Programmer’s Reference

jConnect™ for JDBC™
6.0

DOCUMENT ID: DC39001-01-0600-01
LAST REVISED: April 2004

Copyright © 1989-2004 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein isfurnished under alicense agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with aU.S. license agreement may contact Customer Fulfillment viathe above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software rel ease dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture,
Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server
Enterprise Replication, Adaptive Server Everywhere, Adaptive Server 1Q, Adaptive Warehouse, Anywhere Studio, Application
Manager, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Trand ator, APT-Library, AvantGo, AvantGo
Application Alerts, AvantGo Mobile Delivery, AvantGo Mobile Document Viewer, AvantGo Mobile Inspection, AvantGo Mobile
Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon Application Server, AvantGo
Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BizTracker, ClearConnect, Client-Library, Client
Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer,
DataWindow, DB-Library, dbQueue, Devel opers Workbench, Direct Connect Anywhere, DirectConnect, Distribution Director, e ADK,
E-Anywhere, e-Biz Impact, e-Biz Integrator, E-Whatever, EC Gateway, ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL,
EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager,
Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement
Accelerator, EWA, Financial Fusion, Financial Fusion Server, Gateway Manager, Global FIX, iAnywhere, ImpactNow, Industry
Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, | nformationConnect, InternetBuilder, i Script, Jaguar
CTS, jConnect for JDBC, Mail Anywhere Studio, MainframeConnect, Maintenance Express, Manage Anywhere Studio, M-Business
Channel, M-Business Network, M-Business Server, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, My
AvantGo, My AvantGo Media Channel, My AvantGo Mobile Marketing, MySupport, Net-Gateway, Net-Library, New Eraof Networks,
ObjectConnect, ObjectCycle, OmniConnect, Omni SQL Access Module, OmniSQL Toolkit, Open Biz, Open Client, Open
ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions,
Optimat++, Orchestration Studio, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, PocketBuilder, Pocket PowerBuilder,
Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions,
PowerDynamo, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio,
Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst, Rapport, RepConnector, Replication Agent,
Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit, Report-Execute, Report Workbench, Resource
Manager, RW-DisplayLib, RW-Library, S-Designor, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS,
smart.partners, smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug,
SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL
Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, SW.I.F.T.
Message Format Libraries, Sybase Central, Sybase Client/Server Interfaces, Sybase Financial Server, Sybase Gateways, Sybase MPP,
Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financial,
SyberAssist, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, Total Fix, TradeForce, Transact-
SQL, Trandation Toolkit, UltraL ite, UltraLite NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode,
VisualWriter, VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORK S, Watcom, Watcom SQL,
Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-
Server and XP Server are trademarks of Sybase, Inc. 02/04

Unicode and the Unicode L ogo are registered trademarks of Unicode, Inc.
All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

About This Book..........

CHAPTER 1

CHAPTER 2

Programmer’s Reference

.. vii
INEFOAUCTION i 1
Y LR SN | B =T O PR 1
What iS JCONNECL?vviiiee ettt e e e e 2
Programming INfOrmation ..o, 5
Setting UP JCONNECT......ccuiiiiiiii ettt 5
Setting the JCONNECt VEISIONuveeiiiiiiiiiiieee e 5
Invoking the JConNect driver..........cccuvvvveeei i, 10
Establishing a connectioncccccceviiiiiiiiiiiee e 11
Setting coONNECLiON ProPertieS........cuueviiiiiiieiieeniiriiieieee e 11
Connecting to Adaptive SErVer........cccovuvvieeiieeniiiiiieee e 21
Connecting to Adaptive Server Anywhere...........cccccceeveeeiiinns 22
Connecting to a server using JNDI.........cccccevveeiiiiiiiiineeee e 23
Implementing custom socket plug-iNScccccceeviiiiiiieeeie e 29
Creating and configuring a custom socketcccccvveeeeennns 30
Handling internationalization and localizationc...c..cocvvveee.. 33
Using jConnect to pass Unicode dataccccvvvvveeeesiininnen, 34
jConnect character-set CONVErersccccccveeviiiiiieeeiee e 35
Working with databases ..., 40
Implementing high availability failover support.............cccuvvee... 41
Performing server-to-server remote procedure calls............... 46

Using wide table support for Adaptive Server version 12.5 and later

47

Accessing database metadatacc.cccoovviiieiiieiiiiiieeen 48
Using cursors with result SetS...........cccvvvvreeeeiiciieeiiee e, 49
Support for batch updatesccccoevviiiiiiiei e, 59
Updating a database from a result set of a stored procedure . 61
Working with datatypescccceeeeiiiiiiiee e 62
Implementing advanced featuresccccvvveveeeeiicciiieeeie e 68
Using event NOtIficationccvveeveeiiiiiiiiiec e 69
Handling error MESSAQESuvvveeieeiiiiiiiiiie e 71

iii

Contents

CHAPTER 3

CHAPTER 4

Storing Java objects as column data in a table....................... 76
Using dynamic class [0adingcccccceeeeviiiiiiieenee e, 80
JDBC 2.0 optional package extensions SUPPOrt........cccceeeveueee 84
Restrictions on and interpretations of JDBC standards 95
Using JDBC 3.0 method Stubscccccoeeeviiiiiiiiieee e, 96
Using Connection.isClosed and IS_CLOSED_TEST.............. 96
Using Statement.close with unprocessed results.................... 97
Making adjustments for multithreading..........cccccccoevvviiieennenn. 98
Using ResultSet.getCursorNamecoccvvvveeieeeeicnciiineneeaenn 98
Using setLong with large parameter valuescccveeeeeennn. 99
Using COMPUTE statements...........ceveveeiiiiiiiiiiieeeeenniiiieeennn 99
Executing stored proCedUresS.........cvviveeiiiiiiiiiiiiee e 99
SBCUTIEY 1ttt e e e e e e e e 103
OVEIVIBW ...ttt 103
RESHIICHONS....ce it 104
SO e 104
KEIDEIOS. ... 104
Configuring jConnect applications for Kerberos.................... 105
GSSMANAGER_CLASS connection propertyccccccoeeues 105
Setting up the Kerberos environment...........ccccccevveeeviccivvnnnen. 108
Sample applicationSc.vvvevieeei i 110
INteroperability ..o 113
TroubleShOOtING.......ooiiieiiiee e 114
Related dOCUMENTSccocvveriiiiiere e 114
TroubleShOOtING ..eeeeiiiiiiiie e 117
Debugging With JCONNECTuvviiiiiiiiiiieiee e 117
Obtaining an instance of the Debug class.............cccccccovininn 117
Turning on debugging in your applicationcccvveeeeeenn. 118
Turning off debugging in your applicationcccccveeeeenn. 118
Setting the CLASSPATH for debugging........cccccccceevviiniinnnn. 119
Using the Debug methods..........ccccvvvveeeiiiiiiiee e, 119
Capturing TDS cOMMUNICALIONvvvveeeeeeiiiiiiiiiee e civiiree e e 120
PROTOCOL_CAPTURE connection propertyccccvee..... 121
pause and resume methods in the Capture class................. 121
ResO0IVING CONNECLION EITOIS......uuiiiieeiiciiiiieei e seieee e e e 122
Gateway connection refused........cccccovveeviiieeiiiiniiiiiiieee s 122
Unable to connect to a 4.9.2 SQL Server..........cccccceeeeeeee... 123
Managing memory in jConnect applicationscccccceevvviivvnneen. 123
Resolving stored procedure errorS..........occuvvveeeeeeeniniiiieeeeee s 124
RPC returns fewer output parameters than registered.......... 124
Fetch/state errors when output parameters are returned...... 124

jConnect for JDBC

Contents

Stored procedure executed in unchained transaction mode . 125

Resolving a custom socket implementation error 125
CHAPTER 5 Performance and TUNING......cooooiiiiiiiiiiieeee e 127
Improving jConnect performancecccvvveeeeeiiciiiieeee e 127
BigDecimal reSCaling........cccuvvviieiieiiiiiiiiiee e 128
REPEAT_READ connection propertyccccvveeeeeeeninivvnenen. 128
SunloConverter character-set CONVersion...........ccccveeveveeenns 129
Performance tuning for prepared statements in dynamic SQL 130
Choosing prepared statements and stored procedures 131
Prepared statements in portable applications 131
Prepared statements with jConnect extensions 132
Connection.prepareStatementcccccvvvveeeeeieiciniieeee e 133
DYNAMIC_PREPARE connection propertycccceeevvvveen. 133
SybConnection.prepareStatementcccccccevvvvcivvieieeeeeinnns 135
ESCAPE_PROCESSING_DEFAULT connection property... 136
CUrSOr PEIrfONMANCEvvviieee ettt e e e e e e e e e e e annnes 136
LANGUAGE_CURSOR connection propertycoecvvveeee. 136
CHAPTER 6 Migrating jConnect Applications ... 139
Migrating applications to JCONNECt 6.0ccccvevvcrveeeinieeeeiiieeen. 139
Changing Sybase eXtenSioNS.ccuveeirrrieriirree i seee e 140
Extension change exampleccccciviiiiieiiiniiiiiiicee e 140
Method NAMES........cooiiiiiiie e 141
DEbUQ ClIaSS.....ccuiiiiiieii e 141
CHAPTER 7 WED Server GatEWaY'Sccceveeeeeeiiiciiieieeineeeeee e e s s sssiniinneeeereeeeeeeen 143
About Web server gatewaysccccvvvviieeeiiiiiiiiiiee e 143
Using TDS tuNNelliNg......ccocvvviiieee e eeiieee e 143
Configuring jConnect and gateways........ccccceevvvevvveeeeeeeeiinnnns 144
USAQe reQUITEMENESuvveeeeieeiiiiereeeeesestiirereaaessssnirnneeaaeesannnneneees 148
Reading the index.html file ..., 149
Running the sample Isgl applet.......ccccccveeiiiiiiiieeeee e, 149
Using the TDS-tunnelling servlet..........cccovvvveeeeeeicciiiieee e, 150
Reviewing reqUIrEMENEScueeeeiiiiiiiiiiee e esiiiieee e 151
Installing the Serviet.........ccccviiiiii e 152
INVOKING the SErVIetuviiviiiiiiii e 153
Tracking active TDS SESSIONSuuvviieriiiiiiiiiiiee e siniiiieeeeeens 153
Resuming & TDS SESSIONuuiiiiiiiiiiiiiiiie e esiiiiieee e 154

Using TDS and Netscape Enterprise Server 3.5.1 on Solaris 154

APPENDIX A SQL Exception and Warning MesSSagesoovvevvvvvveveeneeneenn 157

Programmer’s Reference %

Contents

APPENDIX B jConnect Sample Programs.........ccccuuviiiiiiiieeeeeeeiiiieeeee e 179

RUNNING ISOIAPD oottt 179

Running jConnect sample programs and codecc..c..oovvvveen. 181

Sample appliCatioNSoccvvviieiiiiiiii e 182

SAMPIE COUEuviiiiiiiiee e 183

[T = P PPPRRRPRUPPNE 185
jConnect for JDBC

Vi

About This Book

Audience

Related Documents

Other sources of
information

Programmer’s Reference

The Sybase jConnect for JDBC Programmer’s Reference describes the
jConnect™ for JIDBC™ product and explains how to useit to access data
stored in relational database management systems.

This manual is for database-application programmers who are familiar
with the Java programming language, JDBC, and Transact-SQL®, the
Sybase® version of Structured Query Language (SQL).

You may find the following documents helpful:
* The Sybase jConnect for JDBC Installation Guide
e The Sybase jConnect for JDBC Release Bulletin

e Thejavadoc documentation of jConnect extensions to JDBC. The
Java Development Kit (JDK) from Java Software contains ajavadoc
script for extracting comments from source-codefiles. This script has
been used to extract documentation of jConnect packages, classes,
and methods from jConnect source files. When you install jConnect
using thefull installation or javadocs option, the javadoc information
is placed in the javadocs directory:

Installation_directory/docs/en/javadocs

Usethe Sybase Getting Started CD, the Sybase Technical Library CD, and
the Technical Library Product Manuals Web siteto learn more about your
product:

e The Getting Started CD contains rel ease bulletins and installation
guidesin PDF format, and may also contain other documents or
updated information not included on the Technical Library CD. It is
included with your software. To read or print documents on the
Getting Started CD you need Adobe Acrobat Reader (downloadable
at no charge from the Adobe Web site, using alink provided on the
CD).

e TheTechnical Library CD contains product manuals and isincluded
with your software. The DynaText reader (included on the Technical
Library CD) allows you to access technical information about your
product in an easy-to-use format.

Vii

Sybase certifications
on the Web

Sybase EBFs and
software updates

Viii

Refer to the Technical Library Installation Guide in your documentation
package for instructions on installing and starting the Technical Library.

The Technical Library Product Manuals Web siteisan HTML version of
the Technical Library CD that you can access using a standard Web
browser. In addition to product manuals, you can find links to
EBFs/Updates, Technical Documents, Case Management, Solved Cases,
newsgroups, and the Sybase Developer Network.

To access the Technical Library Product Manuals Web site, go to Product
Manuals at http://www.sybase.com/support/manuals/.

Technical documentation at the Sybase Web site is updated frequently.

Finding the latest information on product certifications

1

2
3
4
5

Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

Select Products from the navigation bar on the | eft.

Select a product name from the product list and click Go.

Select the Certification Report filter, specify atime frame, and click Go.
Click a Certification Report title to display the report.

Creating a personalized view of the Sybase Web site (including support
pages)

Set up aMySybase profile. MySybase isafree service that allowsyou to create
apersonalized view of Sybase Web pages.

1

2

Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

Click MySybase and create a MySybase profile.

Finding the latest information on EBFs and software updates

1

Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

Select EBFs/Updates. Enter user name and password information, if
prompted (for existing Web accounts) or create a new account (afree
service).

Select a product.

jConnect for JDBC

About This Book

Conventions

If you need help

Programmer’s Reference

4 Specify atime frame and click Go.

5 Click thelInfoicon to display the EBF/Update report, or click the product

description to download the software.

This manual uses the following font and syntax conventions:

Classes, interfaces, methods, and packages are shown in Helvetica within
paragraph text. For example:

SybConnection class
SybEventHandler interface
setBinaryStream method
com.sybase.jdbcx package

Objects, instances, and parameter names are shown in italics. For
example:

“In the following example, ctx is a DirContext object.”

“ eventHdler is an instance of the SybEventHandler class that you
implement.”

“The classes parameter is a string that lists specific classes you want to
debug.”

Code fragments are shown in a monospaced font. Variablesin code
fragments (that is, wordsthat stand for valuesthat youfill in) areitalicized.
For example:

Connection con = DriverManager.getConnection ("jdbc:
sybase:Tds:host:port", props);

Each Sybaseinstallation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve aproblem using the manuals or online help, please havethe
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

jConnect for JDBC

CHAPTER 1

What is JDBC?

Programmer’s Reference

Introduction

This chapter introduces you to jConnect for JDBC and describes its
concepts and components.

This chapter contains:

Topic Page
What is JDBC? 1
What is jConnect? 2

JDBC (Java Database Connectivity), from the Java Software Division of
Sun MicroSystems, Inc., is a specification for an application program
interface (API) that allows Java applications to access multiple database
management systems using Structured Query Language (SQL). The
JDBC Driver Manager handles multiple drivers that connect to different
databases.

A set of interfacesisincluded in the standard JDBC API so you can open
connections to databases, execute SQL commands, and process results.
The interfaces are described in Table 1-1.

What is jConnect?

Table 1-1: JDBC interfaces

Interface Description

java.sql.Driver L ocates the driver for a database URL
java.sgl.Connection Used to connect to a specific database
java.sgl.Statement Executes SQL statements
java.sql.PreparedStatement Handles SQL statements with parameters
java.sgl.CallableStatement Handles database stored procedure calls
java.sql.ResultSet Gets the results of SQL statements

java.sql.DatabaseMetaData Used to access information about a connection to a

database.

java.sql.ResultSetMetaData Used to accessinformation describing the attributes

of a ResultSet.

Each relational database management system requires adriver to implement
these interfaces. There are four types of JDBC drivers:

Type 1 JIDBC-ODBC bridge —translates JDBC callsinto ODBC callsand
passes them to an ODBC driver. Some ODBC software must reside on the
client machine. Some client database code may also reside on the client
machine.

Type 2 native-API partly-Java driver —converts JDBC callsinto database-
specific calls. Thisdriver, which communicates directly with the database
server, also requires some binary code on the client machine.

Type 3 net-protocol all-Java driver —communicatesto amiddle-tier server
using a DBM S-independent net protocol. A middle-tier gateway then
converts the request to a vendor-specific protocol.

Type 4 native-protocol all-Java driver — converts JDBC callsto the
vendor-specific DBMS protocol, alowing client applications direct
communication with the database server.

What is jConnect?
jConnect is the Sybase high-performance JDBC driver. jConnect is both:

A net-protocol/all-Java driver within a three-tier environment, and

A native-protocol/all-Java driver within atwo-tier environment.

jConnect for JDBC

CHAPTER 1 Introduction

Programmer’s Reference

The protocol used by jConnect isTDS5.0 (Tabular Data Stream™, version 5),
the native protocol for Adaptive Server® and Open Server™ applications.
jConnect implementsthe JDBC standard to provide optimal connectivity to the
completefamily of Sybase products, allowing accessto over 25 enterprise and
legacy systems, including:

e Adaptive Server Enterprise

e Adaptive Server Anywhere™

e Adaptive Server IQ (formerly Sybase IQ™)
* Replication Server®

¢ DirectConnect™

Note Since changing the name of Sybase SQL Server™ to Adaptive Server
Enterprise, Sybase may use the names Adaptive Server and Adaptive Server
Enterpriseto refer collectively to all supported versions of Sybase SQL Server
and Adaptive Server Enterprise. From this point forward, in this document,
Adaptive Server Enterpriseisreferred to as Adaptive Server.

In addition, jConnect for JDBC can access Oracle, AS/400, and other data
sources using Sybase DirectConnect.

In some instances, the jConnect implementation of JDBC deviates from the
JDBC 1.x, 2.x and 3.x specifications. For more information, see “ Restrictions
on and interpretations of JDBC standards’ on page 95.

What is jConnect?

4 jConnect for JDBC

CHAPTER 2 Programming Information

This chapter describes the basic components and programming

reguirements that comprise jConnect for JDBC. It explains how to invoke
the jConnect driver, set connection properties, and connect to a database
server. It also contains information about using jConnect features.

Note For information about JDBC programming, go to

http://java.sun.com/jdbc.

The following topics are included in this chapter:

Topic Page
Setting up jConnect 5
Establishing a connection 11
Implementing custom socket plug-ins 29
Handling internationalization and localization 33
Working with databases 40
Implementing advanced features 68
Restrictions on and interpretations of JDBC standards 95

Setting up jConnect

This section describes the tasks you need to perform before you use

jConnect.

Setting the jConnect version

Thereareseveral versions of jConnect. Useaversion setting to determine:

e Thedefault value of the LANGUAGE connection property
* Theversion-specific features that are available

Programmer’s Reference

Setting up jConnect

The default character set, if no character set is specified through the
CHARSET connection property

The default value of the CHARSET CONVERTER connection property

The default value of the CANCEL_ALL connection property, which is
used to set the behavior of Statement.cancel, which by default cancelsthe
object on which it isinvoked and any other Statement objects that have
begun to execute and are waiting for results

If you are requesting support for wide tables from the server

If you would like to request server support for storing character datain
unichar (Unicode) columns

Note Only Adaptive Server version 12.5 and later support widetablesand
unichar character data.

If you would like to request support from the server for the date and time
SQL datatypes

Note Only Adaptive Server version 12.5.1 and later support the date and
time SQL datatypes.

Table 2-1 lists the version settings available and their features.

jConnect for JDBC

CHAPTER 2 Programming Information

Table 2-1: jConnect version settings and their features

Version
constant Features Comments
VERSION_6 » jConnect requests support for thedate and For jConnect version 6.0, the default is
time SQL datatypes from the server. This ~ VERSION_6.
request isignored by servers other than For additional information for date and time
Adaptive Server version 12.5.1 and later. datatypes, see“ Using date and time datatypes’
¢ jConnect requests support for the unichar on page 67.
and univarchar datatypes from the server. o more information on unichar and
Thisrequest isignored by serversotherthan jyarchar datatypes and Unicode, see “Using
Adaptive Server 12.5 and |ater. jConnect to pass Unicode data’ on page 34.
* jConnect requests support for wide tableés For more information on wide tables, see
from the server. Thisrequest isignored by «5ing wide table support for Adaptive Server
servers other than Adaptive Server 12.5and yersion 12.5 and later” on page 47.
later.
* Thedefault value of the LANGUAGE
connection property isnull.
¢ If the CHARSET connection property does
not specify acharacter set, jConnect usesthe
default character set of the database. The
default value for
CHARSET_CONVERTER isthe
PureConverter class.
« By default, Statement.cancel cancels only
the Statement object it isinvoked on.
» JDBC 2.0 methods can be used to store and
retrieve Java objects as column data.
VERSION_5 ¢ Thedefault value of the LANGUAGE For jConnect versions 5.x, the default is

connection property isnull.

If the CHARSET connection property does
not specify acharacter set, jConnect usesthe
default character set of the database.The
default value for
CHARSET_CONVERTER isthe
PureConverter class.

By default, Statement.cancel cancels only
the Statement object it isinvoked on.

JDBC 2.0 methods can be used to store and
retrieve Java objects as column data.

Programmer’s Reference

VERSION_5.

Setting up jConnect

Version
constant Features Comments
VERSION_4 ¢ Thedefault value of the LANGUAGE Server messages are localized according to the
connection property is null. language setting in your local environment.
« If the CHARSET connection property does 1 he languages supported are Chinese, U.S.
not specify acharacter set, jConnect usesthe ENglish, French, German, Japanese, Korean,
default character set of the database. The Polish, Portuguese, and Spanish.
default value for The default behavior of Statement.cancel is
CHARSET_CONVERTER isthe JDBC-compliant.
PureConverter class. Use CANCEL_ALL to set the behavior of
« By default, Statement.cancel cancelsonly Statement.cancel. See“CANCEL_ALL
the Statement object it isinvoked on. connection property” on page 10.
« JDBC 2.0 methods can beused to storeand For information on Java objects as column
retrieve Java objects as column data. data, see” Storing Java objects as column data
in atable” on page 76.
VERSION_3 ¢ Thedefault value of the LANGUAGE See the comments for VERSION_2.
connection property isus_english.
« If the CHARSET connection property does
not specify acharacter set, jConnect usesthe
default character set of the database.
e The default value for
CHARSET_CONVERTER isthe
PureConverter class.
« By default, Statement.cancel cancelsthe
object it isinvoked on and any other
Statement objects that have begun to
execute and are waiting for results.
VERSION_2 ¢ Thedefault value of the LANGUAGE The LANGUAGE connection property

connection property isus_english.
e If the CHARSET connection property does

not specify a character set, the default
character setisiso_1.

¢ The default value for
CHARSET_CONVERTER isthe
TruncationConverter class, unlessthe
CHARSET connection property specifiesa
multibyte or 8-bit character set, in which
casethe default CHARSET_CONVERTER
isthe PureConverter class.

« By default, Statement.cancel cancels the
object it isinvoked on and any other
Statement objects that have begun to
execute and are waiting for results.

determines the language in which messages
from jConnect and the server appear.

For information on the CHARSET and
CHARSET_CONVERTER connection
classes, see “jConnect character-set
converters’ on page 35.

The VERSION_2 default behavior of
Statement.cancel is not JDBC-compliant. Use
CANCEL_ALL to set the behavior of
Statement.cancel. See*CANCEL_ALL
connection property” on page 10.

jConnect for JDBC

CHAPTER 2 Programming Information

The version values are constant values from the SybDriver class. When
referring to the version constant, use this syntax:

com.sybase.jdbcx.SybDriver.VERSION 6

Use SybDriver.setVersion to set the jConnect version. The setVersion method
affects the jConnect default behavior for all connections created by the
SybDriver object. However, you can use the JCONNECT _VERSION
connection property to set version-specific behavior for individual
connections. The following code sample shows how to load the jConnect
driver and set the version:

import com.sybase.jdbcx.SybDriver;
SybDriver sybDriver = (SybDriver)
Class.forName
("com. sybase.jdbc3.jdbc.SybDriver") .newlnstance () ;
sybDriver.setVersion
(com.sybase.jdbcx.SybDriver .VERSION 6) ;
DriverManager.registerDriver (sybDriver) ;

You can call setVersion multiple times to change the version setting. New
connectionsinherit the behavior associated with the version setting at the time
the connection was made. Changing the version setting during a session does
not affect the current connection. jConnect provides a
com.sybase.jdbcx.SybDriver. VERSION_LATEST constant which can be used to
ensurethat you are always requesting the highest version value possiblefor the
jConnect driver you are using. However, by setting the version to
com.sybase.jdbcx.SybDriver.VERSION_LATEST, you may see behavior
changesif you replace your current jConnect driver with a newer one.

As described in the next section, you can use JCONNECT_VERSION to
overridethe SybDriver version setting and specify adifferent version setting for
a specific connection.

JCONNECT_VERSION connection property

Use JCONNECT_VERSION to specify the version setting for a specific
session.You can set JCONNECT _VERSION to an integer value of “2,” “3,"
“4,” “5" or “6,” depending on the characteristics you want.

Programmer’s Reference 9

Setting up jConnect

CANCEL_ALL connection property

CANCEL_ALL isaBoolean-valued connection property for specifying the
behavior of the Statement.cancel method.

Note InjConnect version 4.0 and earlier, the default for CANCEL_ALL is
"true." In jConnect version 4.1 and later, to comply with the JIDBC
specification, if you set the connection property JCONNECT _VERSION to
“4" or later, the default setting for CANCEL_ALL is"fase."

The settings for CANCEL_ALL have the following effect on
Statement.cancel():

 If CANCEL_ALL is"fase" invoking Statement.cancel cancels only the
Statement object it isinvoked on. Thus, if stmtA is a Statement object,
stmtA.cancel cancels the execution of the SQL statement contained in
stmtA in the database, but no other statements are affected. stmtA is
canceled whether it isin cache waiting to execute or has started to execute
and iswaiting for results.

» If CANCEL_ALL is"true," invoking Statement.cancel cancels not only
the abject it isinvoked on, but also any other Statement objects on the
same connection that have executed and are waiting for results.

The following example sets CANCEL_ALL to "fase." In the example, props
isaProperties object for specifying connection properties:

props.put("CANCEL_ALL", "false");

Note To cancel the execution of all Statement objects on a connection,
regardless of whether or not they have begun execution on the server, use the
extension method SybConnection.cancel.

Invoking the jConnect driver

10

To register and invoke the Sybase jConnect driver, use either of the following
two suggested methods:

e UseClass.forName as shown:

Class.forName ("com.sybase.jdbc3.jdbc.SybDriver")
.newInstance () ;

jConnect for JDBC

CHAPTER 2 Programming Information

e Add the jConnect driver to the jdbc.drivers system property. At
initialization, the DriverManager class attemptsto load the driverslisted in
jdbc.drivers. Thisis less efficient than the Class.forName call approach.
You can list multiple driversin this property, separated with acolon (:).
The following code samples show how to add a driver to jdbc.drivers
within a program:

Properties sysProps = System.getProperties();
String drivers = "com.sybase.jdbc3.jdbc.SybDriver";
String oldDrivers =
sysProps.getProperty ("jdbc.drivers") ;
if (oldDrivers != null)
drivers += ":" 4+ oldDrivers;
sysProps.put ("jdbc.drivers", drivers.toString()) ;

Note System.getProperties isnot allowed for Java applets. Instead, use the
Class.forName method.

Establishing a connection

This section describes how to establish a connection to an Adaptive Server or
Adaptive Server Anywhere database using jConnect.

Setting connection properties

Programmer’s Reference

Table 2-2 lists the connection properties for jConnect and indicates their
default values. You must set the connection properties before you make a
connection.

There are two ways to set the driver connection properties.
e Usethe DriverManager.getConnection method in your application.

e Set the connection properties when you define the URL.

Note Driver connection properties set in the URL do not override any
corresponding connection properties set in the application using the
DriverManager.getConnection method.

11

Establishing a connection

To obtain acurrent list of properties for any driver, use the
Driver.getDriverPropertylnfo(String url, Properties props), which returns an array
of DriverPropertylnfo objects. The array lists:

e Driver properties
e Current settings on which the driver properties are based
e TheURL and props passed in

Driver connection property names are not case sensitive (jConnect uses the
String.equalsignoreCase(String) method to compare property hames).

Table 2-2: Connection properties

Property

Description Default value

APPLICATIONNAME

Specifies an application name. Thisis a user- Null
defined property. The server side can be
programmed to interpret the value given to this

property.

BE_AS JDBC_COMPLIANT_ Adjusts other propertiesto ensure that jConnect False

AS POSSIBLE methods respond in away that isascompliant as
possible with the JDBC 2.1 standard.

These properties are affected (and overridden)

when this property is set to "true":

e CANCEL_ALL (setto "false")

* LANGUAGE CURSOR (set to "false" for
jConnect 6.0, set to "false” for jConnect 6.0)

* SELECT_OPENS_CURSOR (set to "true")

* FAKE_METADATA (set to "true")

* GET_BY_NAME USES COLUMN_LABEL

(set to "false")

CANCEL_ALL Determinesthe behavior of the Statement.cancel Depends on version
method. See“CANCEL_ALL connection setting. See* Setting
property” on page 10. the jConnect

version” on page 5.
12 jConnect for JDBC

CHAPTER 2 Programming Information

Property

Description

Default value

CHARSET

Specifies the character set for strings passed to
the database. If the CHARSET valueisnull,
jConnect uses the default character set of the
server to send string data to the server. If you
specify a CHARSET, the database must be able
to handle charactersin that format. If the
database cannot do so, amessage is generated
indicating that character conversion cannot be
properly completed.

Note When using jConnect 6.0 with unichar
enabled, jConnect detectswhen aclientistrying
to send characters to the server that cannot be
represented in the character set that isbeing used
for the connection. When that occurs, jConnect
sends the character data to the server as unichar
data, which allows clients to insert Unicode data
into unichar/univarchar columns and parameters.

Null

CHARSET_CONVERTER_CLASS

Specifies the character-set converter class you
want jConnect to use. jConnect usesthe version
setting from SybDriver.setVersion, or theversion
passed in with the JCONNECT_VERSION
property, to determine the default character-set
converter classto use. See “ Selecting a
character-set converter” on page 36 for details.

Version-dependent

CLASS LOADER

A property you set to a DynamicClassL oader
object that you create. The DynamicClassL oader
isused to load Java classes that are stored in the
database but which are not in the CLASSPATH
at application start-up time. See" Using dynamic
classloading” on page 80 for more information.

Null

CONNECTION_FAILOVER

Used with the Java Naming and Directory
Interface (JNDI). See
“CONNECTION_FAILOVER connection
property” on page 26.

True

DISABLE_UNICHAR_SENDING

Programmer’s Reference

When a client application sends unichar
characters to the server (along with non-unichar
characters), thereis a dight performance hit for
any character data sent to the database. Because
this property defaultsto "true," clientswho wish
to send unichar data to the database must set this
property value to "false." See “Using jConnect
to pass Unicode data’ on page 34.

True

13

Establishing a connection

Property Description Default value
DISABLE_UNPROCESSED _ Disableswarnings. Duringresultsprocessingfor False
PARAM_WARNINGS a stored procedure, jConnect often reads return

values other than row data. If you do not process
the return value, jConnect raises awarning. To
disable these warnings (which can help
performance), set this property to "true.”

DYNAMIC_PREPARE Determines whether dynamic SQL prepared False
statements are precompiled in the database. See
“DYNAMIC_PREPARE connection property”
on page 133.

ESCAPE_PROCESSING_DEFAULT Circumvents processing of JDBC function True
escapesin SQL statements. By default, jConnect
parses al SQL statements submitted to the
database for valid JDBC function escapes. If
your application is not going to use JDBC
function escapesinits SQL calls, you can set this
connection property to "false" to avoid this
processing. This can provide aslight
performance benefit.

EXPIRESTRING Contains the license expiration date. Expiration Never
is never except for evaluation copies of
jConnect. Thisisaread-only property.

FAKE_METADATA Returns phony metadata. When you call the False
ResultSetMetaData methods getCatalogName,
getSchemaName, and getTableName and this
property is set to "true," the call returns empty
strings (") because the server does not supply
useful metadata.

When this property is set to "false," calling these
methods throws a “Not |mplemented”
SQL Exception.

Note If you have enabled wide tables and are
using an Adaptive Server 12.5 or later, this
property setting is ignored, because the server
does supply useful metadata.

14 jConnect for JDBC

CHAPTER 2 Programming Information

Property

Description

Default value

GET_BY_NAME_USES_
COLUMN_LABEL

Provides backward compatibility with versions
of jConnect earlier than 6.0.

With Adaptive Server version 12.5, jConnect has
access to more metadata than was previously
available. Previoustoversion 12.5, column name
and column alias meant the same thing. jConnect
can now differentiate between the two when
used with a12.5 or later Adaptive Server with
wide tables enabled.

To preserve backward compatibility, set this
property to "true.”

If you want calls to getByte, getint, get* (String
columnName) to look at the actual name for the
column (called for in the JDBC 2.0
specification), set this property to "false."

True

GSSMANAGER_CLASS Specifies a third-party implementation of the Null
org.ietf.jgss.GSSManager class.
This property can be set to astring or a
GSSManager object.
If the property is set to a string, the value should
be the fully qualified class name of the third-
party GSSManager implementation. If the
property is set to an object, the object must
extend the org.ietf.jgss.GSSManager class. See
Chapter 3, “Security” for more information.
HOSTNAME Identifies the name of the current host. None.
Themax lengthis30
characters and, if
exceeded, itis
truncated to 30.
HOSTPROC Identifies the application process on the host None
machine.
IGNORE_DONE_IN_PROC Determines that intermediate update results (as False
in stored procedures) are not returned, only the
final result set.
IS CLOSED_TEST Allowsyou to specify what query, if any, issent Null

Programmer’s Reference

to the database when Connection.isClosed is
called. For additional information , see the
“Using Connection.isClosed and

IS CLOSED_TEST” on page 96.

15

Establishing a connection

Property

Description

Default value

JCONNECT_VERSION

Sets version-specific characteristics. See
“JCONNECT_VERSION connection property”
on page 9.

6

LANGUAGE

Sets the language for error messages returned
from the server and for jConnect messages. The
setting must match alanguage in syslanguages.

Version dependent.
See “ Setting the
jConnect version”
on page 5.

LANGUAGE_CURSOR

Determines that jConnect uses “language
cursors’ instead of “protocol cursors.”
See “Cursor performance” on page 136.

False

LITERAL_PARAMS

Usethis property primarily when using jConnect
with Adaptive Server Anywhere version 5.5.
ASA 5.5 requiresyou to send prepared statement
parameters as literals. For all other Sybase
databases (including ASA 6 and later), this
property can be set to "false.”

When set to "true," any parameters set by the
setXXX methods in the PreparedStatement
interface are inserted literally into the SQL
statement when it is executed.

If setto"false," parameter markersareleftinthe
SQL statement and the parameter val ues are sent
to the server separately.

False

USE_METADATA

Creates and initializes a DatabaseMetaData
object when you establish a connection. The
DatabaseMetaData object is necessary to
connect to a specified database.

jConnect uses DatabaseMetaData for some
features, including Distributed Transaction
Management support (JTA/JTS) and dynamic
classloading (DCL).

If you receive error 010SJ, which indicates that
your application requires metadata, install the
stored procedures for returning metadata that
come with jConnect. See “Installing Stored
Procedures’ in Chapter 3 of the jConnect for
JDBC Installation Guide.

True

PACKETSIZE

Identifies the network packet size.

512

PASSWORD

16

Identifies the login password.

Set automaticaly if using the
getConnection(String, String, String) method, or
explicitly if using getConnection(String, Props).

None

jConnect for JDBC

CHAPTER 2 Programming Information

Property Description Default value

PRELOAD_JARS Contains a comma-separated list of .jar file Null
names that are associated with the
CLASS_LOADER that you specify. These .jar
filesareloaded at connect time, and areavailable
for use by any other connection using the same
jConnect driver. See “Preloading .jar files’ on
page 83 for more information.

PROTOCOL_CAPTURE Specifies afile for capturing TDS Null
communication between an application and an
Adaptive Server.

PROXY Specifies a gateway address. For the HTTP None

protocol, the URL is http://host:port.

