International Developer’s Guide

Open Client™ and Open Server™

12.5.1

DOCUMENT ID: DC30525-01-1251-01
LAST REVISED: September 2003

Copyright © 1989-2003 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in thisdocument is subject to change without notice. The software described herein is furnished under alicense agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customersin other countries with aU.S. license agreement may contact Customer Fulfillment viathe above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated inany form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture,
Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server
Enterprise Replication, Adaptive Server Everywhere, Adaptive Server 1Q, Adaptive Warehouse, Anywhere Studio, Application
Manager, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Translator, APT-Library, AvantGo,
AvantGo Application Alerts, AvantGo Mobile Delivery, AvantGo Mobile Document Viewer, AvantGo Mobile I nspection, AvantGo
Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon Application Server,
AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BizTracker, ClearConnect, Client-Library,
Client Services, Convoy/DM, Copernicus, Data Pipeline, DataWorkbench, DataArchitect, Database Analyzer, DataExpress, DataServer,
Datawindow, DB-Library, dbQueue, Devel opers Workbench, Direct Connect Anywhere, DirectConnect, Distribution Director, e-ADK,
E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway, ECMAP, ECRTP, eFulfillment Accel erator, Embedded SQL, EMS, Enterprise
Application Studio, Enterprise Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server
Manager, Enterprise Work Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA,
Financial Fusion, Financia Fusion Server, Gateway Manager, GlobalFIX, ImpactNow, |ndustry Warehouse Studio, InfoMaker,
Information Anywhere, Information Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, Mail
Anywhere Studio, MainframeConnect, Maintenance Express, Manage Anywhere Studio, M-Business Channel, M-Business Network,
M-Business Server, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, My AvantGo, My AvantGo Media Channel,
My AvantGo Mobile Marketing, MySupport, Net-Gateway, Net-Library, New Eraof Networks, ObjectConnect, ObjectCycle,
OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open
Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC
Net Library, PocketBuilder, Pocket PowerBuilder, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class
Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, Power Script, PowerSite, PowerSocket, Powersoft, PowerStage,
PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst,
Rapport, Report Workbench, Report-Execute, Replication Agent, Replication Driver, Replication Server, Replication Server Manager,
Replication Toolkit, Resource Manager, RW-DisplayLib, S-Designor, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian,
SKILS, smart.partners, smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL
Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART,
SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, SW.I.F.T.
Message Format Libraries, Sybase Central, Sybase Client/Server Interfaces, Sybase Financia Server, Sybase Gateways, Sybase MPP,
Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financial,
SyberAssist, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, TradeForce, Transact-SQL,
Trand ation Toolkit, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual
Components, Visual Speller, VisualWriter, VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse
WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup
SQL Server, XA-Library, XA-Server and XP Server are trademarks of Sybase, Inc. 03/03

Unicode and the Unicode L ogo are registered trademarks of Unicode, Inc.
All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

F N o o 10 QI VT =T o Yo SRR vii
CHAPTER 1 Understanding Internationalization and Localization.................. 1
Internationalization and localizationcccccvviiiiiii i 1
Advantages of internationalized applicationscccccevveeeerinenn. 2
INternational SYSIEMScoiiiiiiiiiiiee e 2
Open Client/Server support for international systems...................... 3
CHAPTER 2 How Localization WOrKSc.oiiiiiiiiiiiiiee e 5
Deciding what localization values to US€...........cccuvvveeveeiiiiiiiiienneenn, 5
Using initial localization values...........cccccovviiiiiiiieiiiniiiiiicce e 6
Setting up an application to use initial localization values......... 7
Using custom localization Valuescccuvveerieeiiiiiiiieniee i, 8
Localization mechanism details............cccceeiiiiiniienee e 8
The 10Cales file ... 8
Environment variablesooooiiiiiiiie e 9
The CS_LOCALE StrUCUIEccceeeiiviiiee e 11
The cs_locale routingeeeveeieiiiiiiiiee e 12
CHAPTER 3 Writing Internationalized Open Client/Server Applications 15
Writing internationalized Client-Library applications....................... 15
Client-Library applications using initial values......................... 16
Client-Library applications using custom values 16
Customizing at the context level...........ccvvveeviiiiiiiiis 17
Customizing at the connection level...........ccccccovviiiiinieiiiinns 18
Customizing at the data element levelcccocvviieeiiiiniinns 20
Client-Library localization value precedence.............ccccccoovuene 22
Client-Library localization propertiescccccccvvvviiiieenieniinninns 22
Writing internationalized Open Server applications........................ 22
Localizing the applicationcccooiiieiiiiee e 23
Supporting localized Clients.........ccccceeeiveiiiiiiee e 23
Responding to requests to change language and character set 28
Server-Library localization properties...........ccoccevvieeriieeenns 29
International Developer’s Guide iii

