Syntax
mlsrv11 -c "connection-string" -zwd code, ...

Remarks
You can disable specific warning codes so that they do not get reported, even though other codes of the same
level are reported.

For a complete list of warning message codes, see “MobiLink server warning messages” [Error
Messages].

If -zwd is used more than once in the same command line, MobiLink accumulates the settings. If settings
of -zw, -zwd, and -zwe conflict, MobiLink gives priority to -zwe, then -zwd, then -zw.

MobiLink server options

124 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-zwe option
Enables specific warning codes.

Syntax
mlsrv11 -c "connection-string" -zwe code, ...

Remarks
You can enable specific warning codes so that they are reported even though you have disabled other codes
of the same level using -zw.

For a complete list of warning message codes, see “MobiLink server warning messages” [Error
Messages].

If -zwe is used more than once on the same command line, MobiLink accumulates the settings. If settings
of -zw, -zwd, and -zwe conflict, MobiLink gives priority to -zwe, then -zwd, then -zw.

-zwe option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 125

126

Synchronization techniques

Contents
MobiLink development tips .. 128
Timestamp-based downloads .. 129
Snapshot synchronization ... 133
Partitioning rows among remote databases .. 135
Upload-only and download-only synchronizations .. 138
Maintaining unique primary keys ... 139
Handling conflicts .. 146
Forced conflicts ... 154
Data entry .. 155
Handling deletes .. 156
Handling failed downloads ... 158
Download acknowledgement ... 161
Downloading a result set from a stored procedure call ... 162
Uploading data from self-referencing tables .. 164
MobiLink isolation levels .. 165

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 127

MobiLink development tips
Adding synchronization functionality to an application adds an added level of complexity to your application.
The following tips may be useful.

When you are adding synchronization to a prototype application, it can be difficult to see which components
are causing problems. When developing a prototype, temporarily hard code INSERT statements in your
application to provide data for testing and demonstration purposes. Once your prototype is working correctly,
enable synchronization and discard the temporary INSERT statements.

Start with straightforward synchronization techniques. Operations such as a simple upload or download
require only one or two scripts. Once those are working correctly, you can introduce more advanced
techniques, such as timestamps, primary key pools, and conflict resolution.

MobiLink and primary keys

In a synchronization system, the primary key is the only way to identify the same row in different databases
(remote and consolidated) and the only way to detect conflicts. Therefore, MobiLink applications must
adhere to the following rules:

● Every table that is to be synchronized must have a primary key.

● Never update the values of primary keys.

● Primary keys must be unique across all synchronized databases.

See “Maintaining unique primary keys” on page 139.

Synchronization techniques

128 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Timestamp-based downloads
The timestamp method is the most useful general technique for efficient synchronization. This technique
involves tracking the last time that each user synchronized and only downloading rows that have changed
since then.

MobiLink maintains a timestamp value indicating when each MobiLink user last downloaded data. This
value is called the last download time.

See “Using last download times in scripts” on page 130.

To implement timestamp-based synchronization for a table

1. At the consolidated database, add a column that holds the most recent time the row was modified. The
column is typically declared as follows:

DBMS last modified column

Adaptive Server Enterprise datetime

IBM DB2 LUW timestamp

IBM DB2 mainframe timestamp

Microsoft SQL Server datetime

MySQL timestamp

Oracle date

SQL Anywhere timestamp DEFAULT timestamp

2. In scripts for the download_cursor and download_delete_cursor events, compare the first parameter to
the value in the timestamp column.

Example
The following table declaration and scripts implement timestamp-based synchronization on the Customer
table in the Contact sample:

● Table definition:

CREATE TABLE "DBA"."Customer"(
 "cust_id" integer NOT NULL DEFAULT GLOBAL AUTOINCREMENT,
 "name" char(40) NOT NULL,
 "rep_id" integer NOT NULL,
 "last_modified" timestamp NULL DEFAULT timestamp,
 "active" bit NOT NULL,
 PRIMARY KEY ("cust_id"))

● download_delete_cursor script:

Timestamp-based downloads

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 129

SELECT cust_id
FROM Customer JOIN SalesRep
ON Customer.rep_id = SalesRep.rep_id
WHERE Customer.last_modified >= {ml s.last_table_download}
 AND (SalesRep.ml_username != {ml s.username}
 OR Customer.active = 0)

● download_cursor script:

SELECT cust_id, Customer.name, Customer.rep_id
FROM Customer KEY JOIN SalesRep
WHERE Customer.last_modified >= {ml s.last_table_download}
 AND SalesRep.ml_username = {ml s.username}
 AND Customer.active = 1

See “Synchronization logic source code” [MobiLink - Getting Started] and “Synchronizing contacts in the
Contact sample” [MobiLink - Getting Started].

Using last download times in scripts
The last download timestamp is provided as a parameter to many MobiLink events. The last download
timestamp is the value obtained from the consolidated database during the last successful synchronization
immediately prior to the download phase. If the current MobiLink user has never synchronized, or has never
synchronized successfully, this value is set to 1900-01-01.

See “How download timestamps are generated and used” on page 131.

If you have multiple publications and have synchronized them at different times, then you can have two
different last download timestamps. For this reason, there are two script parameter names for last download
timestamps:

● last_table_download is the last download timestamp for a table.

● last_download is the last time all tables were synchronized. It is the earliest last_table_download
value for any table.

When you use question marks instead of named parameters in MobiLink scripts, the correct value is always
used.

Caution
If you are using a SQL Anywhere consolidated database and the column holding last modified information
is of type DEFAULT TIMESTAMP, then the column should not be synchronized. If your remote databases
require such a column, a different column name should be used. Otherwise, the default timestamp value may
be overridden by the uploaded value, and does not contain the time that the row was last modified on the
consolidated database.

See also
● “Script parameters” on page 320

Synchronization techniques

130 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Example
SELECT cust_id, Customer.name, Customer.rep_id
FROM Customer KEY JOIN SalesRep
WHERE Customer.last_modified >= {ml s.last_table_download}
 AND SalesRep.ml_username = {ml s.username}
 AND Customer.active = 1

How download timestamps are generated and used
MobiLink generates and uses a timestamp for timestamp-based downloads as follows:

● After an upload is committed and immediately before invoking the prepare_for_download event, the
MobiLink server fetches the current time from the consolidated database and saves the value. This
timestamp value represents the start time of the current download; the next synchronization should only
download data that changes after this time.

● The MobiLink server sends this timestamp value as part of the download, and the client stores it.

● The next time the client synchronizes, it uses the timestamp value for the last_download_timestamp
that it sends with the upload.

● The MobiLink server passes the last_download_timestamp that the client just uploaded into your
download_cursor and download_delete_cursor. Your cursor can then select changes with timestamps
that are newer or equal to the last last_download_timestamp to ensure that only new changes are
downloaded.

Where the last download time is stored
The last download time is stored on the remote database. This is the appropriate place because only the
remote knows if the download has been successfully applied.

For SQL Anywhere remotes, the last download time is stored per subscription. See “SYSSYNC system
view” [SQL Anywhere Server - SQL Reference].

For UltraLite remotes, the last download time is stored per publication. See “syspublication system table”
[UltraLite - Database Management and Reference].

Changing the last download time

In some rare circumstances you may want to modify the last_download_timestamp. For example, if you
accidentally delete all the data on a remote database, you can resynchronize it by defining a
modify_last_download_timestamp connection script to reset the value for the last download timestamp.
There is another event, called modify_next_last_download_timestamp, which you can use to reset the
timestamp not for the current synchronization but for the next synchronization. See:

● “modify_last_download_timestamp connection event” on page 463
● “modify_next_last_download_timestamp connection event” on page 466

Timestamp-based downloads

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 131

UltraLite also provides functionality to change the last download time from the remote. See:

● C/C++ embedded SQL: “ULResetLastDownloadTime function” [UltraLite - C and C++
Programming]

● C++: “ResetLastDownloadTime function” [UltraLite - C and C++ Programming]
● .NET 2.0: “ResetLastDownloadTime method” [UltraLite - .NET Programming]

See also
● “Using last download times in scripts” on page 130

Dealing with daylight savings time
Daylight savings time can cause problems in a distributed database system if data is synchronized during
the hour that the time changes. In fact, you can lose data. This is only an issue in the autumn when the time
goes back and there is a one-hour period that can be ambiguous.

To deal with daylight savings time, you have three possible solutions:

● Ensure that the consolidated database server is using UTC time.

● Turn off daylight savings time on the consolidated database server.

● Shut down for an hour when the time changes.

Synchronization techniques

132 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Snapshot synchronization
Timestamp-based synchronization is appropriate for most synchronizations. However, occasionally you may
want to update a snapshot of your data.

Snapshot synchronization of a table is a complete download of all relevant rows in the table, even if they
have been downloaded before. This is the simplest synchronization method, but can involve unnecessarily
large data sets being exchanged, which can limit performance.

You can use snapshot synchronization for downloading all the rows of the table, or in conjunction with a
partitioning of the rows. See “Partitioning rows among remote databases” on page 135.

When to use snapshot synchronization
The snapshot method is typically most useful for tables that have both the following characteristics.

● Relatively few rows When there are few rows, the overhead for downloading all rows is small.

● Rows that change frequently When most rows in a table change frequently, there is little to be
gained by explicitly excluding those that have not changed since the last synchronization.

A table that holds a list of exchange rates could be suited to this approach because there are relatively few
currencies, but the rates of most change frequently. Depending on the nature of the business, a table that
holds prices, a list of interest rates, or current news items could all be candidates.

To implement snapshot-based synchronization

1. Leave the upload scripts undefined unless remote users update the values.

2. If the table may have rows deleted, write a download_delete_cursor script that deletes all the rows from
the remote table, or at least all rows no longer required. Do not delete the rows from the consolidated
database; rather, mark them for deletion. You must know the row values to delete them from the remote
database.

See “Writing download_delete_cursor scripts” on page 335.

3. Write a download_cursor script that selects all the rows you want to include in the remote table.

Deleting rows
Rather than deleting rows from the consolidated database, mark them for deletion. You must know the row
values to delete them from the remote database. Select only unmarked rows in the download_cursor script
and only marked rows in the download_delete_cursor script.

The download_delete_cursor script is executed before the download_cursor script. If a row is to be included
in the download, you need not include a row with the same primary key in the delete list. When a downloaded
row is received at the remote location, it replaces a preexisting row with the same primary key.

See “Writing scripts to download rows” on page 333.

Snapshot synchronization

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 133

An alternative deletion technique
Rather than delete rows from the remote database using a download_cursor script, you can allow the remote
application to delete the rows. For example, immediately following synchronization, you could allow the
application to execute SQL statements that delete the unneeded rows.

Rows deleted by the application are ordinarily uploaded to the MobiLink server upon the next
synchronization, but you can prevent this upload using the STOP SYNCHRONIZATION DELETE
statement. For example,

STOP SYNCHRONIZATION DELETE;
DELETE FROM table-name
 WHERE expiry_date < CURRENT TIMESTAMP;
COMMIT;
START SYNCHRONIZATION DELETE;

See “Writing download_delete_cursor scripts” on page 335.

Snapshot example
The ULProduct table in the sample application is maintained by snapshot synchronization. The table contains
relatively few rows, and for this reason, there is little overhead in using snapshot synchronization.

1. There is no upload script. This reflects a business decision that products cannot be added at remote
databases.

2. There is no download_delete_cursor, reflecting an assumption that products are not removed from the
list.

3. The download_cursor script selects the product identifier, price, and name of every current product. If
the product is pre-existing, the price in the remote table is updated. If the product is new, a row is inserted
in the remote table.

SELECT prod_id, price, prod_name
FROM ULProduct

For another example of snapshot synchronization in a table with very few rows, see “Synchronizing sales
representatives in the Contact sample” [MobiLink - Getting Started].

Synchronization techniques

134 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Partitioning rows among remote databases
Each MobiLink remote database can contain a different subset of the data in the consolidated database. This
means that you can write your synchronization scripts so that data is partitioned among remote databases.

The partitioning can be disjoint, or it can contain overlaps. For example, if each employee has their own set
of customers, with no shared customers, the partitioning is disjoint. If there are shared customers who appear
in more than one remote database, the partitioning contains overlaps.

Partitioning is implemented in the download_cursor and download_delete_cursor scripts for the table, which
define the rows to be downloaded to the remote database. Each of these scripts takes a MobiLink user name
as a parameter. By defining your scripts using this parameter in the WHERE clause, each user gets the
appropriate rows.

Disjoint partitioning
Partitioning is controlled by the download_cursor and download_delete_cursor scripts for each table
involved in synchronization. These scripts take two parameters, a last download timestamp and the MobiLink
user name supplied in the call to synchronize.

To partition a table among remote databases

1. Include in the table definition a column containing the synchronization user name in the consolidated
database. You need not download this column to remote databases.

2. Include a condition in the WHERE clause of the download_cursor and download_delete_cursor scripts
requiring this column to match the script parameter.

The script parameter can be represented by a question mark or a named parameter in the script. For
example, the following download_cursor script partitions the Contact table by employee ID.

SELECT id, contact_name
FROM Contact
WHERE last_modified >= {ml s.last_table_download}
AND emp_id = {ml s.username}

See “download_cursor table event” on page 396 and “download_delete_cursor table
event” on page 400.

Example
The primary key pool tables in the CustDB sample application are used to supply each remote database with
its own set of primary key values. This technique is used to avoid duplicate primary keys, and is discussed
in “Using primary key pools” on page 143.

A necessary feature of the method is that primary key-pool tables must be partitioned among remote
databases in a disjoint fashion.

One key-pool table is ULCustomerIDPool, which holds primary key values for each user to use when they
add customers. The table has three columns:

Partitioning rows among remote databases

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 135

● pool_cust_id A primary key value for use in the ULCustomer table. This is the only column
downloaded to the remote database.

● pool_emp_id The employee who owns this primary key.

● last_modified This table is maintained using the timestamp technique, based on the last_modified
column.

For information about timestamp synchronization, see “Timestamp-based downloads” on page 129.

The download_cursor script for this table is as follows.

SELECT pool_cust_id
FROM ULCustomerIDPool
WHERE last_modified >= {ml s.last_table_download}
 AND pool_emp_id = {ml s.username}

When not using a variable or named parameter, you can use a join or sub-selection that includes the ?
placeholder.

See “Synchronizing customers in the Contact sample” [MobiLink - Getting Started] and “Synchronizing
contacts in the Contact sample” [MobiLink - Getting Started].

Partitioning with overlaps
Some tables in your consolidated database may have rows that belong to many remote databases. Each
remote database has a subset of the rows in the consolidated database and the subset overlaps with other
remote databases. This is frequently the case with a customer table. In this case, there is a many-to-many
relationship between the table and the remote databases and there is usually a table to represent the
relationship. The scripts for the download_cursor and download_delete_cursor events need to join the table
being downloaded to the relationship table.

Example
The CustDB sample application uses this technique for the ULOrder table. The ULEmpCust table holds the
many-to-many relationship information between ULCustomer and ULEmployee.

Each remote database receives only those rows from the ULOrder table for which the value of the emp_id
column matches the MobiLink user name.

The SQL Anywhere version of the download_cursor script for ULOrder in the CustDB application is as
follows:

SELECT o.order_id, o.cust_id, o.prod_id,
 o.emp_id, o.disc, o.quant, o.notes, o.status
FROM ULOrder o , ULEmpCust ec
WHERE o.cust_id = ec.cust_id
 AND ec.emp_id = {ml s.username}
 AND (o.last_modified >= {ml s.last_table_download}
 OR ec.last_modified >= {ml s.last_table_download})
 AND (o.status IS NULL
 OR o.status != 'Approved')
 AND (ec.action IS NULL)

Synchronization techniques

136 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

This script is fairly complex. It illustrates that the query defining a table in the remote database can include
more than one table in the consolidated database. The script downloads all rows in ULOrder for which the
following are all true:

● the cust_id column in ULOrder matches the cust_id column in ULEmpCust

● the emp_id column in ULEmpCust matches the synchronization user name

● the last modification of either the order or the employee-customer relationship was later than the most
recent synchronization time for this user

● the status is anything other than Approved

The action column on ULEmpCust is used to mark columns for delete. Its purpose is not relevant to the
current topic.

The download_delete_cursor script is as follows.

SELECT o.order_id
FROM ULOrder o, ULEmpCust ec
WHERE o.cust_id = ec.cust_id
 AND ec.emp_id = {ml s.username}
 AND (o.last_modified >= {ml s.last_table_download} OR
 c.last_modified >= {ml s.last_table_download})
 AND (o.status IS NULL OR
 o.status != 'Approved')
 AND (ec.action IS NULL)

This script deletes all approved rows from the remote database.

Partitioning child tables
The example in the previous section illustrates how to partition tables based on a criterion in some other
table. See “Partitioning with overlaps” on page 136.

Some tables in your remote database may have disjoint subsets or overlapping subsets, but do not contain a
column that determines the subset. These are child tables that usually have a foreign key (or a series of
foreign keys) referencing another table. The referenced table has a column that determines the correct subset.

In this case, the download_cursor script and the download_delete_cursor script need to join the referenced
tables and have a WHERE clause that restricts the rows to the correct subset.

For an example, see “Synchronizing contacts in the Contact sample” [MobiLink - Getting Started].

Partitioning rows among remote databases

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 137

Upload-only and download-only synchronizations
By default, synchronization is bi-directional: data is both uploaded and downloaded. However, you can
choose to do only an upload or only a download.

Synchronization model note
This topic provides information for how to set up upload-only and download-only synchronization when
you create your MobiLink synchronization system in your database. You can also specify upload-only or
download-only if you create a synchronization model in Sybase Central.

SQL Anywhere remote databases
● Upload To perform upload-only synchronization, use the dbmlsync option -uo or the extended option

UploadOnly. See:

○ “-uo option” [MobiLink - Client Administration]
○ “UploadOnly (uo) extended option” [MobiLink - Client Administration]

● Download To perform download-only synchronization, use the dbmlsync option -ds or the extended
option DownloadOnly. See:

○ “-ds option” [MobiLink - Client Administration]
○ “DownloadOnly (ds) extended option” [MobiLink - Client Administration]

SQL Anywhere remote databases can also use download-only publications. This approach to downloads
is different from download-only synchronizations. See “Download-only publications” [MobiLink -
Client Administration].

UltraLite remote databases
● Upload To perform upload-only synchronization, use the Upload Only synchronization parameter.

See “Upload Only synchronization parameter” [UltraLite - Database Management and Reference].

● Download To perform download-only synchronization, use the Download Only synchronization
parameter.

See “Download Only synchronization parameter” [UltraLite - Database Management and Reference].

Synchronization techniques

138 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Maintaining unique primary keys
Every table that is to be synchronized must have a primary key, and the primary key must be unique across
all synchronized databases. The values of primary keys should not be updated.

It is often convenient to use a single column as the primary key for tables. For example, each customer should
be assigned a unique identification value. If all the sales representatives work in an environment where they
can maintain a direct connection to the database, assigning these numbers is easily accomplished. Whenever
a new customer is inserted into the customer table, automatically add a new primary key value that is greater
than the last value.

In a disconnected environment, assigning unique values for primary keys when new rows are inserted is not
as easy. When a sales representative adds a new customer, she is doing so to a remote copy of the Customer
table. You must prevent other sales representatives, working on other copies of the Customer table, from
using the same customer identification value.

This section describes the following ways to solve the problem of how to generate unique primary keys:

● “Using composite keys” on page 139
● “Using UUIDs” on page 139
● “Using global autoincrement” on page 140
● “Using primary key pools” on page 143

Using composite keys
The MobiLink remote ID uniquely defines a remote database within a synchronization system. Therefore,
an easy way to create a unique primary key is to create a composite primary key that includes the MobiLink
remote ID as part of its value. If you maintain unique MobiLink user names, you could use the user name
instead of the remote ID.

See “Remote IDs” [MobiLink - Client Administration].

Using UUIDs
You can ensure that primary keys are unique by using the newid() function to create universally unique
values for your primary key. The resulting UUIDs can be converted to a string using the uuidtostr() function,
and converted back to binary using the strtouuid() function.

UUIDs, also known as GUIDs, are unique across all computers. However, the values are completely random
and so cannot be used to determine when a value was added, or the order of values. UUID values are also
considerably larger than the values required by other methods (including global autoincrement), and require
more table space in both the primary and foreign key tables. Indexes on tables using UUIDs are also less
efficient.

Maintaining unique primary keys

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 139

See also
SQL Anywhere databases:

● “The NEWID default” [SQL Anywhere Server - SQL Usage]
● “NEWID function [Miscellaneous]” [SQL Anywhere Server - SQL Reference]
● “UNIQUEIDENTIFIER data type” [SQL Anywhere Server - SQL Reference]

UltraLite databases:

● “Primary key uniqueness in UltraLite” [UltraLite - Database Management and Reference]
● “NEWID function [Miscellaneous]” [UltraLite - Database Management and Reference]

Example
The following SQL Anywhere CREATE TABLE statement creates a primary key that is universally unique:

CREATE TABLE customer (
 cust_key UNIQUEIDENTIFIER NOT NULL
 DEFAULT NEWID(),
 rep_key VARCHAR(5),
 PRIMARY KEY(cust_key))

Using global autoincrement
In SQL Anywhere and UltraLite databases, you can set the default column value to be GLOBAL
AUTOINCREMENT. You can use this default for any column in which you want to maintain unique values,
but it is particularly useful for primary keys.

To use global autoincrement columns

1. Declare the column as a global autoincrement column.

When you specify default global autoincrement, the domain of values for that column is partitioned.
Each partition contains the same number of values. For example, if you set the partition size for an integer
column in a database to 1000, one partition extends from 1001 to 2000, the next from 2001 to 3000, and
so on.

See “Declaring default global autoincrement” on page 141.

2. Set the global_database_id value.

SQL Anywhere supplies default values in a database only from the partition uniquely identified by that
database's number. For example, if you assign a database the identity number 10 and the partition size
is 1000, the default values in that database would be chosen in the range 10001-11000. Another copy of
the database, assigned the identification number 11, would supply default value for the same column in
the range 11001-12000.

See “Setting the global database ID” on page 141.

Synchronization techniques

140 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Declaring default global autoincrement
You can set default values in your database by selecting the column properties in Sybase Central, or by
including the DEFAULT GLOBAL AUTOINCREMENT phrase in a CREATE TABLE or ALTER TABLE
statement.

Optionally, the partition size can be specified in parentheses immediately following the AUTOINCREMENT
keyword. The partition size may be any positive integer, although the partition size is generally chosen so
that the supply of numbers within any one partition is rarely, if ever, exhausted.

For columns of type INT or UNSIGNED INT, the default partition size is 216 = 65536; for columns of other
types the default partition size is 232 = 4294967296. Since these defaults may be inappropriate, especially
if our column is not of type INT or BIGINT, it is best to specify the partition size explicitly.

For example, the following SQL statement creates a simple table with two columns: an integer that holds a
customer identification number and a character string that holds the customer's name. The partition size is
set to 5000.

CREATE TABLE customer (
 id INT DEFAULT GLOBAL AUTOINCREMENT (5000),
 name VARCHAR(128) NOT NULL,
 PRIMARY KEY (id)
)

See also
● SQL Anywhere: “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● UltraLite: “UltraLite CREATE TABLE statement” [UltraLite - Database Management and Reference]

Setting the global database ID
When deploying an application, you must assign a different identification number to each database. You can
create and distribute the identification numbers by a variety of means. One method is to place the values in
a table and download the correct row to each database based on some other unique property, such as remote
ID.

To set the global database identification number

● In SQL Anywhere, you set the global ID of a database by setting the value of the public option
global_database_id. The identification number must be a non-negative integer. See “global_database_id
option [database]” [SQL Anywhere Server - Database Administration].

In UltraLite, you set the global ID of a database by setting the global_id option. See “UltraLite
global_database_id option” [UltraLite - Database Management and Reference].

How default values are chosen

The global database ID is set with the public option global_database_id in SQL Anywhere, and with the
global_id option in UltraLite.

The global database id option in each database must be set to a unique, non-negative integer. The range of
default values for a particular database is pn + 1 to p(n + 1), where p is the partition size and n is the value

Maintaining unique primary keys

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 141

of the global database ID. For example, if the partition size is 1000 and global database ID is set to 3, then
the range is from 3001 to 4000.

SQL Anywhere and UltraLite choose default values by applying the following rules:

● If the column contains no values in the current partition, the first default value is pn + 1, where p is the
partition size and n is the value of the global database ID.

● If the column contains values in the current partition, but all are less than p(n + 1), the next default value
is one greater than the previous maximum value in this range.

● Default column values are not affected by values in the column outside the current partition; that is, by
numbers less than pn + 1 or greater than p(n + 1). Such values may be present if they have been replicated
from another database via MobiLink synchronization.

If the global database ID is set to the default value of 2147483647, a null value is inserted into the column.
Should null values not be permitted, the attempt to insert the row causes an error. This situation arises, for
example, if the column is contained in the table's primary key.

Because the global database ID cannot be set to negative values, the values chosen are always positive. The
maximum identification number is restricted only by the column data type and the partition size.

Null default values are also generated when the supply of values within the partition has been exhausted. In
this case, a new global database ID value should be assigned to the database to allow default values to be
chosen from another partition. Attempting to insert the null value causes an error if the column does not
permit nulls. To detect that the supply of unused values is low and handle this condition, you can create an
event of type GlobalAutoincrement.

Should the values in a particular partition become exhausted, you can assign a new global database ID to
that database. You can assign new database ID numbers in any convenient manner. However, one possible
technique is to maintain a pool of unused database ID values. This pool is maintained in the same manner
as a pool of primary keys.

You can set an event handler to automatically notify the database administrator (or perform some other
action) when the partition is nearly exhausted. For SQL Anywhere databases, see “Defining trigger
conditions for events” [SQL Anywhere Server - Database Administration].

See also
● “Setting the global database ID” on page 141
● SQL Anywhere: “global_database_id option [database]” [SQL Anywhere Server - Database

Administration]
● UltraLite: “UltraLite global_database_id option” [UltraLite - Database Management and Reference]

Example
In a SQL Anywhere database, the following statement sets the database identification number to 20.

SET OPTION PUBLIC.global_database_id = 20

If the partition size for a particular column is 5000, default values for this database are selected from the
range 100001-105000.

Synchronization techniques

142 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Using primary key pools
One efficient means of solving this problem of unique primary keys is to assign each user of the database a
pool of primary key values that can be used as the need arises. For example, you can assign each sales
representative 100 new identification values. Each sales representative can freely assign values to new
customers from his or her own pool.

To implement a primary key pool

1. Add a new table to the consolidated database and to each remote database to hold the new primary key
pool. Apart from a column for the unique value, these tables should contain a column for a user name,
to identify who has been given the right to assign the value.

2. Write a stored procedure to ensure that each user is assigned enough new identification values. Assign
more new values to remote users who insert many new entries or who synchronize infrequently.

3. Write a download_cursor script to select the new values assigned to each user and download them to the
remote database.

4. Modify the application that uses the remote database so that when a user inserts a new row, the application
uses one of the values from the pool. The application must then delete that value from the pool so it is
not used a second time.

5. Write an upload script. The MobiLink server then deletes rows from the consolidated pool of values that
a user has deleted from his personal value pool in the remote database.

6. Write an end_upload script to call the stored procedure that maintains the pool of values. Doing so has
the effect of adding more values to the user's pool to replace those deleted during upload.

Example

The sample application allows remote users to add customers. It is essential that each new row has a unique
primary key value, and yet each remote database is disconnected when data entry is occurring.

The ULCustomerIDPool holds a list of primary key values that can be used by each remote database. In
addition, the ULCustomerIDPool_maintain stored procedure tops up the pool as values are used up. The
maintenance procedures are called by a table-level end_upload script, and the pools at each remote database
are maintained by upload_insert and download_cursor scripts.

1. The ULCustomerIDPool table in the consolidated database holds the pool of new customer identification
numbers. It has no direct link to the ULCustomer table.

Maintaining unique primary keys

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 143

2. The ULCustomerIDPool_maintain procedure updates the ULCustomerIDPool table in the consolidated
database. The following sample code is for a SQL Anywhere consolidated database.

CREATE PROCEDURE ULCustomerIDPool_maintain (IN syncuser_id INTEGER)
BEGIN
 DECLARE pool_count INTEGER;
 -- Determine how may ids to add to the pool
 SELECT COUNT(*) INTO pool_count
 FROM ULCustomerIDPool
 WHERE pool_emp_id = syncuser_id;

 -- Top up the pool with new ids
 WHILE pool_count < 20 LOOP
 INSERT INTO ULCustomerIDPool (pool_emp_id)
 VALUES (syncuser_id);
 SET pool_count = pool_count + 1;
 END LOOP;
END

This procedure counts the numbers that are currently assigned to the current user, and inserts new rows
so that this user has enough customer identification numbers.

This procedure is called at the end of the upload, by the end_upload table script for the
ULCustomerIDPool table. The script is as follows:

CALL ULCustomerIDPool_maintain({ml s.username})
3. The download_cursor script for the ULCustomerIDPool table downloads new numbers to the remote

database.

SELECT pool_cust_id
FROM ULCustomerIDPool
WHERE pool_emp_id = {ml s.username}
AND last_modified >= {ml s.last_table_download}

4. To insert a new customer, the application using the remote database must select an unused identification
number from the pool, delete this number from the pool, and insert the new customer information using
this identification number. The following embedded SQL function for an UltraLite application retrieves
a new customer number from the pool.

bool CDemoDB::GetNextCustomerID(void)
/*************************************/
{

Synchronization techniques

144 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 short ind;
 EXEC SQL SELECT min(pool_cust_id)
 INTO :m_CustID:ind FROM ULCustomerIDPool;
 if(ind < 0) {
 return false;
 }
 EXEC SQL DELETE FROM ULCustomerIDPool
 WHERE pool_cust_id = :m_CustID;
 return true;
}

Maintaining unique primary keys

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 145

Handling conflicts
Conflicts can arise during the upload of rows to the consolidated database. If two users modify the same row
on different remote databases, a conflict is detected when the second of the rows arrives at the MobiLink
server.

By default,

● If an attempt to insert a row finds that the row has already been inserted, an error is generated.

● If an attempt to delete a row finds that the row has already been deleted, the second attempt to delete is
ignored.

If you need different behavior, you can implement it by defining one or more of the upload events that are
described in this section.

About conflicts
Caution
Never update primary keys in synchronized tables. Updating primary keys defeats the purpose of a primary
key because the key is the only way to identify the same row in different databases (remote and consolidated)
and the only way to detect conflicts.

Conflicts are not the same as errors. When conflicts can occur, you should define a process to compute the
correct values, or at least to log the conflict. Conflict handling is an integral part of a well-designed
application.

During the download stage of a synchronization, no conflicts arise in the remote database. If a downloaded
row contains a new primary key, the values are inserted into a new row. If the primary key matches that of
a pre-existing row, the values in the row are updated.

Example
User1 starts with an inventory of ten items, and then sells three and updates the Remote1 inventory value to
seven items. User2 sells four items and updates the Remote2 inventory to six. When Remote1 synchronizes,
the consolidated database is updated to seven. When Remote2 synchronizes, a conflict is detected because
the value of the inventory is no longer ten. To resolve this conflict programmatically, you need three row
values:

1. The current value in the consolidated database.

2. The new row value that Remote2 uploaded.

3. The old row value that Remote2 obtained during the last synchronization.

In this case, the business logic could use the following to calculate the new inventory value and resolve the
conflict:

current consolidated - (old remote - new remote)
-> 7 - (10-6) = 3

Synchronization techniques

146 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

For other examples of how to handle conflicts, see:

● “Synchronizing products in the Contact sample” [MobiLink - Getting Started]

Detecting conflicts
When a MobiLink client sends an updated row to the MobiLink server, it includes not only the new updated
values (the post-image), but also a copy of the old row values (the pre-image) obtained either in the last
download or from the row values existing prior to the first upload of this row. When the pre-image does not
match the current values in the consolidated database, a conflict is detected.

There are several scripts provided to detect conflicts. The MobiLink server detects conflicts only if one of
the following scripts is applied:

● An upload_fetch or upload_fetch_column_conflict script.

● An upload_update script that includes all non-primary key columns in the WHERE clause.

Detecting conflicts with upload_fetch scripts
If you define an upload_fetch or upload_fetch_column_conflict script for a table, the MobiLink server
compares the pre-image of an update to the values of the row returned by the upload_fetch script with the
same primary key values. If values in the pre-image do not match the current consolidated values, the
MobiLink server detects a conflict.

The upload_fetch script selects a single row of data from a consolidated database table corresponding to the
row being updated. A typical upload_fetch script has the following syntax:

SELECT pk1, pk2, ...col1, col2, ...
FROM table-name
WHERE pk1 = {ml r.pk1} AND pk2 = {ml r.pk2} ...
 AND col1 = {ml r.col1} AND col2 = {ml r.col2} ...

See “upload_fetch table event” on page 500.

The upload_fetch_column_conflict event is similar to upload_fetch, but it only detects a conflict when two
users update the same column. Different users can update the same row, as long as they don't update the
same column, without generating a conflict.

See “upload_fetch_column_conflict table event” on page 502.

You can have only one upload_fetch or upload_fetch_column_conflict script for each table in the remote
database.

Locking the row on the consolidated database
It is possible that a row might change on the consolidated database after the upload_fetch script detects a
conflict and before the conflict resolution is completed. To avoid this problem, which could result in incorrect
data, you can implement the upload_fetch or upload_fetch_column_conflict scripts with a row lock.

Handling conflicts

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 147

In SQL Anywhere consolidated databases, you can use either the UPDLOCK or HOLDLOCK keywords,
but UPDLOCK is better for concurrency. For example:

SELECT column-names from table-name WITH (UPDLOCK)
 WHERE where-clause

For Oracle, DB2 LUW and DB2 mainframe, use FOR UPDATE. For example:

SELECT column-names FROM table-name
 WHERE where-clause
 FOR UPDATE OF column_name1, column_name3, column_name6

Note
Specifying the column names you want to update, as shown in the example above, preserves computer
resources and improves performance.

For Microsoft SQL Server, use HOLDLOCK. For example,

SELECT column-names FROM table-name WITH (HOLDLOCK)
 WHERE where-clause

For Adaptive Server Enterprise, use HOLDLOCK. For example,

SELECT column-names FROM table-name
 HOLDLOCK
 WHERE where-clause

Example
You define an upload_fetch script. The MobiLink server uses the script to retrieve the current row in the
consolidated database and compares this row to the pre-image of the updated row. If the two rows contain
identical values, there is no conflict. If the two rows differ, then a conflict is detected and MobiLink calls
the upload_old_row_insert and upload_new_row_insert scripts, followed by resolve_conflict.

See “Resolving conflicts with resolve_conflict scripts” on page 149.

Detecting conflicts with upload_update scripts
To use the upload_update script to detect conflicts, include all columns in the WHERE clause:

UPDATE table-name
SET col1 = {ml r.col1}, col2 = {ml r. col2 } ...
WHERE pk1 = {ml o.pk1} AND pk2 = {ml o.pk2} ...
 AND col1 = {ml o.col1} AND col2 = {ml o.col2} ...

In this statement, col1, col2 and so on are the non-primary key columns, while pk1, pk2 and so on are primary
key columns. The values passed to the second set of non-primary key columns (o.) are the pre-image (or old
values) of the updated row. The WHERE clause compares old values uploaded from the remote to current
values in the consolidated database. If the values do not match, the update is ignored, preserving the values
already on the consolidated database.

See “upload_update table event” on page 522.

The upload_update script is used for conflict detection only if no conflict is detected by upload_fetch or
upload_fetch_column_conflict.

Synchronization techniques

148 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Scenario 1
You define scripts for the following events: upload_update, upload_old_row_insert,
upload_new_row_insert, and resolve_conflict.

You define the following upload_update script:

UPDATE product
SET name={ml r.name}, description={ml r.description}
WHERE id={ml r.id}
 AND name={ml o.name}
 AND description={ml o.description]

MobiLink performs the update and then checks to see how many rows were modified. If no rows were
modified, then MobiLink has detected a conflict: no row in the consolidated database matches the pre-image
row. MobiLink calls the upload_old_row_insert and upload_new_row_insert scripts, followed by
resolve_conflict.

See “Resolving conflicts with resolve_conflict scripts” on page 149.

Scenario 2
You do not define scripts for upload_old_row_insert, upload_new_row_insert, and resolve_conflict. Instead,
you create a stored procedure to handle the conflict detection and resolution and you call it in the
upload_update script.

See “Resolving conflicts with upload_update scripts” on page 151.

Resolving conflicts
You have several options for resolving conflicts:

● Resolve conflicts as they occur using temporary or permanent tables and a resolve_conflict script.

See “Resolving conflicts with resolve_conflict scripts” on page 149.

● Resolve conflicts as they occur using an upload_update script.

See “Resolving conflicts with upload_update scripts” on page 151.

● Resolve all conflicts at once using a table's end_upload script.

See “end_upload table event” on page 433.

Resolving conflicts with resolve_conflict scripts
When the MobiLink server detects a conflict using an upload_fetch script, the following events take place.

● The MobiLink server inserts old row values uploaded from the remote database as defined by the
upload_old_row_insert script. Typically, the old values are inserted into a temporary table.

See “upload_old_row_insert table event” on page 509.

Handling conflicts

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 149

● The MobiLink server inserts the new row values uploaded from the remote database as defined by the
upload_new_row_insert script. Typically, the new values are inserted into a temporary table.

See “upload_new_row_insert table event” on page 506.

● The MobiLink server executes the resolve_conflict script. In this script you can either call a stored
procedure, or define a sequence of steps to resolve the conflict using the new and old row values.

For more information, see “resolve_conflict table event” on page 483.

Example
In the following example, you create scripts for six events and then you create a stored procedure.

● In the begin_synchronization script, you create two temporary tables called contact_new and contact_old.
(You could also do this in the begin_connection script.)

● The upload_fetch script detects the conflict.

● When there is a conflict, the upload_old_row_insert and upload_new_row_insert scripts populate the
two temporary tables with the new and old data uploaded from the remote database.

● The resolve_conflict script calls the stored procedure MLResolveContactConflict to resolve the conflict.

Event Script

begin_synchronization CREATE TABLE #contact_new(
 id INTEGER,
 location CHAR(36),
 contact_date DATE);
CREATE TABLE #contact_old(
 id INTEGER,
 location CHAR(36),
 contact_date DATE)

upload_fetch SELECT id, location, contact_date
 FROM contact
 WHERE id = {ml r.id}

upload_old_row_insert INSERT INTO #contact_new(id, location,
contact_date)
 VALUES ({ml r.id}, {ml r.location}, {ml
r.contact_date})

upload_new_row_insert INSERT INTO #contact_old(id, location,
contact_date)
 VALUES ({ml r.id}, {ml r.location}, {ml
r.contact_date})

resolve_conflict CALL MLResolveContactConflict()

end_synchronization DROP TABLE #contact_new;
DROP TABLE #contact_old

The stored procedure MLResolveContactConflict is as follows:

CREATE PROCEDURE MLResolveContactConflict()
BEGIN

Synchronization techniques

150 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 --update the consolidated database only if the new contact date
 --is later than the existing contact date
 UPDATE contact c
 SET c.contact_date = cn.contact_date
 FROM #contact_new cn
 WHERE c.id = cn.id
 AND cn.contact_date > c.contact_date;
 --cleanup
 DELETE FROM #contact_new;
 DELETE FROM #contact_old;
END

Resolving conflicts with upload_update scripts
Instead of using the resolve_conflict script for conflict resolution, you can call a stored procedure in the
upload_update script. With this technique, you must both detect and resolve conflicts programmatically.

The stored procedure must use the format of the upload_update script with a WHERE clause that includes
all columns but uses the pre-image (old) values.

The upload_update script could be as follows:

{CALL UpdateProduct(
 {ml o.id}, {ml o.name}, {ml o.desc}, {ml r.name}, {ml r.desc}
)
}

The UpdateProduct stored procedure could be:

CREATE PROCEDURE UpdateProduct(
 @id INTEGER,
 @preName VARCHAR(20),
 @preDesc VARCHAR(200),
 @postName VARCHAR(20),
 @postDesc VARCHAR(200))
BEGIN
 UPDATE product
 SET name = @postName, description = @postDesc
 WHERE id = @id
 AND name = @preName
 AND description = @preDesc
 IF @@rowcount=0 THEN
 // A conflict occurred: handle resolution here.
 END IF
END

This approach is often easier to maintain than resolving conflicts with resolve_conflict scripts because there
is only one script to maintain and all the logic is contained in one stored procedure. However, the code of
the stored procedure may be complicated if the tables columns are nullable or if they contain BLOBs or
CLOBs. Also, some RDBMSs that are supported MobiLink consolidated databases have limitations on the
size of values that can be passed to stored procedures.

See:

● “Detecting conflicts with upload_update scripts” on page 148
● “upload_update table event” on page 522
● “Resolving conflicts with resolve_conflict scripts” on page 149

Handling conflicts

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 151

Example
The following stored procedure, sp_update_my_customer, contains logic for conflict detection and
resolution. It accepts old column values and new column values. This example uses SQL Anywhere features.
The script could be implemented as follows.

{CALL sp_update_my_customer(
 {ml o.cust_1st_pk},
 {ml o.cust_2nd_pk},
 {ml o.first_name},
 {ml o.last_name},
 {ml o.nullable_col},
 {ml o.last_modified},
 {ml r.first_name},
 {ml r.last_name},
 {ml r.nullable_col},
 {ml r.last_modified}
)}
CREATE PROCEDURE sp_update_my_customer(
 @cust_1st_pk INTEGER,
 @cust_2nd_pk INTEGER,
 @old_first_name VARCHAR(100),
 @old_last_name VARCHAR(100),
 @old_nullable_col VARCHAR(20),
 @old_last_modified DATETIME,
 @new_first_name VARCHAR(100),
 @new_last_name VARCHAR(100),
 @new_nullable_col VARCHAR(20),
 @new_last_modified DATETIME
)
BEGIN
DECLARE @current_last_modified DATETIME;
// Detect a conflict by checking the number of rows that are
// affected by the following update. The WHERE clause compares
// old values uploaded from the remote to current values in
// the consolidated database. If the values match, there is
// no conflict. The COALESCE function returns the first non-
// NULL expression from a list, and is used in this case to
// compare values for a nullable column.

UPDATE my_customer
SET first_name = @new_first_name,
 last_name = @new_last_name,
 nullable_col = @new_nullable_col,
 last_modified = @new_last_modified
WHERE cust_1st_pk = @cust_1st_pk
 AND cust_2nd_pk = @cust_2nd_pk
 AND first_name = @old_first_name
 AND last_name = @old_last_name
 AND COALESCE(nullable_col, '') = COALESCE(@old_nullable_col, '')
 AND last_modified = @old_last_modified;
...
// Use the @@rowcount global variable to determine
// the number of rows affected by the update. If @@rowcount=0,
// a conflict has occurred. In this example, the database with
// the most recent update wins the conflict. If the consolidated
// database wins the conflict, it retains its current values
// and no action is taken.
IF(@@rowcount = 0) THEN
// A conflict has been detected. To resolve it, use business

Synchronization techniques

152 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

// logic to determine which values to use, and update the
// consolidated database with the final values.
 SELECT last_modified INTO @current_last_modified
 FROM my_customer WITH(HOLDLOCK)
 WHERE cust_1st_pk=@cust_1st_pk
 AND cust_2nd_pk=@cust_2nd_pk;
 IF(@new_last_modified > @current_last_modified) THEN
 // The remote has won the conflict: use the values it
 // uploaded.

 UPDATE my_customer
 SET first_name = @new_first_name,
 last_name = @new_last_name,
 nullable_col = @new_nullable_col,
 last_modified = @new_last_modified
 WHERE cust_1st_pk = @cust_1st_pk
 AND cust_2nd_pk = @cust_2nd_pk;

 END IF;
END IF;
END;

See:

● “COALESCE function [Miscellaneous]” [SQL Anywhere Server - SQL Reference]
● @@rowcount in “Global variables” [SQL Anywhere Server - SQL Reference]

Handling conflicts

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 153

Forced conflicts
Forced conflict resolution is a special technique that forces every uploaded row to be treated as if it were a
conflict.

The MobiLink server uses forced conflict resolution when the upload_insert, upload_update, and
upload_delete script are all undefined. In this mode of operation, the MobiLink server attempts to insert all
uploaded rows from that table using the statements defined by the upload_old_row_insert and
upload_new_row_insert scripts. In essence, all uploaded rows are then treated as conflicts. You can write
stored procedures or scripts to process the uploaded values in any way you want.

Without any of the upload_insert, upload_update, or upload_delete scripts, the normal conflict-resolution
procedure is bypassed. This technique has two principal uses.

● Arbitrary conflict detection and resolution The automatic mechanism only detects errors when
updating a row, and only then when the old values do not match the present values in the consolidated
database.

You can capture the raw uploaded data using the upload_old_row_insert and upload_new_row_insert
scripts, then process the rows as you see fit.

● Performance When the upload_insert, upload_update, and upload_delete are not defined, the
MobiLink server is relieved of its normal conflict-detection tasks, which involve querying the
consolidated database one row at a time. Instead, it needs only to insert the raw uploaded information
using the statements defined by the upload_old_row_insert and upload_new_row_insert scripts.
Performance is improved because the MobiLink server is not fetching rows across the network.

See also
● “Forced conflict statistics” on page 198

Synchronization techniques

154 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Data entry
In some databases, there are tables that are only used for data entry. One way of processing these tables is
to upload all inserted rows at each synchronization, and remove them from the remote database on the
download. After synchronization, the remote table is empty again, ready for another batch of data.

To achieve this model, you can upload rows into a temporary table and then insert them into a base table
using an end_upload table script. The temporary table can be used in the download_delete_cursor to remove
rows from the remote database following a successful synchronization.

Alternatively, you can allow the client application to the delete the rows, using the STOP
SYNCHRONIZATION DELETE statement to stop the deletes being uploaded during the next
synchronization.

See “STOP SYNCHRONIZATION DELETE statement [MobiLink]” [SQL Anywhere Server - SQL
Reference].

Data entry

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 155

Handling deletes
When rows are deleted from the consolidated database, there needs to be a record of the row so it can be
removed from any remote databases that have the row. Two ways to do this are by using logical deletes or
shadow tables.

● Logical deletes With this method, the row is not deleted. Data that is no longer required is marked
as inactive in a status column. The WHERE clause of the download_cursor and download_delete_cursor
can refer to the status of the row.

This technique is used in the ULEmpCust table in the CustDB sample application, in which the action
column holds a D for Delete. The scripts use this value to delete the record from the remote database,
and delete the record from the consolidated database at the end of the synchronization. CustDB also uses
this technique for the ULOrder table, and the Contact sample uses the technique on the Customer,
Contact, and Product tables.

The MobiLink synchronization model support for logical deletes assumes that a logical delete column
is only on the consolidated database and not on the remote. When copying a consolidated schema to a
new remote schema, leave out any columns that match the logical delete column in the model's
synchronization settings. For a new model, the default column name is deleted.

To add the logical delete column name to the remote schema:

1. In the Create Synchronization Model Wizard, on the Download Deletes page, choose Use logical
deletes.

2. Rename the logical delete column so that it does not match any column names in the consolidated.

3. When the wizard is finished, update the remote schema and keep the default table selection. The
logical delete column name appears in the schema change list and be added to remote schema.

Note
You need to set the column mapping for the remote's logical delete column to the consolidated's logical
delete column.

● Shadow tables With this method, you create a shadow table that stores the primary key values of
deleted rows. When a row is deleted, a trigger can populate the shadow table. The
download_delete_cursor can use the shadow table to remove rows from remote databases. The shadow
table only needs to contain the primary key columns from the real table.

See “Writing download_delete_cursor scripts” on page 335.

Temporarily stopping the synchronization of deletes
Ordinarily, SQL Anywhere automatically logs any changes to tables or columns that are part of a publication
with a synchronization subscription. These changes are uploaded to the consolidated database during the
next synchronization.

Synchronization techniques

156 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

You may, however, want to delete rows from synchronized data and not have those changes uploaded. You
can do this using STOP SYNCHRONIZATION DELETE. This feature can be used to make unusual
corrections, but should be used with caution as it effectively disables part of the automatic synchronization
functionality. This technique is a practical alternative to deleting the necessary rows using a
download_delete_cursor script

When a STOP SYNCHRONIZATION DELETE statement is executed, none of the delete operations
subsequently executed on that connection are synchronized. The effect continues until a START
SYNCHRONIZATION DELETE statement is executed. The effects do not nest; that is, subsequent
executions of STOP SYNCHRONIZATION DELETE after the first have no additional effect.

To temporarily disable upload of deletes made through a connection

1. Issue the following statement to stop automatic logging of deletes.

STOP SYNCHRONIZATION DELETE
2. Delete rows from the synchronized data, as required, using the DELETE statement. Commit these

changes.

3. Restart logging of deletes using the following statement.

START SYNCHRONIZATION DELETE

The deleted rows are not sent up to the MobiLink server and are not deleted from the consolidated database.

See also
● SQL Anywhere clients: “STOP SYNCHRONIZATION DELETE statement [MobiLink]” [SQL

Anywhere Server - SQL Reference]
● UltraLite clients: “UltraLite STOP SYNCHRONIZATION DELETE statement” [UltraLite - Database

Management and Reference]

Handling deletes

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 157

Handling failed downloads
Using blocking download acknowledgement

Blocking download acknowledgement has been deprecated. Use non-blocking download acknowledgement
whenever possible.

Bookkeeping information about what is downloaded must be maintained in the download transaction. This
information is updated atomically with the download being applied to the remote database.

If a failure occurs before the entire download is applied to the remote database, and if you change
SendDownloadAck to ON, then the MobiLink server does not get confirmation for the download and rolls
back the download transaction. Since the bookkeeping information is part of the download transaction, it is
also rolled back. Next time the download is built, it uses the original bookkeeping information.

See “SendDownloadACK (sa) extended option” [MobiLink - Client Administration] and “Send Download
Acknowledgement synchronization parameter” [UltraLite - Database Management and Reference].

When testing your synchronization scripts, you should add logic to your end_download script that causes
occasional failures. This ensures that your scripts can handle a failed download.

Using non-blocking download acknowledgement
Bookkeeping information about what is downloaded must be maintained in the nonblocking downloaded
acknowledgement transaction. This information should be updated in the
publication_nonblocking_download_ack or nonblocking_download_ack scripts which is called after the
remote database successfully applies the download.

If a failure occurs or SendDownloadAck is OFF, these non-blocking download acknowledgement scripts
are not called and the download timestamp is not updated. When testing your synchronization scripts you
should add logic to your publication_nonblocking_download_ack or nonblocking_download_ack script that
causes occasional failures. This ensures that your scripts can handle a failed download.

Resuming failed downloads
Download failure is caused by a communication error during the download or a user cancelling the download.
The MobiLink server holds download data that has not been received by the client for use in a restartable
download. You can reduce the probability of download failure by decreasing the maximum amount of data
allocated for restartable downloads using the -ds option. The server does not release download data until
one of the following occurs:

● The user successfully completes the download.

● The user comes back with a new sync request without resume enabled.

● The cache is needed for incoming requests. The oldest unsuccessful download is cleared first.

MobiLink has functionality that can assist with download failure recovery, and prevent retransmission of
the entire download. This functionality has separate implementations for SQL Anywhere and UltraLite
remote databases. See “-ds option” on page 62.

Synchronization techniques

158 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL Anywhere remote databases
When synchronization fails during a download, the downloaded data is not applied to the remote database,
however, the successfully transmitted download portions are stored in a temporary file on the remote device.
Dbmlsync uses this file to avoid lengthy retransmission of data, and to recover from download failure.

There are three ways to implement this functionality. In all cases, dbmlsync aborts and the resumed download
fails if there is any new data to be uploaded.

● -dc After a download fails, use -dc the next time you start dbmlsync to resume the download. If part
of the failed download was transmitted, the MobiLink server only transmits the remainder of the
download.

For more information, see “-dc option” [MobiLink - Client Administration].

● ContinueDownload (cd) extended option When used on the dbmlsync command line, the cd
extended option works just like the -dc option. You can also store this option in the database, or use
sp_hook_dbmlsync_set_extended_options to set this option in a single synchronization.

See “ContinueDownload (cd) extended option” [MobiLink - Client Administration] and
“sp_hook_dbmlsync_set_extended_options” [MobiLink - Client Administration].

● sp_hook_dbmlsync_end hook You can use the restart parameter to cause a download to resume.
You know a download is resumable if the restartable download parameter is set to true. You can also
create logic in the hook to resume a download if a download file exists and is a certain size.

See “sp_hook_dbmlsync_end” [MobiLink - Client Administration].

UltraLite remote databases

You can control the behavior of UltraLite applications following a failed download as follows:

● If you set the Keep Partial Download synchronization parameter to true when you synchronize, and the
download fails before completion, then UltraLite applies that portion of the changes that were
downloaded. UltraLite also sets the Partial Download Retained synchronization parameter to true.

The UltraLite database may be in an inconsistent state at this point. Depending on your application, you
may want to ensure that synchronization completes successfully or is rolled back before you allow
changes to the data. See “Keep Partial Download synchronization parameter” [UltraLite - Database
Management and Reference], and “Partial Download Retained synchronization parameter” [UltraLite -
Database Management and Reference].

● To resume the download, set the Resume Partial Download synchronization parameter to true and
synchronize again. See “Resume Partial Download synchronization parameter” [UltraLite - Database
Management and Reference].

The restarted synchronization does not perform an upload, and downloads only those changes that would
have been downloaded by the failed download. That is, it completes the failed download but does not
synchronize changes made since the previous attempt. To get those changes, you need to synchronize
again once the failed download has completed, or call Rollback Partial Download and synchronize with
Resume Partial Download set to false.

When you restart the download, many of the synchronization parameters from the failed synchronization
are used again automatically. For example, the publications parameter is ignored: the synchronization

Handling failed downloads

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 159

downloads those publications requested on the initial download. The only parameters that must be set
are the Resume Partial Download parameter (which must be set to true) and the User Name parameter.
In addition, settings for the following parameters are obeyed, if set:

○ Keep Partial Download (in case of further interruption)
○ DisableConcurrency
○ Observer
○ User Data

● To roll back the changes from the failed download without resuming synchronization, call the function
to roll back the changes. This function is ULRollbackPartialDownload function for embedded SQL. For
UltraLite components, it is a method on the Connection object.

○ UltraLite.NET See “RollbackPartialDownload method” [UltraLite - .NET Programming].

○ Embedded SQL See “ULRollbackPartialDownload function” [UltraLite - C and C++
Programming].

You may want to roll back the changes from a failed download if synchronization cannot be completed,
for example if the server or network is unavailable, and if you want to maintain a consistent set of data
while letting the end user continue to work.

For more information about communications errors, see Error Messages.

Note
If the send_download_ack synchronization parameter is set to true, the setting is ignored for the resumed
download.

Synchronization techniques

160 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Download acknowledgement
Download acknowledgement is not required to ensure that your data is received at the remote.

There are two modes of download acknowledgement: blocking, which has been deprecated, and non-
blocking. Non-blocking is the default. There is a performance penalty for using blocking download
acknowledgement: the non-blocking mode is recommended.

To use download acknowledgements, there are settings on both the client and server.

On the client, you specify download acknowledgement with the dbmlsync extended option
SendDownloadACK or the UltraLite synchronization parameter Send Download Acknowledgement. If you
do not change any settings on the server, the default is non-blocking download acknowledgement.

On the server, you can set the mlsrv11 -nba option to specify blocking download acknowledgement. There
are two connection events that you can use to record the last successful download time in your consolidated
database when using non-blocking download acknowledgement.

See also
● “publication_nonblocking_download_ack connection event” on page 475
● “nonblocking_download_ack connection event” on page 471
● “-nba option” on page 74
● dbmlsync: “SendDownloadACK (sa) extended option” [MobiLink - Client Administration]
● UltraLite: “Send Download Acknowledgement synchronization parameter” [UltraLite - Database

Management and Reference]

Download acknowledgement

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 161

Downloading a result set from a stored procedure call
You can download a result set from a stored procedure call. For example, you might currently have a
download_cursor for the following table:

CREATE TABLE MyTable (
 pk INTEGER PRIMARY KEY NOT NULL,
 col1 VARCHAR(100) NOT NULL,
 col2 VARCHAR(20) NOT NULL
)

The download_cursor table script might look as follows:

SELECT pk, col1, col2
 FROM MyTable
 WHERE last_modified >= {ml s.last_table_download}
 AND employee = {ml s.username}

If you want your downloads to MyTable to use more sophisticated business logic, you can now create your
script as follows, where DownloadMyTable is a stored procedure taking two parameters (last-download
timestamp and MobiLink user name) and returning a result set. (This example uses an ODBC calling
convention for portability):

{call DownloadMyTable({ml s.last_table_download}, {ml s.username})}

The following are some simple examples for each supported consolidated database. Consult the
documentation for your consolidated database for full details.

The following example works with SQL Anywhere, Adaptive Server Enterprise, and Microsoft SQL Server.

CREATE PROCEDURE SPDownload
 @last_dl_ts DATETIME,
 @u_name VARCHAR(128)
AS
BEGIN
 SELECT pk, col1, col2
 FROM MyTable
 WHERE last_modified >= @last_dl_ts
 AND employee = @u_name
END

The following example works with Oracle. Oracle requires that a package be defined. This package must
contain a record type for the result set, and a cursor type that returns the record type.

Create or replace package SPInfo as
Type SPRec is record (
 pk integer,
 col1 varchar(100),
 col2 varchar(20)
);
Type SPCursor is ref cursor return SPRec;
End SPInfo;

Next, Oracle requires a stored procedure with the cursor type as the first parameter. Note that the
download_cursor script only passes in two parameters, not three. For stored procedures returning result sets
in Oracle, cursor types declared as parameters in the stored procedure definition define the structure of the
result set, but do not define a true parameter as such. In this example, the stored procedure also adds the
script to the MobiLink system table.

Synchronization techniques

162 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Create or replace procedure
 DownloadMyTable(v_spcursor IN OUT SPInfo.SPCursor,
 v_last_dl_ts IN DATE,
 v_user_name IN VARCHAR) As
Begin
 Open v_spcursor For
 select pk, col1, col2
 from MyTable
 where last_modified >= v_last_dl_ts
 and employee = v_user_name;
End;
CALL ml_add_table_script(
 'v1',
 'MyTable',
 'download_cursor',
 '{CALL DownloadMyTable(
 {ml s.last_table_download},{ml s.username})}'
);

The following example works with IBM DB2 LUW.

CREATE PROCEDURE DownloadMyTable(
 IN last_dl_ts TIMESTAMP,
 IN u_name VARCHAR(128))
 LANGUAGE SQL
 MODIFIES SQL DATA
 COMMIT ON RETURN NO
 DYNAMIC RESULT SETS 1
 BEGIN
 DECLARE C1, cursor WITH RETURN FOR
 SELECT pk, col1, col2 FROM MyTable
 WHERE last_modified >= last_dl_ts AND employee = u_name;
 OPEN C1;
 END;

The following example works with IBM DB2 mainframe.

CREATE PROCEDURE DownloadMyTable(
 IN last_dl_ts TIMESTAMP,
 IN u_name VARCHAR(128))
 LANGUAGE SQL
 MODIFIES SQL DATA
 EXTERNAL NAME MYDMT
 WLM ENVIRONMENT MYWLM
 COMMIT ON RETURN NO
 DYNAMIC RESULT SETS 1
 BEGIN
 DECLARE C1, cursor WITH RETURN FOR
 SELECT pk, col1, col2 FROM MyTable
 WHERE last_modified >= last_dl_ts AND employee = u_name;
 OPEN C1;
 END;

Downloading a result set from a stored procedure call

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 163

Uploading data from self-referencing tables
Some tables are self-referencing. For example, an employee table may contain a column that lists employees
and a column that lists the manager of each employee, and there may be a hierarchy of managers managing
managers. These tables can pose a challenge to synchronization because the MobiLink default behavior is
to coalesce all data updates on the remote database, which is efficient but which loses the order of
transactions.

There are two techniques for handling this situation:

● If you are using a SQL Anywhere remote database, you can use the dbmlsync -tu option to specify that
each transaction on the remote should be sent as a separate transaction.

See “-tu option” [MobiLink - Client Administration].

● Add a mapping table so the order of transactions doesn't matter.

Synchronization techniques

164 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

MobiLink isolation levels
MobiLink connects to a consolidated database at the most optimal isolation level it can, given the isolation
levels enabled on the RDBMS. The default isolation levels are chosen to provide the best performance while
ensuring data consistency.

In general, MobiLink uses the isolation level SQL_TXN_READ_COMMITTED for uploads, and if possible,
it uses snapshot isolation for downloads (if that is not possible, it uses SQL_TXN_READ_COMMITTED).
Snapshot isolation eliminates the problem of downloads being blocked until transactions are closed on the
consolidated database.

Snapshot isolation can result in duplicate data being downloaded (if, for example, a long-running transaction
causes the same snapshot to be used for a long time), but MobiLink clients automatically handle this, so the
only penalty is transmission time and the processing effort at the remote.

Isolation level 0 (READ UNCOMMITTED) is generally unsuitable for synchronization and can lead to
inconsistent data.

The isolation level is set immediately after a connection to the database occurs. Some other connection setup
occurs, and then the transaction is committed. The COMMIT is required by most RDBMSs so that the
isolation level (and perhaps other settings) can take effect.

SQL Anywhere version 10
SQL Anywhere version 10 supports snapshot isolation. By default, MobiLink uses the
SQL_TXN_READ_COMMITTED isolation level for uploads, and snapshot isolation for downloads.

MobiLink can only use snapshot isolation if you enable it in your SQL Anywhere consolidated database. If
snapshot isolation is not enabled, MobiLink uses the default SQL_TXN_READ_COMMITTED.

Enabling a database to use snapshot isolation can affect performance because copies of all modified rows
must be maintained, regardless of the number of transactions that use snapshot isolation. See “Enabling
snapshot isolation” [SQL Anywhere Server - SQL Usage].

You can enable snapshot isolation for upload with the mlsrv11 -esu option, and disable snapshot isolation
with the mlsrv11 -dsd option. If you need to change the MobiLink default isolation level in a connection
script, you should do so in the begin_upload or begin_download scripts. If you change the default isolation
level in the begin_connection script, your setting may be overridden at the start of the upload and download
transactions.

See “-esu option” on page 66 and “-dsd option” on page 63.

SQL Anywhere prior to version 10
If you are using a version of SQL Anywhere prior to version 10, the default MobiLink isolation level is
SQL_TXN_READ_COMMITTED. You can change the default for the entire MobiLink session in the
begin_connection script, or change it for the upload and download in the begin_upload and begin_download
scripts, respectively.

MobiLink isolation levels

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 165

Adaptive Server Enterprise
For Adaptive Server Enterprise, the default MobiLink isolation level is SQL_TXN_READ_COMMITTED.
You can change the default for the entire MobiLink session in the begin_connection script, or change it for
the upload and download in the begin_upload and begin_download scripts, respectively.

Oracle
Oracle supports snapshot isolation, but calls it READ COMMITTED. By default, MobiLink uses the
snapshot/READ COMMITTED isolation level for upload and download.

You can change the default for the entire MobiLink session in the begin_connection script, or change it for
the upload and download in the begin_upload and begin_download scripts, respectively.

For the MobiLink server to be able to make the most effective use of snapshot isolation, the Oracle account
used by the MobiLink server must have permission for the V_$TRANSACTION Oracle system view. If it
does not, a warning is issued and rows may be missed on download. Only SYS can grant this access. The
Oracle syntax for granting this access is:

grant select on SYS.V_$TRANSACTION to user-name

Microsoft SQL Server 2005 and later
Microsoft SQL Server 2005 supports snapshot isolation. By default, MobiLink uses the
SQL_TXN_READ_COMMITTED isolation level for uploads, and snapshot isolation for download.

MobiLink can only use snapshot isolation if you enable it in your SQL Server consolidated database. If
snapshot is not enabled, MobiLink uses the default SQL_TXN_READ_COMMITTED. See your SQL
Server documentation for details.

You can enable snapshot isolation for upload with the mlsrv11 -esu option, and disable snapshot isolation
with the mlsrv11 -dsd option. If you need to change the MobiLink default isolation level in a connection
script, you should do so in the begin_upload or begin_download scripts. If you change the default isolation
level in the begin_connection script, your setting may be overridden at the start of the upload and download
transactions.

See “-esu option” on page 66 and “-dsd option” on page 63.

To use snapshot isolation on SQL Server, the user ID that you use to connect the MobiLink server to the
database must have permission to access the SQL Server system table
SYS.DM_TRAN_ACTIVE_TRANSACTIONS. If this permission is not granted, MobiLink uses the default
level SQL_TXN_READ_COMMITTED.

If your consolidated database is running on a Microsoft SQL Server that is also running other databases, if
you are using snapshot isolation for uploads or downloads, and if your upload or download scripts do not
access any other databases on the server, you should specify the MobiLink server -dt option. This option
makes MobiLink ignore all transactions except ones within the current database. It increases throughput and
reduces duplication of rows that are downloaded.

See “-dt option” on page 64.

Microsoft SQL Server prior to version 2005
If you are using a version of Microsoft SQL Server prior to version 2005, the default MobiLink isolation
level is SQL_TXN_READ_COMMITTED. You can change the default for the entire MobiLink session in

Synchronization techniques

166 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

the begin_connection script, or change it for the upload and download in the begin_upload and
begin_download scripts, respectively.

See also
● “-dsd option” on page 63
● “-esu option” on page 66
● “-dt option” on page 64
● “The synchronization process” [MobiLink - Getting Started]
● “Isolation levels and consistency” [SQL Anywhere Server - SQL Usage]
● “Snapshot isolation” [SQL Anywhere Server - SQL Usage]

MobiLink isolation levels

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 167

168

MobiLink performance

Contents
Performance tips ... 170
Key factors influencing MobiLink performance .. 174
Monitoring MobiLink performance ... 178

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 169

Performance tips
The following is a list of suggestions to help you get the best performance out of MobiLink.

Test
The following all contribute to the throughput of your synchronization system: the type of device running
your remote databases, the schema of remote databases, the data volume and synchronization frequency of
your remotes, network characteristics (including for HTTP, proxies, web servers, and Redirectors), the
hardware where the MobiLink server runs, your synchronization scripts, the concurrent volume of
synchronizations, the type of consolidated database you use, the hardware where your consolidated database
runs, and the schema of your consolidated database.

Testing is extremely important. Before deploying, you should perform testing using the same hardware and
network that you plan to use for production. You should also try to test with the same number of remotes,
the same frequency of synchronization, and the same data volume. During this testing you should experiment
with the following performance tips.

Avoid contention
Avoid contention and maximize concurrency in your synchronization scripts.

For example, suppose a begin_download script increments a column in a table to count the total number of
downloads. If multiple users synchronize at the same time, this script would effectively serialize their
downloads. The same counter would be better in the begin_synchronization, end_synchronization, or
prepare_for_download scripts because these scripts are called just before a commit so any database locks
are held for only a short time.

See “Contention” on page 174.

For information about the transaction structure of synchronization, see “Transactions in the synchronization
process” [MobiLink - Getting Started].

Use an optimal number of database worker threads
Use the MobiLink -w option to set the number of MobiLink database worker threads to the smallest number
that gives you optimum throughput. You need to experiment to find the best number for your situation.

A larger number of database worker threads can improve throughput by allowing more synchronizations to
access the consolidated database at the same time.

Keeping the number of database worker threads small reduces the chance of contention in the consolidated
database, the number of connections to the consolidated database, and the memory required for optimal
caching.

See:

● “Number of database worker threads” on page 175
● “-w option” on page 105
● “-wu option” on page 106

MobiLink performance

170 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Enable the client-side download buffer for SQL Anywhere clients

For SQL Anywhere clients, a download buffer allows a MobiLink database worker thread to transmit the
download without waiting for the client to apply the download. The download buffer is enabled by default.
However, the download buffer cannot be used if download acknowledgement is enabled (see next bullet).

See “DownloadBufferSize (dbs) extended option” [MobiLink - Client Administration].

Use non-blocking download acknowledgement

By default, download acknowledgement is not enabled. However, download acknowledgement can be useful
for recording remote progress in the consolidated database. Blocking download acknowledgement ties up a
database connection while the remote is applying the download. If you use download acknowledgement,
you should use non-blocking download acknowledgement. Non-blocking download acknowledgement is
the default.

See “SendDownloadACK (sa) extended option” [MobiLink - Client Administration] and “-nba
option” on page 74.

Avoid synchronizing unnecessary BLOBs
It is inefficient to include a BLOB in a row that is synchronized frequently. To avoid this, you can create a
table that contains BLOBs and a BLOB ID, and reference the ID in the table that needs to be synchronized.

Set maximum number of database connections

Set the maximum number of MobiLink database connections to be your number of synchronization script
versions times the number of MobiLink database worker threads, plus one. This reduces the need for
MobiLink to close and create database connections. You set the maximum number of connections with the
mlsrv11 -cn option.

See “MobiLink database connections” on page 176 and “-cn option” on page 56.

Have enough physical memory
Ensure that the computer running the MobiLink server has enough physical memory to accommodate the
cache in addition to its other memory requirements.

The number of synchronizations being actively processed is not limited by the number of database worker
threads. The MobiLink server can unpack uploads and send downloads for a large number of
synchronizations simultaneously. For best performance, it is very important that the MobiLink server has a
large enough memory cache to process these synchronizations without paging to disk. Use the -cm option
to set the memory cache for the MobiLink server.

See “-cm option” on page 55.

Use enough processing power
You should dedicate enough processing power to MobiLink so that the MobiLink server processing is not
a bottleneck. Typically the MobiLink server requires significantly less CPU than the consolidated database.
However, using Java or .NET row handling adds to the MobiLink server processing requirement. In practice,
network limitations or database contention are more likely to be bottlenecks.

Performance tips

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 171

Use minimum logging verbosity
Use the minimum logging verbosity that is compatible with your business needs. By default, verbose logging
is off, and MobiLink does not write its log to disk. You can control logging verbosity with the -v option,
and enable logging to a file with the -o or -ot options.

As an alternative to verbose log files, you can monitor your synchronizations with the MobiLink Monitor.
The MobiLink Monitor does not need to be on the same computer as the MobiLink server, and a Monitor
connection has a negligible effect on MobiLink server performance. See “MobiLink
Monitor” on page 179.

Plan for operating system limitations
Operating systems restrict the number of concurrent connections a server can support over TCP/IP. If this
limit is reached, which may occur when over 1000 clients attempt to synchronize at the same time, the
operating system may exhibit unexpected behavior, such as unexpectedly closing connections and rejecting
additional clients that attempt to connect. To prevent this behavior, use the -sm option to specify a maximum
number of remote connections that is less than the operating system limit.

When a client attempts to synchronize with a MobiLink server that has accepted its maximum number of
concurrent synchronizations as specified by the -sm option, the client receives the error code -85
(SQLE_COMMUNICATIONS_ERROR). The client application should handle this error and try to connect
again in a few minutes.

For more information about the -sm option, see “-sm option” on page 94.

For more information about SQLE_COMMUNICATIONS_ERROR, see “Communication error” [Error
Messages].

Java or .NET vs. SQL synchronization logic

No significant throughput difference has been found between using Java or .NET synchronization logic vs.
SQL synchronization logic. However, Java and .NET synchronization logic have some extra overhead per
synchronization and require more memory.

In addition, SQL synchronization logic is executed on the computer that runs the consolidated database,
while Java or .NET synchronization logic is executed on the computer that runs the MobiLink server. So,
Java or .NET synchronization logic may be desirable if your consolidated database is heavily loaded.

Synchronization using direct row handling imposes a heavier processing burden on the MobiLink server, so
you may need more RAM, perhaps more disk space, and perhaps more CPU power, depending on how you
implement direct row handling.

Priority synchronization

If you have some tables that you need to synchronize more frequently than others, create a separate
publication and subscription for them. When using synchronization models in Sybase Central, you can do
this by creating more than one model. You can synchronize this priority publication more frequently than
other publications, and synchronize other publications at off-peak times.

MobiLink performance

172 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Download only the rows you need
Take care to download only the rows that are required, for example by using timestamp synchronization
instead of snapshot. Downloading unneeded rows is wasteful and adversely affects synchronization
performance.

Optimize script execution
The performance of your scripts in the consolidated database is an important factor. It may help to create
indexes on your tables so that the upload and download cursor scripts can efficiently locate the required
rows. However, too many indexes may slow uploads.

When you use the Create Synchronization Model Wizard in Sybase Central to create your MobiLink
applications, an index is automatically defined for each download cursor when you deploy the model.

For large uploads, estimate the number of rows

For SQL Anywhere clients, you can significantly improve the speed of uploading a large number of rows
by providing dbmlsync with an estimate of the number of rows that are uploaded. You do this with the
dbmlsync -urc option.

See “-urc option” [MobiLink - Client Administration].

Performance tips

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 173

Key factors influencing MobiLink performance
The overall performance of any system, including throughput for MobiLink synchronization, is usually
limited by a bottleneck at one point in the system. For MobiLink synchronization, the following might be
the bottlenecks limiting synchronization throughput:

● The performance of the consolidated database Of particular importance for MobiLink is the
speed at which the consolidated database can execute the MobiLink scripts. Multiple database worker
threads might execute scripts simultaneously, so for best throughput you need to avoid database
contention in your synchronization scripts.

● The number of MobiLink database worker threads A smaller number of threads involve fewer
database connections, less chance of contention in the consolidated database and less operating system
overhead. However, too small a number may leave clients waiting for a free database worker thread, or
have fewer connections to the consolidated database than it can overlap efficiently.

● The bandwidth for client-to-MobiLink communications For slow connections, such as those over
dial-up or wide-area wireless networks, the network may cause clients and MobiLink servers to wait for
data to be transferred.

● The client processing speed Slow client processing speed is more likely to be a bottleneck in
downloads than uploads, since downloads involve more client processing as rows and indexes are written.

● The bandwidth for MobiLink to consolidated communication This is unlikely to be a bottleneck
if both MobiLink and the consolidated database are running on the same computer, or if they are on
separate computers connected by a high-speed network.

● The speed of the computer running the MobiLink server If the processing power of the computer
running MobiLink is slow, or if it does not have enough memory for the MobiLink database worker
threads and buffers, then MobiLink execution speed could be a synchronization bottleneck. The
MobiLink server's performance depends little on disk speed as long as the buffers and database worker
threads fit in physical memory.

Tuning MobiLink for performance
The key to achieving optimal MobiLink synchronization throughput is to have multiple synchronizations
occurring simultaneously and executing efficiently. To enable multiple simultaneous synchronizations,
MobiLink uses pools of database worker threads for different tasks. One pool is dedicated to reading upload
data from the network and unpacking it. Another pool of threads, called database worker threads, applies
the upload to the consolidated database and fetches data to be downloaded from the consolidated database.
Another pool of database worker threads is dedicated to packing and sending the download data to the remote
databases. Each database worker thread uses a single connection to the consolidated database for applying
and fetching changes, using your synchronization scripts.

Contention
The most important factor is to avoid database contention in your synchronization scripts. Just as with any
other multi-client use of a database, you want to minimize database contention when clients are
simultaneously accessing a database. Database rows that must be modified by each synchronization can

MobiLink performance

174 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

increase contention. For example, if your scripts increment a counter in a row, then updating that counter
can be a bottleneck.

Synchronization requests are accepted (up to the limit specified by the -sm option) and the uploaded data is
read and unpacked so that it is ready for a database worker thread. If there are more synchronizations than
database worker threads, the excess are queued, waiting for a free database worker thread.

You can control the number of database worker threads and connections, but MobiLink always ensures that
there is at least one connection per database worker thread. If there are more connections than database
worker threads, the excess connections are idle. Excess connections may be useful with multiple script
versions, as discussed below.

Number of database worker threads
Other than contention in your synchronization scripts, the most important factor for synchronization
throughput is the number of database worker threads. The number of database worker threads controls how
many synchronizations can proceed simultaneously in the consolidated database.

Testing is vital to determine the optimum number of database worker threads.

Increasing the number of database worker threads allows more overlapping synchronizations to access the
consolidated database, and increases throughput. However, it also increases resource and database contention
between the overlapping synchronizations, and potentially increases the time for individual
synchronizations. As the number of database worker threads is increased, the benefit of more simultaneous
synchronizations becomes outweighed by the cost of longer individual synchronizations, and adding more
database worker threads decreases throughput. Experimentation is required to determine the optimal number
of database worker threads for your situation, but the following may help to guide you.

For uploads, performance testing shows that the best throughput happens with a relatively small number of
database worker threads: in most cases, three to ten database worker threads. Variation depends on factors
like the type of consolidated database, data volume, database schema, the complexity of the synchronization
scripts, and the hardware used. The bottleneck is usually due to contention between database worker threads
executing the SQL of your upload scripts at the same time in the consolidated database.

For downloads, when blocking download acknowledgement is used the optimum number of database worker
threads depends on the client-to-MobiLink bandwidth and the processing speed of clients. For slower clients,
more database worker threads are needed to get optimal download performance. This is because downloads
involve more client processing and less consolidated database processing than uploads. When blocking
download acknowledgement is used, database worker threads block until the remote database finishes
applying the download. For non-blocking download acknowledgement, more workers are not needed.

When download acknowledgements are not used (the default), the client-to-MobiLink bandwidth is less
influential because a database worker thread is free to process other synchronizations while other threads
send the download. So, the number of database worker threads is less critical.

Many downloads can be sent concurrently—far more than the number of database worker threads. For
optimal download performance, it is important for the MobiLink server to have enough RAM to buffer these
downloads. Otherwise the download is paged to disk and download performance may degrade. To specify
the MobiLink server memory cache size, use the -cm option.

See “-cm option” on page 55.

Key factors influencing MobiLink performance

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 175

If the MobiLink server starts paging to disk (possibly because of too many downloads being processed
concurrently), consider using the -sm option to either decrease the number of database worker threads or
limit the total number of synchronizations being actively processed.

See “-sm option” on page 94.

Leaving download acknowledgement off (the default) can reduce the optimal number of database worker
threads for download, because database worker threads do not have to wait for clients to apply downloads.

See “SendDownloadACK (sa) extended option” [MobiLink - Client Administration].

If you use download acknowledgement, performance is better with non-blocking download
acknowledgement (as opposed to blocking). In non-blocking acknowledgement mode the server reuses the
database worker thread while the remote database applies the download. This means that the number of
database worker threads may not need to be increased, which results in better performance.

To get both the best download throughput and the best upload throughput, MobiLink provides two options.
You can specify a total number of database worker threads to optimize downloads. You can also limit the
number that can simultaneously apply uploads to optimize upload throughput.

The -w option controls the total number of database worker threads. The default is five.

The -wu option limits the number of database worker threads that can simultaneously apply uploads to the
consolidated database. By default, all database worker threads can apply uploads simultaneously, but that
can cause severe contention in the consolidated database. The -wu option lets you reduce that contention
while still having a larger number of database worker threads to optimize the fetching of download data.
The -wu option only has an effect if the number is less than the total number of database worker threads.

See “-w option” on page 105 and “-wu option” on page 106.

MobiLink database connections

MobiLink creates a database connection for each database worker thread. You can use the -cn option to
specify that MobiLink create a larger pool of database connections, but any excess connections are idle
unless MobiLink needs to close a connection or use a different script version.

There are two cases where MobiLink closes a database connection and open a new one. The first case is if
an error occurs. The second case is if the client requests a synchronization script version, and none of the
available connections have already used that synchronization version.

Note
Each database connection is associated with a script version. To change the version, the connection must be
closed and reopened.

If you routinely use more than one script version, you can reduce the need for MobiLink to close and open
connections by increasing the number of connections. You can eliminate the need completely if the number
of connections used for synchronizations is the number of database worker threads times the number of script
versions.

An example of tuning MobiLink for two script versions is given in the following command line:

mlsrv11 -c "dsn=SQL Anywhere 11 Demo" -w 5 -cn 10

MobiLink performance

176 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Since the maximum number of database connections used for synchronizations is the number of script
versions times the number of database worker threads, setting -cn to 10 ensures that database connections
are not closed and opened excessively.

See “-cn option” on page 56.

Key factors influencing MobiLink performance

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 177

Monitoring MobiLink performance
There are a variety of tools available to help you monitor the performance of your synchronizations.

The MobiLink Monitor is a graphical tool for monitoring synchronizations. It allows you to see the time
taken by every aspect of the synchronization.

See “MobiLink Monitor” on page 179.

In addition, there are several MobiLink scripts that are available for monitoring synchronizations. These
scripts allow you to use performance statistics in your business logic. You may, for example, want to store
the performance information for future analysis, or alert a DBA if a synchronization takes too long. For more
information, see:

● “download_statistics connection event” on page 403
● “download_statistics table event” on page 406
● “synchronization_statistics connection event” on page 486
● “synchronization_statistics table event” on page 489
● “time_statistics connection event” on page 492
● “time_statistics table event” on page 495
● “upload_statistics connection event” on page 512
● “upload_statistics table event” on page 517

MobiLink performance

178 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

MobiLink Monitor

Contents
Introduction to the MobiLink Monitor ... 180
Starting the MobiLink Monitor .. 181
Using the MobiLink Monitor ... 184
Saving MobiLink Monitor data ... 193
Customizing your statistics .. 194
MobiLink statistical properties ... 195

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 179

Introduction to the MobiLink Monitor
The MobiLink Monitor is a MobiLink administration tool that provides you with details about the
performance of your synchronizations.

When you start the MobiLink Monitor and connect it to a MobiLink server, the MobiLink Monitor begins
to collect statistical information about all synchronizations that occur in that monitoring session. The
MobiLink Monitor continues to collect data until you disconnect it or shut down the MobiLink server.

You can view the data in tabular or graphical form in the MobiLink Monitor interface. You can also save
the data in binary format for viewing with the MobiLink Monitor later, or in .csv format to open in another
tool, such as Microsoft Excel; or you can export it to an ODBC data source such as a MobiLink-supported
relational database.

MobiLink Monitor output allows you to see a wide variety of information about your synchronizations. For
example, you can quickly identify synchronizations that result in errors, or that meet other criteria that you
specify. You can identify possible contention in synchronization scripts by checking to see if
synchronizations of differing durations have phases that end around the same time (because synchronizations
are waiting for a previous phase to finish before they can continue).

The MobiLink Monitor can be used routinely in development and production, because monitoring does not
degrade performance, particularly when the MobiLink Monitor is run on a different computer from the
MobiLink server.

SQL Anywhere Monitor
The SQL Anywhere Monitor is a browser-based administration tool that provides you with information about
the health and availability of SQL Anywhere databases and MobiLink servers. It is useful in assessing overall
system health and availability, and for analyzing overall synchronization statistics. The SQL Anywhere
Monitor does not provide information about individual synchronizations. For detailed information about
individual synchronizations, including timing and other per-synchronization statistics, use the MobiLink
Monitor.

For more information about the SQL Anywhere Monitor, see “SQL Anywhere Monitor” [SQL Anywhere
Server - Database Administration].

MobiLink Monitor

180 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Starting the MobiLink Monitor
You can have multiple instances of the MobiLink Monitor running for each MobiLink server.

To start monitoring data

1. Start your consolidated database and MobiLink server, if they are not already running.

2. From the Start menu, choose Programs » SQL Anywhere 11 » MobiLink Monitor.

Alternatively, you can type mlmon at a command prompt. For details, see below.

3. A MobiLink Monitor connection starts like a synchronization connection to the MobiLink server. For
example, if you started the MobiLink server with -zu+ then it doesn't matter what user ID you use here.
For all MobiLink Monitor sessions, the script version is set to for_ML_Monitor_only.

The Connect To MobiLink Server window should be completed as follows:

● Host The network name or IP address of the computer where the MobiLink server is running. By
default, it is the computer where the MobiLink Monitor is running. You can use localhost if the
MobiLink server is running on the same computer as the MobiLink Monitor.

● Protocol This should be set to the same network protocol and port that the MobiLink server is
using for synchronization requests.

● Port This should be set to the same network port that the MobiLink server is using for
synchronization requests.

● Encryption If you chose HTTPS or TLS for the protocol, this box is enabled. You can choose an
encryption type from the dropdown list.

● Additional Protocol Options Specify optional parameters. You can set the following
parameters, separated by semicolon if you need to specify multiple parameters:

○ buffer_size=number

○ client_port=nnnn

○ client_port=nnnn-mmmmm

○ persistent={0|1} (HTTP and HTTPS only)

○ proxy_host=proxy_hostname (HTTP and HTTPS only)

○ proxy_port=proxy_portnumber (HTTP and HTTPS only)

○ url_suffix=suffix (HTTP and HTTPS only)

○ version=HTTP-version-number (HTTP and HTTPS only)

See “MobiLink client network protocol options” [MobiLink - Client Administration].

4. Start synchronizing.

The data appears in the MobiLink Monitor as it is collected.

Starting the MobiLink Monitor

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 181

Starting mlmon on the command line
Command line options allow you to have the MobiLink Monitor open a file or connect to a MobiLink server
on startup. Use the following syntax:

mlmon [connect-options | inputfile.{ mlm | csv }]

where:

connect-options can be one or more of the following:

● -u ml_username (required to connect to the MobiLink server)

● -p password

● -x { tcpip | tls | http | https } [(keyword=value;...)]

The keyword=value pairs can be the host, protocol, and Additional Network Parameters as described
above. The -x option is required to connect to the MobiLink server.

● -o outputfile.{ mlm | csv }

The -o option closes the MobiLink Monitor at the end of the connection and saves the session in the
specified file.

You can type mlmon -? to view the mlmon syntax.

Starting the MobiLink Monitor on Unix
The following steps can be used if you are using a version of Linux that supports the Linux Desktop icons
and if you chose to install them when you installed SQL Anywhere 11.

To start the MobiLink Monitor (Linux Desktop icons)

1. From the Applications menu, choose SQL Anywhere 11 » MobiLink Monitor

2. Enter the information to connect to the MobiLink server described in the procedure To start monitoring
data.

Note
The following steps assume that you have already sourced the SQL Anywhere utilities. See “Setting
environment variables on Unix and Mac OS X” [SQL Anywhere Server - Database Administration].

To start the MobiLink Monitor (Unix command line)

1. In a terminal session, enter the following command:

mlmon
2. Enter the information to connect to the MobiLink server as described above.

MobiLink Monitor

182 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Stopping the MobiLink Monitor
To stop the MobiLink Monitor

1. In the MobiLink Monitor, choose Monitor » Disconnect From MobiLink Server. This stops the
collection of data.

You can also stop collecting data by shutting down the MobiLink server or closing the MobiLink Monitor.

Before closing the MobiLink Monitor, you can save the data for the session. See “Saving MobiLink
Monitor data” on page 193.

2. When you are ready to close the MobiLink Monitor, choose File » Close.

Starting the MobiLink Monitor

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 183

Using the MobiLink Monitor
The MobiLink Monitor has the following panes:

● Details Table Details Table is the top pane. It is a spreadsheet that shows the total time taken by
each synchronization, with a breakdown showing the amount of time taken by each part of the
synchronization.

See “Details Table pane” on page 184.

● Utilization Graph Utilization Graph is the second pane. It provides a graphical representation of
queue lengths for different queues on the MobiLink server. The same scale is used for the Utilization
Graph pane and Chart pane. The scale at the bottom of the Chart pane represents time. You can select
the data that is displayed in the utilization graph by dragging and selecting the data in the Overview pane
below, or by choosing View » Go To.

See “Utilization Graph pane” on page 186.

● Chart Chart is the third pane. It provides a graphical representation of synchronizations. The scale
at the bottom of this pane represents time. You can select the data that is displayed in the chart by dragging
and selecting the data in the Overview pane below, or by choosing View » Go To.

See “Chart pane” on page 188.

● Overview Overview is the bottom pane. It shows an overview of all synchronizations in the session.
This pane contains a box outline called the Marquee Tool that can select the data appearing in the
Chart and Utilization Graph panes.

See “Overview pane” on page 189.

In addition, there is an Options window that you can use to customize the display, and properties windows
for viewing more details. See:

● “Options window” on page 190
● “Session properties” on page 190
● “Sample properties” on page 190
● “Synchronization properties” on page 191

Details Table pane
The Details Table provides information about the duration of each part of the synchronization. All times
are measured by the MobiLink server. Some times may be non-zero even when you do not have the
corresponding script defined.

You can choose the columns that appear in the Details Table pane by opening Tools » Options and then
opening the Table tab. For a description of the statistics that are available, see “MobiLink statistical
properties” on page 195.

The following columns appear by default:

MobiLink Monitor

184 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● sync Identifies each synchronization. This ID is assigned by the MobiLink server, and not by the
MobiLink Monitor, so it does not necessarily start at 1 in any given MobiLink Monitor session and is
not received in numerical order. You can see the same IDs in the Synchronization Properties window.
See “Synchronization properties” on page 191.

● remote_id The ID of the remote database.

● user The synchronization user.

● version The version of the synchronization script.

See “Script versions” on page 324.

● download_ack The type of download ack, which can be none, blocking or non-blocking.

● start_time The date and time when the MobiLink server started the synchronization. (This may be
later than when the synchronization was requested by the client.)

● duration The total duration of the synchronization, in seconds.

● sync_request The time in seconds for MobiLink to receive the uploaded data from the client. This
is the portion of the synchronization starting at the connection from the remote and ending just before
authentication.

● receive_upload The time taken between creating the network connection between the remote
database and the MobiLink server, up to receiving the first bytes of the upload stream. This time is
insignificant unless you have set -sm to a smaller value than -nc, then this time can include the time that
a synchronization is paused when the number of synchronizations is larger than the maximum number
of active synchronizations that were specified with -sm.

● get_db_worker The time required to acquire a free database worker thread.

● connect The time required by the database worker thread to make a database connection if a new
database connection is needed. For example, after an error or if the script version has changed.

● authenticate_user The time in seconds for MobiLink to validate the synchronization request,
validate the user name, and validate the password (if your synchronization setup requires authentication).
This is the length of the authenticate user transaction (from the start of authentication to just before the
begin_synchronization event).

● begin_sync The time in seconds to run your begin_synchronization script, if one was run.

● apply_upload The time in seconds to apply the upload to the consolidated database. This is the time
between the begin_upload script and the end_upload script.

● prepare_for_download The time in seconds to run your prepare_for_download script, if one was
run.

● fetch_download The time in seconds to download the data. This is the time between the
begin_download script and the end_download script. If download acknowledgement is enabled, this
includes the time to apply the download on the remote database and return acknowledgement.

● end_sync The time in seconds to run the end_synchronization script, if one was run.

To sort the table by a specific column, click the column heading. If new data is appearing in the MobiLink
Monitor, it gets sorted as it is added.

Using the MobiLink Monitor

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 185

You can close the Details Table pane by clearing Details Table option in the View menu.

Utilization Graph pane
The Utilization Graph is the second pane from the top. It displays server statistics for several types of work
queues.

For more information about the data available in this pane, see “Using the Utilization
Graph” on page 186.

The Utilization Graph uses the same horizontal scrollbar, horizontal time labels, and zoom level as the
Chart. This means that an instant in time lines up vertically between the Graph pane and the Chart pane.

There are multiple ways to select the data that is displayed in the graph:

● From the View menu, choose Go To.

● In the Overview pane, move the Marquee Tool. The Marquee Tool is the small box that appears in the
Overview pane. See “Overview pane” on page 189.

You can double-click an area of the Utilization Graph to bring up a Sample Properties window that shows
the details of the sample interval it represents. The sample interval is about a second long. See “Sample
properties” on page 190.

Note
The list of properties is obtained from the MobiLink server or the .mlm file that was opened, and it uses the
language of the MobiLink server. Some characters may not display properly if the MobiLink Monitor is
using a different language.

Using the Utilization Graph
To see the values for the Utilization Graph, and to customize the output, choose Tools » Options and open
the Graph tab. This tab identifies the Utilization Graph queues by color, and allows you to customize the
graph.

Properties
● TCP/IP Work Queue This queue represents work done by the low-level network layer in the

MobiLink server. This layer is responsible for both reading and writing packets from and to the network.
The queue is full of read and write requests. It grows when it gets notified of incoming data to read off
the network and/or when told by the stream worker to write to the network.

If this queue gets backed up, it is usually due to a backlog of either reads or writes—sometimes both but
usually one or the other. Reads can get backed up if the server is using a lot of RAM and memory pages
are being swapped in and out a lot. Consider getting more RAM. Writes can get backed up if the network
connection between the clients and server is slow. If this queue is the only queue that is backed up, look
at the CPU usage. If CPU usage is high, suspect read/memory problems. If CPU usage is low, you may
have slow writes. Consider using a faster network.

MobiLink Monitor

186 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● Stream Work Queue For version 10 clients only. This queue represents work done by the high-level
network layer in the MobiLink server. This layer is responsible for higher-level network protocol work
such as HTTP, encryption, and compression. This queue grows when lots of reads come in from the
TCP/IP layer and/or when lots of write requests come in from the Command processor layer. If this
queue is the only queue that is backed up, consider removing some network protocols, such as HTTP or
compression. If this is not possible, consider reducing the number of concurrent synchronizations allowed
using the -sm option.

See “-sm option” on page 94.

● Heartbeat Work Queue This queue represents the layer in MobiLink server that is responsible for
sending pulsed events within the server. This layer is responsible, for example, for triggering the one-
per-second pulses of samples to the connected MobiLink Monitors.

It is highly unlikely that this queue gets backed up so it is not visible by default.

● Command Processor Work Queue This represents work done by the MobiLink server to both
interpret internal MobiLink protocol commands and apply these commands to the consolidated database.
This queue grows when lots of requests come in. Request types include synchronization requests, Listener
requests, mlfiletransfer requests, and so on. The queue also grows when the consolidated database is
busy working on synchronizations, yet more synchronization requests keep coming in.

If this queue is the only queue that is backed up, look at the CPU usage. If CPU usage is high, the volume
of requests may be too high. Consider reducing the number of concurrent synchronizations allowed,
using the -sm option. If CPU usage is low, look to improving the performance of the consolidated
database.

See “-sm option” on page 94.

● Busy Database Worker Threads This value indicates how hard the MobiLink server is pushing the
consolidated database. Each unit in the value represents a database worker thread that is doing something
in the database. There is no distinction between inserts, updates, deletes, or selects. When this value is
zero, the server is not operating on the consolidated database.

When this count is high (when it is close to the maximum set with the mlsrv11 -w option), the MobiLink
server is pushing the consolidated database as hard as it can. In this case, if your throughput is satisfactory,
there is nothing to do. If your throughput is not satisfactory, consider increasing the number of database
worker threads via the -w option. Note that a higher -w value leads to greater contention between
connections. This is particularly bad when all connections are performing uploads, so you may need to
use the mlsrv11 -wu option to set a lower limit for database workers doing uploads. If you cannot seem
to find settings for -w and -wu that provide adequate throughput, examine your synchronization scripts
for possible contention issues. Finally, you can consult your RDBMS documentation for ways to improve
the overall performance of your consolidated database.

Scale
This column tells you the current scale for each property.

The vertical scale on the Utilization Graph always goes from 0 to 100. This represents zero to one hundred
percent of the scale. Each value has its own scale. By default, all scales are 5, meaning that values are expected
to be in a range of 0 to 20, scaled (by 5) to the range 0 to 100. If a value becomes greater than 20, the scale
is automatically adjusted such that the largest value is at 100.

Using the MobiLink Monitor

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 187

To determine the maximum value in the display, divide the scale into 100. For example, if the TCP/IP work
queue scale is 2.381, then the maximum value is (100 / 2.381) = 42. The actual maximum isn't usually
important. What is important is that values towards the top of the graph are approaching the largest currently-
known value for the given property—in other words, the peak load for that property as observed in the current
monitoring session.

When the graphs are consistently towards the top of the display and you notice that synchronization
throughput is down, you may have a performance problem that needs investigation. Similarly, if one or more
values creeps upward over time without diminishing, then there is likely a performance problem. note that
the graphs may often be towards the top of the display with MobiLink server performing well. This just
means that MobiLink server is busy and doing its job well.

Antialiasing

One of your customization choices is antialiasing. Antialiasing makes the graph look better, but can be slower
to draw.

Chart pane
The Chart pane presents the same information as the Details Table, but in graphical format. The bars in
the Chart represent the length of time taken by each synchronization, with sub-sections of the bars
representing the phases of the synchronization.

Viewing data
Click a synchronization to select that synchronization in the Details Table.

Double-click a synchronization to open the Synchronization Properties window. See “Synchronization
properties” on page 191.

Grouping data by remote ID or compactly
You can group the data by user. Choose View » By Remote ID.

Alternatively, you can view the data in a compact mode that shows all active synchronizations in as few
rows as possible. Choose View » Compact View. In Compact View, the row numbers are meaningless.

Zooming in on data
There are several ways to select the data that is visible in the Chart pane:

● Zoom options There are zoom options in the View menu and zoom buttons on the toolbar that allow
you to zoom in and out. To have a synchronization fill the available space, use Zoom To Selection.

● Scrollbar Click the scrollbar at the bottom of the Chart pane and slide it.

● Go To window To open this window, click View » Go To.

Start Date & Time lets you specify the start time for the data that appears in the Chart pane. If you
change this setting, you must specify at least the year, month, and date of the date-time.

MobiLink Monitor

188 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Chart Range lets you specify the duration of time that is displayed. The chart range can be specified in
milliseconds, seconds, minutes, hours, or days. The chart range determines the granularity of the data:
a smaller length of time means that more detail is visible.

● Marquee Tool In the Overview pane, move the Marquee Tool. The Marquee Tool is the small box
that appears in the Overview pane. See “Overview pane” on page 189.

Time axis
At the bottom of the Chart pane there is a scale showing time periods. The format of the time is readjusted
automatically depending on the span of time that is displayed. You can always see the complete date-time
by hovering your cursor over the scale.

Default color scheme
You can view or set the colors in the Chart pane by opening the Options window (available from the
Tools menu). The default color scheme for the Chart pane uses lime green for uploads, coral red for
downloads, and blue for begin and end phases, with a darker shade for earlier parts of a phase.

For information about setting colors, see “Options window” on page 190.

Overview pane
The Overview pane shows an overview of the entire MobiLink Monitor session. You can navigate through
the session using the Marquee Tool, which is the box inside the Overview pane.

Active synchronizations, completed synchronizations, and failed synchronizations are represented with
colors. To set the colors, open the MobiLink Monitor, choose Tools » Options, and then click the
Overview tab.

See “Options window” on page 190.

You can close the Overview pane by deselecting it in the View menu.

You can also separate the Overview pane from the rest of the MobiLink Monitor window. In the Options
window, open the Overview tab and clear the Keep overview window attached to main window checkbox.

Marquee tool

The Marquee Tool is the small box that appears in the Overview pane. You can use the Marquee Tool to
see different data, or to see data at different granularity. The area represented within the box is displayed in
the chart and graph panes. You can use the Marquee Tool as follows:

● Click in the Overview pane to move the Marquee Tool and the start time of the data shown in the chart
or utilization graph.

● Drag in the Overview pane to redraw the Marquee Tool to change the Marquee Tool's location and
size and change the start time and the range of data. If you make the marquee box smaller, you shorten
the interval of the visible data in the chart, which makes more detail visible.

Using the MobiLink Monitor

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 189

To change the color of the Marquee Tool

1. Choose Tools » Options.

2. Click the Overview tab.

3. Select a new color in the Marquee field.

4. Click OK.

Options window
Options allow you to specify many settings, including colors and patterns for the graphical display in the
Chart pane and the Overview pane.

To open the Options window, open the MobiLink Monitor and choose Tools » Options.

Restoring defaults
To restore default settings, delete the file mlMonitorSettings11. This file is stored in your user profiles
directory.

Session properties
The Session Properties window provides statistics about the session. It provides property values for the
entire time that the MobiLink Monitor has been running. To open the Session Properties window, open the
MobiLink Monitor and choose File » Properties.

The General tab provides basic information about the session.

The Statistics tab shows the same statistics as Sample Properties. See “Sample properties” on page 190.

Sample properties
The Sample Properties window provides detailed statistics for time intervals. Each time interval is about
one second long. Samples are numbered by the MobiLink Monitor to reflect the order in which they were
received.

You can customize the appearance of the graph to hide properties but all properties appear in the Sample
Properties window. If you have hidden a property, it is identified as Hidden in the Sample Properties
window; otherwise the color is shown.

To open the Sample Properties window, click in the Graph pane for the time period that you want to
examine.

The Sample tab provides information for the one-second time interval it represents. The properties that are
displayed are for the end of the time interval.

MobiLink Monitor

190 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The Range tab shows averages for the entire range of samples that were visible when the properties window
was opened (the horizontal range that is visible in the Overview). The range statistics are not calculated
until you click Calculate in the Range tab.

Sample Properties contains the following information:

● Sample Samples are numbered by the MobiLink Monitor to reflect the order in which they were
received. On the Sample tab, this shows the sample number. On the Range tab it shows the range of
samples.

● Start time and end time On the Sample tab, this reflects a sample time period of approximately one
second.

● Statistics - Color column The color used in the graph for this property.

● Statistics - Property column Shows the queue length for the sample or average queue for the range.
This column displays the following types of property:

○ TCP/IP work queue This lists the number of buffers waiting to be filled by reading from the
network plus the number of buffers waiting to be written to the network. The actual number is not
very meaningful, but large numbers may indicate network-related bottlenecks.

○ Stream work queue For version 10 clients only. This queue represents work done by the high-
level network layer in the MobiLink server. This layer is responsible for higher-level network
protocol work such as HTTP, encryption, and compression.

○ Heartbeat work queue This is the queue length for periodic internal MobiLink server tasks other
than synchronizations.

○ Command processor work queue This is the queue length for performing database tasks and
interpreting or preparing communications with MobiLink clients. The actual number is not very
meaningful, but large numbers may indicate database-related bottlenecks.

○ Busy database worker threads This value indicates how hard the MobiLink server is pushing
the consolidated database. Each unit in the value represents a database worker thread that is doing
something in the database. There is no distinction between inserts, updates, deletes, or selects. When
this value is zero, the server is not operating on the consolidated database.

Note: The names of the properties are obtained from the MobiLink server or .mlm file and are in the
language of the MobiLink server. Some characters may not display properly if the MobiLink Monitor
is using a different language.

● Statistics - Value column The property value.

● Statistics - Limit column The maximum allowed value for the property. This is useful so that the
graph can use a scale of 0-100% for all properties. For properties such as page faults that are essentially
unbounded, the limit is ignored.

Synchronization properties
Double-click a synchronization in either the Details Table pane or the Chart pane to see properties for that
synchronization.

Using the MobiLink Monitor

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 191

You can choose to see statistics for all tables (which is the sum for all tables in the synchronization), or for
individual tables. The dropdown list provides a list of the tables that were involved in the synchronization.

For descriptions of the quantities displayed on any page of the Synchronization Properties window, click
Help.

For an explanation of the statistics in Synchronization Properties window, see “MobiLink statistical
properties” on page 195.

MobiLink Monitor

192 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Saving MobiLink Monitor data
You can save the data from a MobiLink Monitor session as a binary file (.mlm), as a text file with comma-
separated values (.csv), as tables in a relational database, or as a Microsoft Excel file.

Saving to file
To save the data as a file, choose File » Save As.

● Save the data as a binary (.mlm) file if you want to view the saved data in the MobiLink Monitor. To
reopen, choose File » Open. The binary file format is the only format that preserves all monitored
information.

● Save the data as a comma separated file (.csv) if you want to view it in another tool, such as Microsoft
Excel. This only saves the information in the synchronization properties windows, except per table
information and the session end time. You can also open a .csv file in the MobiLink Monitor.

In the .csv file format, time durations are stored in milliseconds.

You can specify that you want data to be saved automatically to a file. To do this, choose Tools »
Options, and enter an output file name on the General tab. The output file is overwritten by new data.

Exporting to a relational database or Excel
You can also export MobiLink Monitor data using an ODBC connection. You can export to any relational
database that is supported by MobiLink, and to a Microsoft Excel spreadsheet.

When you export data, all the columns in your MobiLink Monitor session are exported, and a column named
export_time that identifies the time the export was performed. Data from the graph is not exported.

The data source must have quoted identifiers enabled, because some of the columns are reserved words. The
MobiLink Monitor enables quoted identifiers automatically for SQL Anywhere, Adaptive Server Enterprise,
and Microsoft SQL Server databases. If the quoted identifiers option is not enabled, the export fails.

To export the data to a database or Excel

1. After collecting MobiLink Monitor information, disconnect from the MobiLink server.

2. In the MobiLink Monitor, choose File » Export To Database.

3. Select options for the output.

● You can name the two tables that are created to hold the data, or use the defaults. If the tables do not
exist, they are created by the MobiLink Monitor. For Excel output, the two table names identify the
two worksheets that are created.

● Choose whether you want to overwrite data in existing tables. If you do not choose to overwrite the
data, new data is appended to existing data.

4. Click OK to open the Connect window and connect to the database or Excel spreadsheet using ODBC.

Saving MobiLink Monitor data

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 193

Customizing your statistics
The Watch Manager allows you to visibly distinguish synchronizations that meet criteria that you specify.
For example, you might want to highlight big synchronizations, long synchronizations, small
synchronizations that take a long time, or synchronizations that receive warnings.

To open the Watch Manager, open the MobiLink Monitor and then click Tools » Watch Manager.

The left pane of the Watch Manager contains a list of all available watches. The right pane contains a list
of active watches. To add or remove a watch from the active list, select a watch in the left pane and click
the appropriate button.

There are three predefined watches (Active, Completed, and Failed). You can edit predefined watches to
change the way they are displayed, and you can deactivate them by removing them from the right pane.

No synchronizations are displayed in the chart unless they meet the conditions of a watch. If you disable all
watches (by removing them from the Current Watches list), then no synchronizations are shown in the
Chart pane or the Overview pane.

The order of watches in the right pane is important. Watches that are closer to the top of the list are processed
first. Use the Move Up and Move Down buttons to organize the order of watches in the right pane.

You can use the predefined watches, and create other watches. To edit a watch condition, remove it and then
add the new watch condition.

When a new MobiLink Monitor connects to the same MobiLink server, it shows up as a short synchronization
in any MobiLink Monitors that are already connected. The MobiLink Monitor synchronization has the
version name for_ML_Monitor_only. You can hide this MobiLink Monitor synchronization with a watch.

To create a new watch

1. In the Watch Manager, click New.

2. Give the watch a name in the Name box.

3. Select a Property, comparison Operator, and Value.

For a complete list of properties, see “MobiLink statistical properties” on page 195.

4. Click Add. (You must click Add to save the settings.)

5. If desired, select another Property, Operator, and Value, and click Add.

6. Select a Chart Pattern for the watch in the Chart pane.

7. Select an Overview Color for the watch in the Overview pane.

MobiLink Monitor

194 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

MobiLink statistical properties
The following is a list of the properties that are available in the MobiLink Monitor. These statistics can be
viewed in the New Watch window, the Details Table pane, or the Synchronization Properties window.
In Synchronization Properties, the property names do not contain underscores.

For more information about the New Watch window, see “Customizing your statistics” on page 194.

For more information about the Details Table, see “Details Table pane” on page 184.

For more information about the Synchronization Properties window, see “Synchronization
properties” on page 191.

Synchronization statistics
MobiLink statistical properties return the following information for synchronizations when not using forced
conflict mode.

For information about forced conflict mode, see “Forced conflict statistics” on page 198.

Property Description

active True if the synchronization is in progress.

apply_upload The time required for the uploaded data to be applied to the con-
solidated database.

authenticate_user Total time to perform user authentication, including executing
the authenticate_* events.

begin_sync Total time for the begin_synchronization event.

completed True if the synchronization completed successfully.

conflicted_deletes Always zero.

conflicted_inserts Always zero.

conflicted_updates Number of update rows that caused conflict. A row is included
only when a resolve conflict script was successfully called for
it.

connect The time required by the database worker thread to make a da-
tabase connection if a new database connection is needed. For
example, after an error or if the script version has changed.

connect_for_download_ack The time required by the database worker thread to make a da-
tabase connection if a new database connection is needed.

connection_retries Number of times the MobiLink server retried the connection to
the consolidated database.

MobiLink statistical properties

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 195

Property Description

download_bytes Amount of memory used within the MobiLink server to store the
download. This provides a good indication of the impact on
server memory of a synchronization.

download_deleted_rows Number of row deletions fetched from the consolidated database
by the MobiLink server (using download_delete_cursor scripts).

download_errors Number of errors that occurred during the download.

download_fetched_rows Number of rows fetched from the consolidated database by the
MobiLink server (using download_cursor scripts).

download_filtered_rows Number of fetched rows that were not downloaded to the Mo-
biLink client because they matched rows that the client uploa-
ded.

download_warnings Number of warnings that occurred during the download.

duration Total time for the synchronization, as measured by the MobiLink
server.

end_sync Total time for the end_synchronization event.

fetch_download The time required to fetch the rows to be downloaded from the
consolidated database to create the download stream.

get_db_worker The time required to acquire a free database worker thread.

get_db_worker_for_download_ack The time spent waiting for a free database worker thread after
the download acknowledgement has been received.

ignored_deletes Number of upload delete rows that caused errors while the up-
load_delete script was invoked, when the handle_error or han-
dle_odbc_error are defined and returned 1000, or when there is
no upload_delete script defined for the given table.

ignored_inserts The total number of upload insert rows that were ignored. They
were ignored because 1) there is no upload_insert script in nor-
mal mode or no upload_new_row_insert script in forced conflict
mode; or 2) errors occurred when the MobiLink server was in-
voking the corresponding script and the handle_error or han-
dle_odbc_error event returned 1000.

ignored_updates Number of upload update rows that caused conflict but a resolve
conflict script was not successfully called or no upload_update
script was defined.

MobiLink Monitor

196 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Property Description

nonblocking_download_ack The time required for the publication_nonblocking_down-
load_ack connection and nonblocking_download_ack connec-
tion events.

prepare_for_download Total time for the prepare_for_download event.

remote_id The remote ID that uniquely identifies the remote database.

send_download The time required to send the download stream to the remote
database. The time depends on the size of the download stream
and the network bandwidth for the transfer. For an upload-only
synchronization, the download stream is simply an upload ac-
knowledgement.

start_time Date-time (in ISO-8601 extended format) for the start of the
synchronization.

sync A number uniquely identifying the synchronization within the
MobiLink Monitor session.

sync_deadlocks Number of deadlocks in the consolidated database that were de-
tected for the synchronization.

sync_errors Total number of errors that occurred for the synchronization.

sync_request The time taken between creating the network connection be-
tween the remote database and the MobiLink server, up to re-
ceiving the first bytes of the upload stream.

sync_tables Number of client tables that were involved in the synchroniza-
tion.

sync_warnings Number of warnings that occurred for the synchronization.

upload_bytes Amount of memory used within the MobiLink server to store the
upload. This provides a good indication of the impact on server
memory of a synchronization.

upload_deadlocks Number of deadlocks in the consolidated database that were de-
tected during the upload.

upload_deleted_rows Number of rows that were successfully deleted from the con-
solidated database.

upload_errors Number of errors that occurred during the upload.

MobiLink statistical properties

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 197

Property Description

upload_inserted_rows Number of rows that were successfully inserted in the consoli-
dated database.

upload_updated_rows Number of rows that were successfully updated in the consoli-
dated database.

upload_warnings Number of warnings that occurred during the upload.

user MobiLink user name.

version Name of the synchronization version.

wait_for_download_ack The time spent waiting for the download to be applied to the
remote database and for the remote database to send the down-
load acknowledgement.

Forced conflict statistics
When you are in forced conflict mode, MobiLink statistical properties return the following information.

Statistical property Description

conflicted_deletes Number of upload delete rows that were successfully inserted into the consoli-
dated database using the upload_old_row_insert script.

conflicted_inserts Number of upload insert rows that were inserted into the consolidated database
using the upload_new_row_insert script.

conflicted_updates Number of upload update rows that were successfully applied using the up-
load_new_row_insert or upload_old_row_insert scripts.

ignored_deletes Number of upload delete rows that caused errors while the upload_old_row_insert
script was invoked, when the handle_error or handle_odbc_error are defined and
returned 1000, or when there is no upload_old_row_insert script defined for the
given table.

ignored_inserts Number of upload insert rows that caused errors while the upload_new_row_in-
sert script was invoked, when the handle_error or handle_odbc_error are defined
and returned 1000, or when there is no upload_new_row_insert script defined for
the given table.

ignored_updates Number of upload update rows that caused errors while the upload_new_row_in-
sert or upload_old_row_insert scripts were invoked, when the handle_error or
handle_odbc_error are defined and returned 1000, or when there is no up-
load_new_row_insert and upload_old_row_insert script defined for the given ta-
ble.

MobiLink Monitor

198 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Statistical property Description

upload_de-
leted_rows

Always zero.

upload_inser-
ted_rows

Always zero.

upload_upda-
ted_rows

Always zero.

MobiLink statistical properties

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 199

200

SQL Anywhere Monitor for MobiLink

Contents
Introducing the SQL Anywhere Monitor ... 202
Monitor quick start ... 205
Tutorial: Using the Monitor .. 206
Start the Monitor .. 211
Exit the Monitor .. 212
Connect to the Monitor .. 213
Disconnect from the Monitor .. 214
Monitoring resources ... 215
Administering resources .. 222
Working with Monitor users ... 228
Alerts ... 232
Installing the SQL Anywhere Monitor on a separate computer 236
Troubleshooting the Monitor .. 237

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 201

Introducing the SQL Anywhere Monitor
The SQL Anywhere Monitor, also referred to as the Monitor, is a web browser-based administration tool
that provides you with information about the health and availability of SQL Anywhere databases and
MobiLink servers.

This chapter describes how to use the Monitor to collect metrics about MobiLink servers. For information
about using the Monitor with SQL Anywhere databases, see “SQL Anywhere Monitor” [SQL Anywhere
Server - Database Administration].

The Monitor provides the following functionality:

● Constant data collection Unlike many of the other administration tools available with SQL
Anywhere 11, the Monitor collects metrics all the time, even when you are not logged in to the web
browser. The Monitor collects metrics until you shut it down.

● Email alert notification As the metrics are collected, the Monitor examines the metrics and can send
email alerts when it detects conditions that indicate something is wrong with a MobiLink server.

● Browser-based interface At any time, you can connect to the Monitor using a web browser to review
alerts and metrics that have been collected.

● Monitor multiple databases and MobiLink servers From one tool, you can simultaneously
monitor SQL Anywhere databases and MobiLink servers running on the same or different computers.

For information about monitoring SQL Anywhere databases see “SQL Anywhere Monitor” [SQL
Anywhere Server - Database Administration].

● Minimal performance impact The Monitor can be used routinely in development and production
environments because monitoring does not degrade performance.

Requirements
● It is recommended that install the latest version of Adobe Flash Player that is available for your operating

system. The Monitor is backwards compatible with version 9 of Adobe Flash Player. To determine the
correct version, visit http://www.adobe.com/products/flashplayer/systemreqs/.

● You must enable JavaScript in your web browser.

● You must have SQL Anywhere 11.0.1 installed.

Running the Monitor in a production environment

You can install and run the Monitor on a separate computer. This prevents the Monitor resources and
configuration from being overwritten during subsequent SQL Anywhere upgrades or updates. Installing on
a separate computer is recommended if you want to use the Monitor in a production environment. See
“Installing the SQL Anywhere Monitor on a separate computer” [SQL Anywhere Server - Database
Administration].

SQL Anywhere Monitor for MobiLink

202 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.adobe.com/products/flashplayer/systemreqs/

Limitations

● You can use the Monitor to collect metrics about the following types of SQL Anywhere databases and
MobiLink servers:

○ SQL Anywhere 9.0.2, 10.0.0, 10.0.1, 11.0.0, and 11.0.1

○ MobiLink 11.0.0 with at least the first EBF applied and 11.0.1

● You can only run one Monitor on a computer.

● The Monitor does not provide information about individual synchronizations. For detailed information
about individual synchronizations, including timing and other per-synchronization statistics, use the
MobiLink Monitor. See “Introduction to the MobiLink Monitor” on page 180.

See also
For information about other administration and performance tools that are available for MobiLink servers,
see:

● “MobiLink Monitor” on page 179

Monitor architecture
The Monitor collects metrics and performance data from SQL Anywhere databases and MobiLink servers
running on other computers, while a separate computer accesses the Monitor via a web browser.

Introducing the SQL Anywhere Monitor

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 203

The Monitor is designed to help any type of user, whether they are a DBA or not, who is responsible for
such tasks as:

● Ensuring that a MobiLink server is connected to the network.

● Ensuring that there is enough disk space or memory available for a MobiLink server.

● Reviewing the number of synchronizations a MobiLink server performs over a specified time.

See also
● “Monitor quick start” on page 205

SQL Anywhere Monitor for MobiLink

204 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Monitor quick start
The following steps are required to set up MobiLink server monitoring:

1. Install SQL Anywhere 11.0.1 on a computer that is always connected to your network. The Monitor uses
SQL Anywhere to monitor MobiLink servers.

The Monitor can run on the same computer as the resources it is monitoring, but it is recommended,
particularly in production environments, that you run the Monitor on a different computer to minimize
the impact on the MobiLink server, or other applications.

2. Ensure that your web browser has the appropriate version of Adobe Flash Player installed and that
JavaScript is enabled. See “Requirements” on page 202.

3. Start your MobiLink server (if it is not already running).

4. Start the Monitor and open it in your web browser. See “Start the Monitor” on page 211.

The computer where you are using a web browser to access the Monitor must be connected to the network
where the Monitor is running.

5. Log in as an administrator. The default user name is admin and the default password is also admin.

6. Click the Administration tab and add a MobiLink server as a resource to be monitored. See “Add
resources” on page 222.

7. Add new users and change the password for the admin user. See “Create Monitor users” [SQL Anywhere
Server - Database Administration].

8. Configure alerts for the MobiLink server you want to monitor. See “Alerts” [SQL Anywhere Server -
Database Administration].

9. Click the Monitoring tab to see the collected metrics for your MobiLink server. See “Monitoring
resources” on page 215.

Monitor quick start

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 205

Tutorial: Using the Monitor
Use this tutorial to set up monitoring of the MobiLink Synchronization Server Sample.

Lesson 1: Start the Monitor
To start and open the Monitor

1. Start the Monitor. Choose Start » Programs » SQL Anywhere 11 » SQL Anywhere Monitor » SQL
Anywhere Monitor.

You do not have to perform this step if you installed the Monitor on a separate computer. When the
Monitor is installed on a separate computer than the one SQL Anywhere is running on, it runs as a service
and is automatically started when the computer starts.

2. Browse data. This step is different depending on whether the Monitor is installed on a separate computer.

In the system tray, right-click the SQL Anywhere Monitor icon and choose Browse Data.

If the Monitor is installed on a separate computer, choose Start » Programs » SQL Anywhere Monitor
11 » Browse Data. No icon appears in the system tray.

Alternatively, you can open a web browser and browse to http://localhost:4950.

The top pane of the Monitoring tab lists the resources that are being monitored. When you first open
the Monitor, it is only monitoring itself.

SQL Anywhere Monitor for MobiLink

206 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “Lesson 2: Set up the Monitor to monitor a MobiLink server” on page 207

Lesson 2: Set up the Monitor to monitor a MobiLink server
The Monitor collects metrics from databases and MobiLink servers. In this section, you start the MobiLink
Synchronization Server Sample, and then add the server as a resource to be monitored. To collect metrics
from a SQL Anywhere database, see “Lesson 2: Set up the Monitor to monitor a database” [SQL Anywhere
Server - Database Administration]

To add a resource to monitor

1. Start the MobiLink Synchronization Server Sample.

From the Start menu, choose Programs » SQL Anywhere 11 » MobiLink » Synchronization Server
Sample.

2. Log in as the default administrator to the Monitor:

a. Click Login.

b. In the User Name field, type admin, and in the Password field, type admin.

c. Click Login.

3. Click the Administration tab.

4. Click the Resources tab.

5. Click Add.

6. Select MobiLink Server, and then click Next.

7. Name the resource MobiLinkServerSample, and then click Next.

8. In the Host field, type localhost, and then click Next.

9. When you are prompted for the required authorization, in the User ID field, type a user name such as
user1, and in the Password field, type a password, such as sql.

These credentials are used to connect to the MobiLink server. The user ID and password are kept by the
Monitor.

10. Click Create.

11. The new resource, MobiLinkServerSample, is created and monitoring starts.

12. Click OK.

13. Click the Monitoring tab.

The MobiLinkServerSample resource appears on the Monitoring tab, and the collected metrics appear
on the tabs in the bottom pane.

Tutorial: Using the Monitor

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 207

Lesson 3: Test an alert
In this lesson, you intentionally trigger an alert so you can practice handling alerts.

To view and resolve an alert

1. Trigger an alert by shutting down the MobiLink Synchronization Server Sample.

a. On Windows, double-click the MobiLink server icon in the system tray for the MobiLink server.

b. Click Shut Down in the MobiLink Server window.

c. Click Yes.

2. In the Monitor, click the Monitoring tab.

The State for the MobiLinkServerSample resource changes to Server Down and the Status for the
MobiLinkServerSample resource changes to Needs Attention!.

It can take a few seconds for these changes in state and status to occur. By default, the Monitor collects
information from the resource every 30 seconds.

3. In the bottom pane, click Alerts.

4. Select the Availability Alert and click Details to read the description.

5. Click OK.

6. Restart the Synchronization Server Sample.

From the Start menu, choose Programs » SQL Anywhere 11 » MobiLink » Synchronization Server
Sample.

The State for the MobiLinkServerSample resource changes to Alive, but the Status remains unchanged.
It can take a few minutes for the change to appear.

7. Delete the alert by selecting the alert and clicking Delete.

The Status changes to Healthy.

Lesson 4: Set up the Monitor to send emails when alerts
occur

When an alert occurs, it is always listed in the Alerts tab in the lower pane of the Monitoring tab. In the
following procedure, you set up the Monitor to send you an email whenever an alert occurs.

To set up email notification

1. Create a user who can receive emails.

a. Click the Administration tab.

b. Click the Users tab.

c. Click New.

SQL Anywhere Monitor for MobiLink

208 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

d. In the User Name field, type JoeSmith.

e. In the Password and the Confirm Password fields, type sql.

f. In the Email field, enter a valid email address.

g. Choose English in the Preferred Language field.

h. Select Operator for the User Type.
An operator can receive alerts via email and can resolve and delete alerts. This user can access the
Monitoring tab, but cannot access the Administration tab.
For information about the different types of users, see “Working with Monitor users” on page 228.

i. Click Save.
The new user is created.

2. Associate the user with the MobiLinkServerSample resource.

a. Click the Resources tab.

b. Select the MobiLinkServerSample resource and click Configure.

c. In the Configure Resource window, click Operators.

d. In the Available Operators list, select JoeSmith and click Add.

e. Click Save.

f. Click OK.

3. Configure email alert notification.

a. Click the Administration tab.

b. Click the Configuration tab.

c. Click Edit.

d. Select Send Alert Notifications By Email.

e. Configure the other settings as required.

f. Test that you have properly configured email notification.
Click Send Test Email.

g. When prompted, enter an email address to send the test email to and click OK.
A test email is sent to the email address specified.

h. Click Save.

When an alert occurs, an email is sent to the specified user with information about the alert. For information
about setting up alerts, see “Lesson 3: Test an alert” on page 208.

Tutorial: Using the Monitor

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 209

Lesson 5: Cleanup
The following procedure removes the MobiLinkServerSample resource, which deletes the collected metrics
and stops data collection. In a production environment when you want to continue monitoring your MobiLink
server, you leave both the MobiLink server and the Monitor running.

To stop monitoring

1. Remove the MobiLinkServerSample resource.

a. Click the Administration tab.

b. Click the Resources tab.

c. Select the MobiLinkServerSample resource, and click Stop.

d. Click Remove.

e. Click Yes to confirm that you want to remove the resource.

2. Log out of the Monitor.

Click Logout.

3. Close the web browser window where you are viewing the Monitor.

4. Exit the Monitor.

In the system tray, right-click the SQL Anywhere Monitor icon and choose Exit SQL Anywhere
Monitor.

5. Shut down the MobiLink server.

a. Double-click the MobiLink Server icon in the system tray for the MobiLink Synchronization Server
Sample.

b. Click Shut Down in the MobiLink Server messages window.

c. Click Yes.

SQL Anywhere Monitor for MobiLink

210 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Start the Monitor
Starting the Monitor causes the Monitor to start collecting metrics for all resources in the Monitor.

The procedure for starting the Monitor is different depending on whether the Monitor is running on a separate
computer.

To start the Monitor

1. Choose Start » Programs » SQL Anywhere 11 » SQL Anywhere Monitor » Start SQL Anywhere
Monitor.

The SQL Anywhere Monitor icon appears in the system tray.

2. Connect to the Monitor. See “Connect to the Monitor” on page 213.

To start the Monitor on a separate computer

1. The Monitor runs automatically as a service when installed on a separate computer. However, if you
stop monitoring, you can restart it. To do so, browse to install-dir\bin32.

2. On Windows, run the following:

samonitor.bat start service

On Linux, run the following:

samonitor.sh start service

When the Monitor runs as a service, no SQL Anywhere Monitor icon appears the system tray.

3. Connect to the Monitor. See “Connect to the Monitor” on page 213.

See also
● “Exit the Monitor” [SQL Anywhere Server - Database Administration]
● “Connect to the Monitor” [SQL Anywhere Server - Database Administration]
● “Disconnect from the Monitor” [SQL Anywhere Server - Database Administration]
● “Monitoring resources” [SQL Anywhere Server - Database Administration]

Start the Monitor

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 211

Exit the Monitor
Exiting the Monitor stops the collection of metrics for all resources. It is recommended that you leave the
Monitor running, but close the web browser. To stop monitoring a specific MobiLink server, see “Stop
monitoring resources” on page 225.

The procedure for exiting the Monitor is different depending on whether the Monitor is running on a separate
computer.

