
 Programmer’s Supplement

Open Client™ and Open Server™

12.5.1

UNIX

DOCUMENT ID: DC35456-01-1251-02

LAST REVISED: April 2004

Copyright © 1989-2004 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture,
Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server
Enterprise Replication, Adaptive Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, Anywhere Studio, Application
Manager, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Translator, APT-Library, AvantGo, AvantGo
Application Alerts, AvantGo Mobile Delivery, AvantGo Mobile Document Viewer, AvantGo Mobile Inspection, AvantGo Mobile
Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon Application Server, AvantGo
Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BizTracker, ClearConnect, Client-Library, Client
Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer,
DataWindow, DB-Library, dbQueue, Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution Director, e-ADK,
E-Anywhere, e-Biz Impact, e-Biz Integrator, E-Whatever, EC Gateway, ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL,
EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager,
Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement
Accelerator, EWA, Financial Fusion, Financial Fusion Server, Gateway Manager, GlobalFIX, iAnywhere, ImpactNow, Industry
Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar
CTS, jConnect for JDBC, Mail Anywhere Studio, MainframeConnect, Maintenance Express, Manage Anywhere Studio, M-Business
Channel, M-Business Network, M-Business Server, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, My
AvantGo, My AvantGo Media Channel, My AvantGo Mobile Marketing, MySupport, Net-Gateway, Net-Library, New Era of Networks,
ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Client, Open
ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions,
Optima++, Orchestration Studio, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, PocketBuilder, Pocket PowerBuilder,
Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions,
PowerDynamo, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio,
Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst, Rapport, RepConnector, Replication Agent,
Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit, Report-Execute, Report Workbench, Resource
Manager, RW-DisplayLib, RW-Library, S-Designor, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS,
smart.partners, smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug,
SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL
Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, S.W.I.F.T.
Message Format Libraries, Sybase Central, Sybase Client/Server Interfaces, Sybase Financial Server, Sybase Gateways, Sybase MPP,
Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financial,
SyberAssist, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, TotalFix, TradeForce, Transact-
SQL, Translation Toolkit, UltraLite, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode,
VisualWriter, VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL,
Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-
Server and XP Server are trademarks of Sybase, Inc. 02/04

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

Programmer’s Supplement iii

About This Book .. vii

CHAPTER 1 Open Client Client-Library/C .. 1
General instructions ... 1
Building a Client-Library executable... 2

Native thread support .. 2
Kerberos support ... 3
Compile and link lines ... 4
Bulk copy routines ... 11
Performance considerations.. 11
Header files ... 11

Using Client-Library sample programs... 11
Makefile and sample programs ... 12
Building applications using shared libraries 12
Purpose of the sample programs .. 13
The sybopts.sh script and building applications 13
Location... 13
Header file ... 14
Utility routines for the sample programs.................................. 16
Sample program summaries ... 16

CHAPTER 2 Open Client DB-Library/C... 25
General instructions ... 25
Building a DB-Library executable... 26

Libraries... 26
Link-and-compile lines... 26
Performance considerations.. 28
Header files ... 28

Using DB-Library sample programs ... 29
Purpose of the sample programs .. 29
Location... 29
Header file ... 30
Sample program summary .. 31

Contents

iv Open Client and Open Server

CHAPTER 3 Open Server Server-Library/C .. 37
General instructions ... 37
Building a Server-Library executable ... 38

Libraries... 38
Compile-and-link line commands .. 38
Kerberos support... 41
Bulk copy routines ... 43
Performance considerations.. 43
Header files ... 43

Server-Library sample programs.. 44
Purpose of the sample programs .. 44
Location... 44
Sample program summaries ... 45

CHAPTER 4 Open Client Embedded SQL/COBOL... 51
General instructions ... 51
Building an Embedded SQL/COBOL executable........................... 52

Libraries... 52
Precompiling the application ... 52
Compiling and linking the application 53
Loading stored procedures.. 56

Embedded SQL/COBOL sample programs 57
Purpose of the sample programs .. 57
Location... 57
Example 1: Using cursors for database query 58
Example 2: Displaying and editing rows in a table 58

CHAPTER 5 Open Client Embedded SQL/C ... 59
General instructions ... 59
Building an Embedded SQL/C executable..................................... 60

Precompiling the application ... 60
Compiling and linking the application 61
Performance considerations.. 66
Loading stored procedures.. 66

Embedded SQL/C sample programs ... 67
Purpose of the sample programs .. 67
Location... 67
Header file ... 68
Example 1: Using cursors for database query 68
Example 2: Displaying and editing rows of a table.................. 69

APPENDIX A Commands and Utilities.. 71

Contents

Programmer’s Supplement v

bcp ... 71
cobpre; cpre ... 87
defncopy... 99
isql.. 103

APPENDIX B Environment Variables ... 113

vi Open Client and Open Server

Programmer’s Supplement vii

About This Book

The Sybase® Open Client™ and Open Server™ products are a set of
programming interfaces that allow applications and data of any type to be
used together. They include:

• Open Client DB-Library™/C

• Open Client Client-Library™/C

• Open Server Server-Library/C

• Open Client Embedded SQL™/C

• Open Client Embedded SQL/COBOL

Each of these products has its own reference manual that describes it in
detail. The purpose of this book is to serve as a supplement to the product
manuals. It describes the platform-related issues for all the Open Client
and Open Server products.

The following UNIX platforms are covered:

• HP Tru64 UNIX

• HP 9000 Series HP-UX

• IBM RISC System/6000 AIX

• Linux

• Silicon Graphics IRIX

• Sun Solaris 2.x (SPARC)

Audience This manual is written for programmers who use the Open Client and
Open Server products listed above.

How to use this book This supplement contains material for all the Open Client and Open
Server products running on the UNIX operating system. Each product,
such as Open Client Client-Library or Open Server, is covered in its own
chapter. The chapters such discuss issues as:

• Building an executable

viii Open Client and Open Server

• Information on the online sample programs, including their locations and
what they do

The appendixes contain the following:

• Reference pages that detail the syntax, parameters, and qualifiers for the
commands and utilities relevant to Open Client and Open Server

• Information about the environment variables you need to set so that you
can build and run your applications

Related documents Each Open Client and Open Server product has its own set of user
documentation. Table 1 lists the products and their related documents:

Table 1: Product documentation list

See your installation guide for information on installation, directory structure,
and logical names.

See the Open Client and Open Server Configuration Guide for UNIX for
information on how to:

• Set up your environment so that Open Client applications and servers can
communicate

• Localize Sybase applications

Other sources of
information

Use the Sybase Getting Started CD, the Sybase Technical Library CD, and the
Technical Library Product Manuals Web site to learn more about your product:

Product Related Documentation

Client-Library Open Client Client-Library/C Reference Manual
Open Client and Open Server Common Libraries Reference Manual
Open Client Client-Library/C Programmer’s Manual

DB-Library Open Client DB-Library/C Reference Manual

Server-Library Open Server Server-Library Reference Manual
Open Client and Open Server Common Libraries Reference Manual
Open Client Client-Library Reference Manual

ESQL/C Embedded SQL/C Programmer’s Manual
Embedded SQL Programmer’s Reference

ESQL/COBOL Embedded SQL/COBOL Programmer’s Manual
Embedded SQL Programmer’s Reference

 About This Book

Programmer’s Supplement ix

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the Technical Library CD. It is included with
your software. To read or print documents on the Getting Started CD you
need Adobe Acrobat Reader (downloadable at no charge from the Adobe
Web site, using a link provided on the CD).

• The Technical Library CD contains product manuals and is included with
your software. The DynaText reader (included on the Technical Library
CD) allows you to access technical information about your product in an
easy-to-use format.

Refer to the Technical Library Installation Guide in your documentation
package for instructions on installing and starting the Technical Library.

• The Technical Library Product Manuals Web site is an HTML version of
the Technical Library CD that you can access using a standard Web
browser. In addition to product manuals, you will find links to
EBFs/Updates, Technical Documents, Case Management, Solved Cases,
newsgroups, and the Sybase Developer Network.

To access the Technical Library Product Manuals Web site, go to Product
Manuals at http://www.sybase.com/support/manuals/.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select Products from the navigation bar on the left.

3 Select a product name from the product list and click Go.

4 Select the Certification Report filter, specify a time frame, and click Go.

5 Click a Certification Report title to display the report.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

x Open Client and Open Server

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. Enter user name and password information, if
prompted (for existing Web accounts) or create a new account (a free
service).

3 Select a product.

4 Specify a time frame and click Go.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Conventions The syntax conventions used in this manual are as follows:

Table 2: Syntax conventions

The following examples illustrate the syntax conventions described above.

Use of vertical bars means to choose one and only one option within the curly
braces:

{red | yellow | blue}

Use of commas means to choose one or more options within the curly braces.
If you choose more than one, separate your choices with commas.

{cash, check, credit}

Brackets indicate optional parameters. You do not have to choose any of the
items in square brackets.

Key Definition

command Command names, command option names, utility names, utility
flags, and other keywords are lowercase bold.

variable Variables (words that stand for values that you fill in) are in italics.

{ } Curly braces indicate that you choose at least one of the enclosed
options. Do not include braces in your option.

[] Brackets mean that choosing one or more of the enclosed parameters
is optional. Do not include the brackets in your option.

| The vertical bar means you may select only one of the options shown.

, The comma means you may choose as many of the options shown as
you like. Separate your choices with commas.

 About This Book

Programmer’s Supplement xi

One item in square brackets means you can omit it entirely.

[anchovies]

Use of vertical bars means you can choose none or only one within the square
brackets.

[beans | rice | sweet_potatoes]

Commas within square brackets means you can choose none, one, or more
options. If you choose more than one, separate your choices with commas.

[extra_cheese, avocados, sour_cream]

Syntax followed by Ellipsis (...) indicates that you can repeat the last unit as
many times as you like. In the following syntax example, one or more pairs of
program names and extensions can be listed between the square brackets:

cpre -L program[.ext] [program[.ext]]...

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, ask a
designated person at your site to contact Sybase Technical Support.

xii Open Client and Open Server

Programmer’s Supplement 1

C H A P T E R 1 Open Client Client-Library/C

Open Client Client-Library is a collection of routines for use in writing
client applications. Client-Library includes routines that send commands
to a server and other routines that process the results of those commands.
Still other routines set application properties, handle error conditions, and
provide a variety of information about an application’s interaction with a
server.

CS-Library, which is included with Open Client, is a collection of utility
routines that can be used in writing both Open Client and Open Server
applications. All Client-Library applications include at least one call to
CS-Library, because Client-Library routines use a structure which is
allocated in CS-Library.

This chapter covers the following topics:

Note Refer to the release bulletin for additional information about Open
Client products and how they behave on your platform.

General instructions
To run the Client-Library sample programs, you must:

• Be able to access an Adaptive Server. See the descriptions of the
individual samples for the required Adaptive Server version level.

• Set the following environment variables, which are described in
Appendix B, “Environment Variables”:

• SYBASE

Topic Page
General instructions 1

Building a Client-Library executable 2

Using Client-Library sample programs 11

Building a Client-Library executable

2 Open Client and Open Server

• DSQUERY

• SYBPLATFORM

• Platform-specific library path variable

• Be able to connect to an Adaptive Server™. Refer to the Open Client and
Open Server Configuration Guide for your platform for information about
connecting to an Adaptive Server.

• Read the README file for complete instructions on running the sample
programs.

Building a Client-Library executable
This section discusses the libraries and compile and link lines needed to build
Client-Library applications, including multithreaded applications.

Table 1-1 lists the libraries that you need to include to take full advantage of all
Client-Library capabilities in a non-threaded environment.

Table 1-1: Platform-specific libraries

Native thread support
Client-Library version includes thread-safe libraries which allows developers
to create multithreaded applications using Posix threads.

Refer to “Compile-and-link lines for multithreaded applications” on page 7
for proper syntax and examples.

Table 1-2 lists the libraries that you need to include to take advantage of all
Client-Library capabilities for multithreaded support.

Platform Required libraries

All platforms libct – >index-marker text="Libraries:libct; libct "> Client-Library
(Sybase)
libcs – CS-Library (Sybase)
libtcl – Transport Control Layer (Sybase internal)
libcomn – An internal shared utility library (Sybase internal)
libintl – Internationalization support library (Sybase internal))

CHAPTER 1 Open Client Client-Library/C

Programmer’s Supplement 3

Table 1-2: Platform-specific libraries for multithreaded support

Kerberos support
Client-Library version 11.1 and later supports Kerberos security features for
applications that desire a high level of security when communicating over a
network. By installing the required Kerberos software, and performing the
appropriate configuration tasks, your Client-Library applications can take
advantage of the following Kerberos security features that are supported in this
version:

• Network authentication

• Mutual authentication

• Out-of-sequence authentication

• Replay detection

Platform Required libraries

All platforms libct_r – Client-Library (Sybase)
libcs_r – CS-Library (Sybase)
libintl_r – Internationalization support library (Sybase internal)
libm – Standard UNIX math library (system)

Sun Solaris libpthread – Thread library (system)
socket – Socket network library (system)
libnsl – A network library (system)
libdl – Dynamic loader library (system)
libtcl_r – Transport Control Layer (Sybase internal)
libcomn_r – Internal shared utility library (Sybase internal)

HP 9000(8xx) libcl – HP Transport Control Layer (system)
libBSD – The BSD library (system)
libc_r – C reentrant library
libndbm – (system)
libtcl_r – Transport Control Layer (Sybase internal)
libcomn_r – Internal shared utility library (Sybase internal)

IBM
 RS/6000

libc_r – C reentrant library
libpthreads – Thread library (system)
libtcl_r – Transport Control Layer (Sybase internal)
libcomn_r – Internal shared utility library (Sybase internal)

Linux libtcl_r – Transport Control Layer (Sybase internal)
libc_r – C reentrant library
libpthreads – Thread library (system)
libtcl_r – Transport Control Layer (Sybase internal)
libcomn_r – Internal shared utility library (Sybase internal

Building a Client-Library executable

4 Open Client and Open Server

• Confidentiality

• Integrity

Note There is no Kerberos support for HP Tru64 UNIX or SGI platforms at
this time. Refer to your release bulletin for the latest information regarding
additional support.

To develop and run Client-Library applications that take advantage of
Kerberos features, perform the tasks listed in Table 1-3.

Table 1-3: Required tasks for Kerberos support

Compile and link lines
Client-Library and Server-Library dynamically link directory drivers and
security drivers. This means that you must not explicitly link the following
associated libraries with your applications:

• Sybase Net-Library drivers (linker option -linsck for HP-UX, and IBM
RS/6000 or -ltli for Sun Solaris 2.x)

Tasks For more information

Install the Kerberos software on your system. Refer to your Kerberos
documentation and the Open
Server Configuration Guide for
UNIX for instructions.

Configure the security section of the libtcl.cfg
configuration file.

See the Open Client and Open
Server Configuration Guide for
UNIX.

Log in to the Kerberos security environment
with the Kerberos kinit utility, before running
your Client-Library application.

Refer to your Kerberos
documentation.

Set the environment variable to the credential
cache directory location.:

• For Cybersafe, CSFC5CCNAME

• For MIT, KRB5CCNAME

Refer to your Kerberos
documentation. Default credential
cache directory location varies by
platform.

Set the desired security features using
ct_con_props or use the default credentials by
not setting ct_con_props.

See the Open Client Client-
Library/C Reference Manual.

Use CS_SUPPORTED action type
in ct_con_props and ct_config to
determine if a security feature is
supported.

CHAPTER 1 Open Client Client-Library/C

Programmer’s Supplement 5

• Sybase directory or security drivers (linker options -ldldap and
-lskrb)

Compile-and-link lines for non-threaded applications

The following tables list the general forms of the commands for compiling and
linking non-threaded Client-Library applications on Sybase supported
platforms running on UNIX. (Also, refer to the Makefile in the
$SYBASE/$SYBASE_OCS/sample/ctlibrary directory for compile and link
information.)

Table 1-4 shows commands for compiling and linking Client-Library
applications using static libraries.

Table 1-4: Static link-and-compile commands for Client-Library

Table 1-5 shows commands for compiling and linking Client-Library
applications using debug libraries.

Platform Command

Sun
Solaris 2.x

/opt/SUNWspro/bin/cc
-I$SYBASE/$SYBASE_OCS/include
-L$SYBASE/$SYBASE_OCS/lib APP_FILES OCS_LIBS
-Bstatic -lcs -ltcl -lcomn -lintl -Bdynamic
-lnsl -ldl -lm -o program

IBM
RS/6000

xlc_r4 -I$SYBASE/$SYBASE_OCS/include
-L$SYBASE/$SYBASE_OCS/lib APP_FILES OCS_LIBS
-lcs -ltcl -lcomn -lintl -lm -o program

HP
9000(8xx)

cc -I$SYBASE/$SYBASE_OCS/include -
L$SYBASE/$SYBASE_OCS/lib APP_FILES -Wl,a,archive
OCS_LIBS -lcs -ltcl -lcomn -lintl -Wl,-a,default
-lcl -lm -lBSD -ldld -Wl,-E,+s -o program

SGI cc -o [-n32 |-n64] -mips3
-I$SYBASE/$SYBASE_OCS/include APP_FILES
-L$SYBASE/$SYBASE_OCS/lib -Bstatic OCS_LIBS -lcs
-ltd -lcomn -lintl -Bdynamic -lm -o program

HP Tru64
UNIX

cc -I$SYBASE/$SYBASE_OCS/include
-L$SYBASE/$SYBASE_OCS/lib APP_FILES OCS_LIBS
-lcs -ltcl -lcomn -lintl -lm -o program

Linux cc -I$SYBASE/$SYBASE_OCS/include

-L$SYBASE/$SYBASE_OCS/lib APP_FILES OCS_LIBS
-lcs -lsybtcl -lcomn -lintl -rdynamic -ldl -lnsl
-lm -o program

Building a Client-Library executable

6 Open Client and Open Server

Table 1-5: Debug link-and-compile commands for Client-Library

Table 1-6 shows commands for compiling and linking Client-Library
applications using shareable libraries (with dynamic drivers).

Platform Command

Sun
Solaris 2.x

/opt/SUNWspro/bin/cc
-I$SYBASE/$SYBASE_OCS/include
-L$SYBASE/$SYBASE_OCS/devlib \
-g APP_FILES OCS_LIBS -lcs -ltcl -lcomn -lintl
-Bdynamic -lnsl -ldl -lm -o program

IBM
 RS/6000

xlc_r4 -I$SYBASE/$SYBASE_OCS/include
-L$SYBASE/$SYBASE_OCS/devlib -g APP_FILES \
OCS_LIBS -lcs -ltcl -lcomn -lintl -lm -o program

HP
9000(8xx)

cc -I$SYBASE/$SYBASE_OCS/include
-L$SYBASE/$SYBASE_OCS/devlib -g APP_FILES \
-Wl,-a,archive OCS_LIBS -lcs -ltcl -lcomn -lintl
\-Wl,-a,default -lcl -lm -lBSD -ldld -Wl,-E,+s
-o program

SGI cc -g [-n32 |-n64] -mips3
-I$SYBASE/$SYBASE_OCS/include \
-L$SYBASE/$SYBASE_OCS/devlib APP_FILES OCS_LIBS
-lcs -ltcl -linsck \ -lcomn -lintl -lm -o program

HP Tru64
UNIX

cc -g -I$SYBASE/$SYBASE_OCS/include
-L$SYBASE/$SYBASE_OCS/devlib APP_FILES OCS_LIBS
\-lcs -ltcl -oldstyle_liblookup -lcomn -lintl
-lm -o program

Linux cc -I$SYBASE/$SYBASE_OCS/include

-L$SYBASE/$SYBASE_OCS/devlib APP_FILES OCS_LIBS
-lcs -lsybtcl -lcomn -lintl -rdynamic -ldl -lnsl
-lm -o program

CHAPTER 1 Open Client Client-Library/C

Programmer’s Supplement 7

Table 1-6: Shareable link-and-compile commands for Client-Library

Compile-and-link lines for multithreaded applications

Table 1-7 shows commands for compiling and linking Client-Library
applications with libraries to take advantage of thread-safe support.

Table 1-7: Thread-safe link-and-compile commands for Client-Library

Platform Command

Sun
 Solaris 2.x

/opt/SUNWspro/bin/cI$SYBASE/$SYBASE_OCS/include
-L$SYBASE/$SYBASE_OCS/lib \
-R$SYBASE/$SYBASE_OCS/lib APP_FILES OCS_LIBS
-lcs -lcomn \ -ltcl -lintl -lnsl -ldl -lm
-o program

HP
9000(8xx)

cc -I$SYBASE/$SYBASE_OCS/include
-L$SYBASE/$SYBASE_OCS/lib APP_FILES OCS_LIBS
-lcs -lcomn \-ltcl -lintl -linsck -Wl -lcl -lm
-lBSD -o program

SGI cc [-n32 |-n64] -mips3
-I$SYBASE/$SYBASE_OCS/include \
-L$SYBASE/$SYBASE_OCS/lib APP_FILES OCS_LIBS
-lcs -ltcl -linsck \ -lcomn -lintl -lm -o program

HP Tru64
UNIX

cc -I$SYBASE/$SYBASE_OCS/include
-L$SYBASE/$SYBASE_OCS/lib APP_FILES OCS_LIBS
-lcs -ltcl \ -oldstyle_liblookup -lcomn -lintl
-lm -o program

Platform Command

Sun
Solaris 2.3
and later

/opt/SUNWspro/bin/cc
-I$SYBASE/$SYBASE_OCS/$SYNASE_OCS/include
-L$SYBASE/$SYBASE_OCS/$SYBASE_OCS/lib -g \
-D_REENTRANT APP_FILES OCS_LIBS -lcs_r -ltcl_r
-lcomn_r \-lintl_r -Bdynamic -lnsl -ldl -lpthread
-lthread -lm -o program

IBM
RS/6000

xlc_r4 -
I$SYBASE/$SYBASE_OCS/$SYBASE/$SYBASE_OCS/
$SYBASE_OCS/include -
L$SYBASE/$SYBASE_OCS/$SYBASE/$SYBASE_OCS
$SYBASE/$SYBASE_OCS/$SYBASE_OCS/lib -g
-D_THREAD_SAFE \APP_FILES OCS_LIBS -lcs_r
-ltcl_r -lcomn_r -lintl_r \
-lxdsxom -lpthread -lm -o program

Building a Client-Library executable

8 Open Client and Open Server

In the link-and-compile lines listed in Table 1-4 through Table 1-7:

• APP_FILES represents the source (.c) or object (.o) files for your
application.