Contents

CHAPTER 4

CHAPTER 5

CHAPTER 6

Writing internationalized DB-Library applicationsS............cccvvveeeeenn. 30
Internationalizing with Embedded SQLccccccooviiiiiieniieininiiiieenn, 30
Localizing the precCompiler..........ccccvvviieiiiiiiiiiiiiee e 31
Localizing an Embedded SQL application.............cccccevvcieeennne 32
Internationalizing standalone utilitiescccccceeeeeciiiiiee e, 32
1T SRR 33
Make sure required files are installed.............ccccccevvvivvieennenn. 33
Using CS_NULLTERM with Open Client/Server routines....... 34
Coded Character Set Conversion SUPPOIt......ccccevrieieieriiineeenn. 35
(= 11 01110 g SR 35
Supported CharacCter SELSooccvvvieiiee i 36
Understanding coded character set conversion.........ccccccovvvevvveeenn. 37
Establishing the language and character set for a connection 37
Disabling character set CONVersioncccvvvevveeeiiiniiieenneennn 38
Using Open Server as a conversion gatewayoocvvveee.. 39
Files used during character set conversion............coccvveeeeeenn. 39
Using custom coded character set conversioncccccceeeevvvveen. 40
Why install custom conversion routines?cccccceeviieeeens 40
Writing @ custom conversion routingoccceeevcieeesiciieeeene 41
Installing a custom conversion routinecccccecceeeenciieeens 42
Character set conversion in SQL Server releases priorto 4.9....... 42
MaiNframe SUPPOITcoiiiiieiiie e 43
Editing the Locales File........cccooiiiiiiiiiic e 45
QUICK StAeiiiiiiiiieeeeeeeeeeeeee e 45
When to edit the locales file ..., 46
Locales file sections and entriescccceeiiieeiiiiiee e 46
Locale definition entries...........coveiiiieeeiiiieieee e 46
Locales file example.......ccccveiiiiiiiiie e 47
Editing the 1ocales filecccuiviiiiiiiii 48
Adding or changing entries............cccoeeeiiieeeriiee e 49
Deleting ENEHEScoocueiii et 49
Creating or Changing Collating Sequences.............cccoeecvvvvnnnen. 51
QUICK StAIt......eeiiiiiee e 51
About collating SEQUENCEScoouuiieiiiiiee et 52
D= {1 0110 1 PR 52
TYPES OF SOMS .ciiiiiiiiiiie e 53
Determining case SeNSItiVItyveevveeiiiiiiiieiiee e, 54
When to create a custom collating sequence file...........cccccceeeeenn. 54
About collating sequence fileS..........occuvviiiiiiiii e, 55

Open Client and Open Server

Contents

Collating sequence file sections and entriesccvvvee.. 56

Writing characters in a collating sequence filecc....... 56

The preference keyword and the order by clause................... 57

Creating a custom collating sequence file...........ccccvvvieeiiiiniiiinnnenn. 58

Collating sequence file examplecccccvviiiieeiiiniiiiiiiee e 62

APPENDIX A What's New in This Release.......cccocoeeiiiiiiiiiiiieieeeeeee 69
CS-Library Changescccceeviiiiiiiii e 69

Server-Library Changes..........ooccvvveviiiiiii e 70

All libraries: CS_NULLTERM length parameter.............ccccvvveeeeenn. 70

APPENDIX B Directories and Files Related to Internationalization 73
OVEIVIBW ...tttk 73

The 10cales dIrECLONYccocueieiiiiie et 74

The 10Cales filecccocuviieeii e 74

Localized message filesoooiiiiiiiiiiiiiee e 75

The global object identifiers file ... 75

The charsets dir€CtOrY...........oeiiiiiie i 75

The MNemMoniCS file ... 76

CoNVErSioN fileSuiiiiiii e 78

Collating sequence filesccccvveiiiiiiiiiiiie e 80

APPENDIX C External Localization File SyntaxXccccceiniiieeiiniieee e, 83
Localization file SYNtaXcccvvveeiiiiiiiiiiii e 83

SYNEAX TUIES ..ottt e 83

Localization file SECHONSc..eveiiiiiieiiiiee e 84

Example localization file ..., 86

(1 [oXSE Y- | o A PP P P PP PPPPPVPPP 89

International Developer’s Guide v

Contents

Vi Open Client and Open Server

About This Book

Audience

How to use this book

International Developer’s Guide

Open Client/Server International Devel oper 's Guide containsinformation
for developers writing international Open Client/Server™ applications.

Open Client/Server International Developer’s Guide is written for Open
Client/Server application devel opers. Readersare expected to have abasic
knowledge of Client-Library™, DB-Library™, Embedded SQL ™, or
Server-Library.

Open Client/Server International Developer’s Guide contains the
following chapters and appendixes:

e Chapter 1, “Understanding Internationalization and L ocalization”
defines internationalization and localization and discusses the
advantages of writing international applications.

e Chapter 2, “How Localization Works” explains how the Open
Client/Server localization mechanism works.

o Chapter 3, “Writing Internationalized Open Client/Server
Applications” explainshow to writeinternational Open Client/Server
applications.

e Chapter 4, “Coded Character Set Conversion Support” explains how
character set conversion worksin Open Client/Server products.

* Chapter 5, “Editing the LocalesFile” describeswhat isin thelocales
file and explains how to change it.

« Chapter 6, “Creating or Changing Collating Sequences’ explains
how to create and change collating sequence files.

e Appendix A, “What’s New in This Release” describes the changes
and additions to Open Client/Server libraries that are related to
internationalization features.

* Appendix B, “Directories and Files Related to Internationalization”
describes the Open Client/Server directories and filesthat are related
to internationalization.

* Appendix C, “External Localization File Syntax” describes external
localization file syntax.

Vii

Related documents

Other sources of
information

Viii

The Open Client Client-Library Reference Manual contains reference
information for Open Client Client-Library.

The Open Client Client-Library Programmer’s Guide containsinformation on
how to design and implement Client-Library programs.

The Open Server Server-Library Reference Manual contains reference
information for Open Server™ Server-Library.

The Open Client and Open Server Common Libraries Reference Manual
contains reference information for CS-Library. CS-Library is a collection of
utility routines that are useful in both Client-Library and Server-Library
applications.

The Open Client/Server Configuration Guide contains platform-specific
information for system administrators. It includes information about:

e Sybase environment variables
e Sybaseconfiguration files, including the interfacesfile and the localesfile
e Common configuration tasks

The Open Client/Server Programmer’s Supplement contains platform-specific
information for programmers using Open Client/Server products. This
document includes information about:

e Compiling and linking an application

¢ The example programs that are included online with Open Client/Server
products

¢ Routinesthat have platform-specific behaviors

Use the Sybase Getting Started CD, the Sybase Technical Library CD and the
Technical Library Product Manuals Web site to learn more about your product:

» The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the Technical Library CD. It isincluded with
your software. To read or print documents on the Getting Started CD you
need Adobe Acrobat Reader (downloadable at no charge from the Adobe
Web site, using alink provided on the CD).

e TheTechnical Library CD contains product manuals and isincluded with
your software. The DynaText reader (included on the Technical Library
CD) allows you to access technical information about your product in an
easy-to-use format.