To exit the Monitor

● In the system tray, right-click the SQL Anywhere Monitor icon and choose Exit SQL Anywhere
Monitor.

To exit the Monitor on a separate computer

1. Browse to install-dir\bin32.

2. On Windows, run the following:

samonitor.bat stop service

On Linux, run the following:

samonitor.sh stop service

See also
● “Start the Monitor” [SQL Anywhere Server - Database Administration]
● “Connect to the Monitor” [SQL Anywhere Server - Database Administration]
● “Disconnect from the Monitor” [SQL Anywhere Server - Database Administration]
● “Monitoring resources” [SQL Anywhere Server - Database Administration]

SQL Anywhere Monitor for MobiLink

212 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Connect to the Monitor
The computer that you are using to connect to the Monitor must be connected to the network where the
Monitor is running.

To connect to the Monitor

1. Start the Monitor, if it isn't already running. See “Start the Monitor” on page 211.

2. Browse data. This step is different depending on whether the Monitor is installed on a separate computer.

From the Start menu, choose Programs » SQL Anywhere 11 » SQL Anywhere Monitor » Browse
Data.

If the Monitor is installed on a separate computer, choose Start » Programs » SQL Anywhere Monitor
11 » Browse Data.

A web browser opens the default URL for connecting to the Monitor: http://computer-name:4950, where
computer-name is the name of the computer the Monitor is running. For example, http://localhost:
4950.

3. If prompted, enter your user name and password for the Monitor. The user name and password for the
Monitor are case sensitive. See “Working with Monitor users” on page 228.

See also
● “Start the Monitor” [SQL Anywhere Server - Database Administration]
● “Exit the Monitor” [SQL Anywhere Server - Database Administration]
● “Disconnect from the Monitor” [SQL Anywhere Server - Database Administration]
● “Monitoring resources” [SQL Anywhere Server - Database Administration]

Connect to the Monitor

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 213

Disconnect from the Monitor
You can disconnect from the Monitor by logging out or closing the web browser.

Disconnecting from the Monitor has no effect on the collection of metrics. If you want to stop collecting
metrics, then stop monitoring the resource or exit the monitor. See “Stop monitoring
resources” on page 225, or “Exit the Monitor” on page 212.

To disconnect from the Monitor

● Click Logout.

See also
● “Start the Monitor” [SQL Anywhere Server - Database Administration]
● “Exit the Monitor” [SQL Anywhere Server - Database Administration]
● “Connect to the Monitor” [SQL Anywhere Server - Database Administration]
● “Monitoring resources” [SQL Anywhere Server - Database Administration]

SQL Anywhere Monitor for MobiLink

214 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Monitoring resources
In the Monitor, the Monitoring tab provides an overview of the health and availability of the MobiLink
servers being monitored.

Monitoring tab
The top pane contains a table that lists the resources that are being monitored. A resource is a MobiLink
server. This table also indicates whether the resources are currently running and whether they require a user
to perform any actions on them. See “Interpreting resource states and status” on page 215.

The bottom pane of the Monitoring tab contains the alerts and a variety of current metrics for the selected
MobiLink server. Most of these tabs contain links to graphs. You can change the range of the graphs with
the dropdown list and arrows at the top right of each graph.

Administration tab
The Administration tab is reserved for administrators. On it, you can select the MobiLink servers that you
want to monitor, add and edit users, and configure the Monitor.

See also
● “Working with Monitor users” on page 228
● “Monitor metrics” on page 216

Interpreting resource states and status
The top pane of the Monitoring tab contains a table that lists the MobiLink servers that are being monitored.
In this table, the State column provides information about the connections between the Monitor and its

Monitoring resources

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 215

resources. The Status column indicates whether the resources require an operator or an administrator user
to perform actions on them. See “Working with Monitor users” on page 228.

Resource state
A resource is always in one of the following states:

● Alive The resource is connected and the Monitor is collecting metrics.

● Blackout The Monitor is waiting for the blackout period to end before it resumes monitoring of the
resource.

● Server Down The MobiLink server being monitored is stopped.

● Host Down The Monitor cannot locate the computer that is hosting the resource.

● Unknown The Monitor is not monitoring the resource.

Resource status
A resource has one of the following statuses:

● Healthy There are no unresolved alerts for the resources.

● Needs Attention There are one or more alerts for the resource.

● Monitoring Stopped The resource is not being monitored.

● Unknown The resource is not alive and there are no alerts for it.

Monitor metrics
The Monitor collects and stores metrics from MobiLink servers, including, but not limited to:

● Whether the resource is running.

● Whether the computer that the resource is running on is running properly and is connected to the network.

● Whether the resource is listening and processing requests.

● The number of synchronizations that the MobiLink server performs over a period of time.

The rate at which metrics are collected is determined by the collection interval settings that are set by
administrators. See “Collection intervals” on page 223.

Which metrics are collected and what thresholds should be used to issue alerts are determined by the metric
settings that are set by the administrators. See “Specify metrics to collect” on page 223.

Displaying metrics
The Monitor display is automatically refreshed every minute. You can change the refresh the interval by
clicking User Settings. This setting is independent of the collection interval rate for a resource, which
specifies how often the Monitor collects metrics from the resource being monitored.

SQL Anywhere Monitor for MobiLink

216 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

To set the refresh rate

1. Click User Settings in the top, right corner.

2. Set a time for the Refresh Interval. The default is one minute.

3. Click OK.

When you click Refresh Data on the Monitoring tab, the Monitor retrieves and displays the latest metrics.

To refresh metrics

● Click Refresh Data.

When you press F5, the Monitor reloads the web browser and retrieves and displays the metrics that the
Monitor has collected to date.

To reload the Monitor

● Press F5.

Metric tab descriptions
The following tabs are used by both SQL Anywhere and MobiLink server resources.

● “Monitoring tab: Alerts tab” on page 218

● “Monitoring tab: Server tab” on page 218

The following tabs are used only by SQL Anywhere resources.

● “Monitoring tab: CPU tab” [SQL Anywhere Server - Database Administration]

● “Monitoring tab: Unscheduled Requests tab” [SQL Anywhere Server - Database Administration]

● “Monitoring tab: Memory tab” [SQL Anywhere Server - Database Administration]

● “Monitoring tab: Disk tab” [SQL Anywhere Server - Database Administration]

● “Monitoring tab: HTTP tab” [SQL Anywhere Server - Database Administration]

● “Monitoring tab: Connections tab” [SQL Anywhere Server - Database Administration]

● “Monitoring tab: Failed Connections tab” [SQL Anywhere Server - Database Administration]

● “Monitoring tab: Queries tab” [SQL Anywhere Server - Database Administration]

● “Monitoring tab: Mirror tab” [SQL Anywhere Server - Database Administration]

The following tabs are used only by MobiLink server resources.

● “Monitoring tab: Synchronization tab” on page 219

● “Monitoring tab: Consolidated Database tab” on page 220

Monitoring resources

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 217

● “Monitoring tab: Machine Resources tab” on page 220

Monitoring tab: Alerts tab
Lists the fifty most recent alerts. Once the list exceeds 50 alerts, old alerts are removed as new alerts arrive.
See “Alerts” on page 232.

Monitoring tab: Server tab

MobiLink Server
● Server Name The name of the MobiLink server as specified by the -zs option for the connected server.

The default value is <default>. See “-zs option” on page 119.

● Version Shows the version of the software being run.

● Start Time Shows the time when the MobiLink server started.

● Unsubmitted error reports Shows the number of unsubmitted error reports for the server. An error
report is submitted when SQL Anywhere software crashes. See “Suppress alerts for unsubmitted error
reports from resources” on page 235.

License
● Name Of Licensed Company Shows the name of the licensed company.

● Name of Licensed User Shows the name of the licensed user.

Host
● Name Shows the name of the computer running the MobiLink server. Typically, this is the computer's

host name.

● Operating System Platform Shows the operating system on which the software is running.

● Processor Architecture Shows a string that identifies the processor type.

● Number of CPUs Shows the number of CPUs that the machine running the software has.

Additional Information
● Consolidated Database Type Shows the type of consolidated database. For example, SQL

Anywhere.

● Maximum Concurrent Uploads To Database Shows the maximum number of concurrent uploads
to the database. See “-wu option” on page 106.

● Database Worker Threads Shows the number of database worker threads. See “-w
option” on page 105.

● Maximum Cache Size The maximum size for the MobiLink server memory cache, as set by the -
cm option for mlsrv11. See “-cm option” on page 55.

SQL Anywhere Monitor for MobiLink

218 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● Maximum Number Of Pages In Cache The number of pages in the MobiLink memory cache. This
is implicitly set with the -cm option for mlsrv11. See “-cm option” on page 55.

● Maximum Number Of Database Connections The maximum number of database connections, as
set by the -cn option or the -w option for mlsrv11. See “-cn option” on page 56 and “-w
option” on page 105.

● Maximum Number Of TCP Connections The maximum number of TCP connections, as set by the
-nc option for mlsrv11. See “-nc option” on page 75.

● Maximum Number Of Clients The maximum number of clients. See “-sm option” on page 94.

● Consolidated Version Shows the version of the consolidated database.

● Driver Version Shows the version of the driver for the consolidated database.

● Driver Name Shows the name of the driver for the consolidated database.

● Primary Server In Farm Indicates if the server is primary or secondary.

See also
● “Monitoring tab: Server tab” on page 218

Monitoring tab: Synchronization tab
This tab is used when monitoring MobiLink servers.

● Completed Synchronization Rate Shows the rate of completed synchronizations for the server,
expressed in synchronizations per second.

● Failed Synchronization Rate Shows the rate of failed synchronizations for the server, expressed in
synchronizations per second.

● Synchronization Error Rate Shows the rate of synchronization errors, expressed in errors per
second.

● Synchronization Warning Rate Shows the rate of synchronization warnings for the server,
expressed in warnings per second.

● Longest Active Synchronization Time Shows the elapsed time of the oldest active synchronization
for the server, in seconds.

● Active Requests Shows the number of active requests in the server.

● Applying Upload Shows the number of requests in the server that are currently in the apply upload
or begin synchronization phase. For a description of the synchronization phases, see “-v
option” on page 102.

● Generating Download Shows the number of requests in the server that are currently in the prepare
for download, fetch download, wait for download acknowledgement or end synchronization phase. For
a description of the synchronization phases, see “-v option” on page 102.

● Active Authentications Shows the number of requests in the server that are currently in the
authenticate user phase. For a description of the synchronization phases, see “-v option” on page 102.

Monitoring resources

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 219

Monitoring tab: Consolidated Database tab
This tab is used when monitoring MobiLink servers.

● Connections In Use Shows the number of database connections currently in use by this MobiLink
server.

● Longest Active Wait For Database Worker Thread Shows the longest length of time an active
request has been waiting for a database worker thread in this server.

● Waiting For Database Worker Thread Shows the number of requests in the server that are currently
waiting for a database worker thread.

● Number Of Upload Connections In Use Shows the number of upload connections currently in
use in the server.

Monitoring tab: Machine Resources tab
This tab is used when monitoring MobiLink servers.

● CPU Usage Shows the percentage of CPU time used by the MobiLink server.

● Total CPU Time Shows the total amount of CPU time used by the MobiLink server in seconds.

● MobiLink Cache Pages Used Shows the percentage of MobiLink cache pages used by the server.
This is set implicitly with the -cm option for mlsrv11. See “-cm option” on page 55.

● MobiLink Cache Pages Locked Shows the percentage of MobiLink cache pages loaded into the
server memory. This is set implicitly with the -cm option for mlsrv11. See “-cm option” on page 55.

● MobiLink Cache Pages In Shows the number of MobiLink cache pages read from disk per second
by the server.

● MobiLink Cache Pages Out Shows the number of MobiLink cache pages swapped to disk per
second.

● Memory Usage Shows the bytes of RAM in use by the server (for Windows servers only).

● Free Disk Space for MobiLink Cache Shows the disk space available on the temp disk for MobiLink
cache in bytes.

● Open Network Connections Shows the number of TCP connections currently open by the server.

● Rejected Network Connections Shows the total number of network connections rejected per second
by the server.

Delete old Monitor metrics
You can customize how long the Monitor keeps historical metrics. You can choose to use any or all of the
settings. By default, the Monitor performs maintenance on itself once a day at midnight. Maintenance affects
metrics, not alerts.

SQL Anywhere Monitor for MobiLink

220 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

To configure the deletion of historical metrics

1. Click Administration.

2. Click the Configuration tab.

3. Click Edit.

4. Click Maintenance.

5. Specify a time when the Monitor should perform maintenance. By default, it performs maintenance at
midnight. The time is local to the computer where the Monitor is running.

6. Customize the Data Reduction settings:

● Take A Daily Average Of Values Older Than When you select this option, an average is taken
for all numeric metrics that are older than the specified number of days, and then the numeric metrics
are deleted. Non-numeric metrics are not deleted.

● Delete Values Older Than When you select this option, all metrics that are older than the
specified length of time are deleted.

● Delete Old Values When The Total Disk Space Used By The SQL Anywhere Monitor
Becomes Greater Than X (MB) When you select this option, you specify the maximum amount
of space that can be used to store the metrics. When the amount of disk space used reaches or exceeds
the amount specified, the Monitor deletes metrics, starting with the oldest metrics, preventing the
Monitor from using more disk space for its metrics. Metrics are deleted until a sufficient amount of
free space exists to store new metrics.

7. Click Save.

Monitoring resources

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 221

Administering resources
A resource is a MobiLink server. You add resources to the Monitor, and then you start monitoring them.

The default resource, named SQL Anywhere Monitor, reports on the health of the Monitor itself. You
cannot modify this resource, nor can you stop monitoring it.

Start monitoring resources
When you start monitoring a resource, the Monitor starts collecting metrics.

Monitoring of a resource starts:

● Automatically when you add a resource. See “Add resources” on page 222.

● Automatically when you start the Monitor. By default, all existing resources are started automatically
when you start the Monitor.

● Automatically at the end of a blackout period. The Monitor automatically attempts to connect to the
resource and resume monitoring.

● When an administrator opens the Administration tab, clicks Resources, selects a resource from the list,
and clicks Start.

Add resources
To monitor a MobiLink server, you must first add the resource to the Monitor.

When you add a MobiLink server as a resource to be monitored, the server is not modified in any way. When
you add the resource, you supply a user ID and password to connect to the MobiLink server. The user ID
and password are kept by the Monitor.

Only administrators can add resources. By default, resource monitoring starts when the resource is added.

To add a resource to monitor

1. Log in to the Monitor.

2. Click the Administration tab.

3. On the Resources tab, click Add.

4. Follow the instructions in the Add Resource window to add a resource to monitor a MobiLink server.

When you add a MobiLink server, you must supply a user ID and password for the resource. These
credentials are used to connect to the MobiLink server. The user ID and password are kept by the Monitor.

5. Click Create.

The resource is added and monitoring of the resource starts.

6. Click OK.

SQL Anywhere Monitor for MobiLink

222 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Collection intervals
There are three types of collection intervals:

● High collection interval This rate is used for information that changes frequently, such as the
completed synchronization rate.

● Medium collection interval This rate is used for information that changes less frequently, such as
the amount of available disk space.

● Low collection interval This rate is used for information that changes infrequently, such as
unsubmitted error reports.

Administrators can configure how often the Monitor collects a resource's metrics. Collection intervals are
set per resource. You cannot configure the default resource, the SQL Anywhere Monitor.

To edit the collection intervals

1. Click the Administration tab.

2. Click the Resources tab, and select a resource from the list.

3. Click Configure.

4. Click Collection Intervals.

5. Configure the other settings as required, and then click Save.

6. Click OK.

See also
● “Monitor metrics” on page 216
● “Specify metrics to collect” on page 223

Specify metrics to collect
Administrators can configure what metrics the Monitor collects and when alerts should be issued. You cannot
configure the default resource, the SQL Anywhere Monitor.

To configure what metrics are collected

1. Click the Administration tab.

2. Click the Resources tab, and select a resource from the list.

3. Click Configure.

4. Click Metrics. Select the metrics and alerts. For definitions of the metrics and alerts, see “Types of
metrics and alerts” on page 224.

5. Configure the other settings as required.

Administering resources

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 223

6. Click Save.

7. Click OK.

See also
● “Monitor metrics” on page 216
● “Collection intervals” on page 223

Types of metrics and alerts
The following list describes the metrics that are available for your resource in the Configure Resource
window: Metrics tab. Many of the default settings are arbitrary because each synchronization system has
different behaviors and constraints, so the defaults may be inappropriate for your environment. You should
carefully consider each metric and set each of them according to your needs.

● CPU Usage (High Collection Interval)

○ Alert When CPU Usage Exceeds The Given Threshold For The Given Number Of
Seconds The Threshold default is 100 percent. The Seconds default is 300.

● Memory Usage (Medium Collection Interval)

○ Alert When The Percentage Of Cache Pages Used Is Greater Than X Percent The default
is 100.

○ Alert When The Percentage Of Locked Cache Pages Is Greater Than X The default is 80.

○ Alert When The Number Of Pages Being Swapped In And Out Per Second Exceeds The
Given Threshold For The Given Number Of Seconds The threshold default is 256. The
seconds default is 120.

● Network Usage (High Collection Interval) Select this option to collect metrics about network usage
in the server. You can view these metrics on the Machine Resources tab. See “Monitoring tab: Machine
Resources tab” on page 220.

● Synchronizations (High Collection Interval) Select this option to collect metrics about
synchronizations in the server. You can view these metrics on the Synchronization tab. See “Monitoring
tab: Synchronization tab” on page 219.

○ Alert When Longest Active Synchronization Time Is Greater Than X(Seconds) The
default is 600.

○ Alert When The Number Of Failed Synchronizations Exceeds The Given Threshold For
The Given Number Of Minutes The threshold of failed synchronizations default is 20. The
minutes default is 60.

● Synchronization Throughput (High Collection Interval) Select this option to collect metrics
about synchronization throughput in the server. You can view these metrics on the Synchronization tab.
See “Monitoring tab: Synchronization tab” on page 219

● Error Rate (High Collection Interval) Select this option to collect metrics about error rates in the
server.

SQL Anywhere Monitor for MobiLink

224 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

○ Alert When The Number Of Errors Exceeds The Given Threshold For The Given Number
Of Minutes The Threshold (Errors) default is 50. The Minutes default is 60.

● Warning Rate (High Collection Interval) Select this option to collect metrics about warning rates.

● Database Connections In Use (High Collection Interval) Select this option to collect metrics
about the number of database connections in use in the server. You can view these metrics on the
Consolidated Database tab. See “Monitoring tab: Consolidated Database tab” on page 220.

● Free Disk Space For MobiLink Cache (Medium Collection Interval) Select this option to collect
metrics on the disk space available for MobiLink cache on the server. You can view these metrics on
the Machine Resources tab. See “Monitoring tab: Machine Resources tab” on page 220.

○ Alert When Free Disk Space For MobiLink Cache Is Less Than X (MB) The default is 100.

● Longest Active Wait For Database Worker Thread (High Collection Interval) Select this option
to collect metrics on the longest active wait time for database worker threads in the server.

○ Alert When The Longest Active Wait For Database Worker Thread Is Greater Than X
(Seconds) The default is 300.

● Longest Active Synchronization Time Select this option to collect metrics on the longest active
synchronization time in the server. You can view these metrics on the Synchronization tab. This metric
should be configured for a high collection interval. See “Monitoring tab: Synchronization
tab” on page 219.

● Suppress Alerts For The Same Condition That Occur Within Minutes Select this option to
prevent receiving duplicate alerts within a specified time. The default is 30 minutes.

Stop monitoring resources
You stop monitoring resources when you do not want the Monitor to collect metrics from a MobiLink server.
For example, you want to stop monitoring when you know that the resource will be unavailable; otherwise,
you receive alerts until the resource is available. Except for the default Monitor resource, you can stop
monitoring any resource at any time.

When you stop monitoring a resource, the Monitor:

● Stops collecting metrics for the resource.

● Stops issuing alerts for the resource.

There are two ways to stop monitoring a resource:

● Schedule a regular, repeating, blackout period This method is a good choice when the following
conditions apply:

○ You must repeatedly stop monitoring the MobiLink server. For example, you perform regular
maintenance at the end of each month.

○ You know in advance how long the MobiLink server is unavailable. For example, you know that
your regular maintenance takes four hours.

Administering resources

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 225

○ You need monitoring to automatically restart. When a blackout completes, the Monitor attempts to
reconnect to the resource and to continue collecting data.

To use this method, you create blackouts to make the Monitor stop monitoring at specified times. See
“Automatically stop monitoring resources using blackouts” on page 226.

● Manually stop the monitoring This method is a good choice when the following conditions are
met:

○ You need to stop monitoring for infrequent or one-time tasks. For example, you need to stop
monitoring because the computer that the resource is running on needs to be taken off-line for special
maintenance.

○ You are available to restart the monitoring afterwards. When a resource has been stopped manually,
the Monitor waits for you to restart the monitoring.

To use this method, see “Manually stop monitoring resources” on page 226.

If you want to permanently stop monitoring a resource, you can remove it from the Monitor. See “Remove
resources” on page 227.

Manually stop monitoring resources
The following procedure describes how to manually stop a resource. For information about what happens
when you stop a resource, see “Stop monitoring resources” on page 225.

To manually stop a resource

1. Click the Administration tab.

2. Select the resource to stop.

3. On the Resources tab, click Stop.

See also
● “Start monitoring resources” on page 222
● “Automatically stop monitoring resources using blackouts” on page 226

Automatically stop monitoring resources using blackouts
The following procedure describes how to stop a resource using blackouts. For information about what
happens when you stop a resource and about when you should use blackouts, see “Stop monitoring
resources” on page 225.

Blackouts are times when you do not want the Monitor to collect metrics. When a blackout completes, the
Monitor attempts to reconnect to the resources and to continue collecting data.

Blackouts occur in the local time of the resource.

SQL Anywhere Monitor for MobiLink

226 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

To configure the blackout time

1. Log in to the Monitor as an administrator.

2. Click the Administration tab.

3. On the Resources tab, select the resource you want to specify the blackout time for.

4. Click Configure.

5. Click the Blackouts tab.

6. Click New.

7. In the New Blackout Period window, specify the date and time for the blackout.

The time is local to the computer where the resource MobiLink server resides.

8. Click Save.

9. Click Save.

10. Click OK.

See also
● “Start monitoring resources” on page 222
● “Manually stop monitoring resources” on page 226

Remove resources
You should only remove resources when you are certain that you don't need to monitor them; for example,
if the server is no longer being used.

Removing a resource causes the Monitor to:

● Permanently stop monitoring the resource.

● Discard the metrics collected for the resource.

Only administrators can remove resources. You cannot delete the SQL Anywhere Monitor resource.

To remove a resource

1. Click the Administration tab.

2. On the Resources tab, select a resource, and then click Remove.

3. Click Yes.

See also
● “Stop monitoring resources” on page 225

Administering resources

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 227

Working with Monitor users
The Monitor supports three types of users:

● Read-only user Has read-only access to monitor resources. Read-only users can view the metrics on
the Monitoring tab, but cannot access the Administration tab. A user name and password are required.

● Operator Has read-only access to monitor resources and can receive alerts. These users can view the
metrics on the Monitoring tab, can receive email alerts, and can resolve and delete alerts. However,
operators cannot access the Administration tab. A user name and password are required.

● Administrator Has the same access as an operator, and can also configure resources and add users.
Administrators can also access the Administration tab. The default user, admin, is an administrator. A
user name and password are required.

The user name and password for logging in to the Monitor are case sensitive.

Default user

By default, when you first start the Monitor, it has one administrator user, named admin, with password
admin. By default, this user has full permissions. It is recommended that you change the default administrator
password to restrict access to the Monitor. See “Edit Monitor users” on page 229.

Read-only access without a user name
By default, the Monitor does not require anyone to log in to have read-only access. However, for security
and other reasons, the administrator can require that users log in. See “Require Monitor users to
login” on page 230.

Create Monitor users
You must be an administrator to add Monitor users.

To add a new Monitor user

1. Click the Administration tab.

2. Click the Users tab.

3. Click New.

4. Fill in the information for the new user. An email address is only required for users who should receive
email alerts from the Monitor.

Click Save.

5. If you create an operator or an administrator, you can associate the user with a resource. See “Associate
Monitor users with resources” on page 229.

SQL Anywhere Monitor for MobiLink

228 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “Edit Monitor users” [SQL Anywhere Server - Database Administration]

Associate Monitor users with resources
You must associate a user with a resource if you want the user to receive email alerts about the associated
resource. You can only associate an operator or an administrator with a resource.

To associate an operator or administrator with a resource

1. Click the Administration tab.

2. Click the Resources tab.

3. Select the resource and click Configure.

4. Click Operators.

5. From the Available Operators list, select the user and click Add.

6. Click Save.

7. Click OK.

8. Verify that the Monitor is set up to send alert notifications by email. See “Send alert
emails” on page 233.

See also
● “Working with Monitor users” on page 228

Edit Monitor users
As an administrator, you can edit Monitor users to change their:

● Passwords

● Email addresses

● Language settings

● User types

To edit an existing Monitor user

1. Click the Administration tab.

2. Click the Users tab.

3. Select the user to edit.

4. Click Edit.

Working with Monitor users

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 229

5. Change the settings for the user as required.

6. Click Save.

7. If you are editing an operator or an administrator, you can associate the user with a resource. See
“Associate Monitor users with resources” on page 229.

See also
● “Working with Monitor users” on page 228
● “Create Monitor users” on page 228
● “Delete Monitor users” on page 230

Delete Monitor users
Deleting a user removes the user from the Monitor and disassociates the user from any resource.

You must be an administrator to delete Monitor users.

To delete an existing Monitor user

1. Click the Administration tab.

2. Click the Users tab.

3. Select the user to delete.

4. Click Delete.

5. Click Yes to delete the selected user. Click Delete All to delete all users.

The user is deleted from the Monitor.

See also
● “Create Monitor users” on page 228
● “Edit Monitor users” on page 229
● “Associate Monitor users with resources” on page 229

Require Monitor users to login
By default, anyone can have read-only access to the Monitor. You can change this behavior so that whenever
a user opens the Monitor in a web browser, they must provide a user name and password before they can
see any monitoring data.

To restrict access to the Monitor

1. Click the Administration tab.

2. On the Configuration tab, click Edit.

3. Click Authentication.

SQL Anywhere Monitor for MobiLink

230 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

4. Clear the Allow Anyone Read-only Access To The SQL Anywhere Monitor option.

5. Click Save.

See also
● “Create Monitor users” on page 228
● “Edit Monitor users” on page 229

Working with Monitor users

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 231

Alerts
An alert is a condition or state of interest that should be brought to an administrator's or operator's attention.
Alerts include information about the cause of the problem, and provide advice for resolving the problem.

There are several predefined alerts for conditions such as low disk space, critical software updates, failed
login attempts, and high memory usage. When an alert condition is met, the alert is listed in the bottom pane
on the Monitoring tab. In the top pane, the MobiLink server Status changes to indicate that an alert exists.
You can configure the Monitor to send an email to operators and administrators when an alert occurs. See
“Send alert emails” on page 233.

Alerts are detected by the Monitor based on metrics that are collected. They are not detected at the MobiLink
server being monitored. You can change the default threshold values and choose which alerts are enabled
by editing the resource. See “Monitor metrics” on page 216.

View alerts
Any user can view alerts; however, only operators and administrators can resolve and delete alerts.

To view an alert

1. Click the Monitoring tab.

2. Select a resource from the list.

3. In the bottom pane, click the Alerts tab.

4. Select a row in the alerts list.

5. Click Details.

6. Click OK.

See also
● “Resolve alerts” on page 232
● “Delete alerts” on page 233
● “Send alert emails” on page 233

Resolve alerts
Once the issue that triggered an alert has been addressed, you can mark an alert as resolved. Resolving an
alert causes the Monitor to change the alert's status column, but leave the alert in the alert list. If you want
to remove the alert, you must delete it. See “Delete alerts” on page 233.

Only operators and administrators can resolve alerts.

To resolve an alert

1. Click the Monitoring tab.

SQL Anywhere Monitor for MobiLink

232 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

2. Select a resource from the list.

3. In the bottom pane, click the Alerts tab.

4. Select the row in the alerts list.

5. Click Mark Resolved to resolve the selected alert. Click Mark All Resolved to resolve all alerts in the
list.

The value in the Status column on the Alerts tab changes to Resolved.

If this was the resource's only unresolved alert, the resource's status changes to Healthy.

See also
● “Delete alerts” on page 233
● “Resolve alerts” on page 232
● “Send alert emails” on page 233
● “View alerts” on page 232
● “Alerts” on page 232

Delete alerts
The Monitor keeps only the most recent 50 alerts in the alert list. If you do not want an alert to appear in the
alerts list any more, you can delete the alert. You can delete alerts, regardless of their status.

Only operators and administrators can delete alerts.

To delete alerts

1. Click the Monitoring tab.

2. Select a resource from the list.

3. In the bottom pane, click the Alerts tab.

4. Select a row in the alerts list.

5. Click Delete.

The alert is removed from the alerts list.

See also
● “Resolve alerts” on page 232
● “Send alert emails” on page 233
● “View alerts” on page 232
● “Alerts” on page 232

Send alert emails
You can configure the Monitor to send an email to operators and administrators when an alert occurs.

Alerts

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 233

To have the Monitor send alert notifications by email, you must:

1. Create an administrator or operator with an email address. See “Create Monitor users” on page 228.

2. Associate the administrator or operator with a resource. See “Associate Monitor users with
resources” on page 229.

3. Enable the Monitor to send emails. See “Enable the Monitor to send alert emails” on page 234.

Enable the Monitor to send alert emails
As an administrator, you can configure the Monitor to send emails when an alert occurs. The Monitor supports
the SMTP and MAPI protocols for sending emails.

To enable the Monitor to send alert notifications by email

1. Click the Administration tab.

2. Click the Configuration tab.

3. Click Edit.

4. Click Alert Notification.

5. Select Send Alert Notifications By Email.

6. Choose either SMTP or MAPI for the Which Protocol Do You Want To Use To Send Alerts By
Email? field.

7. Configure the other settings as required.

● MAPI

○ User Name Type the user name for the MAPI server.

○ Password Type the password for the MAPI server.

● SMTP

○ Server Specify which SMTP server to use. Type the server name or the IP address for the
SMTP server. For example, SMTP.yourcompany.com.

○ Port Specify the port number to connect to on the SMTP server. The default is 25.

○ Sender Name Specify an alias for the sender's email address. For example, JoeSmith.

○ Sender Address Specify the email address of the sender. For example,
jsmith@emailaddress.com.

○ This SMTP Server Requires Authentication Select this option if your SMTP server
requires authentication.

● User Name Specify the user name to provide to SMTP servers requiring authentication.

● Password Specify the password to provide to SMTP servers requiring authentication.

8. Test that you have properly configured email notification.

SQL Anywhere Monitor for MobiLink

234 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Click Send Test Email.

9. When prompted, enter an email address to send the test email to and click OK.

A test email is sent to the email address specified.

10. Click Save.

See also
● “Resolve alerts” on page 232
● “Delete alerts” on page 233
● “View alerts” on page 232

Suppress alerts for unsubmitted error reports from
resources

As an administrator, you can configure whether the Monitor sends out alerts when resources have
unsubmitted error reports. By default, the Monitor does not send these alerts. For information about error
reports and about how to submit them, see “Error reporting in SQL Anywhere” [SQL Anywhere Server -
Database Administration].

To suppress alerts for unsubmitted error reports

1. Click the Administration tab

2. Click the Configuration tab.

3. Click Edit.

4. Click Options.

5. Click Save.

Alerts

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 235

Installing the SQL Anywhere Monitor on a separate
computer

These instructions explain how to install SQL Anywhere Monitor on a separate computer than the one that
SQL Anywhere is running on.

Some advantages to running the SQL Anywhere Monitor on a separate computer include:

● The Monitor runs in the background as a service.

● The Monitor starts automatically when the computer starts.

● Upgrades and updates of SQL Anywhere do not overwrite the Monitor when it is installed on a separate
computer. This is important if the separate computer is in a production environment.

To install the Monitor on a separate computer

● Run the setup.exe file from the Monitor directory on your installation media, and follow the instructions
provided.

SQL Anywhere Monitor for MobiLink

236 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Troubleshooting the Monitor
Problem Recommendation

When you press F5 to refresh the web browser
window, you are required to log in to the Monitor.

Enable JavaScript in your web browser.

You receive a network communication error when
you try to connect to the Monitor.

Start the Monitor. See “Start the Moni-
tor” on page 211.

After upgrading to the latest version of Adobe
Flash Player you continue to receive instructions
to upgrade Adobe Flash Player.

Verify that the installed version Adobe Flash Player
is supported by your operating system. The Monitor
is backwards compatible with version 9 of Adobe
Flash Player. To determine the correct version, visit:
http://www.adobe.com/products/flashplayer/sys-
temreqs/.

The Monitor is unable to start monitoring a SQL
Anywhere database resource.

Verify that the resource's password verification
functions and login procedures allow the user
sa_monitor_user to connect to the resource.

You are not receiving any alert emails. Verify that the Monitor is properly configured to
send emails and send a test email. See “Enable the
Monitor to send alert emails” on page 234.

Verify that the alert emails from the Monitor are not
being blocked by a virus scanner. See “xp_startsmtp
system procedure” [SQL Anywhere Server - SQL
Reference].

The number of unscheduled requests reported by
the Monitor appears to be less than the actual num-
ber of unscheduled requests.

When collecting metrics about the number of un-
scheduled requests, the Monitor executes query on
the resource. This query could be an unscheduled
request.

Unscheduled queries are processed sequentially as
they arrive. Therefore, if there are unscheduled re-
quests when the Monitor attempts to execute its
query, then this query must wait for the existing un-
scheduled requests to complete before it can execute.

As a result, when the Monitor collects the number of
unscheduled requests, this number does not include
the unscheduled requests that existed between the
time when the Monitor issued its query and the query
executed.

Troubleshooting the Monitor

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 237

http://www.adobe.com/products/flashplayer/systemreqs/
http://www.adobe.com/products/flashplayer/systemreqs/

Problem Recommendation

You are not receiving alerts when the database disk
space surpasses the specified threshold.

Between Monitor collection intervals, it is possible
for a database to exceed the specified disk space alert
threshold and the amount of space available. In such
a case, the database would stop responding before
the Monitor could collect the disk usage metrics and
issue an alert

If your database grows quickly, set the disk space
alert threshold to a higher number so that you can
receive an alert before the database runs out of space.
See “Types of metrics and alerts” on page 224.

When you open the Monitor in a Firefox web
browser from a non-English computer, the Moni-
tor appears in English.

Firefox does not correctly use your computer's pre-
ferred locale. You can use Internet Explorer or try
the following Firefox workaround:

1. In Firefox, open a new tab.

2. In the address bar, type the following:

about:config

Press Enter.

If prompted, click I'll Be careful, I Promise!

3. In the Filter field, type the following:

general.useragent.locale
4. In the preference list, double-click general.user-

agent.locale.

5. In the Enter String Value window, enter your
locale. For example, type fr-FR for French, de-
DE for German, zh-CN for Chinese, and ja-JP
for Japanese.

6. Click OK.

SQL Anywhere Monitor for MobiLink

238 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The Relay Server

Contents
Introduction to the Relay Server .. 240
Relay Server configuration file ... 243
Outbound Enabler ... 247
Relay Server State Manager ... 250
Deploying the Relay Server ... 253
Updating a Relay Server farm configuration .. 258
Sybase Relay Server hosting service .. 260
Using MobiLink with the Relay Server ... 262

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 239

Introduction to the Relay Server
The Relay Server enables secure, load-balanced communication between mobile devices and MobiLink,
Afaria and iAnywhere Mobile Office servers through a web server. The Relay Server provides the following:

● A common communication architecture for mobile devices communicating with MobiLink, Afaria and
iAnywhere Mobile Office servers.

● A mechanism to enable a load-balanced and fault-tolerant environment for MobiLink, Afaria and
iAnywhere Mobile Office servers.

● A way to help communication between mobile devices and MobiLink, Afaria and iAnywhere Mobile
Office servers in a way that integrates easily with existing corporate firewall configurations and policies.

Relay Server architecture
A Relay Server deployment consists of the following:

● Mobile devices running client applications and services that need to communicate with back-end servers
running in a corporate LAN.

● Optional load balancer to direct requests from the mobile devices to a group of Relay Servers.
● One or more Relay Servers running in the corporate DMZ.
● Back-end servers running in a corporate LAN that are responsible for servicing client requests.
● One Relay Server Outbound Enabler (RSOE) per back-end server. The Outbound Enabler manages all

communication between a back-end server and the Relay Server farm.

The following diagram shows the Relay Server architecture.

The Relay Server

240 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The Relay Server consists of a set of web extensions, a background process for maintaining state information,
and a web server.

Because the Relay Server is a web extension running in a web server, all communication is performed using
HTTP or HTTPS. Using HTTP easily integrates with existing corporate firewall configurations and policies.
The Relay Server requires that the connection from the corporate LAN to the Relay Server be initiated from
inside the corporate LAN. This provides a more secure deployment environment because it does not require
inbound connections from the DMZ into the corporate LAN.

The Relay Server contains two web extensions: a client extension and a server extension. The client extension
handles client requests made from applications running on mobile devices. The server extension handles
requests made by the Outbound Enabler on behalf of a back-end server.

The Relay Server farm
A Relay Server farm is any number of Relay Servers with a front-end load balancer. It is possible to set up
a Relay Server farm with a single Relay Server, in which case a load balancer is not required. In this case,
mobile devices can connect directly to the Relay Server.

Introduction to the Relay Server

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 241

Back-end server farm
A back-end server farm is a group of homogeneous back-end servers. A client making a request through the
Relay Server farm must specify the back-end server farm it is targeting.

Load balancer
The load balancer directs requests from the mobile devices to a Relay Server running in the Relay Server
farm. The load balancer is not required if there is only one Relay Server.

Relay Server Outbound Enabler
The Relay Server Outbound Enabler runs on the same computer as the back-end server. Its primary function
is to initiate an outbound connection to all Relay Servers in the Relay Server farm on behalf of the back-end
server. There is one Outbound Enabler per back-end server. See “Outbound Enabler” on page 247.

The Relay Server

242 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Relay Server configuration file
A Relay Server configuration file is used to define both a Relay Server farm and the back-end server farms
connecting to the Relay Server farm. The Relay Server configuration file is divided into sections:

● “Relay Server section” on page 243
● “Backend farm section” on page 244
● “Backend server section” on page 245
● “Options section” on page 245

Each section starts with a section tag. A section tag is formed by enclosing a keyword that identifies the
section name in square brackets. For example, [relay_server] denotes the start of the Relay Server section.

The section tag is followed by several lines defining various properties related to the section being defined.
A property is defined by specifying the property name on the left-hand side of an equal sign and its value
on the right-hand side of the equal sign. For example, property name = value. All section and
property names are case insensitive. Comments are marked with pound sign (#) character at the beginning
of a line.

The configuration file should contain only 7-bit ASCII characters. The sections can be specified in any order.

Relay Server section
The Relay Server section is used to define a single Relay Server, so there must be a Relay Server section for
each Relay Server in the farm. This section is identified by the relay_server keyword.

Relay Server section properties
The following properties can be specified in a Relay Server section:

● enable Specifies whether this Relay Server is to be included in the Relay Server farm. Possible values
are:

○ Yes Indicates that this Relay Server is to be included in the Relay Server farm.

○ No Indicates that this Relay Server should not be included in the Relay Server farm.

The default is Yes. This property is optional.

● host The hostname or IP address that should be used by the Outbound Enabler to make a direct
connection to the Relay Server.

● http_port The HTTP port that should be used by the Outbound Enabler to make a direct connection
to the Relay Server. A value of 0 or off disables HTTP connections. By default, this property is enabled
and set to 80.

○ 0 or off Disable HTTP access from Outbound Enabler.

○ 1 to 65535 Enable HTTP at the specified port.

Relay Server configuration file

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 243

● https_port The HTTPS port that should be used by the Outbound Enabler to make a direct connection
to the Relay Server. A value of 0 or off disables HTTPS connections. By default, this property is enabled
and set to 443.

○ 0 or off Disable HTTPS access from Outbound Enabler.

○ 1 to 65535 Enable HTTPS at the specified port.

● description Enter a custom description to a maximum of 2048 characters. This property is optional.

Backend farm section
The backend farm section specifies the properties of a back-end server farm. A back-end server farm is a
group of homogenous back-end servers. A client making a request through the Relay Server farm must
specify the back-end server farm it is targeting. There is one backend farm section for each back-end server
farm.

This section is identified by the backend_farm keyword.

Backend farm section properties
The following properties can be specified in a backend farm section:

● enable Specifies whether to allow connections from this back-end server farm. Possible values are:

○ Yes Allow connections from this back-end server farm.

○ No Disallow connections from this back-end server farm.

The default is Yes. This property is optional.

● id The name assigned to the back-end server farm, to a maximum of 2048 characters.

● client_security Specifies the level of security the back-end server farm requires of its clients. The
possible values are:

○ on Indicates that clients must connect using HTTPS.

○ off Indicates that clients must connect using HTTP.

This property is optional. If no value is specified, clients can connect using either HTTP or HTTPS.

● backend_security Specifies the level of security required of an Outbound Enabler in the back-end
server farm to connect to the Relay Server farm. The possible values are:

○ on Indicates that all connections from the back-end farm must by made using HTTPS.

○ off Indicates that all connections from the back-end farm must be made using HTTP.

This property is optional. If no value is specified, either HTTP or HTTPS can be used to connect.

● description Enter a custom description to a maximum of 2048 characters. This property is optional.

The Relay Server

244 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Backend server section
The backend server section defines a back-end server connection. It specifies the information that is used
by the Outbound Enabler when it connects to the Relay Server farm on behalf of a back-end server. There
is a backend server section for each Outbound Enabler connecting to the Relay Server farm. The backend
server section also assigns a back-end server to a back-end server farm.

This section is identified by the backend_server keyword.

Backend server section properties
The following properties can be specified in a backend server section:

● enable Specifies whether to allow connections from this back-end server. Possible values are:

○ Yes Allows connections from this back-end server.

○ No Disallows connections from this back-end server.

The default is Yes. This property is optional.

● id The name assigned to the back-end server connection, to a maximum of 2048 characters.

● farm The name of the back-end server farm that this back-end server belongs to.

● MAC The MAC address of the network adapter used by the Outbound Enabler to communicate with
the Relay Server. The address is specified using the IEEE 802 MAC-48 format. To get the MAC address
in the correct format, look in the Relay Server Outbound Enabler console or log. This property is optional.
If it is not specified, MAC address checking does not occur.

● token A security token that is used by the Relay Server to authenticate the back-end server connection,
to a maximum of 2048 characters. This property is optional.

● description Enter a custom description to a maximum of 2048 characters. This property is optional.

Options section
The options section is used to specify properties that apply to each Relay Server in the farm. Only one options
section is allowed.

This section is identified by the options keyword.

Options section properties
The following properties can be specified in an options section:

● start The method used to start the State Manager. The possible values are:

○ auto The State Manager is started automatically using the State Manager command line defaults.

○ no The State Manager is started externally as a Windows service.

○ full path Specify the full path to the State Manager executable (rshost).

The default is auto. This property is optional.

Relay Server configuration file

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 245

● shared_mem Specifies the maximum amount of shared memory that the Relay Server uses for state
tracking. The default is 10 megabytes. This property is optional.

● verbosity You can set verbosity to the following levels:

○ 0 Log errors only. Use this logging level for deployment. This is the default.

○ 1 Request level logging. All HTTP requests are written to the log file.

Errors are displayed regardless of the log level specified, and warnings are displayed only if the log level
is greater than 0.

Relay Server configuration file format
This is the basic format of a Relay Server configuration file:

#
Options
#
[options]
List of Relay Server properties that apply to all Relay Servers
option = value
#
Define a Relay Server section, one for each
Relay Server in the Relay Server farm
#
[relay_server]
List of properties for the Relay Server
property = value
#
Define a backend server farm section, one for each backend
server farm
#
[backend_farm]
List of properties for a backend server farm
property = value
#
Define a backend server section, one for each
Outbound Enabler connecting to the Relay Server farm
#
[backend_server]
List of properties for the backend server connection
property = value

The Relay Server

246 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Outbound Enabler
The Outbound Enabler runs on the same computer as the back-end server. Its purpose is to:

● Open an outbound connection from the computer running in the corporate LAN to the Relay Server farm
running in the DMZ.

● Forward client requests received from the Relay Server to the back-end server and forward back-end
server responses back to the client via the Relay Server.

When the Outbound Enabler starts, it makes an HTTP request to retrieve the list of Relay Servers running
in the farm. This is done using the server URL that maps to the web server extension component of the Relay
Server. The server URL can map directly to a Relay Server or it can map to a load balancer. If the server
URL maps to a load balancer, the load balancer forwards the request to one of the Relay Servers running in
the farm. The Relay Server that receives the request from the Outbound Enabler returns the connection
information for all Relay Servers in the farm. The Outbound Enabler then creates two outbound connections,
called channels, to each Relay Server returned. One channel, called the up channel, is created using an HTTP
request with an essentially infinite response. The response is a continuous stream of client requests from the
Relay Server to the Outbound Enabler. The second channel, called the down channel, is created using an
HTTP request with an essentially infinite content length. The request is formed by a continuous stream of
server responses to client requests.

When the Outbound Enabler receives a client request on the up channel from one of the Relay Servers it has
connected to, it forwards it to the back-end server that the Outbound Enabler is servicing. Once a response
is received from the back-end server, it gets forwarded to the Relay Server from which it received the
corresponding request using the down channel.

Outbound Enabler syntax

rsoe [option]+

rsoe @{ filename | environment-variable } ...

Parameters
Options The following options can be used with the Outbound Enabler. They are all optional.

rsoe options Description

@data Reads options from the specified environment variable or configuration
file. If you want to protect passwords or other information in the configu-
ration file, you can use the File Hiding utility to obfuscate the contents of
the configuration file. See “File Hiding utility (dbfhide)” on page 248.

-f farm The name of the farm that the back-end server belongs to.

-id id The name assigned to the back-end server.

-cs "connection-string" The host and port used to connect to the back-end server. The default is
"host=localhost;port=80".

Outbound Enabler

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 247

rsoe options Description

-cr "connection-string" The Relay Server connection string. The format of the Relay Server con-
nection string is a semicolon separated list of name-value pairs. The name-
value pairs consist of the following:

● host IP address or hostname of the Relay Server. The default is lo-
calhost.

● port The port the Relay Server is listening on. This is required.

● url_suffix URL path to the server extension of the Relay Server.

The default for Windows is /ias_relay_server/server/rs_server.dll.

The default for Linux is /srv/iarelayserver.

● https 0 - HTTP (default)

1 - HTTPS

For https=1, the following options can also be specified:

● tls_type RSA

● certificate_name Common name field of the certificate.

● certificate_company Organization name field of the certificate.

● certificate_unit Organization unit field of the certificate.

● trusted_certificates File containing a list of trusted root certifi-
cates.

-t token The security token to be passed to the Relay Server.

-v level Set the verbosity level to use for logging. The level can be 0, 1, or 2:

● 0 Log errors only. Use this logging level for deployment.

● 1 Session level logging. This is a higher level view of a synchroni-
zation session.

● 2 Request level logging. Provides a more detailed view of HTTP
requests within a synchronization session.

-d seconds The Relay Server connection retry interval. The default is 5 seconds.

-s Stop the Outbound Enabler.

File Hiding utility (dbfhide)
The File Hiding utility (dbfhide) uses simple encryption to obfuscate the contents of configuration files and
initialization files.

The Relay Server

248 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Syntax
dbfhide original-configuration-file encrypted-configuration-file

Option Description

original-configuration-file Specifies the name of the original file.

encrypted-configuration-file Specifies a name for the new obfuscated file.

The Relay Server and Outbound Enabler detect that a configuration file has been obfuscated using dbfhide
and process it accordingly.

This utility does not accept the @data parameter to read in options from a configuration file.

Deployment considerations
The following considerations should be noted when using the Outbound Enabler:

● Outbound Enabler as a Windows service The Outbound Enabler may also be set up and
maintained as a Windows service using the Service Utility. See “Relay Server State
Manager” on page 250.

● Authentication You cannot use simple or digest authentication. The rsoe.exe does not support simple
or digest authentication with web servers, regardless of the web server type or operating system.

Outbound Enabler

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 249

Relay Server State Manager
The Relay Server State Manager is a process that is responsible for maintaining Relay Server state
information across client requests and Outbound Enabler sessions. The State Manager is also responsible
for managing the log file used by the Relay Server. The State Manager can either be started automatically
by the Relay Server or started as a Windows service (on Windows only).

The default log file name is ias_relay_server_host.log. On Windows, this file is located in the directory
specified by the TEMP environment variable. On Linux, the file is located in the directory specified by the
TMP, TEMP, or TMPDIR environment variables. If none of those variables are set, a log file is created on
the root.

Note
In all cases, the Apache user process must have write permissions to the tmp directory location you choose.

On a graceful shutdown, the State Manager renames the log file to a file of the form <yymmdd><nn>.log
where <yymmdd> represents the date on which the log file was renamed and <nn> is the sequential version
number of the log file for that day.

Starting the State Manager as a Windows service is the recommended method. Note that starting the State
Manager manually on a command line is not supported.

It is possible to specify the options that are used by the Relay Server to start the State Manager. To change
the options, set the start property in the options section of the Relay Server configuration file. For example:

[options]
start = "rshost -o c:\temp\myrshost.log"

Note that you must specify the name of the Relay Server State Manager executable (rshost) before the
options.

Starting the Relay Server State Manager as a Windows
service

For Windows only, the State Manager can be started as a Windows service by using the Service utility
dbsvc.exe. The start property in the options section of the Relay Server configuration file should be set to
no. See “Options section” on page 245.

The Service utility (dbsvc) is used to create, modify and delete services. For a full listing of usage information,
run dbsvc.exe without any options.

To set up an auto started State Manager service named rs:
dbsvc -as -s auto -w rs "C:\inetpub\wwwroot\ias_relay_server\server
\rshost.exe" -q -qc -f c:\inetpub\wwwroot\ias_relay_server\server
\rstest.config -o c:\temp\rs.log

To start the service:
dbsvc.exe -u rs

The Relay Server

250 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

To stop the service:
dbsvc.exe -x rs

To uninstall the service:
dbsvc.exe -d rs

Starting the Relay Server State Manager automatically
The State Manager process is started automatically when the first Outbound Enabler connects to the Relay
Server. This is the default behavior when the start property in the options section of the Relay Server
configuration file is not specified or is explicitly specified as auto. The default log file location is %temp%
\ias_relay_server_host.log. See “Options section” on page 245.

Starting the Relay Server State Manager automatically with
customized options

When auto start is desired but you want to override some default behavior such as verbosity level or log file
location, you can use the start property in the options section of the Relay Server configuration file to
explicitly specify your State Manager command line. The -f option cannot be used in this case and the
configuration file must be named rs.config and be placed in the same directory as the server extension. See
“Relay Server State Manager command line syntax” on page 251.

Note
Do not specify a log file location under the wwwroot directory. IIS does not allow a worker process to create
a file under the published tree.

Relay Server State Manager command line syntax
rshost [option]+

Parameters
Options The following options can be used to configure the State Manager. They are all optional.

rshost options Description

-f filename File name of the Relay Server configuration file.

-o filename File name to use for logging.

-oq Prevent popup window on startup error.

-q Run in minimized window.

Relay Server State Manager

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 251

rshost options Description

-qc Close window on completion.

-u Update configuration of a running Relay Server.

-ua Archive the log file to <yymmdd><nn>.log and truncate.

The Relay Server

252 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Deploying the Relay Server
The following is an overview of how to deploy the Relay Server to IIS on Windows:

1. Deploy the Relay Server components. See “Deploying the Relay Server components to IIS on
Windows” on page 253.

2. Deploy the web server extensions and State Manager. See “Deploying the web server extensions and
State Manager” on page 254.

a. Create an application pool. See “Creating an application pool” on page 254.

b. Enable the Relay Server web extensions and deploy the Relay Server configuration file. See
“Deploying the web server extensions and State Manager” on page 254.

3. Deploy Relay Server configuration updates, as necessary. See “Updating a Relay Server configuration
for IIS on Windows” on page 258.

The following is an overview of how to deploy the Relay Server to Apache on Linux:

1. Deploy the Relay Server components. See “Deploying the Relay Server components to Apache on
Linux” on page 256.

2. Deploy the web extension files and State Manager. See “Deploying the web extension files and State
Manager” on page 256.

3. Deploy Relay Server configuration updates, as necessary. See “Updating a Relay Server configuration
for Apache on Linux” on page 259.

Deploying the Relay Server components to IIS on Windows
The Relay Server for Windows consists of the following executables:

● rs_client.dll
● rs_server.dll
● rshost.exe
● dblgen11.dll
● dbsvc.exe
● dbfhide.exe
● dbicu11.dll
● dbicudt11.dll
● dbsupport.exe
● dbghelp.dll

See also
● “Relay Server State Manager” on page 250
● “File Hiding utility (dbfhide)” on page 248

Deploying the Relay Server

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 253

Deploying the web server extensions and State Manager

To deploy the Relay Server files

1. Create the following directories under the web site home directory that you use for the Relay Server:

● ias_relay_server
● ias_relay_server\client
● ias_relay_server\server

2. Copy rs_client.dll to the ias_relay_server\client directory.

3. Create the Relay Server configuration file rs.config. See “Relay Server configuration
file” on page 243.

4. Copy rs_server.dll, rshost.exe and rs.config to the ias_relay_server\server directory.

5. Ensure that the connection timeout property of the web site home directory is set to 60 seconds or more.

Creating an application pool
A dedicated application pool must be created for the rs_server.dll and rs_client.dll web server extensions.
All worker recycling options need to be turned off as the Relay Server utilizes long running worker processes.

To create the application pool

1. Start IIS Manager Console.

2. Right-click Application Pools and create a new application pool, for example RS_POOL.

3. Edit the properties for the application pool you created:

a. Select the Recycling tab and turn off all the recycling options.

b. Select the Performance tab and do the following:

i. Turn off Shutdown Worker Processes After Being Idle.

ii. Set the number of worker processes to the total number of processing cores. You can further
adjust this number depending on your usage and performance preferences. See the IIS
performance notes about Web garden size for more information.

Enabling the Relay Server web extensions
The steps below describe the process to enable the Relay Server web extensions.

To edit the properties of ias_relay_server and enable the Relay Server web extensions

1. Select the Directory tab and do the following:

a. Set execute permissions to Scripts And Executables.

The Relay Server

254 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

b. Click Create under Application Settings. Select the application pool you created in “Creating an
application pool” on page 254 as the associated application pool.

2. Select the Directory Security tab and do the following:

a. Click Edit in Authentication and Access Control.

b. Enable anonymous access and fill in the user name and password for an account belonging to the
Administrators group.
Alternatively, you may leave the setting as the built-in user IUSR_%computername% and execute
the following command to grant permission to access the IIS metabase.

C:\Windows\Microsoft.Net\Framework\<Version>\aspnet_regiis.exe -ga
IUSR_%computername%

3. Under Web Server Extensions in the IIS manager, allow both rs_server.dll and rs_client.dll to be run
as ISAPI.

4. Deploy the Relay Server configuration file by creating a Relay Server configuration file and copying it
to the ias_relay_server\server directory.

See also
● “Relay Server configuration file” on page 243

Performance tips
Keep the following in mind when deploying the Relay Server to IIS on Windows:

● The Relay Server web extension does not rely on ASP.NET. Removing the ASP.NET ISAPI filter yields
better performance. The filter gets turned on by default in a standard IIS install. To turn off the filter, do
the following:

1. Start IIS Manager Console.

2. Edit the properties of Default Web Site.

3. Under the ISAPI Filters tab, remove the ASP.NET filter.

● For better performance, you can turn off the IIS access log. To turn off the access log, do the following:

1. Start IIS Manager Console.

2. Edit the properties of the ias_relay_server directory under Default Web Site.

3. Under the Directory tab, clear the Log Visits selection.

● In a production environment, Relay Server verbosity can be set to 0 via the Relay Server configuration
file. This yields better performance under high loads.

● The Relay Server does not impose restrictions on the Web garden size. One worker process may serve
requests from all Outbound Enablers as well as from all the clients. However, the number of threads that
can be created in the process is limited by the process heap space left available for thread creation. The
thread created by IIS has a 256k stack size. If your machine has adequate resources, experiment with a

Deploying the Relay Server

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 255

higher number of processes if you suspect you are hitting a concurrency limit when the server is loaded
with thousands of concurrent requests.

Deploying the Relay Server components to Apache on Linux
The Relay Server for Linux consists of the following executables:

● mod_rs_ap_client.so
● mod_rs_ap_server.so
● rshost
● dblgen11.res
● libdbtasks11_r.so
● libdbicudt11.so
● libdbicu11_r.so
● libdblib11_r.so
● dbsupport
● dbfhide

See also
● “Relay Server State Manager” on page 250
● “File Hiding utility (dbfhide)” on page 248

Deploying the web extension files and State Manager

To deploy the Relay Server files

1. Copy the above files into your Apache install modules directory.

2. Create the Relay Server configuration file rs.config. See “Relay Server configuration
file” on page 243.

3. Copy rs.config into the modules directory. The server module expects the rshost executable to be in the
same directory where you copied the rs.config file.

4. Set the PATH and LD_LIBRARY_PATH environment variables to include the Apache modules
directory.

5. Edit the Apache conf/httpd.conf file.

a. Add the following lines to load the Relay Server client and server modules:

LoadModule iarelayserver_client_module modules/mod_rs_ap_client.so
LoadModule iarelayserver_server_module modules/mod_rs_ap_server.so

The client and server modules are invoked using different URLs. The client module explicitly looks
for the string iarelayserver in the URL path. That part of the URL need not change.

The Relay Server

256 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

b. Add the following line to create a <location> section for the client module:

<LocationMatch /cli/iarelayserver/* >
 SetHandler iarelayserver-client-handler
</LocationMatch>

c. Add the following line to create a <location> section for the server module:

<Location /srv/iarelayserver/* >
 SetHandler iarelayserver-server-handler
 RSConfigFile "/<apache-install>/modules/rs.config"
</Location>

You must specify an RSConfigFile directive which specifies the location of the Relay Server
configuration file, rs.config. The rs.config file must reside in the same directory where the
rshost executable is deployed.

d. If the TimeOut directive is set, ensure it is set to at least 60 seconds.

6. On Linux, if any of the following environment variables are set globally when Apache spawns a process,
then there is nothing further needed for the configuration of Apache: $TMP, $TMPDIR or $TEMP.

If any of the above environment variables are not set globally, or if you want the default Relay Server
log file to go in a specific temporary directory (for example, when the State Manager is started
automatically but without customizations), then edit the file /<apache-dir>/bin/envvars to set and then
export TMP.

For example, to edit $TMP in the envvars file, do the following:

set TMP="/tmp"
export TMP

This sets the environment variable in the shell that Apache creates before it spawns its processes.

Note
In all cases, the Apache user process must have write permissions to the tmp directory location you
choose.

Deploying the Relay Server

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 257

Updating a Relay Server farm configuration
A Relay Server farm configuration is defined by the contents of the Relay Server configuration file. Each
Relay Server in a Relay Server farm shares the same Relay Server configuration file, so when you update a
Relay Server farm configuration you must update the Relay Server configuration file at each Relay Server
in the farm. Updates include any of the following:

● Adding a new Relay Server to the Relay Server farm.

● Creating a new backend server farm and allowing it access to the Relay Server farm.

● Adding a new backend server to an existing backend server farm.

● Changing the properties of a Relay Server, backend server farm, or a backend server.

● Changing options.

One way to update a Relay Server configuration is to shutdown all Relay Servers, replace the Relay Server
configuration file with the updated version, and restart all the Relay Servers. However, shutting down and
restarting the Relay Servers means that users of the Relay Server may incur a service interruption.

The preferred method of updating a Relay Server configuration is to use the Relay Server State Manager to
update the configuration while a Relay Server farm is running without interrupting service.

Updating a Relay Server configuration is done by launching a new instance of the Relay Server State Manager
using the following command line format:

rshost -u -f <filename>

The –u option instructs the Relay Server State Manager to perform an update operation. The –f option
specifies the name of the configuration file containing the updated configuration. See “Relay Server State
Manager” on page 250.

Below is an overview of the steps required to update a Relay Server farm configuration:

1. Make your changes to the master copy of the Relay Server configuration file.

2. On each computer running an instance of a Relay Server that belongs to the Relay Server farm being
updated, do the following:

a. Replace the old configuration file with the updated configuration file.

b. Run the Relay Server State Manager with the updated configuration file.

Updating a Relay Server configuration for IIS on Windows
To update a Relay Server configuration for IIS on Windows

1. For each computer that belongs to the Relay Server farm you are updating, copy the updated configuration
file to the ias_relay_server\server directory under the Relay Server web site home directory. The
configuration file must be called rs.config if auto start is used.

The Relay Server

258 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

2. From the ias_relay_server\server directory, run the following command line to apply the configuration
update:

rshost -u -f rs.config
3. Repeat the previous steps for each computer in the Relay Server farm that is being updated.

Updating a Relay Server configuration for Apache on Linux
To update a Relay Server configuration for Apache on Linux

1. Copy the updated configuration file to the /modules directory under the Apache install directory. The
configuration file must be called rs.config if auto start is used.

2. From the /<Apache-install>/modules directory, run the following command line to apply the
configuration update:

rshost -u -f rs.config
3. Repeat the previous steps for each computer in the Relay Server farm that is being updated.

Updating a Relay Server farm configuration

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 259

Sybase Relay Server hosting service
The Sybase Relay Server hosting service is a farm of Relay Servers hosted by Sybase. It is intended to ease
the development of mobile applications that use MobiLink data synchronization and to simplify the
evaluation process for developers, especially where data is sent using public wireless networks. You do not
need to ask your IT department to install anything or open any holes in your corporate firewall. All
communication between MobiLink and the hosting service uses HTTP(S) via an outbound connection
initiated by MobiLink.

The Sybase Relay Server hosting service is not intended for production deployments. Before deploying your
production application, you must first install the Relay Server in your own corporate infrastructure.

Using the Relay Server hosting service
The following sections describe how to perform some basic tasks.

Subscribing to the Relay Server hosting service
To use the Sybase Relay Server hosting service you must first subscribe to it.

To subscribe to the Sybase Relay Server hosting service

1. From your web browser, go to http://relayserver.sybase.com/account. This takes you to the Sybase Relay
Server hosting service home page.

2. Create an account by clicking Register.

3. You are asked to specify a Subscription ID (choose one that is unique to your organization) and
Password, provide contact information for your self and your organization, and agree to the Hosted
Relay Service Terms of Service. Click Submit.

Once you have successfully registered, an email is sent to you confirming your registration.

Logging in to the Relay Server hosting service

To log in to the Relay Server hosting service

1. Log in to your newly created account by clicking Log In.

2. Enter the Subscription ID and Password you entered during the registration process. Once logged in,
you are taken to the Account Information page. The account information page allows you to modify
subscriber information and specify the back-end server farm(s) that will be accessing this service.

Adding a server farm

To add a server farm

1. Click Add New Farm.

The Relay Server

260 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://relayserver.sybase.com/account

2. Enter a unique Farm Name to describe the server farm.

3. Choose a Type from the dropdown list.

4. Provide a unique name for each server in the farm. You can specify a maximum of two servers.

5. Click Create Farm. A confirmation is displayed if the farm was successfully added.

6. Click Configuration Instructions to learn more about using the service. The instructions are based on
the information you provided.

7. Click Log Out when you are done.

Sybase Relay Server hosting service

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 261

Using MobiLink with the Relay Server
The following sections provides information about using the Relay Server with MobiLink.

For information about which operating systems and browsers are supported for the Relay Server, see http://
www.sybase.com/detail?id=1002288.

For information about deploying the Outbound Enabler, see “Deploying the MobiLink
server” on page 801.

Connecting a client to the Relay Server farm
Once a Relay Server farm has been properly configured, a client connects to the Relay Server farm using
the following URL:

http://<Relay Server client extension URI>/<farm>

Options

Option Description

<Relay Server client extension URI> For IIS on Windows, <domain name>/ias_relay_server/cli-
ent/rs_client.dll

For Apache on Linux, <domain name>/cli/iarelayserver

<farm> Identifies the back-end farm (a group of back-end servers)
that Relay Server forwards the client request to.

SQL Anywhere MobiLink client connection example
A SQL Anywhere MobiLink client should specify the following options to connect to server farm F1:

-e "ctp=http;
 adr='host=relayserver.sybase.com;
 url_suffix=/ias_relay_server/client/rs_client.dll/F1'"

For HTTPS, change http to https.

UltraLite/UltraLiteJ MobiLink client connection example
An UltraLite/UltraLiteJ MobiLink client should set the following properties in the ULSyncParms class to
connect to server farm F1:

● Set the stream type to HTTPS.

● Set the stream parameters to the following:

"host=testrelay.ianywhere.com; url_suffix=/ias_relay_server/client/
rs_client.dll/F1"

The Relay Server

262 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.sybase.com/detail?id=1002288
http://www.sybase.com/detail?id=1002288

QAnywhere client connection example
A QAnywhere client should specify the following options to connect to server farm F1:

-x "http(host=relayserver.sybase.com;url_suffix=/ias_relay_server/client/
rs_client.dll/F1"

Sample scenario
Suppose company ABC has developed a mobile application and now wants to set up the deployment run-
time to service the mobile application. Initially, the mobile deployment consists of 10000 devices and grows
in the future. The customer therefore wants a fault tolerant and load-balanced environment that is able to
handle the load today and be easily extended to handle more mobile deployments in the future. Based on
the data synchronization characteristics of the mobile application, the customer has determined that the
following configuration is needed:

● 2 MobiLink servers
● 2 Relay Servers
● 1 load balancer

Since the company uses IIS as its web server, the IIS version of the Relay Server is used.

Notes
● Each Relay Server is deployed on its own computer. Two computers, with host names rs1.abc.com and

rs2.abc.com are used.

● Each MobiLink server is deployed on its own computer. The two MobiLink servers are assigned names
ml1 and ml2 and belong to the back-end server farm called abc.mobilink.

● The load balancer is addressable using the host name www.abc.com.

● For maximum security, HTTPS is used by all clients and Outbound Enablers connecting to the Relay
Servers. We assume all Web servers are equipped with a certificate from a well known Certificate
Authority (CA), and the back-end server computers all have the corresponding trusted root certificates
in their standard certificate store.

To set up the Relay Server farm

1. The first step is to create the Relay Server configuration file.

The filename containing the configuration must be called rs.config. For this particular scenario, the
following configuration file is used:

#
Options
#
[options]
verbosity = 1
#
Define the Relay Server farm
#

Using MobiLink with the Relay Server

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 263

[relay_server]
host = rs1.abc.com
[relay_server]
host = rs2.abc.com
#
Define the MobiLink backend server farm
#
[backend_farm]
id = abc.mobilink
client_security = on
backend_security = on
#
List MobiLink servers that are connecting to the Relay Server farm
#
[backend_server]
farm = abc.mobilink
id = ml1
token = mltoken1
[backend_server]
farm = abc.mobilink
id = ml2
token=mltoken2

2. Deploy the configuration file rs.config along with the Relay Server components to the two computers
that are running the Relay Server.

3. Start MobiLink server on the two computers that are running the MobiLink servers, and then start the
corresponding Outbound Enabler using the following commands.

On the computer running MobiLink server with id ml1:

mlsrv11 -x http -z ml1 -ss <other ML options>
rsoe -f abc.mobilink -id ml1 -t mltoken1 -cr
"host=www.abc.com;port=443;https=1"

On the computer running MobiLink server with id ml2:

mlsrv11 -x http -z ml2 -ss <other ML options>
rsoe -f abc.mobilink -id ml2 -t mltoken2 -cr
"host=www.abc.com;port=443;https=1"

4. Once all servers and Outbound Enablers are running, MobiLink clients are able to connect to the farm
using the following connection information:

● HTTPS protocol

● host www.abc.com

● url_suffix /ias_relay_server/client/rs_client.dll/abc.mobilink

The Relay Server

264 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Redirector (deprecated)

Contents
Introduction to the Redirector (deprecated) ... 266
Setting up the Redirector ... 268
Configuring MobiLink clients and servers for the Redirector 269
Configuring Redirector properties .. 271
NSAPI Redirector for Netscape/Sun web servers on Windows (deprecated) 277
NSAPI Redirector for Netscape/Sun web servers on Unix (deprecated) 280
ISAPI Redirector for Microsoft web servers (deprecated) ... 282
Servlet Redirector (deprecated) .. 284
Apache Redirector (deprecated) ... 287
M-Business Anywhere Redirector (deprecated) .. 289

Note
The Redirector has been deprecated. In its place, use the Relay Server. See “The Relay
Server” on page 239.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 265

Introduction to the Redirector (deprecated)
Note
The Redirector has been deprecated. In its place, use the Relay Server. See “The Relay
Server” on page 239.

MobiLink includes a web server extension called the Redirector that routes requests and responses between
a client and the MobiLink server. A plug-in such as this is also commonly called a reverse proxy.

The main reason for routing requests through a web server is to use existing web server and firewall
configurations for HTTP or HTTPS synchronization. However, a web server can operate as a proxy without
the Redirector. The Redirector is most useful when you have more than one MobiLink server.

See “Options when using a web server” on page 267.

Using the Redirector, you can configure your web server to route specific URL requests to one or more
computers running the MobiLink server.

Web servers can be configured to pass requests with specific URLs or ranges of URLs to extension programs
commonly written in the form of Perl CGI scripts, DLLs, or other extension mechanisms. These extension
programs may access external data sources and provide responses for the web server to deliver to its clients.

Load balancing and failover
The Redirector implements load balancing and failover using a simple round robin algorithm (servers are
chosen in a fixed cyclic order). The Redirector pings each MobiLink server and stops sending requests to a
server that is not responding. The Redirector detects when a MobiLink server is running again and resumes
sending requests at that time.

HTTPS synchronization
When you specify the HTTPS protocol on a MobiLink client, HTTPS is used for the connection between
the remote database and web server: HTTP headers are encrypted over TLS using RSA encryption before
being sent to or from the web server, and the web server decrypts the HTTPS and sends HTTP to MobiLink
via the Redirector. All Redirectors support this version of HTTPS, in which HTTPS is only used for the
connection between the MobiLink client and the web server.

The HTTPS protocol is slower than other secure protocols.

Full HTTPS
For some Redirectors (such as the Apache Redirector, the ISAPI Redirector, and the NSAPI Redirector on
Windows), the Redirector offers an option to re-encrypt the stream as HTTPS and send it to the MobiLink
server.

For a list of Redirectors that support HTTPS from the Redirector to the MobiLink server, see http://
www.sybase.com/detail?id=1061837.

Supported web servers
Plug-ins are provided for the following web servers:

Redirector (deprecated)

266 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.sybase.com/detail?id=1061837
http://www.sybase.com/detail?id=1061837

Redirector plug-in ...supports

ISAPI Redirector Microsoft web servers

NSAPI Redirector Sun One (Netscape) and iPlanet web servers on Windows and Unix

Servlet Redirector Web servers that support the Java Servlet API 2.3, including
Apache Tomcat and Sun One web servers on Unix

Native Apache Redirector Apache web server

M-Business Anywhere Redirector M-Business Anywhere web server

For more information about Redirector support, see:

● http://www.sybase.com/detail?id=1061837

Options when using a web server
The Redirector is one way to route MobiLink synchronization through a web server. The Redirector is
particularly useful for synchronizing across a firewall or with multiple MobiLink servers.

The main reason for routing requests through a web server is to use existing web server and firewall
configurations for HTTP or HTTPS synchronization. The Redirector is most useful when you have more
than one MobiLink server.

You can also route synchronizations through a web server without using the Redirector. In this case, you
might configure your web server as a proxy to route synchronizations to a MobiLink server. For more
information about how to do this with your web server, see your web server documentation.

The following table contains recommendations to help you decide how best to route your MobiLink
synchronizations.

Direct connection possible Direct connection not possible

One MobiLink server Use TCP/IP instead of HTTP Use an HTTP or HTTPS proxy to pass
messages through the web server to the
MobiLink server

Multiple MobiLink serv-
ers

Use the Redirector with
HTTP or HTTPS

Use the Redirector with HTTP or HTTPS

See “Redirector (deprecated)” on page 265.

Introduction to the Redirector (deprecated)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 267

http://www.sybase.com/detail?id=1061837

Setting up the Redirector
Note
The Redirector has been deprecated. In its place, use the Relay Server. See “The Relay
Server” on page 239.

The following sections describe how to configure your web server to manage synchronization requests.

Overview of the configuration process

1. Configure the MobiLink server.

See “Configuring MobiLink clients and servers for the Redirector” on page 269.

2. Modify the Redirector configuration file. There are two ways to do this, depending on whether you are
using a Redirector that supports server groups or one that does not support server groups. See:

● “Configuring Redirector properties (for Redirectors that support server groups)” on page 273
● “Configuring Redirector properties (for Redirectors that don't support server

groups)” on page 275

3. Perform web server-specific configuration.

See one of the following:

● “NSAPI Redirector for Netscape/Sun web servers on Windows (deprecated)” on page 277
● “ISAPI Redirector for Microsoft web servers (deprecated)” on page 282
● “Servlet Redirector (deprecated)” on page 284
● “Apache Redirector (deprecated)” on page 287
● “M-Business Anywhere Redirector (deprecated)” on page 289

4. Configure MobiLink clients.

See “Configuring MobiLink clients and servers for the Redirector” on page 269.

Redirector (deprecated)

268 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Configuring MobiLink clients and servers for the
Redirector

Note
The Redirector has been deprecated. In its place, use the Relay Server. See “The Relay
Server” on page 239.

This section describes how to configure MobiLink clients and the MobiLink server for synchronization
through a web server. The following procedures set the parameters required for requests directed through
web servers.

MobiLink clients
To configure MobiLink clients (SQL Anywhere and UltraLite)

1. Specify the communication type for MobiLink clients to HTTP or HTTPS.

For more information about setting the communication type for SQL Anywhere clients, see
“CommunicationType (ctp) extended option” [MobiLink - Client Administration].

For more information about setting the communication type for UltraLite clients, see “Network protocol
options for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

2. Specify the following HTTP/HTTPS synchronization protocol options for MobiLink clients:

● host the name or IP address of the web server.

● port the web server port accepting HTTP or HTTPS requests.

● url_suffix This setting depends on the type of Redirector you are using:

○ For the ISAPI Redirector:

exe_dir/iaredirect.dll/ml/[server-group/]

where exe_dir is the location of iaredirect.dll, and server-group is optionally the name of the
group.

○ For NSAPI Redirectors:

mlredirect/ml/[server-group/]

where mlredirect is a name mapped in your obj.conf file.

○ For the servlet Redirector:

iaredirect/ml/
○ For the native Redirector for Apache, set this to whatever you chose in the Redirector's <location>

tag in the httpd.conf file. For example, if the location is <Location /iaredirect/ml>,
then the url_suffix is:

iaredirect/ml/

Configuring MobiLink clients and servers for the Redirector

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 269

○ For the M-Business Anywhere Redirector, set this to whatever you chose in the Redirector's
<location> tag in the sync.conf file. For example, if the location is <Location /
iaredirect/ml>, then the url_suffix is:

iaredirect/ml/

See “url_suffix” [MobiLink - Client Administration].

For more information about setting protocol options for UltraLite clients, see “Network protocol options for
UltraLite synchronization streams” [UltraLite - Database Management and Reference].

For more information about setting protocol options for SQL Anywhere clients, see “MobiLink client
network protocol option summary” [MobiLink - Client Administration].

MobiLink server
To configure MobiLink servers

1. For Redirectors that support HTTPS, you can start the MobiLink server with the HTTPS protocol. For
a list of Redirectors that support HTTPS, see http://www.sybase.com/detail?id=1061837.

For Redirectors that do not support HTTPS, the MobiLink server must be started with the HTTP protocol
to use HTTP or HTTPS for communication between the client and the proxy. Theses Redirectors cannot
use HTTPS directly.

For example, the HTTP protocol may be specified on the mlsrv11 command line as follows:

mlsrv11 -x http

See “-x option” on page 107.

2. In addition, you may want to set the following parameter for the MobiLink server:

● port for the HTTP protocol, MobiLink defaults to port 80. For the HTTPS protocol, MobiLink
defaults to port 443. If the MobiLink server is running on the same computer as the web server, port
80 is normally in use by the web server. If this is the case you must specify a different port. For
example, you could use port 2439, which is the Internet Assigned Numbers Authority (IANA)-
registered port number for the MobiLink server.

For more information about port, see “-x option” on page 107.

Redirector (deprecated)

270 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.sybase.com/detail?id=1061837

Configuring Redirector properties
Note
The Redirector has been deprecated. In its place, use the Relay Server. See “The Relay
Server” on page 239.

There are different properties for Redirectors that support server groups and Redirectors that don't support
server groups.

MobiLink server groups
You can partition your MobiLink servers into server groups. This allows you to have groups of clients that
access distinct groups of MobiLink servers.

For a list of Redirectors that support server groups, see http://www.sybase.com/detail?id=1061837.

You create a server group by adding a section to your Redirector configuration file
(redirector_server_group.config) with the group name in square brackets followed by settings for that group.
At a minimum, a group must specify one ML directive. You can also set the ML_CLIENT_TIMEOUT
option for a group. You reference the group in the url_suffix option on your client.

You can create a default server group by specifying a group with no name before you specify any named
groups in the file. This default group is useful for backward compatibility. It is used when the client does
not specify a server group name in their url_suffix option.

See “url_suffix” [MobiLink - Client Administration].

You can also specify default settings for all server groups for the SLEEP and LOG_LEVEL properties. These
can be specified anywhere in the configuration file.

Supporting old and new clients

If your MobiLink server needs to support version 8 or 9 remote databases and version 10 and later remote
databases, then you need to open a minimum of two ports: you use the mlsrv11 -x option to open a port for
new clients, and you use the mlsrv11 -xo option to open a port for old clients. If you are also using the
Redirector, you need to set up server groups so that the Redirector directs clients to the appropriate port.

In a typical Redirector setup, you would start multiple MobiLink servers. In the simplest case, you have one
MobiLink server running with two ports, opened with -x and -xo, and you create two server groups, one for
each. The following is a partial mlsrv11 command line that opens two ports for the MobiLink server:

mlsrv11 -c "dsn=YourDSN" -x http(port=111) -xo http(port=222)

You add sections to your Redirector configuration file for the two server groups:

[v10service]
 ML="host=mySrv.myCorp.com;port=111"
[v9service]
 ML="host=mySrv.myCorp.com;port=222"

Configuring Redirector properties

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 271

http://www.sybase.com/detail?id=1061837

When you start your clients, you specify the url_suffix option with the name of the server group. For example,
for SQL Anywhere clients and an ISAPI web server, part of the dbmlsync command line for the version 10
clients would be:

dbmlsync -e "adr='host=somehost;port=5001;url_suffix=scripts/iaredirect.dll/
ml/v10service'"...

Part of the dbmlsync command line for your version 9 clients would be:

dbmlsync -e "adr='host=somehost;port=5001;url_suffix=scripts/iaredirect.dll/
ml/v9service'"...

See also
● “-x option” on page 107
● “-xo option” on page 113
● “Configuring Redirector properties (for Redirectors that support server groups)” on page 273
● “url_suffix” [MobiLink - Client Administration]

Example
The following is a sample redirector_server_group.config file, showing some typical settings and the
creation of server groups.

#
Set up the default server group:
#
 ML="host=mySrv1.myCorp.com;port=222"
 ML="host=mySrv2.myCorp.com;port=222"
#
Set up a server group named myOldGroup:
#
[myOldGroup]
 ML="host=myOldSrv1.myCorp.com;port=111"
 ML="host=myOldSrv2.myCrop.com;port=111"
 ML_CLIENT_TIMEOUT=30
#
Set up a server group named myNewGroup:

[myNewGroup]
 ML="host=myNewSrv1.myCorp.com;port=333"
 ML="host=myNewSrv2.myCorp.com;port=555"
 ML_CLIENT_TIMEOUT=240
#
Set up a server group named mlSecureGroup:
#
[theirSecureGroup]
 ML="https=true;Srv1.Corp.com;trusted_certificates=c:\Corp\publicRoot.crt"
 ML="https=true;Srv2.Corp.com;trusted_certificates=c:\Corp\publicRoot.crt"
#
Set global properties:
#
 LOG_LEVEL=5
 SLEEP=15

Redirector (deprecated)

272 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Configuring Redirector properties (for Redirectors that
support server groups)

This section describes generic web server configuration steps to configure Redirector properties. It applies
to Redirectors that support server groups.

For a list of Redirectors that support server groups, see http://www.sybase.com/detail?id=1061837.

For information about server groups, see “MobiLink server groups” on page 271.

To configure Redirector properties

1. Complete the steps in “Configuring MobiLink clients and servers for the Redirector” on page 269.

2. Configure a Redirector configuration file. A template file named redirector_server_group.config is
located in install-dir\MobiLink\redirector. The easiest way to configure a Redirector configuration file
is to modify redirector_server_group.config.

The following rules apply to the Redirector configuration file:

● The maximum line length is 2000 characters.

● Comments start with the hash character (#).

● For the ISAPI Redirector, the configuration file must be named redirector.config and must be in the
same directory as iaredirect.dll.

You can set the following directives in this file:

● Server groups To create server groups, you create sections in redirector_server_group.config
that start with a server group name in square brackets, and then define the server group.

See “MobiLink server groups” on page 271.

● LOG_LEVEL Used to control the amount of output written to the log file. Values are 0 to 7, with
higher numbers generating more output. By default, the log file is called redirector.log and is located
in the same place as the Redirector configuration file. For NSAPI Redirectors, you can change the
name and location in magnus.conf using the logFile directive.

● ML There are two ways that you can use the ML directive:

○ For Redirectors that do not support HTTPS from the Redirector to the MobiLink server or when
you are not using HTTPS, you can use the ML directive to specify the list the computers running
the MobiLink server, in the form ML=host:port. To specify multiple computers, you repeat
this syntax on separate lines. For example:

ML=209.123.123.1:8080
ML=myCompany.com:8081

○ If your Redirector supports HTTPS from the Redirector to the MobiLink server and you are using
HTTPS, you should specify MobiLink client network protocol options in a semicolon-separated
list, as follows:

ML="https=true;network-client-options;..."

For example,

Configuring Redirector properties

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 273

http://www.sybase.com/detail?id=1061837

ML="https=true;host=My-pc;port=82;trusted_certificates=rsaroot.crt"

For a list of network client options, see “MobiLink client network protocol options” [MobiLink
- Client Administration].

For a description of HTTPS support in the Redirector, see “Full HTTPS” on page 266.

For a list of Redirectors that support HTTPS from the Redirector to the MobiLink server, see
http://www.sybase.com/detail?id=1061837.

Your MobiLink server must be started with the same protocol and port number as it is given in your
ML directive. If there is a difference, you must stop the MobiLink server and restart it with the correct
information.

● ML_CLIENT_TIMEOUT Used to ensure that the MobiLink server can detect duplicate
synchronizations from the same remote database. The timeout should be set to the maximum timeout
of any client using the same server group. If you set this property to 0, resynchronization to a different
server is allowed immediately. The default value is 240 seconds.

● SLEEP Used to set the interval in seconds at which the Redirector checks that the servers are
functioning. The Redirector checks one server, waits for the amount of time set in this option, checks
the next server, and so on in a cycle. For example, SLEEP=10. SLEEP is case sensitive. The default
is 20 seconds.

3. Copy the Redirector configuration file to the web server.

If the MobiLink server is not installed on the same computer as the web server, copy the Redirector
configuration file to the computer that holds the web server (or to a drive that computer has access to).

For ISAPI web servers, copy the Redirector configuration file to the directory Inetpub\scripts and rename
it redirector.config.

For other web servers, you can copy the Redirector configuration file to any directory.

4. Complete web server-specific configuration in one of the following sections:

● “ISAPI Redirector for Microsoft web servers (deprecated)” on page 282
● “NSAPI Redirector for Netscape/Sun web servers on Windows (deprecated)” on page 277

Example

The following is a sample Redirector configuration file. This file specifies the following:

● The Redirector should sleep for 10 seconds after checking that a server is functioning.

● The three computers running MobiLink servers that are able to process requests.

SLEEP=10
ML=myServ-pc:80
ML=209.123.123.1:8080
ML=myCompany.com:8081

Redirector (deprecated)

274 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.sybase.com/detail?id=1061837

Configuring Redirector properties (for Redirectors that don't
support server groups)

This section describes generic web server configuration steps to configure Redirector properties. It applies
to Redirectors that don't support server groups.

For a list of Redirectors that support server groups, see http://www.sybase.com/detail?id=1061837.

To configure Redirector properties

1. Complete the steps in “Configuring MobiLink clients and servers for the Redirector” on page 269.

2. Copy redirector.config to the web server.

The file redirector.config is located in install-dir\MobiLink\redirector.

If the MobiLink server is not installed on the same computer as the web server, copy redirector.config
to the computer that holds the web server.

3. Configure the Redirector configuration file.

To configure communications between the web server and MobiLink server, you must edit the file
redirector.config on the computer that holds the web server.

The following rules apply to redirector.config:

● The maximum line length is 300 characters.

● Comments start with the hash character (#).

● You cannot include spaces or tabs in the directive definitions.

You can set the following directives in this file:

● LOG_LEVEL Used to control the amount of output written to the log file. Values are 0, 1, and 2,
with 1 being the default and 2 generating the most output. For the Apache Redirector, this setting
has no effect; set the log level in the LogLevel section of the Apache configuration file, httpd.conf.

● ML ML is case sensitive. There are two ways that you can use the ML directive.

For Redirectors that do not support HTTPS or when you are not using HTTPS, you can use the ML
directive to specify the list the computers running the MobiLink server, in the form
ML=host:port. To specify multiple computers, you repeat this syntax on separate lines. For
example:

ML=209.123.123.1:8080
ML=myCompany.com:8081

If your Redirector supports HTTPS from the Redirector to the MobiLink server, you can specify
MobiLink client network protocol options in a semicolon-separated list, as follows:

ML="https=true;network-client-options;..."

For example,

ML="https=true;host=My-pc;port=82;trusted_certificates=rsaroot.crt"

Configuring Redirector properties

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 275

http://www.sybase.com/detail?id=1061837

For a list of network client options, see “MobiLink client network protocol options” [MobiLink -
Client Administration].

For a list of Redirectors that support HTTPS from the Redirector to the MobiLink server, see http://
www.sybase.com/detail?id=1061837.

Your MobiLink server must be started with the same protocol and port number as it is given in your
ML directive. If there is a difference, you must stop the MobiLink server and restart it with the correct
information.

● ML_CLIENT_TIMEOUT Used to ensure that each step of a single synchronization is directed to
the same MobiLink server. The Redirector maintains an association between client and server for
the duration of ML_CLIENT_TIMEOUT. This value is also used to ensure that the MobiLink server
can detect duplicate synchronizations from the same remote database. The value of this parameter
should be greater than the longest step in any user's synchronization.

The default value is 600 seconds (ten minutes).

● SLEEP Used to set the interval in seconds at which the Redirector checks that the servers are
functioning. The default is 1800 (30 minutes). For example, SLEEP=3600. SLEEP is case
sensitive.

4. Complete web server-specific configuration in one of the following sections:

● “NSAPI Redirector for Netscape/Sun web servers on Unix (deprecated)” on page 280
● “Servlet Redirector (deprecated)” on page 284
● “Apache Redirector (deprecated)” on page 287
● “M-Business Anywhere Redirector (deprecated)” on page 289

Example

The following is a sample redirector.config file. This file specifies the following:

● The Redirector should check every 1800 seconds that the servers are functioning.

● The three computers running MobiLink servers that are able to process requests. When you specify
multiple servers, load balancing is automatically enabled.

SLEEP=1800
ML=myServ-pc:80
ML=209.123.123.1:8080
ML=myCompany.com:8081

Redirector (deprecated)

276 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.sybase.com/detail?id=1061837
http://www.sybase.com/detail?id=1061837

NSAPI Redirector for Netscape/Sun web servers on
Windows (deprecated)

Note
The Redirector has been deprecated. In its place, use the Relay Server. See “The Relay
Server” on page 239.

The NSAPI Redirector is provided for the Sun Java System web server, which was previously known as Sun
One and the Netscape iPlanet Enterprise Edition web server.

For information about version support, see http://www.sybase.com/detail?id=1061837.

To use this Redirector on Unix, see “NSAPI Redirector for Netscape/Sun web servers on Unix
(deprecated)” on page 280.

To use the Redirector with Netscape/Sun web servers on other platforms, you can use the servlet Redirector.
See “Servlet Redirector (deprecated)” on page 284.

To configure the NSAPI Redirector

1. Complete the steps in “Configuring Redirector properties (for Redirectors that support server
groups)” on page 273.

2. If necessary, copy the file iaredirect.dll to the computer that holds the web server. This file is located in
install-dir\MobiLink\redirector\web-server, where web-server is the name of your NSAPI web server.

3. If your web server is on a separate computer from the Redirector, you must copy the following files to
that computer and ensure that they are in your path. The files you need depends on what, if any, encryption
you are using.

The following file locations are relative to install-dir:

Setup Files required

All ● bin32\dblgen11.dll1
● bin32\dbicu11.dll
● bin32\dbicudt11.dll

ECC encryption ● bin32\mlcecc11.dll

RSA encryption ● bin32\mlcrsa11.dll

RSA encryption with FIPS ● bin32\mlcrsafips11.dll
● bin32\sbgse2.dll

1 For German, Japanese, and Chinese editions, substitute en with de, ja, and zh, respectively.

For information about how to change the language, see “Understanding the locale language” [SQL
Anywhere Server - Database Administration].

NSAPI Redirector for Netscape/Sun web servers on Windows (deprecated)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 277

http://www.sybase.com/detail?id=1061837

4. Update the NSAPI magnus.conf and obj.conf web server configuration files as follows.

Sample file provided
Sample copies of magnus.conf and obj.conf, preconfigured for the MobiLink server, are located in install-
dir\MobiLink\redirector\web-server, where web-server is the name of your NSAPI web server.

Update the following sections of the magnus.conf and obj.conf.

● In magnus.conf, specify where iaredirect.dll and the Redirector configuration file are located.

At the end of the Init section, add the following text, where location is the actual location of the files
(iaredirect.dll and the Redirector configuration file can be in different locations, although both must
be on the same computer as the web server or a drive that is accessible to the web server):

Windows:
Init fn="load-modules" shlib="location/iaredirect.dll"
funcs="redirector,initialize_redirector"
Init fn="initialize_redirector" configFile="location/redirector.config"

● In obj.conf, specify the name of the Redirector to be used in URLs.

At the beginning of the default object section, add the following text. This section should appear
exactly as provided below, except that you can change mlredirect to whatever you want. All requests
of the form http://host:port/mlredirect/ml/* are sent to one of the MobiLink servers running with the
Redirector.

<Object name=default>
NameTrans fn="assign-name" from="/mlredirect/ml/*" name="redirectToML"

● In obj.conf, specify the objects that are called by the Redirector. After the default object section, add
the following section:

<Object name="redirectToML">
Service fn="redirector" serverType="ml"
</Object>

Example
The following is an example of the section of magnus.conf that you need to customize.

Init fn="load-modules" shlib="D:/iaredirect.dll"
funcs="redirector,initialize_redirector"
Init fn="initialize_redirector" configFile="D:/redirector.config"

The following is an example of the sections of obj.conf that are important to the Redirector:

<Object name=default>
NameTrans fn="assign-name" from="/mlredirect/ml/*" name="redirectToML"
...
<Object name="redirectToML">
Service fn="redirector" serverType="ml"
</Object>

To test your configuration

1. Call the Redirector using the following syntax:

http://host:port/mlredirect/ml/

Redirector (deprecated)

278 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

2. Check the log file to see if the Redirector logged a request.

Note: This test does not make a connection to the MobiLink server.

NSAPI Redirector for Netscape/Sun web servers on Windows (deprecated)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 279

NSAPI Redirector for Netscape/Sun web servers on
Unix (deprecated)

Note
The Redirector has been deprecated. In its place, use the Relay Server. See “The Relay
Server” on page 239.

The NSAPI Redirector is provided for the Sun Java System web server, which was previously known as Sun
One and the Netscape iPlanet Enterprise Edition web server.

For information about version support, see http://www.sybase.com/detail?id=1061837.

To use this Redirector on Windows, see “NSAPI Redirector for Netscape/Sun web servers on Windows
(deprecated)” on page 277.

To use the Redirector with Netscape/Sun web servers on other platforms, you can use the servlet Redirector.
See “Servlet Redirector (deprecated)” on page 284.

To configure the NSAPI Redirector

1. Complete the steps in “Configuring Redirector properties (for Redirectors that don't support server
groups)” on page 275.

2. If necessary, copy the file iaredirect.so to the computer that holds the web server. This file is located in
install-dir\MobiLink\redirector\web-server, where web-server is the name of your NSAPI web server.

3. Update the NSAPI web server configuration files magnus.conf and obj.conf as follows.

Sample file provided
Sample copies of magnus.conf and obj.conf are located in install-dir\MobiLink\redirector\web-server,
where web-server is the name of your NSAPI web server. You can use these sample files to confirm
where the following sections fit in to the file.

Update the following sections of the files magnus.conf and obj.conf.

● In magnus.conf, specify where iaredirect.so and redirector.config are located.

At the end of the Init section, add the following text, where location is the actual location of the files.
(iaredirect.so and redirector.config can be in different locations, although both must be on the same
computer as the web server.)

Solaris:
Init fn="load-modules" shlib="location/iaredirect.so"
funcs="redirector,initialize_redirector"
Init fn="initialize_redirector" configFile="location/redirector.config"

● In obj.conf, specify the name of the Redirector to be used in URLs.

At the beginning of the "default object" section, add the following text. This section should appear
exactly as provided below, except that you can change mlredirect to whatever you want. All requests
of the form http://host:port/mlredirect/ml/* are sent to one of the MobiLink servers running with the
Redirector.

Redirector (deprecated)

280 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.sybase.com/detail?id=1061837

<Object name=default>
NameTrans fn="assign-name" from="/mlredirect/ml/*" name="redirectToML"

● In obj.conf, specify the objects that are called by the Redirector. After the "default object" section,
add the following section:

<Object name="redirectToML">
Service fn="redirector" serverType="ml"
</Object>

Example
The following is an example of the section of magnus.conf that you need to customize.

Init fn="load-modules" shlib="location/iaredirect.so"
funcs="redirector,initialize_redirector"
Init fn=" initialize_redirector " configFile="location/redirector.config"

The following is an example of the sections of obj.conf that are important to the Redirector.

<Object name=default>
NameTrans fn="assign-name" from="/mlredirect/ml/*" name="redirectToML"
...
<Object name="redirectToML">
Service fn="redirector" serverType="ml"
</Object>

To test your configuration

1. Call the Redirector using the following syntax:

http://host:port/mlredirect/ml/
2. Check the log file to see if the Redirector logged a request.

Note: This test does not make a connection to the MobiLink server.

NSAPI Redirector for Netscape/Sun web servers on Unix (deprecated)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 281

ISAPI Redirector for Microsoft web servers
(deprecated)

Note
The Redirector has been deprecated. In its place, use the Relay Server. See “The Relay
Server” on page 239.

If you are using a Microsoft web server, you can use the ISAPI version of the Redirector.

For information about version support, see http://www.sybase.com/detail?id=1061837.

To configure ISAPI Redirector for Microsoft web servers

1. Complete the steps in “Configuring Redirector properties (for Redirectors that support server
groups)” on page 273.

2. Copy the file iaredirect.dll to Inetpub\scripts on the computer that holds the web server.

The file iaredirect.dll is located in install-dir\MobiLink\redirector\IIS5.

The directory Inetpub\scripts is in the Microsoft web server installation directory.

3. If your web server is on a separate computer from the Redirector, you must copy the following files to
that computer and ensure that they are in your path. What files you need depends on what, if any,
encryption you are using.

The following file locations are relative to install-dir:

Setup Files required

All ● bin32\dblgen11.dll1
● bin32\dbicu11.dll
● bin32\dbicudt11.dll

ECC encryption ● bin32\mlcecc11.dll

RSA encryption ● bin32\mlcrsa11.dll

RSA encryption with FIPS ● bin32\mlcrsafips11.dll
● bin32\sbgse2.dll

1 For German, Japanese, and Chinese editions, substitute en with de, ja, and zh, respectively.

For information about how to change the language, see “Understanding the locale language” [SQL
Anywhere Server - Database Administration].

Redirector (deprecated)

282 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.sybase.com/detail?id=1061837

Note
To test your configuration

1. Call the ISAPI Redirector using the following syntax:

protocol://host[:port]/exec_dir/iaredirect.dll/ml/

where:

● protocol is http or https.

● host is the host name of the web server.

● port is the port on which the web server is listening, if it is not the default port.

● exec_dir is the directory where you installed the Redirector DLL, iaredirect.dll. The default
directory is scripts.

For example,

http://server:8080/scripts/iaredirect.dll/ml/
2. Check the log file to see if the Redirector logged a request.

Note: This test does not make a connection to the MobiLink server.

3. If your configuration is not successful, check the following:

● The directory Inetpub\scripts should be created during the web server installation with execute
permissions.

● You can put your Redirector configuration file and iaredirect.dll in a different directory only if you
use Internet Information Services to give execute permissions to the directory.

● You must have a virtual directory that points to the Inetpub\scripts directory. If you do not, you must
open Internet Information Services and manually create a virtual directory. This virtual directory
should point to Inetpub\scripts and have Execute Permissions set to Scripts and Executables. See the
IIS online help for instructions.

ISAPI Redirector for Microsoft web servers (deprecated)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 283

Servlet Redirector (deprecated)
Note
The Redirector has been deprecated. In its place, use the Relay Server. See “The Relay
Server” on page 239.

The servlet Redirector is provided for web servers that support the Java servlet specification version 2.3 and
later. The following procedure is an example of how to set up the servlet Redirector for Tomcat version 5.5.9
and Apache 2.0.55.

For information about version support, see http://www.sybase.com/detail?id=1061837.

There is also a native Redirector for Apache web servers. For more information, see “Apache Redirector
(deprecated)” on page 287.

Overview

This section describes how to install the servlet version of the Redirector to work on an Apache web server
in conjunction with the Tomcat servlet container.

Installation requires the following steps:

To configure the servlet Redirector for Apache Tomcat

1. Complete the steps in “Configuring Redirector properties (for Redirectors that don't support server
groups)” on page 275.

2. Install the servlet version of the Redirector in Tomcat.

3. Configure the Apache web server to run as a proxy.

Install the servlet Redirector in Tomcat
In the following procedure, %CATALINA_HOME% is the root directory of your Tomcat installation.

To install the servlet Redirector in Tomcat

1. Install Tomcat as a standalone server.

2. Optionally, set the required Tomcat HTTP port.

Tomcat binds to port 8080 by default. If there is a conflict, perhaps because another web server is using
this port,

● Open the file: %CATALINA_HOME%/conf/server.xml.

● Search for 8080 (which is in a <Connector> tag).

● Change it to a port that is not in use.

3. Install the servlet Redirector as a web application.

● Copy iaredirect.war file to %CATALINA_HOME%/webapps.

Redirector (deprecated)

284 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.sybase.com/detail?id=1061837

● Shut down and restart Tomcat.

Tomcat expands the war file and creates the directory iaredirect for the Redirector web application.

● Edit the file %CATALINA_HOME%/webapps/iaredirect/WEB-INF/web.xml. Search for
redirector.config (in an <init-param> tag), and correct the path for the redirector.config file.

Change the entry redirector.config to read drive:/path/redirector.config. Even on
Windows operating systems, use a forward slash as a path separator, as in d:/redirector.config.

● Shut down and restart Tomcat for the changes to take effect.

Once the changes have taken effect, you no longer need the war file in the deployed location.

● The Redirector can now be invoked through the following URL:

http://tc-host:tc-port/iaredirect/ml/

where tc-host is the computer and tc-port the port on which Tomcat is listening.

Configure the Apache web server as a proxy
In the following procedure, %APACHE_HOME% is the root directory of your Apache installation.

To configure the Apache web server as a proxy

1. Install the Apache web server.

2. Optionally, change the Apache web server port:

● Edit the file %APACHE_HOME%/conf/httpd.conf and change the Port setting.

3. Configure Apache to run as a proxy:

In %APACHE_HOME%/conf/httpd.conf, add the following directives:

LoadModule proxy_module module-path/mod_proxy.so
LoadModule proxy_connect_module module-path/mod_proxy_connect.so
LoadModule proxy_http_module module-path/mod_proxy_http.so

where module-path is the location of the module. For example, the path may be modules/
mod_proxy.so (the default).

4. Configure Apache to forward Redirector URLs to Tomcat.

In %APACHE_HOME%/conf/httpd.conf, add the following directive so that Apache forwards URLs of
the form http://localhost/iaredirect/* to the Tomcat 5 Connector listening on port 8080:

ProxyPass /iaredirect http://localhost:8080/iaredirect

The port number must match the port number used for Tomcat. If Tomcat and Apache are not running
on the same computer, provide the computer name where Tomcat is running instead of localhost.

Verifying your setup
To check your configuration

1. Call the Redirector using the following syntax:

http://host:port/iaredirect/ml/

Servlet Redirector (deprecated)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 285

2. Check the log file to see if the Redirector logged a request.

Note: This test does not make a connection to the MobiLink server.

Redirector (deprecated)

286 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Apache Redirector (deprecated)
Note
The Redirector has been deprecated. In its place, use the Relay Server. See “The Relay
Server” on page 239.

The following setup instructions are written for the Apache web server.

For information about version support, see http://www.sybase.com/detail?id=1061837.

If you are using Tomcat, you can also use the servlet Redirector. For more information, see “Servlet
Redirector (deprecated)” on page 284.

To configure the Apache Redirector

1. Complete the steps in “Configuring Redirector properties (for Redirectors that don't support server
groups)” on page 275.

2. Copy the file mod_iaredirect.dll or mod_iaredirect.so to the appropriate directory in your web server,
as follows:

● For Apache on Windows, the file mod_iaredirect.dll is located in install-dir\MobiLink\redirector
\apache\v20\. Copy this file to the %apache-home%\modules directory on the computer that holds
the web server.

● For Apache for Solaris or Linux, the file mod_iaredirect.so is located in install-dir\MobiLink
\redirector\apache\v20\. Copy it to the $APACHE_HOME/modules directory on the computer that
holds the web server.

3. If your web server is on a separate computer from the Redirector, you must copy the following files to
that computer and ensure that they are in your path (Windows) or shared path (Unix). What files you
need depends on what, if any, encryption you are using.

The following file locations are relative to install-dir:

Setup Files required

ECC encryption ● Windows: bin32\mlcecc11.dll
● Unix: lib32/libmlcecc11_r.so

RSA encryption ● Windows: bin32\mlcrsa11.dll
● Unix: lib32/libmlcrsa11_r.so

RSA encryption with FIPS ● Windows: bin32\mlcrsafips11.dll and bin32\sbgse2.dll
● Unix: lib32/libmlcrsafips11_r.so and libsbgse2_r.so

4. Update the Apache web server configuration file httpd.conf as follows.

● In the LoadModule section, add the following line for Windows:

LoadModule iaredirect_module modules/mod_iaredirect.dll

Apache Redirector (deprecated)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 287

http://www.sybase.com/detail?id=1061837

or the following line for Solaris and Linux:

LoadModule iaredirect_module modules/mod_iaredirect.so
● Add the following section to the file:

<Location /iaredirect/ml>
 SetHandler iaredirect-handler
 iaredirectorConfigFile location/redirector.config
</Location>

where /iaredirect/ml is the relative URL path that you use to invoke the Redirector, and location is
the directory where redirector.config is located.

● If you are using Apache on Solaris or Linux, you may also want to add the following optional
directives to the <Location> section you just created:

○ MaxSyncUsers number The maximum number of MobiLink users synchronizing through
the Redirector. This number is used to allocate necessary resources to the Redirector. This number
cannot be less than 60. The default is 1000. Only change this setting if the default number of
users is less than the actual number.

○ ShmemDiagnosis on|off If set to on, debugging of the memory resource is allowed. The
default is off.

5. To help with debugging, you may want to increase the amount of logging information that the Redirector
outputs. To do this, modify the LogLevel directive in httpd.conf and set it to LogLevel info. The log
level can be (from most to least verbose): debug, info, notice, warn, error, crit, alert, and emerg.

Example
The following are examples of the sections of httpd.conf that configure the Apache web server to route
requests to the MobiLink server. This example works for Windows. For Unix and Linux, change
mod_iaredirect.dll to mod_iaredirect.so.

LoadModule iaredirect_module modules/mod_iaredirect.dll
...
<Location /iaredirect/ml>
 SetHandler iaredirect-handler
 iaredirectorConfigFile c:/redirector.config
</Location>

To test your configuration

1. Call the Redirector using the following syntax:

http://host:port/iaredirect/ml/

where iaredirect/ml is the relative URL path you specified in the <Location> tag of httpd.conf.

2. Check the log file to see if the Redirector logged a request. The default location of the log file is
$APACHE_HOME/logs/error.log.

Note: This test does not make a connection to the MobiLink server.

Redirector (deprecated)

288 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

M-Business Anywhere Redirector (deprecated)
Note
The Redirector has been deprecated. In its place, use the Relay Server. See “The Relay
Server” on page 239.

The following setup instructions are written for M-Business Anywhere on Windows, Solaris, or Linux.

For information about version support, see http://www.sybase.com/detail?id=1061837.

To configure the M-Business Anywhere Redirector

1. Complete the steps in “Configuring Redirector properties (for Redirectors that don't support server
groups)” on page 275.

2. Copy the file mod_iaredirect.dll or mod_iaredirect.so to the M-Business Anywhere \bin directory on
the computer that holds the web server. This file is located in install-dir\MobiLink\redirector
\MBusinessAnywhere.

3. If your web server is on a separate computer from the Redirector, you must copy the following files to
that computer and ensure that they are in your path (Windows) or shared path (Unix). The files you need
depends on what, if any, encryption you are using.

The following file locations are relative to install-dir:

Setup Files required

ECC encryption ● Windows: bin32\mlcecc11.dll
● Unix: lib32/libmlcecc11_r.so

RSA encryption ● Windows: bin32\mlcrsa11.dll
● Unix: lib32/libmlcrsa11_r.so

RSA encryption with FIPS ● Windows: bin32\mlcrsafips11.dll and bin32\sbgse2.dll
● Unix: lib32/libmlcrsafips11_r.so and libsbgse2_r.so

4. For Windows, update the M-Business Anywhere sync.conf.default web server configuration file as
follows:

● In the LoadModule section, add the following line:

LoadModule iaredirect_module @@ServerRoot@@/bin/mod_iaredirect.dll
● In the SyncLoadFile section, add the following line:

SyncLoadFile @@ServerRoot@@/bin/mod_iaredirect.dll
● Add the following section to the file:

<Location /iaredirect/ml>
 SetHandler iaredirect-handler
 iaredirectorConfigFile @@ServerRoot@@/conf/redirector.config
</Location>

M-Business Anywhere Redirector (deprecated)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 289

http://www.sybase.com/detail?id=1061837

● Run the setup_defaults.bat command file to build these changes into the sync.conf file.

5. For Solaris and Linux, update the M-Business Anywhere sync.conf web server configuration file as
follows:

● In the LoadModule section, add the following line:

LoadModule iaredirect_module path/bin/mod_iaredirect.so

where path is the location of the M-Business Anywhere bin directory.

● Add the following section to the file:

<Location /iaredirect/ml>
 SetHandler iaredirect-handler
 iaredirectorConfigFile location/redirector.config
</Location>

where /iaredirect/ml is the relative URL path that you use to invoke the Redirector, and location is
the directory where redirector.config is located.

● You may also want to add the following optional directives to the <Location> section you just created:

○ MaxSyncUsers n The maximum number of MobiLink users synchronizing through the
Redirector. This number is used to allocate necessary resources to the Redirector. This number
cannot be less than 60. The default is 1000. Only change this setting if the default number of
users is less than the actual number.

○ ShmemDiagnosis on|off If set to on, allows debugging of the memory resource. The default
is off.

6. To help with debugging, you may want to increase the amount of logging information that the Redirector
outputs. To do this, modify the LogLevel directive in sync.conf and set it to LogLevel info. The log level
can be (from most to least verbose): debug, info, notice, warn, error, crit, alert, and emerg.

7. Restart your M-Business Sync Server for the changes to take effect.

Example
The following are examples of sync.conf sections that configure the M-Business Anywhere web server to
route requests to the MobiLink server.

This example works on Windows:

LoadModule iaredirect_module "c:\program files\M-Business Anywhere/bin/
mod_iaredirect.dll"
...
SyncLoadFile "c:\program files\M-Business Anywhere/bin/mod_iaredirect.dll"
...
<Location \iaredirect\ml>
 SetHandler iaredirect-handler
 iaredirectorConfigFile "c:\AvantGoServer\conf/redirector.config"
</Location>

The following example works on Unix and Linux:

LoadModule iaredirect_module modules/mod_iaredirect.so
...
<Location /iaredirect/ml>
 SetHandler iaredirect-handler

Redirector (deprecated)

290 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 iaredirectorConfigFile "/redirector.config"
</Location>

To test your configuration

1. Call the Redirector using the following syntax:

http://host:port/iaredirect/ml/

where iaredirect is the path you specified in the <Location> tag of sync.conf.

2. Check the log files sync_access.log and sync_error.log to verify that the Redirector logged a request.

Note: This test does not make a connection to the MobiLink server.

M-Business Anywhere Redirector (deprecated)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 291

292

MobiLink file-based download

Contents
Introduction to file-based download ... 294
Setting up file-based download ... 295
Validation checks ... 298
File-based download examples ... 301

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 293

Introduction to file-based download
File-based download is an alternative way to download data to SQL Anywhere remote databases: downloads
can be distributed as files, enabling offline distribution of synchronization changes. This allows you to create
a file once and distribute it to many remote databases.

With file-based download, you can put download synchronization changes in a file and transfer it to SQL
Anywhere remote databases in any way a file can be transferred. For example, you can:

● broadcast the data by satellite multicast

● apply the update using Sybase Afaria

● email or FTP the file to users

You choose the users you want to receive the file. Full synchronization integrity is preserved in file-based
download, including conflict detection and resolution. You can ensure that the file is secure by applying
third-party encryption on the file.

When to use
File-based downloads are useful when a large amount of data changes on the consolidated database, but the
remote database does not update the data frequently or does not do any updates at all. For example, price
lists, product lists, and code tables.

File-based downloads are not useful when the downloaded data is updated frequently on the remote database
or when you are running frequent upload-only synchronizations. In these situations, the remote sites may be
unable to apply download files because of integrity checks that are performed when download files are
applied.

File-based downloads currently can be used only with SQL Anywhere remote databases.

Download-only publications
In most cases, you should use a download-only publication for your file-based download. Use a regular
publication only when you need to perform uploads with the same publication as you perform file-based
downloads.

See “Download-only publications” [MobiLink - Client Administration].

If you use a regular publication, file-based downloads cannot be used as the sole means of updating remote
databases. In that case you still need to regularly perform full synchronizations or upload-only
synchronizations. Full or upload-only synchronizations are required to advance log offsets and to maintain
the log file, which otherwise grows large and slows down synchronization. A full synchronization may also
be required to recover from errors.

MobiLink file-based download

294 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Setting up file-based download
The following steps provide an overview of the tasks required to set up file-based download, assuming that
you already have MobiLink synchronization set up.

In most cases, you should use a download-only publication with your file-based download. Use a regular
publication only when you need to do uploads with the same publication as you do file-based downloads.

Overview of setting up file-based download

1. Create a file-definition database.

See “Creating the file-definition database” on page 295.

2. At the consolidated database, create scripts with a new script version.

See “Changes at the consolidated database” on page 295.

3. Create a download file.

See “Creating the download file” on page 296.

4. Apply the download file.

See “Synchronizing new remotes” on page 296.

Other resources for getting started
● “File-based download examples” on page 301

Creating the file-definition database
To set up file-based download, you create a file-definition database. This is a SQL Anywhere database that
has the same synchronization tables and publications as your remote databases. It can be located anywhere.
This database contains no data or state information. It does not have to be backed up or maintained; in fact,
you can delete it and recreate it as needed.

The file-definition database must include the following:

● the same publications as the remote databases, the tables and columns used in the publication, the foreign
key relationships and constraints of those tables and columns, and the tables required by those foreign
key relationships.

● a MobiLink user name that identifies the group of remote databases that are to apply the download file.
You use this group MobiLink user name in your synchronization scripts to identify the group of remote
databases.

Changes at the consolidated database
On the consolidated database, create a new script version for your file-based download, and implement any
scripts required by your existing synchronization system into it. Upload scripts are not required. This script

Setting up file-based download

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 295

version is used only for file-based download. For this script version, all scripts that take MobiLink user
names as parameters, instead, take a MobiLink user name that refers to a group of remote databases. This
is the user name that is defined in the file-definition database.

For each script version that you have defined, implement a begin_publication script.

For timestamp-based downloads, implement a modify_last_download_timestamp script for each script
version. How you implement this script depends on how much data you intend to send in each download
file. For example, one approach is to use the earliest time that any user from the group last downloaded
successfully. Remember that the ml_username parameter passed to this script is actually the group name.

See also
● “Script versions” on page 324
● “begin_publication connection event” on page 380
● “modify_last_download_timestamp connection event” on page 463

Creating the download file
The download file contains the data to be synchronized. To create the download file, set up your file-
definition database and consolidated database as described above. Run dbmlsync with the -bc option and
supply a file name with the extension .df. For example,

dbmlsync -c "uid=DBA;pwd=sql;eng=fbdl_eng;dbf=fdef.db" -v+
 -e "sv=filebased" -bc file1.df

You can also choose to specify options when you create the download file:

● -be option Use -be to add a string to the download file that can be accessed at the remote database
using the sp_hook_dbmlsync_validate_download_file stored procedure.

See “-be option” [MobiLink - Client Administration] and “sp_hook_dbmlsync_validate_download_file”
[MobiLink - Client Administration].

● -bg option Use the -bg option to create a download file that can be used by remotes that have never
synchronized.

Synchronizing new remotes
If you want to apply a download file to a remote database that has never synchronized using MobiLink, then
before you apply the download file you need to either perform a normal synchronization on the remote
database or use the dbmlsync -bg option when creating the download file.

For timestamp-based synchronization, doing either of these two things causes the download of an initial
snapshot of the data. For both timestamp and snapshot based synchronization, this step sets the generation
number to the value that is generated by the begin_publication script on the consolidated database.

MobiLink file-based download

296 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Perform a normal synchronization
You can prepare a remote database to receive download files by performing a synchronization that does not
use a download file.

Use the -bg option
Alternatively, you can create a download file with the -bg option to use with remotes that haven't yet
synchronized. You apply this initial download file to prepare the remote database for file-based
synchronization.

● Snapshot downloads If you are performing snapshot downloads, then the initial download file just
needs to set the generation number. You may choose to include an initial snapshot of the data in this file,
but since each snapshot download contains all the data and does not depend on previous downloads, this
is not required.

For snapshot downloads, using the -bg option is straightforward. Just specify -bg in the dbmlsync
command line when you create the download file. You can use the same script version to create the initial
download file as you use for subsequent download files.

● Timestamp-based downloads If you are performing timestamp-based downloads, then the initial
download must set the generation number on the remote database and include a snapshot of the data.
With timestamp-based downloads, each download builds on previous ones. Each download file contains
a last download timestamp. All rows changed on the consolidated after the file's last download timestamp
are included in the file. To apply a file, a remote database must already have received all the changes
that occurred before the file's last download timestamp. This is confirmed by checking that the file's last
download timestamp is greater than or equal to the remote database's last download timestamp (the time
up to which the remote database has received all changes from the consolidated database).

Before a remote can apply its first normal download file, it must receive all data changed before that
file's last download timestamp and after January 1, 1900. The initial download file created with the -bg
option must contain this data. The easiest way to select this data is to create a separate script version that
uses the same download_cursor's as your normal file-based synchronization script version but does not
have a modify_last_download_timestamp script. If no modify_last_download_timestamp script is
defined, then the last download timestamp for a file-based download defaults to January 1, 1900.

If you apply download files built with the -bg option to remote databases that have already synchronized,
the -bg option causes the generation numbers on the remote database to be updated with the value on the
consolidated database at the time the download file was created. This defeats the purpose of generation
numbers, which is to prevent you from applying further file-based downloads until an upload has been
performed in situations such as when recovering a consolidated database that is lost or corrupted.

See “MobiLink generation numbers” on page 299.

Setting up file-based download

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 297

Validation checks
Before applying a download file to a remote database, dbmlsync does several things to ensure that the
synchronization is valid.

● dbmlsync checks the download file to ensure that the file-definition database that was used to create it
has:

○ the same publication as the remote database

○ the same tables and columns used in the publication

○ the same foreign key relationships and constraints as those tables and columns

● dbmlsync checks to see if there is any data in the publication that has not been uploaded from the remote.
If there is, the download file is not applied, because applying the download file could cause pending
upload data to be lost.

● dbmlsync checks the last download timestamp, next last download timestamp, and creation time of the
download file to ensure that:

○ newer data on the remote database is not overwritten by older data contained in the download file.

○ a download file is not applied if applying it means that the remote database would miss some changes
that have occurred on the consolidated database. This situation might occur if the remote did not
apply previous file-based downloads.

See “Automatic validation” on page 298.

● Optionally, dbmlsync checks the generation number in the remote database to ensure it matches the
generation number in the download file.

See “MobiLink generation numbers” on page 299.

● Optionally, you can create custom validation logic with the sp_hook_dbmlsync_validate_download_file
stored procedure.

For more information, see “Custom validation” on page 300.

Automatic validation
Before applying a download file, dbmlsync performs special checks on the last download timestamp, next
last download timestamp, download file creation time, and transaction log.

Last download timestamp and next last download timestamp
Each download file contains all changes to be downloaded that occurred on the consolidated database
between the file's last download timestamp, and its next last download timestamp. Both times are expressed
in terms of the time at the consolidated database. By default the file's last download time is Jan 1, 1900 12:00
AM and the file's next last download timestamp is the time the download file was created. These defaults
can be overridden by implementing the modify_last_download_timestamp and
modify_next_last_download_timestamp scripts on the consolidated database.

MobiLink file-based download

298 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

A remote site can apply a download file only if the file's last download timestamp is less than or equal to
the remote's last download timestamp. This ensures that a remote never misses operations that occur on the
consolidated database. Usually when a file-based download fails based on this check, the remote has missed
one or more download files. The situation can be corrected by applying the missing download files or by
performing a full or download-only synchronization.

In addition, a remote site can apply a download file only if the file's next last download timestamp is greater
than the remote's last download timestamp. The remote's last download timestamp is the time (at the
consolidated database) up to which the remote has received all changes that are to be downloaded. The
remote database's last download time is updated each time the remote successfully applies a download
(normal or file-based). This check ensures that a download file is not applied if more recent data has already
been downloaded. A common case where this could happen occurs when download files are applied out of
order. For example, suppose a download file F1.df is created, and another file F2.df is created later. This
check ensures that F1.df cannot be applied after F2.df, because that could allow newer data in F2.df to be
overwritten with older data in F1.df.

When a file-based download fails based on the next last download timestamp, no additional action is required
other than to delete the file. Synchronization succeeds once a new file is received.

Creation time
The download file's creation time indicates the time at the consolidated database when creation of the file
began. A download file can only be applied if the file's creation time is greater than the remote database's
last upload time. The remote's last upload time is the time at the consolidated database when the remote's
last successful upload was committed. This check ensures that data that has been uploaded after the creation
of the download (and is newer than the download) is not overwritten by older data in the download file.

When a download file is rejected based on this check, no action is required. The remote site should be able
to apply the next download file.

When an upload fails because dbmlsync did not receive an acknowledgement after sending an upload to the
MobiLink server, the remote database's last upload time may be incorrect. In this case, the creation time
check cannot be performed and the remote is unable to apply download files until it completes a normal
synchronization.

Transaction log
Before applying a download file, dbmlsync scans the remote database's transaction log and builds up a list
of all changes that must be uploaded. Dbmlsync only applies a download file if it does not contain any
operations that affect rows with changes that must be uploaded.

MobiLink generation numbers
Generation numbers provide a mechanism for forcing remote databases to upload data before applying any
more download files. This is especially useful when a problem on the consolidated database has resulted in
data loss and you must recover lost data from the remote databases.

On the remote database, a separate generation number is automatically maintained for each subscription. On
the consolidated database, the generation number for each subscription is determined by the

Validation checks

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 299

begin_publication script. Each time a remote performs a successful upload, it updates the remote generation
number with the value set by the begin_publication script in the consolidated database.

Each time a download file is created, the generation number set by the begin_publication script is stored in
the download file. A remote site only applies a download file if the generation number in the file is equal to
the generation number stored in the remote database.

Note
Whenever the generation number generated by the begin_publication script for a file-based download
changes, the remote databases must perform a successful upload before they can apply any new download
files.

The sp_hook_dbmlsync_validate_download_file stored procedure can be used to override the default
checking of the generation number.

For more information about managing MobiLink generation numbers, see:

● “begin_publication connection event” on page 380
● “end_publication connection event” on page 423
● “sp_hook_dbmlsync_validate_download_file” [MobiLink - Client Administration]

Custom validation
You can create custom validation logic to determine if a download file should be applied to a remote database.
You do this with the sp_hook_dbmlsync_validate_download_file stored procedure. With this stored
procedure, you can both reject a download file and override the default checking of the generation number.

You can use the dbmlsync -be option to embed a string in the file. You use the -be option against the file-
definition database when you create the download file This string is passed to the
sp_hook_dbmlsync_validate_download_file through the #hook_dict table, and can be used in your
validation logic.

For more information, see “sp_hook_dbmlsync_validate_download_file” [MobiLink - Client
Administration].

MobiLink file-based download

300 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

File-based download examples
This section contains two examples. Each sets up a file-based download synchronization using a consolidated
database with only one table. The first is a simple snapshot example and the second is a slightly more involved
timestamp-based example.

Snapshot example
This example implements file-based download for snapshot synchronization. It sets up the three databases
that are required by the file-based download, and then demonstrates how to download data. This example is
presented in such a way that you can either just read through it, or you can cut and paste the text to run the
sample.

Create databases for the sample
The following commands create the three databases used in the example: a consolidated database, a remote
database, and a file-definition database.

dbinit scons.db
dbinit sremote.db
dbinit sfdef.db

The following commands start the three databases and create a data source name for MobiLink to use to
connect to the consolidated database.

dbeng11 -n sfdef_eng sfdef.db
dbeng11 -n scons_eng scons.db
dbeng11 -n sremote_eng stremote.db
dbdsn -y -w fbd_demo -c "eng=scons_eng;dbf=scons.db;uid=DBA;
 pwd=sql;astart=off;astop=off"

Open Interactive SQL, connect to scons.db and run the MobiLink setup script. For example:

read "c:\Program Files\SQL Anywhere 11\MobiLink\setup\syncsa.sql"

Start the MobiLink server:

start mlsrv11 -v+ -c "dsn=fbd_demo" -zu+ -ot scons.txt

Set up the snapshot example consolidated database
In this example, the consolidated database has one table, called T1. After connecting to the consolidated
database, you can run the following SQL to create table T1:

CREATE TABLE T1 (
 pk INTEGER PRIMARY KEY,
 c1 INTEGER
);

The following code creates a script version called filebased and creates a download script for that script
version.

File-based download examples

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 301

CALL ml_add_table_script('filebased',
 'T1', 'download_cursor',
 'SELECT pk, c1 FROM T1');

The following code creates a script version called normal and creates upload and download scripts for that
script version.

CALL ml_add_table_script ('normal', 'T1',
 'upload_insert',
 'INSERT INTO T1 VALUES ({ml r.pk}, {ml r.c1})');
CALL ml_add_table_script('normal', 'T1',
 'upload_update',
 'UPDATE T1 SET c1 = {ml r.c1} WHERE pk = {ml r.pk} ');
CALL ml_add_table_script('normal', 'T1',
 'upload_delete',
 'DELETE FROM T1 WHERE pk = {ml r.pk}');
CALL ml_add_table_script('normal', 'T1',
 'download_cursor',
 'SELECT pk, c1 FROM T1');
COMMIT;

The following command creates the stored procedure begin_pub and specifies that begin_pub is the
begin_publication script for both the "normal" and "filebased" script versions:

CREATE PROCEDURE begin_pub (
 INOUT generation_num integer,
 IN username varchar(128),
 IN pubname varchar(128))
BEGIN
 SET generation_num=1;
END;
CALL ml_add_connection_script(
 'filebased',
 'begin_publication',
 '{ call begin_pub(
 {ml s.generation_number},
 {ml s.username},
 {ml s.publication_name}) }');
CALL ml_add_connection_script('normal',
 'begin_publication',
 '{ call begin_pub(
 {ml s.generation_number},
 {ml s.username},
 {ml s.publication_name}) }');

Create the snapshot example remote database
In this example, the remote database also contains one table, called T1. Connect to the remote database and
run the following SQL to create the table T1, a publication called P1, and a user called U1. The SQL also
creates a subscription for U1 to P1.

CREATE TABLE T1 (
 pk INTEGER PRIMARY KEY,
 c1 INTEGER
);

MobiLink file-based download

302 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

CREATE PUBLICATION P1 (
 TABLE T1
);
CREATE SYNCHRONIZATION USER U1;
CREATE SYNCHRONIZATION SUBSCRIPTION
TO P1
FOR U1;

The following code creates an sp_hook_dbmlsync_validate_download_file hook to implement user-defined
validation logic in the remote database:

CREATE PROCEDURE sp_hook_dbmlsync_validate_download_file()
BEGIN
 DECLARE udata varchar(256);
SELECT value
 INTO udata
 FROM #hook_dict
 WHERE name = 'user data';
 IF udata <> 'ok' THEN
 UPDATE #hook_dict
 SET value = 'FALSE'
 WHERE name = 'apply file';
 END IF;
END

Create the snapshot example file-definition database
A file-definition database is required in MobiLink systems that use file-based download. This database has
the same schema as the remote databases being updated by file-based download, and it contains no data or
state information. The file-definition database is used solely to define the structure of the data that is to be
included in the download file. One file-definition database can be used for many groups of remote databases,
each defined by its own MobiLink group user name.