To use the HTTPS protocol that supports
encryption, the URL is
https://host:port/serviet_alias.

QUERY_TIMEOUT_CANCELS ALL ForcesjConnect to cancel all statementson a Fase
connection when aread timeout occurs. Thiscan
be useful when a client has called
Statement.execute, and a deadlock occurs, for
example, when trying to read from atablethat is
being updated in another transaction.

REMOTEPWD Contains remote server passwords for access None
through server-to-server remote procedure calls.
See “Performing server-to-server remote
procedure calls’ on page 46.

REPEAT_READ Determines whether the driver keeps copiesof ~ True
columns and output parameters so that columns
can be read out of order or repeatedly. See
“REPEAT_READ connection property” on
page 128.

Programmer’s Reference 17

Establishing a connection

Property

Description

Default value

REQUEST_HA_SESSION

Indicates whether the connecting client wantsto
begin an high availability (HA) failover session
with aversion 12 or later Adaptive Server
configured for failover. See* Implementing high
availability failover support” on page 41.

Note Setting this property to "true" causes
jConnect to attempt afailover login. If you do
not set this connection property, afailover
session does not start, even if the server is
configured for failover.

You cannot reset the property once a connection
has been made.

If you want more flexibility for requesting
failover sessions, code the client application to
set REQUEST_HA_SESSION at runtime.

False

REQUEST_KERBEROS_SESSION

Determines whether jConnect uses Kerberosfor
authentication. If this property is set to "true," a
vaue for the SERVICE_PRINCIPAL_NAME
property must also be specified.

You may aso wish to provide avalue for the
GSSMANAGER_CLASSproperty. See Chapter
3, “Security” for more information.

False

RMNAME

Sets the Resource Manager name when using
distributed transactions (XA). This property
overrides aResource Manager namethat may be
setin an LDAP server entry. See “Distributed
transaction management support” on page 91
for more information.

Null

SECONDARY_SERVER _
HOSTPORT

18

Sets the hostname and port for the secondary
server when the client is using an HA failover
session. The valuefor this property should bein
the form of hostName:portNumber. This
property isignored unless you have also set
REQUEST_HA_SESSION to "true." See
“Implementing high availability failover
support” on page 41 for more information.

Null

jConnect for JDBC

CHAPTER 2 Programming Information

Property

Description Default value

SELECT_OPENS_CURSOR

Determines whether callsto False
Statement.executeQuery automatically generate
acursor when the query contains a FOR

UPDATE clause.

If you have previously called
Statement.setFetchSize or
Statement.setCursorName on the same
statement, a setting of "true” for
SELECT_OPENS_CURSOR has no effect.

Note You may experience some performance
degradation when SELECT_OPENS_CURSOR
isset to "true.”

See “Using cursors with result sets” on page 49
for more information on using cursors with
jConnect.

SERIALIZE_REQUESTS

Determines whether jConnect waits for False
responses from the server before sending
additional requests.

SERVICENAME

Indicatesthe name of aback-end databaseserver None
that a DirectConnect gateway serves. Also used

to indicate which database should be used upon
connecting to Adaptive Server Anywhere.

SERVICE_PRINCIPAL_NAME

Used when establishing a Kerberos connection Null
to Adaptive Server Enterprise. The value of this
property should correspond both to the server

entry in your Key Distribution Center (KDC)

and to the server name under which your

database is running.

The value of the

SERVICE_PRINCIPAL_NAME property is
ignored if the

REQUEST_KERBEROS SESSION property is
setto"fase." See Chapter 3, “ Security” for more
information.

SESSION_ID

Programmer’s Reference

A TDS session ID. When this property is set, Null
jConnect assumesthat an applicationistrying to
resume communication on an existing TDS

session held open by the TDS-tunnelling

gateway. jConnect skips the login negotiations

and forwards all requests from the application to

the specified session ID.

19

Establishing a connection

Property

Description

Default value

SESSION_TIMEOUT

Specifiesthe amount of time (in seconds) that an
HTTP-tunnelled session (created using the
jConnect TDS-tunnelling servlet) remains alive
whileidle. After the specified time, the
connection is automatically closed. For more
information about the TDS-tunnelling servlet,
see page 150.

Null

SQLINITSTRING

Defines a set of commands to be passed to the
database server when a connection is opened.
These must be SQL commands that can be
executed using the Statement.executeUpdate
method.

Null

STREAM_CACHE_SIZE

Specifies the maximum size used to cache
statement response streams.

Null (unlimited
cache size)

SYBSOCKET_FACTORY

Enables jConnect to use your custom socket

implementation.

Set SYBSOCKET_FACTORY either to:

* Thename of aclassthat implements
com.sybase.jdbcx.SybSocketFactory; or

* “DEFAULT,” which instantiates a new
java.net.Socket()

Use this property to make an SSL connection to

your database.

See “Implementing custom socket plug-ins’ on

page 29.

Null

USER

Specifiesthelogin ID.

Set automaticaly if using the
getConnection(String, String, String) method, or
explicitly if using getConnection(String, Props).

None

VERSIONSTRING

Provides read-only version information for the
JDBC driver.

jConnect driver
version

20

Properties props = new Properties() ;
props.put ("user", "userid") ;
props.put ("password",

Thefollowing codeisan example of setting connection properties. The sample
programs provided with jConnect also contain examples of setting these

"user password") ;

* Tf the program is an applet that wants to access
* a server that is not on the same host as the

jConnect for JDBC

CHAPTER 2 Programming Information

* web server, then it uses a proxy gateway.
*/
props.put ("proxy", "localhost:port");
/*
* Make sure you set connection properties before
* attempting to make a connection. You can also
* gset the properties in the URL.
*/
Connection con = DriverManager.getConnection
("jdbc:sybase:Tds:host :port", props);

Connecting to Adaptive Server

Example

Programmer’s Reference

In your Java application, define a URL using the jConnect driver to connect to
an Adaptive Server. The basic format of the URL is:

jdbc:sybase:Tds:host:port
where:
e jdbc:sybase identifies the driver.
e Tds isthe Sybase communication protocol for Adaptive Server.

* host:port isthe Adaptive Server host name and listening port. See
$SYBASE/interfaces (UNIX) or %SYBASEY\ini\sgl.ini (Windows) for the
entry that your database or Open Server application uses. Obtain the
host: port from the “ query” entry.

You can connect to a specific database using this format:

jdbc:sybase:Tds: host:port/database

Note To connect to a specific database using Adaptive Server Anywhere 6.x
and later or DirectConnect, use the SERVICENAME connection property to
specify the database name instead of “/database.”

The following code creates a connection to an Adaptive Server on host
“myserver” listening on port 3697:

SysProps.put ("user", "userid") ;

SysProps.put ("password", "user password") ;

String url = "jdbc:sybase:Tds:myserver:3697";

Connection con =
DriverManager.getConnection (url, SysProps) ;

21

Establishing a connection

URL connection property parameters

You can specify the valuesfor the jConnect driver connection propertieswhen
you definea URL.

Note Driver connection properties set in the URL do not override any
corresponding connection properties set in the application using the
DriverManager.getConnection method.

To set a connection property in the URL, append the property name and its
value to the URL definition. Use this syntax:

jdbc:sybase:Tds: host:port/database?
property name=value

To set multiple connection properties, append each additional connection
property and value, preceded by “&.” For example:

jdbc:sybase:Tds:myserver:1234/mydatabase?
LITERAL PARAMS=true&PACKETSIZE=512&HOSTNAME=myhost

If the value for one of the connection propertiescontains“&,” precedethe“&”
in the connection property value with abacksash (\). For example, if your host
nameis"“a&bhost,” use this syntax:

jdbc:sybase:Tds:myserver:1234/mydatabase?
LITERAL_ PARAMS=true&PACKETSIZE=512&HOSTNAME=
a\&bhost

Do not use quotes for connection property values, even if they are strings. For
example, use:

HOSTNAME=myhost
not:

HOSTNAME="myhost"

Connecting to Adaptive Server Anywhere

22

To use jConnect with Adaptive Server Anywhere, you should upgrade to
Adaptive Server Anywhere version 6.x and later.

jConnect for JDBC

CHAPTER 2 Programming Information

Connecting to Adaptive Server Anywhere 5.x.x

If you must connect to Adaptive Server Anywhere version 5.x.x through
jConnect, run the Adaptive Server Anywhere Open Server Gateway dbos50,
which is distributed with Adaptive Server Anywhere.

Running Adaptive Server Anywhere Open Server Gateway dbos50

1

Install Open Server Gateway 5.5.x3 or later, and the Open Server DLLS,
version 11.1.

Add an entry for the gateway to your %SYBASE%\ini\sgl.ini file (using,
for example, sqledit).

Start the gateway by entering:
start dbos50 gateway-demo
where gateway-demo is the gateway name defined in step 2.

When the Open Server Gateway is running, you can define a connection
asfollows:

jdbc:sybase:Tds:host:port

were host isthe host name wherethe Adaptive Server Anywhere and Open
Server Gateway are running, and port is the port number defined in sgl.ini.

Note To support multiple Adaptive Server Anywhere databases, use sgledit to
add an entry with a different port for each database, then run the Open Server
Gateway for each database.

Connecting to a server using JNDI

InjConnect 4.0 and | ater, you can use the JavaNaming and Directory Interface
(JNDI) to provide connection information, which offers:

Programmer’s Reference

A centralized location where you can specify host names and ports for
connecting to a server. You do not need to hard code a specific host and
port number in an application.

A centralized location where you can specify connection propertiesand a
default database for all applications to use.

23

Establishing a connection

e ThejConnect CONNECTION_FAILOVER property for handling
unsuccessful connection attempts. When CONNECTION_FAILOVER s
setto "true," jConnect attemptsto connect to asequence of host/port server
addresses in the INDI name space until one succeeds.

To use jConnect with INDI, you need to make sure that certain information is
available in any directory service that INDI accesses and that required
information is set in the javax.naming.Context class. This section covers the
following topics:

e Connection URL for using JNDI
» Required directory service information
e CONNECTION_FAILOVER connection property

e Providing JNDI context information

Connection URL for using JNDI

To specify that jConnect should use JNDI to obtain connection information,
place “jndi” asthe URL protocol after “sybase”:

jdbc:sybase:jndi:protocol-information-for-use-with-JNDI

Anything that follows “jndi” in the URL is handled through JNDI. For
example, to use INDI with the Lightweight Directory Access Protocol
(LDAP), you might enter:

jdbc:sybase:jndi:1ldap://LDAP hostname:port number/servernames=
Sybasell, o=MyCompany, c=US

This URL tells INDI to obtain information from an LDAP server, gives the
host name and port number of the LDAP server to use, and provides the name
of adatabase server in an LDAP-specific form.

Required directory service information

When you use INDI with jConnect, INDI needs to return the following
information for the target database server:

* A host name and port number to connect to
* Thename of the database to use

» Any connection properties that individual applications are not allowed to
set on their own

24 jConnect for JDBC

CHAPTER 2 Programming Information

Programmer’s Reference

Thisinformation needsto be stored according to afixed format in any directory
service used for providing connection information. The required format
consists of anumerical object identifier (OID), which identifies the type of
information being provided (for example, the destination database), followed
by the formatted information (see “ Example 1" on page 23).

Note You can use the alias name to reference the attribute instead of the OID.

See “Example 2" on page 24.

Table 2-3 shows the required formatting.

Table 2-3: Directory service information for JNDI

Attribute description Alias OID (object_id)
Interfacesentry replacementin sybaseServer 1.3.6.1.4.1.897.4.1.1
LDAP directory services
Collection point for sybaseServer 1.3.6.1.4.1.897.4.2
sybaseServer LDAP attributes
Version Attribute sybaseVersion 1.3.6.1.4.1.897.4.2.1
Servername Attribute sybaseServer 1.3.6.1.4.1.897.4.2.2
Service Attribute sybaseService 1.3.6.1.4.1.897.4.2.3
Status Attribute sybaseStatus 1.3.6.1.4.1.897.4.2.4
Address Attribute sybaseAddress 1.3.6.1.4.1.897.4.2.5
Security Mechanism Attribute sybaseSecurity 1.3.6.1.4.1.897.4.2.6
Retry Count Attribute sybaseRetryCount 1.3.6.1.4.1.897.4.2.7
Loop Delay Attribute sybaseRetryDelay 1.3.6.1.4.1.897.4.2.8
jConnect Connection Protocol sybaseJconnectProtocol 1.3.6.1.4.1.897.4.29
jConnect Connection Property sybaseJconnectProperty 1.3.6.1.4.1.897.4.2.10
Database Name sybaseDatabasename 13.6.1.4.1.897.4.2.11
High Availability Failover sybaseHA servername 1.3.6.1.4.1.897.4.2.15
Servername Attribute
ResourceManager Name sybaseResourceManager 1.3.6.1.4.1.897.4.2.16
Name
ResourceManager Type sybaseResourceManager 1.3.6.1.4.1.897.4.2.17
Type
JDBCDataSource Interface sybaseJdbcDataSource- 1.3.6.1.4.1.897.4.2.18
Interface
ServerType sybaseServerType 1.3.6.1.4.1.897.4.2.19
Note Attributesin italics are required.
25

Establishing a connection

dn:

.3

PR R RR R R
Wwwwww

dn:

Thefollowing examples show connection information entered for the database
server “SYBASE11" under an LDAP directory service. Example 1 uses the
attribute OID. Example 2 uses the attribute alias, which is not case sensitive.
You can use either the OID or the dias.

Example 1

servername=SYBASE1l, o=MyCompany, c=US
servername: SYBASE11l

.6.

a0 O O O OO

1.

PR R PR R R
NN NN NN NS

4.

PR R PR RP R

.897.
.897.
.897.
.897.
.897.
.897.
.897.

4.

I L)

2
2
.2
2
2
2

2

.5:TCP#1#giotto 1266

.5:TCP#1l#giotto 1337
.5:TCP#1l#fstandbyl 4444

.10:REPEAT READ=false&PACKETSIZE=1024
.10:CONNECTION FAILOVER=true

.11 :pubs2

.9:Tds

Example 2

servername=SYBASE1l1l, o=MyCompany, c=US
servername:SYBASE11l
sybaseAddress: TCP#1l#giotto 1266

sybaseAddress: TCP#1l#giotto 1337

sybaseAddress: TCP#1l#standbyl 4444
sybaseJconnectProperty:REPEAT READ=false&PACKETSIZE=1024
sybaseJconnectProperty: CONNECTION FAILOVER=true
sybaseDatabasename : pubs2

sybaseJconnectProtocol : Tds

In these examples, SYBASE11 can be accessed through either port 1266 or
port 1337 on host “giotto,” and it can be accessed through port 4444 on host
“standby1.” Two connection properties, REPEAT_READ and PACKETSIZE,
are set within one entry. The CONNECTION_FAILOVER connection
property is set as a separate entry. Applications connecting to SYBASE11 are
initially connected with the pubs2 database. You do not need to specify a
connection protocoal, but if you do, you must enter the attribute as “tds”, not

“ ”

TDS .

CONNECTION_FAILOVER connection property

26

CONNECTION_FAILOVER is a Boolean-valued connection property you
can use when jConnect uses JNDI to get connection information.

jConnect for JDBC

CHAPTER 2 Programming Information

If CONNECTION_FAILOVER isset to "true," jConnect makes multiple
attempts to connect to a server. If one attempt to connect to a host and port
number associated with a server fails, jConnect uses JNDI to get the next host
and port number associated with the server and attempts to connect through
them. Connection attempts proceed sequentially through all the hosts and ports
associated with a server.

For example, if CONNECTION_FAILOVER is set to "true," and a database
server isassociated with the following hosts and port numbers, asinthe earlier
LDAP example:

.3.6.1.4.1.897.4.2.5:TCP#1l#tgiotto 1266
.3.6.1.4.1.897.4.2.5:TCP#1l#tgiotto 1337
.3.6.1.4.1.897.4.2.5:TCP#1l#fstandby 4444

e

To get a connection to the server, jConnect tries to connect to the host “ giotto”
at port 1266. If thisfails, jConnect tries port 1337 on “giotto.” If thisfails,
jConnect tries to connect to host “standby1” through port 4444.

The default for CONNECTION_FAILOVER is "true.”

If CONNECTION_FAILOVER issetto "false," jConnect attempts to connect
to aninitial host and port number. If the attempt fails, jConnect throws a SQL
exception and does not try again.

Providing JNDI context information

Programmer’s Reference

To usejConnect with INDI, you should be familiar with the INDI specification
from Sun Microsystems, available from the Web:

http://java.sun.com/products/jndi

In particular, you need to make sure that required initialization properties are
set in javax.naming.directory.DirContext when JNDI and jConnect are used
together. These properties can be set either at the system level or at runtime.

Two key properties are;
e Context.INITIAL_CONTEXT_FACTORY

This property takes the fully qualified class name of theinitia context
factory for INDI to use. This determinesthe JNDI driver that is used with
the URL specified in the Context.PROVIDER_URL property.

e Context.PROVIDER_URL

27

Establishing a connection

This property takes the URL of the directory service that the driver (for
example, the LDAP driver) isto access. The URL should be astring, such
as “|dap://Idaphost: 427" .

Thefollowing exampl e shows how to set context propertiesat runtime and how
to get a connection using JNDI and LDAP. In the example, the
INITIAL_CONTEXT_FACTORY context property is set to invoke the Sun
Microsystem implementation of an LDAP service provider. The
PROVIDER_URL context property is set to the URL of an LDAP directory
service located on the host “ldap_serverl” at port 983.

Properties props = new Properties() ;

/* We want to use LDAP, so INITIAL CONTEXT FACTORY is set to the

* class name of an LDAP context factory. In this case, the

* context factory is provided by Sun’s implementation of a

* driver for LDAP directory service.

*/

props.put (Context.INITIAL CONTEXT FACTORY,
"com.sun.jndi.ldap.LdapCtxFactory") ;

/* Now, we set PROVIDER URL to the URL of the LDAP server that
* is to provide directory information for the connection.

*/

props.put (Context.PROVIDER URL, "ldap://ldap serverl:983");

/* Set up additional context properties, as needed. */
props.put ("user", "xyz");
props.put ("password", "123");

/* get the connection */

Connection con = DriverManager.getConnection
("jdbc:sybase:jndi:1ldap://ldap serverl:983" +
"/servername=Sybasell, o=MyCompany, c=US",props) ;

The connection string passed to getConnection contains L DAP-specific
information, which the devel oper must provide.

When JNDI properties are set at runtime, as in the preceding example,
jConnect passes them to INDI to be used in initializing a server, asin the
following jConnect code:

javax.naming.directory.DirContext ctx =
new javax.naming.directory.InitialDirContext (props) ;

jConnect then obtains the connection information it needs from JNDI by
invoking DirContext.getAtributes, as in the following example, where ctxisa
DirContext object:

28 jConnect for JDBC

CHAPTER 2 Programming Information

javax.naming.directory.Attributes attrs =

Implementing

* % Xk X X X X *

~

*

ctx.getAttributes(ldap://ldap_serverl:983/servername=
SYBASE SERVER ATTRIBUTES) ;

Inthe example, SYBASE_SERVER_ATTRIBUTES isan array of strings
defined within jConnect. The array values are the OIDs for the required
directory information listed in Table 2-3.

custom socket plug-ins

This section discusses how to plug a custom socket implementation into an
application to customize the communication between a client and server.
javax.net.ssl.SSLSocket is an example of a socket that you could customize to
enable encryption.

com.sybase.jdbcx.SybSocketFactory is a Sybase extension interface that
contains the createSocket(String, int, Properties) method that returns a
java.net.Socket. For ajConnect version 4.1 or later driver to load a custom
socket, an application must:

e Implement thisinterface
* Definethe createSocket method

jConnect uses the new socket for its subsequent input/output operations.
Classesthat implement SybSocketFactory create sockets and provide ageneral
framework for the addition of public socket-level functionality, as shown:

Returns a socket connected to a ServerSocket on the named host,
at the given port.

@param host
@param port
@param props
@returns Socket

@exception IOException, UnknownHostException

the server host
the server port
Properties passed in through the connection

public java.net.Socket createSocket (String host, int port, Properties props)

throws IOException,

Programmer’s Reference

UnknownHostException;

Passing in properties allows instances of SybSocketFactory to use connection
properties to implement an intelligent socket.

29

Implementing custom socket plug-ins

When you implement SybSocketFactory to produce a socket, the same
application code can use different kinds of sockets by passing the different
kinds of factories or pseudo-factories that create sockets to the application.

You can customize factories with parameters used in socket construction. For
example, you can customize factories to return sockets with different
networking timeouts or security parameters already configured. The sockets
returned to the application can be subclasses of java.net.Socket to directly
expose new APIs for features such as compression, security, record marking,
statistics collection, or firewall tunnelling (javax.net.SocketFactory).

Note SybSocketFactory isintended to be an overly simplified
javax.net.SocketFactory, enabling applications to bridge from java.net.* to
javax.net.*

v Using a custom socket with jConnect

1 ProvideaJavaclassthat implements com.sybase.jdbcx.SybSocketFactory.
See “Creating and configuring a custom socket” on page 30.

2 Setthe SYBSOCKET_FACTORY connection property so that jConnect
can use your implementation to obtain a socket.

To use a custom socket with jConnect, set the SYBSOCKET_FACTORY
connection property to astring that is either:

» Thename of aclassthat implements
com.sybase.jdbcx.SybSocketFactory

or
e DEFAULT, which instantiates a new java.net.Socket.

See“ Setting connection properties’ on page 11 for instructions on how to
set SYBSOCKET_FACTORY.

Creating and configuring a custom socket

OncejConnect obtainsacustom socket, it usesthe socket to connect to aserver.
Any configuration of the socket must be completed before jConnect obtainsit.

30 jConnect for JDBC

CHAPTER 2 Programming Information

This section explains how to plug in an SSL socket implementation, such as
javax.net.ssl.SSLSocket, with jConnect.

Note Currently, only Adaptive Server version 12.5 and later supports SSL.

The following example shows how an implementation of SSL can create an
instance of SSLSocket, configureit, and then return it. In the example, the
MySSLSocketFactory class implements SybSocketFactory and extends
javax.net.ssl.SSLSocketFactory toimplement SSL. It containstwo createSocket
methods—one for SSLSocketFactory and one for SybSocketFactory—that:

e Createan SSL socket

* Invoke SSLSocket.setEnableCipherSuites to specify the cipher suites
available for encryption

e Return the socket to be used by jConnect

Example

public class MySSLSocketFactory extends SSLSocketFactory

* %k Xk kX kN

~

implements SybSocketFactory

*
*

Create a socket, set the cipher suites it can use, return
the socket.

Demonstrates how cither suites could be hard-coded into the
implementation.

See javax.net.SSLSocketFactory#createSocket

public Socket createSocket (String host, int port)

{

throws IOException, UnknownHostException

// Prepare an array containing the cipher suites that are to
// be enabled.
String enableThese[] =
"SSL_DH DSS_EXPORT WITH DES40 CBC_SHA",
"SSL,_RSA EXPORT WITH RC2 CBC_ 40 MD5",
"SSI, DH_RSA_EXPORT WITH DES40 CBC_SHA"
}
Socket s =
SSLSocketFactory.getDefault () .createSocket (host, port);

Programmer’s Reference 31

Implementing custom socket plug-ins

~

L SR T T I N N . N R N N e

((SSLSocket) s) .setEnabledCipherSuites (enableThese) ;
return s;

*

Return an SSLSocket.
Demonstrates how to set cipher suites based on connection
properties like:
Properties props = new Properties();
Set other url, password, etc. properties.
_props.put (("CIPHER SUITES 1",

"SSL_DH DSS_EXPORT WITH DES40 CBC_SHA") ;
_props.put ("CIPHER SUITES 2",

"SSL_RSA EXPORT WITH RC2 CBC 40 MD5");
_props.put ("CIPHER SUITES 3",

"SSL_DH RSA EXPORT WITH DES40 CBC SHA") ;
_conn = _driver.getConnection(url, _props);

See com.sybase.jdbcx.SybSocketFactory#createSocket

~

public Socket createSocket (String host, int port,

Properties props)
throws IOException, UnknownHostException

// check to see if cipher suites are set in the connection
// properites
Vector cipherSuites = new Vector() ;
String cipherSuiteval = null;
int cipherIndex = 1;
do
{
if ((cipherSuiteval = props.getProperty ("CIPHER SUITES "
+ cipherIndex++)) == null)
{

if (cipherIndex <= 2)

{
// No cipher suites available
// return what the object considers its default
// SSLSocket, with cipher suites enabled.
return createSocket (host, port) ;

}

else
// we have at least one cipher suite to enable
// per request on the connection
break;

32

jConnect for JDBC

CHAPTER 2 Programming Information

else

}

// add to the cipher suit Vector, so that
// we may enable them together
cipherSuites.addElement (cipherSuiteval) ;

}
}
while (true) ;

// lets you create a String[] out of the created vector
String enableThese[] = new String[cipherSuites.size()];
cipherSuites.copyInto(enableThese) ;

// enable the cipher suites
Socket s =

SSLSocketFactory.getDefault () .createSocket
(host, port) ;
((SSLSocket) s) .setEnabledCipherSuites (enableThese) ;

// return the SSLSocket
return s;

}

// other methods

}
Because jConnect requires no information about the kind of socket it is, you
must complete any configuration before you return a socket.
For additional information, see:

e EncryptASE.java — located in the sample2 subdirectory of your jConnect
installation, this sample shows you how to use the SybSocketFactory
interface with jConnect applications.

e MySSL SocketFactoryASE.java — also located in the sample2 subdirectory
of your jConnect installation, this is a sample implementation of the
SybSocketFactory interface that you can plug in to your application and
use.

Handling internationalization and localization

This section discusses internationalization and localization issues relevant to
jConnect.

Programmer’s Reference 33

Handling internationalization and localization

Using jConnect to pass Unicode data

34

In Adaptive Server version 12.5 and later, database clients can take advantage
of the unichar and univarchar datatypes. The two datatypes allow for the
efficient storage and retrieval of Unicode data.

Quoting from the Unicode Standard, version 2.0:

“The Unicode Standard is a fixed-width, uniform encoding scheme for
encoding charactersand text. Therepertoire of thisinternational character code
for information processing includes characters for the major scripts of the
world, aswell astechnical symbolsin common. The Unicode character
encoding treats alphabetic characters, ideographic characters, and symbols
identically, which means they can be used in any mixture and with equal
facility. The Unicode Standard is model ed on the ASCII character set, but uses
a 16-bit encoding to support full multilingual text.”

Thismeansthat the user can designate database table columnsto store Unicode
data, regardless of the default character set of the server.

Note In Adaptive Server version 12.5 through 12.5.0.3, the server had to have
adefault character set of utf-8 in order to use the Unicode datatypes. However,
in Adaptive Server 12.5.1 and | ater, database users can use unichar and
univarchar without having to consider the default character set of the server.

To use the unichar and univarchar datatypes with jConnect, you must perform
the following two tasks:

1 Set the jConnect version to com.sybase.jdbcx.SybDriver. VERSION_6. See
“Setting the jConnect version” on page 5 for more information.

Note If you are using the default version setting, whichis
com.sybase.jdbcx.SybDriver.VERSION_6, you do not need to change the
JCONNECT_VERSION property setting.

2 SettheDISABLE_UNICHAR_SENDING connection property to "false.”
See “ Setting connection properties’ on page 11 for more information.

When the server accepts unichar and univarchar data, jConnect behaves as
follows:

e For al character data that a client wishesto send to the server—for
example, using PreparedStatement.setString (int column, String value)—
jConnect determinesif the string can be converted to the default character
set of the server.

jConnect for JDBC

CHAPTER 2 Programming Information

e |f jConnect determines that the characters cannot be converted to the
character set of the server (for example, some characters cannot be
represented in the character set of the server), it sendsthe datato the server
encoded as unichar/univarchar data.

For example, if aclient attempts to send a Unicode Japanese character to an
Adaptive Server 12.5.1 that hasiso_1 as the default character set, jConnect
detects that the Japanese character cannot be converted to aniso_1 character.
jConnect then sends the string as Unicode data.

There is a performance penalty when a client sends unichar/univarchar data to
aserver. Thisis because jConnect must perform character-to-byte conversion
twice for all strings and characters that do not map directly to the default
character set of the server. This penalty iswhy the
DISABLE_UNICHAR_SENDING connection property defaults to "true."

Note For more information on support for unichar and univarchar datatypes,
see the manuals for Adaptive Server version 12.5 or later.

jConnect character-set converters

Programmer’s Reference

jConnect uses special classesfor all character-set conversions. By selecting a
character-set converter class, you specify how jConnect handles single-byte
and multibyte character-set conversions, and what performance impact the
conversions have on your applications.

There are two character-set conversion classes. The conversion class that
jConnect uses is based on the version setting (for example,
com.sybase.jdbcx.SybDriver.VERSION_4), and the CHARSET and
CHARSET_CONVERTER_CLASS connection properties.

e The TruncationConverter class works only with single-byte character sets
that use ASCI| characters such asiso_1 and cp850. It does not work with
multibyte character sets or single-byte character sets that use non-ASCl|
characters.

Using the TruncationConverter class, jConnect 6.0 handles character setsin
the same manner asjConnect version 2.2. The TruncationConverter classis
the default converter when the version setting is
com.sybase.jdbcx.SybDriver.VERSION_2.

35

Handling internationalization and localization

e ThePureConverter classis a pure Java, multibyte character-set converter.
jConnect usesthis class if the version setting is
com.sybase.jdbcx.SybDriver.VERSION_4 or later. jConnect also uses this
converter with com.sybase.jdbcx.SybDriver.VERSION 2 if it detectsa
character set specified in the CHARSET connection property that is not
compatible with the TruncationConverter class.

Although it enables multibyte character-set conversions, the
PureConverter class may negatively impact jConnect driver performance.
If driver performanceis a concern, see “Improving character-set
conversion performance” on page 37.

Selecting a character-set converter

jConnect uses the version setting from SybDriver.setVersion to determine the
default character-set converter class to use. For

com.sybase.jdbcx.SybDriver. VERSION_2, the default is TruncationConverter.
For com.sybase.jdbcx.SybDriver.VERSION_4 and later, the default is
PureConverter.

You can also set the CHARSET_CONVERTER_CLASS connection property
to specify which character-set converter you want jConnect to use. Thisis
useful if you want to use a character-set converter other than the default for
your jConnect version.

For example, if you set jConnect to com.sybase.jdbcx.SybDriver. VERSION_4 or
later but want to use the TruncationConverter class rather than the multibyte
PureConverter class, you can set CHARSET_CONVERTER_CLASS:

props.put ("CHARSET CONVERTER CLASS",
"com.sybase.jdbc3.utils.TruncationConverter")

Setting the CHARSET connection property

36

You can specify the character set to use in your application by setting the
CHARSET driver property. If you do not set the CHARSET property:

» For com.sybase.jdbcx.SybDriver.VERSION_2, jConnect usesiso_1 asthe
default character set.

» For com.sybase.jdbcx.SybDriver.VERSION_3 and later, jConnect uses the
default character set of the database, and adjusts automatically to perform
any necessary conversions on the client side.

jConnect for JDBC

CHAPTER 2 Programming Information

You can al so usethe -J charset command line option for the IsqlApp application
to specify acharacter set.

To determine which character sets are installed on your Adaptive Server, issue
the following SQL query on your server:

select name from syscharsets
go

For the PureConverter class, if the designated CHARSET does not work with
the client Java Virtual Machine (VM), the connection fails with a
SQLException, indicating that you must set CHARSET to acharacter set that is
supported by both Adaptive Server and the client.

When the TruncationConverter classis used, character truncation is applied
regardless of whether the designated CHARSET is 7-bit ASCII or not.

Improving character-set conversion performance

If you use multibyte character sets and need to improve driver performance,
you can use the SunloConverter class provided with the jConnect samples. See
“SunloConverter character-set conversion” on page 129 for details.

Supported character sets

Table 2-4 lists the Sybase character sets that are supported by jConnect. The
table also lists the corresponding JDK byte converter for each supported
character set.

Although jConnect supports UCS-2, currently no Sybase databases or Open
Servers support UCS-2.

Adaptive Server versions 12.5 and later support a version of Unicode known
asthe UTF-16 encoding.

Table 2-4 lists the character sets currently supported by Sybase.

Programmer’s Reference 37

Handling internationalization and localization

Table 2-4: Supported Sybase character sets

SybCharset name JDK byte converter
ascii_7 ASCII

bigs Big5
bigshk (see note) Bigs HKSCS
cp037 Cp037
cp437 Cp437
cp500 Cp500
cp850 Cp850
cp852 Cp852
cp855 Cp855
cp857 Cp857
cp860 Cp860
cp863 Cp863
cp864 Cp864
cp866 Cp866
cp869 Cp869
cp874 Cp874
cp932 MS932
cp936 GBK
cp950 Cp950
cpl250 Cpl1250
cpl251 Cpl251
cpl252 Cpl1252
cpl253 Cp1253
cpl254 Cpl254
cpl255 Cpl255
cpl256 Cpl1256
cpl257 Cpl1257
cpl258 Cpl258
deckanyji EUC_JP
eucgb EUC_CN
eucjis EUC_JP
eucksc EUC KR
ibm420 Cp420
ibm918 Cp918
iso_1 1S08859_1
15088592 1S08859-2

38 jConnect for JDBC

CHAPTER 2 Programming Information

SybCharset name JDK byte converter
is088595 1S08859_5
15088596 1S08859_6
is088597 1S08859 7
is088598 1S08859 8
15088599 1S08859_9

isol5 1SO8859_15 FDIS
koi8 KOI8 R

mac Macroman
mac_cyr MacCyrillic
mac_ee MacCentral Europe
macgreek MacGreek

macturk MacTurkish

gis MS932

tis620 MS874

utf8 UTF8

Note The bigshk character set is supported only if you are using JDK 1.3 or
later.

European currency symbol support

Programmer’s Reference

jConnect versions 4.1 and later support the use of the new European currency
symbol, or “euro,” and its conversion to and from UCS-2 Unicode.

The euro has been added to the following Sybase character sets: cp1250,
cpl251, cpl252, cpl253, cpl254, cpl255, cpl256, cpl257, cpl258, cp874,
is0885915, and utf8.

To use the euro symbol:

» Usethe PureConverter class, a pure Java, multibyte character-set
converter. See “jConnect character-set converters’ on page 35 for more
information.

e Verify that the new character sets are installed on the server.

The euro symbol is currently supported only on Adaptive Server version
11.9.2 and later; Adaptive Server Anywhere version 8.0 and later provides
support for the euro symbol.

39

Working with databases

e Select the appropriate character set on the client. See “ Setting the
CHARSET connection property” on page 36 for more information.

Unsupported character sets

Thefollowing Sybase character sets are not supported in jConnect 6.0 because
no JDK byte converters are analogous to the Sybase character sets:

e cplo47
e euccns
e greek8
* roman8
* turkish8

You can use these character sets with the TruncationConverter class aslong as
the application uses only the 7-bit ASCII subsets of these characters.

Working with databases

This section discusses database issues rel evant to jConnect and includes these
topics:

e Implementing high availability failover support

e Performing server-to-server remote procedure calls

e Using wide table support for Adaptive Server version 12.5 and later
e Accessing database metadata

e Using cursors with result sets

e Support for batch updates

« Updating a database from a result set of a stored procedure

» Working with datatypes

40 jConnect for JDBC

CHAPTER 2 Programming Information

Implementing high availability failover support

Overview

Programmer’s Reference

jConnect version 6.0 supportsthe failover feature availablein Adaptive Server
version 12.0 and later.

Note Sybasefailover in ahigh availability system is a different feature than
“connection failover.” Sybase strongly recommends that you read this section
very carefully if you want to use both.

Sybase failover allows you to configure two version 12.0 or later Adaptive
Serversas companions. If the primary companion fails, the devices, databases,
and connectionsfor that server can be taken over by the secondary companion.

You can configure a high availability system either asymmetrically or
symmetrically:

* Anasymmetric configuration includes two Adaptive Servers, each
physically located on a different machine, that are connected so that if one
of the serversis brought down, the other assumes its workload. The
secondary Adaptive Server acts as a“hot standby” and does not perform
any work until failover occurs.

* A symmetric configuration also includestwo Adaptive Serversrunning on
separate machines. However, if failover occurs, either Adaptive Server
can act as a primary or secondary companion for the other Adaptive
Server. Inthis configuration, each Adaptive Server isfully functional with
its own system devices, system databases, user databases, and user logins.