Open Client and Open Server

About This Book

Sybasecertifications
on the Web

Sybase EBFs and
software
maintenance

Refer to the Technical Library Installation Guide in your documentation
package for instructions on installing and starting the Technical Library.

e TheTechnical Library Product Manuals Web site isan HTML version of
the Technical Library CD that you can access using a standard Web
browser. In addition to product manuals, you will find linksto
EBFs/Updates, Technical Documents, Case Management, Solved Cases,
newsgroups, and the Sybase Developer Network.

To access the Technical Library Product Manuals Web site, go to Product
Manuals at http://www.sybase.com/support/manuals/.

Technical documentation at the Sybase Web site is updated frequently.

Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://lwww.sybase.com/support/techdocs/.

Select Products from the navigation bar on the left.
Select a product name from the product list and click Go.

Select the Certification Report filter, specify atime frame, and click Go.

a A W DN

Click a Certification Report title to display the report.

Creating a personalized view of the Sybase Web site (including support
pages)

Set up aMySybaseprofile. MySybaseisafree servicethat allowsyouto create
apersonalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://lwww.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://lwww.sybase.com/support.

2 Sdlect EBFSMaintenance. Enter user name and password information, if
prompted (for existing Web accounts) or create a new account (afree
service).

3 Select aproduct.

International Developer’s Guide iX

4 Specify atime frame and click Go.

5 Click the Infoicon to display the EBF/Maintenance report, or click the
product description to download the software.

Conventions Localization file content is shown in the following font:

char = 0x42=0x62
;letter B, b

Routine names and Transact-SQL keywords are shown as follows:
cs_ctx_alloc, the select statement

File names areitalicized:

locales.dat

If you need help Each Sybaseinstallation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve aproblem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
inyour area.

X Open Client and Open Server

CHAPTER 1

Understanding
Internationalization and
Localization

This chapter defines internationalization and localization and discusses
the advantages of writing internationalized applications.

Topic

Internationalization and localization

Advantages of internationalized applications

International systems

Open Client/Server support for international systems

Internationalization and localization

International Developer’s Guide

Internationalization is the process of enabling an application to support
multiple languages and cultural conventions.

An internationalized application uses external files to provide language-
specific information at execution time. Because it contains no language-
specific code, an internationalized application can be deployed in any
native language environment without code changes.

Localization is the process of configuring an application to execute using
a specific language and related cultural conventions (such as datetime
representation).

A localized application adopts the ook and feel of the native language
environment in which it is deployed. It generates messages in the local
language and character set and useslocal conventions for dates and times.

Open Client/Server products provide flexible, powerful localization
mechanisms that enable application programmers to design and write
internationalized applications.

Advantages of internationalized applications

Advantages of internationalized applications

The task of designing an application to work outside its country of origin can
seem daunting. Often, programmers think that internationalizing means hard-
coding dependencies based on cultural and linguistic conventions.

A better approach is to write an internationalized application, that is, one that
examinesthelocal computing environment to determine what language to use
and loads files containing language-specific information at runtime.

When you use an internationalized application, a single application can be
deployed in all countries. This has several advantages:

* You write and maintain one application, not half a dozen (or more).

» Theapplication can be deployed, without change, in new countries as
needed. You need only supply the correct localization files.

* All sites can expect standard features and behavior.

International systems

An international system may include internationalized client applications,
gateways, and servers running on different platformsin different native
language environments.

For example, aninternational system might include the following components:

» Order processing applicationsin New York City, Mexico City, and Paris
(Client-Library applications)

* Aninventory control server in Germany (Adaptive Server)
* Anorder fulfillment server in France (Adaptive Server)

* A centra accounting application in Japan (an Open Server application
working with an Adaptive Server®)

In this system, the order processing applications:

* Query theinventory control server to determine if requested itemsarein
stock

» Place orders with the order fulfillment server

* Send financial information to the accounting application

2 Open Client and Open Server

CHAPTER 1 Understanding Internationalization and Localization

The inventory control server and the order fulfillment server respond to
queries, and the accounting application collects financial data and generates
reports.

All applications and servers use the local language and character set to accept
input and generate messages.

In this system, the order processing applications and the Open Server gateway
arelocalized by means of the LC_ALL environment variable, which specifies
alocale name. At runtime, Open Client/Server applications match the specified
locale name to an entry in the Sybase locales file to determine what language,
character set, and collating sequence files to load.

The Adaptive Serversin this system are localized by means of alanguage
module that is purchased and installed along with the server.

Open Client/Server support for international systems

Open Client/Server products provide functionality to fully support the
development of international systems. Using Client-Library, Server-Library,
and CS-Library, an application can localize on any supported platform to use:

» A gspecific language and character set for error messages
* A specific character set when converting stringsfrom another character set
» A gpecific collating sequence to use when sorting or comparing strings

e Specific datetime formats and values

Note DB-Library supports one language and character set at atime for error
messages. For details, see “Writing internationalized DB-Library
applications’ on page 30.

Both Adaptive Server and Open Server applications support localized Open
Client™ applications. When aclient connectsto aserver, the server determines
whether or not it can support the required character set conversion (if any).

International Developer’s Guide 3

Open Client/Server support for international systems

Because Open Client and Open Server support the Unicode Standard, an Open
Server application can support any client, regardless of what character set it
uses. At the present time, Adaptive Server does not include Unicode support
and so may not be able to support clients using certain character sets. For
example, an English server using the Roman8 character set cannot support a
client application using the EUC JIS character set.

Unicode support is planned for Adaptive Server; in the meantime, you can use
an Open Server application to perform character set conversion for Adaptive
Server. For more information about this type of system, see “Using Open
Server as a conversion gateway” on page 39.

4 Open Client and Open Server

CHAPTER 2

How Localization Works

This chapter describes how the Open Client/Server localization
mechanism works.

Topic

Deciding what |ocalization values to use

Using initial localization values

Using custom localization values

L ocalization mechanism details

Note Theinformation in this chapter does not apply to DB-Library.