The following code defines the file-definition database for this sample. It creates a schema that is identical
to the remote database, and also creates:

● a publication called P1 that publishes all rows of the T1 table. The same publication name must be used
in the file-definition database and the remote databases.

● a MobiLink user called G1. This user represents all the remotes that are to be updated in the file-based
download.

● a subscription to the publication.

You must connect to sfdef.db before running this code.

CREATE TABLE T1 (
 pk INTEGER PRIMARY KEY,
 c1 INTEGER
);
CREATE PUBLICATION P1 (
 TABLE T1
);
CREATE SYNCHRONIZATION USER G1;
CREATE SYNCHRONIZATION SUBSCRIPTION

File-based download examples

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 303

TO P1
FOR G1;

Prepare for initial synchronization
To prepare your new remote database so that you can apply a download file, you need to either perform a
normal synchronization or create the download file with the dbmlsync -bg option. This example shows you
how to initialize your new remote database by performing a normal synchronization.

You can perform an initial synchronization of the remote database with the script version called normal that
was created earlier:

dbmlsync -c "uid=DBA;pwd=sql;eng=sremote_eng;
 dbf=sremote.db" -v+ -e "sv=normal"

Demonstrate the snapshot example file-based download
Connect to the consolidated database and insert some data that is synchronized by file-based download, such
as the following:

INSERT INTO T1 VALUES(1, 1);
INSERT INTO T1 VALUES(2, 4);
INSERT INTO T1 VALUES(3, 9);
COMMIT;

The following command must be run on the computer that holds the file-definition database. It does the
following:

● The dbmlsync -bc option creates the download file, and names it file1.df.

● The -be option includes the string "OK" in the download file that is accessible to the
sp_dbmlsync_validate_download_file hook.

dbmlsync -c
 "uid=DBA;pwd=sql;eng=sfdef_eng;dbf=sfdef.db"
 -v+ -e "sv=filebased" -bc file1.df -be ok -ot fdef.txt

To apply the download file, run dbmlsync with the -ba option on the remote database, supplying the name
of the download file you want to apply:

dbmlsync -c "uid=DBA;pwd=sql;eng=sremote_eng;
 dbf=sremote.db" -v+ -ba file1.df -ot remote.txt

The changes are now applied to the remote database. Open Interactive SQL, connect to the remote database,
and run the following SQL statement to verify that the remote has the data:

SELECT * FROM T1

Clean up the snapshot example
The following commands stop all three database servers and erase the files.

del file1.df
mlstop -h -w
dbstop -y -c "eng=sfdef_eng; uid=DBA; pwd=sql"
dbstop -y -c "eng=scons_eng; uid=DBA; pwd=sql"
dbstop -y -c "eng=sremote_eng; uid=DBA; pwd=sql"
dberase -y sfdef.db

MobiLink file-based download

304 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

dberase -y scons.db
dberase -y sremote.db

Timestamp-based example
This example implements file-based download for timestamp-based synchronization. It sets up the three
databases and then demonstrates how to download data by file. This example is presented in such a way that
you can either just read through it, or you can cut and paste the text to run the sample.

Create databases for the sample
The following commands create the three databases used in the example: a consolidated database, a remote
database, and a file-definition database.

dbinit tcons.db
dbinit tremote.db
dbinit tfdef.db

The following commands start the three databases and create a data source name for MobiLink to use to
connect to the consolidated database.

dbeng11 -n tfdef_eng tfdef.db
dbeng11 -n tcons_eng tcons.db
dbeng11 -n tremote_eng tremote.db
dbdsn -y -w tfbd_demo -c "eng=tcons_eng;dbf=tcons.db;uid=DBA;
 pwd=sql;astart=off;astop=off"

Open Interactive SQL, connect to tcons.db and run the MobiLink setup script. For example:

read "c:\Program Files\SQL Anywhere 11\MobiLink\setup\syncsa.sql"

Start the MobiLink server:

start mlsrv11 -v+ -c "dsn=tfbd_demo" -zu+ -ot tcons.txt

Set up the timestamp example consolidated database
In this example, the consolidated database has one table, called T1. After connecting to the consolidated
database, you can run the following code to create T1:

CREATE TABLE T1 (
 pk INTEGER PRIMARY KEY,
 c1 INTEGER,
 last_modified TIMESTAMP DEFAULT TIMESTAMP
);

The following code defines a script version called normal with a minimal number of scripts. This script
version is used for synchronizations that do not use file-based download.

CALL ml_add_table_script('normal', 'T1',
 'upload_insert',
 'INSERT INTO T1(pk, c1) VALUES({ml r.pk}, {ml r.c1})');

CALL ml_add_table_script('normal', 'T1',
 'upload_update',
 'UPDATE T1 SET c1 = {ml r.c1} WHERE pk = {ml r.pk} ');
CALL ml_add_table_script('normal', 'T1',

File-based download examples

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 305

 'upload_delete',
 'DELETE FROM T1 WHERE pk = {ml r.pk}');
CALL ml_add_table_script('normal', 'T1',
 'download_cursor',
 'SELECT pk, c1 FROM T1
 WHERE last_modified >= {ml s.last_table_download}');

The following code sets the generation number for all subscriptions to 1. It is good practice to use generation
numbers in case your consolidated database ever becomes lost or corrupted and you need to force an upload.

CREATE PROCEDURE begin_pub (
 INOUT generation_num integer,
 IN username varchar(128),
 IN pubname varchar(128))
BEGIN
 SET generation_num = 1;
END;

CALL ml_add_connection_script('normal',
 'begin_publication',
 '{ call begin_pub(
 {ml s.generation_number},
 {ml s.username},
 {ml s.publication_name},
 {ml s.last_publication_upload},
 {ml s.last_publication_download}) }');

COMMIT;

The following code defines the script version called filebased. This script version is used to create file-based
download.

CALL ml_add_connection_script('filebased',
 'begin_publication',
 '{ call begin_pub(
 {ml s.generation_number},
 {ml s.username},
 {ml s.publication_name}) }');
CALL ml_add_table_script('filebased', 'T1',
 'download_cursor',
 'SELECT pk, c1 FROM T1
 WHERE last_modified >= {ml s.last_table_download}');

The following code sets the last download time so that all changes that occurred within the last five days are
included in download files. Any remote that has missed all the download files created in the last five days
have to perform a normal synchronization before being able to apply any more file-based downloads.

CREATE PROCEDURE ModifyLastDownloadTimestamp(
 INOUT last_download_timestamp TIMESTAMP,
 IN ml_username VARCHAR(128))
BEGIN
 SELECT dateadd(day, -5, CURRENT TIMESTAMP)
 INTO last_download_timestamp;
END;

CALL ml_add_connection_script('filebased',
 'modify_last_download_timestamp',
 'CALL ModifyLastDownloadTimestamp(
 {ml s.last_download}, {ml s.username})');

MobiLink file-based download

306 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

COMMIT;

Create the timestamp example remote database
In this example, the remote database also contains one table, called T1. After connecting to the remote
database, run the following code to create table T1, a publication called P1, and a user called U1. The code
also creates a subscription for U1 to P1.

CREATE TABLE T1 (
 pk INTEGER PRIMARY KEY,
 c1 INTEGER
);
CREATE PUBLICATION P1 (
 TABLE T1
);
CREATE SYNCHRONIZATION USER U1;
CREATE SYNCHRONIZATION SUBSCRIPTION
TO P1
FOR U1;

The following code defines an sp_hook_dbmlsync_validate_download_file stored procedure. This stored
procedure prevents the application of download files that do not have the string "ok" embedded in them.

CREATE PROCEDURE sp_hook_dbmlsync_validate_download_file()
BEGIN
 DECLARE udata varchar(256);

 SELECT value
 INTO udata
 FROM #hook_dict
 WHERE name = 'user data';

 IF udata <> 'ok' THEN
 UPDATE #hook_dict
 SET value = 'FALSE'
 WHERE name = 'apply file';
 END IF;
END

Create the timestamp example file-definition database
The following code defines the file-definition database for the timestamp example. It creates a table, a
publication, a user, and a subscription for the user to the publication.

CREATE TABLE T1 (
 pk INTEGER PRIMARY KEY,
 c1 INTEGER
);
CREATE PUBLICATION P1 (
 TABLE T1
);
CREATE SYNCHRONIZATION USER G1;
CREATE SYNCHRONIZATION SUBSCRIPTION
TO P1
FOR G1;

File-based download examples

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 307

Prepare for initial synchronization
To prepare your new remote database so that you can apply a download file, you need to either perform a
normal synchronization or create the download file with the dbmlsync -bg option. This example shows you
how to use -bg.

The following code defines a script version called filebased_init for the consolidated database. This script
version has a single begin_publication script.

CALL ml_add_table_script(
 'filebased_init', 'T1', 'download_cursor',
 'SELECT pk, c1 FROM T1');
CALL ml_add_connection_script(
 'filebased_init',
 'begin_publication',
 '{ call begin_pub(
 {ml s.generation_number},
 {ml s.username},
 {ml s.publication_name}) }');

COMMIT;

The following two command lines create and apply an initial download file using the script version called
filebased_init and the -bg option.

dbmlsync -c "uid=DBA;pwd=sql;eng=tfdef_eng;dbf=tfdef.db"
 -v+ -e "sv=filebased_init" -bc tfile1.df -be ok -bg
 -ot tfdef1.txt
dbmlsync -c "uid=DBA;pwd=sql;eng=tremote_eng;dbf=tremote.db"
 -v+ -ba tfile1.df -ot tremote.txt

Demonstrate the timestamp example file-based download
Connect to the consolidated database and insert some data that is synchronized by file-based download, such
as the following:

INSERT INTO T1(pk, c1) VALUES(1, 1);
INSERT INTO T1(pk, c1) VALUES(2, 4);
INSERT INTO T1(pk, c1) VALUES(3, 9);
commit;

The following command line creates a download file containing the new data.

dbmlsync -c
 "uid=DBA;pwd=sql;eng=tfdef_eng;dbf=tfdef.db"
 -v+ -e "sv=filebased" -bc tfile2.df -be ok -ot tfdef2.txt

The following command line applies the download file to the remote database.

dbmlsync -c "uid=DBA;pwd=sql;eng=tremote_eng;dbf=tremote.db"
 -v+ -ba tfile2.df -ot tfdef3.txt

The changes are now applied to the remote database. Open Interactive SQL, connect to the remote database,
and run the following SQL statement to verify that the remote has the data:

SELECT * FROM T1

MobiLink file-based download

308 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Clean up the timestamp example
The following commands stop all three database servers and then erase the files.

del tfile1.df
mlstop -h -w
dbstop -y -c "eng=tfdef_eng; uid=DBA; pwd=sql"
dbstop -y -c "eng=tcons_eng; uid=DBA; pwd=sql"
dbstop -y -c "eng=tremote_eng; uid=DBA; pwd=sql"
dberase -y tfdef.db
dberase -y tcons.db
dberase -y tremote.db

File-based download examples

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 309

310

MobiLink Events

This section describes how to write scripts for MobiLink events.

Writing synchronization scripts ... 313
Synchronization events ... 341

Writing synchronization scripts

Contents
Introduction to synchronization scripts .. 314
Scripts and the synchronization process ... 317
Script types .. 318
Script parameters .. 320
Script versions ... 324
Required scripts ... 326
Adding and deleting scripts ... 327
Writing scripts to upload rows .. 330
Writing scripts to download rows ... 333
Writing scripts to handle errors .. 338

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 313

Introduction to synchronization scripts
You control the synchronization process by writing synchronization scripts and storing or referencing them
in MobiLink system tables in the consolidated database. You can write scripts in SQL, Java, or .NET.

MobiLink synchronization logic is specified with synchronization scripts. Scripts define:

● how data that is uploaded from the remote database should be applied to the consolidated database

● what data should be downloaded from the consolidated database

Scripts can be individual statements or stored procedure calls. They are stored or referenced in your
consolidated database. To add scripts to the consolidated database, you can use Sybase Central or you can
use system procedures.

There should be no implicit or explicit commit or rollback in your SQL synchronization scripts or the
procedures or triggers that are called from your SQL synchronization scripts. COMMIT or ROLLBACK
statements within SQL scripts alter the transactional nature of the synchronization steps. If you use them,
MobiLink cannot guarantee the integrity of your data in the event of a failure.

During synchronization, the MobiLink server reads the scripts and executes them against the consolidated
database.

Writing synchronization scripts

314 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The synchronization process has multiple steps. A unique event identifies each step. You control the
synchronization process by writing scripts associated with some of these events. You write a script only
when some particular action must occur at a particular event. The MobiLink server executes each script
when its associated event occurs. If you do not define a script for a particular event, the MobiLink server
simply proceeds to the next step.

For example, one event is begin_upload_rows. You can write a script and associate it with this event. The
MobiLink server reads this script when it is first needed, and executes it during the upload phase of
synchronization. If you write no script, the MobiLink server proceeds immediately to the next step, which
is processing the uploaded rows.

Some scripts, called table scripts, are associated not only with an event, but also with a particular table in
the remote database. The MobiLink server performs some tasks on a table-by-table basis; for example,
downloading rows. You can have many scripts associated with the same event, but each with different
application tables. Alternatively, you can define many scripts for some application tables, but none for others.

For an overview of events, see “The synchronization process” [MobiLink - Getting Started].

For a description of every script you can write, see “Synchronization events” on page 341.

Introduction to synchronization scripts

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 315

You can write scripts in SQL, Java, or .NET. This chapter applies to all kinds of scripts, but focuses on how
to write synchronization scripts in SQL.

For a description and comparison of SQL, Java, and .NET, see “Options for writing server-side
synchronization logic” [MobiLink - Getting Started].

For information about writing scripts in .NET, see “Writing synchronization scripts
in .NET” on page 589.

For information about writing scripts in Java, see “Writing synchronization scripts in Java” on page 527.

For information about how to implement synchronization scripts, see “Synchronization
techniques” on page 127.

Simple synchronization script
MobiLink provides many events that you can exploit, but it is not mandatory to provide scripts for each
event. In a simple synchronization model, you may need only a few scripts.

Downloading all the rows from the table to each remote database synchronizes the ULProduct table in the
CustDB sample application. In this case, no additions are permitted at the remote databases. You can
implement this simple form of synchronization with a single script; in this case only one event has a script
associated with it.

The MobiLink event that controls the rows to be downloaded during each synchronization is named the
download_cursor event. Cursor scripts must contain SELECT statements. The MobiLink server uses these
queries to define a cursor. In the case of a download_cursor script, the cursor selects the rows to be
downloaded to one particular table in the remote database.

In the CustDB sample application, there is a single download_cursor script for the ULProduct table in the
sample application, which consists of the following query:

SELECT prod_id, price, prod_name
FROM ULProduct

This query generates a result set. The rows that make up this result set are downloaded to the client. In this
case, all the rows of the table are downloaded.

The MobiLink server knows to send the rows to the ULProduct application table because this script is
associated with both the download_cursor event and ULProduct table by the way it is stored in the
consolidated database. Sybase Central allows you to make these associations.

In this example, the query selects data from a consolidated table also named ULProduct. The names need
not match. You could, instead, download data to the ULProduct application table from any table, or any
combination of tables, in the consolidated database by rewriting the query.

You can write more complicated synchronization scripts. For example, you could write a script that
downloads only recently modified rows, or one that provides different information to each remote database.

Writing synchronization scripts

316 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Scripts and the synchronization process
Each script corresponds to a particular event in the synchronization process. You write a script only when
some action must occur. All unnecessary events can be left undefined.

The two principal parts of the process are the processing of uploaded information and the preparation of
rows for downloading.

The MobiLink server reads and prepares each script once, when it is first needed. The script is then executed
whenever the event is invoked.

The sequence of events
For information about the full sequence of MobiLink events, see “Overview of MobiLink
events” on page 343.

For the details of upload processing, see “Writing scripts to upload rows” on page 330.

For the details of download processing, see “Writing scripts to download rows” on page 333.

Notes
● MobiLink technology allows multiple clients to synchronize concurrently. In this case, each client uses

a separate connection to the consolidated database.

● The begin_connection and end_connection events are independent of any one synchronization as one
connection can handle many synchronization requests. These scripts have no parameters. These are
examples of connection-level scripts.

● Some events are invoked only once for each synchronization and have a single parameter. This parameter
is the user name, which uniquely identifies the MobiLink client that is synchronizing. These are also
examples of connection-level scripts.

● Some events are invoked once for each table being synchronized. Scripts associated with these events
are called table-level scripts. They provide two parameters. The first is the user name supplied in the call
to the synchronization function, and the second is the name of the table in the remote database being
synchronized.

While each table can have its own table scripts, you can also write table-level scripts that are shared by
several tables.

● Some events, such as begin_synchronization, occur at both the connection level and the table level. You
can supply both connection and table scripts for these events.

● The COMMIT statements illustrate how the synchronization process is broken up into distinct
transactions.

● Errors are a separate event that can occur at any point within the synchronization process. Errors are
handled using the following script.

handle_error(error_code, error_message, user_name, table_name)

For reference material, including details about each script and its parameters, see “Synchronization
events” on page 341.

Scripts and the synchronization process

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 317

Script types
Synchronization scripts can apply to the entire connection or to specific tables.

● connection-level scripts These scripts perform actions that are connection-specific or
synchronization-specific and that are independent of any one remote table. These scripts are used in
conjunction with other scripts when implementing more complex synchronization schemes.

See “Connection scripts” on page 318.

● table-level scripts These scripts perform actions specific to one synchronization and one particular
remote table. These scripts are used in conjunction with other scripts when implementing more complex
synchronization schemes such as conflict resolution.

See “Table scripts” on page 318.

Connection scripts
Connection-level scripts control high level events that are not associated with a particular table. Use these
events to perform global tasks that are required during every synchronization.

Connection scripts control actions centered on connecting and disconnecting, and synchronization-level
event actions such as beginning and ending the upload or download process. Some connection scripts have
related table scripts. These connection scripts are always invoked regardless of the tables being synchronized.

You only need to write a connection-level script when some action must occur at a particular event. You
may need to create scripts for only a few events. The default action at any event is for the MobiLink server
to perform no actions. Some simple synchronization schemes need no connection scripts.

ml_global script version
To save you from defining the same scripts multiple times, you can define connection-level scripts once and
then re-use them. You do this by defining a script version called ml_global.

See “ml_global script version” on page 325.

Table scripts
Table scripts allow actions at specific events relating to the synchronization of a specific table, such as the
start or end of uploading rows, resolving conflicts, or selecting rows to download.

The synchronization scripts for a given table can refer to any table (or a combination of tables) in the
consolidated database. You can use this feature to fill a particular remote table with data stored in one or
more consolidated tables, or to store data uploaded from a single remote table into multiple tables in the
consolidated database.

Writing synchronization scripts

318 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Table names need not match
The names of tables in the remote databases need not match the names of the tables in the consolidated
database. The MobiLink server determines which scripts are associated with a table by looking up the remote
table name in the ml_table system table.

Script types

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 319

Script parameters
Most synchronization scripts can receive parameters from the MobiLink server. For details about the
parameters you can use in each script, see “Synchronization events” on page 341.

You can specify parameters in your SQL scripts in one of two ways:

● question marks

● named script parameters

Script parameters represented by question marks
Representing parameters with question marks is an ODBC convention. To use question marks in your
MobiLink SQL scripts, place a single question mark in your script for each parameter. The MobiLink server
replaces each question mark with the value of a parameter. It substitutes values in the order the parameters
appear in the script definition.

The parameters must be in the order specified in “Synchronization events” on page 341. Some parameters
are optional. A parameter is optional only if no subsequent parameters are specified. For example, you must
use parameter 1 if you want to use parameter 2.

Named script parameters
MobiLink provides named parameters that you can use instead of question marks in your scripts. Named
parameters have the following advantages:

● Named parameters allow you to specify any subset of the available parameters in any order.

● With the exception of in/out parameters, you can specify the same named parameter more than once
within a script.

● When you use named parameters, you can specify the remote ID in your scripts. This is the only way to
specify the remote ID in scripts.

● You can create your own named parameters. See “User-defined named parameters” on page 322.

You cannot mix named parameters and question marks in a single script.

There are four types of MobiLink named parameters. To specify a named parameter, you must prefix it with
its type, as follows:

Type of named parameter Prefix Examples

System parameters. s. {ml s.remote_id}

Row parameters. (The col-
umn name. If the column
contains spaces, enclose it
in double quotes or square
brackets.)

r. {ml r.cust_id}

{ml r."Column name"}

Writing synchronization scripts

320 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Type of named parameter Prefix Examples

Old row parameters. (Only
used in upload_update
scripts to specify the pre-
image column values. If the
column name contains
spaces, enclose it in double
quotes or square brackets.)

o. {ml o.cust_name}

{ml o."Column name"}

Authentication parameters.
See “Authentication param-
eters” on page 323.

a. {ml a.1}

User-defined parameters.
See “User-defined named
parameters” on page 322.

ui. {ml ui.varname}

To reference a script parameter by name, enclose the parameter in curly braces and prefix it with ml, as in
{ml parameter }. For example, {ml s.action_code}. The curly brace notation is an ODBC convention.

For convenience, you can enclose a larger section of code in the curly braces, as long as the section of code
does not contain any schema names with the same name as a MobiLink script parameter. For example, both
of the following upload_insert scripts are valid and equivalent:

INSERT INTO t (id, c0) VALUES({ml r.id}, {ml r.c0})

and

{ml INSERT INTO t (id, c0) VALUES(r.id, r.c0) }

Note
To use named row parameters when the columns in your remote database were not generated by the MobiLink
Create Synchronization Model Wizard, you need to use the ml_add_column system procedure to store
column information in the consolidated database. See “ml_add_column system procedure” on page 666.

Commenting script parameters
The following forms of comments are recognized:

● Double hyphen prefix (--)

● Double forward slash prefix (//)

● Block commenting (/* */)

The first two forms cause the script text to be ignored until the end of a line. The third form causes all script
text between the /* prefix and the */suffix to be ignored. Block commenting cannot be nested.

Any other type of vendor-specific comment is not recognized and should not be used to comment references
to a named parameter.

Script parameters

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 321

User-defined named parameters
You can also define your own parameters. These are especially useful for RDBMSs that don't allow user-
defined variables.

User-defined parameters are defined (and set to null) when first referenced. They must start with ui and a
period (ui.). A user-defined parameter lasts for one synchronization—it is set to null at the start of every
synchronization. User-defined parameters are in/out.

A typical use of user-defined parameters is to access state information without having to store it in a table
(requiring potentially complex joins).

Example
For example, assume you create a stored procedure called MyCustomProc that sets a variable called var1 to
custom_value:

CREATE PROCEDURE MyCustomProc(
 IN username (VARCHAR 128), INOUT var1 (VARCHAR 128)
)
begin
 SET var1 = 'custom_value';
end

The following begin_connection script defines the user-defined parameter var1 and sets the value to
custom_value:

CALL ml_add_connection_script (
 'version1',
 'begin_synchronization',
 '{call MyCustomProc({ml s.username}, {ml ui.var1})}');

The following begin_upload script references var1, whose value is custom_value:

CALL ml_add_connection_script (
 'version1',
 'begin_upload',
 'update SomeTable set some_column = 123 where some_other_column = {ml
ui.var1}');

Assume you have another stored procedure called MyPFDProc that defines its first parameter to in/out. The
following prepare_for_download script changes the value of var1 to pfd_value:

CALL ml_add_connection_script (
 'version1',
 'prepare_for_download',
 '{call MyPFDProc({ml ui.var1})}');

The following begin_download script references var1, whose value is now pfd_value:

CALL ml_add_connection_script (
 'version1',
 'begin_download',
 'insert into SomeTable values({ml s.username}, {ml ui.var1})');

Writing synchronization scripts

322 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Authentication parameters
In MobiLink scripts, authentication parameters are named parameters that are prefaced with the letter a, such
as {ml a.1}. The parameters must be numbers starting at 1, with a limit of 255. The values are sent up from
MobiLink clients.

When used in the authenticate_* scripts, authentication parameters pass authentication information.

Authentication parameters can be used in all other events (except begin_connection and end_connection) to
pass information from MobiLink clients. This technique is a convenient way to do something that you could
otherwise do by creating and populating a table.

On SQL Anywhere remotes, you pass the information with the dbmlsync -ap option. On UltraLite remotes,
you pass the information with auth_parms and num_auth_parms.

See also
● “Script parameters” on page 320
● dbmlsync: “-ap option” [MobiLink - Client Administration]
● UltraLite: “Authentication Parameters synchronization parameter” [UltraLite - Database Management

and Reference] and “Number of Authentication Parameters parameter” [UltraLite - Database
Management and Reference]

Example
For UltraLite remote databases, pass the parameters using the num_auth_parms and auth_parms fields in
the ul_synch_info struct. num_auth_parms is a count of the number of parameters, from 0 to 255. auth_parms
is a pointer to an array of strings. To prevent the strings from being viewed as plain text, the strings are sent
in the same way as passwords. If num_auth_parms is 0, set auth_parms to null. The following is an example
of passing parameters in UltraLite:

ul_char * Params[3] = { UL_TEXT("param1"),
 UL_TEXT("param2"), UL_TEXT("param3") };
...
info.num_auth_parms = 3;
info.auth_parms = Params;

For SQL Anywhere remote databases, you pass authentication parameters using the dbmlsync -ap option,
in a comma-separated list. For example, the following command line passes three parameters:

dbmlsync -ap "param1,param2,param3"

On the server, you reference the scripts in the order in which they were sent up. In this example, the
authenticate_parameters script could be:

CALL my_auth_parm (
 {ml s.authentication_status},
 {ml s.remote_id},
 {ml s.username},
 {ml a.1},
 {ml a.2},
 {ml a.3}
)

Script parameters

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 323

Script versions
Scripts are organized into groups called script versions. By specifying a particular version, MobiLink clients
can select which set of synchronization scripts are used to process the upload and prepare the download.

For information about how to add a script version to the consolidated database, see “Adding a script
version” on page 325.

Application of script versions
Script versions allow you to organize your scripts into sets, which are run under different circumstances.
This ability provides flexibility and is especially useful in the following circumstances:

● Customizing applications Using a different set of scripts to process information from different
types of remote users. For example, you could write a different set of scripts for use when managers
synchronize their databases than would be used for other people in the organization. Although you could
achieve the same functionality with one set of scripts, these scripts would be more complicated.

● Upgrading applications When you want to upgrade a database application, new scripts may be
needed because the new version of your application may handle data differently. New scripts are almost
always necessary when the remote database changes. It is usually impossible to upgrade all users
simultaneously. MobiLink clients can request that a new set of scripts be used during synchronization.
Since both old and new scripts can coexist on the server, all users can synchronize no matter which
version of your application they are using.

● Maintaining multiple applications A single MobiLink server may need to synchronize two entirely
different applications. For example, some employees may use a sales application, whereas others require
an application designed for inventory control. When two applications require different sets of data, you
can create two versions of the synchronization scripts, one version for each application.

● Setting properties for the script version You can set properties for your script version that can
be referenced from classes in .NET or Java synchronization logic. See “ml_add_property system
procedure” on page 677.

Assigning version names
A script version name is a string. You specify this name when you add a script to the consolidated database.
For example, if you add your scripts with the ml_add_connection_script and the ml_add_table_script stored
procedures, the script version name is the first parameter. Alternatively, if you add your scripts using Sybase
Central, you are prompted for the version name.

You cannot use the following names for script versions: ml_sis_1 or ml_qa_1. These names are used
internally by MobiLink.

Caution
It is strongly recommended that your script version names do not start with ml_. Script versions starting
with ml_ are reserved for internal use.

Specifying a version for a synchronization
If no script version is specified at the remote site when synchronization is initiated, the synchronization fails.

Writing synchronization scripts

324 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ml_global script version

You can create a script version called ml_global that is used differently from other script versions. If you
create a script version called ml_global, you define it once and then the connection scripts associated with
are automatically used in all synchronizations. You never explicitly specify ml_global as a script version.

If you define a script in the ml_global script version and then you define a script for the same event in the
script version that you specify for the synchronization, the specified script version is used. Scripts in the
ml_global script version are only used if they are not defined in the primary script version that is being
synchronized.

The ml_global script version can only contain connection-level scripts. It is not required, and may not be
useful if you are using only one script version.

Adding a script version
All scripts are associated with a script version. When working in Sybase Central Admin mode, you must
add a version name to your consolidated database before you can add any connection scripts. When adding
scripts with system procedures, a new version name is automatically added with the script. In Sybase Central
Model mode, only one script version is allowed and it is by default given the same name as the model.

See “Script versions” on page 324.

To add a script version to a database (Sybase Central Admin mode)

1. In Sybase Central, choose Connections » Connect With MobiLink 11 and connect to the consolidated
database.

2. Right-click the Versions folder and choose File » New » Version.

3. Follow the instructions in the Create Script Version Wizard.

To remove a script version from a database (Sybase Central Admin mode)

1. In Sybase Central, choose Connections » Connect With MobiLink 11 and connect to the consolidated
database.

2. Click the Versions folder.

3. In the right pane, right-click the version name and select Delete.

4. Click Yes.

To add a script version to a database (system procedures)

● You can add a script version in the same operation as adding a connection script or table script.

For more information, see “System procedures to add or delete scripts” on page 664.

Script versions

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 325

Required scripts
When you run the MobiLink server, certain scripts are required. Which scripts are required is determined
by whether you are doing a bi-directional, upload-only, or download-only synchronization.

For bi-directional or upload-only synchronization, MobiLink requires at least one of the following table
scripts:

● upload_delete
● upload_insert
● upload_new_row_insert
● upload_old_row_insert
● upload_update
● Or, if you are processing the upload by direct row handling, MobiLink requires a script for the

handle_UploadData connection event.

For bi-directional or download-only synchronization, MobiLink expects every table in the synchronization
to have a download table script (download_cursor or download_delete_cursor). Or, if you are processing
the download by direct row handling, MobiLink requires that you specify a handle_DownloadData
connection script. Note that this script can be empty and you can process the download in any other event.

By default, if a required script is missing the synchronization aborts. You can override this behavior using
the MobiLink server -fr option.

See “-fr option” on page 70.

Writing synchronization scripts

326 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Adding and deleting scripts
When you use the Create Synchronization Model Wizard, scripts are automatically added to the
consolidated database when you deploy the model.

When you create synchronization scripts outside Sybase Central Model mode, you must add them to
MobiLink system tables in the consolidated database. In the case of SQL scripts, the entire script is saved
in the MobiLink system table. In the case of Java or .NET scripts, the method name is registered in the system
table. The method for storing scripts and method names is similar.

See “MobiLink server system tables” on page 693.

If you are using Sybase Central, you must add a synchronization version to the database before you can add
individual scripts. See “Adding a script version” on page 325.

To add a connection script (Sybase Central Admin mode)

1. Choose Connections » Connect With MobiLink 11 and connect to the consolidated database.

2. Right-click Connection Scripts and choose New » Connection Script.

3. Follow the instructions in the Create Connection Script Wizard.

To delete a connection script (Sybase Central Admin mode)

1. Choose Connections » Connect With MobiLink 11 and connect to the consolidated database.

2. Expand Connection Scripts.

3. Right-click a connection script and choose Delete.

4. Click Yes.

To add a table script (Sybase Central Admin mode)

1. Choose Connections » Connect With MobiLink 11 and connect to the consolidated database.

2. Expand Synchronized Tables.

3. Right-click the table and choose New » Table Script.

4. Follow the instructions in the Create Table Script Wizard.

To delete a table script (Sybase Central Admin mode)

1. Choose Connections » Connect With MobiLink 11 and connect to the consolidated database.

2. Expand Synchronized Tables.

3. Expand the table.

4. Right-click the table script and choose Delete.

5. Click Yes.

Adding and deleting scripts

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 327

To add or delete all types of scripts (system procedures)

● You can add scripts to a consolidated database or delete scripts from a consolidated database using stored
procedures that are installed when you set up your consolidated database.

For a description of the stored procedures that you can use to add or delete scripts, see:

● “ml_add_connection_script system procedure” on page 667
● “ml_add_table_script system procedure” on page 680
● “ml_add_dnet_connection_script system procedure” on page 668
● “ml_add_dnet_table_script system procedure” on page 669
● “ml_add_java_connection_script system procedure” on page 671
● “ml_add_java_table_script system procedure” on page 672

Direct inserts of scripts
In most cases, it is recommended that you use stored procedures or Sybase Central to insert scripts into the
system tables. However, in some rare cases you may need to use an INSERT statement to directly insert the
scripts. For example, older versions of some RDBMSs may have length limitations that make it difficult to
use stored procedures.

For a complete description of the MobiLink system tables, see “MobiLink server system
tables” on page 693.

The format of the INSERT statements that are required to directly insert scripts can be found in the source
code for the ml_add_connection_script and ml_add_table_script stored procedures. The source code for
these stored procedures is located in the MobiLink setup scripts. There is a different setup script for each
supported RDBMS. The setup scripts are all located in install-dir\MobiLink\setup and are called:

Consolidated database Setup file

Adaptive Server Enterprise syncase.sql

IBM DB2 mainframe syncd2m.sql or syncd2m_jcl.sql

IBM DB2 LUW syncdb2.sql

Microsoft SQL Server syncmss.sql

MySQL syncmys.sql

Oracle syncora.sql

SQL Anywhere syncsa.sql

Writing synchronization scripts

328 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Ignoring scripts
If an upload stream contains insert, update, or delete data for a table that has no upload_insert, upload_update,
and upload_delete script in the consolidated database, or if there is no download script (download_cursor
and download_delete_cursor scripts) for the table, then the MobiLink server would either:

● complain about the missed scripts and abort the synchronization, if the MobiLink server was not started
with -fr

● show messages to warn the users about data inconsistency, if the MobiLink server was started with -fr

The warning messages can be suppressed with the -zwd MobiLink server command option, however, this
option suppresses the warning messages for all the synchronization tables.

Now, the MobiLink server treats any connection and table scripts that contain the prefix --{ml_ignore}
differently. The MobiLink server recognizes these scripts as intentionally ignored scripts. More precisely,
if an upload stream contains insert, update, or delete data for a synchronization table that has upload_insert,
upload_update, or upload_delete script with the prefix --{ml_ignore}, the MobiLink server does not execute
these scripts against the consolidated database and continues the synchronization without showing any error
or warning messages, regardless of whether the server was started with or without the -fr option.

This logic will apply to downloads too. However, the MobiLink server aborts the synchronization or shows
warning messages if the upload stream contains delete (insert or update) data for a synchronization table
that has no intentionally ignored or actual upload_delete (upload_insert or upload_update) scripts, even if
there are intentionally ignored or actual upload_insert and upload_update scripts for this table.

Adding and deleting scripts

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 329

Writing scripts to upload rows
To inform the MobiLink server on how to process the upload stream data received from the remote databases,
you define upload scripts. You write separate scripts to handle rows that are updated, inserted, or deleted at
the remote database. A simple implementation would perform corresponding actions (update, insert, delete)
at the consolidated database.

The MobiLink server uploads data in a single transaction. For a description of the upload process, see “Events
during upload” on page 349.

For techniques for uploading rows in .NET synchronization logic, see “Uploading or downloading
rows” on page 600.

Notes
● The begin_upload and end_upload scripts for each remote table hold logic that is independent of the

individual rows being updated.

● The upload consists of single row inserts, updates, and deletes. These actions are typically performed
using upload_insert, upload_update, and upload_delete scripts.

● To prepare the upload for SQL Anywhere clients, the dbmlsync utility requires access to all transaction
logs written since the last successful synchronization. See “Transaction log files” [MobiLink - Client
Administration].

● When synchronizing a remote database using MobiLink client version 9.0 or earlier, or when using
question marks instead of named parameters as placeholders in upload_insert, upload_new_row_insert,
or upload_old_row_insert events, the MobiLink server uses the column order of the table as it is defined
in the remote database. The column order in the event statement must match the column order as it is
defined in the remote database but table and column names in the consolidated database can be different
from those in the remote database.

The following is an INSERT statement used only when emp_name is defined before emp_id in the remote
database.

INSERT INTO emp (emp_name, emp_id)
VALUES (?, ?);

Writing upload_insert scripts
The MobiLink server uses this event during processing of the upload to handle rows inserted into the remote
database.

The following is an INSERT statement used in an upload_insert script.

INSERT INTO emp (emp_id, emp_name)
VALUES ({ ml r.emp_id }, { ml r.emp_name });

Notes
● The upload_new_row_insert and upload_old_row_insert events accept remote_id and user_name as

extra parameters. These parameters must appear prior to the full column list of the table.

Writing synchronization scripts

330 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “Writing scripts to upload rows” on page 330
● “upload_insert table event” on page 504

Writing upload_update scripts
The MobiLink server uses this event during processing of the upload to handle rows updated at the remote
database. The following UPDATE statement illustrates the use of the upload_update statement.

UPDATE emp
SET emp_name = {ml r.emp_name}
WHERE emp_id = {ml o.emp_id};

Notes
● When synchronizing a remote database using MobiLink client version 9.0 or earlier, or when using

question marks instead of named parameters as placeholders, the number of parameters can be equal to
one of the following:

○ The number of non-primary key columns + primary key columns.

○ 2 * (the number of non-primary key columns + primary key columns).

The column order must consist of non-primary key columns first, followed by one of the following:

○ The primary key columns.

○ All the columns.

See also
● “Writing scripts to upload rows” on page 330
● “upload_update table event” on page 522

Writing upload_delete scripts
The MobiLink server uses this event during processing of the upload to handle rows deleted from the remote
database. The following statement shows how to use the upload_delete statement.

DELETE FROM emp
WHERE emp_id = {ml r.emp_id};

Notes
● When synchronizing a remote database using MobiLink client version 9.0 or earlier, or when using

question marks instead of named parameters as placeholders, the number of parameters must be equal
to one of the following:

○ The number of primary key columns.

○ The number of all columns.

Writing scripts to upload rows

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 331

See also
● “Writing scripts to upload rows” on page 330
● “upload_delete table event” on page 498

Writing upload_fetch scripts
The upload_fetch script is a SELECT statement that defines a cursor in the consolidated database table. This
cursor is used to compare the old values of updated rows, as received from the remote database, against the
value in the consolidated database. In this way, the upload_fetch script identifies conflicts when updates are
being processed.

Given a synchronized table defined as:

CREATE TABLE uf_example (
 pk1 integer NOT NULL,
 pk2 integer NOT NULL,
 val varchar(200),
 PRIMARY KEY(pk1, pk2));

Then one possible upload_fetch script for this table is:

SELECT pk1, pk2, val
FROM uf_example
WHERE pk1 = {ml r.pk1} and pk2 = {ml r.pk2}

See “upload_fetch table event” on page 500.

The MobiLink server requires the WHERE clause of the query in the upload_fetch script to identify exactly
one row in the consolidated database to be checked for conflicts.

Writing synchronization scripts

332 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Writing scripts to download rows
There are two scripts that can be used for processing each table during the download transaction. These are
the download_cursor script, which performs inserts and updates, and the download_delete_cursor script,
which performs deletes.

These scripts are either SELECT statements or calls to procedures that return result sets. The MobiLink
server downloads the result set of the script to the remote database. The MobiLink client automatically inserts
or updates rows based on the download_cursor script result set, and deletes rows based on the
download_delete_cursor event.

For more information about using stored procedures, see “Downloading a result set from a stored procedure
call” on page 162.

The MobiLink server downloads data in a single transaction. For a description of the download process, see
“Events during download” on page 351.

Notes
● Like the upload, the download starts and ends with connection events. Other events are table-level events.

● If you change the SendDownloadAck setting to ON, the server behavior depends on the download
acknowledgement mode you are using. For blocking download acknowledgement, if no confirmation of
the download is received from the client, the entire download transaction is rolled back in the consolidated
database. For non-blocking download acknowledgement, the download transaction is committed but the
download timestamp update and acknowledgement scripts are not executed until the acknowledgement
is received.

By default, SendDownloadAck is set to OFF.

See “SendDownloadACK (sa) extended option” [MobiLink - Client Administration], “Send Download
Acknowledgement synchronization parameter” [UltraLite - Database Management and Reference], “-
nba option” on page 74, “nonblocking_download_ack connection event” on page 471 and
“publication_nonblocking_download_ack connection event” on page 475.

● The begin_download and end_download scripts for each remote table hold logic that is independent of
the individual rows being updated.

● For timestamp-based downloads, you specify the last_download_timestamp parameter to ensure that
only changes since the last synchronization are downloaded. For example, the download_cursor or
download_delete_cursor SQL script could include the line:

WHERE Customer.last_modified >= {ml s.last_table_download}

See “Using last download times in scripts” on page 130.

● The download does not distinguish between inserts and updates. The script associated with the
download_cursor event is a SELECT statement that defines the rows to be downloaded. The client detects
whether the row exists or not and then it performs the appropriate insert or update operation.

● At the end of the download processing, the client automatically deletes rows if necessary to avoid
referential integrity violations.

Writing scripts to download rows

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 333

Caution
Do not synchronize shadow tables that were created by previous deployments (for example, tables ending
with _mod or _del should not be synchronized). These tables are only needed by the consolidated database
to track modified or deleted rows.

See “Referential integrity and synchronization” [MobiLink - Getting Started].

Writing download_cursor scripts
You write download_cursor scripts to download information from the consolidated database to your remote
database. You must write one of these scripts for each table in the remote database for which you want to
download changes. You can use other scripts to customize the download process, but no others are necessary.

● Each download_cursor script must contain a SELECT statement or a call to a procedure that contains a
SELECT statement. The MobiLink server uses this statement to define a cursor in the consolidated
database.

● The script must select all columns that correspond to the columns in the corresponding table in the remote
database. The columns in the consolidated database can have different names than the corresponding
columns in the remote database, but they must be of compatible types.

Example
The following script could serve as a download_cursor script for a remote table that holds employee
information. The MobiLink server would use this SQL statement to define the download cursor. This script
downloads information about all the employees.

SELECT emp_id, emp_fname, emp_lname
FROM employee;

The MobiLink server passes specific parameters to some scripts. To use these parameters, you can use named
parameters, or you can include a question mark in your SQL statement. In the latter case, the MobiLink
server substitutes the value of the parameter before executing the statement against the consolidated database.
The following script shows how you can use named parameters:

CALL ml_add_table_script(
 'Lab',
 'ULOrder',
 'download_cursor',
 'SELECT o.order_id, o.cust_id, o.prod_id, o.emp_id, o.disc, o.quant,
o.notes, o.status
 FROM ULOrder o
 WHERE o.last_modified >= {ml s.last_table_download}
 AND o.emp_name = {ml s.username}')

Notes
● Row values can be selected from a single table or from a join of multiple tables.

● The script itself need not include the name of the remote table. The remote table need not have the same
name as the table in the consolidated database. The name of the remote table is identified by an entry in

Writing synchronization scripts

334 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

the ml_table MobiLink system table. In Sybase Central, the remote tables are listed together with their
scripts.

● The rows in the remote table must contain the values of emp_id, emp_fname, and emp_lname. The
remote columns must be in that order, although they can have different names. The columns in the remote
database are in the same order as those in the reference database.

● All cursor scripts must select the columns in the same order as the columns are defined in the remote
database. Where column names or table structure is different in the consolidated database, columns
should be selected in the correct order for the remote database, or equivalently, the reference database.
Columns are assigned to columns in the remote database based on their order in the SELECT statement.

● When you build an UltraLite application, the UltraLite generator creates a sample download script for
each table in your UltraLite application. It inserts these sample scripts into your reference database. The
example scripts assume that the consolidated database contains the same tables as your application. You
must modify the sample scripts if your consolidated database differs in design, but these scripts provide
a starting point.

● The download_cursor script must contain all columns in the same order as they are defined in the remote
database.

See also
● “download_cursor table event” on page 396
● “Partitioning rows among remote databases” on page 135
● “Writing download_delete_cursor scripts” on page 335

Writing download_delete_cursor scripts
You write download_delete_cursor scripts to delete rows from your remote database. You must write one
of these scripts for each table in the remote database from which you want to delete rows during
synchronization.

You cannot just delete rows from the consolidated database and have them disappear from remote databases.
You need to keep track of the primary keys for deleted rows, so that you can select those primary keys with
your download_delete_cursor. There are two common techniques for achieving this:

● Logical deletes Do not physically delete the row in the consolidated database. Instead, have a status
column that keeps track of whether rows are valid. This simplifies the download_delete_cursor.
However, the download_cursor and other applications may need to be modified to recognize and use the
status column. If you have a last modified column that holds the time of deletion, and if you also keep
track of the last download time for each remote, then you can physically delete the row once all remote
download times are newer than the time of deletion.

● Shadow table For each table for which you want to track deletes, create a shadow table with two
columns, one holding the primary key for the table, and the other holding a timestamp. Create a trigger
that inserts the primary key and timestamp into the shadow table whenever a row is deleted. Your
download_delete_cursor can then select from this shadow table. As with logical deletes, you can delete
the row from the shadow table once all remote databases have downloaded the corresponding data.

Writing scripts to download rows

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 335

The MobiLink server deletes rows in the remote database by selecting primary key values from the
consolidated database and passing those values to the remote database. If the values match those of a primary
key in the remote database, then that row is deleted.

● Each download_delete_cursor script must contain a SELECT statement or a call to a stored procedure
that returns a result set. The MobiLink server uses this statement to define a cursor in the consolidated
database.

● This statement must select all the columns that correspond to the primary key columns in the table in the
remote database. The columns in the consolidated database can have different names than the
corresponding columns in the remote database, but they must be of compatible types.

● The values must be selected in the same order as the corresponding columns are defined in the remote
database. That order is the order of the columns in the CREATE TABLE statement used to make the
table, not the order they appear in the statement that defines the primary key.

● If you delete a parent record, the child records are automatically deleted as well.

For more information about deleting child records, see “Referential integrity and synchronization”
[MobiLink - Getting Started].

While each download_delete_cursor script must select all the column values present in the primary key of
the corresponding remote table, it may also select all the other columns. This feature is present only for
compatibility with older clients. Selecting the additional columns is less efficient, as the database server
must retrieve more data. Unless the client is of an old design, the MobiLink server discards the extra values
immediately. The extra values are downloaded only to older clients.

Deleting all the rows in a table

When MobiLink detects a download_delete_cursor with a row that contains all nulls, it deletes all the data
in the remote table. The number of nulls in the download_delete_cursor can be the number of primary key
columns or the total number of columns in the table.

For example, the following download_delete_cursor SQL script deletes every row in a table in which there
are two primary key columns. This example works for SQL Anywhere, Adaptive Server Enterprise, and
Microsoft SQL Server databases.

SELECT NULL, NULL

In IBM DB2 LUW and Oracle consolidated databases, you must specify a dummy table to select null. For
IBM DB2 LUW 7.1, you can use the following syntax:

SELECT NULL, NULL FROM SYSIBM.SYSDUMMY1

For Oracle consolidated databases, you can use the following syntax:

SELECT NULL, NULL FROM DUAL

Examples
The following example is a download_delete_cursor script for a remote table that holds employee
information. The MobiLink server uses this SQL statement to define the delete cursor. This script deletes
information about all employees who are both in the consolidated and remote databases at the time the script
is executed.

Writing synchronization scripts

336 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SELECT emp_id
FROM employee

The download_delete_cursor accepts the parameters last_download and ml_username. The following script
shows how you can use each parameter to narrow your selection.

SELECT order_id
FROM ULOrder
WHERE last_modified >= {ml s.last_table_download}
 AND status = 'Approved'
 AND user_name = {ml s.username}

Note
For some consolidated databases, you may need to cast to the appropriate data type. See “CAST function
[Data type conversion]” [SQL Anywhere Server - SQL Reference].

These examples could be inefficient in an organization with many employees. You can make the delete
process more efficient by selecting only rows that could be present in the remote database. For example, you
could limit the number of rows by selecting only those people who have recently been assigned a new
manager. Another strategy is to allow the client application to delete the rows itself. This method is possible
only when a rule identifies the unneeded rows. For example, rows might contain a timestamp that indicates
an expiry date. Before you delete the rows, use the STOP SYNCHRONIZATION DELETE statement to
stop these deletes being uploaded during the next synchronization. Be sure to execute START
SYNCHRONIZATION DELETE immediately afterwards if you want other deletes to be synchronized in
the normal fashion.

Notes
● The download_delete_cursor script must contain primary key columns in the same order as they are

defined in the remote database.

See also
You can use the referential integrity checking built into all MobiLink clients to delete rows in an efficient
manner. See “Referential integrity and synchronization” [MobiLink - Getting Started].

For more information about using download_delete_cursor scripts, see:

● “download_cursor table event” on page 396
● “download_delete_cursor table event” on page 400
● “Handling deletes” on page 156
● “Temporarily stopping the synchronization of deletes” on page 156
● “STOP SYNCHRONIZATION DELETE statement [MobiLink]” [SQL Anywhere Server - SQL

Reference]
● “Partitioning rows among remote databases” on page 135
● “Snapshot synchronization” on page 133

Writing scripts to download rows

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 337

Writing scripts to handle errors
An error in a synchronization script occurs when an operation in the script fails while the MobiLink server
is executing it. The DBMS returns a SQLCODE to the MobiLink server indicating the nature of the error.
Each consolidated database DBMS has its own set of SQLCODE values.

When an error occurs, the MobiLink server invokes the handle_error event. You should provide a connection
script associated with this event to handle errors. The MobiLink server passes several parameters to this
script to provide information about the nature and context of the error, and requires an output value to tell
it how to respond to the error.

Error handling actions
Some actions you may want to take in an error-handling script are:

● Log the error in a separate table.

● Instruct the MobiLink server whether to ignore the error and continue, or rollback the synchronization,
or rollback the synchronization and shut down the MobiLink server.

● Send an email message.

For more information, see “handle_error connection event” on page 446.

Reporting errors
Since errors can disrupt the natural progression of the synchronization process, it can be difficult to create
a log of errors and their resolutions. The report_error script provides a means of accomplishing this task.
The MobiLink server executes this script whenever an error occurs. If the handle_error script is defined, it
is executed immediately prior to the reporting script.

The parameters to the report_error script are identical to those of the handle_error script, except that the
report_error script can not modify the action code. Since the value of the action code is that returned by the
handle_error script, this script can be used to debug error-handling problems.

This script typically consists of an insert statement, which records the values, perhaps with other data, such
as the time or date, in a table for later reference. To ensure that this data is not lost, the MobiLink server
always runs this script in a separate transaction and automatically commits the changes when this script
completes.

See “report_error connection event” on page 477.

Example
The following report_error script, which consists of a single insert statement, adds the script parameters into
a table, along with the current date and time. The script does not commit this change because the MobiLink
server always does so automatically.

INSERT INTO errors
VALUES(
 CURRENT DATE,
 {ml s.action_code},

Writing synchronization scripts

338 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 {ml s.error_code},
 {ml s.error_message},
 {ml s.username},
 {ml s.table});

Handling multiple errors in a single SQL statement
ODBC allows multiple errors per SQL statement, and some RDBMSs make use of this feature. Microsoft
SQL Server, for example, can have two errors for a single statement. The first is the actual error, and the
second is usually an informational message telling you why the current statement has been terminated.

When a single SQL statement causes multiple errors, the handle_error script is invoked once per error. The
MobiLink server uses the most severe action code (that is, the numerically greatest) to determine the action
to take. The same applies to the handle_error script.

If the handle_error script itself causes a SQL error, then the default action code (3000) is assumed.

Writing scripts to handle errors

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 339

340

Synchronization events

Contents
Overview of MobiLink events ... 343
authenticate_file_transfer connection event .. 353
authenticate_parameters connection event ... 355
authenticate_user connection event .. 358
authenticate_user_hashed connection event .. 363
begin_connection connection event .. 367
begin_connection_autocommit connection event .. 368
begin_download connection event .. 369
begin_download table event .. 371
begin_download_deletes table event .. 374
begin_download_rows table event .. 377
begin_publication connection event .. 380
begin_synchronization connection event ... 383
begin_synchronization table event .. 385
begin_upload connection event ... 387
begin_upload table event .. 389
begin_upload_deletes table event ... 391
begin_upload_rows table event ... 394
download_cursor table event ... 396
download_delete_cursor table event ... 400
download_statistics connection event ... 403
download_statistics table event ... 406
end_connection connection event ... 409
end_download connection event ... 411
end_download table event ... 414
end_download_deletes table event ... 417
end_download_rows table event ... 420
end_publication connection event ... 423
end_synchronization connection event ... 426
end_synchronization table event ... 428
end_upload connection event .. 431

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 341

end_upload table event ... 433
end_upload_deletes table event .. 436
end_upload_rows table event .. 439
handle_DownloadData connection event .. 442
handle_error connection event .. 446
handle_odbc_error connection event .. 450
handle_UploadData connection event ... 454
modify_error_message connection event .. 460
modify_last_download_timestamp connection event .. 463
modify_next_last_download_timestamp connection event 466
modify_user connection event ... 469
nonblocking_download_ack connection event .. 471
prepare_for_download connection event .. 473
publication_nonblocking_download_ack connection event 475
report_error connection event ... 477
report_odbc_error connection event .. 480
resolve_conflict table event ... 483
synchronization_statistics connection event .. 486
synchronization_statistics table event ... 489
time_statistics connection event .. 492
time_statistics table event ... 495
upload_delete table event ... 498
upload_fetch table event ... 500
upload_fetch_column_conflict table event ... 502
upload_insert table event .. 504
upload_new_row_insert table event .. 506
upload_old_row_insert table event .. 509
upload_statistics connection event .. 512
upload_statistics table event ... 517
upload_update table event .. 522

Synchronization events

342 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Overview of MobiLink events
When a synchronization request occurs and the MobiLink server decides that a new connection must be
created, the begin_connection event is fired and synchronization starts.

Following the synchronization, the connection is placed in a connection pool, and MobiLink again waits for
a synchronization request. Before a connection is eventually dropped from the connection pool, the
end_connection event is fired. But if another synchronization request for the same version is received, then
MobiLink handles the next synchronization request on the same connection. There are several events that
affect the current synchronization.

Transactions
Within each synchronization, the following transactions may occur. Each transaction is optional.

● authentication

● begin synchronization

● upload

You can specify multiple upload transactions with the dbmlsync -tu option.

● prepare for download

● download

● end synchronization

● non-blocking download acknowledgement

In addition, you can have two connection transactions. A begin connection transaction occurs right after a
connection is made, and an end connection transaction occurs when the connection is closed.

Overview of MobiLink events

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 343

The primary phases of a synchronization are the upload and download transactions. The events contained
in the upload and download transactions are outlined below.

The upload transaction
The upload transaction applies changes uploaded from a remote database.

The begin_upload event marks the beginning of the upload transaction. The upload transaction is a two-part
process. First, inserts and updates are uploaded for all remote tables, and second, deletes are uploaded for
all remote tables.

Synchronization events

344 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The end_upload event marks the end of the upload transaction.

See “Writing scripts to upload rows” on page 330.

The download transaction
The download transaction fetches rows from the consolidated database. It begins with the begin_download
event.

The download transaction is a two-part process. For each table, first deletes are downloaded, and then update/
insert rows (upserts) are downloaded. The end_download event ends the download transaction.

See “Writing scripts to download rows” on page 333.

The non-blocking download acknowledgement transaction
The non-blocking download acknowledgement transaction is only performed when MobiLink is in non-
blocking download acknowledgement mode and a download acknowledgement is received. This transaction
has two purposes. The scripts publication_nonblocking_download_ack and nonblocking_download_ack are
run in this transaction; they help download status tracking. Secondly, download timestamps in the MobiLink
system tables are updated during this transaction.

Overview of MobiLink events

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 345

Note that this transaction is not performed on the same database connection as the other events for the target
synchronization. This means that no connection level variables may be referenced in this transaction.

Event overview in pseudocode

The following pseudocode provides an overview of the sequence in which events, and the scripts of the same
names, are invoked. This representation of the MobiLink event model assumes a full synchronization (not
upload-only or download-only) with no errors.

Notes
● In most cases, if you have not defined a script for a given event, the default action is to do nothing.

● The begin_connection and end_connection events are connection-level events. They are independent
of any single synchronization and have no parameters.

● Some events are invoked once per synchronization for each table being synchronized. Scripts associated
with these events are called table-level scripts.

While each table can have its own table scripts, you can also write table-level scripts that are shared by
several tables.

● Some events, such as begin_synchronization, occur at both the connection level and the table level. You
can supply both connection and table scripts for these events.

● The COMMIT statements illustrate how the synchronization process is broken up into distinct
transactions.

● A database error can occur at any point within the synchronization process. Database errors are handled
using the handle_error or handle_odbc_error scripts.

There should be no implicit or explicit commit or rollback in your SQL synchronization scripts or the
procedures or triggers that are called from your SQL synchronization scripts. COMMIT or ROLLBACK
statements within SQL scripts alter the transactional nature of the synchronization steps. If you use them,
MobiLink cannot guarantee the integrity of your data in the event of a failure.

MobiLink complete event model
--
MobiLink complete event model.
Legend:
- // This is a comment.
- <name>
 The pseudo code for <name> is listed separately
 in a later section, under a banner:

 name

- VariableName <- value
 Assign the given value to the given variable name.
 Variable names are in mixed case.
- event_name
 If you have defined a script for the given event name,

Synchronization events

346 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 it is invoked.
--
CONNECT to consolidated database
begin_connection_autocommit
begin_connection
COMMIT
for each synchronization request with
 the same script version {
 <synchronize>
}
end_connection
COMMIT
DISCONNECT from consolidated database
--
synchronize
--
<authenticate>
<begin_synchronization>
<upload>
<prepare_for_download>
<download>
<end_synchronization>
--
authenticate
--
Status <- 1000
UseDefaultAuthentication <- TRUE
if(authenticate_user script is defined) {
 UseDefaultAuthentication <- FALSE
 TempStatus <- authenticate_user
 if(TempStatus > Status) {
 Status <- TempStatus
 }
}
if(authenticate_user_hashed script is defined) {
 UseDefaultAuthentication <- FALSE
 TempStatus <- authenticate_user_hashed
 if(TempStatus > Status) {
 Status <- TempStatus
 }
}
 if(authenticate_parameters script is defined)
 {
 TempStatus <- authenticate_parameters
 if(TempStatus > Status) {
 Status <- TempStatus
 }
if(UseDefaultAuthentication) {
 if(the user exists in the ml_user table) {
 if(ml_user.hashed_password column is not NULL) {
 if(password matches ml_user.hashed_password) {
 Status <- 1000
 } else {
 Status <- 4000
 }
 } else {
 Status <- 1000
 }
 } else if(-zu+ was on the command line) {

Overview of MobiLink events

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 347

 Status <- 1000
 } else {
 Status <- 4000
 }
}
if(Status >= 3000) {
 // Abort the synchronization.
} else {
 // UserName defaults to MobiLink user name
 // sent from the remote.
 if(modify_user script is defined) {
 UserName <- modify_user
 // The new value of UserName is later passed to
 // all scripts that expect the MobiLink user name.
 }
}
COMMIT
--
begin_synchronization
--
begin_synchronization // Connection event.
for each table being synchronized {
 begin_synchronization // Call the table level script.
}
for each publication being synchronized {
 begin_publication
}
COMMIT
--
end_synchronization
--
for each publication being synchronized {
 if(begin_publication script was called) {
 end_publication
 }
}
for each table being synchronized {
 if(begin_synchronization table script was called) {
 end_synchronization // Table event.
 }
}
if(begin_synchronization connection script was called) {
 end_synchronization // Connection event.
}
for each table being synchronized {
synchronization_statistics // Table event.
}
synchronization_statistics // Connection event.
for each table being synchronized {
 time_statistics // Table event.
}
time_statistics // Connection event.
COMMIT

For the details of upload processing, see “Events during upload” on page 349.

For the details of download processing, see “Events during download” on page 351.

Synchronization events

348 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Events during upload
The following pseudocode illustrates how upload events and upload scripts are invoked.

These events take place at the upload location in the complete event model. See “Overview of MobiLink
events” on page 343.

Overview of the upload
--
upload
--
begin_upload // Connection event
for each table being synchronized {
 begin_upload // Table event
}
 handle_UploadData
 for each table being synchronized {
 begin_upload_rows
 for each uploaded INSERT or UPDATE for this table {
 if(INSERT) {
 <upload_inserted_row>
 }
 if(UPDATE) {
 <upload_updated_row>
 }
 }
 end_upload_rows
 }
 for each table being synchronized IN REVERSE ORDER {
 begin_upload_deletes
 for each uploaded DELETE for this table {
 <upload_deleted_row>
 }
 end_upload_deletes
 }

For each table being synchronized {
 if(begin_upload table script is called) {
 end_upload // Table event
 }
}
if(begin_upload connection script was called) {
 end_upload // Connection event
 for each table being synchronized {
 upload_statistics // Table event.
 }
 upload_statistics // Connection event.
 COMMIT

Upload inserts
--
<upload_inserted_row>
--
// NOTES:
// - Only table scripts for the current table are involved.
 ConflictsAreExpected <- (

Overview of MobiLink events

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 349

 upload_new_row_insert script is defined
 or upload_old_row_insert script is defined
 or resolve_conflict script is defined)
 if(upload_insert script is defined) {
 upload_insert
 } else if(ConflictsAreExpected
 and upload_update script is not defined
 and upload_insert script is not defined
 and upload_delete script is not defined) {
 // Forced conflict.
 upload_new_row_insert
 resolve_conflict
 } else {
 // Ignore the insert.
 }

Upload updates
--
upload_updated_row
--
// NOTES:
// - Only table scripts for the current table are involved.
// - Both the old (original) and new rows are uploaded for
// each update.
 ConflictsAreExpected <- (
 upload_new_row_insert script is defined
 or upload_old_row_insert script is defined
 or resolve_conflict script is defined)
 Conflicted <- FALSE
 if(upload_update script is defined) {
 if(ConflictsAreExpected
 and upload_fetch script is defined) {
 FETCH using upload_fetch INTO current_row
 if(current_row <> old row) {
 Conflicted <- TRUE
 }
 }
 if(not Conflicted) {
 upload_update
 }
 } else if(upload_update script is not defined
 and upload_insert script is not defined
 and upload_delete script is not defined) {
 // Forced conflict.
 Conflicted <- TRUE
 }
 if(ConflictsAreExpected and Conflicted) {
 upload_old_row_insert
 upload_new_row_insert
 resolve_conflict
 }

Upload deletes
--
upload_deleted_row
--
// NOTES:
// - Only table scripts for the current table are involved.
 ConflictsAreExpected <- (
 upload_new_row_insert script is defined

Synchronization events

350 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 or upload_old_row_insert script is defined
 or resolve_conflict script is defined)
 if(upload_delete is defined) {
 upload_delete
 } else if(ConflictsAreExpected
 and upload_update script is not defined
 and upload_insert script is not defined
 and upload_delete script is not defined) {
 // Forced conflict.
 upload_old_row_insert
 resolve_conflict
 } else {
 // Ignore this delete.
 }

Events during download
The following pseudocode provides an overview of the sequence in which download events, and the script
of the same name, are invoked.

These events take place at the download location in the complete event model provided in “Overview of
MobiLink events” on page 343.

--
prepare_for_download
--
modify_last_download_timestamp
fetch the next download timestamp from consolidated
prepare_for_download
if(modify_last_download_timestamp script is defined
 or prepare_for_download script is defined) {
 COMMIT
}
--
download
--
begin_download // Connection event.
for each table being synchronized {
 begin_download // Table event.
}
 handle_DownloadData
 for each table being synchronized {
 begin_download_deletes
 for each row in download_delete_cursor {
 if(all primary key columns are NULL) {
 send TRUNCATE to remote
 } else {
 send DELETE to remote
 }
 }
 end_download_deletes
 begin_download_rows
 for each row in download_cursor {
 send INSERT ON EXISTING UPDATE to remote
 }
 end_download_rows
 }

Overview of MobiLink events

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 351

 modify_next_last_download_timestamp
 for each table being synchronized {
 if(begin_download table script is called) {
 end_download // Table event
 }
}
if(begin_download connect script is called) {
 end_download // Connection event
}
 for each table being synchronized {
 download_statistics // Table event.
 }
 download_statistics // Connection event.
COMMIT

Notes
● If an acknowledgement is expected, and if no confirmation of the downloads is received from the client,

the entire download transaction is rolled back in the consolidated database.

For SQL Anywhere remotes, see “SendDownloadACK (sa) extended option” [MobiLink - Client
Administration]. For UltraLite remotes, see “Send Download Acknowledgement synchronization
parameter” [UltraLite - Database Management and Reference].

● The download stream does not distinguish between inserts and updates. The script associated with the
download_cursor event is a SELECT statement that defines the rows to be downloaded. The client detects
whether the row exists and then it performs the appropriate insert or update operation.

● At the end of the download processing, the client automatically deletes rows that violate referential
integrity.

See “Referential integrity and synchronization” [MobiLink - Getting Started].

Synchronization events

352 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

authenticate_file_transfer connection event
Implements custom authentication for file transfers using the mlfiletransfer utility or the MLFileTransfer
method.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you want to use parameter 2). If you use named parameters, you can specify any subset of the
parameters in any order.

Parameter
name for SQL
scripts

Description Order

s.file_authen-
tication_code

INTEGER. Required. This is an INOUT parameter. It indicates the overall
success of the authentication.

If this value is 1000-1999, file transfer is allowed. If this value is 2000-2999,
file transfer is not allowed.

1

s.filename VARCHAR(128). This optional parameter is the name of the file that is being
transferred that is to be authenticated. Do not include a path. The file must
be located in the root transfer directory that you specified with the mlsrv11
-ftr option, or in one of the subdirectories that are automatically created.

2

s.remote_id VARCHAR(128). The MobiLink remote ID. You can only reference the
remote ID if you are using named parameters.

Not ap-
plicable

s.username VARCHAR(128). The MobiLink user name. 3

Remarks
The MobiLink server executes this event before allowing any file transfer using the mlfiletransfer utility or
MLFileTransfer method. It is executed after the user has authenticated using regular authentication. If this
script is not defined, the file transfer is allowed.

The MLFileTransfer method can only be used by UltraLite clients.

authenticate_file_transfer connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 353

See also
● “Adding and deleting scripts” on page 327
● “-ftr option” on page 71
● “MobiLink file transfer utility (mlfiletransfer)” [MobiLink - Client Administration]
● UltraLite: “Using MobiLink file transfers” [UltraLite - Database Management and Reference]
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]

Synchronization events

354 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

authenticate_parameters connection event
Receives values from the remote that can be used to authenticate beyond a user ID and password. The values
can also be used to arbitrarily customize each synchronization.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you want to use parameter 2). If you use named parameters, you can specify any subset of the
parameters in any order.

Parameter name for
SQL scripts

Description Order

s.authentication_sta-
tus

INTEGER. This is an INOUT parameter. 1

s.remote_id VARCHAR(128). The MobiLink remote ID. You can only
reference the remote ID if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user name. 2

a.N (one or more) VARCHAR(128). For example, named parameters could be
a.1 a.2.

3...

Parameter Description
● authentication_status The authentication_status parameter is required. It indicates the overall

success of the authentication, and can be set to one of the following values:

Returned Value authentica-
tion_status

Description

V <= 1999 1000 Authentication succeeded.

1999 < V <= 2999 2000 Authentication succeeded, but password expir-
ing soon.

2999 < V <= 3999 3000 Authentication failed as password has expired.

3999 < V <= 4999 4000 Authentication failed.

authenticate_parameters connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 355

Returned Value authentica-
tion_status

Description

4999 < V <= 5999 5000 Authentication failed as user is already synchro-
nizing.

5999 < V 4000 If the returned value is greater than 5999, Mo-
biLink interprets it as a returned value of 4000
(authentication failed).

● username This parameter is the MobiLink user name. VARCHAR(128).

● remote_ID The MobiLink remote ID. You can only reference the remote ID if you are using named
parameters.

See “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration].

● remote_parameters The number of remote parameters must match the number expected or an error
results. An error also occurs if parameters are sent from the client and there is no script for this event.

Remarks
You can send strings (or parameters in the form of strings) from both SQL Anywhere and UltraLite clients.
This allows you to have authentication beyond a user ID and password. It also means that you can customize
your synchronization based on the value of parameters, and do this in a pre-synchronization phase, during
authentication.

The MobiLink server executes this event upon starting each synchronization. It is executed in the same
transaction as the authenticate_user event.

You can use this event to replace the built-in MobiLink authentication mechanism with a custom mechanism.
You may want to call into the authentication mechanism of your DBMS, or you may want to implement
features not present in the MobiLink built-in mechanism.

If the authenticate_user or authenticate_user_hashed scripts are invoked and return an error, this event is not
called.

SQL scripts for the authenticate_parameters event must be implemented as stored procedures.

Synchronization events

356 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “Authentication parameters” on page 323
● “MobiLink users” [MobiLink - Client Administration]
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]
● “Custom user authentication” [MobiLink - Client Administration]
● “authenticate_user connection event” on page 358
● “authenticate_user_hashed connection event” on page 363
● “begin_synchronization connection event” on page 383
● dbmlsync: “-ap option” [MobiLink - Client Administration]
● UltraLite: “Authentication Parameters synchronization parameter” [UltraLite - Database Management

and Reference] and “Number of Authentication Parameters parameter” [UltraLite - Database
Management and Reference]

Examples
For UltraLite remote databases, pass the parameters using the num_auth_parms and auth_parms fields in
the ul_synch_info struct. num_auth_parms is a count of the number of parameters, from 0 to 255. auth_parms
is a pointer to an array of strings. To prevent the strings from being viewed as plain text, the strings are sent
in the same way as passwords. If num_auth_parms is 0, set auth_parms to null. The following is an example
of passing parameters in UltraLite:

ul_char * Params[3] = { UL_TEXT("param1"),
 UL_TEXT("param2"), UL_TEXT("param3") };
...
info.num_auth_parms = 3;
info.auth_parms = Params;

For SQL Anywhere remote databases, you pass parameters using the dbmlsync -ap option, in a comma-
separated list. For example, the following command line passes three parameters:

dbmlsync -ap "param1,param2,param3"

In this example, the authenticate_parameters script could be:

CALL my_auth_parm (
 {ml s.authentication_status},
 {ml s.remote_id},
 {ml s.username},
 {ml a.1},
 {ml a.2},
 {ml a.3}
)

authenticate_parameters connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 357

authenticate_user connection event
Implements custom user authentication.

Parameters
In the following table, the description indicates the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you want to use parameter 2). If you use named parameters, you can specify any subset of the
parameters in any order.

Parameter name for SQL scripts Description Order

s.authentication_status INTEGER. This is an INOUT parameter. 1

s.remote_id VARCHAR(128). The MobiLink remote ID. You
can only reference the remote ID if you are using
named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user name. 2

s.password VARCHAR(128). The password for authentica-
tion purposes. If the user does not supply a pass-
word, this value is null.

3

s.new_password VARCHAR(128). The new password, if this is
being used to reset the user password. If the user
does not change their password, this value is null.

4

Default action
Use MobiLink built-in user authentication mechanism.

Remarks
The MobiLink server executes this event upon starting each synchronization. It is executed in a transaction
before the begin_synchronization transaction.

You can use this event to replace the built-in MobiLink authentication mechanism with a custom mechanism.
You may want to call into the authentication mechanism of your DBMS, or you may want to implement
features not present in the MobiLink built-in mechanism, such as password expiry or a minimum password
length.

The parameters used in an authenticate_user event are as follows:

Synchronization events

358 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● authentication_status The authentication_status parameter is required. It indicates the overall
success of the authentication, and can be set to one of the following values:

Returned Value authentica-
tion_status

Description

V <= 1999 1000 Authentication succeeded.

1999 < V <= 2999 2000 Authentication succeeded: password expiring
soon.

2999 < V <= 3999 3000 Authentication failed: password expired.

3999 < V <= 4999 4000 Authentication failed.

4999 < V <= 5999 5000 Authentication failed as user is already synchro-
nizing.

5999 < V 4000 If the returned value is greater than 5999, Mo-
biLink interprets it as a returned value of 4000.

● username This optional parameter is the MobiLink user name.

See “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration].

● remote_id The MobiLink remote ID. You can only reference the remote ID if you are using named
parameters.

● password This optional parameter indicates the password for authentication purposes. If the user
does not supply a password, this is null.

● new_password This optional parameter indicates a new password. If the user does not change their
password, this is null.

SQL scripts for the authenticate_user event must be implemented as stored procedures.

When the two authentication scripts are both defined, and both scripts return different authentication_status
codes, the higher value is used.

The authenticate_user script is executed in a transaction along with all authentication scripts. This transaction
always commits.

There are predefined scripts that you can use for the authenticate_user event to simplify authentication using
LDAP, IMAP and POP3 servers.

See “Authenticating to external servers” [MobiLink - Client Administration].

authenticate_user connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 359

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “MobiLink users” [MobiLink - Client Administration]
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]
● “Custom user authentication” [MobiLink - Client Administration]
● “Authenticating to external servers” [MobiLink - Client Administration]
● “authenticate_user_hashed connection event” on page 363
● “authenticate_parameters connection event” on page 355
● “modify_user connection event” on page 469
● “begin_synchronization connection event” on page 383

SQL example
A typical authenticate_user script is a call to a stored procedure. The order of the parameters in the call must
match the order above. The following example uses ml_add_connection_script to assign the event to a stored
procedure called my_auth.

CALL ml_add_connection_script(
 'ver1', 'authenticate_user', 'call my_auth ({ml s.username})'
)

The following SQL Anywhere stored procedure uses only the user name to authenticate—it has no password
check. The procedure ensures only that the supplied user name is one of the employee IDs listed in the
ULEmployee table.

CREATE PROCEDURE my_auth(in @user_name varchar(128))
BEGIN
 IF EXISTS
 (SELECT * FROM ulemployee
 WHERE emp_id = @user_name)
 THEN
 MESSAGE 'OK' type info to client;
 RETURN 1000;
 ELSE
 MESSAGE 'Not OK' type info to client;
 RETURN 4000;
 END IF
END

Java example
The following call to a MobiLink system procedure registers a Java method called authenticateUser as the
script for the authenticate_user event when synchronizing the script version ver1. This syntax is for SQL
Anywhere consolidated databases.

CALL ml_add_java_connection_script(
 'ver1', 'authenticate_user',
 'ExamplePackage.ExampleClass.authenticateUser'
)

The following is the sample Java method authenticateUser. It calls Java methods that check and, if needed,
change the user's password.

public String authenticateUser(
 ianywhere.ml.script.InOutInteger authStatus,

Synchronization events

360 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 String user,
 String pwd,
 String newPwd)
 throws java.sql.sqlException {
 // A real authenticate_user handler would
 // handle more authentication code states.
 _curUser = user;
 if(checkPwd(user, pwd)) {
 // Authentication successful.
 if(newPwd != null) {
 // Password is being changed.
 if(changePwd(user, pwd, newPwd)) {
 // Authentication OK and password change OK.
 // Use custom code.
 authStatus.setValue(1001);
 } else {
 // Authentication OK but password
 // change failed. Use custom code.
 java.lang.System.err.println("user: "
 + user + " pwd change failed!");
 authStatus.setValue(1002);
 }
 } else {
 authStatus.setValue(1000);
 }
 } else {
 // Authentication failed.
 authStatus.setValue(4000);
 }
 return (null);
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called AuthUser as the script
for the authenticate_user connection event when synchronizing the script version ver1. This syntax is for
SQL Anywhere consolidated databases.

CALL ml_add_dnet_connection_script(
 'ver1', 'authenticate_user',
 'TestScripts.Test.AuthUser'
)

The following is the sample .NET method AuthUser. It calls .NET methods that check and, if needed, change
the user's password.

public string AuthUser(
 ref int authStatus,
 string user,
 string pwd,
 string newPwd) {
 // A real authenticate_user handler would
 // handle more authentication code states.
 _curUser = user;
 if(CheckPwd(user, pwd)) {
 // Authentication successful.
 if(newPwd != null) {
 // Password is being changed.
 if(ChangePwd(user, pwd, newPwd)) {
 // Authentication OK and password change OK.
 // Use custom code.
 authStatus = 1001;

authenticate_user connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 361

 } else {
 // Authentication OK but password
 // change failed. Use custom code.
 System.Console.WriteLine("user: "
 + user + " pwd change failed!");
 authStatus = 1002;
 }
 } else {
 authStatus = 1000 ;
 }
 } else {
 // Authentication failed.
 authStatus = 4000;
 }
 return (null);
}

For a more detailed example of an authenticate_user script written in C# in .NET, see “.NET synchronization
example” on page 604.

Synchronization events

362 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

authenticate_user_hashed connection event
Implements a custom user authentication mechanism.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you want to use parameter 2). If you use named parameters, you can specify any subset of the
parameters in any order.

Parameter name for SQL scripts Description Order

s.authentication_status INTEGER. This is an INOUT parameter. 1

s.remote_id VARCHAR(128). The MobiLink remote ID. You
can only reference the remote ID if you are using
named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user name. 2

s.hashed_password BINARY(20). If the user does not supply a pass-
word, this value is null.

3

s.hashed_new_password BINARY(20). If this event is not being used to
change the user's password, this value is null.

4

Default action
Use MobiLink built-in user authentication mechanism.

Remarks
This event is identical to authenticate_user except for the passwords, which are in the same hashed form as
those stored in the ml_user.hashed_password column. Passing the passwords in hashed form provides
increased security.

A one-way hash is used. A one-way hash takes a password and converts it to a byte sequence that is
(essentially) unique to each possible password. The one-way hash lets password authentication take place
without having to store the actual password in the consolidated database.

This script can be called multiple times during an authentication sequence for a user.

When authenticate_user and authenticate_user_hashed are both defined, and both scripts return different
authentication_status codes, the higher value is used.

authenticate_user_hashed connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 363

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “MobiLink users” [MobiLink - Client Administration]
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]
● “Custom user authentication” [MobiLink - Client Administration]
● “authenticate_user connection event” on page 358
● “authenticate_parameters connection event” on page 355

SQL example
A typical authenticate_user_hashed script is a call to a stored procedure. The order of the parameters in the
call must match the order above. The following example calls ml_add_connection_script to assign the event
to a stored procedure called my_auth.

CALL ml_add_connection_script(
 'ver1', 'authenticate_user_hashed',
 'call my_auth (
 {ml s.authentication_status},
 {ml s.username},
 {ml s.hashed_password})'
)

The following SQL Anywhere stored procedure uses both the user name and password to authenticate. The
procedure ensures only that the supplied user name is one of the employee IDs listed in the ULEmployee
table. The procedure assumes that the Employee table has a binary(20) column called hashed_pwd.

CREATE PROCEDURE my_auth(
 inout @authentication_status integer,
 in @user_name varchar(128),
 in @hpwd binary(20))
BEGIN
 IF EXISTS
 (SELECT * FROM ulemployee
 WHERE emp_id = @user_name
 and hashed_pwd = @hpwd)
 THEN
 message 'OK' type info to client;
 RETURN 1000;
 ELSE
 message 'Not OK' type info to client;
 RETURN 4000;
 END IF
END

Java example
The following call to a MobiLink system procedure registers a Java method called authUserHashed as the
script for the authenticate_user_hashed event when synchronizing the script version ver1.

CALL ml_add_java_connection_script(
 'ver1', 'authenticate_user_hashed',
 'ExamplePackage.ExampleClass.authUserHashed')

The following is the sample Java method authUserHashed. It calls Java methods that check and, if needed,
change the user's password.

Synchronization events

364 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

public String authUserHashed(
 ianywhere.ml.script.InOutInteger authStatus,
 String user,
 byte pwd[],
 byte newPwd[])
 throws java.sql.SQLException {
 // A real authenticate_user_hashed handler
 // would handle more auth code states.
 _curUser = user;
 if(checkPwdHashed(user, pwd)) {
 // Authorization successful.
 if(newPwd != null) {
 // Password is being changed.
 if(changePwdHashed(user, pwd, newPwd)) {
 // Authorization OK and password change OK.
 // Use custom code.
 authStatus.setValue(1001);
 } else {
 // Auth OK but password change failed.
 // Use custom code
 java.lang.System.err.println("user: " + user
 + " pwd change failed!");
 authStatus.setValue(1002);
 }
 } else {
 authStatus.setValue(1000);
 }
 } else {
 // Authorization failed.
 authStatus.setValue(4000);
 }
 return (null);
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called AuthUserHashed as the
script for the authenticate_user_hashed connection event when synchronizing the script version ver1. This
syntax is for SQL Anywhere consolidated databases.

CALL ml_add_dnet_connection_script(
 'ver1',
 'authenticate_user_hashed',
 'TestScripts.Test.AuthUserHashed'
)

The following is the sample .NET method AuthUserHashed.

public string AuthUserHashed(
 ref int authStatus,
 string user,
 byte[] pwd,
 byte[] newPwd) {
 // A real authenticate_user_hashed handler
 // would handle more auth code states.
 _curUser = user;
 if(CheckPwdHashed(user, pwd)) {
 // Authorization successful.
 if(newPwd != null) {
 // Password is being changed.
 if(ChangePwdHashed(user, pwd, newPwd)) {
 // Authorization OK and password change OK.
 // Use custom code.

authenticate_user_hashed connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 365

 authStatus = 1001;
 } else {
 // Auth OK but password change failed.
 // Use custom code
 System.Console.WriteLine("user: " + user
 + " pwd change failed!");
 authStatus = 1002;
 }
 } else {
 authStatus = 1000;
 }
 } else {
 // Authorization failed.
 authStatus = 4000;
 }
 return (null);
}

Synchronization events

366 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

begin_connection connection event
Invoked at the time the MobiLink server connects to the consolidated database server.

Parameters
None.

Default action
None.

Remarks
The MobiLink synchronization opens connections on demand as synchronization requests come in. When
an application forms or reforms a connection with the MobiLink server, the MobiLink server temporarily
allocates one connection with the database server for the duration of that synchronization. This event may
not be called if the MobiLink server is using a connection from the pool.

Note
This script is not generally used in Java or .NET, because instead of database variables you would use member
variables in this class instance, and prepare the members in the constructor.

See also
● “Adding and deleting scripts” on page 327
● “end_connection connection event” on page 409
● “-cn option” on page 56
● “-w option” on page 105

SQL example
The following SQL script works with a SQL Anywhere consolidated database. Two variables are created,
one for the last_download timestamp, and one for employee ID.

CALL ml_add_connection_script(
 'custdb',
 'begin_connection',
 'create variable @LastDownload timestamp;
 create variable @EmployeeID integer;')

begin_connection connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 367

begin_connection_autocommit connection event
Turns on autocommit.

Parameters
None.

Default action
Autocommit is off.

Remarks
When the MobiLink server connects to the consolidated database, it turns off autocommit so that it can roll
back the upload and download if an error occurs.

However, if you are using an Adaptive Server Enterprise consolidated database, you cannot perform DDL
functions such as creating temporary tables unless autocommit is on. If you are using an Adaptive Server
Enterprise consolidated database, run your DDL commands in the begin_connection_autocommit event.
When the event is finished, autocommit is turned off.

Begin_connection_autocommit scripts must be written so that they are repeatable. This is because if an error
or deadlock occurs, the MobiLink server needs to be able to retry the script (since it can't roll it back).

This event only executes if a script has been defined for the event.

See also
● “Adding and deleting scripts” on page 327

Synchronization events

368 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

begin_download connection event
Processes any statements just before the MobiLink server commences preparing the download.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you want to use parameter 2). If you use named parameters, you can specify any subset of the
parameters in any order.

Parameter name for SQL scripts Description Order

s.last_download TIMESTAMP. The last download time of any
synchronized table.

1

s.remote_id VARCHAR(128). The MobiLink remote ID. You
can only reference the remote ID if you are using
named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user name. 2

Default action
None.

Remarks
The MobiLink server executes this event as the first step in the processing of downloaded information.
Download information is processed in a single transaction. The execution of this event is the first action in
this transaction.

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “end_download connection event” on page 411
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]
● “Using last download times in scripts” on page 130

SQL example
The following example calls ml_add_connection_script to assign the event to a stored procedure called
SetDownloadParameters.

CALL ml_add_connection_script (
 'Lab',

begin_download connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 369

 'begin_download',
 'CALL SetDownloadParameters({ml s.last_table_download}, {ml
s.username})')

Java example
The following call to a MobiLink system procedure registers a Java method called
beginDownloadConnection as the script for the begin_download connection event when synchronizing the
script version ver1.

CALL ml_add_java_connection_script(
 'example_ver',
 'begin_download',
 'ExamplePackage.ExampleClass.beginDownloadConnection')

The following is the sample Java method beginDownloadConnection. It calls a Java method
(prepDeleteTables) that prepares the delete tables using a JDBC synchronization that was set earlier.

public String beginDownloadConnection(
 Timestamp ts,
 String user)
 throws java.sql.SQLException {
 prepDeleteTables (_syncConn, ts, user);
 return (null);
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called BeginDownload as the
script for the begin_download connection event when synchronizing the script version ver1.

CALL ml_add_dnet_connection_script(
 'ver1',
 'begin_download',
 'TestScripts.Test.BeginDownload'
)

The following is the sample .NET method BeginDownload. It calls a .NET method (prepDeleteTables) that
prepares the delete tables using a JDBC synchronization that was set earlier.

public string BeginDownload(
 DateTime timestamp,
 string user) {
 prepDeleteTables (_syncConn, ts, user);
 return (null);
}

Synchronization events

370 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

begin_download table event
Processes statements related to a specific table just before preparing the download inserts, updates, and
deletions.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you want to use parameter 2). If you use named parameters, you can specify any subset of the
parameters in any order.

Parameter name for SQL scripts Description Order

s.last_table_download TIMESTAMP. The last download time for the ta-
ble.

1

s.remote_id VARCHAR(128). The MobiLink remote ID. You
can only reference the remote ID if you are using
named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user name. 2

s.table VARCHAR (128). The table name. 3

Default action
None.

Remarks
The MobiLink server executes this event as the first step in preparing download information for a specific
table. The download information is prepared in its own transaction. The execution of this event is the first
table-specific action in the transaction.

You can have one begin_download script for each table in the remote database. The script is only invoked
when that table is synchronized.

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “end_download table event” on page 414
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]
● “Using last download times in scripts” on page 130

begin_download table event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 371

SQL example
The following call to the MobiLink system procedure ml_add_table_script calls the BeginTableDownload
procedure. This syntax is for a SQL Anywhere 11 consolidated database.

CALL ml_add_table_script(
 'version1',
 'Leads',
 'begin_download',
 'CALL BeginTableDownLoad(
 {ml s.last_table_download},
 {ml s.username},
 {ml s.table})');

The following SQL statements create the BeginTableDownload procedure.

CREATE PROCEDURE BeginTableDownload(
 LastDownload timestamp,
 MLUser varchar(128),
 TableName varchar(128))
BEGIN
 EXECUTE IMMEDIATE 'update ' || TableName ||
' set last_download_check = CURRENT TIMESTAMP
 WHERE Owner = ' ||MLUser;
END

Java example
The following call to a MobiLink system procedure registers a Java method called beginDownloadTable as
the script for the begin_download table event when synchronizing the script version ver1.

CALL ml_add_java_table_script(
 'ver1',
 'table1',
 'begin_download',
 'ExamplePackage.ExampleClass.beginDownloadTable')

The following is the sample Java method beginDownloadTable. It saves the name of the current table for
use in a later method call.

public String beginDownloadTable(
 Timestamp ts,
 String user,
 String table) {
 _curTable = table;
 return (null);
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called BeginTableDownload
as the script for the begin_download table event when synchronizing the script version ver1 and the table
table1.

CALL ml_add_dnet_table_script(
 'ver1', 'table1', 'begin_download',
 'TestScripts.Test.BeginTableDownload'
)

The following is the sample .NET method BeginTableDownload. It saves the name of the current table for
use in a later method call.

Synchronization events

372 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

public string BeginTableDownload(
 DateTime timestamp,
 string user,
 string table) {
 _curTable = table;
 return (null);
}

begin_download table event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 373

begin_download_deletes table event
Processes statements related to a specific table just before fetching a list of rows to be deleted from the
specified table in the remote database.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you want to use parameter 2). If you use named parameters, you can specify any subset of the
parameters in any order.

Parameter name for SQL scripts Description Order

s.last_table_download TIMESTAMP. The last download time for the ta-
ble.

1

s.remote_id VARCHAR(128). The MobiLink remote ID. You
can only reference the remote ID if you are using
named parameters.

Not applicable

s.username VARCHAR (128). The MobiLink user name. 2

s.table VARCHAR (128). The table name. 3

Default action
None.

Remarks
This event is executed immediately before fetching a list of rows to be deleted from the named table in the
remote database.

You can have one begin_download_deletes script for each table in the remote database.

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “begin_download_rows table event” on page 377
● “end_download_rows table event” on page 420
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]
● “Using last download times in scripts” on page 130

Synchronization events

374 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL example
To minimize the amount of data on remotes, you can use this event to flag data that is deleted when the
download_delete_cursor is executed. The following example flags for deletion sales leads from the remote
device that are over 10 weeks old. The example can be used on a SQL Anywhere 11 database.

The following call to a MobiLink system procedure assigns the BeginDownloadDeletes stored procedure to
the begin_download_deletes event when synchronizing the script version ver1.

CALL ml_add_table_script (
 'ver1',
 'Leads',
 'begin_download_deletes',
 'CALL BeginDownloadDeletes (
 {ml s.last_table_download},
 {ml s.username},
 {ml s.table})');

The following SQL statement creates the BeginDownloadDeletes stored procedure.

CREATE PROCEDURE BeginDownloadDeletes(
 LastDownload timestamp,
 MLUser varchar(128),
 TableName varchar(128))
BEGIN
 execute immediate 'update ' || TableName ||
 ' set delete_flag = 1 where
 days(creation_time, CURRENT DATE) > 70 and Owner = '
 || MLUser;
END;

Java example
The following call to a MobiLink system procedure registers a Java method called beginDownloadDeletes
as the script for the begin_download_deletes table event when synchronizing the script version ver1.

CALL ml_add_java_table_script(
 'ver1',
 'table1',
 'begin_download_deletes',
 'ExamplePackage.ExampleClass.beginDownloadDeletes')

The sample Java method beginDownloadDeletes saves the name of the current table for use in a later method
call.

public String beginDownloadDeletes (
 Timestamp ts,
 String user,
 String table) {
 _curTable = table;
 return (null);
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called BeginDownloadDeletes
as the script for the begin_download_deletes table event when synchronizing the script version ver1 and the
table table1.

CALL ml_add_dnet_table_script (
 'ver1', 'table1', 'begin_download_deletes',

begin_download_deletes table event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 375

 'TestScripts.Test.BeginDownloadDeletes'
)

The sample .NET method BeginDownloadDeletes saves the name of the current table for use in a later
method call.

public string BeginDownloadDeletes(
 DateTime timestamp,
 string user,
 string table) {
 _curTable = table;
 return (null);
}

Synchronization events

376 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

begin_download_rows table event
Processes statements related to a specific table just before fetching a list of rows to be inserted or updated
in the specified table in the remote database.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you want to use parameter 2). If you use named parameters, you can specify any subset of the
parameters in any order.

Parameter name for SQL scripts Description Order

s.last_table_download TIMESTAMP. The last download time for the ta-
ble.

1

s.remote_id VARCHAR(128). The MobiLink remote ID. You
can only reference the remote ID if you are using
named parameters.

Not applicable

s.username VARCHAR (128). The MobiLink user name. 2

s.table VARCHAR (128). The table name. 3

Default action
None.

Remarks
This event is executed immediately before fetching the stream of rows to be inserted or updated in the named
table in the remote database.

You can have one begin_download_rows script for each table in the remote database.

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “begin_download_deletes table event” on page 374
● “end_download_deletes table event” on page 417
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]
● “Using last download times in scripts” on page 130

begin_download_rows table event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 377

SQL example
You can use the begin_download_rows table event to flag rows that you no longer want to download for
this table. The following example archives sales leads that are over seven days old.

The following call to a MobiLink system procedure registers the BeginDownloadRows stored procedure for
the begin_download_rows event.

CALL ml_add_table_script(
 'version1',
 'Leads',
 'begin_download_rows',
 'CALL BeginDownloadRows (
 {ml s.last_table_download},
 {ml s.username},
 {ml s.table})');)

The following SQL statement creates the BeginDowloadRows stored procedure.

CREATE PROCEDURE BeginDownloadRows (
 LastDownload timestamp, MLUser varchar(128),
 TableName varchar(128))
BEGIN
 execute immediate 'update ' || TableName ||
 ' set download_flag = 0 where
 days(creation_time, CURRENT DATE) > 7 and Owner = '
 || MLUser;
END;

Java example
The following call to a MobiLink system procedure registers a Java method called beginDownloadRows as
the script for the begin_download_rows table event when synchronizing the script version ver1. This syntax
is for SQL Anywhere consolidated databases.

CALL ml_add_java_table_script(
 'ver1',
 'table1',
 'begin_download_rows',
 'ExamplePackage.ExampleClass.beginDownloadRows')

The following is the sample Java method beginDownloadRows. It generates an UPDATE statement using
the table and user for MobiLink to execute.

public String beginDownloadRows(
 Timestamp ts,
 String user,
 String table) {
 return("update " + table + " set download_flag = 0 "
 + " where days(creation_time, CURRENT DATE) > 7 " +
 " and Owner = '" + user + "'");
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called BeginDownloadRows
as the script for the begin_download_rows table event when synchronizing the script version ver1 and the
table table1.

CALL ml_add_dnet_table_script(
 'ver1', 'table1', 'begin_download_rows',

Synchronization events

378 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 'TestScripts.Test.BeginDownloadRows'
)

The following is the sample .NET method BeginDownloadRows. It generates an UPDATE statement using
the table and user for MobiLink to execute.

public string BeginDownloadRows(
 DateTime timestamp,
 string user,
 string table) {
 return("update " + table + " set download_flag = 0 "
 + " where days(creation_time, CURRENT DATE) > 7 " +
 " and Owner = '" + user + "'");
}

begin_download_rows table event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 379

begin_publication connection event
Provides useful information about the publication(s) being synchronized. This script may also be used to
manage generation numbers for file-based downloads.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

Parameter name for SQL scripts Description Order

s.generation_number INTEGER. This is an INOUT parameter. If your
deployment does not use file-based downloads,
this parameter can be ignored. The default is 1.

1

s.remote_id VARCHAR(128). The MobiLink remote ID.
You can only reference the remote ID if you are
using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user name. 2

s.publication_name VARCHAR(128). The name of the publication. 3

s.last_publication_upload TIMESTAMP. The time of the last successful
upload of this publication.

4

s.last_publication_download TIMESTAMP. The last download time for the
publication.

5

s.subscription_id VARCHAR(128). The subscription ID. 6

Default action
The default generation number is 1. If no script is defined for this event, the generation number sent to the
remote is always 1.

Remarks
This event lets you design synchronization logic based on the publications currently being synchronized.
This event is invoked in the same transaction as the begin_synchronization event, and is invoked after the
begin_synchronization event. It is invoked once per publication being synchronized.

One potential use for this event is to affect what is downloaded based on the publication used. For example,
consider a table that is part of both a priority publication (PriorityPub) and a publication for all tables
(AllTablesPub). A script for the begin_publication event could store the publication names in a Java class
or a SQL variable or package. Download scripts could then behave differently based on whether the
publication being synchronized is PriorityPub or AllTablesPub.

Synchronization events

380 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

If an UltraLite remote is synchronizing with UL_SYNC_ALL, this event is invoked once with the name
'unknown'.

Generation number
The generation_number parameter is specifically for file-based downloads. The output value of the
generation number is passed from the begin_synchronization script to the end_synchronization script. The
meaning of the generation_number depends on whether the current synchronization is being used to create
a download file, or whether the current synchronization has an upload.

In file-based downloads, generation numbers are used to force an upload before the download. The number
is stored in the download file. During a synchronization that has an upload, one generation number is output
for every subscription to a publication. They are sent to the remote database in the upload acknowledgement,
and stored in SYSSYNC.generation_number.

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “end_publication connection event” on page 423
● “MobiLink file-based download” on page 293
● “MobiLink generation numbers” on page 299
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]
● “Using last download times in scripts” on page 130

SQL example
You may want to record the information for each publication being synchronized. The following example
calls ml_add_connection_script to assign the event to a stored procedure called RecordPubSync.

CALL ml_add_connection_script(
 'version1',
 'begin_publication',
 '{CALL RecordPubSync(
 {ml s.generation_number},
 {ml s.username},
 {ml s.publication_name},
 {ml s.last_publication_upload},
 {ml s.last_publication_download},
 {ml s.subscription_id})}');

Java example
The following call to a MobiLink system procedure registers a Java method called beginPublication as the
script for the begin_publication connection event when synchronizing the script version ver1.

CALL ml_add_java_connection_script(
 'ver1',
 'begin_publication',
 'ExamplePackage.ExampleClass.beginPublication')

The following is the sample Java method beginPublication. It saves the name of each publication for later
use.

public String beginPublication(
 ianywhere.ml.script.InOutInteger generation_number,
 String user,

begin_publication connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 381

 String pub_name,
 Timestamp last_publication_upload,
 Timestamp last_download) {
 _publicationNames[_numPublications++] = pub_name;
 return (null);
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called BeginPub as the script
for the begin_publication connection event when synchronizing the script version ver1.

CALL ml_add_dnet_connection_script(
 'ver1',
 'begin_publication',
 'TestScripts.Test.BeginPub'
)

The following is the sample .NET method BeginPub. It saves the name of each publication for later use.

public string BeginPub(
 ref int generation_number,
 string user,
 string pub_name,
 DateTime last_publication_upload,
 DateTime last_download) {
 _publicationNames[_numPublications++] = pub_name;
 return (null);
}

Synchronization events

382 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

begin_synchronization connection event
Processes any statements at the time an application connects to the MobiLink server in preparation for the
synchronization process.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

Parameter name for SQL scripts Description Order

s.remote_id VARCHAR(128). The MobiLink re-
mote ID. You can only reference the
remote ID if you are using named pa-
rameters.

Not applicable

s.username VARCHAR(128). The MobiLink
user name.

1

Default action
None.

Remarks
The MobiLink server executes this event immediately after an application preparing to synchronize has
formed a connection with the MobiLink server. It is executed within a separate transaction before the upload
transaction.

The begin_synchronization script is useful for maintaining statistics. This is because the end_synchronization
script is invoked even if there is an error or conflict, so while the upload transaction is rolled back, things
like statistics are maintained.

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “end_synchronization connection event” on page 426
● “begin_synchronization table event” on page 385
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]

SQL example
You may want to store the username value in a temporary table or variable if you want to reference that
value many times in subsequent scripts.

CALL ml_add_connection_script (
 'version1',
 'begin_synchronization',
 'set @EmployeeID = {ml s.username}');

begin_synchronization connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 383

Java example
The following call to a MobiLink system procedure registers a Java method called
beginSynchronizationConnection as the script for the begin_synchronization connection event when
synchronizing the script version ver1.

CALL ml_add_java_connection_script(
 'ver1',
 'begin_synchronization',
 'ExamplePackage.ExampleClass.beginSynchronizationConnection'
)

The following is the sample Java method beginSynchronizationConnection. It saves the name of the
synchronizing user for later use.

public String beginSynchronizationConnection(
 String user) {
 _curUser = user;
 return (null);
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called BeginSync as the script
for the begin_synchronization connection event when synchronizing the script version ver1.

CALL ml_add_dnet_connection_script('ver1',
 'begin_synchronization',
 'TestScripts.Test.BeginSync'
)

The following is the sample .NET method BeginSync. It saves the name of the synchronizing user for later
use.

public string BeginSync(
 string user) {
 _curUser = user;
 return (null);
}

Synchronization events

384 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

begin_synchronization table event
Processes statements related to a specific table at the time an application connects to the MobiLink server
in preparation for the synchronization process.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you want to use parameter 2). If you use named parameters, you can specify any subset of the
parameters in any order.

Parameter name for SQL scripts Description Order

s.remote_id VARCHAR(128). The MobiLink remote ID. You
can only reference the remote ID if you are using
named parameters.

Not applicable

s.username VARCHAR (128). The MobiLink user name. 1

s.table VARCHAR (128). The table name. 2

Default action
None.

Remarks
The MobiLink server executes this event after an application that is preparing to synchronize has formed a
connection with the MobiLink server, and after the begin_synchronization connection-level event.

You can have one begin_synchronization script for each table in the remote database. The event is only
invoked when the table is synchronized.

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “end_synchronization table event” on page 428
● “begin_synchronization connection event” on page 383
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]

SQL example
The begin_synchronization table event is used to set up the synchronization of a particular table. The
following SQL script registers a script that creates a temporary table for storing rows during synchronization.
This syntax is for a SQL Anywhere consolidated database.

begin_synchronization table event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 385

CALL ml_add_table_script(
 'ver1',
 'sales_order',
 'begin_synchronization',
 'CREATE TABLE #sales_order (
 id integer NOT NULL default autoincrement,
 cust_id integer NOT NULL,
 order_date date NOT NULL,
 fin_code_id char(2) NULL,
 region char(7) NULL,
 sales_rep integer NOT NULL,
 PRIMARY KEY (id),
)')

Java example
The following call to a MobiLink system procedure registers a Java method called
beginSynchronizationTable as the script for the begin_synchronization table event when synchronizing the
script version ver1.

CALL ml_add_java_table_script(
 'ver1',
 'table1',
 'begin_synchronization',
 'ExamplePackage.ExampleClass.beginSynchronizationTable')

The following is the sample Java method beginSynchronizationTable. It adds the current table name to a list
of table names contained in this instance.

public String beginSynchronizationTable(
 String user,
 String table) {
 _tableList.add(table);
 return (null);
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called BeginTableSync as the
script for the begin_synchronization table event when synchronizing the script version ver1 and the table
table1.

CALL ml_add_dnet_table_script (
 'ver1',
 'table1',
 'begin_synchronization',
 'TestScripts.Test.BeginTableSync')

The following is the sample .NET method BeginTableSync. It adds the current table name to a list of table
names contained in this instance.

public string BeginTableSync(
 string user,
 string table) {
 _tableList.Add(table);
 return (null);
}

Synchronization events

386 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

begin_upload connection event
Processes any statements just before the MobiLink server commences processing the stream of uploaded
inserts, updates, and deletes.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

Parameter name for SQL scripts Description Order

s.remote_id VARCHAR(128). The Mobi-
Link remote ID. You can only
reference the remote ID if you
are using named parameters.

Not applicable

s.username VARCHAR (128). The Mobi-
Link user name.

1

Default action
None.

Remarks
The MobiLink server executes this event as the first step in the processing of uploaded information. Upload
information is processed in a single transaction. The execution of this event is the first action in this
transaction.

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “end_upload connection event” on page 431
● “begin_upload table event” on page 389
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]

SQL example
The begin_upload connection event is used to perform whatever steps you need performed prior to uploading
rows. The following SQL script creates a temporary table for storing old and new row values for conflict
processing of the sales_order table. This example works with a SQL Anywhere consolidated database.

CALL ml_add_connection_script(
 'version1',
 'begin_upload',
 'CREATE TABLE #sales_order_conflicts (
 id integer NOT NULL default autoincrement,
 cust_id integer NOT NULL,
 order_date date NOT NULL,
 fin_code_id char(2) NULL,

begin_upload connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 387

 region char(7) NULL,
 sales_rep integer NOT NULL,
 new_value char(1) NOT NULL,
 PRIMARY KEY (id))')

Java example
The following call to a MobiLink system procedure registers a Java method called beginUploadConnection
as the script for the begin_upload connection event when synchronizing the script version ver1.

CALL ml_add_java_connection_script(
 'ver1',
 'begin_upload',
 'ExamplePackage.ExampleClass.beginUploadConnection ')

The following is the sample Java method beginUploadConnection. It prints a message to the MobiLink
message log. (Note that printing a message to the MobiLink message log might be useful at development
time but would slow down a production server.)

public String beginUploadConnection(String user) {
 java.lang.System.out.println(
 "Starting upload for user: " + user);
 return (null);
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called BeginUpload as the
script for the begin_upload connection event when synchronizing the script version ver1.

CALL ml_add_dnet_connection_script(
 'ver1',
 'begin_upload',
 'TestScripts.Test.BeginUpload'
)

The following C# example saves the current user name for use in a later event.

public string BeginUpload(string curUser) {
 user = curUser;
 return (null);
}

Synchronization events

388 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

begin_upload table event
Processes statements related to a specific table just before the MobiLink server commences processing the
stream of uploaded inserts, updates, and deletes.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you want to use parameter 2). If you use named parameters, you can specify any subset of the
parameters in any order.

Parameter name for SQL scripts Description Order

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

1

s.table VARCHAR(128). The table name. 2

Default action
None.

Remarks
The MobiLink server executes this event as the first step in the processing of uploaded information. Upload
information is processed in a separate transaction. The execution of this event is the first table-specific action
in this transaction.

You can have one begin_upload script for each table in the remote database. The script is only invoked when
the table is actually synchronized.

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “end_upload table event” on page 433
● “begin_upload connection event” on page 387
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]

begin_upload table event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 389

SQL example
When uploading rows from a remote you may want to place the changes in an intermediate table and manually
process changes yourself. You can populate a global temporary table in this event.

CALL ml_add_table_script(
 'version1',
 'Leads',
 'begin_upload',
 'INSERT INTO T_Leads
 SELECT * FROM Leads
 WHERE Owner = @EmployeeID')

Java example
The following call to a MobiLink system procedure registers a Java method called beginUploadTable as the
script for the begin_upload table event when synchronizing the script version ver1.

CALL ml_add_java_table_script(
 'ver1',
 'table1',
 'begin_upload',
 'ExamplePackage.ExampleClass.beginUploadTable'
)

The following is the sample Java method beginUploadTable. It prints a message to the MobiLink message
log. (Note that printing a message to the MobiLink message log might be useful at development time but
would slow down a production server.)

public String beginUploadTable(
 String user,
 String table) {
 java.lang.System.out.println("Beginning to process upload for: " + table);
 return (null);
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called BeginTableUpload as
the script for the begin_upload table event when synchronizing the script version ver1 and the table table1.

CALL ml_add_dnet_table_script(
 'ver1',
 'table1',
 'begin_upload',
 'TestScripts.Test.BeginTableUpload'
)

The following is the sample .NET method BeginTableUpload. It prints a message to the MobiLink message
log. (Note that printing a message to the MobiLink message log might be useful at development time but
would slow down a production server.)

public string BeginTableUpload(
 string user,
 string table) {
 System.Console.WriteLine("Beginning to process upload for: " + table);
 return (null);
}

Synchronization events

390 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

begin_upload_deletes table event
Processes statements related to a specific table just before uploading deleted rows from the specified table
in the remote database.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you want to use parameter 2). If you use named parameters, you can specify any subset of the
parameters in any order.

Parameter name for SQL scripts Description Order

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

1

s.table VARCHAR(128). The table name. 2

Default action
None.

Remarks
This event occurs immediately before applying the changes that result from rows deleted in the client table
named in the second parameter.

You can have one begin_upload_deletes script for each table in the remote database. The script is only
invoked when the table is actually synchronized.

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “end_upload_deletes table event” on page 436
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]

SQL example
The begin_upload_deletes connection event is used to perform whatever steps you need performed after
uploading inserts and updates for a particular table, but before deletes are uploaded for that table. The

begin_upload_deletes table event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 391

following SQL script creates a temporary table for storing deletes temporarily during upload. This syntax is
for a SQL Anywhere consolidated database.

CALL ml_add_table_script(
 'ver1',
 'sales_order',
 'begin_upload_deletes',
 'CREATE TABLE #sales_order_deletes (
 id integer NOT NULL default autoincrement,
 cust_id integer NOT NULL,
 order_date date NOT NULL,
 fin_code_id char(2) NULL,
 region char(7) NULL,
 sales_rep integer NOT NULL,
 PRIMARY KEY (id))')

Java example
The following call to a MobiLink system procedure registers a Java method called beginUploadDeletes as
the script for the begin_upload_deletes table event when synchronizing the script version ver1.

CALL ml_add_java_table_script(
 'ver1',
 'table1',
 'begin_upload_deletes',
 'ExamplePackage.ExampleClass.beginUploadDeletes')

The following is the sample Java method beginUploadDeletes. It prints a message to the MobiLink message
log. (Note that printing a message to the MobiLink message log might be useful at development time but
would slow down a production server.)

public String beginUploadDeletes(
 String user,
 String table)
 throws java.sql.SQLException {
 java.lang.System.out.println("Starting upload
 deletes for table: " + table);
 return (null);
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called BeginUploadDeletes as
the script for the begin_upload_deletes table event when synchronizing the script version ver1 and the table
table1.

CALL ml_add_dnet_table_script(
 'ver1',
 'table1',
 'begin_upload_deletes',
 'TestScripts.Test.BeginUploadDeletes'
)

The following is the sample .NET method BeginUploadDeletes. It prints a message to the MobiLink message
log. (Note that printing a message to the MobiLink message log might be useful at development time but
would slow down a production server.)

public string BeginUploadDeletes(
 string user,
 string table) {

Synchronization events

392 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 System.Console.WriteLine(
 "Starting upload deletes for table: " + table);
 return (null);
}

begin_upload_deletes table event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 393

begin_upload_rows table event
Processes statements related to a specific table just before uploading inserts and updates from the specified
table in the remote database.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you want to use parameter 2). If you use named parameters, you can specify any subset of the
parameters in any order.

Parameter name for SQL scripts Description Order

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID if
you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

1

s.table VARCHAR(128). The table name. 2

Default action
None.

Remarks
This event occurs immediately prior to applying the changes that result from inserts and deletes to the client
table named in the second parameter.

You can have one begin_upload_rows script for each table in the remote database. The script is only invoked
when the table is actually synchronized.

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “end_upload_rows table event” on page 439
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]

SQL example
The begin_upload_rows connection event is used to perform whatever steps you need performed before
uploading inserts and updates for a particular table. The following script calls a stored procedure that prepares
the consolidated database for inserts and updates into the Inventory table:

Synchronization events

394 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

CALL ml_add_table_script(
 'MyCorp 1.0',
 'Inventory',
 'begin_upload_rows',
 'CALL PrepareForUpserts()')

Java example
The following call to a MobiLink system procedure registers a Java method called beginUploadRows as the
script for the begin_upload_rows table event when synchronizing the script version ver1.

CALL ml_add_java_table_script(
 'ver1',
 'table1',
 'begin_upload_rows',
 'ExamplePackage.ExampleClass.beginUploadRows')

The following is the sample Java method beginUploadRows. It prints a message to the MobiLink message
log. (Note that printing a message to the MobiLink message log might be useful at development time but
would slow down a production server.)

public String beginUploadRows(
 String user,
 String table)
 throws java.sql.SQLException {
 java.lang.System.out.println(
 "Starting upload rows for table: " +
 table + " and user: " + user);
 return (null);
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called BeginUploadRows as
the script for the begin_upload_rows table event when synchronizing the script version ver1 and the table
table1.

CALL ml_add_dnet_table_script(
 'ver1',
 'table1',
 'begin_upload_rows',
 'TestScripts.Test.BeginUploadRows'
)

The following is the sample .NET method BeginUploadRows. It prints a message to the MobiLink message
log. (Note that printing a message to the MobiLink message log might be useful at development time but
would slow down a production server.)

public string BeginUploadRows(
 string user,
 string table) {
 System.Console.WriteLine(
 "Starting upload rows for table: " +
 table + " and user: " + user);
 return (null);
}

begin_upload_rows table event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 395

download_cursor table event
Defines a cursor to select rows to download and insert or update in the remote database.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you want to use parameter 2). If you use named parameters, you can specify any subset of the
parameters in any order.

Parameter name for SQL scripts Description Order

s.last_table_download TIMESTAMP. The last download time
for the table.

1

s.remote_id VARCHAR(128). The MobiLink re-
mote ID. You can only reference the re-
mote ID if you are using named param-
eters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

2

Default action
None.

Remarks
The MobiLink server opens a read-only cursor with which to fetch a list of rows to download to the remote
database. This script should contain a suitable SELECT statement.

You can have one download_cursor script for each table in the remote database.

To optimize performance of the download stage of synchronization to UltraLite clients, when the range of
primary key values is outside the current rows on the device, you should order the rows in the download
cursor by primary key. Downloads of large reference tables, for example, can benefit from this optimization.

Each download_cursor script must contain a SELECT statement or a call to a procedure that contains a
SELECT statement. The MobiLink server uses this statement to define a cursor in the consolidated database.

The script must select all columns that correspond to the columns in the corresponding table in the remote
database. The columns in the consolidated database can have different names than the corresponding columns
in the remote database, but they must be of compatible types.

The columns must be selected in the order that the corresponding columns are defined in the remote database.

Synchronization events

396 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Note that download_cursor allows for cascading deletes. So, you can delete records from a database.

To avoid downloading unnecessary rows, you should include the following line in the WHERE clause of
your download_cursor script:

AND last_table_download > '1900/1/1'

For Java and .NET applications, this script must return valid SQL.

If you are considering using READPAST table hints in download_cursor scripts because you are doing lots
of updates that affect download performance, consider using snapshot isolation for downloads instead. The
READPAST table hint can cause problems if used in download_cursor scripts. When using timestamp-based
downloads, the READPAST hint can cause rows to be missed, and can cause a row to never be downloaded
to a remote database. For example:

● A row is added to the consolidated database and committed. The row has a last_modified column with
a time of yesterday.

● The same row is updated but not committed.

● A remote database with a last_download time of last week synchronizes.

● A download_cursor script attempts to select the row using READPAST, and skips the row.

● The transaction that updated the row is rolled back. The next last download time for the remote is
advanced to today.

From this point on, the row is never downloaded unless it is updated. A possible workaround is to implement
a modify_next_last_download_timestamp script and set the last download time to be the start time of the
oldest open transaction.

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “Writing scripts to download rows” on page 333
● “Writing download_cursor scripts” on page 334
● “Partitioning rows among remote databases” on page 135
● “download_delete_cursor table event” on page 400
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]
● “Using last download times in scripts” on page 130
● "Using READPAST with MobiLink synchronization" in “FROM clause” [SQL Anywhere Server - SQL

Reference]

SQL example
The following example comes from an Oracle installation, although the statement is valid against all
supported databases. This example downloads all rows that have been changed since the last time the user
downloaded data, and that match the user name in the emp_name column.

CALL ml_add_table_script(
 'Lab',
 'ULOrder',
 'download_cursor',
 'SELECT order_id,

download_cursor table event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 397

 cust_id,
 prod_id,
 emp_id,
 disc,
 quant,
 notes,
 status
 FROM ULOrder
 WHERE last_modified >= {ml s.last_table_download}
 AND emp_name = {ml s.username}')

Java example
The following call to a MobiLink system procedure registers a Java method called downloadCursor as the
script for the download_cursor table event when synchronizing the script version ver1.

CALL ml_add_java_table_script(
 'ver1',
 'ULCustomer',
 'download_cursor',
 'ExamplePackage.ExampleClass.downloadCursor ')

The following is the sample Java method downloadCursor. It returns a SQL statement to download rows
where the last_modified column is greater than or equal to the last download time.

public String downloadCursor(
 java.sql.Timestamp ts,
 String user) {
 return("SELECT cust_id, cust_name FROM ULCustomer
 WHERE last_modified >= ' "
 + ts + " ' ");
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called DownloadCursor as the
script for the download_cursor table event when synchronizing the script version ver1 and the table table1.

CALL ml_add_dnet_table_script(
 'ver1',
 'table1',
 'download_cursor',
 'TestScripts.Test.DownloadCursor'
)

The following is the sample .NET method DownloadCursor. It populates a temporary table with the contents
of a file called rows.txt. It then returns a cursor that causes MobiLink to send the rows in the temporary table
to the remote database. This syntax is valid for SQL Anywhere consolidated databases.

public string DownloadCursor(
 DateTime ts,
 string user) {
 DBCommand stmt = curConn.CreateCommand();
 StreamReader input = new StreamReader("rows.txt");
 string sql = input.ReadLine();
 stmt.CommandText = "DELETE FROM dnet_dl_temp";
 stmt.ExecuteNonQuery();
 while(sql != null){
 stmt.CommandText = "INSERT INTO dnet_dl_temp VALUES " + sql;
 stmt.ExecuteNonQuery();
 sql = input.ReadLine();

Synchronization events

398 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 }
 return("SELECT * FROM dnet_dl_temp");
}

download_cursor table event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 399

download_delete_cursor table event
Defines a cursor to select rows that are to be deleted in the remote database.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you want to use parameter 2). If you use named parameters, you can specify any subset of the
parameters in any order.

Parameter name for SQL scripts Description Order

s.last_table_download TIMESTAMP. The last download time
for the table.

1

s.remote_id VARCHAR(128). The MobiLink re-
mote ID. You can only reference the re-
mote ID if you are using named param-
eters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

2

Default action
None.

Remarks
The MobiLink server opens a read-only cursor with which to fetch a list of rows to download, and then insert
or update in the remote database. This script must contain a SELECT statement that returns the primary key
values of the rows to be deleted from the table in the remote database.

You can have one download_delete_cursor script for each table in the remote database.

If the download_delete_cursor has nulls for the primary key columns for one or more rows in a table, then
MobiLink tells the remote to delete all the data in the table. See “Deleting all the rows in a
table” on page 336.

Note that rows deleted from the consolidated database do not appear in a result set defined by a
download_delete_cursor event, and so are not automatically deleted from the remote database. One technique
for identifying rows to be deleted from remote databases is to add a column to the consolidated database
table identifying a row as inactive.

To avoid downloading unnecessary rows, you should include the following line in the WHERE clause of
your download_delete_cursor script:

Synchronization events

400 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

AND last_modified > '1900/1/1'

For Java and .NET applications, this script must return valid SQL.

It can be problematic using READPAST table hints in a download_delete_cursor. For details, see the
download_cursor event.

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “download_cursor table event” on page 396
● “Writing scripts to download rows” on page 333
● “Partitioning rows among remote databases” on page 135
● “Writing download_delete_cursor scripts” on page 335
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]
● “Using last download times in scripts” on page 130
● "Using READPAST with MobiLink synchronization" in “FROM clause” [SQL Anywhere Server - SQL

Reference]

SQL example
This example is taken from the Contact sample and can be found in Samples\MobiLink\Contact
\build_consol.sql. It deletes from the remote database any customers who have been changed since the last
time this user downloaded data (Customer.last_modified >= {ml
s.last_table_download}), and either

● do not belong to the synchronizing user (SalesRep.username != {ml s.username}), or

● are marked as inactive in the consolidated database (Customer.active = 0).

CALL ml_add_table_script(
 'ver1',
 'table1',
 'download_delete_cursor',
 'SELECT cust_id FROM Customer key join SalesRep
 WHERE Customer.last_modified >= {ml s.last_table_download} AND
 (SalesRep.username != {ml s.username} OR Customer.active = 0)')

Java example
The following call to a MobiLink system procedure registers a Java method called downloadDeleteCursor
as the script for the download_delete_cursor event when synchronizing the script version ver1.

CALL ml_add_java_table_script(
 'ver1',
 'table1',
 'download_delete_cursor',
 'ExamplePackage.ExampleClass.downloadDeleteCursor')

The following is the sample Java method downloadDeleteCursor. It calls a Java method that generates the
SQL for the download delete cursor.

public String downloadDeleteCursor(
 Timestamp ts,
 String user) {

download_delete_cursor table event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 401

 return(getDownloadCursor(_curUser, _curTable));
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called DownloadDeleteCursor
as the script for the download_delete_cursor table event when synchronizing the script version ver1 and the
table table1.

CALL ml_add_dnet_table_script(
 'ver1',
 'table1',
 'download_delete_cursor',
 'TestScripts.Test.DownloadDeleteCursor'
)

The following is the sample .NET method DownloadDeleteCursor. It calls a .NET method that generates
the SQL for the download delete cursor.

public string DownloadDeleteCursor(
 DateTime timestamp,
 string user) {
 return(GetDownloadCursor(_curUser, _curTable));
}

Synchronization events

402 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

download_statistics connection event
Tracks synchronization statistics for download operations.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you want to use parameter 2). If you use named parameters, you can specify any subset of the
parameters in any order.

Parameter name for SQL
scripts

Description Order

s.remote_id VARCHAR(128). The MobiLink remote ID. You can
only reference the remote ID if you are using named
parameters.

Not applica-
ble

s.username VARCHAR(128). The MobiLink user name as speci-
fied in your SYNCHRONIZATION USER defini-
tion.

1

s.warnings INTEGER. The number of warnings issued. 2

s.errors INTEGER. The number of errors, including handled
errors, that occurred.

3

s.fetched_rows INTEGER. The number of rows fetched by the down-
load_cursor script.

4

s.deleted_rows INTEGER. The number of rows fetched by the down-
load_delete_cursor script.

5

s.filtered_rows INTEGER. The number of rows from the de-
leted_rows parameter actually sent to the remote. This
reflects download filtering of uploaded values.

6

s.bytes INTEGER. The number of bytes sent to the remote as
the download.

7

Default action
None.

download_statistics connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 403

Remarks
The download_statistics event allows you to gather, for any user, statistics on downloads. The
download_statistics connection script is called just prior to the commit at the end of the download transaction.

Note
Depending on the command line, not all warnings or errors are logged, so the warnings and errors counts
may be more than the number of warnings or errors logged.

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “download_statistics table event” on page 406
● “upload_statistics connection event” on page 512
● “upload_statistics table event” on page 517
● “synchronization_statistics connection event” on page 486
● “synchronization_statistics table event” on page 489
● “time_statistics connection event” on page 492
● “time_statistics table event” on page 495
● “MobiLink Monitor” on page 179
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]

SQL example
The following example inserts synchronization statistics into a table called download_audit.

CALL ml_add_connection_script(
 'ver1',
 'download_statistics',
 'INSERT INTO download_audit(
 user_name,
 warnings,
 errors,
 deleted_rows,
 fetched_rows,
 download_rows,
 bytes)
 VALUES (
 {ml s.username},
 {ml s.warnings},
 {ml s.errors},
 {ml s.fetched_rows},
 {ml s.deleted_rows},
 {ml s.filtered_rows},
 {ml s.bytes})')

Once vital statistics are inserted into the audit table, you may use these statistics to monitor your
synchronizations and make optimizations where applicable.

Java example
The following call to a MobiLink system procedure registers a Java method called
downloadStatisticsConnection as the script for the download_statistics event when synchronizing the script
version ver1.

Synchronization events

404 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

CALL ml_add_java_connection_script(
 'ver1',
 'download_statistics',
 'ExamplePackage.ExampleClass.downloadStatisticsConnection')

The following is the sample Java method downloadStatisticsConnection. It prints the number of fetched
rows to the MobiLink message log. (Note that printing the number of fetched rows to the MobiLink message
log might be useful at development time but would slow down a production server.)

public String downloadStatisticsConnection(
 String user,
 int warnings,
 int errors,
 int fetchedRows,
 int deletedRows,
 int bytes) {
 java.lang.System.out.println(
 "download connection stats fetchedRows: "
 + fetchedRows);
 return (null);
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called DownloadStats as the
script for the download_statistics connection event when synchronizing the script version ver1.

CALL ml_add_dnet_connection_script(
 'ver1',
 'download_statistics',
 'TestScripts.Test.DownloadStats'
)

The following is the sample .NET method DownloadStats. It prints the number of fetched rows to the
MobiLink message log. (Note that printing the number of fetched rows to the MobiLink message log might
be useful at development time but would slow down a production server.)

public string DownloadStats(
 string user,
 int warnings,
 int errors,
 int deletedRows,
 int fetchedRows,
 int downloadRows,
 int bytes) {
 System.Console.WriteLine(
 "download connection stats fetchedRows: "
 + fetchedRows);
 return (null);
}

download_statistics connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 405

download_statistics table event
Tracks synchronization statistics for download operations by table.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you want to use parameter 2). If you use named parameters, you can specify any subset of the
parameters in any order.

Parameter name for SQL
scripts

Description Order

s.remote_id VARCHAR(128). The MobiLink remote ID. You can only
reference the remote ID if you are using named parameters.

Not appli-
cable

s.username VARCHAR(128). The MobiLink user name as specified in
your SYNCHRONIZATION USER definition.

1

s.table VARCHAR(128). The table name. 2

s.warnings INTEGER. The number of warnings issued. 3

s.errors INTEGER. The number of errors, including handled errors,
that occurred.

4

s.fetched_rows INTEGER. The number of rows fetched by the down-
load_cursor script.

5

s.deleted_rows INTEGER. The number of rows fetched by the down-
load_delete_cursor script.

6

s.filtered_rows INTEGER. The number of rows from (6) actually sent to the
remote. This reflects download filtering of uploaded values.

7

s.bytes INTEGER. The number of bytes sent to the remote as the
download.

8

Default action
None.

Synchronization events

406 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Remarks
The download_statistics event allows you to gather, for any user and table, statistics on downloads as they
apply to that table. The download_statistics table script is called just prior to the commit at the end of the
download transaction.

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “download_statistics connection event” on page 403
● “upload_statistics connection event” on page 512
● “upload_statistics table event” on page 517
● “synchronization_statistics connection event” on page 486
● “synchronization_statistics table event” on page 489
● “time_statistics connection event” on page 492
● “time_statistics table event” on page 495
● “MobiLink Monitor” on page 179
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]

SQL example
The following example inserts synchronization statistics into a table called download_audit. Once vital
statistics are inserted into the audit table, you may use these statistics to monitor your synchronizations and
make optimizations where applicable.