In either setup, the two machines are configured for dual access, which makes
the disks visible and accessible to both machines.

You can enable failover in jConnect and connect a client application to an
Adaptive Server configured for failover. If the primary server fails over to the
secondary server, the client application also automatically switches to the
second server and reestablishes network connections.

Note Refer to Using Sybase Failover in High Availability Systems Manual for
Adaptive Server for more detailed information.

41

Working with databases

Requirements, dependencies, and restrictions

* You must have two version 12.0 or later Adaptive Servers configured for
failover.

* Only changes that were committed to the database before failover are
retained when the client fails over.

* You must set the REQUEST_HA_SESSION jConnect connection
property to "true" (see “ Setting connection properties’ on page 11).

» jConnect event notification does not work when failover occurs. See
“Using event notification” on page 69.

» Close all statements when they are no longer used. jConnect stores
information on statementsto enablefail over. Unclosed statementsresultin
memory leaks.

Implementing failover in jConnect

Implement failover support in jConnect using one of the following two
methods:

e Usethetwo connection properties, REQUEST HA_SESSION and
SECONDARY_SERVER_HOSTPORT, and set the following:

* Set REQUEST_HA_SESSION to "true.”

e Setthe SECONDARY_SERVER_HOSTPORT to the host name and
port number where your secondary server is listening. See “ Setting
connection properties’ on page 11, and the
'SECONDARY_SERVER_HOSTPORT' connection property in
Table 2-2.

» Use JNDI to connect to the server. See “Connecting to a server using
JNDI”. Include an entry for the primary server and a separate entry for the
secondary server in the directory service information file required by
JNDI. The primary server entry has an attribute (the HA OID) that refers
to the entry for the secondary server.

Using LDAP asthe service provider for INDI, there are three possible
formsthat this HA attribute can have:

42 jConnect for JDBC

CHAPTER 2 Programming Information

a Reative Distinguished Name (RDN) — this form assumes that the
search base (typically provided by the java.naming.provider.url
attribute) combined with the value of this attribute is enough to
identify the secondary server. For example, assumethe primary server
isat “hostname:4200” and the secondary server is at
“hostname:4202":

dn: servername=haprimary, o=Sybase, c=US
1.3.6.1.4.1.897.4.2.5: TCP#l#hostname 4200
1.3.6.1.4.1.897.4.2.15: servername=hasecondary
objectclass: sybaseServer

dn: servername=hasecondary, o=Sybase, c=US
1.3.6.1.4.1.897.4.2.5: TCP#l#hostname 4202
objectclass: sybaseServer

b Distinguished Name (DN) — this form assumes that the value of the
HA attribute uniquely identifiesthe secondary server, and may or may
not duplicate values found in the search base. For example:

dn: servername=haprimary, o=Sybase, c=US
1.3.6.1.4.1.897.4.2.5: TCP#l#thostname 4200
1.3.6.1.4.1.897.4.2.15: servername=hasecondary,

o=Sybase, c¢=US ou=Accounting
objectclass: sybaseServer

dn: servername=hasecondary, o=Sybase, c=US, ou=Accounting
1.3.6.1.4.1.897.4.2.5: TCP#l#hostname 4202
objectclass: sybaseServer

Notice that hasecondary islocated in adifferent branch of the tree
(see the additiona cu=aAccounting qualifier).

¢ Full LDAP URL - this form assumes nothing about the search base.
The HA attribute is expected to be afully-qualified LDAP URL that
is used to identify the secondary (it may even point to adifferent
LDAP server). For example:

dn: servername=hafailover, o=Sybase, c¢=US

1.3.6.1.4.1.897.4.2.5: TCP#l#hostname 4200

1.3.6.1.4.1.897.4.2.15:

ldap://ldapserver: 386/servername=secondary,
o=Sybase, c¢=US ou=Accounting

objectclass: sybaseServer

dn: servername=secondary, o=Sybase, c¢=US, ou=Accounting
1.3.6.1.4.1.897.4.2.5: TCP#l#hostname 4202

Programmer’s Reference 43

Working with databases

objectclass: sybaseServer

d Inthedirectory service information file required by JNDI, set the
REQUEST_HA_SESSION connection property to "true" to enable a
failover session every time you make a connection.

Use the REQUEST_HA_SESSION connection property to indicate
that the connecting client wants to begin afailover session with
Adaptive Server version 12.0 or later that is configured for failover.
Setting this property to "true" causes jConnect to attempt a failover
login. If you do not set this connection property, afailover session
does not start, even if the server is configured correctly. The default
value for REQUEST_HA_SESSION is"false."

Set the connection property like any other connection property. You
cannot reset the property once a connection has been made.

If you want more flexibility for requesting failover sessions, code the
client application to set REQUEST_HA_SESSION at runtime.

The following example shows connection information entered for the
database server “SYBASE11" under an LDAP directory service, where
“tahiti” isthe primary server, and “moorea’ isthe secondary companion
server:

dn: servername=SYBASE1ll, o=MyCompany, c=US

1.3.6.1.4.1.897.4.2.5:TCP#1#ftahiti 3456
1.3.6.1.4.1.897.4.2.10:REPEAT READ=false&PACKETSIZE=1024
1.3.6.1.4.1.897.4.2.10:CONNECTION FAILOVER=false
1.3.6.1.4.1.897.4.2.11:pubs2

1.3.6.1.4.1.897.4.2.9:Tds
1.3.6.1.4.1.897.4.2.15:servername=SECONDARY
1.3.6.1.4.1.897.4.2.10:REQUEST HA SESSION=true

dn:servername=SECONDARY, o=MyCompany, c=US
1.3.6.1.4.1.897.4.2.5:TCP#l1#moorea 6000

* Request aconnection using JNDI and LDAP:

e jConnect usesthedirectory of the LDAP server to determinethe name
and location of the primary and secondary servers:

/* get the connection */

Connection con = DriverManager.getConnection
("jdbc:sybase:jndi:1ldap://ldap_serverl:983" +
"/servername=Sybasell, o=MyCompany, c=US", props) ;

or

44 jConnect for JDBC

CHAPTER 2 Programming Information

e Specify asearchbase:

props.put (Context .PROVIDER URL,
"ldap://ldap_serverl:983/ o=MyCompany, c=US");

Connection con=DriverManager.getConnection
("jdbc:sybase:jndi:servername=Sybasell", props) ;

Logging in to the primary server

If an Adaptive Server is not configured for failover or cannot grant a failover
session, the client cannot log in, and the following warning displays:

'The server denied your request to use the high-
availability feature.

Please reconfigure your database, or do not request a
high-availability session.'

Failing over to the secondary server

When failover occurs, the SQL exception JZ0F2 is thrown:

‘Sybase high-availability failover has occurred. The
current transaction is aborted, but the connection is
still usable. Retry your transaction.’

Theclient then automatically reconnectsto the secondary database using INDI.

Note that:

The identity of the database to which the client was connected and any
committed transactions are retained.

Partially read result sets, cursors, and stored procedure invocations are
lost.

When failover occurs, your application may need to restart a procedure or
go back to the last completed transaction or activity.

Failing back to the primary server

Programmer’s Reference

At some point, the client fails back from the secondary server to the primary
server. When failback occursis determined by the System Administrator who
issues sp_failback on the secondary server. Afterward, the client can expect the
same behavior and results on the primary server as documented in “ Failing
over to the secondary server” on page 45.

45

Working with databases

Performing server-to-server remote procedure calls

A Transact-SQL language command or stored procedure running on one server
can execute a stored procedure located on another server. The server to which
an application has connected logsin to the remote server, and executes aserver-
to-server remote procedure call.

An application can specify a“ universal” password for server-to-server
communication, that is, a password used in all server-to-server connections.
Once the connection is open, the server uses this password to log in to any
remote server. By default, jConnect uses the password of the current
connection as the default password for server-to-server communications.

However, if the passwords are different on two servers for the same user, and
that user is performing server-to-server remote procedure calls, the application
must explicitly define passwords for each server it plansto use.

jConnect versions 4.1 and later include a property that enables you to set a
universal “remote” password or different passwords on several servers.
jConnect allows you to set and configure the property using the
setRemotePassword method in the SybDriver class:

Properties connectionProps = new Properties();

public final void setRemotePassword (String serverName,
String password, Properties connectionProps

To use this method, the application must import the SybDriver class, then call
the method:

import com.sybase.jdbcx.SybDriver;
SybDriver sybDriver = (SybDriver)
Class.forName ("com.sybase.jdbc3.jdbc.SybDriver") .n
ewInstance () ;
sybDriver.setRemotePassword
(serverName, password, connectionProps) ;

Note To set different remote passwords for various servers, repeat the
preceding call (appropriate for your version of jConnect) for each server.

This call adds the given server name-password pair to the given Properties
object, which can be passed by the application to DriverManager in
DriverManager.getConnection (Server_url, props).

46 jConnect for JDBC

CHAPTER 2 Programming Information

If serverName isnull, the universal password is set to password for subsequent
connectionsto all serversexcept the ones specifically defined by previouscalls
to setRemotePassword.

When an application setsthe REMOTEPWD property, jConnect no longer sets
the default universal password.

Using wide table support for Adaptive Server version 12.5 and later

Programmer’s Reference

Adaptive Server version 12.5 and later offers limits and parameters that are
larger than in previous versions of the database server. For example:

e Tablescan contain 1,024 columns.
e Varchar and varbinary columns can contain more than 255 bytes of data.

e You can send and retrieve up to 2,048 parameters when invoking stored
procedures or inserting data into tables.

To ensure that jConnect requests wide table support from the database,
jConnect 6.0 users must make sure that the jConnect version is set to
com.sybase.jdbcx.SybDriver.VERSION_6, the default setting, or to
com.sybase.jdbcx.SybDriver.VERSION_LATEST.

Note jConnect continuesto work with an Adaptive Server version 12.5 and
later if you set the version to below com.sybase.jdbcx.SybDriver.VERSION_6.
However, if you try selecting from atable that requires wide table support to
fully retrieve the data, you may encounter unexpected errorsor datatruncation.

You can also set the version to com.sybase.jdbcx.SybDriver. VERSION_6 or
com.sybase.jdbcx.SybDriver.VERSION_LATEST when you access datafrom a
Sybase server that does not support wide tables. In this case, the server simply
ignores your reguest for wide table support.

In addition to the larger number of columns and parameters, wide table support
offers an extra benefit for jConnect users—a greater amount of
ResultSetMetaData. For example, in versions of jConnect earlier than 6.0, the
ResultSetMetaData methods getCatalogName, getSchemaName, and
getTableName al returned “Not Implemented” SQL Exceptions because that
metadatawas not supplied by the server. When you enable wide table support,
the server now sends back thisinformation, and the three methods return useful
information.

47

Working with databases

Accessing database metadata

To support JIDBC DatabaseMetaData methods, Sybase provides a set of stored
procedures that jConnect can call for metadata about a database. These stored
procedures must be installed on the server for the JDBC metadata methods to
work.

If the stored procedures for providing metadata are not aready installed in a
Sybase server, you can install them using stored procedure scripts provided
with jConnect:

e sgl_server.sgl installs stored procedures on pre-12.0 Adaptive Server
databases.

e sgl_serverl2.gql installs stored procedures on aversion 12.0 Adaptive
Server database.

e sgl_server12.5.sql installs stored procedures on Adaptive Server
databases of version 12.5 and |ater.

» ggl_asa.sgl ingtalls stored procedures on an Adaptive Server Anywhere
database.

Note The most recent version of these scripts is compatible with all versions
of jConnect.

See the Sybase jConnect for JDBC Installation Guide and Release Bulletin for
complete instructions on installing stored procedures.

In addition, to use the metadata methods, you must set the USE_ METADATA
connection property to "true" (its default value) when you establish a
connection.

You cannot get metadata about temporary tables in a database.

Note The DatabaseMetaData.getPrimaryKeys method finds primary keys
declared in atable definition (CREATE TABLE) or with alter table (ALTER
TABLE ADD CONSTRAINT). It does not find keys defined using sp_primarykey.

Server-side metadata installation

48

M etadata support can be implemented in either the client (ODBC, JDBC) or in
the data source (server stored procedures). jConnect provides metadata support
on the server, which results in the following benefits:

jConnect for JDBC

CHAPTER 2 Programming Information

e KeepsjConnect small in size, which ensuresthat the driver can be quickly
downloaded from the Internet.

e Gainsruntime efficiency from prel oaded stored procedures on the data
source.

« Providesflexibility: jConnect can connect to avariety of databases.

Using cursors with result sets

jConnect 6.0 implements many JDBC 2.0 cursor and update methods. These
methods make it easier to use cursors and to update rows in atable based on
valuesin aresult set.

InIDBC 2.0, ResultSets are characterized by their type and their concurrency.
Thetypeand concurrency valuesare part of thejava.sql.ResultSet interface and
are described in its javadocs.

Table 2-5identifiesthe characteristics of java.sql.ResultSet that are availablein
jConnect 6.0.

Table 2-5: java.sql.ResultSet options available in jConnect 6.0

Type

TYPE_FORWARD_ TYPE_SCROLL_ TYPE_SCROLL_
Concurrency ONLY INSENSITIVE SENSITIVE
CONCUR_READ_ONLY Supported in 6.0 Supportedin 6.0 Not availablein 6.0
CONCUR_UPDATABLE Supported in 6.0 Not availablein 6.0 Not availablein 6.0

Creating a cursor

Programmer’s Reference

This section includes the following topics:

e Creating acursor

e Using JDBC 1.x methods for positioned updates and deletes

e Using JDBC 2.0 methods for positioned updates and deletes

e Using acursor with a PreparedStatement object

e Using TYPE_SCROLL_INSENSITIVE result setsin jConnect

There are two methods for creating a cursor using jConnect:

* SybStatement.setCursorName

49

Working with databases

50

Use SybStatement.setCursorName, to explicitly assign the cursor a name.
The signature for SybStatement.setCursorName is:

void setCursorName(String name) throws SQLException;
* SybStatement.setFetchSize

Use SybStatement.setFetchSize to create a cursor and specify the number
of rows returned from the database in each fetch. The signature for
SybStatement.setFetchSize is:

void setFetchSize(int rows) throws SQLException;

When you use setFetchSize to create a cursor, the jConnect driver names
the cursor. To get the name of the cursor, use ResultSet.getCursorName.

Another way you can create cursorsisto specify thekind of ResultSet you want
returned by the statement, using the following JDBC 2.0 method on the
connection:

Statement createStatement (int resultSetType, int
resultSetConcurrency) throws SQL Exception

The type and concurrencies correspond to the types and concurrencies found
on the ResultSet interface listed in Table 2-5. If you request an unsupported
ResultSet, a SQL warning is chained to the connection. When the returned
Statement is executed, you receive the kind of ResultSet that is most like the
one you requested. See the JDBC 2.0 specification for more details on the
behavior of this method.

If you do not use createStatement, the default types of ResultSet are:

* If you call only Statement.executeQuery, then the ResultSet returned is a
SybResultSet that is TY PE_FORWARD_ONLY and
CONCUR_READ_ONLY.

» If you call setFetchSize or setCursorName, then the ResultSet returned
from executeQuery is a SybCursorResultSet that is
TYPE_FORWARD_ONLY and CONCUR_UPDATABLE.

To verify that the kind of ResultSet object iswhat you intended, use the
following two ResultSet methods:

int getConcurrency () throws SQLException;
int getType () throws SQLException;

Creating and using a cursor

1 Createthe cursor using Statement.setCursorName Or
SybStatement.setFetchSize.

jConnect for JDBC

CHAPTER 2 Programming Information

Programmer’s Reference

Invoke Statement.executeQuery to open the cursor for a statement and
return a cursor result set.

Invoke ResultSet.next to fetch rows and position the cursor in the result
Set.

The following example uses each of the two methods for creating cursors
and returning a result set. It also uses ResultSet.getCursorName to get the
name of the cursor created by SybStatement.setFetchSize.

// With conn as a Connection object, create a

// Statement object and assign it a cursor using
// Statement.setCursorName () .

Statement stmt = conn.createStatement () ;
stmt.setCursorName ("author cursor") ;

// Use the statement to execute a query and return
// a cursor result set.
ResultSet rs = stmt.executeQuery ("SELECT au_id,
au_lname, au_ fname FROM authors
WHERE city = 'Oakland'");
while (rs.next ())

{

// Create a second statement object and use

// SybStatement.setFetchSize()to create a cursor
// that returns 10 rows at a time.

SybStatement syb stmt = conn.createStatement () ;
syb stmt.setFetchSize (10);

// Use the syb stmt to execute a query and return

// a cursor result set.

SybCursorResultSet rs2 =
(SybCursorResultSet) syb stmt.executeQuery
("SELECT au_id, au lname, au_ fname FROM

authors
WHERE city = 'Pinole'");

while (rs2.next ())

{

// Get the name of the cursor created through the
// setFetchSize () method.
String cursor name = rs2.getCursorName () ;

51

Working with databases

// For jConnect 6.0, create a third statement

// object using the new method on Connection,

// and obtain a SCROLL_INSENSITIVE ResultSet.

// Note: you no longer have to downcast the

// Statement or the ResultSet.

Statement stmt = conn.createStatement (
ResultSet.TYPE SCROLL INSENSITIVE,
ResultSet.CONCUR_READ ONLY) ;

ResultSet rs3 = stmt.executeQuery

("SELECT ... [whatever]");

// Execute any of the JDBC 2.0 methods that

// are valid for read only ResultSets.

rs3.next () ;

rs3.previous (

rs3.relative (
rs3.afterLast

’

)i
3);
()

Using JDBC 1.x methods for positioned updates and deletes

52

The following example shows how to use methodsin JDBC 1.x to do a
positioned update. The example creates two Statement objects, one for
selecting rows into a cursor result set, and the other for updating the database
from rowsin the result set.

Note Although thismanual provides sample coderelatingto JDBC 1.0and 2.0
methods, Sybase strongly suggests that you use JDBC 2.0 for ease of use and
portability.

// Create two statement objects and create a cursor
// for the result set returned by the first
// statement, stmtl. Use stmtl to execute a query
// and return a cursor result set.
Statement stmtl = conn.createStatement () ;
Statement stmt2 = conn.createStatement () ;
stmtl.setCursorName ("author cursor") ;
ResultSet rs = stmtl.executeQuery ("SELECT
au_id,au_lname, au_fname
FROM authors WHERE city = 'Oakland'
FOR UPDATE OF au_lname");

// Get the name of the cursor created for stmtl so

jConnect for JDBC

CHAPTER 2 Programming Information

// that it can be used with stmt2.
String cursor = rs.getCursorName () ;

// Use stmt2 to update the database from the
// result set returned by stmtl.

String last name = new String("Smith");
while (rs.next ())

{

if (rs.getString(l) .equals("274-80-9391"))

{

stmt2.executeUpdate ("UPDATE authors "+
"SET au_lname = "+last name +
"WHERE CURRENT OF " + cursor) ;

Deletions in a result set

The following example uses Statement object stmt2, from the preceding code,
to perform a positioned deletion:

stmt2.executeUpdate ("DELETE FROM authors
WHERE CURRENT OF " + cursor) ;

Using JDBC 2.0 methods for positioned updates and deletes

This section discusses JDBC 2.0 methods for updating columns in the current
cursor row and updating the database from the current cursor row in aresult
set. Each isfollowed by an example.

Updating columns in aresult set

JDBC 2.0 specifies a number of methods for updating column values from a
result set in memory, on the client. The updated values can then be used to
perform an update, insert, or delete operation on the underlying database. All
of these methods are implemented in the SybCursorResultSet class.

Examples of some of the IDBC 2.0 update methods available in jConnect are:

void updateAsciiStream(String columnName, java.io.InputStream X,
int length) throws SQLException;

void updateBoolean (int columnIndex, boolean x) throws
SQLException;

void updateFloat (int columnIndex, float x) throws SQLException;

void updatelnt (String columnName, int x) throws SQLException;

void updatelnt (int columnIndex, int x) throws SQLException;

Programmer’s Reference 53

Working with databases

void updateObject (String columnName, Object x) throws

SQLException;

Methods for updating the database from a result set

JDBC 2.0 specifies two new methods for updating or deleting rows in the
database, based on the current valuesin aresult set. These methods are simpler
inform than Statement.executeUpdate in JDBC 1.x and do not require a cursor
name. They are implemented in SybCursorResultSet:

void updateRow() throws SQLException;
void deleteRow() throws SQLException;

Note The concurrency of the result set must be CONCUR_UPDATABLE.
Otherwise, the above methods raise an exception. For insertRow, all table
columns that require non-null entries must be specified.

M ethods provided on DatabaseMetaData dictate when these changes are
visible.

Example The following example creates a single Statement object that is used to return

54

acursor result set. For each row in the result set, column values are updated in
memory and then the database is updated with the new column values for the
row.

// Create a Statement object and set fetch size to
// 25. This creates a cursor for the Statement
// object Use the statement to return a cursor
// result set.
SybStatement syb stmt =
(SybStatement) conn.createStatement () ;
syb stmt.setFetchSize (25) ;
SybCursorResultSet syb rs =
(SybCursorResultSet) syb stmt.executeQuery (
"SELECT * from Tl WHERE ...")

// Update each row in the result set according to
// code in the following while loop. jConnect
// fetches 25 rows at a time, until fewer than 25
// rows are left. Its last fetch takes any
// remaining rows.
while (syb rs.next())
{
// Update columns 2 and 3 of each row, where
// column 2 is a varchar in the database and

jConnect for JDBC

CHAPTER 2 Programming Information

// column 3 is an integer.

syb rs.updateString (2, "xyz");
syb_rs.updateInt (3,100);
//Now, update the row in the database.

syb_rs.updateRow () ;

}

// Create a Statement object using the

// JDBC 2.0 method implemented in jConnect 6.0

Statement stmt = conn.createStatement
(ResultSet .TYPE FORWARD ONLY, ResultSet.CONCUR UPDATABLE) ;
// In jConnect 6.0, downcasting to SybCursorResultSet is not
// necessary. Update each row in the ResultSet in the same

// manner as above
while (rs.next())

{

rs.updateString (2, “xyz”);

rs.updatelInt (3,100);
rs.updateRow () ;

// Use the Statement to return an updatable ResultSet
ResultSet rs = stmt.executeQuery (“SELECT * FROM Tl WHERE...”);

}

Deleting a row from a ResultSet

To delete arow from a cursor result set, you can use
SybCursorResultSet.deleteRow as follows:

while (syb rs.next())

{

Inserting a row into a ResultSet

int col3 = getInt(3);
if (col3 >100)

{

syb_rs.deleteRow () ;

}

The following example illustrates how to do inserts using the JDBC 2.0 API.
Thereis no need to downcast to a SybCursorResultSet.

//

rs

//
rs
rs

Programmer’s Reference

prepare to insert

.moveToInsertRow () ;

populate new row with column values

.updateString (1, "New entry for col 1");
.updatelInt (2, 42);

55

Working with databases

// insert new row into db
rs.insertRow () ;

// return to current row in result set
rs.moveToCurrentRow () ;

Using a cursor with a PreparedStatement object

56

Onceyou create a PreparedStatement object, you can useit multipletimeswith
the same or different valuesfor itsinput parameters. If you use a cursor with a
PreparedStatement object, you must close the cursor after each use and then
reopen the cursor to use it again. A cursor is closed when you close its result
set (ResultSet.close). It is opened when you execute its prepared statement
(PreparedStatement.executeQuery).

The following example shows how to create a PreparedStatement object,
assign it acursor, and execute the PreparedStatement object twice, closing and
then reopening the cursor.

// Create a prepared statement object with a
// parameterized query.

PreparedStatement prep stmt =
conn.prepareStatement (

"SELECT au_id, au_lname, au_fname "+

"FROM authors WHERE city = ? "+

"FOR UPDATE OF au_lname");

//Create a cursor for the statement.
prep_ stmt.setCursorName ("author cursor") ;

// Assign the parameter in the query a value.
// Execute the prepared statement to return a
// result set.

prep stmt.setString(l, "Oakland") ;

ResultSet rs = prep stmt.executeQuery() ;

//Do some processing on the result set.
while (rs.next ())

{
}

// Close the result, which also closes the cursor.
rs.close() ;

// Execute the prepared statement again with a new
// parameter value.

jConnect for JDBC

CHAPTER 2 Programming Information

prep stmt.setString(l,"San Francisco") ;
rs = prep_ stmt.executeQuery () ;
// reopens cursor

Using TYPE_SCROLL_INSENSITIVE result sets in jConnect

Programmer’s Reference

jConnect version 6.0 supportsonly TYPE_SCROLL_INSENSITIVE result
sets.

jConnect uses the Tabular Data Stream (TDS)—the Sybase proprietary
protocol—to communicate with Sybase database servers. As of jConnect 6.0,
TDS does not support scrollable cursors. To support scrollable cursors,
jConnect caches the row data on demand, on the client, on each call to
ResultSet.next. However, when the end of the result set is reached, the entire
result set isstored in the client memory. Because this may cause a performance
strain, Sybase recommends that you use TYPE_SCROLL _INSENSITIVE
result sets only when the result set is reasonably small.

Note Whenyou use TYPE_SCROLL_INSENSITIVE ResultSets in jConnect
6.0, you can only call theisLast method after the last row of the ResultSet has
been read. Calling isLast before the last row is reached causes an
UnimplementedOperationException to be thrown.

jConnect provides the ExtendResultSet in the sample2 directory; this sample
providesalimited TYPE_SCROLL_INSENSITIVE ResultSet using JDBC 1.0
interfaces.

This implementation uses standard JDBC 1.0 methods to produce a scroll-
insensitive, read-only result set, that is, astatic view of the underlying datathat
is not sensitiveto changes made whiletheresult set isopen. ExtendedResultSet
caches all of the ResultSet rows on the client. Be cautious when you use this
class with large result sets.

The sample.ScrollableResultSet interface:
* Isanextension of JDBC 1.0 java.sgl.ResultSet.

« Definesadditional methodsthat have the same signatures asthe JDBC 2.0
java.sgl.ResultSet.

e Doesnot contain all of the JDBC 2.0 methods. The missing methods deal
with modifying the ResultSet.

The methods from the JDBC 2.0 APl are:

boolean previous() throws SQLException;

57

Working with databases

58

boolean absolute(int row) throws SQLException;
boolean relative(int rows) throws SQLException;
boolean first() throws SQLException;

boolean last () throws SQLException;

void beforeFirst () throws SQLException;

void afterLast () throws SQLException;

boolean isFirst () throws SQLException;

boolean isLast () throws SQLException;

boolean isBeforeFirst () throws SQLException;
boolean isAfterLast () throws SQLException;

int getFetchSize () throws SQLException;

void setFetchSize (int rows) throws SQLException;
int getFetchDirection() throws SQLException;
void setFetchDirection (int direction) throws
SQLException;

int getType () throws SQLException;

int getConcurrency () throws SQLException;

int getRow() throws SQLException;

To use the new sample classes, create an ExtendedResultSet using any JDBC
1.0java.sql.ResultSet. Below are the relevant piecesof code (assumeaJaval.l
environment):

// import the sample files
import sample.*;
//import the JDBC 1.0 classes
import java.sql.*;
// connect to some db using some driver;
// create a statement and a query;
// Get a reference to a JDBC 1.0 ResultSet
ResultSet rs = stmt.executeQuery(query) ;
// Create a ScrollableResultSet with it
ScrollableResultSet srs = new ExtendedResultSet (rs) ;
// invoke methods from the JDBC 2.0 API
srs.beforeFirst () ;
// or invoke methods from the JDBC 1.0 API
if (srs.next())

String columnl = srs.getString(l);

Figure 2-1 is a class diagram that shows the relationships between the new
sample classes and the JIDBC API.

jConnect for JDBC

CHAPTER 2 Programming Information

Figure 2-1: Class diagram

java.sql.ResultSet
(JDBC 1.0 API)

extends

sample.ScrollableResultSet
(adds some methods
from JDBC 2.0 API)

implements

sample.ExtendedResultSet
(wrapper for
java.sgl.ResultSet)

See the IDBC 2.0 API at http://java.sun.com/products/jdbc/jdbcse2.html for
more details.

Support for batch updates

Batch updates allow a Statement object to submit multiple update commands
as one unit (batch) to an underlying database for processing together.

Note To use batch updates, you must install the latest metadata scripts
provided in the sp directory under your jConnect installation directory.

Programmer’s Reference 59

Working with databases

See BatchUpdates.java in the sample2 subdirectories for an example of using
batch updates with Statement, PreparedStatement, and CallableStatement.

jConnect also supports dynamic PreparedStatements in batch.

Implementation notes

jConnect implements batch updates as specified in the JDBC 2.0 AP, except
as described here:

60

If the IDBC 2.0 standard for implementing
BatchUpdateException.getUpdateCounts is modified or relaxed in the
future, jConnect continues to implement the original standard by having
BatchUpdateException.getUpdateCounts return an int[] length of M < N,
indicating that thefirst M statementsin the batch succeeded, that the M+1
statement failed, and M+2..N statements were not executed. Here, “N”
equalsthe total statementsin the batch.

To call stored procedures in batch (unchained) mode, you must create the
stored procedure in unchained mode. For more information, see “ Stored
procedure executed in unchained transaction mode” on page 125.

In Adaptive Server version 11.5.x and later versions, if the server
encounters an error during batch execution,
BatchUpdateException.getUpdateCounts returns only an int[] length of
zero. The entire transaction isrolled back if an error is encountered,
resulting in zero successful rows.

Note The transaction isnot rolled back if the error is aduplicate key row
insert.

In Adaptive Server, aduplicate key row insertion does not result in the
termination and rollback of batch statements. The server continues
processing the statementsin the batch until you issue acancel or the batch
completes or encounters an error other than a duplicate key row insertion.
Because jConnect sends a cancel to the server when it detects any
exception (including duplicate key row insertion) during batch processing,
it isimpossible to determine exactly how much of the batch the server
executed before receiving the cancel. Therefore, Sybase strongly
recommends that in accordance with the JIDBC specification, you should
execute batchesinside of transactions with autoCommit set to "false.” This
way, you can roll back your transactions and return the database to a
known state before retrying the batch.

jConnect for JDBC

CHAPTER 2 Programming Information

e Adaptive Server version 11.0.1 returns O (zero) rows affected for stored
procedures.

e InSQL Anywhere version 5.5.x:

e SQL Anywhere version 5.5.x does not allow you to obtain inserted
row counts from stored procedures that contain inserts. For example:

create proc sp A as insert tableA values (1,
‘hello A’)
create proc sp B
as
insert tableA values (1, ‘hello A’)
update tableA set coll=2
create proc sp C
as
update tableA set coll=2
delete tableA

Running executeBatch on the preceding stored procedures would
result in, respectively:

0 Rows Affected
1 Rows Affected
2 Rows Affected

e Thereisno support for dynamic PreparedStatements in batch.

e Because SQL Anywhere 5.5.x does not natively support batch
updates according to the JDBC 2.0 specification, batch updates are
carried out in an executeUpdate loop.

« Batch updates in databases that do not support batch updates: jConnect
carries out batch updates in an executeUpdate loop even if your database
does not support batch updates. This allows you to use the same batch
code, regardless of the database to which you are pointing.

See Sun Microsystems, Inc. JDBC 2.0 API for more details on batch updates.

Updating a database from a result set of a stored procedure

Programmer’s Reference

jConnect includes update and delete methods that allow you to get a cursor on
the result set returned by a stored procedure. You can then use the position of
the cursor to update or delete rows in the underlying table that provided the
result set. The methods are in SybCursorResultSet:

void updateRow(String tableName) throws SQLEXxception;

61

Working with databases

void deleteRow(String tableName) throws SQLException;

The tableName parameter identifies the database table that provided the result
Set.

To get acursor on the result set returned by a stored procedure, you need to use
either SybCallableStatement.setCursorName oOr
SybCallableStatement.setFetchSize before you execute the callable statement
that contains the procedure. The following example shows how to create a
cursor ontheresult set of astored procedure, update valuesin the result set, and
then update the underlying table using the SybCursorResultSet.update method:

// Create a CallableStatement object for executing the stored
// procedure.
CallableStatement sproc_stmt =

conn.prepareCall ("{call update titles}");

// Set the number of rows to be returned from the database with
// each fetch. This creates a cursor on the result set.
(SybCallableStatement) sproc_stmt.setFetchSize (10) ;

//Execute the stored procedure and get a result set from it.
SybCursorResultSet sproc_result = (SybCursorResultSet)
sproc_stmt.executeQuery () ;

// Move through the result set row by row, updating values in the
// cursor’s current row and updating the underlying titles table
// with the modified row values.

while (sproc_result.next ())

{

sproc_result.updateString(...);
sproc_result.updateInt(...);

sproc_result.updateRow(titles) ;

Working with datatypes

This section documents use of numeric, image, text, date, time, and char data.

62 jConnect for JDBC

CHAPTER 2 Programming Information

Sending numeric data

jConnect has added the SybPreparedStatement extension to support the way
Adaptive Server handles the NUMERIC datatype where precision (total digits)
and scale (digits after the decimal) can be specified.

The corresponding datatype in Java—java.math.BigDecimal—is slightly
different, and these differences can cause problems when jConnect
applications use the setBigDecimal method to control values of an input/output
parameter. Specifically, there are cases where the precision and scale of the
parameter must precisely match that precision and scale of the corresponding
SQL object, whether it is a stored procedure parameter or a column.

To givejConnect applications more control over the setBigDecimal method, the
SybPreparedStatement extension has been added with this method:

public void setBigDecimal (int parameterIndex, BigDecimal X, int scale,
int precision) throws SQLException

See the SybPrepExtension.java sample in the /sample2 subdirectories under
your jConnect installation directory for more information.

Updating image data in the database

Programmer’s Reference

jConnect has a TextPointer class with sendData methods for updating animage
column in an Adaptive Server or Adaptive Server Anywhere database. In
earlier versions of jConnect, you had to send image data using the
setBinaryStream method in java.sgl.PreparedStatement. Now the
TextPointer.sendData methods use java.io.InputStream and greatly improve
performance when you send image data to an Adaptive Server database.

Warning! The TextPointer class has been deprecated, that is, it is no longer
recommended and may cease to exist in a future version of jConnect.

If your data server is Adaptive Server version 12.5 or later or Adaptive Server
Anywhere version 6.0 or later, use the standard JDBC form to send image data:

PreparedStatement.setBinaryStream(int paramIndex,
InputStream image)

To obtain instances of the TextPointer class, you can use either of two getTextPtr
methods in SybResultSet:

public TextPointer getTextPtr(String columnName)
public TextPointer getTextPtr(int columnindex)

63

Working with databases

Public methods in the TextPointer class

The com.sybase.jdbcx package containsthe TextPointer class. Its public method
interfaceis:

public void sendData(InputStream is, boolean log)
throws SQLEXxception

public void sendData(InputStream is, int length,
boolean log) throws SQLEXxception

public void sendData(InputStream is, int offset,
int length, boolean log) throws SQLException

public void sendData(byte[] bytelnput, int offset,
int length, boolean log) throws SQLEXception

where:

* sendData(InputStream is, boolean log) updates an image column with data
in the specified input stream.

e sendData(InputStream is, int length, boolean log) updates animage column
with datain the specified input stream. length isthe number of bytesbeing
sent.

e sendData(InputStream is, int offset, int length, boolean log) updates an
image column with datain the specified input stream, starting at the byte
offset given in the offset parameter and continuing for the number of bytes
specified in the length parameter.

» sendData(byte[] bytelnput, int offset, int length, boolean log) updates a
column with image data contained in the byte array specified in the
bytel nput parameter. The update starts at the byte offset given in the offset
parameter and continues for the number of bytes specified in the length
parameter.

» logisaparameter for each method that specifies whether image dataisto
be fully logged in the database transaction log. If the log parameter is set
to "true," the entire binary image is written into the transaction log. If the
log parameter is set to "false," the update islogged, but theimageitself is
not included in the log.

v Updating an image column with TextPointer.sendData
To update a column with image data:
1 Get aTextPointer object for the row and column that you want to update.

2 Use TextPointer.sendData to execute the update.

64 jConnect for JDBC

CHAPTER 2 Programming Information

The next two sections illustrate these steps with an example. In the example,
image datafrom thefile Anne_Ringer.gif is sent to update the pic column of the
au_pix tablein the pubs2 database. The update is for the row with author ID

899-46-2035.
Getting a TextPointer text and image columns contain timestamp and page-location information that
object is separate from their text and image data. When data s selected from atext or

image column, this extrainformation is “hidden” as part of the result set.