Deciding what localization values to use

International Developer’s Guide

Before writing an internationalized Open Client/Server application, you
must decide how the application will localize, that is, how it will
determine which language, character set, and cultural conventions to use
in agiven environment.

Open Client/Server applicationscan useinitial localization values, custom
localization values, or both:

* Initial localization values are determined at runtime, when the
application allocates a context structure (cs_ctx_alloc):

e |ftheLC _ALL environment variable is set, the application will
useits value to localize the new context structure.

e |ftheLC _ALL environment variable is not set but the LANG
environment variable is set, the application will use its value to
localize the new context structure.

e |If neither environment variableis set, the application uses the
“default” entry in the localesfile to localize the new context
structure.

Using initial localization values

e An application sets up custom localization values by calling cs_locale to
fillaCS_LOCALE structure and then usingthe CS_LOCALE structureto
change localization values for a context, connection, thread, dataelement,
or routine.

Using initial localization values

A typical internationalized Open Client/Server application usesthe initial
localization values determined by LC_ALL, LANG or the “default” entry in
the localesfileto localize.

Initial localization values are determined at runtime, when the Open
Client/Server application callsthe CS-Library routine cs_ctx_alloc to
allocateaCS_CONTEXT structure. When an application makesthiscall, CS-
Library loads initial localization information into the new context structure.

The localization information includes:
* Language

e Character set

¢ Collating sequence

* Dateand time formats

The loading process works as follows:
1 Theapplication calls cs_ctx_alloc.

2 CS-Library searches the environment for the LC_ALL or LANG
environment variables to determine alocale name. The following table
describes this search:

6 Open Client and Open Server

CHAPTER 2 How Localization Works

Table 2-1: How CS-Library determines a locale name

Is LC_ALL Is LANG

defined? defined? CS-Library action

Yes N/A Use LC_ALL’'svdueasthe locale name.

No Yes Use LANG's vdue asthe locale name.

No No Use alocale name of “default,” which means

CS-Library loads one of the following:
¢ The shipped defaults for the platform

¢ The user-defined set assigned to the locale
name “default”

3 CS-Library looks up the locale namein the locales file to determine the
associated language and character set (a collating sequence may or may
not be specified). If the locale name does not exist in the localesfile,
cs_ctx_alloc returns an error.

4 CS-Library loads the new context structure with the appropriate
localization information.

Setting up an application to use initial localization values

If your application will use initial localization values, you should not include
any specia codeto internationalize your application, but you do need to make
sure that administrators and users know how to set environment variables for
your application.

When you distribute the application, make surethat systemsadministratorsand
users understand the following:

 |If LC_ALL exists, its value must correspond to the correct entry in the
localesfile.

* If LANG exists, its value must correspond to the correct entry in the
localesfile.

« If neither environment variable exists, the“ default” entry inthelocalesfile
must be correct (that is, it must list the language, character set, and
collating sequence that the application should use).

International Developer’s Guide 7

Using custom localization values

Using custom localization values

Client-Library and Open Server applications can use custom localization
values at the context, connection, thread, data element, and routine levels.

A Client-Library or Open Server application sets up custom locali zation values
by:
1 Cadlling cs_locale toload a CS_LOCALE structure with specific

localization values. For more information about cs_locale, see “ The
cs_localerouting” on page 12.

2 Using theloaded CS_LOCALE to customize a context, connection,
thread, or dataelement. For more information about this process, see“The
CS LOCALE structure” on page 11.

You can use command line optionsto run the Embedded SQL precompiler with
custom localization values.

Embedded SQL applications cannot use custom values, that is, theinitial
localization values determined at runtimeby LC_ALL, LANG, or the* default”
entry in the localesfile.

Localization mechanism details

The locales file

This section provides more detail about localization mechanisms. It contains
information about the locales file, localization environment variables, the
CS _LOCALE structure, and the cs_locale routine.

Thelocalesfile (locales.dat) provides platform-specific locale informationin
a Sybase proprietary format. Thisfile associates |ocale names with languages,
character sets, and collating sequences.

The localesfile directs Open Client/Server applications to localization
information, but it does not contain actual localized messages or character set
information. Open Client/Server applications use the locales file to determine
what localization information to load.

For more information about the locales file, see Chapter 5, “Editing the
Locales File'.

Open Client and Open Server

CHAPTER 2 How Localization Works

Environment variables

On most platforms, Client-Library and Server-Library applications use the
following localization environment variables:

. LCALL
« LC_COLLATE
« LC.CTYPE

« LC_MESSAGE
- LC_TIME

- LANG

Note Some systems automatically set localization environment variablesto a
specific value when auser logsin. If your system does this, either make sure
that the value matches alocale name in the locales file or reset the variables
after logging in.

The following table describes how Open Client/Server applications use these

environment variables:

Table 2-2: Environment variables related to localization

Environment

Set to alocale name that

variable indicates Used by When
LC_ALL Language, character set, and A Client-Library or An application calscs_ctx_alloc.
collating sequence to usefor Open Server An application calls cs_locale with
messages, datatype application. typeasCS_LC_ALL and buffer as
conversions, and sorting. NULL.
TheEmbedded SQL At application precompile time, to
precompiler. determine the default language and
character set to use for precompiler
messages.
A precompiled At application runtime, when a
Embedded SQL precompiled application first calls
application. cs_ctx_global.
The precompiler generates a
cs_ctx_global call for each Embedded
SQL statement.
LC_COLLATE Collating sequence (sort A Client-Library or ~ An application calls cs_locale with
order) to use when sorting Open Server typeasCS_LC_COLLATE and buffer
and comparing character application. asNULL.

International Developer’s Guide

data.

Localization mechanism details

Environment

Set to alocale name that

variable indicates Used by When
LC_CTYPE Character set to use for A Client-Library or An application calls cs_locale with
datatype conversions. Open Server typeasCS_LC_CTYPE and buffer as
application. NULL.
LC_MESSAGE Language and character set A Client-Library or ~ An application calscs_locale with
to use for messages. Open Server typeasCS_LC_MESSAGE and
application. buffer as NULL.