CALL ml_add_table_script(
 'ver1',
 'table1',
 'download_statistics',
 'INSERT INTO download_audit (
 user_name,
 table, warnings,
 errors,
 deleted_rows,
 fetched_rows,
 download_rows,
 bytes)
 VALUES (
 {ml s.username},
 {ml s.table},
 {ml s.warnings},
 {ml s.errors},
 {ml s.fetched_rows},
 {ml s.deleted_rows},
 {ml s.filtered_rows},
 {ml s.bytes})')

Java example
The following call to a MobiLink system procedure registers a Java method called downloadStatisticsTable
as the script for the download_statistics table event when synchronizing the script version ver1.

CALL ml_add_java_table_script(
 'ver1',
 'table1',
 'download_statistics',
 'ExamplePackage.ExampleClass.downloadStatisticsTable')

download_statistics table event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 407

The following is the sample Java method downloadStatisticsTable. It prints some statistics for this table to
the MobiLink message log. (Note that printing statistics for a table to the MobiLink message log might be
useful at development time but would slow down a production server.)

public String downloadStatisticsTable(
 String user,
 String table,
 int warnings,
 int errors,
 int fetchedRows,
 int deletedRows,
 int bytes) {
 java.lang.System.out.println("download table stats "
 + "table: " + table + "bytes: " + bytes);
 return (null);
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called DownloadTableStats as
the script for the download_statistics table event when synchronizing the script version ver1 and the table
table1.

CALL ml_add_dnet_table_script(
 'ver1',
 'table1',
 'download_statistics',
 'TestScripts.Test.DownloadTableStats'
)

The following is the sample .NET method DownloadTableStats. It prints some statistics for this table to the
MobiLink message log. (Note that printing statistics for a table to the MobiLink message log might be useful
at development time but would slow down a production server.)

public string DownloadTableStats(
 string user,
 string table,
 int warnings,
 int errors,
 int deletedRows,
 int fetchedRows,
 int downloadRows,
 int bytes) {
 System.Console.WriteLine("download table stats "
 + "table: " + table + "bytes: " + bytes);
 return (null);
}

Synchronization events

408 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

end_connection connection event
Processes any statements just before the MobiLink server closes a connection with the consolidated database
server, either in preparation to shut down or when a connection is removed from the connection pool.

Parameters
None.

Default action
None.

Remarks
You can use the end_connection script to perform an action of your choice just prior to closing of a connection
between the MobiLink server and the consolidated database server.

This script is normally used to complete any actions started by the begin_connection script and free any
resources acquired by it.

See also
● “begin_connection connection event” on page 367
● “Adding and deleting scripts” on page 327

SQL example
The following SQL script drops a temporary table that was created by the begin_connection script. This
syntax is for a SQL Anywhere consolidated database. Strictly speaking, this table doesn't need to be dropped
explicitly, since SQL Anywhere does this automatically when the connection is destroyed. Whether a
temporary table needs to be dropped explicitly depends on your consolidated database type.

CALL ml_add_connection_script(
 'version 1.0',
 'end_connection',
 'DROP TABLE #sync_info')

Java example
The following call to a MobiLink system procedure registers a Java method called endConnection as the
script for the end_connection event when synchronizing the script version ver1.

CALL ml_add_java_connection_script(
 'ver1',
 'end_connection',
 'ExamplePackage.ExampleClass.endConnection')

The following is the sample Java method endConnection. It prints a message to the MobiLink message log.
(Note that printing a message to the MobiLink message log might be useful at development time but would
slow down a production server.)

public String endConnection() {
 java.lang.System.out.println("Ending connection.");
 return (null);
}

end_connection connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 409

.NET example
The following call to a MobiLink system procedure registers a .NET method called EndConnection as the
script for the end_connection connection event when synchronizing the script version ver1.

CALL ml_add_dnet_connection_script(
 'ver1',
 'end_connection',
 'TestScripts.Test.EndConnection'
)

The following is the sample .NET method EndConnection. It prints a message to the MobiLink message
log. (Note that printing a message to the MobiLink message log might be useful at development time but
would slow down a production server.)

public string EndConnection() {
 System.Console.WriteLine("Ending connection.");
 return (null);
}

Synchronization events

410 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

end_download connection event
Processes any statements just after the MobiLink server concludes preparation of the download data.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you want to use parameter 2). If you use named parameters, you can specify any subset of the
parameters in any order.

Parameter name for SQL scripts Description Order

s.last_download TIMESTAMP. The last download times
of any synchronized table.

1

s.remote_id VARCHAR(128). The MobiLink re-
mote ID. You can only reference the re-
mote ID if you are using named param-
eters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

2

Default action
None.

Remarks
The MobiLink server executes this script after all rows have been downloaded. If you are using blocking
download acknowledgement, the script is executed after the confirmation of receipt has been received.
Download information is processed in a single transaction. The execution of this script is the last non
statistical action in this transaction.

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “begin_download connection event” on page 369
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]
● “Using last download times in scripts” on page 130

end_download connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 411

SQL example
The following example shows one possible use of an end_download connection script. The ULEmpCust
table has an action column. The following script uses the value in this column to delete records from the
remote database.

CALL ml_add_connection_script(
 'ver1',
 'end_download',
 'DELETE FROM ULEmpCust ec
 WHERE ec.emp_id = {ml s.username} AND action = ''D''')

Java example
The following call to a MobiLink system procedure registers a Java method called endDownloadConnection
as the script for the end_download connection event when synchronizing the script version ver1.

CALL ml_add_java_connection_script(
 'ver1',
 'end_download',
 'ExamplePackage.ExampleClass.endDownloadConnection')

The following is the sample Java method endDownloadConnection. The ULEmpCust table has an action
column. The following script uses the value in this column to delete records from the remote database. It
also uses the current MobiLink connection (saved earlier) to perform an update before the download ends.
The SQL syntax is for SQL Anywhere consolidated databases.

public String endDownloadConnection(
 Timestamp ts,
 String user)
 throws java.sql.SQLException {
 String del_sql = "DELETE FROM ULEmpCust ec " +
 "WHERE ec.emp_id = '" + user + "' " +
 "AND action = 'D' ";
 execUpdate(_syncConn, del_sql);
 return (null);
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called EndDownload as the
script for the end_download connection event when synchronizing the script version ver1.

CALL ml_add_dnet_connection_script(
 'ver1',
 'end_download',
 'TestScripts.Test.EndDownload')

The following is the sample .NET method EndDownload. The ULEmpCust table has an action column. The
following script uses the value in this column to delete records from the remote database. It also uses the
current MobiLink connection (saved earlier) to perform an update before the download ends. The SQL syntax
is for SQL Anywhere consolidated databases.

public string EndDownload(
 DateTime timestamp,
 string user) {
 string del_sql = "DELETE FROM ULEmpCust ec " +
 "WHERE ec.emp_id = '" + user + "' " +
 "AND action = 'D' ";

Synchronization events

412 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 execUpdate(_syncConn, del_sql);
 return (null);
}

end_download connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 413

end_download table event
Processes statements related to a specific table just after the MobiLink server concludes preparing the stream
of downloaded inserts, updates, and deletes.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you want to use parameter 2). If you use named parameters, you can specify any subset of the
parameters in any order.

Parameter name for SQL scripts Description Order

s.last_table_download TIMESTAMP. The last download time
for the table.

1

s.remote_id VARCHAR(128). The MobiLink re-
mote ID. You can only reference the re-
mote ID if you are using named param-
eters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

2

s.table VARCHAR(128). The table name. 3

Default action
None.

Remarks
The MobiLink server executes this script after all rows have been downloaded and confirmation of receipt
has been received. The download information is prepared in a separate transaction. The execution of this
script is the last table-specific, non-statistical action in this transaction.

You can have one end_download script for each table in the remote database.

Synchronization events

414 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “begin_download table event” on page 371
● “end_download connection event” on page 411
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]
● “Using last download times in scripts” on page 130

SQL example
The end_download table event is used to perform whatever steps you need performed after downloading a
particular table. The following SQL Anywhere SQL script drops a temporary table created by a
prepare_for_download script to hold download rows for the sales_summary table.

CALL ml_add_table_script(
 'MyCorp 1.0',
 'sales_summary',
 'end_download',
 'DROP TABLE #sales_summary_download')

Java example
The following call to a MobiLink system procedure registers a Java method called endDownloadTable as
the script for the end_download table event when synchronizing the script version ver1.

CALL ml_add_java_table_script (
 'ver1',
 'table1',
 'end_download',
 'ExamplePackage.ExampleClass.endDownloadTable')

The following is the sample Java method endDownloadTable. It resets the current table member variable.

public String endDownloadTable(
 Timestamp ts,
 String user,
 String table) {
 _curTable = null;
 return (null);
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called EndTableDownload as
the script for the end_download table event when synchronizing the script version ver1 and the table table1.

CALL ml_add_dnet_table_script(
 'ver1',
 'table1',
 'end_download',
 'TestScripts.Test.EndTableDownload'
)

The following is the sample .NET method EndTableDownload. It resets the current table member variable.

public string EndTableDownload
 DateTime timestamp,
 string user,

end_download table event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 415

 string table) {
 _curTable = null;
 return (null);
}

Synchronization events

416 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

end_download_deletes table event
Processes statements related to a specific table just after preparing a list of rows to be deleted from the
specified table in the remote database.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you want to use parameter 2). If you use named parameters, you can specify any subset of the
parameters in any order.

Parameter name for SQL scripts Description Order

s.last_table_download TIMESTAMP. The last download time for
the table.

1

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

2

s.table VARCHAR(128). The table name. 3

Default action
None.

Remarks
This script is executed immediately after preparing a list of rows to be deleted from the named table in the
remote database.

You can have one end_download_deletes script for each table in the remote database.

end_download_deletes table event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 417

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “begin_download_deletes table event” on page 374
● “end_download connection event” on page 411
● “begin_download_rows table event” on page 377
● “end_download_rows table event” on page 420
● “download_delete_cursor table event” on page 400
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]
● “Using last download times in scripts” on page 130

SQL example
You may want to mark a row as deleted on the remote database. The following script updates a column in
the consolidated database called OnRemote.

Note
The WHERE clause on the UPDATE matches the WHERE clause used for your download_delete_cursor
event script.

CALL ml_add_table_script(
 'version1',
 'Leads',
 'end_download_deletes',
 'UPDATE Leads SET OnRemote = 0
 WHERE LastModified >= {ml s.last_table_download}
 AND Owner = {ml s.username} AND DeleteFlag=1');

Java example
The following call to a MobiLink system procedure registers a Java method called endDownloadDeletes as
the script for the end_download_deletes table event when synchronizing the script version ver1.

CALL ml_add_java_table_script(
 'ver1',
 'table1',
 'end_download_deletes',
 'ExamplePackage.ExampleClass.endDownloadDeletes')

You may want to mark a row as deleted on the remote database. The following is the sample Java method
endDownloadDeletes. It updates a column in the consolidated database called OnRemote to indicate the
record no longer resides on the remote database.

Note
The WHERE clause on the UPDATE matches the WHERE clause used for your download_delete_cursor
event script.

public String endDownloadDeletes(
 Timestamp ts,
 String user,
 String table) {
 return("UPDATE Leads SET OnRemote = 0
 WHERE LastModified >= {ml s.last_table_download}

Synchronization events

418 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 AND Owner = {ml s.username} AND DeleteFlag=1");
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called EndDownloadDeletes
as the script for the end_download_deletes table event when synchronizing the script version ver1 and the
table table1.

CALL ml_add_dnet_table_script(
 'ver1',
 'table1',
 'end_download_deletes',
 'TestScripts.Test.EndDownloadDeletes'
)

You may want to mark a row as deleted on the remote database. The following is the sample .NET method
EndDownloadDeletes. It updates a consolidated database column called OnRemote to indicate that the record
no longer resides on the remote database. The WHERE clause on the UPDATE matches the WHERE clause
used for your download_delete_cursor event script.

public string EndDownloadDeletes(
 DateTime timestamp,
 string user,
 string table) {
 return("UPDATE Leads SET OnRemote = 0
 WHERE LastModified >= {ml s.last_table_download}
 AND Owner = {ml s.username} AND DeleteFlag=1");
}

end_download_deletes table event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 419

end_download_rows table event
Processes statements related to a specific table just after preparing a list of rows to be inserted or updated in
the specified table in the remote database.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you want to use parameter 2). If you use named parameters, you can specify any subset of the
parameters in any order.

Parameter name for SQL scripts Description Order

s.last_table_download TIMESTAMP. The last download time
for the table.

1

s.remote_id VARCHAR(128). The MobiLink re-
mote ID. You can only reference the re-
mote ID if you are using named param-
eters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

2

s.table VARCHAR(128). The table name. 3

Default action
None.

Remarks
This script is executed immediately after preparing the stream of rows to be inserted or updated in the named
table in the remote database.

You can have one end_download_rows script for each table in the remote database.

Synchronization events

420 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “begin_download_rows table event” on page 377
● “end_download connection event” on page 411
● “end_download_deletes table event” on page 417
● “begin_download_deletes table event” on page 374
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]
● “Using last download times in scripts” on page 130

SQL example
You may want to mark a row as successfully downloaded to the remote database. The following script
updates a column in the consolidated database called OnRemote.

Note
The WHERE clause on the UPDATE matches the WHERE clause used for your download_delete_cursor
event script.

CALL ml_add_table_script(
 'version1',
 'Leads',
 'end_download_rows',
 'UPDATE Leads SET OnRemote = 1
 WHERE LastModified >= {ml s.last_table_download}
 AND Owner = {ml s.username}
 AND DownloadFlag=1');

Java example
The following call to a MobiLink system procedure registers a Java method called endDownloadRows as
the script for the end_download_rows table event when synchronizing the script version ver1.

CALL ml_add_java_table_script(
 'ver1',
 'table1',
 'end_download_rows',
 'ExamplePackage.ExampleClass.endDownloadRows')

The following is the sample Java method endDownloadRows. It prints a message to the MobiLink message
log. (Note that printing a message to the MobiLink message log might be useful at development time but
would slow down a production server.)

public String endDownloadRows(
 Timestamp ts,
 String user,
 String table) {
 java.lang.System.out.println(
 "Done downloading inserts and updates for table "
 + table);
 return (null);
}

end_download_rows table event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 421

.NET example
The following call to a MobiLink system procedure registers a .NET method called EndDownloadRows as
the script for the end_download_rows table event when synchronizing the script version ver1 and the table
table1.

CALL ml_add_dnet_table_script(
 'ver1',
 'table1',
 'end_download_rows',
 'TestScripts.Test.EndDownloadRows'
)

The following is the sample .NET method EndDownloadRows. It prints a message to the MobiLink message
log. (Note that printing a message to the MobiLink message log might be useful at development time but
would slow down a production server.)

public string EndDownloadRows(
 DateTime timestamp,
 string user,
 string table) {
 System.Console.WriteLine(
 "Done downloading inserts and updates for table "
 + table);
 return (null);
}

Synchronization events

422 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

end_publication connection event
Provides useful information about the publication(s) being synchronized.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you want to use parameter 2). If you use named parameters, you can specify any subset of the
parameters in any order.

Parameter name for SQL scripts Description Order

s.generation_number INTEGER. If your deployment does not use file-
based downloads, this parameter can be ignored.
The default value is 1.

1

s.remote_id VARCHAR(128). The MobiLink remote ID.
You can only reference the remote ID if you are
using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user name. 2

s.publication_name VARCHAR(128) 3

s.last_publication_upload TIMESTAMP. Last successful upload time of
this publication.

4

s.last_publication_download TIMESTAMP. The last download time of this
publication.

5

s.subscription_id VARCHAR(128). The subscription ID. 6

Default action
None.

Remarks
This event lets you design synchronization logic based on the publications currently being synchronized.
This event is invoked in the same transaction as the end_synchronization event, and is invoked before the
end_synchronization event. It is invoked once per publication being synchronized.

If the current synchronization successfully applied an upload, the last_upload parameter contains the time
this latest upload was applied. If you are using blocking download acknowledgement and the current
synchronization has a successful download acknowledgement, the last_download time contains the time this

end_publication connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 423

latest download was generated. This is the same value that was passed to the download scripts as the last
download time.

If an UltraLite remote is synchronizing with UL_SYNC_ALL, this event is invoked once with the name
'unknown'.

Generation number
The generation_number parameter is specifically for file-based downloads.

The output value of the generation number is passed from the begin_publication script to the end_publication
script. The meaning of the generation_number depends on whether the current synchronization is being used
to create a download file, or whether the current synchronization has an upload.

In file-based downloads, generation numbers are used to force an upload before the download. The number
is stored in the download file.

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “begin_publication connection event” on page 380
● “MobiLink file-based download” on page 293
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]
● “Using last download times in scripts” on page 130

SQL example
You may want to record the information for each publication being synchronized. The following example
calls ml_add_connection_script to assign the event to a stored procedure called RecordPubEndSync.

CALL ml_add_connection_script(
 'version1',
 'end_publication',
 'CALL RecordPubEndSync(
 {ml s.generation_number},
 {ml s.username},
 {ml s.publication_name},
 {ml s.last_publication_upload},
 {ml s.last_publication_download})');

Java example
The following call to a MobiLink system procedure registers a Java method called endPublication as the
script for the end_publication connection event when synchronizing the script version ver1.

CALL ml_add_java_connection_script(
 'ver1',
 'end_publication',
 'ExamplePackage.ExampleClass.endPublication')

The following is the sample Java method endPublication. It outputs a message to the MobiLink message
log. (Note that printing a message to the MobiLink message log might be useful at development time but
would slow down a production server.)

public String endPublication(
 ianywhere.ml.script.InOutInteger generation_number,

Synchronization events

424 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 String user,
 String pub_name,
 Timestamp last_publication_upload,
 Timestamp last_publication_download) {
 java.lang.System.out.println(
 "Finished synchronizing publication " + pub_name);
 return (null);
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called EndPub as the script for
the end_publication connection event when synchronizing the script version ver1.

CALL ml_add_dnet_connection_script(
 'ver1',
 'end_publication',
 'TestScripts.Test.EndPub'
)

The following is the sample .NET method endPub. It outputs a message to the MobiLink message log. (Note
that printing a message to the MobiLink message log might be useful at development time but would slow
down a production server.)

public string EndPub(
 ref int generation_number,
 string user,
 string pub_name,
 DateTime last_publication_upload,
 DateTime last_publication_download) {
 System.Console.Write(
 "Finished synchronizing publication " + pub_name);
 return (null);
}

end_publication connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 425

end_synchronization connection event
Processes any statements at the time an application disconnects from the MobiLink server upon completion
of the synchronization process.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

Parameter name for SQL scripts Description Order

s.remote_id VARCHAR(128). The MobiLink re-
mote ID. You can only reference the re-
mote ID if you are using named param-
eters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

1

s.synchronization_ok INTEGER. This value is 1 for a success-
ful synchronization and 0 for an unsuc-
cessful synchronization.

2

Default action
None.

Remarks
The MobiLink server executes this script after synchronization is complete. If you are using blocking
download acknowledgement, the script is executed after the MobiLink client has returned confirmation of
receipt of the download.

This script is executed within a separate transaction after the download transaction.

The end_synchronization script is useful for maintaining statistics. This is because if the
begin_synchronization script is called, the end_synchronization script is invoked even if there is an error or
conflict, so while the upload transaction is rolled back, statistics are maintained.

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “begin_synchronization connection event” on page 383
● “begin_synchronization table event” on page 385
● “end_synchronization table event” on page 428
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]

Synchronization events

426 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL example
The following SQL script calls a system procedure that records the end time of the synchronization attempt
along with its success or failure status. This syntax is for SQL Anywhere consolidated databases.

CALL ml_add_connection_script(
 'ver1',
 'end_synchronization',
 'CALL RecordEndOfSyncAttempt(
 {ml s.username},
 {ml s.synchronization_ok})')

Java example
The following call to a MobiLink system procedure registers a Java method called
endSynchronizationConnection as the script for the end_synchronization event when synchronizing the
script version ver1.

CALL ml_add_java_connection_script(
 'ver1',
 'end_synchronization',
 'ExamplePackage.ExampleClass.endSynchronizationConnection'
)

The following is the sample Java method endSynchronizationConnection. It uses a JDBC connection to
execute an update. This syntax is for SQL Anywhere consolidated databases.

public String endSynchronizationConnection(
 String user)
 throws java.sql.SQLException {
 execUpdate(_syncConn,
 "UPDATE sync_count set count = count + 1 where user_id = '"
 + user + "' ");
 return (null);
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called EndSync as the script
for the end_synchronization connection event when synchronizing the script version ver1.

CALL ml_add_dnet_connection_script(
 'ver1',
 'end_synchronization',
 'TestScripts.Test.EndSync'
)

The following is the sample .NET method EndSync. It updates the table sync_count. This syntax is for SQL
Anywhere consolidated databases.

public string EndSync(
 string user) {
 return(
 "UPDATE sync_count set count = count + 1 where user_id = '"
 + user + "' ");
 return (null);
}

end_synchronization connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 427

end_synchronization table event
Processes statements related to a specific table at the time an application disconnects from the MobiLink
server upon completion of the synchronization process.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you want to use parameter 2). If you use named parameters, you can specify any subset of the
parameters in any order.

Parameter name for SQL scripts Description Order

s.remote_id VARCHAR(128). The MobiLink re-
mote ID. You can only reference the re-
mote ID if you are using named param-
eters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

1

s.table VARCHAR(128). The table name. 2

s.synchronization_ok INTEGER. This value is 1 for a success-
ful synchronization and 0 for an unsuc-
cessful synchronization.

3

Default action
None.

Remarks
The MobiLink server executes this script after an application has synchronized and is about to disconnect
from the MobiLink server, and before the connection level script of the same name.

You can have one end_synchronization script for each table in the remote database.

Synchronization events

428 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “begin_synchronization table event” on page 385
● “end_synchronization connection event” on page 426
● “end_synchronization table event” on page 428
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]

SQL example
The following SQL Anywhere SQL script drops a temporary table created by the begin_synchronization
script.

CALL ml_add_table_script(
 'ver1',
 'sales_order',
 'end_synchronization',
 'DROP TABLE #sales_order')

Java example
The following call to a MobiLink system procedure registers a Java method called endSynchronizationTable
as the script for the end_synchronization table event when synchronizing the script version ver1.

CALL ml_add_java_table_script(
 'ver1',
 'table1',
 'end_synchronization',
 'ExamplePackage.ExampleClass.endSynchronizationTable')

The following is the sample Java method endSynchronizationTable. It returns a SQL statement that drops a
temporary table created by the begin_synchronization script.

public String endSynchronizationTable(
 String user,
 String table) {
 return("DROP TABLE #sales_order");
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called EndTableSync as the
script for the end_synchronization table event when synchronizing the script version ver1 and the table
table1.

CALL ml_add_dnet_table_script(
 'ver1',
 'table1',
 'end_synchronization',
 'TestScripts.Test.EndTableSync'
)

The following is the sample .NET method EndTableSync. It returns a SQL to statement that drops a
temporary table created by the begin_synchronization script.

public string EndTableSync(
 string user,
 string table) {

end_synchronization table event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 429

 return("DROP TABLE #sales_order");
}

Synchronization events

430 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

end_upload connection event
Processes any statements just after the MobiLink server concludes processing uploaded inserts, updates, and
deletes.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

Parameter name for SQL scripts Description Order

s.remote_id VARCHAR(128). The MobiLink re-
mote ID. You can only reference the re-
mote ID if you are using named param-
eters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

1

Default action
None.

Remarks
The MobiLink server executes this script as the last step in the processing of uploaded information. Upload
information is processed in a single transaction. The execution of this script is the last action in this transaction
before statistical scripts.

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “begin_upload connection event” on page 387
● “end_upload table event” on page 433
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]

SQL example
The following SQL Anywhere SQL script calls the EndUpload stored procedure.

CALL ml_add_connection_script(
 'ver1',
 'sales_order',
 'end_upload',
 'CALL EndUpload({ml s.username});')

Java example
The following call to a MobiLink system procedure registers a Java method called endUploadConnection
as the script for the end_upload connection event when synchronizing the script version ver1.

end_upload connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 431

CALL ml_add_java_connection_script(
 'ver1',
 'end_upload',
 'ExamplePackage.ExampleClass.endUploadConnection')

The following is the sample Java method endUploadConnection. It calls a method to perform operations on
the database.

public String endUploadConnection(String user) {
 // Clean up new and old tables.
 Iterator two_iter = _tables_with_ops.iterator();
 while(two_iter.hasNext()) {
 TableInfo cur_table = (TableInfo)two_iter.next();
 dumpTableOps(_sync_conn, cur_table);
 }
 _tables_with_ops.clear();
 return (null);
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called EndUpload as the script
for the end_upload connection event when synchronizing the script version ver1.

CALL ml_add_dnet_connection_script(
 'ver1',
 'end_upload',
 'TestScripts.Test.EndUpload'
)

The following is the sample .NET method EndUpload. It returns a SQL statement that calls the EndUpload
stored procedure.

public string EndUpload(string user) {
 return ("CALL EndUpload({ml s.username});");
}

Synchronization events

432 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

end_upload table event
Processes statements related to a specific table just after the MobiLink server concludes processing the stream
of uploaded inserts, updates, and deletions.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you want to use parameter 2). If you use named parameters, you can specify any subset of the
parameters in any order.

Parameter Description Order

s.remote_id VARCHAR(128). The MobiLink re-
mote ID. You can only reference the re-
mote ID if you are using named param-
eters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

1

s.table VARCHAR(128). The table name. 2

Default action
None.

Remarks
The MobiLink server executes this script as the last step in the processing of uploaded information. Upload
information is processed in a separate transaction. The execution of this script is the last table-specific action
in this transaction.

You can have one end_upload script for each table in the remote database.

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “begin_upload table event” on page 389
● “end_upload connection event” on page 431
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]

end_upload table event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 433

SQL example
The following call to a MobiLink system procedure assigns the end_upload event to a stored procedure
called ULCustomerIDPool_maintain.

CALL ml_add_table_script(
 'custdb',
 'ULCustomerIDPool',
 'end_upload',
 'CALL ULCustomerIDPool_maintain(username);');

The following SQL statements create the ULCustomerIDPool_maintain stored procedure.

CREATE OR REPLACE PROCEDURE ULCustomerIDPool_maintain(
 SyncUserID IN integer)
AS
 pool_count INTEGER;
 pool_max INTEGER;
BEGIN
 -- Determine how many ids to add to the pool
 SELECT COUNT(*)
 INTO pool_count
 FROM ULCustomerIDPool
 WHERE pool_emp_id = SyncUserID;
 -- Determine the current Customer id max
 SELECT MAX(pool_cust_id)
 INTO pool_max
 FROM ULCustomerIDPool;
 -- Top up the pool with new ids
 WHILE pool_count < 20 LOOP
 pool_max := pool_max + 1;
 INSERT INTO ULCustomerIDPool(
 pool_cust_id, pool_emp_id)
 VALUES (pool_max, SyncUserID);
 pool_count := pool_count + 1;
 END LOOP;
END;

Java example
The following call to a MobiLink system procedure registers a Java method called endUploadTable as the
script for the end_upload table event when synchronizing the script version ver1.

CALL ml_add_java_table_script(
 'ver1',
 'table1'
 'end_upload',
 'ExamplePackage.ExampleClass.endUploadTable')

The following is the sample Java method endUploadTable. It generates a delete for a table with a name
related to the passing-in table name. This syntax is for SQL Anywhere consolidated databases.

public String endUploadTable(
 String user,
 String table) {
 return("DELETE from '" + table + "_temp'");
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called EndUpload as the script
for the end_upload table event when synchronizing the script version ver1 and the table table1.

Synchronization events

434 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

CALL ml_add_dnet_table_script(
 'ver1',
 'table1',
 'end_upload',
 'TestScripts.Test.EndUpload'
)

The following .NET example moves rows inserted into a temporary table into the table passed into the script.

public string EndUpload(string user, string table) {
 DBCommand stmt = curConn.CreateCommand();
 // Move the uploaded rows to the destination table.
 stmt.CommandText = "INSERT INTO "
 + table
 + " SELECT * FROM dnet_ul_temp";
 stmt.ExecuteNonQuery();
 stmt.Close();
 return (null);
}

end_upload table event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 435

end_upload_deletes table event
Processes statements related to a specific table just after applying deletes uploaded from the specified table
in the remote database.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you want to use parameter 2). If you use named parameters, you can specify any subset of the
parameters in any order.

Parameter name for SQL scripts Description Order

s.remote_id VARCHAR(128). The MobiLink re-
mote ID. You can only reference the re-
mote ID if you are using named param-
eters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

1

s.table VARCHAR(128). The table name. 2

Default action
None.

Remarks
This script is run immediately after applying the changes that result from rows deleted in the remote table
named in the second parameter.

You can have one end_upload_deletes script for each table in the remote database.

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “begin_upload_deletes table event” on page 391
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]

SQL example
You can use this event to process rows deleted during the upload on an intermediate table. You can compare
the rows in the base table with rows in the intermediate table and decide what to do with the deleted row.

Synchronization events

436 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The following call to a MobiLink system procedure assigns the EndUploadDeletesLeads stored procedure
to the end_upload_deletes event.

CALL ml_add_table_script(
 'version1',
 'Leads',
 'end_upload_deletes',
 'call EndUploadDeletesLeads()');

The following SQL statement creates the EndUploadDeletes stored procedure.

CREATE PROCEDURE EndUploadDeletesLeads ()
Begin
 FOR names AS curs CURSOR FOR
 SELECT LeadID
 FROM Leads
 WHERE LeadID NOT IN (SELECT LeadID FROM T_Leads);
 DO
 CALL decide_what_to_do(LeadID);
 END FOR;
end

Java example
The following call to a MobiLink system procedure registers a Java method called endUploadDeletes as the
script for the end_upload_deletes table event when synchronizing the script version ver1.

CALL ml_add_java_table_script(
 'ver1',
 'table1',
 'end_upload_deletes',
 'ExamplePackage.ExampleClass.endUploadDeletes')

The following is the sample Java method a endUploadDeletes. It calls a Java method that manipulates the
database.

public String endUploadDeletes(
 String user,
 String table)
 throws java.sql.SQLException {
 processUploadedDeletes(_syncConn, table);
 return (null);
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called EndUploadDeletes as
the script for the end_upload_deletes table event when synchronizing the script version ver1 and the table
table1.

CALL ml_add_dnet_table_script(
 'ver1',
 'table1',
 'end_upload_deletes',
 'TestScripts.Test.EndUploadDeletes'
)

The following is the sample .NET method a EndUploadDeletes. It calls a .NET method that manipulates the
database.

end_upload_deletes table event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 437

public string EndUploadDeletes(
 string user,
 string table) {
 processUploadedDeletes(_syncConn, table);
 return (null);
}

Synchronization events

438 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

end_upload_rows table event
Processes statements related to a specific table just after applying uploaded inserts and updates from the
specified table in the remote database.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you want to use parameter 2). If you use named parameters, you can specify any subset of the
parameters in any order.

Parameter name for SQL scripts Description Order

s.remote_id VARCHAR(128). The MobiLink re-
mote ID. You can only reference the re-
mote ID if you are using named param-
eters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

1

s.table VARCHAR(128). The table name. 2

Default action
None.

Remarks
Uploaded information can require inserting or updating rows in the consolidated database. This script is run
immediately after applying the changes that result from modifications to the remote table named in the second
parameter.

You can have one end_upload_rows script for each table in the remote database.

See also
● “Adding and deleting scripts” on page 327
● “begin_upload_rows table event” on page 394
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]

SQL Example
The following call to a MobiLink system procedure registers a SQL method called endUploadRows as the
script for the EndUploadRows table event when synchronizing the script version ver1.

end_upload_rows table event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 439

CALL ml_add_table_script(
 'version1',
 'table1',
 'end_upload_rows',
 'CALL EndUploadRows(
 { ml s.username },
 { ml s.table })')

The following is the sample SQL method EndUploadRows. It calls a SQL method that manipulates the
database.

CREATE PROCEDURE EndUploadRows (
 IN user VARCHAR(128)
 IN table VARCHAR{128})
BEGIN
 CALL decide_what_to_do(table);
END;

Java example
The following call to a MobiLink system procedure registers a Java method called endUploadRows as the
script for the end_upload_rows table event when synchronizing the script version ver1.

CALL ml_add_java_table_script(
 'ver1',
 'table1',
 'end_upload_rows',
 'ExamplePackage.ExampleClass.endUploadRows')

The following is the sample Java method endUploadRows. It calls a Java method that manipulates the
database.

public String endUploadRows(
 String user,
 String table)
 throws java.sql.SQLException {
 processUploadedRows(_syncConn, table);
 return (null);
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called EndUploadRows as the
script for the end_upload_rows table event when synchronizing the script version ver1 and the table table1.

CALL ml_add_dnet_table_script(
 'ver1',
 'table1',
 'end_upload_rows',
 'TestScripts.Test.EndUploadRows'
)

The following is the sample .NET method endUploadRows. It calls a .NET method that manipulates the
database.

public string EndUploadRows(
 string user,
 string table) {
 processUploadedRows(_syncConn, table);

Synchronization events

440 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 return (null);
}

end_upload_rows table event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 441

handle_DownloadData connection event
Used by direct row handling to create a set of rows to download.

Parameters
None.

Default action
None.

Remarks
The handle_DownloadData event allows you to determine what operations to download to MobiLink clients
using direct row handling.

Direct row handling is used to synchronize to data sources other than MobiLink supported consolidated
databases. See “Direct row handling” on page 649.

To create the direct download, you can use the DownloadData and DownloadTableData classes in the
MobiLink server API for Java or .NET.

For Java, the DBConnectionContext getDownloadData method returns a DownloadData instance for the
current synchronization. DownloadData encapsulates all download operations to send to a remote client.
You can use the DownloadData getDownloadTables and getDownloadTableByName methods to obtain a
DownloadTableData instance. DownloadTableData encapsulates download operations for a particular table.
You can use the getUpsertPreparedStatement method to obtain prepared statements for insert and update
operations. You can use the DownloadTableData getDeletePreparedStatement method to obtain prepared
statements for delete operations.

For .NET, the DBConnectionContext GetDownloadData method returns a DownloadData instance for the
current synchronization. DownloadData encapsulates all download operations to send to a remote client.
You can use the DownloadData GetDownloadTables and GetDownloadTableByName methods to obtain a
DownloadTableData instance. DownloadTableData encapsulates download operations for a particular table.
You can use the GetUpsertCommand method to obtain commands for insert and update operations. You can
use the DownloadTableData getDeleteCommand method to obtain commands for delete operations.

For Java, see “DBConnectionContext interface” on page 543. For .NET, see “DBConnectionContext
interface” on page 609.

You can create the download in handle_DownloadData or another synchronization event. MobiLink provides
this flexibility so that you can set the download when data is uploaded or when particular events occur. If
you want to create the direct download in an event other then handle_DownloadData, you must create a
handle_DownloadData script whose method does nothing. MobiLink requires this script to be defined to
enable direct row handling. Except in upload-only synchronization, the MobiLink server requires that at a
minimum, a handle_DownloadData script be defined.

If you create the direct download in an event other than handle_DownloadData, the event must not be before
the begin_synchronization event and cannot be after the end_download event.

Synchronization events

442 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Note
This event cannot be implemented as SQL.

See also
● “Direct row handling” on page 649
● “Handling direct downloads” on page 660
● Java: “DownloadData interface” on page 548
● Java: “DownloadTableData interface” on page 550
● .NET: “DownloadData interface” on page 622
● .NET: “DownloadTableData interface” on page 623
● “handle_UploadData connection event” on page 454
● “Required scripts” on page 326
● “Adding and deleting scripts” on page 327

Java example
The following call to a MobiLink system procedure registers a Java method called handleDownload for the
handle_DownloadData connection event when synchronizing the script version ver1. You run this system
procedure against your MobiLink consolidated database.

CALL ml_add_java_connection_script(
 'ver1',
 'handle_DownloadData',
 'MyPackage.MyClass.handleDownload')

See “ml_add_java_connection_script system procedure” on page 671.

The following example shows you how to use the handleDownload method to create a download.

The following code sets up a class level DBConnectionContext instance in the constructor for a class called
MobiLinkOrders.

import ianywhere.ml.script.*;
import java.io.*;
import java.sql.*;
import java.lang.System;
public class MobiLinkOrders{
 DBConnectionContext _cc;
 public MobiLinkOrders(DBConnectionContext cc) {
 _cc = cc;
 }

In your HandleDownload method, you use the DBConnectionContext getDownloadData method to return
a DownloadData instance for the current synchronization. The DownloadData getDownloadTableByName
method returns a DownloadTableData instance for the remoteOrders table. The DownloadTableData
getUpsertPreparedStatement method returns a java.sql.PreparedStatement. To add an operation to the
download, you set all column values and call the executeUpdate method.

The following is the handleDownload method of the MobiLinkOrders class. It adds two rows to the download
for a table called remoteOrders.

handle_DownloadData connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 443

// Method used for the handle_DownloadData event.
public void handleDownload() throws SQLException {
 // Get DownloadData instance for current synchronization.
 DownloadData downloadData = _cc.getDownloadData();

 // Get a DownloadTableData instance for the remoteOrders table.
 DownloadTableData td = downloadData.getDownloadTableByName("remoteOrders");
 // Get a java.sql.PreparedStatement for upsert (update/insert) operations.
 PreparedStatement upsertPS = td.getUpsertPreparedStatement();
 // Set values for one row.
 upsertPS.setInt(1, 2300);
 upsertPS.setInt(2, 100);
 // Add the values to the download.
 int updateResult = upsertPS.executeUpdate();
 // Set values for another row.
 upsertPS.setInt(1, 2301);
 upsertPS.setInt(2, 50);
 updateResult = upsertPS.executeUpdate();
 upsertPS.close();
 // ...
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called HandleDownload as the
script for the handle_DownloadData connection event when synchronizing the script version ver1. This
syntax is for SQL Anywhere consolidated databases.

CALL ml_add_dnet_connection_script(
 'ver1', 'handle_DownloadData',
 'TestScripts.Test.HandleDownload'
)

The following is the sample .NET method HandleDownload:

using System;
using System.Data;
using System.IO;
using iAnywhere.MobiLink.Script;
using iAnywhere.MobiLink;
namespace MyScripts
{
 /// <summary>
 /// Tests that scripts are called correctly for most sync events.
 /// </summary>
 public class MobiLinkOrders
 {
 private DBConnectionContext _cc;
 public MobiLinkOrders(DBConnectionContext cc)
 {
 _cc = cc;
 }
 ~MobiLinkOrders()
 {

Synchronization events

444 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 }
 public void handleDownload()
 {
 // Get DownloadData instance for current synchronization.
 DownloadData my_dd = _cc.GetDownloadData();

 // Get a DownloadTableData instance for the remoteOrders table.
 DownloadTableData td = my_dd.GetDownloadTableByName("remoteOrders");
 // Get an IdbCommand for upsert (update/insert) operations.
 IDbCommand upsert_stmt = td.GetUpsertCommand();
 IDataParameterCollection parameters = upsert_stmt.Parameters;
 // Set values for one row.
 parameters[0] = 2300;
 parameters[1] = 100;
 // Add the values to the download.
 int update_result = upsert_stmt.ExecuteNonQuery();
 // Set values for another row.
 parameters[0] = 2301;
 parameters[1] = 50;
 update_result = upsert_stmt.ExecuteNonQuery();
 // ...
 }
 }
}

handle_DownloadData connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 445

handle_error connection event
Executed whenever the MobiLink server encounters a SQL error.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you want to use parameter 2). If you use named parameters, you can specify any subset of the
parameters in any order.

Parameter name for SQL scripts Description Order

s.action_code INTEGER. This is an INOUT parame-
ter.

1

s.error_code INTEGER 2

s.error_message TEXT 3

s.remote_id VARCHAR(128). The MobiLink re-
mote ID. You can only reference the re-
mote ID if you are using named param-
eters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

4

s.table VARCHAR(128). If the script is not a
table script, the table name is null.

5

Default action
When no handle_error script is defined or this script causes an error, the default action code is 3000: roll
back the current transaction and cancel the current synchronization.

Remarks
The MobiLink server sends in the current action code. Initially, this is set to 3000 for each set of errors
caused by a single SQL operation. Usually, there is only one error per SQL operation, but there may be more.
This handle_error script is called once per error in the set. The action code passed into the first error is 3000.
Subsequent calls are passed in the action code returned by the previous call. MobiLink uses the highest
numerical value returned from multiple calls.

Synchronization events

446 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

You can modify the action code in the script, and return a value instructing MobiLink how to proceed. The
action code tells the MobiLink server what to do next. Before it calls this script, the MobiLink server sets
the action code to a default value, which depends upon the severity of the error. Your script may modify this
value. Your script must return or set an action code.

The action code parameter takes one of the following values:

● 1000 Skip the current row and continue processing.

● 3000 Roll back the current transaction and cancel the current synchronization. This is the default
action code, and is used when no handle_error script is defined or this script causes an error.

● 4000 Roll back the current transaction, cancel the synchronization, and shut down the MobiLink
server.

The error codes and message allow you to identify the nature of the error. If the error happened as part of
synchronization, the user name is supplied. Otherwise, this value is null.

The MobiLink server executes this script if an ODBC error occurs while MobiLink is processing an insert,
update, or delete script during the upload transaction or is fetching download rows. If an ODBC error occurs
at another time, the MobiLink server calls the report_error or report_ODBC_error script and aborts the
synchronization.

If the error happened while manipulating a particular table, the table name is supplied. Otherwise, this value
is null. The table name is the name of a table in the client application. This name may or may not have a
direct counterpart in the consolidated database, depending upon the design of the synchronization system.

SQL scripts for the handle_error event must be implemented as stored procedures.

You can return a value from the handle_error script one of the following ways:

● Pass the action parameter to an OUTPUT parameter of a procedure:

CALL my_handle_error({ml s.action_code}, {ml s.error_code}, {ml
s.error_message}, {ml s.username}, {ml s.table})

● Set the action code via a procedure or function return value:

{ml s.action_code} = CALL my_handle_error({ml s.error_code}, {ml
s.error_message}, {ml s.username}, {ml s.table})

Most RDBMSs use the RETURN statement to set the return value from a procedure or function.

The CustDB sample application contains error handlers for various database-management systems.

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “report_error connection event” on page 477
● “report_odbc_error connection event” on page 480
● “handle_odbc_error connection event” on page 450
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]

handle_error connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 447

SQL example
The following example works with a SQL Anywhere consolidated database. It allows your application to
ignore redundant inserts.

The following call to a MobiLink system procedure assigns the ULHandleError stored procedure to the
handle_error event.

CALL ml_add_connection_script(
 'ver1',
 'handle_error',
 'CALL ULHandleError(
 {ml s.action_code},
 {ml s.error_code},
 {ml s.error_message},
 {ml s.username},
 {ml s.table})')

The following SQL statement creates the ULHandleError stored procedure.

CREATE PROCEDURE ULHandleError(
 INOUT action integer,
 IN error_code integer,
 IN error_message varchar(1000),
 IN user_name varchar(128),
 IN table_name varchar(128))
BEGIN
 -- -196 is SQLE_INDEX_NOT_UNIQUE
 -- -194 is SQLE_INVALID_FOREIGN_KEY
 IF error_code = -196 or error_code = -194 then
 -- ignore the error and keep going
 SET action = 1000;
 ELSE
 -- abort the synchronization
 SET action = 3000;
 END IF;
END

Java example
The following call to a MobiLink system procedure registers a Java method called handleError as the script
for the handle_error connection event when synchronizing the script version ver1.

CALL ml_add_java_connection_script(
 'ver1',
 'handle_error',
 'ExamplePackage.ExampleClass.handleError')

The following is the sample Java method handleError. It processes an error based on the data that is passed
in. It also determines the resulting error code.

public String handleError(
 ianywhere.ml.script.InOutInteger actionCode,
 int errorCode,
 String errorMessage,
 String user,
 String table) {
 int newAC;
 if(user == null) {
 newAC = handleNonSyncError(errorCode,
 errorMessage); }
 else if(table == null) {

Synchronization events

448 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 newAC = handleConnectionError(errorCode,
 errorMessage, user); }
 else {
 newAC = handleTableError(errorCode,
 errorMessage, user, table);
 }
 // Keep the most serious action code.
 if(actionCode.getValue() < newAC) {
 actionCode.setValue(newAC);
 }
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called HandleError as the script
for the handle_error connection event when synchronizing the script version ver1.

CALL mll_add_dnet_connection_script(
 'ver1',
 'handle_error',
 'TestScripts.Test.HandleError')

The following is the sample .NET method HandleError.

public string HandleError() (
 ref int actionCode,
 int errorCode,
 string errorMessage,
 string user,
 string table) {
 int new_ac;
 if(user == null) {
 new_ac = HandleNonSyncError(errorCode,
 errorMessage); }
 else if(table == null) {
 new_ac = HandleConnectionError(errorCode,
 errorMessage, user); }
 else {
 new_ac = HandleTableError(errorCode,
 errorMessage, user, table);
 }
 // Keep the most serious action code.
 if(actionCode < new_ac) {
 actionCode = new_ac;
 }
}

handle_error connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 449

handle_odbc_error connection event
Executed whenever the MobiLink server encounters an error triggered by the ODBC Driver Manager.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you want to use parameter 2). If you use named parameters, you can specify any subset of the
parameters in any order.

Parameter name for SQL scripts Description Order

s.action_code INTEGER. This is an INOUT parameter. 1

s.ODBC_state VARCHAR(5) 2

s.error_message TEXT 3

s.remote_id VARCHAR(128). The MobiLink remote ID. You
can only reference the remote ID if you are using
named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user name. 4

s.table VARCHAR(128) 5

Default action
The MobiLink server selects a default action code. You can modify the action code in the script, and return
a value instructing MobiLink how to proceed. The action code parameter takes one of the following values:

● 1000 Skip the current row and continue processing.

● 3000 Rollback the current transaction and cancel the current synchronization. This is the default action
code, and is used when no handle_error script is defined or this script causes an error.

● 4000 Rollback the current transaction, cancel the synchronization, and shut down the MobiLink server.

Remarks
The MobiLink server executes this script whenever it encounters an error flagged by the ODBC Driver
Manager if the error occurs while MobiLink is processing an insert, update, or delete script during the upload
transaction or is fetching download rows. If an ODBC error occurs at another time, the MobiLink server
calls the report_error or report_ODBC_error script and aborts the synchronization.

The error codes allow you to identify the nature of the error.

Synchronization events

450 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The action code tells the MobiLink server what to do next. Before it calls this script, the MobiLink server
sets the action code to a default value, which depends upon the severity of the error. Your script may modify
this value. Your script must return or set an action code.

The handle_odbc_error script is called after the handle_error and report_error scripts, and before the
report_odbc_error script.

When only one, but not both, error-handling script is defined, the return value from that script decides error
behavior. When both error-handling scripts are defined, the MobiLink server uses the numerically highest
action code. If both handle_error and handle_ODBC_error are defined, MobiLink uses the action code with
the highest numerical value returned from all calls.

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “handle_error connection event” on page 446
● “report_error connection event” on page 477
● “report_odbc_error connection event” on page 480
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]

SQL example
The following example works with a SQL Anywhere consolidated database. It allows your application to
ignore ODBC integrity constraint violations.

The following call to a MobiLink system procedure assigns the HandleODBCError stored procedure to the
handle_odbc_error event.

CALL ml_add_connection_script(
 'ver1',
 'handle_odbc_error',
 'CALL HandleODBCError(
 {ml s.action_code},
 {ml s.ODBC_state},
 {ml s.error_message},
 {ml s.username},
 {ml s.table})')

The following SQL statement creates the HandleODBCError stored procedure.

CREATE PROCEDURE HandleODBCError(
 INOUT action integer,
 IN odbc_state varchar(5),
 IN error_message varchar(1000),
 IN user_name varchar(128),
 IN table_name varchar(128))
 BEGIN
 IF odbc_state = '23000' then
 -- Ignore the error and keep going.
 SET action = 1000;
 ELSE
 -- Abort the synchronization.
 SET action = 3000;
 END IF;
END

handle_odbc_error connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 451

Java example
The following call to a MobiLink system procedure registers a Java method called handleODBCError as the
script for the handle_odbc_error event when synchronizing the script version ver1.

CALL ml_add_java_connection_script(
 'ver1',
 'handle_odbc_error',
 'ExamplePackage.ExampleClass.handleODBCError'
)

The following is the sample Java method handleODBCError. It processes an error based on the data that is
passed in. It also determines the resulting error code.

public String handleODBCError(
 ianywhere.ml.script.InOutInteger actionCode,
 String ODBCState,
 String errorMessage,
 String user,
 String table) {
 int newAC;
 if(user == null) {
 newAC = handleNonSyncError(ODBCState,
 errorMessage);
 }
 else if(table == null) {
 newAC = handleConnectionError(ODBCState,
 errorMessage, user);
 } else {
 newAC = handleTableError(ODBCState,
 errorMessage, user, table);
 }
 // Keep the most serious action code.
 if(actionCode.getValue() < newAC) {
 actionCode.setValue(newAC);
 }
 return(null);
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called HandleODBCError as
the script for the handle_odbc_event when synchronizing the script version ver1.

CALL ml_add_dnet_connection_script(
 'ver1',
 'handle_odbc_error',
 'TestScripts.Test.HandleODBCError')

The following is the sample .NET method HandleODBCError.

public string HandleODBCError (
 ref int actionCode,
 string ODBCState,
 string errorMessage,
 string user,
 string table) {
 int new_ac;
 if(user == null) {
 new_ac = HandleNonSyncError(ODBCState,
 errorMessage);
 }

Synchronization events

452 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 else if(table == null) {
 new_ac = HandleConnectionError(ODBCState,
 errorMessage, user);
 } else {
 new_ac = HandleTableError(ODBCState,
 errorMessage, user, table);
 }
 // Keep the most serious action code.
 if(actionCode < new_ac) {
 actionCode = new_ac;
 }
 return(null);
}

handle_odbc_error connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 453

handle_UploadData connection event
Used by direct row handling to process uploaded rows.

Parameters

Parameter name for SQL
scripts

Description Order

UploadData A .NET or Java class encapsulating table opera-
tions uploaded by a MobiLink client. This class is
defined in the MobiLink server API for Java
and .NET.

1

Default action
None.

Remarks
The handle_UploadData event allows you to process the upload for MobiLink direct row handling. This
event fires once for each upload transaction in a synchronization, unless you are using transaction-level
uploads, in which case it fires for each transaction.

See “Direct row handling” on page 649.

This event takes a single UploadData parameter. Your Java or .NET method can use the UploadData
getUploadedTables or getUploadedTableByName methods to obtain UploadedTableData instances.
UploadedTableData allows you to access insert, update, and delete operations uploaded by a MobiLink client
in the current synchronization.

For more information about the UploadData and UploadedTableData classes, see “Handling direct
uploads” on page 654.

If you want to read column name metadata, you must specify the SendColumnNames MobiLink client
extended option or property. Otherwise you can refer to columns by index, as defined at the remote database.

See “SendColumnNames (scn) extended option” [MobiLink - Client Administration] and “Send Column
Names synchronization parameter” [UltraLite - Database Management and Reference].

Note
This event cannot be implemented as SQL.

Synchronization events

454 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “Direct row handling” on page 649
● “Handling direct uploads” on page 654
● Java: “UploadData interface” on page 579
● Java: “UploadedTableData interface” on page 581
● .NET: “UploadData interface” on page 641
● .NET: “UploadedTableData interface” on page 643
● dbmlsync: “SendColumnNames (scn) extended option” [MobiLink - Client Administration]
● UltraLite: “Send Column Names synchronization parameter” [UltraLite - Database Management and

Reference]
● “handle_DownloadData connection event” on page 442
● “Required scripts” on page 326
● “Adding and deleting scripts” on page 327

Java examples
The following call to a MobiLink system procedure registers a Java method called handleUpload for the
handle_UploadData connection event when synchronizing the script version ver1. You run this system
procedure against your MobiLink consolidated database.

CALL ml_add_java_connection_script(
 'ver1',
 'handle_UploadData',
 'MyPackage.MyClass.handleUpload')

For more information about ml_add_java_connection_script, see “ml_add_java_connection_script system
procedure” on page 671.

The following Java method processes the upload for the remoteOrders table. The
UploadData.getUploadedTableByName method returns an UploadedTableData instance for the
remoteOrders table. The UploadedTableData getInserts method returns a java.sql.ResultSet instance
representing new rows.

import ianywhere.ml.script.*;
import java.sql.*;
import java.io.*;
// ...
public void handleUpload(UploadData ut)
 throws SQLException, IOException {
 // Get an UploadedTableData instance representing the
 // remoteOrders table.
 UploadedTableData remoteOrdersTable =
ut.getUploadedTableByName("remoteOrders");
 // Get inserts uploaded by the MobiLink client.
 java.sql.ResultSet results = remoteOrdersTable.getInserts();
 while(results.next()) {
 // You can reference column names here because SendColumnNames is on
 // Get the primary key.
 int pk = results.getInt("pk");

 // Get the uploaded num_ordered value.
 int numOrdered = results.getInt("num_ordered");

 // The current insert row is now ready to be uploaded to wherever
 // you want it to go (a file, a web service, and so on).

handle_UploadData connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 455

 }

 results.close();
}

The following example outputs insert, update and delete operations uploaded by a MobiLink remote
database. The UploadData getUploadedTables method returns UploadedTableData instances representing
all tables uploaded by a remote. The order of the tables in this array is the order in which they where uploaded
by the remote. The UploadedTableData getInserts, getUpdates, and getDeletes methods return standard
JDBC result sets. You can use the println method or output data to a text file or another location.

import ianywhere.ml.script.*;
import java.sql.*;
import java.io.*;
// ...
public void handleUpload(UploadData ud)
 throws SQLException, IOException {
 UploadedTableData tables[] = ud.getUploadedTables();
 for(int i = 0; i < tables.length; i++) {
 UploadedTableData currentTable = tables[i];
 println("table " + java.lang.Integer.toString(i) +
 " name: " + currentTable.getName());
 // Print out delete result set.
 println("Deletes");
 printRSInfo(currentTable.getDeletes());
 // Print out insert result set.
 println("Inserts");
 printRSInfo(currentTable.getInserts());
 // print out update result set
 println("Updates");
 printUpdateRSInfo(currentTable.getUpdates());
 }
}

The printRSInfo method prints out an insert, update, or delete result set and accepts a single java.sql.ResultSet
object. Detailed column information, including column labels, is provided by the ResultSetMetaData object
returned by the ResultSet getMetaData method. Column labels are available only if the client has the
SendColumnNames option turned on. The printRow method prints out each row in a result set.

public void printRSInfo(ResultSet results)
 throws SQLException, IOException {

 // Obtain the result set metadata.
 ResultSetMetaData metaData = results.getMetaData();
 String columnHeading = "";
 // Print out column headings.
 for(int c = 1; c <= metaData.getColumnCount(); c++) {
 columnHeading += metaData.getColumnLabel(c);
 if(c < metaData.getColumnCount()) {
 columnHeading += ", ";
 }
 }
 println(columnHeading);
 while(results.next()) {
 // Print out each row.
 printRow(results, metaData.getColumnCount());

Synchronization events

456 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 }
 // Close the java.sql.ResultSet.
 results.close();
}

The printRow method, shown below, uses the ResultSet getString method to obtain each column value.

public void printRow(ResultSet results, int colCount)
 throws SQLException, IOException {
 String row = "(";

 for(int c = 1; c <= colCount; c++) {
 // Get a column value.
 String currentColumn = results.getString(c);

 // Check for null values.
 if(currentColumn == null) {
 currentColumn = "<NULL>";
 }
 // Add the column value to the row string.
 row += cur_col;
 if(c < colCount) {
 row += ", ";
 }
 }
 row += ")";
 // Print out the row.
 println(row);
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called HandleUpload for the
handle_UploadData connection event when synchronizing the script version ver1. You run this system
procedure against your MobiLink consolidated database.

CALL ml_add_dnet_connection_script(
 'ver1',
 'handle_UploadData',
 'TestScripts.Test.HandleUpload')

The following .NET method processes the upload for the remoteOrders table.

using System;
using System.Data;
using System.IO;
using iAnywhere.MobiLink.Script;
using iAnywhere.MobiLink;
namespace MyScripts
{
 public class MyUpload
 {
 public MyUpload(DBConnectionContext cc)
 {
 }
 ~MyUpload()

handle_UploadData connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 457

 {
 }
 public void handleUpload(UploadData ut)
 {
 int i;
 UploadedTableData[] tables = ut.GetUploadedTables();
 for(i=0; i<tables.Length; i+=1) {
 UploadedTableData cur_table = tables[i];
 Console.Write("table " + i + " name: " + cur_table.GetName());
 // Print out delete result set.
 Console.Write("Deletes");
 printRSInfo(cur_table.GetDeletes());
 // Print out insert result set.
 Console.Write("Inserts");
 printRSInfo(cur_table.GetInserts());
 // print out update result set
 Console.Write("Updates");
 printUpdateRSInfo(cur_table.GetUpdates());
 }
 }
 public void printRSInfo(IDataReader dr)
 {
 // Obtain the result set metadata.
 DataTable dt = dr.GetSchemaTable();
 DataColumnCollection cc = dt.Columns;
 DataColumn dc;
 String columnHeading = "";
 // Print out column headings.
 for(int c=0; c < cc.Count; c = c + 1) {
 dc = cc[c];
 columnHeading += dc.ColumnName;
 if(c < cc.Count - 1) {
 columnHeading += ", ";
 }
 }
 Console.Write(columnHeading);
 while(dr.Read()) {
 // Print out each row.
 printRow(dr, cc.Count);
 }
 // Close the java.sql.ResultSet.
 dr.Close();
 }
 public void printUpdateRSInfo(UpdateDataReader utr)
 {
 // Obtain the result set metadata.
 DataTable dt = utr.GetSchemaTable();
 DataColumnCollection cc = dt.Columns;
 DataColumn dc;
 String columnHeading = "TYPE, ";
 // Print out column headings.
 for(int c = 0; c < cc.Count; c = c + 1) {
 dc = cc[c];
 columnHeading += dc.ColumnName;

Synchronization events

458 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 if(c < cc.Count - 1) {
 columnHeading += ", ";
 }
 }
 Console.Write(columnHeading);
 while(utr.Read()) {
 // Print out the new values for the row.
 utr.SetNewRowValues();
 Console.Write("NEW:");
 printRow(utr, cc.Count);
 // Print out the old values for the row.
 utr.SetOldRowValues();
 Console.Write("OLD:");
 printRow(utr, cc.Count);
 }
 // Close the java.sql.ResultSet.
 utr.Close();
 }
 public void printRow(IDataReader dr, int col_count)
 {
 String row = "(";
 int c;

 for(c = 0; c < col_count; c = c + 1) {
 // Get a column value.
 String cur_col = dr.GetString(c);

 // Check for null values.
 if(cur_col == null) {
 cur_col = "<NULL>";
 }
 // Add the column value to the row string.
 row += cur_col;
 if(c < col_count) {
 row += ", ";
 }
 }
 row += ")";
 // Print out the row.
 Console.Write(row);
 }
 }
}

handle_UploadData connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 459

modify_error_message connection event
The script can be used to customize the message text (error, warning, and information) that is sent to remote
databases.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you want to use parameter 2). If you use named parameters, you can specify any subset of the
parameters in any order.

Parameter name for SQL scripts Description Order

s.error_message VARBINARY(1024). This is an IN-
OUT parameter.

1

s.remote_id VARCHAR(128). The MobiLink re-
mote ID. You can only reference the
remote ID if you are using named pa-
rameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

2

s.error_code INT. 3

Default action
None.

Remarks
SQL scripts for the modify_error_message event must be implemented as stored procedures.

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]

SQL example
The following example downloads everything from one day ago, regardless of whether the databases were
synchronized since then.

The following SQL statement creates the ModifyLastErrorMessage stored procedure:

Synchronization events

460 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

CREATE PROCEDURE ModifyLastErrorMessage(
 inout error_message VARBINARY(1024),
 in username VARCHAR(128),
 in error_code INT)
BEGIN
 SELECT dateadd(day, -1, last_download_time)
 INTO last_download_time
END

The following call to a MobiLink system procedure assigns ModifyLastErrorMessage to the
modify_error_message connection event for the script version modify_ts_test:

CALL ml_add_connection_script(
 'modify_ts_test',
 'modify_error_message',
 'CALL ModifyLastErrorMessage (
 {ml s.error_message},
 {ml s.username},
 {ml s.error_code})');

Java example
The following call to a MobiLink system procedure registers a Java method called modifyLastErrorMessage
as the script for the modify_error_message connection event when synchronizing the script version ver1.

CALL ml_add_java_connection_script(
 'ver1',
 'modify_error_message',
 'ExamplePackage.ExampleClass.modifyLastErrorMessage')

The following is the sample Java method modifyLastErrorMessage. It prints the current error message and
error code.

public String modifyLastErrorMessage(
 String lastErrorMessage,
 String userName,
 int errorCode) {
 java.lang.System.out.println("error message: " +
 lastErrorMessage);
 java.lang.System.out.println("error code: " +
 String.valueOf(errorCode));
 return(null);
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called
ModifyLastErrorMessage as the script for the modify_error_message connection event when synchronizing
the script version ver1.

CALL ml_add_dnet_connection_script(
 'ver1',
 'modify_error_message,
 'TestScripts.Test.ModifyLastErrorMessage')

The following is a sample .NET method ModifyLastErrorMessage. It prints the current error code and error
message.

public string ModifyLastErrorMessage (
 string errorMessage,

modify_error_message connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 461

 string userName,
 string errorCode) {
 System.Console.WriteLine("error message: " + errorMessage);
 System.Console.WriteLine("error code: " + errorCode);
 return (null);
}

Synchronization events

462 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

modify_last_download_timestamp connection event
The script can be used to modify the last download time for the current synchronization.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you want to use parameter 2). If you use named parameters, you can specify any subset of the
parameters in any order.

Parameter name for SQL scripts Description Order

s.last_download TIMESTAMP. The last download
time for any synchronized table. This
is an INOUT parameter.

1

s.remote_id VARCHAR(128). The MobiLink re-
mote ID. You can only reference the
remote ID if you are using named pa-
rameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

2

Default action
None.

Remarks
Use this script when you want to modify the last_download timestamp for the current synchronization. If
this script is defined, the MobiLink server uses the modified last_download timestamp as the last_download
timestamp passed to the download scripts. A typical use of this script is to recover from losing data on the
remote; you can reset the last_download timestamp to an early time such as 1900-01-01 00:00 so that the
next synchronization downloads all the data.

SQL scripts for the modify_last_download_timestamp event must be implemented as stored procedures.
The MobiLink server passes in the last_download timestamp as the first parameter to the stored procedure,
and replaces the timestamp by the first value passed out by the stored procedure.

This script is executed just before the prepare_for_download script, in the same transaction.

modify_last_download_timestamp connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 463

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]
● “Using last download times in scripts” on page 130
● “How download timestamps are generated and used” on page 131
● “modify_next_last_download_timestamp connection event” on page 466

SQL example
The following SQL statement creates a stored procedure. The following syntax is for Oracle consolidated
databases:

CREATE PROCEDURE ModifyDownloadTimestamp(
 download_timestamp OUT DATE,
 user_name IN VARCHAR)
 AS
 BEGIN
 -- N is the maximum replication latency in the consolidated cluster
 download_timestamp := download_timestamp - N;
 END;

The following syntax is for SQL Anywhere, Adaptive Server Enterprise, and SQL Server consolidated
databases:

CREATE PROCEDURE ModifyDownloadTimestamp
 @download_timestamp DATETIME OUTPUT,
 @t_name VARCHAR(128)
 AS
 BEGIN
 -- N is the maximum replication latency in consolidated cluster
 SELECT @download_timestamp = @download_timestamp - N
 END

The following syntax is for DB2 mainframe consolidated databases:

CREATE PROCEDURE modify_ldts(
 OUT ts TIMESTAMP,
 IN t_name VARCHAR(128))
 LANGUAGE SQL
 BEGIN
 set ts = TIMESTAMP_FORMAT('2000-01-02 03:04:05','YYYY-MM-DD
HH24:MI:SS');
 END

The following call to a MobiLink system procedure assigns the ModifyDownloadTimestamp stored
procedure to the modify_last_download_timestamp event. The following syntax is for a SQL Anywhere
consolidated database:

CALL ml_add_connection_script(
 'my_version',
 'modify_last_download_timestamp',
 '{CALL ModifyDownloadTimestamp(
 {ml s.last_download},
 {ml s.username}) }')

Synchronization events

464 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Java example
The following call to a MobiLink system procedure registers a Java method called
modifyLastDownloadTimestamp as the script for the modify_last_download_timestamp connection event
when synchronizing the script version ver1.

CALL ml_add_java_connection_script(
 'ver1',
 'modify_last_download_timestamp',
 'ExamplePackage.ExampleClass.modifyLastDownloadTimestamp')

The following is the sample Java method modifyLastDownloadTimestamp. It prints the current and new
timestamp and modifies the timestamp that is passed in.

public String modifyLastDownloadTimestamp(
 Timestamp lastDownloadTime,
 String userName) {
 java.lang.System.out.println("old date: " +
 lastDownloadTime.toString());
 lastDownloadTime.setDate(
 lastDownloadTime.getDate() -1);
 java.lang.System.out.println("new date: " +
 lastDownloadTime.toString());
 return(null);
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called
ModifyLastDownloadTimestamp as the script for the modify_last_download_timestamp connection event
when synchronizing the script version ver1.

CALL ml_add_dnet_connection_script(
 'ver1',
 'modify_last_download_timestamp',
 'TestScripts.Test.ModifyLastDownloadTimestamp')

The following is the sample .NET method ModifyLastDownloadTimestamp.

public string ModifyLastDownloadTimestamp(
 DateTime lastDownloadTime,
 string userName) {
 System.Console.WriteLine("old date: " +
 last_download_time.ToString());
 last_download_time = DateTime::Now;
 System.Console.WriteLine("new date: " +
 last_download_time.ToString());
 return(null);
}

modify_last_download_timestamp connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 465

modify_next_last_download_timestamp connection
event

The script can be used to modify the last download time for the next synchronization.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you want to use parameter 2). If you use named parameters, you can specify any subset of the
parameters in any order.

Parameter name for SQL scripts Description Order

s.next _last_download TIMESTAMP. This is an INOUT pa-
rameter. The MobiLink server gener-
ates this value immediately after the
upload is committed.

1

s.last_download TIMESTAMP. This is an IN parame-
ter. This is the last download time for
the current synchronization. It can be
useful in avoiding duplication, by
making sure you don't modify the
next_last_download timestamp to be
earlier than the last_download time-
stamp.

2

s.remote_id VARCHAR(128). The MobiLink re-
mote ID. You can only reference the
remote ID if you are using named pa-
rameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

3

Default action
None.

Synchronization events

466 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Remarks
This script allows you to change the next_last_download timestamp, which effectively changes the
last_download timestamp for the next synchronization. This allows you to reset the next synchronization
without affecting the current synchronization.

SQL scripts for the modify_next_last_download_timestamp event must be implemented as stored
procedures. The MobiLink server passes in the next_last_download timestamp as the first parameter to the
stored procedure, and replaces the timestamp by the first value passed out by the stored procedure.

This script is executed in the download transaction, after downloading user tables.

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]
● “Using last download times in scripts” on page 130
● “How download timestamps are generated and used” on page 131
● “modify_last_download_timestamp connection event” on page 463

SQL example
The following example shows one application of this script. Create a stored procedure. The following syntax
is for a SQL Anywhere consolidated database:

CREATE PROCEDURE ModifyNextDownloadTimestamp(
 inout download_timestamp TIMESTAMP ,
 in last_download TIMESTAMP ,
 in user_name VARCHAR(128))
 BEGIN
 SELECT dateadd(hour, -1, download_timestamp)
 INTO download_timestamp
END

Install the script into your SQL Anywhere consolidated database:

CALL ml_add_connection_script(
 'modify_ts_test',
 'modify_next_last_download_timestamp',
 'CALL ModifyNextDownloadTimestamp (
 {ml s.next_last_download},
 {ml s.last_download},
 {ml s.username})')

Java example
The following call to a MobiLink system procedure registers a Java method called
modifyNextDownloadTimestamp as the script for the modify_next_last_download_timestamp connection
event when synchronizing the script version ver1.

CALL ml_add_java_connection_script(
 'ver1',
 'modify_next_last_download_timestamp',
 'ExamplePackage.ExampleClass.modifyNextDownloadTimestamp')

The following is the sample Java method modifyNextDownloadTimestamp. It sets the download timestamp
back an hour.

modify_next_last_download_timestamp connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 467

public String modifyNextDownloadTimestamp(
 Timestamp downloadTimestamp,
 Timestamp lastDownload,
 String userName) {
 downloadTimestamp.setHours(
 downloadTimestamp.getHours() -1);
 return(null);
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called
ModifyNextDownloadTimestamp as the script for the modify_next_last_download_timestamp connection
event when synchronizing the script version ver1.

CALL ml_add_dnet_connection_script(
 'ver1',
 'modify_next_last_download_timestamp',
 'TestScripts.Test.ModifyNextDownloadTimestamp')

The following is the sample .NET method ModifyNextDownloadTimestamp. It sets the download timestamp
back an hour.

public string ModifyNextDownloadTimestamp (
 DateTime download_timestamp,
 DateTime last_download,
 string user_name) {
 download_timestamp = download_timestamp.AddHours(-1);
 return (null);
}

Synchronization events

468 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

modify_user connection event
Provide the MobiLink user name.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

Parameter name for SQL scripts Description Order

s.remote_id VARCHAR(128). The MobiLink re-
mote ID. You can only reference the re-
mote ID if you are using named param-
eters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name. This is an INOUT parameter.

1

Default action
None.

Remarks
The MobiLink server provides the user name as a parameter when it calls scripts; the user name is sent by
the MobiLink client. In some cases, you may want to have an alternate user name. This script allows you to
modify the user name used in calling MobiLink scripts.

The username parameter must be long enough to hold the user name.

SQL scripts for the modify_user event must be implemented as stored procedures.

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “authenticate_user connection event” on page 358
● “authenticate_user_hashed connection event” on page 363
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]

SQL example
The following example maps a remote database user name to the ID of the user using the device, by using
a mapping table called user_device. This technique can be used when the same person has multiple remotes
(such as a PDA and a laptop) requiring the same synchronization logic (based on the user's name or id).

The following call to a MobiLink system procedure assigns the ModifyUser stored procedure to the
modify_user event. This syntax is for a SQL Anywhere consolidated database.

CALL ml_add_connection_script(
 'ver1',

modify_user connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 469

 'modify_user',
 'call ModifyUser({ml s.username})')

The following SQL statement creates the ModifyUser stored procedure.

CREATE PROCEDURE ModifyUser(INOUT u_name varchar(128))
BEGIN
 SELECT user_name
 INTO u_name
 FROM user_device
 WHERE device_name = u_name;
END

Java example
The following call to a MobiLink system procedure registers a Java method called modifyUser as the script
for the modify_user connection event when synchronizing the script version ver1.

CALL ml_add_java_connection_script(
 'ver1',
 'modify_user',
 'ExamplePackage.ExampleClass.modifyUser')

The following is the sample Java method modifyUser. It gets the user ID from the database and then uses it
to set the user name.

public String modifyUser(
 InOutString ioUserName)
 throws SQLException {
 Statement uidSelect = curConn.createStatement();
 ResultSet uidResult = uidSelect.executeQuery(
 "SELECT rep_id FROM SalesRep WHERE name = '" +
 ioUserName.getValue() + "' ");
 uidResult.next();
 ioUserName.setValue(
 java.lang.Integer.toString(uidResult.getInt(1));
 uidResult.close();
 uidSelect.close();
 return (null);
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called ModUser as the script
for the modify_user connection event when synchronizing the script version ver1.

CALL ml_add_dnet_connection_script(
 'ver1',
 'modify_user',
 'TestScripts.Test.ModUser'
)

The following is the sample .NET method ModUser.

public string ModUser(
 string user) {
 return ("SELECT rep_id FROM SalesRep WHERE name = '" + user + "' ");
}

Synchronization events

470 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

nonblocking_download_ack connection event
When you use non-blocking download acknowledgement, this script provides a place to record the
information that a download has been applied successfully.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you want to use parameter 2). If you use named parameters, you can specify any subset of the
parameters in any order.

Parameter name for SQL scripts Description Order

s.remote_id VARCHAR(128). The MobiLink re-
mote ID. You can only reference the
remote ID if you are using named pa-
rameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

2

s.last_download TIMESTAMP. This is an IN parame-
ter. This is the last download time for
the current synchronization. It can be
useful in avoiding duplication, by
making sure you don't modify the
next_last_download timestamp to be
earlier than the last_download time-
stamp.

3

Remarks
This event lets you record the time when the download was successfully applied at the remote database.

This event is only called when using non-blocking download acknowledgement. When in non-blocking
mode, the download transaction is committed and the synchronization ends when the download is sent. This
event is called when the synchronization client acknowledges a successful download. This event is called
on a new connection, after the end_synchronization script of the original synchronization. The actions of
this event are committed along with an update to the download time in the MobiLink system tables.

Due to the special nature of this script, any connection-level variables set during the synchronization are not
available when this event is executed.

nonblocking_download_ack connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 471

See also
● “publication_nonblocking_download_ack connection event” on page 475
● “-nba option” on page 74
● dbmlsync: “SendDownloadACK (sa) extended option” [MobiLink - Client Administration]
● UltraLite: “Send Download Acknowledgement synchronization parameter” [UltraLite - Database

Management and Reference]

SQL example
The following script adds a record to the table download_pubs_acked. The record contains the remote ID,
the first authentication parameter, and the download timestamp.

INSERT INTO download_pubs_acked(rem_id, auth_parm, last_download)
 VALUES({ml s.remote_id}, {ml a.1}, {ml s.last_publication_download})

Synchronization events

472 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

prepare_for_download connection event
Processes any required operations between the upload and download transactions.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you want to use parameter 2). If you use named parameters, you can specify any subset of the
parameters in any order.

Parameter name for SQL scripts Description Order

s.last_download TIMESTAMP. The last download time
of any synchronized table.

1

s.remote_id VARCHAR(128). The MobiLink re-
mote ID. You can only reference the re-
mote ID if you are using named param-
eters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

2

Default action
None.

Remarks
The MobiLink server executes this script as a separate transaction, between the upload transaction and the
start of the download transaction.

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “end_upload connection event” on page 431
● “begin_download connection event” on page 369
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]
● “Using last download times in scripts” on page 130

SQL example
The following call to a MobiLink system procedure registers a SQL method called prepareForDownload as
the script for the prepare_for_download event when synchronizing the script version ver1.

prepare_for_download connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 473

CALL ml_add_connection_script(
 'ver1',
 'prepare_for_download',
 'CALL prepareForDownload(
 { ml s.current_time },
 { ml s.username })')

The following is the sample SQL method prepareForDownload. It calls a SQL method to modify some rows
in the database.

CREATE PROCEDURE prepareForDownload (
 IN ts TIMESTAMP,
 IN user VARCHAR(128))
BEGIN
 CALL adjustUploadedRows(user)
END;

Java example
The following call to a MobiLink system procedure registers a Java method called prepareForDownload as
the script for the prepare_for_download event when synchronizing the script version ver1.

CALL ml_add_java_connection_script(
 'ver1',
 'prepare_for_download',
 'ExamplePackage.ExampleClass.prepareForDownload')

The following is the sample Java method prepareForDownload. It calls a Java method to modify some rows
in the database.

public String prepareForDownload(
 Timestamp ts,
 String user) {
 adjustUploadedRows(_syncConn, user);
 return(null);
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called PrepareForDownload
as the script for the prepare_for_download connection event when synchronizing the script version ver1.

CALL ml_add_dnet_connection_script(
 'ver1',
 'prepare_for_download',
 'TestScripts.Test.PrepareForDownload'
)

The following is the sample .NET method PrepareForDownload. It calls a .NET method to modify some
rows in the database.

public string PrepareForDownload(
 DateTime timestamp,
 string user) {
 AdjustUploadedRows (_syncConn, user);
 return (null);
}

Synchronization events

474 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

publication_nonblocking_download_ack connection
event

When you use non-blocking download acknowledgement, this script provides a place to record the
information that a publication has been successfully downloaded.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you want to use parameter 2). If you use named parameters, you can specify any subset of the
parameters in any order.

Parameter name for SQL scripts Description Order

s.remote_id VARCHAR(128). The MobiLink re-
mote ID. You can only reference the re-
mote ID if you are using named param-
eters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

2

s.last_publication_download TIMESTAMP. The last download time
of any synchronized table.

3

s.publication name VARCHAR(128). The name of the pub-
lication.

4

s.subscription_id VARCHAR(128). The publication ID. 5

Remarks
This event lets you record the time when the download of this publication was successfully applied at the
remote database.

This event is only called when using non-blocking download acknowledgement. When in non-blocking
mode, the download transaction is committed and the synchronization ends when the download is sent. When
the synchronization client acknowledges a successful download, this event is called once per publication in
the download. This event is called on a new connection and after the end_synchronization script of the
original synchronization. The actions of this event are committed along with an update to the download time
in the MobiLink system tables.

publication_nonblocking_download_ack connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 475

Due to the special nature of this script, any connection-level variables set during the synchronization are not
available when this event is executed.

See also
● “nonblocking_download_ack connection event” on page 471
● “-nba option” on page 74
● dbmlsync: “SendDownloadACK (sa) extended option” [MobiLink - Client Administration]
● UltraLite: “Send Download Acknowledgement synchronization parameter” [UltraLite - Database

Management and Reference]

SQL example
The following script adds a record to a table called download_pubs_acked. The record contains the
publication name, the first authentication parameter, and a download timestamp.

INSERT INTO download_pubs_acked(pub_name, auth_parm, last_download)
 VALUES({ml s.publication_name}, {ml a.1}, {ml
s.last_publication_download})

Synchronization events

476 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

report_error connection event
Allows you to log errors and to record the actions selected by the handle_error script.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you want to use parameter 2). If you use named parameters, you can specify any subset of the
parameters in any order.

Parameter name for SQL
scripts

Description Order

s.action_code INTEGER. This is an INOUT parameter. This parameter
is mandatory.

1

s.error_code INTEGER. 2

s.error_message TEXT. 3

s.remote_id VARCHAR(128). The MobiLink remote ID. You can
only reference the remote ID if you are using named pa-
rameters.

Not applica-
ble

s.username VARCHAR(128). The MobiLink user name. 4

s.table VARCHAR(128). 5

Default action
None.

Remarks
This script allows you to log errors and to record the actions selected by the handle_error script. This script
is executed after the handle_error event, whether a handle_error script is defined. It is always executed in
its own transaction, on a different database connection than the synchronization connection (the
administrative/information connection).

The error code and error message allow you to identify the nature of the error. The action code value is
returned by the last call to an error handling script for the SQL operation that caused the current error.

If the error happened as part of synchronization, the user name is supplied. Otherwise, this value is null.

report_error connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 477

If the error happened while manipulating a particular table, the table name is supplied. Otherwise, this value
is null. The table name is the name of a table in the remote database. This name may or may not have a direct
counterpart in the consolidated database, depending on the design of the synchronization system.

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “handle_error connection event” on page 446
● “handle_odbc_error connection event” on page 450
● “report_odbc_error connection event” on page 480
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]

SQL example
The following example works with a SQL Anywhere consolidated database. It inserts a row into a table used
to record synchronization errors.

CALL ml_add_connection_script(
 'ver1',
 'report_error',
 'INSERT INTO sync_error(
 action_code,
 error_code,
 error_message,
 user_name,
 table_name)
 VALUES (
 {ml s.action_code},
 {ml s.error_code},
 {ml s.error_message},
 {ml s.username},
 {ml s.table})')

Java example
The following call to a MobiLink system procedure registers a Java method called reportError as the script
for the report_error connection event when synchronizing the script version ver1.

CALL ml_add_java_connection_script(
 'ver1',
 'report_error,
 'ExamplePackage.ExampleClass.reportError')

The following is the sample Java method reportError. It logs the error to a table using the JDBC connection
provided by MobiLink. It also sets the action code.

public String reportError(
 ianywhere.ml.script.InOutInteger actionCode,
 int errorCode,
 String errorMessage,
 String user,
 String table)
 throws java.sql.SQLException {
 // Insert error information in a table,
 JDBCLogError(_syncConn, errorCode, errorMessage,
 user, table);
 actionCode.setValue(getActionCode(errorCode));

Synchronization events

478 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 return(null);
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called ReportError as the script
for the report_error connection event when synchronizing the script version ver1.

CALL ml_add_dnet_connection_script(
 'ver1',
 'report_error,
 'TestScripts.Test.ReportError')

The following is the sample .NET method ReportError. It logs the error to a table using a .NET method.

public string ReportError(
 ref int actionCode,
 int errorCode,
 string errorMessage,
 string user,
 string table) {
 LogError(_syncConn, errorCode, errorMessage, user, table);
}

report_error connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 479

report_odbc_error connection event
Allows you to log errors and to record the actions selected by the handle_odbc_error script.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you want to use parameter 2). If you use named parameters, you can specify any subset of the
parameters in any order.

Parameter name for SQL
scripts

Description Order

s.action_code INTEGER. This is an INOUT parameter. This param-
eter is mandatory.

1

s.ODBC_state VARCHAR(5). 2

s.error_message TEXT. 3

s.remote_id VARCHAR(128). The MobiLink remote ID. You can
only reference the remote ID if you are using named
parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user name. 4

s.table VARCHAR(128). 5

Default action
None.

Remarks
This script allows you to log errors and to record the actions selected by the handle_odbc_error script. This
script is executed after the handle_odbc_error event, whether a handle_odbc_error script is defined. It is
always executed in its own transaction, on a different database connection than the synchronization
connection (the administrative/information connection).

The error code and error message allow you to identify the nature of the error. The action code value is
returned by the last call to an error handling script for the SQL operation that caused the current error.

If the error happened as part of synchronization, the user name is supplied. Otherwise, this value is null.

Synchronization events

480 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

If the error happened while manipulating a particular table, the table name is supplied. Otherwise, this value
is null. The table name is the name of a table in the remote database. This name may or may not have a direct
counterpart in the consolidated database, depending on the design of the synchronization system.

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “handle_error connection event” on page 446
● “handle_odbc_error connection event” on page 450
● “report_error connection event” on page 477
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]

SQL example
The following example works with a SQL Anywhere consolidated database. It inserts a row into a table used
to record synchronization errors.

CALL ml_add_connection_script(
 'ver1',
 'report_odbc_error',
 'INSERT INTO sync_error(
 action_code,
 odbc_state,
 error_message,
 user_name,
 table_name)
 VALUES(
 {ml s.action_code},
 {ml s.ODBC_state},
 {ml s.error_message},
 {ml s.username},
 {ml s.table})')

Java example
The following call to a MobiLink system procedure registers a Java method called reportODBCError as the
script for the report_odbc_error event when synchronizing the script version ver1.

CALL ml_add_java_connection_script(
 'ver1',
 'report_odbc_error',
 'ExamplePackage.ExampleClass.reportODBCError')

The following is the sample Java method reportODBCError. It logs the error to a table using the JDBC
connection provided by MobiLink. It also sets the action code.

public String reportODBCError(
 ianywhere.ml.script.InOutInteger actionCode,
 String ODBCState,
 String errorMessage,
 String user,
 String table)
 throws java.sql.SQLException {
 JDBCLogError(_syncConn, ODBCState, errorMessage,
 user, table);
 actionCode.setValue(getActionCode(ODBCState));
 return (null);
}

report_odbc_error connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 481

.NET example
The following call to a MobiLink system procedure registers a .NET method called ReportODBCError as
the script for the report_odbc_error event when synchronizing the script version ver1.

CALL ml_add_dnet_connection_script(
 'ver1',
 'report_odbc_error',
 'TestScripts.Test.ReportODBCError')

The following is the sample .NET method ReportODBCError. It logs the error to a table using a .NET
method.

public string ReportODBCError (
 ref int actionCode,
 string ODBCState,
 string errorMessage,
 string user,
 string table) {
 LogError(_syncConn, ODBCState, errorMessage, user, table);
 return (null);
}

Synchronization events

482 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

resolve_conflict table event
Defines a process for resolving a conflict in a specific table.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you want to use parameter 2). If you use named parameters, you can specify any subset of the
parameters in any order.

Parameter name for SQL scripts Description Order

s.remote_id VARCHAR(128). The MobiLink re-
mote ID. You can only reference the re-
mote ID if you are using named param-
eters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

1

s.table VARCHAR(128). The table name. 2

Default action
None.

Remarks
When a row is updated on a remote database, the MobiLink client saves a copy of the original values. The
client sends both old and new values to the MobiLink server.

When the MobiLink server receives an updated row, it compares the original values with the present values
in the consolidated database. The comparison is done using the upload_fetch script.

If the old uploaded values do not match the current values in the consolidated database, the row conflicts.
Instead of updating the row, the MobiLink server inserts both old and new values into the consolidated
database. The old and new rows are handled using the upload_old_row_insert and upload_new_row_insert
scripts, respectively.

Once the values have been inserted, the MobiLink server executes the resolve_conflict script. It provides
the opportunity to resolve the conflict. You can implement any scheme of your choosing.

This script is executed once per conflict.

resolve_conflict table event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 483

Alternatively, instead of defining the resolve_conflict script, you can resolve conflicts in a set-oriented
fashion by putting conflict-resolution logic either in your end_upload_rows script or in your end_upload
table script.

You can have one resolve_conflict script for each table in the remote database.

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “upload_old_row_insert table event” on page 509
● “upload_new_row_insert table event” on page 506
● “upload_update table event” on page 522
● “end_upload_rows table event” on page 439
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]

SQL example
The following statement defines a resolve_conflict script suited to the CustDB sample application for an
Oracle installation. It calls a stored procedure ULResolveOrderConflict.

exec ml_add_table_script(
 'custdb', 'ULOrder', 'resolve_conflict',
 'begin ULResolveOrderConflict();
end; ')
CREATE OR REPLACE PROCEDURE ULResolveOrderConflict()
AS
 new_order_id integer;
 new_status varchar(20);
 new_notes varchar(50);
BEGIN
 -- approval overrides denial
 SELECT order_id, status, notes
 INTO new_order_id, new_status, new_notes
 FROM ULNewOrder
 WHERE syncuser_id = SyncUserID;
 IF new_status = 'Approved' THEN
 UPDATE ULOrder o
 SET o.status = new_status, o.notes =
 new_notes
 WHERE o.order_id = new_order_id;
 END IF;
 DELETE FROM ULOldOrder;
 DELETE FROM ULNewOrder;
END;

Java example
The following call to a MobiLink system procedure registers a Java method called resolveConflict as the
script for the resolve_conflict table event when synchronizing the script version ver1.

CALL ml_add_java_table_script(
 'ver1',
 'table1',
 'resolve_conflict',
 'ExamplePackage.ExampleClass.resolveConflict')

The following is the sample Java method resolveConflict. It calls a Java method that uses the JDBC
connection provided by MobiLink to resolve the conflict.

Synchronization events

484 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

public String resolveConflict(
 String user,
 String table) {
 resolveRows(_syncConn, user);
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called ResolveConflict as the
script for the resolve_conflict table event when synchronizing the script version ver1.

CALL ml_add_dnet_table_script(
 'ver1',
 'table1',
 'resolve_conflict',
 'TestScripts.Test.ResolveConflict')

The following is the sample .NET method ResolveConflict. It calls a .NET method that resolves the conflict.

public string ResolveConflict(
 String user,
 String table) {
 ResolveRows(_syncConn, user);
}

resolve_conflict table event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 485

synchronization_statistics connection event
Tracks synchronization statistics.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you want to use parameter 2). If you use named parameters, you can specify any subset of the
parameters in any order.

Parameter name for SQL scripts Description Order

s.remote_id VARCHAR(128). The MobiLink
remote ID. You can only reference
the remote ID if you are using
named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink
user name.

1

s.warnings INTEGER. The number of warn-
ings issued during the synchroni-
zation.

2

s.errors INTEGER. The number of errors
that occurred during the synchro-
nization.

3

s.deadlocks INTEGER. The number of dead-
locks in the consolidated database
that were detected for the synchro-
nization.

4

s.synchronized_tables INTEGER. The number of client
tables that were involved in the
synchronization.

5

s.connection_retries INTEGER. The number of times
the MobiLink server retried the
connection to the consolidated da-
tabase.

6

Synchronization events

486 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Default action
None.

Remarks
The synchronization_statistics event allows you to gather, for any user and connection, various statistics
about the current synchronization. The synchronization_statistics connection script is called just prior to the
commit at the end of the end synchronization transaction.

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “download_statistics connection event” on page 403
● “download_statistics table event” on page 406
● “upload_statistics connection event” on page 512
● “upload_statistics table event” on page 517
● “synchronization_statistics table event” on page 489
● “time_statistics connection event” on page 492
● “time_statistics table event” on page 495
● “MobiLink Monitor” on page 179
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]

SQL example
The following example inserts synchronization statistics into the sync_con_audit table.

CALL ml_add_connection_script(
 'ver1',
 'synchronization_statistics',
 'INSERT INTO sync_con_audit(
 ml_user,
 warnings,
 errors,
 deadlocks,
 synchronized_tables,
 connection_retries)
 VALUES (
 {ml s.username},
 {ml s.warnings},
 {ml s.errors},
 {ml s.deadlocks},
 {ml s.synchronized_tables},
 {ml s.connection_retries})')

Once statistics are inserted into the audit table, you may use these statistics to monitor your synchronizations
and make optimizations where applicable.

Java example
The following call to a MobiLink system procedure registers a Java method called
synchronizationStatisticsConnection as the script for the synchronization_statistics connection event when
synchronizing the script version ver1.

CALL ml_add_java_connection_script(
 'ver1',

synchronization_statistics connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 487

 'synchronization_statistics',
 'ExamplePackage.ExampleClass.synchronizationStatisticsConnection'
)

The following is the sample Java method synchronizationStatisticsConnection. It logs some of the statistics
to the MobiLink message log. (Note that logging statistics to the MobiLink message log might be useful at
development time but would slow down a production server.)

public String synchronizationStatisticsConnection(
 String user,
 int warnings,
 int errors,
 int deadlocks,
 int synchronizedTables,
 int connectionRetries) {
 java.lang.System.out.println(
 "synch statistics number of deadlocks: "
 + deadlocks ;
 return(null);
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called SyncStats as the script
for the synchronization_statistics connection event when synchronizing the script version ver1.

CALL ml_add_dnet_connection_script(
 'ver1',
 'synchronization_statistics',
 'TestScripts.Test.SyncStats'
)

The following is the sample .NET method SyncStats. It logs some of the statistics to the MobiLink message
log. (Note that logging statistics to the MobiLink message log might be useful at development time but would
slow down a production server.)

public string SyncStats(
 string user,
 int warnings,
 int errors,
 int deadLocks,
 int syncedTables,
 int connRetries) {
 System.Console.WriteLine("synch statistics
 number of deadlocks: " + deadlocks ;
 return(null);
}

Synchronization events

488 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

synchronization_statistics table event
Tracks synchronization statistics.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you want to use parameter 2). If you use named parameters, you can specify any subset of the
parameters in any order.

Parameter name for SQL scripts Description Order

s.remote_id VARCHAR(128). The MobiLink
remote ID. You can only reference
the remote ID if you are using
named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink
user name.

1

s.table VARCHAR(128). The table name. 2

s.warnings INTEGER. The number of warn-
ings that occurred for the table dur-
ing the synchronization.

3

s.errors INTEGER. The number of errors
that were related to the table during
the synchronization.

4

Default action
None.

Remarks
The synchronization_statistics event allows you to gather, for any user and table, the number of warnings
and errors that occurred during synchronization. The synchronization_statistics table script is called just
prior to the commit at the end of the end synchronization transaction.

synchronization_statistics table event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 489

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “download_statistics connection event” on page 403
● “download_statistics table event” on page 406
● “upload_statistics connection event” on page 512
● “upload_statistics table event” on page 517
● “synchronization_statistics connection event” on page 486
● “time_statistics connection event” on page 492
● “time_statistics table event” on page 495
● “MobiLink Monitor” on page 179
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]

SQL example
The following example inserts synchronization statistics into the sync_tab_audit table.

CALL ml_add_table_script(
 'ver1',
 'table1',
 'INSERT INTO sync_tab_audit (
 ml_user,
 table,
 warnings,
 errors)
 VALUES (
 {ml s.username},
 {ml s.table},
 {ml s.warnings},
 {ml s.errors}) ')

Once synchronization statistics are inserted into the audit table, you may use these statistics to monitor your
synchronizations and make optimizations where applicable.

Java example
The following call to a MobiLink system procedure registers a Java method called
synchronizationStatisticsTable as the script for the synchronization_statistics table event when
synchronizing the script version ver1.

CALL ml_add_java_table_script(
 'ver1',
 'table1',
 'synchronization_statistics',
 'ExamplePackage.ExampleClass.synchronizationStatisticsTable'
)

The following is the sample Java method synchronizationStatisticsTable. It logs some of the statistics to the
MobiLink message log. (Note that logging statistics to the MobiLink message log might be useful at
development time but would slow down a production server.)

public String synchronizationStatisticsTable(
 String user,
 String table,
 int warnings,
 int errors) {
 java.lang.System.out.println("synch statistics for

Synchronization events

490 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 table: " + table + " errors: " + errors);
 return(null);
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called SyncTableStats as the
script for the synchronization_statistics table event when synchronizing the script version ver1 and the table
table1.

CALL ml_add_dnet_table_script(
 'ver1',
 'table1',
 'synchronization_statistics',
 'TestScripts.Test.SyncTableStats'
)

The following is the sample .NET method SyncTableStats. It logs some of the statistics to the MobiLink
message log. (Note that logging statistics to the MobiLink message log might be useful at development time
but would slow down a production server.)

public string SyncTableStats(
 string user,
 string table,
 int warnings,
 int errors) {
 System.Console.WriteLine("synch statistics for
 table: " + table + " errors: " + errors);
 return(null);
}

synchronization_statistics table event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 491

time_statistics connection event
Tracks time statistics by user and event.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you want to use parameter 2). If you use named parameters, you can specify any subset of the
parameters in any order.

Parameter name for SQL scripts Description Order

s.remote_id VARCHAR(128). The MobiLink
remote ID. You can only reference
the remote ID if you are using
named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink
user name.

1

s.event_name VARCHAR(128) 2

s.num_of_calls INTEGER. The number of times
the script was called.

3

s.minimum_time INTEGER. Milliseconds. The
shortest time it took to execute a
script during this synchronization.

4

s.maximum_time INTEGER. Milliseconds. The lon-
gest time it took to execute a script
during this synchronization.

5

s.total_time INTEGER. Milliseconds. The total
time it took to execute all scripts in
the synchronization. (This is not
the same as the length of the syn-
chronization.)

6

Default action
None.

Synchronization events

492 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Remarks
The time_statistics event allows you to gather time statistics for any user during synchronization. The
statistics are gathered only for those events for which there is a corresponding script. The script gathers
aggregate data for occasions where a single event occurs multiple times. The script can be especially useful
for time comparisons across users, events and tables.

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “time_statistics table event” on page 495
● “download_statistics connection event” on page 403
● “download_statistics table event” on page 406
● “upload_statistics connection event” on page 512
● “upload_statistics table event” on page 517
● “synchronization_statistics connection event” on page 486
● “synchronization_statistics table event” on page 489
● “MobiLink Monitor” on page 179
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]

SQL example
The following example inserts statistical information into the time_statistics table.

CALL ml_add_connection_script(
 'ver1',
 'time_statistics',
 'INSERT INTO time_statistics (
 id,
 ml_user,
 table,
 event_name,
 number_of_calls,
 minimum_time,
 maximum_time,
 total_time)
 VALUES (
 ts_id.nextval,
 {ml s.username},
 {ml s.event_name},
 {ml s.number_of_calls},
 {ml s.minimum_time},
 {ml s.maximum_time},
 {ml s.total_time}) ')

Java example
The following call to a MobiLink system procedure registers a Java method called timeStatisticsConnection
as the script for the time_statistics connection event when synchronizing the script version ver1.

CALL ml_add_java_connection_script(
 'ver1',
 'time_statistics',
 'ExamplePackage.ExampleClass.timeStatisticsConnection')

time_statistics connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 493

The following is the sample Java method timeStatisticsConnection. It prints statistics for the
prepare_for_download event. (Note that printing statistics to the MobiLink message log might be useful at
development time but would slow down a production server.)

public String timeStatisticsConnection(
 String username,
 String tableName,
 String eventName,
 int numberOfCalls,
 int minimumTime,
 int maximumTime,
 int totalTime) {
 if(eventName.equals("prepare_for_download")) {
 java.lang.System.out.println(
 "prepare_for_download num_calls: " + numCalls +
 "total_time: " + totalTime);
 }
 return (null);
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called TimeStats as the script
for the time_statistics connection event when synchronizing the script version ver1.

CALL ml_add_dnet_connection_script(
 'ver1',
 'time_statistics',
 'TestScripts.Test.TimeStats'
)

The following is the sample .NET method TimeStats. It prints statistics for the prepare_for_download event.
(Note that printing statistics to the MobiLink message log might be useful at development time but would
slow down a production server.)

public string TimeStats(
 string user,
 string eventName,
 int numberOfCalls,
 int minimumTime,
 int maximumTime,
 int totTime) {
 if(event_name=="prepare_for_download") {
 System.Console.WriteLine(
 "prepare_for_download num_calls: " + num_calls +
 "total_time: " + total_time);
 }
 return (null);
}

Synchronization events

494 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

time_statistics table event
Tracks time statistics.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you want to use parameter 2). If you use named parameters, you can specify any subset of the
parameters in any order.

Parameter name for SQL scripts Description Order

s.remote_id VARCHAR(128). The MobiLink
remote ID. You can only reference
the remote ID if you are using
named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink
user name.

1

s.table VARCHAR(128). The table name. 2

s.event_name VARCHAR(128) 3

s.number_of_calls INTEGER. The number of times
the script was called.

4

s.minimum_time INTEGER. Milliseconds. The
shortest time it took to execute a
script during the synchronization
of this table.

5

s.maximum_time INTEGER. Milliseconds. The lon-
gest time it took to execute a script
during the synchronization of this
table.

6

s.total_time INTEGER. Milliseconds. The total
time it took to execute all scripts in
the synchronization of the table.
(This is not the same as the length
of the synchronization.)

7

time_statistics table event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 495

Default action
None.

Remarks
The time_statistics table event allows you to gather time statistics for any user and table during
synchronization. The statistics are gathered only for those events for which there is a corresponding script.
The script gathers aggregate data for occasions where a single event occurs multiple times. The script can
be especially useful for time comparisons across users, events and tables.

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “time_statistics connection event” on page 492
● “download_statistics connection event” on page 403
● “download_statistics table event” on page 406
● “upload_statistics connection event” on page 512
● “upload_statistics table event” on page 517
● “synchronization_statistics connection event” on page 486
● “synchronization_statistics table event” on page 489
● “MobiLink Monitor” on page 179
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]

SQL example
The following example inserts statistical information into the time_statistics table.

CALL ml_add_table_script (
 'ver1',
 'table1',
 'time_statistics',
 'INSERT INTO time_statistics(
 ml_user,
 table,
 event_name,
 number_of_calls,
 minimum_time,
 maximum_time,
 total_time)
 VALUES (
 {ml s.username},
 {ml s.table},
 {ml s.event_name},
 {ml s.number_of_calls},
 {ml s.minimum_time},
 {ml s.maximum_time},
 {ml s.total_time})');

Java example
The following call to a MobiLink system procedure registers a Java method called timeStatisticsTable as
the script for the time_statistics table event when synchronizing the script version ver1.

CALL ml_add_java_table_script(
 'ver1',
 'table1',

Synchronization events

496 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 'time_statistics',
 'ExamplePackage.ExampleClass.timeStatisticsTable')

The following is the sample Java method timeStatisticsTable. It prints statistics for the
upload_old_row_insert event.

public String timeStatisticsTable(
 String username,
 String tableName,
 String eventName,
 int numberOfCalls,
 int minimumTime,
 int maximumTime,
 int totalTime) {
 if(eventName.equals("upload_old_row_insert")) {
 java.lang.System.out.println(
 "upload_old_row_insert num_calls: " + numCalls +
 "total_time: " + totalTime);
 }
 return (null);
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called TimeTableStats as the
script for the time_statistics table event when synchronizing the script version ver1 and the table table1.

CALL ml_add_dnet_table_script(
 'ver1',
 'table1',
 'time_statistics',
 'TestScripts.Test.TimeTableStats'
)

The following is the sample .NET method TimeTableStats. It prints statistics for the upload_old_row_insert
event.

public string TimeTableStats(
 string user,
 string table,
 string eventName,
 int numberOfCalls,
 int minimumTime,
 int maximumTime,
 int totTime) {
 if(event_name == "upload_old_row_insert") {
 System.Console.WriteLine(
 "upload_old_row_insert num_calls: " + num_calls +
 "total_time: " + total_time);
 }
 return (null);
}

time_statistics table event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 497

upload_delete table event
Provides an event that the MobiLink server uses during processing of the upload to handle rows deleted from
the remote database.

Parameters

Parameter name for SQL scripts Order

r.pk-column-1 1

... ...

r.pk-column-N N

r.column-1 N + 1

... ...

r.column-M N + M

Default action
None.

Remarks
The statement-based upload_delete script handles rows that are deleted on the remote database. The action
taken at the consolidated database can be a DELETE statement, but need not be.

You can have one upload_delete script for each table in the remote database.

For Java and .NET applications, this script must return valid SQL.

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “upload_insert table event” on page 504
● “upload_update table event” on page 522

SQL example
This example is taken from the Contact sample and can be found in Samples\MobiLink\Contact
\build_consol.sql. It marks customers that are deleted from the remote database as inactive.

CALL ml_add_table_script(
 'ver1',
 'table1',
 'upload_delete',
 'UPDATE Customer
 SET active = 0
 WHERE cust_id={ml r.cust_id}')

Synchronization events

498 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Java example
The following call to a MobiLink system procedure registers a Java method called uploadDeleteTable as
the script for the upload_delete table event when synchronizing the script version ver1.

CALL ml_add_java_table_script(
 'ver1',
 'table1',
 'upload_delete',
 'ExamplePackage.ExampleClass.uploadDeleteTable')

The following is the sample Java method uploadDeleteTable. It calls genUD which dynamically generates
an UPLOAD statement.

public String uploadDeleteTable() {
 return(genUD(_curTable));
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called UploadDelete as the
script for the upload_delete table event when synchronizing the script version ver1 and the table table1.

CALL ml_add_dnet_table_script(
 'ver1',
 'table1',
 'upload_delete',
 'TestScripts.Test.UploadDelete'
)

The following is the sample .NET method UploadDelete. It calls genUD which dynamically generates an
UPLOAD statement.

public string UploadDelete(object pk1) {
 return(genUD(_curTable));
}

upload_delete table event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 499

upload_fetch table event
Fetches rows from a synchronized table in the consolidated database for the purpose of row-level conflict
detection.

Parameters

Parameter name for SQL scripts Order

r.primary-key-1 1

r.primary-key-2 2

... ...

r.primary-key-N N

Default action
None.

Remarks
The statement-based upload_fetch script fetches rows from a synchronized table for the purposes of conflict
detection. It is a companion to the upload_update event.

The columns of the result set must match the number of columns being uploaded from the remote database
for this table. If the values returned do not match the pre-image in the uploaded row, a conflict is identified.

Do not use READPAST table hints in upload_fetch scripts. If the script skips a locked row using
READPAST, the synchronization logic thinks that the row was deleted. Depending on what scripts you have
defined, this either causes the uploaded update to be ignored or it triggers conflict resolution. Ignoring the
update is likely to be unacceptable behavior, and may be harmful. Triggering conflict resolution may not be
a problem, depending on the resolution logic you have implemented.

You can have only one upload_fetch or upload_fetch_column_conflict script for each table in the remote
database.

This script may be ignored if none of the following scripts are defined: upload_new_row_insert,
upload_old_row_insert, and resolve_conflict.

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “Detecting conflicts” on page 147
● “resolve_conflict table event” on page 483
● “upload_delete table event” on page 498
● “upload_insert table event” on page 504
● “upload_update table event” on page 522
● "Using READPAST with MobiLink synchronization" in “FROM clause” [SQL Anywhere Server - SQL

Reference]

Synchronization events

500 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL example
The following SQL script is taken from the Contact sample and can be found in samples-dir\MobiLink
\Contact\build_consol.sql. It is used to identify conflicts that occur when rows updated in the remote database
Product table are uploaded. This script selects rows from a table also named Product, but depending on your
consolidated and remote database schema, the two table names may not match.

CALL ml_add_table_script(
 'ver1',
 'Product',
 'upload_fetch',
 'SELECT id, name, size, quantity, unit_price
 FROM Product
 WHERE id={ml r.id}')

Java example
This script must return valid SQL.

The following call to a MobiLink system procedure registers a Java method called uploadFetchTable as the
script for the upload_fetch table event when synchronizing the script version ver1.

CALL ml_add_java_table_script(
 'ver1',
 'Product',
 'upload_fetch',
 'ExamplePackage.ExampleClass.uploadFetchTable')

The following is the sample Java method uploadFetchTable. It calls genUF to dynamically generate an
UPLOAD statement.

public String uploadFetchTable() {
 return(genUF(_curTable));
}

.NET example
This script must return valid SQL.

The following call to a MobiLink system procedure registers a .NET method called UploadFetchTable as
the script for the upload_fetch table event when synchronizing the script version ver1.

CALL ml_add_dnet_table_script(
 'ver1',
 'Product',
 'upload_fetch',
 'TestScripts.Test.UploadFetchTable')

The following is the sample .NET method UploadFetchTable. It calls GenUF to dynamically generate an
UPLOAD statement.

public string UploadFetchTable() {
 return(GenUF(_curTable));
}

upload_fetch table event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 501

upload_fetch_column_conflict table event
Fetches rows from a synchronized table in the consolidated database for the purpose of column-level conflict
detection.

Parameters

Parameter name for SQL scripts Order

r.pk-column-1 1

... ...

r.pk-column-N N

r.column-1 N + 1

... ...

r.column-M N + M

Default action
None.

Remarks
The statement-based upload_fetch_column_conflict script fetches columns from a synchronized table for
the purposes of conflict detection. It is a companion to the upload_update event.

This script only detects a conflict when two users update the same column. Different users can update the
same row, as long as they don't update the same column, without generating a conflict.

For example, using the upload_fetch_column_conflict script, you could avoid detecting a conflict when one
of your remote users updated the quant column of the ULOrder table, and another remote user updated the
notes column for the same row. You would only detect a conflict if they both updated the quant column.

You can have only one upload_fetch or upload_fetch_column_conflict script for each table in the remote
database.

This script may be ignored if none of the following scripts are defined: upload_new_row_insert,
upload_old_row_insert, and resolve_conflict.

Synchronization events

502 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “Detecting conflicts” on page 147
● “upload_fetch table event” on page 500
● “resolve_conflict table event” on page 483
● “upload_delete table event” on page 498
● “upload_insert table event” on page 504
● “upload_update table event” on page 522

upload_fetch_column_conflict table event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 503

upload_insert table event
Provides an event that the MobiLink server uses during processing of the upload to handle rows inserted
into the remote database.

Parameters

Parameter name for SQL scripts Order

r.pk-column-1 1

... ...

r.pk-column-N N

r.column-1 N+1

... ...

r.column-M N+M

Default action
None.

Remarks
The statement based upload_insert script performs direct inserts of column values.

You can have one upload_insert script for each table in the remote database.

For Java and .NET applications, this script must return valid SQL.

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “upload_delete table event” on page 498
● “upload_update table event” on page 522
● “upload_fetch table event” on page 500

SQL example
This example handles inserts that were made on the Customer table in the remote database. The script inserts
the values into a table named Customer in the consolidated database. The final column of the table identifies
the Customer as active. The final column does not appear in the remote database.

CALL ml_add_table_script(
 'ver1',
 'Customer',
 'upload_insert',
 'INSERT INTO Customer(
 cust_id,
 name,

Synchronization events

504 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 rep_id,
 active)
 VALUES (
 {ml r.cust_id},
 {ml r.name},
 {ml r.rep_id},
 1)');

Java example
The following call to a MobiLink system procedure registers a Java method called uploadInsertTable as the
script for the upload_insert table event when synchronizing the script version ver1.

CALL ml_add_java_table_script(
 'ver1',
 'table1',
 'upload_insert',
 'ExamplePackage.ExampleClass.uploadInsertTable')

The following is the sample Java method uploadInsertTable. It dynamically generates an INSERT statement.
This syntax is for SQL Anywhere consolidated databases.

public String uploadInsertTable() {
 return("INSERT INTO " + _curTable + getCols(_curTable)
 + " VALUES " + getQM(_curTable));
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called UploadInsert as the
script for the upload_insert table event when synchronizing the script version ver1 and the table table1. This
syntax is for SQL Anywhere consolidated databases.

CALL ml_add_dnet_table_script(
 'ver1',
 'table1',
 'upload_insert',
 'TestScripts.Test.UploadInsert'
)

The following is the sample .NET method UploadInsert. It returns an INSERT statement for the ULCustomer
table.

public static string UploadInsert() {
 return("INSERT INTO ULCustomer(cust_id, cust_name) VALUES ({ml
r.cust_id}, {ml r.cust_name})");
 }

upload_insert table event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 505

upload_new_row_insert table event
Conflict resolution scripts for statement-based uploads commonly require access to the old and new values
of rows uploaded from the remote database. This event allows you to handle the new, updated values of
rows uploaded from the remote database.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you want to use parameter 2). If you use named parameters, you can specify any subset of the
parameters in any order.

Parameter
name for
SQL scripts

Description Order

s.remote_id VARCHAR(128). The MobiLink remote ID. You can only refer-
ence the remote ID if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user name. This parameter is op-
tional.

Optional

r.pk-col-
umn-1

A column value from the old (pre-image) row, where the named
parameter is specified as a column name prefaced by r.

1 (2 if username is
referenced)

... ...

r.pk-column-
N

A column value from the old (pre-image) row, where the named
parameter is specified as a column name prefaced by r.

N (N+1 if username
is referenced)

r.column-1 A column value from the old (pre-image) row, where the named
parameter is specified as a column name prefaced by r.

N + 1 (N+2 if user-
name is referenced)

...

r.column-M A column value from the old (pre-image) row, where the named
parameter is specified as a column name prefaced by r.

N + M (N+M+1 if
username is refer-
enced)

Default action
None.

Synchronization events

506 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Remarks
When a MobiLink client sends an updated row to the MobiLink server, it includes not only the new values
(the post-image), but also a copy of the old row values (the pre-image). When the pre-image does not match
the current values in the consolidated database, a conflict is detected.

This event allows you to save post-image values to a table. You can use this event to assist in developing
conflict resolution procedures for statement-based updates. The parameters for this event hold new row
values from the remote database before the update is performed on the corresponding consolidated database
table. This event is also used to insert rows in statement-based, forced-conflict mode.

The script for this event is usually an insert statement that inserts the new row into a temporary table for use
by a resolve_conflict script.

You can have one upload_new_row_insert script for each table in the remote database.

For Java and .NET applications, this script must return valid SQL.

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “Handling conflicts” on page 146
● “resolve_conflict table event” on page 483
● “upload_old_row_insert table event” on page 509
● “upload_update table event” on page 522
● “Forced conflicts” on page 154
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]

SQL example
This example handles updates made on the product table in the remote database. The script inserts the new
value of the row into a global temporary table named product_conflict. The final column of the table identifies
the row as a new row.

CALL ml_add_table_script(
 'ver1',
 'table1',
 'upload_new_row_insert',
 'INSERT INTO DBA.product_conflict(
 id,
 name,
 size,
 quantity,
 unit_price,
 row_type)
 VALUES(
 {ml r.id},
 {ml r.name},
 {ml r.size},
 {ml r.quantity},
 {ml r.unit_price},
 ''New'')')

upload_new_row_insert table event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 507

Java example
The following call to a MobiLink system procedure registers a Java method called
uploadNewRowInsertTable as the script for the upload_new_row_insert table event when synchronizing the
script version ver1.

CALL ml_add_java_table_script(
 'ver1',
 'table1',
 'upload_new_row_insert',
 'ExamplePackage.ExampleClass.uploadNewRowInsertTable'
)

The following is the sample Java method uploadNewRowInsertTable. It dynamically generates an INSERT
statement. This syntax is for SQL Anywhere consolidated databases.

public String uploadNewRowInsertTable() {
 return("insert into" + _curTable + "_new" +
 getCols(_curTable) + "values" + getNamedParams(_curTable));
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called
UploadNewRowInsertTable as the script for the upload_new_row_insert table event when synchronizing
the script version ver1.

CALL ml_add_dnet_table_script(
 'ver1',
 'table1',
 'upload_new_row_insert',
 'TestScripts.Test.UploadNewRowInsertTable'
)

The following is the sample .NET method UploadNewRowInsertTable. It dynamically generates an INSERT
statement. This syntax is for SQL Anywhere consolidated databases.

public string UploadNewRowInsertTable() {
 return("insert into" + _curTable + "_new" +
 GetCols(_curTable) + "values" + GetNamedParams(_curTable));
}

Synchronization events

508 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

upload_old_row_insert table event
Conflict resolution scripts for statement-based uploads commonly require access to the old and new values
of rows uploaded from the remote database. This event allows you to handle the old values of rows uploaded
from the remote database.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you want to use parameter 2). If you use named parameters, you can specify any subset of the
parameters in any order.

Parameter
name for
SQL scripts

Description Order

s.remote_id VARCHAR(128). The MobiLink remote ID. You can only refer-
ence the remote ID if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user name. This parameter is op-
tional.

Optional

r.pk-col-
umn-1

A column value from the old (pre-image) row, where the named
parameter is specified as a column name prefaced by r.

1 (2 if username is
referenced)

... ...

r.pk-column-
N

A column value from the old (pre-image) row, where the named
parameter is specified as a column name prefaced by r.

N (N+1 if username
is referenced)

r.column-1 A column value from the old (pre-image) row, where the named
parameter is specified as a column name prefaced by r.

N + 1 (N+2 if user-
name is referenced)

...

r.column-M A column value from the old (pre-image) row, where the named
parameter is specified as a column name prefaced by r.

N + M (N+M+1 if
username is refer-
enced)

Default action
None.

upload_old_row_insert table event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 509

Remarks
When a MobiLink client sends an updated row to the MobiLink server, it includes not only the new values
(the post-image), but also a copy of the old row values (the pre-image). When the pre-image does not match
the current values in the consolidated database, a conflict is detected.

This event allows you to save pre-image values to a table. You can use this event to assist in developing
conflict resolution procedures for statement-based updates. The parameters for this event hold old row values
from the remote database before the update is performed on the corresponding consolidated database table.
This event is also used to insert rows in statement-based, forced-conflict mode.

The script for this event is usually an insert statement that inserts the old row into a temporary table for use
by a resolve_conflict script.

You can have one upload_old_row_insert script for each table in the remote database.

For Java and .NET applications, this script must return valid SQL.

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “Handling conflicts” on page 146
● “resolve_conflict table event” on page 483
● “upload_new_row_insert table event” on page 506
● “upload_update table event” on page 522
● “Forced conflicts” on page 154
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]

SQL example
This example handles updates made on the product table in the remote database. The script inserts the old
value of the row into a global temporary table named product_conflict. The final column of the table identifies
the row as an old row.

CALL ml_add_table_script(
 'ver1',
 'table1',
 'upload_old_row_insert',
 'INSERT INTO DBA.product_conflict (
 id,
 name,
 size,
 quantity,
 unit_price,
 row_type)
 VALUES (
 {ml r.id},
 {ml r.name},
 {ml r.size},
 {ml r.quantity},
 {ml r.unit_price},
 ''Old'')')

Synchronization events

510 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Java example
The following call to a MobiLink system procedure registers a Java method called uploadOldRowInsertTable
as the script for the upload_old_row_insert table event when synchronizing the script version ver1.

CALL ml_add_java_table_script(
 'ver1',
 'table1',
 'upload_old_row_insert',
 'ExamplePackage.ExampleClass.uploadOldRowInsertTable'
)

The following is the sample Java method uploadOldRowInsertTable. It dynamically generates an INSERT
statement.

public String uploadOldRowInsertTable() {
 return("old" + getCols(_curTable) +
 "values" + getNamedParams(_curTable));
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called
UploadOldRowInsertTable as the script for the upload_old_row_insert table event when synchronizing the
script version ver1.

CALL ml_add_dnet_table_script(
 'ver1',
 'table1',
 'upload_old_row_insert',
 'TestScripts.Test.UploadOldRowInsertTable'
)

The following is the sample .NET method UploadOldRowInsertTable. It dynamically generates an
UPLOAD statement.

public string UploadOldRowInsertTable() {
 return("old" + GetCols(_curTable) +
 "values" + GetNamedParams(_curTable));
}

upload_old_row_insert table event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 511

upload_statistics connection event
Tracks synchronization statistics for upload operations.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you want to use parameter 2). If you use named parameters, you can specify any subset of the
parameters in any order.

Parameter name for SQL scripts Description Order

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

1

s.warnings INTEGER. The number of warnings that
occurred.

2

s.errors INTEGER. The number of errors that oc-
curred.

3

s.inserted_rows INTEGER. The number of rows that
were successfully inserted in the consoli-
dated database.

4

s.deleted_rows INTEGER. The number of rows that
were successfully deleted from the con-
solidated database.

5

s.updated_rows INTEGER. The number of rows that
were successfully updated in the consoli-
dated database.

6

s.conflicted_inserts INTEGER. Always zero. 7

s.conflicted_deletes INTEGER. Always zero. 8

Synchronization events

512 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Parameter name for SQL scripts Description Order

s.conflicted_updates INTEGER. The number of update rows
that caused conflict. A row is included
only when a resolve conflict script was
successfully called for it.

9

s.ignored_inserts INTEGER. The total number of upload
insert rows that were ignored. They were
ignored because 1) there is no upload_in-
sert script in normal mode or no up-
load_new_row_insert script in forced
conflict mode; or 2) errors occurred when
the MobiLink server was invoking the
corresponding script and the handle_er-
ror or handle_odbc_error event returned
1000.

10

s.ignored_deletes INTEGER. The number of upload delete
rows that caused errors while the up-
load_delete script was invoked, when the
handle_error or handle_odbc_error are
defined and returned 1000, or when there
is no upload_delete script defined for the
given table.

11

s.ignored_updates INTEGER. The number of upload update
rows that caused conflict but a resolve
conflict script was not successfully called
or no upload_update script was defined.

12

s.bytes INTEGER. The amount of memory used
within the MobiLink server to store the
upload.

13

s.deadlocks INTEGER. The number of deadlocks in
the consolidated database that were de-
tected for the synchronization.

14

Default action
None.

Remarks
The upload_statistics event allows you to gather, for any user, statistics on uploads. The upload_statistics
connection script is called just prior to the commit at the end of the upload transaction.

upload_statistics connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 513

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “download_statistics connection event” on page 403
● “download_statistics table event” on page 406
● “upload_statistics table event” on page 517
● “synchronization_statistics connection event” on page 486
● “synchronization_statistics table event” on page 489
● “time_statistics connection event” on page 492
● “time_statistics table event” on page 495
● “MobiLink Monitor” on page 179
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]

SQL example
The following example inserts synchronization statistics for upload operations into the table
upload_summary_audit.

CALL ml_add_connection_script (
 'ver1',
 'upload_statistics',
 'INSERT INTO upload_summary_audit (
 ml_user,
 warnings,
 errors,
 inserted_rows,
 deleted_rows,
 updated_rows,
 conflicted_inserts,
 conflicted_deletes,
 conflicted_updates,
 bytes,
 ignored_inserts,
 ignored deletes,
 ignored_updates,
 bytes, deadlocks)
 VALUES (
 {ml s.username},
 {ml s.warnings},
 {ml s.errors},
 {ml s.inserted_rows},
 {ml s.deleted_rows},
 {ml s.updated_rows},
 {ml s.conflicted_inserts},
 {ml s.conflicted_deletes},
 {ml s.conflicted_updates},
 {ml s.ignored_inserts},
 {ml s.ignored_deletes},
 {ml s.ignored_updates},
 {ml s.bytes},
 {ml s.deadlocks}) ')

Once statistics are inserted into the audit table, you may use these statistics to monitor your synchronizations
and make optimizations where applicable.

Synchronization events

514 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Java example
The following call to a MobiLink system procedure registers a Java method called
uploadStatisticsConnection as the script for the upload_statistics connection event when synchronizing the
script version ver1.

CALL ml_add_java_connection_script(
 'ver1',
 'upload_statistics',
 'ExamplePackage.ExampleClass.uploadStatisticsConnection')

The following is the sample Java method uploadStatisticsConnection. It logs some statistics to the MobiLink
message log. (Note that logging statistics to the MobiLink message log might be useful at development time
but would slow down a production server.)

public String uploadStatisticsConnection(
 String user,
 int warnings,
 int errors,
 int insertedRows,
 int deletedRows,
 int updatedRows,
 int conflictedInserts,
 int conflictedDeletes,
 int conflictedUpdates,
 int ignoredInserts,
 int ignoredDeletes,
 int ignoredUpdates,
 int bytes,
 int deadlocks) {
 java.lang.System.out.println("updated rows: " +
 updatedRows);
 return (null);
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called UploadStats as the script
for the upload_statistics connection event when synchronizing the script version ver1.

CALL ml_add_dnet_connection_script(
 'ver1',
 'upload_statistics',
 'TestScripts.Test.UploadStats'
)

The following is the sample .NET method UploadStats. It logs some statistics to the MobiLink message log.
(Note that logging statistics to the MobiLink message log might be useful at development time but would
slow down a production server.)

public string UploadStats (
 string user,
 int warnings,
 int errors,
 int insertedRows,
 int deletedRows,
 int updatedRows,
 int conflictInserts,
 int conflictDeletes,
 int conflictUpdates,
 int ignoredInserts,

upload_statistics connection event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 515

 int ignoredDeletes,
 int ignoredUpdates,
 int bytes,
 int deadlocks) {
 System.Console.WriteLine("updated rows: " +
 updatedRows);
 return (null);
}

Synchronization events

516 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

upload_statistics table event
Tracks synchronization statistics for upload operations for a specific table.

Parameters
In the following table, the description provides the SQL data type. If you are writing your script in Java
or .NET, you should use the appropriate corresponding data type. See “SQL-Java data
types” on page 532 and “SQL-.NET data types” on page 594.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you want to use parameter 2). If you use named parameters, you can specify any subset of the
parameters in any order.

Parameter name for SQL scripts Description Order

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

1

s.table VARCHAR(128). The table name. 2

s.warnings INTEGER. The number of warnings is-
sued in the upload of the table.

3

s.errors INTEGER. The number of errors, includ-
ing handled errors, that occurred in the
upload of the table.

4

s.inserted_rows INTEGER. The number of rows that
were successfully inserted in the consoli-
dated database.

5

s.deleted_rows INTEGER. The number of rows that
were successfully deleted from the con-
solidated database.

6

s.updated_rows INTEGER. 7

s.conflicted_inserts INTEGER. Always zero. 8

s.conflicted_deletes INTEGER. Always zero. 9

upload_statistics table event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 517

Parameter name for SQL scripts Description Order

s.conflicted_updates INTEGER. The number of update rows
that caused conflict. A row is included
only when a resolve conflict script was
successfully called for it.

10

s.ignored_inserts INTEGER. The total number of upload
insert rows that were ignored. They were
ignored because 1) there is no upload_in-
sert script in normal mode or no up-
load_new_row_insert script in forced
conflict mode; or 2) errors occurred when
the MobiLink server was invoking the
corresponding script and the handle_er-
ror or handle_odbc_error event returned
1000.

11

s.ignored_deletes INTEGER. The number of upload delete
rows that caused errors while the up-
load_delete script was invoked, when the
handle_error or handle_odbc_error are
defined and returned 1000, or when there
is no upload_delete script defined for the
given table.

12

s.ignored_updates INTEGER. The number of upload update
rows that caused conflict but a resolve
conflict script was not successfully called
or no upload_update script was defined.

13

s.bytes INTEGER. The amount of memory used
within the MobiLink server to store the
upload.

14

s.deadlocks INTEGER. The number of deadlocks in
the consolidated database that were de-
tected for the synchronization.

15

Default action
None.

Remarks
The upload_statistics event allows you to gather, for any user, vital statistics on synchronization happenings
as they apply to any table. The upload_statistics table script is called just prior to the commit at the end of
the upload transaction.

Synchronization events

518 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “download_statistics connection event” on page 403
● “upload_statistics connection event” on page 512
● “upload_statistics table event” on page 517
● “synchronization_statistics connection event” on page 486
● “synchronization_statistics table event” on page 489
● “time_statistics connection event” on page 492
● “time_statistics table event” on page 495
● “MobiLink Monitor” on page 179
● “Using remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]

SQL Example
The following example inserts a row into a table used to track upload statistics.

CALL ml_add_connection_script(
 'ver1',
 'upload_statistics',
 'INSERT INTO my_upload_statistics (
 user_name,
 table_name,
 num_warnings,
 num_errors,
 inserted_rows,
 deleted_rows,
 updated_rows,
 conflicted_inserts,
 conflicted_deletes,
 conflicted_updates,
 ignored_inserts,
 ignored_deletes,
 ignored_updates, bytes,
 deadlocks)
 VALUES(
 {ml s.username},
 {ml s.table},
 {ml s.warnings},
 {ml s.errors},
 {ml s.inserted_rows},
 {ml s.deleted_rows},
 {ml s.updated_rows},
 {ml s.conflicted_inserts},
 {ml s.conflicted_deletes},
 {ml s.conflicted_updates},
 {ml s.ignored_inserts},
 {ml s.ignored_deletes},
 {ml s.ignored_updates},
 {ml s.bytes},
 {ml s.deadlocks})')

The following example works with an Oracle consolidated database.