A TextPointer object for updating an image column requires this hidden
information but does not need theimage portion of the column data. To get this
information, you need to select the column into aResultSet object and then use
SybResultSet.getTextPtr, which extracts text-pointer information, ignores
image data, and creates a TextPointer object. See the following code for an
example.

When a column contains a significant amount of image data, selecting the
column for one or more rows and waiting to get all the dataiis likely to be
inefficient, since the datais not used. To shortcut this process, use the set
textsize command to minimize the amount of data returned in a packet. The
following code example for getting a TextPointer object includes the use of set
textsize for this purpose.

/*
* Define a string for selecting pic column data for author ID
* 899-46-2035.
*/

String getColumnData = "select pic from au pix where au id = '899-46-2035'";

/*
* Use set textsize to return only a single byte of column data
* to a Statement object. The packet with the column data will
* contain the "hidden" information necessary for creating a

* TextPointer object.

*/

Statement stmt= connection.createStatement () ;

stmt .executeUpdate ("set textsize 1");

/*

* Select the column data into a ResultSet object--cast the

* ResultSet to SybResultSet because the getTextPtr method is

* in SybResultSet, which extends ResultSet.

*/

SybResultSet rs = (SybResultSet) stmt.executeQuery (getColumnData) ;

Programmer’s Reference 65

Working with databases

/*

* Position the result set cursor on the returned column data
* and create the desired TextPointer object.

*/

rs.next () ;

TextPointer tp = rs.getTextPtr ("pic");

/*

* Now, assuming we are only updating one row, and won’t need

* the minimum textsize set for the next return from the server,
* we reset textsize to its default value.

*/

stmt .executeUpdate ("set textsize 0");

Exgcuting rg]he The following code uses the TextPointer object from the preceding section to
update wit i ot i i i i
TextPointer sendData update the pic column with image datain the file Anne_Ringer.gif.
/ *
*First, define an input stream for the file.
*/

FileInputStream in = new FileInputStream("Anne Ringer.gif");

/*

* Prepare to send the input stream without logging the image data
* in the transaction log.

*/

boolean log = false;

/ *

* Send the image data in Anne Ringer.gif to update the pic

* column for author ID 899-46-2035.

*/

tp.sendData(in, log) ;
See the TextPointers.java sample in the sample2 subdirectories under your
jConnect installation directory for more information.

Using text data

66

In earlier versions, jConnect used a TextPointer class with sendData methods
for updating atext column in an Adaptive Server or Adaptive Server Anywhere
database.

jConnect for JDBC

CHAPTER 2 Programming Information

Using date and time

Programmer’s Reference

The TextPointer class has been deprecated, that is, it isno longer recommended
and may cease to exist in afuture version of Java.

If your data server is Adaptive Server 12.5 or later or Adaptive Server
Anywhere version 6.0 or later, use the standard JDBC form to send text data:

PreparedStatement.setAsciiStream(int paramIndex,
InputStream text, int length)

or

PreparedStatement.setUnicodeStream(int paramIndex,
InputStream text, int length)

or

PreparedStatement.setCharacterStream(int paramIndex,
Reader reader, int length)

datatypes

Adaptive Server versions 12.5.1 and later offer support for the SQL date and
time datatypes. Previously, Adaptive Server offered only support for the
datetime and smalldatetime datatypes. These datatypes were limited for the
following reasons:

e Therewas no way to have separate time and date datatypes.

« Datespriorto 1/1/1753 wereillegal. datetime values could hold only dates
between 1/1/1753 and 12/31/9999.

e When JDBC clients used the setTime and setDate methods to insert
java.sgl.Time or java.sgl.Date methods, the values were converted to
datetime datatypes in the server. This conversion resulted in the addition
of adefault date or time to the insert value supplied by the client.

The addition of the date and time datatypes provides the following advantages:

« Date values can now be between Jan. 1, 0001 and Dec. 31, 9999, exactly
matching the allowable valuesin java.sgl.Date.

« A direct mapping now exists between java.sql.Date and the date dataype,
aswell as between java.sql.Time and the time datatype.

To use the date and time datatypes with jConnect 6.0, make sure your
JCONNECT_VERSION property is set to the default “6”.

67

Implementing advanced features

Implementation notes

If you select from atablethat contains adate or time column, and you have
not enabled date/time support in jConnect (by setting the version), the
server triesto convert the date or time to adatetime value before returning
it. This can cause problems if the date to be returned is prior to 1/1/1753.
Inthat case, aconversion error occurs, and the database informsyou of the
error.

Adaptive Server Anywhere supports adate and time datatype, but the date
and time datatypes are not yet directly compatible with those in Adaptive
Server version 12.5.1 and later. Using jConnect, you should continue to
use the datetime and smalldatetime datatypes when communicating with
Adaptive Server Anywhere.

The maximum value in adatetime column in Adaptive Server Anywhere
is 1-1-7911 00:00:00.

Using jConnect, you receive conversion errors if you attempt to insert
dates prior to 1/1/1753 into datetime columns or parameters.

Refer to the Adaptive Server manuals for more information on the date
and time datatypes; of specia note is the section on allowable implicit
conversions.

If you use getObject with an Adaptive Server date, time, Or datetime
column, the value returned is, respectively, ajava.sql.Date, java.sqgl.Time,
or java.sgl.Timestamp datatype.

Using char/varchar/text datatypes and getByte

Do not users.getByte on achar, univarchar, unichar, varchar, or text field unless
the datais hex, octal, or decimal.

Implementing advanced features

68

This section describes how to use advanced jConnect features and contains the
following topics:

Using event notification
Handling error messages

Storing Java objects as column datain atable

jConnect for JDBC

CHAPTER 2 Programming Information

e Using dynamic class loading

« JDBC 2.0 optional package extensions support

Using event notification

Programmer’s Reference

You can use the jConnect event notification feature to have your application
notified when an Open Server procedure is executed.

To use this feature, you must use the SybConnection class, which extends the
Connection interface. SybConnection contains aregWatch method for turning
event notification on and aregNowatch method for turning event notification
off.

Your application must also implement the SybEventHandler interface. This
interface contains one public method, void event(String proc_name, ResultSet
params), which is called when the specified event occurs. The parameters of
the event are passed to event, which tells the application how to respond.

To use event notification in your application, call SybConnection.regwatch() to
register your application in the notification list of aregistered procedure. Use
this syntax:

SybConnection.regWatch(proc_name,eventHdIr,option)

where;

e proc_nameisastring that is the name of the registered procedure that
generates the notification.

e eventHdler isan instance of the SybEventHandler class that you
implement.

e optioniseither NOTIFY_ONCE or NOTIFY_ALWAYS. Use
NOTIFY_ONCE if you want the application to be notified only the first
time a procedure executes. Use NOTIFY _ALWAY Sif you want the
application to be notified every time the procedure executes.

Whenever an event with the designated proc_name occurs on the Open Server,
jConnect callseventHdir.event from aseparate thread. The event parametersare
passed to eventHdIr.event when it is executed. Because it is a separate thread,
event notification does not block execution of the application.

If proc_nameis not aregistered procedure, or if Open Server cannot add the
client to the notification list, the call to regwatch throws a SQL exception.

To turn off event notification, use this call:

69

Implementing advanced features

SybConnection.regNoWatch (proc name)

Warning! When you use Sybase event notification extensions, the application
needs to call the close method on the connection to remove a child thread
created by thefirst call to regwatch. Failing to do so may cause the Virtual

Machine to hang when exiting the application.

Event notification example

The following example shows how to implement an event handler and then
register an event with an instance of your event handler, once you have a

connection:

public class MyEventHandler implements SybEventHandler

{

70

// Declare fields and constructors, as needed.

public MyEventHandler (String eventname)

{
}

// Implement SybEventHandler.event.
public void event (String eventName, ResultSet params)

{

try

{

// Check for error messages received prior to event
// notification.

SQLWarning sglw = params.getWarnings() ;

if sglw != null

{

// process errors, if any

}

// process params as you would any result set with
// one row.
ResultSetMetaData rsmd = params.getMetaData () ;

int numColumns = rsmd.getColumnCount () ;
while (params.next()) // optional
{

for (int 1 = 1; i <= numColumns; i++)

{

System.out.println(rsmd.getColumnName (i) + " =

jConnect for JDBC

CHAPTER 2 Programming Information

" + params.getString(i));

}

// Take appropriate action on the event. For example,
// perhaps notify application thread.

}
}
catch (SQLException sge)

{

// process errors, if any

}
}
}

public class MyProgram

{

// Get a connection and register an event with an instance

// of MyEventHandler.
Connection conn = DriverManager.getConnection(...);
MyEventHandler myHdlr = new MyEventHandler ("MY EVENT") ;

// Register your event handler.
((SybConnection) conn) .regWatch ("MY EVENT", myHdlr,

SybEventHandler .NOTIFY ALWAYS) ;

conn.regNoWatch ("MY EVENT") ;
conn.close() ;

}

Handling error messages

jConnect providestwo classesfor returning Sybase-specific error information,
SybSQLException and SybSQLWarning, as well as a SybMessageHandler
interface that allows you to customize the way jConnect handles error
messages received from the server.

Programmer’s Reference 71

Implementing advanced features

Retrieving Sybase-specific error information

jConnect provides an Eedinfo interface that specifies methods for obtaining
Sybase-specific error information. The Eedinfo interface isimplemented in
SybSQLException and SybSQLWarning, which extend the SQLException and
SQLWarning classes.

SybSQLException and SybSQLWarning contain the following methods:

* public ResultSet getEedParams, which returns a one-row result set
containing any parameter values that accompany the error message.

* public int getStatus, which returnsa“1” if there are parameter values,
returnsa“0” if there are no parameter values in the message.

* public int getLineNumber, which returns the line number of the stored
procedure or query that caused the error message.

* public String getProcedureName, which returns the name of the procedure
that caused the error message.

* public String getServerName, which returns the name of the server that
generated the message.

* public int getSeverity, which returns the severity of the error message.

* public int getState, which returns information about the internal source of
the error message in the server. (For use by Sybase Technical Support

only.)

* public int getTranState, which returns one of the following transaction
states:

* 0 Theconnectionis currently in an extended transaction.
» 1 The previous transaction committed successfully.
» 3 Theprevious transaction aborted.

Some error messages can be SQLException or SQLWarning messages without
being SybSQLException or SybSQLWarning messages. Your application should
check the type of exception it is handling before it downcasts to
SybSQLException or SybSQLWarning.

72 jConnect for JDBC

CHAPTER 2 Programming Information

Customizing error-message handling

Programmer’s Reference

You can use the SybMessageHandler interface to customize the way jConnect
handles error messages generated by the server. Implementing
SybMessageHandler in your own classfor handling error messages can provide
the following benefits:

e “Universal” error handling

Error-handling logic can be placed in your error-message handler, instead
of being repeated throughout your application.

e “Universal” error logging

Your error-message handler can contain the logic for handling al error
logging.
* Remapping of error-message severity, based on application requirements

Your error-message handler can contain logic for recognizing specific
error messages, and downgrading or upgrading their severity based on
application considerationsrather than the severity rating of the server. For
example, during a cleanup operation that deletes old rows, you might want
to downgradethe severity of amessagethat arow doesnot exist. However,
you may want to upgrade the severity in other circumstances.

Note Error-message handlersimplementing the SybMessageHandler interface
only receive server-generated messages. They do not handle messages
generated by jConnect.

When jConnect receives an error message, it checksto seeif a
SybMessageHandler class has been registered for handling the message. If so,
jConnect invokesthe messageHandler method, which acceptsa SQL exception
asits argument. jConnect then processes the message based on what valueis
returned from messageHandler. The error-message handler can:

¢ Return the SQL exception asis.
e Return anull. Asaresult, jConnect ignores the message.

e CreateaSQL warning from a SQL exception, and return it. Thisresultsin
the warning being added to the warning-message chain.

« If theoriginating messageisaSQL warning, messageHandler can evaluate
the SQL warning as urgent and create and return a SQL exception to be
thrown once control is returned to jConnect.

73

Implementing advanced features

Installing an error-message handler

You caninstall an error-message handl er implementing SybMessageHandler by
calling the setMessageHandler method from SybDriver, SybConnection, or
SybStatement. If you install an error-message handler from SybDriver, all
subsequent SybConnection objects inherit it. If you install an error-message
handler from aSybConnection object, it isinherited by all SybStatement objects
created by that SybConnection.

This hierarchy only applies from the time the error-message handler object is
installed. For example, if you create a SybConnection object called
“myConnection,” and then call SybDriver.setMessageHandler to install an
error-message handler object, “myConnection” cannot use that object.

To return the current error-message handler object, use
getMessageHandler.

Error-message-handler example

import java.io.*;

import java.sqgl.*;

import com.sybase.jdbcx.SybMessageHandler;
import com.sybase.jdbcx.SybConnection;
import com.sybase.jdbcx.SybStatement;
import java.util.*;

public class MyApp
static SybConnection conn = null;
static SybStatement stmt = null
static ResultSet rs = null;

static String user = '"guest";
static String password = "sybase";
static String server = "jdbc:sybase:Tds:192.138.151.39:4444";

static final int AVOID SQLE = 20001;

public MyApp ()
{
try
{
Class.forName ("com.sybase.jdbc3.jdbc.SybDriver") .newInstance () ;
Properties props = new Properties() ;
props.put ("user", user);
props.put ("password", password) ;
conn = (SybConnection)
DriverManager.getConnection (server, props) ;

74 jConnect for JDBC

CHAPTER 2 Programming Information

conn.setMessageHandler (new NoResultSetHandler()) ;
stmt =(SybStatement) conn.createStatement () ;
stmt .executeUpdate ("raiserror 20001 'your error'");

for (SQLWarning sgw = _stmt.getWarnings() ;
sgqw != null;
sgqw = sgw.getNextWarning()) ;
{
if (sgw.getErrorCode() == AVOID SQLE) ;

{

" was found in the Statement’s warning list.");
break;

}

System.out.println("Error" + sgw.getErrorCode () +

}

stmt.close () ;
conn.close() ;

}

catch (Exception e)

{
System.out.println(e.getMessage()) ;
e.printStackTrace () ;

}
}

class NoResultSetHandler implements SybMessageHandler

{

public SQLException messageHandler (SQLException sge)
{
int code = sge.getErrorCode () ;
if (code == AVOID SQLE)
{
System.out.println("User " + user + " downgrading " +
AVOID SQLE + " to a warning") ;
sge = new SQLWarning (sge.getMessage (),
sge.getSQLState () ,sge.getErrorCode()) ;
}

return sqge;

}
}

public static void main(String args|])

{

new MyApp () ;

}

Programmer’s Reference

75

Implementing advanced features

Storing Java objects as column data in a table

Some database products enable you to directly store Java objects as column
datain adatabase. In such databases, Java classes are treated as datatypes, and
you can declare a column with a Java class as its datatype.

jConnect supports storing Java objects in a database by implementing the
setObject methods defined in the PreparedStatement interface and the getObject
methods defined in the CallableStatement and ResultSet interfaces. Thisallows
you to use jConnect with an application that uses native JDBC classes and
methods to directly store and retrieve Java objects as column data.

Note To use getObject and setObject, set the jConnect version to
com.sybase.jdbcx.SybDriver. VERSION_4 or later. See “ Setting the jConnect
version” on page 5.

The following sections describe the requirements and procedures for storing
objects in atable and retrieving them using JDBC with jConnect:

e Prerequisites for storing java objects as column data
* Sending Java objects to a database

» Receiving Java objects from the database

Note Adaptive Server version 12.0 and later and Adaptive Server Anywhere
version 6.0.x and later can store Java objectsin atable, with some limitations.
See the jConnect for JIDBC Release Bulletin for more information.

Prerequisites for storing java objects as column data

76

To store Java objects belonging to a user-defined Java classin a column, three
requirements must be met:

» Theclassmust implement thejava.io.Serializable interface. Thisisbecause
jConnect uses native Java serialization and deserialization to send objects
to a database and receive them back from the database.

» Theclass definition must be installed in the destination database, or you
must be using the DynamicClassLoader (DCL) to load aclassdirectly from
an Adaptive Server Anywhere or an Adaptive Server server and useit as
if it were present in the local CLASSPATH. See “Using dynamic class
loading” on page 80 for more information.

jConnect for JDBC

CHAPTER 2 Programming Information

e Theclient system must have the class definition in a.classfile that is
accessible through the local CLASSPATH environment variable.

Sending Java objects to a database

To send an instance of a user-defined class as column data, use one of the
following setObject methods, as specified in the PreparedStatement interface:

void setObject (int parameterIndex, Object x, int targetSqglType,
int scale) throws SQLException;

void setObject (int parameterIndex, Object x, int targetSglType)
throws SQLException;

void setObject (int parameterIndex, Object x) throws SQLException;

In jConnect 6.0, to send a Java object, you can use the
java.sql.Types.JAVA_OBJECT target sql.Type, Or you can use
java.sql.Types.OTHER.

The following example defines an Address class, shows the definition of a
Friends table that has an Address column whose datatype is the Address class,
and inserts arow into the table.

public class Address implements Serializable
{

public String streetNumber;

public String street;

public String apartmentNumber;

public String city;

public int zipCode;

//Methods

}

/* This code assumes a table with the following structure
** Create table Friends:
* * (firstname varchar (30) ,
** lastname varchar (30),
** address Address,
** phone varchar (15))
*/
// Connect to the database containing the Friends table.
Connection conn =
DriverManager.getConnection ("jdbc:sybase:Tds:localhost:5000",

"username", "password");

// Create a Prepared Statement object with an insert statement

Programmer’s Reference 77

Implementing advanced features

//for updating the Friends table.
PreparedStatement ps = conn.prepareStatement ("INSERT INTO
Friends values (?,?,?,?)");

// Now, set the values in the prepared statement object, ps.
// set firstname to "Joan."
ps.setString(l, "Joan");

// Set last name to "Smith."
ps.setString (2, "Smith");

// Assuming that we already have "Joan address" as an instance
// of Address, use setObject (int parameterIndex, Object x) to
// set the address column to "Joan address."

ps.setObject (3, Joan_ address) ;

// Set the phone column to Joan’s phone number.
ps.setString (4, "123-456-7890") ;

// Perform the insert.
ps.executeUpdate () ;

Receiving Java objects from the database

A client JDBC application can receive a Java object from the database in a
result set or as the value of an output parameter returned from a stored
procedure.

If aresult set contains a Java object as column data, use one of the following
getObject methods in the ResultSet interface to retrieve the object:

Object getObject (int columnIndex) throws SQLException;
Object getObject (String columnName) throws SQLException;

If an output parameter from a stored procedure contains a Java object, use the
following getObject method in the CallableStatement interface to retrieve the
object:

Object getObject (int parameterIndex) throws SQLException;

The following example illustrates the use of

ResultSet.getObject(int parameterindex) to assign an object received in aresult
set to aclass variable. The example uses the Address class and Friends table
used in the previous section and presents a simple application that prints a
name and address on an envel ope.

/*

78 jConnect for JDBC

CHAPTER 2 Programming Information

** This application takes a first and last name, gets the
** gpecified person’s address from the Friends table in the
** database, and addresses an envelope using the name and
** retrieved address.
*/
public class Envelope
{

Connection conn = null;

String firstName = null;

String lastName = null;

String street = null;

String city = null;

String zip = null;

public static void main(String[] args)
{
if (args.length < 2)
{
System.out.println("Usage: Envelope <firstNamex>
<lastName>") ;
System.exit (1) ;
}
// create a 4" x 10" envelope
Envelope e = new Envelope (4, 10);
try
{
// connect to the database with the Friends table.
conn = DriverManager.getConnection (
"jdbc:sybase:Tds:localhost:5000", "username",
"password") ;
// look up the address of the specified person
firstName = args|[0];
lastName = args|[1l];
PreparedStatement ps = conn.prepareStatement (
"SELECT address FROM friends WHERE " +
"firstname = ? AND lastname = ?");
ps.setString(l, firstName) ;
ps.setString (2, lastName) ;
ResultSet rs = ps.executeQuery() ;
if (rs.next())
{
Address a = (Address) rs.getObject (1) ;
// set the destination address on the envelope
e.setAddress (firstName, lastName, a);

}

conn.close() ;

Programmer’s Reference 79

Implementing advanced features

}

catch (SQLException sge)
{
sge.printStackTrace () ;
System.exit (2) ;
}
// 1f everything was successful, print the envelope
e.print () ;

}

private void setAddress (String fname, String lname, Address a)
street = a.streetNumber + " " + a.street + " " +
a.apartmentNumber;
city = a.city;
zip = "" + a.zipCode;

}

private void print ()

{

// Print the name and address on the envelope.

You can find a more detailed example of HandleObject.java in the sample2
subdirectory under your jConnect installation directory.

Using dynamic class loading

80

Adaptive Server Anywhere version 6.0 and Adaptive Server version 12.0 and
later allow you to specify Java classes as:

e Datatypes of SQL columns
e Datatypes of Transact-SQL variables
e Default valuesfor SQL columns

In earlier versions, only classes that appeared in the jConnect CLASSPATH
were accessible, that is, if ajConnect application attempted to access an
instance of aclassthat was not in the local CLASSPATH, a
java.lang.ClassNotFound exception would result.

jConnect version 6.0 and later implements DynamicClassLoader (DCL) to load
aclassdirectly from an Adaptive Server Anywhere or Adaptive Server server
and useit asif it were present in the local CLASSPATH.

jConnect for JDBC

CHAPTER 2 Programming Information

All security features present in the superclass are inherited. The loader
delegation model implemented in Java 2 is followed—first jConnect attempts
toload arequested classfrom the CLASSPATH; if that fails, jConnect triesthe
DynamicClassLoader.

See Java in Adaptive Server for more detailed information about use Javaand
Adaptive Server.

Using DynamicClassLoader
To use DCL functionality:

1 Create and configure aclass loader. The code for your jConnect
application should look similar to this:

Properties props = new Properties() ;

// URL of the server where the classes live.
String classesUrl = "jdbc:sybase:Tds:myase:1200";

// Connection properties for connecting to above server.
props.put ("user", "grinch");
props.put ("password", "meanone") ;

// Ask the SybDriver for a new class loader.
DynamicClassLoader loader = driver.getClassLoader (classesUrl, props);

2 Usethe CLASS LOADER connection property to make the new class
loader available to the statement that executes the query. Once you create
the class |oader, pass it to subsequent connections as shown (continuing
from the code examplein step 1):

// Stash the class loader so that other connection(s)
// can know about it.
props.put ("CLASS LOADER", loader) ;

// Additional connection properties
props.put ("user", "joeuser");
props.put ("password", "joespassword") ;

// URL of the server we now want to connect to.
String url = "jdbc:sybase:Tds:jdbc.sybase.com:4446";

// Make a connection and go.
Connection conn = DriverManager.getConnection(url, props) ;

Assume the Java class definition is as follows:

class Addr {

Programmer’s Reference 81

Implementing advanced features

82

String street;
String city;
String state;

}
Assume the SQL table definition is as follows:
create table employee (char(100) name, int empid, Addr address)

3 Usethefollowing client-side code in the absence of an Addr classin the
client application CLASSPATH:

Statement stmnt = conn.createStatement () ;
// Retrieve some rows from the table that has a Java class
// as one of its fields.

ResultSet rs = stmnt.executeQuery (
"select * from employee where empid = 19'");
if (rs.next() {

// Even though the class is not in our class path,
// we should be able to access its instance.
Object obj = rs.getObject ("address") ;

// The class has been loaded from the server,

// so let's take a look.

Class ¢ = obj.getClass() ;

// Some Java Reflection can be done here
// to access the fields of obj.

TheCLASS_L OADER connection property providesaconvenient mechanism
for sharing one class |oader among several connections.

You should ensurethat sharing aclassloader across connections does not result
in classconflicts. For example, if two different, incompatibleinstances of class
org.foo.Bar exist in two different databases, problems can arise if you use the
same loader to access both classes. Thefirst classis loaded when examining a
result set from the first connection. When it istimeto examine aresult set from
the second connection, the classis aready loaded. Consequently, the second
classis never loaded, and there is no direct way for jConnect to detect this
situation.

However, Java has a built-in mechanism for ensuring that the version of aclass
matches the version information in a deserialized object. The above situation
isat least detected and reported by Java.

jConnect for JDBC

CHAPTER 2 Programming Information

Classes and their instances do not need to reside in the same database or server,
but there is no reason why both the loader and subsequent connections cannot
refer to the same database or server.

Using deserialization

Thefollowing exampleillustrates how to deserialize an object fromalocal file.
The serialized object is an instance of a class that resides on a server and does
not exist in the CLASSPATH.

SybResultSet.getObject() makes use of DynamicObjectinputStream, whichisa
subclass of ObjectinputStream that oads a class definition from
DynamicClassLoader, rather than the default system (“boot”) class |oader.

// Make a stream on the file containing the

//serialized object.

FileInputStream fileStream = new FileInputStream("serFile");
// Make a "deserializer" on it. Notice that, apart

//from the additional parameter, this is the same

//as ObjectInputStreamDynamicObjectInputStream

stream = new DynamicObjectInputStream(fileStream, loader) ;
// As the object is deserialized, its class is

//retrieved through the loader from our server.

Object obj = stream.readObject () ;stream.close() ;

Preloading .jar files

jConnect version 6.0 has a connection property called PRELOAD_JARS.
When defined as a comma-delimited list of .jar file names, the .jar filesare
loaded in their entirety. In this context, “JAR” refersto the “retained
JARname” used by the server. Thisisthe .jar file name specified in the install
Java program, for example:

install java new jar 'myJarName' from file '/tmp/mystuff.jar’

Programmer’s Reference 83

Implementing advanced features

Advanced features

If you set PRELOAD_JARS, the .jar files are associated with the class | oader,
so it is unnecessary to preload them with every connection. You should only
specify PRELOAD_JARSfor one connection. Subsequent attemptsto preload
the same .jar files may result in performance problems asthe .jar file datais
retrieved from the server unnecessarily.

Note Adaptive Server Anywhere 6.x and later cannot return a .jar file as one
entity, so jConnect iteratively retrieves each classin turn. However, Adaptive
Server 12.x and later retrieves the entire .jar file and loads each class that it
contains.

There are various public methods in DynamicClassLoader. For more
information, see the javadocs information in JDBC_HOME/docs/en/javadocs.

Additional features include the ability to keep the database connection of a
loader “alive” when a series of class loads is expected, and to explicitly load a
single class by name.

Public methods inherited from java.lang.ClassLoader can also be used.
Methods in java.lang.Class that deal with loading classes are also available;
however, use these methods with caution because some of them make
assumptions about which class loader gets used. In particular, you should use
the 3-argument version of Class.forName, otherwise the system (“boot”) class
loader is used. See “Handling error messages’ on page 71.

JDBC 2.0 optional package extensions support

84

The JDBC 2.0 Optional Package (formerly the JDBC 2.0 Sandard Extension
API) defined several featuresthat JDBC 2.0 drivers could implement. jConnect
version 6.0 and later have implemented the following optional package
extension features:

e JINDI for naming databases
(works with any Sybase DBM S supported by jConnect)

e Connection pooling
(works with any Sybase DBM S supported by jConnect)

jConnect for JDBC

CHAPTER 2 Programming Information

e Distributed transaction management support
(works only with Adaptive Server version 12.0 and later, or version 11.x
using XA-Server™)

The above features require classes and/or interfaces that are not found in
standard JDK 1.2.x distributions. You must download javax.sql.* and
javax.naming.* to implement them if you are using a JDK 1.2.x or JRE
installation. However, if you are using JDK 1.3.x or later, no additional
download is necessary because the classes are part of the standard Java
installation databases and connection pooling, and you must download
javax.transaction.xa.* to implement Distributed Transaction Management
Support.

Note Sybase recommends that you use JINDI 1.2, which is compatible with
Java 1.1.6 and later.

JNDI for naming databases

Reference

Related interfaces

Programmer’s Reference

The JDBC 2.0 Optional Package (formerly the JDBC 2.0 Sandard Extension
API), Chapter 5, “IJNDI and the JDBC API.”

* javax.sqgl.DataSource
¢ javax.naming.Referenceable
* javax.naming.spi.ObjectFactory

Thisfeature provides JIDBC clientswith an alternative to the standard approach
for obtaining database connections. Instead of invoking Class.forName
(“com.sybase.jdbc3.jdbc.SybDriver”), then passing a JDBC URL to the
DriverManager's getConnection() method, clients can access a INDI name
server using alogical name to retrieve ajavax.sql.DataSource object. This
object isresponsible for loading the driver and establishing the connection to
the physical database it represents. The client code is simpler and reusable
because the vendor-specific information has been placed within the
DataSource object.

85

Implementing advanced features

Usage

la. Configuration by
administrator: LDAP

The Sybase implementation of the DataSource object is
com.sybase.jdbcx.SybDataSource (see the javadocs for details). This
implementation supports the following standard properties using the design
pattern for JavaBean components:

e databaseName

* dataSourceName
* description

* networkProtocol
e password

e portNumber

* serverName

® user

Note roleName is not supported.

jConnect provides an implementation of the javax.naming.spi.ObjectFactory
interface so the DataSource object can be constructed from the attributes of a
name server entry. When given a javax.naming.Reference, or a
javax.naming.Name and a javax.naming.DirContext, this factory can construct
com.sybase.jdbcx.SybDataSource objects. To use this factory, set the
java.naming.object.factory system property to include
com.sybase.jdbc3.SybObjectFactory.

You can use DataSource in different ways, in different applications. All options
are presented in the following subsections with some code examplesto guide
you through the process. For more information, see the JDBC 2.0 Optional
Package (formerly the JDBC 2.0 Sandard Extension API), and the JNDI
documentation on the Sun Web site.

jConnect has supported LDAP connectivity since version 4.0. As aresult, the
recommended approach, which requires no custom software, isto configure
DataSources as LDAP entries using the LDAP Data Interchange Format
(LDIF). For example:

dn:servername:myASE, o=MyCompany, c=US
1.3.6.1.4.1.897.4.2.5:TCP#1# mymachine 4000
1.3.6.1.4.1.897.4.2.10:PACKETSIZE=1024&user=me&password=secret

86

jConnect for JDBC

CHAPTER 2 Programming Information

1.3.6.1.4.1.897.4.2.11:userdb

1h. Access by client Thisisthetypical JIDBC client application. The only difference isthat you
access the name server to obtain areference to a DataSource object, instead of
accessing the DriverManager and providing aJDBC URL . Once you obtain the
connection, the client codeisidentical to any other JDBC client code. The code
is very generic and references Sybase only when setting the object factory
property, which can be set as part of the environment.

The jConnect installation contains the sample program
sample2/SmpleDataSource.java to illustrate the use of DataSource. This
sampleisprovided for reference only, that is, you cannot run the sample unless
you configure your environment and edit the sample appropriately.
SmpleDataSource.java contains the following critical code:

import javax.naming.*;
import javax.sqgl.*;
import java.sqgl.*;

// set necessary JNDI properties for your environment (same as above)
Properties jndiProps = new Properties() ;

// used by JNDI to build the SybDataSource
jndiProps.put (Context .OBJECT FACTORIES,
"com. sybase.jdbc3.jdbc.SybObjectFactory") ;

// nameserver that JNDI should talk to
jndiProps.put (Context . PROVIDER URL, "ldap:
//some_ldap server:238/o=MyCompany,c=Us") ;

// used by JNDI to establish the naming context
jndiProps.put (Context.INITIAL CONTEXT FACTORY,
"com.sun.jndi.ldap.LdapCtxFactory") ;

// obtain a connection to your name server

Context ctx = new InitialContext (jndiProps) ;

DataSource ds = (DataSource) ctx.lookup ("servername=myASE") ;

// obtains a connection to the server as configured earlier.

// in this case, the default username and password will be used

Connection conn = ds.getConnection() ;

// do standard JDBC methods

Programmer’s Reference 87

Implementing advanced features

Explicitly passing the Properties to the InitialContext constructor is not required
if the properties have already been defined within the virtual machine, that is,
passed when Java was either set as part of the browser properties, or by using
the following:

java -Djava.naming.object.factory=com.sybase.jdbc3.jdbc.SybObjectFactory

See your Java VM documentation for more information about setting
environment properties.

2a. Configuration by This phaseis typically done by the person who performs database system
administrator: custom administration or application integration for their company. The purposeisto

88

define a data source, then deploy it under alogical name to a name server. If
the server needs to be reconfigured (for example, moved to another machine,
port, and so on), then the administrator runsthis configuration utility (outlined
as follows) and reassigns the logical name to the new data source
configuration. Asaresult, the client code does not change, since it knows only
the logical name.

import javax.sqgl.*;
import com.sybase.jdbecx. *;

// create a SybDataSource, and configure it

SybDataSource ds = new com.sybase.jdbc3.jdbc.SybDataSource () ;

ds.setUser ("my username") ;

ds.setPassword ("my password") ;

ds.setDatabaseName ("my favorite db") ;

ds.setServerName ("db_machine") ;

ds.setPortNumber (4000) ;

ds.setDescription ("This DataSource represents the Adaptive Server
Enterprise server running on db machine at port 2638. The default
username and password have been set to 'me' and 'mine' respectively.
Upon connection, the user will access the my_ favorite db database on
this server.");

Properties props = newProperties()

props.put ("REPEAT READ", "false");

props.put ("REQUEST HA SESSION", "true");

ds.setConnectionProperties (props) ;

// store the DataSource object. Typically this is

// done by setting JNDI properties specific to the

// type of JNDI service provider you are using.

// Then, initialize the context and bind the object.

Context ctx = new InitialContext () ;

ctx.bind ("jcbc/myASE", ds);

jConnect for JDBC

CHAPTER 2 Programming Information

2h. Access by client

Onceyou set up your DataSource, you decide where and how you want to store
the information. To assist you, SybDataSource is both java.io.Serializable and
javax.naming.Referenceable, but it is still up to the administrator to determine
how the datais stored, depending on what service provider you are using for
JNDI.

The client retrieves the DataSource object by setting its INDI properties the
same way the DataSource was deployed. The client needs to have an object
factory available that can transform the object asit is stored (for example,
serialized) into a Java object.

Context ctx = new InitialContext () ;

DataSource ds =

Connection pooling

Reference

Related interfaces

Overview

Programmer’s Reference

(DataSource ctx.lookup ("jcbc/myASE") ;

The JDBC 2.0 Optional Package (formerly the JDBC 2.0 Sandard Extension
API), Chapter 6, “Connection Pooling.”

¢ javax.sgl.ConnectionPoolDataSource

* javax.sqgl.PooledConnection

Traditional database applications create one connection to a database that you
use for each session of an application. However, a Web-based database
application may need to open and close a new connection several times when
using the application.

An efficient way to handle Web-based database connectionsisto use
connection pooling, which maintains open database connections and manages
connection sharing across different user requests to maintain performance and
to reduce the number of idle connections. On each connection request, the
connection pool first determines if there is an idle connection in the pool. If
thereis, the connection pool returns that connection instead of making a new
connection to the database.

Connection pooling capabilities are provided by ConnectionPoolDataSource. If
you use this interface, you can pool connections. If you use the DataSource
interface, you cannot pool connections.

89

Implementing advanced features

90

When you use ConnectionPoolDataSource, pool implementations listen to the
PooledConnection. The implementation is notified when a user closes the
connection, or if the user has an error that destroys the connection. At this
point, the pool implementation decides what to do with the PooledConnection.

Without connection pooling, atransaction:

1 Creates a connection to the database.

2 Sendsthe query to the database.

3 Getsback the result set.

4 Displaystheresult set.

5 Destroys the connection.

With connection pooling, the sequence looks more like this:
Sees if an unused connection exists in the “pool” of connections.
If S0, uses it; otherwise creates a new connection.
Sends the query to the database.

Gets back the result set.

Displays the result set.

o o1~ W N B

Returnsthe connection to the “pool.” The user till calls“close()”, but the
connection remains open, and the pool is notified of the close request.

Itisless costly to reuse a connection than to create a new one every time a
client needs to establish a connection to a database.

To enable athird party to implement the connection pool, the jConnect
implementation has the ConnectionPoolDataSource interface produce
PooledConnections, similar to the way the DataSource interface produces
Connections.

The pool implementation creates “real” database connections, using the
getPooledConnection() methods of ConnectionPoolDataSource. Then, the pool
implementation registersitself as alistener to the PooledConnection.