LC_TIME Date and time data A Client-Library or An application calls cs_locale with
representation to use for a Open Server typeas CS_LC_TIME and buffer as
datetime string, such asdate application. NULL.
and time formats, namesin
the native language, and
month and day
abbreviations.

LANG Language, character set, and A Client-Library or If an application calls cs_ctx_alloc,

collating sequence to use for
messages, datatype
conversions, and sorting.
Open Client/Server products

search for LANG if they
cannot find LC_ALL.

Open Server Client-Library examines LANG if

application. LC_ALL isnot defined.
If an application calscs_locale,
Client-Library examines LANG if
cs_locale’sbufferisNULL andtheLC
variable corresponding to typeis not
defined.

TheEmbedded SQL At application precompile time, if

precompiler. LC_ALL isnot defined.

A precompiled At application runtime, if LC_ALL is

Embedded SQL not defined.

application.

Platforms not using environment variables

This section providesinformation about platformsthat do not use environment

variables.

Desktop terminology

10

Some platforms, such as NetWare, use the term “environment values’ instead
of “environment variables.” The terms mean the same thing.

Open Client and Open Server

CHAPTER 2 How Localization Works

Open Client MVS equivalent

Open Client for MV S does not support environment variables. Instead, MV S-
specific functions extract a prefix equivaent to a SY BASE environment
variable value and then build the name of the target file. For more information,
see the Open Client for MV S documentation.

The CS_LOCALE structure

The CS_LOCALE structure stores a compl ete set of localization information,
including language, character set, collating sequence, and datetime formats.

Open Client/Server applicationsneed to useaCS L OCALE structureto define
custom localization values for a context, connection, thread, data element, or
routine.

The stepsin this process are as follows:

1
2

International Developer’s Guide

Call cs_loc_alloc to allocate aCS_LOCALE structure.

Call cs_locale to load the CS_LOCALE structure with the desired
localization values. For more information about this process, see “The
cs locaerouting” on page 12.

If necessary, call cs_dt_info(CS_SET,CS_DT_CONVFMT) to change the
date conversion format in the CS_LOCALE structure. For more
information on cs_dt_info, see the Open Client and Open Server Common
Libraries Reference Manual.

Usetheloaded CS_LOCALE to customize a context, connection, thread,
data element, or routine:

» To customize a context, call cs_config.
» To customize aconnection, call ct_con_props.
* To customize athread, call srv_thread_props.

« To define custom values for a data element, supply a pointer to the
CS LOCALEinaCS DATAFMT structure.

To define custom values for aroutine, pass a pointer to the CS LOCALE
to the routine.

11

Localization mechanism details

The cs_locale routine

12

Open Client/Server applications use the cs_locale routineto load a
CS_LOCALE structure with custom localization information.

cs_locale is declared as follows:

CS_RETCODE cs_locale(context, action, locale, type,
buffer, buflen, outlen)

CS_CONTEXT*context;
CS_INT action;
CS_LOCALE*locale;
CS_INT type;
CS_CHAR *buffer;
CS_INT buflen;
CS_INT *outlen;

When called, cs_locale performs as follows:
1 Determines what locale nameto use.

If the cs_locale buffer parameter is supplied, this parameter isthe locale
name.

If the cs_locale buffer parameter isNULL, cs_locale checks for an
environment variable corresponding to its type parameter and uses the
value of this environment variable as the locale name.

If an environment variable corresponding to type isnot set, cs_locale uses
alocale name of “default.”

2 Looks up thelocale namein the locales file to determine the associated
language, character set, and collating sequence. If cs_locale cannot find a
matching entry, it returns CS_FAIL.

3 Loadstheinformation specified by the cs_locale type parameter into the
CS_LOCALE structure. For instance, if typeisCS LC CTY PE, cs_locale
loads character set information.

Note If cs_locale iscalled with aNULL buffer parameter, it examines the
environment variable related to its type parameter to determine what to use as
alocale name. If your application calls cs_locale with buffer as NULL, make
sure that the appropriate environment variables have values that correspond to
entriesin the localesfile.

For more information on cs_locale, see the Open Client and Open Server
Common Libraries Reference Manual.

Open Client and Open Server

CHAPTER 2 How Localization Works

Example: Calling cs_locale to Load a CS_LOCALE structure

Suppose an application is running on a machine with alocales file containing
the following entries:

| ocal e = korean, korean, eucksc, korsrt
| ocal e C. korean, us_english, eucksc, ussrt
| ocal e default, us_english, iso_1, ussrt

where the form of an entry is:
| ocal e = | ocal e_nane, |anguage_nane, charset_nane [,sort_order]

Suppose further that the environment variable LC_MESSAGE has avalue of
“korean,” and that the environment variable LC_TIME is not defined. In this
environment, the application would need to make two callsto cs_locale to load
aCS_LOCALE structure with the following custom val ues:

e “korean” asthelanguage and “eucksc” as the character set for Client-
Library and server messages

e “us _english” asthe language and “eucksc” as the character set to use for
conversion of datetime values
* Thetwocs_locale calsare:
/*
** You should not specify a |ocal e nane, because
** cs_locale will use the value of the LC MESSAGE
** environnent variable as the |ocal e nane.
*/
cs_local e(ctx, CS_SET, nylocale, CS_LC MESSACE,
NULL, CS_UNUSED, NULL);

/* Do need to specify a |ocal e nane, because

** there’s no LC_TIME environnent variable set.

*/

cs_local e(ctx, CS_SET, nylocale, CS_LC TIME,
"C. korean", CS_NULLTERM NULL);

After loading the CS_LOCALE, the application can:

e Cadl cs_config to copy the custom localization val ues into a context
structure.

e Cdl ct_con_props to copy the custom localization valuesinto aconnection
structure.

e Cadl srv_thread_props to copy the custom localization values into athread
structure.