• OCS_LIBS represents the linker options to link in the Open Client and
Open Server libraries that your code calls. These options can be specified
by any or all of the following linker options, in the order shown:

• For non-threaded applications:

-lsrv (for Server-Library routines)

-lblk (for Bulk-Library routines)

-lct (for Client-Library routines)

• For threaded applications:

-lsrv_r (for Server-Library routines)

-lblk_r (for Bulk-Library routines)

-lct_r (for Client-Library routines)

For HP-UX system users:

HP
9000(8xx)

cc -
I$SYBASE/$SYBASE_OCS/$SYBASE/$SYBASE_OCS/$SYBAS
E_OCS/include -
L$SYBASE/$SYBASE_OCS/$SYBASE_OCS/lib -g
-D_THREAD_SAFE \-D_REENTRANT -Ae APP_FILES
OCS_LIBS -lcs_r \-ltcl_r -lcomn_r -lintl_r -Wl,
-a,default -lcl -lm -lBSD \
-lpthread -lc_r -ldld -Wl,-E,+s -o program

HP Tru64
UNIX

cc -I$SYBASE/$SYBASE_OCS/include -
L$SYBASE/$SYBASE_OCS/lib -threads APP_FILES
\OCS_LIBS -lcs_r -ltcl_r -lcomn_r -lintl_r -lm
-o program

Linux cc -I$SYBASE/$SYBASE_OCS/include

-L$SYBASE/$SYBASE_OCS/vlib APP_FILES OCS_LIBS-
lcs_r -lsybtcl_r -lcomn_r -lintl_r -rdynamic -ldl
-lpthread -lnsl -lm -o program

Platform Command

CHAPTER 1 Open Client Client-Library/C

Programmer’s Supplement 9

• The option -W1,-a,archive causes the linker to statically link the Sybase
libraries. By not specifying this option, Client-Library uses shared
versions of the Sybase libraries are used. When using shared libraries, the
SH_LIB_PATH environment variable must include
$SYBASE/$SYBASE_OCS/lib at runtime, and the application user must
have read and execute permission on the libraries in
$SYBASE/$SYBASE_OCS/lib.

• HP-UX will not use the SH_LIB_PATH environment variable at runtime
unless the application is linked with the +s linker option. You must use the
+s linker options so that the system will be able to find Sybase libraries at
runtime. -E is required to prevent undefined-symbol errors when driver
libraries are loaded at runtime. See the HP-UX ld man page for more
information.

For SGI users:

• Use the -n32 option for 32-bit machines, and -n64 for 64-bit machines.

Note You must set the environment variable LD_LIBRARY_PATH to
$SYBASE/$SYBASE_OCS/lib to run programs linked with shareable (dynamic)
libraries. If you are running in debug mode, set LD_LIBRARY_PATH to
$SYBASE/$SYBASE_OCS/devlib to run the program.

For HP Tru64 UNIX users:

The library file extensions for HP Tru64 UNIX are .a for static libraries and .so
for sharable libraries. Use the following general command form to compile and
link a Client-Library application:

Nonthreaded
non-reentrant libraries

• Optimized libraries – nonthreaded, non-reentrant:

cc -I$SYBASE/$SYBASE_OCS/include program.c \
 $SYBASE/$SYBASE_OCS/lib/libct.a \
 $SYBASE/$SYBASE_OCS/lib/libcs.a \
 $SYBASE/$SYBASE_OCS/lib/libtcl.a \
 $SYBASE/$SYBASE_OCS/lib/libcomn.a \
 $SYBASE/$SYBASE_OCS/lib/libintl.a \
 -lm -o program

• Debug libraries – nonthreaded, non-reentrant:

cc -g -I$SYBASE/$SYBASE_OCS/include \
 -L$SYBASE/$SYBASE_OCS/devlib program.c \
 -lct -lcs -ltcl -oldstyle_liblookup \
 -lcomn -lintl \
 -lm -o program

Building a Client-Library executable

10 Open Client and Open Server

• Shareable libraries – nonthreaded, non-reentrant:

cc -I$SYBASE/$SYBASE_OCS/include
-L$SYBASE/$SYBASE_OCS/lib program.c \
 -lct -lcs -ltcl -oldstyle_liblookup \
 -lcomn -lintl \
 -lm -o program

Threaded reentrant
libraries

• Optimized libraries – threaded, reentrant:

cc -I$SYBASE/$SYBASE_OCS/include -threads program.c
\
 $SYBASE/$SYBASE_OCS/lib/libct_r.a \
 $SYBASE/$SYBASE_OCS/lib/libcs_r.a \
 $SYBASE/$SYBASE_OCS/lib/libtcl_r.a \
 $SYBASE/$SYBASE_OCS/lib/libcomn_r.a \
 $SYBASE/$SYBASE_OCS/lib/libintl_r.a \
 -lm -o program

• Debug libraries – threaded, reentrant:

cc -I$SYBASE/$SYBASE_OCS/include -g -threads
program.c \
 -L$SYBASE/$SYBASE_OCS/devlib \
 -oldstyle_liblookup -lct_r -lcs_r \
 -ltcl_r -lintl_r \
 -lm -o program

• Shareable libraries – threaded, reentrant:

cc -I$SYBASE/$SYBASE_OCS/include -threads program.c
\
 -oldstyle_liblookup \
 -lct_r -lcs_r -ltcl_r \
 -lcomn_r -lintl_r \
 -lm -o program

Compile-and-link lines for Kerberos supported applications

The Sybase driver for Kerberos is a dynamically-loaded shared library. When
the driver is loaded, it attempts to dynamically load a Kerberos GSS library.
This needs to be in the search path that the dynamic loader uses. Due to
constraints in the implementation of the Sybase driver, only re-entrant libraries
are supported when using Kerberos.

CHAPTER 1 Open Client Client-Library/C

Programmer’s Supplement 11

Bulk copy routines
If you plan to use bulk copy routines, link in the libblk bulk copy library. If you
plan to use bulk-copy routines in a threaded applications, link in the libblk_r
bulk-copy library.

To link in the bulk-copy library:

• In non-threaded applications, add -lblk before -lct on the link line.

• In multithreaded applications, add -lblk_r before -lct_r on the link line.

See the Open Client and Open Server Common Libraries Reference Manual for
more information on bulk copying.

Performance considerations
Linking with shared libraries results in a smaller executable and takes less time
than linking with static libraries. However, executables linked with shared
libraries may have a slower start-up time than those linked with static libraries.
Also, unlike static libraries, the shared libraries must be available at runtime.

The type of library that provides the best performance is determined by your
individual site requirements.

Header files
Include the ctpublic.h header file in all Client-Library application source files.
Other necessary header files are nested in ctpublic.h. If Bulk-Library is used,
include bkpublic.h instead of ctpublic.h.

See the Open Client Client-Library/C Reference Manual for more information
on header files.

Using Client-Library sample programs
Sample programs are included online with Client-Library to demonstrate
typical uses for Client-Library routines. Use the following information to
compile and run the samples.

Using Client-Library sample programs

12 Open Client and Open Server

Some sample programs use the sample databases supplied with Adaptive
Server. Refer to your installation guide for information on installing the sample
databases. The requirements section for each sample lists the database you
need, if any.

Note New sample programs are included for the Open Client 12.5 wide table
and unichar capabilities. These programs have uni_ or wide_ prefixes and are
described in “Sample program summaries.” Some of these programs require
the unipubs database.

Makefile and sample programs
In order to use the makefile to build sample programs on all platforms, you
must set the SYBPLATFORM environment variable correctly for the compiler
you are using. For the environment variables and library path refer to
Table B-1 on page 114.

Building applications using shared libraries
To build applications on the IBM platform using shared libraries, set up your
makefile to use a link statement like this (where export files are named *.exp):

xlc_r -g -D_THREAD_SAFE -I. \
 -I$SYBASE/$SYBASE_OCS/include \
 -DDEBUG -Dnthread_rs6000=1 multthrd.c \
 thrdutil.o thrdfunc.o \
 -bI:$SYBASE/$SYBASE_OCS/libct_r.exp \
 -bI:$SYBASE/$SYBASE_OCS/libcs_r.exp \
 -bI:$SYBASE/$SYBASE_OCS/libcomn_r.exp \
 -lm -o multthrd

In order to execute such an application, make sure that:

• The shared libraries are in the directory $SYBASE/$SYBASE_OCS/lib.

• The LIBPATH environment variable is set to:

 $SYBASE/$SYBASE_OCS/lib:/lib

• The configuration file $SYBASE/$SYBASE_OCS/config/libtcl.cfg
specifies the correct driver.

CHAPTER 1 Open Client Client-Library/C

Programmer’s Supplement 13

Purpose of the sample programs
The sample programs demonstrate specific Client-Library functionality. These
programs are designed as guides for application programmers, not as Client-
Library training aids. Read the descriptions at the top of each source file, and
examine the source code prior to using the sample programs.

These simplified programs are not intended for use in a production
environment. Production-quality programs require additional code to handle
errors and special cases.

The sybopts.sh script and building applications
The sybopts.sh script is included with the sample programs and helps you build
Open Client and Open Server applications for your platform by reading the
SYBPLATFORM environment variable:

sybopts.sh <args>

where args can be:

• compile – returns the compiler command and platform-specific compile
flags.

• comlibs – returns the list of required Sybase libraries that must be linked
with the application.

• syslibs – returns the list of required non-Sybase system libraries that must
be linked with the application.

Location
The sample programs are located in the following directory:

$SYBASE/sample/ctlibrary

This directory includes:

• Online source code for the sample programs.

• Data files for the samples.

• The makefile provided to build the samples. Use the makefile as a starting
point for your own Client-Library applications.

• The samples header file, example.h.

Using Client-Library sample programs

14 Open Client and Open Server

• The README file containing instructions for building, executing, and
testing the samples.

Note Before compiling and running the sample programs, copy the contents
of $SYBASE/sample/ctlibrary into a “working” directory, where you can freely
experiment with the sample programs without affecting the integrity of the
original files.

Header file
All of the sample programs reference the sample header file, example.h, the
contents of which are as follows:

/*
 ** example.h
 **
 ** This is the header file that goes with the
 ** Sybase Client-Library example programs.
 **
 **
 */

 /*
 ** Define symbolic names, constants, and macros
 */
 #define EX_MAXSTRINGLEN 255
 #define EX_BUFSIZE 1024
 #define EX_CTLIB_VERSION CS_VERSION_125
#define EX_BLK_VERSION BLK_VERSION_125
#define EX_ERROR_OUT stderr

 /*
 ** exit status values
 */
 #define EX_EXIT_SUCCEED 0
 #define EX_EXIT_FAIL 1

 /*
 ** Define global variables used in all sample
 ** programs
 */
 #define EX_SERVER NULL/* use DSQUERY
 env var */

CHAPTER 1 Open Client Client-Library/C

Programmer’s Supplement 15

 #define EX_USERNAME "user"
 #define EX_PASSWORD "server_password"

The sample programs make use of the define statements in example.h as
illustrated in the following fragments:

CS_CHAR *Ex_username = EX_USERNAME;
 CS_CHAR *Ex_password = EX_PASSWORD;

 /*
 ** If a user name is defined, set the
 ** CS_USERNAME property.
 */
 if (retcode == CS_SUCCEED && Ex_username != NULL)
 {
 if ((retcode = ct_con_props(*connection,
 CS_SET, CS_USERNAME, Ex_username,
 CS_NULLTERM, NULL)) != CS_SUCCEED)
 {
 ex_error("ct_con_props(username) failed");
 }
 }

 /*
 ** If a password is defined, set the
 ** CS_PASSWORD property.
 */
 if (retcode == CS_SUCCEED && Ex_password != NULL)
 {
 if ((retcode = ct_con_props(*connection,
 CS_SET, CS_PASSWORD, Ex_password,
 CS_NULLTERM, NULL)) != CS_SUCCEED)
 {
 ex_error("ct_con_props(password) failed");
 }
 }

Edits for these lines in example.h are described in the following sections.

EX_USERNAME

EX_USERNAME is defined in example.h as “sa.” Before running the sample
programs, you must edit example.h and change “sa” to your server login name.

Using Client-Library sample programs

16 Open Client and Open Server

EX_PASSWORD

EX_PASSWORD is defined in example.h as “ ”. Before running the sample
programs, you may want to edit example.h and change “ ” to your server
password.

You have three options regarding EX_PASSWORD. Choose the one that best
meets your needs:

• Option 1 – Change your server password to “server_password” while you
are running the samples. This creates the possibility of a security breach,
because while your password is set to this published value, an
unauthorized person might take the opportunity to log in to the server as
you. If this is a problem, choose one of the other methods of handling
passwords for the sample programs.

• Option 2 – In example.h, change the string “server_password” to your own
server password. Use the operating system’s protection mechanisms to
prevent others from accessing the header file while you are using it. When
you are finished with the samples, edit the line so that it again says
“server_password.”

• Option 3 – In the sample programs, modify the ct_con_props code that sets
the server password and substitute your own code to prompt samples users
for their server passwords. (Because this code is platform-specific, Sybase
does not supply it.)

Utility routines for the sample programs
The exutils.c file contains utility routines that are used by all other Client-
Library sample programs. It demonstrates how an application can hide some of
the implementation details of Client-Library from a higher-level program.

For more information about these routines, see the leading comments in the
sample source file.

Sample program summaries
The following sample programs are included with your software.

CHAPTER 1 Open Client Client-Library/C

Programmer’s Supplement 17

uni_blktxt.c

The uni_blktxt.c sample program uses the bulk-copy routines to copy static
data to a server table. There are three rows of data that are bound to program
variables and then sent to the server as a batch. The rows are again sent using
blk_textxfer to send the text data. For more information about this sample
program, see the leading comments in the sample source file.

Note This example requires a SQL Server version 4.9.1 or later.

compute.c

The compute.c sample program demonstrates processing compute results. It
sends a canned query to the server using a language command. It processes the
results using the standard ct_results while loop. It binds the column values to
program variables. It then fetches and displays the rows in the standard ct_fetch
while loop.

Following is the canned query:

select type, price from titles
 where type like "%cook"
 order by type, price
 compute sum(price) by type
 compute sum(price)

This query returns both regular rows and compute rows. The compute rows are
generated by the two compute clauses. The first compute clause, “compute
sum(price) by type,” generates a compute row each time the value of type
changes. The second compute clause “compute sum(price),” generates one
compute row, which is the last to be returned.

For more information about this sample program, see the leading comments in
the sample source file.

Note This sample requires the pubs2 database.

uni_csr_disp.c

The uni_csr_disp.c example program demonstrates using a read-only cursor. It
opens a cursor with a canned query. It processes the results using the standard
ct_results while loop. It binds the column values to program variables. Then, it
fetches and displays the rows in the standard ct_fetch while loop.

Using Client-Library sample programs

18 Open Client and Open Server

Following is the canned query:

select au_fname, au_lname, postalcode
 from authors

For more information about this sample program, see the leading comments in
the example source file.

Note This sample requires a SQL Server version 10.0 or later, and the pubs2
database.

ex_alib.c and ex_amain.c

This sample program contains two files, ex_alib.c and ex_amain.c, which
demonstrate how to write an asynchronous layer on top of Client-Library. It
uses hooks provided by Client-Library to allow seamless polling and use of
Client-Library’s completion callbacks.

The sample program is composed of two files:

• ex_alib.c contains the source code to the library portion of the example. It
is meant to be part of a library interface which supports asynchronous
calls. This module provides a means of sending a query to and retrieving
the results from a server within one asynchronous operation.

• ex_amain.c contains the source code to the main program that uses the
services provided by ex_alib.c.

For more information about this example program, see the leading comments
in the example source file and the EX_AREAD.ME file.

exconfig.c

The exconfig.c sample program demonstrates how Client-Library application
properties can be configured externally.

This sample requires you to edit the default runtime configuration file,
\config\ocs.cfg, located in the Sybase installation directory. The example sets
the CS_CONFIG_BY_SERVERNAME Client-Library property and calls
ct_connect with a server_name parameter set to “server1.” In response, Client-
Library looks for a [Server1] section in the external configuration file. To run
the example, create \config\ocs.cfg in the Sybase installation directory (if
necessary) and add the section:

[server1]

CHAPTER 1 Open Client Client-Library/C

Programmer’s Supplement 19

 CS_SERVERNAME = real_server_name

where real_server_name is the name of the server that you want to connect to.

For more information on how Client-Library uses external configuration files,
see the topics page “Using the Runtime Configuration File” in the Open Client
Client-Library/C Reference Manual.

firstapp.c

The firstapp.c sample program is an introductory example that connects to the
server, sends a select query, and prints the rows. This example program is
described in the Open Client Client-Library/C Programmer’s Guide.

getsend.c

The getsend.c sample program demonstrates how to retrieve and update text
data from a table containing text along with other datatypes. The process
demonstrated can also be used for retrieving and updating image data. For
more information about this sample program, see the leading comments in the
example source file.

Note This example requires SQL Server version 10.0 or later.

i18n.c

The i18n.c example program demonstrates some of the international features
available in Client-Library, including:

• Localized error messages

• User-defined bind types

For more information about this program, see the leading comments in the
example source file.

multthrd.c and thrdfunc.c

This sample program contains two files, multthrd.c and thrdfunc.c, which
demonstrate a multithreaded Client-Library application. The following
information is contained in the two files:

Using Client-Library sample programs

20 Open Client and Open Server

• multthrd.c contains the source code that spawns five threads. Each thread
processes a cursor or a regular query. The main thread waits for the other
threads to complete query processing and then terminates.

• thrdfunc.c contains platform specific information that determines which
thread and synchronization routines the example uses for execution
depending on your platform.

For more information about this program, see the leading comments in the
example source file.

This sample cannot run if the platform does not support a complete POSIX
thread implementation. You must set the SYBPLATFORM environment
variable described in Appendix B, “Environment Variables.”

Note This example requires SQL Server version 10.0 or later.

rpc.c

The RPC command example program, rpc.c, sends an RPC command to a
server and processes the results. For more information about this example
program, see the leading comments in the example source file.

Note This example requires a SQL Server version 4.9.1 or later.

secct.c

The secct.c sample program demonstrates how to use network-based security
features in a Client-Library application.

For this sample to execute, Kerberos must be installed and running on your
machine. You must also connect to a server that supports network-based
security, such as ASE or the secsrv.c Open Server sample program.

For more information about this example program, see the leading comments
in the example source file. For more information about network security
services, refer to the Open Client and Open Server Configuration Guide for
UNIX.

CHAPTER 1 Open Client Client-Library/C

Programmer’s Supplement 21

uni_blktxt.c

The uni-blktxt.c sample program uses the bulk-copy routines to copy static data
to a server table. This program has been modified for the use of the unichar and
univarchar datatypes. There are three rows of data that are bound to program
variables and then sent to the server as a batch. The rows are again sent using
blk_textxfer to send the text data.

uni_compute.c

The uni_compute.c sample program demonstrates processing compute results.
It is a modification of the compute.c sample program for the unichar and
univarchar datatypes and requires the unipubs database. It sends a canned query
to the server using a language command. It processes the results using the
standard ct_results loop. It binds the column values to program variables. It
then fetches and displays the rows in the standard ct_fetch loop.

uni_csr.c

The uni_csr_disp.c example program demonstrates using a read-only cursor. It
is a modification of the csr_disp.c sample program and requires the unipubs
database. It opens a cursor with a canned query. It processes the results using
the standard ct_results while loop. It binds the column values to program
variables. Then, it fetches and displays the rows in the standard ct_fetch while
loop.

Following is the canned query:

select au_fname, au_lname, postalcode
 from authors

uni_firstapp.c

This is a modification of the firstapp.c example program for use with unichar
and univarchar datatypes. It is an introductory example that connects to the
server, sends a select query, and prints the rows. The firstapp.c program is
described in the Open Client Client-Library/C Programmer’s Guide.

Using Client-Library sample programs

22 Open Client and Open Server

uni_rpc.c

The RPC command sample program, uni_rpc.c, sends an RPC command to a
server and processes the results. This is a modification of the rpc.c sample
program for use with unichar and univarchar datatypes, and requires the unipubs
database.

For more information about this program, see the leading comments in the
example source file.

usedir.c

This sample program demonstrates Client-Library’s ability to query a directory
service for a list of available servers.

usedir.c searches for Sybase server entries in the default directory, as defined
in the driver configuration file. If a network directory service is not being used,
usedir.c queries the interfaces file for server entries. Then, it displays a
description of each entry found, and lets the user choose a server to connect to.

For more information about this program, see the leading comments in the
example source file. For more information about network directory services,
refer to the Open Client and Open Server Configuration Guide for UNIX.

wide_compute.c

The wide_compute.c sample program demonstrates processing compute results
with wide tables and larger column sizes, implemented in Open Client and
Open Server version 12.5. It sends a canned query to the server using a
language command. It processes the results using the standard ct_results while
loop. It binds the column values to program variables. Then, it fetches and
displays the rows in the standard ct_fetch while loop.

Following is the canned query:

select type, price from titles
 where type like "%cook"
 order by type, price
 compute sum(price) by type
 compute sum(price)

This query returns both regular rows and compute rows. The compute rows are
generated by the two compute clauses. The first compute clause, “compute
sum(price) by type,” generates a compute row each time the value of type
changes. The second compute clause “compute sum(price),” generates one
compute row, which is the last to be returned.

CHAPTER 1 Open Client Client-Library/C

Programmer’s Supplement 23

For more information about this sample program, see the leading comments in
the sample source file.

Note This sample requires the pubs2 database.

wide_curupd.c

This program uses a cursor to retrieve data from the table called “publishers”
in the pubs2 database. It retrieves data row by row and prompts the user to input
new values for the column state in the publishers table.

Inputs value for the input parameter (state column from the publishers table) for
the UPDATE. Create a publishers3 table as shown before running the sample
program:

use pubs2

go

drop table publishers3

go

create table publishers3 (pub_id char(4) not null,

pub_name varchar(400) null, city varchar(20) null,

state char(2) null)

go

select * into publishers3 from publishers

go

create unique index pubind on publishers3(pub_id)

wide_dynamic.c

This program uses a cursor to retrieve data from the table called “publishers”
in the pubs2 database. It retrieves data row by row and prompts the user to input
new values for the column called “state” in the publishers table.

Using Client-Library sample programs

24 Open Client and Open Server

This program uses Dynamic SQL to retrieve values from the titles table in the
tempdb database. The select statement, which contains placeholders with
identifiers, is sent to the server to be partially compiled and stored. Therefore,
every time you call the select, you only pass new values for the key value which
determines the row to be retrieved. The behavior is similar to passing input
parameters to stored procedures. The program also uses cursors to retrieve
rows one by one, which can be manipulated as required.

wide_rpc.c

The RPC command sample program, rpc.c, sends an RPC command to a server
and processes the results. This is the same as the rpc.c program, but it uses wide
tables and larger column sizes.

For more information about this program, see the leading comments in the
example source file.