Currently, when a client requests a connection, the pool implementation
invokes getConnection() on an available PooledConnection. When the client
finisheswith the connection and callsclose, the pool implementationisnotified
through the ConnectionEventListener interface that the connection is free and
available for reuse.

jConnect for JDBC

CHAPTER 2 Programming Information

Configuration by
administrator: LDAP

The pool implementation is also notified through the ConnectionEventListener
interface if the client somehow corrupts the database connection, so that the
pool implementation can remove that connection from the pool.

For more information, refer to Appendix B inthe JDBC 2.0 Optional Package
(formerly the JDBC 2.0 Sandard Extension API).

This approach is the same as “ 1a. Configuration by administrator: LDAP”
described in “INDI for naming databases,” except that you enter an additional
line to your LDIF entry. In the following example, the added line of codeis
bolded for your reference.

dn:servername=myASE, o=MyCompany, c=US

1.3.6.1.4.1.897
1.3.6.1.4.1.897
1.3.6.1.4.1.897
1.3.6.1.4.1.897

Access by middle-tier
clients

.4.2.5:TCP#1# mymachine 4000
.4.2.10:PACKETSIZE=1024&user=me&password=secret
.4.2.11:usexdb

.4.2.18:ConnectionPoolDataSource

Thisprocedureinitializesthree properties (INITIAL_CONTEXT_FACTORY,
PROVIDER_URL, and OBJECT_FACTORIES as shown on page 78), and
retrieves a ConnectionPoolDataSource object. For a more complete code
example, see sample2/S mpleConnectionPool.java. The fundamental
differenceis:

ConnectionPoolDatabase cpds = (ConnectionPoolDataSource)
ctx.lookup ("servername=myASE") ;
PooledConnection pconn = cpds.getPooledConnection() ;

Distributed transaction management support

Reference

Related interfaces

Programmer’s Reference

This feature provides a standard Java API for performing distributed
transactions with either Adaptive Server version 12.x or version 11.x with XA-
Server.

Note Thisfeatureisdesigned for usein alarge multitier environment.

See Chapter 7, “ Distributed Transactions,” in the JDBC 2.0 Optional Package
(formerly the JDBC 2.0 Sandard Extension API).

* javax.sgl.XADataSource

91

Implementing advanced features

* javax.sqgl.XAConnection

* javax.transaction.xa.XAResource

Background and system requirements

For Adaptive Server » Because jConnect is communicating directly with the resource manager

12.0 and later within Sybase Adaptive Server version 12.0 and | ater, theinstal lation must
have Distributed Transaction Management support.

* Any user who wants to participate in a distributed transaction must have
the “dtm_tm_role” granted, or the transactionsfail.

» Tousedistributed transactions, you must install the stored proceduresin
the /sp directory. Refer to “Installing Stored Procedures’ in Chapter 1 of
the jConnect for JDBC Installation Guide.

Figure 2-2: Distributed transaction management
support with version 12.x

Middle-tier
components
JTA
Client _ TDS | ASE 12.x
application JConnect
DTM
For Adaptive Server jConnect also provides a standard Java API for performing distributed
11.x transactions with Adaptive Server version 11.x as your database server.

e Thisimplementation works only with Sybase Adaptive Server version
11.x and XA-Server 11.1.

92 jConnect for JDBC

CHAPTER 2 Programming Information

Figure 2-3: Distributed transaction management support with version

11.x
Middle-tier ITA .
components [¢ » jConnect
ITDS
Client XA-Server DS .| ASE 11.x
application 11.1 >

e Thelogin chosen cannot have adefault |ogin database of master, model, or
sybsystemdb. This is because XA-Server connects only when the user's
work is associated with a distributed transaction, and distributed
transactions are not permitted on those databases.

e Thereisno accessto metadata. Although thisrestrictstheclient, it is most
likely not the part of the API being used within the boundaries of
distributed transactions.

Adaptive Server 12.x use

Configuration by This approach is the same as “ 1a. Configuration by administrator: LDAP”

administrator: LDAP described in “INDI for naming databases’ on page 85, except that you enter
an additional lineto the LDIF entry. In the following example, the added line
of codeisdisplayed in bold.

dn:servername:myASE, o=MyCompany, c=US

1.3.6.1.4.1.897.4.2.5:TCP#1# mymachine 4000
1.3.6.1.4.1.897.4.2.10:PACKETSIZE=1024&user=me&password=secret
1.3.6.1.4.1.897.4.2.11:userdb
1.3.6.1.4.1.897.4.2.18:XADataSource

Access by middle-tier Thisprocedureinitializesthree properties (INITIAL_CONTEXT_FACTORY,

clients PROVIDER_URL, and OBJECT FACTORIES), and retrieves a
XADataSource object. For example:

XADataSource xads = (XADatasource) ctx.lookup ("servername=myASE") ;
XAConnection xaconn = xads.getXAConnection() ;

or override the default settings for the user name and password:

XADataSource xads = (XADatasource) ctx.lookup ("servername=myASE") ;

Programmer’s Reference 93

Implementing advanced features

XAConnection xaconn = xads.getXAConnection("my username","my password") ;

Adaptive Server 11.x use

Configuration by

administrator: LDAP

This approach is the same as “ 1a. Configuration by administrator:
LDAP"described in “JNDI for naming databases” on page 85, except that you
enter an additional three linesto the LDIF entry.

In the following example, the additional code lines are displayed in bold:

dn:servername:myASE, o=MyCompany, c=US

R RERRE PR
WWwwwww

94

.6.

P S S
a0 v O OO
o e e ..

1.

H R RRPR
NN NS

4.

1.

R R R PR

897.
.897.
.897.
.897.
.897:
.897.

PN NN NS

4.2.5:TCP#1# mymachine 4000

.2.10:PACKETSIZE=1024&user=me&password=secret
.11l:userdb

.1l6:userconnection

L17:1

.2.18:XADataSource

« e .
N NN

where:

. . . .4.2.17:1indicatesthat jConnect is going to connect to an X A-
Server.

* userconnection corresponds to the Logical Resource Manager (LRM)
to use.

XA-Server has an xa_config file that contains these entries:

[xa]

lrm=userconnection
server=my ase_ 1l server
XAServer=my_Xa Server

Figure 2-4: Distributed transaction management support sample
configuration

Middle-tier | JTA)
» jConnect

components [
A A
TDS
v v
Client my_xa_server my_ase_11 server
application running on. < TDS# -
mymachine:4000

Seethe X A-Server documentation for details on how to write an xa_config file.

jConnect for JDBC

CHAPTER 2 Programming Information

Access by middle-tier Thisprocedureinitializesthree properties (INITIAL_CONTEXT_FACTORY,
clients PROVIDER_URL, and OBJECT_FACTORIES), and retrieves a
XADataSource object. For example:

XADataSource xads = (XADatasource) ctx.lookup ("servername=myASE") ;
XAConnection xaconn = xads.getXAConnection() ;

With Adaptive Server 11.x, you cannot override the default user name and
password, that is, you cannot call the following:

xads.getXAConnection ("my username", "my password") ;

because the Irmis associated with a specific user name and password.

Restrictions on and interpretations of JDBC standards

This section discusses how the jConnect implementation of JDBC deviates
from the JIDBC 1.x, 2., and 3.0 standards. The following topics are covered:

e Using JDBC 3.0 method stubs

e Using Connection.isClosed and IS CLOSED_TEST
e Using Statement.close with unprocessed results

e Making adjustments for multithreading

e Using ResultSet.getCursorName

e Using setLong with large parameter values

e Using COMPUTE statements

e Executing stored procedures

Programmer’s Reference 95

Restrictions on and interpretations of JDBC standards

Using JDBC 3.0 method stubs

jConnect 6.0iscompiled using JDK 1.4, whichincludesthe JDBC 3.0 standard
and all associated methods and interfaces. jConnect 6.0 has not yet
implemented any of the JDBC 3.0 methods. This functionality isto be
implemented incrementally in future EBF releases. An attempt to invoke a
JDBC 3.0 method using jConnect 6.0 resultsin a SQL Exception indicating that
the method has not yet been implemented. Check the Sybase Support Page at
http://www.sybase.com/support for the latest EBF and software maintenance
information.

Using Connection.isClosed and IS _ CLOSED_TEST

96

According to section 11.1 of the JIDBC 2.1 specification:

“The Connection.isClosed method is only guaranteed to return “true" after
Connection.close has been called. Connection.isClosed cannot be called, in
general, to determine if a database connection isvalid or invalid. A typical
client can determine that a connection isinvalid by catching the exception that
is thrown when an operation is attempted.”

jConnect offers adefault interpretation of theisClosed method that is different
from the behavior that is defined in the spec. When you call
Connection.isClosed, jConnect first verifies that Connection.close has been
called on this connection. If close has been called, jConnect returns "true" for
isClosed.

However, if Connection.close has not been called, jConnect next tries to
execute the sp_mda stored procedure on the database. The sp_mda stored
procedureis part of the standard metadata that jConnect users must install
when they use jConnect with a database.

The purpose of calling sp_mda is so that jConnect can try to execute a
procedurethat is known (or at least, expected) to reside on the database server.
If the stored procedure executes normally, then jConnect returns "false” for
isClosed because we have verified that the database connection isvalid and
working. However, if the call to sp_mda resultsin a SQLException being
thrown, jConnect catches the exception and returns "true” for isClosed because
it appears that there is something wrong with the connection.

jConnect for JDBC

CHAPTER 2 Programming Information

If you intend to force jConnect to more closely follow the standard JDBC
behavior for isClosed(), you can do so by setting the IS CLOSED_TEST
connection property to the special value“INTERNAL.” The INTERNAL
setting means that jConnect returns "true" for isClosed only when
Connection.close has been called, or when jConnect has detected an

| OException that has disabled the connection.

You can a so specify aquery other than sp_mda to use when isClosed is called.
For example, if you intend for jConnect to attempt a select 1 when isClosed is
called, you can set the IS CLOSED_TEST connection property to select 1.

Using Statement.close with unprocessed results

Programmer’s Reference

The JDBC specification is somewhat vague on how a driver should behave
when you call Statement.execute and later call close on that same statement
object without processing all of the results (update counts and ResultSets)
returned by the Statement.

For example, assume that thereis a stored procedure on the database that does
seven row inserts. An application then executes that stored procedure using a
Statement.execute. In this case, a Sybase database returns seven update counts
(onefor each inserted row) to the application. In normal JDBC application
logic, you would process those update counts in aloop using the
getMoreResults, getResultSet and getUpdateCount methods. These are clearly
explained on the java.sun.com Web site in the javadocs for the java.sgl.*
package.

However, an application programmer might incorrectly choose to call
Statement.close before reading through all of thereturned update counts. Inthis
case, jConnect sends a cancel to the database, which can have unexpected and
unwanted side effects.

In this particular example, if the application calls Statement.close before the
database has completed the inserts, the database might not execute al of the
inserts. It might stop, for example, after only fiverows are inserted because the
cancel is processed on the database before the stored procedure compl etes.

The missing inserts would not be reported to you in this case. Future releases
of jConnect may throw a SQLException when you try to close a Statement when
there are still unprocessed results, but until then, jConnect programmers are
strongly advised to adhere to the following guidelines:

97

Restrictions on and interpretations of JDBC standards

* Whenyou call Statement.close, acancel is sent to the server if not all the
results (update counts and Resul tSets) have been compl etely processed by
you. In cases where you only executed select statements, thisisfine.
However, in caseswhereyou executed insert/update/delete operations, this
can result in not all of those operations completing as expected.

e Therefore, you should never call close with unprocessed results when you
have executed anything but pure select statements.

» Instead, if you call Statement.execute, be sure your code processes al the
results by using the getUpdateCount, getMoreResults and getResultSet
methods.

Making adjustments for multithreading

If several threads simultaneoudly call methods on the same Statement instance,
CallableStatement, or PreparedStatement—which Sybase does not
recommend— you must manually synchronize the calls to the methods on the
Statement; jConnect does not do this automatically.

For example, if you have two threads operating on the same Statement
instance—one thread sending a query and the other thread processing
warnings—you must synchronize the calls to the methods on the Statement or
conflicts may occur.

Using ResultSet.getCursorName

98

Some JDBC drivers generate a cursor name for any SQL query so that astring
can always be returned. However, jConnect does not return a name when
ResultSet.getCursorName is called, unless you either:

e Cadlled setFetchSize or setCursorName on the corresponding Statement, or

e Setthe SELECT _OPENS CURSOR connection property to "true," and
your query wasin the form of SELECT... FOR UPDATE. For example:

select au_id from authors for update

If you do not call setFetchSize or setCursorName on the corresponding
Statement, or set the SELECT_OPENS CURSOR connection property to
"true," null is returned.

According to the JIDBC 2.0 API (see chapter 11, “Clarifications’), all other
SQL statements do not need to open a cursor and return aname.

jConnect for JDBC

CHAPTER 2 Programming Information

For more information on how to use cursorsin jConnect, see “Using cursors
with result sets’ on page 49.

Using setLong with large parameter values

Implementations of the PreparedStatement.setLong method set a parameter
valueto a SQL BIGINT datatype. Most Adaptive Server databases do not have
an 8-byte BIGINT datatype. If a parameter value requires more than 4 bytes of
aBIGINT, using setLong can result in an overflow exception.

Using COMPUTE statements

jConnect does not support computed rows. In fact, results are automatically
cancelled when a query contains a computed row. For example, the following
statement is rejected:

SELECT name FROM sysobjects
WHERE type="S" COMPUTE COUNT (name)

To avoid this problem, substitute the following code:

SELECT name from sysobjects WHERE type="S"
SELECT COUNT (name) from sysobjects WHERE type="S"

Executing stored procedures

Programmer’s Reference

e If you execute a stored procedure in a CallableStatement object that
represents parameter val ues as question marks, you get better performance
thanif you use both question marksand literal valuesfor parameters. Also,
if you mix literals and question marks, you cannot use output parameters
with a stored procedure.

The following example creates sp_stmt as a CallableStatement object for
executing the stored procedure MyProc:

CallableStatement sp stmt = conn.prepareCall (
"{call MyProc(?,?)}");

Thetwo parametersin MyProc are represented as question marks. You can
register one or both of them as output parameters using the
registerOutParameter methods in the CallableStatement interface.

99

Restrictions on and interpretations of JDBC standards

100

In the following example, sp_stmt2 is a CallableStatement object for
executing the stored procedure MyProc2.

CallableStatement sp stmt2 = conn.prepareCall (
{"call MyProc2(?,'javelin')}");

In sp_stmt2, one parameter value is given as aliteral value and the other
as a question mark. You cannot register either parameter as an output
parameter.

» To execute stored procedures with RPC commands using name-binding
for parameters, use either of the following procedures:

» Uselanguage commands, passing input parameters to them directly
from Java variables using the PreparedStatement class. Thisis
illustrated in the following code fragment:

// Prepare the statement

System.out.println("Preparing the statement...");

String stmtString = "exec " + procname + " @p3=?, @pl=?";
PreparedStatement pstmt = con.preparedStatement (stmtString) ;

// Set the values
pstmt.setString (1, "xyz");
pstmt.setInt (2, 123);

// Send the query
System.out.println("Executing the query...");
ResultSet rs = pstmt.executeQuery () ;

* With jConnect version 6.0 and later, use the
com.sybase.jdbcx.SybCallableStatement interface, illustrated in this
example:

import com.sybase.jdbecx. *;

// prepare the call for the stored procedure to execute as an RPC
String execRPC = "{call " + procName + " (?, ?)}";
SybCallableStatement scs = (SybCallableStatement)

con.prepareCall (execRPC) ;

// set the values and name the parameters

// also (optional) register for any output parameters
scs.setString (1, "xyz");

scs.setParameterName (1, "@p3");

scs.setInt (2, 123);

scs.setParameterName (2, "@pl");

jConnect for JDBC

CHAPTER 2 Programming Information

// execute the RPC
// may also process the results using getResultSet ()
// and getMoreResults ()

// see the samples for more information on processing results
ResultSet rs = scs.executeQuery() ;

Programmer’s Reference 101

Restrictions on and interpretations of JDBC standards

102 jConnect for JDBC

CHAPTER 3

Overview

Programmer’s Reference

Security

This chapter describes security issues for jConnect.

Topic Page
Overview 103
SSL 104
Kerberos 104

jConnect version 6.0 provides the following options for securing
client-server communications:

¢ SS9 - UseSSL to encrypt communications, including the login
exchange, between client and server applications.

* Kerberos—Use Kerberosto authenticate Java applications or users of

Javaapplicationsto Adaptive Server Enterprise without sending user
names or passwords over a network. Also use Kerberosto set up a
Single Sign-On (SSO) environment and provide mutual
authentication between the digital identity of a Java application and
that of Adaptive Server Enterprise.

Note Kerberosmay be used to encrypt communications and provide
dataintegrity checking, but these have not been implemented for
jConnect 6.0.

Kerberos and SSL may also be used together, providing the advantage of
both SSO and encryption of data transferred between client and server

applications.

103

SSL

Restrictions

SSL

Kerberos

104

Kerberos and SSL can be used only with Adaptive Server Enterprise version
12.0 and later. Adaptive Server Anywhere does not currently support either
SSL or Kerberos security.

Sybase recommends that you read related documentation about SSL and

K erberos before attempting to use either with jConnect. Theinformationinthis
chapter assumes that the servers you intend to use have been configured to
work properly with SSL, with Kerberos, or with both.

For further information on Kerberos, SSL, and configuring Adaptive Server
Enterprise, see“Related documents”’ on page 114. Also, see the whitepaper on
setting up Kerberos. The URL for this document can be found in the jConnect
for JIDBC Release Bulletin.

For details on using SSL with jConnect, see “Implementing custom socket
plug-ins’ on page 29.

Kerberosis a network authentication protocol that uses encryption for
authentication of client-server applications. Kerberos provides advantages for
users and system administrators, including the following:

» A Kerberos database can serve as a centralized storehouse for users.

» Kerberosfacilitatesthe single-sign-on (SSO) environment, in which auser
system login provides the credential s necessary to access a database.

* Kerberosisan IETF standard. Interoperability is possible between
different implementations of Kerberos.

jConnect for JDBC

CHAPTER 3 Security

Configuring jConnect applications for Kerberos

Before attempting to configure Kerberos for jConnect 6.0, make sure you have
the following:

JDK 1.4 or later (JDK 1.4.2 or later is recommended)

A Java Generic Security Services (GSS) Manager:

a Thedefault Sun GSS Manager, which is part of the JDK, or
b Wedgetail JCSI Kerberos version 2.6 or later, or

¢ CyberSafe TrustBroker Application Security Runtime Library
version 3.1.0 or later, or

d A GSSManager implementation from another vendor.

A KDC that is supported and interoperable at the server side with your
GSS library and at the client side with your GSSManager.

To enable Kerberos login with jConnect, use the following procedure.

v Configuring Kerberos for jConnect

1
2

3

Set the REQUEST_KERBEROS_SESSION property to "true.”

Set the SERVICE_PRINCIPAL_NAME property to the name that your
Adaptive Server Enterprise is running under. In general, thisisthe name
set with the -s option when the server isstarted. The service principal name
must also be registered with the KDC. If you do not set avalue for the
SERVICE_PRINCIPAL_NAME property, jConnect defaults to using the
host name of the client machine.

Optionally, set the GSSMANAGER_CLASS property.

For more information on the REQUEST KERBEROS SESSION and
SERVICE_PRINCIPAL_NAME properties, see Chapter 2, “ Programming
Information.” For more information on the GSSMANAGER_CLASS
property, see “GSSMANAGER_CLASS connection property.”

GSSMANAGER_CLASS connection property

When using Kerberos, jConnect relies on several Java classes that implement
the Generic Security Services (GSS) API. Much of this functionality is
provided by the org.ietf.jgss.GSSManager class.

Programmer’s Reference

105

Kerberos

Vendor implementations

Javaallowsvendorsto providetheir own implementations of the GSSManager
class. Examples of vendor-supplied GSSManager implementations are those
provided by Wedgetail Communications and CyberSafe Limited. Users can
configure avendor-written GSSManager classtowork in aparticular K erberos
environment. Vendor-supplied GSSManager classes may aso offer more
interoperability with Windows than the standard Java GSSManager class
provides.

Before using a vendor-supplied implementation of GSSManager, be sureto
read the vendor documentation. Vendors use system property settings other
than the standard Java system properties used for Kerberos and may locate
realm names and Key Distribution Center (KDC) entries without using
configuration files.

Setting GSSMANAGER_CLASS

106

You can use avendor implementation of GSSManager with jConnect by setting
the GSSMANAGER_CLASS connection property. There are two ways to set
this property:

e Createaninstance of GSSManager, and set thisinstance asthe value of the
GSSMANAGER_CLASS property.

e Setthevaue of the GSSMANAGER_CLASS property asastring
specifying the fully qualified class name of the GSSManager object.
jConnect usesthis string to call class. forName () .newInstance ()
and casts the returned object as a GSSManager class.

In either case, the application CLASSPATH variable must include the location
of the classes and .jar files for the vendor implementation.

Note If you do not set the GSSMANAGER_CLASS connection property,
jConnect uses the org.ietf.jgss.GSSManager.getinstance method to load the
default Java GSSManager implementation.

When you use the GSSMANAGER _CLASS connection property to passin a
fully qualified class name, jConnect calls the no-argument constructor for the
GSSManager. Thisinstantiates a GSSManager that isin the default
configuration for the vendor implementation, so you do not have control over
the exact configuration of the GSSManager object. If you create your own
instance of GSSManager, you can use constructor arguments to set
configuration options.

jConnect for JDBC

CHAPTER 3 Security

How jConnect uses GSSMANAGER_CLASS
First, jConnect checks the value of GSSMANAGER_CLASSfor a
GSSManager class object to use in Kerberos authentication.

If the value of GSSMANAGER_CLASS has been set to astring instead of a
classobject, jConnect usesthe string to create an instance of the specified class
and uses the new instance in Kerberos authentication.

If the value of GSSMANAGER_CLASS is set to something that is neither a
GSSManager class object nor a string, or if jConnect encounters a
ClassCastException, jConnect throws a SQLException indicating the problem.

Examples

The following examples illustrate how to create your own instance of
GSSManager and how to let jConnect create a GSSManager object when the
GSSMANAGER_CLASS connection property is set to afully qualified class
name. Both examples use the Wedgetail GSSManager.

v Example: Creating your own instance of GSSManager
1 Instantiate aGSSManager in your application code. For example:
GSSManager gssMan = new com.dstc.security.kerberos.gssapi.GSSManager () ;

This example usesthe default constructor with no arguments. You can use
other vendor-supplied constructors, which allow you to set various
configuration options.

2 Passthe new GSSManager instance into the GSSMANAGER_CLASS
connection property. For example:

Properties props = new Properties() ;
props.put ("GSSMANAGER CLASS", gssMan) ;

3 Usethese connection properties, including GSSMANAGER_CLASS, in
your connection. For example:

Connection conn = DriverManager.getConnection (url, props);

v Example: Passing a string to GSSMANAGER_CLASS

1 Inyour application code, create a string specifying thefully qualified class
name of the GSSManager object. For example:

String gssManClass = "com.dstc.security.kerberos.gssapi.GSSManager";
2 Passthe string to the GSSMANAGER_CL ASS connection property. For
example:

Programmer’s Reference 107

Kerberos

Properties props = new Properties();
props.put ("GSSMANAGER CLASS", gssManClass) ;

3 Usethese connection properties, including GSSMANAGER_CLASS, in
your connection. For example,

Connection conn = DriverManager.getConnection (url, props) ;

Setting up the Kerberos environment

CyberSafe
Encryption keys

Address mapping and
realm information

108

This section provides suggestions for setting up the environment to use
jConnect 6.0 with three different implementations of Kerberos:

e CyberSafe
e MIT

* Microsoft Active Directory

Note Before reading this section, see the whitepaper on setting up Kerberos.
The URL for this document can be found in the jConnect for JDBC Release
Bulletin.

Specify aData Encryption Standard (DES) key when creating aprincipal to be
used by Javain the CyberSafe KDC. The Java reference implementation does
not support Triple Data Encryption Standard (3DES) keys.

Note You can use 3DESkeysif you are using CyberSafe GSSManager with a
CyberSafe KDC and have set the GSSMANAGER_CLASS property.

CyberSafe Kerberos does not use a krb5.conf configuration file. By default,
CyberSafe uses DNS records to locate KDC address mapping and realm
information. Alternately, CyberSafe locates KDC address mapping and realm
information in the krb.conf and krb.realmsfiles, respectively. Refer to
CyberSafe documentation for more information.

jConnect for JDBC

CHAPTER 3 Security

Solaris

MIT
Encryption keys

If you are using the standard Java GSSManager implementation, you must still
create akrb5.conf filefor use by Java. The CyberSafe krb.conf fileisformatted
differently from the krb5.conf file. Create a krb5.conf file as specified in the
Sun manual pages or in the MIT documentation. You do not need a krb5.conf
fileif using the CyberSafe GSSManager.

For examples of the krb5.conf file, see whitepaper on setting up Kerberos. The
URL for this document can be found in the jConnect for JDBC Release
Bulletin.

When using CyberSafe client libraries on Solaris, make sure your library
search path includes the CyberSafe libraries before any other Kerberos
libraries.

Specify a DES key when creating a principal to be used by Javain the MIT
KDC. The Java reference implementation does not support 3DES keys.

If you plan to use only the standard Java GSSManager implementation, specify
an encryption key of type des-cbc-crc Of des-cbe-mds. Specify the
encryption type as follows:

des-cbc-crc:normal

Herenormal isthetype of key salt. It may be possible to use other salt types.

Note If you are using Wedgetail GSSManager, you can create principalsin an
MIT KDC of type des3-cbc-shal-kd.

Microsoft Active Directory

SSO

User accounts and

service principal

Encryption

Programmer’s Reference

SSO using the Java reference implementation is available only for Windows
2000 and Windows X P clients, not for Windows NT clients using Microsoft
Active Directory. However, SSO is possible for NT clientsusing a
vendor-supplied GSSManager such as that provided by CyberSafe.

Make sure that you have set up accountsin Active Directory for your user
principals (the users) and service principals (the accounts that represent your
database servers). Your user principals and service principals should both be
created as 'Users within Active Directory.

If youintend to usethe Javareference GSS M anager implementation, you must
use DES encryption for both user and service principals.

109

Kerberos

v Setting DES encryption

1 Right-click on the specific user principal or service principal namein the
Active Directory Userslist.

2 Select Properties.
Click the Account tab. The Account Options list appears.

4 For both the user principal and service principal, specify that DES
encryption types should be used.

Client machines If you plan to use the Java reference implementation to set up an SSO
environment on Windows 2000 clients, you may need to modify the Windows
Registry according to instructions specified at the following URL:

http://support.microsoft.com/defaul t.aspx ?scid=kb;en-us;308339.

Configuration file On Windows, the Kerberos configuration file is called krb5.ini. Javalooksfor
krb5.ini by default at C:\WINNT\krb5.ini. Java allows you to specify the
location of thisfile. The format of krb5.ini isidentical to that of krb5.conf.

For examples of the krb5.conf file, see whitepaper on setting up Kerberos. The
URL for this document can be found in the jConnect for JDBC Release
Bulletin.

For more information on Kerberos for Microsoft Active Directory, see the
following document:

www.microsoft.com/windows2000/techinfo/planning/security/kerbsteps.asp

Sample applications

The following two commented code samples are provided in the
jConnect-6_0/sample2 directory to illustrate how to establish a Kerberos
connection to Adaptive Server Enterprise:

e ConnectKerberos,java— A simple Kerberos login to Adaptive Server
Enterprise

e ConnectKerberosJAASjava — A more detailed sample showing how a
Kerberos login might be implemented within application-server code

ConnectKerberos.java

To run the ConnectKerberos.java sample application, use the following
procedure.

110 jConnect for JDBC

CHAPTER 3 Security

\

Programmer’s Reference

Running ConnectKerberos.java
1 Make sure your machine has valid Kerberos credentials. This task varies

depending on your machine and environment.

Windows— You can establish Kerberos credentials for a Windows 2000 or
XP machine running in an Active Directory environment by successfully
logging in using Kerberos authentication.

UNIX or Linux — You can establish Kerberos credentials for aUNIX or
Linux machine using thekinit utility for your Kerberos client. If you do not
obtain an initial credential using kinit, you are prompted for a user name
and password when you attempt to run the sample application.

Note The Sun JDK can use only the DES CBC_MD5 and

DES CBC_CRC encryption types. You may be able to use other
encryption types by using third-party software and setting the
GSSMANAGER_CLASS property.

Determine the location of the credentials for your machine.

Windows — For a Windows 2000 or XP machine running in an Active
Directory environment, Kerberos credentials are stored in an in-memory
ticket cache.

UNIX or Linux —For aUNIX or Linux machine using the Sun Java,
CyberSafe, Solaris, or MIT implementations of Kerberos, kinit places
credentials by default in /tmp/krb5cc {user_id_number}, where
{user_id_number} is unique to your user name.

If the credentials are placed el sewhere, you must specify that location in
the sample2/exampleLogin.conf file by setting the ticketCache property.

Specify to the Java reference implementation the default realm and host
name of the KDC machine. Java may obtain this information from the
krb5.conf or krb5.ini configuration files or from Java System properties. If
you use avendor GSS Manager implementation, that implementation may
obtain host and realm information from DNS SRV records.

Sybase recommends that you use a Kerberos configuration file, which
allowsfor more control of the Kerberos environment, including the ability
to specify to Javathe type of encryption to request during authentication.

Note OnLinux, the Javareferenceimplementation looksfor the Kerberos
configuration file in /etc/krb5.conf.

111

Kerberos

112

If you do not use a Kerberos configuration file, and your Kerberos
configuration is not set up to use DNS SRV records, you can specify the
realm and KDC using the java.security.krb5.realm and
java.security.krb5.kdc System properties.

Edit ConnectKerberos.java so that the connection URL points to your
database.

Compile ConnectKerberos.java.

Be sureto use JDK version 1.4 or later. Sybase recommends using JDK
1.4.2 or later. Read through the source code comments, and make sure the
jeconn3.jar from your jConnect installation is specified in your
CLASSPATH environment variable.

Execute ConnectKerberos.class:
java ConnectKerberos

Be sureto use the 1.4.2 java executable. The sample application output
explains that a successful connection has been established and executes
the following SQL :

select 1

» Toexecutethe samplewithout using a Kerberos configurationfile, use
the following command:

java -Djava.security.krb5.realm=your realm
-Djava.security.krb5.kde=your kdc
ConnectKerberos

where your_realm s your default realm, and your_kdc is your KDC.

» If necessary, you can run the sample application in debug mode to see
debug output from the Java Kerberos layer:

java -Dsun.security.krb5.debug=true
ConnectKerberos

You can also make a Kerberos connection using IsqglApp, the Java version
of isql, located in the jConnect-6_0/classes directory:

java IsqglApp -S jdbc:sybase:Tds:hostName: portNum
-K service principal name
-F path to JAAS login module config file

For details on using IsglApp, see Appendix B, “jConnect Sample
Programs.”

jConnect for JDBC

CHAPTER 3 Security

Interoperability

Table 3-1 shows combinations of KDCs, GSS libraries, and platforms on
which Sybase has successfully established a connection to Adaptive Server
Enterprise. The absence of any particular combination does not indicate that a
connection cannot be established with that combination. Interoperability
testing is ongoing, and you can find the most recent status at the jConnect for
JDBC Web site:

http://www.sybase.com/products/mi ddleware/jconnectforjdbc

Table 3-1: Interoperability combinations

Client platform KDC GSSManager GSS C libraries? ASE platform
Solaris 8° CyberSafe Java GSS CyberSafe Solaris 8
Solaris 8 Active Directory® Java GSS CyberSafe Solaris 8
Solaris 8 MIT Java GSS CyberSafe Solaris 8
Solaris 8 MIT Wedgetail GSSY MIT Solaris 8
Solaris 8 CyberSafe Wedgetail GSS® CyberSafe Solaris 8
Windows 2000 Active Directory Java GSS CyberSafe Solaris 8
Windows XP Active Directory Java GSS' CyberSafe Solaris 8

a These are the libraries that Adaptive Server Enterpriseis using for its GSS functionality.

b. All Solaris 8 platformsin this table are 32-bit.

c. All Active Directory entriesin the table refer to an Active Directory server running on Windows 2000. For Kerberos
interoperability, Active Directory users must be set to “Use DES encryption types for this account.”

d. Used Wedgetail JCSI Kerberos 2.6. The encryption type was 3DES.

e. Used Wedgetail JCS| Kerberos 2.6. The encryption type was DES.

f. Java 1.4.x has abug which requiresthat clientsuse System. setProperty ("os.name", "Windows 2000") ; to
ensure that Java can find the in-memory credential on Windows XP clients.

Encryption types

Programmer’s Reference

Sybase recommends that you use the | atest versions of these libraries. Contact
the vendor if you intend to use older versions or if you have problems with
non-Sybase products.

The standard Java GSS implementation provided by Sun supports only DES
encryption. If youintend to usethe 3DES, RC4-HMAC, AES-256, or AES-128
encryption standards, you must use the CyberSafe or Wedgetail GSSManagers.

Refer to the respective documentation for more information about Wedgetail
and CyberSafe.

113

Kerberos

Troubleshooting

Kerberos

Related documents

114

This section documents issues to consider when troubleshooting K erberos
security.

Consider the following when troubleshooting problems with Kerberos
security:

The Java reference implementation supports only the DES encryption
type. You must configureyour Active Directory and KDC principalsto use
DES encryption.

The value of the SERVICE_PRINCIPAL_NAME property must be set to
the same name you specify with the -s option when you start your data
server.

Check the krb5.conf and krb5.ini files. For CyberSafe clients, check the
krb.conf and krb.realms files or DNS SRV records.

You can set the debug property to "true” in the JAAS login configuration
file.

You can set the debug property to "true” at the command line:
-Dsun.security.krb5.debug=true

The JAAS login configuration file provides several options that you can
set for your particular needs. For information on this configuration file,
refer to the following links:

http://java.sun.com/j2se/1.4.2/docs/guide/security/jgss/tutorial /L oginCo
nfigFile.html

http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/spec/com/sun/sec
urity/auth/modul /K rb5L oginM odule.html

For further information on troubleshooting JAAS and the Java GSS AP, refer
to the following link:

http://java.sun.com/j2se/1.4.2/docs/guide/security/jgss/tutorial S/ Troubl eshooti
ng.html

Thefollowing documents provide additional information on Kerberos security.

jConnect for JDBC

CHAPTER 3 Security

e Javatutorial on JAAS and the Java GSS API:

http://java.sun.com/j2se/1.4.2/docs/guide/security/jgss/tutorial /index.ht
ml

* MIT Kerberos documentation and download site;
http://web.mit.edu/kerberos/www/index.html

e CyberSafe Limited:
http://www.cybersafe.ltd.uk

e CyberSafe Limited document on Windows-K erberos interoperability:

www.cybersafe.ltd.uk/docs _cybersafe/K erberos¥%20I nteroperability%620-
%20M i crosoft%20W 2k%208& %20A ctiveTRUST. pdf

e Wedgetail Communications Kerberos FAQ:
http://www.wedgetail.com/jcsi/kerberos/FAQ.html

e Description of how Windows implements authentication, including
information about Active Directory Kerberos:

http://www.windowsitlibrary.com/Content/617/06/1.html
e Description of Windows Kerberos:

http://mwww.microsoft.com/windows2000/techinfo/howitworks/security/k
erberos.asp

* Kerberos RFC 1510:
http://www.linuxdig.com/rfc/individual/1510.php

Programmer’s Reference 115

Kerberos

116 jConnect for JDBC

CHAPTER 4 Troubleshooting

This chapter describes solutions and workaroundsfor problemsyou might
encounter when using jConnect.

Topic Page
Debugging with jConnect 117
Capturing TDS communication 120
Resolving connection errors 122
Managing memory in jConnect applications 123
Resolving stored procedure errors 124
Resolving a custom socket implementation error 125

Debugging with jConnect

jConnect includes a Debug class that contains a set of debugging
functions. The Debug methodsinclude avariety of assert, trace, and timer
functions that let you define the scope of the debugging process and the
output destination for the debugging results.

The jConnect installation a so includes a complete set of debug-enabled
classes. These classes are located in the devclasses subdirectory under
your jConnect installation directory. For debugging purposes, you must
redirect your CLASSPATH environment variable to reference the debug
mode runtime classes (devclasses/jconn3d.jar), rather than the standard
jConnect classes directory. You can also do this by explicitly providing a
-classpath argument to the java command when you run a Java program.