CALL ml_add_connection_script(
 'ver1',
 'upload_statistics',
 'INSERT INTO upload_tables_audit (
 id,

upload_statistics table event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 519

 user_name,
 table,
 warnings,
 errors,
 inserted_rows,
 deleted_rows,
 updated_rows,
 conflicted_inserts,
 conflicted_deletes,
 conflicted_updates,
 ignored_inserts,
 ignored_deletes,
 ignored_updates,
 bytes,
 deadlocks)
 VALUES (
 ut_audit.nextval,
 {ml s.username},
 {ml s.table},
 {ml s.warnings},
 {ml s.errors},
 {ml s.inserted_rows},
 {ml s.deleted_rows},
 {ml s.updated_rows},
 {ml s.conflicted_inserts},
 {ml s.conflicted_deletes},
 {ml s.conflicted_updates},
 {ml s.ignored_inserts},
 {ml s.ignored_deletes},
 {ml s.ignored_updates},
 {ml s.bytes},
 {ml s.deadlocks})')

Once statistics are inserted into the audit table, you may use these statistics to monitor your synchronizations
and make optimizations where applicable.

Java example
The following call to a MobiLink system procedure registers a Java method called uploadStatisticsTable as
the script for the upload_statistics table event when synchronizing the script version ver1.

CALL ml_add_java_table_script(
 'ver1',
 'table1',
 'upload_statistics',
 'ExamplePackage.ExampleClass.uploadStatisticsTable')

The following is the sample Java method uploadStatisticsTable. It logs some statistics to the MobiLink
message log. (Note that logging statistics to the MobiLink message log might be useful at development time
but would slow down a production server.)

public String uploadStatisticsTable(
 String user,
 int warnings,
 int errors,
 int insertedRows,
 int deletedRows,
 int updatedRows,
 int conflictedInserts,
 int conflictedDeletes,
 int conflictedUpdates,
 int ignoredInserts,

Synchronization events

520 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 int ignoredDeletes,
 int ignoredUpdates,
 int bytes,
 int deadlocks) {
 java.lang.System.out.println("updated rows: " +
 updatedRows);
 return (null);
}

.NET example
The following call to a MobiLink system procedure registers a .NET method called UploadTableStats as the
script for the upload_statistics table event when synchronizing the script version ver1 and the table table1.

CALL ml_add_dnet_table_script(
 'ver1',
 'table1',
 'upload_statistics',
 'TestScripts.Test.UploadTableStats'
)

The following is the sample .NET method uploadStatisticsTable. It logs some statistics to the MobiLink
message log. (Note that logging statistics to the MobiLink message log might be useful at development time
but would slow down a production server.)

public string UploadTableStats(
 string user,
 string table,
 int warnings,
 int errors,
 int insertedRows,
 int deletedRows,
 int updatedRows,
 int conflictInserts,
 int conflictDeletes,
 int conflictUpdates,
 int ignoredInserts,
 int ignoredDeletes,
 int ignoredUpdates,
 int bytes,
 int deadlocks) {
 System.Console.WriteLine("updated rows: " +
 updatedRows);
 return (null);
}

upload_statistics table event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 521

upload_update table event
Provides an event that the MobiLink server uses during processing of the upload to handle rows updated at
the remote database.

Parameters

Parameter Order

r.column-1 1

... ...

r.column-M M

r.pk-column-1 M + 1

... ...

r.pk-column-N M + N

o.column-N M + N + 1

... ...

o.column-M M + N + M

Default action
None.

Remarks
The statement-based upload_update script may perform direct updates of column values as specified in the
UPLOAD statement.

The WHERE clause must include all the primary key columns being synchronized. The SET clause must
contain all the non-primary key columns being synchronized.

You use as many non-primary key columns in your SET clause as exist in the table, and MobiLink sends
the correct number of column values. Similarly, in the WHERE clause, you can have any number of primary
keys, but all must be specified here, and MobiLink sends the correct values. MobiLink sends these column
values and primary key values in the order the columns or primary keys appear in a MobiLink report of your
schema. You can use the -vh option to determine the column ordering for this table schema.

For example, in the following upload_update script, the question marks are in good order:

UPDATE MyTable
 SET column_1 = ?, ..., column_M = ?
 WHERE pk_column_1 = ? AND ... AND pk_column_N = ?

You can have one upload_update script for each table in the remote database.

Synchronization events

522 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

For Java and .NET applications, this script must return valid SQL.

To use the upload_update script to detect conflicts, include all non-primary key columns in the WHERE
clause:

UPDATE table-name
SET col1 = {ml r.col1}, col2 = {ml r. col2 } ...
WHERE pk1 = {ml r.pk1} AND pk2 = {ml r.pk2} ...
 AND col1 = {ml o.col1} AND col2 ={ml o.col2} ...

In this statement, col1 and col2 are the non-primary key columns, while pk1 and pk2 are primary key
columns. The values passed to the second set of non-primary key columns are the pre-image of the updated
row. The WHERE clause compares old values uploaded from the remote to current values in the consolidated
database. If the values do not match, the update is ignored, preserving the values already on the consolidated
database.

See also
● “Script parameters” on page 320
● “Adding and deleting scripts” on page 327
● “Detecting conflicts with upload_update scripts” on page 148
● “Resolving conflicts with upload_update scripts” on page 151
● “upload_delete table event” on page 498
● “upload_fetch table event” on page 500
● “upload_insert table event” on page 504

SQL example
This example handles updates made to the Customer table in the remote database. The script updates the
values in a table named Customer in the consolidated database.

CALL ml_add_table_script(
 'ver1',
 'table1',
 'upload_update',
'UPDATE Customer
 SET name = {ml r.name}, rep_id = {ml r.rep_id}
 WHERE cust_id = {ml o.cust_id}')

Java example
The following call to a MobiLink system procedure registers a Java method called uploadUpdateTable as
the script for the upload_update table event when synchronizing the script version ver1.

CALL ml_add_java_table_script(
 'ver1',
 'table1',
 'upload_update',
 'ExamplePackage.ExampleClass.uploadUpdateTable')

The following is the sample Java method uploadUpdateTable. It calls a method called genUU to dynamically
generate an UPLOAD statement.

public String uploadUpdateTable() {
 return(genUU(_curTable));
}

upload_update table event

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 523

.NET example
The following call to a MobiLink system procedure registers a .NET method called UploadUpdate as the
script for the upload_update table event when synchronizing the script version ver1 and the table table1.

CALL ml_add_dnet_table_script(
 'ver1',
 'table1',
 'upload_update',
 'TestScripts.Test.UploadUpdate'
)

The following is the sample .NET method UploadUpdate. It calls a method called GenUU to dynamically
generate an UPLOAD statement.

public string UploadUpdate() {
 return (genUU(_curTable));
}

Synchronization events

524 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

MobiLink Server APIs

This section describes the MobiLink Server APIs for Java and .NET.

Writing synchronization scripts in Java ... 527
Writing synchronization scripts in .NET ... 589
Direct row handling ... 649

Writing synchronization scripts in Java

Contents
Introduction to Java synchronization logic ... 528
Setting up Java synchronization logic ... 529
Writing Java synchronization logic .. 531
Java synchronization example .. 538
MobiLink server API for Java reference .. 543

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 527

Introduction to Java synchronization logic
You control the actions of the MobiLink server by writing synchronization scripts. You can implement these
scripts in SQL, .NET or Java. Java synchronization logic can function just as SQL logic functions: the
MobiLink server can make calls to Java methods on the occurrence of MobiLink events just as it accesses
SQL scripts on the occurrence of MobiLink events. A Java method can return a SQL string to MobiLink.

This section tells you how to set up, develop, and run Java synchronization logic. It includes a sample
application and the MobiLink server API for Java Reference.

See also
● “Tutorial: Using Java synchronization logic” [MobiLink - Getting Started]
● “Options for writing server-side synchronization logic” [MobiLink - Getting Started]
● “Writing synchronization scripts” on page 313

Writing synchronization scripts in Java

528 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Setting up Java synchronization logic
When you install SQL Anywhere, the installer automatically sets the location of the MobiLink server API
for Java classes. When you start the MobiLink server, it automatically includes these classes in your
classpath. The MobiLink server API for Java classes are located in install-dir\java\mlscript.jar.

To implement synchronization scripts in Java

1. Create your own class or classes. Write a method for each required synchronization script. These methods
must be public. The class must be public in the package.

See “Methods” on page 533.

Each class with non-static methods should have a public constructor. The MobiLink server automatically
instantiates each class the first time a method in that class is called.

See “Constructors” on page 532.

2. When compiling the class, you must include the JAR file java\mlscript.jar.

For example,

javac MyClass.java -classpath "c:\Program Files\SQL Anywhere 11\java
\mlscript.jar"

3. In the MobiLink system tables on your consolidated database, specify the name of the package, class,
and method to call for each synchronization script. One class is permitted per script version.

For example, you can add this information to the MobiLink system tables using the
ml_add_java_connection_script stored procedure or the ml_add_java_table_script stored procedure.

For example, the following SQL statement, when run in a SQL Anywhere database, specifies that for
the script version ver1, myPackage.myClass.myMethod should be run whenever the authenticate_user
connection-level event occurs. The method that is specified must be the fully qualified name of a public
Java method, and the name is case sensitive.

call ml_add_java_connection_script('ver1',
'authenicate_user', 'myPackage.myClass.myMethod')

For more information about adding scripts, see:

● “System procedures to add or delete scripts” on page 664
● “ml_add_java_connection_script system procedure” on page 671
● “ml_add_java_table_script system procedure” on page 672

4. Instruct the MobiLink server to load classes. A vital part of setting up Java synchronization logic is to
tell the virtual machine where to look for Java classes. There are two ways to do this:

● Use the mlsrv11 -sl java -cp option to specify a set of directories or jar files in which to search for
classes. For example, run the following command:

mlsrv11 -c "dsn=consolidated1" -sl java (-cp %classpath%;c:\local\Java
\myclasses.jar)

Setting up Java synchronization logic

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 529

The MobiLink server automatically appends the location of the MobiLink server API for Java classes
(java\mlscript.jar) to the set of directories or jar files. The -sl java option also forces the Java VM to
load on server startup.

For more information about the available Java options, see “-sl java option” on page 92.

● Explicitly set the classpath. To set the classpath for user-defined classes, use a statement such as the
following:

SET classpath=%classpath%;c:\local\Java\myclasses.jar

If your system classpath includes your Java synchronization logic classes, you do not need to make
changes to your MobiLink server command line.

You can use the -sl java option to force the Java virtual machine to load at server startup. Otherwise,
the Java virtual machine is started when the first Java method is executed.

For more information about the available Java options, see “-sl java option” on page 92.

5. On Unix, if you want to load a specific JRE, you should set the LD_LIBRARY_PATH (LIBPATH on
AIX, SHLIB_PATH on HP-UX) to include the directory containing the JRE. The directory must be listed
before any of the SQL Anywhere installation directories.

See also
● “Writing Java synchronization logic” on page 531
● “Java synchronization example” on page 538
● “Tutorial: Using Java synchronization logic” [MobiLink - Getting Started]
● “MobiLink server API for Java reference” on page 543
● “Options for writing server-side synchronization logic” [MobiLink - Getting Started]
● “Writing synchronization scripts” on page 313

Writing synchronization scripts in Java

530 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Writing Java synchronization logic
Writing Java synchronization logic requires knowledge of MobiLink events, some knowledge of Java, and
knowledge of the MobiLink server API for Java.

For a complete description of the API, see “MobiLink server API for Java reference” on page 543.

Java synchronization logic can be used to maintain state information, and implement logic around the upload
and download events. For example, a begin_synchronization script written in Java could store the MobiLink
user name in a variable. Scripts called later in the synchronization process can access this variable. Also,
you can use Java to access rows in the consolidated database, before or after they are committed.

Using Java reduces dependence on the consolidated database. Behavior is affected less by upgrading the
consolidated database to a new version or switching to a different database management system.

Direct row handling
You can use MobiLink direct row handling to communicate remote data to any central data source,
application, or web service. Direct row handling uses special classes in the MobiLink server APIs for Java
or .NET for direct access to synchronized data.

See “Direct row handling” on page 649.

Class instances
The MobiLink server instantiates your classes at the connection level. When an event is reached for which
you have written a non-static Java method, the MobiLink server automatically creates an instance of the
class, if it has not already done so on the present connection.

See “Constructors” on page 594.

All methods directly associated with a connection-level or table-level event for one script version must
belong to the same class.

For each database connection, once a class has been instantiated, the class persists until that connection is
closed. So, the same instance may be used for multiple consecutive synchronization sessions. Unless it is
explicitly cleared, information present in public or private variables persists across synchronizations that
occur on the same connection.

You can also use static classes or variables. In this case, the values are available across all connections.

The MobiLink server automatically deletes your class instances only when the connection to the consolidated
database is closed.

Transactions
The normal rules regarding transactions apply to Java methods. The start and duration of database
transactions is critical to the synchronization process. Transactions must be started and ended only by the

Writing Java synchronization logic

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 531

MobiLink server. Explicitly committing or rolling back transactions on the synchronization connection
within a Java method violates the integrity of the synchronization process and can cause errors.

These rules apply only to the database connections created by the MobiLink server and, in particular, to SQL
statements returned by methods. If your classes create other database connections, use existing management
rules to manage classes created by other database connections.

SQL-Java data types
The following table shows SQL data types and the corresponding Java data types.

SQL data type Corresponding Java data type

VARCHAR java.lang.String

CHAR java.lang.String

INTEGER int or Integer

BINARY byte[]

TIMESTAMP java.sql.Timestamp

INOUT INTEGER ianywhere.ml.script.InOutInteger

INOUT VARCHAR ianywhere.ml.script.InOutString

INOUT CHAR ianywhere.ml.script.InOutString

INOUT BYTEARRAY ianywhere.ml.script.InOutByteArray

The MobiLink server automatically adds the ianywhere.ml.script package to your classpath if it is not already
present. However, when you compile your class you need to add the path of install-dir\java\mlscript.jar.

Constructors
The constructor of your class may have one of two possible signatures.

public MyScriptClass(ianywhere.ml.script.DBConnectionContext sc)

or

public MyScriptClass()

The synchronization context passed to you is for the connection through which the MobiLink server is
synchronizing the current user.

Writing synchronization scripts in Java

532 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The DBConnectionContext.getConnection method returns the same database connection that MobiLink is
using to synchronize the present user. You can execute statements on this connection, but you must not
commit or roll back the transaction. The MobiLink server manages the transactions.

The MobiLink server prefers to use constructors with the first signature. It only uses the non-argument
constructor if a constructor with the first signature is not present.

See “DBConnectionContext interface” on page 543.

Methods
In general, you implement one method for each synchronization event. These methods must be public. If
they are private, the MobiLink server cannot use them and fails to recognize that they exist.

The names of the methods are not important, as long as the names match the names specified in the ml_script
table in the consolidated database. In the examples included in the documentation, however, the method
names are the same as those of the MobiLink events because this naming convention makes the Java code
easier to read.

The signature of your method should match the signature of the script for that event, except that you can
truncate the parameter list if you do not need the values of parameters at the end of the list. You should
accept only the parameters you need, because overhead is associated with passing the parameters.

You cannot, however, overload the methods. Only one method prototype per class may appear in the
ml_script system table.

Registering methods
After creating a method, you must register it. Registering the method creates a reference to the method in
the MobiLink system tables on the consolidated database, so that the method is called when the event occurs.
You register methods in the same way that you add synchronization scripts, except instead of adding the
entire SQL script to the MobiLink system table, you add only the method name.

See “Adding and deleting scripts” on page 327.

Return values
Methods called for a SQL-based upload or download must return a valid SQL language statement. The return
type of these methods must be java.lang.String. No other return types are allowed.

The return type of all other scripts must either be java.lang.String or void. No other types are allowed. If the
return type is a string and not null, the MobiLink server assumes that the string contains a valid SQL statement
and executes this statement in the consolidated database as it would an ordinary SQL-language
synchronization script. If a method ordinarily returns a string but does not want to execute a SQL statement
against the database upon its return, it can return null.

Debugging Java classes
MobiLink provides various information and facilities that you may find helpful when debugging your Java
code. This section describes where you can find this information and how you can exploit these capabilities.

Writing Java synchronization logic

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 533

Information in the MobiLink server's log file
The MobiLink server writes messages to a message log file. The server log file contains the following
information:

● The Java Runtime Environment. You can use the -jrepath option to request a particular JRE when you
start the MobiLink server. The default path is the path of the JRE installed with SQL Anywhere 11.

● The path of the standard Java classes loaded. If you did not specify these explicitly, the MobiLink server
automatically adds them to your classpath before invoking the Java virtual machine.

● The fully specified names of the specific methods invoked. You can use this information to verify that
the MobiLink server is invoking the correct methods.

● Any output written in a Java method to java.lang.System.out or java.lang.System.err is redirected to the
MobiLink server log file.

● The mlsrv11 command line option -verbose can be used.

See “-v option” on page 102.

Using a Java debugger
You can debug your Java classes using a standard Java debugger. Specify the necessary parameters using
the -sl java option on the mlsrv11 command line.

See “-sl java option” on page 92.

Specifying a debugger causes the Java virtual machine to pause and wait for a connection from a Java
debugger.

Printing information from Java
Alternatively, you may choose to add statements to your Java methods that print information to the MobiLink
message log, using java.lang.System.err or java.lang.System.out. Doing so can help you track the progress
and behavior of your classes.

Performance tip
Printing information in this manner is a useful monitoring tool, but is not recommended in a production
scenario.

The same technique can be exploited to log arbitrary synchronization information or collect statistical
information on how your scripts are used.

Writing your own test driver
You may want to write your own driver to exercise your Java classes. This approach can be helpful because
it isolates the actions of your Java methods from the rest of the MobiLink system.

Handling MobiLink server errors in Java
When scanning the log is not enough, you can monitor your applications programmatically. For example,
you can send messages of a certain type in an email.

Writing synchronization scripts in Java

534 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

You can write methods that are passed a class representing every error or warning message that is printed
to the log. This may help you monitor and audit a MobiLink server.

The following code installs a LogListener for all warning messages, and writes the information to a file.

class TestLogListener implements LogListener {
 FileOutputStream _out_file;
 public TestLogListener(FileOutputStream out_file) {
 _out_file = out_file;
 }
 public void messageLogged(ServerContext sc, LogMessage msg) {
 String type;
 String user;
 try {
 if (msg.getType() == LogMessage.ERROR) {
 type = "ERROR";
 } else if (msg.getType() == LogMessage.WARNING) {
 type = "WARNING";
 }
 else {
 type = "UNKNOWN!!!";
 }
 user = msg.getUser();
 if (user == null) {
 user = "NULL";
 }
 _out_file.write(("Caught msg type="
 + type
 + " user=" + user
 + " text=" + msg.getText()
 + "\n").getBytes()
);
 _out_file.flush();
 }
 catch(Exception e) {
 // Print some error output to the MobiLink log.
 e.printStackTrace();
 }
 }
}

The following code registers TestLogListener to receive warning messages. Call this code from anywhere
that has access to the ServerContext such as a class constructor or synchronization script.

// ServerContext serv_context;
serv_context.addWarningListener(
 new MyLogListener(ll_out_file)
);

Writing Java synchronization logic

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 535

See also
● “addErrorListener method” on page 567
● “removeErrorListener method” on page 572
● “addWarningListener method” on page 568
● “removeWarningListener method” on page 573
● “LogListener interface” on page 560
● “LogMessage class” on page 561

User-defined start classes
You can define start classes that are loaded automatically when the server is started. The purpose of this
feature is to allow you to write Java code that executes at the time the MobiLink server starts the JVM—
before the first synchronization. This means you can create connections or cache data before a user
synchronization request.

You do this with the DMLStartClasses option of the mlsrv11 -sl java option. For example, the following is
part of a mlsrv11 command line. It causes mycl1 and mycl2 to be loaded as start classes.

-sl java(-DMLStartClasses=com.test.mycl1,com.test.mycl2)

Classes are loaded in the order in which they are listed. If the same class is listed more than once, more than
one instance is created.

All start classes must be public and must have a public constructor that either accepts no arguments or accepts
one argument of type ianywhere.ml.script.ServerContext.

The names of loaded start classes are output to the MobiLink log with the message "Loaded JAVA start
class: classname".

For more information about Java virtual machine options, see “-sl java option” on page 92.

To see the start classes that are constructed at server start time, see “getStartClassInstances
method” on page 571.

Example
The following is a start class template. It starts a daemon thread that processes events and creates a database
connection. (Not all start classes need to create a thread but if a thread is spawned it should be a daemon
thread.)

import ianywhere.ml.script.*;
import java.sql.*;
public class StartTemplate extends
 Thread implements ShutdownListener {
 ServerContext _sc;
 Connection _conn;
 boolean _exit_loop;
 public StartTemplate(ServerContext sc) throws SQLException {
 // Perform setup first so that an exception
 // causes MobiLink startup to fail.
 _sc = sc;

Writing synchronization scripts in Java

536 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 // Create a connection for use later.
 _conn = _sc.makeConnection();
 _exit_loop = false;
 setDaemon(true);
 start();
 }
 public void run() {
 _sc.addShutdownListener(this);
 // run() cannot throw exceptions.
 try {
 handlerLoop();
 _conn.close();
 _conn = null;
 }
 catch(Exception e) {

 // Print some error output to the MobiLink log.
 e.printStackTrace();

 // This thread shuts down and so does not
 // need to be notified of shutdown.
 _sc.removeShutdownListener(this);

 // Ask server to shutdown so that this fatal
 // error is fixed.
 _sc.shutdown();
 }
 // Shortly after return this thread no longer exists.
 return;
 }

 // stop our event handler loop
 public void shutdownPerformed(ServerContext sc) {
 try {
 // Wait max 10 seconds for thread to die.
 join(10*1000);
 }
 catch(Exception e) {
 // Print some error output to the MobiLink log.
 e.printStackTrace();
 }
 }
 private void handlerLoop() throws InterruptedException {
 while (!_exit_loop) {
 // Handle events in this loop. Sleep not
 // needed, block on event queue.
 sleep(1 * 1000);
 }
 }
}

Writing Java synchronization logic

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 537

Java synchronization example
Java synchronization logic works with MobiLink and common Java classes to provide you with flexibility
in deploying applications using MobiLink server. The following section introduces you to this extended
range of functionality using a simple example.

This section describes a working example of Java synchronization logic. Before you try to use this class or
write your own class, use the following checklist to ensure you have all the pieces in place before compiling
the class.

● Plan your functionality using, for example, pseudocode.

● Create a map of database tables and columns.

● Configure the consolidated database for Java synchronization by ensuring you have specified in the
MobiLink system tables the language type and location of the Java synchronization methods.

See “Setting up Java synchronization logic” on page 529.

● Create a list of associated Java classes that are called during the running of your Java class.

● Store your Java classes in a location that is in the classpath for MobiLink server.

Plan
The Java synchronization logic for this example points to the associated Java files and classes that contain
functionality needed for the example to work. It shows you how to create a class CustEmpScripts. It shows
you how to set up a synchronization context for the connection. Finally, the example provides Java methods
to

● Authenticate a MobiLink user

● Perform download and upload operations using cursors for each database table.

Schema
The tables to be synchronized are emp and cust. The emp table has three columns called emp_id, emp_name
and manager. The cust table has three columns called cust_id, cust_name and emp_id. All columns in each
table are synchronized. The mapping from consolidated to remote database is such that the table names and
column names are identical in both databases. One additional table, an audit table, is added to the consolidated
database.

Java class files
The files used in the example are included in the Samples\MobiLink\JavaAuthentication directory.

Setup
The following code sets up the Java synchronization logic. The import statements tell the Java virtual machine
the location of needed files. The public class statement declares the class.

// Use a package when you create your own script.
import ianywhere.ml.script.InOutInteger;
import ianywhere.ml.script.DBConnectionContext;
import ianywhere.ml.script.ServerContext;

Writing synchronization scripts in Java

538 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

import java.sql.*;
public class CustEmpScripts {
 // Context for this synchronization connection.
 DBConnectionContext _conn_context;
 // Same connection MobiLink uses for sync.
 // Do not commit or close this.
 Connection _sync_connection;
 Connection _audit_connection;
 //Get a user id given the user name. On audit connection.
 PreparedStatement _get_user_id_pstmt;
 // Add record of user logins added. On audit connection.
 PreparedStatement _insert_login_pstmt;
 // Prepared statement to add a record to the audit table.
 // On audit connection.
 PreparedStatement _insert_audit_pstmt;

 // ...
}

The CustEmpScripts constructor sets up all the prepared statements for the authenticateUser method. It sets
up member data.

public CustEmpScripts(DBConnectionContext cc) throws SQLException {
 try {
 _conn_context = cc;
 _sync_connection = _conn_context.getConnection();
 ServerContext serv_context =
 _conn_context.getServerContext();
 _audit_connection = serv_context.makeConnection();
 // Get the prepared statements ready.
 _get_user_id_pstmt =
 _audit_connection.prepareStatement(
 "select user_id from ml_user where name = ?"
);
 _insert_login_pstmt =
 _audit_connection.prepareStatement(
 "INSERT INTO login_added(ml_user, add_time) "
 + "VALUES (?, { fn CONVERT({ fn NOW() }, SQL_VARCHAR) })"
);
 _insert_audit_pstmt =
 _audit_connection.prepareStatement(
 "INSERT INTO login_audit(ml_user_id, audit_time,
audit_action) "
 + "VALUES (?, { fn CONVERT({ fn NOW() },
SQL_VARCHAR) }, ?)"
);
 }
 catch(SQLException e) {
 freeJDBCResources();
 throw e;
 }
 catch(Error e) {
 freeJDBCResources();
 throw e;

Java synchronization example

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 539

 }
}

The finalize method cleans up JDBC resources if end_connection is not called. It calls the
freeJDBCResources method, which frees allocated memory and closes the audit connection.

protected void finalize() throws SQLException, Throwable {
 super.finalize();
 freeJDBCResources();
}
private void freeJDBCResources() throws SQLException {
 if (_get_user_id_pstmt != null) {
 _get_user_id_pstmt.close();
 }
 if (_insert_login_pstmt != null) {
 _insert_login_pstmt.close();
 }
 if (_insert_audit_pstmt != null) {
 _insert_audit_pstmt.close();
 }
 if (_audit_connection != null) {
 _audit_connection.close();
 }
 _conn_context = null;
 _sync_connection = null;
 _audit_connection = null;
 _get_user_id_pstmt = null;
 _insert_login_pstmt = null;
 _insert_audit_pstmt = null;
}

The endConnection method cleans up resources once the resources are not needed.

public void endConnection() throws SQLException {
 freeJDBCResources();
}

The authenticateUser method below approves all user logins and logs user information to database tables.
If the user is not in the ml_user table they are logged to login_added. If the user id is found in ml_user then
they are logged to login_audit. In a real system you would not ignore the user_password, but this sample
approves all users for simplicity. The endConnection method throws SQLException if any of the database
operations fail with an exception.

public void authenticateUser(
 InOutInteger authentication_status,
 String user_name) throws SQLException
{
 boolean new_user;
 int user_id;
 // Get ml_user id.
 _get_user_id_pstmt.setString(1, user_name);
 ResultSet user_id_rs =
 _get_user_id_pstmt.executeQuery();
 new_user = !user_id_rs.next();
 if (!new_user) {
 user_id = user_id_rs.getInt(1);
 }

Writing synchronization scripts in Java

540 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 else {
 user_id = 0;
 }

 user_id_rs.close();
 user_id_rs = null;
 // In this tutorial always allow the login.
 authentication_status.setValue(1000);

 if (new_user) {
 _insert_login_pstmt.setString(1, user_name);
 _insert_login_pstmt.executeUpdate();
 java.lang.System.out.println("user: " + user_name + " added. ");
 }
 else {
 _insert_audit_pstmt.setInt(1, user_id);
 _insert_audit_pstmt.setString(2, "LOGIN ALLOWED");
 _insert_audit_pstmt.executeUpdate();
 }
 _audit_connection.commit();
 return;
}

The following methods use SQL code to act as cursors on the database tables. Since these are cursor scripts,
they must return a SQL string.

public static String empUploadInsertStmt() {
 return("INSERT INTO emp(emp_id, emp_name) VALUES(?, ?)");
}
public static String empUploadDeleteStmt() {
 return("DELETE FROM emp WHERE emp_id = ?");
}
public static String empUploadUpdateStmt() {
 return("UPDATE emp SET emp_name = ? WHERE emp_id = ?");
}
public static String empDownloadCursor() {
 return("SELECT emp_id, emp_name FROM emp");
}
public static String custUploadInsertStmt() {
 return("INSERT INTO cust(cust_id, emp_id, cust_name) VALUES (?, ?, ?)");
}
public static String custUploadDeleteStmt() {
 return("DELETE FROM cust WHERE cust_id = ?");
}
public static String custUploadUpdateStmt() {
 return("UPDATE cust SET emp_id = ?, cust_name = ? WHERE cust_id = ?");
}
public static String custDownloadCursor() {
 return("SELECT cust_id, emp_id, cust_name FROM cust");
}

Use the following command to compile the code:

javac -cp %sqlany11%\java\mlscript.jar CustEmpScripts.java

Java synchronization example

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 541

Run the MobiLink server with the location of CustEmpScripts.class in the classpath. The following is a
partial command line:

mlsrv11 ... -sl java (-cp <class_location>)

Writing synchronization scripts in Java

542 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

MobiLink server API for Java reference
This section explains the MobiLink Java interfaces and classes, and their associated methods and
constructors. To use these classes, reference the mlscript.jar assembly, located in install-dir\java\.

DBConnectionContext interface

Syntax
public ianywhere.ml.script.DBConnectionContext

Remarks
Interface for obtaining and accessing information about the current database connection. A
DBConnectionContext instance is passed to the constructor of classes containing scripts. If context is
required for a background thread or beyond the lifetime of a connection, use the ServerContext class.

See also
● “Constructors” on page 532
● “ServerContext interface” on page 565

Members
All members of ianywhere.ml.script.DBConnectionContext, including all inherited members.

● “getConnection method” on page 544
● “getDownloadData method” on page 544
● “getProperties method” on page 545
● “getRemoteID method” on page 546
● “getServerContext method” on page 546
● “getVersion method” on page 547

Example
The following example shows you how to create a class level DBConnectionContext instance to use in your
synchronization scripts. The DBConnectionContext getConnection method obtains a java.sql.Connection
instance representing the current connection with the MobiLink consolidated database.

import ianywhere.ml.script.*;
import java.io.*;
import java.sql.*;
public class OrderProcessor {
 DBConnectionContext _cc;
 public OrderProcessor(DBConnectionContext cc) {
 _cc = cc;
 }
 // The method used for the handle_DownloadData event.
 public void HandleEvent() throws SQLException {
 java.sql.Connection my_connection = _cc.getConnection();

MobiLink server API for Java reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 543

 // ...
 }
 // ...
}

Caution
A DBConnectionContext instance should not be used outside the thread that calls into your Java code.

getConnection method

Syntax
public java.sql.Connection getConnection()
throws java.sql.SQLException

Remarks
Returns the existing connection with the MobiLink consolidated database as a JDBC connection. The
java.sql.Connection object returned by this method represents same connection that the MobiLink server
uses to execute SQL scripts.

This connection must not be committed, closed or altered in any way that would affect the MobiLink server
use of this connection. The connection returned is only valid for the lifetime of the underlying MobiLink
connection. Do not use the connection after the end_connection event has been called for that connection.

If an error occurs binding the existing connection as a JDBC connection then it throws
java.sql.SQLException

If a server connection with full access is required, use ServerContext.makeConnection().

Returns
The existing connection with the MobiLink consolidated database as a JDBC connection.

Example
See “DBConnectionContext interface” on page 543.

getDownloadData method

Syntax
public DownloadData getDownloadData()

Remarks
Returns a DownloadData instance for the current synchronization. Use the DownloadData class to create
the download for direct row handling.

Writing synchronization scripts in Java

544 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Returns
A DownloadData instance for the current synchronization.

See also
● “DownloadData interface” on page 548
● “Direct row handling” on page 649

Example
The following example shows you how to obtain a DownloadData instance for the current synchronization
using the DBConnectionContext getDownloadData method.

Note
This example assumes you have a DBConnectionContext instance called _cc.

// The method used for the handle_DownloadData event.
public void HandleDownload() throws SQLException {
 // get the DownloadData for the current synchronization
 DownloadData my_dd = _cc.getDownloadData();

 // ...
}
// ...

getProperties method

Syntax
public java.util.Properties getProperties()

Remarks
Returns the properties for this connection, based on this connection's script version. Properties are stored in
the ml_property table.

Consult your Java SDK documentation for more information about java.util.Properties.

Returns
The properties for this connection.

See also
● “ml_property” on page 712
● “ml_add_property system procedure” on page 677

Example
The following example shows you how to output the properties for a DBConnectionContext.

MobiLink server API for Java reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 545

Note
This example assumes you have a DBConnectionContext instance called _cc.

// The method used to output the connection properties.
public void outputProperties() {
 // output the Properties for the current synchronization
 java.util.Properties properties = _cc.getProperties();
 System.out.println(properties.toString());
}

getRemoteID method

Syntax
public java.lang.String getRemoteID()

Remarks
Returns the remote ID of the database currently synchronizing on this connection. If your remote database
is prior to version 10, it returns the MobiLink user name.

Returns
The remote ID.

See also
● “Remote IDs” [MobiLink - Client Administration]

Example
The following example shows you how to output the remote ID for a DBConnectionContext.

Note
This example assumes you have a DBConnectionContext instance called _cc.

// The method used to output the remote ID.
public void outputRemoteID() {
 // output the Remote ID for the current synchronization
 String remoteID = _cc.getRemoteID();
 System.out.println(remoteID);
}

getServerContext method

Syntax
public ServerContext getServerContext()

Remarks
Returns the ServerContext for this MobiLink server.

Writing synchronization scripts in Java

546 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Returns
The ServerContext for this MobiLink server.

See also
● “ServerContext interface” on page 565

Example
The following example shows you how to get the ServerContext instance for a DBConnectionContext and
shut down the server.

Note
This example assumes you have a DBConnectionContext instance called _cc.

// A method that uses an instance of the ServerContext to shut down the
server
public void shutDownServer() {
 ServerContext context = _cc.getServerContext();
 context.shutdown();
}

getVersion method

Syntax
public java.lang.String getVersion()

Remarks
Returns the script version string.

Returns
The script version string.

See also
● “ml_property” on page 712
● “ml_add_property system procedure” on page 677

Example
The following example shows you how to get the script version and use it to make decisions.

Note
This example assumes you have a DBConnectionContext instance called _cc.

// A method that uses the script version
public void handleEvent() {
 // ...
 String version = _cc.getVersion();
 if (version.equals("My Version 1")) {

MobiLink server API for Java reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 547

 // ...
 } else if (version.equals("My Version 2")) {
 // ...
 }
}
// ...

DownloadData interface

Syntax
public ianywhere.ml.script.DownloadData

Remarks
Encapsulates download data operations for direct row handling. To obtain a DownloadData instance, use
the DBConnectionContext getDownloadData method.

Use the DownloadData.getDownloadTables and getDownloadTableByName methods to return
DownloadTableData instances.

This download data is available through DBConnectionContext. It is not valid to access the download data
before the begin_synchronization event or after the end_download event. It is not valid to access
DownloadData in an upload-only synchronization.

See also
● “DownloadTableData interface” on page 550
● “handle_DownloadData connection event” on page 442
● DBConnectionContext “getDownloadData method” on page 544
● “Direct row handling” on page 649

Members
All members of ianywhere.ml.script.DownloadData, including all inherited members.

● “getDownloadTableByName method” on page 549
● “getDownloadTables method” on page 550

Example
The following example shows you how to obtain a DownloadData instance for the current synchronization
using the DBConnectionContext getDownloadData method.

DBConnectionContext _cc;
// Your class constructor.
public OrderProcessor(DBConnectionContext cc) {
 _cc = cc;
}
// The method used for the handle_DownloadData event.
public void handleDownload() throws SQLException {
 // Get the DownloadData for the current synchronization.

Writing synchronization scripts in Java

548 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 DownloadData my_dd = _cc.getDownloadData();

 // ...
}

getDownloadTableByName method

Syntax
public DownloadTableData getDownloadTableByName(
string table-name);

Remarks
Gets the named download table for this synchronization. Returns null if there is no table with the given name
in this synchronization.

Parameters
● table_name The name of the table for which you want the download data.

Returns
A DownloadTableData instance representing the specified table, or null if a table of the given name does
not exist for the current synchronization.

See also
● “DownloadData interface” on page 548
● “DownloadTableData interface” on page 550
● “DBConnectionContext interface” on page 543
● “Direct row handling” on page 649

Example
The following example uses the getDownloadTableByName method to return a DownloadTableData
instance for the remoteOrders table.

Note
This example assumes you have a DBConnectionContext instance called _cc.

// The method used for the handle_DownloadData event.
public void handleDownload() throws SQLException {
 // Get the DownloadData for the current synchronization.
 DownloadData my_dd = _cc.getDownloadData();
 // Get the DownloadTableData for the remoteOrders table.
 DownloadTableData my_download_table =
my_dd.getDownloadTableByName("remoteOrders");

 // ...
}

MobiLink server API for Java reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 549

getDownloadTables method

Syntax
public DownloadTableData[] getDownloadTables()

Remarks
Gets an array of all the tables for download data in this synchronization. The operations performed on this
table are sent to the remote database.

Returns
An array of DownloadTableData objects for the current synchronization. The order of tables in the array is
the same as the upload order of the remote.

See also
● “DownloadData interface” on page 548
● “DownloadTableData interface” on page 550
● “DBConnectionContext interface” on page 543
● “Direct row handling” on page 649

Example
The following example uses the DownloadData.getDownloadTables method to obtain an array of
DownloadTableData objects for the current synchronization. The example assumes you have a
DBConnectionContext instance called _cc.

// The method used for the handle_DownloadData event.
public void handleDownload() throws SQLException {
 // Get the DownloadData for the current synchronization.
 DownloadData my_dd = _cc.getDownloadData();

 // Get an array of tables to set download operations.
 DownloadTableData[] download_tables = my_dd.getDownloadTables();
 // Get the first table in the DownloadTableData array.
 DownloadTableData my_download_table = download_tables[0];

 // ...
}

DownloadTableData interface

Syntax
public ianywhere.ml.script.DownloadTableData

Remarks
Encapsulates table operations for MobiLink direct downloads. Use this interface to set the data operations
that are downloaded to the client. To obtain DownloadTableData instances for the current synchronization,
use the DownloadData interface. You can use the DownloadTableData.getUpsertPreparedStatement and

Writing synchronization scripts in Java

550 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

getDeletePreparedStatement methods to obtain Java prepared statements for insert and update, and delete
operations, respectively. The java.sql.PreparedStatement.executeUpdate method registers an operation for
download.

Note
You must set all column values for insert and update prepared statements. For delete operations you set
primary key values.

You cannot have both the delete and upsert prepared statements open at the same time.

Consult your Java SDK documentation for more information about java.sql.PreparedStatement.

See also
● “DownloadData interface” on page 548
● “handle_DownloadData connection event” on page 442
● “Direct row handling” on page 649

Members
All members of ianywhere.ml.script.DownloadTableData, including all inherited members.

● “getDeletePreparedStatement method” on page 552
● “getUpsertPreparedStatement method” on page 553
● “getName method” on page 554
● “getMetaData method” on page 555
● “getLastDownloadTime method” on page 556

Example
Assume you use a table called remoteOrders in MobiLink client databases.

CREATE TABLE remoteOrders (
 pk INT NOT NULL,
 col1 VARCHAR(200),
 PRIMARY KEY (pk)
);

The following example uses the DownloadData.getDownloadTableByName method to return a
DownloadTableData instance representing the remoteOrders table.

Note
This example assumes you have a DBConnectionContext instance called _cc.

// The method used for the handle_DownloadData event
public void handleDownload() throws SQLException {
 // Get the DownloadData for the current synchronization.
 DownloadData my_dd = _cc.getDownloadData();

 // Get the DownloadTableData for the remoteOrders table.
 DownloadTableData td = my_dd.getDownloadTableByName("remoteOrders");
 // User defined-methods to set download operations.
 setDownloadInserts(td);

MobiLink server API for Java reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 551

 setDownloadDeletes(td);
 // ...
}

In this example, the setDownloadInserts method uses the DownloadTableData.getUpsertPreparedStatement
to obtain a prepared statement for rows you want to insert or update. The PreparedStatement.setInt and
PreparedStatement.setString methods set the column values you want to insert into the remote database.

void setDownloadInserts(DownloadTableData td) {
 java.sql.PreparedStatement insert_ps = td.getUpsertPreparedStatement();
 // The following method calls are the same as the following SQL
statement:
 // INSERT INTO remoteOrders(pk, col1) values(2300, "truck");
 insert_ps.setInt(1, 2300);
 insert_ps.setString(2, "truck");
 int update_result = insert_ps.executeUpdate();
 if (update_result == 0) {
 // Insert was filtered because it was uploaded
 // in the same synchronization.
 }
 else {
 // Insert was not filtered.
 }
}

The setDownloadDeletes method uses the DownloadTableData.getDeletePreparedStatement to obtain a
prepared statement for rows you want to delete. The java.sql.PreparedStatement.setInt method sets the
primary key values for rows you want to delete in the remote database and the
java.sql.PreparedStatement.executeUpdate method registers the row values for download.

void setDownloadDeletes(DownloadTableData td) {
 java.sql.PreparedStatement delete_ps = td.getDeletePreparedStatement();
 // The following method calls are the same as the following SQL
statement:
 // DELETE FROM remoteOrders where pk=2300;
 delete_ps.setInt(1, 2300);
 delete_ps.executeUpdate();
}

getDeletePreparedStatement method

Syntax
public java.sql.PreparedStatement getDeletePreparedStatement() throws SQLException

Remarks
Returns a java.sql.PreparedStatement instance that allows the user to add delete operations to the download.
The prepared statement applies to the download table and contains a parameter for each primary key column
in the table.

The prepared statement applies to the DownloadTableData instance and contains a parameter for each
primary key column in the table.

Writing synchronization scripts in Java

552 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

To include a delete operation in the download, set all columns in your java.sql.PreparedStatement and then
call the java.sql.PreparedStatement.executeUpdate method.

Note
You must set all primary key values for download delete operations.

Returns
A java.sql.PreparedStatement instance for adding delete operations to the download.

Exceptions
● SQLException Thrown if there is a problem retrieving the delete java.sql.PreparedStatement

instance.

See also
● “DownloadTableData interface” on page 550
● “Direct row handling” on page 649

Example
In the following example, the setDownloadDeletes method uses the
DownloadTableData.getDeletePreparedStatement to obtain a prepared statement for rows you want to
delete. The java.sql.PreparedStatement.setInt method sets the primary key values for rows you want to delete
in the remote database and the java.sql.PreparedStatement.executeUpdate method sets the row values in the
download.

void setDownloadDeletes(DownloadTableData td) {
 java.sql.PreparedStatement delete_ps = td.getDeletePreparedStatement();
 // This is the same as executing the following SQL statement:
 // DELETE FROM remoteOrders where pk=2300;
 delete_ps.setInt(1, 2300);
 delete_ps.executeUpdate();
 delete_ps.close();
 }

getUpsertPreparedStatement method

Syntax
public java.sql.PreparedStatement getUpsertPreparedStatement() throws SQLException

Remarks
Returns a java.sql.PreparedStatement instance which allows the user to add upsert (insert or update)
operations to the download of a synchronization. The prepared statement applies to the DownloadTableData
instance and contains a parameter for each column in the table.

To include an insert or update operation in the download, set all column values in your
java.sql.PreparedStatement and then call the java.sql.PreparedStatement.executeUpdate method. Calling
java.sql.PreparedStatement.executeUpdate on the prepared statement returns 0 if the insert or update

MobiLink server API for Java reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 553

operation was filtered and returns 1 if the operation was not filtered. An operation is filtered if it was uploaded
in the same synchronization.

Note
You must set all column values for download insert and update operations.

Returns
A java.sql.PreparedStatement instance for adding upsert operations to the download.

Exceptions
● SQLException Thrown if there is a problem retrieving the upsert java.sql.PreparedStatement

instance.

See also
● “DownloadTableData interface” on page 550
● “Direct row handling” on page 649

Example
In the following example, the setDownloadInserts method uses the
DownloadTableData.getUpsertPreparedStatement to obtain a prepared statement for rows you want to insert
or update. The java.sql.PreparedStatement.setInt and PreparedStatement.setString methods set the column
values, and the PreparedStatement.executeUpdate method sets the row values in the download.

void setDownloadInserts(DownloadTableData td) {
 java.sql.PreparedStatement insert_ps = td.getUpsertPreparedStatement();
 // This is the same as executing the following SQL statement:
 // INSERT INTO remoteOrders(pk, col1) VALUES (2300, "truck");
 insert_ps.setInt(1, 2300);
 insert_ps.setString(2, "truck");
 int update_result = insert_ps.executeUpdate();
 if (update_result == 0) {
 // Insert was filtered because it was uploaded
 // in the same synchronization.
 }
 else {
 // Insert was not filtered.
 }
 insert_ps.close();
}

getName method

Syntax
public java.lang.String getName()

Writing synchronization scripts in Java

554 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Remarks
Returns the table name for the DownloadTableData instance. You can also access the table name using the
java.sql.ResultSetMetaData instance returned by the DownloadTableData.getMetaData method.

Returns
The table name for the DownloadTableData instance.

See also
● “DownloadTableData interface” on page 550
● DownloadTableData “getMetaData method” on page 555
● “Direct row handling” on page 649

Example
The following example shows you how to output the table name for the DownloadTableData instance.

Note
This example assumes you have a DBConnectionContext instance called _cc.

// The method used for the handle_DownloadData event
public void handleDownload() throws SQLException {
 // Get the DownloadData for the current synchronization.
 DownloadData my_dd = _cc.getDownloadData();

 // Get the DownloadTableData for the remoteOrders table.
 DownloadTableData td = my_dd.getDownloadTableByName("remoteOrders");
 // Print the table name to standard output (remoteOrders)
 System.out.println(td.getName());
 // User defined-methods to set download operations.
 setDownloadInserts(td);
 setDownloadDeletes(td);
 // ...
}

getMetaData method

Syntax
public java.sql.ResultSetMetaData getMetaData()

Remarks
Gets the metadata for the DownloadTableData instance. The metadata is a standard
java.sql.ResultSetMetaData object.

If you want the metadata to contain column name information, specify in your client that column names
should be sent with the upload.

Consult your Java SDK documentation for more information about java.sql.ResultSetMetaData.

MobiLink server API for Java reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 555

Returns
The metadata for the DownloadTableData instance.

See also
● “DownloadTableData interface” on page 550
● “Direct row handling” on page 649
● SQL Anywhere clients: “SendColumnNames (scn) extended option” [MobiLink - Client

Administration]
● UltraLite: “Send Column Names synchronization parameter” [UltraLite - Database Management and

Reference]

Example
The following example shows you how get the number of columns used in the query for the
DownloadTableData instance.

import java.sql.ResultSetMetaData;
// The method used to return the number of columns in a DownloadTableData
instance query
public int getNumColumns(DownloadTableData td) {
 ResultSetMetaData rsmd = td.getMetaData();
 return rsmd.getColumnCount();
}

getLastDownloadTime method

Syntax
public java.sql.Timestamp getLastDownloadTime()

Remarks
Returns last download time for this table. This is the same last download time passed to several of the per
table download events.

The last download time is useful for generating the table download data for a particular synchronization.

Returns
The last download time for this download table.

See also
● “DownloadTableData interface” on page 550
● “Direct row handling” on page 649

Example
The following example is a snippet of code that populates a table in the download with inserts using the last
download time. Note that this example assumes you have a DBConnectionContext instance called _cc.

Writing synchronization scripts in Java

556 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

// The method used for the handle_DownloadData event
public void handleDownload() throws SQLException {
 // Get the DownloadData for the current synchronization.
 DownloadData my_dd = _cc.getDownloadData();

 // Get the DownloadTableData for the remoteOrders table.
 DownloadTableData td = my_dd.getDownloadTableByName("remoteOrders");

 // get the inserts given a last download time
 ResultSet inserts_rs =
makeInsertsFromTimestamp(td.getLastDownloadTime());

 // fill the DownloadTableData using the inserts resultset.
 setDownloadInsertsFromRS(td, inserts_rs);
 inserts_rs.close();
 // ...
}

InOutInteger interface

Syntax
public ianywhere.ml.script.InOutInteger

Remarks
Passed into methods to enable the functionality of an in/out parameter passed to a SQL script.

Members
All members of ianywhere.ml.script.InOutInteger, including all inherited members.

● “getValue method” on page 558
● “setValue method” on page 558

Example
The following call to a MobiLink system procedure registers a Java method called handleError as the script
for the handle_error connection event when synchronizing the script version ver1.

CALL ml_add_java_connection_script(
 'ver1',
 'handle_error',
 'ExamplePackage.ExampleClass.handleError'
)

The following is the sample Java method handleError. It processes an error based on the data that is passed
in. It also determines the resulting error code.

public String handleError(
 ianywhere.ml.script.InOutInteger actionCode,
 int errorCode,
 String errorMessage,
 String user,
 String table)
{

MobiLink server API for Java reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 557

 int new_ac;
 if (user == null) {
 new_ac = handleNonSyncError(errorCode, errorMessage);
 } else if (table == null) {
 new_ac = handleConnectionError(errorCode, errorMessage, user);
 }
 else {
 new_ac = handleTableError(errorCode, errorMessage, user, table);
 }
 // Keep the most serious action code.
 if (actionCode.getValue() < new_ac) {
 actionCode.setValue(new_ac);
 }
}

getValue method

Syntax
public int getValue()

Remarks
Returns the value of this integer parameter.

Returns
The value of this integer parameter.

Example
See: “InOutInteger interface” on page 557.

setValue method

Syntax
public void setValue(int new_value)

Remarks
Sets the value of this integer parameter.

Parameters
● new_value The value for this integer to take.

Example
See: “InOutInteger interface” on page 557.

Writing synchronization scripts in Java

558 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

InOutString interface

Syntax
public ianywhere.ml.script.InOutString

Remarks
Passed into methods to enable the functionality of an in/out parameter passed to a SQL script.

Members
All members of ianywhere.ml.script.InOutString, including all inherited members.

● “getValue method” on page 559
● “setValue method” on page 560

Example
The following call to a MobiLink system procedure registers a Java method called modifyUser as the script
for the modify_user connection event when synchronizing the script version ver1.

CALL ml_add_java_connection_script(
 'ver1',
 'modify_user',
 'ExamplePackage.ExampleClass.modifyUser'
)

The following is the sample Java method modifyUser. It gets the user ID from the database and then uses it
to set the user name.

public String modifyUser(InOutString io_user_name) throws SQLException {
 Statement uid_select = curConn.createStatement();
 ResultSet uid_result = uid_select.executeQuery(
 "SELECT rep_id FROM SalesRep WHERE name = '"
 + io_user_name.getValue() + "' "
);
 uid_result.next();
 io_user_name.setValue(java.lang.Integer.toString(uid_result.getInt(1));
 uid_result.close();
 uid_select.close();
 return (null);
}

getValue method

Syntax
public java.lang.String getValue()

Remarks
Returns the value of this string parameter.

MobiLink server API for Java reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 559

Returns
The value of this string parameter.

Example
See: “InOutString interface” on page 559

setValue method

Syntax
public void setValue(java.lang.String new_value)

Remarks
Sets the value of this String parameter.

Parameters
● new_value The value for this String to take.

Example
See: “InOutString interface” on page 559

LogListener interface

Syntax
public ianywhere.ml.script.LogListener

Remarks
The listener interface for catching messages that are printed to the log.

See also
● “Handling MobiLink server errors in Java” on page 534

Members
All members of ianywhere.ml.script.LogListener, including all inherited members.

● “messageLogged method” on page 561

Example
See: “Handling MobiLink server errors in Java” on page 534

Writing synchronization scripts in Java

560 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

messageLogged method

Syntax
public void messageLogged(
 ServerContext sc,
 LogMessage message)

Remarks
Invoked when a message is printed to the log.

Parameters
● sc The context for the server that is printing the message.

● message The LogMessage that has been sent to the MobiLink log.

Example
See: “Handling MobiLink server errors in Java” on page 534

LogMessage class

Syntax
public ianywhere.ml.script.LogMessage

Remarks
Holds the data associated with a log message.

Extends java.lang.Object.

See also
● “Handling MobiLink server errors in Java” on page 534

Members
All members of ianywhere.ml.script.LogMessage, including all inherited members.

● “ERROR variable” on page 563
● “INFO variable” on page 564
● “WARNING variable” on page 564
● “getType method” on page 564
● “getUser method” on page 565
● “getText method” on page 565

Example
The following example installs a LogListener for all warning, error, and info messages, then writes the
information to a file. The following code installs a LogListener for all warning messages.

MobiLink server API for Java reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 561

class WarningLogListener implements LogListener {
 FileOutputStream _outFile;
 public WarningLogListener(FileOutputStream outFile) {
 _outFile = outFile;
 }
 public void messageLogged(ServerContext sc, LogMessage msg) {
 String user;
 try {
 if (msg.getType() != LogMessage.WARNING) {
 //this class deals exclusively with warnings
 return;
 }
 user = msg.getUser();
 if (user == null) {
 user = "NULL";
 }
 _outFile.write(("Caught warning"
 + " user=" + user
 + " text=" + msg.getText()
 + "\n").getBytes()
);
 _outFile.flush();
 }
 catch(Exception e) {
 // Print some error output to the MobiLink log.
 e.printStackTrace();
 }
 }
}

The following code installs a LogListener for all error messages.

class ErrorLogListener implements LogListener {
 FileOutputStream _outFile;
 public ErrorLogListener(FileOutputStream outFile) {
 _outFile = outFile;
 }
 public void messageLogged(ServerContext sc, LogMessage msg) {
 String user;
 try {
 if (msg.getType() != LogMessage.ERROR) {
 //this class deals exclusively with errors
 return;
 }
 user = msg.getUser();
 if (user == null) {
 user = "NULL";
 }
 _outFile.write(("Caught error"
 + " user=" + user
 + " text=" + msg.getText()
 + "\n").getBytes()
);
 _outFile.flush();

Writing synchronization scripts in Java

562 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 }
 catch(Exception e) {
 // Print some error output to the MobiLink log.
 e.printStackTrace();
 }
 }
}

The following code installs a LogListener for all info messages.

class InfoLogListener implements LogListener {
 FileOutputStream _outFile;
 public InfoLogListener(FileOutputStream outFile) {
 _outFile = outFile;
 }
 public void messageLogged(ServerContext sc, LogMessage msg) {
 String user;
 try {
 if (msg.getType() != LogMessage.ERROR) {
 // this class deals exclusively with info
 return;
 }
 user = msg.getUser();
 if (user == null) {
 user = "NULL";
 }
 _outFile.write(("Caught info"
 + " user=" + user
 + " text=" + msg.getText()
 + "\n").getBytes()
);
 _outFile.flush();
 }
 catch(Exception e) {
 // Print some error output to the MobiLink log.
 e.printStackTrace();
 }
 }
}

The following code registers WarningLogListener, ErrorLogListener, and InfoLogListener to receive
warning, error, and info messages respectively. Call this code from anywhere that has access to the
ServerContext such as a class constructor or synchronization script.

// ServerContext serv_context;
// FileOutputStream outFile
serv_context.addWarningListener(new WarningLogListener(outFile));
serv_context.addErrorListener(new ErrorLogListener(outFile));
serv_context.addInfoListener(new InfoLogListener(outFile));

ERROR variable

Syntax
int ERROR

MobiLink server API for Java reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 563

Remarks
The log message is an error.

Example
See: “LogMessage class” on page 561.

INFO variable

Syntax
int INFO

Remarks
The message log displays information.

Example
See: “addInfoListener method” on page 566.

WARNING variable

Syntax
int WARNING

Remarks
The log message is a warning.

Example
See: “LogMessage class” on page 561.

getType method

Syntax
public int getType()

Remarks
Accessor for this message type.

Returns
The type of this message, which can be either LogMessage.ERROR, LogMessage.INFO, or
LogMessage.WARNING.

Writing synchronization scripts in Java

564 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Example
See: “LogMessage class” on page 561.

getUser method

Syntax
public java.lang.String getUser()

Remarks
Accessor for this message user. If the message has no user, then the user is null.

Returns
The user associated with this message.

Example
See: “LogMessage class” on page 561.

getText method

Syntax
public java.lang.String getText()

Remarks
Accessor for the message text.

Returns
The main text of this message.

Example
See: “LogMessage class” on page 561.

ServerContext interface

Syntax
public ianywhere.ml.script.ServerContext

Remarks
An instantiation of all the context that is present for the duration of the MobiLink server. This context can
be held as static data and used in a background thread. It is valid for the duration of the Java virtual machine
invoked by MobiLink.

MobiLink server API for Java reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 565

To access a ServerContext instance, use the DBConnectionContext.getServerContext method.

Members
All members of ianywhere.ml.script.ServerContext, including all inherited members.

● “addInfoListener method” on page 566
● “addErrorListener method” on page 567
● “addShutdownListener method” on page 568
● “addWarningListener method” on page 568
● “getProperties method” on page 569
● “getPropertiesByVersion method” on page 569
● “getPropertySetNames method” on page 570
● “getStartClassInstances method” on page 571
● “makeConnection method” on page 571
● “removeErrorListener method” on page 572
● “removeInfoListener method” on page 572
● “removeShutdownListener method” on page 572
● “removeWarningListener method” on page 573
● “shutdown method” on page 573

addInfoListener method

Syntax
public void addInfoListener(LogListener ll)

Remarks
Adds the specified LogListener from the list of listeners to receive a notification when info is printed. The
method LogListener.messageLogged (ianywhere.ml.script.ServerContext) is called.

Parameters
● ll The LogListener to be notify.

Example
The following code registers a listener of type MyLogListener to receive notifications of info messages.

// ServerContext serv_context;
serv_context.addInfoListener(new MyLogListener(ll_out_file));
// The following code shows an example of processing those messages:
class MyLogListener implements LogListener {
 FileOutputStream _out_file;
 public TestLogListener(FileOutputStream out_file) {
 _out_file = out_file;
 }
 public void messageLogged(ServerContext sc, LogMessage msg) {
 String type;
 String user;

Writing synchronization scripts in Java

566 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 try {
 if (msg.getType() == LogMessage.ERROR) {
 type = "ERROR";
 } else if (msg.getType() == LogMessage.WARNING) {
 type = "WARNING";
 } else if (msg.getType() == LogMessage.INFO) {
 type = "INFO";
 } else {
 type = "UNKNOWN!!!";
 }
 user = msg.getUser();
 if (user == null) {
 user = "NULL";
 }
 _out_file.write(("Caught msg type="
 + type
 + " user=" + user
 + " text=" +msg.getText()
 + "\n").getBytes()
);
 _out_file.flush();
 }
 catch(Exception e) {

 // if we print the exception from processing an info message,
 // we may recurse indefinitely
 if (msg.getType() != LogMessage.ERROR) {
 // Print some error output to the MobiLink log.
 e.printStackTrace();
 }
 }
 }
}

addErrorListener method

Syntax
public void addErrorListener(LogListener ll)

Remarks
Adds the specified LogListener to receive a notification when an error is printed.

When an error is printed, the following method is called
LogListener.messageLogged(ianywhere.ml.script.ServerContext, ianywhere.ml.script.LogMessage).

Parameters
● ll The LogListener to notify.

See also
● “messageLogged method” on page 561

MobiLink server API for Java reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 567

Example
See: “LogMessage class” on page 561.

addShutdownListener method

Syntax
public void addShutdownListener(ShutdownListener sl)

Remarks
Adds the specified ShutdownListener that is to receive notification before the server context is destroyed.
On shutdown, the method ShutdownListener.shutdownPerformed (ianywhere.ml.script.ServerContext) is
called.

Parameters
● sl The ShutdownListener to notify on shutdown.

Example
See: “ShutdownListener interface” on page 575.

addWarningListener method

Syntax
public void addWarningListener(LogListener ll)

Remarks
Adds the specified LogListener to receive a notification when a warning is printed.

The following method is called: LogListener.messageLogged(ianywhere.ml.script.ServerContext,
ianywhere.ml.script.LogMessage).

Parameters
● ll The LogListener to notify.

Example
See: “LogMessage class” on page 561.

Writing synchronization scripts in Java

568 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

getProperties method

Syntax
public java.util.Properties getProperties(
 java.lang.String component,
 java.lang.String set)

Remarks
Returns the set of properties associated with a given component and property set. These are stored in the
MobiLink system table ml_property.

Parameters
● component The component.

● set The property set.

Returns
The set of properties, which may be empty.

See also
● “ml_property” on page 712
● “ml_add_property system procedure” on page 677

Example
The following code lists all the ServerContext's Properties.

import java.util.*;
// ServerContext serverContext;
// PrintStream out
Properties prop = serverContext.getProperties();
prop.list(out);

getPropertiesByVersion method

Syntax
public java.util.Properties getPropertiesByVersion(java.lang.String script_version)

Remarks
Returns the set of properties associated with the script version. These are stored in the MobiLink system
table ml_property. The script version is stored in the property_set_name column when the component_name
is ScriptVersion.

Parameters
● script_version The script version for which to return associated properties.

MobiLink server API for Java reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 569

Returns
The set of properties associated with the given script version.

See also
● “ml_property” on page 712
● “ml_add_property system procedure” on page 677

Example
The following code lists all the ServerContext's Properties associated with a given script version.

import java.util.*;
// ServerContext serverContext;
// PrintStream out
Properties prop = serverContext.getPropertiesByVersion("MyScriptVersion");
prop.list(out);

getPropertySetNames method

Syntax
public Iterator getPropertySetNames(
 java.lang.String component_name)

Remarks
Returns the list of property set names for a given component. These are stored in the MobiLink system table
ml_property.

Parameters
● component_name The name of the component for which to list property names.

Returns
The list of property set names for the given component.

See also
● “ml_property” on page 712
● “ml_add_property system procedure” on page 677

Example
The following code lists all the ServerContext's Properties associated with a given component.

import java.util.*;
// ServerContext serverContext;
// PrintStream out
Properties prop = serverContext.getPropertySetNames("Component Name");
prop.list(out);

Writing synchronization scripts in Java

570 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

getStartClassInstances method

Syntax
public java.lang.Object[] getStartClassInstances()
Gets an array of the start classes that were constructed at server start time. The array length is zero if there
are no start classes.

Returns
An array of start classes that were constructed at server start time, or an array of length zero if there are no
start classes.

Example
The following is an example that uses getStartClassInstances():

Object objs[] = sc.getStartClassInstances();
int i;
for (i=0; i < objs.length; i += 1) {
 if (objs[i] instanceof MyClass) {
 // Use class.
 }
}

See also
● “User-defined start classes” on page 536

makeConnection method

Syntax
public java.sql.Connection makeConnection()
throws java.sql.SQLException

Remarks
Creates a new server connection. If an error occurs when opening a new connection, the method throws
java.sql.SQLException.

Returns
The new server connection.

Exceptions
● SQLException Thrown if an error occurred opening the new connection.

MobiLink server API for Java reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 571

removeErrorListener method

Syntax
public void removeErrorListener(LogListener ll)

Remarks
Removes the specified LogListener from the list of listeners that are to receive a notification when an error
is printed.

Parameters
● ll The LogListener to no longer notify.

Example
The following code removes a LogListener from the list of error listeners.

// ServerContext serverContext;
// LogListener myErrorListener
serverContext.removeErrorListener(myErrorListener);

removeInfoListener method

Syntax
public void removeInfoListener(LogListener sl)

Remarks
Remove the specified LogListener from the list of listeners to receive a notification when info is printed.

Parameters
● ll The listener to no longer notify.

Example
The following code removes a LogListener from the list of info listeners.

// ServerContext serverContext;
// LogListener myInfoListener
serverContext.removeInfoListener(myInfoListener);

removeShutdownListener method

Syntax
public void removeShutdownListener(ShutdownListener sl)

Writing synchronization scripts in Java

572 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Remarks
Removes the specified ShutdownListener from the list of listeners that are to receive notification before the
server context is destroyed.

Parameters
● sl The ShutdownListener to no longer notify on shutdown.

Example
The following code removes a ShutdownListener from the list of listeners that are to receive notification
before the server context is destroyed.

// ServerContext serverContext;
// ShutdownListener myShutdownListener
serverContext.removeShutdownListener(myShutdownListener);

removeWarningListener method

Syntax
public void removeWarningListener(LogListener ll)

Remarks
Removes the specified LogListener from the list of listeners that are to receive a notification when a warning
is printed.

Parameters
● ll The LogListener to no longer notify.

Example
The following code removes a LogListener from the list of warning listeners.

// ServerContext serverContext;
// LogListener myWarningListener
serverContext.removeWarningListener(myWarningListener);

shutdown method

Syntax
public void shutdown()

Remarks
Forces the server to shut down. Any registered ShutdownListener instances have their shutdownPerformed
method called.

MobiLink server API for Java reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 573

Example
The following code forces the server to shut down.

// ServerContext serverContext;
serverContext.shutdown();

ServerException class

Syntax
public ianywhere.ml.script.ServerException

Remarks
Thrown to indicate that there is an error condition that makes any further synchronization on the server
impossible. Throwing this exception causes the MobiLink server to shut down.

Members
All members of ianywhere.ml.script.ServerException, including all inherited members.

● “ServerException constructors” on page 575

Example
The following code is a function that can throw a ServerException if a fatal problem occurs, which causes
the MobiLink server to shut down.

public void handleUpload(UploadData ud)
 throws SQLException, IOException, ServerException
{
 UploadedTableData tables[] = ud.getUploadedTables();
 if (tables == null) {
 throw new ServerException("Failed to read uploaded tables");
 }
 for (int i = 0; i < tables.length; i++) {
 UploadedTableData currentTable = tables[i];
 println("table " + java.lang.Integer.toString(i)
 + " name: " + currentTable.getName());
 // Print out delete result set.
 println("Deletes");
 printRSInfo(currentTable.getDeletes());
 // Print out insert result set.
 println("Inserts");
 printRSInfo(currentTable.getInserts());
 // print out update result set
 println("Updates");
 printUpdateRSInfo(currentTable.getUpdates());
 }
}

Writing synchronization scripts in Java

574 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ServerException constructors

Syntax
public ServerException()

Remarks
Constructs a ServerException with no detail message.

Syntax
public ServerException(java.lang.String s)

Remarks
Constructs a ServerException with a specified detail message.

Parameters
● s The detailed message.

Example
See: “ServerException class” on page 574.

ShutdownListener interface

Syntax
public ianywhere.ml.script.ShutdownListener

Remarks
The listener interface for catching server shutdowns. Use this interface to ensure that all threads, connections,
and other resources are cleaned up before the server exits

Members
All members of ianywhere.ml.script.ShutdownListener, including all inherited members.

● “shutdownPerformed method” on page 576

Example
The following code installs a ShutdownListener for the ServerContext.

class MyShutdownListener implements ShutdownListener {
 FileOutputStream _outFile;
 public MySutdownListener(FileOutputStream outFile) {
 _outFile = outFile;
 }

 public void shutdownPerformed(ServerContext sc) {
 // Add shutdown code
 try {

MobiLink server API for Java reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 575

 _outFile.write(("Shutting Down" + "\n").getBytes());
 _outFile.flush();
 }
 catch(Exception e) {
 // Print some error output to the MobiLink log.
 e.printStackTrace();
 }
 // ...
 }
}

The following code registers MyShutdownListener. Call this code from anywhere that has access to the
ServerContext such as a class constructor or synchronization script.

// ServerContext serv_context;
// FileOutputStream outFile
serv_context.addShutdownListener(new MyShutdownListener(outFile));

shutdownPerformed method

Syntax
public void shutdownPerformed(ServerContext sc)

Remarks
Invoked before the ServerContext is destroyed due to server shutdown.

Parameters
● sc The context for the server that is being shut down.

Example
See: “ShutdownListener interface” on page 575.

SynchronizationException class

Syntax
public ianywhere.ml.script.SynchronizationException

Remarks
Thrown to indicate that there is an error condition that makes the completion of the current synchronization
impossible. Throwing this exception forces the MobiLink server to rollback.

Members
All members of ianywhere.ml.script.SynchronizationException, including all inherited members.

● “SynchronizationException constructors” on page 577

Writing synchronization scripts in Java

576 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Example
The following code is a function that can throw a SynchronizationException if a problem occurs, which
causes the MobiLink server to rollback.

public void handleUpload(UploadData ud)
 throws SQLException, IOException, SynchronizationException
{
 UploadedTableData tables[] = ud.getUploadedTables();
 for (int i = 0; i < tables.length; i++) {
 UploadedTableData currentTable = tables[i];
 println("table " + java.lang.Integer.toString(i)
 + " name: " + currentTable.getName());
 // Print out delete result set.
 println("Deletes");
 printRSInfo(currentTable.getDeletes());
 // Print out insert result set.
 println("Inserts");
 printRSInfo(currentTable.getInserts());
 // print out update result set
 println("Updates");
 printUpdateRSInfo(currentTable.getUpdates());
 if (/* Reason for Sync failure */) {
 throw new SynchronizationException("Sync Failed");
 }
 }
}

SynchronizationException constructors

Syntax
public SynchronizationException()

Remarks
Constructs a SynchronizationException with no detail message.

Syntax
public SynchronizationException(java.lang.String s)

Remarks
Constructs a SynchronizationException with the specified detail message.

Parameters
● s A detail message.

MobiLink server API for Java reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 577

UpdateResultSet

Syntax
public ianywhere.ml.script.UpdateResultSet

Remarks
A result set object including special methods for accessing the pre-image (old) and post-image (new) values
of a specified row. To obtain an UpdateResultSet instance, use the DownloadTableData.getUpdates method.

UpdateResultSet extends java.sql.ResultSet and adds the setNewRowValues and setOldRowValues
methods. Otherwise it can be used as a regular resultset. Consult your Java SDK documentation for more
information about java.sql.ResultSet

See also
● DownloadTableData “getUpdates method” on page 584
● “Handling conflicts for direct uploads” on page 655
● “Direct row handling” on page 649

Members
All members of ianywhere.ml.script.UpdateResultSet, including all inherited members.

● “setNewRowValues method” on page 578
● “setOldRowValues method” on page 579

Example
The following code shows how to obtain an UpdateResultSet instance from a DownloadTableData instance.

// DownloadTableData tableData
UpdateResultSet results = tableData.getUpdates();

setNewRowValues method

Syntax
public void setNewRowValues()

Remarks
Sets the mode of this result set to return new column values (the post update row). The result set represents
the latest updated values in the remote client database. This is the default mode.

See also
● “UpdateResultSet” on page 578
● “Handling conflicts for direct uploads” on page 655
● “Direct row handling” on page 649

Writing synchronization scripts in Java

578 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Example
The following code shows how to set the mode of the UpdateResultSet to return new column values.

// UpdateResultSet results
results.setNewRowValues();

setOldRowValues method

Syntax
public void setOldRowValues()

Remarks
Sets the mode of this result set to return old column values (the pre update row). In this mode, the
UpdateResultSet represents old column values obtained by the client in the last synchronization.

See also
● “UpdateResultSet” on page 578
● “Handling conflicts for direct uploads” on page 655
● “Direct row handling” on page 649

Example
The following code shows how to set the mode of the UpdateResultSet to return old column values.

// UpdateResultSet results
results.setOldRowValues();

UploadData interface

Syntax
public ianywhere.ml.script.UploadData

Remarks
Encapsulates upload operations for direct row handling. An UploadData instance representing a single
upload transaction is passed to the handle_UploadData synchronization event.

Caution
You must handle direct row handling upload operations in the method registered for the handle_UploadData
event. The UploadData is destroyed after each call to the registered method. Do not create a new instance
of UploadData to use in subsequent events.

Use the UploadData.getUploadedTables or UploadData.getUploadedTableByName methods to obtain
UploadedTableData instances.

A synchronization has one UploadData unless the remote database is using transactional upload.

MobiLink server API for Java reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 579

See also
● “UploadedTableData interface” on page 581
● “handle_UploadData connection event” on page 454
● “Direct row handling” on page 649
● “Handling direct uploads” on page 654

Members
All members of ianywhere.ml.script.UploadData, including all inherited members.

● “getUploadedTableByName method” on page 580
● “getUploadedTables method” on page 581

Example
See “handle_UploadData connection event” on page 454.

getUploadedTableByName method

Syntax
public UploadedTableData getUploadedTableByName(
 java.lang.String table_name
)

Remarks
Returns a UploadedTableData instance representing the specified table.

Parameters
● table_name The name of the uploaded table for which you want the uploaded data.

Returns
An UploadedTableData instance representing the specified table, or null if a table of the given name does
not exist for the current synchronization.

See also
● “UploadData interface” on page 579
● “UploadedTableData interface” on page 581
● “Direct row handling” on page 649

Example
Assume you use a method called HandleUpload for the handle_UploadData synchronization event. The
following example uses the getUploadedTableByName method to return an UploadedTableData instance
for the remoteOrders table.

// The method used for the handle_UploadData event.
public void handleUpload(UploadData ut)
 throws SQLException, IOException

Writing synchronization scripts in Java

580 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

{

 UploadedTableData uploaded_t1 =
ut.getUploadedTableByName("remoteOrders");
 // ...
}

getUploadedTables method

Syntax
public UploadedTableData[] getUploadedTables()

Remarks
Returns an array of UploadedTableData objects for the current synchronization. The order to the tables in
the array is the same order that MobiLink uses for SQL row handling, and is the optimal order for preventing
referential integrity violations. If your data source is a relational database, use this table order.

Returns
An array of UploadedTableData objects for the current synchronization. The order of tables in the array is
the same as the upload order of the client.

See also
● “UploadData interface” on page 579
● “UploadedTableData interface” on page 581
● “Direct row handling” on page 649

Example
Assume you use a method called HandleUpload for the handle_UploadData synchronization event. The
following example uses the getUploadedTables method to return UploadedTableData instances for the
current upload transaction.

// The method used for the handle_UploadData event.
public void handleUpload(UploadData ud)
 throws SQLException, IOException
{
 UploadedTableData tables[] = ud.getUploadedTables();
 //...
}

UploadedTableData interface

Syntax
public ianywhere.ml.script.UploadedTableData

MobiLink server API for Java reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 581

Remarks
Encapsulates table operations for direct row handling uploads. You can use an UploadedTableData instance
to obtain a table's insert, update, and delete operations for a single upload transaction. Use the
UploadedTableData.getInserts, UploadedTableData.getUpdates, and UploadedTableData.getDeletes
methods to return standard JDBC java.sql.ResultSet objects.

Consult your Java SDK documentation for more information about java.sql.ResultSet and
java.sql.ResultSetMetaData.

Table metadata can be accessed using the UploadedTableData.getMetaData method or the result sets
returned by getInserts, getUpdates, and getDeletes. The delete result set only includes primary key columns
for a table.

See also
● “UploadData interface” on page 579
● “handle_UploadData connection event” on page 454
● “Direct row handling” on page 649

Members
All members of ianywhere.ml.script.UploadedTableData, including all inherited members.

● “getDeletes method” on page 582
● “getInserts method” on page 583
● “getUpdates method” on page 584
● “getName method” on page 585
● “getMetaData method” on page 586

Example
See: “UploadData interface” on page 579.

getDeletes method

Syntax
public java.sql.ResultSet getDeletes()

Remarks
Returns a java.sql.ResultSet object representing delete operations uploaded by a MobiLink client. The result
set contains primary key values for deleted rows.

Returns
A java.sql.ResultSet object that represents delete operations uploaded by a MobiLink client.

Writing synchronization scripts in Java

582 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “UploadedTableData interface” on page 581
● “handle_UploadData connection event” on page 454
● “Direct row handling” on page 649

Example
Assume your remote client contains a table called remoteOrders. The following example uses the
DownloadTableData.getDeletes method to obtain a result set of deleted rows. In this case, the delete result
set includes a single primary key column.

import ianywhere.ml.script.*;
import java.sql.*;
// The method used for the handle_UploadData event.
public void HandleUpload(UploadData ut)
 throws SQLException, IOException
{
 // Get an UploadedTableData for the remoteOrders table.
 UploadedTableData remoteOrdersTable =
ut.getUploadedTableByName("remoteOrders");

 // Get deletes uploaded by the MobiLink client.
 java.sql.ResultSet delete_rs = remoteOrdersTable.getDeletes();
 while (delete_rs.next()) {
 // Get primary key values for deleted rows.
 int deleted_id = delete_rs.getInt(1);

 // ...
 }
 delete_rs.close();
}

getInserts method

Syntax
public java.sql.ResultSet getInserts()

Remarks
Returns a java.sql.ResultSet object representing insert operations uploaded by a MobiLink client. Each insert
is represented by one row in the result set.

Returns
A java.sql.ResultSet object representing insert operations uploaded by a MobiLink client.

See also
● “UploadedTableData interface” on page 581
● “Direct row handling” on page 649

MobiLink server API for Java reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 583

Example
Assume your remote client contains a table called remoteOrders. The following example uses the
DownloadTableData.getInserts method to obtain a result set of inserted rows. The code obtains the order
amount for each row in the current upload transaction.

import ianywhere.ml.script.*;
import java.sql.*;
// The method used for the handle_UploadData event
public void HandleUpload(UploadData ut)
 throws SQLException, IOException
{
 // Get an UploadedTableData instance representing the remoteOrders table.
 UploadedTableData remoteOrdersTable =
ut.getUploadedTableByName("remoteOrders");

 // Get inserts uploaded by the MobiLink client.
 java.sql.ResultSet rs = remoteOrdersTable.getInserts();
 while (rs.next()) {
 // get the uploaded order_amount
 double order_amount = rs.getDouble("order_amount");
 // ...
 }
 rs.close();
}

getUpdates method

Syntax
public UpdateResultSet getUpdates()

Remarks
Returns a UpdateResultSet object representing update operations uploaded by a MobiLink client. Each
update is represented by one row including all column values. UpdateResultSet extends java.sql.ResultSet
to include special methods for MobiLink conflict detection.

Returns
An UpdateResultSet object representing update operations uploaded by a MobiLink client.

See also
● “UploadedTableData interface” on page 581
● “UpdateResultSet” on page 578
● “handle_UploadData connection event” on page 454
● “Handling conflicts for direct uploads” on page 655
● “Direct row handling” on page 649

Writing synchronization scripts in Java

584 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Example
Assume your remote client contains a table called remoteOrders. The following example uses the
UploadedTableData.getUpdates method to obtain a result set of updated rows. The code obtains the order
amount for each row.

import ianywhere.ml.script.*;
import java.sql.*;
// the method used for the handle_UploadData event
public void HandleUpload(UploadData ut)
 throws SQLException, IOException
{
 // Get an UploadedTableData instance representing the remoteOrders table.
 UploadedTableData remoteOrdersTable =
ut.getUploadedTableByName("remoteOrders");

 // Get inserts uploaded by the MobiLink client.
 java.sql.ResultSet rs = remoteOrdersTable.getUpdates();
 while (rs.next()) {
 // Get the uploaded order_amount.
 double order_amount = rs.getDouble("order_amount");
 // ...
 }
 rs.close();
}

getName method

Syntax
public java.lang.String getName()

Remarks
Returns the table name for the UploadedTableData instance. You can also access the table name using the
java.sql.ResultSetMetaData instance returned by the getMetaData method.

Returns
The table name for the UploadedTableData instance.

See also
● “UploadedTableData interface” on page 581
● UploadedTableData “getMetaData method” on page 586
● “handle_UploadData connection event” on page 454
● “Direct row handling” on page 649

Example
The following example obtains the name of each uploaded table in a single upload transaction.

import ianywhere.ml.script.*;
import java.sql.*;
// The method used for the handle_UploadData event.

MobiLink server API for Java reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 585

public void HandleUpload(UploadData ud) {
 throws SQLException, IOException
{
 int i;

 // Get UploadedTableData instances.
 UploadedTableData tables[] = ud.getUploadedTables();
 for (i=0; i<tables.length; i+=1) {
 // Get the table name.
 String table_name = tables[i].getName();
 // ...
 }
}

getMetaData method

Syntax
public java.sql.ResultSetMetaData getMetaData()

Remarks
Gets the metadata for the UploadedTableData instance. The metadata is a standard
java.sql.ResultSetMetaData instance.

If you want the ResultSetMetaData to contain column name information, you must specify the client option
to send column names.

Consult your Java SDK documentation for more information about java.sql.ResultSetMetaData.

Returns
The metadata for the UploadedTableData instance.

See also
● dbmlsync: “SendColumnNames (scn) extended option” [MobiLink - Client Administration]
● UltraLite: “Send Column Names synchronization parameter” [UltraLite - Database Management and

Reference]

Example
The following example obtains a java.sql.ResultSetMetaData instance for an uploaded table called
remoteOrders. The code uses the ResultSetMetaData.getColumnCount and getColumnLabel methods to
compile a list of column names.

import ianywhere.ml.script.*;
import java.sql.*;
// The method used for the handle_UploadData event.
public void HandleUpload(UploadData ut) {
 throws SQLException, IOException
{
 // Get an UploadedTableData instance representing the remoteOrders table.
 UploadedTableData remoteOrdersTable =

Writing synchronization scripts in Java

586 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ut.getUploadedTableByName("remoteOrders");

 // get inserts uploaded by the MobiLink client
 java.sql.ResultSet rs = remoteOrdersTable.getInserts();
 // Obtain the result set metadata.
 java.sql.ResultSetMetaData md = rs.getMetaData();
 String columnHeading = "";
 // Compile a list of column names.
 for (int c=1; c <= md.getColumnCount(); c += 1) {
 columnHeading += md.getColumnLabel();

 if (c < md.getColumnCount()) {
 columnHeading += ", ";
 }
 }
 //...
}

In this case, a method called HandleUpload handles the handle_UploadData synchronization event.

See also
● “UploadedTableData interface” on page 581
● “Direct row handling” on page 649
● “SendColumnNames (scn) extended option” [MobiLink - Client Administration]
● “handle_UploadData connection event” on page 454

MobiLink server API for Java reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 587

588

Writing synchronization scripts in .NET

Contents
Introduction to .NET synchronization logic .. 590
Setting up .NET synchronization logic ... 591
Writing .NET synchronization logic .. 593
.NET synchronization techniques .. 600
Loading shared assemblies ... 601
.NET synchronization example .. 604
MobiLink server API for .NET reference .. 606

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 589

Introduction to .NET synchronization logic
MobiLink supports the Visual Studio programming languages for writing synchronization scripts. To write
MobiLink scripts in .NET, you can use any language that lets you create valid .NET assemblies. In particular,
the following languages are tested and documented:

● C#

● Visual Basic .NET

● C++

.NET synchronization logic can function just as SQL logic functions: the MobiLink server can make calls
to .NET methods on the occurrence of MobiLink events just as it accesses SQL scripts on the occurrence of
MobiLink events. A .NET method can return a SQL string to MobiLink.

This section tells you how to set up, develop, and run .NET synchronization logic for C#, Visual Basic .NET,
and C++. It includes a sample application and the MobiLink server API for .NET Reference.

See also
● “Tutorial: Using .NET synchronization logic” [MobiLink - Getting Started]
● “Options for writing server-side synchronization logic” [MobiLink - Getting Started]
● “Writing synchronization scripts” on page 313

Writing synchronization scripts in .NET

590 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Setting up .NET synchronization logic
When you implement synchronization scripts in .NET, you must tell MobiLink where to find the packages,
classes, and methods that are contained in your assemblies.

To implement synchronization scripts in .NET

1. Create your own class or classes. Write a method for each required synchronization event. These methods
must be public.

For more information about methods, see “Methods” on page 595.

Each class with non-static methods should have a public constructor. The MobiLink server automatically
instantiates each class the first time a method in that class is called for a connection.

See “Constructors” on page 594.

2. Create one or more assemblies. While compiling, reference iAnywhere.MobiLink.Script.dll, which
contains a repository of MobiLink server API classes to use in your own .NET methods.
iAnywhere.MobiLink.Script.dll is located in install-dir\Assembly\v2.

You can compile your class on the command line, or using Visual Studio or another .NET development
environment.

See “MobiLink server API for .NET reference” on page 606.

3. Compile your project.

For example, compile from Visual Studio as follows:

a. On the VS.NET Project menu, choose Add Existing Item.

b. Locate iAnywhere.MobiLink.Script.dll.
In the Open list, choose Link File.

Note
For Visual Studio, always use the Link File method. Do not use the Add Reference option to reference
iAnywhere.MobiLink.Script.dll. The Add Reference option duplicates
iAnywhere.MobiLink.Script.dll in the same physical directory as your class assembly, creating
problems for the MobiLink server.

c. Use the Build menu to build your assembly.

You can also compile from the command line, as follows:

Replace dll-path with the path to iAnywhere.MobiLink.Script.dll. for example, in C#:

csc /out:dll-pathout.dll /target:library /reference:dll-
pathiAnywhere.MobiLink.Script.dll sync_v1.cs

4. In the MobiLink system tables in your consolidated database, specify the name of the package, class,
and method to call for each synchronization script. No more than one class is permitted per script version.

For example, you can add this information to the MobiLink system tables using the
ml_add_dnet_connection_script stored procedure or the ml_add_dnet_table_script stored procedure.

Setting up .NET synchronization logic

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 591

The following SQL statement, when run in a SQL Anywhere database, specifies that
myNamespace.myClass.myMethod should be run whenever the authenticate_user connection-level
event occurs.

CALL ml_add_dnet_connection_script(
 'version1',
 'authenicate_user',
 'myNamespace.myClass.myMethod'
)

Note
The fully qualified method name is case sensitive.

As a result of this procedure call, the script_language column of the ml_script system table contains the
word dnet. The script column contains the qualified name of a public .NET method.

See “ml_add_dnet_connection_script system procedure” on page 668 and “ml_add_dnet_table_script
system procedure” on page 669.

You can also add this information using Sybase Central.

See “Adding and deleting scripts” on page 327.

5. Instruct the MobiLink server to load assemblies and start the CLR. You tell MobiLink where to locate
these assemblies using options in the mlsrv11 command line. There are two options to choose from:

● Use -sl dnet (-MLAutoLoadPath) This sets the given path to the application base directory and
loads all the private assemblies within it. You should use this option in most cases. For example, to
load all assemblies located in dll-path, enter:

mlsrv11 -c "dsn=consolidated1" -sl dnet(-MLAutoLoadPath=dll-path)

When you use the -MLAutoLoadPath option you cannot specify a domain when entering the fully
qualified method name for the event script.

See “Loading assemblies” on page 601 and “-sl dnet option” on page 90.

● Use -sl dnet (-MLDomConfigFile) This option requires a configuration file that contains
domain and assembly settings. You should use this option when you have shared assemblies, when
you don't want to load all the assemblies in a directory, or when for some other reason you need to
use a configuration file.

For more information about loading shared assemblies, see “Loading assemblies” on page 601.
For more information about the mlsrv11 option -sl dnet, see “-sl dnet option” on page 90.

Note
You can use the -MLAutoLoadPath option or the -MLDomConfigFile option, but not both.

Writing synchronization scripts in .NET

592 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Writing .NET synchronization logic
To write .NET synchronization logic, you require knowledge of MobiLink events, some knowledge of .NET,
and familiarity with the MobiLink server API for .NET.

For a complete description of the API, see “MobiLink server API for .NET reference” on page 606.

.NET synchronization logic can be used to maintain state information, and implement logic around the upload
and download events. For example, a begin_synchronization script written in .NET could store the MobiLink
user name in a variable. Scripts called later in the synchronization process can access this variable. Also,
you can use .NET to access rows in the consolidated database, before or after they are committed.

Using .NET also reduces dependence on the consolidated database. Behavior is affected less by upgrading
the consolidated database to a new version or switching to a different database management system.

Direct row handling
You can use MobiLink direct row handling to communicate remote data to any central data source,
application, or web service. Direct row handling uses special classes in the MobiLink server APIs for Java
or .NET for direct access to synchronized data.

See “Direct row handling” on page 649.

Class instances
The MobiLink server instantiates your classes at the database connection level. When an event is reached
for which you have written a non-static .NET method, the MobiLink server automatically instantiates the
class, if it has not already done so on the present database connection.

See “Constructors” on page 594.

Note
All methods directly associated with a connection-level or table-level event for one script version must
belong to the same class.

For each database connection, once a class has been instantiated, the class persists until that connection is
closed. So, the same instance may be used for multiple consecutive synchronization sessions. Unless it is
explicitly cleared, information present in public or private variables persists across synchronizations that
occur on the same connection.

You can also use static classes or variables. In this case, the values are available across all connections in
the same domain.

The MobiLink server automatically deletes your class instances only when the connection to the consolidated
database is closed.

Writing .NET synchronization logic

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 593

Transactions
The normal rules regarding transactions apply to .NET methods. The start and duration of database
transactions is critical to the synchronization process. Transactions must be started and ended only by the
MobiLink server. Explicitly committing or rolling back transactions on the synchronization connection
within a .NET method violates the integrity of the synchronization process and can cause errors.

These rules apply only to the database connections created by the MobiLink server and, in particular, to SQL
statements returned by methods.

SQL-.NET data types
The following table shows SQL data types and the corresponding .NET data types for MobiLink script
parameters.

SQL data type Corresponding .NET data type

VARCHAR string

CHAR string

INTEGER int

BINARY byte []

TIMESTAMP DateTime

INOUT INTEGER ref int

INOUT VARCHAR ref string

INOUT CHAR ref string

INOUT BYTEARRAY ref byte []

Constructors
The constructor of your class takes no parameters or takes one
iAnywhere.MobiLink.Script.DBConnectionContext parameter. For example:

public ExampleClass(iAnywhere.MobiLink.Script.DBConnectionContext cc)

or

public ExampleClass()

The synchronization context passed to you is for the connection through which the MobiLink server is
synchronizing the current user.

Writing synchronization scripts in .NET

594 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The DBConnectionContext.GetConnection method returns the same database connection that MobiLink is
using to synchronize the present user. You can execute statements on this connection, but you must not
commit or roll back the transaction. The MobiLink server manages the transactions.

The MobiLink server uses the constructor that takes a iAnywhere.MobiLink.Script.DBConnectionContext
parameter if it exists. If it does not, it uses the void constructor.

See “DBConnectionContext interface” on page 609.

Methods
In general, you implement one method for each synchronization event. These methods must be public. If
they are private, the MobiLink server cannot use them and fails to recognize that they exist.

The names of the methods are not important, as long as the names match the names specified in the ml_script
table in the consolidated database. In the examples included in the documentation, however, the method
names are the same as those of the MobiLink events. This naming convention makes the .NET code easier
to read.

The signature of your method should match the signature of the script for that event, except that you can
truncate the parameter list if you do not need the values of parameters at the end of the list. You should
accept only the parameters you need, because overhead is associated with passing the parameters.

You cannot, however, overload the methods. Only one method prototype per class may appear in the
ml_script system table.

Registering methods
After creating a method, you must register it. Registering the method creates a reference to the method in
the MobiLink system tables on the consolidated database, so that the method is called when the event occurs.
You register methods in the same way that you add synchronization scripts, except instead of adding the
entire SQL script to the MobiLink system table, you add only the qualified method name.

See “Adding and deleting scripts” on page 327.

Return values
Methods called for a SQL-based upload or download must return a valid SQL language statement. The return
type of these methods must be String. No other return types are allowed.

The return type of all other scripts must either be string or void. No other types are allowed. If the return
type is a string and not null, the MobiLink server assumes that the string contains a valid SQL statement and
executes this statement in the consolidated database as it would an ordinary SQL-language synchronization
script. If a method ordinarily returns a string but does not want to execute a SQL statement against the
database upon its return, it can return null.

User-defined start classes
You can define start classes that are loaded automatically when the server is started. The purpose of this
feature is to allow you to write .NET code that executes at the time the MobiLink server starts the CLR—

Writing .NET synchronization logic

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 595

before the first synchronization. This means you can create connections or cache data before the first user
synchronization request in the server instance.

You do this with the MLStartClasses option of the mlsrv11 -sl dnet option. For example, the following is
part of an mlsrv11 command line. It causes mycl1 and mycl2 to be loaded as start classes.

-sl dnet(-MLStartClasses=MyNameSpace.MyClass.mycl1,MyNameSpace.MyClass.mycl2)

Classes are loaded in the order in which they are listed. If the same class is listed more than once, more than
one instance is created.

All start classes must be public and must have a public constructor that either accepts no arguments or accepts
one argument of type MobiLink.Script.ServerContext.

The names of loaded start classes are output to the MobiLink log with the message "Loaded .NET start class:
classname".

For more information about .NET CLR, see “-sl dnet option” on page 90.

To see the start classes that are constructed at server start time, see “GetStartClassInstances
method” on page 629.

Example
The following is a start class template. It starts a daemon thread that processes events and creates a database
connection. (Not all start classes need to create a thread but if a thread is spawned it should be a daemon
thread.)

using System;
using System.IO;
using System.Threading;
using iAnywhere.MobiLink.Script;
namespace TestScripts {
 public class MyStartClass {
 ServerContext _sc;
 bool _exit_loop;
 Thread _thread;
 OdbcConnection _conn;
 public MyStartClass(ServerContext sc) {
 // Perform setup first so that an exception
 // causes MobiLink startup to fail.
 _sc = sc;
 // Create connection for use later.
 _conn = _sc.makeConnection();
 _exit_loop = false;
 _thread = new Thread(new ThreadStart(run)) ;
 _thread.IsBackground = true;
 _thread.Start();
 }
 public void run() {
 ShutdownCallback callback = new
ShutdownCallback(shutdownPerformed);
 _sc.ShutdownListener += callback;
 // run() can't throw exceptions.

Writing synchronization scripts in .NET

596 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 try {
 handlerLoop();
 _conn.close();
 _conn = null;
 }
 catch(Exception e) {
 // Print some error output to the MobiLink log.
 Console.Error.Write(e.ToString());

 // There is no need to be notified of shutdown.
 _sc.ShutdownListener -= callback;
 // Ask server to shut down so this fatal error can be fixed.
 _sc.Shutdown();
 }
 // Shortly after return, this thread no longer exists.
 return;
 }
 public void shutdownPerformed(ServerContext sc) {
 // Stop the event handler loop.
 try {
 _exit_loop = true;

 // Wait a maximum of 10 seconds for thread to die.
 _thread.Join(10*1000);
 }
 catch(Exception e) {
 // Print some error output to the MobiLink log.
 Console.Error.Write(e.ToString());
 }
 }
 private void handlerLoop() {
 while (!_exit_loop) {
 // Handle events in this loop.
 Thread.Sleep(1*1000);
 }
 }
 }
}

Printing information from .NET
You may choose to add statements to your .NET methods that print information to the MobiLink log using
System.Console. Doing so can help you track the progress and behavior of your classes.

Performance tip
Printing information in this manner to the MobiLink log is a useful monitoring tool, but is not recommended
in a production scenario.

The same technique can be exploited to log arbitrary synchronization information or collect statistical
information on how your scripts are used.

Writing .NET synchronization logic

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 597

Handling MobiLink server errors with .NET
When scanning the log is not enough, you can monitor your applications programmatically. For example,
you can send messages of a certain type in an email.

You can write methods that are passed a class representing every error or warning message that is printed
to the log. This may help you monitor and audit a MobiLink server.

The following code installs a listener for all error messages and prints the information to a StreamWriter.

class TestLogListener {
 public TestLogListener(StreamWriter output_file) {
 _output_file = output_file;
 }
 public void errCallback(ServerContext sc, LogMessage lm) {
 string type;
 string user;

 if (lm.Type == LogMessage.MessageType.ERROR) {
 type = "ERROR";
 } else if (lm.Type==LogMessage.MessageType.WARNING) {
 type = "WARNING";
 }
 else {
 type = "INVALID TYPE!!";
 }
 if (lm.User == null) {
 user = "null";
 }
 else {
 user = lm.User;
 }
 _output_file.WriteLine("Caught msg type=" + type
 + " user=" + user
 + " text=" + lm.Text);
 _output_file.Flush();
 }
 StreamWriter _output_file;
}

The following code registers the TestLogListener. Call this code from somewhere that has access to the
ServerContext such as a class constructor or synchronization script.

// ServerContext serv_context;
TestLogListener etll = new TestLogListener(log_listener_file);
serv_context.ErrorListener += new LogCallback(etll.errCallback);

See also
● “LogCallback delegate” on page 627
● ErrorListener and WarningListener in “ServerContext interface” on page 629
● “LogMessage class” on page 627
● “MessageType enumeration” on page 627

Writing synchronization scripts in .NET

598 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Debugging .NET synchronization logic
The following procedure describes one way you can debug your .NET scripts using Visual Studio.

To debug .NET scripts

1. Compile your code with debugging information turned on using one of the following methods:

● On the csc command line, set the /debug+ option.

● Use Microsoft Visual Studio settings to set debug output.

○ Choose File » Build » Configuration Manager.

In the Active Solution Configuration list, choose Debug.

○ Build your assembly.

2. Close running instances of Visual Studio that contain your source files.

3. In this step, you start a new Visual Studio instance to debug the MobiLink server and your .NET
synchronization scripts. Start Visual Studio using a command line option to debug the MobiLink server.

● At a command prompt, navigate to the Common7\IDE subdirectory of your Visual Studio installation.

● Start devenv (the Visual Studio IDE) using the /debugexe option.

For example, run the following command to debug the MobiLink server. Remember to specify
mlsrv11 options, including the connection string and the option to load .NET assemblies.

For 32-bit Windows environments:

devenv /debugexe %sqlany11%\bin32\mlsrv11.exe -c ...

For 64-bit Windows environments:

devenv /debugexe %sqlany11%\bin64\mlsrv11.exe -c ...

Visual Studio starts and mlsrv11.exe appears in the Solution Explorer window.

4. Set up Microsoft Visual Studio for debugging .NET code:

● In the Visual Studio Solution Explorer window, right-click mlsrv11.exe and choose Properties.

● Change Debugger Type from Auto to Mixed or Managed Only to ensure that Visual Studio only
debugs your .NET synchronization scripts.

5. Open the associated .NET source files and set break points.

Note: Open the source files individually in the mlsrv11 solution. Do not open the original solution or
project file.

6. Start MobiLink from the Debug menu or by pressing F5.

If prompted, save mlsrv11.sln.

If the No Symbolic Information window appears, click OK to debug anyway. You are debugging the
managed .NET synchronization scripts that MobiLink calls, not the MobiLink server itself.

7. Perform a synchronization that causes the code with a breakpoint to be executed by MobiLink.

Writing .NET synchronization logic

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 599

.NET synchronization techniques
This section describes techniques you can use to tackle common .NET synchronization tasks.

Uploading or downloading rows
For information about how to upload or download rows via .NET, see “Direct row
handling” on page 649.

Writing synchronization scripts in .NET

600 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Loading shared assemblies
This section details options to load .NET assemblies and details the process to load shared assemblies.

Loading assemblies
A .NET assembly is a package of types, metadata, and executable code. In .NET applications, all code must
be in an assembly. Assembly files have the extension .dll or .exe.

There are the following types of assemblies:

● Private assemblies A private assembly is a file in the file system.

● Shared assemblies A shared assembly is an assembly that is installed in the global assembly cache.

Before MobiLink can load a class and call a method of that class, it must locate the assembly that contains
the class. MobiLink only needs to locate the assembly that it calls directly. The assembly can then call any
other assemblies it needs.

For example, MobiLink calls MyAssembly, and MyAssembly calls UtilityAssembly and
NetworkingUtilsAssembly. In this situation, MobiLink only needs to be configured to find MyAssembly.

MobiLink provides the following ways to load assemblies:

● Use -sl dnet (-MLAutoLoadPath) This option only works with private assemblies. It sets the path
to the application base directory and loads all the assemblies within it.

When you use the -MLAutoLoadPath option you cannot specify a domain when entering the fully
qualified method name for the event script.

When you specify a path and directory with -MLAutoLoadPath, MobiLink does the following:

○ sets this path as the application base path

○ loads all classes in all files ending with .dll or .exe in the directory that you specified

○ creates one application domain and loads into that domain all user classes that do not have a domain
specified

Assemblies in the global assembly cache cannot be called directly with this option. To call these shared
assemblies, use -MLDomConfigFile.

● Use -sl dnet (-MLDomConfigFile) This option works with both private and shared assemblies. It
requires a configuration file that contains domain and assembly settings. You should use this option
when you have shared assemblies, when you don't want to load all the assemblies in the application base
path, or when for some other reason you need to use a configuration file.

With this option, MobiLink reads the settings in the specified domain configuration file. A domain
configuration file contains configuration settings for one or more .NET domains. If there is more than
one domain represented in the file, the first one that is specified is used as the default domain. (The
default domain is used when scripts do not have a domain specified.)

Loading shared assemblies

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 601

When loading assemblies, MobiLink tries to load the assembly first as private, and then attempts to load
the assembly from the global assembly cache. Private assemblies must be located in the application base
directory. Shared assemblies are loaded from the global assembly cache.

With the -MLDomConfigFile option, only assemblies that are specified in the domain configuration file can
be called directly from event scripts.

Sample domain configuration file
A sample domain configuration file called mlDomConfig.xml is installed with MobiLink. You can write
your own file from scratch, or edit the sample to suit your needs. The sample file is located in the SQL
Anywhere path, in

MobiLink\setup\dnet\mlDomConfig.xml

The following is the content of the sample domain configuration file mlDomConfig.xml:

<?xml version="1.0" encoding="utf-8"?>
<config xmlns="iAnywhere.MobiLink.mlDomConfig"
xsi:schemaLocation='iAnywhere.MobiLink.mlDomConfig mlDomConfig.xsd'
xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' >
 <domain>
 <name>SampleDomain1</name>
 <appBase>C:\scriptsDir</appBase>
 <configFile></configFile>
 <assembly name="Assembly1" />
 <assembly name="Assembly2" />
 </domain>
 <domain>
 <name>SampleDomain2</name>
 <appBase>\Dom2assembly</appBase>
 <configFile>\Dom2assembly\AssemblyRedirects.config</configFile>
 <assembly name="Assembly3" />
 <assembly name="Assembly4" />
 </domain>
</config>

The following is an explanation of the contents of mlDomConfig.xml:

● name is the domain name, used when specifying the domain in an event script. An event script with
the format "DomainName:Namespace.Class.Method" would require that the DomainName
domain be in the domain configuration file.

You must specify at least one domain name.

● appBase is the directory that the domain should use as its application base directory. All private
assemblies are loaded by the .NET CLR based on this directory. You must specify appBase.

● configFile is the .NET application configuration file that should be used for the domain. This can be
left blank. It is usually used to modify the default assembly binding and loading behavior. Refer to
your .NET documentation for more information about application configuration files.

● assembly is the name of an assembly that MobiLink should load and search when resolving type
references in event scripts. You must specify at least one assembly. If an assembly is used in more than
one domain, it must be specified as an assembly in each domain. If the assembly is private, it must be
in the application base directory for the domain.

Writing synchronization scripts in .NET

602 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

For more information about the mlsrv11 option -sl dnet, see “-sl dnet option” on page 90.

Loading shared assemblies

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 603

.NET synchronization example
This example modifies an existing application to describe how to use .NET synchronization logic to handle
the authenticate_user event. It creates a C# script for authenticate_user called AuthUser.cs. This script looks
up the user's password in a table called user_pwd_table and authenticates the user based on that password.

To create your .NET synchronization script

1. Add the table user_pwd_table to the database. Execute the following SQL statements in Interactive SQL:

CREATE TABLE user_pwd_table (
 user_name varchar(128) PRIMARY KEY NOT NULL,
 pwd varchar(128)
)

2. Add a user and password to the table:

INSERT INTO user_pwd_table VALUES('user1', 'myPwd')
3. Create a directory for your .NET assembly. For example, c:\mlexample.

4. Create a file called AuthUser.cs with the following contents:

See “authenticate_user connection event” on page 358.

using System;
using iAnywhere.MobiLink.Script;
namespace MLExample {

public class AuthClass {
 private DBConnection _conn;
 /// AuthClass constructor.
 public AuthClass(DBConnectionContext cc) {
 _conn = cc.GetConnection();
 }
 /// The DoAuthenticate method handles the 'authenticate_user'
 /// event.
 /// Note: This method does not handle password changes for
 /// advanced authorization status codes.
 public void DoAuthenticate(
 ref int authStatus,
 string user,
 string pwd,
 string newPwd)
 {
 DBCommand pwd_command = _conn.CreateCommand();
 pwd_command.CommandText = "select pwd from user_pwd_table"
 + " where user_name = ? ";
 pwd_command.Prepare();
 // Add a parameter for the user name.
 DBParameter user_param = new DBParameter();
 user_param.DbType = SQLType.SQL_CHAR;
 // Set the size for SQL_VARCHAR.
 user_param.Size = (uint) user.Length;
 user_param.Value = user;
 pwd_command.Parameters.Add(user_param);

Writing synchronization scripts in .NET

604 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 // Fetch the password for this user.
 DBRowReader rr = pwd_command.ExecuteReader();
 object[] pwd_row = rr.NextRow();
 if (pwd_row == null) {
 // User is unknown.
 authStatus = 4000;
 }
 else {
 if (((string) pwd_row[0]) == pwd) {
 // Password matched.
 authStatus = 1000;
 }
 else {
 // Password did not match.
 authStatus = 4000;
 }
 }
 pwd_command.Close();
 rr.Close();
 return;
 }
}

The MLExample.AuthClass.DoAuthenticate method handles the authenticate_user event. It accepts the
user name and password and returns an authorization status code indicating the success or failure of the
validation.

5. Compile the file AuthUser.cs. You can do this on the command line or in Visual Studio.

For example, the following command line compiles AuthUser.cs and generate an Assembly named
example.dll in c:\mlexample.

csc /out:c:\mlexample\example.dll /target:library /reference:"%SQLANY11%
\Assembly\v2\iAnywhere.MobiLink.Script.dll" AuthUser.cs

6. Register .NET code for the authenticate_user event. The method you need to execute (DoAuthenticate)
is in the namespace MLExample and class AuthClass. Execute the following SQL:

CALL ml_add_dnet_connection_script('ex_version', 'authenticate_user',
'MLExample.AuthClass.DoAuthenticate')
COMMIT

7. Run the MobiLink server with the following option. This option causes MobiLink to load all assemblies
in c:\myexample:

-sl dnet (-MLAutoLoadPath=c:\mlexample)

Now, when a user synchronizes with the version ex_version, they are authenticated with the password from
the table user_pwd_table.

.NET synchronization example

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 605

MobiLink server API for .NET reference
This section explains the MobiLink .NET interfaces and classes, and their associated methods, properties,
and constructors. To use these classes, reference the iAnywhere.MobiLink.Script.dll assembly, located in
install-dir\Assembly\v2.

This section focuses on C#, but there are equivalents in Visual Basic.NET and C++.

DBCommand interface

Syntax
interface DBCommand
Member of iAnywhere.MobiLink.Script

Remarks
Represents a SQL statement or database command. DBCommand can represent an update or query.

Example
For example, the following C# code uses the DBCommand interface to execute two queries:

DBCommand stmt = conn.CreateCommand();
stmt.CommandText = "SELECT t1a1, t1a2 FROM table1 ";
DBRowReader rs = stmt.ExecuteReader();
printResultSet(rs);
rs.Close();
stmt.CommandText = "SELECT t2a1 FROM table2 ";
rs = stmt.ExecuteReader();
printResultSet(rs);
rs.Close();
stmt.Close();

The following C# example uses DBCommand to execute an update with parameters:

public void prepare_for_download(
 DateTime last_download,
 String ml_username)
{
 DBCommand cstmt = conn.CreateCommand();
 cstmt.CommandText = "CALL myProc(?,?,?,?)";
 cstmt.Prepare();
 DBParameter param = new DBParameter();
 param.DbType = SQLType.SQL_CHAR;
 param.Value = "10000";
 cstmt.Parameters.Add(param);
 param = new DBParameter();
 param.DbType = SQLType.SQL_INTEGER;
 param.Value = 20000;
 cstmt.Parameters.Add(param);

Writing synchronization scripts in .NET

606 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 param = new DBParameter();
 param.DbType = SQLType.SQL_DECIMAL;
 param.Precision = 5;
 param.Value = new Decimal(30000);
 cstmt.Parameters.Add(param);
 param = new DBParameter();
 param.DbType = SQLType.SQL_TIMESTAMP;
 param.Precision = 19;
 param.Value = last_download;
 cstmt.Parameters.Add(param);
 // Execute update
 DBRowReader rset = cstmt.ExecuteNonQuery();
 cstmt.Close();
}

Prepare method

Syntax
void Prepare()

Remarks
Prepares the SQL statement stored in CommandText for execution.

ExecuteNonQuery method

Syntax
int ExecuteNonQuery()

Remarks
Executes a non-query statement. Returns the number of rows in the database affected by the SQL statement.

ExecuteReader method

Syntax
DBRowReader ExecuteReader()

Remarks
Executes a query statement returning the result set. Returns a DBRowReader for retrieving results returned
by the SQL statement.

MobiLink server API for .NET reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 607

Close method

Syntax
void Close()

Remarks
Closes the current SQL statement or command.

CommandText property

Syntax
string CommandText

Remarks
The value is the SQL statement to be executed.

Parameters property

Syntax
DBParameterCollection Parameters

Remarks
Gets the iAnywhere.MobiLink.Script.DBParameterCollection for this DBCommand.

DBConnection interface

Syntax
interface DBConnection
Member of iAnywhere.MobiLink.Script

Remarks
Represents a MobiLink ODBC connection.

This interface allows user-written synchronization logic to access an ODBC connection created by
MobiLink.

Writing synchronization scripts in .NET

608 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Commit method

Syntax
void Commit()

Remarks
Commits the current transaction.

Rollback method

Syntax
void Rollback()

Remarks
Rolls back the current transaction.

Close method

Syntax
void Close()

Remarks
Closes the current connection.

CreateCommand method

Syntax
DBCommand CreateCommand()

Remarks
Creates a SQL statement or command on this connection. Returns the newly generated DBCommand.

DBConnectionContext interface

Syntax
interface DBConnectionContext
Member of iAnywhere.MobiLink.Script

MobiLink server API for .NET reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 609

Remarks
Interface for obtaining and accessing information about the current database connection. This is passed to
the constructor of classes containing scripts. If context is required for a background thread or beyond the
lifetime of a connection, use a ServerContext.

For more information about constructors, see “Constructors” on page 594.

Caution
A DBConnectionContext instance should not be used outside the thread that calls into your .NET code.

GetConnection method

Syntax
iAnywhere.MobiLink.Script.DBConnection GetConnection()
Member of iAnywhere.MobiLink.Script.DBConnectionContext

Remarks
Returns the existing connection to the MobiLink consolidated database. The connection is the same
connection that MobiLink uses to execute SQL scripts.

This connection must not be committed, closed or altered in any way that would affect the MobiLink server
use of the connection. The connection returned is only valid for the lifetime of the underlying MobiLink
connection. Do not use the connection after the end_connection event has been called for the connection.

If a server connection with full access is required, use ServerContext.makeConnection().

GetDownloadData method

Syntax
DownloadData GetDownloadData();

Remarks
Returns a DownloadData instance for the current synchronization. Use the DownloadData instance to create
the download for direct row handling.

Returns
A DownloadData instance for the current synchronization.

Example
The following example assumes you have a DBConnectionContext instance called _cc.

// The method used for the handle_DownloadData event.
public void HandleDownload() {
 // Get the DownloadData for the current synchronization.
 DownloadData my_dd = _cc.GetDownloadData();

Writing synchronization scripts in .NET

610 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 // Get an array of tables to set download operations.
 DownloadTableData[] download_tables = my_dd.GetDownloadTables();
 // Get the first table in the DownloadTableData array.
 DownloadTableData my_download_table = download_tables[0];

 // ...
}

GetServerContext method

Syntax
public iAnywhere.MobiLink.Script.ServerContext.GetServerContext()
Member of iAnywhere.MobiLink.Script.DBConnectionContext

Remarks
Returns the ServerContext for this MobiLink server.

GetProperties method

Syntax
NameValueCollection getProperties()

Remarks
Returns the properties for this connection, based on this connection's script version. Properties are stored in
the ml_property table.

For more information, see “ml_property” on page 712 and “ml_add_property system
procedure” on page 677.

GetRemoteID method

Syntax
string GetRemoteID()

Remarks
Returns the remote ID of the database currently synchronizing on this connection. If your remote database
is prior to version 10, it returns the MobiLink user name.

Returns
The remote ID.

MobiLink server API for .NET reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 611

See also
● “Remote IDs” [MobiLink - Client Administration]

GetVersion method

Syntax
string getVersion()

Remarks
Returns the name of the script version.

See also
● “ml_property” on page 712
● “ml_add_property system procedure” on page 677

DBParameter class

Syntax
class DBParameter
Member of iAnywhere.MobiLink.Script

Remarks
Represents a bound ODBC parameter.

DBParameter is required to execute commands with parameters. All parameters must be in place before the
command is executed.

Example
For example, the following C# code uses DBCommand to execute an update with parameters:

public void handleUpload(UploadData ud) {
 UploadedTableData UTDAdmin = ud.GetUploadedTableByName("Admin");
 IDataReader AdminIns = UTDAdmin.GetInserts();
 DBCommand stmt1 = _conn.CreateCommand();
 DBParameter p_id = new DBParameter();
 DBParameter p_data = new DBParameter();
 stmt1.CommandText = "INSERT INTO Admin(admin_id,data) VALUES
(?,?)";
 p_id.DbType = SQLType.SQL_BIGINT;
 stmt1.Parameters.Add(p_id);
 p_data.DbType = SQLType.SQL_VARCHAR;
 p_data.Size = 30;
 stmt1.Parameters.Add(p_data);
 stmt1.Prepare();
 while (AdminIns.Read()) {

Writing synchronization scripts in .NET

612 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 p_id.Value = AdminIns.GetInt64(0);
 p_data.Value = AdminIns.GetString(1);
 stmt1.ExecuteNonQuery();
 }
 stmt1.Close();
}

DbType property

Syntax
SQLTYPE DbType

Remarks
The value is the SQLType of this parameter.

The default value is SQLType.SQL_TYPE_NULL.

Direction property

Syntax
System.Data.ParameterDirection Direction

Remarks
The value is the Input/Output direction of this parameter.

The default value is ParameterDirection.Input.

IsNullable property

Syntax
bool IsNullable

Remarks
The value Indicates whether this parameter can be null.

The default value is false.

ParameterName property

Syntax
string ParameterName

MobiLink server API for .NET reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 613

Remarks
The value is the name of this parameter.

The default value is null.

Precision property

Syntax
uint Precision

Remarks
The value is the decimal precision of this parameter. Only used for SQLType.SQL_NUMERIC and
SQLType.SQL_DECIMAL parameters.

The default value is 0.

Scale property

Syntax
short Scale

Remarks
The value is the resolvable digits of this parameter. Only used for SQLType.SQL_NUMERIC and
SQLType.SQL_DECIMAL parameters.

The default value is 0.

Size property

Syntax
uint Size

Remarks
The value is the size in bytes of this parameter.

The default value is inferred from DbType.

Writing synchronization scripts in .NET

614 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Value property

Syntax
object Value

Remarks
The value is the value of this parameter.

The default value is null.

DBParameterCollection class

Syntax
class DBParameterCollection
inherits from IDataParameterCollection, IList, ICollection, IEnumerable
Member of iAnywhere.MobiLink.Script

Remarks
Collection of DBParameters. When DBCommand creates a DBParameterCollection it is empty and must be
filled with appropriate parameters before the DBCommand executes.

DBParameterCollection method

Syntax
DBParameterCollection()

Remarks
Creates an empty list of DBParameters.

Contains(string parameterName) method

Syntax
bool Contains(string parameterName)

Remarks
Returns true if the collection contains a parameter with the specified name.

Parameters
● parameterName The name of the parameter to check for.

MobiLink server API for .NET reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 615

IndexOf(string parameterName) method

Syntax
int IndexOf(string parameterName)

Remarks
Returns index of the parameter, or -1 if there is no parameter with the given name.

Parameters
● parameterName The name of the parameter to find.

RemoveAt(string parameterName) method

Syntax
void RemoveAt(string parameterName)

Remarks
Removes the parameter with the given name from the collection.

Parameters
● parameterName The name of the parameter to remove.

Add(object value) method

Syntax
int Add(object value)

Remarks
Adds the given parameter to the collection.

Parameters
● value The iAnywhere.MobiLink.Script.DBParameter instance to add to the collection.

Returns
The index of the added parameter in the collection.

Clear method

Syntax
void Clear()

Writing synchronization scripts in .NET

616 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Remarks
Removes all parameters from the collection.

Contains(object value) method

Syntax
bool Contains(object value)

Remarks
Returns true if this collection contains the given iAnywhere.MobiLink.Script.DBParameter.

Parameters
● value The iAnywhere.MobiLink.Script.DBParameter to check for.

IndexOf(object value) method

Syntax
int IndexOf(object value)

Remarks
Returns the index of the given iAnywhere.MobiLink.Script.DBParameter in the collection.

Parameters
● value The iAnywhere.MobiLink.Script.DBParameter to find.

Insert(int index, object value) method

Syntax
void Insert(int index, object value)

Remarks
Inserts the given iAnywhere.MobiLink.Script.DBParameter into the collection at the specified index.

Parameters
● value The iAnywhere.MobiLink.Script.DBParameter to insert.

● index The index at which to insert the DBParameter.

MobiLink server API for .NET reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 617

Remove(object value) method

Syntax
void Remove(object value)

Remarks
Removes the given iAnywhere.MobiLink.Script.DBParameter from the collection.

Parameters
● value The iAnywhere.MobiLink.Script.DBParameter to remove.

RemoveAt(int index) method

Syntax
void RemoveAt(int index)

Remarks
Removes the iAnywhere.MobiLink.Script.DBParameter at the given index in the collection.

Parameters
● index The index of the iAnywhere.MobiLink.Script.DBParameter to remove.

CopyTo(Array array, int index) method

Syntax
void CopyTo(Array array, int index)

Remarks
Copies the contents of the collection into the given array starting at the specified index.

Parameters
● array The array to which to copy the contents of the collection.

● index The index in the array at which to begin copying the contents of the collection.

GetEnumerator method

Syntax
IEnumerator GetEnumerator()

Writing synchronization scripts in .NET

618 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Remarks
Returns an enumerator for the collection.

IsFixedSize property

Syntax
bool IsFixedSize

Remarks
Returns false.

IsReadOnly property

Syntax
bool IsReadOnly

Remarks
Returns false.

Count property

Syntax
int Count

Remarks
The number of parameters in the collection.

IsSynchronized property

Syntax
bool IsSynchronized

Remarks
Returns false.

MobiLink server API for .NET reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 619

SyncRoot property

Syntax
object SyncRoot

Remarks
Object that can be used to synchronize the collection.

this[string parameterName] property

Syntax
object this[string parameterName]

Remarks
Gets or sets the iAnywhere.MobiLink.Script.DBParameter with the given name in the collection.

Parameters
● parameterName The name of the iAnywhere.MobiLink.Script.DBParameter to get or set.

this[int index] property

Syntax
object this[int index]

Remarks
Gets or sets the iAnywhere.MobiLink.Script.DBParameter at the given index in the collection.

Parameters
● index The index of the iAnywhere.MobiLink.Script.DBParameter to get or set.

DBRowReader interface

Syntax
interface DBRowReader
Member of iAnywhere.MobiLink.Script

Remarks
Represents a set of rows being read from a database. Executing the method DBCommand.executeReader()
creates a DBRowReader.

Writing synchronization scripts in .NET

620 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The following example is a C# code fragment. It calls a function with the rows in the result set represented
by the given DBRowReader.

DBCommand stmt = conn.CreateCommand();
stmt.CommandText = "select intCol, strCol from table1 ";
DBRowReader rset = stmt.ExecuteReader();
object[] values = rset.NextRow();
while (values != null) {
 handleRow((int) values[0], (String) values[1]);
 values = rset.NextRow();
}
rset.Close();
stmt.Close();

NextRow method

Syntax
object[] NextRow()

Remarks
Retrieves and returns the next row of values in the result set. If there are no more rows in the result set, it
returns null.

See “SQLType enumeration” on page 633.

Close method

Syntax
void Close()

Remarks
Cleans up resources used by this MLDBRowReader. After Close() is called, this MLDBRowReader cannot
be used again.

ColumnNames property

Syntax
string[] ColumnNames

Remarks
Gets the names of all columns in the result set. The value is an array of strings corresponding to the column
names in the result set.

MobiLink server API for .NET reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 621

ColumnTypes property

Syntax
SQLType[] ColumnTypes

Remarks
Gets the types of all columns in the result set. The value is an array of SQLTypes corresponding to the
column types in the result set.

DownloadData interface

Syntax
interface DownloadData

Remarks
Encapsulates download data operations for direct row handling. To obtain a DownloadData instance, use
the DBConnectionContext GetDownloadData method. Use the DownloadData.GetDownloadTables and
GetDownloadTableByName methods to return DownloadTableData instances.

This download data is available through DBConnectionContext. It is not valid to access the download data
before the begin_synchronization event or after the end_download event. It is not valid to access
DownloadData in an upload-only synchronization.

See also
● “DownloadTableData interface” on page 623
● “handle_DownloadData connection event” on page 442
● DBConnectionContext “GetDownloadData method” on page 610
● “Direct row handling” on page 649

GetDownloadTables method

Syntax
DownloadTableData[] GetDownloadTables();

Remarks
Gets an array of all the tables for download data in this synchronization. The operations performed on this
table are sent to the remote database.

Returns
An array of download table data. The order of tables in the array is the same as the upload order for the
remote.

Writing synchronization scripts in .NET

622 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Example
The following example uses the DownloadData.GetDownloadTables method to obtain an array of
DownloadTableData objects for the current synchronization. The example assumes you have a
DBConnectionContext instance called _cc.

// The method used for the handle_DownloadData event.
public void HandleDownload() {
 // Get the DownloadData for the current synchronization.
 DownloadData my_dd = _cc.GetDownloadData();

 // Get an array of tables to set download operations.
 DownloadTableData[] download_tables = my_dd.GetDownloadTables();
 // Get the first table in the DownloadTableData array.
 DownloadTableData my_download_table = download_tables[0];

 // ...
}

GetDownloadTableByName method

Syntax
DownloadTableData GetDownloadTableByName(
string table-name);

Remarks
Gets the named download table for this synchronization. Returns null if there is no table with the given name
in this synchronization.

Returns
Download data for the given table name or null if not found.

Parameters
● table-name Name of the table for which you want the download data.

DownloadTableData interface

Syntax
interface DownloadTableData

Remarks
Encapsulates information for one download table for a synchronization. Use this interface to set the data
operations that are downloaded to a synchronization client site.

Example
For example, suppose you have the following table:

MobiLink server API for .NET reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 623

CREATE TABLE remoteOrders (
 pk INT NOT NULL,
 col1 VARCHAR(200),
 PRIMARY KEY (pk)
);

The following example uses the DownloadData.GetDownloadTableByName method to return a
DownloadTableData instance representing the remoteOrders table.

// The method used for the handle_DownloadData event
public void HandleDownload() {
 // _cc is a DBConnectionContext instance.
 // Get the DownloadData for the current synchronization.
 DownloadData my_dd = _cc.GetDownloadData();

 // Get the DownloadTableData for the remoteOrders table.
 DownloadTableData td = my_dd.GetDownloadTableByName("remoteOrders");
 // User defined-methods to set download operations.
 SetDownloadUpserts(td);
 SetDownloadDeletes(td);
 // ...
}

In this example, the SetDownloadInserts method uses DownloadTableData.GetUpsertCommand to obtain
a command for the rows you want to insert or update. The IDbCommand holds the parameters that you set
to the values you want inserted on the remote database.

void SetDownloadInserts(DownloadTableData td) {
 IDbCommand upsert_cmd = td.GetUpsertCommand();
 IDataParameterCollection parameters = upsert_cmd.Parameters;

 // The following method calls are the same as the following SQL
statement:
 // INSERT INTO remoteOrders(pk, col1) values(2300, "truck");
 ((IDataParameter) (parameters[0])).Value = (Int32) 2300;
 ((IDataParameter) (parameters[1])).Value = (String) "truck";
 if (upsert_cmd.ExecuteNonQuery() > 0) {
 // Insert was not filtered.
 }
 else {
 // Insert was filtered because it was uploaded
 // in the same synchronization.
 }
 }

The SetDownloadDeletes method uses the DownloadTableData.GetDeleteCommand to obtain a command
for rows you want to delete.

void SetDownloadDeletes(DownloadTableData td) {
 IDbCommand delete_cmd = t2_download_dd.GetDeleteCommand();
 // The following method calls are the same as the following SQL
statement:
 // DELETE FROM remoteOrders where pk = 2300;
 IDataParameterCollection parameters = delete_cmd.Parameters;
 ((IDataParameter) (parameters[0])).Value = (Int32) 2300;
 delete_cmd.ExecuteNonQuery();
}

Writing synchronization scripts in .NET

624 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

GetDeleteCommand method

Syntax
IDbCommand GetDeleteCommand();

Remarks
Gets a command which allows the user to add delete operations to the download data operations. The
command returned has the same number of parameters as primary key columns in this table. For the delete
to be included in the download, the column values for the primary key columns must be set and the statement
executed with ExecuteNonQuery().

Note
You must set all primary key values for download delete operations.

Returns
A Command for deletes in the download.

Example
See “DownloadTableData interface” on page 623.

GetLastDownloadTime method

Syntax
DateTime GetLastDownloadTime();

Remarks
Returns last download time for this table. This is the same last download time passed to several of the per
table download events.

The last download time is useful for generating the table download data for a particular synchronization.

Returns
The last download time for this download table.

GetName method

Syntax
string GetName();

MobiLink server API for .NET reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 625

Remarks
Gets the table name of this instance. This is a utility function. The table name can also be accessed via the
Schema for this instance.

Returns
Table name of this instance.

GetSchemaTable method

Syntax
DataTable GetSchemaTable();

Remarks
Gets a DataTable instance that describes the metadata for this download table.