Programmer’s Supplement 25

C H A P T E R 2 Open Client DB-Library/C

Open Client DB-Library is a collection of routines you can use to write
client applications. DB-Library is the predecessor to Client-Library. New
functionality such as Directory and Security services support is not
included with DB-Library. You must use Client-Library to take advantage
of these new services.

DB-Library includes routines that send commands to a server and others
that process the results of those commands. Other routines set application
properties, handle error conditions, and provide a variety of information
about an application’s interaction with a server.

This chapter covers the following topics:

General instructions
To run DB-Library applications, including the sample programs, you
must:

• Set the following environment variables, which are described in
Appendix B, “Environment Variables”:

• SYBASE

• DSQUERY

• SYBPLATFORM

• Platform-specific library path variable

Name Page
General instructions 25

Building a DB-Library executable 26

Using DB-Library sample programs 29

Building a DB-Library executable

26 Open Client and Open Server

• Be able to connect to Adaptive Server®. Refer to the Open Client and
Open Server Configuration Guide for UNIX for information about
connecting to Adaptive Server.

• Read the README file in each product directory under $SYBASE/sample.
Complete instructions for running the samples are given in the README
file.

See the following sections for descriptions and additional requirements of the
individual sample programs.

Building a DB-Library executable
This section gives information on libraries, linking, and header files.

Libraries
The following table lists libraries that you should include if you want to take
full advantage of all DB-Library capabilities. The first row in the table lists
libraries that all platforms can use. Subsequent rows list libraries specific for
each platform:

Table 2-1: Platform-specific libraries

Link-and-compile lines
The following tables list the general forms of the commands for compiling and
linking DB-Library applications on Sybase-supported platforms running the
UNIX operating system. Table 2-2 shows the commands for compiling and
linking DB-Library applications using static libraries.

Platform Required libraries

All platforms libsybdb – DB-Library (Sybase)
libm – Standard UNIX math libraries (system)

Sun Solaris 2.x libnsl – A network library (system)

HP 9000(8xx) libcl – Transport Control Library (system)
libBSD – The BSD library (system)

CHAPTER 2 Open Client DB-Library/C

Programmer’s Supplement 27

Table 2-2: Static link-and-compile commands for DB-Library

Table 2-3 shows the commands for compiling and linking DB-Library
applications using debug libraries.

Table 2-3: Link-and-compile commands for DB-Library

Table 2-4 shows commands for compiling and linking DB-Library applications
on platforms that support shareable libraries (with dynamic drivers).

Platform Command

Sun
Solaris 2.x

cc -I$SYBASE/include -L$SYBASE/lib program.c -
Bstatic -lsybdb \
 -lnsl -Bdynamic -lm -o program

IBM RS/6000 xlc_r4 -I$SYBASE/include -L$SYBASE/lib
program.c -lsybdb -lm \
 -o program

HP 9000(8xx) cc -I$SYBASE/include -L$SYBASE/lib program.c -
lsybdb \
 -Wl,-a,archive -lcl -lm -lBSD -o program

SGI cc [-n32 | -n64] -mips3 -I$SYBASE/include
program.c \
 $SYBASE/lib/libsybdb.a -lm -o program

HP Tru64
UNIX

cc -I$SYBASE/include program.c \
 $SYBASE/lib/libsybdb.a -ldnet -lm -o
program

Platform Command

Sun
Solaris 2.x

cc -I$SYBASE/include -L$SYBASE/devlib
program.c -lsybdb -lnsl \
 -lm -o program

IBM
RS/6000

xlc_r4 -I$SYBASE/include -L$SYBASE/devlib
program.c -lsybdb -lm \
 -o program

HP 9000(8xx) cc -I$SYBASE/include -L$SYBASE/devlib
program.c -lsybdb \
 -linsck -Wl,-a, archive -lcl -lm -lBSD -
o program

SGI cc -g [-n32 | -n64] -mips3 -I$SYBASE/include
-L$SYBASE/devlib \
 program.c -lsybdb -lm -o program

HP Tru64
UNIX

cc -g -I$SYBASE/include -L$SYBASE/devlib
program.c \
 -lsybdb -ldnet -lm -o program

Building a DB-Library executable

28 Open Client and Open Server

Table 2-4: Shareable compile-and-link commands for DB-Library

Performance considerations
Linking with shared libraries results in a smaller executable and is faster than
linking with static libraries. However, executables linked with shared libraries
may be slower at start-up time than those linked with static libraries. Also,
unlike static libraries, the shared libraries must be available at runtime.

The individual requirements of your site determine which type of library will
provide the best performance.

Header files
The following header files are required by all DB-Library/C applications:

• sybfront.h – defines symbolic constants such as function return values,
described in the Open Client DB-Library/C Reference Manual, and the
exit values STDEXIT and ERREXIT. The sybfront.h file also includes
type definitions for datatypes that can be used in program variable
declaration.

• sybdb.h – contains additional definitions and typedefs, most of which are
meant to be used only by the DB-Library/C routines. Use the contents of
sybdb.h only as documented in the Open Client DB-Library/C Reference
Manual.

Platform Command

Sun
Solaris 2.x

cc -I$SYBASE/include -L$SYBASE/lib -
R$SYBASE/lib program.c \
 -lsybdb -lnsl -lm -o program

HP
9000(8xx)

cc -I$SYBASE/include -L$SYBASE/lib program.c -
lsybdb -Wl -lcl \
 -lm -lBSD -o program

SGI cc [-n32 | -n64] -mips3 -I$SYBASE/include -
L$SYBASE/lib \
 program.c -lsybdb -lm -o program

Digital
UNIX

cc -I$SYBASE/include -L$SYBASE/lib \
 program.c -lsybdb -ldnet -lm -o program

HP Tru64
UNIX

cc -I$SYBASE/$SYBASE_OCS/include -L$SYBASE/
$SYBASE_OCS/lib program.c -lsybdb -ldnet \

-lm -o program

CHAPTER 2 Open Client DB-Library/C

Programmer’s Supplement 29

• syberror.h – contains error severity values and should be included if the
program refers to those values.

See the Open Client DB-Library/C Reference Manual for more information on
header files.

Using DB-Library sample programs
Sample programs are included online with DB-Library to demonstrate typical
uses for DB-Library routines.

Some sample programs use the sample databases supplied with Adaptive
Server. Refer to your installation guide for information on installing the sample
databases.

Purpose of the sample programs
The System 11 sample programs demonstrate specific DB-Library
functionality. These programs are designed as guides for application
programmers, not as DB-Library training aids. Read the descriptions at the top
of each source file and examine the source code before you use the sample
programs.

Note These simplified programs are not intended for use in a production
environment. Production-quality programs require additional code to handle
errors and special cases.

Location
The sample programs are located in the following directory:

$SYBASE/sample/dblibrary

This directory contains:

• Online source code for the sample programs

• Data files for the samples

Using DB-Library sample programs

30 Open Client and Open Server

• The samples header file, sybdbex.h

• The README file containing instructions for building, executing, and
testing the samples

Note Before compiling and running the sample programs, copy the contents
of $SYBASE/sample/dblibrary into a “working” directory, where you can
freely experiment with the sample programs without affecting the integrity of
the original files.

Header file
All of the sample programs reference the sample header file, sybdbex.h. The
contents of sybdbex.h are as follows:

/*
 ** sybdbex.h
 **
 ** This is the header file that goes with the
 ** Sybase DB-Library example programs.
 **
 **
 */

 #define USER "user"
 #define PASSWORD "server_password"
 #define LANGUAGE "us_english"
 #define SQLBUFLEN 255
 #define ERR_CH stderr
 #define OUT_CH stdout
 extern void error();
 extern int err_handler();
 extern int msg_handler();

All of the samples except Example 5 contain these lines:

DBSETLUSER(login, USER);
DBSETLPWD(login, PASSWORD);

Following are descriptions of edits for the lines in sybdbex.h:

• USER is defined in sybdbex.h as “user.” Before running the sample
programs, you must edit sybdbex.h and change “user” to your server login
name.

CHAPTER 2 Open Client DB-Library/C

Programmer’s Supplement 31

• PASSWORD is defined in sybdbex.h as “server_password.” Before
running the sample programs, edit sybdbex.h and change
“server_password” to your server password. Choose one of the following
options for PASSWORD:

Option 1: Change your server password to “server_password” while you
are running the samples. This creates the possibility of a security breach,
because while your password is set to this published value, an
unauthorized person might take the opportunity to log in to the server as
you. If this is a problem, choose one of the other options.

Option 2: In sybdbex.h, change the string “server_password” to your own
server password. Use the operating system’s protection mechanisms to
prevent others from accessing the header file while you are using it. When
you are finished with the sample, edit the line so that it again says
“server_password.”

Option 3: In the sample programs, delete the DBSETLPWD line entirely,
and substitute your own code to prompt users for their server passwords.
(Because this code is platform-specific, Sybase does not supply it.)

• LANGUAGE: If your server’s language is not U. S. English, edit the
LANGUAGE line in sybdbex.h so that it is the same as the server’s.
Example 12 is the only sample that references LANGUAGE.

Sample program summary
The following sample programs are included with your software.

Example 1: Send queries, bind, and print results

The example1.c sample sends two queries to Adaptive Server in a single
command batch, binds the results, and prints the returned rows of data.

Example 2: Insert data into a new table

The example2.c inserts data from a file into a newly created table, selects the
server rows, and binds and prints the results. This sample requires a file named
datafile (supplied). It also assumes that you have create database permission in
your login database.

Using DB-Library sample programs

32 Open Client and Open Server

Example 3: Bind aggregate and compute results

The example3.c sample program selects information from the titles table in the
pubs2 database and prints it. The sample program illustrates binding of both
aggregate and compute results.

Note Access to Adaptive Server and the pubs2 database is required.

Example 4: Row buffering

The example4.c sample demonstrates row buffering. This program sends a
query to Adaptive Server, buffers the returned rows, and allows you to examine
them interactively.

Example 5: Data conversion

The example5.c sample illustrates dbconvert, a DB-Library/C routine that
handles data conversion.

Example 6: Browse mode updates

The example6.c sample demonstrates browse-mode techniques. The sample
program creates a table, inserts data into the table, and then updates the table
using browse-mode routines. Browse mode is useful for applications that need
to update data one row at a time.

Note example6.c requires a file named datafile (supplied). It creates the table
alltypes in your default database.

Example 7: Browse mode and ad hoc queries

The example7.c sample uses browse-mode techniques to determine the source
of result columns from ad hoc queries. Determining the source of result
columns is important because a browse-mode application can only update
columns that are derived from a browsable table and are not the result of a SQL
expression.

CHAPTER 2 Open Client DB-Library/C

Programmer’s Supplement 33

This sample demonstrates how an application can determine which columns
resulting from ad hoc queries can be updated using browse-mode techniques.
It also prompts you for an ad hoc query. Notice how the results differ depending
on whether the select query includes the keywords for browse and whether the
table selected is able to be browsed.

Example 8: Making a remote procedure call (RPC)

The example8.c sample sends a remote procedure call, prints the result rows
from the call, and prints the parameters and status returned by the remote
procedure.

This sample requires you to have created the stored procedure rpctest in your
default database. The comments at the top of the example8.c source code
specify the create procedure statement necessary for creating rpctest.

Example 9: Text and image routines

The example9.c sample generates a random image, inserts it into a table, then
selects the image and compares it to the original by following these steps:

1 insert all data into the row except the text or image value.

2 update the row, setting the value of the text or image to NULL. This step
is necessary because a text or image column row that contains a null value
will have a valid text pointer only if the null value was explicitly entered
with the update statement.

3 select the row. You must specifically select the column that is to contain
the text or image value. This step is necessary to provide the application’s
DBPROCESS with correct text pointer and text timestamp information.
The application should throw away the data returned by this select.

4 Call dbtxtptr to retrieve the text pointer from the DBPROCESS. dbtxtptr’s
column parameter is an integer that refers to the select performed in
step 3. For example, if the select is:

select date_column, integer_column, text_column
 from bigtable

and text_column is the name of the text column, dbtxtptr requires the
column parameter to be passed as 3.

5 Call dbtxtimestamp to retrieve the text timestamp from the DBPROCESS.
dbtxtimestamp’s column parameter refers to the select performed in step 3.

Using DB-Library sample programs

34 Open Client and Open Server

6 Write the text or image value to Adaptive Server. An application can
either:

• Write the value with a single call to dbwritetext, or

• Write the value in chunks, using dbwritetext and dbmoretext.

7 If you intend the application to make another update to this text or image
value, it may want to save the new text timestamp that is returned by
Adaptive Server at the conclusion of a successful dbwritetext operation.
Access the new text timestamp by using dbtxtsnewval, and stored for later
retrieval using dbtxtsput.

Note Access to an Adaptive Server that contains the pubs2 database is
required.

Example 10: Inserting an image

The example10.c sample prompts you for an author ID and the name of a file
containing an image, reads the image from the file, and inserts a new row
containing the author ID and the image into the pubs2 database table called
“au_pix.” For general information on inserting text or image values into a
database table, see Example 9.

Note Access to an Adaptive Server that contains the pubs2 database is
required. The author ID must be in the form “000-00-0000.” The imagefile file,
provided with the sample code, contains an image.

Example 11: Retrieving an image

The example11.c sample retrieves an image from the au_pix table in the pubs2
database. The author ID you enter determines which row the program selects.
After retrieving the row, this sample copies the image contained in the pic field
to a file you specify.

There are two ways to retrieve a text or image value from Adaptive Server:

• This sample selects the row containing the value and processes the row
using dbnextrow. After dbnextrow is called, dbdata can be used to return a
pointer to the returned image.

• The other method is to use dbreadtext in conjunction with dbmoretext to
read a text or image value in the form of a number of smaller chunks.

CHAPTER 2 Open Client DB-Library/C

Programmer’s Supplement 35

For more information on dbreadtext, see the Open Client DB-Library/C
Reference Manual.

Note Access to Adaptive Server and the pubs2 database is required.

Example 12: International language routines

The example12.c sample retrieves data from the pubs2 database and prints it
using a us_english format.

Note Access to Adaptive Server and the pubs2 database is required.

Example 13: Bulk copy

The bulk-copy sample program, bulkcopy.c, uses the bulk-copy routines to
copy data from a host file into a newly created table containing several
Adaptive Server datatypes.

Note Access to Adaptive Server is required. You must have create database
and create table permission.

Example 14: Two-phase commit

The two-phase commit sample program, twophase.c, performs a simple update
on two different servers. See the source code for the exact contents of the
update. After you have run the sample, you can use isql on each of the servers
to determine whether the update actually took place.

This sample requires that you have Adaptive Server running on two different
servers, named SERVICE and PRACTICE, each containing the pubs2
database. If your servers are named differently, replace SERVICE and
PRACTICE in the source code with the actual names of your servers.

Using DB-Library sample programs

36 Open Client and Open Server

Before running the sample, you need to make sure that your client can access
both servers. Refer to the Open Client and Open Server Configuration Guide
for UNIX for information about connecting to multiple instances of Adaptive
Server.

Note If the PRACTICE server is on a different machine than the SERVICE
server, the PRACTICE server must be able to connect to the SERVICE query
port. For details, see the Open Client and Open Server Configuration Guide for
UNIX.

Programmer’s Supplement 37

C H A P T E R 3 Open Server Server-Library/C

Open Server Server-Library/C is used to design servers that take
advantage of the features of the client/server architecture. These Open
Servers access data stored in foreign database management systems,
trigger external events, and respond to Open Client applications.

The client/server architecture divides the work of computing between
“clients” and “servers”:

• Clients make requests of servers and process the servers’ responses.

• Servers respond to requests and return data, parameters, and status
information to clients.

In this architecture, an Open Client application program is a client, using
the services provided by Adaptive Server and Open Server. Using
Server-Library, you can create a complete, standalone server.

This chapter covers the following topics:

General instructions
To run Open Server applications, including samples, you must:

• Be able to access Adaptive Server and the pubs2 sample database.
Refer to your installation guide for information on installing the
pubs2 database.

• Set the following environment variables, which are described in
Appendix B, “Environment Variables”:

• SYBASE

Topic Page
General instructions 37

Building a Server-Library executable 38

Server-Library sample programs 44

Building a Server-Library executable

38 Open Client and Open Server

• DSQUERY and DSLISTEN

• SYBPLATFORM

• Platform-specific library path variable

• Be able to connect to an Adaptive Server. Refer to the Open Client and
Open Server Configuration Guide for UNIX for information about
connecting to an Adaptive Server.

Building a Server-Library executable
This section gives information on libraries, linking, and header files.

Libraries
The following table lists the libraries that you should include if you want to
take full advantage of all Server-Library capabilities. The first row in the table
lists libraries that all platforms use. Subsequent rows list platform-specific
libraries.

Table 3-1: Platform-specific libraries

Compile-and-link line commands
The following tables list the general forms of the commands for compiling and
linking Server-Library applications on Sybase-supported platforms running the
UNIX operating system. The three tables include compile-and-link line
commands.

Table 3-2 shows commands for compiling and linking Server-Library
applications using static libraries:

Platform Required libraries

All platforms libct >– Client-Library (Sybase)
libcs> – CS-Library (Sybase)
libtcl – Transport Control Layer (Sybase internal)
libcomn – Internal shared utility library (Sybase internal)
libintl – Internationalization support library (Sybase internal)
libsrv – Server-Library (Sybase)
libsybdb – DB-Library (Sybase))

CHAPTER 3 Open Server Server-Library/C

Programmer’s Supplement 39

Table 3-2: Static link-and-compile commands for Server-Library

Table 3-3 shows commands for compiling and linking Server-Library
applications using debug libraries:

Table 3-3: Debug link-and-compile commands for Server-Library

Platform Command

Sun
Solaris 2.x

/opt/SUNWspro/bin/cc -I$SYBASE/include -
L$SYBASE/lib program.c \

 -Bstatic -lsrv [-lsybdb | -lct] -lcs -ltcl
-lcomn -lintl \

 -Bdynamic -lnsl -lm -o program

IBM
RS/6000

xlc_r4 -I$SYBASE/include -L$SYBASE/lib
program.c -lsrv \

 [-lsybdb| -lct] -lcs -lcomn -ltcl -lintl -lm -
o program

HP
9000(8xx)

cc -I$SYBASE/include -L$SYBASE/lib program.c -
Wl,-a,archive \

 -lsrv [-lsybdb | -lct] -lcs -lcomn -ltcl -lintl
-linsck \

 -lcl -lm -lBSD -o program

SGI cc -o [-n32 | -n64] -mips3 -I$SYBASE/include -
L$SYBASE/lib \

 program.c -lsrv -Bstatic [-lsybdb | -lct] \

 -lcs -ltcl -lcomn -lintl -Bdynamic -lm -o
progam

HP Tru64
UNIX

cc -I$SYBASE/$SYBASE_OCS/include program.c\
$SYBASE/$SYBASE_OCS/lib/libsrv.a \
 [$SYBASE/$SYBASE_OCS/lib/libsybdb.a |
$SYBASE/$SYBASE_OCS/lib/libct.a] \
 $SYBASE/$SYBASE_OCS/lib/libcs.a
$SYBASE/$SYBASE_OCS/lib/libtcl.a \
 $SYBASE/$SYBASE_OCS/lib/libcomn.a \
 $SYBASE/$SYBASE_OCS/lib/libintl.a \
 -lm -o program

Linux cc -I$SYBASE/$SYBASE_OCS/include

-L$SYBASE/$SYBASE_OCS/lib program.c

-lsrv [-lsybdb|-lct] -lcs -lsybtcl -lcomn -
lintl -rdynamic -ldl -lnsl -lm -o program

Platform Command

Sun
Solaris 2.x

/opt/SUNWspro/bin/cc -I$SYBASE/include -
L$SYBASE/devlib \

 program.c -lsrv [-lsybdb | -lct] -lcs -lcomn -
ltcl -lintl \

 -lnsl -lm -o program

Building a Server-Library executable

40 Open Client and Open Server

Table 3-4 shows commands for compiling and linking Server-Library
applications using shareable libraries (with dynamic drivers):

Table 3-4: Shareable link-and-compile commands for Server-Library

IBM xlc_r4 -I$SYBASE/include -L$SYBASE/devlib
program.c -lsrv \

 [-lsybdb| -lct] -lcs -lcomn -ltcl -lintl -lm -
o program

HP
9000(8xx)

cc -I$SYBASE/include -L$SYBASE/devlib program.c
-lsrv \

 [-lsybdb | -lct] -lcs -lcomn -ltcl -lintl -
linsck \

 -Wl,-a,archive -lcl -lm -lBSD -o program

SGI cc [-n32 | -n64] -mips3 -I$SYBASE/include -
L$SYBASE/devlib \

 program.c -lsrv [-lsybdb | -lct] -lcs -ltcl -
lcomn \

 -lintl -lm -o program

HP Tru64
UNIX

cc -I$SYBASE/$SYBASE_OCS/include program.c \
 -L$SYBASE/$SYBASE_OCS/devlib program.c \
 -lsrv [-lsybdb | -lct] -lcs -ltcl \
 -lcomn -lintl \
 -lm -o program

Linux cc -I$SYBASE/$SYBASE_OCS/include

-L$SYBASE/$SYBASE_OCS/lib program.c

-lsrv [-lsybdb|-lct] -lcs -lsybtcl -lcomn -
lintl -rdynamic -ldl -lnsl -lm -o program

Platform Command

Sun
Solaris 2.x

/opt/SUNWspro/bin/cc -I$SYBASE/include -
L$SYBASE/lib \

-R$SYBASE/lib program.c -lsrv [-lsybdb | -lct]
-lcs -lcomn \

-ltcl -lintl -lnsl -ldl -lm -o program

HP
9000(8xx)

cc -I$SYBASE/include -L$SYBASE/lib program.c -
lsrv \

[-lsybdb | -lct] -lcs -ltcl -lcomn -lintl -
linsck \

-Wl -lcl -lm -lBSD -o program

SGI cc [-n32 | -n64] -mips3 -I$SYBASE/include -
L$SYBASE/lib program.c \

-lsrv [-lsybdb | -lct] -lcs -ltcl -lcomn -lintl
-lm -o program

Platform Command

CHAPTER 3 Open Server Server-Library/C

Programmer’s Supplement 41

Note The Open Server program can use Client-Library or DB-Library
routines. The bracketed information after -lsrv in the above lines means that
you can choose either -lsybdb for DB-Library or -lct for Client-Library.

Kerberos support
Server-Library versions 11.1 and later support Kerberos security features for
applications that need a high level of security when communicating over a
network. By installing the required Kerberos software and performing the
appropriate configuration tasks, your Server-Library applications can take
advantage of the following Kerberos security features that are supported in this
version:

• Network authentication

• Mutual authentication

• Out-of-sequence authentication

• Replay detection

• Confidentiality

HP Tru64
UNIX

cc -I$SYBASE/$SYBASE_OCS/include program.c \
 -L$SYBASE/$SYBASE_OCS/devlib program.c \
 -lsrv [-lsybdb | -lct] -lcs -ltcl \
 -lcomn -lintl \
 -lm -o program

Platform Command

Building a Server-Library executable

42 Open Client and Open Server

• Integrity

Note With this version of Server-Library, Kerberos support is available on
AIX 4.3.3, Linux, Sun Solaris 2.x and HP/UX platforms. Refer to your
release bulletin for information regarding additional support.