Obtaining an instance of the Debug class

To use the jConnect debugging feature, your application must import the
Debug interface and obtain an instance of the Debug class by calling the
getDebug method on the SybDriver class.

import com.sybase.jdbcx.Debug

Programmer’s Reference 117

Debugging with jConnect

import.com. sybase.jdbcx.SybDebug
!/

SybDriver sybDriver = (SybDriver)
Class.forName ("com.sybase.jdbc3.jdbc.SybDriver") .newln

stance () ;
Debug sybdebug = sybDriver.getDebug() ;

Turning on debugging in your application

To usethe debug method on the Debug object to turn on debugging within your
application, add this call:

sybdebug.debug (true, [classes], [printstream]) ;

The classes parameter is a string that lists the specific classes you want to
debug, separated by colons. For example:

sybdebug.debug (true, "MyClass")
and
sybdebug.debug (true, "MyClass:YourClass")

Using “STATIC" in the class string turns on debugging for all static methods
in jConnect in addition to the designated classes. For example:

sybdebug.debug (true, "STATIC:MyClass")
You can specify “ALL” to turn on debugging for all classes. For example:
sybdebug.debug (true, "ALL") ;

The printstream parameter is optional. If you do not specify a printstream, the
debug output goes to the output file you specified with
DriverManager.setLogStream.

Turning off debugging in your application
To turn off debugging, add this call:

sybdebug.debug (false) ;

118 jConnect for JDBC

CHAPTER 4 Troubleshooting

Setting the CLASSPATH for debugging

Before you run your debug-enabled application, redefine the CLASSPATH
environment variable to reference the /devclasses subdirectory under your
jConnect installation directory:

e For UNIX, replace $IDBC_HOME/classes/jconn3.jar with
$JDBC_HOME/devclasses/jconn3d.jar.

e For Windows, replace %JDBC_HOME%\classes\jconn3.jar with
%JDBC_HOME%\devclasses\jconn3d.jar.

Using the Debug methods

To customize the debugging process, you can add calls to other Debug
methods.

In these methods, the first (object) parameter is usually this to specify the
calling object. If any of these methods are static, use null for the object
parameter.

* printin

Use this method to define the message to print in the output log if
debugging is enabled and the abject isincluded in the list of classesto
debug. The debug output goes to the file you specified with
sybdebug.debug.

The syntax is:
sybdebug.println (object,message string) ;
For example:
sybdebug.println(this, "Query: "+ query) ;
produces a message similar to thisin the output log:
myApp (thread[x,y,z]): Query: select * from authors
b assert

Usethis method to assert a condition and throw a runtime exception when
the condition is not met. You can also define the message to print in the
output log if the condition is not met. The syntax is:

sybdebug.assert (object,boolean condition,message
string) ;

Programmer’s Reference 119

Capturing TDS communication

For example:

sybdebug.assert (this, amount<=buf.length, amount+"
too big!");

produces a message similar to thisin the output log if “amount” exceeds
the value of buf.length:

java.lang.RuntimeException:myApp (thread([x,y,z]) :
Assertion failed: 513 too big!

at jdbc.sybase.utils.sybdebug.assert (
sybdebug.java:338)

at myApp.myCall (myApp.java:xxx)

at more stack:

e startTimer
stopTimer

Use these methods to start and stop atimer that measures the milliseconds
that elapse during an event. The method keeps one timer per object, and
one for all static methods. The syntax to start the timer is:

sybdebug.startTimer (object) ;
The syntax to stop the timer is:
sybdebug.stopTimer (object, message string) ;
For example:

sybdebug.startTimer (this) ;
stmt .executeQuery (query) ;
sybdebug.stopTimer (this, "executeQuery") ;

produces a message similar to thisin the output log:

myApp (thread [x,y, z]) :executeQuery elapsed time =
25ms

Capturing TDS communication

Tabular Data Stream (TDS) is the Sybase proprietary protocol for handling
communication between a client application and Adaptive Server. jConnect
includes a PROTOCOL_CAPTURE connection property that allows you to
capture raw TDS packetsto afile.

120 jConnect for JDBC

CHAPTER 4 Troubleshooting

If you are having problems with an application that you cannot resolve within
either the application or the server, you can use PROTOCOL_CAPTURE to
capture the communi cation between the client and the server in afile. You can
then send the file, which contains binary data and is not directly interpretable,
to Sybase Technical Support for analysis.

Note You can also usethe Ribo utility to capture, translate, and display the
protocol stream flowing between the client and the server. For details on how
to obtain and use Ribo, visit the jConnect utilities Web page at at
http://lwww.sybase.com/detail/1.6904.1009793.00.html.

PROTOCOL_CAPTURE connection property

Use the PROTOCOL _CAPTURE connection property to specify afile for
receiving the TDS packets exchanged between an application and an Adaptive
Server. PROTOCOL _CAPTURE takeseffectimmediately sothat TDS packets
exchanged during connection establishment arewritten to the specifiedfile. All
packets continue to be written to the file until Capture.pause is executed or the
session is closed.

The following example shows the use of PROTOCOL_CAPTURE to send
TDS datato thefiletds data:

props.put ("PROTOCOL CAPTURE", "tds data")Connection
conn = DriverManager.getConnection (url, props);

whereurl isthe connection URL, and propsisaProperties object for specifying
connection properties.

pause and resume methods in the Capture class

Programmer’s Reference

The Capture classis contained inthe com.sybase.jdbcx package. It containstwo
public methods:

* public void pause
* public void resume

Capture.pause stopsthe capture of raw TDS packetsinto afile; Capture.resume
restarts the capture.

121

Resolving connection errors

The TDS capture file for an entire session can become very large. If you want
to limit the size of the capturefile, and you know where in an application you
want to capture TDS data, you can do the following:

1 Immediately after you have established a connection, get the Capture
object for the connection and use the pause method to stop capturing TDS
data:

Capture cap = ((SybConnection)conn) .getCapture () ;
cap.pause () ;

2 Placecap.resume just before the point where you want to start capturing
TDS data.

3 Placecap.pause just after the point where you want to stop capturing data.

Resolving connection errors

This section addresses problemsthat may arise when you aretrying to establish
aconnection or start a gateway.

Gateway connection refused

122

Gateway connection refused:
HTTP/1.0 502 Bad Gateway|Restart Connection

This error message indicates that something iswrong with the hosthame or
port# used to connect to your Adaptive Server. Check the [query] entry in
$SYBASE/interfaces (UNIX) or in %SYBASEY\ini\sgl.ini (Windows).

If the problem persists after you have verified the hostname and port#, you can
learn more by starting the HTTP server using the “verbose” system property.

For Windows, go to a DOS prompt and enter:

httpd -Dverbose=1 > filename
For UNIX, enter:

sh httpd.sh -Dverbose=1 > filename &
where filename is the debug messages output file.

Your Web server probably does not support the connect method. Applets can
connect only to the host from which they were downl oaded.

jConnect for JDBC

CHAPTER 4 Troubleshooting

The HTTP gateway and your Web server must run on the same host. In this
scenario, your applet can connect to the same machine/host through the port
controlled by the HTTP gateway, which routes the request to the appropriate
database.

To see how thisis accomplished, review the source of Isgl.java and
gateway.html in the sample2 subdirectory under the jConnect installation
directory. Search for “proxy.”

Unable to connect to a 4.9.2 SQL Server

jConnect uses TDS 5.0 (Sybase transfer protocol). SQL Server 4.9.x usesTDS
4.6, which is not compatible with TDS 5.0.

Also, SQL Server 10.0.2 or later is required for use with jConnect.

Managing memory in jConnect applications

The following situations and their solutions may be helpful if you notice
increased memory use in jConnect applications.

* InjConnect applications, you should explicitly close al Statement objects
and subclasses (for example, PreparedStatement, CallableStatement) after
their last useto prevent statements from accumulating in memory. Closing
only the ResultSet is not sufficient.

For example, the following statement causes problems:

ResultSet rs = conn.prepareCall(query) .execute() ;

rs.close () ;

Instead, use the following:
PreparedStatement ps = _conn.prepareCall(query) ;
ResultSet rs = ps.execute();
ps.close()
rs.close ()

7
7

Programmer’s Reference 123

Resolving stored procedure errors

e jConnect uses TDS—the Sybase proprietary protocol—to communicate
with Sybase database servers. As of jConnect 6.0, TDS does not support
scrollable cursors. To support scrollable cursors, jConnect caches the row
data on demand, on the client, on each call to ResultSet.next. However,
when the end of the result set isreached, the entire result set is stored in
client memory. Because this may cause a performance strain, Sybase
recommends that you use TYPE_SCROLL_INSENSITIVE result sets
only when the result set is reasonably small.

Resolving stored procedure errors

This section addresses problems that may arise when you are trying to use
jConnect and stored procedures.

RPC returns fewer output parameters than registered

SQLState: JZ0SG - An RPC did not return as many output
parameters as the application had registered for it.

This error occursif you call CallableStatement.registerOutParam for more
parameters than you have declared as“ OUTPUT” parameters in the stored
procedure. Make sure that you have declared all of the appropriate parameters
as“OUTPUT.” Look at the line of code that reads:

create procedure yourproc (@pl int OUTPUT,

Note If you receive this error while using Adaptive Server Anywhere

(previoudly known as SQL Anywhere), upgrade to Adaptive Server Anywhere
version 5.5.04 or later.

Fetch/state errors when output parameters are returned

If aquery does not return row data, then it should use the
CallableStatement.executeUpdate or execute methods rather than the
executeQuery method.

124 jConnect for JDBC

CHAPTER 4 Troubleshooting

Asrequired by the JIDBC standards, jConnect throws a SQL exception if
executeQuery has no result sets.

Stored procedure executed in unchained transaction mode

Sybase Error 7713 - Stored Procedure can only be
executed in unchained transaction mode.

This error occurs when JDBC attempts to put the connection in
autocommit(true) mode. The application can change the connection to chained
mode using Connection.setAutoCommit(false) or by using a “set chained on”

language command. This error occurs if the stored procedure was not created
in a compatible mode.

To fix the problem, use:

sp_procxmode procedure_name,"anymode”

Resolving a custom socket implementation error

Programmer’s Reference

You may receive an exception similar to the following whiletrying to set up an
SSL socket when calling

sun.security.ssl.SSLSocketlmpl.setEnabledCipherSuites:

java.lang.IllegalArgumentException:
SSL_SH anon EXPORT WITH RC4 40 MDS

Verify that the SSL libraries are in the system library path.

125

Resolving a custom socket implementation error

126 jConnect for JDBC

CHAPTER 5

Performance and Tuning

This chapter describes how to fine-tune or improve performance when
working with jConnect.

Topic Page
Improving jConnect performance 127
Performance tuning for prepared statements in dynamic SQL 130
Cursor performance 136

Improving jConnect performance

There are anumber of waysto optimize the performance of an application
using jConnect:

Programmer’s Reference

Use TextPointer.sendData methods to send text and image datato an
Adaptive Server database. See* Updating image datain the database”

on page 63.

Create precompiled PreparedStatement objects for dynamic SQL

statements that are used repeatedly during a session. See

“Performance tuning for prepared statementsin dynamic SQL” on

page 130.

Use batch updates to improve performance by reducing network
traffic; specificaly, all queries are sent to the server in one group and
all responsesreturned to the client are sent in one group. See* Support

for batch updates’ on page 59.

For sessionsthat are likely to move image data, large row sets, and
lengthy text data, use the PACKETSIZE connection property to set

the maximum feasible packet size.

For TDStunneled HTTP, set the maximum TDS packet size and
configure your Web server to support the HTTP1.1 Keep-Alive
feature. Also, set the SkipDoneProc servlet argument to "true.”

127

Improving jConnect performance

e Use protocol cursors, the default setting of the LANGUAGE_CURSOR
connection property. See“ LANGUAGE_CURSOR connection property”
on page 136 for more information.

e If youuse TYPE _SCROLL_INSENSITIVE result sets, use them only
when the result set is reasonably small. See “Using
TYPE_SCROLL_INSENSITIVE result setsin jConnect” on page 57 for
more information.

Additional considerations for improving performance are described in the
following sections.

BigDecimal rescaling

The JDBC 1.0 specification requires a scale factor with getBigDecimal. Then,
when aBigDecimal object isreturned from the server, it must be rescaled using
the original scale factor you used with getBigDecimal.

To eliminate the processing time required for rescaling, use the JDBC 2.0
getBigDecimal method, which jConnect implements in the SybResultSet class
and does not require a scale value:

public BigDecimal getBigDecimal(int columnindex)
throws SQLException

For example:

SybResultSet rs =
(SybResultSet) stmt .executeQuery ("SELECT
numeric _column from T1");

while (rs.next())

{

BigDecimal bd rs.getBigDecimal (
"numeric_ column") ;

REPEAT_READ connection property

You can improve performance on retrieving aresult set from the database if
you set the REPEAT _READ connection property to "false." However, when
REPEAT_READ is"fdse"

128 jConnect for JDBC

CHAPTER 5 Performance and Tuning

e Youmust read column valuesin order, according to column index. Thisis
difficult if you want to access columns by name rather than column
number.

¢ You cannot read a column value in arow more than once.

SunloConverter character-set conversion

Programmer’s Reference

If you are using multibyte character sets and need to improve driver
performance, you can use the SunloConverter class provided with the jConnect
samples. This converter is based on the sun.io classes provided by the Java
Software Division of Sun Microsystems, Inc.

The SunloConverter classisnot apure Javaimplementation of the character-set
converter feature and, therefore, is not integrated with the standard jConnect
product. However, Sybase has provided this converter classfor your reference,
and you can useit with the jConnect driver to improve character-set conversion
performance.

Note Based on Sybase testing, the SunloConverter class improved
performance on al VMs on which it was tested. However, the Java Software
Division of Sun Microsystems, Inc. reservesthe right to remove or change the
sun.io classes with future releases of the JDK. Therefore, this SunloConverter
class may not be compatible with later JDK releases.

To use the SunloConverter class, you must install the jConnect sample
applications. Once the samples are installed, set the
CHARSET_CONVERTER_CLASS connection property to reference the
SunloConverter class in the sample2 subdirectory under your jConnect
installation directory. Seethe Sybase jConnect for JDBC Installation Guidefor
completeinstructionson installing jConnect and its components, including the
sample applications.

If you are using a database with its default character set asiso_1, or if you are
using only the first 7 bits of ASCII, you can gain significant performance
benefits by using the TruncationConverter. See “jConnect character-set
converters’ on page 35.

129

Performance tuning for prepared statements in dynamic SQL

Performance tuning for prepared statements in

dynamic SQL

130

In Embedded SQL ™, dynamic statements are SQL statements that need to be
compiled at runtime, rather than statically. Typically, dynamic statements
contain input parameters, although thisis not a requirement. In SQL, the
prepare command isused to precompile adynamic statement and saveit so that
it can be executed repeatedly without being recompiled during a session.

If astatement is used multiple timesin a session, precompiling it provides
better performance than sending it to the database and compiling it for each
use. The more complex the statement, the greater the performance benefit.

If astatement islikely to be used only afew times, precompiling it may be
inefficient because of the overhead involved in precompiling, saving, and later
deallocating it in the database.

Precompiling adynamic SQL statement for execution and saving it in memory
uses time and resources. If a statement is not likely to be used multiple times
during a session, the costs of doing a database prepare may outweigh its
benefits. Another consideration is that once a dynamic SQL statement is
prepared in the database, it isvery similar to astored procedure. In some cases,
it may be preferable to create stored procedures and have them reside on the
server, rather than defining prepared statements in the application. Thisis
discussed under “ Choosing prepared statements and stored procedures’ on
page 131.

You can use jConnect to optimize the performance of dynamic SQL statements
on a Sybase database as follows:

» Create PreparedStatement objects that contain precompiled statementsin
cases where a statement is likely to be executed several timesin asession.

» Create PreparedStatement objects that contain uncompiled SQL
statements in cases where a statement is used very few timesin a session.

As described in the following sections, the optimal way to set the
DYNAMIC_PREPARE connection property and create PreparedStatement
objects can depend on whether your application needs to be portable across
JDBC drivers or whether you are writing an application that allows jConnect-
specific extensions to JDBC.

jConnect 4.1 and later provide performance tuning features for dynamic SQL
Statements.

jConnect for JDBC

CHAPTER 5 Performance and Tuning

Choosing prepared statements and stored procedures

If you create a PreparedStatement object containing a precompiled dynamic
SQL statement, once the statement is compiled in the database, it effectively
becomes a stored procedure that isretained in memory and attached to the data
structure associated with your session. In deciding whether to maintain stored
procedures in the database or to create PreparedStatement objects containing
compiled SQL statementsin your application, resource demands and database
and application maintenance are important considerations:

Once a stored procedure is compiled, it is globally available across all
connections. In contrast, adynamic SQL statement in aPreparedStatement
object needs to be compiled and deallocated in every session that usesit.

If your application accesses multiple databases, using stored procedures
means that the same stored procedures need to be available on all target
databases. This can create a database maintenance problem. If you use
PreparedStatement objects for dynamic SQL statements, you avoid this
problem.

If your application creates CallableStatement objects for invoking stored
procedures, you can encapsulate SQL code and table referencesin the
stored procedures. You can then modify the underlying database or SQL
code without have to change the application.

Prepared statements in portable applications

If your application runs on databases from different vendors and you want
some PreparedStatement objects to contain precompiled statements and others
to contain uncompiled statements, proceed as follows:

Programmer’s Reference

When you access a Sybase database, make sure that the
DYNAMIC_PREPARE connection property is set to "true."

To return PreparedStatement objects containing precompiled statements,
use Connection.prepareStatement in the standard way:

PreparedStatement ps precomp =
Connection.prepareStatement (sql string) ;

To return PreparedStatement objects containing uncompiled statements,
use Connection.prepareCall.

Connection.prepareCall returns a CallableStatement object, but because
CallableStatement is a subclass of PreparedStatement, you can upcast a
CallableStatement object to a PreparedStatement object, as follows:

131

Performance tuning for prepared statements in dynamic SQL

PreparedStatement ps_uncomp =
Connection.prepareCall (sql string) ;

The PreparedStatement object ps_uncomp is guaranteed to contain an
uncompiled statement, because only Connection.prepareStatement iS
implemented to return PreparedStatement objects containing precompiled
Statements.

Prepared statements with jConnect extensions

If you are not concerned about portability across drivers, you can write code
that uses SybConnection.prepareStatement to specify whether a
PreparedStatement object contains precompiled or uncompiled statements. In
this case, how you code prepared statements can depend on whether most of
the dynamic statementsin an application are likely to be executed many times
or only afew times during a session.

If most dynamic statements are executed infrequently

For an application in which most dynamic SQL statements are likely to be
executed only once or twice in a session:

* Set the connection property DYNAMIC_PREPARE to "false.”

» Toreturn PreparedStatement objects containing uncompiled statements,
use Connection.prepareStatement in the standard way:

PreparedStatement ps_uncomp =
Connection.prepareStatement (sql string) ;

» Toreturn PreparedStatement objects containing precompiled statements,
use SybConnection.prepareStatement with dynamic set to "true," as shown:

PreparedStatement ps precomp =
(SybConnection) conn.prepareStatement (sql string, true);

If most dynamic statements are executed many times in a session

If most of the dynamic statements in an application are likely to be executed
many times in the course of a session, proceed as follows:

» Set the connection property DY NAMIC_PREPARE to "true."

» Toreturn PreparedStatement objects containing precompiled statements,
use Connection.prepareStatement in the standard way:

132 jConnect for JDBC

CHAPTER 5 Performance and Tuning

PreparedStatement ps precomp =
Connection.prepareStatement (sql string) ;

» To return PreparedStatement objects containing uncompiled statements,
you can use either Connection.prepareCall (see the third bullet under
Prepared statements in portabl e applications) or
SybConnection.prepareStatement, with dynamic set to "false":

PreparedStatement ps_uncomp =
(SybConnection) conn.prepareStatement (sgl string,
false) ;

PreparedStatement ps_uncomp =
Connection.prepareCall (sql string) ;

Connection.prepareStatement

jConnect implements Connection.prepareStatement SO you can set it to return
either precompiled SQL statements or uncompiled SQL statementsin
PreparedStatement objects. If you set Connection.prepareStatement to return
precompiled SQL statements in PreparedStatement objects, it sends dynamic
SQL statements to the database to be precompiled and saved exactly as they
would be under direct execution of the prepare command. If you set
Connection.prepareStatement to return uncompiled SQL statements, it returns
them in PreparedStatement objects without sending them to the database.

The type of SQL statement that Connection.prepareStatement returnsis
determined by the connection property DY NAMIC_PREPARE, and applies
throughout a session.

For Sybase-specific applications, jConnect 6.0 provides a prepareStatement
method under the jConnect SybConnection class.
SybConnection.prepareStatement allows you to specify whether an individual
dynamic SQL statement isto be precompiled, independent of the session-level
setting of the DYNAMIC_PREPARE connection property.

DYNAMIC_PREPARE connection property

DYNAMIC_PREPARE is aBoolean-valued connection property for enabling
dynamic SQL prepared statements:

Programmer’s Reference 133

Performance tuning for prepared statements in dynamic SQL

134

If DYNAMIC_PREPARE is set to "true," every invocation of
Connection.prepareStatement during a session attemptsto return a
precompiled statement in a PreparedStatement object.

In this case, when a PreparedStatement is executed, the statement it
containsis already precompiled in the database, with place holders for
dynamically assigned values, and the statement needs only to be executed.

If DYNAMIC PREPARE is set to "false" for a connection, the
PreparedStatement object returned by Connection.prepareStatement does
not contain a precompiled statement.

In this case, each time aPreparedStatement is executed, the dynamic SQL
statement it contains must be sent to the database to be both compiled and
executed.

The default value for DYNAMIC_PREPARE is"false.”

In the following example, DYNAMIC_PREPARE is set to "true" to enable
precompilation of dynamic SQL statements. In the example, props isa
Properties object for specifying connection properties.

props.put ("DYNAMIC PREPARE", "true")
Connection conn = DriverManager.getConnection (url,
props) ;

When DYNAMIC _PREPARE is set to "true," note that:

Not al dynamic statements can be precompiled under the prepare
command. The SQL-92 standard places some restrictions on the
statements that can be used with the prepare command, and individual
database vendors may have their own constraints.

If the database generates an error because it is unable to precompile and
save astatement sent to it through Connection.prepareStatement, jConnect
traps the error and returns a PreparedStatement object containing an
uncompiled dynamic SQL statement. Each time the PreparedStatement
object is executed, the statement is re-sent to the database to be compiled
and executed.

A precompiled statement resides in memory in the database and persists
either to the end of a session or until its PreparedStatement object is
explicitly closed. Garbage collection on a PreparedStatement object does
not remove the prepared statement from the database.

jConnect for JDBC

CHAPTER 5 Performance and Tuning

Asageneral rule, you should explicitly close every PreparedStatement object
after itslast use to prevent prepared statements from accumulating in server
memory during a session and slowing performance.

SybConnection.prepareStatement

Programmer’s Reference

If your application allows jConnect-specific extensionsto JDBC, you can use
the SybConnection.prepareStatement extension method to return dynamic SQL
statements in PreparedStatement obj ects:

PreparedStatement SybConnection.prepareStatement
(String sqgl stmt,
boolean dynamic) throws SQLException

SybConnection.prepareStatement can return PreparedStatement objects
containing either precompiled or uncompiled SQL statements, depending on
the setting of the dynamic parameter. If dynamic is "true,”
SybConnection.prepareStatement returns a PreparedStatement object with a
precompiled SQL statement. If dynamic is"false," it returnsa
PreparedStatement object with an uncompiled SQL statement.

The following example shows the use of
SybConnection.prepareStatement to return a PreparedStatement object
containing a precompiled statement:

PreparedStatement precomp stmt =

((SybConnection) conn) .prepareStatement ("SELECT *
FROM

authors WHERE au_fname LIKE ?", true);

In the example, the connection object connis cast to a SybConnection object to
allow the use of SybConnection.prepareStatement. The SQL string passed to
SybConnection.prepareStatement is precompiled in the database, even if the
connection property DYNAMIC_PREPARE is "false.”

If the database generates an error becauseit is unableto precompile a statement
sent to it through SybConnection.prepareStatement, jConnect throws a
SQLException, and the call fails to return a PreparedStatement object. Thisis
unlike Connection.prepareStatement, which traps SQL errors and, in the event
of an error, returns a PreparedStatement object containing an uncompiled
statement.

135

Cursor performance

ESCAPE_PROCESSING_DEFAULT connection property

By default, jConnect parses all SQL statements submitted to the database for
valid JIDBC function escapes. If your application is not going to use JDBC
function escapesin its SQL calls, you can set this connection property to
"false" to circumvent this parsing. This may give aslight performance benefit.

Cursor performance

When you use the Statement.setCursorName method or the setFetchSize()
method in the SybCursorResultSet class, jConnect creates a cursor in the
database. Other methods cause jConnect to open, fetch, and update a cursor.

Versions of jConnect earlier than 4.0 can create and manipul ate cursorsonly by
sending SQL statements with explicit cursor commands to the database for
parsing and compilation.

jConnect version 4.0 and later create and manipulate cursors either by sending
SQL statements to the database or by encoding cursor commands as tokens
within the TDS communication protocol. Cursors of the first type are
“language cursors;” cursors of the second type are “ protocol cursors.”

Protocol cursors provide better performance than language cursors. In
addition, not all databases support language cursors. For example, Adaptive
Server Anywhere databases do not support language cursors.

In jConnect, the default condition isfor all cursorsto be protocol cursors.
However, the LANGUAGE_CURSOR connection property gives you the
option of having cursors created and manipul ated through language commands
in the database.

LANGUAGE_CURSOR connection property

LANGUAGE_CURSOR isaBoolean-valued connection property in jConnect
that allowsyou to determine whether cursors are created as protocol cursors or
language cursors:

* If LANGUAGE_CURSOR isset to "false" al cursors created during a
session are protocol cursors, which provide better performance. jConnect
creates and manipulates the cursors by sending cursor commands as
tokensin the TDS protocol.

136 jConnect for JDBC

CHAPTER 5 Performance and Tuning

By default, LANGUAGE_CURSOR is set to "false.”

e If LANGUAGE _CURSOR isset to "true," al cursors created during a
session are language cursors. jConnect creates and mani pul atesthe cursors
by sending SQL statements to the database for parsing and compilation.

Thereisno known advantageto setting LANGUAGE_CURSORto "true,"
but the option is provided in case an application displays unexpected
behavior when LANGUAGE_CURSOR is"false."

Programmer’s Reference 137

Cursor performance

138 jConnect for JDBC

CHAPTER 6 Migrating jConnect Applications

This chapter explains how to migrate applications from jConnect 4.x and
5.x to jConnect 6.0.

Topic Page
Migrating applications to jConnect 6.0 139
Changing Sybase extensions 140

Migrating applications to jConnect 6.0
Use the following procedure to upgrade to jConnect 6.0.

v Migrating to jConnect 6.0

1 If your code uses Sybase extensions, or if you explicitly import any
jConnect classin your code, change package import statements as
needed.

For example, change import statements such as
import com.sybase.jdbc.*
and
import com.sybase.jdbc2.jdbc.*
to
import com.sybase.jdbcx.*

For information on using the Sybase extension APIs, see “ Changing
Sybase extensions’ on page 140.

2 Set DBC_HOME to the top directory of the jConnect driver you
installed:

JDBC_HOME=jConnect-6_0

For moreinformation on setting JDBC_HOME, see “ Setting
Environment Variables” in Chapter 1 of the jConnect for JDBC
Installation Guide.

Programmer’s Reference 139

Changing Sybase extensions

3 Change your CLASSPATH environment variable to reflect the new
installation. For jConnect 6.0, your classpath must include the following:

JDBC_HOME/classes/jconn3.jar

4 Change the source code where the driver isloaded, and recompile the
application to use the new jConnect 6.0 driver:

Class.forName ("com.sybase.jdbc3.jdbc.SybDriver") ;

5 Verify that the new jConnect 6.0 driver (in
JDBC_HOME/classes/jconn3.jar) isthefirst jConnect driver specifiedin
your CLASSPATH environment variable.

Changing Sybase extensions

jConnect version 4.1 and later include the package com.sybase.jdbcx that
contains all of the Sybase extensionsto JDBC. In versions of jConnect
previousto 4.1, these extensions were available in the com.sybase.jdbc and
com.sybase.utils packages.

The com.sybase.jdbcx package provides a consistent interface across different
versions of jConnect. All of the Sybase extensions are defined as Java
interfaces, which allows the underlying implementations to change without
affecting applications built using these interfaces.

When you develop new applications that use Sybase extensions, use
com.sybase.jdbcx. The interfaces in this package alow you to upgrade
applications to versions of jConnect that follow version 4.0 with minimal
changes.

Some of the Sybase extensions have been changed to accommodate the new
com.sybase.jdbcx interface.

Extension change example

140

If an application uses the SybMessageHandler, the code differenceswould be;
e jConnect 4.0 code:

import com.sybase.jdbc.SybConnection;
import com.sybase.jdbc.SybMessageHandler;

jConnect for JDBC

CHAPTER 6 Migrating jConnect Applications

Connection con = DriverManager.getConnection (url, props);
SybConnection sybCon = (SybConnection) con;
sybCon.setMessageHandler (new ConnectionMsgHandler()) ;

e jConnect 6.0 code:

import com.sybase.jdbcx.SybConnection;
import com.sybase.jdbcx.SybMessageHandler;

Connection con = DriverManager.getConnection(url, props);
SybConnection sybCon = (SybConnection) con;
sybCon.setSybMessageHandler (new ConnectionMsgHandler()) ;

See the sampl es provided with jConnect for more examples of how to use
Sybase extensions.

Method names
Table 6-1 lists how methods have been renamed in the new interface.

Table 6-1: Method name changes

Class Old name New name
SybConnection getCapture() createCapture()
SybConnection setMessageHandler() setSybMessageHandler()
SybConnection getMessageHandler() getSybMessageHandler()
SybStatement setMessageHandler() setSybMessageHandler()
SybStatement getMessageHandler() getSybMessageHandler()

Debug class

Direct static references to the Debug class are no longer supported, but existin
deprecated form in the com.sybase.utils package. To use jConnect debugging
facilities, use the getDebug method of the SybDriver classto obtain areference
to the Debug class. For example:

import com.sybase.jdbcx.SybDriver;
import com.sybase.jdbcx.Debug;

SybDriver sybDriver =

Programmer’s Reference 141

Changing Sybase extensions

SybDriver) Class. forName
("com.sybase.jdbc3.jdbc.SybDriver") newlInstance() ;
Debug sybDebug = sybDriver.getDebug() ;
sybDebug.debug (true, "ALL", System.out) ;

A completelist of Sybase extensionsisin the jConnect javadoc documentation
located in the docs/ directory of your jConnect installation directory.

142 jConnect for JDBC

CHAPTER 7

Web Server Gateways

Thischapter describesWeb server gateways and explains how to usethem
with jConnect.

Topic Page
About Web server gateways 143
Usage requirements 148
Using the TDS-tunnelling servlet 150

About Web server gateways

If your database server runs on a different host than your Web server, or if
you are devel oping Internet applications that must connect to a secure
database server through afirewall, you need a gateway to act as a proxy,
providing a path to the database server.

To connect to servers using the Secure Sockets Layer (SSL) protocol,
jConnect provides a Java servlet that you can install on any Web server
that supports the javax.servlet interfaces. This servlet enables jConnect to
support encryption using the Web server as the gateway.

Note jConnect includes support for SSL on the client system. For more
information, see “Implementing custom socket plug-ins’ on page 29.

Using TDS tunnelling

Programmer’s Reference

jConnect uses TDS to communicate with database servers. HTTP-
tunnelled TDSisuseful for forwarding requests. Requestsfrom aclient to
aback-end server that go through the gateway contain TDSin the body of
the request. The request header indicates the length of the TDS included
in the request packet.

143

About Web server gateways

TDSisaconnection-oriented protocol, whereas HTTP is not. To support
security features such as encryption for Internet applications, jConnect uses a
TDS-tunnelling servlet to maintain alogical connection acrossHT TP requests.
The servlet generates a session ID during the initial login request, and the
session ID isincluded in the header of every subsequent request. Using session
IDs lets you identify active sessions and even resume a session, as long as the
servlet has an open connection using that specific session ID.

Thelogical connection provided by the TDS-tunnelling servlet enables
jConnect to support encrypted communication between two systems; for
example, ajConnect client with the CONNECT_PROTOCOL connection
property set to “https’ can connect to aWeb server running the TDS-tunnelling
servlet.

Configuring jJConnect and gateways

There are several options for setting up your Web servers and Adaptive
Servers. The following examples are four common configurations that show
where to install the jConnect driver and when to use a gateway with the TDS-
tunnelling servlet.

Web server and Adaptive Server on one host

In this two-tier configuration, the Web server and Adaptive Server are both
installed on the same host:

e Install jConnect on the Web server host.
* Nogateway isrequired.

144 jConnect for JDBC

CHAPTER 7 Web Server Gateways

Figure 7-1: Web server and Adaptive Server on one host

Client Host
Browser URL
(Web
Downloaded server
applets and Download applets and
jConnect applets and i
J driver pCF:)onnect Jconnect
ol |}
\ Adaptive
TDS 5.0 Server

Dedicated JDBC Web server and Adaptive Server on one host

In this configuration, you have a separate host for your main Web server. A
second host is shared by a Web server specifically for Adaptive Server access
and the Adaptive Server. Links from the main server send requests requiring
SQL access to the dedicated Web server.

« Ingtal jConnect on the second (Adaptive Server) host.

Programmer’s Reference

* No gateway is required.

145

About Web server gateways

Figure 7-2: Dedicated JDBC Web server and Adaptive Server on one

host

Client

Host A

Browser

URL

Web server and Adaptive Server on separate hosts

In thisthree-tier configuration, the Adaptive Server is on a separate host from
the Web server. jConnect requires a gateway to act as a proxy to the Adaptive

146

Server.

Downloaded non-SQL
applets and applets
jConnect
driver Host B
Aoy
Download B Web
applets and~_| server
jConnect
applets and
jConnect
TDS 5.0

» Install jConnect on the Web server host.

* ReguiresaTDS-tunnelling servlet or adifferent gateway.

jConnect for JDBC

CHAPTER 7 Web Server Gateways

Figure 7-3: Web server and Adaptive server on separate hosts

Host A

Client
Browser
URL
Downloaded \¢7— Download —
applets and applets and
jConnect jConnect
driver
L
HTTP
tunneled
TDS
TDS 5.0

Main Web
server

jConnect

Connecting to a server through a firewall

To connect to aserver protected by afirewall, you must use a Web server with
the TDS-tunnelling servlet to support transmission of database request
responses over the Internet.

Programmer’s Reference

Install jConnect on the Web server host.

Requires a Web server that supports the javax.servlet interfaces.

applets and

147

Usage requirements

Figure 7-4: Connecting to a server through a firewall

|
Client | Host A
URL
Browser f
| Download
Downloaded T applets and 7 Web Server
appletsand ||| iConnect ~Supporting
jConnect | javax.servlet
driver HTTP/HTTPS__'TDS serviet
‘T tunneled
I TDS
I » applets and
| jConnect
Firewall |
I
| Host B
: TDS 5.0
I
I
I

Usage requirements

The following sections describe use requirements for Web server gateways.

148

v

jConnect for JDBC

CHAPTER 7 Web Server Gateways

Reading the index.html file

Use your Web browser to view the index.html filein your jConnect installation
directory. index.html provideslinksto the jConnect documentation and sample
code.

Note If you use Netscape on the same machine where you have installed
jConnect, be surethat your browser does not have accessto your CLASSPATH
environment variable. See “Restrictions on Setting CLASSPATH When You
Use Netscape” in Chapter 3 of the Sybase jConnect for JDBC Installation
Guide and Release Bulletin.

1 Openyour Web browser.

2 Enter the URL that matches your setup. For example, if your browser and
the Web server are running on the same host, enter:

http://localhost:8000/index.html
If the browser and the Web server are running on different hosts, enter:
http://host:port/index.html

where host isthe name of the host on which the Web server isrunning, and
port is the listening port.

Running the sample Isqgl applet

Programmer’s Reference

After loading the index.html file in your browser:
1 Click “Run Sample JDBC Applets.”
This takes you to the jConnect Sample Programs page.

2 Movedown the Sample Programs pageto find thetable under “ Executable
Samples.”

3 Locate “Isgl.java’ in the table and click Run at the end of the row.

The sampleIsql.java applet prompts for a simple query on a sample database

and displays the results. The applet displays a default Adaptive Server host

name, port number, user name (guest), password (sybase), database, and query.