If you want the DataTable to contain column name information, you must specify the client option to send
column names.

Returns
A DataTable that describes the column metadata.

See also
● dbmlsync: “SendColumnNames (scn) extended option” [MobiLink - Client Administration]
● UltraLite: “Send Column Names synchronization parameter” [UltraLite - Database Management and

Reference]

GetUpsertCommand method

Syntax
IDbCommand GetUpsertCommand();

Remarks
Gets a command that allows you to add upsert (insert/update) operations to the direct download data
operations. The command that is returned has the same number of parameters as columns in this table. The
column values for the insert must be set and the statement executed with ExecuteNonQuery() for the insert/
update to be included in the download. ExecuteNonQuery() on the command returns 0 if the insert/update
operation was filtered and returns 1 if the insert/update was not filtered.

You cannot add or remove parameters to this command; you can only set their values.

Returns
A Command for inserts/updates for the download.

Writing synchronization scripts in .NET

626 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Example
See “DownloadTableData interface” on page 623.

LogCallback delegate

Syntax
delegate void LogCallback(
 ServerContext sc
 LogMessage message
)
Member of iAnywhere.MobiLink.Script

Remarks
Called when the MobiLink server prints a message.

LogMessage class

Syntax
class LogMessage : iAnywhere.MobiLink.Script.LogMessage
Member of iAnywhere.MobiLink.Script

Remarks
Contains information about a message printed to the log.

MessageType enumeration

Syntax
enum MessageType
Member of iAnywhere.MobiLink.Script.LogMessage

Remarks
Enumeration of the possible types of LogMessage.

ERROR field

Syntax
ERROR

Remarks
The log message is an error.

MobiLink server API for .NET reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 627

INFO field

Syntax
INFO

Remarks
The log info message.

WARNING field

Syntax
WARNING

Remarks
The log message is a warning.

Type property

Syntax
LogMessage.MessageType Type

Remarks
The type of the log message that this instance represents.

User property

Syntax
string User

Remarks
The user for which this message is being logged. It may be null.

Text property

Syntax
string Text

Remarks
The main text of the message.

Writing synchronization scripts in .NET

628 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ServerContext interface

Syntax
interface ServerContext
Member of iAnywhere.MobiLink.Script

Remarks
An instantiation of all the context that is present for the duration of the MobiLink server. This context can
be held as static data and used in a background thread. It is valid for the duration of the .NET CLR invoked
by MobiLink.

To access a ServerContext instance, use the DBConnectionContext.getServerContext method.

GetStartClassInstances method

Syntax
object[] GetStartClassInstances()
Member of iAnywhere.MobiLink.Script.ServerContext

Remarks
Gets an array of the start classes that were constructed at server start time. The array length is zero if there
are no start classes.

For more information about user-defined start classes, see “User-defined start classes” on page 595.

The following is an example of getStartClassInstances():

void FindStartClass(ServerContext sc, string name) {
 object[] startClasses = sc.GetStartClassInstances();
 foreach (object obj in startClasses) {
 if (obj is MyClass) {
 // Execute some code.
 }
 }
}

LogCallback ErrorListener event
This event is triggered when the MobiLink server prints an error.

LogCallback InfoListener event
This event is triggered when the MobiLink server prints info.

MobiLink server API for .NET reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 629

LogCallback WarningListener event
This event is triggered when the MobiLink server prints a warning.

MakeConnection method

Syntax
iAnywhere.MobiLink.Script.DBConnection makeConnection()
Member of iAnywhere.MobiLink.Script.ServerContext

Remarks
Creates a new server connection.

ShutDown method

Syntax
void Shutdown()
Member of iAnywhere.MobiLink.Script.ServerContext

Remarks
Forces the server to shut down.

ShutdownListener method

Syntax
event iAnywhere.MobiLink.Script.ShutdownCallback
 ShutdownListener(
 iAnwyhere.MobiLink.Script.ServerContext sc)
Member of iAnywhere.MobiLink.Script.ServerContext

Remarks
This event is triggered on shutdown. The following code is an example of how to use this event:

ShutdownCallback callback = new ShutdownCallback(shutdownHandler);
_sc.ShutdownListener += callback;
public void shutdownHandler(ServerContext sc) {
 _test_out_file.WriteLine("shutdownPerformed");
}

Writing synchronization scripts in .NET

630 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

getProperties method

Syntax
NameValueCollection getProperties(
 string component_name
 string prop_set_name)

Remarks
Returns the set of properties associated with the script version. These are stored in the MobiLink system
table ml_property.

See also
● “ml_property” on page 712
● “ml_add_property system procedure” on page 677

getPropertiesByVersion method

Syntax
NameValueCollection getPropertiesByVersion(string script_version)

Remarks
Returns the set of properties associated with the script version. These are stored in the MobiLink system
table ml_property. The script version is stored in the property_set_name column when the component_name
is ScriptVersion.

See also
● “ml_property” on page 712
● “ml_add_property system procedure” on page 677

getPropertySetNames method

Syntax
StringCollection getPropertySetNames(string component_name)

Remarks
Returns the list of property set names for a given component. These are stored in the MobiLink system table
ml_property.

See also
● “ml_property” on page 712
● “ml_add_property system procedure” on page 677

MobiLink server API for .NET reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 631

ServerException class

Syntax
public class ServerException
Member of iAnywhere.MobiLink.Script

Remarks
Used to signal MobiLink that an error has occurred with the server and it should shut down immediately.

ServerException constructors

Syntax
public ServerException()
Member of iAnywhere.MobiLink.Script.ServerException

Remarks
Constructs a ServerException with no detail message.

Syntax
public ServerException(string message)
Member of iAnywhere.MobiLink.Script.ServerException

Remarks
Creates a new ServerException with the given message.

Parameters
● message The message for this ServerException.

Syntax
public ServerException(string message, SystemException ie)
Member of iAnywhere.MobiLink.Script.ServerException

Remarks
Creates a new ServerException with the given message and containing the given inner exception that caused
this one.

Parameters
● message The message for this ServerException.

● ie The exception that caused this ServerException.

Writing synchronization scripts in .NET

632 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ShutdownCallback delegate

Syntax
sealed delegate ShutdownCallback : System.MulticastDelegate
Member of iAnywhere.MobiLink.Script

Remarks
Called when the MobiLink server is shutting down. Implementations of this delegate can be registered with
the ServerContext.ShutdownListener event to be called when the MobiLink server shuts down.

SQLType enumeration

Syntax
enum SQLType
Member of iAnywhere.MobiLink.Script

Remarks
Enumeration of all possible ODBC data types.

SQL_TYPE_NULL field

Syntax
SQL_TYPE_NULL

Remarks
Null data type.

SQL_UNKNOWN_TYPE field

Syntax
SQL_UNKNOWN_TYPE

Remarks
Unknown data type.

SQL_CHAR field

Syntax
SQL_CHAR

MobiLink server API for .NET reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 633

Remarks
Single byte string. Has .NET type String.

SQL_NUMERIC field

Syntax
SQL_NUMERIC

Remarks
Numeric value of set size and precision. Has .NET type Decimal.

SQL_DECIMAL field

Syntax
SQL_DECIMAL

Remarks
Decimal number of set size and precision. Has .NET type Decimal.

SQL_INTEGER field

Syntax
SQL_INTEGER

Remarks
32-bit integer. Has .NET type Int32.

SQL_SMALLINT field

Syntax
SQL_SMALLINT

Remarks
16-bit integer. Has .NET type Int16.

Writing synchronization scripts in .NET

634 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL_FLOAT field

Syntax
SQL_FLOAT

Remarks
Floating point number with ODBC driver defined precision. Has .NET type Double.

SQL_REAL field

Syntax
SQL_REAL

Remarks
Single precision floating-point number. Has .NET type Single.

SQL_DOUBLE field

Syntax
SQL_DOUBLE

Remarks
Double precision floating point number. Has .NET type Double.

SQL_DATE field

Syntax
SQL_DATE

Remarks
A date. Has .NET type DateTime.

SQL_DATETIME field

Syntax
SQL_DATETIME

Remarks
A date and time. Has .NET type DateTime.

MobiLink server API for .NET reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 635

SQL_TIME field

Syntax
SQL_TIME

Remarks
A time. Has .NET type DateTime.

SQL_INTERVAL field

Syntax
SQL_INTERVAL

Remarks
An interval of time. Has .NET type TimeSpan.

SQL_TIMESTAMP field

Syntax
SQL_TIMESTAMP

Remarks
A time stamp. Has .NET type DateTime.

SQL_VARCHAR field

Syntax
SQL_VARCHAR

Remarks
Single byte string. Has .NET type String.

SQL_TYPE_DATE field

Syntax
SQL_TYPE_DATE

Remarks
A date. Has .NET type DateTime.

Writing synchronization scripts in .NET

636 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL_TYPE_TIME field

Syntax
SQL_TYPE_TIME

Remarks
A time. Has .NET type DateTime.

SQL_TYPE_TIMESTAMP field

Syntax
SQL_TYPE_TIMESTAMP

Remarks
A timestamp. Has .NET type DateTime.

SQL_DEFAULT field

Syntax
SQL_DEFAULT

Remarks
A default type. Has no type.

SQL_ARD_TYPE field

Syntax
SQL_ARD_TYPE

Remarks
An ARD object. Has no type.

SQL_BIT field

Syntax
SQL_BIT

Remarks
A single bit. Has .NET type Boolean.

MobiLink server API for .NET reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 637

SQL_TINYINT field

Syntax
SQL_TINYINT

Remarks
An 8-bit integer. Has .NET type SByte.

SQL_BIGINT field

Syntax
SQL_BIGINT

Remarks
A 64-bit integer. Has .NET type Int64.

SQL_LONGVARBINARY field

Syntax
SQL_LONGVARBINARY

Remarks
Variable length binary data with a driver dependent maximum length. Has .NET type byte[].

SQL_VARBINARY field

Syntax
SQL_VARBINARY

Remarks
Variable length binary data with a user specified maximum length. Has .NET type byte[].

SQL_BINARY field

Syntax
SQL_BINARY

Remarks
Fixed length binary data. Has .NET type byte[].

Writing synchronization scripts in .NET

638 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL_LONGVARCHAR field

Syntax
SQL_LONGVARCHAR

Remarks
Single byte string. Has .NET type String.

SQL_GUID field

Syntax
SQL_GUID

Remarks
A Global Unique ID (also called a UUID). Has .NET type Guid.

SQL_WCHAR field

Syntax
SQL_WCHAR

Remarks
Unicode character array of fixed size. Has .NET type String.

SQL_WVARCHAR field

Syntax
SQL_WVARCHAR

Remarks
Null-terminated Unicode string of user-defined maximum length. Has .NET type String.

SQL_WLONGVARCHAR field

Syntax
SQL_WLONGVARCHAR

Remarks
Null-terminated Unicode string of driver-dependent maximum length. Has .NET type String.

MobiLink server API for .NET reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 639

SynchronizationException class

Syntax
class SynchronizationException
Member of iAnywhere.MobiLink.Script

Remarks
Used to signal that a synchronization exception has occurred and that the current synchronization should be
rolled back and restarted.

SynchronizationException constructors

Syntax
SynchronizationException()
Member of iAnywhere.MobiLink.Script.SynchronizationException

Remarks
Constructs a SynchronizationException with no details.

Syntax
public SynchronizationException(string message)
Member of iAnywhere.MobiLink.Script.SynchronizationException

Remarks
Creates a new SynchronizationException with the given message.

Parameters
● message The message for this ServerException.

Syntax
SynchronizationException(string message, SystemException ie)
Member of iAnywhere.MobiLink.Script.SynchronizationException

Remarks
Creates a new SynchronizationException with the given message and containing the given inner exception
that caused this one.

Parameters
● message The message for this ServerException.

● ie The exception that caused this ServerException.

Writing synchronization scripts in .NET

640 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UploadData interface

Syntax
public interface UploadData

Remarks
Encapsulates upload operations for direct row handling. An upload transaction contains a set of tables
containing row operations. An UploadData instance representing a single upload transaction is passed to the
handle_UploadData synchronization event.

Caution
You must handle direct row handling upload operations in the method registered for the handle_UploadData
event. The UploadData is destroyed after each call to the registered method. Do not create a new instance
of UploadData to use in subsequent events.

Use the UploadData.GetUploadedTables or UploadData.GetUploadedTableByName methods to obtain
UploadedTableData instances.

A synchronization has one UploadData unless the remote database is using transactional upload.

See also
● “Direct row handling” on page 649
● “UploadedTableData interface” on page 643
● “handle_UploadData connection event” on page 454
● “Handling direct uploads” on page 654

Example
See “handle_UploadData connection event” on page 454.

GetUploadedTableByName method

Syntax
UploadedTableData GetUploadedTableByName(
 string table-name);

Remarks
Gets the named Uploaded table data in this uploaded transaction. Returns null if there is no table in this
transaction with the given name.

Parameters
● table-name Name of the table for which you want the uploaded data.

Returns
Uploaded data for the given table name or null if not found.

MobiLink server API for .NET reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 641

Example
Assume you use a method called HandleUpload for the handle_UploadData synchronization event. The
following example uses the GetUploadedTableByName method to return an UploadedTableData instance
for the remoteOrders table.

// The method used for the handle_UploadData event.
public void HandleUpload(UploadData ut) {
 UploadedTableData uploaded_t1 =
ut.GetUploadedTableByName("remoteOrders");
 // ...
}

GetUploadedTables method

Syntax
UploadedTableData[] GetUploadedTables();

Remarks
Gets an array of all the uploaded table data in this uploaded transaction. The order to the tables in the array
is the same order that MobiLink uses for SQL row handling, and is the optimal order for preventing referential
integrity violations. If your data source is a relational database, use this table order.

Returns
An array of uploaded table data. The order of tables in the array is the same as the upload order of the client.

Example
Assume you use a method called HandleUpload for the handle_UploadData synchronization event. The
following example uses the GetUploadedTables method to return UploadedTableData instances for the
current upload transaction.

// The method used for the handle_UploadData event.
public void HandleUpload(UploadData ud) {
 UploadedTableData[] tables = ud.GetUploadedTables();
 //...
}

UpdateDataReader interface

Syntax
interface UpdateDataReader

Remarks
Holds the update operations for one upload transaction for one table. New and old rows can both be accessed
by changing the mode of the DataReader to old or new. Otherwise this can be used as a regular DataReader.

Writing synchronization scripts in .NET

642 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SetNewRowValues method

Syntax
void SetNewRowValues();

Remarks
Sets the mode of this DataReader to return new column values (the post-update row). This is the default
mode.

SetOldRowValues method

Syntax
void SetOldRowValues();

Remarks
Sets the mode of this DataReader to return old column values (the pre-update row).

UploadedTableData interface

Syntax
public interface UploadedTableData

Remarks
Encapsulates information for one uploaded table for a synchronization.

The insert, update and delete operations are all accessible via the standard ADO.NET IDataReader. The
table metadata can be accessed via the GetSchemaTable() call or the insert and delete data readers. The
delete data reader only includes the primary key columns of the table.

GetDeletes method

Syntax
IDataReader GetDeletes();

Remarks
Gets a DataReader with the deletes for this uploaded table data. Each delete is represented by the primary
key values needed to uniquely represent a row in this instances table.

Note: The index and order of the columns match the array for property DataTable.PrimaryKey for the schema
of this table.

MobiLink server API for .NET reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 643

Returns
A DataReader with primary key columns for deleted rows.

Example
Assume your remote client contains a table called sparse_pk. The following example uses the
DownloadTableData.GetDeletes method to obtain a data reader of deleted rows. In this case, the delete
datareader includes two primary key columns. Note the index of each primary key column.

CREATE TABLE sparse_pk (
 pcol1 INT NOT NULL,
 col2 VARCHAR(200),
 pcol3 INT NOT NULL,
 PRIMARY KEY (pcol1, pcol3)
);
using iAnywhere.MobiLink.Script;
using System;
using System.IO;
using System.Data;
using System.Text;
...

// The method used for the handle_UploadData event.
public void HandleUpload(UploadData ut) {
 // Get an UploadedTableData for the sparse_pk table.
 UploadedTableData sparse_pk_table =
ut.GetUploadedTableByName("sparse_pk");
 // Get deletes uploaded by the MobiLink client.
 IDataReader data_reader = sparse_pk_table.GetDeletes();
 while (data_reader.Read()) {
 StringBuilder row_str = new StringBuilder("(");
 row_str.Append(data_reader.GetString(0)); // pcol1
 row_str.Append(", ");
 row_str.Append(data_reader.GetString(1)); // pcol3
 row_str.Append(")");
 writer.WriteLine(row_str);
 }
 data_reader.Close();
}

GetInserts method

Syntax
IDataReader GetInserts();

Remarks
Gets a DataReader with the inserts for this uploaded table data. Each Insert is represented by one row returned
by the reader.

Returns
A DataReader with inserts for this table data.

Writing synchronization scripts in .NET

644 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Example
CREATE TABLE sparse_pk (
 pcol1 INT NOT NULL,
 col2 VARCHAR(200),
 pcol3 INT NOT NULL,
 PRIMARY KEY (pcol1, pcol3)
);
using iAnywhere.MobiLink.Script;
using System;
using System.IO;
using System.Data;
using System.Text;
...
// The method used for the handle_UploadData event.
public void HandleUpload(UploadData ut) {

 // Get an UploadedTableData for the sparse_pk table.
 UploadedTableData sparse_pk_table =
ut.GetUploadedTableByName("sparse_pk");

 // Get deletes uploaded by the MobiLink client.
 IDataReader data_reader = sparse_pk_table.GetInserts();
 while (data_reader.Read()) {
 StringBuilder row_str = new StringBuilder("(");
 row_str.Append(data_reader.GetString(0)); // pcol1
 row_str.Append(", ");
 if (data_reader.IsDBNull(1)) {
 row_str.Append("<NULL>");
 }
 else {
 row_str.Append(data_reader.GetString(1)); // col2
 }
 row_str.Append(", ");
 row_str.Append(data_reader.GetString(2)); // pcol3
 row_str.Append(")");
 writer.WriteLine(row_str);
 }
 data_reader.Close();
}

GetName method

Syntax
string GetName();

Remarks
Gets the table name of this instance. This is a utility function. The table name can also be accessed via the
Schema for this instance.

Returns
The table name of this instance.

MobiLink server API for .NET reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 645

GetSchemaTable method

Syntax
DataTable GetSchemaTable();

Remarks
Gets a DataTable that describes the metadata for this download table.

If you want the DataTable to contain column name information, you must specify the client option to send
column names.

Returns
A DataTable that describes the column metadata.

See also
● dbmlsync: “SendColumnNames (scn) extended option” [MobiLink - Client Administration]
● UltraLite: “Send Column Names synchronization parameter” [UltraLite - Database Management and

Reference]

GetUpdates method

Syntax
UpdateDataReader GetUpdates();

Remarks
Gets a DataReader with the updates for this uploaded table data. Each row in the result set represent one
update. The mode of the result set can be flipped between new and old column values.

Returns
A DataReader with updates for this table data.

Example
The following example illustrates how to use the GetUpdates method.

CREATE TABLE sparse_pk (
 pcol1 INT NOT NULL,
 col2 VARCHAR(200),
 pcol3 INT NOT NULL,
 PRIMARY KEY (pcol1, pcol3)
);
using iAnywhere.MobiLink.Script;
using System;
using System.IO;
using System.Data;
using System.Text;
...

Writing synchronization scripts in .NET

646 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

// The method used for the handle_UploadData event.
public void HandleUpload(UploadData ut) {
 // Get an UploadedTableData for the sparse_pk table.
 UploadedTableData sparse_pk_table =
ut.GetUploadedTableByName("sparse_pk");

 // Get deletes uploaded by the MobiLink client.
 UpdateDataReader data_reader = sparse_pk_table.GetInserts();
 while (data_reader.Read()) {
 data_reader.SetNewRowValues();
 StringBuilder row_str = new StringBuilder("New values (");
 row_str.Append(data_reader.GetString(0)); // pcol1
 row_str.Append(", ");
 if (data_reader.IsDBNull(1)) {
 row_str.Append("<NULL>");
 }
 else {
 row_str.Append(data_reader.GetString(1)); // col2
 }
 row_str.Append(", ");
 row_str.Append(data_reader.GetString(2)); // pcol3
 row_str.Append(")");
 data_reader.SetOldRowValues();
 row_str.Append(" Old Values (");
 row_str.Append(data_reader.GetString(0)); // pcol1
 row_str.Append(", ");
 if (data_reader.IsDBNull(1)) {
 row_str.Append("<NULL>");
 }
 else {
 row_str.Append(data_reader.GetString(1)); // col2
 }
 row_str.Append(", ");
 row_str.Append(data_reader.GetString(2)); // pcol3
 row_str.Append(")");
 writer.WriteLine(row_str);
 }
 data_reader.Close();
}

MobiLink server API for .NET reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 647

648

Direct row handling

Contents
Introduction to direct row handling ... 650
Handling direct uploads ... 654
Handling direct downloads .. 660

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 649

Introduction to direct row handling
Note
Direct row handling is an advanced MobiLink feature. To use it, you must have a thorough understanding
of how to create a MobiLink application and how to use the MobiLink APIs. See:

● MobiLink - Getting Started
● MobiLink - Server Administration on page 1
● MobiLink - Client Administration

MobiLink supports two ways to handle rows: SQL and direct. You can use them separately or together.

● SQL row handling allows you to synchronize remote data to a supported consolidated database.
SQL-based events provide a robust interface for conflict resolution and other synchronization tasks. You
can use SQL directly or you can return SQL using the MobiLink server APIs for Java and .NET.

● Direct row handling allows you to synchronize remote data with any central data source. Direct row
handling allows you to access raw synchronized data using special MobiLink events and the MobiLink
server APIs for Java and .NET.

The data sources you can synchronize can be virtually anything, including an application, web server,
web service, application server, text file, spreadsheet, non-relational database, or an RDBMS that cannot
be used as a consolidated database. You still need a consolidated database to store your MobiLink system
tables, and many implementations of direct row handling synchronizes to both the consolidated database
and another data source.

To use direct row handling, you need familiarity with how to create a MobiLink consolidated database,
add synchronization scripts, and create Mobilink remote users.

The following diagram shows the basic MobiLink architecture:

Direct row handling

650 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The components of direct row handling
To implement direct row handling, you can use two synchronization events along with several interfaces
and methods in the MobiLink server APIs for Java and .NET.

Direct synchronization events
Direct row handling allows you to directly access the upload stream and download stream. You do this by
writing Java or .NET methods for the handle_UploadData and handle_DownloadData synchronization
events.

● handle_UploadData accepts a single UploadData parameter that encapsulates operations uploaded
by a MobiLink client for a single upload transaction. See:

○ “Handling direct uploads” on page 654
○ “handle_UploadData connection event” on page 454

● handle_DownloadData allows you to set download operations using the DownloadData interface.
See:

○ “Handling direct downloads” on page 660
○ “handle_DownloadData connection event” on page 442

Components of the MobiLink server API for direct row handling
For the Java API:

● DBConnectionContext “getDownloadData method” on page 544
● “DownloadData interface” on page 548
● “DownloadTableData interface” on page 550
● “UpdateResultSet” on page 578
● “UploadData interface” on page 579
● “UploadedTableData interface” on page 581

For the .NET API:

● DBConnectionContext “GetDownloadData method” on page 610
● “DownloadData interface” on page 622
● “DownloadTableData interface” on page 623
● “UpdateDataReader interface” on page 642
● “UploadedTableData interface” on page 643
● “UploadData interface” on page 641

Quick start
To use direct row handling, you need familiarity with how to create a MobiLink consolidated database, add
synchronization scripts, and create Mobilink remote users.

To synchronize with a data source other than a consolidated database, complete the following steps.

Introduction to direct row handling

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 651

Overview of setting up direct row handling

1. Set up a consolidated database, if you do not already have one.

Whether you are synchronizing to a consolidated database, you need to have a consolidated database to
hold MobiLink system tables.

See “MobiLink consolidated databases” on page 3.

2. If you want to handle uploads, write a public method using the UploadData interface and register it for
the handle_UploadData connection event.

See “Handling direct uploads” on page 654.

3. If you want to handle downloads, write a public method using the DownloadData interface and register
it for the handle_DownloadData connection event (or another event).

See “Handling direct downloads” on page 660.

4. If you want to use the row handling API to refer to columns by name (rather than by index), specify in
your client that column names should be sent with the upload. See:

● SQL Anywhere clients: “SendColumnNames (scn) extended option” [MobiLink - Client
Administration]

● UltraLite: “Send Column Names synchronization parameter” [UltraLite - Database Management
and Reference]

Other resources for getting started
● “Tutorial: Introduction to direct row handling” [MobiLink - Getting Started]
● http://www.sybase.com/detail?id=1058600#319
● “Setting up Java synchronization logic” on page 529
● “Setting up .NET synchronization logic” on page 591

You can post questions on the MobiLink newsgroup: sybase.public.sqlanywhere.mobilink.

Development tips for direct row handling

Unique primary keys
For MobiLink synchronization, including direct row handling, your data source must have unique primary
keys that are not updated. In a non-relational data source such as a spreadsheet or text file, this means that
one column must contain unique, unchanging values that identify the row.

See “Maintaining unique primary keys” on page 139.

Column Names
When using direct row handling, the column names of tables are only available if the Mobilink client is
configured to send column names. Alternatively, you can use column indexes to access row information.

Direct row handling

652 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.sybase.com/detail?id=1058600
news://forums.sybase.com/sybase.public.sqlanywhere.mobilink

To use column names, see:

● SQL Anywhere remotes: “SendColumnNames (scn) extended option” [MobiLink - Client
Administration]

● UltraLite remotes: “Send Column Names synchronization parameter” [UltraLite - Database
Management and Reference]

Use the last download time for downloads
If possible, set up your direct row handling application like a timestamp-based SQL application; maintain a
last_modified column and download data based on it. This method avoids unforeseen problems that could
occur if you use a different download methodology.

See “Timestamp-based downloads” on page 129.

Transaction management for uploads
You cannot commit transactions with the Mobilink consolidated database. However, you can commit
transactions with your direct row handling data source. When setting up transaction management, keep the
following tips in mind:

● Commit the upload before MobiLink commits When applying an upload, MobiLink commits the
changes at the end of the end_upload event. You should make sure that all upload changes that you want
to keep are committed before the end of your end_upload script. Otherwise, if there is an error or failure
you may get into a state in which your application thinks that the upload is applied but MobiLink has
not applied the data, which could result in lost data.

● Handle redundant uploads When an error or failure occurs after your application commits an
uploaded row and before the MobiLink server commits it, the MobiLink server and your data source
may get in an inconsistent state. You can solve this problem by allowing redundant uploads and having
logic in place to make sure the redundant upload is applied properly. In particular, when your application
sends the upload a second time, it should not be applied again.

Handle errors
To handle errors, ensure you employ appropriate transaction management, as described above. In addition,
your Java or .NET code that handles rows must send any exception that occurs to the MobiLink server. If
an error occurs before the MobiLink server or your application has committed changes, MobiLink rollbacks
the transaction and maintains a consistent state with your application.

Class instance
For direct row handling, MobiLink creates one class instance per database connection. The class instance is
not destroyed at the end of a synchronization: it is destroyed when the database connection is closed. Class
level variables retain values from previous synchronizations.

Introduction to direct row handling

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 653

Handling direct uploads
To handle direct uploads, complete the following steps:

To handle direct uploads

1. Register a Java or .NET method for the “handle_UploadData connection event” on page 454.

2. Write a method for the handle_UploadData synchronization event. This event accepts one UploadData
parameter. See:

● Java server API: “UploadData interface” on page 579
● .NET server API: “UploadData interface” on page 641

The handle_UploadData event is usually called once per synchronization. However, for SQL Anywhere
clients that use transaction-level uploads, there can be more than one upload per synchronization, in which
case handle_UploadData is called once per transaction.

For more information about dbmlsync transaction-level uploads, see “-tu option” [MobiLink - Client
Administration].

For general information about writing Java or .NET synchronization scripts, see:

● “Writing synchronization scripts in Java” on page 527
● “Writing synchronization scripts in .NET” on page 589

For information about registering connection-level events, see:

● “ml_add_java_connection_script system procedure” on page 671
● “ml_add_dnet_connection_script system procedure” on page 668

Classes for direct uploads
The MobiLink server APIs for Java and .NET provide the following interfaces for handling direct uploads:

● UploadData Encapsulates a single upload transaction. An upload transaction contains a set of tables
containing row operations. See:

○ Java API: “UploadData interface” on page 579
○ .NET API: “UploadData interface” on page 641

● UploadedTableData Encapsulates a table's insert, update, and delete operations uploaded by a
MobiLink client. For Java, UploadedTableData methods return an instance of an UpdateResultSet.
For .NET, UploadedTableData methods return an instance of an UpdateDataReader interface. You
traverse the result set IDataReaders to process the uploaded row operations. See:

○ Java API: “UploadedTableData interface” on page 581
○ .NET API: “UploadedTableData interface” on page 643

● UpdateResultSet For Java, this class represents an update result set returned by the
UploadedTableData getUpdates method. It extends java.sql.ResultSet to include special methods for
retrieving the new and old versions of an updated row.

Direct row handling

654 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See “UpdateResultSet” on page 578.

For .NET, the UpdateDataReader interface represents a set of rows returned by the UploadedTableData
GetUpdates method. It extends IDataReader to include special methods for retrieving the new and old
versions of an updated row.

See “UpdateDataReader interface” on page 642.

Example
See “handle_UploadData connection event” on page 454.

Handling conflicts for direct uploads
When a MobiLink client sends an updated row to the MobiLink server, it includes not only the updated
values (the post-image or new row), but also a copy of the old row values (the pre-image or old row) obtained
in the last synchronization with the MobiLink server. When the pre-image row does not match the current
values in your central data source, a conflict is detected.

SQL-based conflict resolution
For SQL-based uploads, the MobiLink consolidated database is your central data source and MobiLink
provides special events for conflict detection and resolution.

See “Handling conflicts” on page 146.

Conflict resolution with direct row handling
For direct uploads, you can access new and old rows programmatically for conflict detection and resolution.

UpdateResultSet (returned by the UploadedTableData.getUpdates method) extends standard Java or .NET
result sets to include special methods for handling conflicts. setNewRowValues sets UpdateResultSet to
return new updated values from a remote client (the default mode). setOldRowValues sets UpdateResultSet
to return old row values.

Detecting conflicts with direct row handling
By using the UpdateResultSet method .setOldRowValues, you get the values of a row on the remote before
it was changed. You compare the row values that are returned to the existing row values in your data source.
If the rows you compare are not equal, then a conflict exists.

Resolving conflicts with direct row handling
Once you have detected a conflict during an upload, you can use custom business logic to resolve the conflict.
The resolution is handled by your Java or .NET code.

Example
Suppose you track inventory in an XML document and want to use it as your central data source. User1 uses
one of your remote databases called Remote1. User2 uses another remote database called Remote2.

Your XML document, User1, and User2 all start with an inventory of ten items. User1 sells three items and
updates the Remote1 inventory value to seven items. User2 sells four items and updates the Remote2

Handling direct uploads

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 655

inventory to six items. When Remote1 synchronizes, the central database is updated to seven items. When
Remote2 synchronizes, a conflict is detected because the value of the inventory is no longer ten items. To
resolve this conflict programmatically, you need three row values:

● The current value in the central data source.

● The new row value that Remote2 uploaded.

● The old row value that Remote2 obtained during the last synchronization.

In this case, the business logic would use the following formula to calculate the new inventory value and
resolve the conflict:

current data source - (old remote - new remote)
-> 7 - (10-6) = 3

The following procedures for Java and .NET demonstrate how you can resolve this conflict for direct uploads,
using the following table as an example:

CREATE TABLE remoteOrders
(
 pk integer primary key not null,
 inventory integer not null
);

To handle direct conflicts (Java)

1. Register a Java or .NET method for the handle_UploadData connection event.

See “handle_UploadData connection event” on page 454.

For example, the following stored procedure call registers a Java method called HandleUpload for the
handle_UploadData connection event when synchronizing the script version ver1. You run this stored
procedure against your MobiLink consolidated database.

call ml_add_java_connection_script('ver1',
 'handle_UploadData',
 'OrderProcessor.HandleUpload')

For more information about registering methods for synchronization events, see:

● “Adding and deleting scripts” on page 327
● “ml_add_java_connection_script system procedure” on page 671

2. Obtain an UpdateResultSet for a table in the upload.

The OrderProcessor.HandleUpload method obtains an UpdateResultSet for the remoteOrders table:

// method for handle_UploadData event
 public void HandleUpload(UploadData u_data)
 {

 // Get UploadedTableData for the remoteOrders table.
 UploadedTableData u_table =
u_data.getUploadedTableByName("remoteOrders");

 // Get an UpdateResultSet for the remoteOrders table.
 UpdateResultSet update_rs = u_table.getUpdates();

Direct row handling

656 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 // (Continued...)

3. For each update, get the current values in your central data source.

In this example, the UpdateResultSet getInt method returns an integer value for the primary key column
(the first column). You can implement and then use the getMyCentralData method to get data from your
central data source.

while(update_rs.next())
{
 // Get central data source values.
 // Get the primary key value.
 int pk_value = update_rs.getInt(1);
 // Get central data source values.
 int central_value = getMyCentralData(pk_value);
 // (Continued...)

4. For each update, get the old and new values uploaded by the MobiLink client.

The example uses the UpdateResultSet setOldRowValues and UpdateResultSet setNewRowValues for
old and new values, respectively.

 // Set mode for old row values.
 update_rs.setOldRowValues();
 // Get the _old_ stored value on the remote.
 int old_value = update_rs.getInt(2);
 // Set mode for new row values.
 update_rs.setNewRowValues();
 // Get the _new_ updated value on the remote.
 int new_value = update_rs.getInt(2);
 // (Continued...)

5. For each update, check for conflicts.

A conflict occurs when the old row value does not match the current value in the central data source. To
resolve the conflict, a resolved value is calculated using business logic. If no conflict occurs, the central
data source is updated with the new remote value. You can implement and then use the setMyCentralData
method to perform the update.

 // Check if there is a conflict.
 if(old_value == central_value)
 {
 // No conflict.
 setMyCentralData(pk_value, new_value);

 }
 else
 {
 // Handle the conflict.
 int inventory = old_value - new_value;
 int resolved_value = central_value - inventory;

 setMyCentralData(pk_value, resolved_value);

Handling direct uploads

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 657

 }
}

To handle direct conflicts (.NET)

1. Register a method for the handle_UploadData connection event.

For example, the following stored procedure call registers a .NET method called HandleUpload for the
handle_UploadData connection event when synchronizing the script version ver1. You run this stored
procedure against your MobiLink consolidated database.

call ml_add_dnet_connection_script('ver1',
 'handle_UploadData',
 'MyScripts.OrderProcessor.HandleUpload')

For more information about registering methods for synchronization events, see:

● “Adding and deleting scripts” on page 327
● “ml_add_dnet_connection_script system procedure” on page 668

2. Obtain an UpdateDataReader for a table in the upload.

The MyScripts.OrderProcessor.HandleUpload method obtains an UpdateResultSet for the remoteOrders
table:

// method for handle_UploadData event
 public void HandleUpload(UploadData u_data)
 {

 // Get UploadedTableData for the remoteOrders table.
 UploadedTableData u_table =
u_data.GetUploadedTableByName("remoteOrders");

 // Get an UpdateDataReader for the remoteOrders table.
 UpdateDataReader update_dr = u_table.GetUpdates();

 // (Continued...)

3. For each update, get the current values in your central data source.

In this example, the UpdateDataReader GetInt32 method returns an integer value for the primary key
column (the first column). You can implement and then use the getMyCentralData method to get data
from your central data source.

while(update_dr.Read())
{
 // Get central data source values.
 // Get the primary key value.
 int pk_value = update_dr.GetInt32(0);
 // Get central data source values.
 int central_value = getMyCentralData(pk_value);
 // (Continued...)

4. For each update, get the old and new values uploaded by the MobiLink client.

The example uses the UpdateResultSet setOldRowValues and UpdateResultSet setNewRowValues for
old and new values, respectively.

Direct row handling

658 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 // Set mode for old row values.
 update_dr.SetOldRowValues();
 // Get an _old_ value.
 int old_value = update_dr.GetInt32(1);
 // Set mode for new row values.
 update_dr.SetNewRowValues();
 // Get the _new_ updated value.
 int new_value = update_dr.GetInt32(1);
 // (Continued...)

5. For each update, check for conflicts.

A conflict occurs when the old row value does not match the current value in the central data source. To
resolve the conflict, a resolved value is calculated using business logic. If no conflict occurs, the central
data source is updated with the new remote value. You can implement and then use the setMyCentralData
method to perform the update.

 // Check if there is a conflict.
 if(old_value == central_value)
 {
 // No conflict.
 setMyCentralData(pk_value, new_value);

 }
 else
 {
 // Handle the conflict.
 int inventory = old_value - new_value;
 int resolved_value = central_value - inventory;

 setMyCentralData(pk_value, resolved_value);
 }
}

Handling direct uploads

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 659

Handling direct downloads
To handle direct downloads, complete the following steps:

To handle direct downloads

1. Register a Java or .NET method for the “handle_DownloadData connection event” on page 442.

2. Write a method for the handle_DownloadData synchronization event. In this event you use an instance
of DBConnectionContext to get a DowloadData instance for the current synchronization. See:

● Java: “DBConnectionContext interface” on page 543
● Java: “DownloadData interface” on page 548
● .NET: “DBConnectionContext interface” on page 609
● .NET: “DownloadData interface” on page 622

You can create the entire direct download in the handle_DownloadData synchronization event. Alternatively,
you can use other synchronization events to set direct download operations. However, you must create a
handle_DownloadData script, even if its method does nothing. If you process the direct download in an event
other than handle_DownloadData, the event cannot be before begin_synchronization and cannot be after
end_download.

For information about the order of events, see “MobiLink complete event model” on page 346.

Classes for direct downloads
The MobiLink server APIs for Java and .NET provide the following classes for creating direct downloads:

● DownloadData Encapsulates download tables containing operations to send down to a remote client
during synchronization. See:

○ Java: “DownloadData interface” on page 548
○ .NET: “DownloadData interface” on page 622

● DownloadTableData Encapsulates upsert (update and insert) and delete operations to download to
a MobiLink client.

For Java, DownloadTableData methods return an instance of a JDBC PreparedStatement. In Java, you
add a row to the download by setting the prepared statement's column values and then executing the
prepared statement.

For .NET, DownloadTableData methods return an instance of a .NET IDbCommand. In .NET, you add
a row to the download by setting the command's column values and then executing the command.

See:

○ Java: “DownloadTableData interface” on page 550
○ .NET: “DownloadTableData interface” on page 623

Example
See “handle_DownloadData connection event” on page 442.

Direct row handling

660 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

MobiLink Reference

This section contains MobiLink reference material.

MobiLink server system procedures ... 663
MobiLink utilities ... 687
MobiLink server system tables ... 693
MobiLink data mappings between remote and consolidated databases 739
Character set considerations ... 789
iAnywhere Solutions ODBC drivers for MobiLink ... 793
Deploying MobiLink applications .. 799

MobiLink server system procedures

Contents
MobiLink system procedures ... 664

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 663

MobiLink system procedures
MobiLink provides the following stored procedures to help you create your applications.

System procedures to add or delete scripts

You must add synchronization scripts to system tables in the consolidated database before you can use them.
The following system procedures add or delete synchronization scripts in the consolidated database:

● “ml_add_connection_script system procedure” on page 667
● “ml_add_table_script system procedure” on page 680
● “ml_add_dnet_connection_script system procedure” on page 668
● “ml_add_dnet_table_script system procedure” on page 669
● “ml_add_java_connection_script system procedure” on page 671
● “ml_add_java_table_script system procedure” on page 672

When you use the MobiLink server API for Java or .NET, you use these stored procedures to register a
method as the script for an event, so that the method is run when the event occurs. You can also use them
to unregister your methods.

When you add a script using a system procedure, the script is a string. Any strings within the script need to
be escaped. For SQL Anywhere, each quotation mark (') needs to be doubled so as not to terminate the string.

You cannot use system procedures to add scripts longer than 255 bytes to Adaptive Server Enterprise 11.5
or earlier. Instead, use Sybase Central or direct insertion to define longer scripts.

DB2 mainframe version 8.1 supports a backward compatibility mode, where column names and other
identifiers are limited to a maximum of 18 characters. To support this environment, all MobiLink system
objects in DB2 mainframe have names of 18 characters or less. See “IBM DB2 mainframe system procedure
name conversions” on page 664.

IBM DB2 LUW prior to version 6 only supports column names and other identifiers of 18 characters or less,
and so the names are truncated. For example, ml_add_connection_script is shortened to
ml_add_connection_.

Other system procedures

● “ml_add_property system procedure” on page 677
● “ml_delete_sync_state_before system procedure” on page 684
● “ml_reset_sync_state system procedure” on page 686

IBM DB2 mainframe system procedure name conversions
IBM DB2 mainframe consolidated databases only support column names and other identifiers of 18
characters or less. The following table identifies how system procedure names for DB2 mainframe
consolidated databases are mapped to system procedure names for all other consolidated database types.

If the system procedure name does not appear in the table below, no conversion is required.

MobiLink server system procedures

664 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

System procedure name System procedure name for DB2 mainframe
consolidated databases

“ml_add_connection_script system proce-
dure” on page 667

ml_add_cs

“ml_add_dnet_connection_script system proce-
dure” on page 668

ml_add_dcs

“ml_add_dnet_table_script system proce-
dure” on page 669

ml_add_dts

“ml_add_java_connection_script system proce-
dure” on page 671

ml_add_jcs

“ml_add_java_table_script system proce-
dure” on page 672

ml_add_jts

“ml_add_lang_connection_script system proce-
dure” on page 673

ml_add_lcs

“ml_add_lang_connection_script_chk system pro-
cedure” on page 673

ml_add_lcs_chk

“ml_add_lang_table_script system proce-
dure” on page 673

ml_add_lts

“ml_add_lang_table_script_chk system proce-
dure” on page 673

ml_add_lts_chk

“ml_add_passthrough system proce-
dure” on page 673

ml_add_pt

“ml_add_passthrough_repair system proce-
dure” on page 674

ml_add_pt_repair

“ml_add_passthrough_script system proce-
dure” on page 676

ml_add_pt_script

“ml_add_table_script system proce-
dure” on page 680

ml_add_ts

“ml_delete_passthrough system proce-
dure” on page 681

ml_del_pt

“ml_delete_passthrough_repair system proce-
dure” on page 682

ml_del_pt_repair

MobiLink system procedures

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 665

System procedure name System procedure name for DB2 mainframe
consolidated databases

“ml_delete_passthrough_script system proce-
dure” on page 683

ml_del_pt_script

“ml_delete_sync_state system proce-
dure” on page 683

ml_del_sstate

“ml_delete_sync_state_before system proce-
dure” on page 684

ml_del_sstate_b4

“ml_reset_sync_state system proce-
dure” on page 686

ml_reset_sstate

ml_add_column system procedure
Registers information about columns on remote databases for use by named column parameters.

Syntax
ml_add_column (
'version',
'table',
'column',
'type'
)

Parameters

Syntax Description

version VARCHAR(128). The version name.

table VARCHAR(128). The table name.

column VARCHAR(128). The column name.

type VARCHAR(128). Reserved for future use. Set to null.

Remarks
This procedure populates the ml_column MobiLink system table with information about the columns on the
remote database. The information is used by named row parameters.

Caution
ml_add_column calls must be executed in the same order that the columns exist in the remote database table.
Failing to do so may result in incorrect data.

MobiLink server system procedures

666 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

You need to run this system procedure if both of the following are true:

● Your SQL scripts contain named parameters for columns (for example, o.column-name and r.column-
name).

● You are not using the Create Synchronization Model Wizard.

Even if you are using the Create Synchronization Model Wizard, if you modify the remote schema outside
Model mode, you need to use this stored procedure to send information about columns that are not registered
in ml_column.

To delete all entries for the table name in the given script version, set the column name to null.

See also
● “ml_column” on page 698
● “Script parameters” on page 320

Examples
The following stored procedure call populates the ml_column MobiLink system table for col1 in MyTable
for the script version Version1. This call allows you to use the named row parameters r.col1 and o.col1 in
table scripts for MyTable1 in the Version1 script version.

CALL ml_add_column('Version1', 'MyTable1', 'col1', NULL)

The following stored procedure call deletes all entries in the ml_column MobiLink system table for
MyTable1 in script version Version1:

CALL ml_add_column('Version1', 'MyTable1', NULL, NULL)

ml_add_connection_script system procedure
Use this system procedure to add or delete SQL connection scripts in the consolidated database.

Syntax
ml_add_connection_script (
'version',
'event',
'script'
)

Parameters

Syntax Description

version VARCHAR(128). The version name.

event VARCHAR(128). The event name.

MobiLink system procedures

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 667

Syntax Description

script TEXT. The script contents. For Adaptive Server Enterprise, this parameter is VAR-
CHAR(16384). For DB2 LUW, this parameter is VARCHAR(4000). For Oracle,
this parameter is CLOB.

Remarks
To delete a connection script, set the script contents parameter to null.

When you add a script, the script is inserted into the ml_script table and the appropriate references are defined
to associate the script with the event and script version that you specify. If the version name is new, it is
automatically inserted into the ml_version table.

For DB2 mainframe consolidated database types, this procedure is called ml_add_cs. See “IBM DB2
mainframe system procedure name conversions” on page 664.

See also
● “System procedures to add or delete scripts” on page 664
● “Adding and deleting scripts” on page 327
● “ml_add_table_script system procedure” on page 680
● “ml_add_dnet_connection_script system procedure” on page 668
● “ml_add_dnet_table_script system procedure” on page 669
● “ml_add_java_connection_script system procedure” on page 671
● “ml_add_java_table_script system procedure” on page 672

Example
The following statement adds a connection script associated with the begin_synchronization event to the
script version custdb in a SQL Anywhere consolidated database. The script itself is the single statement that
sets the @EmployeeID variable.

call ml_add_connection_script('custdb',
 'begin_synchronization',
 'set @EmployeeID = {ml s.username}')

ml_add_dnet_connection_script system procedure
Use this system procedure to register or unregister a .NET method as the script for a connection event.

Syntax
ml_add_dnet_connection_script (
'version',
'event',
'script'
)

MobiLink server system procedures

668 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Parameters

Syntax Description

version VARCHAR(128). The version name.

event VARCHAR(128). The event name.

script TEXT. The script contents. For Adaptive Server Enterprise, this parameter is VAR-
CHAR(16384). For DB2 LUW, this parameter is VARCHAR(4000). For Oracle,
this parameter is CLOB.

Remarks
To unregister a method, set the script contents parameter to null.

The script contents value is a public method in a class in a .NET assembly (for example,
MyClass.MyMethod).

When you call ml_add_dnet_connection_script, the method is associated with the event and script version
that you specify. If the version name is new, it is automatically inserted into the ml_version table.

For DB2 mainframe consolidated database types, this procedure is called ml_add_dcs. See “IBM DB2
mainframe system procedure name conversions” on page 664.

See also
● “System procedures to add or delete scripts” on page 664
● “Adding and deleting scripts” on page 327
● “IBM DB2 mainframe system procedure name conversions” on page 664
● “ml_add_dnet_table_script system procedure” on page 669
● “ml_add_connection_script system procedure” on page 667
● “ml_add_table_script system procedure” on page 680
● “ml_add_java_table_script system procedure” on page 672
● “Methods” on page 595
● “Writing synchronization scripts in .NET” on page 589

Example
The following example registers the beginDownloadConnection method of the ExampleClass class for the
begin_download event.

call ml_add_dnet_connection_script('ver1',
'begin_download',
'ExamplePackage.ExampleClass.beginDownloadConnection');

ml_add_dnet_table_script system procedure
Use this system procedure to register or unregister a .NET method as the script for a table event.

MobiLink system procedures

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 669

Syntax
ml_add_dnet_table_script (
'version',
'table',
'event',
'script'
)

Parameters

Syntax Description

version VARCHAR(128). The version name.

table VARCHAR(128). The table name.

event VARCHAR(128). The event name.

script TEXT. The script contents. For Adaptive Server Enterprise, this parameter is
VARCHAR(16384). For DB2 LUW, this parameter is VARCHAR(4000). For
Oracle, this parameter is CLOB.

Remarks
To unregister a method, set the script contents parameter to null.

The script value is a public method in a class in a .NET assembly (for example, MyClass.MyMethod).

When you call ml_add_dnet_table_script, the method is associated with the table, event, and script version
that you specify. If the version name is new, it is automatically inserted into the ml_version table.

For DB2 mainframe consolidated database types, this procedure is called ml_add_dts. See “IBM DB2
mainframe system procedure name conversions” on page 664.

See also
● “System procedures to add or delete scripts” on page 664
● “Adding and deleting scripts” on page 327
● “ml_add_dnet_connection_script system procedure” on page 668
● “ml_add_connection_script system procedure” on page 667
● “ml_add_table_script system procedure” on page 680
● “ml_add_java_connection_script system procedure” on page 671
● “Methods” on page 595
● “Writing synchronization scripts in .NET” on page 589

Example
The following example assigns the empDownloadCursor method of the EgClass class to the
download_cursor event for the table emp.

call ml_add_dnet_table_script('ver1', 'emp',
'download_cursor',EgPackage.EgClass.empDownloadCursor')

MobiLink server system procedures

670 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ml_add_java_connection_script system procedure
Use this system procedure to register or unregister a Java method as the script for a connection event.

Syntax
ml_add_java_connection_script (
'version',
'event',
'script'
)

Parameters

Syntax Description

version VARCHAR(128). The version name.

event VARCHAR(128). The event name.

script TEXT. The script contents. For Adaptive Server Enterprise, this parameter is
VARCHAR(16384). For DB2 LUW, this parameter is VARCHAR(4000). For
Oracle, this parameter is CLOB.

Remarks
To unregister a method, set the script contents parameter to null.

The script value is a public method in a class in the MobiLink server classpath (for example,
MyClass.MyMethod).

When you ml_add_java_connection_script, the method is associated with the event and script version that
you specify. If the version name is new, it is automatically inserted into the ml_version table.

For DB2 mainframe consolidated database types, this procedure is called ml_add_jcs. See “IBM DB2
mainframe system procedure name conversions” on page 664.

See also
● “System procedures to add or delete scripts” on page 664
● “Adding and deleting scripts” on page 327
● “ml_add_connection_script system procedure” on page 667
● “ml_add_table_script system procedure” on page 680
● “ml_add_dnet_connection_script system procedure” on page 668
● “ml_add_dnet_table_script system procedure” on page 669
● “ml_add_java_table_script system procedure” on page 672
● “Methods” on page 533
● “Writing synchronization scripts in Java” on page 527

Example
The following example registers the endConnection method of the CustEmpScripts class for the
end_connection event.

MobiLink system procedures

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 671

call ml_add_java_connection_script('ver1',
'end_connection',
'CustEmpScripts.endConnection')

ml_add_java_table_script system procedure
Use this system procedure to register or unregister a Java method as the script for a table event.

Syntax
ml_add_java_table_script (
'version',
'table',
'event',
'script'
)

Parameters

Syntax Description

version VARCHAR(128). The version name.

table VARCHAR(128). table name.

event VARCHAR(128). The event name.

script TEXT. The script content. For Adaptive Server Enterprise, this parameter is VAR-
CHAR(16384). For DB2 LUW, this parameter is VARCHAR(4000). For Oracle, this
parameter is CLOB.

Remarks
To unregister a method, set the script content parameter to null.

The script value is a public method in a class in the MobiLink server classpath (for example,
MyClass.MyMethod).

When you call ml_add_java_table_script, the method is associated with the table, event, and script version
that you specify. If the version name is new, it is automatically inserted into the ml_version table.

For DB2 mainframe consolidated database types, this procedure is called ml_add_jts. See “IBM DB2
mainframe system procedure name conversions” on page 664.

MobiLink server system procedures

672 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “System procedures to add or delete scripts” on page 664
● “Adding and deleting scripts” on page 327
● “ml_add_connection_script system procedure” on page 667
● “ml_add_table_script system procedure” on page 680
● “ml_add_dnet_connection_script system procedure” on page 668
● “ml_add_dnet_table_script system procedure” on page 669
● “ml_add_java_connection_script system procedure” on page 671
● “Methods” on page 533
● “Writing synchronization scripts in Java” on page 527

Example
The following example registers the empDownloadCursor method of the CustEmpScripts class for the
download_cursor event for the table emp.

call ml_add_java_table_script('ver1', 'emp',
'download_cursor','CustEmpScripts.empDownloadCursor')

ml_add_lang_connection_script system procedure
This procedure is for internal use only.

ml_add_lang_connection_script_chk system procedure
This procedure is for internal use only.

ml_add_lang_table_script system procedure
This procedure is for internal use only.

ml_add_lang_table_script_chk system procedure
This procedure is for internal use only.

ml_add_passthrough system procedure
Use this system procedure to identify remote databases that should execute a script. This procedure adds an
entry to the ml_passthrough system table. If an entry with the given remote_id and run_order already exists
in the table, this procedure updates the entry.

MobiLink system procedures

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 673

Syntax
ml_add_passthrough (
'remote_id',
'script_name',
run_order
)

Parameters

Syntax Description

remote_id VARCHAR(128). The remote ID of the database that should execute the script. This
value can be a valid remote ID in the ml_database table to apply to a specific client,
or null to apply to all the script clients listed in the ml_database table.

Caution
Be very careful when applying a script to all, or even many, remotes. A poorly
written script can leave most of even all of your remotes damaged or disabled.

script_name VARCHAR(128). The name of the script being subscribed to. This value must be
a valid script name defined in the ml_passthrough_script table.

run_order INTEGER. The run_order parameter determines the order in which scripts are ap-
plied on the remote database. Scripts are always applied in order by run_order. Each
remote stores the run_order of the last script that it attempted to apply and does not
download or execute any script with a run_order less than this.

This value must be a non-negative integer or null.

Remarks
If you define run_order as null, the procedure assigns an integer based on the value of remote_id. If remote_id
is null, the procedure assigns a value equal to the run_order value in ml_passthrough, plus 10. If remote_id
is not null, the procedure assigns the maximum value of the run_order column for the remote_id in the
ml_passthrough table plus 10.

For DB2 mainframe consolidated database types, this procedure is called ml_add_pt. See “IBM DB2
mainframe system procedure name conversions” on page 664.

See also
● “ml_database” on page 700
● “ml_passthrough” on page 707
● “ml_passthrough_script” on page 709

ml_add_passthrough_repair system procedure
Use this system procedure to define rules for handling script errors. Each rule defines the action that a client
should perform when a specific script generates a given error code. This procedure adds an entry to the

MobiLink server system procedures

674 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ml_passthrough_repair system table. If an entry with the given failed_script_name and error_code already
exists in the table, the procedure updates the entry.

Syntax
ml_add_passthrough_repair (
'failed_script_name',
error_code,
'new_script_name',
'action'
)

Parameters

Syntax Description

failed_script_name VARCHAR(128). The name of the failed script to which this rule applies. This
value must be a valid script name in the ml_passthrough_script table.

error_code INTEGER. The SQL Anywhere error code that this rule handles.

new_script_name VARCHAR(128). The name of a script to replace the failed script when action is
R. If action is S, P, or H, this value must be null. If action is R, this value must be
a valid script name in the ml_passthrough_script table, and can be the same as
failed_script_name.

action CHAR(1). The action that a client should perform when error_code is generated
for failed_script_name. This value must be one of the following:

● R (replace) Indicates that the failed script should be replaced with the one
specified by new script name and an attempt should be made to run the new
script. To rerun the failed script, choose new script name to be the same as
failed script name.

● P (purge) Indicates that the remote database should discard all the scripts
that it has received and continue executing script normally after that.

● S (skip) Indicates that the remote database should ignore the failed script
and continue executing scripts as if the failed script had succeeded.

● H (halt) Indicates that the remote should not execute any more scripts until
it receives further instructions.

Remarks
You should make every effort to avoid failed SQL passthrough scripts by testing scripts thoroughly.

For DB2 mainframe consolidated database types, this procedure is called ml_add_pt_repair. See “IBM DB2
mainframe system procedure name conversions” on page 664.

MobiLink system procedures

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 675

See also
● “ml_passthrough_repair” on page 708
● “ml_passthrough_script” on page 709

ml_add_passthrough_script system procedure
Use this system procedure to create a passthrough script. This procedure adds an entry to the
ml_passthrough_script system table.

Syntax
ml_add_passthrough_script (
'script_name',
'flags',
'affected_pubs',
'script',
'description'
)

Parameters

Syntax Description

script_name VARCHAR(128). The script name. This value must be unique.

flags VARCHAR(256). The value that tells clients how to run the script. This value can
be null or contain a combination of the following keywords in a semicolon-delimited
list:

● manual Indicates that the script may only be run in manual execution mode.
By default, all scripts can be run in either automatic or manual execution modes.

● exclusive Indicates that the script may only be automatically executed at the
end of a synchronization where exclusive locks were obtained on all tables being
synchronized. This option is ignored if the affected_ publications value lists no
publications. This option is only meaningful to SQL Anywhere remotes.

● schema_diff Indicates that the script should be run in schema-diffing mode.
In this mode, the database schema is altered to match the schema described in
the script. For example, a create statement for an existing table is treated as an
alter statement. This flag only applies to scripts run on UltraLite remotes.

For example:

'manual;exclusive;schema_diff'

MobiLink server system procedures

676 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Syntax Description

affected_pubs TEXT. A list of publications that must be synchronized before the script is run. An
empty string or null indicates that no synchronization is required. This value is only
meaningful for SQL Anywhere clients. For Adaptive Server Enterprise, this param-
eter is VARCHAR(16384). For DB2 LUW, this parameter is VARCHAR(4000).
For Oracle, this parameter is CLOB.

script TEXT. The contents of the passthrough script. This value cannot be null. For Adap-
tive Server Enterprise, this parameter is VARCHAR(16384). For DB2 LUW, this
parameter is VARCHAR(4000). For Oracle, this parameter is CLOB.

The script content must be non-null. For UltraLite remotes, the script content should
be a collection of SQL statements separated by the word go. Note that the word
go must appear on a separate line. For SQL Anywhere remotes, the script content
can be any collection of SQL statements that are valid when enclosed by a begin…
end block.

Example of script content on a SQL Anywhere remote:

DECLARE val INTEGER;
SELECT c1 INTO val FROM t1 WHERE pk = 5;
IF val > 100 THEN
 INSERT INTO t2 VALUES ('c1 is big');
ENDIF

Example of script content on an UltraLite remote:

CREATE TABLE myScript (c1 INT NOT NULL PRIMARY KEY)
GO
INSERT INTO myScript VALUES (1)
GO

description VARCHAR(2000). A comment or description of the script. This value may be null.

Remarks
This procedure generates an error if the specified script_name already exists in ml_passthrough_script.

For DB2 mainframe consolidated database types, this procedure is called ml_add_pt_script. See “IBM DB2
mainframe system procedure name conversions” on page 664.

See also
● “ml_passthrough_script” on page 709

ml_add_property system procedure
Use this system procedure to add or delete MobiLink properties. This system procedure changes rows in the
ml_property system table.

MobiLink system procedures

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 677

Syntax
ml_add_property (
'comp_name',
'prop_set_name',
'prop_name',
'prop_value'
)

Parameters

Syntax Description

comp_name VARCHAR(128). The component name. To save properties by script version, set
to ScriptVersion. For MobiLink server properties, set to MLS. For server-initiated
synchronization properties, set to SIS.

prop_set_name VARCHAR(128). The property set name.

If the component name is ScriptVersion, then this parameter is the name of the script
version.

If the component name is MLS, then this parameter can be either ml_user_log_ver-
bosity to specify verbosity for a MobiLink user, or ml_remote_id_log_verbosity to
specify verbosity for a remote ID.

If the component name is SIS, then this parameter is the name of the Notifier, gate-
way, or carrier that you are setting a property for.

prop_name VARCHAR(128). The property name.

If the component name is ScriptVersion, then this parameter is a property that you
define. You can reference these properties using DBConnectionContext: getVersion
and getProperties, or ServerContext: getPropertiesByVersion, getProperties, and
getPropertySetNames.

If the component name is MLS, then this property is either a MobiLink user name
or remote ID that you define.

prop_value TEXT. The property value.

If the prop_set_name is ml_user_log_verbosity or ml_remote_id_log_verbosity,
this must be a valid mlsrv -v option.

For Adaptive Server Enterprise, this parameter is VARCHAR(16384). For DB2
LUW, this parameter is VARCHAR(4000). For Oracle, this parameter is CLOB. To
delete a property, set to null.

Log verbosity for targeted MobiLink users and remote IDs
The MobiLink server can be set to use different log verbosity for a targeted MobiLink user or remote ID.
The MobiLink server checks the ml_property table every five minutes and looks for verbose settings for a
MobiLink user or remote ID. If verbose settings exist, then it uses the new setting to log output messages
for the given MobiLink user or remote ID. This enables you to see the details for a specific user or remote

MobiLink server system procedures

678 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ID without the need for high verbosity settings that would negatively impact the server farm, and without
requiring a restart of each server in the farm.

To set maximum verbosity for a targeted MobiLink user, for example ml_user1, log into the consolidated
database and issue the following SQL command:

call ml_add_property('MLS', 'ml_user_log_verbosity', 'ml_user1', '-v+')

To set maximum verbosity for a targeted remote ID, for example rid_1, log into the consolidated database
and issue the following SQL command:

call ml_add_property('MLS', 'ml_remote_id_log_versity', 'rid_1', '-v+')

Note that verbose_setting must be a valid MobiLink server -v option. For example, to log row data and
undefined table scripts, the verbose_setting can be -vru or vru. The MobiLink server will use this verbose
setting for ml_user1 or rid_1 after 5 minutes. See “-v option” on page 102.

To disable log verbosity for a MobiLink user, log into the consolidated database and issue the following
SQL command:

call ml_add_property('MLS', 'ml_user_log_verbosity', 'ml_user', NULL)

To disable log verbosity for a MobiLink remote ID, log into the consolidated database and issue the following
SQL command:

call ml_add_property('MLS', 'ml_remote_id_log_verbosity', 'rid_1', NULL)

The MobiLink server stops using the previous verbose setting for ml_user or rid_1 after five minutes.

If both the ml_user_log_verbosity and ml_remote_id_log_verbosity are set for a given MobiLink user
and remote ID, and if the MobiLink user name and remote ID in a synchronization are identical to the given
targeted MobiLink user and remote ID, the MobiLink server will use the ml_remote_id_log_verbosity
setting to log output messages.

Server-initiated synchronization
For server-initiated synchronization, the ml_add_property system procedure allows you to set properties for
Notifiers, gateways, and carriers.

For example, to add the property server=mailserver1 for an SMTP gateway called x:

ml_add_property('SIS','SMTP(x)','server','mailserver1');

The verbosity property applies to all Notifiers and gateways, and so you cannot specify a particular property
set name. To change the verbosity setting, leave the property set name blank:

ml_add_property('SIS','','verbosity',2);

Script Version
For regular MobiLink synchronization, you can use this system procedure to associate properties with a
script version. In this case, set the component_name to ScriptVersion. You can specify any properties, and
use Java and .NET classes to access them.

For example, to associate an LDAP server with a script version called MyVersion:

ml_add_property('ScriptVersion','MyVersion','ldap-server','MyServer')

MobiLink system procedures

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 679

See also
● “ml_property” on page 712
● “MobiLink server settings for server-initiated synchronization” [MobiLink - Server-Initiated

Synchronization]
● “MobiLink server settings for server-initiated synchronization” [MobiLink - Server-Initiated

Synchronization]
● Java API DBConnectionContext: “getProperties method” on page 545 and “getVersion

method” on page 547
● .NET API DBConnectionContext: “GetProperties method” on page 611 and “GetVersion

method” on page 612
● Java API ServerContext: “getPropertiesByVersion method” on page 569, “getProperties

method” on page 569, “getPropertySetNames method” on page 570
● .NET ServerContext: “getPropertiesByVersion method” on page 631, “getProperties

method” on page 631, “getPropertySetNames method” on page 631

ml_add_table_script system procedure
Use this system procedure to add or delete SQL table scripts in the consolidated database.

Syntax
ml_add_table_script (
'version',
'table',
'event',
'script'
)

Parameters

Syntax Description

version VARCHAR(128). The version name.

table VARCHAR(128). The table name.

event VARCHAR(128). The event name.

script TEXT. The script contents. For Adaptive Server Enterprise, this parameter is VAR-
CHAR(16384). For DB2 LUW, this parameter is VARCHAR(4000). For Oracle, this
parameter is CLOB.

Remarks
To delete a table script, set the script contents parameter to null.

When you add a script, the script is inserted into the ml_script table and the appropriate references are defined
to associate the script with the table, event and script version that you specify. If the version name is new,
it is automatically inserted into the ml_version table.

MobiLink server system procedures

680 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

For DB2 mainframe consolidated database types, this procedure is called ml_add_ts. See “IBM DB2
mainframe system procedure name conversions” on page 664.

See also
● “System procedures to add or delete scripts” on page 664
● “Adding and deleting scripts” on page 327
● “ml_add_connection_script system procedure” on page 667
● “ml_add_dnet_connection_script system procedure” on page 668
● “ml_add_dnet_table_script system procedure” on page 669
● “ml_add_java_connection_script system procedure” on page 671
● “ml_add_java_table_script system procedure” on page 672

Example
The following command adds a table script associated with the upload_insert event on the Customer table.

call ml_add_table_script('default', 'Customer', 'upload_insert',
 'INSERT INTO Customer(cust_id, name, rep_id, active)
 VALUES ({ml r.cust_id}, {ml r.name}, {ml r.rep_id}, 1)')

ml_add_user system procedure
This procedure is for internal use only.

ml_delete_passthrough system procedure
This stored procedure removes the row(s) in the ml_passthrough table that cause the specified script to be
downloaded to the specified remote with the specified run order. If the script is downloaded to the remote
before it is deleted then it is not deleted from the remote and executes as usual.

Syntax
ml_delete_passthrough (
'remote_id',
'script_name',
'run_order'
)

Parameters

Syntax Description

remote_id VARCHAR(128). The remote ID. If remote_id is null then all rows in the ml_pass-
through table for the specified script name and run order are removed.

script_name VARCHAR(128). The script name.

MobiLink system procedures

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 681

Syntax Description

run_order INTEGER. The run order of the script applied on the remote database. If run_or-
der is null then all rows for the specified remote_id and script_name are removed
from the ml_passthrough table regardless of their run order.

Remarks
The MobiLink server does not automatically remove entries from the ml_passthrough table. You must use
this procedure to remove outdated passthrough scripts.

For DB2 mainframe consolidated database types, this procedure is called ml_del_pt. See “IBM DB2
mainframe system procedure name conversions” on page 664.

See also
● “ml_passthrough” on page 707

ml_delete_passthrough_repair system procedure
Use this system procedure to delete a repair rule from the ml_passthrough_repair system table.

Syntax
ml_delete_passthrough_repair (
'failed_script_name',
error_code
)

Parameters

Syntax Description

failed_script_name VARCHAR(128). The name of the script to which a rule applied.

error_code INTEGER. The error code for which the rule applied.

Remarks
The MobiLink server does not automatically remove entries from the ml_passthrough_repair table. You
must use this procedure to remove outdated passthrough repair scripts.

For DB2 mainframe consolidated database types, this procedure is called ml_del_pt_repair. See “IBM DB2
mainframe system procedure name conversions” on page 664.

See also
● “ml_passthrough_repair” on page 708

MobiLink server system procedures

682 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ml_delete_passthrough_script system procedure
Use this system procedure to delete a passthrough script from the ml_passthrough_script system table.

Syntax
ml_delete_passthrough_script (
'script_name'
)

Parameters

Syntax Description

script_name VARCHAR(128). The name of the script to remove.

Remarks
Scripts can not be removed if they are referenced in the ml_passthrough or ml_passthrough_repair system
tables.

The MobiLink server does not automatically remove entries from the ml_passthrough_script table. You must
use this procedure to remove outdated passthrough scripts.

For DB2 mainframe consolidated database types, this procedure is called ml_del_pt_script. See “IBM DB2
mainframe system procedure name conversions” on page 664.

See also
● “ml_passthrough” on page 707
● “ml_passthrough_repair” on page 708
● “ml_passthrough_script” on page 709

ml_delete_sync_state system procedure
Use this procedure to delete unused or unwanted synchronization states.

Syntax
ml_delete_sync_state (
'user',
'remote_id'
)

Parameters

Syntax Description

user VARCHAR(128). The MobiLink user name.

remote_id VARCHAR(128). The remote ID.

MobiLink system procedures

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 683

Remarks
These parameters can be null. If all the parameters are null, the procedure does nothing.

This stored procedure deletes all the rows from the ml_subscription table for the given MobiLink user name
and remote ID. It also removes this remote ID from the ml_database table, if the remote ID is no longer
referenced by any rows in the ml_subscription table.

If the remote ID is null and the MobiLink user name is not null, it removes all the rows that are referenced
by the given MobiLink user name from the ml_subscription table and all the remote IDs from the ml_database
table, if these remote IDs are no longer referenced by any rows in the ml_subscription table.

If the MobiLink user name is null and the remote ID is not null, this stored procedure removes all the rows
from the ml_subscription table and the ml_database table for the given remote ID.

The MobiLink user is not removed by this stored procedure, even if all the remote IDs have been deleted
from the ml_database table and this user is no longer referenced by any rows in the ml_subscription table.
If this MobiLink user needs to be deleted, you may delete it by issuing a command such as

delete * from ml_user where name = 'user_name'

where user_name is the MobiLink user you want to delete.

Use this stored procedure with extreme caution because the MobiLink server automatically adds this remote
ID in the ml_database and ml_subscription tables without checking its synchronization status the next time
the MobiLink client requests synchronization for this remote ID. It may cause data inconsistency to delete
synchronization states for a remote ID that did not have a successful synchronization in the last
synchronization attempt.

For DB2 mainframe consolidated database types, this procedure is called ml_del_sstate. See “IBM DB2
mainframe system procedure name conversions” on page 664.

See also
● “ml_subscription” on page 733
● “ml_database” on page 700

Example
The following example cleans up MobiLink system table information about remote databases with the remote
ID remote_db_for_John for the MobiLink user John:

CALL ml_delete_sync_state('John', 'remote_db_for_John')

ml_delete_sync_state_before system procedure
Use this procedure to clean up the MobiLink system tables when you have dropped remote databases.

Syntax
ml_delete_sync_state_before (
'ts'
)

MobiLink server system procedures

684 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Parameters

Syntax Description

ts TIMESTAMP. The datetime must appear in exactly the order specified in the con-
solidated database. If the datetime format in the consolidated database is set to 'yyyy/
mm/dd hh:mm:ss.ssss', then the timestamp must appear in the order year, month,
day, hour, minute, second, fraction of second.

Remarks
This stored procedure removes rows from MobiLink system tables that pertain to remote databases that are
no longer being used. In particular, it does the following:

● Deletes all the rows from the ml_subscription system table that have both the last_upload_time and
last_download_time earlier than the given timestamp.

● Removes remote IDs from the ml_database system table if the remote IDs are no longer referenced by
any rows in the ml_subscription table.

You should not use this system procedure for a time period that is so recent that it may delete rows for remote
databases that have not actually been deleted. If you do, the deletion of the rows in ml_subscription and
ml_database could cause problems for remote databases that are in an "unknown state" caused by an
unsuccessful upload; in that unknown state, the remote relies on the MobiLink system tables to resend data.

The timestamp provided to this procedure must have a correct date-time format because the procedure does
not validate the date-time format of the parameter.

For DB2 mainframe consolidated database types, this procedure is called ml_del_sstate_b4. See “IBM DB2
mainframe system procedure name conversions” on page 664.

See also
● “ml_subscription” on page 733
● “ml_database” on page 700

Example
The following example cleans up MobiLink system table information about remote databases that have not
synchronized since January 10, 2004. It works for a SQL Anywhere consolidated database where the date-
time format in the consolidated database is yyyy/mm/dd hh:mm:ss.ssss.

CALL ml_delete_sync_state_before('2004/01/10 00:00:00')

ml_delete_user system procedure
This procedure is for internal use only.

MobiLink system procedures

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 685

ml_reset_sync_state system procedure
Use this procedure to reset synchronization state information in MobiLink system tables.

Syntax
ml_reset_sync_state (
'user',
'remote_id'
)

Parameters

Syntax Description

user VARCHAR(128). The MobiLink user name.

remote_id VARCHAR(128). The remote ID.

Remarks
The parameters can be null. If both parameters are null, this procedure does nothing.

This stored procedure sets the progress, last_upload_time, and last_download_time columns in the
ml_subscription table to their default values for the given user_name and remote ID. The default value for
the progress is 0. The default value for the last_upload_time and last_download_time columns is '1900/01/01
00:00:00'.

If the remote ID is null and the MobiLink user name is not null, this procedure sets those columns to the
default values for the rows in the ml_subscription table referenced by the given MobiLink user name. If the
MobiLink user name is null and the remote ID is not null, it sets them to the default values for the rows in
the ml_subscription table with the given remote ID.

Use this stored procedure with extreme caution. The MobiLink server does not do any synchronization status
checking for this remote ID the next time the MobiLink client requests synchronization for this remote ID.
It may cause data inconsistency to reset a remote ID that did not have a successful synchronization in the
last synchronization.

For DB2 mainframe consolidated database types, this procedure is called ml_reset_sstate. See “IBM DB2
mainframe system procedure name conversions” on page 664.

ml_server_delete system procedure
This procedure is for internal use only.

ml_server_update system procedure
This procedure is for internal use only.

MobiLink server system procedures

686 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

MobiLink utilities

Contents
Introduction to MobiLink utilities .. 688
MobiLink stop utility (mlstop) ... 689
MobiLink user authentication utility (mluser) ... 690

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 687

Introduction to MobiLink utilities
There are two MobiLink server utilities:

● “MobiLink stop utility (mlstop)” on page 689
● “MobiLink user authentication utility (mluser)” on page 690

In addition, see:

● MobiLink client utilities: “MobiLink client utilities” [MobiLink - Client Administration]
● UltraLite utilities: “UltraLite utilities” [UltraLite - Database Management and Reference]
● Utilities for using TLS certificates: “Certificate utilities” [SQL Anywhere Server - Database

Administration]
● Other SQL Anywhere utilities: “Database administration utilities” [SQL Anywhere Server - Database

Administration]

MobiLink utilities

688 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

MobiLink stop utility (mlstop)
Stops the MobiLink server on the local computer.

Syntax
mlstop [options] [name]

Option Description

@data Use this to read in options from the specified environment var-
iable or configuration file. If both exist with the same name, the
environment variable is used. See “Using configuration files”
[SQL Anywhere Server - Database Administration].

If you want to protect passwords or other information in the
configuration file, you can use the File Hiding utility to obfuscate
the contents of the configuration file. See “File Hiding utility
(dbfhide)” [SQL Anywhere Server - Database Administration].

-f Forced shutdown. Use if a hard shutdown does not work.

-h Hard shutdown. MobiLink stops all synchronizations and exits.
Some remotes may report an error.

-q Quiet mode. This suppresses the banner.

-t time Soft shutdown, with a hard shutdown after the specified time.
time is a number followed by D, H, M, or S (for days, hours,
minutes and seconds). For example, -t 10m specifies that the
server should be shut down in 10 minutes or when current syn-
chronizations complete, whichever is sooner. D, H, M, and S are
not case sensitive.

-w Waits for the MobiLink server to shut down before returning
from the command.

name If the MobiLink server is started using the -zs option, it must be
shut down by specifying the same server name. See “-zs op-
tion” on page 119.

Description
By default (if none of -f, -h or -t are specified), mlstop does a soft shutdown.

● Soft shutdown means that the MobiLink server stops accepting new connections and exits when the
current synchronizations are complete.

● Hard shutdown means that the MobiLink server stops all synchronizations and exits. Some remotes
may report an error.

MobiLink stop utility (mlstop)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 689

MobiLink user authentication utility (mluser)
Registers MobiLink users at the consolidated database. For SQL Anywhere remotes, the users must have
previously been created at the remote databases with the CREATE SYNCHRONIZATION USER statement.

Syntax
mluser [options] -c "connection-string"
 { -f file | -u user [-p password] }

Option Description

@data Use this to read in options from the specified environment
variable or configuration file. If both exist with the same
name, the environment variable is used. See “Using config-
uration files” [SQL Anywhere Server - Database Adminis-
tration].

If you want to protect passwords or other information in the
configuration file, you can use the File Hiding utility to ob-
fuscate the contents of the configuration file. See “File Hid-
ing utility (dbfhide)” [SQL Anywhere Server - Database Ad-
ministration].

-c "keyword=value;..." Use this to supply database connection parameters. The con-
nection string must give the utility permission to connect to
the consolidated database using an ODBC data source. This
parameter is required.

-d Deletes the user name(s) specified by -f or -u.

-f filename Reads the user names and passwords from the specified file.
The file should be a text file containing one user name and
password pair on each line, separated by white space. You
must specify either -f or -u.

-fips When set, mluser fails if FIPS support is not installed.

-o filename Logs output messages to the specified file.

-ot filename Truncate the log file and then append output messages to it.
The default is to send output to the screen.

-p password Password to associate with the user. This option can only be
used with -u.

MobiLink utilities

690 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Option Description

-pc collation-id Supplies a database collation ID for character set conversion
of the user name and password. This should be one of the
SQL Anywhere collation labels such as those listed in
“Supported and alternate collations” [SQL Anywhere Server
- Database Administration]. This option is required when
user names and passwords are read from a file that is enco-
ded in a different character set than the default character set
determined by locale.

-u ml_username Specify the user name to add (or delete, if used with -d).
Only one user can be specified on a single command line.
This option is used with -p if passwords are being used. You
must specify either -f or -u.

-v Specifies verbose logging.

Remarks
Given a user/password pair, the mluser utility first attempts to add the user. If the user has already been
added to the consolidated database, it attempts to update the password for that user.

There are alternative ways to register user names in the consolidated database:

● Use Sybase Central.

● Specify the -zu+ command line option with mlsrv11. In this case, any existing MobiLink users that have
not been added to the consolidated database are added when they first synchronize.

The MobiLink user must already exist in a remote database. To add users at the remote, you have the
following options:

● For SQL Anywhere remotes, set the name with CREATE SYNCHRONIZATION USER and
synchronize with that user name.

● For UltraLite remotes, you can either use the user_name field of the ul_synch_info structure; or in Java,
use the SetUserName() method of the ULSynchInfo class before synchronizing.

See also
● “MobiLink users” [MobiLink - Client Administration]
● “-zu option” on page 121
● “CREATE SYNCHRONIZATION USER statement [MobiLink]” [SQL Anywhere Server - SQL

Reference]
● “Transport-layer security” [SQL Anywhere Server - Database Administration]

MobiLink user authentication utility (mluser)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 691

692

MobiLink server system tables

Contents
Introduction to MobiLink system tables ... 695
IBM DB2 mainframe system table name conversions ... 696
ml_active_remote_id ... 697
ml_column ... 698
ml_connection_script ... 699
ml_database .. 700
ml_device .. 701
ml_device_address .. 703
ml_listening .. 705
ml_passthrough ... 707
ml_passthrough_repair .. 708
ml_passthrough_script .. 709
ml_passthrough_status ... 711
ml_property .. 712
ml_qa_clients ... 713
ml_qa_delivery .. 714
ml_qa_delivery_archive ... 716
ml_qa_global_props .. 718
ml_qa_notifications .. 719
ml_qa_repository ... 720
ml_qa_repository_archive ... 721
ml_qa_repository_props .. 722
ml_qa_repository_props_archive .. 723
ml_qa_repository_staging ... 724
ml_qa_status_history ... 725
ml_qa_status_history_archive ... 726
ml_qa_status_staging .. 727
ml_script .. 728
ml_script_version ... 729
ml_scripts_modified ... 730
ml_server ... 731

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 693

ml_sis_sync_state ... 732
ml_subscription .. 733
ml_table ... 735
ml_table_script .. 736
ml_user .. 737

MobiLink server system tables

694 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Introduction to MobiLink system tables
MobiLink system tables store information about MobiLink users, subscriptions, tables, scripts, script
versions, and other information. They are required for MobiLink synchronization. Unlike other system
tables, you can modify the MobiLink system tables, although in most cases you do not need to.

MobiLink system tables are created when you run the MobiLink setup script for your consolidated database.
They must be stored on your consolidated database. The database user who runs the setup script is the owner
of the MobiLink system tables that are created by the script.

See “Setting up a consolidated database” on page 6.

Notes
● This chapter provides data types for the MobiLink system tables in SQL Anywhere consolidated

databases. In some RDBMSs, the data types are slightly different.

● DB2 mainframe version 8.1 supports a backward compatibility mode, where column names and other
identifiers are limited to a maximum of 18 characters. To support this environment, all MobiLink system
objects in DB2 mainframe have names of 18 characters or less. See “IBM DB2 mainframe system table
name conversions” on page 696.

● IBM DB2 LUW version 5.2 only supports column names and other identifiers of 18 characters or less.
In a DB2 LUW 5.2 consolidated database, MobiLink system table names are truncated where necessary.

Introduction to MobiLink system tables

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 695

IBM DB2 mainframe system table name conversions
IBM DB2 mainframe consolidated databases only support column names and other identifiers of 18
characters or less. The following table identifies how system table names for DB2 mainframe consolidated
databases are mapped to system table names for all other consolidated database types.

If the system table name does not appear in the table below, no conversion is required.

System table name System table name for DB2 mainframe consolidated databases

“ml_active_re-
mote_id” on page 697

ml_active_rid

“ml_connec-
tion_script” on page 699

ml_conn_script

“ml_pass-
through” on page 707

ml_pt

“ml_passthrough_re-
pair” on page 708

ml_pt_repair

“ml_pass-
through_script”
 on page 709

ml_pt_script

“ml_passthrough_sta-
tus” on page 711

ml_pt_status

“ml_scripts_modi-
fied” on page 730

ml_script_modified

MobiLink server system tables

696 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ml_active_remote_id
Stores the synchronization status for each remote database in the server farm.

Column Description

remote_id VARCHAR(128). The unique integer that identifies the ID of the remote database
currently being synchronized.

server_id INTEGER. The value that references the server_id in the ml_server table.

status CHAR(1). The synchronization status for the remote database. The value O indicates
an ongoing synchronization, and C indicates a canceled synchronization.

Remarks
This table does not contain data unless a server farm is running.

For DB2 mainframe consolidated database types, this table is called ml_active_rid. See “IBM DB2
mainframe system table name conversions” on page 696.

Constraints
PRIMARY KEY(remote_id)

FOREIGN KEY(server_id) REFERENCES ml_server(server_id)

ml_active_remote_id

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 697

ml_column
Stores the names of columns for a specific table in a specific script version.

Column Description

version_id INTEGER. A number identifying the script version.

table_id INTEGER. A number identifying the table.

idx INTEGER. The index, origin 1, of this column in the table. The column order
must be the order in which the columns were created in the remote database.

name VARCHAR(128). The column name.

type VARCHAR(128). Not currently used.

This table is only required when SQL scripts contain named parameters for columns (for example, o.column-
name and r.column-name). (The exception is the column index, which is available even without this
MobiLink system table being populated; for example, o.column-index and r.column-index.)

This table is populated by the Create Synchronization Model Wizard when you deploy a MobiLink model.
If you did not use the Create Synchronization Model Wizard, or if you did use it but afterward changed
the schema of synchronized columns on the remote database outside Sybase Central Model mode, you can
use the ml_add_column stored procedure to populate the table.

Note: The dbmlsync extended option SendColumnNames and UltraLite synchronization parameter Send
Column Names are used by direct row handling, but are not used for named row parameters.

Remarks
There is a system view, ml_columns, that makes it easier to view the contents of this table.

Constraints
PRIMARY KEY(idx, version_id, table_id)

UNIQUE(version_id, table_id, name)

FOREIGN KEY(version_id) REFERENCES ml_script_version(version_id)

FOREIGN KEY(table_id) REFERENCES ml_table(table_id)

See also
● “ml_add_column system procedure” on page 666
● “Script parameters” on page 320

MobiLink server system tables

698 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ml_connection_script
For a given script version, this table associates a script with a given event.

Column Description

version_id INTEGER. A number identifying the script version.

event VARCHAR(128). The name of the event that triggers the connection script.

script_id INTEGER. A number identifying the script. The text of the connection script is
stored in the ml_script system table.

Remarks
There is a system view, ml_connection_scripts, that makes it easier to view the contents of this table.

For DB2 mainframe consolidated database types, this table is called ml_conn_script. See “IBM DB2
mainframe system table name conversions” on page 696.

Constraints
PRIMARY KEY(version_id, event)

FOREIGN KEY(version_id) REFERENCES ml_script_version(version_id)

FOREIGN KEY(script_id) REFERENCES ml_script(script_id)

ml_connection_script

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 699

ml_database
Stores a unique ID for each remote database that has synchronized.

Caution
Do not alter this table.

Column Description

rid INTEGER. A unique integer that identifies the remote ID. This value is used
internally.

remote_id VARCHAR(128). The remote ID that uniquely identifies each remote database.

script_ldt TIMESTAMP. The last time a passthrough script was downloaded.

description VARCHAR(128). Reserved.

Remarks
The remote ID is sent by the client in each synchronization. The MobiLink server tracks the state information
for each remote database using this remote ID.

Constraints
PRIMARY KEY(rid)

MobiLink server system tables

700 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ml_device
This table is used only for server-initiated synchronization. It stores device names that are required by device
tracking.

Column Description

device_name VARCHAR(255). The name given to the device. This name is extracted from the
operating system unless you specify a name using the dblsn -e option.

listener_version VARCHAR(128). Not null. The SQL Anywhere version number for the installed
software on the device. Changing this value does not affect the operation of the
software, but may be useful for diagnostic purposes.

listener_protocol INTEGER. Not null. This column is 0, 1, or 2:

● 0 - for Listeners from SQL Anywhere prior to version 9.0.1
● 1 - for post-9.0.0 Palm Listeners
● 2 - for post-9.0.0 Windows Listeners

info VARCHAR(255). Not null. Operating system information about the listening
device. This information can be overridden by providing information using the
dblsn -f option.

ignore_tracking VARCHAR(1). Not null. If this is y, tracking information is not written to the
row. If it is n, tracking information is written to the row.

source VARCHAR(255). Not null. This is tracking if the row was created by automatic
device tracking. Otherwise, it is blank unless you change it using stored proce-
dures to add information about where the data in this row came from. Unless it
is set to tracking, the value in this column does not affect the operation of the
software.

Remarks
The MobiLink system tables ml_device, ml_device_address, and ml_listening contain information about
devices for server-initiated synchronization. DeviceTracker gateways use this information to address target
devices by MobiLink user name.

In most cases, you should not need to alter these tables. However, if your device does not support device
tracking or if you want to override device tracking for troubleshooting purposes, you can add or delete rows
to this system table using pre-defined stored procedures. See “Adding support for device tracking” [MobiLink
- Server-Initiated Synchronization].

If you want to stop automatic tracking, set ignore_tracking to y. In this case, it is also recommended that
you use a source name other than tracking.

Constraints
PRIMARY KEY(device_name)

ml_device

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 701

See also
● “ml_set_device system procedure” [MobiLink - Server-Initiated Synchronization]
● “ml_delete_device system procedure” [MobiLink - Server-Initiated Synchronization]

MobiLink server system tables

702 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ml_device_address
This table is used only for server-initiated synchronization. It stores addressing information that is required
by device tracking.

Column Description

device_name VARCHAR(255). Not null. The name of the device. This name is extracted from
the operating system unless you specify a name using the dblsn -e option.

medium VARCHAR(255). Not null. For UDP, this is _UDP_. Otherwise, it is the network
provider ID.

address VARCHAR(255). Not null. For UDP, this is ip:port-number, where ip is an IP
address or host name. For SMS, this is the phone number.

active VARCHAR(1). Not null. This is y for active, and n otherwise. A DeviceTracker
gateway may deactivate a UDP channel if it is unresponsive and there is a fallback
SMS delivery path.

last_modified Timestamp. Not null. Default timestamp. The datetime when this row was last
modified.

ignore_tracking VARCHAR(1). Not null. If this is y, tracking information is not written to the
row. If it is n, tracking information is written to the row.

source VARCHAR(255). Not null. This is tracking if the row was created by automatic
device tracking. Otherwise, it is blank unless you change it using stored proce-
dures to add information about where the data in this row came from. Unless it
is set to tracking, the value in this column does not affect the operation of the
software.

Remarks
The MobiLink system tables ml_device, ml_device_address, and ml_listening contain information about
devices for server-initiated synchronization. DeviceTracker gateways use this information to address target
devices by MobiLink user name.

In most cases, you should not need to alter these tables. However, if your device does not support device
tracking or if you want to override device tracking for troubleshooting purposes, you can add or delete rows
to this system table using pre-defined stored procedures. See “Adding support for device tracking” [MobiLink
- Server-Initiated Synchronization].

If you want to stop automatic tracking, set ignore_tracking to y. In this case, it is also recommended that
you use a source name other than tracking.

Constraints
PRIMARY KEY(device_name, medium)

ml_device_address

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 703

FOREIGN KEY(device_name) REFERENCES ml_device(device_name)

See also
● “ml_set_device_address system procedure” [MobiLink - Server-Initiated Synchronization]
● “ml_delete_device_address system procedure” [MobiLink - Server-Initiated Synchronization]

MobiLink server system tables

704 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ml_listening
This table is used only for server-initiated synchronization. It maps a MobiLink user name to a device name
for device tracking.

Column Description

name VARCHAR(128). Not null. The name you use to address notification. This col-
umn can be populated in one of three ways:

● If you use the dblsn -t+ option, this is the alias that you have defined for the
ml_user.

● If you used the dblsn -u option, this is an ml_user name.
● If you use neither -t+ nor -u, the default name is device-name-dblsn, where

device-name is the name of your device. You can find the device name in
your Listener messages window. Optionally, you can set the device name
using the dblsn -e option.

See “Listener options for Windows” [MobiLink - Server-Initiated Synchroniza-
tion].

device_name VARCHAR(255). Not null. The name given to the device. This name is extracted
from the operating system unless you specify a name using the dblsn -e option.

listening VARCHAR(1). Not null. This is y for an active Listener; otherwise it is n. This
field is set when you use the dblsn option -t, or you can manually set it with stored
procedures.

ignore_tracking VARCHAR(1). Not null. If this is y, tracking information is not written to the
row. If it is n, tracking information is written to the row.

source VARCHAR(255). Not null. This is tracking if the row was created by automatic
device tracking. Otherwise, it is blank unless you change it using stored proce-
dures to add information about where the data in this row came from. The value
in this column does not affect the operation of the software.

Remarks
The MobiLink system tables ml_device, ml_device_address, and ml_listening contain tracked information
about devices for server-initiated synchronization. DeviceTracker gateways use this information to address
target devices by MobiLink user name.

In most cases, you should not need to alter these tables. However, if your device does not support device
tracking or if you want to override device tracking for troubleshooting purposes, you can add or delete rows
in this table using pre-defined stored procedures. See “Adding support for device tracking” [MobiLink -
Server-Initiated Synchronization].

If you want to stop automatic tracking, set ignore_tracking to y. In this case, it is also recommended that
you use a source name other than tracking.

ml_listening

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 705

Constraints
PRIMARY KEY(name)

FOREIGN KEY(device_name) REFERENCES ml_device(device_name)

See also
● “ml_set_listening system procedure” [MobiLink - Server-Initiated Synchronization]
● “ml_delete_listening system procedure” [MobiLink - Server-Initiated Synchronization]

MobiLink server system tables

706 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ml_passthrough
Stores rows that indicate which scripts should run on each remote database.

Column Description

remote_id VARCHAR(128). The remote ID of the client that should execute the script.

run_order INTEGER. The run order of the script for this client. This value must be non-neg-
ative.

script_id INTEGER. An integer that references the script_id in the ml_passthrough_script
table. This value identifies the script to be executed.

last_modified TIMESTAMP. The last time the passthrough information was added or modified.

Remarks
You can use the system procedures ml_add_passthrough and ml_delete_passthrough to add, modify, and
delete entries in this table.

For DB2 mainframe consolidated database types, this table is called ml_pt. See “IBM DB2 mainframe system
table name conversions” on page 696.

Constraints
PRIMARY KEY(remote_id, run_order)

FOREIGN KEY(remote_id) REFERENCES ml_database(remote_id)

FOREIGN KEY(script_id) REFERENCES ml_passthrough_script(script_id)

See also
● “ml_add_passthrough system procedure” on page 673
● “ml_delete_passthrough system procedure” on page 681

ml_passthrough

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 707

ml_passthrough_repair
Stores rules that define how clients should handle script errors.

Column Description

failed_script_id INTEGER. Identifies the script to which this rule applies. This value references the
script_id in the ml_passthrough_script table.

error_code INTEGER. The error code that this rule handles.

new_script_id INTEGER. The script_id defined in the ml_passthrough_script table, representing
the repair script. If the action is R, this value identifies the script with which to replace
the failed script. The value refers to the script_id column of the ml_pass-
through_script table. If the action is S, P, or H, the value is null.

action CHAR(1). The action to perform on the client when the script fails. This value must
be one of the following:

● R (replace) Indicates that the failed script should be replaced with the one
specified by new script name and an attempt should be made to run the new
script. To rerun the failed script, choose new script name to be the same as
failed script name.

● P (purge) Indicates that the remote database should discard all the scripts that
it has received and continue executing script normally after that.

● S (skip) Indicates that the remote database should ignore the failed script and
continue executing scripts as if the failed script had succeeded.

● H (halt) Indicates that the remote should not execute any more scripts until it
receives further instructions.

Remarks
You can use the system procedures ml_add_passthrough_repair and ml_delete_passthrough_repair to add,
modify, and delete entries in this table.

For DB2 mainframe consolidated database types, this table is called ml_pt_repair. See “IBM DB2 mainframe
system table name conversions” on page 696.

Constraints
PRIMARY KEY(failed_script_id, error_code)

FOREIGN KEY(failed_script_id) REFERENCES ml_passthrough_script(script_id)

See also
● “ml_add_passthrough_repair system procedure” on page 674
● “ml_delete_passthrough_repair system procedure” on page 682

MobiLink server system tables

708 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ml_passthrough_script
Stores the names and contents for each passthrough script.

Column Description

script_id INTEGER. A unique integer that identifies the passthrough script name. This value
is used internally.

script_name VARCHAR(128). The unique passthrough script name.

flags VARCHAR(256). This value tells clients how to run the script. This value can be
null or contain a combination of the following keywords in a semicolon-delimited
list:

● manual Indicates that the script may only be run in manual execution mode.
By default, all scripts can be run in either automatic or manual execution modes.

● exclusive Indicates that the script may only be automatically executed at the
end of a synchronization where exclusive locks were obtained on all tables being
synchronized. This option is ignored if the affected_ publications value lists no
publications. This option is only meaningful to SQL Anywhere remotes.

● schema_diff Indicates that the script should be run in schema-diffing mode.
In this mode, the database schema is altered to match the schema described in
the script. For example, a create statement for an existing table is treated as an
alter statement. This flag only applies to scripts run on UltraLite remotes.

For example:

'manual;exclusive;schema_diff'

affected_pubs TEXT. A list of publications that must be synchronized before the script is run. An
empty or null publication list indicates that no synchronization is required. This value
is only meaningful with SQL Anywhere clients.

script TEXT. The contents of the passthrough script.

description VARCHAR(2000). A comment or description of the script.

Remarks
Use the following procedures to add and delete entries in this table.

● “ml_add_passthrough_script system procedure” on page 676
● “ml_delete_passthrough_script system procedure” on page 683

It is recommended that you do not directly update the ml_passthrough_script table without using the
ml_add_passthrough_script and ml_delete_passthrough_script system procedures. Clients do not receive

ml_passthrough_script

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 709

newly updated scripts if they have already downloaded the original passthrough scripts. Discrepancies
between the various scripts on multiple clients makes managing script execution difficult or impossible.

For DB2 mainframe consolidated database types, this table is called ml_pt_script. See “IBM DB2 mainframe
system table name conversions” on page 696.

Constraints
PRIMARY KEY(script_id)

See also
● “ml_add_passthrough_script system procedure” on page 676
● “ml_delete_passthrough_script system procedure” on page 683

MobiLink server system tables

710 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ml_passthrough_status
Stores the status for each passthrough script after it is executed by a client.

Column Description

status_id INTEGER. A unique integer that identifies the row.

remote_id VARCHAR(128). Identifies the remote database that executed the script. References
the remote_id in the ml_database table.

run_order INTEGER. The run order of the script on the client.

script_id INTEGER. Identifies the script that was executed. References the script_id in the
ml_passthrough_script table.

script_status CHAR(1). The status of the script. Contains S for success or E for error.

error_code INTEGER. The SQL code generated by the script on the remote database.

error_text TEXT. The error text generated by the script on the remote database.

remote_run_time TIMESTAMP. The time at the remote database when the script was executed.

Remarks
The MobiLink server does not automatically remove entries from the ml_passthrough_status table. Deletions
from this table must be performed manually.

For DB2 mainframe consolidated database types, this table is called ml_pt_status. See “IBM DB2 mainframe
system table name conversions” on page 696.

Constraints
PRIMARY KEY(status_id)

FOREIGN KEY(remote_id) REFERENCES ml_database(remote_id)

FOREIGN KEY(script_id) REFERENCES ml_passthrough_script(script_id)

See also
● “upload_insert table event” on page 504

ml_passthrough_status

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 711

ml_property
This table stores some MobiLink properties.

Column Description

component_name VARCHAR(128). For user-defined properties, this can be ScriptVersion or
SIS.

property_set_name VARCHAR(128). If the component_name is ScriptVersion, this is the name of
the script version. If the component_name is SIS, this is the name of the Notifier,
gateway, or carrier that you are setting a property for.

property_name VARCHAR(128). The name of the property. If the component_name is Script-
Version, this is a user-defined property. If the component_name is SIS, this is a
property of the Notifier, gateway, or carrier. See “MobiLink server settings for
server-initiated synchronization” [MobiLink - Server-Initiated Synchronization].

property_value TEXT. The value of the property.

Remarks
This table stores name-value pairs. Some of the properties in this table are used internally by MobiLink. In
addition, you can use the stored procedure ml_add_property to add or delete rows in this table.

You can use the component_name ScriptVersion to store information on a per script version basis that can
be accessed by Java or .NET scripting logic.

Constraints
PRIMARY KEY(component_name, property_set_name, property_name)

See also
● “ml_add_property system procedure” on page 677

MobiLink server system tables

712 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ml_qa_clients
This table is used only for QAnywhere applications. It is a global temporary table that exists only on SQL
Anywhere and Oracle consolidated databases.

Caution
Do not alter this table.

Column Description

client VARCHAR(128). Client targeted by uploaded messages.

ml_qa_clients

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 713

ml_qa_delivery
This table is used only for QAnywhere applications.

Caution
Do not alter this table.

Column Description

msgid VARCHAR(128). Globally unique message identifier.

seqno BIGINT. Used to give an ordering to the messages, which is necessary for true
queuing.

address VARCHAR(255). Address of the target recipient.

clientaddress VARCHAR(128). Client part of the address.

client VARCHAR(128). Client targeted by current client state.

originator VARCHAR(128). The name of the originating client.

priority INTEGER. A number from 0 to 9. Messages with a higher priority number are
delivered before messages with a lower priority. The default is 4.

expires TIMESTAMP. The expiry time after which the message might not be delivered.

kind INTEGER. Indicates whether the message is binary (1) or text (2).

contentsize BIGINT. The size of the message. For binary messages, this is the number of
bytes. For text messages, this is the number of characters.

status INTEGER. The status of the message. Can be 1 (pending), 10 (receiving), 30
(expired), 40 (canceled), 50 (unreceivable), or 60 (received).

statustime TIMESTAMP. The time this status was achieved. The time is local to the client
achieving the state.

syncstatus INTEGER. The state of the synchronization between the client and server for this
message. Can be 0 (not in sync), 1 (in sync), 2 (message should not be synchron-
ized), or 3 (synchronizing).

receiverid VARCHAR(128). An identifier set by the receiver that identifies the receiver of
the message, if any.

Constraints
PRIMARY KEY(msgid, address)

MobiLink server system tables

714 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

FOREIGN KEY (msgid) REFERENCES ml_qa_repository(msgid)

ml_qa_delivery

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 715

ml_qa_delivery_archive
This table is used only for QAnywhere applications.

Caution
Do not alter this table.

Column Description

msgid VARCHAR(128). Globally unique message identifier.

seqno BIGINT. Used to give an ordering to the messages, which is necessary for true
queuing.

address VARCHAR(255). Address of the target recipient.

clientaddress VARCHAR(128). Client part of the address.

client VARCHAR(128). Client targeted by current client state.

originator VARCHAR(128). The name of the originating client.

priority INTEGER. A number from 0 to 9. Messages with a higher priority number are
delivered before messages with a lower priority. The default is 4.

expires TIMESTAMP. The expiry time after which the message might not be delivered.

kind INTEGER. Indicates whether the message is binary (1) or text (2).

contentsize BIGINT. The size of the message. For binary messages, this is the number of
bytes. For text messages, this is the number of characters.

status INTEGER. The status of the message. Can be 1 (pending), 10 (receiving), 30
(expired), 40 (canceled), 50 (unreceivable), or 60 (received).

statustime TIMESTAMP. The time this status was achieved. The time is local to the client
achieving the state.

syncstatus INTEGER. The state of the synchronization between the client and server for this
message. Can be 0 (not in sync), 1 (in sync), 2 (message should not be synchron-
ized), or 3 (synchronizing).

receiverid VARCHAR(128). An identifier set by the receiver that identifies the receiver of
the message, if any.

Constraints
PRIMARY KEY(msgid, address)

MobiLink server system tables

716 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

FOREIGN KEY (msgid) REFERENCES ml_qa_repository(msgid)

ml_qa_delivery_archive

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 717

ml_qa_global_props
This table is used only for QAnywhere applications. It contains global name-value pairs that are used in
transmission rules.

Caution
Do not alter this table.

Column Description

client VARCHAR(128). The client associated with the property. A client value of 'ia-
nywhere.server.defaultClient' indicates a property that is global to all clients.

name VARCHAR(255). The name of the property.

modifiers INTEGER. Bitfields used to further describe the property. Currently, only the
first bit is used to indicate a property that should not be synchronized. All other
bit fields are reserved for future use.

value LONG VARCHAR. The value of the property.

last_modified TIMESTAMP. The last time the value was changed. This is necessary to indicate
when a property needs to be synchronized with the client.

Constraints
PRIMARY KEY (client, name)

MobiLink server system tables

718 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ml_qa_notifications
This table is used only for QAnywhere applications. It is used by the Notifier to determine which QAnywhere
clients to notify to initiate synchronization.

Caution
Do not alter this table.

Column Description

user_id INTEGER.

name VARCHAR(128). The QAnywhere client name that uniquely identifies a client
message store.

Constraints
PRIMARY KEY(name)

ml_qa_notifications

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 719

ml_qa_repository
This table is used only for QAnywhere applications. It stores messages and their properties.

Caution
Do not alter this table.

Column Description

msgid VARCHAR(128). A globally unique message identifier.

props LONG BINARY. An encoding of the message properties.

content LONG BINARY. The content of the message. Text messages are encoded as
UTF-8.

Constraints
PRIMARY KEY(msgid)

MobiLink server system tables

720 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ml_qa_repository_archive
This table is used only for QAnywhere applications. It archives messages and their properties.

Caution
Do not alter this table.

Column Description

msgid VARCHAR(128). A globally unique message identifier.

props LONG BINARY. An encoding of the message properties.

content LONG BINARY. The content of the message. Text messages are encoded as
UTF-8.

Constraints
PRIMARY KEY(msgid)

ml_qa_repository_archive

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 721

ml_qa_repository_props
This table is used only for QAnywhere applications. This is an expansion of the props column in the
ml_qa_repository table. Properties are only expanded as needed by the transmission rules engine. If there
are no associated rules, a property is not expanded.

Caution
Do not alter this table.

Column Description

msgid VARCHAR(128). A globally unique message identifier.

name VARCHAR(128). The name of the property. If the property name was provided
in Unicode, it is translated to the native character set of the database.

value LONG VARCHAR. The value of the property.

Constraints
PRIMARY KEY(msgid, name)

FOREIGN KEY(msgid) REFERENCES ml_qa_repository(msgid)

MobiLink server system tables

722 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ml_qa_repository_props_archive
This table is used only for QAnywhere applications. This is an expansion of the props column in the
ml_qa_repository table. Properties are only expanded as needed by the transmission rules engine. If there
are no associated rules, a property is not expanded.

Caution
Do not alter this table.

Column Description

msgid VARCHAR(128). A globally unique message identifier.

name VARCHAR(128). The name of the property. If the property name was provided
in Unicode, it is translated to the native character set of the database.

value LONG VARCHAR. The value of the property.

Constraints
PRIMARY KEY(msgid, name)

FOREIGN KEY(msgid) REFERENCES ml_qa_repository(msgid)

ml_qa_repository_props_archive

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 723

ml_qa_repository_staging
This table is used only for QAnywhere applications. It contains messages that are to be sent to a QAnywhere
client using SQL Anywhere version 9.0.1.

Caution
Do not alter this table.

Column Description

seqno BIGINT. Used to give a total ordering to the messages, this is necessary for true
queuing.

msgid VARCHAR(255). Globally unique message identifier.

destination VARCHAR(128). The address of the message.

originator VARCHAR(128). The name of the originating MobiLink user.

status VARCHAR(128). The status of the message. Can be pending, receiving, re-
ceived, unreceivable, expired, or cancelled. The default is pending.

statustime TIMESTAMP. The last time the status was changed.

expires TIMESTAMP. Expiry time after which the message are not delivered.

priority INTEGER. A number from 0 to 9. Messages with a higher number are always
delivered before messages with a lower number. The default is 4.

props LONG BINARY. An encoding of the message properties.

kind INTEGER. Indicates whether the message is binary (1) or text (2).

content LONG BINARY. The content of the message. Text messages are encoded as
UTF-8.

contentsize BIGINT. The size of the message. For binary messages, this is the number of
bytes. For text messages, this is the number of characters.

mluser VARCHAR(128). The MobiLink user name that uniquely identifies a remote
database.

Constraints
PRIMARY KEY(msgid)

MobiLink server system tables

724 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ml_qa_status_history
This table is used only for QAnywhere applications. It contains a history of message status changes.

Caution
Do not alter this table.

Column Description

msgid VARCHAR(128). A globally unique message identifier.

address VARCHAR(255). The address of the target recipient.

status INTEGER. The status of the message. Can be 1 (pending), 10 (receiving), 30 (expired), 40
(canceled), 50 (unreceivable), or 60 (received).

statustime TIMESTAMP. The time this status was achieved. The time is local to the client achieving
the state.

servertime TIMESTAMP. The time the status change was received by the server.

details VARCHAR(1000). The details of the status change, if any.

syncstatus INTEGER. The state of the synchronization between the client and server for this message.
Can be 0 (not in sync), 1 (in sync), 2 (message should not be synchronized), or 3 (synchro-
nizing).

Constraints
PRIMARY KEY(msgid)

FOREIGN KEY(msgid) REFERENCES ml_qa_repository(msgid)

ml_qa_status_history

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 725

ml_qa_status_history_archive
This table is used only for QAnywhere applications. It contains a history of message status changes.

Caution
Do not alter this table.

Column Description

msgid VARCHAR(128). A globally unique message identifier.

address VARCHAR(255). The address of the target recipient.

status INTEGER. The status of the message. Can be 1 (pending), 10 (receiving), 30 (expired), 40
(canceled), 50 (unreceivable), or 60 (received).

statustime TIMESTAMP. The time this status was achieved. The time is local to the client achieving
the state.

servertime TIMESTAMP. The time the status change was received by the server.

details VARCHAR(1000). The details of the status change, if any.

syncstatus INTEGER. The state of the synchronization between the client and server for this message.
Can be 0 (not in sync), 1 (in sync), 2 (message should not be synchronized), or 3 (synchro-
nizing).

Constraints
PRIMARY KEY(msgid)

FOREIGN KEY(msgid) REFERENCES ml_qa_repository(msgid)

MobiLink server system tables

726 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ml_qa_status_staging
This table is used only for QAnywhere applications. It is a staging table that is used when synchronizing
status changes with the originating client, where the originating client was using SQL Anywhere version
9.0.1.

Caution
Do not alter this table.

Column Description

msgid VARCHAR(128). A globally unique message identifier.

status VARCHAR(255). The status of the message. Can be pending, receiving, re-
ceived, unreceivable, expired, or cancelled. The default is pending.

statustime TIMESTAMP. The last time the status was changed.

mluser VARCHAR(128). The MobiLink user name that uniquely identifies a remote
database.

Constraints
PRIMARY KEY(msgid)

ml_qa_status_staging

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 727

ml_script
This table stores the content of all scripts.

Column Description

script_id INTEGER. A unique integer that identifies the script.

script TEXT. The text of the script.

script_language VARCHAR(128). The scripting language used for the script. The scripting lan-
guage can be sql, java, or dnet.

checksum VARCHAR(64). This column is used internally.

Constraints
PRIMARY KEY(script_id)

MobiLink server system tables

728 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ml_script_version
This table stores the name and description of scripts associated with each script version.

Column Description

version_id INTEGER. A unique integer that identifies the version.

name VARCHAR(128). The name of the script version.

description TEXT. The description given to the version. The description is not used by MobiLink,
but is useful for application-specific comments. For example, you could describe the
purpose of a given script version.

Constraints
PRIMARY KEY(version_id)

ml_script_version

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 729

ml_scripts_modified
This table stores the last time script tables were changed. The MobiLink server checks this table to determine
if it must load new scripts.

Column Description

last_modified DATETIME. The last time when the ml_script, ml_table_script, or ml_connec-
tion_script system table was altered.

Remarks
For DB2 mainframe consolidated database types, this table is called ml_script_modified. See “IBM DB2
mainframe system table name conversions” on page 696.

Constraints
PRIMARY KEY(last_modified)

MobiLink server system tables

730 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ml_server
Stores the information for each MobiLink server running in the server farm.

Column Description

server_id INTEGER. A unique integer that identifies the server ID of the MobiLink server
name. This value is used internally.

name VARCHAR(128). The name of the MobiLink server actively running on the server
farm. This value must be unique across the server farm.

version VARCHAR(10). The current version of the MobiLink server.

connection_info VARCHAR(2048). The connection information for the MobiLink server.

instance_key VARCHAR(32). An assigned instance key. This value is used internally.

start_time TIMESTAMP. The startup time of the MobiLink server.

liveness TIMESTAMP. The last time the client responded to the server.

Remarks
This table does not contain data unless a server farm is running.

Constraints
PRIMARY KEY(server_id)

ml_server

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 731

ml_sis_sync_state
This table is used by Sybase Central to generate request cursors for server-initiated synchronization.

Caution
Do not alter this table.

Column Description

remote_id VARCHAR(128). The remote ID that uniquely identifies a database.

subscription_id VARCHAR(128). The subscription_id is a number that is generated by a remote
database. For SQL Anywhere clients, this value is the same as the sync_id in the
SYS.ISYSSYNC system table.

publication_name VARCHAR(128). The user-defined name for the publication that is subscribed to
by the subscription. In every synchronization, the client sends the publication name
for each subscription_id.

For UltraLite clients prior to version 10.0.0, this is always <unknown>; for UltraLite
version 10 and later, it is the publication or the string ul_no_pub if there is no pub-
lication.

user_name VARCHAR(128). The MobiLink user name.

last_upload TIMESTAMP. The last time an upload was applied to the consolidated database for
a given remote ID and subscription_id. The default is January 1, 1900, 00:00:00.

last_download TIMESTAMP. The last time a download was applied to the consolidated for a given
user and subscription_id. The default is January 1, 1900, 00:00:00.

Constraints
PRIMARY KEY(remote_id, subscription_id)

MobiLink server system tables

732 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ml_subscription
This table stores state information for each remote.

Column Description

rid INTEGER. A unique integer identifying the remote ID. This value is used
internally.

subscription_id VARCHAR(128). The subscription_id is a number that is generated by a
remote database. For SQL Anywhere clients, this value is the same as the
sync_id in the SYS.ISYSSYNC system table.

UltraLite clients do not use subscriptions, so for UltraLite clients, this value
is the UltraLite publication ID for version 10.0.0 and later, and <unknown>
for versions 8 and 9.

user_id INTEGER. The user who performed the last synchronization for the given
rid and subscription_id. You can use the user_id column to find the Mo-
biLink user who ran the last successful synchronization.

progress NUMERIC(20,0). The synchronization progress, also called the offset,
state, sequence number, or progress counter.

publication_name VARCHAR(128). The user-defined name for the publication that is sub-
scribed to by the subscription. In every synchronization, the client sends
the publication name for each subscription_id.

For UltraLite clients prior to version 10.0.0, this is always <unknown>; for
UltraLite version 10 and later, it is the publication or the string ul_no_pub
if there is no publication.

last_upload_time TIMESTAMP. The last time an upload was applied to the consolidated
database for a given remote ID and subscription_id. The default is January
1, 1900, 00:00:00.

last_download_time TIMESTAMP. The last time a download was applied to the consolidated
for a given user and subscription_id. The default is January 1, 1900,
00:00:00. See “How download timestamps are generated and
used” on page 131.

Remarks
In SQL Anywhere clients, the progress refers to a position in the transaction log of the remote database. It
indicates the point to which all committed operations for the subscription have been uploaded from the
database. The dbmlsync utility uses the offset to decide what data to upload. On the SQL Anywhere remote
database, the offset is stored in the progress column of the SYS.ISYSSYNC system table.

ml_subscription

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 733

See:

● “SYSSYNC system view” [SQL Anywhere Server - SQL Reference]
● “Progress offsets” [MobiLink - Client Administration]

In UltraLite clients, the progress is the synchronization sequence number or progress counter for the given
publication. This counter indicates what rows have been synchronized. It is incremented every time the
publication synchronizes. This number is used internally in the UltraLite database and cannot be accessed.

See “The progress counter” [UltraLite - Database Management and Reference].

Constraints
PRIMARY KEY(rid, subscription_id)

FOREIGN KEY(rid) REFERENCES ml_database(rid)

FOREIGN KEY(user_id) REFERENCES ml_user(user_id)

See also
● “Remote IDs” [MobiLink - Client Administration]

MobiLink server system tables

734 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ml_table
This table stores the names of remote tables. This list includes any table that is marked as a synchronized
table.

Column Description

table_id INTEGER. A unique integer identifying the table.

name VARCHAR(128). The name given to the table.

Constraints
PRIMARY KEY(table_id)

ml_table

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 735

ml_table_script
For a given script version, this table associates a table script with a given table and event.

Column Description

version_id INTEGER. A number identifying the script version.

table_id INTEGER. A number identifying the table.

event VARCHAR(128). The name of the event.

script_id INTEGER. An number identifying the script. The script is stored in the ml_script table.

Remarks
There is a system view, ml_table_scripts, that makes it easier to view the contents of the ml_table_script
MobiLink system table.

Constraints
FOREIGN KEY(version_id) REFERENCES ml_script_version(version_id)

FOREIGN KEY(table_id) REFERENCES ml_table(table_id)

FOREIGN KEY(script_id) REFERENCES ml_script(script_id)

MobiLink server system tables

736 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ml_user
Stores registered users and their hashed passwords.

Column Description

user_id INTEGER. A unique integer that identifies the user. This value is used
internally.

name VARCHAR(128). The registered user name.

hashed_password BINARY(32). The password in obfuscated form. This value can be null
however, it is recommended that you specify a password.

Remarks
This table stores all registered users that are known by the MobiLink server. The user names are sent by
clients in every synchronization and the clients may optionally send up the password for the user for
authentication.

The MobiLink server uses its own algorithm to hash the user password.

Do not directly insert any user names with non-null passwords into this table. The user names can be added
by using the mluser utility.

Constraints
PRIMARY KEY(user_id)

See also
● “MobiLink user authentication utility (mluser)” on page 690

ml_user

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 737

738

MobiLink data mappings between remote and
consolidated databases

Contents
Adaptive Server Enterprise data mapping ... 740
IBM DB2 LUW data mapping .. 749
IBM DB2 mainframe data mapping ... 756
Microsoft SQL Server data mapping ... 767
MySQL data mapping .. 774
Oracle data mapping ... 779

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 739

Adaptive Server Enterprise data mapping
Mapping to Adaptive Server Enterprise consolidated data types

The following table identifies how SQL Anywhere and UltraLite remote data types are mapped to Adaptive
Server Enterprise consolidated data types. For example, a column of type FLOAT on the remote database
should be type REAL on the consolidated database.

Maximum column length (MCL) depends on the Adaptive Server Enterprise page size. If the page size is
2K the MCL is 1954; if the page size is 4K the MCL is 4002. For information about MCL, see the Adaptive
Server Enterprise documentation.

SQL Anywhere or UltraLite
data type

Adaptive Server En-
terprise data type

Notes

BIGINT NUMERIC(20)1 or
BIGINT2

BIT BIT

BINARY(n=<MCL) BINARY(n)

BINARY(n>MCL) IMAGE

CHAR(n=<MCL) VARCHAR(n)

CHAR(n>MCL) TEXT On download, ensure the values are not too
long.

DATE DATE3 or DATE-
TIME4

For Adaptive Server Enterprise DATETIME,
the year must be in the range 1753-9999.

For SQL Anywhere and UltraLite, the time
value must in the format 00:00:00.

MobiLink data mappings between remote and consolidated databases

740 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL Anywhere or UltraLite
data type

Adaptive Server En-
terprise data type

Notes

DATETIME DATETIME The Adaptive Server Enterprise DATETIME
values are accurate to 1/300 second. The last
digit of the fractional second is always 0, 3, or
6. Other digits are rounded to one of these
three digits, so 0 and 1 round to 0; 2, 3, and 4
round to 3; 5, 6, 7, and 8 round to 6; and 9
rounds to 10.

For download, SQL Anywhere keeps the orig-
inal values from Adaptive Server Enterprise,
but for upload, the values may not be exactly
the original values.

If DATETIME is used for a primary key, con-
flict resolution may fail. To successfully syn-
chronize DATETIME, you should round the
fractional second to 10 milliseconds. Also, the
year must be in the range 1753-9999.

DECIMAL(p<39, s) DECIMAL(p,s) The precision of the Adaptive Server Enter-
prise NUMERIC can be from 1 to 38 digits
(p<39).

DECIMAL(p>=39,s) There is no corresponding data type in Adap-
tive Server Enterprise.

DOUBLE DOUBLE PRECI-
SION

FLOAT(p) FLOAT(p)

IMAGE IMAGE

INTEGER INTEGER

LONG BINARY IMAGE

LONG NVARCHAR UNITEXT

LONG VARBIT TEXT

LONG VARCHAR TEXT

MONEY MONEY

NCHAR(c=<MCL) UNIVARCHAR(c/2)

Adaptive Server Enterprise data mapping

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 741

SQL Anywhere or UltraLite
data type

Adaptive Server En-
terprise data type

Notes

NCHAR(c>MCL) UNITEXT On download, ensure the values are not too
long.

NTEXT UNITEXT

NUMERIC(p<39,s) NUMERIC(p,s) The precision of the Adaptive Server Enter-
prise decimal can be from 1 to 38 digits
(p<39).

NUMERIC(p>=39,s)

NVARCHAR(c=<MCL) UNIVARCHAR(c/2)

NVARCHAR(c>MCL) UNITEXT On download, ensure the values are not too
long.

REAL REAL

SMALLDATETIME DATETIME4 SQL Anywhere and UltraLite SMALLDA-
TETIME is implemented as TIMESTAMP.

The Adaptive Server Enterprise DATETIME
is accurate to the minute. 29.998 seconds or
lower are rounded down to the nearest minute;
values with 29.999 seconds or higher are roun-
ded up to the nearest minute. SQL Anywhere
or UltraLite SMALLDATETIME is accurate
to the microsecond. To successfully synchron-
ize, SQL Anywhere or UltraLite SMALLDA-
TETIME must be rounded to the minute. Also,
the year must be in the range 1753-9999.

SMALLINT SMALLINT

SMALLMONEY SMALLMONEY

TEXT TEXT

MobiLink data mappings between remote and consolidated databases

742 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL Anywhere or UltraLite
data type

Adaptive Server En-
terprise data type

Notes

TIME TIME3 or DATE-
TIME4

The Adaptive Server Enterprise TIME values
are accurate to 1/300 second. The last digit of
the fractional second is always 0, 3, or 6. Other
digits are rounded to one of these three digits,
so 0 and 1 round to 0; 2, 3, and 4 round to 3;
5, 6, 7, and 8 round to 6; and 9 rounds to 10.
For download, SQL Anywhere keeps the orig-
inal values from Adaptive Server Enterprise,
but for upload, the values may not be exactly
the original values. If TIME is used for a pri-
mary key, conflict resolution may fail. To suc-
cessfully synchronize TIME, you should
round the fractional second to 10 milliseconds.

TIMESTAMP DATETIME The Adaptive Server Enterprise DATETIME
values are accurate to 1/300 second. The last
digit of the fractional second is always 0, 3, or
6. Other digits are rounded to one of these
three digits, so, 0 and 1 round to 0; 2, 3, and 4
round to 3; 5, 6, 7, and 8 round to 6; and 9
rounds to 10.

For download, SQL Anywhere keeps the orig-
inal values from Adaptive Server Enterprise,
but for upload, the values may not be exactly
the original values.

If DATETIME is used for a primary key, con-
flict resolution may fail. To successfully syn-
chronize DATETIME, you should round the
fractional second to 10 milliseconds. Also, the
year must be in the range 1753-9999.

TINYINT TINYINT

UNIQUEIDENTIFIER CHAR(36)

UNIQUEIDENTIFIERSTR CHAR(36) Do not use UNIQUEIDENTIFIERSTR. Use
UNIQUEIDENTIFIER instead.

UNSIGNED BIGINT NUMERIC(20)1 or
UNSIGNED BI-
GINT2

UNSIGNED INTEGER UNSIGNED INT

Adaptive Server Enterprise data mapping

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 743

SQL Anywhere or UltraLite
data type

Adaptive Server En-
terprise data type

Notes

UNSIGNED SMALLINT UNSIGNED
SMALLINT

UNSIGNED TINYINT TINYINT

VARBINARY(n=<MCL) VARBINARY

VARBINARY(n>MCL) IMAGE

VARBIT(n=<MCL) VARCHAR(n)

VARBIT(n>MCL) TEXT

VARCHAR(n=<MCL) VARCHAR(n)

VARCHAR(n>MCL) TEXT

XML TEXT

1 Only applies to Adaptive Server Enterprise before version 15.0.
2 Only applies to Adaptive Server Enterprise version 15.0 or later.
3 Only applies to Adaptive Server Enterprise version 12.5.1 or later.
4 Only applies to Adaptive Server Enterprise before version 12.5.1.

Mapping to SQL Anywhere or UltraLite remote data types
The following table identifies how Adaptive Server Enterprise consolidated data types are mapped to SQL
Anywhere and UltraLite remote data types. For example, a column of type DOUBLE PRECISION on the
consolidated database should be type DOUBLE on the remote database.

Adaptive Server Enterprise
data type

SQL Anywhere or Ul-
traLite data type

Notes

BIGINT1 BIGINT

BINARY(n) BINARY(n)

BIT BIT

MobiLink data mappings between remote and consolidated databases

744 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Adaptive Server Enterprise
data type

SQL Anywhere or Ul-
traLite data type

Notes

CHAR(n) VARCHAR(n) There is no equivalence between SQL Any-
where CHAR/NCHAR and Adaptive Server
Enterprise CHAR/NCHAR. SQL Anywhere
CHAR/NCHAR is equivalent to VARCHAR/
NVARCHAR. You should not use CHAR/
NCHAR in a consolidated database column
that is synchronized. If you must use non-SQL
Anywhere CHAR/NCHAR, run the Mobi-
Link server with the -b option.

DATE DATE For SQL Anywhere and UltraLite, the time
value must in the format 00:00:00.

DATETIME DATETIME The Adaptive Server Enterprise DATETIME
values are accurate to 1/300 second. The last
digit of the fractional second is always one of
0, 3, or 6. Other digit numbers are rounded to
one of these three digits, so 0 and 1 round to
0; 2, 3, and 4 round to 3; 5, 6, 7, and 8 round
to 6; and 9 rounds to 10.

For download, SQL Anywhere keeps the orig-
inal values from Adaptive Server Enterprise,
but for upload, the values may not be exactly
the original values. Conflict resolution may
fail. To successfully synchronize DATE-
TIME, you should round the fractional second
to 10 milliseconds. Also, the year must be in
the range 1753-9999.

DECIMAL(p,s) DECIMAL(p,s)

DOUBLE PRECISION DOUBLE

FLOAT(p) FLOAT(p)

IMAGE LONG BINARY

INT INT

MONEY MONEY

Adaptive Server Enterprise data mapping

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 745

Adaptive Server Enterprise
data type

SQL Anywhere or Ul-
traLite data type

Notes

NCHAR(n) VARCHAR(n) The Adaptive Server Enterprise NCHAR and
NVARCHAR store multibyte national char-
acter strings, they are different from SQL
Anywhere NCHAR and NVARCHAR. In a
multibyte environment, use SQL Anywhere or
UltraLite VARCHAR.

NUMERIC(p,s) NUMERIC(p,s)

NVARCHAR(n) VARCHAR(n) The Adaptive Server Enterprise NCHAR and
NVARCHAR store multibyte national char-
acter strings, they are different from SQL
Anywhere NCHAR and NVARCHAR. In a
multibyte environment, use SQL Anywhere or
UltraLite VARCHAR.

REAL REAL

SMALLDATETIME SMALLDATETIME SQL Anywhere and UltraLite SMALLDA-
TETIME is implemented as TIMESTAMP.