To develop and run Server-Library applications that take advantage of
Kerberos features, perform the tasks listed in Table 3-5:

Table 3-5: Required tasks for Kerberos support

Tasks For more information

Install the following Kerberos software on your
system. Be sure that the GSS library support is
available as a shared library.

Refer to your Kerberos
documentation and to the Open
Server Configuration Guide for
UNIX.

Extract keys for the desired server principal(s)
into a key table file using the Kerberos utility
called kadmin.

Refer to your Kerberos
documentation.

Configure the security section of the libtcl.cfg
configuration file.

See the Open Client and Open
Server Configuration Guide for
UNIX.

Link your Client-Library application with the
Sybase re-entrant libraries.

See “Kerberos support” on page
41.

• For Cybersafe Kerberos:

• Set the CSFC5CCNAME environment
variable to the credential cache directory
location.

• Set the CSFC5KTNAME variable to the
path of the key table file if other than the
default key table file.

• For MIT Kerberos

• Set the KRB5CCNAME environment
variable to the credential cache file
location.

• Set the KRB5_KTNAME variable to the
path of the key table file if other than the
default key table file.

Refer to your Kerberos
documentation.

Default credential cache directory
location varies by platform.

• For CyberSafe Trustbroker ,the
default key table file is
/krb5/v5srvtab.

• For MIT Kerberos, the default
key table file is /etc/krb5.keytab.

Use srv_props to set the server principal name
if it is different from the server name passed to
srv_init.

See the Open Server Server-
Library/C Reference Manual.

CHAPTER 3 Open Server Server-Library/C

Programmer’s Supplement 43

Note To avoid compromising security, Sybase suggests that the key table files
be owned by the user id that runs Open Server, and that all other users be
restricted from accessing this file. Sybase also suggests that each Open Server
be run using a unique user id that is not used by interactive processes.

Bulk copy routines
If you plan to use bulk copy routines, link libblk, the bulk copy library.

To link in the bulk copy library, add -lblk before -lsrv at the beginning of the link
line.

See the Open Client and Open Server Common Libraries Reference Manual for
more information on bulk copying.

Performance considerations
Linking with shared libraries results in a smaller executable and takes less time
than linking with static libraries. However, executables linked with shared
libraries may have a slower start-up time than those linked with static libraries.
Also, unlike static libraries, the shared libraries must be available at runtime.

The individual requirements of your site determine which type of library will
provide the best performance.

Header files
Include the ospublic.h header file in all Open Server application source files.
Other necessary header files are nested in ospublic.h. If Bulk-Library is used,
include bkpublic.h in addition to ospublic.h.

See the Open Server Server-Library Reference Manual for more information
on header files.

Server-Library sample programs

44 Open Client and Open Server

Server-Library sample programs
This section contains information about the sample programs that are included
online with Server-Library.

The online sample programs demonstrate typical uses for Server-Library
routines in C programs. The sample programs are servers and therefore require
entries in the interfaces file or entries in a network directory service to describe
their machines and network addresses. See the Open Client and Open Server
Configuration Guide for UNIX for information on how to configure directory
services, including the interfaces file.

Purpose of the sample programs
The sample programs demonstrate specific Open Server functionality. With the
exception of ctosdemo, these programs are designed as guides for application
programmers, not as Open Server training aids. Read the descriptions at the top
of each source file and examine the source code prior to attempting to use the
sample programs.

These simplified programs are not intended for use in a production
environment. Production-quality programs require additional
error-handling and special-case-handling.

Check the individual sample programs to see which trace flags can be used
with them. Read the README file for complete instructions on running the
sample programs.

Note On Sun Solaris, the link line for secsrv_krb in the makefile must be
updated for the SYBPLATFORM value “dce_sun_svr4” to exclude linking
with any Kerberos libraries. The link line should not define the csfgss_pPtr
symbol. This is defined in the GETKRBLIBS variable at line 169. The line
should read:

KRBLIBS=" -Bdynamic -lsocket " ;; \

Location
The sample programs are located in the $SYBASE/sample/srvlibrary directory,
which includes:

CHAPTER 3 Open Server Server-Library/C

Programmer’s Supplement 45

• Online source code for the sample programs.

• The makefile provided to build the samples. Use them as a starting point
for your own Server-Library applications.

• The samples header file, ossample.h.

• A srv_connect event handler.

• Error handlers.

• The README file containing instructions for building, executing, and
testing the samples.

Note A client program can stop single and multithreaded samples by executing
the stop_srv registered procedure.

Sample program summaries
The following sample programs are included with your software.

Note For the multithread sample, a client uses the stop_serv registered
procedure to stop the example.

ctosdemo.c

The ctosdemo.c program is an Open Server gateway application that uses
Server-Library calls and Client-Library calls. It accepts commands from a
client and passes them to a remote Adaptive Server. Then, it retrieves the
results from the remote server and passes them to the client. This program
ctosdemo.c processes a variety of client commands:

• Bulk-copy commands

• Cursor commands

• Dynamic SQL commands

• Language commands

• Option commands

• Remote procedure calls (RPCs)

Server-Library sample programs

46 Open Client and Open Server

In addition, it responds to attention requests from a client by calling the
srv_attention event handler. It includes an event handler routine to process each
type of client command.

For more information on gateways, see the Open Server Server-Library/C
Reference Manual.

exfds.c

The exfds.c program demonstrates how an Open Server application can service
external file descriptors without blocking the entire Open Server process. This
program performs a number of tasks:

• Verifies that the current platform supports srv_poll, using the srv_capability
routine

• Opens two UNIX pipes

• Spawns two service threads, srv_poll and srv_stop, using the srv_spawn
routine

The two service threads implement a simple command/response protocol by
writing messages on the UNIX pipes. srv_poll is used to allow Open Server to
reschedule the service thread while waiting for a message. Information is
written to srv.log to monitor the progress. The Open Server performs the
command/response protocol the number of times specified in the source code
and then queues a SRV_STOP event.

This sample does not require a client application. Check the srv.log file for
messages to determine if it has started correctly.

fullpass.c

The fullpass.c program is an Open Server gateway application that uses the
Sybase Tabular Data Stream™ (TDS) passthrough mode. For more
information on TDS passthrough, see the “Passthrough Mode” topics page in
Chapter 2 of the Open Server Server-Library/C Reference Manual.

The event handler routine receives client requests through srv_recvpassthru
and forwards this information to an Adaptive Server using the ct_sendpassthru
routine. After the entire client command has been forwarded to the remote
server, the event handler reads results from the remote server through
ct_recvpassthru and returns them to the client using srv_sendpassthru.

CHAPTER 3 Open Server Server-Library/C

Programmer’s Supplement 47

The application also includes a SRV_CONNECT event handler. This handler
uses srv_getloginfo and ct_setloginfo to forward client connection information
to the remote server. It then uses ct_getloginfo and srv_setloginfo to return
connection acknowledgment information to the client. All Open Server
applications that use TDS passthrough mode must include these calls in their
SRV_CONNECT event handler.

intlchar.c

This sample program demonstrates Open Server’s handling of national
languages and character sets. It initializes values for the Open Server
application’s national language and character set, and then changes these
values in response to client requests.

Client requests come in the form of option commands and language
commands. intlchar.c installs SRV_OPTION and SRV_LANGUAGE event
handlers, as well as a SRV_CONNECT handler.

lang.c

The lang.c program demonstrates the use of a srv_language event handler. The
event handler responds to client language commands with an informational
message, which it sends to the client using the srv_sendinfo routine. This
program also contains a srv_connect event handler and error handlers.

For more information on processing language commands, see the “Language
Calls” topics page in the Open Server Server-Library/C Reference Manual.

multthrd.c

The multthrd.c program illustrates a number of Open Server multithreaded
programming features, including:

• Creation of a service thread using srv_spawn

• Interthread communication between client connection threads and the
service thread through message queues (using srv_getmsgq and
srv_putmsgq)

• Sleep and wake-up mechanisms (using srv_sleep and srv_wakeup)

• The use of a callback routine (using srv_callback) to report scheduling
information

Server-Library sample programs

48 Open Client and Open Server

A service thread logs all the language queries received by this Open Server
application.

In the application’s language handler, the client thread reads the query from a
client and sends a message to the service thread, known as the “logger,” with
the query as the message data. Then, the client thread waits (srv_sleep). When
the service thread gets the message, it wakes up the client thread (srv_wakeup).
The logger thus continuously loops, waiting for messages. When it receives a
message, it prints the contents of the query to a file and wakes up the sender.

The logger and client threads install SRV_C_RESUME, SRV_C_SUSPEND,
SRV_C_TIMESLICE, and SRV_C_EXIT callback handlers to print
scheduling information. The multthrd.c program installs a SRV_START
handler, a SRV_LANGUAGE handler, a SRV_CONNECT handler, and
callback handlers.

osintro.c

The osintro.c program demonstrates the basic components of an Open Server
application. It has no event handlers installed.

regproc.c

The regproc.c program demonstrates the use of registered procedures in Open
Server versions 11.1 and later. The application registers several procedures at
start-up time, and then waits for client commands. No Open Server event
handlers are installed.

Clients send RPC commands to execute the registered procedures defined in
regproc.c.

Several additional client programs are provided for use with regproc.c:

• version.c – executes a registered procedure (rp_version) that returns the
version of the Open Server

• dbwait.c – implemented with DB-Library, registers with the Open Server
to be notified when the registered procedure rp_version is executed

• ctwait.c – implemented with Client-Library, registers with the Open
Server to be notified when the registered procedure rp_version is executed

CHAPTER 3 Open Server Server-Library/C

Programmer’s Supplement 49

secsrv.c

The secsrv.c program demonstrates how Open Server uses network-based
security services. The connection handler in this example program retrieves the
security properties of the client thread and sends messages to the client that
describe which security services are active for the session.

For more information on security services, refer to the Open Client and Open
Server Configuration Guide for UNIX.

sigalarm.c

The sigalarm.c program demonstrates how an Open Server application can use
a UNIX SIGALARM signal to schedule periodic events. Specifically,
sigalarm.c:

• Spawns, using srv_spawn, a service thread that sleeps until an alarm wakes
it up. Each time the service thread is awakened, it writes a message to the
Open Server log file using the srv_log routine.

• Installs a SIGALARM handler, using the srv_signal routine, that wakes up
a sleeping service thread each time the SIGALARM handler is called.
sigalarm.c requests that a SIGALARM be delivered at a particular
interval, using the UNIX alarm call.

This sample does not require a client application. Check the srv.log file for
messages to determine if it has started correctly.

Server-Library sample programs

50 Open Client and Open Server

Programmer’s Supplement 51

C H A P T E R 4 Open Client
Embedded SQL/COBOL

Embedded SQL is a superset of Transact-SQL® that lets you embed
Transact-SQL statements in application programs written in a language
like COBOL. Embedded SQL includes all Transact-SQL statements, and
the extensions needed to use Transact-SQL in an application.

Embedded SQL/COBOL provides a simple way to retrieve, insert, or
modify data stored in any Adaptive Server database.

General instructions
To run Embedded SQL/COBOL applications, including the sample
programs, you must:

• Be able to access an Adaptive Server on which the pubs2 sample
database is installed. Refer to your installation guide for information
on installing the pubs2 database.

• Set the following environment variables, which are described in
Appendix B, “Environment Variables”:

• SYBASE

• COBDIR

• PATH

• SYBPLATFORM

• Platform-specific library path variable

Name Page
General instructions 51

Building an Embedded SQL/COBOL executable 52

Embedded SQL/COBOL sample programs 57

Building an Embedded SQL/COBOL executable

52 Open Client and Open Server

Building an Embedded SQL/COBOL executable
This section gives information on libraries, linking, and the header files.

Libraries
The following table lists libraries that you should include if you want to take
full advantage of all Embedded SQL/COBOL capabilities. The first row in the
table lists libraries that all platforms can use. Subsequent rows list libraries
specific for each platform:

Table 4-1: Platform-specific libraries for Embedded SQL/COBOL

There are three basic steps to building an executable program from an
Embedded SQL/COBOL application:

1 Precompile the application.

2 Compile and link the COBOL source code generated by the precompiler.

3 Load any precompiler-generated stored procedures.

These steps are described in the following sections.

Precompiling the application
The format of the statement to precompile an Embedded SQL/COBOL source
program is:

cobpre [-a] [-b] [-c] [-d] [-e] [-f]
 [-l] [-m] [-q] [-r] [-v] [-w] [-x] [-y]
 [-Ccompiler]
 [-Ddatabase_name]
 [-Ffips_level]
 [-G[isql_file_name]]
 [-Iinclude_directory]...
 [-Jlocale_for_charset]

Platform Supported libraries

All platforms libcobct – COBOL interface to Client-Library
 and CS-Library (Sybase)
libct – Client-Library (Sybase)
libcs – CS-Library (Sybase)
libcomn – An internal shared-utility library (Sybase internal)
libintl – Internationalization support library (Sybase internal)
libtcl – Transport Control Layer (Sybase internal)

CHAPTER 4 Open Client Embedded SQL/COBOL

Programmer’s Supplement 53

 [-Ksyntax_level]
 [-L[listing_file_name]]
 [-Ninterfaces_file_name]
 [-Otarget_file_name]
 [-P[password]]
 [-Sserver_name]
 [-Ttag_id]
 [-Uuser_id]
 [-Vversion_number]
 [-Zlocale_for_messages]
 [@file_name]
 program[.ext] [program[.ext]]...

program is the name of the Embedded SQL/COBOL source file. The default
extension for program is “.pco.” cobpre generates an output file with a “.cbl”
extension.

Some of the options are switches that activate features of the precompiler, such
as generating stored procedures. These features are “off” by default, and are
turned “on” by including the option on the cobpre statement line. Other
statement qualifiers specify values for the preprocessor, for example, a
password. Enter the value after the option (with or without intervening spaces).

If you enter an invalid option, the precompiler lists the options that are
available.

See Appendix A, “Commands and Utilities,” for detailed descriptions of the
cobpre options.

Compiling and linking the application
The following tables list the general forms of the commands for compiling and
linking Embedded SQL/COBOL applications on Sybase-supported platforms
running the UNIX operating system.

Table 4-2 shows commands for compiling and linking Embedded
SQL/COBOL applications using non-debug libraries.

Building an Embedded SQL/COBOL executable

54 Open Client and Open Server

Table 4-2: Non-debug link-and-compile commands for Embedded
SQL/COBOL

Table 4-3 shows commands for compiling and linking Embedded
SQL/COBOL applications using debug libraries.

Platform Command

Sun
Solaris 2.x

cob -x program.cbl -L $SYBASE/lib -lcobct -lct
-lcs -ltcl \

 -lcomn -lintl -ltli -lnsl -lm -o program

HP 9000(8xx) cob -x program.cbl -L $SYBASE/lib -lcobct -lct
-lcs -ltcl \

 -lcomn -lintl -linsck -lBSD -lm -o program

IBM
RS/6000

cob -x program.cbl -L $SYBASE/lib -lcobct -lct
-lcs -ltcl \

 -lcomn -lintl -linsck -lm -o program

SGI cob -x program.cbl -L $SYBASE/lib -lcobct -lct
-lcs -ltcl \

 -lcomn

HP Tru64
UNIX

cobol -ansi -names upper -x program.cbl -L
$SYBASE/lib\

 -lcobct -lct -lcs -lcomn -ltcl -lintl -lm
-o program

CHAPTER 4 Open Client Embedded SQL/COBOL

Programmer’s Supplement 55

Table 4-3: Debug link-and-compile commands for Embedded
SQL/COBOL

New compile-and-link command lines for HP Tru64 UNIX

Use the following general command form to compile and link an Embedded
SQL/COBOL application for DEC COBOL:

Nonthreaded
non-reentrant libraries

• Optimized libraries – nonthreaded, non-reentrant:

cobol -ansi -names upper -x program.cbl \
 $SYBASE/$SYBASE_OCS/lib/libcobct.a \
 $SYBASE/$SYBASE_OCS/lib/libct.a \
 $SYBASE/$SYBASE_OCS/lib/libcs.a \
 $SYBASE/$SYBASE_OCS/lib/libcomn.a \
 $SYBASE/$SYBASE_OCS/lib/libtcl.a \
 $SYBASE/$SYBASE_OCS/lib/libintl.a \
 -lm -o program

• Debug libraries – nonthreaded, non-reentrant:

cobol -ansi -names upper -x program.cbl \
 $SYBASE/$SYBASE_OCS/devlib/libcobct.a \
 $SYBASE/$SYBASE_OCS/devlib/libct.a \
 $SYBASE/$SYBASE_OCS/devlib/libcs.a \
 $SYBASE/$SYBASE_OCS/devlib/libcomn.a \
 $SYBASE/$SYBASE_OCS/devlib/libtcl.a \
 $SYBASE/$SYBASE_OCS/devlib/libintl.a \
 -lm -o program

Use the following general command form to compile and link an
Embedded SQL/COBOL application for MicroFocus COBOL:

Platform Command

Sun
 Solaris 2.x

cob -g -x program.cbl -L $SYBASE/devlib -
lcobct -lct -lcs \

 -lcomn -ltcl -lintl -ltli -lnsl -lm -o
program

HP 9000(8xx) cob -g -x program.cbl -L $SYBASE/devlib -
lcobct -lct -lcs \

 -ltcl -lcomn -lintl -linsck -lm -o program

IBM
 RS/6000

cob -g -x program.cbl -L $SYBASE/devlib -
lcobct -lct -lcs \

 -ltcl -lcomn -lintl -linsck -lm -o program

HP Tru64
UNIX

cobol -ansi -names upper -x program.cbl -
L$SYBASE/devlib \

 -lcobct -lct -lcs -lcomn -ltcl -lintl -lm
-o program

Building an Embedded SQL/COBOL executable

56 Open Client and Open Server

• Optimized libraries – nonthreaded, non-reentrant:

cob -x program.cbl \
 $SYBASE/$SYBASE_OCS/lib/libcobct.a \
 $SYBASE/$SYBASE_OCS/lib/libct.a \
 $SYBASE/$SYBASE_OCS/lib/libcs.a \
 $SYBASE/$SYBASE_OCS/lib/libcomn.a \
 $SYBASE/$SYBASE_OCS/lib/libtcl.a \
 $SYBASE/$SYBASE_OCS/lib/libintl.a \
 -lm -o program

Threaded reentrant
libraries

• Optimized libraries – threaded, reentrant:

cobol -ansi -names upper -x program.cbl \
 $SYBASE/$SYBASE_OCS/lib/libcobct_r.a \
 $SYBASE/$SYBASE_OCS/lib/libct_r.a \
 $SYBASE/$SYBASE_OCS/lib/libcs_r.a \
 $SYBASE/$SYBASE_OCS/lib/libcomn_r.a \
 $SYBASE/$SYBASE_OCS/lib/libtcl_r.a \
 $SYBASE/$SYBASE_OCS/lib/libintl_r.a \
 -threads -lm -o program

• Debug libraries – threaded, reentrant:

cobol -ansi -names upper -x program.cbl \
 $SYBASE/$SYBASE_OCS/devlib/libcobct_r.a \
 $SYBASE/$SYBASE_OCS/devlib/libct_r.a \
 $SYBASE/$SYBASE_OCS/devlib/libcs_r.a \
 $SYBASE/$SYBASE_OCS/devlib/libcomn_r.a \
 $SYBASE/$SYBASE_OCS/devlib/libtcl_r.a \
 $SYBASE/$SYBASE_OCS/devlib/libintl_r.a \
-threads -lm -o program

Loading stored procedures
If you use the precompiler -G flag to generate stored procedures, use an isql
statement to load the stored procedures into Adaptive Server before you
execute the program. The format of the isql statement to execute a generated
script is:

isql -Uuserid -Ppassword < program.sql

where the -U and -P flags specify the user ID and password to log in to Adaptive
Server.

See Appendix A, “Commands and Utilities” for a description of isql.

CHAPTER 4 Open Client Embedded SQL/COBOL

Programmer’s Supplement 57

Embedded SQL/COBOL sample programs
The Embedded SQL/COBOL precompiler has two online sample programs,
described in the following sections, that demonstrate typical Embedded SQL
applications.

Note Before compiling and running the sample programs, copy the contents
of $SYBASE/sample/esqlcob into a “working” directory, where you can freely
experiment with the sample programs without affecting the integrity of the
original files.

Purpose of the sample programs
The sample programs demonstrate specific Embedded SQL/COBOL
functionality. These programs are designed as guides for application
programmers, not as Embedded SQL/COBOL training aids. Read the
descriptions at the top of each source file and examine the source code prior to
attempting to use the sample programs.

Edit the samples. Before you precompile the programs, replace the user name
and password with values that are valid for your Adaptive Server. Comments
in the programs show where you should make the changes. Read the README
file for complete instructions on running the sample programs.

These simplified programs are not intended for use in a production
environment. Production-quality programs require additional code to handle
errors and special cases.

Location
The sample programs are located in the following directory:

$SYBASE/sample/esqlcob

This directory includes:

• Online source code for the sample programs.

• The makefile provided to build the samples. Use the makefile as a starting
point for your own Server-Library applications.

Embedded SQL/COBOL sample programs

58 Open Client and Open Server

• The README file containing instructions for building, executing, and
testing the samples.

Note Before the sample programs produce results, you may need to press
Return.

Example 1: Using cursors for database query
Example 1 shows how to use cursors in an interactive query program.
Following is the sample’s program flow. The program:

• Displays a list of book types; user selects one type

• Displays all titles in the selected book type; prompts for a title ID

• Displays detailed information about the selected title and continues
prompting for title IDs

• Exits the program when Return is pressed at a prompt

Example 2: Displaying and editing rows in a table
Example 2 demonstrates updating a row through a cursor. The program:

• Displays the columns in the authors table row by row.

• Lets the user update author information in all but the au_id column. If the
user presses Return for column information, that column’s data remains
unchanged.

• Requires the user to confirm the update before sending the data to
Adaptive Server.

Programmer’s Supplement 59

C H A P T E R 5 Open Client Embedded SQL/C

Embedded SQL is a superset of Transact-SQL that lets you embed
Transact-SQL statements in application programs written in languages
like C. Embedded SQL includes all Transact-SQL statements, and the
extensions needed to use Transact-SQL in an application program.

Embedded SQL provides a simple way to retrieve, insert, or modify data
stored in any Adaptive Server database.