Using the default val ues, the applet connects to the Sybase demonstration
database. It returns results after you click Go.

149

Using the TDS-tunnelling servlet

Troubleshooting

On UNIX, if the applet does not appear as expected, you can modify the appl et
screen dimensions:

1 Useatext editor to edit the following:
$IDBC_HOME/sample2/gateway.html

2 Changethe height parameter in line 7 to 650. You can experiment with
different height settings.

3 Reload the Web page on your browser.

Using the TDS-tunnelling servlet

150

To use the TDS-tunnelling servlet, you need a Web server that supports the
javax.servlet interfaces, such asthe Sun Microsystems Java Web server. When
you install the Web server, include the jConnect TDS-tunnelling servlet in the
list of active servlets. You can also set servlet parameters to define connection
timeouts and maximum packet size.

With the TDS-tunnelling servlet, requests from aclient to the back-end server
that go through the gateway includeaGET or POST command, the TDS session
ID (after theinitial request), back-end address, and status of the request.

TDSisinthe body of the request. Two header fields indicate the length of the
TDS stream and the session |D assigned by the gateway.

When the client sends a request, the Content-L ength header field indicates the
size of the TDS content, and the request command is POST. If thereisno TDS
datain the request because the client is either retrieving the next portion of the
response datafrom the server, or closing the connection, the request command
ISGET.

Thefollowing exampleillustrateshow information ispassed between the client
and an HTTPS gateway using the TDS-tunneled HTTPS protocol; it shows a
connection to a back-end server named “DBSERVER” with a port number of
“1234.”

jConnect for JDBC

CHAPTER 7 Web Server Gateways

Table 7-1: Client to gateway login request. No session ID.

Query POST/tds?ServerHost=dbserver& ServerPort=1234&
Operation=more HTTP/1.0

Header Content-Length: 605

Content Login request
(TDS)

Table 7-2: Gateway to client. Header contains session ID
assigned by the TDS servlet.

Query 200 SUCCESS HTTP/L.0

Header Content-Length: 210
TDS-Session: TDS00245817298274292

Content Login acknowledgment
(TDS) EED

Table 7-3: Client to gateway. Headers for all subsequent requests
contain the session ID.

Query POST/tds?TDS-
Session=TDS00245817298274292& Operation=more HTTP/1.0

Header Content-Length: 32

Content Query “SELECT * from authors’
(TDS)

Table 7-4: Gateway to client. Headers for all subsequent responses
contain the session ID.

Query 200 SUCCESSHTTP/1.0

Header Content-Length: 2048

TDS-Session: TDS00245817298274292
Content Row format and some rows from query response
(TDS)

Reviewing requirements

Programmer’s Reference

To use the jConnect servlet for TDS-tunneled HTTP, you need:

e A Web server that supports javax.servlet interfaces. To install the server,
follow the instructions that are provided with it.

e A Web browser that supports JDK 1.1, such as Netscape 4.0, Internet
Explorer 4.0, or HotJava.

151

Using the TDS-tunnelling servlet

Installing the servlet

Your jConnect installation includes a gateway?2 subdirectory under the classes
directory. The subdirectory contains files required for the TDS-tunnelling
servlet.

Copy the jConnect gateway package to a gateway2 subdirectory under the
serviets directory of your Web server. After you have copied the servlets,
activate the servlets by following the instructions for your Web server.

Setting servlet arguments

When you add the servlet to your Web server, you can enter optional arguments
to customize performance:

SkipDoneProc [truelfalse] — Sybase databases often return row count
information while intermediate processing steps are performed during the
execution of a query. Usually, client applicationsignore this data. If you
set SkipDoneProc to "true,”" the servlet removes this extrainformation
from responses “ on the fly,” which reduces network usage and processing
requirements on the client. Thisis particularly useful when using
HTTPS/SSL, because the unwanted data does not get encrypted/decrypted
beforeit isignored.

TdsResponseSze — set the maximum TDS packet size for the tunneled
HTTPS. A larger TdsResponseSzeismoreefficient if you have only afew
users with alarge volume of data. Use a smaller TdsResponseSze if you
have many users making smaller transactions.

TdsSessionl dleTimeout — define the amount of time (in milliseconds) that
the server connection can remain idle before the connection is
automatically closed. The default TdsSessionldleTimeout is 600,000 (10
minutes).

If you haveinteractive client programsthat may beidlefor long periods of
time and you do not want the connections broken, increase the
TdsSessionl dleTimeout.

You can also set the connection timeout value from the jConnect client
using the SESSION_TIMEOUT connection property. Thisisuseful if you
have specific applications that may beidlefor longer periods. In this case,
set alonger timeout for those connectionswith the SESSION_TIMEOUT
connection property, rather than setting it for the servlet.

Debug —turn on debugging. See“ Debugging with jConnect” on page 117.

Enter the servlet arguments in a comma-delimited string. For example:

152

jConnect for JDBC

CHAPTER 7 Web Server Gateways

TdsResponseSize=[size] ,TdsSessionIdleTimeout=
[timeout] , Debug=true

Refer to your Web server documentation for complete instructions on entering
servlet arguments.

Invoking the servlet

jConnect determines when to use the gateway where the TDS-tunnelling
servlet isinstalled based on the path extension of the proxy connection
property. jConnect recognizes the servlet path extension to the proxy and
invokes the servlet on the designated gateway.

Define the connection URL using this format:
http://host:port/TDS-serviet-path

jConnect invokes the TDS-tunnelling servlet on the Web server to tunnel TDS
through HTTP. The servlet path must be the path you defined inthe servlet alias
list for your Web server.

Tracking active TDS sessions

You can view information about active TDS sessions, including the server
connectionsfor each session. Useyour Web browser to open the administrative
URL:

http://host:port/TDS-serviet-path?Operation=1list

For example, if your server is“myserver” and the TDS servlet path is /tds,
enter:

http://myserver:8080/tds?Operation=1list

Thisshowsyou alist of active TDS sessions. You can click on asession to see
more information, including the server connection.

Terminating TDS sessions

You can use the URL described above to terminate any active TDS session.
Click on an active session from thelist of sessions on the first page, then click
Terminate This Session.

Programmer’s Reference 153

Using the TDS-tunnelling servlet

Resuming a TDS session

You can set the SESSION_|D connection property so that, if necessary, you
can resume an existing open connection. When you specify a SESSION_1D,
jConnect skipsthelogin phase of the protocol and resumesthe connection with
the gateway using the designated session ID. If the session ID you specified
does not exist on the servlet, jConnect throws a SQL exception the first time
you attempt to use the connection.

Using TDS and Netscape Enterprise Server 3.5.1 on Solaris

154

Netscape Enterprise Server 3.5.1 does not support the
javax.servlet.ServletConfig.getlnitParameters or
javax.servlet.ServletConfig.getinitParameterNames methods. To provide the
necessary parameter values, you need to replace callsto getinitParameter() and
getlnitParameterNames with hard-coded parameter valuesin

TDSTunnel Serviet.java.

To enter the required parameter valuesin TDSTunnel Serviet.java and use TDS
tunnelling with Netscape Enterprise Server 3.5.1 on Solaris:

1 Hard-code parameter valuesin TDSTunnel Serviet.java.

2 Create .classfiles from the class declarations in TDSTunnel Serviet.java.
This should result in the following files:

e TDSTunnel Servet.class
e TdsSession.class
» TdsSessionManager.class

3 Createadirectory for the .class files under your Netscape Enterprise
Server 3.5.1 (NSE_3.5.1) installation directory, as follows:

mkdir NSE 3.5.1 install dir/plugins/java/servlets/gateway

4 Copy the .classfilesderived from TDSTunnel Serviet.java to the directory
you just created.

5 Copy the classes under $IDBC_HOME/classes/com/sybase to
NSE_3.5.1 install_dir/docs/com/sybase.

An easy way to do thisisto recursively copy everything under
$IDBC_HOME/classesto NSE_3.5.1 install_dir/docs, as shown:

cp -r $JDBC_HOME/classes NSE 3.5.1 install dir/docs

jConnect for JDBC

CHAPTER 7 Web Server Gateways

This copies anumber of files and directories that are not under
$IDBC_HOME/classes/com/sybase. The extrafiles and directories are

harmless but take up disk space. You can del ete them to reclaim the disk
space.

Set the proxy URL to the TDS-tunnelling servlet.

For example, in $JDBC_HOME/sample2/gateway.html, edit the proxy
parameter as follows:

<param name=proxy value="http://hostname/servliet/
gateway name.TDSTunnel Servlet name”>

Programmer’s Reference

155

Using the TDS-tunnelling servlet

156 jConnect for JDBC

appenDix A SQL Exception and Warning

Messages

The following table lists the SQL exception and warning messages that
you may encounter when using jConnect.

SQL state Message/description/action

010AF SEVERE WARNING: An assertion has failed, please use devclasses to
determine the source of this serious bug. Message =
Description: Aninternal assertion in the jConnect driver has failed.
Action: Usethe devclasses debug classesto determine the reason for this message and report the
problem to Sybase Technical Support.

010DF Attempt to set database at login failed. Error message:
Description: jConnect cannot connect to the database specified in the connection URL.
Action: Be surethe database namein the URL iscorrect. Also, if connecting to Adaptive Server
Anywhere, use the SERVICENAME connection property to specify the database.

010DP Duplicate connection property ignored.
Description: A connection property is defined twice. It may be defined twice in the driver
connection properties list with different capitalization, for example “ password” and
“PASSWORD.” Connection property names are not case-sensitive; therefore, jConnect does not
distinguish between property names with the same name but different capitalization.
The connection property may also be defined both in the connection propertieslist, and in the
URL. Inthis case, the property value in the connection property list takes precedence.
Action: Be sure your application defines the connection property only once. However, you may
want your application to take advantage of the precedence of connection properties defined in
the property list over those defined in the URL. In this case, you can safely ignore this warning.

O10HA The server denied your request to use the high-availability feature.

Please reconfigure your database, or do not request a high-
availability session.

Description: The server to which jConnect attempted an HA-enabled connection did not allow
the connection.

Action: Reconfigure the server to support high availability failover or do not set
REQUEST_HA_SESSION to "true."

Programmer’s Reference 157

SQL state Message/description/action

010HD Sybase high-availability failover is not supported by this type of
database server.
Description: The database to which jConnect attempted a connection does not support high
availability failover.
Action: Connect only to database servers that support high availability failover.

010HN The client did not specify a SERVICE PRINCIPAL NAME Connection
property. Therefore, jConnect is using the hostname of as the
service principal name
Action: Make sureto explicitly specify a service principal name using the connection property.

O10HT Hostname property truncated, maximum length is 30.
Description: You provided a string greater than 30 characters for the HOSTNAME connection
property, or the host machine on which the jConnect application is running has a name longer
than 30 bytesin length.
Action: No actionis necessary, sincethisisjust awarning to indicate that jConnect istruncating
the name to 30 bytes. However, if you wish to avoid this warning, you should set the
HOSTNAME to astring less than or equa to 30 bytesin length.

010KF The server rejected your Kerberos login attempt. Most likely, this
was because of a Generic Security Services (GSS) exception. Please
check your Kerberos environment and configuration.
Action: Check your Kerberos environment, and make sure that you authenticated properly to the
KDC. See Chapter 3, “ Security” for more information.

010MX Metadata accessor information was not found on this database. Please
install the required tables as mentioned in the jConnect
documentation. Error encountered while attempting to retrieve
metadata information:
Description: The server may not have the necessary stored procedures for returning metadata
information.
Action: Be sure that stored procedures for providing metadata are installed on the server. See
“Installing Stored Procedures’ in Chapter 3 of the jConnect for JDBC Installation Guide.

010P4 An output parameter was received and ignored.

158

Description: The query you executed returned an output parameter but the application result-
processing code did not fetch it so it was ignored.

Action: If your application needs the output parameter data, you must rewrite the application so
it can get it. Thismay require using a CallableStatement to execute the query, and adding callsto
registerOutputParameter and getXXX. You can also prevent jConnect from returning this
warning, and possibly get a performance improvement, by setting the
DISABLE_UNPROCESSED_PARAM_WARNINGS connection property to "true."

jConnect for JDBC

APPENDIX A SQL Exception and Warning Messages

SQL state Message/description/action

010PF One or more jars specified in the PRELOAD JARS connection property
could not be loaded.

Description: This happens when using the DynamicClassLoader with the PRELOAD_JARS
connection property set to acomma-delimited list of .jar file names. When the
DynamicClassLoader opens its connection to the server from which the classes are to be |oaded,
it attemptsto “preload” al the .jar files mentioned in this connection property. If one or more of
the jar file names specified does not exist on the server, the above error message results.

Action: Verify that every .jar file mentioned in the PRELOAD_JARS connection property for
your application exists and is accessible on the server.

010PO Property LITERAL PARAM has been reset to "false" because
DYNAMIC_PREPARE was set to "true".

Description: If you wish to use precompiled dynamic statements, then you must allow for
parameters to be sent to those statements (if the statements take parameters). Setting
LITERAL_PARAMSto "true" forces all parameters to be sent asliteral valuesin the SQL that
you send to the server. Therefore, you cannot set both properties to "true.”

Action: To avoid thiswarning, do not set LITERAL_PARAMS to "true" when you wish to use
dynamic SQL. See“Performance tuning for prepared statementsin dynamic SQL” on page 130
for more information.

010RC The requested ResultSet type and concurrency is not supported. They
have been converted.
Description: You requested atype and concurrency combination for the ResultSet that is not
supported. The requested values had to be converted. See “Using cursors with result sets’ on
page 49 for more information about what ResultSet types and concurrencies are available in
jConnect

Action: Request atype and concurrency combination for the ResultSet that is supported.

010sJ Metadata accessor information was not found on this database. Please
install the required tables as mentioned in the jConnect
documentation.

Description: The metadatainformation is not configured on the server.

Action: If your application requires metadata, install the stored procedures for returning
metadata that come with jConnect (see “Installing Stored Procedures” in Chapter 3 of the
jConnect for JDBC Installation Guide). If you do not need metadata, set the USE_ METADATA
property to "false."

010SK Database cannot set connection option

Description: Your application attempted an operation that the database you are connected to
does not support.

Action: You may need to upgrade your database or make sure that the latest version of metadata
information isinstalled on it.

Programmer’s Reference 159

SQL state Message/description/action

010SL Out-of-date metadata accessor information was found on this database.
Ask your database administrator to load the latest scripts.

Description: The metadata information on the server is old and needs to be updated.

Action: Install the stored procedures for returning metadata that come with jConnect (see
“Installing Stored Procedures’ in Chapter 3 of the jConnect for JDBC Installation Guide).

010SM This database does not support the initial proposed set of

capabilities, retrying.

Description: Adaptive Server Enterprise versions 11.9.2 and lower had a bug that caused them
torgect loginsfrom clientsthat requested capabilities that the serversdid not have. Thiswarning
indicates that jConnect has detected this condition and is retrying the connection using the
greatest number of capabilities that the server can accept. When jConnect encountersthis bug, it
attempts to connect to the server twice.

Action: Clients can safely ignore this warning, but if they wish to eliminate the warning and
ensure that jConnect makes only one connection attempt, they can set the ELIMINATE_010SM
connection property to "true." Please note that this property should not be set to "true" when
connecting to Adaptive Server versions 12.0 and | ater.

010SN Permission to write to file was denied. File: . Error message:

Description: Permission to write to afile specified in the PROTOCOL_CAPTURE connection
property is denied because of asecurity violationinthe VM. Thiscan occur if an applet attempts
to write to the specified file.

Action: If you are attempting to write to the file from an applet, make sure that the applet has
access to the target file system.

010SP File could not be opened for writing. File: . Error message:

Action: Make sure that the file nameis correct and that the fileis writable.

010SQ The connection or login was refused, retrying connection with the
host/port address.

Description: The CONNECTION_FAILOVER connection property is set to "true," and

jConnect was unable to connect to one of the database serversin thelist of serversto which to
connect. Therefore, jConnect now triesto connect to the next server in thellist.

Action: No actionisrequired, aslong asjConnect is able to connect to another database server.
However, you should determine why jConnect was unableto connect to the particul ar server that
caused the connection warning to be issued.

160 jConnect for JDBC

APPENDIX A SQL Exception and Warning Messages

SQL state Message/description/action
010TP The connection’s initial character set, , could not be converted
by the server. The server’s proposed character set, , will be

used, with conversions performed by jConnect.

Description: The server cannot use the character set initially requested by jConnect, and has
responded with a different character set. jConnect accepts the change, and performs the
necessary character-set conversions.

The messageis strictly informational and has no further consequences.

Action: To avoid thismessage, set the CHARSET connection property to acharacter set that the
server supports.

010TQ jConnect could not determine the server's default character set. This
is likely because of a metadata problem. Please install the required
tables as mentioned in the jConnect documentation. The connection is
defaulting to the ascii_7 character set, which can handle only
characters in the range from 0x00 through 0x7F.

Description: jConnect could not determine the server's default character set. When this occurs,
the only characters that are guaranteed to translate properly are the first 127 ASCI| characters.
Therefore, jConnect revertsto 7-bit ASCII inthis case. The messageis strictly informational and
has no further consequences.

Action: Install the stored procedures for returning metadata that comes with jConnect (see
“Installing Stored Procedures’ in Chapter 3 of the jConnect for JDBC Installation Guide).

010UF Attempt to execute use database command failed. Error message:

Description: jConnect cannot connect to the database specified in the connection URL. Two
possibilities are:
¢ The name was entered incorrectly in the URL.

« USE_METADATA is"true" (the default condition), but the stored procedures for returning
metadata have not been installed. Asaresult, jConnect tried to execute the use database
command with the database in the URL, but the command failed. This may be because you
attempted to access an Adaptive Anywhere database. SQL Anywhere databases do not
support the use database command.

Action: Make surethe database namein the URL iscorrect. Make sure that the stored procedures
for returning metadata are installed on the server (see“Installing Stored Procedures’ in Chapter
3 of thejConnect for JDBC Installation Guide and Release Bulletin). If you are attempting to
access a SQL Anywhere database, either do not specify a database name in the URL, or set
USE_METADATA to "false."

010UP Unrecognized connection property ignored.

Description: You attempted to set a connection property in the URL that jConnect does not
currently recognize. jConnect ignores the unrecognized property.

Action: Check the URL definition in your application to make sure it references only valid
jConnect driver connection properties.

Programmer’s Reference 161

SQL state Message/description/action

0100V The version of TDS protocol being used is too old.
Version:
Description: The server does not support the required version of the TDS protocol. jConnect
requires version 5.0 or later.

Action: Use aserver that supports the required version of TDS. See the system requirements
section in the jConnect installation guide for details.

Jz001 User name property ’ too long. Maximum length is 30.
Action: Do not exceed the 30-byte maximum.

Jz002 Password property ’ too long. Maximum length is 30.
Action: Do not exceed the 30-byte maximum.
JZ003 Incorrect URL format. URL:

Action: Verify the URL format. See “URL connection property parameters’ on page 22.

If you are using the PROXY connection property, you may get a JZ003 exception while trying
to connect if the format for the PROXY property isincorrect.

The PROXY format for the Cascade proxy is:
ip_address:port_number

The PROXY format for the TDS tunnelling serviet is:
http[s]://host:port/tunneling_serviet_alias

Jz004 User name property missing in DriverManager.getConnection(...,
Properties)

Action: Provide the required user property.

JZ006 Caught IOException:

Description: An unexpected 1/O error was detected from alower layer. When such I/O
exceptions are caught, they are rethrown as SQL exceptions using the ERR_|O_EXCEPTION
JZ006 sqlstate. These errors are often the result of network communication problems. If the I/O
exception causes the database connection to be closed, jConnect chainsa JZ0C1 exception to the
Jz006. Client applications can look for the JZ0C1 exception in the chain to seeif the connection
isstill usable.

Action: Examine the text of the original 1/0 exception message, and proceed from there.

Jz008 Invalid column index value

Description: You have requested a column index value of lessthan 1 or greater than the highest
available value.

Action: Check call to the getxXX method and the text of the original query, or be sure to call
rs.next.

162 jConnect for JDBC

APPENDIX A SQL Exception and Warning Messages

SQL state Message/description/action

JzZ009 Error encountered in conversion. Error message:
Description: Some of the possibilities are:
« A conversion between two incompatible datatypes was attempted, such as date to int.
« Therewas an attempt to convert a string containing anonnumeric character to anumeric type.
¢ Therewas aformatting error, such as an incorrectly formatted time/date string.
Action: Make sure that the JDBC specification supports the attempted type conversion. Make
sure that strings are correctly formatted. If a string contains non-numeric characters, do not
attempt to convert it to a numeric type.

Jz00B Numeric overflow.

Description: You tried to send aBiginteger as a TDS numeric, and the value was too large, or
you tried to send a Javalong as an int and the value was too |arge.

Action: These values cannot be stored in Sybase. For long, consider using a Sybase humeric.
Thereis no solution for Bignum.

Jz0oC The precision and scale specified cannot accommodate numeric value
Description: When using the setBigDecimal method, the BigDecimal value has a precision or
scale that exceeds the specified precision or scale.

Action: Make sure that the specified precision and scale can accommodate the BigDecimal
value.

JZ0OE Attempt to call execute() or executeUpdate() for a statement where
setCursorName () has been called.

Action: Do not try to call execute or executeUpdate on a statement that has a cursor name set.
Use a separate statement to delete or update a cursor. See “ Using cursors with result sets’” on
page 49 for more information

JZOOF Cursor name has already been set by setCursorName () .

Action: Do not set the cursor nametwicefor astatement. Closethe result set of the current cursor
Statement.

JZ00G No column values were set for this row update.

Description: You attempted to update arow in which no column values were changed.
Action: To change column valuesin arow, call updatexX methods before calling updateRow.

JZOOH The result set is not updatable. Use
Statement .setResultSetConcurrencyType () .
Action: To change aresult set from read-only to updatable, use the
Statement.setResultSetConcurrencyType method or add afor update clause to your SQL select
Statement.

Jz0ol Invalid scale. The specified scale must be >=0.

Description: The scale value must be greater than zero.
Action: Be surethe scale value is not negative.

Programmer’s Reference 163

SQL state

Message/description/action

JzZooL

Login failed. Examine the SQLWarnings chained to this exception for
the reason(s) .

Action: See message text; proceed according to the reason(s) given for the login failure.

JZOOM

Login timed out. Check that your database server is running on the
host and port number you specified. Also check the database server
for other conditions (such as a full tempdb) that might be causing
it to hang.

Action: Follow the recommended actions in the error message.

Jz010

Unable to deserialize an Object value. Error text:

Action: Make sure that the Java object from the database implements the Serializable interface
and isin your local CLASSPATH variable.

Jz011

Number format exception encountered while parsing numeric connection
property

Description: A noninteger value was specified for a numeric connection property.

Action: Specify an integer value for the connection property.

Jz012

Internal Error. Please report it to Sybase technical support. Wrong
access type for connection property

Action: Contact Sybase Technical Support.

Jz013

Error obtaining JNDI entry:
Action: Correct the INDI URL, or make a new entry in the directory service.

Jz014

You may not setTransactionIsolation(Connection.TRANSACTION NONE) .
This level cannot be set; it can only be returned by a server.
Action: Check your application code, whereit calls Connection.setTransactionlsolation, and
verify the value you are passing to the method.

Jz015

Illegal value set for the GSSMANAGER_CLASS connection property. The
property value must be a String or an Object that extends
org.ietf.jgss.GSSManager.

Action: Check the value to which you set the GSSMANAGER_CLASS property.

JZ0BD

Oout of range or invalid value used for method parameter.

Action: Verify that the parameter value in the method is correct.

JZ0BI

Message: setFetchSize: The fetch size should be set with the following
restrictions - 0 <= rows <= (maximum number of rows in the ResultSet) .

Description: The client application hastried to call setFetchSize with an invalid number of
rows.

Action: Verify that you are calling setFetchSize with the parameter falling within the above
range of values.

JZ0BP

164

Output parameters are not allowed in Batch Update Statements.

Action: Examine your application code and check that you did not try to declare an output
parameter in your batch.

jConnect for JDBC

APPENDIX A SQL Exception and Warning Messages

SQL state Message/description/action

JZOBR The cursor is not positioned on a row that supports the method.

Description: You attempted to call aResultSet method that isinvalid for the current row position
(for example, caling insertRow when the cursor is not on the insert row).

Action: Do not attempt to call a ResultSet method that isinvalid for the current row position.

JZ0BS Batch Statements not supported.
Action: Install or update the jConnect metadata stored procedures on your database with the
latest versions.

JZ0BT The method is not supported for ResultSets of type

Description: You attempted to call aResultSet method that isinvalid for the type of ResultSet.
Action: Do not attempt to call a ResultSet method that isinvalid for the type of ResultSet.

JzZ0C0 Connection is already closed.

Description: The application has already called Connection.close on this connection object; it
cannot be used any more.

Action: Fix the code so that connection object references are nulled out when a connection is
closed.

JZ0C1 An IOException occurred which closed the connection.

Description: An unrecoverable |OException occurred that caused the connection to be closed.
The connection cannot be used for any further database activity. If this exception occurs, it can
always be found in an exception chain with the JZ006 Exception (explained earlier).

Action: Determine the cause of the |OException that disrupted the connection.
JZOCL You must define the CLASS LOADER property when using the PRELOAD JARS
property.
Action: Be sureto specify aCLASS L OADER when setting PRELOAD_JARSto a
non-null value.

JZ0CU getUpdateCount can only be called once after a successful call to
getMoreResults, or execute methods.

Description: As per the JDBC API, getUpdateCount should be called only once per result.
Action: Be sure your code does not call getUpdateCount more than once per result.
JZ0D4 Unrecognized protocol in Sybase JDBC URL:

Description: You specified aconnection URL using aprotocol other than TDS, whichistheonly
protocol currently supported by jConnect.

Action: Check the URL definition. If the URL specifies TDS as a subprotocol, make sure that
the entry uses the following format and capitalization:

jdbc:sybase: Tds:host:port
If the URL specifies INDI as a subprotocol, make sure that it starts with:
jdbc:sybase:jndi:

JZ0D5 Error loading protocol .
Action: Check the settings for the CLASSPATH system variable.

Programmer’s Reference 165

SQL state Message/description/action

JZ0D6 Unrecognized version number specified in setVersion. Choose one
of the SybDriver.VERSION_ * values, and make sure that the version of
jConnect that you are using is at or beyond the version you specify.

Action: See message text.

JZ0D7 Error loading url provider . Error message:
Action: Check the INDI URL to make sureit is correct.
JZ0D8 Error initializing url provider:
Action: Check the INDI URL to make sureit is correct.
JZ0DP This statement has no metadata because it was not dynamically

prepared. Set the DYNAMIC PREPARE connection property to true to
ensure use of dynamic statements.

Action: Refer to the error message.
JZOEM End of data.
Action: Please report this error to Sybase Technical Support.

JZOF1 Sybase high-availability failover connection was requested but the
companion server address is missing.
Description: When you set the REQUEST_HA_SESSION connection property to “true," you
must also specify afailover server.
Action: You can specify the secondary server using the SECONDARY _SERVER_HOSTPORT
connection property, or you can set the secondary server using JNDI (see “Implementing high
availability failover support” on page 41).

JZOF2 Sybase high-availability failover has occurred. The current
transaction is aborted, but the connection is still usable. Retry
your transaction.

Description: The back-end database server to which you were connected has gone down, but
you have failed over to a secondary server. The database connection is still usable.

Action: Client code should catch this exception, then restart the transaction from the last
committed point. Assuming you properly handle the exception, you can continue executing
JDBC calls on the same connection object.

JZ0GC Error casting a __ as a GSSManager. Please check the value you are
setting for the GSSMANAGER CLASS connection property. The value must
be a String that specifies the fully qualified class name of a
GSSManager implementation. Or, it must be an Object that extends
org.ietf.jgss.GSSManager.

Action: See message text.

166 jConnect for JDBC

APPENDIX A SQL Exception and Warning Messages

SQL state Message/description/action
JZOGN Error instantiating the class as a GSSManager. The exception was
. Please check your CLASSPATH and make sure the GSSMANAGER CLASS

property value refers to a fully qualified class name of a GSSManager
implementation.
Action: Make sure your CLASSPATH environment variable includes any .jar files required by
your third-party GSSManager implementation.

JZ0GS A Generic Security Services API exception occurred. The major error
code is . The major error message is . The minor error code is

The minor error message is

Action: Examine the major and minor error codes and messages. Check your Kerberos
configuration. See Chapter 3, “ Security” for more information.

JZ0HO Unable to start thread for event handler; event name =
Action: Please report this error to Sybase Technical Support.

JZOH1 An event notification was received but the event handler was not
found; event name = .
Action: Please report this error to Sybase Technical Support.

JZOHC Illegal character ' encountered while parsing hexadecimal
number.
Description: A string that is supposed to represent abinary value contains a character that is not
in the range (0-9, a-f) that is required for a hexadecimal number.
Action: Check the character values in the string to make sure they are in the required range.

Jz0I1 I/0 Layer: Error reading stream.
Description: The connection was unable to read the amount requested. Most likely, the
statement timeout period was exceeded and the connection timed out.
Action: Increase the statement timeout value.

Jz0I12 I/0 layer: Error writing stream.
Description: The connection was unableto writethe output requested. Most likely, the statement
time-out period was exceeded and the connection timed out.
Action: Increase the statement time out value.

JZ0I13 Unknown property. This message indicates an internal product problem.
Report this error to Sybase Technical support.
Action: Indicates an internal product problem. Please report this error to Sybase Technical
Support.

JZ0I5 An unrecognized CHARSET property was specified:

Description: You specified an unsupported character set code for the CHARSET connection
property.

Action: Enter avalid character-set code for the connection property. See “jConnect character-
set converters’ on page 35.

Programmer’s Reference 167

SQL state

Message/description/action

Jz016

An error occurred converting UNICODE to the charset used by the
server. Error message:

Action: Choose a different character set code for the CHARSET connection property on the
jConnect client that can support all the characters you need to send to the server. You may need
to install a different character set on the server, too. Also, if you are using jConnect version 6.0
or later, and Adaptive Server Enterprise 12.5 or later, you can send your data to the server as
unichar/univarchar datatypes. Please see “ Using jConnect to pass Unicode data” on page 34.

Jz017

No response from proxy gateway.
Description: The Cascade or security gateway is not responding.
Action: Be surethe gateway is properly installed and running.

Jz018

Proxy gateway connection refused. Gateway response:
Description: TheWeb server/gateway indicated by the PROXY connection property hasrefused
your connection request.

Action: Check the access and error logs on the proxy to determine why the connection was
refused. Be sure the proxy is a JDBC gateway.

Jz019

This InputStream was closed.

Description: Youtriedto read an InputStream obtained from getAsciiStream, getUnicodeStream,
or getBinaryStream, but the InputStream was already closed. The stream may have been closed
because you moved to another column or cancelled the result set and there were not enough
resources to cache the data.

Action: Increase the cache size or read columns in order.

JZ0IA

Truncation error trying to send

Description: There was atruncation error on character set conversion prior to sending a string.
The converted string is longer than the size allocated for it.

Action: Choose a different character-set code for the CHARSET connection property on the
jConnect client that can support all the characters you need to send to the server. You may need
to install adifferent character set on the server, too.

JZOIR

getXXX may not be called on a column after it has been updated in the
result set with a java.io.Reader.

Action: Remove the getxxX call on the ResultSet column which you updated using a Reader.

JZ0IS

getXXXStream may not be called on a column after it has been updated
in the result set.

Description: After updating a column in aresult set, you attempted to read the updated column
value using one of the following SybResultSet methods: getAsciiStream, getUnicodeStream,
getBinaryStream. jConnect does not support this usage.

Action: Do not attempt to fetch input streams from columns you are updating.

Jz0X0

168

Offset and/or length values exceed the actual text/image length.
Action: Verify that the offset and/or length values you used are correct.

jConnect for JDBC

APPENDIX A SQL Exception and Warning Messages

SQL state Message/description/action

JZOoLC You cannot call the method on a ResultSet which is using a
language cursor to fetch rows. Try setting the LANGUAGE_ CURSOR
connection property to false.

Description: The application tried to call one of the ResultSet cursor scrolling methods on a
ResultSet which was created with alanguage cursor.
Action: Seethe error message.

JZONC wasNull called without a preceding call to get a column.

Description: You can only call wasNull after a call to get a column, such as getint or
getBinaryStream.
Action: Change the code to move the call to wasNull.

JZONE Incorrect URL format. URL: . Error message:

Action: Check the format of the URL. Make sure that the port number consists only of numeric
characters.

JZONF Unable to load SybSocketFactory. Make sure that you have spelled the
class name correctly, that the package is fully specified, that the
class is available in your class path, and that it has a public zero-
argument constructor.

Action: See message text.

JZ0P1 Unexpected result type.

Description: The database has returned a result that the statement cannot return to the
application, or that the application is not expecting at this point. This generally indicates that the
application is using JDBC incorrectly to execute the query or stored procedure. If the JDBC
application is connected to an Open Server application, it may indicate an error in the Open
Server application that causes the Open Server to send unexpected sequences of results.
Action: Use the com.sybase.utils.Debug(true, “ALL") debugging toolsto try to determine what
unexpected result is seen, and to understand its causes.

JZ0P4 Protocol error. This message indicates an internal product problem.
Report this error to Sybase technical support.

Action: See message text.
JZOP7 Column is not cached; use RE-READABLE COLUMNS property.

Description: With the REPEAT_READ connection property set to "false," an attempt was made
to reread a column or read a column in the wrong order.

When REPEAT_READ is"false," you can only read the column value for arow once, and you
can only read columns in ascending column-index order. For example, after reading column 3
for arow, you cannot read its value a second time and you cannot read column 2 for the row.
Action: Either set REPEAT_READ to "true," or do not attempt to reread a column value and be
sure that you read columns in ascending column-index order.

Programmer’s Reference 169

SQL state

Message/description/action

JZOP8

The RSMDA Column Type Name you requested is unknown.

Description: jConnect cannot determine the name of acolumn typein the
ResultSetMetaData.getColumnTypeName method.

Action: Be sure that your database has the most recent stored procedures for metadata.

JZ0P9

A COMPUTE BY query has been detected. That type of result is
unsupported and has been cancelled.

Description: The query you executed returned COMPUTE results, which are not supported by
jConnect.

Action: Change your query or stored procedure so it does not use COMPUTE BY.

JZOPA

The query has been cancelled and the same response discarded.
Description: A cancel was probably issued by another statement on the connection.

Action: Check the chain of SQL exceptions and warnings on this and other statements to
determine the cause.

JZOPB

The server does not support a requested operation.

Description: When jConnect creates a connection with a server, it informs the server of
capabilities it wants supported, and the server informs jConnect of the capabilitiesthat it
supports. This error message is sent when an application requests an operation that was denied
in the original capabilities negotiation.

For example, if the database does not support precompilation of dynamic SQL statements, and
your code invokes SybConnection.prepareStatement(sgl_stmt, dynamic), and dynamic is set to
"true," jConnect generates this message.

Action: Modify your code so that it does not request an unsupported capability.

JZ0PC

170

The number and size of parameters in your query require wide table
support. But either the server does not offer such support, or it was
not requested during the login sequence. Try setting the
JCONNECT_VERSION property to >=6 if you wish to request widetable
support.

Description: You are trying to execute a statement with alarge number of parameters, and the
server is not configured to handle that many parameters. The number of parameters that can
produce this exception varies, depending on the datatypes of the data you are sending. You never
get this exception if you are sending 481 or fewer parameters.

Action: You must run this query against an Adaptive Server 12.5 or later server. When you
connect to the database, set the JCONNECT_VERSION property to “6”.

jConnect for JDBC

APPENDIX A SQL Exception and Warning Messages

SQL state Message/description/action

JZOPD The size of the query in your dynamic prepare is large enough that
you require widetable support. But either the server does not offer
such support, or it was not requested during the login sequence. Try
setting the JCONNECT_VERSION property to >=6 if you wish to request
widetable support.

Description: You are trying to execute a dynamic prepared statement with alarge number of
parameters, and the server is not configured to handle that many parameters.

Action: You must run this query against an Adaptive Server 12.5 or later server. When you
connect to the database, set the JCONNECT_VERSION property to “6”.

JZOPE The number of columns in your cursor declaration OR the size of your
cursor declaration itself are large enough that you require widetable
support. But either the server does not offer such support, or it was
not requested during the login sequence. Try setting the
JCONNECT_VERSION property to >= 6 if you wish to request wide table
support.