The Adaptive Server Enterprise SMALLDA-
TETIME is accurate to the minute. 29.998
seconds or lower are rounded down to the
nearest minute; values with 29.999 seconds or
higher are rounded up to the nearest minute.
SQL Anywhere or UltraLite SMALLDATE-
TIME is accurate to the microsecond. To suc-
cessfully synchronize, SQL Anywhere or Ul-
traLite SMALLDATETIME must be rounded
to the minute. Also, the year must be in the
range 1900-2078.

SMALLINT SMALLINT

SMALLMONEY SMALLMONEY

TEXT LONG VARCHAR

MobiLink data mappings between remote and consolidated databases

746 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Adaptive Server Enterprise
data type

SQL Anywhere or Ul-
traLite data type

Notes

TIME TIME The Adaptive Server Enterprise TIME values
are accurate to 1/300 second. The last digit of
the fractional second is always one of 0, 3, or
6. Other digit numbers are rounded to one of
these three digits, so 0 and 1 round to 0; 2, 3,
and 4 round to 3; 5, 6, 7, and 8 round to 6; and
9 rounds to 10.

For download, SQL Anywhere keeps the orig-
inal values from Adaptive Server Enterprise,
but for upload, the values may not be exactly
the original values. Conflict resolution may
fail. To successfully synchronize TIME, it is
recommended that you round the fractional
second to 10 milliseconds.

TIMESTAMP VARBINARY(8) Within Adaptive Server Enterprise, TIME-
STAMP is a binary counter that gets incre-
mented with every change to a row. So, each
table can only contain one TIMESTAMP col-
umn and it does not make sense to synchronize
it. If it must be a in synchronization, map it to
a VARBINARY(8) data type in SQL Any-
where or UltraLite.

This TIMESTAMP column cannot be explic-
itly inserted or updated, because it is main-
tained by the server. Keep this in mind when
you are implementing upload scripts for tables
that contain such columns.

TINYINT TINYINT

UNSIGNED BIGINT1 UNSIGNED BIGINT

UNSIGNED INT1 UNSIGNED INT

UNSIGNED SMALLINT1 UNSIGNED
SMALLINT

VARBINARY(n) VARBINARY(n)

VARCHAR(n) VARCHAR(n)

UNICHAR(n) NVARCHAR(n) Not available in UltraLite.

Adaptive Server Enterprise data mapping

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 747

Adaptive Server Enterprise
data type

SQL Anywhere or Ul-
traLite data type

Notes

UNITEXT1 LONG NVARCHAR Not available in UltraLite.

UNIVARCHAR(n) NVARCHAR(n) Not available in UltraLite.

1 Only applies to Adaptive Server Enterprise before version 15.0.

MobiLink data mappings between remote and consolidated databases

748 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

IBM DB2 LUW data mapping
Mapping to IBM DB2 LUW consolidated data types

The following table identifies how SQL Anywhere and UltraLite remote data types are mapped to IBM DB2
LUW consolidated data types. For example, a column of type BIT on the remote database should be type
SMALLINT on the consolidated database.

When creating a DB2 table, you need to pay attention to the DB2 page size. DB2 has a maximum row length
(MRL) based on the page size: the MRL is 4005 when the page size is 4K, 8101 when 8K, 16293 when 16K
and 32677 when 32K. The length of all columns in a table can't exceed the above limitation. If a table has
a BLOB or CLOB column, you count row length using the LOB locator, not BLOB or CLOB data directly.
For details, see the DB2 documentation.

SQL Anywhere or UltraLite
data type

IBM DB2 LUW data
type

Notes

BIGINT BIGINT

BINARY(n<MRL) VARCHAR(n) FOR
BIT DATA

BINARY(n>=MRL) BLOB(n)

BIT SMALLINT

CHAR(n<MRL) VARCHAR(n)

CHAR(n>=MRL) CLOB(n) DB2 values can be longer than SQL Anywhere
or UltraLite values, so make sure values are
not too big when downloading.

DATE DATE For SQL Anywhere and UltraLite, the time
value must in the format 00:00:00.

DATETIME TIMESTAMP

DECIMAL(p<32,s) DECIMAL(p,s) The precision of SQL Anywhere DECIMAL
is between 1 and 127. The maximum precision
of DB2 DECIMAL is 31.

DECIMAL(p>=32,s) Any data of SQL Anywhere DECIMAL pre-
cision greater than 31 cannot be synchronized
to DB2.

IBM DB2 LUW data mapping

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 749

SQL Anywhere or UltraLite
data type

IBM DB2 LUW data
type

Notes

DOUBLE DOUBLE DOUBLE is an imprecise numeric data type
that is subject to rounding. When working
with different types of computers, the under-
lying storage of DOUBLE is often different,
resulting in different rounding. DOUBLE is a
bad choice to use in a primary key because
primary keys are looking for equality. This is
especially true in a synchronization environ-
ment because the consolidated database often
runs on different hardware from the remote
database.

FLOAT(1-24) REAL FLOAT can cause problems if the consolida-
ted and remote databases don't allow the exact
same (imprecise) values. We do not test all
possible values, so care must be taken. To
avoid problems, do not use these types as part
of a primary key.

FLOAT(25-53) DOUBLE FLOAT can cause problems if the consolida-
ted and remote databases don't allow the exact
same (imprecise) values. We do not test all
possible values, so care must be taken. To
avoid problems, do not use these types as part
of a primary key.

IMAGE BLOB(n)

INTEGER INTEGER

LONG BINARY BLOB(n)

LONG NVARCHAR CLOB(n) There is no corresponding data type in DB2.
If the DB2 character set is Unicode, SQL Any-
where LONG NVARCHAR can synchronize
to DB2 CLOB. UltraLite doesn't have LONG
NVARCHAR.

LONG VARBIT CLOB(n)

LONG VARCHAR CLOB(n)

MONEY DECIMAL(19,4)

MobiLink data mappings between remote and consolidated databases

750 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL Anywhere or UltraLite
data type

IBM DB2 LUW data
type

Notes

NCHAR(c) VARCHAR(n) or
CLOB(n)

There is no corresponding data type in DB2.
If the DB2 character set is Unicode, NCHAR
can synchronize to DB2 VARCHAR or
CLOB. The size of SQL Anywhere NCHAR
is characters and the size of DB2 VARCHAR
is bytes. If you map to VARCHAR, the total
bytes of NCHAR can not be bigger than MRL.
Otherwise, NCHAR should map to CLOB. It
is difficult to calculate the number of bytes in
NCHAR(c), but it is approximately c=n/4. In
general, if c is less than MRL/4, map to VAR-
CHAR(n), but if c is greater than or equal to
MRL/4, map to CLOB(n).

NUMERIC(p<32,s) NUMERIC(p,s)

NUMERIC(p>=32,s) There is no corresponding data type in DB2.

NTEXT CLOB(n) There is no corresponding data type in DB2.
If the DB2 character set is Unicode, NTEXT
can synchronize to DB2 CLOB.

NVARCHAR(c) VARCHAR(n) or
CLOB(n)

There is no corresponding data type in DB2.
If the DB2 character set is Unicode,
NVARCHAR can synchronize to DB2 VAR-
CHAR or CLOB. The size of SQL Anywhere
NVARCHAR is characters and the size of
DB2 VARCHAR is bytes. If you map to VAR-
CHAR, the total bytes of NVARCHAR can
not be bigger than MRL. Otherwise,
NVARCHAR should map to CLOB. It is dif-
ficult to calculate the number of bytes in
NVARCHAR(c), but it is approximately c=n/
4. In general, if c is less than MRL/4, map to
VARCHAR(n), but if c is greater than or equal
to MRL/4, map to CLOB(n).

REAL REAL REAL can cause problems if the consolidated
and remote databases don't allow the exact
same (imprecise) values. We do not test all
possible values, so care must be taken. To
avoid problems, do not use these types as part
of a primary key.

SMALLDATETIME TIMESTAMP

IBM DB2 LUW data mapping

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 751

SQL Anywhere or UltraLite
data type

IBM DB2 LUW data
type

Notes

SMALLINT SMALLINT

SMALLMONEY DECIMAL(10,4)

TEXT CLOB(n)

TIME TIMESTAMP or
TIME

SQL Anywhere and UltraLite TIME values
with fractional seconds require DB2 TIME-
STAMP. SQL Anywhere and UltraLite time
values with fractional seconds that are always
zero can use DB2 TIME.

TIMESTAMP TIMESTAMP

TINYINT SMALLINT For download, DB2 values must be non-neg-
ative.

UNIQUEIDENTIFIER CHAR(36)

UNIQUEIDENTIFIERSTR CHAR(36) UNIQUEIDENTIFIERSTR is not recommen-
ded for DB2. Use UNIQUEIDENTIFIER in-
stead.

UNSIGNED BIGINT DECIMAL(20) For download, DB2 values must be non-neg-
ative.

UNSIGNED INTEGER DECIMAL(11) For download, DB2 values must be non-neg-
ative.

UNSIGNED SMALLINT DECIMAL(5) For download, DB2 values must be non-neg-
ative.

UNSIGNED TINYINT SMALLINT For download, DB2 values must be non-neg-
ative.

VARBINARY(n<MRL) VARCHAR(n) FOR
BIT DATA

VARBINARY(n>=MRL) BLOB(n)

VARBIT(n<MRL) VARCHAR(n)

VARBIT(n>=MRL) CLOB(n)

VARCHAR(n<MRL) VARCHAR(n)

MobiLink data mappings between remote and consolidated databases

752 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL Anywhere or UltraLite
data type

IBM DB2 LUW data
type

Notes

VARCHAR(n>=MRL) CLOB(n) DB2 values can be longer than SQL Anywhere
or UltraLite values, so make sure values are
not too big when downloading.

XML CLOB(n)

Mapping to SQL Anywhere or UltraLite remote data types
The following table identifies how IBM DB2 LUW consolidated data types are mapped to SQL Anywhere
and UltraLite remote data types. For example, a column of type INT on the consolidated database should be
type INTEGER on the remote database.

When creating a DB2 table, you need to pay attention to the DB2 page size. DB2 has a maximum row length
based on the page size: the MRL is 4005 when the page size is 4K, 8101 when 8K, 16293 when 16K and
32677 when 32K. The length of all columns in a table can't exceed the above limitation. If a table has a
BLOB or CLOB column, you count row length using the LOB locator, not BLOB or CLOB data directly.
For details, see the DB2 documentation.

IBM DB2 LUW data type SQL Anywhere or Ul-
traLite data type

Notes

BLOB LONG BINARY

BIGINT BIGINT

CHAR(n) VARCHAR(n) There is no equivalent to DB2 CHAR in SQL
Anywhere. You should not use CHAR in a
consolidated database column that is
synchronized. If you must synchronize DB2
CHAR columns, run MobiLink server with the
-b option.

CHAR(n) FOR BIT DATA BINARY(n)

CLOB(n) LONG VARCHAR

DATE DATE For SQL Anywhere and UltraLite, the time
value must in the format 00:00:00.

DBCLOB(n) LONG VARCHAR The data type DBCLOB(n) is only used for
double-byte characters. SQL Anywhere does
not have a corresponding data type. When the
DB2 character set is Unicode, DBCLOB(n) is
equivalent to CLOB.

DECIMAL(p,s) DECIMAL(p,s)

IBM DB2 LUW data mapping

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 753

IBM DB2 LUW data type SQL Anywhere or Ul-
traLite data type

Notes

DOUBLE DOUBLE DOUBLE is an imprecise numeric data type
that is subject to rounding. When working
with different types of computers, the under-
lying storage of DOUBLE is often different,
resulting in different rounding. DOUBLE is a
bad choice to use in a primary key because
primary keys are looking for equality. This is
especially true in a synchronization environ-
ment because the consolidated database often
runs on different hardware from the remote
database.

FLOAT DOUBLE FLOAT can cause problems if the consolida-
ted and remote databases don't allow the exact
same (imprecise) values. We do not test all
possible values, so care must be taken. To
avoid problems, do not use these types as part
of a primary key.

GRAPHIC(n) VARCHAR(2n) DB2 GRAPHIC does blank-padding, but SQL
Anywhere CHAR does not. We recommend
that you do not use this data type.

The data type GRAPHIC is only used for dou-
ble-byte characters. SQL Anywhere does not
have a corresponding data type. When the
DB2 character set is Unicode, GRAPHIC is
equivalent to CHAR.

INT INTEGER

LONG VARCHAR VARCHAR(32700)

LONG VARCHAR FOR BIT
DATA

VARBINA-
RY(32700)

LONG VARGRAPHIC(n) VARCHAR(32700) The data type LONG VARGRAPHIC is only
used for double-byte characters. SQL Any-
where does not have a corresponding data
type. When the DB2 character set is Unicode,
LONG VARGRAPHIC is equivalent LONG
VARCHAR.

NUMERIC(p,s) NUMERIC(p,s)

MobiLink data mappings between remote and consolidated databases

754 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

IBM DB2 LUW data type SQL Anywhere or Ul-
traLite data type

Notes

REAL REAL REAL can cause problems if the consolidated
and remote databases don't allow the exact
same (imprecise) values. We do not test all
possible values, so care must be taken. To
avoid problems, do not use these types as part
of a primary key.

SMALLINT SMALLINT

TIME TIME The fractional seconds values from SQL Any-
where TIME values are truncated on down-
load. To avoid problems, do not use fractional
seconds.

TIMESTAMP TIMESTAMP

VARCHAR(n) VARCHAR(n)

VARCHAR(n) FOR BIT DA-
TA

VARBINARY(n)

VARGRAPHIC(n) VARCHAR(2n) The data type VARGRAPHIC is only used for
double-byte characters. SQL Anywhere does
not have a corresponding data type. When the
DB2 character set is Unicode, VARGRAPH-
IC is equivalent to VARCHAR.

IBM DB2 LUW data mapping

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 755

IBM DB2 mainframe data mapping
Mapping to DB2 mainframe consolidated data types

The following table identifies how SQL Anywhere and UltraLite remote data types are mapped to DB2
mainframe consolidated data types. For example, a column of type BIT on the remote database should be
type SMALLINT on the consolidated database.

SQL Anywhere or UltraLite
data type

IBM DB2 mainframe
data type

Notes

BIGINT DECIMAL(20)

BINARY(n<MRL) VARCHAR(n) FOR
BIT DATA

When creating a DB2 table, you need to pay
attention to the DB2 page size. DB2 has a
maximum row length based on the page size:
the MRL is 4005 when the page size is 4K,
8101 when 8K, 16293 when 16K and 32677
when 32K. The length of all columns in a table
can't exceed the above limitation. If a table has
a BLOB or CLOB column, you count row
length using the LOB locator, not BLOB or
CLOB data directly. For details, see the DB2
documentation.

BINARY(n>=MRL) BLOB(n) When creating a DB2 table, you need to pay
attention to the DB2 page size. DB2 has a
maximum row length based on the page size:
the MRL is 4005 when the page size is 4K,
8101 when 8K, 16293 when 16K and 32677
when 32K. The length of all columns in a table
can't exceed the above limitation. If a table has
a BLOB or CLOB column, you count row
length using the LOB locator, not BLOB or
CLOB data directly. For details, see the DB2
documentation.

BIT SMALLINT

MobiLink data mappings between remote and consolidated databases

756 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL Anywhere or UltraLite
data type

IBM DB2 mainframe
data type

Notes

CHAR(n<MRL) VARCHAR(n) MRL is DB2 maximum row length.

DB2 VARCHAR can only hold up to 32672
bytes depending on page size.

DB2 has a maximum row length (MRL) based
on the page size: the MRL is 4005 when the
page size is 4K, 8101 when 8K, 16293 when
16K and 32677 when 32K. For details, see
your DB2 documentation.

SQL Anywhere CHAR is identical to SQL
Anywhere VARCHAR.

CHAR(n>=MRL) CLOB(n) DB2 has a maximum row length (MRL) based
on the page size: the MRL is 4005 when the
page size is 4K, 8101 when 8K, 16293 when
16K and 32677 when 32K. For details, see
your DB2 documentation.

SQL Anywhere CHAR is identical to SQL
Anywhere VARCHAR.

DB2 CLOB values can be longer than SQL
Anywhere or UltraLite values. You must
make sure that downloaded values are not too
big.

DATE DATE For SQL Anywhere and UltraLite, the time
value must in the format 00:00:00.

DATETIME TIMESTAMP

DECIMAL(p<32,s) DECIMAL(p,s) The precision of SQL Anywhere DECIMAL
is between 1 and 127. The maximum precision
of DB2 DECIMAL is 31. Any data of SQL
Anywhere DECIMAL precision greater than
31 cannot be synchronized to DB2.

DECIMAL(p>=32,s) Any data of SQL Anywhere DECIMAL pre-
cision greater than 31 cannot be synchronized
to DB2.

IBM DB2 mainframe data mapping

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 757

SQL Anywhere or UltraLite
data type

IBM DB2 mainframe
data type

Notes

DOUBLE DOUBLE DOUBLE can cause problems if the consoli-
dated and remote databases do not allow the
exact same (imprecise) values. We do not test
all possible values, so care must be taken. To
avoid problems, do not use these types as part
of a primary key.

To successfully synchronize, SQL Anywhere/
UltraLite DOUBLE values must be within the
DB2 mainframe DOUBLE value range.

FLOAT(1-24) REAL FLOAT can cause problems if the consolida-
ted and remote databases do not allow the ex-
act same (imprecise) values. We do not test all
possible values, so care must be taken. To
avoid problems, do not use these types as part
of a primary key.

To successfully synchronize, DB2 mainframe
REAL values must be within the SQL Any-
where/UltraLite REAL value range.

FLOAT(25-53) DOUBLE FLOAT can cause problems if the consolida-
ted and remote databases do not allow the ex-
act same (imprecise) values. We do not test all
possible values, so care must be taken. To
avoid problems, do not use these types as part
of a primary key.

To successfully synchronize, SQL Anywhere/
UltraLite DOUBLE values must be within the
DB2 mainframe DOUBLE value range.

IMAGE BLOB(n)

INTEGER INTEGER

LONG BINARY BLOB(n)

LONG NVARCHAR CLOB(n) There is no corresponding data type in DB2.
If the DB2 character set is Unicode, SQL Any-
where long NVARCHAR can synchronize to
DB2 CLOB. UltraLite does not have LONG
NVARCHAR.

LONG VARBIT BLOB(n)

MobiLink data mappings between remote and consolidated databases

758 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL Anywhere or UltraLite
data type

IBM DB2 mainframe
data type

Notes

LONG VARCHAR CLOB(n)

MONEY DECIMAL(19,4)

NCHAR(c) VARCHAR(n) or
CLOB(n)

SQL Anywhere NCHAR is identical to SQL
Anywhere NVARCHAR.

There is no corresponding data type in DB2.
If the DB2 character set is Unicode, NCHAR
can synchronize to DB2 VARCHAR or
CLOB. The size of SQL Anywhere NCHAR
is characters and the size of DB2 VARCHAR
is bytes. If you map to VARCHAR, the total
bytes of NCHAR cannot be bigger than MRL.
Otherwise, NCHAR should map to CLOB. It
is difficult to calculate the many bytes in
NCHAR(c), but it is approximately c=n/4. In
general, if c is less than MRL/4, map to VAR-
CHAR(n), but if c is greater than or equal to
MRL/4, map to CLOB(n).

NTEXT CLOB(n) SQL Anywhere NTEXT is identical to SQL
Anywhere LONG NVARCHAR.

There is no corresponding data type in DB2.
If the DB2 character set is Unicode, NCHAR
can synchronize to DB2 VARCHAR or
CLOB. The size of SQL Anywhere NCHAR
is characters and the size of DB2 VARCHAR
is bytes. If you map to VARCHAR, the total
bytes of NCHAR cannot be bigger than MRL.
Otherwise, NCHAR should map to CLOB. It
is difficult to calculate the many bytes in
NCHAR(c), but it is approximately c=n/4. In
general, if c is less than MRL/4, map to VAR-
CHAR(n), but if c is greater than or equal to
MRL/4, map to CLOB(n).

NUMERIC(p<32,s) NUMERIC(p,s)

NUMERIC(p>=32,s) There is no corresponding data type in DB2.

IBM DB2 mainframe data mapping

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 759

SQL Anywhere or UltraLite
data type

IBM DB2 mainframe
data type

Notes

NVARCHAR(c) VARCHAR(n) or
CLOB(n)

There is no corresponding data type in DB2.
If the DB2 character set is Unicode, NCHAR
can synchronize to DB2 VARCHAR or
CLOB. The size of SQL Anywhere NCHAR
is characters and the size of DB2 VARCHAR
is bytes. If you map to VARCHAR, the total
bytes of NCHAR cannot be bigger than MRL.
Otherwise, NCHAR should map to CLOB. It
is difficult to calculate the many bytes in
NCHAR(c), but it is approximately c=n/4. In
general, if c is less than MRL/4, map to VAR-
CHAR(n), but if c is greater than or equal to
MRL/4, map to CLOB(n).

REAL REAL REAL can cause problems if the consolidated
and remote databases do not allow the exact
same (imprecise) values. We do not test all
possible values, so care must be taken. To
avoid problems, do not use these types as part
of a primary key.

To successfully synchronize, DB2 mainframe
REAL values must be within the SQL Any-
where/UltraLite REAL value range.

SMALLDATETIME TIMESTAMP

SMALLINT SMALLINT

SMALLMONEY DECIMAL(10,4)

TEXT CLOB(n) SQL Anywhere TEXT is identical to SQL
Anywhere LONG VARCHAR.

TIME TIMESTAMP or
TIME

SQL Anywhere and UltraLite TIME values
with fractional seconds require DB2 TIME-
STAMP. SQL Anywhere and UltraLite time
values with fractional seconds that are always
zero can use DB2 TIME.

TIMESTAMP TIMESTAMP

TINYINT SMALLINT

UNIQUEIDENTIFIER CHAR(36)

MobiLink data mappings between remote and consolidated databases

760 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL Anywhere or UltraLite
data type

IBM DB2 mainframe
data type

Notes

UNIQUEIDENTIFIERSTR CHAR(36) UNIQUEIDENTIFIERSTR is not recommen-
ded for DB2. Use UNIQUEIDENTIFIER in-
stead.

UNSIGNED BIGINT DECIMAL(20) DB2 values must be non-negative.

UNSIGNED INTEGER DECIMAL(11) DB2 values must be non-negative.

UNSIGNED SMALLINT DECIMAL(5) DB2 values must be non-negative.

UNSIGNED TINYINT SMALLINT DB2 values must be non-negative.

VARBINARY(n<MRL) VARCHAR(n) FOR
BIT DATA

When creating a DB2 table, you need to pay
attention to the DB2 page size. DB2 has a
maximum row length based on the page size:
the MRL is 4005 when the page size is 4K,
8101 when 8K, 16293 when 16K and 32677
when 32K. The length of all columns in a table
can't exceed the above limitation. If a table has
a BLOB or CLOB column, you count row
length using the LOB locator, not BLOB or
CLOB data directly. For details, see the DB2
documentation.

VARBINARY(n>=MRL) BLOB(n) When creating a DB2 table, you need to pay
attention to the DB2 page size. DB2 has a
maximum row length based on the page size:
the MRL is 4005 when the page size is 4K,
8101 when 8K, 16293 when 16K and 32677
when 32K. The length of all columns in a table
can't exceed the above limitation. If a table has
a BLOB or CLOB column, you count row
length using the LOB locator, not BLOB or
CLOB data directly. For details, see the DB2
documentation.

IBM DB2 mainframe data mapping

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 761

SQL Anywhere or UltraLite
data type

IBM DB2 mainframe
data type

Notes

VARBIT(n<MRL) VARCHAR(n) When creating a DB2 table, you need to pay
attention to the DB2 page size. DB2 has a
maximum row length based on the page size:
the MRL is 4005 when the page size is 4K,
8101 when 8K, 16293 when 16K and 32677
when 32K. The length of all columns in a table
can't exceed the above limitation. If a table has
a BLOB or CLOB column, you count row
length using the LOB locator, not BLOB or
CLOB data directly. For details, see the DB2
documentation.

VARBIT(n>=MRL) CLOB(n) When creating a DB2 table, you need to pay
attention to the DB2 page size. DB2 has a
maximum row length based on the page size:
the MRL is 4005 when the page size is 4K,
8101 when 8K, 16293 when 16K and 32677
when 32K. The length of all columns in a table
can't exceed the above limitation. If a table has
a BLOB or CLOB column, you count row
length using the LOB locator, not BLOB or
CLOB data directly. For details, see the DB2
documentation.

VARCHAR(n<MRL) VARCHAR(n) DB2 VARCHAR can only hold up to 32672
bytes, depending on page size.

DB2 has a maximum row length (MRL) based
on the page size: the MRL is 4005 when the
page size is 4K, 8101 when 8K, 16293 when
16K and 32677 when 32K. For details, see
your DB2 documentation.

SQL Anywhere CHAR is identical to SQL
Anywhere VARCHAR.

MobiLink data mappings between remote and consolidated databases

762 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL Anywhere or UltraLite
data type

IBM DB2 mainframe
data type

Notes

VARCHAR(n>=MRL) CLOB(n) DB2 has a maximum row length (MRL) based
on the page size: the MRL is 4005 when the
page size is 4K, 8101 when 8K, 16293 when
16K and 32677 when 32K. For details, see
your DB2 documentation.

SQL Anywhere CHAR is identical to SQL
Anywhere VARCHAR.

DB2 CLOB values can be longer than SQL
Anywhere or UltraLite values. You must
make sure that downloaded values are not too
big.

XML CLOB(n) SQL Anywhere XML is identical to SQL Any-
where LONG VARCHAR.

Mapping to SQL Anywhere or UltraLite remote data types
The following table identifies how DB2 mainframe consolidated data types are mapped to SQL Anywhere
and UltraLite remote data types. For example, a column of type INT on the consolidated database should be
type INTEGER on the remote database.

IBM DB2 mainframe data
type

SQL Anywhere or Ultra-
Lite data type

Notes

BLOB LONG BINARY

CHAR(n) VARCHAR(n) There is no equivalent to DB2 CHAR in
SQL Anywhere. You should not use CHAR
in a consolidated database column that is
synchronized. If you must synchronize DB2
CHAR columns, run MobiLink server with
the -b option.

CHAR(n) FOR BIT DATA BINARY(n) There is no equivalent to DB2 CHAR in
SQL Anywhere. You should not use CHAR
in a consolidated database column that is
synchronized. If you must synchronize DB2
CHAR columns, run MobiLink server with
the -b option.

CLOB(n) LONG VARCHAR

DATE DATE For SQL Anywhere and UltraLite, the time
value must in the format 00:00:00.

IBM DB2 mainframe data mapping

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 763

IBM DB2 mainframe data
type

SQL Anywhere or Ultra-
Lite data type

Notes

DBCLOB(n) LONG VARCHAR The data type DBCLOB(n) is only used for
double-byte characters. SQL Anywhere
does not have a corresponding data type.
When the DB2 character set is Unicode,
DBCLOB(n) is equivalent to CLOB.

DECIMAL(p,s) DECIMAL(p,s)

DOUBLE DOUBLE DOUBLE can cause problems if the con-
solidated and remote databases don't allow
the exact same (imprecise) values. We do
not test all possible values, so care must be
taken. To avoid problems, do not use these
types as part of a primary key.

To successfully synchronize, SQL Any-
where/UltraLite DOUBLE values must be
within the DB2 DOUBLE value range.

FLOAT DOUBLE FLOAT can cause problems if the consoli-
dated and remote databases don't allow the
exact same (imprecise) values. We do not
test all possible values, so care must be tak-
en. To avoid problems, do not use these
types as part of a primary key.

To successfully synchronize, SQL Any-
where/UltraLite DOUBLE values must be
within the DB2 DOUBLE value range.

GRAPHIC(n) VARCHAR(2n) DB2 GRAPHIC does blank-padding. There
is no equivalent to DB2 GRAPHIC in SQL
Anywhere. You should not use GRAPHIC
in a consolidated database column that is
synchronized.

The data type GRAPHIC is only used for
double-byte characters. SQL Anywhere
does not have a corresponding data type.
When the DB2 character set is Unicode,
GRAPHIC is equivalent to CHAR.

INT INTEGER

NUMERIC(p,s) NUMERIC(p,s)

MobiLink data mappings between remote and consolidated databases

764 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

IBM DB2 mainframe data
type

SQL Anywhere or Ultra-
Lite data type

Notes

REAL DOUBLE REAL can cause problems if the consolida-
ted and remote databases don't allow the
exact same (imprecise) values. We do not
test all possible values, so care must be tak-
en. To avoid problems, do not use these
types as part of a primary key.

On DB2 mainframe, REAL, DOUBLE and
FLOAT have the same range, between
-7.2E+75 and 7.2E+75. The largest nega-
tive value is about -5.4E-79, and the small-
est positive value is about 5.4E-79. The
range of SA/UL REAL is -3.402823e+38 to
3.402823e+38, and DOUBLE is
2.22507385850721e-308 to
1.79769313486231e+308. To successfully
synchronize, DB2 mainframe REAL must
be in SA/UL REAL range and SA/UL
DOUBLE must be in DB2 mainframe
DOUBLE range.

ROWID There is no corresponding data type in SQL
Anywhere or UltraLite. ROWID is main-
tained by DB2 server. This data type cannot
be synchronized.

SMALLINT SMALLINT

TIME TIME The fractional seconds values from SQL
Anywhere TIME values are truncated on
download. To avoid problems, do not use
fractional seconds.

TIMESTAMP TIMESTAMP

VARCHAR(n) VARCHAR(n)

VARCHAR(n) FOR BIT
DATA

VARBINARY(n)

IBM DB2 mainframe data mapping

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 765

IBM DB2 mainframe data
type

SQL Anywhere or Ultra-
Lite data type

Notes

VARGRAPHIC(n) VARCHAR(2n) The data type VARGRAPHIC is only used
for double-byte characters. SQL Anywhere
does not have a corresponding data type.
When the DB2 character set is Unicode,
VARGRAPHIC is equivalent to VAR-
CHAR.

MobiLink data mappings between remote and consolidated databases

766 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Microsoft SQL Server data mapping
Mapping to Microsoft SQL Server consolidated data types

The following table identifies how SQL Anywhere and UltraLite remote data types are mapped to Microsoft
SQL Server consolidated data types. For example, a column of type DATE on the remote database should
be type DATETIME on the consolidated database.

SQL Anywhere or UltraLite
data type

Microsoft SQL Serv-
er data type

Notes

BIGINT BIGINT

BINARY(n<=8000) VARBINARY(n)

BINARY(n>8000) VARBINA-
RY(MAX)

BIT BIT

CHAR(n<=8000) VARCHAR(n)

CHAR(n>8000) VARCHAR(MAX)

DATE DATE

DATETIME DATETIME2 SQL Server DATETIME2 and TIME values
are accurate to 100 nanoseconds. However,
TIMESTAMP and TIME values are only ac-
curate to 1 microsecond. To successfully syn-
chronize DATETIME2 and TIME, we suggest
you round the fractional second to 1 micro-
second.

DECIMAL(p=<38,s) DECIMAL(p,s) SQL Server DECIMAL/NUMERIC precision
ranges from 1 to 38, so p must be less than 39.

DECIMAL(p>38,s) There is no corresponding data type in SQL
Server.

DOUBLE FLOAT(53)

FLOAT(p) FLOAT(p)

IMAGE VARBINA-
RY(MAX)

INTEGER INT

Microsoft SQL Server data mapping

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 767

SQL Anywhere or UltraLite
data type

Microsoft SQL Serv-
er data type

Notes

LONG BINARY VARBINA-
RY(MAX)

LONG NVARCHAR NVARCHAR(MAX)

LONG VARBIT VARCHAR(MAX)

LONG VARCHAR VARCHAR(MAX)

MONEY MONEY

NCHAR(n<=4000) NVARCHAR(c)

NCHAR(n>4000) NVARCHAR(MAX)

NTEXT NVARCHAR(MAX)

NUMERIC(p=<38,s) NUMERIC(p,s) SQL Server DECIMAL/NUMERIC precision
ranges from 1 to 38, so p must be less than 39.

NUMERIC(p>38,s) There is no corresponding data type in SQL
Server.

NVARCHAR(n<=4000) NVARCHAR(c)

NVARCHAR(n>4000) NVARCHAR(MAX)

REAL REAL

SMALLDATETIME SMALLDATETIME SQL Anywhere and UltraLite SMALLDA-
TETIME is implemented as TIMESTAMP.
SQL Server SMALLDATETIME is accurate
to the minute. 29.998 seconds or lower are
rounded down to the nearest minute; values
with 29.999 seconds or higher are rounded up
to the nearest minute. SQL Anywhere or Ul-
traLite SMALLDATETIME is accurate to the
microsecond. To successfully synchronize,
SQL Anywhere or UltraLite SMALLDATE-
TIME must be rounded to the minute. The year
must be in the range 1900-2078.

SMALLINT SMALLINT

SMALLMONEY SMALLMONEY

MobiLink data mappings between remote and consolidated databases

768 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL Anywhere or UltraLite
data type

Microsoft SQL Serv-
er data type

Notes

TEXT VARCHAR(MAX)

TIME TIME SQL Server DATETIME2 and TIME values
are accurate to 100 nanoseconds. However,
TIMESTAMP and TIME values are only ac-
curate to 1 microsecond. To successfully syn-
chronize DATETIME2 and TIME, we suggest
you round the fractional second to 1 micro-
second.

TIMESTAMP DATETIME2 SQL Server DATETIME2 and TIME values
are accurate to 100 nanoseconds. However,
TIMESTAMP and TIME values are only ac-
curate to 1 microsecond. To successfully syn-
chronize DATETIME2 and TIME, we suggest
you round the fractional second to 1 micro-
second.

TINYINT TINYINT For download, values must be non-negative.

UNIQUEIDENTIFIER UNIQUEIDENTIFI-
ER

UNIQUEIDENTIFIERSTR UNIQUEIDENTIFI-
ER

UNSIGNED BIGINT NUMERIC(20) For download, values must be non-negative.

UNSIGNED INTEGER NUMERIC(11) For download, values must be non-negative.

UNSIGNED TINYINT TINYINT For download, values must be non-negative.

UNSIGNED SMALLINT INT For download, values must be non-negative.

VARBINARY(n<=8000) VARBINARY(n)

VARBINARY(n>8000) VARBINA-
RY(MAX)

VARBIT(n<=8000) VARCHAR(n)

VARBIT(n>8000) VARCHAR(MAX)

VARCHAR(n<=8000) VARCHAR(c)

VARCHAR(n>8000) VARCHAR(MAX)

Microsoft SQL Server data mapping

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 769

SQL Anywhere or UltraLite
data type

Microsoft SQL Serv-
er data type

Notes

XML XML or VAR-
CHAR(MAX)

For SQL Server 2005, use XML. For other
versions, use VARCHAR(MAX).

Mapping to SQL Anywhere or UltraLite remote data types
The following table identifies how Microsoft SQL Server consolidated data types are mapped to SQL
Anywhere and UltraLite remote data types. For example, a column of type TEXT on the remote database
should be type LONG VARCHAR on the consolidated database.

Microsoft SQL Server data
type

SQL Anywhere or Ul-
traLite data type

Notes

BIGINT BIGINT

BINARY(n) BINARY(n)

BIT BIT

CHAR(n) VARCHAR(n) A Microsoft SQL Server CHAR column is
blank padded. A SQL Anywhere CHAR col-
umn is not blank padded by default and is
equivalent to a VARCHAR column. There-
fore, try to avoid using the CHAR data type in
the synchronization tables in Microsoft SQL
Server. If you must use the CHAR data type
in the Microsoft SQL Server consolidated da-
tabase, please run the MobiLink server with
the -b command line option to help resolve the
differences between SQL Anywhere CHAR
and non-SQL Anywhere CHAR.

DATE DATE

MobiLink data mappings between remote and consolidated databases

770 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Microsoft SQL Server data
type

SQL Anywhere or Ul-
traLite data type

Notes

DATETIME TIMESTAMP or DA-
TETIME

SQL Server DATETIME values are accurate
to 1/300 second. The last digit of the fractional
second is always 0, 3, or 6. Other digits are
rounded to one of these three digits, so, 0 and
1 round to 0; 2, 3, and 4 round to 3; 5, 6, 7, and
8 round to 6; and 9 rounds to 10. For download,
SQL Anywhere keeps the original values from
SQL Server, but for upload, the values may not
be exactly the original values. If DATETIME
is used for a primary key, conflict resolution
may fail. To successfully synchronize DATE-
TIME, you should round the fractional second
to 10 milliseconds. The year must be in the
range 1753-9999.

DATETIME2 TIMESTAMP SQL Server DATETIME2 and TIME values
are accurate to 100 nanoseconds. However,
TIMESTAMP and TIME values are only ac-
curate to 1 microsecond. To successfully syn-
chronize DATETIME2 and TIME, we suggest
you round the fractional second to 1 micro-
second.

DECIMAL(p,s) DECIMAL(p,s)

FLOAT(p) FLOAT(p)

IMAGE LONG BINARY

INT INT

MONEY MONEY

NCHAR(n) NVARCHAR(c) Not available in UltraLite.

There is no equivalence between SQL Any-
where NCHAR and non-SQL Anywhere
NCHAR. SQL Anywhere NCHAR is equiva-
lent to NVARCHAR. You should not use
NCHAR in a consolidated database column
that is synchronized. If you must use non-SQL
Anywhere NCHAR, run the MobiLink server
with the -b option.

NTEXT LONG NVARCHAR Not available in UltraLite.

Microsoft SQL Server data mapping

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 771

Microsoft SQL Server data
type

SQL Anywhere or Ul-
traLite data type

Notes

NVARCHAR(c) NVARCHAR(c) Not available in UltraLite.

NVARCHAR(MAX) LONG NVARCHAR

NUMERIC(p,s) NUMERIC(p,s)

REAL REAL REAL can cause problems if the consolidated
and remote databases don't allow the exact
same (imprecise) values. We do not test all
possible values, so care must be taken. To
avoid problems, do not use these types as part
of a primary key.

SMALLDATETIME SMALLDATETIME SQL Anywhere and UltraLite SMALLDA-
TETIME is implemented as TIMESTAMP.
SQL Server SMALLDATETIME is accurate
to the minute. 29.998 seconds or lower are
rounded down to the nearest minute; values
with 29.999 seconds or higher are rounded up
to the nearest minute. SQL Anywhere or Ul-
traLite SMALLDATETIME is accurate to the
microsecond. To successfully synchronize,
SQL Anywhere or UltraLite SMALLDATE-
TIME must be rounded to the minute. The year
must be in the range 1900-2078.

SMALLINT SMALLINT

SMALLMONEY SMALLMONEY

TEXT LONG VARCHAR

TIME TIME SQL Server DATETIME2 and TIME values
are accurate to 100 nanoseconds. However,
TIMESTAMP and TIME values are only ac-
curate to 1 microsecond. To successfully syn-
chronize DATETIME2 and TIME, we suggest
you round the fractional second to 1 micro-
second.

MobiLink data mappings between remote and consolidated databases

772 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Microsoft SQL Server data
type

SQL Anywhere or Ul-
traLite data type

Notes

TIMESTAMP VARBINARY(8) Within Microsoft SQL Server, TIMESTAMP
is a binary counter that gets incremented with
every change to a row. So, each table can only
contain one TIMESTAMP column and it does
not make sense to synchronize it. If it must be
in a synchronization, map it to a VARBINA-
RY(8) data type in SQL Anywhere or Ultra-
Lite.

This timestamp column cannot be explicitly
inserted or updated, because it is maintained
by the server. Keep this in mind when you are
implementing upload scripts for tables that
contain such columns.

TINYINT TINYINT

UNIQUEIDENTIFIER UNIQUEIDENTIFI-
ER

VARBINARY(n) VARBINARY(n)

VARBINARY(MAX) LONG BINARY

VARCHAR(n) VARCHAR(n)

VARCHAR(MAX) LONG VARCHAR

XML XML

Microsoft SQL Server data mapping

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 773

MySQL data mapping
Mapping to MySQL consolidated data types

The following table identifies how SQL Anywhere and UltraLite remote data types are mapped to MySQL
consolidated data types. For example, a column of type TEXT on the remote database should be type
LONGTEXT on the consolidated database.

SQL Anywhere or UltraLite
data type

MySQL data type Notes

BIGINT BIGINT

BINARY(n<=255) BINARY(n)

BINARY(n>255) BLOB

BIT BIT

CHAR(n<=255) CHAR(n)

CHAR(n>255) TEXT(n)

DATE DATE The year must range from 1000 to 9999.

DATETIME DATETIME The MySQL DATETIME data type does not
support fractional seconds. The year must
range from 1000 to 9999.

DECIMAL(p<=65,s<=30) DECIMAL(p,s)

DECIMAL(p>65,s>30) There is no corresponding data type in
MySQL if the precision is greater than 65 or
if the scale is greater than 30.

DOUBLE DOUBLE

FLOAT FLOAT

IMAGE LONGBLOB

INTEGER INTEGER

LONG BINARY LONGBLOB

LONG NVARCHAR LONGTEXT CHAR-
ACTER SET UTF8

LONG VARBIT LONGTEXT

MobiLink data mappings between remote and consolidated databases

774 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL Anywhere or UltraLite
data type

MySQL data type Notes

LONG VARCHAR LONGTEXT

MONEY NUMERIC(19,4)

NCHAR(n<=255) CHAR(n) CHARAC-
TER SET UTF8

NCHAR(n>255) TEXT CHARACTER
SET UTF8

NTEXT LONGTEXT CHAR-
ACTER SET UTF8

NUMERIC(p<=65,s<=30) DECIMAL(p,s)

NUMERIC(p>65,s>30) There is no corresponding data type in
MySQL.

NVARCHAR(n) VARCHAR(n)
CHARACTER SET
UTF8

REAL REAL

SMALLDATETIME DATETIME The MySQL DATETIME data type does not
support fractional seconds. The year must
range from 1000 to 9999.

SMALLINT SMALLINT

SMALLMONEY NUMERIC(10,4)

TEXT LONGTEXT

TIME TIME The MySQL TIME data type does not support
fractional seconds.

TIMESTAMP DATETIME The MySQL DATETIME data type does not
support fractional seconds. The year must
range from 1000 to 9999.

TINYINT TINYINT UN-
SIGNED

TINYINT is always unsigned in SQL Any-
where and UltraLite.

UNIQUEIDENTIFIER CHAR(36)

MySQL data mapping

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 775

SQL Anywhere or UltraLite
data type

MySQL data type Notes

UNIQUEIDENTIFIERSTR CHAR(36)

VARBINARY(n) VARCHAR(n)

VARBIT(n<=8000) VARCHAR(n)

VARBIT(n>8000) TEXT

VARCHAR(n) VARCHAR(n)

XML LONGTEXT

Mapping to SQL Anywhere or UltraLite remote data types
The following table identifies how MySQL consolidated data types are mapped to SQL Anywhere and
UltraLite remote data types. For example, a column of type BOOL on the consolidated database should be
type BIT on the remote database.

MySQL data type SQL Anywhere or Ul-
traLite data type

Notes

BIGINT BIGINT

BINARY(n) BINARY(n)

BIT(1) BIT

BIT(n>1) UNSIGNED BIGINT

BLOB(n<=32767) VARBINARY(n)

BLOB(n>32767) IMAGE

BOOL BIT

CHAR(n) CHAR(n)

DATE DATE The year must range from 1000 to 9999.

DATETIME DATETIME The MySQL DATETIME data type does not
support fractional seconds. The year must
range from 1000 to 9999.

DOUBLE DOUBLE

DECIMAL DECIMAL

MobiLink data mappings between remote and consolidated databases

776 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

MySQL data type SQL Anywhere or Ul-
traLite data type

Notes

ENUM There is no corresponding data type in SQL
Anywhere or UltraLite.

GEOMETRY There is no corresponding data type in SQL
Anywhere or UltraLite.

INTEGER INTEGER

LINESTRING There is no corresponding data type in SQL
Anywhere or UltraLite.

LONGBLOB IMAGE

LONGTEXT TEXT

MEDIUMBLOB IMAGE

MEDIUMINT INTEGER

MEDIUMTEXT TEXT

MULTILINESTRING There is no corresponding data type in SQL
Anywhere or UltraLite.

MULTIPOINT There is no corresponding data type in SQL
Anywhere or UltraLite.

MULTIPOLYGON There is no corresponding data type in SQL
Anywhere or UltraLite.

NCHAR NCHAR Not available in UltraLite.

NUMERIC NUMERIC

NVARCHAR NVARCHAR Not available in UltraLite.

POINT There is no corresponding data type in SQL
Anywhere or UltraLite.

POLYGON There is no corresponding data type in SQL
Anywhere or UltraLite.

REAL REAL

SET There is no corresponding data type in SQL
Anywhere or UltraLite.

MySQL data mapping

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 777

MySQL data type SQL Anywhere or Ul-
traLite data type

Notes

SMALLINT SMALLINT

TEXT(n<=32767) VARCHAR(n)

TEXT(n>32767) TEXT

TIME TIME The MySQL TIME data type does not support
fractional seconds. The range of TIME in
MySQL is '-838:59:59' to '838:59:59'. The
range of TIME in SQL Anywhere or UltraLite
is '00:00:00.000000' to '23:59:59:999999'.

TIMESTAMP TIMESTAMP The MySQL DATETIME data type does not
support fractional seconds. The year must
range from 1000 to 9999. Although MySQL
offers automatic initialization and updating on
TIMESTAMP columns, SQL Anywhere and
UltraLite only offers automatic initialization.

TINYBLOB VARBINARY

TINYINT SMALLINT TINYINT is always unsigned in SQL Any-
where and UltraLite. Must be a positive value.

TINYINT UNSIGNED TINYINT TINYINT is always unsigned in SQL Any-
where and UltraLite.

TINYTEXT VARCHAR

VARBINARY(n<=32767) VARBINARY(n)

VARBINARY(n>32767) IMAGE

VARCHAR(n<=32767) VARCHAR(n)

VARCHAR(n>32767) TEXT

YEAR[(2|4)] INTEGER SQL Anywhere and UltraLite do not support
the YEAR data type. YEAR needs to be map-
ped to INTEGER in a remote database. The
INTEGER value must range from 1000 to
9999.

MobiLink data mappings between remote and consolidated databases

778 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Oracle data mapping
Mapping to Oracle consolidated data types

The following table identifies how SQL Anywhere and UltraLite remote data types are mapped to Oracle
consolidated data types. For example, a column of type BIT on the remote database should be type NUMBER
on the consolidated database.

SQL Anywhere or UltraLite
data type

Oracle data type Notes

BIGINT NUMBER(20)

BINARY(n<=2000) RAW(n)

BINARY(n>2000) BLOB Oracle values can be longer than SQL Any-
where or UltraLite values, so make sure values
are not too big when downloading.

BIT NUMBER(1)

CHAR(n<=4000) VARCHAR2(n byte) Oracle VARCHAR2 allows you to specify the
maximum number of bytes or characters. The
maximum length of VARCHAR2 data is 4000
bytes. If you specify the character number,
make sure the maximum data length is not
over 4000 bytes.

CHAR(n>4000) CLOB Oracle values can be longer than SQL Any-
where or UltraLite values, so make sure values
are not too big when downloading.

DATE DATE2 or TIME-
STAMP

SQL Anywhere or UltraLite fractional sec-
onds cannot be preserved when using an Ora-
cle DATE data type which has no fractional
seconds. To avoid problems, do not use frac-
tional seconds. The year must be in the range
1-9999.

When using the Interactive SQL utility, turn
off the Return_date_time_as_string option be-
fore executing your SQL statement.

Oracle data mapping

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 779

SQL Anywhere or UltraLite
data type

Oracle data type Notes

DATETIME DATE2 or TIME-
STAMP

SQL Anywhere or UltraLite fractional sec-
onds cannot be preserved when using an Ora-
cle DATE data type which has no fractional
seconds. To avoid problems, do not use frac-
tional seconds. The year must be in the range
1-9999.

When using the Interactive SQL utility, turn
off the Return_date_time_as_string option be-
fore executing your SQL statement.

DECIMAL(p<=38,s) NUMBER(p,
0<=s<=38)

In SQL Anywhere DECIMAL, p is between 1
and 127, and s is always less than or equal to
p. In Oracle NUMBER, p ranges from 1 to 38,
and s ranges from -84 to 127. To synchronize,
the Oracle NUMBER scale must be restricted
to between 0 and 38.

DECIMAL(p>38,s) There is no corresponding data type in Oracle.

DOUBLE DOUBLE PRECI-
SION or BINA-
RY_DOUBLE1

The special values INF, -INF and NAN of
Oracle 10g BINARY_FLOAT and BINA-
RY_DOUBLE cannot be synchronized with
SQL Anywhere or UltraLite.

FLOAT(p) FLOAT(p)

IMAGE BLOB Oracle values can be longer than SQL Any-
where or UltraLite values, so make sure values
are not too big when downloading.

INTEGER INT

LONG BINARY BLOB Oracle values can be longer than SQL Any-
where or UltraLite values, so make sure values
are not too big when downloading.

LONG NVARCHAR NCLOB Oracle CLOB and NCLOB can hold up to 4G
of data. SQL Anywhere LONG VARCHAR
and LONG NVARCHAR can only hold up to
2G.

Oracle values can be longer than SQL Any-
where or UltraLite values, so make sure values
are not too big when downloading.

MobiLink data mappings between remote and consolidated databases

780 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL Anywhere or UltraLite
data type

Oracle data type Notes

LONG VARBIT CLOB Oracle values can be longer than SQL Any-
where or UltraLite values, so make sure values
are not too big when downloading.

LONG VARCHAR CLOB Oracle CLOB and NCLOB can hold up to 4G
of data. SQL Anywhere LONG VARCHAR
and LONG NVARCHAR can only hold up to
2G.

Oracle values can be longer than SQL Any-
where or UltraLite values, so make sure values
are not too big when downloading.

MONEY NUMBER(19,4)

NCHAR(c) NVARCHAR2(c
char) or NCLOB

The size of SQL Anywhere NCHAR and Ora-
cle NVARCHAR2 indicates the maximum
number of Unicode characters. The data
length of Oracle NVARCHAR2 can't be over
4000 bytes. It is difficult to calculate the max-
imum byte length from character size. In gen-
eral, if the size is over 1000, map to NCLOB,
otherwise map to NVARCHAR2.

NTEXT NCLOB Oracle NCLOB can hold up to 4G of data.
SQL Anywhere NTEXT (or LONG
NVARCHAR) can only hold up to 2G.

Oracle values can be longer than SQL Any-
where or UltraLite values, so make sure values
are not too big when downloading.

NUMERIC(p<=38,s) NUMBER(p,
0<=s<=38)

In SQL Anywhere NUMERIC, p is between 1
and 127, and s is always less than or equal to
p. In Oracle NUMBER, p ranges from 1 to 38,
and s ranges from -84 to 127. To synchronize,
the Oracle NUMBER scale must be restricted
to between 0 and 38.

NUMERIC(p>38,s) There is no corresponding data type in Oracle.

Oracle data mapping

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 781

SQL Anywhere or UltraLite
data type

Oracle data type Notes

NVARCHAR NVARCHAR2(c
char) or NCLOB

The size of SQL Anywhere NCHAR and Ora-
cle NVARCHAR2 indicates the maximum
number of Unicode characters. The data
length of Oracle NVARCHAR2 can't be over
4000 bytes. It is difficult to calculate the max-
imum byte length from character size. In gen-
eral, if the size is over 1000, map to NCLOB,
otherwise map to NVARCHAR2.

REAL REAL or BINA-
RY_FLOAT1

The special values INF, -INF and NAN of
Oracle 10g BINARY_FLOAT and BINA-
RY_DOUBLE cannot be synchronized with
SQL Anywhere or UltraLite.

SMALLDATETIME DATE2 or TIME-
STAMP

SQL Anywhere or UltraLite fractional sec-
onds cannot be preserved when using an Ora-
cle DATE data type which has no fractional
seconds. To avoid problems, do not use frac-
tional seconds. The year must be in the range
1-9999.

SMALLINT NUMBER(5)

SMALLMONEY NUMBER(10,4)

TEXT CLOB Oracle CLOB can hold up to 4G of data. SQL
Anywhere TEXT (or LONG VARCHAR) can
only hold up to 2G.

Oracle values can be longer than SQL Any-
where or UltraLite values, so make sure values
are not too big when downloading.

TIME DATE2 or TIME-
STAMP

SQL Anywhere or UltraLite fractional sec-
onds cannot be preserved when using an Ora-
cle DATE data type which has no fractional
seconds. To avoid problems, do not use frac-
tional seconds.

When using the Interactive SQL utility, turn
off the Return_date_time_as_string option be-
fore executing your SQL statement.

MobiLink data mappings between remote and consolidated databases

782 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL Anywhere or UltraLite
data type

Oracle data type Notes

TIMESTAMP DATE2 or TIME-
STAMP

SQL Anywhere or UltraLite fractional sec-
onds cannot be preserved when using an Ora-
cle DATE data type which has no fractional
seconds. To avoid problems, do not use frac-
tional seconds. The year must be in the range
1-9999.

When using the Interactive SQL utility, turn
off the Return_date_time_as_string option be-
fore executing your SQL statement.

TINYINT NUMBER(3) For download, Oracle values must be non-
negative.

UNSIGNED BIGINT NUMBER(20) For download, Oracle values must be non-
negative.

UNSIGNED INTEGER NUMBER(11) For download, Oracle values must be non-
negative.

UNSIGNED SMALLINT NUMBER(5) For download, Oracle values must be non-
negative.

UNSIGNED TINYINT NUMBER(3) For download, Oracle values must be non-
negative.

UNIQUEIDENTIFIER CHAR(36)

UNIQUEIDENTIFIERSTR CHAR(36) UNIQUEIDENTIFIERSTR is not recommen-
ded to use for Oracle. Use UNIQUEIDENTI-
FIER instead.

VARBINARY(n<=2000) RAW(n)

VARBINARY(n>2000) BLOB Oracle values can be longer than SQL Any-
where or UltraLite values, so make sure values
are not too big when downloading.

VARBIT(n<=4000) VARCHAR2(n byte)

VARBIT(n>4000) CLOB Oracle values can be longer than SQL Any-
where or UltraLite values, so make sure values
are not too big when downloading.

Oracle data mapping

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 783

SQL Anywhere or UltraLite
data type

Oracle data type Notes

VARCHAR(n<=4000) VARCHAR2(n byte) Oracle VARCHAR2 allows you to specify the
maximum number of bytes or characters. The
maximum length of VARCHAR2 data is 4000
bytes. If you specify the character number,
make sure the maximum data length is not
over 4000 bytes.

VARCHAR(n>4000) CLOB Oracle values can be longer than SQL Any-
where or UltraLite values, so make sure values
are not too big when downloading.

XML CLOB Oracle CLOB and NCLOB can hold up to 4G
of data. SQL Anywhere XML can only hold
up to 2G.

Oracle values can be longer than SQL Any-
where or UltraLite values, so make sure values
are not too big when downloading.

1 Only applies to Oracle version 10g or later.
2 Only applies to Oracle version 8i.

Note
The LONG data types are deprecated in Oracle 8, 8i and 9i.

For Oracle LONG data types to synchronize properly, you must check the Oracle Force Retrieval Of Long
Columns option in the ODBC Data Source Configuration window of the iAnywhere Solutions Oracle
ODBC driver.

Mapping to SQL Anywhere or UltraLite remote data types
The following table identifies how Oracle consolidated data types are mapped to SQL Anywhere and
UltraLite remote data types. For example, a column of type LONG on the consolidated database should be
type LONG VARCHAR on the remote database.

Oracle data type SQL Anywhere or Ul-
traLite data type

Notes

BFILE LONG BINARY Download only.

Oracle values can be longer than SQL Any-
where or UltraLite values, so make sure values
are not too big when downloading.

MobiLink data mappings between remote and consolidated databases

784 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Oracle data type SQL Anywhere or Ul-
traLite data type

Notes

BINARY_DOUBLE DOUBLE The special values INF, -INF and NAN of BI-
NARY_FLOAT cannot be synchronized with
SQL Anywhere or UltraLite. The precision of
FLOAT and DOUBLE in Oracle is different
from SQL Anywhere and UltraLite. The value
of the data may change depending on the pre-
cision.

BINARY_FLOAT REAL The special values INF, -INF and NAN of BI-
NARY_FLOAT cannot be synchronized with
SQL Anywhere or UltraLite. The precision of
FLOAT and DOUBLE in Oracle is different
from SQL Anywhere and UltraLite. The value
of the data may change depending on the pre-
cision.

BLOB LONG BINARY Oracle values can be longer than SQL Any-
where or UltraLite values, so make sure values
are not too big when downloading.

CHAR(n byte) VARCHAR(n) There is no equivalence between SQL Any-
where CHAR and Oracle CHAR. SQL Any-
where CHAR is equivalent to VARCHAR.
You should not use CHAR/NCHAR in a con-
solidated database column that is synchron-
ized. If you must use non-SQL Anywhere
CHAR, run the MobiLink server with the -b
option.

SQL Anywhere or UltraLite values can be
longer than Oracle values, so make sure values
are not too big when uploading.

CLOB LONG VARCHAR Oracle values can be longer than SQL Any-
where or UltraLite values, so make sure values
are not too big when downloading.

DATE TIMESTAMP The year must be in the range 1-9999.

INTERVAL YEAR(year_pre-
cision) TO MONTH

There is no corresponding data type in SQL
Anywhere or UltraLite.

INTERVAL DAY(day_preci-
sion) TO SECOND(p)

There is no corresponding data type in SQL
Anywhere or UltraLite.

Oracle data mapping

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 785

Oracle data type SQL Anywhere or Ul-
traLite data type

Notes

LONG LONG VARCHAR

LONG RAW LONG BINARY

NCHAR(c char) NVARCHAR(c) There is no equivalence between SQL Any-
where NCHAR and Oracle NCHAR. SQL
Anywhere NCHAR is equivalent to
NVARCHAR. You should not use NCHAR in
a consolidated database column that is
synchronized. If you must use non-SQL Any-
where NCHAR, run the MobiLink server with
the -b option.

SQL Anywhere or UltraLite values can be
longer than Oracle values, so make sure values
are not too big when uploading.

NCLOB LONG NVARCHAR Not available in UltraLite.

Oracle values can be longer than SQL Any-
where or UltraLite values, so make sure values
are not too big when downloading.

NUMBER(p,s) NUMBER(p,s) In SQL Anywhere NUMBER, p is between 1
and 127, and s is always less than or equal to
p. In Oracle NUMBER, p ranges from 1 to 38,
and s ranges from -84 to 127. To synchronize,
the Oracle NUMBER scale must be between
0 and 38.

NVARCHAR2(c char) NVARCHAR(c) Not available in UltraLite.

SQL Anywhere or UltraLite values can be
longer than Oracle values, so make sure values
are not too big when uploading.

RAW BINARY SQL Anywhere or UltraLite values can be
longer than Oracle values, so make sure values
are not too big when uploading.

ROWID VARCHAR(64) UROWID and ROWID are read-only and so
are unlikely to be synchronized.

MobiLink data mappings between remote and consolidated databases

786 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Oracle data type SQL Anywhere or Ul-
traLite data type

Notes

TIMESTAMP(p<=6) TIMESTAMP When p<6, you may need to ensure SQL Any-
where or UltraLite values have the same pre-
cision. Otherwise, conflict detection may fail
and/or duplicate rows may result. The year
must be in the range 1-9999.

TIMESTAMP(p>6) There is no corresponding data type in SQL
Anywhere or UltraLite.

TIMESTAMP(p) WITH LO-
CAL TIME ZONE

There is no corresponding data type in SQL
Anywhere or UltraLite.

TIMESTAMP(p) WITH
TIME ZONE

There is no corresponding data type in SQL
Anywhere or UltraLite.

UROWID VARCHAR(64) UROWID and ROWID are read-only and so
are unlikely to be synchronized.

VARCHAR2(n byte) VARCHAR(n) SQL Anywhere or UltraLite values can be
longer than Oracle values, so make sure values
are not too big when uploading.

Oracle data mapping

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 787

788

Character set considerations

Contents
Character set considerations ... 790

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 789

Character set considerations
Each character of text is represented in one or more bytes. The mapping from characters to binary codes is
called the character set encoding. Some character sets used for languages with small alphabets, such as
European languages, use a single-byte representation. Others, such as Unicode, use a double-byte
representation. Because they use twice the storage space for each character, double-byte character sets can
represent a much larger number of characters.

Conversion errors can occur or data can be lost when text using one character set must be converted to
another character set. Not all characters can be represented in all character sets. In particular, single-byte
character sets can represent a much smaller number of characters than multibyte systems because of the
limited number of codes available.

When the character set of your MobiLink remote database is the same as your consolidated database,
character conversion issues are avoided.

Text often needs to be sorted to build indexes and to prepare ordered result sets, such as directory listings.
The sort order identifies the order of the characters. For example, a sort order typically states that the letter
"a" comes before the letter "b", which comes before the letter "c".

Each database has a collation sequence. You set the collation sequence when you create the database,
although how you do so can differ between database systems. The collation sequence defines both the
character set and the sort order for that database.

Tip
Whenever possible, define the collation sequence of your remote database to be the same as that of your
consolidated database. This arrangement reduces the chance of erroneous conversions.

See also
● SQL Anywhere clients: “International languages and character sets” [SQL Anywhere Server - Database

Administration]
● UltraLite clients: “UltraLite character sets” [UltraLite - Database Management and Reference]
● Information specific to your RDBMS: “MobiLink consolidated databases” on page 3

Character set conversion during synchronization
During synchronization, characters may need to be converted from one character set to another. The
following conversions occur as characters are passed between the remote application and the consolidated
database.

Character set conversion during upload
The MobiLink client sends data to the MobiLink server using the character set of the remote database.

1. The MobiLink server communicates with the consolidated database using the Unicode ODBC API. To
do so, the MobiLink server converts all characters received from the remote database into Unicode and
sends the Unicode to the ODBC driver.

Character set considerations

790 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

2. If necessary, the ODBC driver for the consolidated database server converts the characters from Unicode
into the character set of your consolidated database. This conversion is controlled solely by the ODBC
driver for your consolidated database system. So, behavior can differ between two different database
systems, particularly systems made by different manufacturers. MobiLink synchronization works with
several database systems. Check the documentation of your particular consolidated server and ODBC
driver for details.

Character set conversion during download
1. The ODBC driver for the consolidated database system receives characters in the coding of the

consolidated database. It converts these characters into Unicode to pass them through the Unicode API
to the MobiLink server. This conversion is controlled solely by the ODBC driver for your consolidated
database system. Check the documentation of your particular consolidated server and ODBC driver for
details.

2. The MobiLink server receives characters through the Unicode ODBC API. If the remote database uses
a different character set, the MobiLink server converts the characters before downloading them.

Examples
● UltraLite applications on Windows Mobile devices use the Unicode character set.

When you synchronize a Windows Mobile application, no character conversion occurs within the
MobiLink server. The server finds that data arriving from the application is already in Unicode and passes
it directly to the ODBC driver. Similarly, no character set conversion is necessary when downloading
data.

● All SQL Anywhere databases and all UltraLite applications on platforms other than Windows Mobile
use the character set determined by the collating sequence of the remote database.

When you synchronize a remote database, the MobiLink server performs character set conversions
between the character set of the remote database and Unicode.

Controlling ODBC driver character set conversion
Because most consolidated databases are unlikely to use Unicode, it is important to understand how the
ODBC driver for your consolidated database system converts data to and from Unicode. Some ODBC drivers
use the language settings of the computer running MobiLink to determine what character set to use. In these
cases, it is best if the language and code-page settings of the computer running the MobiLink server match
those of the consolidated database.

Other ODBC drivers, such as the driver for Sybase Adaptive Server Enterprise, allow each connection to
use a specific character set. To avoid conversion errors, the character set used by MobiLink should be set to
match that of the consolidated database.

For a detailed description of how character set conversions take place in your consolidated database server's
ODBC driver, consult that product's ODBC driver documentation.

Character set considerations

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 791

792

iAnywhere Solutions ODBC drivers for
MobiLink

Contents
ODBC drivers supported by MobiLink ... 794
iAnywhere Solutions Oracle driver .. 795

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 793

ODBC drivers supported by MobiLink
The MobiLink server can work with a variety of consolidated databases and ODBC drivers, as shown in the
table below. Some drivers, though compatible for use with MobiLink, may have functional restrictions
associated with their use.

For more information about supported versions, see http://www.sybase.com/detail?id=1002288.

Database ODBC Driver

SQL Anywhere 11 SQL Anywhere 111

Oracle 10g or 11g iAnywhere Solutions 11 - Oracle1

Microsoft SQL Server Microsoft SQL Server ODBC driver2

Sybase Adaptive Server Enterprise
12.5.1 or later

Sybase Adaptive Server Enterprise driver2

IBM DB2 LUW 8.1 or 8.2 for Win-
dows, Linux and Unix

IBM DB2 8.2 CLI driver2

IBM DB2 LUW 9.x for Windows, Li-
nux and Unix

IBM DB2 9.1 CLI driver2

IBM DB2 mainframe 8.1 for Z/OS IBM DB2 8.2 CLI driver2

IBM DB2 mainframe 9.1 for Z/OS IBM DB2 9.1 CLI driver2

MySQL 5.1 MySQL ODBC driver 5.12

1 Provided with SQL Anywhere version 11. See Recommended ODBC Drivers for MobiLink.
2 Not provided with SQL Anywhere version 11. For installation and configuration instructions, see
Recommended ODBC Drivers for MobiLink.

iAnywhere Solutions ODBC drivers for MobiLink

794 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.sybase.com/detail?id=1002288
http://www.sybase.com/detail?id=1011880
http://www.sybase.com/detail?id=1011880

iAnywhere Solutions Oracle driver
The iAnywhere Solutions 11 - Oracle ODBC driver is custom-tailored for use with iAnywhere software.
This driver does not work with third-party software.

If you use Oracle with MobiLink or OMNI, you must install an Oracle client on the same computer as this
Oracle driver.

The Oracle driver can be configured using the ODBC Administrator, the .odbc.ini file (in Unix), or the dbdsn
utility.

The following table provides the configuration options for the Oracle driver.

Win-
dows
ODBC
Admin-
istrator

Configuration for dbdsn command line
or .odbc.ini file

Description

Data
source
name

For dbdsn, use the -w option. A name to identify your data source.

User ID UserID

In dbdsn, set this option in the connection
string.

The default logon ID that the application uses
to connect to your Oracle database. If you
leave this field blank, you are prompted for
the information when you connect.

Pass-
word

Password

In dbdsn, set this option in the connection
string.

The password that the application uses to con-
nect to your Oracle database. If you leave this
field blank, you are prompted for the infor-
mation when you connect.

SID SID The TNS Service Name that is stored in net-
work/admin/tnsnames.ora under your Oracle
installation directory.

Enable
Micro-
soft dis-
tributed
transac-
tions

For dbdsn, use the enableMSDIC option in
the connection string.

Not supported for .odbc.ini.

Select this checkbox if you want to enlist your
transactions in the Microsoft Distributed
Transaction Coordinator. When selected, the
Oracle ODBC driver requires an Oracle bi-
nary file, oramts.dll for Oracle 9i clients or
oramts10.dll for Oracle 10g clients.

Encrypt
Pass-
word

For dbdsn, use the -pe option.

Not supported for .odbc.ini.

Select this checkbox if you want the password
to be stored in encrypted form in the data
source.

iAnywhere Solutions Oracle driver

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 795

Win-
dows
ODBC
Admin-
istrator

Configuration for dbdsn command line
or .odbc.ini file

Description

Proce-
dures Re-
turn Re-
sults

ProcResults

In dbdsn, set this option in the connection
string.

Select this field if your stored procedures can
return results. The default is that procedures
do not return results (not selected). If your
download_cursor or download_delete_cur-
sor scripts are stored procedure invocations,
set this to yes.

Array
Size

ArraySize

In dbdsn, set this option in the connection
string.

The size, in bytes, of the byte array used to
pre-fetch rows, on a per-statement basis. The
default is 60000. Increasing this value can
significantly improve fetch performance
(such as during MobiLink server downloads)
at the cost of extra memory allocation.

Windows configuration
To create a DSN for the Oracle driver in Windows

1. Open the ODBC Administrator:

● Choose Start » Programs » SQL Anywhere 11 » ODBC Administrator.

The ODBC Data Source Administrator appears.

2. Click Add.

3. Choose iAnywhere Solutions 11 - Oracle.

4. Specify the configuration options you need. The fields are explained above.

5. Click Test Connection, and then click OK.

Unix configuration
On Unix, if you are setting up the driver in an ODBC system information file (typically called .odbc.ini),
the section for this driver should appear as follows (with appropriate values entered for each field):

[sample_dsn_using_the_ias_odbc_driver_for_oracle]
Driver=full-path/libdboraodbc10_r.so
UserID=user-id
Password=password
SID=TNS-service-name
ProcResults=[yes|no]
ArraySize=bytes

For an explanation of each field, see above.

iAnywhere Solutions ODBC drivers for MobiLink

796 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

DBDSN configuration
To create an Oracle DSN with the dbdsn utility, use the following syntax:

dbdsn -w data-source-name -or -c configuration-options

The configuration-options are described above.

For example:

dbdsn -w MyOracleDSN -or -pe -c
Userid=dba;Password=sql;SID=abcd;ArraySize=100000;ProcResults=y;enableMSDIC=n

See “Data Source utility (dbdsn)” [SQL Anywhere Server - Database Administration].

See also
● Recommended ODBC Drivers for MobiLink
● “Data Source utility (dbdsn)” [SQL Anywhere Server - Database Administration]

iAnywhere Solutions Oracle driver

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 797

http://www.sybase.com/detail?id=1011880

798

Deploying MobiLink applications

Contents
Introduction to MobiLink deployment ... 800
Deploying the MobiLink server .. 801
Deploying SQL Anywhere MobiLink clients ... 813
Deploying UltraLite MobiLink clients .. 815
Deploying QAnywhere applications ... 816

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 799

Introduction to MobiLink deployment
Deploying MobiLink applications involves the following activities:

● Deploy the MobiLink server into a production setting.
● If required, deploy the Redirector.
● Deploy any SQL Anywhere MobiLink clients.
● Deploy any UltraLite MobiLink clients.

This chapter describes the files you need to include in your application's installation program for each of
these items.

The Deploy Synchronization Model Wizard that can help with your deployment on Windows. See “Using
the Deployment Wizard” [SQL Anywhere Server - Programming].

Check your license agreement
Redistribution of files is subject to your license agreement. No statements in this document override anything
in your license agreement. Check your license agreement before considering deployment.

Deploying MobiLink applications

800 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Deploying the MobiLink server
The simplest way to deploy a MobiLink server into a production environment is to install a licensed copy
of SQL Anywhere onto the production computer.

However, if you are redistributing a MobiLink server in a separate installation program, you may want to
include only a subset of the files. In this case, you need to include the following files in your installation.

Notes
● Test on a clean computer before redistributing.

● Files must be installed to the SQL Anywhere installation directory, with the exception of samples.

● The files should be in the same directory unless otherwise noted.

● When a location is given, the files must be copied into a directory of the same name.

● On Unix, environment variables must be set for the system to locate SQL Anywhere applications and
libraries. It is recommended that you use the appropriate file for your shell, either sa_config.sh or
sa_config.csh (located in the directory install-dir/bin32 for 32-bit environments and install-dir/bin64 for
64-bit environments) as a template for setting the required environment variables. Some of the
environment variables set by the sa_config files include PATH, LD_LIBRARY_PATH, SQLANY11,
and SQLANYSAMP11.

● On Windows, the PATH environment variable must be set for the system to locate SQL Anywhere
applications and libraries. Check the PATH variable to ensure that it includes install-dir/bin32 for 32-
bit environments or install-dir/bin64 for 64-bit environments. If both entries exist, remove the path that
does not apply to your environment.

● To use Java synchronization logic, and to use the graphical administration tools (Sybase Central and the
MobiLink Monitor), you must have JRE 1.6.0 installed.

● To deploy Sybase Central, see “Deploying administration tools” [SQL Anywhere Server -
Programming].

● There is a deployment wizard for Windows. See “Using the Deployment Wizard” [SQL Anywhere Server
- Programming].

Windows 32-bit applications

All directories are relative to install-dir. For more details on the file structure of a 64-bit Windows
environment, see “Windows 64-bit applications” on page 804.

Description Windows files

MobiLink server ● bin32\mlodbc11.dll
● bin32\mlsrv11.exe
● bin32\mlsrv11.lic
● bin32\mlsql11.dll
● bin32\dbicu11.dll
● bin32\dbicudt11.dll

Deploying the MobiLink server

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 801

Description Windows files

Language library ● bin32\dblgen11.dll1

Synchronization stream libraries (to sup-
port version 8 and 9 clients)

● bin32\mlhttp11.dll
● bin32\mlsock11.dll

Java synchronization logic ● java\activation.jar2

● java\imap.jar2

● java\jodbc.jar
● java\log4j.jar2

● java\mailapi.jar2

● java\mlscript.jar
● java\mlsupport.jar
● java\pop3.jar2

● java\smtp.jar2

● bin32\mljava11.dll
● bin32\dbjodbc11.dll
● bin32\mljodbc11.dll

.NET synchronization logic ● MobiLink\setup\dnet\mlDomConfig.xml
● bin32\mldnet11.dll
● bin32\dnetodbc11.dll
● Assembly\v2\iAnywhere.MobiLink.dll
● Assembly\v2\iAnywhere.MobiLink.Script.dll
● Assembly\v2\iAnywhere.MobiLink.Script.xml
● bin32\mlDomConfig.xsd

Security option for version 10 and 11 cli-
ents (mlsrv11 -x)3

● bin32\mlecc_tls11.dll
● bin32\mlrsa_tls11.dll
● bin32\mlrsa_tls_fips11.dll
● bin32\sbgse2.dll

Security option3 for version 8 and 9 clients
(mlsrv11 -xo)5

● bin32\mlhttps11.dll
● bin32\mlhttpsfips11.dll
● bin32\mlrsafips11.dll
● bin32\mljrsa11.dll
● bin32\mljtls11.dll
● bin32\mlrsa11.dll
● bin32\mltls11.dll
● bin32\defaultmem.dll
● bin32\libsb.dll

Setup scripts (deploy the ones for your
consolidated database)

● MobiLink\setup\
● MobiLink\upgrade\

Deploying MobiLink applications

802 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Description Windows files

mluser utility ● bin32\mluser.exe
● bin32\mlodbc11.dll
● bin32\dbicu11.dll
● bin32\dbicudt11.dll

mlstop utility ● bin32\mlstop.exe
● bin32\dbicu11.dll

MobiLink Monitor ● java\mlmon.jar
● java\JComponents1100.jar
● java\mlstream.jar
● java\jsyblib600.jar
● Sun\JavaHelp-2_0\jh.jar
● Sun\jaxb1.0\
● bin32\jsyblib600.dll
● bin32\mlmon.exe

For security with the MobiLink Monitor:3

● bin32\mlcecc11.dll
● bin32\mlcrsa11.dll
● bin32\mlcrsafips11.dll
● bin32\mlczlib11.dll

Online help for the MobiLink plug-in and
Monitor

● \documentation\en\htmlhelp\dbadmin_en11.chm1

● \documentation\en\htmlhelp\dbadmin_en11.map1

MobiLink Redirector ● MobiLink\redirector

Notifier ● java\activation.jar2

● java\jodbc.jar
● java\log4j.jar4

● java\mailapi.jar2

● java\mlnotif.jar
● java\mlscript.jar
● java\smtp.jar2

● bin32\mljodbc11.dll
● bin32\mljstrm11.dll

Deploying the MobiLink server

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 803

Description Windows files

MobiLink server files required by QAny-
where

● Notifier files
● java\commons-logging.jar
● java\commons-codec-1.3.jar
● java\commons-httpclient-3.0.jar
● java\jsyblib600.jar
● java\log4j.jar4

● java\mlscript.jar
● java\mlstream.jar
● java\qaconnector.jar
● bin32\jsyblib600.dll

Relay Server Outbound Enabler ● bin32\rsoe.exe

For security with the Outbound Enabler:

● bin32\mlcrsa11.dll

1 For German, Japanese, and Chinese editions, substitute en with de, ja, and zh, respectively.
2 If you are redistributing an application, you must obtain these files directly from Sun.
3 ECC and FIPS require that you obtain the separately-licensed SQL Anywhere security option and is subject
to export regulations. RSA security is included with SQL Anywhere for version 10 and later. To order this
component, see “Separately licensed components” [SQL Anywhere 11 - Introduction].
4 If you are redistributing an application, you must obtain this file directly from Apache.
5 You must also create a registry key called HKEY_LOCAL_MACHINE\SOFTWARE\Certicom\libsb and
add a REG_BINARY value named expectedtag with the data
5B0F4FA6E24AEF3B4407052EB04902711FD991B6.

Windows 64-bit applications

All directories are relative to install-dir. For more details on the file structure of a 32-bit Windows
environment, see “Windows 32-bit applications” on page 801.

Description Windows files

MobiLink server ● bin64\mlodbc11.dll
● bin64\mlsrv11.exe
● bin64\mlsrv11.lic
● bin64\mlsql11.dll
● bin64\dbicu11.dll
● bin64\dbicudt11.dll

Language library ● bin64\dblgen11.dll1

Deploying MobiLink applications

804 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Description Windows files

Synchronization stream libraries (to sup-
port version 8 and 9 clients)

● bin64\mlhttp11.dll
● bin64\mlsock11.dll

Java synchronization logic ● java\activation.jar2

● java\imap.jar2

● java\jodbc.jar
● java\log4j.jar2

● java\mailapi.jar2

● java\mlscript.jar
● java\mlsupport.jar
● java\pop3.jar2

● java\smtp.jar2

● bin64\mljava11.dll
● bin64\dbjodbc11.dll
● bin64\mljodbc11.dll

.NET synchronization logic ● MobiLink\setup\dnet\mlDomConfig.xml
● bin64\mldnet11.dll
● bin64\dnetodbc11.dll
● Assembly\v2\iAnywhere.MobiLink.dll
● Assembly\v2\iAnywhere.MobiLink.Script.dll
● Assembly\v2\iAnywhere.MobiLink.Script.xml
● bin64\mlDomConfig.xsd

Security option for version 10 and 11 cli-
ents (mlsrv11 -x)3

● bin64\mlecc_tls11.dll
● bin64\mlrsa_tls11.dll
● bin64\mlrsa_tls_fips11.dll
● bin64\sbgse2.dll

Security option3 for version 8 and 9 clients
(mlsrv11 -xo)5

● bin64\mlhttps11.dll
● bin64\mlhttpsfips11.dll
● bin64\mlrsafips11.dll
● bin64\mljrsa11.dll
● bin64\mljtls11.dll
● bin64\mlrsa11.dll
● bin64\mltls11.dll
● bin64\defaultmem.dll
● bin64\libsb.dll

Setup scripts (deploy the ones for your
consolidated database)

● MobiLink\setup\
● MobiLink\upgrade\

mluser utility ● bin64\mluser.exe
● bin64\mlodbc11.dll
● bin64\dbicu11.dll
● bin64\dbicudt11.dll

Deploying the MobiLink server

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 805

Description Windows files

mlstop utility ● bin64\mlstop.exe
● bin64\dbicu11.dll

MobiLink Monitor ● java\mlmon.jar
● java\JComponents1100.jar
● java\mlstream.jar
● java\jsyblib600.jar
● Sun\JavaHelp-2_0\jh.jar
● Sun\jaxb1.0\
● bin64\jsyblib600.dll
● bin64\mlmon.exe

For security with the MobiLink Monitor:3

● bin64\mlcecc11.dll
● bin64\mlcrsa11.dll
● bin64\mlcrsafips11.dll
● bin64\mlczlib11.dll

Online help for the MobiLink plug-in and
Monitor

● \documentation\en\htmlhelp\dbadmin_en11.chm1

● \documentation\en\htmlhelp\dbadmin_en11.map1

MobiLink Redirector ● MobiLink\redirector

Notifier ● java\activation.jar2

● java\jodbc.jar
● java\log4j.jar4

● java\mailapi.jar2

● java\mlnotif.jar
● java\mlscript.jar
● java\smtp.jar2

● bin64\mljodbc11.dll
● bin64\mljstrm11.dll

MobiLink server files required by QAny-
where

● Notifier files
● java\commons-logging.jar
● java\commons-codec-1.3.jar
● java\commons-httpclient-3.0.jar
● java\jsyblib600.jar
● java\log4j.jar4

● java\mlscript.jar
● java\mlstream.jar
● java\qaconnector.jar
● bin64\jsyblib600.dll

Deploying MobiLink applications

806 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Description Windows files

Relay Server Outbound Enabler ● bin64\rsoe.exe

For security with the Outbound Enabler:

● bin64\mlcrsa11.dll

1 For German, Japanese, and Chinese editions, substitute en with de, ja, and zh, respectively.
2 If you are redistributing an application, you must obtain these files directly from Sun.
3 ECC and FIPS require that you obtain the separately-licensed SQL Anywhere security option and is subject
to export regulations. RSA security is included with SQL Anywhere for version 10 and later. To order this
component, see “Separately licensed components” [SQL Anywhere 11 - Introduction].
4 If you are redistributing an application, you must obtain this file directly from Apache.
5 You must also create a registry key called HKEY_LOCAL_MACHINE\SOFTWARE\Certicom\libsb and
add a REG_BINARY value named expectedtag with the data
5B0F4FA6E24AEF3B4407052EB04902711FD991B6.

Unix 32-bit applications on Unix, Linux, and Macintosh

All directories are relative to install-dir. For more details on the file structure of a 64-bit Unix environment,
see “Unix 64-bit applications on Unix and Linux” on page 810.

Description Unix files

MobiLink server ● bin32/mlsrv11
● bin32/mlsrv11.lic
● lib32/libdbodm11_r.so3

● lib32/libmlodbc11_r.so3

● lib32/libmlsql11_r.so3

● lib32/libdbtasks11_r.so3

● lib32/libdbicu11_r.so3

● lib32/libdbicudt11_r.so3

● lib32/libdbodbcinst11_r.so3

Language library ● res/dblgen11.res1

Synchronization stream libraries for
version 8 and 9 clients (deploy the
ones you use)

● lib32/libmlhttp11_r.so3

● lib32/libmlsock11_r.so3

Deploying the MobiLink server

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 807

Description Unix files

Java synchronization logic ● java/activation.jar2

● java/imap.jar2

● java/jodbc.jar
● java/log4j.jar5

● java/mailapi.jar2

● java/mlscript.jar
● java/mlsupport.jar
● java/pop3.jar2

● java/smtp.jar2

● lib32/libmljava11_r.so3

● lib32/libmljodbc11.so3

.NET synchronization logic ● Not applicable

Security option for version 10 and
11 clients (mlsrv11 -x)4

● lib32/libmlecc_tls11_r.so3

● lib32/libmlrsa_tls11_r.so3

Security option for version 8 and 9
clients (mlsrv11 -xo)4

● lib32/libmlhttps11_r.so3

● lib32/libmljrsa11_r.so3

● lib32/libmljtls11_r.so3

● lib32/libmlrsa11_r.so3

● lib32/libmltls11_r.so3

Setup scripts (deploy the ones for
your consolidated database)

● MobiLink/setup
● MobiLink/upgrade

mluser utility ● bin32/mluser
● lib32/libmlodbc11_r.so3

● lib32/libdbicu11.so3

● lib32/libdbicudt11.so3

mlstop utility ● bin32/mlstop
● lib32/libdbicu11.so3

MobiLink Monitor ● bin32/mlmon
● java/mlmon.jar
● java/mlstream.jar
● lib32/libjsyblib600_r.so3

● sun/JavaHelp-2_0/jh.jar
● sun/jaxb1.0/
● java/JComponents1100.jar
● java/jsyblib600.jar

Deploying MobiLink applications

808 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Description Unix files

MobiLink Redirector ● Mobilink/redirector/redirector.config
● MobiLink/redirector/apache/
● MobiLink/redirector/java/
● MobiLink/redirector/MBusinessAnywhere/
● MobiLink/redirector/nsapi/

Online help for the MobiLink plug-
in and MobiLink Monitor

● java/sqlanywhere_en11.jar1

Notifier ● java/activation.jar2

● java/jodbc.jar
● java/log4j.jar2

● java/mailapi.jar2

● java/mlnotif.jar
● java/mlscript.jar
● java/smtp.jar2

● lib32/libmljstrm11_r.so3

MobiLink server files required by
QAnywhere

● Notifier files
● java/commons-codec-1.3.jar
● java/commons-httpclient-3.0.jar
● java/commons-logging.jar
● java/jsyblib600.jar
● java/log4j.jar5

● java/mlscript.jar
● java/mlstream.jar
● java/qaconnector.jar
● lib32/libjsyblib600_r.so3

Relay Server Outbound Enabler ● bin32/rsoe

For security with the Outbound Enabler:

● lib32/libmlcrsa11_r.so3

1 For German, Japanese, and Chinese editions, substitute en with de, ja, and zh, respectively.
2 If you are redistributing an application, you must obtain these files directly from Sun.
3 For Linux, the file extension is .so. For Macintosh, the file extension is .dylib.
4 Transport-layer security requires that you obtain the separately-licensed SQL Anywhere security option
and is subject to export regulations. To order this component, see “Separately licensed components” [SQL
Anywhere 11 - Introduction].
5 If you are redistributing an application, you must obtain these files directly from Apache.

Deploying the MobiLink server

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 809

Unix 64-bit applications on Unix and Linux

All directories are relative to install-dir. For more details on the file structure of a 32-bit Unix environment,
see “Unix 32-bit applications on Unix, Linux, and Macintosh” on page 807.

Description Unix files

MobiLink server ● bin64/mlsrv11
● bin64/mlsrv11.lic
● lib64/libdbodm11_r.so3

● lib64/libmlodbc11_r.so3

● lib64/libmlsql11_r.so3

● lib64/libdbtasks11_r.so3

● lib64/libdbicu11_r.so3

● lib64/libdbicudt11_r.so3

● lib64/libdbodbcinst11_r.so3

Language library ● res/dblgen11.res1

Synchronization stream libraries for
version 8 and 9 clients (deploy the
ones you use)

● lib64/libmlhttp11_r.so3

● lib64/libmlsock11_r.so3

Java synchronization logic ● java/activation.jar2

● java/imap.jar2

● java/jodbc.jar
● java/log4j.jar5

● java/mailapi.jar2

● java/mlscript.jar
● java/mlsupport.jar
● java/pop3.jar2

● java/smtp.jar2

● lib64/libmljava11_r.so3

● lib64/libmljodbc11.so3

.NET synchronization logic ● Not applicable

Security option for version 10 and
11 clients (mlsrv11 -x)4

● lib64/libmlecc_tls11_r.so3

● lib64/libmlrsa_tls11_r.so3

Security option for version 8 and 9
clients (mlsrv11 -xo)4

● lib64/libmlhttps11_r.so3

● lib64/libmljrsa11_r.so3

● lib64/libmljtls11_r.so3

● lib64/libmlrsa11_r.so3

● lib64/libmltls11_r.so3

Setup scripts (deploy the ones for
your consolidated database)

● MobiLink/setup
● MobiLink/upgrade

Deploying MobiLink applications

810 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Description Unix files

mluser utility ● bin64/mluser
● lib64/libmlodbc11_r.so3

● lib64/libdbicu11.so3

● lib64/libdbicudt11.so3

mlstop utility ● bin64/mlstop
● lib64/libdbicu11.so3

MobiLink Monitor ● bin64/mlmon
● java/mlmon.jar
● java/mlstream.jar
● lib64/libjsyblib600_r.so3

● sun/JavaHelp-2_0/jh.jar
● sun/jaxb1.0
● java/JComponents1100.jar
● java/jsyblib600.jar

MobiLink Redirector ● Mobilink/redirector/redirector.config
● MobiLink/redirector/apache/
● MobiLink/redirector/java/
● MobiLink/redirector/MBusinessAnywhere/
● MobiLink/redirector/nsapi/

Online help for the MobiLink plug-
in and MobiLink Monitor

● java/sqlanywhere_en11.jar1

Notifier ● java/activation.jar2

● java/jodbc.jar
● java/log4j.jar2

● java/mailapi.jar2

● java/mlnotif.jar
● java/mlscript.jar
● java/smtp.jar2

MobiLink server files required by
QAnywhere

● Notifier files
● java/commons-codec-1.3.jar
● java/commons-httpclient-3.0.jar
● java/commons-logging.jar
● java/jsyblib600.jar
● java/log4j.jar5

● java/mlscript.jar
● java/mlstream.jar
● java/qaconnector.jar
● lib64/libjsyblib600_r.so3

Deploying the MobiLink server

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 811

Description Unix files

Relay Server Outbound Enabler ● bin64/rsoe

For security with the Outbound Enabler:

● lib64/libmlcrsa11_r.so3

1 For German, Japanese, and Chinese editions, substitute en with de, ja, and zh, respectively.
2 If you are redistributing an application, you must obtain these files directly from Sun.
3 For Solaris SPARC and Linux, the file extension is .so. For AIX, the file extension is .a.
4 Transport-layer security requires that you obtain the separately-licensed SQL Anywhere security option
and is subject to export regulations. To order this component, see “Separately licensed components” [SQL
Anywhere 11 - Introduction].
5 If you are redistributing an application, you must obtain these files directly from Apache.

Deploying MobiLink applications

812 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Deploying SQL Anywhere MobiLink clients
Notes

● For SQL Anywhere clients, you need to deploy a SQL Anywhere database server and the MobiLink
client.

See “Deploying databases and applications” [SQL Anywhere Server - Programming].

● If you are redistributing MobiLink synchronization clients you need to include the following files in your
installation, in addition to those required for the SQL Anywhere database.

● When deploying the files below, place them in the same directory structure unless otherwise noted.

● To deploy Sybase Central, see “Deploying administration tools” [SQL Anywhere Server -
Programming].

● There is a deployment wizard for Windows. See “Using the Deployment Wizard” [SQL Anywhere Server
- Programming].

● For Windows Mobile deployment, files that are listed below in the bin32 directories are located in the
ce\arm.50 directory. .NET assemblies are placed in the ce\Assembly\v2 directory.

Windows applications
All directories are relative to install-dir.

Description Windows files

MobiLink synchronization client (dbmlsync) ● bin32\dbcon11.dll2
● bin32\dbicu11.dll3
● bin32\dblgen11.dll1
● bin32\dblib11.dll
● bin32\dbmlsync.exe
● bin32\dbtool11.dll2

Dbmlsync integration component (deprecated) ● MobiLink synchronization client files
● Visual component: bin32\dbmlsynccomg.dll
● Non-visual component: bin32\dbmlsynccom.dll

Security option2 ● bin32\mlcecc11.dll
● bin32\mlcrsa11.dll
● bin32\mlcrsafips11.dll
● bin32\sbgse2.dll

ActiveSync and HotSync utilities ● bin32\mlasinst.exe
● bin32\mlasdesk.dll
● bin32\dbcon11.exe
● ce\chip\mlasdev.dll (where chip can be any sup-

ported chip, such as arm.50)

Deploying SQL Anywhere MobiLink clients

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 813

Description Windows files

Listener ● bin32\dblgen11.dll1
● bin32\dblsn.exe
● bin32\lsn_udp.dll
● bin32\lsn_swi510.dll
● bin32\maac555.dll
● bin32\maac750.dll
● bin32\maac750r3.dll
● bin32\mabridge.dll

1 For German, Japanese, and Chinese editions, substitute en with de, ja, and zh, respectively.
2 Not required on Windows Mobile unless you use the dbtools interface.
3 Not required if the database is initialized with dbinit -zn UTF8BIN. See “Initialization utility (dbinit)” [SQL
Anywhere Server - Database Administration].

Unix applications on Unix, Linux, and Macintosh

All directories are relative to install-dir.

Description Unix files

MobiLink synchronization client ● bin32/dbmlsync
● res/dblgen11.res
● lib32/libdbcon11_r.so1

● lib32/libdbicu11_r.so1

● lib32/libdblib11_r.so1

● lib32/libdbtool11_r.so1

Security option2 ● lib32/libmlcecc11_r.so1

● lib32/libmlcrsa11_r.so1

1For Linux, the file extension is .so. For the Macintosh, the file extension is .dylib.
2 Transport-layer security requires that you obtain the separately-licensed SQL Anywhere security option
and is subject to export regulations. To order this component, see “Separately licensed components” [SQL
Anywhere 11 - Introduction].

Deploying MobiLink applications

814 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Deploying UltraLite MobiLink clients
For UltraLite clients, the UltraLite runtime library or the UltraLite component includes the required
synchronization stream functions. The UltraLite runtime library is compiled into your application.
Deployment is subject to your license agreement.

See also
● “Deploying UltraLite to devices” [UltraLite - Database Management and Reference]
● C/C++: “Deploying Palm applications” [UltraLite - C and C++ Programming] and “Deploying

Windows Mobile applications” [UltraLite - C and C++ Programming]
● M-Business Anywhere: “Deploying UltraLite for M-Business Anywhere applications” [UltraLite - M-

Business Anywhere Programming]
● .NET: “Lesson 5: Build and deploy application” [UltraLite - .NET Programming]

Deploying UltraLite MobiLink clients

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 815

Deploying QAnywhere applications
QAnywhere provides C++, Java, and .NET API support for SQL Anywhere message stores. The Java
and .NET APIs also support UltraLite message stores. The files required for deploying QAnywhere
applications are based on your Windows environment, message store type, and API selection. Additional
files are required if you are developing Mobile Web Service applications.

In addition to the files listed below, a QAnywhere application requires:

● All files listed in the MobiLink synchronization client, Listener, and optionally the Security sections of
“Deploying SQL Anywhere MobiLink clients” on page 813. The Listener files are required only if you
are using push notifications, which is the default.

● dbeng11 or dbsrv11 files from “Deploying database servers” [SQL Anywhere Server - Programming].

To deploy Sybase Central, see “Deploying administration tools” [SQL Anywhere Server - Programming].

Windows applications
All directories are relative to install-dir.

For more details on the file structure of a Windows Mobile environment, see “Windows Mobile
applications” on page 818.

The following is a list of files required to set up a SQL Anywhere message store.

Client API Windows files

C++ ● bin32\qany11.dll
● bin32\qaagent.exe
● bin32\qastop.exe

Java ● bin32\qaagent.exe
● bin32\qastop.exe
● java\qaclient.jar
● java\jodbc.jar

For Mobile Web Service applications, you also need the following:

● java\iawsrt.jar
● java\jaxrpc.jar

Deploying MobiLink applications

816 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Client API Windows files

.NET ● bin32\qazlib.dll
● bin32\qaagent.exe
● bin32\qastop.exe
● assembly\v2\iAnywhere.QAnywhere.Client.dll
● assembly\v2\iAnywhere.QAnywhere.Resources.dll
● assembly\v2\iAnywhere.Data.SQLAnywhere.dll

For Mobile Web Service applications, you also need the following:

● Assembly\v2\iAnywhere.QAnywhere.WS.dll

The following is a list of files required to set up an UltraLite message store with deployments using
QAnywhere Agent.

Client API Windows files

Java ● bin32\qauagent.exe
● bin32\qastop.exe
● bin32\qadbiuljni.dll
● java\qaclient.jar

For Mobile Web Service applications, you also need the following:

● java\iawsrt.jar
● java\jaxrpc.jar

.NET ● bin32\qazlib.dll
● bin32\qauagent.exe
● bin32\qastop.exe
● assembly\v2\iAnywhere.QAnywhere.Client.dll
● assembly\v2\iAnywhere.QAnywhere.Resources.dll
● ultralite\ultralite.NET\assembly\v2\iAnywhere.Data.UltraLite.dll

For Mobile Web Service applications, you also need the following:

● Assembly\v2\iAnywhere.QAnywhere.WS.dll

When creating an UltraLite message store, you must create a udb database file using the UltraLite Create
Database utility, then initialize the database using the QAnywhere UltraLite Agent's -si option. See
“UltraLite Create Database utility (ulcreate)” [UltraLite - Database Management and Reference] and
“qauagent utility” [QAnywhere].

The following is a list of files required to set up a deployment with the QAnywhere standalone client.

Deploying QAnywhere applications

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 817

Client API Windows files

Java ● java\qastandaloneclient.jar
● bin32\qadbiulsjni.dll

.NET ● assembly\v2\iAnywhere.QAnywhere.StandAloneClient.dll
● assembly\v2\iAnywhere.QAnywhere.Resources.dll
● ultralite\ultralite.NET\assembly\v2\iAnywhere.Data.UltraLite.dll

Windows Mobile applications
All directories are relative to install-dir.

For more details on the file structure of a Windows environment, see “Windows
applications” on page 816.

The following is a list of files required to set up a SQL Anywhere message store.

Client API Windows Mobile files

C++ ● ce\arm.50\qany11.dll
● ce\arm.50\qaagent.exe
● ce\arm.50\qastop.exe

Java ● ce\arm.50\qaagent.exe
● ce\arm.50\qastop.exe
● java\qaclient.jar
● java\jodbc.jar

For Mobile Web Service applications, you also need the following:

● java\iawsrt.jar
● java\jaxrpc.jar

.NET ● ce\arm.50\qazlib.dll
● ce\arm.50\qaagent.exe
● ce\arm.50\qastop.exe
● ce\assembly\v2\iAnywhere.QAnywhere.Client.dll
● ce\assembly\v2\iAnywhere.QAnywhere.Resources.dll
● ce\assembly\v2\iAnywhere.Data.SQLAnywhere.dll

For Mobile Web Service applications, you also need the following:

● ce\Assembly\v2\iAnywhere.QAnywhere.WS.dll

The following is a list of files required to set up an UltraLite message store with deployments using
QAnywhere Agent.

Deploying MobiLink applications

818 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Client API Windows Mobile files

Java ● ce\arm.50\qauagent.exe
● ce\arm.50\qastop.exe
● ce\arm.50\qadbiuljni.dll
● java\qaclient.jar

For Mobile Web Service applications, you also need the following:

● java\iawsrt.jar
● java\jaxrpc.jar

.NET ● ce\arm.50\qazlib.dll
● ce\arm.50\qauagent.exe
● ce\arm.50\qastop.exe
● ce\assembly\v2\iAnywhere.QAnywhere.Client.dll
● ce\assembly\v2\iAnywhere.QAnywhere.Resources.dll
● ultralite\ultralite.NET\ce\assembly\v2\iAnywhere.Data.UltraLite.dll

For Mobile Web Service applications, you also need the following:

● ce\Assembly\v2\iAnywhere.QAnywhere.WS.dll

When creating an UltraLite message store, you must create a database file using the UltraLite Create Database
utility, then initialize the database using the -si option for the QAnywhere UltraLite Agent. See “UltraLite
Create Database utility (ulcreate)” [UltraLite - Database Management and Reference] and “qauagent utility”
[QAnywhere].

The following is a list of files required to set up a deployment with the QAnywhere standalone client.

Client API Windows Mobile files

Java ● java\qastandaloneclient.jar
● ce\arm.50\qadbiulsjni.dll

.NET ● ce\assembly\v2\iAnywhere.QAnywhere.StandAloneClient.dll
● ce\assembly\v2\iAnywhere.QAnywhere.Resources.dll
● ultralite\ultralite.NET\ce\assembly\v2\iAnywhere.Data.UltraLite.dll

Registering the QAnywhere .NET API DLL
The QAnywhere .NET API DLL (Assembly\v2\iAnywhere.QAnywhere.Client.dll) needs to be registered in
the Global Assembly Cache on Windows (except on Windows Mobile). The Global Assembly Cache lists
all the registered programs on your computer. When you install SQL Anywhere, the installation program
registers it. In Windows Mobile you do not need to register the DLL.

If you are deploying QAnywhere, you must register the QAnywhere .NET API DLL (Assembly
\v2\iAnywhere.QAnywhere.Client.dll) using the gacutil utility that is included with the .NET Framework.

Deploying QAnywhere applications

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 819

820

Glossary

Glossary .. 823

Glossary

Adaptive Server Anywhere (ASA)
The relational database server component of SQL Anywhere Studio, intended for use in mobile and
embedded environments or as a server for small and medium-sized businesses. In version 10.0.0, Adaptive
Server Anywhere was renamed SQL Anywhere Server, and SQL Anywhere Studio was renamed SQL
Anywhere.

See also: “SQL Anywhere” on page 847.

agent ID

See also: “client message store ID” on page 825.

article

In MobiLink or SQL Remote, an article is a database object that represents a whole table, or a subset of the
columns and rows in a table. Articles are grouped together in a publication.

See also:

● “replication” on page 845
● “publication” on page 842

atomic transaction

A transaction that is guaranteed to complete successfully or not at all. If an error prevents part of an atomic
transaction from completing, the transaction is rolled back to prevent the database from being left in an
inconsistent state.

base table

Permanent tables for data. Tables are sometimes called base tables to distinguish them from temporary
tables and views.

See also:

● “temporary table” on page 849
● “view” on page 851

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 823

bit array

A bit array is a type of array data structure that is used for efficient storage of a sequence of bits. A bit array
is similar to a character string, except that the individual pieces are 0s (zeros) and 1s (ones) instead of
characters. Bit arrays are typically used to hold a string of Boolean values.

business rule

A guideline based on real-world requirements. Business rules are typically implemented through check
constraints, user-defined data types, and the appropriate use of transactions.

See also:

● “constraint” on page 827
● “user-defined data type” on page 851

carrier

A MobiLink object, stored in MobiLink system tables or a Notifier properties file, that contains information
about a public carrier for use by server-initiated synchronization.

See also: “server-initiated synchronization” on page 846.

character set

A character set is a set of symbols, including letters, digits, spaces, and other symbols. An example of a
character set is ISO-8859-1, also known as Latin1.

See also:

● “code page” on page 825
● “encoding” on page 831
● “collation” on page 825

check constraint

A restriction that enforces specified conditions on a column or set of columns.

See also:

● “constraint” on page 827
● “foreign key constraint” on page 832
● “primary key constraint” on page 842
● “unique constraint” on page 850

checkpoint

The point at which all changes to the database are saved to the database file. At other times, committed
changes are saved only to the transaction log.

Glossary

824 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

checksum

The calculated number of bits of a database page that is recorded with the database page itself. The checksum
allows the database management system to validate the integrity of the page by ensuring that the numbers
match as the page is being written to disk. If the counts match, it's assumed that page was successfully written.

client message store

In QAnywhere, a SQL Anywhere database on the remote device that stores messages.

client message store ID

In QAnywhere, a MobiLink remote ID that uniquely identifies a client message store.

client/server

A software architecture where one application (the client) obtains information from and sends information
to another application (the server). The two applications often reside on different computers connected by
a network.

code page

A code page is an encoding that maps characters of a character set to numeric representations, typically an
integer between 0 and 255. An example of a code page is Windows code page 1252. For the purposes of this
documentation, code page and encoding are interchangeable terms.

See also:

● “character set” on page 824
● “encoding” on page 831
● “collation” on page 825

collation

A combination of a character set and a sort order that defines the properties of text in the database. For SQL
Anywhere databases, the default collation is determined by the operating system and language on which the
server is running; for example, the default collation on English Windows systems is 1252LATIN1. A
collation, also called a collating sequence, is used for comparing and sorting strings.

See also:

● “character set” on page 824
● “code page” on page 825
● “encoding” on page 831

command file

A text file containing SQL statements. Command files can be built manually, or they can be built
automatically by database utilities. The dbunload utility, for example, creates a command file consisting of
the SQL statements necessary to recreate a given database.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 825

communication stream

In MobiLink, the network protocol used for communication between the MobiLink client and the MobiLink
server.

concurrency

The simultaneous execution of two or more independent, and possibly competing, processes. SQL Anywhere
automatically uses locking to isolate transactions and ensure that each concurrent application sees a
consistent set of data.

See also:

● “transaction” on page 849
● “isolation level” on page 835

conflict resolution

In MobiLink, conflict resolution is logic that specifies what to do when two users modify the same row on
different remote databases.

connection ID

A unique number that identifies a given connection between a client application and the database. You can
determine the current connection ID using the following SQL statement:

SELECT CONNECTION_PROPERTY('Number');

connection-initiated synchronization

A form of MobiLink server-initiated synchronization in which synchronization is initiated when there are
changes to connectivity.

See also: “server-initiated synchronization” on page 846.

connection profile

A set of parameters that are required to connect to a database, such as user name, password, and server name,
that is stored and used as a convenience.

consolidated database

In distributed database environments, a database that stores the master copy of the data. In case of conflict
or discrepancy, the consolidated database is considered to have the primary copy of the data.

See also:

● “synchronization” on page 849
● “replication” on page 845

Glossary

826 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

constraint

A restriction on the values contained in a particular database object, such as a table or column. For example,
a column may have a uniqueness constraint, which requires that all values in the column be different. A table
may have a foreign key constraint, which specifies how the information in the table relates to data in some
other table.

See also:

● “check constraint” on page 824
● “foreign key constraint” on page 832
● “primary key constraint” on page 842
● “unique constraint” on page 850

contention

The act of competing for resources. For example, in database terms, two or more users trying to edit the
same row of a database contend for the rights to edit that row.

correlation name

The name of a table or view that is used in the FROM clause of a query—either its original name, or an
alternate name, that is defined in the FROM clause.

creator ID

In UltraLite Palm OS applications, an ID that is assigned when the application is created.

cursor

A named linkage to a result set, used to access and update rows from a programming interface. In SQL
Anywhere, cursors support forward and backward movement through the query results. Cursors consist of
two parts: the cursor result set, typically defined by a SELECT statement; and the cursor position.

See also:

● “cursor result set” on page 827
● “cursor position” on page 827

cursor position

A pointer to one row within the cursor result set.

See also:

● “cursor” on page 827
● “cursor result set” on page 827

cursor result set

The set of rows resulting from a query that is associated with a cursor.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 827

See also:

● “cursor” on page 827
● “cursor position” on page 827

data cube

A multi-dimensional result set with each dimension reflecting a different way to group and sort the same
results. Data cubes provide complex information about data that would otherwise require self-join queries
and correlated subqueries. Data cubes are a part of OLAP functionality.

data definition language (DDL)

The subset of SQL statements for defining the structure of data in the database. DDL statements create,
modify, and remove database objects, such as tables and users.

data manipulation language (DML)

The subset of SQL statements for manipulating data in the database. DML statements retrieve, insert, update,
and delete data in the database.

data type

The format of data, such as CHAR or NUMERIC. In the ANSI SQL standard, data types can also include a
restriction on size, character set, and collation.

See also: “domain” on page 830.

database

A collection of tables that are related by primary and foreign keys. The tables hold the information in the
database. The tables and keys together define the structure of the database. A database management system
accesses this information.

See also:

● “foreign key” on page 832
● “primary key” on page 842
● “database management system (DBMS)” on page 829
● “relational database management system (RDBMS)” on page 844

database administrator (DBA)

The user with the permissions required to maintain the database. The DBA is generally responsible for all
changes to a database schema, and for managing users and groups. The role of database administrator is
automatically built into databases as user ID DBA with password sql.

Glossary

828 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

database connection

A communication channel between a client application and the database. A valid user ID and password are
required to establish a connection. The privileges granted to the user ID determine the actions that can be
carried out during the connection.

database file

A database is held in one or more database files. There is an initial file, and subsequent files are called
dbspaces. Each table, including its indexes, must be contained within a single database file.

See also: “dbspace” on page 830.

database management system (DBMS)

A collection of programs that allow you to create and use databases.

See also: “relational database management system (RDBMS)” on page 844.

database name

The name given to a database when it is loaded by a server. The default database name is the root of the
initial database file.

See also: “database file” on page 829.

database object

A component of a database that contains or receives information. Tables, indexes, views, procedures, and
triggers are database objects.

database owner (dbo)

A special user that owns the system objects not owned by SYS.

See also:

● “database administrator (DBA)” on page 828
● “SYS” on page 849

database server

A computer program that regulates all access to information in a database. SQL Anywhere provides two
types of servers: network servers and personal servers.

DBA authority

The level of permission that enables a user to do administrative activity in the database. The DBA user has
DBA authority by default.

See also: “database administrator (DBA)” on page 828.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 829

dbspace

An additional database file that creates more space for data. A database can be held in up to 13 separate files
(an initial file and 12 dbspaces). Each table, together with its indexes, must be contained in a single database
file. The SQL command CREATE DBSPACE adds a new file to the database.

See also: “database file” on page 829.

deadlock

A state where a set of transactions arrives at a place where none can proceed.

device tracking

In MobiLink server-initiated synchronization, functionality that allows you to address messages using the
MobiLink user name that identifies a device.

See also: “server-initiated synchronization” on page 846.

direct row handling

In MobiLink, a way to synchronize table data to sources other than the MobiLink-supported consolidated
databases. You can implement both uploads and downloads with direct row handling.

See also:

● “consolidated database” on page 826
● “SQL-based synchronization” on page 847

domain

Aliases for built-in data types, including precision and scale values where applicable, and optionally
including DEFAULT values and CHECK conditions. Some domains, such as the monetary data types, are
pre-defined in SQL Anywhere. Also called user-defined data type.

See also: “data type” on page 828.

download

The stage in synchronization where data is transferred from the consolidated database to a remote database.

dynamic SQL

SQL that is generated programmatically by your program before it is executed. UltraLite dynamic SQL is
a variant designed for small-footprint devices.

EBF

Express Bug Fix. An express bug fix is a subset of the software with one or more bug fixes. The bug fixes
are listed in the release notes for the update. Bug fix updates may only be applied to installed software with
the same version number. Some testing has been performed on the software, but the software has not

Glossary

830 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

undergone full testing. You should not distribute these files with your application unless you have verified
the suitability of the software yourself.

embedded SQL

A programming interface for C programs. SQL Anywhere embedded SQL is an implementation of the ANSI
and IBM standard.

encoding

Also known as character encoding, an encoding is a method by which each character in a character set is
mapped onto one or more bytes of information, typically represented as a hexadecimal number. An example
of an encoding is UTF-8.

See also:

● “character set” on page 824
● “code page” on page 825
● “collation” on page 825

event model

In MobiLink, the sequence of events that make up a synchronization, such as begin_synchronization and
download_cursor. Events are invoked if a script is created for them.

external login

An alternate login name and password used when communicating with a remote server. By default, SQL
Anywhere uses the names and passwords of its clients whenever it connects to a remote server on behalf of
those clients. However, this default can be overridden by creating external logins. External logins are
alternate login names and passwords used when communicating with a remote server.

extraction

In SQL Remote replication, the act of unloading the appropriate structure and data from the consolidated
database. This information is used to initialize the remote database.

See also: “replication” on page 845.

failover

Switching to a redundant or standby server, system, or network on failure or unplanned termination of the
active server, system, or network. Failover happens automatically.

FILE

In SQL Remote replication, a message system that uses shared files for exchanging replication messages.
This is useful for testing and for installations without an explicit message-transport system.

See also:“replication” on page 845.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 831

file-based download

In MobiLink, a way to synchronize data in which downloads are distributed as files, allowing offline
distribution of synchronization changes.

file-definition database

In MobiLink, a SQL Anywhere database that is used for creating download files.

See also: “file-based download” on page 832.

foreign key

One or more columns in a table that duplicate the primary key values in another table. Foreign keys establish
relationships between tables.

See also:

● “primary key” on page 842
● “foreign table” on page 832

foreign key constraint

A restriction on a column or set of columns that specifies how the data in the table relates to the data in some
other table. Imposing a foreign key constraint on a set of columns makes those columns the foreign key.

See also:

● “constraint” on page 827
● “check constraint” on page 824
● “primary key constraint” on page 842
● “unique constraint” on page 850

foreign table

The table containing the foreign key.

See also: “foreign key” on page 832.

full backup

A backup of the entire database, and optionally, the transaction log. A full backup contains all the information
in the database and provides protection in the event of a system or media failure.

See also: “incremental backup” on page 834.

gateway

A MobiLink object, stored in MobiLink system tables or a Notifier properties file, that contains information
about how to send messages for server-initiated synchronization.

See also: “server-initiated synchronization” on page 846.

Glossary

832 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

generated join condition

A restriction on join results that is automatically generated. There are two types: key and natural. Key joins
are generated when you specify KEY JOIN or when you specify the keyword JOIN but do not use the
keywords CROSS, NATURAL, or ON. For a key join, the generated join condition is based on foreign key
relationships between tables. Natural joins are generated when you specify NATURAL JOIN; the generated
join condition is based on common column names in the two tables.

See also:

● “join” on page 836
● “join condition” on page 836

generation number

In MobiLink, a mechanism for forcing remote databases to upload data before applying any more download
files.

See also: “file-based download” on page 832.

global temporary table

A type of temporary table for which data definitions are visible to all users until explicitly dropped. Global
temporary tables let each user open their own identical instance of a table. By default, rows are deleted on
commit, and rows are always deleted when the connection is ended.

See also:

● “temporary table” on page 849
● “local temporary table” on page 836

grant option

The level of permission that allows a user to grant permissions to other users.

hash

A hash is an index optimization that transforms index entries into keys. An index hash aims to avoid the
expensive operation of finding, loading, and then unpacking the rows to determine the indexed value, by
including enough of the actual row data with its row ID.

histogram

The most important component of column statistics, histograms are a representation of data distribution.
SQL Anywhere maintains histograms to provide the optimizer with statistical information about the
distribution of values in columns.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 833

iAnywhere JDBC driver

The iAnywhere JDBC driver provides a JDBC driver that has some performance benefits and feature benefits
compared to the pure Java jConnect JDBC driver, but which is not a pure-Java solution. The iAnywhere
JDBC driver is recommended in most cases.

See also:

● “JDBC” on page 835
● “jConnect” on page 835

identifier

A string of characters used to reference a database object, such as a table or column. An identifier may
contain any character from A through Z, a through z, 0 through 9, underscore (_), at sign (@), number sign
(#), or dollar sign ($).

incremental backup

A backup of the transaction log only, typically used between full backups.

See also: “transaction log” on page 849.

index

A sorted set of keys and pointers associated with one or more columns in a base table. An index on one or
more columns of a table can improve performance.

InfoMaker

A reporting and data maintenance tool that lets you create sophisticated forms, reports, graphs, cross-tabs,
and tables, and applications that use these reports as building blocks.

inner join

A join in which rows appear in the result set only if both tables satisfy the join condition. Inner joins are the
default.

See also:

● “join” on page 836
● “outer join” on page 840

integrated login

A login feature that allows the same single user ID and password to be used for operating system logins,
network logins, and database connections.

Glossary

834 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

integrity

Adherence to rules that ensure that data is correct and accurate, and that the relational structure of the database
is intact.

See also: “referential integrity” on page 844.

Interactive SQL

A SQL Anywhere application that allows you to query and alter data in your database, and modify the
structure of your database. Interactive SQL provides a pane for you to enter SQL statements, and panes that
return information about how the query was processed and the result set.

isolation level

The degree to which operations in one transaction are visible to operations in other concurrent transactions.
There are four isolation levels, numbered 0 through 3. Level 3 provides the highest level of isolation. Level
0 is the default setting. SQL Anywhere also supports three snapshot isolation levels: snapshot, statement-
snapshot, and readonly-statement-snapshot.

See also: “snapshot isolation” on page 847.

JAR file

Java archive file. A compressed file format consisting of a collection of one or more packages used for Java
applications. It includes all the resources necessary to install and run a Java program in a single compressed
file.

Java class

The main structural unit of code in Java. It is a collection of procedures and variables grouped together
because they all relate to a specific, identifiable category.

jConnect

A Java implementation of the JavaSoft JDBC standard. It provides Java developers with native database
access in multi-tier and heterogeneous environments. However, the iAnywhere JDBC driver is the preferred
JDBC driver for most cases.

See also:

● “JDBC” on page 835
● “iAnywhere JDBC driver” on page 834

JDBC

Java Database Connectivity. A SQL-language programming interface that allows Java applications to access
relational data. The preferred JDBC driver is the iAnywhere JDBC driver.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 835

See also:

● “jConnect” on page 835
● “iAnywhere JDBC driver” on page 834

join

A basic operation in a relational system that links the rows in two or more tables by comparing the values
in specified columns.

join condition

A restriction that affects join results. You specify a join condition by inserting an ON clause or WHERE
clause immediately after the join. In the case of natural and key joins, SQL Anywhere generates a join
condition.

See also:

● “join” on page 836
● “generated join condition” on page 833

join type

SQL Anywhere provides four types of joins: cross join, key join, natural join, and joins using an ON clause.

See also: “join” on page 836.

light weight poller
In MobiLink server-initiated synchronization, a device application that polls for push notifications from a
MobiLink server.

See also: “server-initiated synchronization” on page 846.

Listener

A program, dblsn, that is used for MobiLink server-initiated synchronization. Listeners are installed on
remote devices and configured to initiate actions on the device when they receive push notifications.

See also: “server-initiated synchronization” on page 846.

local temporary table

A type of temporary table that exists only for the duration of a compound statement or until the end of the
connection. Local temporary tables are useful when you need to load a set of data only once. By default,
rows are deleted on commit.

See also:

● “temporary table” on page 849
● “global temporary table” on page 833

Glossary

836 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

lock

A concurrency control mechanism that protects the integrity of data during the simultaneous execution of
multiple transactions. SQL Anywhere automatically applies locks to prevent two connections from changing
the same data at the same time, and to prevent other connections from reading data that is in the process of
being changed.

You control locking by setting the isolation level.

See also:

● “isolation level” on page 835
● “concurrency” on page 826
● “integrity” on page 835

log file

A log of transactions maintained by SQL Anywhere. The log file is used to ensure that the database is
recoverable in the event of a system or media failure, to improve database performance, and to allow data
replication using SQL Remote.

See also:

● “transaction log” on page 849
● “transaction log mirror” on page 850
● “full backup” on page 832

logical index

A reference (pointer) to a physical index. There is no indexing structure stored on disk for a logical index.

LTM

Log Transfer Manager (LTM) also called Replication Agent. Used with Replication Server, the LTM is the
program that reads a database transaction log and sends committed changes to Sybase Replication Server.

See: “Replication Server” on page 845.

maintenance release

A maintenance release is a complete set of software that upgrades installed software from an older version
with the same major version number (version number format is major.minor.patch.build). Bug fixes and
other changes are listed in the release notes for the upgrade.

materialized view

A materialized view is a view that has been computed and stored on disk. Materialized views have
characteristics of both views (they are defined using a query specification), and of tables (they allow most
table operations to be performed on them).

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 837

See also:

● “base table” on page 823
● “view” on page 851

message log

A log where messages from an application such as a database server or MobiLink server can be stored. This
information can also appear in a messages window or be logged to a file. The message log includes
informational messages, errors, warnings, and messages from the MESSAGE statement.

message store

In QAnywhere, databases on the client and server device that store messages.

See also:

● “client message store” on page 825
● “server message store” on page 847

message system

In SQL Remote replication, a protocol for exchanging messages between the consolidated database and a
remote database. SQL Anywhere includes support for the following message systems: FILE, FTP, and
SMTP.

See also:

● “replication” on page 845
● “FILE” on page 831

message type

In SQL Remote replication, a database object that specifies how remote users communicate with the publisher
of a consolidated database. A consolidated database may have several message types defined for it; this
allows different remote users to communicate with it using different message systems.

See also:

● “replication” on page 845
● “consolidated database” on page 826

metadata

Data about data. Metadata describes the nature and content of other data.

See also: “schema” on page 846.

mirror log

See also: “transaction log mirror” on page 850.

Glossary

838 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

MobiLink

A session-based synchronization technology designed to synchronize UltraLite and SQL Anywhere remote
databases with a consolidated database.

See also:

● “consolidated database” on page 826
● “synchronization” on page 849
● “UltraLite” on page 850

MobiLink client

There are two kinds of MobiLink clients. For SQL Anywhere remote databases, the MobiLink client is the
dbmlsync command line utility. For UltraLite remote databases, the MobiLink client is built in to the
UltraLite runtime library.

MobiLink Monitor

A graphical tool for monitoring MobiLink synchronizations.

MobiLink server

The computer program that runs MobiLink synchronization, mlsrv11.

MobiLink system table

System tables that are required by MobiLink synchronization. They are installed by MobiLink setup scripts
into the MobiLink consolidated database.

MobiLink user

A MobiLink user is used to connect to the MobiLink server. You create the MobiLink user on the remote
database and register it in the consolidated database. MobiLink user names are entirely independent of
database user names.

network protocol

The type of communication, such as TCP/IP or HTTP.

network server

A database server that accepts connections from computers sharing a common network.

See also: “personal server” on page 841.

normalization

The refinement of a database schema to eliminate redundancy and improve organization according to rules
based on relational database theory.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 839

Notifier

A program that is used by MobiLink server-initiated synchronization. Notifiers are integrated into the
MobiLink server. They check the consolidated database for push requests, and send push notifications.

See also:

● “server-initiated synchronization” on page 846
● “Listener” on page 836

object tree

In Sybase Central, the hierarchy of database objects. The top level of the object tree shows all products that
your version of Sybase Central supports. Each product expands to reveal its own sub-tree of objects.

See also: “Sybase Central” on page 848.

ODBC

Open Database Connectivity. A standard Windows interface to database management systems. ODBC is
one of several interfaces supported by SQL Anywhere.

ODBC Administrator

A Microsoft program included with Windows operating systems for setting up ODBC data sources.

ODBC data source

A specification of the data a user wants to access via ODBC, and the information needed to get to that data.

outer join

A join that preserves all the rows in a table. SQL Anywhere supports left, right, and full outer joins. A left
outer join preserves the rows in the table to the left of the join operator, and returns a null when a row in the
right table does not satisfy the join condition. A full outer join preserves all the rows from both tables.

See also:

● “join” on page 836
● “inner join” on page 834

package

In Java, a collection of related classes.

parse tree

An algebraic representation of a query.

PDB

A Palm database file.

Glossary

840 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

performance statistic

A value reflecting the performance of the database system. The CURRREAD statistic, for example,
represents the number of file reads issued by the database server that have not yet completed.

personal server

A database server that runs on the same computer as the client application. A personal database server is
typically used by a single user on a single computer, but it can support several concurrent connections from
that user.

physical index

The actual indexing structure of an index, as it is stored on disk.

plug-in module

In Sybase Central, a way to access and administer a product. Plug-ins are usually installed and registered
automatically with Sybase Central when you install the respective product. Typically, a plug-in appears as
a top-level container, in the Sybase Central main window, using the name of the product itself; for example,
SQL Anywhere.

See also: “Sybase Central” on page 848.

policy

In QAnywhere, the way you specify when message transmission should occur.

polling

In MobiLink server-initiated synchronization, the way a light weight poller, such as the MobiLink Listener,
requests push notifications from a Notifier.

See also: “server-initiated synchronization” on page 846.

PowerDesigner

A database modeling application. PowerDesigner provides a structured approach to designing a database or
data warehouse. SQL Anywhere includes the Physical Data Model component of PowerDesigner.

PowerJ

A Sybase product for developing Java applications.

predicate

A conditional expression that is optionally combined with the logical operators AND and OR to make up
the set of conditions in a WHERE or HAVING clause. In SQL, a predicate that evaluates to UNKNOWN
is interpreted as FALSE.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 841

primary key

A column or list of columns whose values uniquely identify every row in the table.

See also: “foreign key” on page 832.

primary key constraint

A uniqueness constraint on the primary key columns. A table can have only one primary key constraint.

See also:

● “constraint” on page 827
● “check constraint” on page 824
● “foreign key constraint” on page 832
● “unique constraint” on page 850
● “integrity” on page 835

primary table

The table containing the primary key in a foreign key relationship.

proxy table

A local table containing metadata used to access a table on a remote database server as if it were a local
table.

See also: “metadata” on page 838.

publication

In MobiLink or SQL Remote, a database object that identifies data that is to be synchronized. In MobiLink,
publications exist only on the clients. A publication consists of articles. SQL Remote users can receive a
publication by subscribing to it. MobiLink users can synchronize a publication by creating a synchronization
subscription to it.

See also:

● “replication” on page 845
● “article” on page 823
● “publication update” on page 842

publication update

In SQL Remote replication, a list of changes made to one or more publications in one database. A publication
update is sent periodically as part of a replication message to the remote database(s).

See also:

● “replication” on page 845
● “publication” on page 842

Glossary

842 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

publisher

In SQL Remote replication, the single user in a database who can exchange replication messages with other
replicating databases.

See also: “replication” on page 845.

push notification

In QAnywhere, a special message delivered from the server to a QAnywhere client that prompts the client
to initiate a message transmission. In MobiLink server-initiated synchronization, a special message delivered
from a Notifer to a device that contains push request data and internal information.

See also:

● “QAnywhere” on page 843
● “server-initiated synchronization” on page 846

push request

In MobiLink server-initiated synchronization, a row of values in a result set that a Notifier checks to
determine if push notifications need to be sent to a device.

See also: “server-initiated synchronization” on page 846.

QAnywhere

Application-to-application messaging, including mobile device to mobile device and mobile device to and
from the enterprise, that permits communication between custom programs running on mobile or wireless
devices and a centrally located server application.

QAnywhere agent

In QAnywhere, a process running on the client device that monitors the client message store and determines
when message transmission should occur.

query

A SQL statement or group of SQL statements that access and/or manipulate data in a database.

See also: “SQL” on page 847.

Redirector

A web server plug-in that routes requests and responses between a client and the MobiLink server. This
plug-in also implements load-balancing and failover mechanisms.

reference database

In MobiLink, a SQL Anywhere database used in the development of UltraLite clients. You can use a single
SQL Anywhere database as both reference and consolidated database during development. Databases made
with other products cannot be used as reference databases.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 843

referencing object

An object, such as a view, whose definition directly references another object in the database, such as a table.

See also: “foreign key” on page 832.

referenced object

An object, such as a table, that is directly referenced in the definition of another object, such as a view.

See also: “primary key” on page 842.

referential integrity

Adherence to rules governing data consistency, specifically the relationships between the primary and
foreign key values in different tables. To have referential integrity, the values in each foreign key must
correspond to the primary key values of a row in the referenced table.