This chapter covers the following topics:

General instructions
To run Embedded SQL/C applications, including the sample programs,
you must:

• Set the following environment variables, which are described in
Appendix B, “Environment Variables”:

• SYBASE

• SYBPLATFORM

• Platform-specific library path variable

• Be able to access an Adaptive Server on which the pubs2 sample
database is installed. Refer to the Sybase Adaptive Server Enterprise
Installation Guide for information on installing the pubs2 database.

• Set execute permission on the sybopts.sh file for the file’s owner:

chmod u+x sybopts.sh

Topic Page
General instructions 59

Building an Embedded SQL/C executable 60

Embedded SQL/C sample programs 67

Building an Embedded SQL/C executable

60 Open Client and Open Server

• If you have not already done so, include the current directory in the search
path:

setenv PATH .:$PATH

Building an Embedded SQL/C executable
To build an executable program from an Embedded SQL application:

1 Precompile the application.

2 Compile the C source code generated by the precompiler and link your
application to any necessary files and libraries.

3 Load any precompiler-generated stored procedures.

The following sections describe these steps.

Precompiling the application
The format of the statement to precompile a source program is:

cpre [-a] [-b] [-c] [-d] [-e] [-f]
 [-l] [-m] [-p] [-r] [-s] [-v] [-w] [-x] [-y]
 [-Ccompiler]
 [-Ddatabase_name]
 [-Ffips_level]
 [-G[isql_file_name]]-H
 [-Iinclude_directory]...
 [-Jlocale_for_charset]
 [-Ksyntax_level]
 [-L[listing_file_name]]
 [-Ninterfaces_file_name]
 [-Otarget_file_name]
 [-P[password]]
 [-Sserver_name]
 [-Ttag_id]
 [-Uuser_id]
 [-Vversion_number]
 [-Zlocale_for_messages]
 [@file_name]
 program[.ext] [program[.ext]]...

CHAPTER 5 Open Client Embedded SQL/C

Programmer’s Supplement 61

program is the name of the Embedded SQL/C source file. The default
extension for program is “.cp”. cpre generates an output file with a “.c”
extension.

Some of the options are switches that activate features of the precompiler. For
example, an option can generate a stored procedure. These features are “off”
by default, and are turned “on” by including the option on the cpre statement
line. Other statement qualifiers specify values for the preprocessor—a
password, for example. Enter the value after the option (with or without
intervening spaces).

If you enter an invalid option, the precompiler lists the options that are
available.

See Appendix A, “Commands and Utilities,” for detailed descriptions of
precompiler options.

Compiling and linking the application
This section gives information on libraries, linking, and header files.

Note Client-Library and Server-Library now support dynamic loading of Net-
Library, directory, and security drivers. This change affects the way you link
Client-Library, Server-Library, and Embedded SQL applications.

From this version onward, you no longer need to explicitly link the following
object files with your applications:

• Sybase Net-Library drivers (linker option -linsck for HP-UX, HP Tru64
UNIX, SGI, and IBM RS/6000, -ltli for Sun Solaris 2.x)

• Sybase directory or security drivers (linker options -lddce and
 -lsdce)

The following tables list the general forms of the commands for compiling and
linking Embedded SQL/C applications on Sybase supported platforms running
the UNIX operating system.

Table 5-1 shows the commands for compiling and linking Embedded SQL/C
applications using static libraries.

Building an Embedded SQL/C executable

62 Open Client and Open Server

Table 5-1: Static link-and-compile commands for Embedded SQL/C

Table 5-2 shows the commands for compiling and linking Embedded SQL/C
applications using debug libraries.

Platform Command

Sun
Solaris 2.x

/opt/SUNWspro/bin/cc -I$SYBASE/include -
L$SYBASE/lib \

 APP_FILES -lct -lcs -ltcl -lcomn -lintl -
Bdynamic

 -lnsl -ldl -lm -o program

IBM
RS/6000

xlc_r4 -I$SYBASE/include -L$SYBASE/lib
APP_FILES -lct \
 -lcs -ltcl -lcomn -lintl -lm -o program

HP
9000(8xx)

cc -I$SYBASE/include -L$SYBASE/lib APP_FILES
[-W1,-a,archive] \

 -lct -lcs -ltcl -lcomn -lintl -Wl,-
a,default -lcl -lm \

 -lBSD -ldld -Wl, -E, +s -o program

SGI cc -o [-n32 | -n64] -mips3 -I$SYBASE/include -
Bstatic APP_FILES \
 -L$SYBASE/lib -lct -lcs -ltcl -lcomn -lintl \
 -Bdynamic -lm -o program

HP Tru64
UNIX

cc -I$SYBASE/include -L$SYBASE/lib APP_FILES -
lct -lcs -ltcl \
 -lcomn -lintl -lm -o program

Linux cc -I$SYBASE/$SYBASE_OCS/include

-L$SYBASE/$SYBASE_OCS/lib APP_FILES
-lct -lcs -lsybtcl -lcomn -lintl -rdynamic -ldl
-lnsl -lm -o program

CHAPTER 5 Open Client Embedded SQL/C

Programmer’s Supplement 63

Table 5-2: Debug link-and-compile commands for Embedded SQL/C

Table 5-3 shows the commands for compiling and linking Embedded SQL/C
applications using shareable libraries (with dynamic drivers).

Platform Command

Sun
Solaris 2.x

/opt/SUNWspro/bin/cc -I$SYBASE/include -
L$SYBASE/devlib \

 -g APP_FILES -lct -lcs -ltcl -lcomn -lintl
-Bdynamic

 -lnsl -ldl -lm -o program

IBM
RS/6000

xlc_r4 -I$SYBASE/include -L$SYBASE/devlib -g
APP_FILES \
 -lct -lcs -ltcl -lcomn -lintl -lm -o program

HP
9000(8xx)

cc -I$SYBASE/include -L$SYBASE/devlib -g
APP_FILES \
 [-Wl,-a,archive] -lct -lcs -ltcl -lcomn -
lintl \

 -Wl,-a,default -lcl -lm -lBSD -ldld -Wl, -
E, +s -o program

SGI cc -g [-n32 | -n64] -mips3 -I$SYBASE/include -
L$SYBASE/devlib \

 APP_FILES -lct -lcs -ltcl -lcomn -lintl -
lm -o program

HP Tru64
UNIX

cc -I$SYBASE/include -L$SYBASE/devlib
APP_FILES -lct -lcs \
 -ltcl _oldstyle_liblookup -lcomn -lintl -
lnsl -lm -o program

Linux cc -I$SYBASE/$SYBASE_OCS/include

-L$SYBASE/$SYBASE_OCS/devlib APP_FILES
-lct -lcs -lsybtcl -lcomn -lintl -rdynamic -ldl
-lnsl -lm -o program

Building an Embedded SQL/C executable

64 Open Client and Open Server

Table 5-3: Shareable link-and-compile commands for Embedded SQL/C

Note The object produced by compiling the sybesql.c file contains utility
routines that are used by Embedded SQL/C applications. You must link
sybesql.o in with every application for the application to work properly.

• The link line for an Embedded SQL/C application is identical to that used
for a Client-Library application. In the link line, APP_FILES should
include the following information, in the order given below:

• Any generated C files (or .o files compiled from generated C files).

• $SYBASE/include/sybesql.o (Make sure, if you upgrade, that you are
using the latest version of this file.)

• -lct represents the linker options to link in the Open Client and Open
Server libraries that your code calls. These options can be specified by any
or all of the following linker options, in the order shown:

Platform Command

Sun
Solaris 2.x

cc -I$SYBASE/include -L$SYBASE/lib APP_FILES \
 $SYBASE/include/sybesql.c -lct -lcs -ltcl \

 -lcomn -lintl -ltli -lnsl -ldl -lm -o program

HP
9000(8xx)

cc -I$SYBASE/include -L$SYBASE/lib APP_FILES \
 $SYBASE/include/sybesql.c -lct -lcs -ltcl \

 -lcomn -lintl -linsck -Wl -lcl -lm -lBSD -
o program

SGI cc [-n32 | -n64] -mips3 -I$SYBASE/include -
L$SYBASE/lib APP_FILES \
 -lct -lcs -ltcl -lcomn -lintl -ldl -lm -o
program

HP Tru64
UNIX

cc -I$SYBASE/include -L$SYBASE/lib APP_FILES \
 -oldstyle_liblookup -lct -lcs -ltcl-lcomn
\

 -lintl -lm -o program

Linux cc -I$SYBASE/$SYBASE_OCS/include

-L$SYBASE/$SYBASE_OCS/devlib APP_FILES
-lct -lcs -lsybtcl -lcomn -lintl -rdynamic -ldl
-lnsl -lm -o program

For non-DCE applications For DCE applications

-lsrv (for Server-Library routines) -lsrv_r (for Server-Library routines)

-lblk (for Bulk-Library routines) -lblk_r (for Bulk-Library routines)

-lct (for Client-Library routines) -lct_r (for Client-Library routines)

CHAPTER 5 Open Client Embedded SQL/C

Programmer’s Supplement 65

For HP-UX system users:

• The option -W1,-a,archive causes the linker to statically link the Sybase
libraries. Without it, shared versions of the Sybase libraries are used. In
this case, the SH_LIB_PATH environment variable must include
$SYBASE/lib at runtime, and the application user must have read and
execute permission on the libraries in $SYBASE/lib.

• HP-UX will not use the SH_LIB_PATH environment variable at runtime
unless the application is linked with the +s linker option. You must use the
+s linker options so that the system will be able to find Sybase libraries at
runtime. -E is required to prevent undefined-symbol errors when driver
libraries are loaded at runtime. See the HP-UX ld man page for more
information.

New compile-and-link lines for HP Tru64 UNIX

Use the following general command form to compile and link an Embedded
SQL/C application:

Nonthreaded
non-reentrant libraries

• Optimized libraries – nonthreaded, non-reentrant:

cc -I$SYBASE/$SYBASE_OCS/include program.c \
 $SYBASE/$SYBASE_OCS/lib/libct.a \
 $SYBASE/$SYBASE_OCS/lib/libcs.a \
 $SYBASE/$SYBASE_OCS/lib/libtcl.a \
 $SYBASE/$SYBASE_OCS/lib/libcomn.a \
 $SYBASE/$SYBASE_OCS/lib/libintl.a \
 -lm -o program

• Debug libraries – nonthreaded, non-reentrant:

cc -I$SYBASE/$SYBASE_OCS/include
-L$SYBASE/$SYBASE_OCS/devlib program.c \
 -lct -lcs -ltcl -oldstyle_liblookup \
 -lcomn -lintl -lnsl \
 -lm -o program

• Shareable libraries – nonthreaded, non-reentrant:

cc -I$SYBASE/$SYBASE_OCS/include
-L$SYBASE/$SYBASE_OCS/lib program.c \
 -oldstyle_liblookup -lct -lcs \
 -ltcl -lcomn -lintl \
 -lm -o program

Threaded
reentrant libraries

• Optimized libraries – threaded, reentrant:

cc -I$SYBASE/$SYBASE_OCS/include program.c -threads

Building an Embedded SQL/C executable

66 Open Client and Open Server

\
 $SYBASE/$SYBASE_OCS/lib/libct_r.a \
 $SYBASE/$SYBASE_OCS/lib/libcs_r.a \
 $SYBASE/$SYBASE_OCS/lib/libtcl_r.a \
 $SYBASE/$SYBASE_OCS/lib/libcomn_r.a \
 $SYBASE/$SYBASE_OCS/lib/libintl_r.a \
 -lm -o program

• Debug libraries – threaded, reentrant:

cc -I$SYBASE/$SYBASE_OCS/include
-L$SYBASE/$SYBASE_OCS/devlib -g \
 -threads program.c \
 -lct_r -lcs_r -ltcl_r -lcomn_r-lintl_r \
 -oldstyle_liblookup \
 -lm -o program

• Shareable libraries – threaded, reentrant:

cc -I$SYBASE/$SYBASE_OCS/include
-L$SYBASE/$SYBASE_OCS/lib program.c \
 -threads -oldstyle_liblookup \
 $SYBASE/$SYBASE_OCS/include/sybesql.c \
 -lct_r -lcs_r -ltcl_r \
 -lcomn_r
 -lintl_r -lnsl_r \
 -lm -o program

Performance considerations
Linking with shared libraries results in a smaller executable and takes less time
than linking with static libraries. However, executables linked with shared
libraries may have a slower start-up time than those linked with static libraries.
Also, unlike static libraries, the shared libraries must be available at runtime.

The type of library that provides the best performance depends on the
individual requirements of your site.

Loading stored procedures
If you use the precompiler -G flag to generate stored procedures, use an isql
statement to load the stored procedures into Adaptive Server before you
execute the program. The format of the isql statement to execute a generated
script is:

CHAPTER 5 Open Client Embedded SQL/C

Programmer’s Supplement 67

isql -Uuserid -Ppassword < program.sql

where the -U and -P flags specify the user ID and password to log in to Adaptive
Server.

See Appendix A, “Commands and Utilities,” for a description of isql.

Embedded SQL/C sample programs
The Embedded SQL/C precompiler has two online sample programs that
demonstrate typical Embedded SQL/C applications.

Purpose of the sample programs
The sample programs demonstrate specific Embedded SQL/C functions. These
programs are designed as guides for application programmers, not as
Embedded SQL/C training aids. Read the descriptions at the top of each source
file and examine the source code prior to attempting to use the sample
programs.

These simplified programs are not intended for use in a production
environment. Production-quality programs require additional error handling.
Read the README file for complete instructions on running the sample
programs.

Location
The sample programs are located in the directory:

$SYBASE/sample/esqlc

This directory includes:

• Online source code for the sample programs.

• The makefile provided to build the samples. Use the makefile as a starting
point for your own Embedded SQL applications.

• The samples header file, sybsqlex.h.

• The README file containing instructions for building, executing, and
testing the samples.

Embedded SQL/C sample programs

68 Open Client and Open Server

Before compiling and running the sample programs, copy the contents of
$SYBASE/sample/esql into a “working” directory, where you can freely
experiment with the sample programs without affecting the integrity of the
original files.

Header file
Before you precompile the programs, you must edit the sample header file,
described below, and replace the user name and password with values that are
valid for your Adaptive Server. Comments in the programs show where you
should make the changes.

All of the sample programs reference the sample header file, sybsqlex.h. The
contents of sybsqlex.h are as follows:

/**
 * *
 * sybsqlex.h - header file for Embedded SQL/C *
 *examples *
 * *
 **/

 #define USER "user name"
 #define PASSWORD "password"

All of the samples contain this line:

#include "sybsqlex.h"

USER and PASSWORD are defined in sybsqlex.h as user name and password.
Before running the sample programs, you must edit sybsqlex.h and change user
name to your Adaptive Server login name and “password” to your Adaptive
Server password.

Example 1: Using cursors for database query
The example1.cp program shows how to use cursors in an interactive query
program. The program:

• Displays a list of book types; user selects one type

• Displays all titles in the selected book type; prompts for a title ID

• Displays detailed information about the selected title and continues
prompting for title IDs

CHAPTER 5 Open Client Embedded SQL/C

Programmer’s Supplement 69

• Exits when Return is pressed at a prompt

Example 2: Displaying and editing rows of a table
example2.cp demonstrates updating a row through a cursor. The program:

• Displays the columns in the authors table, row by row.

• Lets the user update author information in all but the au_id column. If the
user presses Return for column information, that column’s data remains
unchanged.

• Requires the user to confirm the update before sending the data to
Adaptive Server.

Embedded SQL/C sample programs

70 Open Client and Open Server

Programmer’s Supplement 71

A P P E N D I X A Commands and Utilities

This appendix contains reference pages for the following utilities:

• bcp

• bcp – copies a database table to or from an operating system file
in a user-specified format.

• cobpre; cpre

• cobpre – precompiles a COBOL source program to produce
target, listing, and isql files.

• cpre – precompiles a C source program to produce target, listing,
and isql files.

• defncopy

• defncopy – copies definitions for specified views, rules, defaults,
triggers, procedures, or reports from a database to an operating
system file or from an operating system file to a database.

• isql

• isql – interactively parses SQL to Adaptive Server.

With this version, the messages generated by the bcp, defncopy, and isql
utilities have changed. If you process these messages with scripts that
parse specific strings (such as with awk or grep), you may need to change
the search patterns of these scripts to accommodate the new messages.

bcp
Description Copies a database table to or from an operating system file in a

user-specified format.

Syntax bcp [[database_name.]owner.]table_name
 {in | out} datafile
 [-c] [-E] [-n] [-N] [-v] [-X]

bcp

72 Open Client and Open Server

 [-a display_charset]
 [-A size]
 [-b batchsize]
 [-e errfile]
 [-f formatfile]
 [-F firstrow]
 [-I interfaces_file]
 [-J client_charset]
 [-K keytab_file]
 [-L lastrow]
 [-m maxerrors]
[-q datafile_charset]
 [-r row_terminator]
 [-R remote_server_principal]
 [-S server]
 [-t field_terminator]
 [-T text_or_image_size]
 [-U username]
 [-V [security_options]
 [-Y]
[-z[language]
[-Z security_mechanism]

Parameters database_name
is optional if the table being copied is in your default database or in master.
Otherwise, you must specify a database name.

owner
is optional if you or the Database Owner own the table being copied. If you
do not specify an owner, bcp looks first for a table of that name owned by
you, then it looks for one owned by the Database Owner. If another user
owns the table, you must specify the owner name or the command fails.

table_name
is the name of the database table or view to copy.

in | out
is the direction of the copy. in indicates a copy from a file into the database
table, and out indicates a copy to a file from the database table.

datafile
is the name of an operating system file.

-a display_charset
allows you to run bcp from a terminal where the character set differs from
that of the machine on which bcp is running. -a in conjunction with -J
specifies the character set translation file (.xlt file) required for the
conversion. Use -a without -J only if the client character set is the same as
the default character set.

APPENDIX A Commands and Utilities

Programmer’s Supplement 73

-A size
specifies the network packet size to use for this bcp session. For example:

bcp -A 2048

sets the packet size to 2048 bytes for this bcp session. size must be between
the values of the default network packet size and maximum network packet
size configuration variables, and it must be a multiple of 512.

Use larger-than-default network packet sizes to improve the performance of
large bulk-copy operations.

-b batchsize
is the number of rows per batch of data copied (the default is to copy all the
rows in one batch). Batching applies only when bulk copying in; it has no
effect on bulk copying out.

-c
performs the copy operation with char as the storage type of all columns in
the data file. This option does not prompt for each field; it uses char as the
storage type, no prefixes, \t (tab) as the default field terminator, and \n
(newline) as the default row terminator.

-e errfile
is the name of an error file where bcp stores any rows that it was unable to
transfer from the file to the database. Error messages from the bcp program
appear on your terminal. bcp creates an error file only when you specify this
option.

-E
explicitly specifies the value of a table’s IDENTITY column.

By default, when you bulk copy data into a table with an IDENTITY
column, bcp assigns each row a temporary IDENTITY column value of 0.
This is only effective when copying data into a table. bcp reads the value of
the ID column from the data file, but ignores it and does not send it to the
server; instead, as bcp inserts each row into the table, the server assigns the
row a unique, sequential IDENTITY column value, beginning with the
value 1. If you specify the -E flag when copying data into a table, bcp will
read the value from the data file and send it to the server, which will insert
these values into the table. If the number of inserted rows exceeds the
maximum possible IDENTITY column value, Adaptive Server returns an
error.

The -E option has no effect when copying data out, in other words, the ID
column is copied to the data file (unless the -N option is used).

bcp

74 Open Client and Open Server

-f formatfile
is the full path name of a file with stored responses from a previous use of
bcp on the same table. After you answer bcp’s format questions, it prompts
you to save your answers in a format file; creation of the format file is
optional. The default file name is bcp.fmt. The bcp program can refer to a
format file when copying data, so that you do not have to duplicate your
previous format responses interactively. Use this option only when you
previously created a format file that you want to use now for a copy in or
out. If this option is not used, bcp queries you for format information
interactively.

-F firstrow
is the number of the first row to copy (default is the first row).

-I interfaces_file
specifies the name and location of the interfaces file to search when
connecting to Adaptive Server. If you do not specify -I, bcp looks for an
interfaces file located in the directory specified by the SYBASE
environment variable.

-J client_charset
specifies the character set to use on the client. bcp uses a filter to convert
input between client_charset and the Adaptive Server character set.

-J client_charset requests that Adaptive Server convert to and from
client_charset, the character set used on the client.

-J with no argument sets character-set conversion to NULL. No conversion
takes place. Use this if the client and server use the same character set.

Omitting -J sets the character set to a default for the platform which may not
necessarily be the character set that the client is using. Table A-1 lists
platform defaults.

APPENDIX A Commands and Utilities

Programmer’s Supplement 75

Table A-1: Default character sets for different platforms

-K keytab_file
can be used only with DCE security. It specifies a DCE keytab file that
contains the security key for the user name specified with -U option. Keytab
files can be created with the DCE dcecp utility. See your DCE
documentation for more information.

If the -K option is not supplied, the bcp user must be logged in to DCE with
the same user name as specified with the -U option.

-L lastrow
is the number of the last row to copy (default is the last row).

-m maxerrors
is the maximum number of errors permitted before bcp aborts the copy. bcp
throws out each row that it cannot build, counting it as one error. If you do
not include this option, bcp uses a default value of 10.

-n
performs the copy operation using native (operating system) formats. This
option does not prompt for each field. Files in native data format are usually
not human-readable.

 Warning! Do not use bcp in native format to recover data, salvage data, or
resolve an emergency situation. Do not use bcp in native format to transport
data between different hardware platforms, different operating systems, or
different major versions of Adaptive Server. Using bcp in native format can
create flat files that cannot be reloaded into Adaptive Server, and it may be
impossible to recover the data. If you are unable to rerun bcp in character
format (for example, table truncated/dropped, hardware damage, database
dropped), the data will be unrecoverable.

-N
skips the IDENTITY column. Use this option when copying data in if your
host data file does not include a place holder for the IDENTITY column
values, or when copying data out and you do not want to include the
IDENTITY column information in the host file.

You cannot use both -N and -E options when copying in data.

Platform Default character set

Sun, Digital, Pyramid, RS6000/AIX, others iso_1

HP roman8

bcp

76 Open Client and Open Server

-P password
specifies an Adaptive Server password. This option is ignored if -V is used.

-q datafile_charset
allows you to run bcp to copy character data to or from a file system that uses
a character set different from the client character set. -q in conjunction with
-J specifies the character set translation file (.xlt file) required for the
conversion.

In Japanese language environments, the -q flag translates Hankaku Katakana
(half-width characters) into Zenkaku Katakana (full-width characters). Use
with the argument “zenkaku” and with the -J flag to indicate the client’s
Japanese character set (sjis or eucjis). The zenkaku.xlt file was designed to
translate only from terminal display to Adaptive Server, not from Adaptive
Server to the terminal.