Description: Thiserror can occur when your SELECT statement tries to return data from more
than 255 columns, or when the actual length of the SELECT statement isvery large (greater than
approximately 65500 characters).

Action: You must run this query against aversion 12.5 or later Adaptive Server. When you
connect to the database, set the JCONNECT_VERSION property to “6”.

JZOPN Specified port number of was out of range. Port numbers must
meet the following conditions: 0O<= portNumber <=65535.
Action: Check the port number that is specified in the database URL .

JZORO Result set has already been closed.

Description: The ResultSet.close method has already been called on the result set object; you
cannot use the result set for anything else.

Action: Fix the code so that ResultSet object references are set to null whenever aresult set is
closed.

JZOR1 Result set is IDLE as you are not currently accessing a row.
Description: The application has called one of the ResultSet.getXXX column-data retrieval
methods, but there is ho current row; the application has not called ResultSet.next, or
ResultSet.next returned "false" to indicate that there is no data.

Action: Verify that rs.next is set to "true" before calling rs.getXXX.
JZOR2 No result set for this query.
Description: You used Statement.executeQuery, but the statement returned no rows.
Action: Use executeUpdate for statements returning no rows.
JZOR3 Column is DEAD. This is an internal error. Please report it to Sybase

technical support.

Action: See message text.

Programmer’s Reference 171

SQL state Message/description/action
JZOR4 Column does not have a text pointer. It is not a text/image column
or the column is NULL.
Description: You cannot update atext/image columniif itisnull. A null text/image column does
not contain atext pointer.
Action: Be sure that you are not trying to update or get atext pointer to a column that does not
support text/image data. Be sure that you are not trying to update atext/image column that isnuill.
Insert data first, then make the update.
JZOR5 The ResultSet is currently positioned beyond the last row. You cannot
perform a get* operation to read data in this state.
Description: The application has moved the ResultSet row pointer beyond the last row. In this
position, thereis no datato read, so any get* operations areillegd.
Action: Alter the code so that it does not attempt to read column data when the ResultSet is
positioned beyond the last row.
JZORD You cannot call any of the ResultSet.get* methods on a row that has
been deleted with the deleteRow() method.
Description: An applicationistrying to retrieve datafrom arow that has been deleted. Thereis
no valid data to be retrieved.
Action: Alter the code so that the application does not attempt to retrieve datafrom adel eted row.
JZORM refreshRow may not be called after updateRow or deleteRow.
Description: After updating arow inthe database with SybCursorResult.updateRow, or deleting
it with SybCursorResult.deleteRow, you used SybCursorResult.refreshRow to refresh the row
from the database.
Action: Do not attempt to refresh arow after updating it or deleting it from the database.
JZ0S0 Statement state machine: Statement is BUSY.
Description: Theonly timethis error israised is from the Statement.setCursorname method, if
the application istrying to set the cursor name when the statement is already in use and has
noncursor results that need to be read.
Action: Set the cursor name on a statement before you execute any querieson it, or call
Statement.cancel before setting the cursor name, to make sure that the statement is not busy.
JZ0Ss1 Statement state machine: Trying to FETCH on IDLE statement.
Description: Aninternal error occurred on the statement.
Action: Close the statement and open another one.
JZ0s2 Statement object has already been closed.

172

Description: The Statement.close method has aready been called on the statement object; you
cannot use the statement for anything else.

Action: Fix the application so that statement object references are set to null whenever a
statement is closed.

jConnect for JDBC

APPENDIX A SQL Exception and Warning Messages

SQL state Message/description/action
JZ0S3 The inherited method __ cannot be used in this subclass.
Description: PreparedStatement does not support executeQuery(String), executeUpdate(String),
or execute(String).
Action: To pass aquery string, use Statement, ot PreparedStatement.
JZ0A4 Cannot execute an empty (zero-length) query.
Action: Do not execute an empty query (““).
JZ0S5 The local transaction method __ cannot be used while a global
transaction is active on this connection.
Description: This exception can occur when using distributed transactions.
Action: See Chapter 7, “ Distributed Transactions,” in the JIDBC 2.0 Optional Package (formerly
the JDBC 2.0 Standard Extension API) for more information on diagnosing the problem.
JZ0S6 The local transaction method = cannot be used on a pre-System 12
XAConnection.
Description: This exception can occur when using distributed transactions.
Action: See Chapter 7, “Distributed Transactions,” in the JDBC 2.0 Optional Package(formerly
the JDBC 2.0 Standard Extension API) for more information on diagnosing the problem.
JZ0S8 An escape sequence in a SQL Query was malformed: ' '.
Description: This error results from bad escape syntax.
Action: Check JDBC documentation for correct syntax.
JZ0S9 Cannot execute an empty (zero-length) query.
Action: Do not execute an empty query (““).
JZOSA Prepared Statement: Input parameter not set, index:
Action: Be sure that each input parameter has avalue.
JZ0SB Parameter index out of range:
Description: You have attempted to get, set, or register a parameter that goes beyond the
maximum number of parameters.
Action: Check the number of parametersin your query.
JZ0SC Callable Statement: attempt to set the return status as an
InParameter.
Description: You have prepared a call to a stored procedure that returns a status, but you are
trying to set parameter 1, which is the return status.
Action: Parameters that you can set start at 2 with this type of call.
JZ0SD No registered parameter found for output parameter.

Description: Thisindicates an application logic error. You attempted to call getXXX or wasNull
on a parameter, but you have not read any parameters yet, or there are no output parameters.

Action: Check to make sure that the application has registered output parameters on the
CallableStatement, that the statement has been executed, and that the output parameters were
read.

Programmer’s Reference 173

SQL state

Message/description/action

JZOSE

Invalid object type specified for setObject().
Description: Illegal type argument passed to PreparedStatement.setObject.
Action: Check the JDBC documentation. The argument must be a constant from java.sql. Types.

JZ0SF

No Parameters expected. Has query been sent?
Description: You tried to set a parameter on a statement with no parameters.
Action: Make sure the query has been sent before you set the parameters.

JZ0SG

An RPC did not return as many output parameters as the application
had registered for it.

Description: Thiserror occursif you call CallableStatement.registerOutParam for more
parameters than you declared as“ OUTPUT” parameters in the stored procedure. See “RPC
returns fewer output parameters than registered” on page 124 for more information.

Action: Check your stored procedures and registerOutParameter calls. Make sure that you have
declared all of the appropriate parameters as“OUTPUT.” Look at the line of code that reads:

create procedure yourproc (@pl int OUTPUT,

Note If youreceivethiserror while using Adaptive Server Anywhere (previously known as SQL
Anywhere), upgrade to Adaptive Server Anywhere version 5.5.04.

JZOSH

A static function escape was used, but the metadata accessor
information was not found on this server.

Action: Install metadata accessor information before using static function escapes.

Jz0s

A static function escape was used which is not supported by
this server.

Action: Do not use this escape.

JZ0S3

Metadata accessor information was not found on this database.

Action: Install metadatainformation before making metadata calls.

JZ0SK

The oj escape is not supported for this type of database server.
Workaround: use server-specific outer join syntax, if supported.
Consult server documentation.

Action: Read the error message. Also, install the latest version of the jConnect metadata.

JZ0SL

174

Unsupported SQL type

Description: The application has declared a parameter to be of atype that jConnect does not
support.

Action: If possible, try declaring the parameter to be of adifferent type. Do not use Types.NULL
or PreparedStatement.setObject (null).

jConnect for JDBC

APPENDIX A SQL Exception and Warning Messages

SQL state

Message/description/action

JZ0SM

jConnect could not execute a stored procedure because there was a
problem sending the parameter(s). This problem was likely caused
because the server does not support a specific datatype, or because
jConnect did not request support for that datatype at connect time.
Try setting the JCONNECT VERSION connection property to a higher
value. Or, if possible, try sending your procedure execution command
as a language statement.

JZOSN

setMaxFieldSize: field size cannot be negative.

Action: Use a positive value or zero (unlimited) when calling setMaxFieldSize.

JZ0SO

Invalid ResultSet concurrency type:

Action: Check that your declared concurrency is either ResultSet. CONCUR_READ_ONLY or
ResultSet. CONCUR_UPDATABLE.

JZO0SP

Invalid ResultSet type:

Action: Check that your declared ResultSet type is ResultSet. TYPE_FORWARD_ONLY or
ResultSet. TYPE_SCROLL_INSENSITIVE. jConnect does hot support the

ResultSet. TYPE_SCROLL_SENSITIVE ResultSet type.

JZ0SQ

In valid UDT type

Description: When calling the DatabaseMetaData.getUDTs method, jConnect throws this
exception if the user-defined typeis not either Types.JAVA_OBJECT, Types.STRUCT or
Types.DISTINCT.

Action: Use one of the three UDTs mentioned above.

JZOSR

setMaxRows: max rows cannot be negative.

Action: Use a positive value or zero (unlimited) when calling setMaxRows.

JZ0SS

setQueryTimeout: query timeout cannot be negative.

JZOST

jConnect cannot send a Java object as a literal parameter in a query.
Make sure that your database server supports Java objects and that
the LITERAL PARAMS connection property is set to false when you
execute this query.

JZ0SU

A Date or Timestamp parameter was set with a year of , but the
server can only support year values between and . If
you’re trying to send data to date or timestamp columns or parameters

on Adaptive Server Anywhere, you may wish to send your data as
Strings, and let the server convert them.

Description: Adaptive Server Enterprise and Adaptive Server Anywhere have different
allowable ranges for datetime and date values. datetime values must have years greater or equal
to 1753. The date datatype, however, can hold years greater or equal to 1.

Action: Make sure that the date/timestamp value you are sending fallsin the acceptable range.

Jz0T2

Listener thread read error.

Action: Check your network communications.

Programmer’s Reference 175

SQL state

Message/description/action

Jz0T3

Read operation timed out.
Description: Thetime allotted to read the response to a query was exceeded.
Action: Increase the timeout period by calling Statement.setQueryTimeout.

JZ0T4

Write operation timed out. Timeout in milliseconds:
Description: Thetime allotted to send a request was exceeded.
Action: Increase the timeout period by calling Statement.setQueryTimeout.

JZ0T5

Cache used to store responses is full.

Action: Use default or larger value for the STREAM_CACHE_SIZE connection property.

Jz0T6

Error reading tunneled TDS URL.
Description: The tunneled protocol failed while reading the URL header.
Action: Check the URL you defined for the connection.

Jz0oT7

Listener thread read error -- caught ThreadDeath. Check network
connection.

Action: Check the network connections and try to run the application again. If the threads
continue to be aborted, please contact Sybase Technical Support.

JZ0T8

Data received for an unknown request. Please report this error to
Sybase Technical Support.

JZ0T9

Request to send not synchronized. Please report this error to Sybase
Technical Support.

Action: See message text.

JzoTC

Attempted conversion between an illegal pair of types.
Description: Conversion between a Javatype and a SQL type failed.

Action: Check the requested type conversion to make sure it is supported in the JDBC
specification.

JZO0TE

Attempted conversion between an illegal pair of types. Valid database
types are: ’

Description: The database column datatype and the datatype requested in theResultSet.getXXX
cal are not implicitly convertible.

Action: Use one of the valid datatypes listed in the error message.

JZOTI

176

jConnect cannot make a meaningful conversion between the database
type of and the requested type of

Description: Thiskind of exception can occur, for example, if an application tries to call
ResultSet.getObject(int, Types.DATE) on atime value that is returned from the database.

Action: Make sure that the database datatype is implicitly convertible to the Object type you
wish to retrieve.

jConnect for JDBC

APPENDIX A SQL Exception and Warning Messages

SQL state

Message/description/action

JZ0TO

Read operation timed out.
Description: This exception occurs when there is a socket read timeout.

Action: Increase the timeout period by calling Statement.setQueryTimeout. Also, check the
query or stored procedure you are executing to determine why it is taking longer than expected.

JZ0TS

Truncation error trying to send

Description: The application specified a string that was Ionger than the length that the
application wanted to send. Therefore, the string is truncated to the declared length.

Action: Set the length properly to avoid truncation.

JZ0US

The SybSocketFactory connection property was set, and the PROXY
connection property was set to the URL of a servlet. The jConnect
driver does not support this combination. If you want to send secure
HTTP from an applet running within a browser, use a proxy URL
beginning with “https://”.

Action: See message text.

JZ0XC

is an unrecognized transaction coordinator type.
Description: The metadata information indicates that the server supports distributed
transactions, but jConnect does not support the protocol being used.

Action: Verify that you have installed the latest metadata scripts. If the error persists, please
contact Sybase Technical Support.

JZOXS

The server does not support XA-style transactions. Please verify that
the transaction feature is enabled and licensed on this server.
Description: The server to which jConnect attempted a connection does not support distributed
transactions.

Action: Do not use XADataSource with this server, or upgrade or configure the server for
distributed transactions.

Programmer’s Reference 177

SQL state Message/description/action

JZ0OXU Current user does not have permission to do XA-style transactions.
Be sure user has role.
Description: The user connected to the database is not authorized to conduct distributed
transactions, most likely because the user does not have the proper role (shown in the blank).
Action: Grant the user the role shown in the error message, or have another user with that role
conduct the transaction.

S0022 Invalid column name !
Description: You attempted to reference a column by name and there is no column with that
name.
Action: Check the spelling of the column name.

ZZ0O0A The method has not been completed and should not be called.

Description: You attempted to use a method that is not implemented.

Action: Check the release bulletin that came with your version of jConnect for further
information. You can a so check the jConnect Web page at http://www.sybase.com to see
whether amore recent version of jConnect implements the method. If not, do not use the method.

178

jConnect for JDBC

appenpix 8 JConnect Sample Programs

This appendix is a guide to jConnect sample programs and covers the
following topics:

Topic Page
Running IsglApp 179
Running jConnect sample programs and code 181

Running IsqlApp

IsqlApp allows you to issue isql commands from the command line, and
run jConnect sample programs.

The syntax for IsglApp is:

IsqlApp [-U username]
[-P password]

-S servername]

-G gateway]

-p {http|https}]

-D debug class list]

—

input command_ file]
command_terminator]

charset]

languagel

service principal name]

JAAS login config file path]
sessionID]

<version {2,3,4,5}>]

I
<H®EmXREPQaHS<S

Parameter Description

-U Thelogin ID with which you want to connect to a server.
-P The password for the specified login ID.
-S The name of the server to which you want to connect.

Programmer’s Reference 179

Running IsglApp

Parameter Description

-G The gateway address. For the HTTP protocal, the URL is: http://host: port.

To use the HTTPS protocol that supports encryption, the URL is
https://host:port/serviet_alias.

-p Specifies whether you want to use the HTTP protocol or the HTTPS protocol that
supports encryption.

-D Turns on debugging for all classes or for just the ones you specify, separated by a
comma. For example,

-DALL

displays debugging output for all classes.

-D SybConnection, Tds

displays debugging output only for the SybConnection and Tds classes.

v Turns on verbose output for display or printing.

-l Causes IsglApp to take commands from afile instead of the keyboard.

After the parameter, you specify the name of thefileto usefor the IsqlApp input. The
file must contain command terminators (“go” by default).

-c Letsyou specify akeyword (for example, “go”) that, when entered on aline by itself,
terminates the command. Thislets you enter multiline commands before using the
terminator keyword. If you do not specify a command terminator, each new line
terminates a command.

-C Specifies the character set for strings passed through TDS.

If you do not specify a character set, IsqlApp uses the default charset of the server.

-L Specifies the language in which to display error messages returned from the server
and for jConnect messages.

-K Indicates the user wants to make a Kerberos login to ASE. This parameter setsthe
service principal name. For example:

-K myASE
Thisexampleindicatesthat you wish to perform aKerberos |ogin and that the service
principal name for your server is myASE.
See Chapter 3, “ Security” for more information.

-F Specifies the path to the JAAS login configuration file. You must set this property if

you use the -K option. For example:

-F /foo/bar/examplelLogin.conf
See the ConnectKerberos.java sample in the sample2 directory of your jConnect
installation. For more information, see Chapter 3, “Security”.

-T When this parameter is set, jConnect assumes that an application is trying to resume
communication on an existing TDS session held open by the TDS-tunnelling
gateway. jConnect skips the login negotiations and forwards all requests from the
application to the specified session ID.

180 jConnect for JDBC

APPENDIX B jConnect Sample Programs

Parameter Description

-V Enables the use version-specific characteristics. See “JCONNECT_VERSION
connection property” on page 9.

Note You must enter a space after each option flag.

To obtain afull description of the command-line options, enter:
java IsglApp -help

The following example shows how to connect to a database on a host named
“myserver” through port “3756" and run an isql script named “myscript”:

java IsqglApp -U sa -P sapassword
-S jdbc:sybase:Tds:myserver:3756
-I $JDBC_HOME/sp/myscript -c run

Note An applet that provides GUI accessto isql commandsis available as:

$IDBC_HOME/sample2/gateway.html (UNIX)
%JDBC_HOMEY\sampl e2\gateway.html (Windows)

Running jConnect sample programs and code

jConnect includes several sample programs that illustrate many of the topics
covered in this chapter and that are intended to help you understand how
jConnect works with various JDBC classes and methods. In addition, this
section includes a sample code fragment for your reference.

Programmer’s Reference 181

Running jConnect sample programs and code

Sample applications

When you install jConnect, you can also the install sample programs. These
samples include the source code so that you can review how jConnect
implements various JDBC classes and methods. See the jConnect for JDBC
Installation Guide for complete instructions for installing the sample
programs.

Note ThejConnect sample programs are intended for demonstration purposes
only.

The sample programs are installed in the sample2 subdirectory under your
jConnect installation directory. Thefileindex.html in the sample2 subdirectory
contains a complete list of the samples that are available along with a
description of each sample. index.html also lets you view and run the sample
programs as appl ets.

Running the sample applets

Using your Web browser, you can run some of the sample programs as applets.
This enables you to view the source code while viewing the output results.

To run the samples as applets, you need to start the Web server gateway.
Use your Web browser to open index.html:

http://local host:8000/sampl e2/index.html

Running the sample programs with Adaptive Server Anywhere

182

All of the sample programs are compatible with Adaptive Server, but only a
limited number are compatible with Adaptive Server Anywhere. Refer to
index.html inthe sample2 subdirectory for acurrent list of the sample programs
that are compatible with Adaptive Server Anywhere.

To run the sample programs that are available for Adaptive Server Anywhere,
you must install the pubs2_any.sql script on your Adaptive Server Anywhere
server. This script islocated in the sample2 subdirectory.

For Windows, go to DOS command window and enter:;

java IsqlApp -U dba -P password
-S jdbc:sybase:Tds: [hostname] : [port]
-1 %JDBC_HOME%\sample2\pubs2 any.sgl -c go

jConnect for JDBC

APPENDIX B jConnect Sample Programs

For UNIX, enter:

java IsqlApp -U dba -P password
-S jdbc:sybase:Tds: [hostname] : [port]
-I $JDBC_HOME/sample2/pubs2 any.sqgl -c go

Sample code

Thefollowing sample codeillustrates how to invoke thejConnect driver, make
aconnection, issue a SQL statement, and process results.

import java.io.*;
import java.sqgl.*;

public class SampleCode

{

public static void main(String argsl|])
{ try
{
/*
* Open the connection. May throw a SQLException.
*/
DriverManager.registerDriver (
(Driver) Class.forName (
"com.sybase.jdbc3.jdbc.SybDriver") .newInstance()) ;

Connection con = DriverManager.getConnection (
"jdbc:sybase:Tds:myserver:3767", "sa", "");
/*
* Create a statement object, the container for the SQL
* statement. May throw a SQLException.
*/
Statement stmt = con.createStatement () ;
/*
* Create a result set object by executing the query.
* May throw a SQLException.

*/
ResultSet rs = stmt.executeQuery("Select 1");
/*
* Process the result set.
*/

if (rs.next())

{

Programmer’s Reference 183

Running jConnect sample programs and code

int value = rs.getInt(1l);
System.out.println("Fetched value " + value);
}
rs.close ()
stmt.close ()
con.close()

}//end try
/*
* Exception handling.
*/
catch (SQLException sqge)
{
System.out.println ("Unexpected exception : " +
sge.toString() + ", sglstate = " +

sge.getSQLState()) ;
System.exit (1) ;
}//end catch

catch (Exception e)

{

e.printStackTrace () ;
System.exit (1) ;
}//end catch

System.exit (0) ;

184 jConnect for JDBC

Index

Symbols
Jjar files
preloading 84

A

Adaptive Server
connectingto 20
connection example 21
Adaptive Server Anywhere 19
accessing metadata 48
connectingto 22
euro symbol 39
sending image data 63, 66
SERVICENAME connection property 21
storing and retrieving Javaobjects 76
advanced features 68
applets 148
APPLICATIONNAME connection property 12
applications
turning off debuggingin 118
turning on debuggingin 118
ASE dadatypes
date, time, and datetime 67
audience vii

B

batch updates 61

stored procedures 60
BE_AS JDBC_COMPLIANT_ 12
BigDecimal rescaling

improving driver performance 128

Programmer’s Reference

C

CANCEL_ALL connection property 6, 10, 12
capturing TDS communication 120
character sets
converter classes 35
setting 36
supported 37
character-set conversion
improving driver performance 129
improving performance 37
character-set converter classes
PureConverter 36
selecting 36
TruncationConverter 35
CHARSET connection property 6, 13
setting 36
CHARSET_CONVERTER connection property 6
CHARSET_CONVERTER_CLASS connection
property 13, 36
CLASS_LOADER connection property 13
CLASSPATH
setting for debugging 119
columns
deletionsin cursor result sets 52
updating in cursor result sets 53
compute statements 99
connecting to
aserver using JNDI - 23
Adaptive Server 20
Adaptive Server Anywhere 22
connection
erors 122, 123
pooling 89
connection properties
APPLICATIONNAME 12
BE_AS JDBC_COMPLIANT_ 12
CANCEL_ALL 6,10,12
CHARSET 6,13
CHARSET_CONVERTER 6

185

Index

CHARSET_CONVERTER_CLASS 13,36

CLASS LOADER 13

CONNECTION_FAILOVER 13,24

DISABLE_UNICHAR_SENDING 13

DISABLE_UNPROCESSED_PARAM_WARNINGS
14

DYNAMIC_PREPARE 14

ESCAPE_PROCESSING_DEFAULT

EXPIRESTRING 14

FAKE_METADATA 14

GET_BY_NAME_USES COLUMN_LABEL 15

GSSMANAGER_CLASS 15

HOSTNAME 15

HOSTPROC 15

IGNORE_DONE_IN_PROC 15

IS CLOSED_TEST 15

JCONNECT_VERSION 9, 16

LANGUAGE 5,16

LANGUAGE_CURSOR 16, 136

LANGUAGE_CURSOR and cursor performance 136

LITERAL_PARAMS 16

PACKETSIZE 16

password 16

PRELOAD_JARS 17

PROTOCOL_CAPTURE 17

PROXY 17

QUERY_TIMEOUT_CANCELS ALL 17

REMOTEPWD 17

REPEAT_READ 17,128

REQUEST_HA_SESSION 18

REQUEST_KERBEROS_SESSION 18

RMNAME 18

SECONDARY_SERVER_HOSTPORT 18

SELECT_OPENS CURSOR 19

SERIALIZE REQUESTS 19

SERVICE_PRINCIPAL_NAME 19

SERVICENAME 19

SESSION_ID 19

SESSION_TIMEOUT 20

setting 11

settinginURL 22

SQLINITSTRING 20

STREAM_CACHE_SIZE 20

SYBSOCKET_FACTORY 20

USE_METADATA 16

user 20

14, 136

186

VERSIONSTRING 20
CONNECTION_FAILOVER connectionproperty 13,
24
connections
gateway connection refused 122
conventions ix
creating acursor 49
currency symbol, euro 39
cursor performance 136
and the LANGUAGE_CURSOR connection
property 136
cursor result sets
deletingarow 55
deletions 52
insertingarow 55
methods for updating the database 53
positioned updates 52
positioned updates and deletes using JDBC 1.x
methods 52
positioned updates and deletes using JDBC 2.0
methods 53
updating columns 53
cursors 49
creating 49
using with a PreparedStatement 56

D

data
image 63
databases
JNDI for naming 85
storing Java objects as column datain atable 76
datatypes
ASE date, time, and datetime 67
JDBC date, time, and timestamp datatypes 67
unichar and univarchar 34
Debug class 117
Debug servlet argument 152
debugging 117
methods 119
obtaining an instance of the Debug class 117
setting CLASSPATH 119
turning off in your application 118
turning on in your application 118

jConnect for JDBC

deserialization 83

deviations from JDBC standards 95

DISABLE_UNICHAR_SENDING connection
property 13

DISABLE_UNPROCESSED_PARAM_WARNINGS
connection property 14

distributed transaction support 91

driver
JDBCtypes 2
properties 12

dynamic classloading 80
DYNAMIC_PREPARE connection property 14

E

€rror messages
cutomizing handling 73
error-message handler example 74
handliing 71
installing an error-message-handler 74
SQL exception and warning 157
Sybase-specific 71
errors
connection 122, 123
stored procedure 124
ESCAPE_PROCESSING_DEFAULT connection
property 136
ESCAPE_PROCESSING_DEFAULT property 14
euro currency symbol 39
event notification 69
example 70
EXPIRESTRING connection property 14
extension changes, Sybase 140

F

FAKE_METADATA connection property 14
font conventions ix

G

gateways 143
configuration 144

Programmer’s Reference

Index

connection refused 122
Open Server 23
GET_BY_NAME_USES COLUMN_LABEL
connection property 15
GSSMANAGER_CLASS connection property 15

H

handling

error messages 71
high availability (HA) support 41
HOSTNAME connection property 15
HOSTPROC connection property 15
HTTP 143

IGNORE_DONE_IN_PROC connection property 15
image data
executing the update with TextPointer.sendData
65
getting a TextPointer object 65
public methods in the TextPointer class 63
sending 63
updating a column with TextPointer.sendData() 64
installing
an error-message-handler 74
theTDSservlet 152
interfaces, JIDBC 1
internationalization 33
invoking jConnect 10
IS CLOSED_TEST connection property 15
isgl applet
running the sample 149
IsglApp utility 179

J

Java objects
storing and retrieving in ASA 6.0 76
storing as column datain atable 76
jConnect
debugging 117

187

Index

definition 2
gateways 143
improving performance 127
invoking 10
memory problemsin applications 123
sample programs 181
setting connection properties 11
settingup 5
using cursors 49
JCONNECT_VERSION connection property 9, 16
JOBC
definition 1
driver types 2
interfaces 1
restrictions, limitations, and deviations 95
JDBC 2.0
optional package extensions support 84
standard extensions 84
JDBC datatypes
date, time, and timestamp 67
JDBC drivers
JDBC-ODBC bridge 2
native-APl/partly-Java 2
native-protocol/al-Java 2
net-protocol/all-Java 2
jdbc.drivers 11
JNDI
context information 27
for naming databases 85
using 23

L

LANGUAGE connection property 5, 16
LANGUAGE_CURSOR 136
LANGUAGE_CURSOR connection property 16
Lightweight Directory Access Protocol (LDAP) 24
LITERAL_PARAMS connection property 16
localization 33

M

memory problemsin jConnect applications 123
metadata

188

accessing 48
server-side implementation 48
USE_ METADATA 16
migrating jConnect applications
jConnect applications, migrating 139
multibyte character sets
converter classes 35
supported 37
multithreading
making adjustments 95

N

native-APl/partly-Javadriver 2
native-protocol/all-Javadriver 2
net-protocol/all-Javadriver 2

O

Open Server Gateway 23

P

PACKETSIZE connection property 16
password 16
performance, improving 127

BigDecimal rescaling 128

character-set conversion 129

cursors 136

tuning for prepared statementsin Dynamic SQL

130

pooling connections 89
positioned updates and deletes

using JDBC 1.x methods 52

using JDBC 2.0 methods 53
PRELOAD_JARS connection property 17
preloading .jar files 84
PreparedStatement

using with cursors 56
properties

driver 12
PROTOCOL_CAPTURE connection property 17
PROXY connection property 17

jConnect for JDBC

PureConverter class 35

Q

QUERY_TIMEOUT_CANCELS _ALL connection
property 17

R

related documents vii
remote procedure calls (RPCs)
server-to-server 46
REMOTEPWD connection property 17
REPEAT_READ 128
REPEAT_READ connection property 17
REQUEST_HA_SESSION 18
REQUEST_KERBEROS SESSION 18
resuming
TDSsessions 154
RMNAME connection property 18
rows
deleting from acursor result set 55
inserting in acursor result set 55
rs.getByte() 68

S

sample programs 181
SECONDARY_SERVER_HOSTPORT connection

property 18
SELECT_OPENS_CURSOR connection property
19

selecting a character-set converter class 36
sendingimagedata 63
SERIALIZE_REQUESTS connection property 19
server-to-server remote procedure calls 46
SERVICE_PRINCIPAL_NAME connection property
19

SERVICENAME connection property 19
servlet arguments

Debug 152

SkipDoneProc 152

TdsResponseSize 152

Programmer’s Reference

Index

TdsSessionldieTimeout 152
servlets 143
TDS 143
SESSION_ID connection property 19
SESSION_TIMEOUT connection property 20
setRemotePassword() 46
setting
jConnect connection properties 11
TDSservlet arguments 152
setting up
jConnect 5
SkipDoneProc servlet argument 152
SQL exception and warning messages 157
SQLINITSTRING connection properties 20
Statement.cancel () method 10
stored procedures
errors 124
executing 99
updating the database from theresult set 61
storing Java objects ascolumn datain atable 76
prerequisites 76
receiving Java objects from the database 78
sending Java objectsto adatabase 77
STREAM_CACHE_SIZE connection property 20
Sybase extension changes 140
SybEventHandler 69
SybMessageHandler 73
SYBSOCKET_FACTORY connection property 20
Syntax conventions ix
system properties
jdbc.drivers 11

T

TDS 3
capturing communication 120
installing servlets 152
resuming sessions 154
servlet system requirements 151
serviets 143
setting servlet arguments 152
tracking sessions 153
tunnelling 143
TdsResponseSize servlet argument 152
TdsSessionldleTimeout servlet argument 152

189

Index

tracking TDS sessions 153
troubleshooting 117
TruncationConverter class 35, 40
tunnelling
TDS 143
turning off debugging in your application 118
turning on debugging in your application 118
TYPE_SCROLL_INSENSITIVE limitations 57

U

unichar 6
unichar and univarchar datatypes 34
updating
database from the result set of a stored procedure 61
URL
connection property parameters 22
syntax 21
USE_METADATA connection property 16
user 20
utilities
IsglApp 179

Vv

VERSIONSTRING connection property 20

W

Web server gateways 143
widetables 47

X

XAServer 91

190 jConnect for JDBC

	Programmer’s Reference
	About This Book
	CHAPTER 1 Introduction
	What is JDBC?
	What is jConnect?

	CHAPTER 2 Programming Information
	Setting up jConnect
	Setting the jConnect version
	JCONNECT_VERSION connection property
	CANCEL_ALL connection property

	Invoking the jConnect driver

	Establishing a connection
	Setting connection properties
	Connecting to Adaptive Server
	URL connection property parameters

	Connecting to Adaptive Server Anywhere
	Connecting to Adaptive Server Anywhere 5.x.x

	Connecting to a server using JNDI
	Connection URL for using JNDI
	Required directory service information
	CONNECTION_FAILOVER connection property
	Providing JNDI context information

	Implementing custom socket plug-ins
	Creating and configuring a custom socket
	Example

	Handling internationalization and localization
	Using jConnect to pass Unicode data
	jConnect character-set converters
	Selecting a character-set converter
	Setting the CHARSET connection property
	Improving character-set conversion performance
	Supported character sets
	European currency symbol support
	Unsupported character sets

	Working with databases
	Implementing high availability failover support
	Overview
	Requirements, dependencies, and restrictions
	Implementing failover in jConnect

	Performing server-to-server remote procedure calls
	Using wide table support for Adaptive Server version 12.5 and later
	Accessing database metadata
	Server-side metadata installation

	Using cursors with result sets
	Creating a cursor
	Using JDBC 1.x methods for positioned updates and deletes
	Using JDBC 2.0 methods for positioned updates and deletes
	Using a cursor with a PreparedStatement object
	Using TYPE_SCROLL_INSENSITIVE result sets in jConnect

	Support for batch updates
	Implementation notes

	Updating a database from a result set of a stored procedure
	Working with datatypes
	Sending numeric data
	Updating image data in the database
	Using text data
	Using date and time datatypes
	Using char/varchar/text datatypes and getByte

	Implementing advanced features
	Using event notification
	Event notification example

	Handling error messages
	Retrieving Sybase-specific error information
	Customizing error-message handling
	Installing an error-message handler
	Error-message-handler example

	Storing Java objects as column data in a table
	Prerequisites for storing java objects as column data
	Sending Java objects to a database
	Receiving Java objects from the database

	Using dynamic class loading
	Using DynamicClassLoader
	Using deserialization
	Preloading .jar files
	Advanced features

	JDBC 2.0 optional package extensions support
	JNDI for naming databases
	Connection pooling
	Distributed transaction management support

	Restrictions on and interpretations of JDBC standards
	Using JDBC 3.0 method stubs
	Using Connection.isClosed and IS_CLOSED_TEST
	Using Statement.close with unprocessed results
	Making adjustments for multithreading
	Using ResultSet.getCursorName
	Using setLong with large parameter values
	Using COMPUTE statements
	Executing stored procedures

	CHAPTER 3 Security
	Overview
	Restrictions

	SSL
	Kerberos
	Configuring jConnect applications for Kerberos
	GSSMANAGER_CLASS connection property
	Vendor implementations
	Setting GSSMANAGER_CLASS
	Examples

	Setting up the Kerberos environment
	CyberSafe
	MIT
	Microsoft Active Directory

	Sample applications
	ConnectKerberos.java

	Interoperability
	Encryption types

	Troubleshooting
	Kerberos

	Related documents

	CHAPTER 4 Troubleshooting
	Debugging with jConnect
	Obtaining an instance of the Debug class
	Turning on debugging in your application
	Turning off debugging in your application
	Setting the CLASSPATH for debugging
	Using the Debug methods

	Capturing TDS communication
	PROTOCOL_CAPTURE connection property
	pause and resume methods in the Capture class

	Resolving connection errors
	Gateway connection refused
	Unable to connect to a 4.9.2 SQL Server

	Managing memory in jConnect applications
	Resolving stored procedure errors
	RPC returns fewer output parameters than registered
	Fetch/state errors when output parameters are returned
	Stored procedure executed in unchained transaction mode

	Resolving a custom socket implementation error

	CHAPTER 5 Performance and Tuning
	Improving jConnect performance
	BigDecimal rescaling
	REPEAT_READ connection property
	SunIoConverter character-set conversion

	Performance tuning for prepared statements in dynamic SQL
	Choosing prepared statements and stored procedures
	Prepared statements in portable applications
	Prepared statements with jConnect extensions
	If most dynamic statements are executed infrequently
	If most dynamic statements are executed many times in a session

	Connection.prepareStatement
	DYNAMIC_PREPARE connection property
	SybConnection.prepareStatement
	ESCAPE_PROCESSING_DEFAULT connection property

	Cursor performance
	LANGUAGE_CURSOR connection property

	CHAPTER 6 Migrating jConnect Applications
	Migrating applications to jConnect 6.0
	Changing Sybase extensions
	Extension change example
	Method names
	Debug class

	CHAPTER 7 Web Server Gateways
	About Web server gateways
	Using TDS tunnelling
	Configuring jConnect and gateways
	Web server and Adaptive Server on one host
	Dedicated JDBC Web server and Adaptive Server on one host
	Web server and Adaptive Server on separate hosts
	Connecting to a server through a firewall

	Usage requirements
	Reading the index.html file
	Running the sample Isql applet
	Troubleshooting

	Using the TDS-tunnelling servlet
	Reviewing requirements
	Installing the servlet
	Setting servlet arguments

	Invoking the servlet
	Tracking active TDS sessions
	Terminating TDS sessions

	Resuming a TDS session
	Using TDS and Netscape Enterprise Server 3.5.1 on Solaris

	APPENDIX A SQL Exception and Warning Messages
	APPENDIX B jConnect Sample Programs
	Running IsqlApp
	Running jConnect sample programs and code
	Sample applications
	Running the sample applets
	Running the sample programs with Adaptive Server Anywhere

	Sample code

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