International Developer’s Guide 13

Localization mechanism details

¢ Supply theCS_LOCALE structure as a parameter to aroutine that accepts
custom localization values (cs_strcmp, cs_time).

¢ Includethe CS LOCALE inaCS DATAFMT structure describing a
source or destination program variable (cs_convert, ct_bind).

14 Open Client and Open Server

CHAPTER 3

Writing Internationalized Open
Client/Server Applications

This chapter explains how to write internationalized Open Client/Server
applications.

Topic

Writing internationalized Client-Library applications

Writing internationalized Open Server applications

Writing internationalized DB-Library applications

Internationalizing with Embedded SQL

Internationalizing standal one utilities

This chapter is not a comprehensive guide to writing Open Client/Server
applications. Other helpful resources include;

e Open Client and Open Server Common Libraries Reference Manual
e Open Client Client-Library Reference Manual
e Open Server Server-Library Reference Manual

e Thesample international applications shipped with Open
Client/Server products

Writing internationalized Client-Library applications

International Developer’s Guide

Before writing an internationalized Client-Library application, you must
decide how the application will localize, that is, how it will determine
which language, character set, and cultural conventionsto usein agiven
environment.

Client-Library applications can useinitial localization values, custom
localization values, or both.

Most applications use initial localization values.

15

Writing internationalized Client-Library applications

For information about how initial localization values are determined and how
to decide whether your application can use them, see “Deciding what
localization valuesto use” on page 5.

Client-Library applications using initial values

If your application will useinitial localization values, you should not include
any special code to internationalize your application.

When you distribute your application, make sure that systems administrators
know how to set environment variables. For moreinformation, see“ Setting up
an application to useinitial localization values’ on page 7.

Client-Library applications using custom values

Client-Library applications can use custom localization values at the context,
connection, and data element levels.

An Open Client/Server application sets up custom localization values by:

e Cadling cs_locale toload aCS_LOCALE structure with specific
localization values.

e Usingtheloaded CS LOCALE to customize a context, connection, or
data element.

The following table isintended to help you decide how to use custom
localization values in your application:

16 Open Client and Open Server

CHAPTER 3 Writing Internationalized Open Client/Server Applications

Table 3-1: Using custom localization values in a Client-Library

application
For more

If Then information
The application needs just a Customize at the context level. “Customizing at
single set of custom You can use the same the context level”
localization values (but, for CS LOCALE structure to on page 17.
whatever reason, it cannot Use ¢stomize multiple contexts.
itsinitial localization values).
Different contextsin the Customize each context. “Customizing at
application require different Use different CS LOCALE the context level”
localization values. structures to customize on page 17.

different contexts.
Specific connectionsneedto Customize those connections. “Customizing at
use localization values that the connection
differ from their parent level” on page 18.
context’s localization values.
Bind variables, conversion Customize the variables or “Customizing at
destination variables, or routines. the data element
specific routines need to use level” on page 20.

custom localization values.

Customizing at the context level

You need to install custom localization values at the context level if the
context’sinitial localization values are not acceptable.

Example

For example, you would need to install custom localization values at the
context level if different contexts in the same application required different
localization values, because not al of the contexts would be created with

correct initial values.

For information on how a context receivesitsinitial localization values, see
“Using initial localization values’ on page 6.

Suppose a Client-Library application needs to generate messages in Korean,
butitisrunning inanenvironmentinwhichtheLC_ALL environment variable
must be set to us_english to accommodate other applications. Because the
initial us_english localization values that the context uses are not acceptable,
the application needsto install Korean localization values at the context level.

International Developer’s Guide

17

Writing internationalized Client-Library applications

Defining custom localization values for a context
The following table describes how to define custom localization values at the

context level:

Table 3-2: Installing custom values at the context level

Application

Step step Purpose Details

1 Call cs_loc_alloc. Allocate a This call copiesthe parent
CS LOCALE context’s current localization
structure. information into the

CS _LOCALE structure.

2 Cadl cs_locale. Overwrite the For moreinformation about this

CS LOCALE process, see “The cs locale

structure with custom
localization values.

routine” on page 12.

Open Server applications must
cal cs_locale with type as
CS LC _ALL.Thisensuresthat
Server-Library loads the
CS_LOCALE structure with
localization values that are
internally consistent.

3 Optionaly, call
cs_dt_info.

Change datetime
conversion formatsin
the CS_LOCALE.

For more information about
cs_dt_info, see the Open Client
and Open Server Common
Libraries Reference Manual.

4 Call cs_config
with property as
CS LOC_PROP.

Customize a context.

5 Optionally, call
cs_loc_drop.

Deallocate the
CS LOCALE
structure.

An application can reuse the
CS _LOCALE structure before
deallocating it.

If necessary, the application can
cal cs_locale to change the
localization valuesin the
structure before reusing it.

Customizing at the connection level

A connection inherits default localization values from its parent context. You
need to install custom localization values at the connection level if the
connection’s default localization values are not acceptable.

18

Open Client and Open Server

CHAPTER 3 Writing Internationalized Open Client/Server Applications

Example

Suppose aus_english/isol application that connectsto a server in Spain needs
to process and sort roman8 character data.

Because the us_english/isol localization values that the connection inherits
from its parent context are not acceptable, the application needs to install
roman8 localization values at the connection level.

Defining custom localization values for a connection

The following table describes how to define custom localization values at the
connection level.

Table 3-3: Installing custom values at the connection level

Application

Step step Purpose Details

1 Call Allocate a This call copiesthe parent context’s current
cs_loc_alloc. CS LOCALE localization information into the CS_LOCALE

structure. structure.

2 Call cs_locale. Overwrite the For more information about this process, see “The

CS_LOCALE cs_locale routing” on page 12.
structure with custom
localization values.

3 Optionally, call ~ Change datetime For more information about cs_dt_info, see the Open
cs_dt_info. conversionformatsin Client and Open Server Common Libraries Reference

the CS_LOCALE. Manual.