Note The ascii_7 character set is compatible with all character sets. If either
Adaptive Server’s or the client’s character set is set to ascii_7, any 7-bit ASCII
character is allowed to pass between client and server unaltered. Other
characters produce conversion errors. Character set conversion issues are
covered more thoroughly in the System Administration Guide.

-r row_terminator
specifies the default row terminator.

-R remote_server_principal
specifies the principal name for the server. By default, a server’s principal
name matches the server’s network name (which is specified with the -S
option or the DSQUERY environment variable). The -R option must be used
when the server’s principal name and network name are not the same.

-S server
specifies the name of the Adaptive Server to connect to. If you specify -S
with no argument, bcp uses the server that your DSQUERY environment
value specifies.

-t field_terminator
specifies the default field terminator.

-T text_or_image_size
allows you to specify, in bytes, the maximum length of text or image data
that Adaptive Server sends. The default is 32K. If a text or image field is
larger than the value of -T or the default, bcp does not send the overflow.

APPENDIX A Commands and Utilities

Programmer’s Supplement 77

-U username
specifies an Adaptive Server login name. If you do not specify username,
bcp uses the current user’s operating system login name.

-V security_options
specifies network-based user authentication. With this option, the user must
log in to the network’s security system before running the utility. In this case,
users must supply their network user name with the -U option; any password
supplied with the -P option is ignored.

-V can be followed by a security_options string of key-letter options to
enable additional security services. These key letters are:

c – Enable data confidentiality service

i – Enable data integrity service

m – Enable mutual authentication for connection establishment

o – Enable data origin stamping service

r – Enable data replay detection

q – Enable out-of-sequence detection

-v
reports the current version and copyright message of the bcp program.

-X
specifies that, in this connection to the server, the application initiate the
login with client-side password encryption. bcp (the client) specifies to the
server that password encryption is desired. The server sends back an
encryption key, which bcp uses to encrypt your password, and the server
uses the key to authenticate your password when it arrives.

-Y
specifies that the character-set conversion is disabled in the server, and is
performed by bcp on the client side when using bcp IN.

Note All character-set conversion is done in the server during bcp OUT.

-z language
is the official name of an alternate language that the server uses to display
bcp prompts and messages. Without the -z flag, bcp uses the server’s default
language. Add languages to an Adaptive Server at installation, or afterwards
with the utility langinstall or the stored procedure sp_addlanguage.

bcp

78 Open Client and Open Server

-Z security_mechanism
specifies the name of a security mechanism to use on the connection.

Security mechanism names are defined in the $SYBASE/install/libtcl.cfg
configuration file. If no security_mechanism name is supplied, the default
mechanism is used. For more information on security mechanism names,
see the description of the libtcl.cfg file in the Open Client and Open Server
Configuration Guide for UNIX.

Examples 1 In the following example, the -c option copies data out of the publishers
table in character format (using char for all fields). The -t field_terminator
option ends each field with a comma, and the -r row_terminator option
ends each line with a Return. bcp prompts only for a password. The first
backslash before the final “r” escapes the second so that one backslash
prints.

bcp pubs2..publishers out pub_out -c -t , -r \\r

2 In the following example, bcp copies data from the publishers table to a file
named pub_out for later reloading into Adaptive Server. Pressing Return
accepts the defaults that the prompts specify. The same prompts appear
when copying data into the publishers table.

bcp pubs2..publishers out pub_out
 Password:

 Enter the file storage type of field pub_id [char]:
 Enter prefix length of field pub_id [0]:
 Enter length of field pub_id [4]:
 Enter field terminator [none]:

Enter the file storage type of field pub_name [char]:
 Enter prefix length of field pub_name [1]:
 Enter field terminator [none]:

 Enter the file storage type of field city [char]:
 Enter prefix length of field city [1]:
 Enter field terminator [none]:

 Enter the file storage type of field state [char]:
 Enter prefix length of field state [1]:
 Enter field terminator [none]:

 Do you want to save this format information in a
file? [Y] y
 Host filename [bcp.fmt]: pub_form

 Starting copy...

APPENDIX A Commands and Utilities

Programmer’s Supplement 79

 3 rows copied.
 Clock Time (ms.): total = 300 Avg = 1 (300.00 rows
 per sec.)

3 To copy this data back into Adaptive Server using the saved format file,
pub_form, use the following command:

bcp pubs2..publishers in pub_out -f pub_form

4 To see a list of possible datatypes, enter “?” at the prompt:

Enter the file storage type of field ’pub_id’
 [’char’]:?
 Invalid column type. Valid types are:
 <cr>: same type as Adaptive Server column.
 c : char
 T : text
 i : int
 s : smallint
 t : tinyint
 f : float
 m : money
 b : bit
 d : datetime
 x : binary
 I : image
 D : smalldatetime
 r : real
 M : smallmoney
 n : numeric
 e : decimal

Enter the single letter exactly as it appears above.

5 The following example copies a data file created with a character set used
on a VT200 terminal into the pubs2.publishers table. The -q flag translates
it. The -z flag displays bcp messages in French.

bcp pubs2..publishers in vt200_data -J iso_1 -q
vt200 -z french

6 The following example specifies that Adaptive Server send 40K of text or
image data using a packet size of 4096:

bcp publishers out -T 40960 -A 4096

bcp

80 Open Client and Open Server

Usage New features

Note If there is an external Sybase configuration file, add this section to enable
bcp:

[BCP]

bcp for System 11 is built with Client-Library.

The bcp user interface is unchanged except for the following:

• New command-line options have been added to enable network-based
security services on the connection as follows:

-K keytab_file
-R remote_server_principal
-V security_options
-Z security_mechanism

• The -y sybase_directory option is ignored.

• Error message format is different than previous versions of bcp. If you
have scripts that perform routines based on the values of these messages
you may need to re-write them, for example:

The display message that indicates the number of rows transferred has
been changed. During a session, this version of bcp periodically reports a
running total of rows transferred. This message replaces the “1000 rows
transferred” message displayed by the previous bcp.

Note To use a previous version of bcp, you must set the CS_BEHAVIOR
property in the [bcp] section of the ocs.cfg file:

[bcp]

CS_BEHAVIOR = CS_BEHAVIOR_100

If CS_BEHAVIOR is not set to CS_BEHAVIOR_100, you can use
functionality for bcp 11.1 and later.

• bcp provides a convenient, high-speed method for transferring data
between a database table or view and an operating system file. It is capable
of reading or writing files in a wide variety of formats. When copying in
from a file, bcp inserts data to an existing database table; when copying out
to a file, bcp overwrites any previous contents of the file.

APPENDIX A Commands and Utilities

Programmer’s Supplement 81

• Upon completion, bcp informs you of the number of rows of data
successfully copied, the total time the copy took, the average amount of
time in milliseconds that it took to copy one row, and the number of rows
copied per second.

• The bcp utility does not insert any row that contains an entry exceeding the
character length of the corresponding target table column. For example,
bcp does not insert a row with a field of 300 bytes into a table with a
character column length of 256 bytes. Instead, bcp reports a conversion
error, for example:

cs_convert: cslib user api layer: common library
error: The result is truncated because the
conversion/operation resulted in overflow

and skips the row. bcp does not insert truncated data into the table.

To keep track of data that violate length requirements, run bcp with the -e
log-file name option. bcp records the row and column number of the
rejected data, the error message, and the data in the log file you specify.

Copying tables with indexes or triggers

• The bcp program is optimized to load data into tables that do not have
indexes or triggers associated with them. It loads data into tables without
indexes or triggers at the fastest possible speed, with a minimum of
logging. Page allocations are logged, but the insertion of rows is not.

When you copy data into a table that has one or more indexes or triggers,
a slower version of bcp is automatically used, which logs row inserts. This
includes indexes implicitly created using the unique integrity constraint of
a create table statement. However, bcp does not enforce the other integrity
constraints defined for a table.

bcp

82 Open Client and Open Server

Because the fast version of bcp inserts data without logging it, the System
Administrator or Database Owner must first set the system procedure
sp_dboption, “DB”, true. If the option is not true, and you try to copy data
into a table that has no indexes or triggers, Adaptive Server generates an
error message. You do not need to set this option to copy data out to a file,
or to copy data into a table that contains indexes or triggers.

Note Because bcp logs inserts into a table that has indexes or triggers, the
log can grow very large. You can truncate the log with dump transaction
after the bulk copy completes, after you have backed up your database
with dump database.

• While the select into/bulkcopy option is “on,” you cannot dump the
transaction log. Issuing dump transaction produces an error message
instructing you to use dump database instead.

 Warning! Be certain that you dump your database before you turn off the
select into/bulkcopy flag. If you insert unlogged data into your database,
and then perform a dump transaction before you perform a dump database,
you will not be able to recover your data.

• Unlogged bcp runs more slowly while a dump database is taking place.

• Table A-2 shows which version bcp uses when copying in, the necessary
settings for the select into/bulkcopy option, and whether the transaction log
is kept and if it is dumpable.

Table A-2: Fast bcp vs. slow bcp

select into/bulk copy

bcp version on off

Fast bcp

(no indexes or triggers on target
table)

OK

dump transaction
prohibited

bcp

dump transaction
prohibited

Slow bcp

(one or more indexes or triggers)

OK

dump transaction
prohibited

OK

dump transaction OK

APPENDIX A Commands and Utilities

Programmer’s Supplement 83

• By default, the select into/bulkcopy option is “off” in newly created
databases. To change the default situation, turn this option “on” in the
model database.

Note The performance penalty for copying data into a table that has indexes
or triggers in place can be severe. If you are copying in a very large number of
rows, it may be faster to drop all the indexes and triggers first with drop index
(or alter table for indexes created as a unique constraint) and drop trigger; set the
database option; copy the data into the table; re-create the indexes and triggers;
and then dump the database. Remember to allocate disk space for the
construction of indexes and triggers for a clustered index, about 1.2 times the
amount of space needed for the data, in addition to the space needed for the
data.

Responding to bcp prompts

When you copy data in or out using the -n (native format) or -c (character
format) option, bcp only prompts you for your password, unless you supplied
it with the -P option. If you do not supply either the -n, -c or -f formatfile option,
bcp prompts you for information for each field in the table.

• Each prompt displays a default value, in brackets, which you can accept
by pressing Return. The prompts include:

• The file storage type, which can be character or any valid Adaptive
Server datatype

• The prefix length, which is an integer indicating the length in bytes of
the following data

• The storage length of the data in the file for nonNULL fields

• The field terminator, which can be any character string

• Scale and precision for numeric and decimal dat types

The row terminator is the field terminator of the last field in the table or
file.

• The bracketed defaults represent reasonable values for the datatypes of the
field in question. For the most efficient use of space when copying out to
a file:

• Use the default prompts.

• Copy all data in their table datatypes.

• Use prefixes as indicated.

bcp

84 Open Client and Open Server

• Do not use terminator.s

• Accept the default lengths.

The following table shows the defaults and possible alternate responses:

Table A-3: bcp prompts, defaults, and responses

Prompt Default provided Possible responses

File
storage
type

Use database storage type for most
fields except:

char for varchar
binary for varbinary

char to create or read a
human-readable file; any CS
datatype where implicit
conversion is supported.

Prefix
length

0 for fields defined with char datatype
(not storage type) and all fixed-length
datatypes.

1 for most other datatypes.

2 for binary and varbinary saved as char.

4 for text and image.

0 if no prefix is desired;
defaults are recommended in
all other cases.

Storage
length

For char and varchar, use defined
length.
 For binary and varbinary saved as char,
use default.
 For all other datatypes, use maximum
length needed to avoid truncation or
data overflow.

Default values, or greater,
are recommended.

Field or
row
terminator

None. Up to 30 characters, or one
of the following:
 \t tab
 \n newline
 \r carriage return
 \0 null terminator
 \ backslash

APPENDIX A Commands and Utilities

Programmer’s Supplement 85

• bcp can copy data out to a file either as its native (database) datatype, or as
any datatype for which implicit conversion is supported for the datatype in
question. bcp copies user-defined datatypes as their base datatype or as any
datatype for which implicit conversion is supported. For more information
on datatype conversions, see cs_convert information in the Open
Client-Client Library/C Reference Manual.

Note Be careful copying data in native format from different versions of
Adaptive Server because they do not always have the same datatypes.

• A prefix length is a 1-, 2-, or 4-byte integer that represents the length of
each data value in bytes. It immediately precedes the data value in the host
file.

• Fields defined in the database as char, nchar, and binary are always padded
with spaces (null bytes for binary) to the full length defined in the
database. timestamp data is treated as binary(8).

If data in varchar and varbinary fields is longer than the length you specify
for copy out, bcp truncates the data in the file at the specified length.

• A field terminator string can be up to 30 characters long; the most common
terminators are a tab (entered as “\t” and used for all columns except the
last one), and a new line (entered as “\n” and used for the last field in a
row). Other terminators are: “\0” (the null terminator), “\” (backslash), and
“\r” (Return). When choosing a terminator, be sure that its pattern does not
appear in any of your character data. For example, if you use tab
terminators with a string that contains a tab, bcp could not identify which
tab represents the end of the string. Because bcp always looks for the first
possible terminator, in this case it would find the wrong one.

When a terminator or prefix is present, it affects the actual length of data
transferred. If the length of an entry being copied out to a file is less than
the storage length, it is followed immediately by the terminator, or the
prefix for the next field. The entry is not padded to the full storage length
(char, nchar, and binary data is returned from Adaptive Server already
padded to the full length).

When copying in from a file, data is transferred until either the number of
bytes indicated in the “Length” prompt has been copied or the terminator
is encountered. Once a number of bytes equal to the specified length has
been transferred, the rest of the data is flushed until the terminator is
encountered. When no terminator is used, the table storage length is
strictly observed.

bcp

86 Open Client and Open Server

• The following tables show the interaction of prefix lengths, terminators,
and field length on the information in the file. “P” indicates the prefix in
the stored table. “T” indicates the terminator, and dashes (- -) show
appended spaces. An ellipsis (...) indicates that the pattern repeats for each
field. The field length is 8 for each column, and “string” represents the
6-character field each occurence.

Table A-4: Adaptive Server char data

Table A-5: Other datatypes converted to char storage

• Note that the file storage type and length of a column do not have to be the
same as the type and length of the column in the database table. (If types
and formats copied in are incompatible with the structure of the database
table, the copy fails.

• File storage length generally indicates the maximum amount of data to be
transferred for the column, excluding terminators and prefixes.

• When copying data into a table, bcp observes any defaults defined for
columns and user-defined datatypes. However, bcp ignores rules to load
data at the fastest possible speed.

• Because bcp considers any data column that can contain null values to be
variable length, use either a length prefix or terminator to denote the length
of each row of data.

• Data written to a host file in its native format preserves all of its precision.
datetime and float values preserve all of their precision even when they are
converted to character format. Adaptive Server stores money values to a
precision of one ten-thousandth of a monetary unit. However, when money
values are converted to character format, their character format values are
recorded only to the nearest two places.

Prefix length = 0 Prefix length 1,2,or 4

No Terminator string--string--. Pstring--Pstring--.

Terminator string--Tstring--T. Pstring--TPstring--T.

Prefix length = 0 Prefix length 1,2,or 4

No Terminator string--string--. PstringPstring.

Terminator stringTstringT. PstringTPstringT.

APPENDIX A Commands and Utilities

Programmer’s Supplement 87

• Before copying data that is in character format from a file into a database
table, check the datatype entry rules in the “Datatypes” section of the
Adaptive Server Reference Manual. Character data that is being copied
into the database with bcp must conform to those rules. Note especially
that dates in the undelimited (yy)yymmdd format may result in overflow
errors if the year is not specified first.

• When you send host data files to sites that use terminals different from
your own, inform them of the datafile_charset that you used to create the
files.

Messages

Error in attempting to load a view of translation
tables.

The character translation file(s) named with the -a or -q parameter is missing,
or you mistyped the name(s).

cobpre; cpre
Description cpre precompiles a C source program to produce target, listing, and isql files.

cobpre precompiles a COBOL source program to produce target, listing, and
isql files.

Syntax cobpre|cpre [-a] [-b] [-c] [-d]
[-e] [-f] [-l] [-m] [-p (cpre)] [-q (cobbre)]
[-r][-s (cpre)] [-t (cobpre)] [-v] [-w] [-x] [-y]
[-Ccompiler]
[-Ddatabase_name]
[-Ffips_level]
[-G[isql_file_name]]
[-H[server_name]]
[-Iinclude_directory]...
[-Jlocale_for_charset]
[-Ksyntax_level]
[-L[listing_file_name]]
[-Ninterfaces_file_name]
[-Otarget_file_name]
[-P[password]]
[-Sserver_name]
[-Ttag_id]
[-Vversion_number]
-Zlocale_for_messages]

cobpre; cpre

88 Open Client and Open Server

[@file_name]
 program[.ext] [program[.ext]]... Parameters

Parameters -a
allows cursors to remain open across transactions. (See the Sybase Adaptive
Server Reference Manual for information about cursors and transactions. If
you do not use this option, cursors behave as though set close on endtran
were in effect. This behavior is ANSI-compatible.

-b
disables rebinding of host variable addresses typically used in fetch
statements. If you do not use this option, a rebind occurs on every fetch
statement unless you specify otherwise in your Embedded SQL/C program.

The -b option differs in the 11.1 and 10.0.x versions of the Embedded SQL
precompilers:

• For the 11.1 versions of cpre, the norebind attribute applies to all fetch
statements of a cursor whose declaration was precompiled with the -b
option.

• For the 10.0.x versions of cpre, the norebind attribute applied to all fetch
statements in each Embedded SQL source file precompiled with -b,
regardless of where the cursors were declared.

-c
turns on the Client-Library debugging feature. When the -c option is used,
Client-Library generates calls to ct_debug. This option is useful during
application development but should be turned off for final application
delivery.

-d
indicates that delimited identifiers will not be used. The application can send
character data to the server in double quotes (“ “).

-e
when processing an exec sql connect statement, directs Client Library to use
the external configuration file to configure the connection. Without this
option, the precompiler generates Client Library function calls to configure
the connection. Refer to the Open Client Client-Library/C Reference
Manual for information about the external configuration file and the
CS_CONFIG_BY_SERVERNAME property.

APPENDIX A Commands and Utilities

Programmer’s Supplement 89

-f
checks that the SQL contained in the ESQL source file is ANSI
SQL-89 compliant. If the user provides a SQL Server name and valid user
name/password combination, the precompiler will connect to the server and
pass all static SQL to the server for standards compliance checking. -f
generates code enabling the server to continue checking the SQL for
compliance while an application is being run.

-l
turns off generation of #line directives.

-m
runs the application in Sybase auto-commit mode. Auto-commit mode
means that transactions are not chained. Explicit begin and end transactions
are required or every statement is immediately committed. If you do not
specify this option, the application runs in ANSI-style chained transaction
mode.

-p
generates a separate command handle for each SQL statement in the module
that has input host variables and enables persistent binds on each command
handle. This option improves performance of repeatedly executed
commands with input parameters but at the cost of increased storage space
and slightly slower response on the first iteration of each such command.

Applications that rely on inserting empty strings instead of NULL strings
when the host string variable is empty do not work if the -p option is turned
on. The persistent bind implementation prevents Embedded SQL from
circumventing Client-Library protocol (which inserts NULL strings).

-q
generates code with double quotes (") rather than a single quote(’).

-r
disables repeatable reads. If you do not use this option, a set transaction
isolation level 3 statement is generated and will be executed during connect
statements.

-s
includes static function declarations in the precompiled file.

-t
specifies that the input source file is in terminal-mode format (HP Tru64
UNIX).

-v
displays the precompiler version information only (without precompiling).

cobpre; cpre

90 Open Client and Open Server

-w
disables display of precompiler warning and informational messages to the
screen or a listing file.

-x
instructs Client-Library to use external configuration files. See the
CS_EXTERNAL_CONFIG property described in the Open Client
Client-Library Reference Manual and the INITIALIZE_APPLICATION
statement described in the Embedded SQL Reference Manual.

-y
supports CS_TEXT and CS_IMAGE datatypes so they can be used as input
host variables. At runtime, the data is directly included into the character
string sent to the server. Only static SQL statements are supported; use of
text and image as input parameters to dynamic SQL is not supported. This
substitution of arguments into command strings is only performed if the -y
command line option is used.

-Ccompiler
specifies the target host language compiler.

cpre – Possible values are “ansi_c” for ANSI standard C and “kr_c” for
Kernighan and Ritchie C. If you do not use this option, ansi_c is used as the
default target host language compiler.

cobpre – mf_byte — MicroFocus COBOL compiler with byte-aligned data.
If you set the precompiler with this argument, you must set the MicroFocus
COBOL compiler with the -C NOIBMCOMP argument.

mf_word — MicroFocus COBOL compiler with word-aligned data. If you
set the precompiler with this argument, you must set the MicroFocus
COBOL compiler with the -C IBMCOMP argument. If you do not use this
option, mf_byte is used as the default compiler.

-Ddatabase_name
specifies the name of the database to parse against. Use this option when you
want to do SQL semantic checking at precompile time. If -G is specified, a
use database command will be added to the beginning of the filename.sql
file. If you do not use this option, the precompiler uses your default database
on the Adaptive Server.

APPENDIX A Commands and Utilities

Programmer’s Supplement 91

-Ffips_level
checks that the SQL contained in the Embedded SQL source file is ANSI
SQL-89 or SQL-92E compliant. The user must provide an Adaptive Server
name and a valid user name/password combination for the precompiler to
connect to the server. The -F option generates code enabling the server to
continue checking the SQL for compliance while an application is being run.
Valid values are SQL89 or SQL92E.

-G[isql_file_name] (optional)
generates stored procedures for appropriate SQL statements and saves them
to an isql file. You must execute isql on the isql file to load the stored
procedure. If you have multiple input files, you may use -G, but you cannot
specify an argument.

If you have multiple input files or do not specify the argument, the default
target file name(s) will be the input file name(s) with the extension “.sql”
appended (or replacing any input file name extension). Also, see option
-Ttag_id to specify tag identification for stored procedures. If you do not use
the -G option, no stored procedures are generated.

-H[server_name] (optional)
invokes the HA failover option. The secondary server is used if the primary
server fails. The command line argument parser reads the -H flag, stores the
failover server name, and generates the necessary CT-Lib statements to
implement HA failover. To use this option, the secondary server must be up
and running and correctly listed in the interfaces file as an HA failover
server.

-Iinclude_directory
specifies a directory where Embedded SQL will search for include files. You
may specify this option any number of times. Embedded SQL searches the
directories in their command line order. If you do not use this option, the
default include directories are $SYBASE/include and the current working
directory.

cobpre; cpre

92 Open Client and Open Server

-Jlocale_for_charset
specifies the character set of the source file that is being precompiled. The
option’s value must be a locale name that corresponds to an entry in the
locales file. If you do not specify -J, the precompiler interprets the source file
as being in the precompiler’s default character set.