See also:

● “primary key” on page 842
● “foreign key” on page 832

regular expression

A regular expression is a sequence of characters, wildcards, and operators that defines a pattern to search
for within a string.

relational database management system (RDBMS)

A type of database management system that stores data in the form of related tables.

See also: “database management system (DBMS)” on page 829.

remote database

In MobiLink or SQL Remote, a database that exchanges data with a consolidated database. Remote databases
may share all or some of the data in the consolidated database.

See also:

● “synchronization” on page 849
● “consolidated database” on page 826

REMOTE DBA authority

In SQL Remote, a level of permission required by the Message Agent (dbremote). In MobiLink, a level of
permission required by the SQL Anywhere synchronization client (dbmlsync). When the Message Agent
(dbremote) or synchronization client connects as a user who has this authority, it has full DBA access. The
user ID has no additional permissions when not connected through the Message Agent (dbremote) or
synchronization client (dbmlsync).

See also: “DBA authority” on page 829.

Glossary

844 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

remote ID

A unique identifier in SQL Anywhere and UltraLite databases that is used by MobiLink. The remote ID is
initially set to NULL and is set to a GUID during a database's first synchronization.

replication

The sharing of data among physically distinct databases. Sybase has three replication technologies:
MobiLink, SQL Remote, and Replication Server.

Replication Agent

See: “LTM” on page 837.

replication frequency

In SQL Remote replication, a setting for each remote user that determines how often the publisher's message
agent should send replication messages to that remote user.

See also: “replication” on page 845.

replication message

In SQL Remote or Replication Server, a communication sent between a publishing database and a subscribing
database. Messages contain data, passthrough statements, and information required by the replication system.

See also:

● “replication” on page 845
● “publication update” on page 842

Replication Server

A Sybase connection-based replication technology that works with SQL Anywhere and Adaptive Server
Enterprise. It is intended for near-real time replication between a few databases.

See also: “LTM” on page 837.

role

In conceptual database modeling, a verb or phrase that describes a relationship from one point of view. You
can describe each relationship with two roles. Examples of roles are "contains" and "is a member of."

role name

The name of a foreign key. This is called a role name because it names the relationship between the foreign
table and primary table. By default, the role name is the table name, unless another foreign key is already
using that name, in which case the default role name is the table name followed by a three-digit unique
number. You can also create the role name yourself.

See also: “foreign key” on page 832.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 845

rollback log

A record of the changes made during each uncommitted transaction. In the event of a ROLLBACK request
or a system failure, uncommitted transactions are reversed out of the database, returning the database to its
former state. Each transaction has a separate rollback log, which is deleted when the transaction is complete.

See also: “transaction” on page 849.

row-level trigger

A trigger that executes once for each row that is changed.

See also:

● “trigger” on page 850
● “statement-level trigger” on page 848

schema

The structure of a database, including tables, columns, and indexes, and the relationships between them.

script

In MobiLink, code written to handle MobiLink events. Scripts programmatically control data exchange to
meet business needs.

See also: “event model” on page 831.

script-based upload

In MobiLink, a way to customize the upload process as an alternative to using the log file.

script version

In MobiLink, a set of synchronization scripts that are applied together to create a synchronization.

secured feature

A feature specified by the -sf option when a database server is started, so it is not available for any database
running on that database server.

server-initiated synchronization

A way to initiate MobiLink synchronization from the MobiLink server.

server management request

A QAnywhere message that is formatted as XML and sent to the QAnywhere system queue as a way to
administer the server message store or monitor QAnywhere applications.

Glossary

846 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

server message store

In QAnywhere, a relational database on the server that temporarily stores messages until they are transmitted
to a client message store or JMS system. Messages are exchanged between clients via the server message
store.

service

In Windows operating systems, a way of running applications when the user ID running the application is
not logged on.

session-based synchronization

A type of synchronization where synchronization results in consistent data representation across both the
consolidated and remote databases. MobiLink is session-based.

snapshot isolation

A type of isolation level that returns a committed version of the data for transactions that issue read requests.
SQL Anywhere provides three snapshot isolation levels: snapshot, statement-snapshot, and readonly-
statement-snapshot. When using snapshot isolation, read operations do not block write operations.

See also: “isolation level” on page 835.

SQL

The language used to communicate with relational databases. ANSI has defined standards for SQL, the latest
of which is SQL-2003. SQL stands, unofficially, for Structured Query Language.

SQL Anywhere

The relational database server component of SQL Anywhere that is intended for use in mobile and embedded
environments or as a server for small and medium-sized businesses. SQL Anywhere is also the name of the
package that contains the SQL Anywhere RDBMS, the UltraLite RDBMS, MobiLink synchronization
software, and other components.

SQL-based synchronization

In MobiLink, a way to synchronize table data to MobiLink-supported consolidated databases using
MobiLink events. For SQL-based synchronization, you can use SQL directly or you can return SQL using
the MobiLink server APIs for Java and .NET.

SQL Remote

A message-based data replication technology for two-way replication between consolidated and remote
databases. The consolidated and remote databases must be SQL Anywhere.

SQL statement

A string containing SQL keywords designed for passing instructions to a DBMS.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 847

See also:

● “schema” on page 846
● “SQL” on page 847
● “database management system (DBMS)” on page 829

statement-level trigger

A trigger that executes after the entire triggering statement is completed.

See also:

● “trigger” on page 850
● “row-level trigger” on page 846

stored procedure

A stored procedure is a group of SQL instructions stored in the database and used to execute a set of operations
or queries on a database server

string literal

A string literal is a sequence of characters enclosed in single quotes.

subquery

A SELECT statement that is nested inside another SELECT, INSERT, UPDATE, or DELETE statement,
or another subquery.

There are two types of subquery: correlated and nested.

subscription

In MobiLink synchronization, a link in a client database between a publication and a MobiLink user, allowing
the data described by the publication to be synchronized.

In SQL Remote replication, a link between a publication and a remote user, allowing the user to exchange
updates on that publication with the consolidated database.

See also:

● “publication” on page 842
● “MobiLink user” on page 839

Sybase Central

A database management tool that provides SQL Anywhere database settings, properties, and utilities in a
graphical user interface. Sybase Central can also be used for managing other Sybase products, including
MobiLink.

Glossary

848 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

synchronization

The process of replicating data between databases using MobiLink technology.

In SQL Remote, synchronization is used exclusively to denote the process of initializing a remote database
with an initial set of data.

See also:

● “MobiLink” on page 839
● “SQL Remote” on page 847

SYS

A special user that owns most of the system objects. You cannot log in as SYS.

system object

Database objects owned by SYS or dbo.

system table

A table, owned by SYS or dbo, that holds metadata. System tables, also known as data dictionary tables, are
created and maintained by the database server.

system view

A type of view, included in every database, that presents the information held in the system tables in an
easily understood format.

temporary table

A table that is created for the temporary storage of data. There are two types: global and local.

See also:

● “local temporary table” on page 836
● “global temporary table” on page 833

transaction

A sequence of SQL statements that comprise a logical unit of work. A transaction is processed in its entirety
or not at all. SQL Anywhere supports transaction processing, with locking features built in to allow
concurrent transactions to access the database without corrupting the data. Transactions end either with a
COMMIT statement, which makes the changes to the data permanent, or a ROLLBACK statement, which
undoes all the changes made during the transaction.

transaction log

A file storing all changes made to a database, in the order in which they are made. It improves performance
and allows data recovery in the event the database file is damaged.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 849

transaction log mirror

An optional identical copy of the transaction log file, maintained simultaneously. Every time a database
change is written to the transaction log file, it is also written to the transaction log mirror file.

A mirror file should be kept on a separate device from the transaction log, so that if either device fails, the
other copy of the log keeps the data safe for recovery.

See also: “transaction log” on page 849.

transactional integrity

In MobiLink, the guaranteed maintenance of transactions across the synchronization system. Either a
complete transaction is synchronized, or no part of the transaction is synchronized.

transmission rule

In QAnywhere, logic that determines when message transmission is to occur, which messages to transmit,
and when messages should be deleted.

trigger

A special form of stored procedure that is executed automatically when a user runs a query that modifies the
data.

See also:

● “row-level trigger” on page 846
● “statement-level trigger” on page 848
● “integrity” on page 835

UltraLite

A database optimized for small, mobile, and embedded devices. Intended platforms include cell phones,
pagers, and personal organizers.

UltraLite runtime

An in-process relational database management system that includes a built-in MobiLink synchronization
client. The UltraLite runtime is included in the libraries used by each of the UltraLite programming interfaces,
and in the UltraLite engine.

unique constraint

A restriction on a column or set of columns requiring that all non-null values are different. A table can have
multiple unique constraints.

See also:

● “foreign key constraint” on page 832
● “primary key constraint” on page 842
● “constraint” on page 827

Glossary

850 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

unload

Unloading a database exports the structure and/or data of the database to text files (SQL command files for
the structure, and ASCII comma-separated files for the data). You unload a database with the Unload utility.

In addition, you can unload selected portions of your data using the UNLOAD statement.

upload

The stage in synchronization where data is transferred from a remote database to a consolidated database.

user-defined data type

See “domain” on page 830.

validate

To test for particular types of file corruption of a database, table, or index.

view

A SELECT statement that is stored in the database as an object. It allows users to see a subset of rows or
columns from one or more tables. Each time a user uses a view of a particular table, or combination of tables,
it is recomputed from the information stored in those tables. Views are useful for security purposes, and to
tailor the appearance of database information to make data access straightforward.

window

The group of rows over which an analytic function is performed. A window may contain one, many, or all
rows of data that has been partitioned according to the grouping specifications provided in the window
definition. The window moves to include the number or range of rows needed to perform the calculations
for the current row in the input. The main benefit of the window construct is that it allows additional
opportunities for grouping and analysis of results, without having to perform additional queries.

Windows

The Microsoft Windows family of operating systems, such as Windows Vista, Windows XP, and Windows
200x.

Windows CE
See “Windows Mobile” on page 851.

Windows Mobile

A family of operating systems produced by Microsoft for mobile devices.

work table

An internal storage area for interim results during query optimization.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 851

852

Index
Symbols
-a option

MobiLink server (mlsrv11), 51
-b option

MobiLink server (mlsrv11), 52
-bn option

MobiLink server (mlsrv11), 53
-c option

MobiLink server (mlsrv11), 54
MobiLink user authentication (mluser), 690

-classic option
MobiLink server (mlsrv11) -sl java, 92

-classpath option
MobiLink server (mlsrv11) -sl java, 92

-clrConGC option
MobiLink server (mlsrv11) -sl dnet, 90

-clrFlavor option
MobiLink server (mlsrv11) -sl dnet, 90

-clrVersion option
MobiLink server (mlsrv11) -sl dnet, 90

-cm option
MobiLink server (mlsrv11), 55

-cn option
MobiLink server (mlsrv11), 56

-cp option
MobiLink server (mlsrv11) -sl java, 92

-cr option
MobiLink server (mlsrv11), 57

-cs option
MobiLink server (mlsrv11), 58

-ct option
MobiLink server (mlsrv11), 59

-d option
MobiLink server (mlsrv11) -sl java, 92
MobiLink user authentication (mluser), 690

-dl option
MobiLink server (mlsrv11), 60
MobiLink user authentication (mluser), 690

-DMLStartClasses
Java user-defined start classes, 536
MobiLink server (mlsrv11) -sl java, 92

-dr option
MobiLink server (mlsrv11), 61

-ds option

MobiLink server (mlsrv11), 62
-dsd option

MobiLink server (mlsrv11), 63
-dt option

MobiLink server (mlsrv11), 64
-e option

MobiLink server (mlsrv11), 65
-esu option

MobiLink server (mlsrv11), 66
-et option

MobiLink server (mlsrv11), 67
-f option

MobiLink server (mlsrv11), 68
MobiLink stop utility (mlstop), 689
MobiLink user authentication (mluser), 690

-fr option
MobiLink server (mlsrv11), 70

-ftr option
MobiLink server (mlsrv11), 71

-h option
MobiLink stop utility (mlstop), 689

-hotspot option
MobiLink server (mlsrv11) -sl java, 92

-jrepath option
MobiLink server (mlsrv11) -sl java, 92

-lsc option
MobiLink server (mlsrv11), 72

-m option
MobiLink server (mlsrv11), 73
QAnywhere starting MobiLink server (mlsrv11),
73

-MLAutoLoadPath option
about, 601
MobiLink server (mlsrv11) -sl dnet, 90

-MLDomConfigFile option
about, 601
MobiLink server (mlsrv11) -sl dnet, 90

-MLStartClasses
.NET user-defined start classes, 595
MobiLink server (mlsrv11) -sl dnet, 90

-nba option
MobiLink server (mlsrv11), 74

-nc option
MobiLink server (mlsrv11), 75

-notifier option
MobiLink server (mlsrv11), 76

-o option
MobiLink server (mlsrv11), 77

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 853

MobiLink user authentication (mluser), 690
-on option

MobiLink server (mlsrv11), 78
-oq option

MobiLink server (mlsrv11), 79
-os option

MobiLink server (mlsrv11), 80
MobiLink user authentication (mluser), 690

-ot option
MobiLink server (mlsrv11), 81
MobiLink user authentication (mluser), 690

-p option
MobiLink user authentication (mluser), 690

-pc option
MobiLink user authentication (mluser), 690

-ppv option
MobiLink server (mlsrv11), 82

-q option
MobiLink server (mlsrv11), 86
MobiLink stop utility (mlstop), 689

-r option
MobiLink server (mlsrv11), 87

-rd option
MobiLink server (mlsrv11), 88

-s option
MobiLink server (mlsrv11), 89

-server option
MobiLink server (mlsrv11) -sl java, 92

-sl dnet option
MobiLink server (mlsrv11), 90
user-defined start classes, 595
using -MLAutoLoadPath, 592
using -MLDomConfigFile, 601

-sl java option
MobiLink server (mlsrv11), 92
user-defined start classes, 536

-sm option
MobiLink server (mlsrv11), 94

-t option
MobiLink stop utility (mlstop), 689

-tc option
MobiLink server (mlsrv11), 96

-tf option
MobiLink server (mlsrv11), 97

-tx option
MobiLink server (mlsrv11), 98

-u option
MobiLink user authentication (mluser), 690

-ud option
MobiLink server (mlsrv11), 99

-ui option
MobiLink server (mlsrv11), 100

-urc option
MobiLink performance benefits, 173

-ux option
MobiLink server (mlsrv11), 101

-v option
MobiLink [dbmlsync] performance, 172
MobiLink server (mlsrv11), 102

-v+ option
MobiLink server (mlsrv11), 102

-vc option
MobiLink server (mlsrv11), 102

-ve option
MobiLink server (mlsrv11), 102

-verbose option
MobiLink server (mlsrv11) -sl java, 92

-vf option
MobiLink server (mlsrv11), 102

-vh option
MobiLink server (mlsrv11), 102

-vm option
MobiLink server (mlsrv11), 102

-vn option
MobiLink server (mlsrv11), 102

-vp option
MobiLink server (mlsrv11), 102

-vr option
MobiLink server (mlsrv11), 102

-vs option
MobiLink server (mlsrv11), 102

-vt option
MobiLink server (mlsrv11), 102

-vu option
MobiLink server (mlsrv11), 102

-w option
MobiLink server (mlsrv11), 105
MobiLink stop utility (mlstop), 689

-wu option
MobiLink server (mlsrv11), 106

-x option
MobiLink server (mlsrv11), 107
MobiLink server (mlsrv11) -sl java, 92

-xo option
MobiLink server (mlsrv11), 113

-zp option

Index

854 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

MobiLink server (mlsrv11), 118
-zs option

MobiLink server (mlsrv11), 119
shared server state, 119

-zt option
MobiLink server (mlsrv11), 120

-zu option
MobiLink server (mlsrv11), 121

-zus option
MobiLink server (mlsrv11), 122

-zw option
MobiLink server (mlsrv11), 123

-zwd option
MobiLink server (mlsrv11), 124

-zwe option
MobiLink server (mlsrv11), 125

.NET
MobiLink data types, 594
MobiLink object-based data flow, 649
MobiLink server API reference, 606
MobiLink synchronization scripts, 589

.NET classes
instantiation for .NET synchronization logic, 593

.NET CLR
MobiLink options, 90

.NET MobiLink server API (see MobiLink server API
for .NET)
.NET synchronization example

MobiLink .NET synchronization logic, 604
.NET synchronization logic

.NET class instantiations, 593
DBCommand, 606
DBConnection interface, 608
DBConnectionContext, 609
DBParameter class, 612
DBParameterCollection class, 615
DBRowReader interface, 620
debugging, 599
deploying on 32-bit Unix, 807
deploying on 32-bit Windows, 801
deploying on 64-bit Unix, 810
deploying on 64-bit Windows, 804
LogCallback delegate, 627
LogMessage class, 627
MessageType enumeration, 627
methods, 595
MobiLink performance, 172
MobiLink server API, 606

sample, 604
ServerContext interface, 629
setup, 591
ShutdownCallback delegate, 633
SQLType enumeration, 633
supported languages, 590
SynchronizationException class, 640

.NET synchronization techniques
about, 600

@data option
MobiLink server (mlsrv11), 50
MobiLink stop utility (mlstop), 689
MobiLink user authentication (mluser), 690

@EmployeeID variable
using with MobiLink primary key pools, 143

A
a.

MobiLink named parameter prefix, 320
MobiLink user-defined parameter prefix, 323

active property
MobiLink Monitor synchronization statistics, 195

ActiveSync
MobiLink client deployment on Windows, 813

Adaptive Server Enterprise
begin_connection_autocommit event, 368
MobiLink consolidated database, 10
MobiLink data mapping, 740
MobiLink isolation levels, 165
MobiLink synchronization, 10
StaticCursorLongColBuffLen, 10
using DDL in MobiLink, 368

add table script wizard
using, 327

Add(object value) method [ML .NET]
DBParameterCollection class syntax, 616

addErrorListener method [ML Java]
ServerContext syntax, 567

addInfoListener method [ML Java]
ServerContext syntax, 566

adding
MobiLink .NET connection scripts, 668
MobiLink .NET table scripts, 669
MobiLink Java connection scripts, 671
MobiLink Java table scripts, 672
MobiLink properties, 677
MobiLink SQL connection scripts, 667

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 855

MobiLink SQL table scripts, 680
Monitor users, 228
synchronization scripts with Sybase Central, 327
user names in MobiLink, 690

adding or deleting scripts
MobiLink, 327

adding script versions
MobiLink, 325

adding scripts
MobiLink about, 327

adding synchronization scripts
using stored procedures, 328

addShutdownListener method [ML Java]
ServerContext syntax, 568

addWarningListener method [ML Java]
ServerContext syntax, 568

admin user
Monitor about, 228

administrators
Monitor users, 228

AdventureWorks
synchronization issues, 21

agent IDs
glossary definition, 823

alerts
Monitor, 232
Monitor email notification, 233
Monitor suppressing, 235

antialiasing
MobiLink Monitor option, 188

Apache
configuring for the Apache Redirector, 287
configuring servlet Redirector for MobiLink, 284

Apache on Linux
deploying the Relay Server, 256

Apache Redirector
configuring, 287

Apache Tomcat
servlet Redirector, 284

Apache web servers
configuring the Apache Redirector, 287

APIs
MobiLink server API for .NET, 606
MobiLink server API for Java, 543

application pool
creating, 254

application servers
synchronizing with MobiLink, 649

applications
deploying MobiLink, 799

array size
Oracle driver option, 795

articles
glossary definition, 823

ASE
(see also Adaptive Server Enterprise)

assemblies
implementing in MobiLink, 601
locating in MobiLink .NET synchronization logic,
591

atomic transactions
glossary definition, 823

authenticate_file_transfer
connection event, 353

authenticate_parameters
connection event, 355

authenticate_user
connection event, 358

authenticate_user property
MobiLink Monitor synchronization statistics, 195

authenticate_user_hashed
connection event, 363

authentication
MobiLink mluser utility, 690

authentication parameters
MobiLink, 323
MobiLink scripts, 320

authentication_status synchronization parameter
about, 358

autoincrement methods
Oracle MobiLink consolidated databases, 25

automatic validation
MobiLink file-based download, 298

AvantGo (see M-Business Anywhere)

B
backend farm section

Relay Server configuration file, 244
backend server section

Relay Server configuration file, 245
base tables

glossary definition, 823
begin_connection

connection event, 367
begin_connection_autocommit

Index

856 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

connection event, 368
begin_download

connection event, 369
table event, 371

begin_download_deletes
table event, 374

begin_download_rows
table event, 377

begin_publication
connection event, 380

begin_sync property
MobiLink Monitor synchronization statistics, 195

begin_synchronization
connection event, 383
table event, 385

begin_upload
connection event, 387
table event, 389

begin_upload_deletes
table event, 391

begin_upload_rows
table event, 394

bi-directional synchronization
about, 138
required scripts, 326

bit arrays
glossary definition, 824

blackouts
about, 226

BLOBs
downloaded from ASE, 10

blocking download acknowledgement
about, 161

bottlenecks
MobiLink performance, 174

broadcast download
MobiLink file-based download, 293

buffer_size protocol option
MobiLink server (mlsrv11) -x option for HTTP,
109
MobiLink server (mlsrv11) -x option for HTTPS,
110

bugs
providing feedback, xix

business rules
glossary definition, 824

C
C# programming language

MobiLink .NET support, 590
MobiLink options, 90
MobiLink synchronization scripts, 589

C++ programming language
MobiLink .NET support, 590

carriers
glossary definition, 824

central databases
MobiLink consolidated databases, 3

changing the last download time
MobiLink, 131

CHAR columns
ASE MobiLink consolidated databases, 10
DB2 MobiLink consolidated databases, 13
MobiLink issues, 8
MobiLink server (mlsrv11) -b option, 52
Oracle MobiLink consolidated databases, 25
SQL Server MobiLink consolidated databases, 20

CHAR data type
MobiLink and other DBMSs, 8

character set considerations
MobiLink, 790

character set conversion
by ODBC drivers, 791
during MobiLink synchronization, 790

character sets
glossary definition, 824
MobiLink synchronization, 790

chart pane
MobiLink Monitor, 188

CHECK constraints
glossary definition, 824

checkpoints
glossary definition, 824

checksums
glossary definition, 825

class instances
Java synchronization logic, 531
MobiLink .NET synchronization logic, 593

CLASSPATH environment variable
MobiLink Java synchronization logic, 529

Clear method [ML .NET]
DBParameterCollection class syntax, 616

client
connecting to the Relay Server farm, 262

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 857

client event-hook procedures
(see also event hooks)

client message store IDs
glossary definition, 825

client message stores
glossary definition, 825

client/server
glossary definition, 825

Close method [ML .NET]
DBCommand syntax, 608
DBConnection syntax, 609
DBRowReader interface syntax, 621

CLR
MobiLink options, 90

code pages
glossary definition, 825

collation sequences
MobiLink synchronization, 790

collations
glossary definition, 825

collisions
MobiLink conflict resolution, 146

column sizes
ASE MobiLink consolidated databases, 10

ColumnNames property [ML .NET]
DBRowReader interface syntax, 621

ColumnTypes property [ML .NET]
DBRowReader interface syntax, 622

command files
glossary definition, 825

command line
starting mlsrv11, 45

command line utilities
MobiLink stop utility (mlstop), 689
MobiLink synchronization, 687
MobiLink user authentication (mluser), 690

command prompts
conventions, xvii
curly braces, xvii
environment variables, xvii
parentheses, xvii
quotes, xvii

command shells
conventions, xvii
curly braces, xvii
environment variables, xvii
parentheses, xvii
quotes, xvii

CommandText property [ML .NET]
DBCommand syntax, 608

Commit method [ML .NET]
DBConnection syntax, 609

common language runtime
MobiLink options, 90

communication streams
glossary definition, 826

communications
MobiLink mlsrv11 -c option, 54
MobiLink server -x option, 107

complete event model
MobiLink, 343
MobiLink pseudocode, 346

completed property
MobiLink Monitor synchronization statistics, 195

composite keys
MobiLink unique primary keys, 139

concurrency
glossary definition, 826
MobiLink performance, 170

configuring
Apache web servers, 287
M-Business Anywhere, 289
Microsoft web servers, 282
MobiLink consolidated databases, 6
MobiLink Redirector about, 268
NSAPI web servers on Unix, 280
NSAPI web servers on Windows, 277
servlet Redirector for Apache web servers, 284
Tomcat, 284

configuring an Apache Redirector for Apache web
servers

about, 287
configuring an ISAPI Redirector for Microsoft web
servers

about, 282
configuring an NSAPI Redirector for Netscape/Sun
web servers

Unix, 280
Windows, 277

configuring Redirector properties
Redirectors that don't support server groups, 275
Redirectors that support server groups, 273

configuring the servlet Redirector
Apache web servers, 284

conflict detection
MobiLink, 147

Index

858 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

MobiLink statement-based uploads, 147
conflict resolution

forcing in MobiLink, 154
glossary definition, 826
MobiLink, 146
MobiLink conflict detection, 147
MobiLink default behavior, 146
MobiLink detection, 147
resolve_conflict script, 149
upload_update script, 151

conflicted_deletes property
MobiLink Monitor synchronization statistics, 195

conflicted_inserts property
MobiLink Monitor synchronization statistics, 195

conflicted_updates property
MobiLink Monitor synchronization statistics, 195

conflicts
MobiLink, 146
MobiLink default behavior, 146
MobiLink detection, 147
MobiLink direct row handling, 655
MobiLink forced, 154

connecting
MobiLink client-server prior to version 10, 113
MobiLink mlsrv11 -c option, 54
MobiLink server -x option, 107

connection IDs
glossary definition, 826

connection parameters
MobiLink server -x option, 107

connection profiles
glossary definition, 826

connection properties
MobiLink server -x option, 107

connection scripts
about, 318
adding .NET scripts, 668
adding Java scripts, 671
adding SQL scripts, 667
adding with Sybase Central, 327
alphabetic list of MobiLink scripts, 342
defined, 318
deleting .NET scripts, 668
deleting Java scripts, 671
deleting SQL scripts, 667
ml_global, 325

connection strings
MobiLink mlsrv11, 54

connection-initiated synchronization
glossary definition, 826

connection-level scripts
defined, 318

connection_retries property
MobiLink Monitor synchronization statistics, 195

connections
MobiLink mlsrv11 -c option, 54
MobiLink server -x option, 107

consolidated databases
about, 3
adding synchronization scripts to, 327
ASE as MobiLink, 10
creating MobiLink, 6
databases other than SQL Anywhere, 8
DBMS dependencies, 8
glossary definition, 826
IBM DB2 LUW as MobiLink, 12
IBM DB2 mainframe as MobiLink, 15
mapping of data types in MobiLink, 739
MobiLink isolation levels, 165
MobiLink system tables, 694
MySQL as MobiLink, 22
Oracle as MobiLink, 25
relating tables to MobiLink remote tables, 5
SQL Anywhere as MobiLink, 28
SQL Server as MobiLink, 20

constraint errors (see conflicts)
constraints

glossary definition, 827
constructors

MobiLink .NET synchronization logic, 594
MobiLink Java synchronization logic, 532

Contains(object value) method [ML .NET]
DBParameterCollection class syntax, 617

Contains(string parameterName) method [ML .NET]
DBParameterCollection class syntax, 615

contd_timeout protocol option
MobiLink Redirector, 269

contention
glossary definition, 827
MobiLink performance, 170
MobiLink performance explanation, 174

conventions
command prompts, xvii
command shells, xvii
documentation, xvi
file names in documentation, xvi

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 859

conversion
character set by ODBC drivers, 791

conversion between character sets
MobiLink synchronization, 790

CopyTo(Array array, int index) method [ML .NET]
DBParameterCollection class syntax, 618

correlation names
glossary definition, 827

Count property [ML .NET]
DBParameterCollection class syntax, 619

create connection script wizard
using, 327

create script version wizard
using, 325

create service wizard
MobiLink, 36

create your java synchronization script
MobiLink Java synchronization logic example, 538

CreateCommand method [ML .NET]
DBConnection syntax, 609

creating
download file for MobiLink file-based download,
296
file-definition database, 295
MobiLink consolidated databases, 6

creating consolidated databases
MobiLink about, 6

creating databases
consolidated, 6

creating download files
MobiLink file-based download, 296

creating file-definition databases
MobiLink, 295

creator ID
glossary definition, 827

cursor positions
glossary definition, 827

cursor result sets
glossary definition, 827

cursor scripts
defined, 318

cursors
glossary definition, 827

custom validation
MobiLink file-based download, 300

customizing your statistics
MobiLink Monitor, 194

D
daemon

running MobiLink as a, 35
data cube

glossary definition, 828
data entry

MobiLink, 155
data exchange (see synchronization)
data flow (MobiLink) (see direct row handling)
data inconsistency

MobiLink conflict-handling, 146
data manipulation language

glossary definition, 828
data mappings

about, 739
data source name

Oracle driver option, 795
data type mapping

MobiLink consolidated databases, 739
data types

ASE in MobiLink, 740
glossary definition, 828
IBM DB2 LUW in MobiLink, 749
IBM DB2 mainframe in MobiLink, 756
Microsoft SQL Server in MobiLink, 767
MobiLink .NET and SQL, 594
MobiLink consolidated database mappings, 739
MobiLink Java and SQL, 532
MySQL in MobiLink, 774
Oracle in MobiLink, 779

database administrator
glossary definition, 828

database connections
glossary definition, 829
MobiLink performance, 176
MobiLink performance setting maximum, 171

database files
glossary definition, 829

database names
glossary definition, 829

database objects
glossary definition, 829

database owner
glossary definition, 829

database schemas
relating consolidated tables to MobiLink remote
tables, 5

Index

860 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

database servers
glossary definition, 829

database worker threads
MobiLink, 174
MobiLink performance, 170

databases
glossary definition, 828
MobiLink consolidated databases, 3

daylight savings time
MobiLink, 132

DB2
maximum identifier length in IBM, 664, 696
MobiLink data mapping for LUW, 749
MobiLink data mapping for Mainframe, 756
MobiLink isolation levels, 165

DB2 LUW
MobiLink consolidated database, 12

DB2 mainframe
maximum identifier length in IBM, 695
MobiLink consolidated database, 15

DBA authority
glossary definition, 829

DBCommand interface [ML .NET]
syntax, 606

DBConnection interface [ML .NET]
syntax, 608

DBConnectionContext
constructors, 594

DBConnectionContext interface [ML .NET]
syntax, 609

DBConnectionContext interface [ML Java]
syntax, 543

dbmlsync integration component (deprecated)
deploying on Windows, 813

dbmlsync utility
deploying, 813
deploying on Unix, 814
deploying on Windows, 813

DBMS
glossary definition, 829

DBParameter class [ML .NET]
syntax, 612

DBParameterCollection class [ML .NET]
syntax, 615

DBParameterCollection method [ML .NET]
DBParameterCollection class syntax, 615

DBRowReader interface [ML .NET]
syntax, 620

dbspaces
glossary definition, 830

DbType property [ML .NET]
DBParameter syntax, 613

DCX
about, xiv

DDL
glossary definition, 828

deadlocks
glossary definition, 830

debugging
.NET synchronization logic, 599
MobiLink connections, 41
MobiLink server log, 33
MobiLink synchronization using Java classes, 533

debugging .NET synchronization logic
about, 599

debugging Java classes
MobiLink Java synchronization logic, 533

default global autoincrement
MobiLink declaring, 141

default isolation levels
MobiLink, 165

deletes
MobiLink downloads, 335
stopping upload of for SQL Anywhere clients, 156

deleting
MobiLink .NET connection scripts, 668
MobiLink .NET table scripts, 669
MobiLink Java connection scripts, 671
MobiLink Java table scripts, 672
MobiLink properties, 677
MobiLink SQL connection scripts, 667
MobiLink SQL table scripts, 680
rows in remote MobiLink databases, 335

deleting all the rows in a table
MobiLink, 336

deleting rows
MobiLink remote databases, 335
MobiLink techniques, 156

deleting rows with the download_delete_cursor script
MobiLink, 335

deleting scripts
MobiLink about, 327

deploying
MobiLink applications, 799
MobiLink applications and databases, 799
MobiLink performance, 169

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 861

MobiLink server, 801
overview of MobiLink, 800
QAnywhere applications, 816
SQL Anywhere MobiLink clients, 813
UltraLite MobiLink clients, 815

deploying MobiLink applications
about, 799

deploying QAnywhere clients
about, 816

deploying remote databases
about, 799

deploying SQL Anywhere MobiLink clients
about, 813

deploying the MobiLink server
about, 801

deploying UltraLite MobiLink clients
about, 815

deployment (see deploying)
deployment overview

MobiLink, 800
details table pane

MobiLink Monitor, 184
detecting conflicts

MobiLink, 147
MobiLink with upload_fetch scripts, 147
MobiLink with upload_update scripts, 148

developer community
newsgroups, xix

development tips
Mobilink direct row handling, 652
MobiLink synchronization, 128

device tracking
glossary definition, 830

direct inserts of scripts
MobiLink, 328

direct row handling
about, 649
development tips, 652
DownloadData interface [ML Java], 548
downloads, 660
DownloadTableData interface [ML Java], 550
glossary definition, 830
handle_DownloadData connection event, 442
handle_UploadData connection event, 454
quick start, 651
SendColumnNames, 652
UpdateResultSet interface, 578
UploadData interface [ML Java], 579

UploadedTableData interface [ML Java], 581
uploads, 654

direct synchronization events
about, 651

Direction property [ML .NET]
DBParameter class syntax, 613

disjoint partitioning
defined, 135
MobiLink, 135

distributable download
MobiLink file-based download, 293

DML
glossary definition, 828

DocCommentXchange (DCX)
about, xiv

documentation
conventions, xvi
SQL Anywhere, xiv

domain configuration files
MobiLink, 602

domains
glossary definition, 830

download acknowledgement
about, 161
MobiLink performance, 171

download buffer
MobiLink performance, 171

download events
MobiLink synchronization, 351

download failure
MobiLink restartable downloads, 158

download file
creating for MobiLink file-based download, 296

download property
MobiLink Monitor synchronization statistics, 195

download timestamp
about MobiLink, 130
MobiLink generation of, 131

download transaction
MobiLink, 345

download-only synchronization
about, 138
required scripts, 326

download_bytes property
MobiLink Monitor synchronization statistics, 195

download_cursor
about, 334
example using a stored procedure call, 162

Index

862 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

MobiLink disjoint partitioning, 135
partitioning child tables, 137
partitioning with overlaps, 136
performance, 173
table event, 396
timestamp-based synchronization, 130
using a stored procedure call, 162
writing scripts to download rows, 333

download_delete_cursor
about, 335
disjoint partitioning, 135
example using a stored procedure call, 162
partitioning child tables, 137
partitioning with overlaps, 136
performance, 173
table event, 400
timestamp-based synchronization, 129
using a stored procedure call, 162
writing scripts to download rows, 333

download_deleted_rows property
MobiLink Monitor synchronization statistics, 195

download_errors property
MobiLink Monitor synchronization statistics, 195

download_fetched_rows property
MobiLink Monitor synchronization statistics, 195

download_filtered_rows property
MobiLink Monitor synchronization statistics, 195

download_statistics
connection event, 403
table event, 406

download_timestamp
MobiLink generation of, 131

download_warnings property
MobiLink Monitor synchronization statistics, 195

DownloadData interface [ML .NET]
syntax, 622

DownloadData interface [ML Java]
syntax, 548

downloading a result set from a stored procedure call
synchronization techniques, 162

downloading data
file-based download in MobiLink, 293

downloading deletes
MobiLink download_delete_cursor scripts, 335

downloading rows
synchronization scripts, 333

downloads
file-based MobiLink, 293

glossary definition, 830
MobiLink failed downloads, 158
MobiLink performance, 173
MobiLink scripts to download rows, 333
MobiLink transaction, 345
timestamp-based, 129

DownloadTableData interface [ML .NET]
syntax, 623

DownloadTableData interface [ML Java]
syntax, 550

drivers
supported by MobiLink, 794

duration property
MobiLink Monitor synchronization statistics, 195

dynamic SQL
glossary definition, 830

E
EBFs

glossary definition, 830
ECC protocol option

MobiLink server (mlsrv11) -x option for HTTPS,
110
MobiLink server (mlsrv11) -x option for TCP/IP,
108

emailing
Monitor alert notification, 233
Monitor users, 229

embedded SQL
glossary definition, 831

empty strings
Oracle MobiLink consolidated databases, 25
Oracle not supported, 25

enabling Microsoft distributed transactions
Oracle driver option, 795

encoding
glossary definition, 831

encrypting passwords
Oracle driver option, 795

end_connection
connection event, 409

end_download
connection event, 411
table event, 414

end_download_deletes
table event, 417

end_download_rows

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 863

table event, 420
end_publication

connection event, 423
end_sync property

MobiLink Monitor synchronization statistics, 195
end_synchronization

connection event, 426
table event, 428

end_upload
connection event, 431
table event, 433

end_upload_deletes
table event, 436

end_upload_rows
table event, 439

ending
MobiLink server, 32

enterprise databases
synchronizing with MobiLink, 649

environment variables
command prompts, xvii
command shells, xvii

ERROR [ML Java]
Java LogMessage interface, 563

ERROR field [ML .NET]
MessageType enumeration syntax, 627

error handling
during MobiLink synchronization, 338

error logs
MobiLink server (mlsrv11), 65

errors
handling during MobiLink synchronization, 338
MobiLink modify_error_message connection event,
460
recording, 338

event model
glossary definition, 831
MobiLink pseudocode, 346

events
about MobiLink, 313
about MobiLink events, 315
about MobiLink synchronization, 343
MobiLink, 342
MobiLink direct row handling, 651

events during download
about, 351
writing scripts to download rows, 333

events during upload

about, 349
writing scripts to upload rows, 330

examples
MobiLink file-based download, 301

Excel
synchronizing with MobiLink, 649

ExecuteNonQuery method [ML .NET]
DBCommand syntax, 607

ExecuteReader method [ML .NET]
DBCommand syntax, 607

external logins
glossary definition, 831

extraction
glossary definition, 831

F
failed downloads

MobiLink, 158
synchronization techniques, 158

failover
glossary definition, 831
MobiLink Redirector, 266
MobiLink server farm, 40

feedback
documentation, xix
providing, xix
reporting an error, xix
requesting an update, xix

FILE
glossary definition, 831

FILE message type
glossary definition, 831

file-based downloads
about, 293
examples, 301
glossary definition, 832

file-definition database
about, 295
creating, 295
glossary definition, 832

file_authentication_code
authenticate_file_transfer parameter, 353

files
MobiLink file-based download, 293

finding out more and requesting technical assistance
technical support, xix

FIPS

Index

864 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

mlsrv11 using HTTPS, 110
MobiLink server -x option, 107

FIPS option
MobiLink server (mlsrv11), 69
MobiLink user authentication (mluser), 690

FIPS protocol option
mlsrv11 -x option using TCP/IP, 108
MobiLink server (mlsrv11) -x option for HTTPS,
110

firewalls
configuring MobiLink clients, 269
configuring MobiLink server, 269
MobiLink server, 269
routing MobiLink requests, 266

forced conflicts
MobiLink, 154

forcing conflicts
MobiLink, 154

foreign key constraints
glossary definition, 832

foreign keys
glossary definition, 832

foreign tables
glossary definition, 832

fragmentation
(see also partitioning)

FTP
MobiLink file-based download, 293

full backups
glossary definition, 832

fundamental rules
MobiLink, 128

G
gateways

glossary definition, 832
generated join conditions

glossary definition, 833
generation numbers

glossary definition, 833
MobiLink file-based download, 299

GetConnection method [ML .NET]
DBConnectionContext syntax, 610

getConnection method [ML Java]
DBConnectionContext syntax, 544

GetDeleteCommand method [ML .NET]
DownloadTableData interface syntax, 625

getDeletePreparedStatement method [ML Java]
DownloadTableData syntax, 552

GetDeletes method [ML .NET]
UploadedTableData interface syntax, 643

getDeletes method [ML Java]
UploadedTableData syntax, 582

GetDownloadData method [ML .NET]
DBConnectionContext syntax, 610

getDownloadData method [ML Java]
DBConnectionContext syntax, 544

GetDownloadTableByName method [ML .NET]
DownloadData interface syntax, 623

getDownloadTableByName method [ML Java]
DownloadData syntax, 549

GetDownloadTables method [ML .NET]
DownloadData interface syntax, 622

getDownloadTables method [ML Java]
DownloadData syntax, 550

GetEnumerator method [ML .NET]
DBParameterCollection class syntax, 618

GetInserts method [ML .NET]
UploadedTableData interface syntax, 644

getInserts method [ML Java]
UploadedTableData syntax, 583

GetLastDownloadTime method [ML .NET]
DownloadTableData interface syntax, 625

getLastDownloadTime method [ML Java]
DownloadTableData syntax, 556

getMetaData method [ML Java]
DownloadTableData syntax, 555
UploadedTableData syntax, 586

GetName method [ML .NET]
DownloadTableData interface syntax, 625
UploadedTableData interface syntax, 645

getName method [ML Java]
DownloadTableData syntax, 554
UploadedTableData syntax, 585

GetProperties method [ML .NET]
DBConnectionContext syntax, 611

getProperties method [ML .NET]
ServerContext interface syntax, 631

getProperties method [ML Java]
DBConnectionContext syntax, 545
ServerContext syntax, 569

getPropertiesByVersion method [ML .NET]
ServerContext interface syntax, 631

getPropertiesByVersion method [ML Java]
ServerContext syntax, 569

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 865

getPropertySetNames method [ML .NET]
ServerContext interface syntax, 631

getPropertySetNames method [ML Java]
ServerContext syntax, 570

GetRemoteID method [ML .NET]
DBConnectionContext syntax, 611

getRemoteID method [ML Java]
DBConnectionContext syntax, 546

GetSchemaTable method [ML .NET]
DownloadTableData interface syntax, 626
UploadedTableData interface syntax, 646

GetServerContext method [ML .NET]
DBConnectionContext syntax, 611

getServerContext method [ML Java]
DBConnectionContext syntax, 546

GetStartClassInstances method [ML .NET]
ServerContext interface syntax, 629

getStartClassInstances method [ML Java]
ServerContext syntax, 571

getText method [ML Java]
LogMessage syntax, 565

getting help
technical support, xix

getType method [ML Java]
LogMessage syntax, 564

GetUpdates method [ML .NET]
UploadedTableData interface syntax, 646

getUpdates method [ML Java]
UploadedTableData syntax, 584

GetUploadedTableByName method [ML .NET]
UploadData interface syntax, 641

getUploadedTableByName method [ML Java]
UploadData syntax, 580

GetUploadedTables method [ML .NET]
UploadData interface syntax, 642

getUploadedTables method [ML Java]
UploadData syntax, 581

GetUpsertCommand method [ML .NET]
DownloadTableData interface syntax, 626

getUpsertPreparedStatement method [ML Java]
DownloadTableData syntax, 553

getUser method [ML Java]
LogMessage syntax, 565

getValue method [ML Java]
InOutInteger syntax, 558
InOutString syntax, 559

GetVersion method [ML .NET]
DBConnectionContext syntax, 612

getVersion method [ML Java]
DBConnectionContext syntax, 547

global
script versions in MobiLink, 325

global assembly cache
implementing in MobiLink, 601

global autoincrement
algorithm, 141
MobiLink declaring, 141
MobiLink unique primary keys, 140
setting global_database_id for MobiLink, 141

global script versions
MobiLink, 325

global temporary tables
glossary definition, 833

global_database_id option
setting in MobiLink, 141

glossary
list of SQL Anywhere terminology, 823

grant options
glossary definition, 833

graph pane
MobiLink Monitor, 186

GUIDs
(see also UUIDs)

H
handle_DownloadData

connection event, 442
handle_error

connection event, 446
synchronization scripts, 338

handle_odbc_error
connection event, 450

handle_UploadData
connection event, 454

handling conflicts
MobiLink, 146
MobiLink direct row handling, 655

handling conflicts for direct uploads
MobiLink direct row handling, 655

handling deletes
MobiLink, 156

handling direct downloads
MobiLink direct row handling, 660

Handling direct uploads
MobiLink direct row handling, 654

Index

866 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

handling errors
MobiLink server, 446

handling MobiLink server errors in Java
MobiLink Java synchronization logic, 534

handling MobiLink server errors with .NET
MobiLink .NET synchronization logic, 598

handling multiple errors in a single SQL statement
MobiLink, 339

hard shutdown
MobiLink stop utility (mlstop), 689

hash
glossary definition, 833

health and statistics
Monitor, 201

help
technical support, xix

high availability
MobiLink Redirector, 266

histograms
glossary definition, 833

hooks
(see also event hooks)

host protocol option
MobiLink Redirector, 269
MobiLink server (mlsrv11) -x option for HTTP,
109
MobiLink server (mlsrv11) -x option for HTTPS,
110
MobiLink server (mlsrv11) -x option for TCP/IP,
107
MobiLink server (mlsrv11) -x option for TLS over
TCP/IP, 108

hosted Relay Server
about, 260
adding a server farm, 260
logging in, 260
subscribing, 260

HotSync
MobiLink client deployment on Windows, 813

how conflicts are detected
MobiLink, 147

how default values are chosen
MobiLink global autoincrement, 141

HTTP
mlsrv11 -x option, 109
MobiLink server -x option, 107

HTTP load balancer
Relay Server, 242

httpd.conf
Apache native Redirector, 287

HTTPS
mlsrv11 -x option, 110
MobiLink server -x option, 107

I
iAnywhere developer community

newsgroups, xix
iAnywhere JDBC driver

glossary definition, 834
iAnywhere Solutions ODBC drivers

support, 793
iAnywhere Solutions Oracle driver

about, 795
iaredirect.dll

configuring the ISAPI Redirector, 282
configuring the NSAPI Redirector on Unix, 280
configuring the NSAPI Redirector on Windows,
277

iaredirect.so
configuring the NSAPI Redirector on Unix, 280
configuring the NSAPI Redirector on Windows,
277

IBM DB2
DB2 LUW as MobiLink consolidated database, 12
maximum identifier length in, 664, 696
MobiLink data mapping for LUW, 749
MobiLink data mapping for Mainframe, 756

IBM DB2 LUW
MobiLink consolidated database, 12

IBM DB2 LUW consolidated database
MobiLink, 12

IBM DB2 mainframe
maximum identifier length in, 695
MobiLink consolidated database, 15

IBM DB2 mainframe consolidated database
MobiLink, 15

IBM DB2 mainframe system table name conversions
ml_active_rid, 696, 697
ml_conn_script, 696, 699
ml_pt, 696, 707, 730
ml_pt_repair, 696, 708
ml_pt_script, 696, 709
ml_pt_status, 696, 711
ml_script_modified, 696, 730

icons

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 867

used in this Help, xviii
identifiers

glossary definition, 834
maximum length in IBM DB2 LUW, 695
maximum length in IBM DB2 mainframe, 664, 695,
696

identity option
MobiLink server (mlsrv11) -x option for HTTPS,
110

identity protocol option
MobiLink server (mlsrv11) -x option for HTTPS,
110

identity_password protocol option
MobiLink server (mlsrv11) -x option for HTTPS,
110

ignore protocol option
MobiLink server (mlsrv11) -x option for TCP/IP,
107
MobiLink server (mlsrv11) -x option for TLS over
TCP/IP, 108

ignored_deletes property
MobiLink Monitor synchronization statistics, 195

ignored_inserts property
MobiLink Monitor synchronization statistics, 195

ignored_updates property
MobiLink Monitor synchronization statistics, 195

IIS
configuring for ISAPI, 282

IIS on Windows
deploying the Relay Server, 253
Relay Server, performance tips, 255

inconsistency
MobiLink conflict-handling, 146

incremental backups
glossary definition, 834

indexes
glossary definition, 834
MobiLink performance, 173

IndexOf(object value) method [ML .NET]
DBParameterCollection class syntax, 617

IndexOf(string parameterName) method [ML .NET]
DBParameterCollection class syntax, 616

INFO [ML Java]
Java LogMessage interface, 564

INFO field [ML .NET]
MessageType enumeration syntax, 628

InfoMaker
glossary definition, 834

inner joins
glossary definition, 834

InOutInteger interface [ML Java]
syntax, 557

InOutString interface [ML Java]
syntax, 559

Insert(int index, object value) method [ML .NET]
DBParameterCollection class syntax, 617

inserting
scripts in MobiLink, 328

install-dir
documentation usage, xvi

installing
Monitor on a separate computer, 236

integrated logins
glossary definition, 834

integrity
glossary definition, 835

Interactive SQL
glossary definition, 835

iPlanet
configuring for the NSAPI Redirector on Unix, 280
configuring for the NSAPI Redirector on Windows,
277

ISAPI Redirector
calling, 282
configuring, 282

IsFixedSize property [ML .NET]
DBParameterCollection class syntax, 619

IsNullable property [ML .NET]
DBParameter class syntax, 613

isolation levels
glossary definition, 835
MobiLink, 165

IsReadOnly property [ML .NET]
DBParameterCollection class syntax, 619

IsSynchronized property [ML .NET]
DBParameterCollection class syntax, 619

J
JAR files

glossary definition, 835
Java

MobiLink data types, 532
MobiLink object-based data flow, 649
MobiLink server API reference, 543
MobiLink synchronization scripts, 527

Index

868 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Java classes
glossary definition, 835
instantiation for Java synchronization logic, 531

Java MobiLink server API (see MobiLink server API
for Java)
Java synchronization

MobiLink Java synchronization logic, 538
Java synchronization logic

deploying on 32-bit Unix, 807
deploying on 32-bit Windows, 801
deploying on 64-bit Unix, 810
deploying on 64-bit Windows, 804
Java class instantiations, 531
methods, 533
MobiLink performance, 172
MobiLink server API, 543
sample, 538
setup, 529
specifying in MobiLink server command line, 529

Java VM
MobiLink options, 92

Java vs. SQL synchronization logic
MobiLink performance, 172

Javadoc
MobiLink, 543

jConnect
glossary definition, 835

JDBC
glossary definition, 835

join conditions
glossary definition, 836

join types
glossary definition, 836

joins
glossary definition, 836

K
keep partial download synchronization parameter

restartable downloads, 159
key joins

glossary definition, 833
key pools

MobiLink synchronization application, 143
killing

MobiLink server, 32

L
language libraries

MobiLink server deployment on 32-bit Unix, 807
MobiLink server deployment on 32-bit Windows,
801
MobiLink server deployment on 64-bit Unix, 810
MobiLink server deployment on 64-bit Windows,
804

last download time
about MobiLink, 130

last download timestamp
about MobiLink, 130
MobiLink generation of, 131
modify_last_download_timestamp connection
event, 463
modify_next_last_download_timestamp connection
event, 466

last modified column
MobiLink, 129

last_download
MobiLink named parameter, 130
modify_last_download_timestamp connection
event, 463

last_download_timestamp
MobiLink generation of, 131
MobiLink named parameter, 130

last_table_download
MobiLink named parameter, 130
modify_last_download_timestamp connection
event, 463

limitations
Monitor, 203

Listener utility
MobiLink client deployment on Windows, 813

Listeners
glossary definition, 836

load balancer
HTTP, 242

load balancing
MobiLink Redirector, 266
MobiLink server farm, 40
Redirector example (for Redirectors that don't
support server groups), 276
Redirector example (for Redirectors that support
server groups), 274

loading assemblies
MobiLink .NET synchronization logic, 601

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 869

local temporary tables
glossary definition, 836

locks
glossary definition, 837

log file viewer
MobiLink server logs, 34

log files
glossary definition, 837
MobiLink server, 33
MobiLink server viewing, 34

LOG_LEVEL
Redirector property (for Redirectors that don't
support server groups), 275
Redirector property (for Redirectors that support
server groups), 273

LogCallback delegate [ML .NET]
DBRowReader interface syntax, 627

LogCallback ErrorListener event [ML .NET]
ServerContext interface syntax, 629

LogCallback InfoListener event [ML .NET]
ServerContext interface syntax, 629

LogCallback WarningListener event [ML .NET]
ServerContext interface, 630

logging
MobiLink performance, 172
MobiLink server actions, 33

logging MobiLink server actions
about, 33

logical deletes
writing download_delete_cursor scripts, 335

logical indexes
glossary definition, 837

LogListener interface [ML Java]
syntax, 560

LogMessage class [ML .NET]
syntax, 627

LogMessage class [ML Java]
syntax, 561

logs
(see also log files)

LONG data type
Oracle synchronization, 784

LTM
glossary definition, 837

LUW
DB2 LUW as MobiLink consolidated database, 12

M
M-Business Anywhere

configuring for synchronization, 289
Redirector, 289

M-Business Anywhere Redirector
configuring, 289

magnus.conf
configuring for the NSAPI Redirector on Unix, 280
configuring for the NSAPI Redirector on Windows,
277

Mainframe
DB2 as MobiLink consolidated database, 15

maintaining unique primary keys
about, 139
composite keys, 139
global autoincrement, 140
primary key pools, 143
UUIDs, 139

maintenance releases
glossary definition, 837

MakeConnection method [ML .NET]
ServerContext interface syntax, 630

makeConnection method [ML Java]
ServerContext syntax, 571

Manage Anywhere
MobiLink file-based download, 293

many-to-many relationships
partitioning, 136
synchronization, 136

mapping
MobiLink consolidated database data types, 739

marquee tool
MobiLink Monitor overview pane, 189

materialized views
glossary definition, 837

message log
glossary definition, 838

message properties files
deprecated in version 10.0.0, 73

message stores
glossary definition, 838

message systems
glossary definition, 838

message types
glossary definition, 838

messageLogged method [ML Java]
LogListener syntax, 561

Index

870 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

MessageType enumeration [ML .NET]
syntax, 627

messaging
MobiLink QAnywhere system tables, 694

metadata
glossary definition, 838

methods
MobiLink .NET synchronization logic, 595
MobiLink Java synchronization logic, 533

metrics
editing collection intervals, 223
Monitor, 216

Microsoft Distributed Transaction Coordinator
Oracle driver option, 795

Microsoft Excel
synchronizing with MobiLink, 649

Microsoft SQL Server
as MobiLink consolidated database, 20
MobiLink data mapping, 767
MobiLink isolation levels, 165

Microsoft SQL Server consolidated database
MobiLink, 20

mirror logs
glossary definition, 838

ML
Redirector property (for Redirectors that don't
support server groups), 275
Redirector property (for Redirectors that support
server groups), 273

ml_active_remote_id
MobiLink system table, 697

ml_active_rid
IBM DB2 mainframe system table name
conversions, 696, 697

ml_add_column system procedure
syntax, 666

ml_add_connection_script system procedure
syntax, 667

ml_add_cs system procedure
IBM DB2 conversion, 664
IBM DB2 mainframe system procedure name
conversion, 667

ml_add_dcs system procedure
IBM DB2 conversion, 664
IBM DB2 mainframe system procedure name
conversion, 668

ml_add_dnet_connection_script system procedure
syntax, 668

ml_add_dnet_table_script system procedure
syntax, 669

ml_add_dts system procedure
IBM DB2 conversion, 664
IBM DB2 mainframe system procedure name
conversion, 669

ml_add_java_connection_script system procedure
syntax, 671

ml_add_java_table_script system procedure
syntax, 672

ml_add_jcs system procedure
IBM DB2 conversion, 664
IBM DB2 mainframe system procedure name
conversion, 671

ml_add_jts system procedure
IBM DB2 conversion, 664
IBM DB2 mainframe system procedure name
conversion, 672

ml_add_lang_connection_script system procedure
syntax, 673

ml_add_lang_connection_script_chk system procedure
syntax, 673

ml_add_lang_table_script system procedure
syntax, 673

ml_add_lang_table_script_chk system procedure
syntax, 673

ml_add_lcs system procedure
IBM DB2 conversion, 664
syntax, 673

ml_add_lcs_chk system procedure
IBM DB2 conversion, 664
syntax, 673

ml_add_lts system procedure
IBM DB2 conversion, 664
syntax, 673

ml_add_lts_chk system procedure
IBM DB2 conversion, 664
syntax, 673

ml_add_passthrough system procedure
syntax, 673

ml_add_passthrough_repair system procedure
syntax, 674

ml_add_passthrough_script system procedure
syntax, 676

ml_add_property system procedure
syntax, 677

ml_add_pt system procedure
IBM DB2 conversion, 664

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 871

IBM DB2 mainframe system procedure name
conversion, 673

ml_add_pt_repair system procedure
IBM DB2 conversion, 664
IBM DB2 mainframe system procedure name
conversion, 674

ml_add_pt_script system procedure
IBM DB2 conversion, 664
IBM DB2 mainframe system procedure name
conversion, 676

ml_add_table_script system procedure
syntax, 680

ml_add_ts system procedure
IBM DB2 conversion, 664
IBM DB2 mainframe system procedure name
conversion, 680

ml_add_user system procedure
syntax, 681

ML_CLIENT_TIMEOUT
Redirector property (for Redirectors that don't
support server groups), 275
Redirector property (for Redirectors that support
server groups), 273

ml_column
MobiLink system table, 698

ml_conn_script
IBM DB2 mainframe system table name
conversions, 696, 699

ml_connection_script
MobiLink system table, 699

ml_database
MobiLink system table, 700

ml_del_pt system procedure
IBM DB2 conversion, 664
IBM DB2 mainframe system procedure name
conversion, 681

ml_del_pt_repair system procedure
IBM DB2 conversion, 664
IBM DB2 mainframe system procedure name
conversion, 682

ml_del_pt_script system procedure
IBM DB2 conversion, 664
IBM DB2 mainframe system procedure name
conversion, 683

ml_del_sstate system procedure
IBM DB2 conversion, 664
IBM DB2 mainframe system procedure name
conversion, 683

ml_del_sstate_b4 system procedure
IBM DB2 conversion, 664
IBM DB2 mainframe system procedure name
conversion, 684

ml_delete_passthrough system procedure
syntax, 681

ml_delete_passthrough_repair system procedure
syntax, 682

ml_delete_passthrough_script system procedure
syntax, 683

ml_delete_sync_state system procedure
syntax, 683

ml_delete_sync_state_before system procedure
syntax, 684

ml_delete_user system procedure
syntax, 685

ml_device
MobiLink system table, 701

ml_device_address
MobiLink system table, 703

ml_global script version
about, 325

ml_listening
MobiLink system table, 705

ml_passthrough
MobiLink system table, 707

ml_passthrough_repair
MobiLink system table, 708

ml_passthrough_script
MobiLink system table, 709

ml_passthrough_status
MobiLink system table, 711

ml_property
MobiLink system table, 712

ml_pt
IBM DB2 mainframe system table name
conversions, 696, 707

ml_pt_repair
IBM DB2 mainframe system table name
conversions, 696, 708

ml_pt_script
IBM DB2 mainframe system table name
conversions, 696, 709

ml_pt_status
IBM DB2 mainframe system table name
conversions, 696, 711

ml_qa_clients
QAnywhere client system table, 713

Index

872 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ml_qa_delivery
QAnywhere client system table, 714

ml_qa_delivery_archive
QAnywhere client system table, 716

ml_qa_global_props
QAnywhere client system table, 718

ml_qa_notifications
QAnywhere client system table, 719

ml_qa_repository
QAnywhere client system table, 720

ml_qa_repository_archive
QAnywhere client system table, 721

ml_qa_repository_props
QAnywhere client system table, 722

ml_qa_repository_props_archive
QAnywhere client system table, 723

ml_qa_repository_staging
QAnywhere client system table, 724

ml_qa_status_history
QAnywhere client system table, 725

ml_qa_status_history_archive
QAnywhere client system table, 726

ml_qa_status_staging
QAnywhere client system table, 727

ml_reset_sstate system procedure
IBM DB2 conversion, 664
IBM DB2 mainframe system procedure name
conversion, 686

ml_reset_sync_state system procedure
syntax, 686

ml_script
MobiLink system table, 728

ml_script_modified
IBM DB2 mainframe system table name
conversions, 696, 730

ml_script_version
MobiLink system table, 729

ml_scripts_modified
MobiLink system table, 730

ml_server
MobiLink system table, 731

ml_server_delete system procedure
syntax, 686

ml_server_update system procedure
syntax, 686

ml_set_sis_state system procedure
IBM DB2 conversion, 664

ml_sis_sync_state

MobiLink system table, 732
ml_subscription

MobiLink system table, 733
ml_table

MobiLink system table, 735
ml_table_script

MobiLink system table, 736
ml_user

MobiLink system table, 737
MobiLink user authentication (mluser), 690

mlDomConfig.xml
about, 602

mlmon
about MobiLink Monitor, 179
starting, 181

mlMonitorSettings
MobiLink Monitor settings, 190

mlscript.jar
MobiLink Java synchronization logic, 529

mlsrv11
(see also MobiLink server)
-nc option, 75
connection string, 54
logging, 33
Notifier, 76
options, 45
QAnywhere, 73
reports error context in message log, 77
starting, 30
stopping, 32
syntax, 45

mlsrv11 options
alphabetical list, 45

mlsrv11 syntax
about, 45

mlstop utility
deploying on 32-bit Unix, 807
deploying on 32-bit Windows, 801
deploying on 64-bit Unix, 810
deploying on 64-bit Windows, 804
methods for stopping MobiLink server, 32
options, 689
syntax, 689

mluser utility
deploying on 32-bit Unix, 807
deploying on 32-bit Windows, 801
deploying on 64-bit Unix, 810
deploying on 64-bit Windows, 804

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 873

options, 690
syntax, 690

mobile device
connecting to the Relay Server farm, 262

MobiLink
.NET synchronization logic, 589
alphabetic list of events, 342
character set considerations, 789
connection parameters for mlsrv11, 107
connection parameters for Monitor, 181
consolidated databases, 3
data types, 739
deploying applications, 799
development tips, 128
event overview, 343
file-based download, 293
glossary definition, 839
handling conflicts, 146
Java synchronization logic, 527
mlsrv11 options, 44
Monitor, 179
multiple synchronization servers, 267
ODBC driver support, 794
performance, 169
Redirector, 265
running outside the current session, 35
running the synchronization server, 29
scripts, 313
starting, 30
stopping the MobiLink server, 32
synchronization techniques, 127
system procedures, 663
system tables, 694
web server configuration, 265

MobiLink clients
deploying, 813
glossary definition, 839

MobiLink connections
debugging, 41

MobiLink consolidated databases
about, 3
ASE, 10
IBM DB2 LUW as, 12
IBM DB2 mainframe as, 15
MySQL as, 22
Oracle as, 25
SQL Anywhere as, 28
SQL Server as, 20

MobiLink data mappings
about, 739

MobiLink data mappings between remote and
consolidated databases

about, 739
MobiLink data types

.NET and SQL, 594
Java and SQL, 532

MobiLink events
listed, 342

MobiLink file transfer utility (mlfiletransfer)
mlsrv11 -ftr option, 71

MobiLink generation numbers
file-based download, 299

MobiLink log file viewer
MobiLink server logs, 34

MobiLink Monitor
about, 179
chart pane, 188
deploying on 32-bit Unix, 807
deploying on 32-bit Windows, 801
deploying on 64-bit Unix, 810
deploying on 64-bit Windows, 804
details table pane, 184
glossary definition, 839
graph pane, 186
marquee tool, 189
options, 190
overview pane, 189
restoring defaults, 190
sample properties, 190
saving data, 193
session properties, 190
specifying watches, 194
starting, 181
statistical properties, 195
user interface, 184
using, 184
viewing in MS Excel, 193
Watch Manager, 194
zooming, 188

MobiLink object-based data flow for Java and .NET
about, 649

MobiLink performance
about, 169
key factors, 174
monitoring, 178

MobiLink scripts

Index

874 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

listed, 342
MobiLink server

(see also mlsrv11)
deploying, 801
glossary definition, 839
monitoring, 201
options, 45
running, 29
starting, 30
stop utility, 689
syntax, 45

MobiLink server API for .NET
API reference, 606
ml_property system table, 712

MobiLink server API for Java
ml_property system table, 712

MobiLink server farm
-lsc option, 72
failover, 40
load balancing, 40

MobiLink server groups
about, 271

MobiLink server log file viewer
MobiLink server logs, 34

MobiLink server monitoring
about, 201

MobiLink server options
about, 44

MobiLink server shared state
server farm, 40

MobiLink statistical properties
MobiLink Monitor, 195

MobiLink stop utility (mlstop)
syntax, 689

MobiLink stored procedures (see MobiLink system
procedures)
MobiLink synchronization

.NET synchronization logic, 589
consolidated databases, 3
file-based download, 293
Java synchronization logic, 527
overview of events, 343
performance, 169
restartable downloads, 158
web server configuration, 265
writing .NET classes, 595
writing Java classes, 533

MobiLink synchronization logic

.NET, 589
alphabetic list of scripts, 342
data types for .NET and SQL, 594
data types for Java and SQL, 532
Java, 527
synchronization techniques, 127
writing scripts, 313

MobiLink synchronization scripts
about, 313
alphabetic list of scripts, 342
constructing .NET classes, 594
constructing Java classes, 532
database transactions and .NET classes, 594
database transactions and Java classes, 531
debugging Java classes, 533
preserving database transactions in .NET, 594
preserving database transactions in Java, 531
writing .NET classes, 595
writing Java classes, 533

MobiLink synchronization server (see MobiLink
server)
MobiLink system database

about, 7
MobiLink system procedures

about, 663
MobiLink system tables

about, 694
creating in consolidated database, 6
glossary definition, 839
ml_active_remote_id, 697
ml_column, 698
ml_connection_script, 699
ml_database, 700
ml_device, 701
ml_device_address, 703
ml_listening, 705
ml_passthrough, 707
ml_passthrough_repair, 708
ml_passthrough_script, 709
ml_passthrough_status, 711
ml_property, 712
ml_script, 728
ml_script_version, 729
ml_scripts_modified, 730
ml_server, 731
ml_sis_sync_state, 732
ml_subscription, 733
ml_table, 735

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 875

ml_table_script, 736
ml_user, 737

MobiLink user authentication utility (mluser)
syntax, 690

MobiLink users
glossary definition, 839
ml_user system table, 737
MobiLink user authentication (mluser), 690
registering with the mluser utility, 690

MobiLink utilities
about, 687
MobiLink stop utility (mlstop), 689
MobiLink user authentication (mluser), 690
server, 687

mod_iaredirect.dll
configuring the Apache Redirector, 287
configuring the M-Business Anywhere Redirector,
289

mod_iaredirect.so
configuring the M-Business Anywhere Redirector,
289

modify_error_message
connection event, 460

modify_last_download_timestamp
connection event, 463

modify_next_last_download_timestamp
connection event, 466

modify_user
connection event, 469

Monitor
about, 201
adding resources, 222
admin user, 228
alerts, 232
alerts error reports, 235
associating users with resources, 229
blackouts, 226
collection intervals, 223
connecting, 213
creating users, 228
deleting alerts, 233
deleting metrics, 220
deleting users, 230
disconnecting, 214
editing users, 229
email notification, 233
enabling email notification, 234
error reports, 235

exiting, 212
installing on a separate computer, 236
limitations, 203
logins required, 230
metric tabs, 217
metrics, 216
MobiLink Monitor, 179
monitoring resources, 222
network configuration, 203
quick start, 205
removing resources, 227
requirements, 202
resources, 215, 222
running in a production environment, 202
security, 230
start monitoring resources, 222
starting locally, 211
starting on a separate computer, 211
state, 215
status, 215
stop monitoring manually, 226
stop monitoring resources, 225
stop monitoring using blackouts, 226
stopping the Monitor, 212
tabs, 217
troubleshooting, 237
tutorial, 206
user types, 228
viewing alerts, 232

Monitor metrics
alerts, 224
alerts tab, 218
collection intervals, 223
consolidated database tab, 220
deleting, 220
machine resources tab, 220
metric tabs, 217
server tab, 218
specifying metrics to collect , 223
suppress alerts for the same condition that occur
within a specified time, 224
synchronization tab, 219

monitoring
MobiLink performance, 178
MobiLink servers, 201
synchronizations in MobiLink, 179

monitoring MobiLink performance
overview, 178

Index

876 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

MySQL
MobiLink consolidated database, 22
MobiLink data mapping for , 774

MySQL consolidated database
MobiLink, 22

N
named parameters

about MobiLink, 320
last_download, 130
last_table_download, 130

named row parameters
about MobiLink scripts, 320
adding column information to the consolidated
database, 666

named script parameters
about MobiLink, 320
ml_add_column system procedure, 666

natural joins
glossary definition, 833

Netscape web servers
configuring the NSAPI Redirector on Unix, 280
configuring the NSAPI Redirector on Windows,
277

network parameters
MobiLink server -x option, 107

network protocols
glossary definition, 839
mlsrv11 -x option using TCP/IP, 107
mlsrv11 -x option using TLS over TCP/IP, 108
mlsrv11 using HTTP, 109
mlsrv11 using HTTPS, 110
MobiLink server, 107

network server
glossary definition, 839

newsgroups
technical support, xix

NextRow method [ML .NET]
DBRowReader interface syntax, 621

non-blocking download acknowledgement
MobiLink server (mlsrv11) -nba option, 74
nonblocking_download_ack connection event, 471
publication_nonblocking_download_ack
connection event, 475

non-blockingdownload acknowledgement
about, 161

non-relational databases

synchronizing with MobiLink, 649
nonblocking_download_ack

connection event, 471
normalization

glossary definition, 839
Notifiers

deploying on 32-bit Unix, 807
deploying on 32-bit Windows, 801
deploying on 64-bit Unix, 810
deploying on 64-bit Windows, 804
glossary definition, 840

NSAPI Redirector
configuring on Unix, 280
configuring on Windows, 277

O
o.

MobiLink named parameter prefix, 320
obj.conf

configuring for the NSAPI Redirector on Unix, 280
configuring for the NSAPI Redirector on Windows,
277

object trees
glossary definition, 840

object-based data flow (see direct row handling)
objects

MobiLink server API for .NET, 606
MobiLink server API for Java, 543

ODBC
glossary definition, 840
MobiLink drivers, 794
multiple errors in MobiLink, 339
Oracle driver, 795

ODBC Administrator
glossary definition, 840

ODBC data sources
glossary definition, 840

ODBC drivers
MobiLink character set conversion by, 791
Oracle, 795
supported by MobiLink, 794

ODBC drivers supported by MobiLink
about, 794

offsets
progress column of ml_subscription table, 733

old row parameters
MobiLink scripts, 320

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 877

online books
PDF, xiv

operators
Monitor users, 228

options
mlsrv11, 45
MobiLink server (mlsrv11), 45
MobiLink stop utility (mlstop), 689
MobiLink user authentication (mluser), 690

options section
Relay Server configuration file, 245

options window
MobiLink Monitor, 190

Oracle
as MobiLink consolidated database, 25
MobiLink data mapping, 779
MobiLink isolation levels, 165
ODBC driver, 795
sequences in MobiLink synchronization, 25
synchronizing LONG data, 784

Oracle consolidated database
MobiLink, 25

Oracle driver
encrypting passwords, 795
ODBC, 795

Oracle varray
example, 26
restrictions, 27
using in stored procedures, 26

Outbound Enabler
about, 247
deploying, 247
Relay Server, 242
syntax, 247

outer joins
glossary definition, 840

overlaps
partitioning, 135

overview pane
MobiLink Monitor, 189

P
packaged download

MobiLink file-based download, 293
packages

glossary definition, 840
ParameterName property [ML .NET]

DBParameter class syntax, 613
parameters

synchronization scripts, 320
Parameters property [ML .NET]

DBCommand syntax, 608
parse trees

glossary definition, 840
partial download retained synchronization parameter

restartable downloads, 159
partitioning

about MobiLink, 135
defined, 135
MobiLink disjoint, 135

partitioning child tables
MobiLink, 137

partitioning rows
MobiLink among remote databases, 135

partitioning tables
example, 135

partitioning with overlaps
MobiLink, 136

passwords
encrypting in Oracle driver, 795
MobiLink mluser utility, 690
Monitor users, 228

PDB
glossary definition, 840

PDF
documentation, xiv

performance
downloads, 173
MobiLink, 169
MobiLink -sm option, 94
MobiLink forced conflicts, 154

performance statistics
glossary definition, 841

permissions
MobiLink server, 30

personal server
glossary definition, 841

physical indexes
glossary definition, 841

plug-in modules
glossary definition, 841

policies
glossary definition, 841

polling
glossary definition, 841

Index

878 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

port protocol option
MobiLink Redirector, 269
MobiLink server (mlsrv11) -x option for HTTP,
109
MobiLink server (mlsrv11) -x option for HTTPS,
110
MobiLink server (mlsrv11) -x option for TCP/IP,
107
MobiLink server (mlsrv11) -x option for TLS over
TCP/IP, 108

PowerDesigner
glossary definition, 841

PowerJ
glossary definition, 841

Precision property [ML .NET]
DBParameter class syntax, 614

predicates
glossary definition, 841

prefixes
MobiLink named parameters, 320

Prepare method [ML .NET]
DBCommand syntax, 607

prepare_for_download
connection event, 473

prepare_for_download property
MobiLink Monitor synchronization statistics, 195

primary key constraints
glossary definition, 842

primary key pools
generating unique values using default global
autoincrement for MobiLink, 140
MobiLink example, 143
MobiLink unique primary keys, 143

primary keys
glossary definition, 842
MobiLink about, 128
MobiLink uniqueness techniques, 139
Oracle sequences, 25

primary tables
glossary definition, 842

printing information from .NET
MobiLink .NET synchronization logic, 597

priority synchronization
MobiLink performance, 172

private assemblies
implementing in MobiLink, 601

procedure calls
SQL Server MobiLink consolidated databases, 20

procedures
MobiLink, 663

procedures return results
Oracle driver option, 795

ProcResults
Oracle driver option, 795

progress
progress column of ml_subscription table, 733

progress counter
progress column of ml_subscription table, 733

progress offsets
progress column of ml_subscription table, 733

properties
QAnywhere server, 73

property
DBParameter class syntax, 614

protocols
mlsrv11 -x option using TCP/IP, 107
mlsrv11 -x option using TLS over TCP/IP, 108
mlsrv11 using HTTP, 109
mlsrv11 using HTTPS, 110
MobiLink server, 107

proxy tables
glossary definition, 842

proxy web servers
MobiLink, 266

pseudocode
MobiLink events, 343

publication updates
glossary definition, 842

publication_nonblocking_download_ack
connection event, 475

publications
glossary definition, 842

publisher
glossary definition, 843

push notifications
glossary definition, 843

push requests
glossary definition, 843

Q
QAnywhere

deploying, 816
glossary definition, 843
MobiLink system tables, 694
properties, 73

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 879

QAnywhere Agent
glossary definition, 843

QAnywhere client system tables
ml_qa_clients, 713
ml_qa_delivery, 714
ml_qa_delivery_archive, 716
ml_qa_global_props, 718
ml_qa_notifications, 719
ml_qa_repository, 720
ml_qa_repository_archive, 721
ml_qa_repository_props, 722
ml_qa_repository_props_archive, 723
ml_qa_repository_staging, 724
ml_qa_status_history, 725
ml_qa_status_history_archive, 726
ml_qa_status_staging, 727

QAnywhere clients
deploying, 816

queries
glossary definition, 843

question marks
MobiLink script parameters, 320

quick start
MobiLink direct row handling, 651

quitting
MobiLink server, 32

quotation marks
DB2 MobiLink consolidated databases, 13

R
r.

MobiLink named parameter prefix, 320
RDBMS

glossary definition, 844
read-only users

Monitor, 228
Monitor login required, 230

READPAST table hint
download_cursor problems with, 397
download_delete_cursor problems with, 401
upload_fetch problems with, 500

Redirector
about, 265
Apache native, 287
configuring (all versions), 271
configuring (for Redirectors that don't support server
groups), 275

configuring (for Redirectors that support server
groups), 273
configuring MobiLink clients and servers, 269
configuring the servlet Redirector for Tomcat, 284
glossary definition, 843
iPlanet on Unix, 280
iPlanet on Windows, 277
ISAPI, 282
load balancing example (for Redirectors that don't
support server groups), 276
load balancing example (for Redirectors that support
server groups), 274
M-Business Anywhere, 289
Microsoft web servers, 282
MobiLink server deployment on 32-bit Unix, 807
MobiLink server deployment on 32-bit Windows,
801
MobiLink server deployment on 64-bit Unix, 810
MobiLink server deployment on 64-bit Windows,
804
MobiLink server groups, 271
NSAPI version on Unix, 280
NSAPI version on Windows, 277
servlet Redirector for Apache web servers, 284
specifying the location (for Redirectors that don't
support server groups), 275
specifying the location (for Redirectors that support
server groups), 273
Sun One on Unix, 280
Sun One on Windows, 277
uses, 266
when to use, 267

redirector.config
configuring (for Redirectors that don't support server
groups), 275
configuring (for Redirectors that support server
groups), 273
example (for Redirectors that don't support server
groups), 276
location (for Redirectors that don't support server
groups), 275
location (for Redirectors that support server groups),
273

redirector_server_group.config
example (for Redirectors that support server groups),
274

reference databases
glossary definition, 843

Index

880 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

referenced object
glossary definition, 844

referencing object
glossary definition, 844

referential integrity
glossary definition, 844

registering
methods as MobiLink scripts, 664

registering methods
MobiLink server API for .NET, 595
MobiLink server API for Java, 533

registering MobiLink users
mluser utility, 690

regular expressions
glossary definition, 844

Relay Server
about, 240
architecture, 240
back-end server farm, 242
configuration file, 243
deployment, 253
hosted service, 260
HTTP load balancer, 242
Outbound Enabler, 242, 247
Outbound Enabler deployment, 247
Outbound Enabler syntax, 247
Relay Server farm, 241
rshost command line syntax, 251
rsoe syntax, 247
State Manager, 250
synchronizing through a web server, 239
updating configuration, 258
using MobiLink, 262

Relay Server configuration file
about, 243
backend farm section, 244
backend server section, 245
format, 246
options section, 245
Relay Server section, 243

Relay Server deployment
Apache on Linux, 256
application pool, creating, 254
files for Linux, 256
files for Windows, 253
IIS on Windows, 253
State Manager, 254, 256
web server extensions, 254, 256

Relay Server farm
connecting a client, 262
connecting a mobile device, 262

Relay Server farm configuration
updating, 258

Relay Server for MobiLink
sample scenario, 263

Relay Server hosting service
subscribing, 260

Relay Server section
Relay Server configuration file, 243

Relay Server State Manager
about, 250
command line syntax, 251
starting as a Windows service, 250
starting automatically, 251
starting automatically with custom options, 251

Relay Server web extensions
about, 239
enabling, 254

remote databases
glossary definition, 844
mapping of data types in MobiLink, 739
relating consolidated tables to MobiLink remote
tables, 5

REMOTE DBA authority
glossary definition, 844

remote IDs
getRemoteID method in MobiLink Java API, 546
glossary definition, 845
ml_database system table, 700

remote tables
deleting rows in MobiLink, 335

Remove(object value) method [ML .NET]
DBParameterCollection class syntax, 618

RemoveAt(int index) method [ML .NET]
DBParameterCollection class syntax, 618

RemoveAt(string parameterName) method
[ML .NET]

DBParameterCollection class syntax, 616
removeErrorListener method [ML Java]

ServerContext syntax, 572
removeInfoListener method [ML Java]

ServerContext syntax, 572
removeShutdownListener method [ML Java]

ServerContext syntax, 572
removeWarningListener method [ML Java]

ServerContext syntax, 573

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 881

replication
glossary definition, 845

Replication Agent
glossary definition, 845

replication frequency
glossary definition, 845

replication messages
glossary definition, 845

Replication Server
glossary definition, 845

report_error
connection event, 477
syntax, 338

report_odbc_error
connection event, 480

reporting errors
MobiLink synchronization, 338

requests
routing in MobiLink, 265

required scripts
MobiLink, 326

resetting
MobiLink last download time, 131

resolution
MobiLink conflict resolution, 146

resolve_conflict
table event, 483
using, 149

resolving
MobiLink conflicts, 146

resolving conflicts
MobiLink overview, 149
MobiLink with resolve_conflict scripts, 149
MobiLink with upload_update scripts, 151
resolve_conflict script, 149
upload_update script, 151

resources
Monitor, 215

restartable downloads
MobiLink, 158

resume partial download synchronization parameter
restartable downloads, 159

resuming failed downloads
MobiLink, 158

return values
.NET synchronization, 595
Java synchronization, 533

reverse proxy

defined, 266
role names

glossary definition, 845
roles

glossary definition, 845
rollback logs

glossary definition, 846
Rollback method [ML .NET]

DBConnection syntax, 609
routing requests

MobiLink synchronization, 265
row handling in MobiLink (see direct row handling)
row parameters

MobiLink scripts, 320
row-level triggers

glossary definition, 846
rows

deleting on remote MobiLink databases, 335
partitioning, 135

rsa protocol option
MobiLink server (mlsrv11) -x option for HTTPS,
110
MobiLink server (mlsrv11) -x option for TCP/IP,
108

rshost (see Relay Server State Manager)
running

MobiLink server, 29
running .NET synchronization logic

about, 591
running Java synchronization logic

about, 529
running MobiLink

about, 29
as a daemon, 35
outside the current session, 35

running MobiLink server
as a service, 35

running the MobiLink server
about, 30
in a server farm, 40

S
s.

MobiLink named parameter prefix, 320
sample domain configuration file

MobiLink, 602
sample properties

Index

882 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

MobiLink Monitor, 190
samples

.NET synchronization logic, 604
Java synchronization logic, 538

samples-dir
documentation usage, xvi

saving Monitor data
MobiLink Monitor, 193

Scale property [ML .NET]
DBParameter class syntax, 614

schemas
glossary definition, 846
relating consolidated tables to MobiLink remote
tables, 5

script parameters
about MobiLink, 320
last_download, 130
last_table_download, 130

script types
MobiLink, 318

script versions
about MobiLink synchronization, 324
adding, 325
global, 325
glossary definition, 846
reserved names, 324

script-based uploads
glossary definition, 846

scripts
about MobiLink, 313
adding and deleting .NET connection scripts, 668
adding and deleting .NET table scripts, 669
adding and deleting Java connection scripts, 671
adding and deleting Java table scripts, 672
adding and deleting SQL connection scripts, 667
adding and deleting SQL table scripts, 680
adding to the consolidated database in MobiLink,
327
connection scripts, 318
global script versions, 325
glossary definition, 846
MobiLink event overview, 343
MobiLink events, 342
MobiLink ml_active_remote_id system table, 697
MobiLink ml_column system table, 698
MobiLink ml_connection_script system table, 699
MobiLink ml_database system table, 700
MobiLink ml_device system table, 701

MobiLink ml_device_address system table, 703
MobiLink ml_listening system table, 705
MobiLink ml_passthrough system table, 707
MobiLink ml_passthrough_repair system table,
708
MobiLink ml_passthrough_script system table, 709
MobiLink ml_passthrough_status system table, 711
MobiLink ml_property system table, 712
MobiLink ml_script system table, 728
MobiLink ml_script_version system table, 729
MobiLink ml_scripts_modified system table, 730
MobiLink ml_server system table, 731
MobiLink ml_sis_sync_state system table, 732
MobiLink ml_subscription system table, 733
MobiLink ml_table_script system table, 736
MobiLink ml_user system table, 737
required by MobiLink, 326
supported DBMS scripting strategies, 8
table scripts, 318
versions, 324
writing scripts to download rows, 333
writing scripts to upload rows, 330

secured features
glossary definition, 846

security
MobiLink user authentication (mluser) utility, 690
Monitor users, 230

selective sharing (see partitioning)
self-referencing tables

MobiLink, 164
sending

Monitor alert emails, 233
sequence number

progress column of ml_subscription table, 733
sequence of MobiLink events

pseudocode, 346
sequences

primary key uniqueness in MobiLink
synchronization, 25

server farm
-zs option, 119
back-end server, 242
load balancing, 40
MobiLink, 40
Relay Server, 241

server groups
MobiLink, 271

server management requests

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 883

glossary definition, 846
server message stores

glossary definition, 847
server monitoring

about, 201
server system procedures

MobiLink, 663
server-initiated synchronization

glossary definition, 846
ServerContext [ML Java]

syntax, 565
ServerContext interface [ML .NET]

syntax, 629
ServerException class [ML .NET]

syntax, 632
ServerException class [ML Java]

syntax, 574
ServerException constructors [ML .NET]

syntax, 632
ServerException constructors [ML Java]

syntax, 575
servers

MobiLink synchronization [mlsrv11], 30
service dependencies

MobiLink, 38
services

configuring, 36
deleting, 36
dependencies, 38
glossary definition, 847
MobiLink, 36
MobiLink server, 35
running MobiLink as a service, 35
running multiple, 38

servlet Redirector
Apache Tomcat, 284
Apache web servers, 284

servlets
installing the Redirector for Apache web servers,
284

session properties
MobiLink Monitor, 190

session-based synchronization
glossary definition, 847

session-wide variables
DB2 MobiLink consolidated databases, 13
Oracle MobiLink consolidated databases, 25

session_key

MobiLink server (mlsrv11) -xo option for HTTP,
115

session_key protocol option
MobiLink server (mlsrv11) -xo option for HTTPS,
116

SET NOCOUNT
SQL Server MobiLink consolidated databases, 20

SetNewRowValues method [ML .NET]
UpdateDataReader interface syntax, 643

setNewRowValues method [ML Java]
SynchronizationException syntax, 578

SetOldRowValues method [ML .NET]
UpdateDataReader interface syntax, 643

setOldRowValues method [ML Java]
MobiLink server API for Java
SynchronizationException class, 579

setting up
MobiLink consolidated databases, 3
MobiLink file-based downloads, 295
MobiLink Java synchronization logic, 529
MobiLink Redirector about, 268

setting up .NET synchronization logic
about, 591

setting up a MySQL consolidated database
MobiLink, 22

setting up a SQL Anywhere consolidated database
MobiLink, 28

setting up a Sybase ASE consolidated database
MobiLink, 10

setting up an IBM DB2 LUW consolidated database
MobiLink, 12

setting up an IBM DB2 mainframe consolidated
database

MobiLink, 15
setting up an Oracle consolidated database

MobiLink, 25
setting up direct row handling

about, 651
setting up the Redirector

about, 268
setup

MobiLink .NET synchronization logic, 591
MobiLink consolidated databases, 6
MobiLink Java synchronization logic, 529

setup scripts
MobiLink consolidated databases, 6
MobiLink system database, 7

setValue method [ML Java]

Index

884 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

InOutInteger syntax, 558
InOutString syntax, 560

shadow tables
writing download_delete_cursor scripts, 335

shared assemblies
implementing in MobiLink, 601

shared server state
-zs option, 119

shared stated
MobiLink server farm, 40

sharing rules (see partitioning)
ShutDown method [ML .NET]

ServerContext interface syntax, 630
shutdown method [ML Java]

ServerContext syntax, 573
ShutdownCallback delegate [ML .NET]

syntax, 633
ShutdownListener interface [ML Java]

syntax, 575
ShutdownListener method [ML .NET]

ServerContext interface syntax, 630
shutdownPerformed method [ML Java]

ShutdownListener syntax, 576
shutting down

MobiLink server, 32
MobiLink stop utility (mlstop), 689

SID
Oracle driver option, 795

SLEEP
Redirector property (for Redirectors that don't
support server groups), 275
Redirector property (for Redirectors that support
server groups), 273

snapshot isolation
glossary definition, 847
MobiLink, 165
MobiLink -dsd option to disable, 63
MobiLink -dt option for SQL Server, 64
MobiLink -esu option to enable for uploads, 66

snapshot synchronization
about, 133

soft shutdown
MobiLink stop utility (mlstop), 689

sort order
characters and MobiLink synchronization, 790

spreadsheets
synchronizing with MobiLink, 649

SQL

glossary definition, 847
SQL Anywhere

as MobiLink consolidated database, 28
documentation, xiv
glossary definition, 847
MobiLink isolation levels, 165

SQL Anywhere consolidated database
MobiLink, 28

SQL Remote
glossary definition, 847

SQL Server
(see also Microsoft SQL Server)
as MobiLink consolidated database, 20
MobiLink data mapping, 767

SQL statements
glossary definition, 847

SQL synchronization logic
MobiLink, 313
MobiLink performance, 172

SQL syntax
MobiLink server (mlsrv11), 45

SQL-.NET data types
MobiLink .NET synchronization logic, 594

SQL-based synchronization
glossary definition, 847

SQL-java data types
about, 532

SQL_ARD_TYPE field [ML .NET]
SQLType enumeration syntax, 637

SQL_BIGINT field [ML .NET]
SQLType enumeration, 638

SQL_BINARY field [ML .NET]
SQLType enumeration syntax, 638

SQL_BIT field [ML .NET]
SQLType enumeration syntax, 637

SQL_CHAR field [ML .NET]
SQLType enumeration syntax, 633

SQL_DATE field [ML .NET]
SQLType enumeration syntax, 635

SQL_DATETIME field [ML .NET]
SQLType enumeration syntax, 635

SQL_DECIMAL field [ML .NET]
SQLType enumeration syntax, 634

SQL_DEFAULT field [ML .NET]
SQLType enumeration syntax, 637

SQL_DOUBLE field [ML .NET]
SQLType enumeration syntax, 635

SQL_FLOAT field [ML .NET]

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 885

SQLType enumeration syntax, 635
SQL_GUID field [ML .NET]

SQLType enumeration syntax, 639
SQL_INTEGER field [ML .NET]

SQLType enumeration syntax, 634
SQL_INTERVAL field [ML .NET]

SQLType enumeration syntax, 636
SQL_LONGVARBINARY field [ML .NET]

SQLType enumeration syntax, 638
SQL_LONGVARCHAR field [ML .NET]

SQLType enumeration syntax, 639
SQL_NUMERIC field [ML .NET]

SQLType enumeration syntax, 634
SQL_REAL field [ML .NET]

SQLType enumeration syntax, 635
SQL_SMALLINT field [ML .NET]

SQLType enumeration syntax, 634
SQL_TIME field [ML .NET]

SQLType enumeration syntax, 636
SQL_TIMESTAMP field [ML .NET]

SQLType enumeration syntax, 636
SQL_TINYINT field [ML .NET]

SQLType enumeration syntax, 638
SQL_TXN_READ_COMMITTED

MobiLink isolation levels, 165
SQL_TYPE_DATE field [ML .NET]

SQLType enumeration syntax, 636
SQL_TYPE_NULL field [ML .NET]

SQLType enumeration syntax, 633
SQL_TYPE_TIME field [ML .NET]

SQLType enumeration syntax, 637
SQL_TYPE_TIMESTAMP field [ML .NET]

SQLType enumeration syntax, 637
SQL_UNKNOWN_TYPE field [ML .NET]

SQLType enumeration syntax, 633
SQL_VARBINARY field [ML .NET]

SQLType enumeration syntax, 638
SQL_VARCHAR field [ML .NET]

SQLType enumeration syntax, 636
SQL_WCHAR field [ML .NET]

SQLType enumeration, 639
SQL_WLONGVARCHAR field [ML .NET]

SQLType enumeration syntax, 639
SQL_WVARCHAR field [ML .NET]

SQLType enumeration syntax, 639
SQLType enumeration [ML .NET]

ServerException class syntax, 633
start classes

DMLStartClasses option for Java, 92
MLStartClasses option for .NET, 90
MobiLink .NET synchronization logic, 595
MobiLink Java synchronization logic, 536

start_time property
MobiLink Monitor synchronization statistics, 195

starting
MobiLink Monitor (mlmon), 181
MobiLink server, 30
Notifiers, 76

starting the MobiLink Monitor
about, 181

state
Monitor, 215
progress column of ml_subscription table, 733

state management
Relay Server, 250

State Manager
command line syntax, 251

statement-based scripts
uploading rows, 330

statement-based uploads
conflict detection, 147

statement-level triggers
glossary definition, 848

StaticCursorLongColBuffLen
ASE, 10

statistical properties
MobiLink, 195

statistics
MobiLink, 195

status
Monitor, 215

STOP SYNCHRONIZATION DELETE statement
SQL Anywhere clients, 156
usage, 335

stop utility (mlstop)
syntax, 689

stopping
MobiLink server, 32
MobiLink stop utility (mlstop), 689
upload of deletes for SQL Anywhere clients, 156

stored procedures
glossary definition, 848
MobiLink, 663
MobiLink stored procedure source code, 328
using to add or delete synchronization scripts, 328
using to download data, 162

Index

886 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

string literal
glossary definition, 848

subqueries
glossary definition, 848

subscriptions
glossary definition, 848
ml_subscription system table, 733

subsets
downloading subsets of data to remotes, 135

Sun Java System web servers
configuring the NSAPI Redirector on Unix, 280
configuring the NSAPI Redirector on Windows,
277

Sun One
configuring for the NSAPI Redirector on Unix, 280
configuring for the NSAPI Redirector on Windows,
277

Sun web servers
configuring the NSAPI Redirector on Unix, 280
configuring the NSAPI Redirector on Windows,
277

support
newsgroups, xix

supporting old and new clients
MobiLink, 271

suppress unsubmitted error reports
Monitor, 235

switches
MobiLink server (mlsrv11), 45
MobiLink user authentication (mluser), 690

Sybase Adaptive Server Enterprise (see Adaptive
Server Enterprise)
Sybase Central

glossary definition, 848
MobiLink server deployment on 32-bit Unix, 807
MobiLink server deployment on 64-bit Unix, 810

sync property
MobiLink Monitor synchronization statistics, 195

sync.conf
M-Business Anywhere Redirector, 289

sync_deadlocks property
MobiLink Monitor synchronization statistics, 195

sync_errors property
MobiLink Monitor synchronization statistics, 195

sync_request property
MobiLink Monitor synchronization statistics, 195

sync_tables property
MobiLink Monitor synchronization statistics, 195

sync_warnings property
MobiLink Monitor synchronization statistics, 195

syncase.sql
about, 10

syncdb2long.sql
about, 12

synchronization
alphabetic list of scripts, 342
ASE data types in MobiLink, 740
conflict resolution, 146
connection parameters for Monitor, 181
consolidated databases, 3
data type mappings in MobiLink, 739
deleting rows, 335
downloading rows, 333
event overview, 343
glossary definition, 849
IBM DB2 LUW data types in MobiLink, 749
IBM DB2 mainframe data types in MobiLink, 756
many-to-many relationships, 136
Microsoft SQL Server data types in MobiLink, 767
MobiLink character set conversion, 790
MobiLink character sets, 790
MobiLink system procedures, 663
MobiLink system tables, 694
MobiLink utilities, 687
MySQL data types in MobiLink, 774
Oracle data types in MobiLink, 779
performance tips, 169
process, 317
protocol options for mlsrv11, 107
restartable downloads, 158
running the MobiLink server, 29
snapshot, 133
techniques, 127
web server configuration, 265
writing MobiLink scripts in .NET, 589
writing MobiLink scripts in Java, 527
writing scripts, 313

synchronization errors
handling MobiLink, 338
troubleshooting, 65

synchronization events
about, 342
about MobiLink synchronization, 343
alphabetic list of event scripts, 342
ASE begin_connection_autocommit connection
event, 368

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 887

MobiLink download, 351
MobiLink upload, 349

synchronization logic
MobiLink, 313

synchronization parameters
HTTP synchronization, 107
HTTPS synchronization, 107
TCP/IP synchronization, 107

synchronization properties
MobiLink Monitor, 191

synchronization scripts
.NET, 589
.NET methods, 595
about, 313
adding and deleting, 327
adding or deleting with stored procedures, 328
adding with Sybase Central, 327
connection scripts, 318
DBMS dependencies, 8
download_cursor, 334
example, 316
execution during, 317
handle_error event, 338
implementing for .NET, 591
implementing for Java, 529
Java, 527
Java methods, 533
MobiLink events, 342
parameters, 320
report_error, 338
script versions, 324
supported DBMS scripting strategies, 8
table scripts, 318
types, 318
writing scripts to download rows, 333
writing scripts to upload rows, 330

synchronization sequence number
progress column of ml_subscription table, 733

synchronization server (see MobiLink server)
synchronization stream libraries

MobiLink server deployment on 32-bit Unix, 807
MobiLink server deployment on 32-bit Windows,
801
MobiLink server deployment on 64-bit Unix, 810
MobiLink server deployment on 64-bit Windows,
804

synchronization subscriptions
(see also subscriptions)

synchronization tables
MobiLink ml_table system table, 735

synchronization techniques
about, 127
data entry, 155
deleting rows, 156
failed downloads, 158
partitioning, 135
primary key pools, 143
snapshot-based synchronization, 133
stored procedures to download, 162
timestamp-based synchronization, 129
uploading rows, 330

synchronization users
MobiLink user authentication (mluser), 690

synchronization_statistics
connection event, 486
table event, 489

SynchronizationException class [ML .NET]
syntax, 640

SynchronizationException class [ML Java]
syntax, 576

SynchronizationException constructors [ML .NET]
SynchronizationException class syntax, 640

SynchronizationException constructors [ML Java]
SynchronizationException syntax, 577

synchronizing data sources other than consolidated
databases

about, 649
synchronizing new remotes

MobiLink file-based download, 296
synchronizing self-referencing tables

MobiLink, 164
synchronizing through a web server

Redirector (deprecated), 265
Relay Server, 239

syncmss.sql
about, 20

syncora.sql
about, 25

SyncRoot property [ML .NET]
DBParameterCollection class syntax, 620

syncsa.sql
about, 28

syntax
MobiLink scripts, 342
MobiLink server (mlsrv11), 45
MobiLink stop utility (mlstop), 689

Index

888 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

MobiLink synchronization utilities, 687
MobiLink system procedures, 663
MobiLink user authentication (mluser), 690

SYS
glossary definition, 849

system database
MobiLink, 7

system objects
glossary definition, 849

system parameters
MobiLink scripts, 320

system procedures
alphabetical list of MobiLink system procedures,
664
ml_add_cs, 667
ml_add_dcs, 668
ml_add_dts, 669
ml_add_jcs, 671
ml_add_lcs, 673
ml_add_lcs_chk, 673
ml_add_lts, 673
MobiLink , 663
MobiLink IBM DB2 mainframe system procedure
name conversions, 664

system procedures to add or delete properties
MobiLink server, 664

system procedures to add or delete scripts
MobiLink server, 664

system tables
creating in MobiLink consolidated database, 6
glossary definition, 849
MobiLink synchronization, 694

system views
glossary definition, 849

T
table scripts

about, 318
adding .NET scripts, 669
adding Java scripts, 672
adding SQL scripts, 680
adding with Sybase Central, 327
alphabetic list of MobiLink scripts, 342
defined, 315, 318
deleting .NET scripts, 669
deleting Java scripts, 672
deleting SQL scripts, 680

table-level scripts
defined, 318

tables
MobiLink ml_table system table, 735
partitioning, 135
relating consolidated tables to MobiLink remote
tables, 5

tablespace capacity
DB2 MobiLink consolidated databases, 13

TCP/IP
MobiLink server -x option, 107

technical support
newsgroups, xix

temporary tables
glossary definition, 849

text files
synchronizing with MobiLink, 649

Text property [ML .NET]
DBRowReader interface syntax, 628

this[int index] property [ML .NET]
DBParameterCollection class syntax, 620

this[string parameterName] property [ML .NET]
DBParameterCollection class syntax, 620

threading
(see also threads)
MobiLink performance, 170

threads
MobiLink worker threads and performance, 170

time changes
MobiLink, 132

time_statistics
connection event, 492
table event, 495

timestamp-based downloads
about, 129

timestamp-based synchronization
about, 129
download_cursor script, 130
download_delete_cursor script, 129

timestamps
MobiLink download, 131

tips
performance of MobiLink, 169
synchronization techniques, 128

TLS
(see also transport-layer security)
MobiLink client deployment on Unix, 814
MobiLink client deployment on Windows, 813

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 889

MobiLink server -x option, 107
MobiLink server deployment on 32-bit Unix, 807
MobiLink server deployment on 32-bit Windows,
801
MobiLink server deployment on 64-bit Unix, 810
MobiLink server deployment on 64-bit Windows,
804

tls_type protocol option
MobiLink server (mlsrv11) -x option for HTTPS,
110
MobiLink server (mlsrv11) -x option for TCP/IP,
108

Tomcat
configuring the servlet Redirector, 284
Redirector supported versions, 284

tools
MobiLink Monitor marquee tool, 189

topics
graphic icons, xviii

transaction log
glossary definition, 849

transaction log mirror
glossary definition, 850

transactional integrity
glossary definition, 850

transactions
glossary definition, 849
MobiLink, 343
MobiLink .NET synchronization logic, 594
MobiLink Java synchronization logic, 531

translation between character sets
MobiLink synchronization, 790

transmission rules
glossary definition, 850

triggers
glossary definition, 850

troubleshooting
handling failed downloads, 158
MobiLink remote data loss, 131
MobiLink restartable downloads, 158
MobiLink server log, 33
MobiLink server startup, 41
Monitor, 237
newsgroups, xix
synchronization errors, 65

tuning performance
MobiLink , 174

tutorials

Monitor, 206
Type property [ML .NET]

DBRowReader interface syntax, 628

U
u.

MobiLink user-defined parameter prefix, 322
ULRollbackPartialDownload function

restartable downloads, 159
UltraLite

deploying, 815
glossary definition, 850

UltraLite runtime
glossary definition, 850

uni-directional synchronization
about, 138

unique
primary keys in MobiLink, 139

unique constraints
glossary definition, 850

unique keys
MobiLink, 139

unique primary keys
generating for MobiLink using composite keys,
139
generating for MobiLink using UUIDs, 139
generating using key pools for MobiLink, 143
global autoincrement for MobiLink, 140
MobiLink, 139

Unix
MobiLink server as a daemon, 35

unknown_timeout protocol option
synchronizing across firewalls, 269

unload
glossary definition, 851

unsubmitted error reports
Monitor , 218
Monitor alerts, 235

UPDATE conflicts
MobiLink, 146

UpdateData interface [ML .NET]
syntax, 641

UpdateDataReader interface [ML .NET]
syntax, 642

UpdateResultSet [ML Java]
SynchronizationException syntax, 578

upgrading applications

Index

890 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

using multiple MobiLink script versions, 324
upload events

about, 330
MobiLink synchronization, 349

upload property
MobiLink Monitor synchronization statistics, 195

upload transaction
MobiLink, 344

upload-only and download-only synchronizations
about, 138

upload-only synchronization
about, 138
required scripts, 326

upload_bytes property
MobiLink Monitor synchronization statistics, 195

upload_deadlocks property
MobiLink Monitor synchronization statistics, 195

upload_delete
table event, 498

upload_deleted_rows property
MobiLink Monitor synchronization statistics, 195

upload_errors property
MobiLink Monitor synchronization statistics, 195

upload_fetch
detecting conflicts, 147
overview of conflict detection, 147
table event, 500

upload_fetch_column_conflict
detecting conflicts, 147
overview of conflict detection, 147
table event, 502

upload_insert
table event, 504

upload_inserted_rows property
MobiLink Monitor synchronization statistics, 195

upload_new_row_insert
table event, 506

upload_old_row_insert
table event, 509

upload_statistics
connection event, 512
table event, 517

upload_update
detecting conflicts, 148
overview of conflict detection, 147
table event, 522
using, 151

upload_updated_rows property

MobiLink Monitor synchronization statistics, 195
upload_warnings property

MobiLink Monitor synchronization statistics, 195
UploadData interface [ML Java]

syntax, 579
UploadedTableData interface [ML .NET]

syntax, 643
UploadedTableData interface [ML Java]

syntax, 581
uploading data from self-referencing tables

about, 164
uploading rows

.NET synchronization techniques, 600
MobiLink performance, 173
writing scripts, 330

uploads
glossary definition, 851
MobiLink scripts to upload rows, 330
MobiLink temporarily stopping, 156
MobiLink transaction, 344

url_suffix protocol option
MobiLink Redirector, 269

user authentication utility (mluser)
syntax, 690

user names
MobiLink user authentication utility (mluser), 690

user parameters
MobiLink, 322

user property
MobiLink Monitor synchronization statistics, 195

User property [ML .NET]
DBRowReader interface, 628

user-defined data types
glossary definition, 851

user-defined parameters
MobiLink, 322

user-defined procedures
DB2 MobiLink consolidated databases, 13

user-defined start classes
MobiLink .NET synchronization logic, 595
MobiLink Java synchronization logic, 536

users
Monitor admin user, 228
Monitor administrators, 228
Monitor creating, 228
Monitor default user, 228
Monitor deleting, 230
Monitor emailing, 229

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 891

Monitor operators, 228
Monitor read-only users, 228
Monitor security, 230
Monitor types, 228

utilities
MobiLink, 687
MobiLink Redirector, 265
MobiLink server (mlsrv11), 45
MobiLink stop utility (mlstop), 689
MobiLink user authentication (mluser), 690

utilization graph pane
MobiLink Monitor, 186

UUIDs
MobiLink synchronization application, 139

V
validate

glossary definition, 851
validating

MobiLink automatically, 298
MobiLink custom , 300
MobiLink file-based download, 298

validation checks
MobiLink file-based download, 298

Value property [ML .NET]
DBParameter class syntax, 615

VARBIT data type
restrictions in ASE MobiLink consolidated
databases, 10

VARCHAR data type
MobiLink and other DBMSs, 8

varray (Oracle)
example, 26
restrictions, 27
using in stored procedures, 26

verbosity
MobiLink performance, 172
MobiLink server (mlsrv11) -v option, 102

version property
MobiLink Monitor synchronization statistics, 195

version protocol option
MobiLink server (mlsrv11) -x option for HTTP,
109
MobiLink server (mlsrv11) -x option for HTTPS,
110

versions
about MobiLink synchronization scripts, 324

adding script versions, 325
viewing MobiLink logs

about, 34
views

glossary definition, 851
Visual Basic

MobiLink synchronization scripts, 589
support in MobiLink .NET, 590

Visual Studio
MobiLink synchronization scripts, 589

W
WARNING [ML Java]

Java LogMessage interface, 564
WARNING field [ML .NET]

MessageType enumeration syntax, 628
web extensions

Relay Server, 239
web servers

configuration options for MobiLink, 267
configuring Apache for synchronization, 287
configuring for MobiLink (for Redirectors that don't
support server groups), 275
configuring for MobiLink (for Redirectors that
support server groups), 273
configuring ISAPI Microsoft for synchronization,
282
configuring M-Business Anywhere for
synchronization, 289
configuring NSAPI for synchronization on Unix,
280
configuring NSAPI for synchronization on
Windows, 277
MobiLink clients, 269
MobiLink Redirector, 265
synchronizing with MobiLink, 649

web services
synchronizing with MobiLink, 649

WebLogic
MobiLink and, 649

window (OLAP)
glossary definition, 851

Windows
glossary definition, 851

Windows Mobile
glossary definition, 851

work tables

Index

892 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

glossary definition, 851
worker threads

MobiLink, 174
MobiLink performance, 170

writing
.NET synchronization logic, 589
Java synchronization logic, 527

writing .NET synchronization logic
about, 593

writing download_cursor scripts
MobiLink, 334

writing download_delete_cursor scripts
MobiLink, 335

writing Java synchronization logic
about, 531

writing scripts to download rows
MobiLink, 333

writing scripts to handle errors
MobiLink, 338

writing scripts to upload rows
MobiLink, 330

writing synchronization scripts
SQL, 313
supported DBMS scripting strategies, 8

writing synchronization scripts in .NET
about, 589

writing synchronization scripts in Java
about, 527

writing upload_delete scripts
MobiLink, 331

writing upload_fetch scripts
MobiLink, 332

writing upload_insert scripts
MobiLink, 330

writing upload_update scripts
MobiLink, 331

X
Xusage.txt

location, 92

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 893

894

	MobiLink - Server Administration
	Contents
	About this book
	About the SQL Anywhere documentation
	About the books in the documentation set
	Documentation conventions
	Graphic icons
	Contacting the documentation team
	Finding out more and requesting technical support

	Using MobiLink Server Technology
	MobiLink consolidated databases
	Introduction to consolidated databases
	How remote tables relate to consolidated tables

	Setting up a consolidated database
	MobiLink system database

	RDBMS-dependent synchronization scripts
	Adaptive Server Enterprise consolidated database
	IBM DB2 LUW consolidated database
	IBM DB2 mainframe consolidated database
	Microsoft SQL Server consolidated database
	MySQL consolidated database
	Oracle consolidated database
	Using Oracle varray

	SQL Anywhere consolidated database

	MobiLink server
	Running the MobiLink server
	Stopping the MobiLink server
	Logging MobiLink server actions
	Viewing MobiLink server logs

	Running the MobiLink server outside the current session
	Running the Unix MobiLink server as a daemon
	Running the Windows MobiLink server as a service
	Adding, modifying, and deleting services
	Running more than one service at a time

	Running the MobiLink server in a server farm
	Troubleshooting MobiLink server startup
	Ensure that network communication software is running
	Debug network communications startup problems

	MobiLink server options
	mlsrv11 syntax
	@data option
	-a option
	-b option
	-bn option
	-c option
	-cm option
	-cn option
	-cr option
	-cs option
	-ct option
	-dl option
	-dr option
	-ds option
	-dsd option
	-dt option
	-e option
	-esu option
	-et option
	-f option
	-fips option
	-fr option
	-ftr option
	-lsc option
	-m option
	-nba option
	-nc option
	-notifier option
	-o option
	-on option
	-oq option
	-os option
	-ot option
	-ppv option
	-q option
	-r option
	-rd option
	-s option
	-sl dnet option
	-sl java option
	-sm option
	-ss option
	-tc option
	-tf option
	-tx option
	-ud option
	-ui option
	-ux option
	-v option
	-w option
	-wu option
	-x option
	-xo option
	-zp option
	-zs option
	-zt option
	-zu option
	-zus option
	-zw option
	-zwd option
	-zwe option

	Synchronization techniques
	MobiLink development tips
	Timestamp-based downloads
	Using last download times in scripts
	How download timestamps are generated and used

	Dealing with daylight savings time

	Snapshot synchronization
	Partitioning rows among remote databases
	Disjoint partitioning
	Partitioning with overlaps
	Partitioning child tables

	Upload-only and download-only synchronizations
	Maintaining unique primary keys
	Using composite keys
	Using UUIDs
	Using global autoincrement
	Declaring default global autoincrement
	Setting the global database ID

	Using primary key pools

	Handling conflicts
	About conflicts
	Detecting conflicts
	Detecting conflicts with upload_fetch scripts
	Detecting conflicts with upload_update scripts

	Resolving conflicts
	Resolving conflicts with resolve_conflict scripts
	Resolving conflicts with upload_update scripts

	Forced conflicts
	Data entry
	Handling deletes
	Temporarily stopping the synchronization of deletes

	Handling failed downloads
	Resuming failed downloads

	Download acknowledgement
	Downloading a result set from a stored procedure call
	Uploading data from self-referencing tables
	MobiLink isolation levels

	MobiLink performance
	Performance tips
	Key factors influencing MobiLink performance
	Tuning MobiLink for performance

	Monitoring MobiLink performance

	MobiLink Monitor
	Introduction to the MobiLink Monitor
	Starting the MobiLink Monitor
	Using the MobiLink Monitor
	Details Table pane
	Utilization Graph pane
	Using the Utilization Graph

	Chart pane
	Overview pane
	Options window
	Session properties
	Sample properties
	Synchronization properties

	Saving MobiLink Monitor data
	Customizing your statistics
	MobiLink statistical properties

	SQL Anywhere Monitor for MobiLink
	Introducing the SQL Anywhere Monitor
	Monitor architecture

	Monitor quick start
	Tutorial: Using the Monitor
	Lesson 1: Start the Monitor
	Lesson 2: Set up the Monitor to monitor a MobiLink server
	Lesson 3: Test an alert
	Lesson 4: Set up the Monitor to send emails when alerts occur
	Lesson 5: Cleanup

	Start the Monitor
	Exit the Monitor
	Connect to the Monitor
	Disconnect from the Monitor
	Monitoring resources
	Interpreting resource states and status
	Monitor metrics
	Metric tab descriptions
	Monitoring tab: Alerts tab
	Monitoring tab: Server tab
	Monitoring tab: Synchronization tab
	Monitoring tab: Consolidated Database tab
	Monitoring tab: Machine Resources tab

	Delete old Monitor metrics

	Administering resources
	Add resources
	Collection intervals
	Specify metrics to collect
	Types of metrics and alerts

	Stop monitoring resources
	Manually stop monitoring resources
	Automatically stop monitoring resources using blackouts

	Remove resources

	Working with Monitor users
	Create Monitor users
	Associate Monitor users with resources
	Edit Monitor users
	Delete Monitor users
	Require Monitor users to login

	Alerts
	View alerts
	Resolve alerts
	Delete alerts
	Send alert emails
	Enable the Monitor to send alert emails

	Suppress alerts for unsubmitted error reports from resources

	Installing the SQL Anywhere Monitor on a separate computer
	Troubleshooting the Monitor

	The Relay Server
	Introduction to the Relay Server
	Relay Server architecture
	The Relay Server farm
	Back-end server farm
	Load balancer
	Relay Server Outbound Enabler

	Relay Server configuration file
	Relay Server section
	Backend farm section
	Backend server section
	Options section
	Relay Server configuration file format

	Outbound Enabler
	Relay Server State Manager
	Starting the Relay Server State Manager as a Windows service
	Starting the Relay Server State Manager automatically
	Starting the Relay Server State Manager automatically with customized options
	Relay Server State Manager command line syntax

	Deploying the Relay Server
	Deploying the Relay Server components to IIS on Windows
	Deploying the web server extensions and State Manager
	Creating an application pool
	Enabling the Relay Server web extensions
	Performance tips

	Deploying the Relay Server components to Apache on Linux
	Deploying the web extension files and State Manager

	Updating a Relay Server farm configuration
	Updating a Relay Server configuration for IIS on Windows
	Updating a Relay Server configuration for Apache on Linux

	Sybase Relay Server hosting service
	Using the Relay Server hosting service

	Using MobiLink with the Relay Server
	Connecting a client to the Relay Server farm
	Sample scenario

	Redirector (deprecated)
	Introduction to the Redirector (deprecated)
	Options when using a web server

	Setting up the Redirector
	Configuring MobiLink clients and servers for the Redirector
	Configuring Redirector properties
	MobiLink server groups
	Configuring Redirector properties (for Redirectors that support server groups)
	Configuring Redirector properties (for Redirectors that don't support server groups)

	NSAPI Redirector for Netscape/Sun web servers on Windows (deprecated)
	NSAPI Redirector for Netscape/Sun web servers on Unix (deprecated)
	ISAPI Redirector for Microsoft web servers (deprecated)
	Servlet Redirector (deprecated)
	Apache Redirector (deprecated)
	M-Business Anywhere Redirector (deprecated)

	MobiLink file-based download
	Introduction to file-based download
	Setting up file-based download
	Creating the file-definition database
	Changes at the consolidated database
	Creating the download file
	Synchronizing new remotes

	Validation checks
	Automatic validation
	MobiLink generation numbers
	Custom validation

	File-based download examples
	Snapshot example
	Timestamp-based example

	MobiLink Events
	Writing synchronization scripts
	Introduction to synchronization scripts
	Simple synchronization script

	Scripts and the synchronization process
	Script types
	Connection scripts
	Table scripts

	Script parameters
	User-defined named parameters
	Authentication parameters

	Script versions
	Adding a script version

	Required scripts
	Adding and deleting scripts
	Direct inserts of scripts
	Ignoring scripts

	Writing scripts to upload rows
	Writing upload_insert scripts
	Writing upload_update scripts
	Writing upload_delete scripts
	Writing upload_fetch scripts

	Writing scripts to download rows
	Writing download_cursor scripts
	Writing download_delete_cursor scripts

	Writing scripts to handle errors
	Reporting errors
	Handling multiple errors in a single SQL statement

	Synchronization events
	Overview of MobiLink events
	MobiLink complete event model
	Events during upload
	Events during download

	authenticate_file_transfer connection event
	authenticate_parameters connection event
	authenticate_user connection event
	authenticate_user_hashed connection event
	begin_connection connection event
	begin_connection_autocommit connection event
	begin_download connection event
	begin_download table event
	begin_download_deletes table event
	begin_download_rows table event
	begin_publication connection event
	begin_synchronization connection event
	begin_synchronization table event
	begin_upload connection event
	begin_upload table event
	begin_upload_deletes table event
	begin_upload_rows table event
	download_cursor table event
	download_delete_cursor table event
	download_statistics connection event
	download_statistics table event
	end_connection connection event
	end_download connection event
	end_download table event
	end_download_deletes table event
	end_download_rows table event
	end_publication connection event
	end_synchronization connection event
	end_synchronization table event
	end_upload connection event
	end_upload table event
	end_upload_deletes table event
	end_upload_rows table event
	handle_DownloadData connection event
	handle_error connection event
	handle_odbc_error connection event
	handle_UploadData connection event
	modify_error_message connection event
	modify_last_download_timestamp connection event
	modify_next_last_download_timestamp connection event
	modify_user connection event
	nonblocking_download_ack connection event
	prepare_for_download connection event
	publication_nonblocking_download_ack connection event
	report_error connection event
	report_odbc_error connection event
	resolve_conflict table event
	synchronization_statistics connection event
	synchronization_statistics table event
	time_statistics connection event
	time_statistics table event
	upload_delete table event
	upload_fetch table event
	upload_fetch_column_conflict table event
	upload_insert table event
	upload_new_row_insert table event
	upload_old_row_insert table event
	upload_statistics connection event
	upload_statistics table event
	upload_update table event

	MobiLink Server APIs
	Writing synchronization scripts in Java
	Introduction to Java synchronization logic
	Setting up Java synchronization logic
	Writing Java synchronization logic
	Class instances
	Transactions
	SQL-Java data types
	Constructors
	Methods
	Debugging Java classes
	Handling MobiLink server errors in Java
	User-defined start classes

	Java synchronization example
	MobiLink server API for Java reference
	DBConnectionContext interface
	getConnection method
	getDownloadData method
	getProperties method
	getRemoteID method
	getServerContext method
	getVersion method

	DownloadData interface
	getDownloadTableByName method
	getDownloadTables method

	DownloadTableData interface
	getDeletePreparedStatement method
	getUpsertPreparedStatement method
	getName method
	getMetaData method
	getLastDownloadTime method

	InOutInteger interface
	getValue method
	setValue method

	InOutString interface
	getValue method
	setValue method

	LogListener interface
	messageLogged method

	LogMessage class
	ERROR variable
	INFO variable
	WARNING variable
	getType method
	getUser method
	getText method

	ServerContext interface
	addInfoListener method
	addErrorListener method
	addShutdownListener method
	addWarningListener method
	getProperties method
	getPropertiesByVersion method
	getPropertySetNames method
	getStartClassInstances method
	makeConnection method
	removeErrorListener method
	removeInfoListener method
	removeShutdownListener method
	removeWarningListener method
	shutdown method

	ServerException class
	ServerException constructors

	ShutdownListener interface
	shutdownPerformed method

	SynchronizationException class
	SynchronizationException constructors

	UpdateResultSet
	setNewRowValues method
	setOldRowValues method

	UploadData interface
	getUploadedTableByName method
	getUploadedTables method

	UploadedTableData interface
	getDeletes method
	getInserts method
	getUpdates method
	getName method
	getMetaData method

	Writing synchronization scripts in .NET
	Introduction to .NET synchronization logic
	Setting up .NET synchronization logic
	Writing .NET synchronization logic
	Class instances
	Transactions
	SQL-.NET data types
	Constructors
	Methods
	User-defined start classes
	Printing information from .NET
	Handling MobiLink server errors with .NET
	Debugging .NET synchronization logic

	.NET synchronization techniques
	Uploading or downloading rows

	Loading shared assemblies
	Loading assemblies

	.NET synchronization example
	MobiLink server API for .NET reference
	DBCommand interface
	Prepare method
	ExecuteNonQuery method
	ExecuteReader method
	Close method
	CommandText property
	Parameters property

	DBConnection interface
	Commit method
	Rollback method
	Close method
	CreateCommand method

	DBConnectionContext interface
	GetConnection method
	GetDownloadData method
	GetServerContext method
	GetProperties method
	GetRemoteID method
	GetVersion method

	DBParameter class
	DbType property
	Direction property
	IsNullable property
	ParameterName property
	Precision property
	Scale property
	Size property
	Value property

	DBParameterCollection class
	DBParameterCollection method
	Contains(string parameterName) method
	IndexOf(string parameterName) method
	RemoveAt(string parameterName) method
	Add(object value) method
	Clear method
	Contains(object value) method
	IndexOf(object value) method
	Insert(int index, object value) method
	Remove(object value) method
	RemoveAt(int index) method
	CopyTo(Array array, int index) method
	GetEnumerator method
	IsFixedSize property
	IsReadOnly property
	Count property
	IsSynchronized property
	SyncRoot property
	this[string parameterName] property
	this[int index] property

	DBRowReader interface
	NextRow method
	Close method
	ColumnNames property
	ColumnTypes property

	DownloadData interface
	GetDownloadTables method
	GetDownloadTableByName method

	DownloadTableData interface
	GetDeleteCommand method
	GetLastDownloadTime method
	GetName method
	GetSchemaTable method
	GetUpsertCommand method

	LogCallback delegate
	LogMessage class
	MessageType enumeration
	ERROR field
	INFO field
	WARNING field

	Type property
	User property
	Text property

	ServerContext interface
	GetStartClassInstances method
	LogCallback ErrorListener event
	LogCallback InfoListener event
	LogCallback WarningListener event
	MakeConnection method
	ShutDown method
	ShutdownListener method
	getProperties method
	getPropertiesByVersion method
	getPropertySetNames method

	ServerException class
	ServerException constructors

	ShutdownCallback delegate
	SQLType enumeration
	SQL_TYPE_NULL field
	SQL_UNKNOWN_TYPE field
	SQL_CHAR field
	SQL_NUMERIC field
	SQL_DECIMAL field
	SQL_INTEGER field
	SQL_SMALLINT field
	SQL_FLOAT field
	SQL_REAL field
	SQL_DOUBLE field
	SQL_DATE field
	SQL_DATETIME field
	SQL_TIME field
	SQL_INTERVAL field
	SQL_TIMESTAMP field
	SQL_VARCHAR field
	SQL_TYPE_DATE field
	SQL_TYPE_TIME field
	SQL_TYPE_TIMESTAMP field
	SQL_DEFAULT field
	SQL_ARD_TYPE field
	SQL_BIT field
	SQL_TINYINT field
	SQL_BIGINT field
	SQL_LONGVARBINARY field
	SQL_VARBINARY field
	SQL_BINARY field
	SQL_LONGVARCHAR field
	SQL_GUID field
	SQL_WCHAR field
	SQL_WVARCHAR field
	SQL_WLONGVARCHAR field

	SynchronizationException class
	SynchronizationException constructors

	UploadData interface
	GetUploadedTableByName method
	GetUploadedTables method

	UpdateDataReader interface
	SetNewRowValues method
	SetOldRowValues method

	UploadedTableData interface
	GetDeletes method
	GetInserts method
	GetName method
	GetSchemaTable method
	GetUpdates method

	Direct row handling
	Introduction to direct row handling
	The components of direct row handling
	Quick start
	Development tips for direct row handling

	Handling direct uploads
	Handling conflicts for direct uploads

	Handling direct downloads

	MobiLink Reference
	MobiLink server system procedures
	MobiLink system procedures
	IBM DB2 mainframe system procedure name conversions
	ml_add_column system procedure
	ml_add_connection_script system procedure
	ml_add_dnet_connection_script system procedure
	ml_add_dnet_table_script system procedure
	ml_add_java_connection_script system procedure
	ml_add_java_table_script system procedure
	ml_add_lang_connection_script system procedure
	ml_add_lang_connection_script_chk system procedure
	ml_add_lang_table_script system procedure
	ml_add_lang_table_script_chk system procedure
	ml_add_passthrough system procedure
	ml_add_passthrough_repair system procedure
	ml_add_passthrough_script system procedure
	ml_add_property system procedure
	ml_add_table_script system procedure
	ml_add_user system procedure
	ml_delete_passthrough system procedure
	ml_delete_passthrough_repair system procedure
	ml_delete_passthrough_script system procedure
	ml_delete_sync_state system procedure
	ml_delete_sync_state_before system procedure
	ml_delete_user system procedure
	ml_reset_sync_state system procedure
	ml_server_delete system procedure
	ml_server_update system procedure

	MobiLink utilities
	Introduction to MobiLink utilities
	MobiLink stop utility (mlstop)
	MobiLink user authentication utility (mluser)

	MobiLink server system tables
	Introduction to MobiLink system tables
	IBM DB2 mainframe system table name conversions
	ml_active_remote_id
	ml_column
	ml_connection_script
	ml_database
	ml_device
	ml_device_address
	ml_listening
	ml_passthrough
	ml_passthrough_repair
	ml_passthrough_script
	ml_passthrough_status
	ml_property
	ml_qa_clients
	ml_qa_delivery
	ml_qa_delivery_archive
	ml_qa_global_props
	ml_qa_notifications
	ml_qa_repository
	ml_qa_repository_archive
	ml_qa_repository_props
	ml_qa_repository_props_archive
	ml_qa_repository_staging
	ml_qa_status_history
	ml_qa_status_history_archive
	ml_qa_status_staging
	ml_script
	ml_script_version
	ml_scripts_modified
	ml_server
	ml_sis_sync_state
	ml_subscription
	ml_table
	ml_table_script
	ml_user

	MobiLink data mappings between remote and consolidated databases
	Adaptive Server Enterprise data mapping
	IBM DB2 LUW data mapping
	IBM DB2 mainframe data mapping
	Microsoft SQL Server data mapping
	MySQL data mapping
	Oracle data mapping

	Character set considerations
	Character set considerations
	Character set conversion during synchronization
	Controlling ODBC driver character set conversion

	iAnywhere Solutions ODBC drivers for MobiLink
	ODBC drivers supported by MobiLink
	iAnywhere Solutions Oracle driver

	Deploying MobiLink applications
	Introduction to MobiLink deployment
	Deploying the MobiLink server
	Deploying SQL Anywhere MobiLink clients
	Deploying UltraLite MobiLink clients
	Deploying QAnywhere applications

	Glossary
	Glossary

	Index