4 Call Customize a Note that CS_LOC_PROP isalogin property. An
ct_con_props connection. application cannot changeitsval ue after aconnection
with property as is open.

CS_LOC_PRO If an application sends a request to the server to

P change the language or character for the connection
after the connection is open, the change will not be
reflected in the value of CS_LOC_PROP If the
application callsct_con_props to retrieve the value of
CS_LOC_PRORP , theretrieved locale structure will
not contain the connection’s current localization
values.

5 Optionally, call Deallocate the An application can reuse the CS_LOCALE structure
cs_loc_drop. CS LOCALE before deallocating it.

structure.

If necessary, the application can call cs_locale to
change the localization values in the structure before
reusing it.

International Developer’s Guide

19

Writing internationalized Client-Library applications

When aclient application calls ct_connect to open a connection, the server
determineswhether it can support therequested localization. If it can, it accepts
the connection asis. If it cannot, it forces the connection to an alternate
language and/or character set. At this point, the client may either accept or
reject the altered connection.

Customizing at the data element level

Example

20

Data-element localization values can be used to customize the following:
e Bind variables (ct_bind)

If custom localization values are not specified, bind variables use
localization values from the connection with which they are associated.

» Conversion destination variables (cs_convert)

If custom localization values are not specified, conversion destination
variables use localization values from cs_convert's context parameter.

e cs_time and cs_stremp behavior

If custom localization values are not specified, these routines use the
localization values associated with their context parameter.

You need to set up custom localization values at the data element level if the
default values are not acceptable.

To generate a report, suppose an application with aus_english connection
selects book titles and publication dates from a us_english database. Because
the report will be sent to Paris, the publication dates must be in a standard
French format.

Since the connection’s us_english formats are not acceptable for the date
column bind variable, the application needs to set up the bind variable to use
French datetime formats.

The application can set up the bind variable for the date column to use French
datetime formats as follows:

e Theapplication loads aCS_LOCALE structure with French datetime
formats.

Open Client and Open Server

CHAPTER 3 Writing Internationalized Open Client/Server Applications

e Theapplication callsct_bind to bind the date column to a character
variable. Inthe ct_bind call, the CS_ DATAFMT structure that describes
the bind variable references the CS_L OCALE containing the French
datetime formats.

When the application calls ct_fetch, the datetime value in the date column is
automatically converted to a character string containing French day and month
names and copied into the bound variable.

Defining custom localization values at the data element level

The following table describes how to define custom localization at the data

element level.
Table 3-4: Installing custom values at the data element level
Application
Step step Purpose Details
1 Call Allocate a This call copies the parent context’s current
cs_loc_alloc. CS LOCALE localizationinformationintothe CS LOCALE
structure. structure.
2 Call cs_locale. Overwritethe For more information about this process, see
CS LOCALE “The cs_locale routine” on page 12.
structure with custom
localization values.
3 Optionally, call ~ Change datetime For more information about cs_dt_info, seethe
cs_dt_info. conversionformatsin Open Client/Server Common Libraries
the CS_LOCALE. Reference Manual.
4 Usethe Customize a bind » Customize abind varigble by using the
CS LOCALE variable, destination CS _LOCALE in ct_bind’s datafmt
variable, or routine. parameter.

» Customize a destination variable by using
the CS_LOCALE incs_convert’s destfmt
parameter.

» Customize cs_strcmp or cs_time's behavior
by supplying the CS_LOCALE structure as
a parameter to the routine.

5 Optionally call ~ Deallocate the The application must not deallocate the
cs_loc_drop. CS LOCALE CS _LOCALE until the CS DATAFMT
structure. structure no longer referencesit.

International Developer’s Guide

21

Writing internationalized Open Server applications

Client-Library localization value precedence

Client-Library useslocalization values in the following order of precedence:

1 Vaduesdefined at the data element level
2 Values defined at the connection level
3 Values defined at the context level

Client-Library localization properties
The following table lists Client-Library properties that are related to

localization:

Table 3-5: Client-Library properties related to localization

For more

Property Description Appliesto information

CS LOC_PROP A CS LOCALE Contexts, Open Client
structure that defines connections Client-Library
localization Reference Manual
information.

CS CHARSETCNV Determineswhether or Connections Open Client
not the server is Client-Library
performing character Reference Manual
set conversion.

CS NOCHARSETCNV Determineswhetheror Connections Open Client
not the server should Client-Library
perform character set Reference Manual
conversion.

Writing internationalized Open Server applications

When writing an internationalized Open Server application, you will need to
consider the following issues:

22

e How the application itself will localize

e How the application will support localized clients

» How theapplicationwill respond to client requeststo changelanguage and

character set

Open Client and Open Server

CHAPTER 3 Writing Internationalized Open Client/Server Applications

e What values Server-Library localization properties should have

Localizing the application

An Open Server application’s localization values determine the language in
which error messages are generated and the character set and collating
sequence that are used for all data operations.

(You canuse SRV_S USESRVLANG and SRV_T_USESRVLANG
propertiesto override the server’s language when it generates error messages.)

An Open Server application can use initial localization values, custom
localization values, or both.

Most applications use initial localization values.

Initial localization values are determined when the application allocates its
context structure. For information on how to decide whether your application
can useinitial localization values, see “ Deciding what localization values to
use” on page 5.

Open Server applications using initial values

If your application will useinitia localization values, you should not include
any special code to internationalize your application.

When you distribute your application, make sure that systems administrators
know how to set environment variables. For moreinformation, see* Setting up
an application to useinitial localization values’ on page 7.

Open Server applications using custom values

If your application cannot useinitial localization values, you need to install
custom localization information in the application-wide context structure
before calling srv_version.

For information on how to do this, see Table 3-2 on page 18.

Supporting localized clients

Open Server automatically provides some support for localized clients, but
your application may need to provide additional support.