To determine which character set to use as its default, the precompiler looks
for a locale name. The precompiler searches for the following environment
variables in the following order:

• LC_ALL

• LANG

If LC_ALL is defined, the precompiler uses its value as the locale name. If
LC_ALL is not defined but LANG is defined, the precompiler uses its value
as the locale name.

If neither LC_ALL nor LANG is defined, the precompiler uses a locale
name of “default.”

The precompiler looks up the locale name in the locales file, and uses the
character set associated with it as the default character set.

-Ksyntax_level
specifies the level of syntax checking to perform. The choices are:

• NONE

No checking (no Adaptive Server is required during precompiling).

• SYNTAX

Syntax is checked by Adaptive Server during precompiling but does not
require databases objects referred to by Embedded SQL statements to
be present.

• SEMANTIC

Embedded SQL statements checked for syntactic and semantic
correctness—database objects referred to by statements must be
present. Semantic checking is not performed on statements that include
input host variables of type CS_TEXT or CS_IMAGE, regardless of
command line options.

APPENDIX A Commands and Utilities

Programmer’s Supplement 93

-L[listing_file_name] (argument is optional)
generates one or more listing files. A listing file is a version of the input file
with each line numbered and followed by any applicable error message. If
you have multiple input files, you may use -L, but you cannot specify an
argument.

If you have multiple input files or do not specify the argument, the default
listing file name(s) will be the input file name(s) with the extension “.lis”
appended (or replacing any input file name extension). If you do not use this
option, no listing file is generated.

-Ninterfaces_file_name
specifies an interfaces file name to the precompiler. If you do not use this
option, the default interfaces file $SYBASE/interfaces is used.

-Otarget_file_name
specifies the target or output file name. You cannot use this option if there
are multiple input files (default target file names will be assigned). If you do
not use this option, the default target file name will be the input file name
with:

cpre – the extension .c appended (replacing any input file name extension).

cobpre – the extension .cbl appended (or replacing any input file name
extension).

-P[password] (used with option -Uuser_id; argument is optional)
specifies an Adaptive Server password for SQL syntax checking at
precompile time. -P without an argument or with the key word NULL
specifies a null (““) password. If you use option -Uuser_id but do not use -P,
the precompiler prompts you to enter a password.

-Sserver_name
specifies the name of the Adaptive Server for SQL syntax checking at
precompile time. If you do not use this option, the default Adaptive Server
name is taken from the DSQUERY environment variable.

cobpre; cpre

94 Open Client and Open Server

-Ttag_id (used with option -G)
specifies a tag identification (up to 3 characters) to append to the end of the
generated stored procedure group name.

For example, if you type -Tdbg as part of your command, your generated
stored procedures will be given the name of the input file with the tag
identification dbg appended: program_dbg;1, program_dbg;2, and so on.

Programmers can use tag identification to test changes to an existing
application without destroying the existing generated stored procedures,
which may be in use. If you do not use this option, no tag identification is
added to the stored procedure name.

-Uuser_id
specifies the Adaptive Server user identification.

This option allows you to check SQL syntax at precompile time. It causes
the precompiler to pass SQL statements to the server for parsing only. If the
server detects syntax errors, the errors are reported and no code is generated.
If you use the -U option but not -P[password], Embedded SQL prompts you
to enter a password.

If you do not use this option, the precompiler does not connect to a server or
perform SQL syntax checking of the input file beyond what is required to
generate the target file.

-Vversion_number
specifies the Client-Library version number:

cpre – the version number must be CS_VERSION_100 or higher and the
value must exactly match one of the legal values of the version number
argument to the ct_init function. (See the Open Client Client-Library
Reference Manual for information about the ct_init function.

cobpre – for COBOL, the version number must match one of the values from
cobpub.cbl.

If you do not use this option, the default is the most recent version of
Client-Library available with the precompiler (CS_VERSION_110 for
Open Client and Open Server version 11.1).

APPENDIX A Commands and Utilities

Programmer’s Supplement 95

-Zlocale_for_messages
specifies the language and character set that the precompiler uses for
messages. If you do not specify -Z, the precompiler uses its default language
and character set for messages.

To determine which language and character set to use as its default for
messages, the precompiler:

1 Looks for a locale name. The precompiler searches for the following
environment variables in the following order:

• LC_ALL

• LANG:

If LC_ALL is defined, the precompiler uses its value as the locale
name. If LC_ALL is not defined but LANG is defined, the
precompiler uses its value as the locale name.

If neither LC_ALL nor LANG is defined, the precompiler uses a
locale name of “default.”

2 Looks up the locale name in the locales file, and uses the language and
character set associated with it as the default for messages.

program[.ext] [program[.ext]] . . .
is the input file name(s) of the Embedded SQL/C source program. You can
enter as many input file names as you wish. The file name format and length
can be anything you wish as long as it does not violate any operating system
rules. See “Comments” following for information about target files and
multiple input files.

@file_name
can be used to specify a file containing any of the above command line
arguments. The precompiler reads the arguments contained in this file in
addition to any arguments already specified. If the file specified with
@file_name contains names of the files to precompile, place the argument
at the end of the command line.

Examples 1 Run the precompiler (ANSI-compliant):

 cobpre | cpre program.pco|.pc

2 Run the precompiler with generated stored procedures and FIPS flagging
(ANSI-compliant):

 cobpre | cpre -G -f program1.pco|.pc program2.pco|.pc

3 Run the precompiler for two input files with cursors open across
transactions (not ANSI compliant):

cobpre; cpre

96 Open Client and Open Server

 cobpre | cpre -a program1.pco|.pc program2.pco|.pc

4 Display the precompiler version information only:

 cobpre | cpre -v

Usage DCE precomiler versions

Versions of the precompiler executables are provided for use on machines
where DCE is installed.

You can run the regular executables on DCE machines, but they will not be able
to connect to servers if DCE is configured as the default directory service for
Sybase client applications. (The default directory service is determined by the
setup of the $SYBASE/install/libtcl.cfg file. See the Open Client and Open
Server Configuration Guide for UNIX for details).

• Optional arguments

If you use -G[isql_file_name], -L[listing_file_name], or -P[password]
without specifying an argument, another option or the keyword NULL or
double quotes (““) must follow on the command line. You cannot follow
these options with an input file name. If you do, the precompiler will
mistake the input file name for the option argument.

• ANSI standards

The cobpre | cpre command defaults are set up for ANSI standard behavior.

• The -a, -c, -d, -f, -m, and -r options affect only the connect statement. If your
source file does not contain a connect statement or you use the -x option,
these options have no effect.

• Target file

cpre – The default target file name is program.c. If you have only one input
file, you may use option -Otarget_file_name to specify a target file name.
If you have multiple input files, the default target files will be named
first_input_file.c, second_input_file.c, and so on.

cobpre – The default target file name is the input file name with the
extension “.cbl” (for Micro Focus COBOL) appended (or replacing any
input file name extension). If you have only one input file, you may use
option -Otarget_file_name to specify a target file name. If you have
multiple input files, the default target files will be named
first_input_file.cbl, second_input_file.cbl, and so on.

• Option format

APPENDIX A Commands and Utilities

Programmer’s Supplement 97

Options will work with or without a space before the argument. For
example, either of these options will work:

 -Tdbg

or

 -T dbg

• Multiple input files

The precompiler can handle multiple input files. However, you cannot use
the option -Otarget_file_name; you must accept the default target file
names (see “Target file” above). If you use option -G[isql_file_name], you
may not specify an argument; the default isql file names will be
first_input_file.sql, second_input_file.sql, and so on. If you use option
-L[listing_file_name], you may not specify an argument; the default listing
file names will be first_input_file.lis, second_input_file.lis, and so on.

Developing an application

This section lists the steps most commonly used in developing an Embedded
SQL application. You may need to adapt this process to meet your own
requirements.

1 Run the precompiler with options -c, -Ddatabase_name,
 -P[password], -Sserver_name, and -Uuser_id for syntax checking and
debugging. Do not use -G[isql_file_name]. Compile and link the program
to make sure the syntax is correct.

2 Make all necessary corrections. Run the precompiler with options
-Ddatabase_name, -P[password], -Sserver_name, -Uuser_id,
 -G[isql_file_name], and -Ttag_id to generate stored procedures with tag
ids for a test program. Compile and link the test program. Load the stored
procedures with this command:

 isql -P[password] -Sserver_name -Uuser_id \
 <isql_file_name

Run tests on your program.

3 Run the precompiler with options -Ddatabase_name ,
 -P[password], -Sserver_name, -Uuser_id, and -G[isql_file_name] (but
without option -T) on the corrected version of the program. Compile and
link the program. Load the stored procedures with this command:

 isql -P[password] -Sserver_name -Uuser_id \
 <isql_file_name

The final distribution program is ready to run.

cobpre; cpre

98 Open Client and Open Server

cobpre | cpre defaults

The following table lists the options and defaults for the cobpre and cpre
utilities:

Table A-6: Defaults and options for cobpre and cpre defaults

Option Default if option not used

-Ccompiler cpre – The ansi_c compiler
cobpre – The mf_byte compiler.

-Ddatabase_name The default database on Adaptive Server.

-G[isql_file_name] No stored procedures are generated.

-H[server_name] Failover server name that is used if the primary server
fails.

-Iinclude_directory Default directory is $SYBASE/include.

-Jlocale_for_charset Platform-specific.

-L[listing_file_name] No listing file is generated.

-Otarget_file_name The default target filename is the input filename with the
extension .c (for cpre) or .cbl (for cobpre) appended (or
replacing any input filename extension).

-Ninterfaces_file_name The $SYBASE/interfaces file.

-P[password] You are prompted for a password unless you use
-Uuser_id.

-Sserver_name The default Adaptive Server name is taken from the
DSQUERY environment variable.

-Ttag_id No tag IDs are added to the stored procedure names
(generated with -G).

-Uuser_id The precompiler does not connect to an Adaptive Server
or do syntax-checking beyond what is required to
generate the target file.

-Vversion_number CS_VERSION_110 for version 11.1.

-Zlocale_for_messages Platform/environment specific.

APPENDIX A Commands and Utilities

Programmer’s Supplement 99

defncopy
Description Copies definitions for specified views, rules, defaults, triggers, or procedures

from a database to an operating system file or from an operating system file to
a database.

Note The defncopy utility cannot copy table definitions or reports created with
Report Workbench™.

Syntax defncopy
 [-v] [-X]
 [-a display_charset]
 [-I interfaces_file]
 [-J [client_charset]]
 [-K keytab_file]
 [-P password]
 [-R remote_server_principal]
 [-S [server]]
 [-U username]
 [-V [security_options]]
 [-z language]
 [-Z security_mechanism]
 {in filename dbname | out filename dbname
 [owner.]objectname [[owner.]objectname...] }

Parameters in | out
specifies the direction of definition copy in relation to the database. For
example, specifying “in” copies definitions into the database.

filename
specifies the name of the operating system file destination or source for the
definition copy. The copy out overwrites any existing file.

dbname
specifies the name of the database to copy the definitions from or to.

objectname
specifies name(s) of database object(s) for defncopy to copy out. Objects
should not be specified when copying definitions into a database.

-a display_charset
allows you to run defncopy from a terminal where the character set differs
from that of the machine on which defncopy is running. -a in conjunction
with -J specifies the character set translation file (.xlt file) required for the
conversion. Use -a without -J only if the client character set is the same as
the default character set.

defncopy

100 Open Client and Open Server

-I interfaces_file
specifies the name and location of the interfaces file to search when
connecting to Adaptive Server. If you do not specify -I, defncopy looks for
an interfaces file located in the directory specified by the SYBASE
environment variable.

-J client_charset
specifies the character set to use on the client. A filter converts input
between client_charset and the Adaptive Server character set.

-J client_charset requests that Adaptive Server convert to and from
client_charset, the client’s character set.

-J with no argument sets character-set conversion to NULL. No conversion
takes place. Use this if the client and server are using the same character set.

Omitting -J sets the character set to a default for the platform.The default
may not necessarily be the character set that the client is using. (See the
System Administration Guide and the System Administration Guide
Supplement for more information about character sets and the associated
flags.

Note The ascii_7 character set is compatible with all character sets. If either
the Adaptive Server’s or the client’s character set is set to ascii_7, any 7-bit
ASCII character is allowed to pass between client and server unaltered. Other
characters produce conversion errors. Character-set conversion issues are
covered more thoroughly in the System Administration Guide.

-K keytab_file
can be used only with DCE security. It specifies a DCE keytab file that
contains the security key for the user name specified with -U option. Keytab
files can be created with the DCE dcecp utility. See your DCE
documentation for more information.

If the -K option is not supplied, the user of defncopy must be logged in to
DCE with the same user name as specified with the -U option.

-P password
allows you to specify your password. This option is ignored if -V is used.

-R remote_server_principal
specifies the principal name for the server. By default, a server’s principal
name matches the server’s network name (which is specified with the -S
option or the DSQUERY environment variable). The -R option must be used
when the server’s principal name and network name are not the same.

APPENDIX A Commands and Utilities

Programmer’s Supplement 101

-Sserver
specifies the name of the Adaptive Server to connect to. Without -S,
defncopy looks for the server specified by your DSQUERY environment
variable.

-U username
allows you to specify a login name. Login names are case sensitive. If you
do not specify username, defncopy uses the current user’s operating system
login name.

-V security_options
specifies network-based user authentication. With this option, the user must
log in to the network’s security system before running the utility. In this case,
users must supply their network user name with the -U option; any password
supplied with the -P option is ignored.

-V can be followed by a security_options string of key-letter options to
enable additional security services. These key letters are:

c – Enable data confidentiality service

i – Enable data integrity service

m – Enable mutual authentication for connection establishment

o – Enable data origin stamping service

r – Enable data replay detection

q – Enable out-of-sequence detection

-v
displays the version number and copyright message of defncopy and returns
to the operating system.

-X
specifies that, in this connection to the server, the application initiate the
login with client-side password encryption. defncopy (the client) specifies to
the server that password encryption is desired. The server sends back an
encryption key, which defncopy uses to encrypt your password, and the
server uses the key to authenticate your password when it arrives.

If defncopy crashes, the system creates a core file which contains your
password. If you did not use the encryption option, the password appears in
plain text in the file. If you used the encryption option, your password is not
readable.

defncopy

102 Open Client and Open Server

-z language
specifies the official name of an alternate language that the server uses to
display defncopy prompts and messages. Without the -z flag, defncopy uses
the server’s default language. Add languages to an Adaptive Server at
installation, or afterwards with the utility langinstall or the stored procedure
sp_addlanguage.

-Z security_mechanism
specifies the name of a security mechanism to use on the connection.

Security mechanism names are defined in the $SYBASE/install/libtcl.cfg
configuration file. If no security_mechanism name is supplied, the default
mechanism is used. For more information on security mechanism names,
see the description of the libtcl.cfg file in the Open Client and Open Server
Configuration Guide for UNIX.

Examples defncopy -Usa -P -SMERCURY in new_proc stagedb

Copies definitions from the file new_proc into the database stagedb on server
MERCURY. The connection with MERCURY is established with a user of
name “sa” and a NULL password.

defncopy -S -z french out dc.out employees sp_calccomp
sp_vacation

Copies definitions for objects “sp_calccomp” and “sp_vacation” from the
“employees” database on the SYBASE server to the file dc.out. Messages and
prompts are displayed in “french.” The user is prompted for a password.

Usage • Invoke the defncopy program directly from the operating system. defncopy
provides a non-interactive way of copying out definitions (create
statements) for views, rules, defaults, triggers, or procedures from a
database to an operating system file. Alternatively, it copies in all the
definitions from a specified file.

You must have select permission on the sysobjects and syscomments tables
to copy out definitions; you do not need permission on the object itself.

• You must have the appropriate create permission for the type of object you
are copying in. Objects copied in belong to the copier. A System
Administrator copying in definitions on behalf of a user must log in as that
user to give the user proper access to the reconstructed database objects.

• The in filename or out filename and the database name are required and
must be unambiguously stated. For copying out, use filenames that reflect
both the object’s name and its owner.

• defncopy ends each definition that it copies out with the comment

APPENDIX A Commands and Utilities

Programmer’s Supplement 103

/* ### DEFNCOPY: END OF DEFINITION */

When assembling definitions in an operating system file to be copied into
a database using defncopy, each definition must be terminated using the
“END OF DEFINITION” string.

• Enclose values specified to defncopy in quotation marks if they contain
characters that could be significant to the shell.

 Warning! Long comments (more than 100 characters) placed before a create
statement may cause defncopy to fail.

New features

defncopy for System 11 is built with Client-Library. It must be used if DCE is
the default directory service for Sybase client applications or if you use DCE
security services on bulk copy sessions. The defncopy user interface is
unchanged except for the following:

• New command-line options have been added to enable network-based
security services on the connection as follows:

-K keytab_file
 -R remote_server_principal
 -V security_options
 -Z security_mechanism

• The -y sybase_directory option is ignored.

isql
Description Interactive SQL parser to Adaptive Server.

Syntax isql [-b] [-e] [-F] [-n] [-p] [-v] [-X] [-Y]
 [-a display_charset]
 [-A size]
 [-c cmdend]
 [-D database]
 [-h headers]
 [-H hostname]
 [-i inputfilename]
 [-I interfaces_file]
 [-J client_charset]
 [-K keytab_file]
 [-l login_timeout]

isql

104 Open Client and Open Server

 [-m errorlevel]
 [-o outputfilename]
 [-P password]
 [-R remote_server_principal]
 [-s colseparator]
 [-S server]
 [-t timeout]
 [-U username]
 [-V [security_options]]
 [-w columnwidth]
 [-z language]
 [-Z security_mechanism]

Parameters -a display_charset
allows you to run isql from a terminal where the character set differs from
that of the machine on which isql is running. -a in conjunction with -J
specifies the character set translation file (.xlt file) required for the
conversion. Use -a without -J only if the client character set is the same as
the default character set.

-A size
specifies the network packet size to use for this isql session. For example:

isql -A 2048

sets the packet size to 2048 bytes for this isql session. To check, enter:

select * from sysprocesses

The value is displayed under the network_pktsz heading.

size must be between the values of the default network packet size and
maximum network packet size configuration variables, and must be a
multiple of 512.

Use larger-than-default packet sizes to perform I/O-intensive operations,
such as readtext or writetext operations.

Setting or changing Adaptive Server’s packet size does not affect remote
procedure calls’ packet size.

-b – disables the display of the table headers output.

-c cmdend
resets the command terminator. By default, terminate commands and send
them to Adaptive Server by typing “go” on a line by itself. When you reset
the command terminator, do not use SQL reserved words or control
characters. Make sure to escape shell meta-characters such as , ? () [] $ and
so on.

APPENDIX A Commands and Utilities

Programmer’s Supplement 105

-D database
selects a database that the isql session begins in.

-e
echoes input.

-E editor
specifies an editor other than your default editor.

-F
enables the FIPS flagger. With this option, the Adaptive Server flags any
nonstandard SQL commands sent.

-h headers
specifies the number of rows to print between column headings. The default
prints headings only once for each set of query results.

-H hostname
sets the client host name.

-i inputfilename
specifies the name of an operating system file to use for input to isql. The file
must contain command terminators (“go” by default).

Specifying the parameter as follows:

-i inputfile

is equivalent to:

< inputfile

If you use -i and do not specify your password on the command line,
Adaptive Server prompts you for it. If you use < inputfile and do not specify
your password on the command line, you must specify your password as the
first line of the input file.

-Iinterfaces_file
specifies the name and location of the interfaces file to search when
connecting to Adaptive Server. If you do not specify -I, isql looks for an
interfaces file (sql.ini for Windows platforms) located in the ini directory
that is below the directory specified by the SYBASE environment variable.

isql

106 Open Client and Open Server

-J client_charset
specifies the character set to use on the client. -J client_charset requests that
Adaptive Server convert to and from client_charset, the character set used
on the client. A filter converts input between client_charset and the
Adaptive Server character set.

-J with no argument sets character set conversion to NULL. No conversion
takes place. Use this if the client and server use the same character set.

Omitting -J sets the character set to a default for the platform. The default
may not necessarily be the character set that the client is using.

-K keytab_file
can be used only with DCE security. It specifies a DCE keytab file that
contains the security key for the user name specified with -U option. Keytab
files can be created with the DCE dcecp utility. See your DCE
documentation for more information.

If the -K option is not supplied, the user of isql must be logged in to DCE with
the same username as specified with the -U option.

-l login_timeout
specifies the maximum timeout value allowed when connecting to Adaptive
Server. The default is 60 seconds. This value affects only the time that isql
waits for the server to respond to a login attempt. To specify a timeout period
for command processing, use the -t timeout parameter.

-m errorlevel
customizes the error message display. For errors of the severity level
specified or higher only the message number, state, and error level display;
no error text appears. For error levels lower than the specified level, nothing
appears.

• curread (current read level) is the initial level of data that you can read
during this session. curread must dominate curwrite.

• curwrite (current write level) is the initial sensitivity level that is
applied to any data that you write during this session.

• maxread (maximum read level) is the maximum level at which you can
read data. This is the upper bound to which you as a multilevel user can
set your curread during the session. maxread must dominate maxwrite.

• maxwrite (maximum write level) is the maximum level at which you
can write data. This is the upper bound to which you as a multiuser can
set your curwrite during a session. maxwrite must dominate minwrite
and curwrite.

APPENDIX A Commands and Utilities

Programmer’s Supplement 107

• minwrite (minimum write level) is the minimum level at which you can
write data. This is the lower bound to which you as a multiuser can set
curwrite during a session. minwrite must be dominated by maxwrite and
curwrite.

• label_value is the actual value of the label, expressed in the
human-readable format used on your system (for example, “Company
Confidential Personnel”).

-n
removes numbering and the prompt symbol (>) from input lines.

-o output_filename
specifies the name of an operating system file to store the output from isql.

-o outputfile

which is similar to:

> outputfile

-p
prints performance statistics.

-P password
specifies your current Adaptive Server password. This option is ignored if
-V is used. Passwords are case sensitive and can be from 6 to 30 characters
in length.

-R remote_server_principal
specifies the principal name for the server. By default, a server’s principal
name matches the server’s network name (which is specified with the -S
option or the DSQUERY environment variable). The -R option must be used
when the server’s principal name and network name are not the same.

-s colseparator
resets the column separator character, which is blank by default. To use
characters that have special meaning to the operating system (for example,
|, ;, &, <, >), enclose them in quotes or precede them with a backslash.

-S server
specifies the name of the Adaptive Server to connect to. Without -S, isql
looks for the server specified by your DSQUERY environment variable.

-t timeout
specifies the number of seconds before a command times out. If you do not
specify a timeout, a command runs indefinitely. This affects commands
issued from within isql, not the connection time.

isql

108 Open Client and Open Server

-U username
specifies a login name. Logins are case sensitive.

-V security_options
specifies network-based user authentication. With this option, the user must
log in to the network’s security system before running the utility. In this case,
users must supply their network user name with the -U option; any password
supplied with the -P option is ignored.

-V can be followed by a security_options string of key-letter options to
enable additional security services. These key letters are:

c – Enable data confidentiality service

i – Enable data integrity service

m – Enable mutual authentication for connection establishment

o – Enable data origin stamping service

q – Enable out-of-sequence detection

r – Enable data replay detection

-v
prints the version and copyright message of the isql software that you are
using.

-w columnwidth
sets the screen width for output. The default is 80 characters. When an
output line reaches its maximum screen width, it breaks into multiple lines.

-X
initiates the login connection to the server with client-side password
encryption. isql (the client) specifies to the server that password encryption
is desired. The server sends back an encryption key, which isql uses to
encrypt your password, and the server uses the key to authenticate your
password when it arrives.

If isql crashes, the system creates a core file which contains your password.
If you did not use the encryption option, the password appears in plain text
in the file. If you used the encryption option, your password is not readable.

-Y
tells the Adaptive Server to use chain transactions.

APPENDIX A Commands and Utilities

Programmer’s Supplement 109

-z language
is the official name of an alternate language to display isql prompts and
messages. Without -z, isql uses the server’s default language. Add languages
to an Adaptive Server at installation, or afterwards with the utility langinstall
or the stored procedure sp_addlanguage.

-Z security_mechanism
specifies the name of a security mechanism to use on the connection.

Security mechanism names are defined in the libtcl.cfg configuration file
located in the ini subdirectory below the Sybase installation directory. If no
security_mechanism name is supplied, the default mechanism is used. For
more information on security mechanism names, see the description of the
libtcl.cfg file in the Open Client and Open Server Configuration Guide for
UNIX Platforms.

Examples Example 1

isql
Password:

 1>select *
 2>from authors
 3>where city = "Oakland"
4>go

Executes the command.

Example 2

isql -Ujoe -Pabracadabra
1>select *
2>from authors
3>where city = "Oakland"
4>vi

Lets you edit the query. When you write and save the file, you are returned to
isql. The query is displayed. Type go to execute it.

Example 3

isql -U alma Password:
1>select *
2>from authors
3>where city = "Oakland"
4>reset
5>quit

reset clears the query buffer. quit returns you to the operating system.

isql

110 Open Client and Open Server

Usage • To use isql interactively, give the command isql (and any of the optional
flags) at your operating system prompt. The isql program accepts SQL
commands and sends them to Adaptive Server. The results are formatted
and printed on standard output. Exit isql with quit or exit.

• Terminate a command by typing a line beginning with the default
command terminator go or other command terminator if the -c option is
used. You may follow the command terminator with an integer to specify
how many times to run the command. For example, to execute this
command 100 times, type:

select x = 1
 go 100

The results display once at the end of execution.

• If you enter an option more than once on the command line, isql uses the
last value. For example, if you enter the following command:

isql -c. -csend

“send,” the second value for -c, overrides “.”, the first value. This allows
you to override any aliases you set up.

• To call an editor on the current query buffer, enter its name as the first word
on a line. Define your preferred callable editor by specifying in with the
EDITOR environment variable. If EDITOR is undefined, the default is vi.

Execute operating system commands by starting a line with “!!” followed
by the command. Call alternate editors this way, without defining
EDITOR.

• To clear the existing query buffer, type reset on a line by itself. isql discards
any pending input. You can also press Ctrl-c anywhere on a line to cancel
the current query and return to the isql prompt.

• Read in an operating system file containing a query for execution by isql
as follows:

isql -U alma -P****** < input_file

The file must include command terminator(s). The results appear on your
terminal. Read in an operating system file containing a query and direct
the results to another file as follows:

isql -U alma -P****** < input_file > output_file

• Case is significant for the isql flags.

APPENDIX A Commands and Utilities

Programmer’s Supplement 111

• isql displays only six digits of float or real data after the decimal point,
rounding off the remainder.

• When using isql interactively, read an operating system file into the
command buffer with the following command:

:r filename

Do not include a command terminator in the file; enter the terminator
interactively once you have finished editing.

• You can include comments in a Transact-SQL statement submitted to
Adaptive Server by isql. Open a comment with “/*”. Close it with “*/” as
the following example demonstrates:

select au_lname, au_fname
 /*retrieve authors’ last and first names*/
 from authors, titles, titleauthor
 where authors.au_id = titleauthor.au_id
 and titles.title_id = titleauthor.title_id
 /*this is a three-way join that links authors
**to the books they have written.*/

If you want to comment out a go command, it should not be at the
beginning of a line. For example:

/*
**go
*/

should be used to comment out the go command instead of:

/*
go
*/

isql

isql is built with Client-Library for better performance. isql_r is the same as isql
and must be used if DCE is the default directory service for Sybase client
applications or if you use DCE security services on bulk copy sessions.

The isql user interface is unchanged except for:

• The 5701 (“changed database”) server message is no longer displayed
after login or after issuing a use database command.

• There are two new optional flags:

-b – disables column headers from printing
 -D database – selects the start-up database that isql uses

isql

112 Open Client and Open Server

• The following command-line options have been added to enable
network-based security services on the connection:

-K keytab_file
-R remote_server_principal
-V security_options
-Z security_mechanism

• Error message format is different than previous versions of isql. If you
have scripts that perform routines based on the values of these messages,
you may need to rewrite them.

• The -y sybase_directory option has been removed.

Additional commands within isql:

Table A-7: isql session commands

See also sp_addlanguage, sp_addlogin, sp_configure, sp_defaultlanguage,
sp_droplanguage, and sp_helplanguage in the Adaptive Server Enterprise
Reference Manual.

Command Description

reset Clears the query buffer

quit or exit Exits from isql

vi Calls the editor

!! command Executes an operating system command

Programmer’s Supplement 113

A P P E N D I X B Environment Variables

This appendix contains the values of the environment variables required
for your Sybase applications to compile and work correctly. The
environment variables that must be set depends on your application, and
include:

• SYBASE – set to the path of the Sybase installation directory.

• SYBASE_OCS – set to the subdirectory containing the Open Client
and Open Server version number. For example, OCS-12_5.

• DSQUERY – set to the name of the Adaptive Server or Open Server.

• DSLISTEN – set to the name of the Open Server.

• SYBPLATFORM – depends on the platform that you are running and
whether or not you are using reentrant libraries. Refer to Table B-1
for the appropriate variable setting.

• You must set the platform specific library path variable listed in Table
B-1 to $SYBASE/$SYBASE_OCS/lib to run programs linked with
shareable (dynamic) libraries. If you are running in debug mode, set
the platform-specific library path variable to
$SYBASE/$sybase_ocs/devlib.

For ESQL/COBOL applications, include the location of the
$COBDIR/coblib directory.

114 Open Client and Open Server

Table B-1: SYBPLATFORM and library path

Platform
SYBPLATFORM
setting

Platform-specific
library path variable

HP Tru64 UNIX
using native threads

axposf

nthread_axposf

LD_LIBRARY_PATH

HP Itanium - 32-bit

HP Itanium - 32-bit
 using native threads

HP Itanium - 64-bit

HP Itanium - 64-bit
 using native threads

hpia

nthread_hpia

hpia64

nthread_hpia64

LD_LIBRARY_PATH

HP 9000(8xx) - 32-bit

HP 9000(8xx) - 32-bit
 using native threads

HP 9000(8xx) - 64-bit

HP 9000(8xx) - 64-bit
 using native threads

hpux

nthread_hpux

hpux64

nthread_hpux64

SHLIB_PATH

LD_LIBRARY_PATH

IBM RS/6000 - 32-bit

IBM RS/6000 - 32-bit
 using native threads

IBM RS/6000 - 64-bit

IBM RS/6000 - 64-bit
 using native threads

IBM AIX 5.x 64-bit

rs6000

nthread_rs6000

rs600064

nthread_rs600064

ibmaix64

LIBPATH

Linux - 32-bit using native
threads

Linux - 64 - bit

Linux - 64-bit using native
threads

nthread_linux

linux64

nthread_linux64

LD_LIBRARY_PATH

SGI – 32-bit version

SGI – 64-bit version

SGI – 32-bit version
using native threads

SGI – 64-bit version
using native threads

sgi

sgi64

nthread_sgi

nthread_sgi64

LD_LIBRARY_PATH

APPENDIX B Environment Variables

Programmer’s Supplement 115

For Embedded SQL/COBOL applications you must set the following
environment variables in addition to the ones listed above:

• COBDIR – set to the path of your COBOL compiler

• PATH – add $COBDIR/bin

Sun Solaris 2.x - 32-bit

Sun Solaris 2.x - 32-bit
 using native threads

Sun Solaris 2.x - 64-bit

Sun Solaris 2.x - 64-bit
 using native threads

sun_svr4

nthread_sun_svr4

sun_svr464

nthread_sun_svr464

LD_LIBRARY_PATH

Platform
SYBPLATFORM
setting

Platform-specific
library path variable

116 Open Client and Open Server

Programmer’s Supplement 117

A
audience vii

B
bcp utility 87

character set input 74
copying tables 81
data flushing 85
datatypes conversion 85
datetime datatype 86
default datatypes 83
drop index command 83
drop trigger command 83
dropping indexes 83
dropping triggers 83
dump database command 82
dump transaction command 82
fast version 81, 82
field terminators 83, 84, 85
fields padding 85
file storage length 85
file storage type 84
filters 74
float datatype 86
indexes 81
newline terminator (\\n) 85
null columns 86
null field terminator (\\0) 85
performance issues 83
prefix length 84, 85
prompts and responses 83
rounding money values 86
rules and copying data 86
select into/bulkcopy option 81, 82
slow version 81
sp_dboption system procedure 82
tab field terminator 85

triggers 81
truncation of data 85

bkpublic.h header file 11
blktxt.c sample program 16
bulk copy

linking library libblk 11, 43
linking library libblk_r 11

C
character sets

defncopy utility 99, 103
platform default 74

Client-Library 1, 2, 20
building an executable 2, 11
bulk copy routines 11
link lines 4
sample program header file 14
sample programs 11, 18
sample programs location 13, 67
sample programs user name 15

Client-Library compiling and linking
DCE libraries on HP 9000(8xx) 8
DCE libraries on HP Tru64 UNIX 8
DCE libraries on IBM RS/6000 7
DCE libraries on Sun Solaris 2.x 7

Client-Library example of compiling and linking
on HP 9000(8xx) 5, 6, 7
on HP Tru64 UNIX 6, 7
on IBM RS/6000 5, 6
on SGI 5, 6, 7
on Sun Solaris 2.x 5, 6, 7

Client-Library sample program
for asynchronous programming 18
for bulk copy 16
for configuration 18
for directory services 20
for internationalization 19
for multithreaded programming 19

Index

Index

118 Open Client and Open Server

for processing compute results 17
for read-only cursors 17, 23
for RPC calls 20
for security services 20
for text data retrieval 19
header file 16
introductory 19
password 16
utility routines 16

COBDIR environment variable 115
cobpre utility 87, 98

defaults 98
developing an application 97

compile and linking
Client-Library 4
non-DCE examples 4

compute.c sample program 17
cpre utility 87, 98

defaults 98
developing an application 97

CS-Library 1
csr_disp.c sample program 17, 23
ctpublic.h header file 11

D
datetime datatype 86
DB-Library 25, 36

building an executable 26, 29
header files 28
libraries 26
link lines 26
sample programs 29, 36
sample programs location 29

DB-Library compiling and linking
on HP 9000 27, 28
on HP Tru64 UNIX 28
on HP Tru64 UNIXHP Tru64 UNIX 27
on IBM RS/6000 27
on SGI 27, 28
on Sun Solaris 2.x 27, 28

DB-Library sample program
for binding aggregates and compute results 32
for browse mode ad hoc queries 32
for browse mode updates 32

for bulk copy 35
for data conversion 32
for inserting an image 34
for inserting data into a new table 31
for international language routines 35
for making an RPC call 33
for retrieving an image 34
for row buffering 32
for sending queries and binding results 31
for text and image routines 33
for two-phase commit 35
header file 30, 31
password 31
user name 30

defncopy utility
copying as text 103
create statements 103
in | out option 102
objects 102
parameters 99
permissions 102
syntax 103

DSLISTEN environment variable 113
DSQUERY environment variable 113

E
Embedded SQL/C 59

building an executable 60
cpre 60
link lines 61
loading stored procedures 66
precompiler 60
precompiling 60
sample programs 67
Transact-SQL 59

Embedded SQL/C example of compiling and linking
on HP 9000(8xx) 62
on IBM RS/6000 62
on SGI 62
on Sun Solaris 2.x 62

Embedded SQL/C sample programs
for displaying and editing rows of a table 69
for using cursors for database query 68
header file 68

Index

Programmer’s Supplement 119

password 68
user name 68

Embedded SQL/COBOL 51, 58
building an executable 52, 56
compiling and linking 53
loading stored procedures 56, 66
precompiling 52
sample programs 57, 58

Embedded SQL/COBOL example of compiling and
linking

on HP 9000(8xx) 54
on IBM RS/6000 54
on SGI 54
on Sun Solaris 2.x 54

Embedded SQL/COBOL sample programs
for displaying and editing rows 58
for using cursors for database query 58
location 57
requirements 51

environment variables
COBDIR 115
DSLISTEN 113
DSQUERY 113
LD_LIBRARY_PATH 115
LIBPATH 114
PATH 115
SH_LIB_PATH 114
SYBASE 113
SYBPLATFORM 114

ex_alib.c sample program 18
ex_amain.c sample program 18
EX_AREAD.ME 18
EX_PASSWORD variable 16
EX_USERNAME variable 15
example.h header file 14
exconfig.c sample program 18
exfds.c sample program 46
exutils.h sample program 16

F
files

sybesql.c 64
firstapp.c sample program 19
float datatype 86

fullpass.c sample program 46

G
getsend.c sample program 19

H
header files

bkpublic.h 11
Client-Library 11
ctpublic.h 11
DB-Library 30
example.h 14
Server-Library 43
sybdb.h 28
sybdbex.h 30
syberror.h 29
sybfront.h 28

help xi
HP 9000

example compile-and-link line for DB-Library 27,
28

HP 9000(8xx)
example compile-and-link line for Client-Library

(debug) 6
example compile-and-link line for Client-Library

(shareable) 7
example compile-and-link line for Client-Library

(static) 5
example compile-and-link line for DCE libraries 8
example compile-and-link line for Embedded SQL/C

62
example compile-and-link line for ESQL/COBOL

54
example compile-and-link line for Server-Library

39, 40
HP Tru64 UNIX

example compile-and-link line for Client-Library
(debug) 6

example compile-and-link line for Client-Library
(shared) 7

example compile-and-link line for DB-Library 28
example compile-and-link line for DCE libraries 8

Index

120 Open Client and Open Server

I
i18n.c sample program 19
IBM RS/6000

example compile-and-link line for Client-Library
(debug) 6

example compile-and-link line for Client-Library (static)
5

example compile-and-link line for DB-Library 27
example compile-and-link line for DCE libraries 7
example compile-and-link line for Embedded SQL/C

62
example compile-and-link line for ESQL/COBOL 54
example compile-and-link line for Server-Library 39

intlchar.c sample program 47
iso_1 character set 75
isql 71, 112

character set input 106
comments 109, 111
examples 109
filters 106
parameters 109, 112
syntax 80, 112
utility 111

J
japanese character sets

bcp utility 76

K
Kerberos support 3

L
lang.c sample program 47
LD_LIBRARY_PATH environment variable 115
libBSD 3
libc_r 3
libcl 3, 38
libcomn 2, 38
libcs 2, 38
libcs_r 3

libct 38
libct_r 3
libdl 3
libintl 2, 38
libintl_r 3
libm 3
libndbm 3
libnsl 3
LIBPATH environment variable 114
libpthreads 3
libraries 2

Client-Library 26, 38
Embedded SQL/COBOL 52
libBSD 3, 26
libc_r 3
libcl 3, 26, 38
libcomn 2, 38
libcs 2, 38
libcs_r 3
libct 38
libct_r 3
libdl 3
libintl 2, 38
libintl_r 3
libm 3, 26
libndbm 3
libnsl 3, 26
libpthreads 3
libsrv 38
libsybdb 26, 38
libtcl 2
socket 3
thread 3

libsrv 38
libsybdb 38
libtcl 2

M
money datatype 86
multthrd.c sample program 19, 20, 47

Index

Programmer’s Supplement 121

O
Open Client and Open Server products vii
operating system files

copying 71, 87
osintro.c sample program 48

P
PATH environment variable 115
performance issues

bcp utility 83
static vs. shareable libraries 11, 43

precompiler
for Embedded SQL/C 60, 69
for Embedded SQL/COBOL 52, 53

products
list vii

R
regproc.c sample program 48
rpc.c sample program 20

S
sample programs

Client-Library 11, 18
DB-Library 29, 36
Embedded SQL/C 67
Embedded SQL/COBOL 57, 58
Server-Library 44, 48

secct.c sample program 20
secsrv.c sample program 49
Server-Library 37, 48

building an executable 38, 43
bulk copy routines 43
header files ospublic.h 43
libraries 38
link lines 38
sample programs 44, 48
sample programs location 44

Server-Library compiling and linking
on HP 9000(8xx) 39, 40

on IBM RS/6000 39
on SGI 39, 40
on Sun Solaris 2.x 39, 40

Server-Library sample program
for a language event handler 47
for an Open Server gateway 46
for multithreaded features 47
for national language and character sets 47
for network-based directory and security services

48
for registered procedures 48
for servicing external file descriptors 46
for the basic components of an Open Server 48
for using UNIX SIGALARM 49

Server-Library/C 45
sample programs 45

SGI
debug example of compile-and-link line for Client-

Library 6
example of compile-and-link line for DB-Library

27, 28
example of compile-and-link line for Embedded

SQL/C 62
example of compile-and-link line for ESQL/COBOL

54
example of compile-and-link line for Server-Library

39, 40
example of static compile-and-link line for Client-

Library 5
shared example of compile-and-link line for Client-

Library 7
SH_LIB_PATH environment variable 114
sigalarm.c sample program 49
socket 3
SQL Server database 59
stored procedures 60, 61

for COBOL 56, 66
isql 56, 66
loading 56, 66, 97

style conventions x, xi
Sun Solaris 2.x

example compile-and-link line for Client-Library
(debug) 6

example compile-and-link line for Client-Library
(shared) 7

example compile-and-link line for Client-Library

Index

122 Open Client and Open Server

(static) 5
example compile-and-link line for DB-Library 27, 28
example compile-and-link line for DCE libraries 7
example compile-and-link line for Embedded SQL/C

62
example compile-and-link line for ESQL/COBOL 54
example compile-and-link line for Server-Library 39,

40
SYBASE environment variable 113
sybdb.h header file 28
sybdbex.h header file 30
syberror.h header file 29
sybesql.c file 64
sybfront.h header file 28
SYBPLATFORM environment variable 114

T
thrdfunc.c sample program 19
thread 3
Transact-SQL 51, 59

U
usedir.c sample program 20
utilities

bcp 71, 87
cobpre 87, 98
cpre 87, 98
defncopy 99, 103
isql 112

	Programmer’s Supplement
	About This Book
	CHAPTER 1 Open Client Client-Library/C
	General instructions
	Building a Client-Library executable
	Native thread support
	Kerberos support
	Compile and link lines
	Compile-and-link lines for non-threaded applications
	Compile-and-link lines for multithreaded applications
	Compile-and-link lines for Kerberos supported applications

	Bulk copy routines
	Performance considerations
	Header files

	Using Client-Library sample programs
	Makefile and sample programs
	Building applications using shared libraries
	Purpose of the sample programs
	The sybopts.sh script and building applications
	Location
	Header file
	EX_USERNAME
	EX_PASSWORD

	Utility routines for the sample programs
	Sample program summaries
	uni_blktxt.c
	compute.c
	uni_csr_disp.c
	ex_alib.c and ex_amain.c
	exconfig.c
	firstapp.c
	getsend.c
	i18n.c
	multthrd.c and thrdfunc.c
	rpc.c
	secct.c
	uni_blktxt.c
	uni_compute.c
	uni_csr.c
	uni_firstapp.c
	uni_rpc.c
	usedir.c
	wide_compute.c
	wide_curupd.c
	wide_dynamic.c
	wide_rpc.c

	CHAPTER 2 Open Client DB-Library/C
	General instructions
	Building a DB-Library executable
	Libraries
	Link-and-compile lines
	Performance considerations
	Header files

	Using DB-Library sample programs
	Purpose of the sample programs
	Location
	Header file
	Sample program summary
	Example 1: Send queries, bind, and print results
	Example 2: Insert data into a new table
	Example 3: Bind aggregate and compute results
	Example 4: Row buffering
	Example 5: Data conversion
	Example 6: Browse mode updates
	Example 7: Browse mode and ad hoc queries
	Example 8: Making a remote procedure call (RPC)
	Example 9: Text and image routines
	Example 10: Inserting an image
	Example 11: Retrieving an image
	Example 12: International language routines
	Example 13: Bulk copy
	Example 14: Two-phase commit

	CHAPTER 3 Open Server Server-Library/C
	General instructions
	Building a Server-Library executable
	Libraries
	Compile-and-link line commands
	Kerberos support
	Bulk copy routines
	Performance considerations
	Header files

	Server-Library sample programs
	Purpose of the sample programs
	Location
	Sample program summaries
	ctosdemo.c
	exfds.c
	fullpass.c
	intlchar.c
	lang.c
	multthrd.c
	osintro.c
	regproc.c
	secsrv.c
	sigalarm.c

	CHAPTER 4 Open Client Embedded SQL/COBOL
	General instructions
	Building an Embedded SQL/COBOL executable
	Libraries
	Precompiling the application
	Compiling and linking the application
	New compile-and-link command lines for HP Tru64 UNIX

	Loading stored procedures

	Embedded SQL/COBOL sample programs
	Purpose of the sample programs
	Location
	Example 1: Using cursors for database query
	Example 2: Displaying and editing rows in a table

	CHAPTER 5 Open Client Embedded SQL/C
	General instructions
	Building an Embedded SQL/C executable
	Precompiling the application
	Compiling and linking the application
	New compile-and-link lines for HP Tru64 UNIX

	Performance considerations
	Loading stored procedures

	Embedded SQL/C sample programs
	Purpose of the sample programs
	Location
	Header file
	Example 1: Using cursors for database query
	Example 2: Displaying and editing rows of a table

	APPENDIX A Commands and Utilities
	bcp
	cobpre; cpre
	defncopy
	isql

	APPENDIX B Environment Variables
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