International Developer’s Guide 23

Writing internationalized Open Server applications

Automatic support for localized clients

Open Server automatically handles some tasks associated with supporting
localized clients. These tasks include:

e Performing character set conversion, if required, of both incoming and
outgoing data.

e Providing Open Server error messages in the client’s language and
character set (provided that the SRV_T_USESRVLANG property for the
client’sthread structureis set to CS_FALSE).

» Providing localization information to the client in response to a client
request. For more information about this process, see “ Automatic
response to reguests for localization information” on page 24.

For some Open Server applications, thisautomatic support for localized clients
issufficient. These Open Server applications do not need to take any additional
steps to support localized clients. However, other Open Server applications,
however, need to provide additional support for localized clients.

Automatic response to requests for localization information
After logging into an Open Server application, aclient can request:
e Thename of the server’s character set

e The name of the server’s collating sequence (sort order)

e The character set definition for the client’s character set

e The sort order definition for the client’s collating sequence

Clients make these regquests using the sp_serverinfo system registered
procedure, using Remote Procedure Call (RPC) commands.

In response, Open Server automatically returns the requested information by
means of the sp_serverinfo system registered procedure. An Open Server
application does not need to take any action at this point, and, in fact, is not
aware that the request ever occurred.

Additional support for localized clients

An Open Server application needsto take additional stepsto support localized
clients under the following circumstances:

e If it passes CS-Library error messages back to clients

24 Open Client and Open Server

CHAPTER 3 Writing Internationalized Open Client/Server Applications

In this case, the Open Server application needs to ensure that CS-Library
generates messages in the client’s language and the Open Server
application’s character set. For information on how to do this, see
“Localizing CS-Library messages for clients’ on page 25.

e [Ifitisacting as agateway

In this case, the Open Server application needsto ensure that a connection
to aremote server uses the client’s language and the Open Server’s
character set. For information on how to do this, see “ Creating localized
connections for Open Server gateways’ on page 27.

e |f aclient application asks to change its language or character set

In this case, the Open Server application needs to change the language or
character set for the client thread. For information on how to do this, see
“Responding to requests to change language and character set” on page
28.

Localizing CS-Library messages for clients

If an Open Server application calls a CS-Library routine with its own context
structure as a parameter, any error messages that CS-Library generates asthe
result of the call will be in the Open Server application’s language and
character set.

For example, if the context parameter for acs_convert call indicates
us_english/iso_1, CS-Library will generate aus_english/iso_1 message if the
cs_convert call fails.

Note If aCS-Library routinetakesa CS_L OCALE structure as a paramete,
the localization values in this structure will override the localization valuesin
the context parameter.

Getting CS-Library messages in the Open Server application’s language and
character set is acceptable only if the Open Server application logs the CS-
Library messages or otherwise keeps them to itself.

However, if an Open Server application will be passing CS-Library error
messages back to aclient, it needs to ensure that CS-Library generates
messages in the client’s language and the Open Server application’s character
set.

The messages need to be in the client’s language for the client to understand
them.

International Developer’s Guide 25

Writing internationalized Open Server applications

The messages need to bein the Open Server application’s character set for two
reasons:

e Open Server applications commonly record all messagesinthelogfile. It
isimportant that all logged messages use the same character set.

e Open Server automatically performs character set conversion on outgoing
data, including messages. Generating messagesin Open Server’scharacter
set ensures that they will be correctly converted to the client’s character
Set.

An application can ensure that messages are generated in the correct language
and character set by setting up a properly localized CS_ CONTEXT structure
for each client thread and then using these CS_CONTEXT structures when
caling CS-Library routines on behalf of clients.

Localizing a CS_CONTEXT structure for a client thread
The following table illustrates how to localize aCS_CONTEXT structure for

aclient thread:
Table 3-6: Localizing a CS_CONTEXT structure for a client thread
Step Application step Purpose Details
1 Cadl cs_ctx_alloc. AllocateaCS _CONTEXT The context structure is allocated with
structure for the client thread. initial localization values.
2 Call cs_loc_alloc. Allocateanew CS_LOCALE This call copiesthe parent context’'s
structure. current localization information into
the new CS_LOCALE structure.
3 Call Copy theclient thread’s existing
srv_thread_props(GET) localization valuesinto the new
with property as CS LOCALE structure.
SRV_T_LOCALE.
4 Call cs_locale withtype Replace the client thread's
as character set information in the

CS_SYB_CHARSET. new CS_L OCALE with the Open
Server application’s character set

information.
5 Call cs_config with Customize the context structure. This call copies localization
property as information from the CS_LOCALE
CS LOC_PROP. structure into the CS_CONTEXT

structure.

26 Open Client and Open Server

CHAPTER 3 Writing Internationalized Open Client/Server Applications

Step Application step Purpose Details
6 Optionally, call Deallocate the CS_ LOCALE An application can reuse the
cs_loc_drop. structure. CS_LOCALE structure before
deallocating it.

If necessary, the application can call
cs_locale to change the localization
vauesinthestructure beforereusingiit.

Creating localized connections for Open Server gateways
If an Open Server application is acting as a gateway, it needs to ensure that a
connection to aremote server usesthe client’s language and the Open Server’s
character set.

Note The Open Server’'s character set does not need to be the same asthe
remote server’s character set, but it must be one that the remote server is
capable of converting to its own.

Adaptive Server can convert between any two Western European character sets
and between any two Japanese character sets, but it cannot convert a Western
European character set to a Japanese one (and vice versa). For example,
Adaptive Server can convert between | SO 8859-1 and CP850, because both of
these character sets arein the Western European language group, but Adaptive
Server cannot convert between 1SO 8859-1, which is Western European, and
CP 1250, which is Eastern European. When Adaptive Server is converting
between character setsin different language groups, non-ASCI| characters
may be lost.

The simplest way for an application to do thisisto set up a properly localized
CS_CONTEXT structure for each client thread and then allocate remote
connections for the client thread within the localized context.

For more information, see“LocalizingaCS_CONTEXT structure for aclient
thread” on page 26.

For information on how to allocate a connection, see the Open Client Client-
Library Reference Manual.

International Developer’s Guide 27

Writing internationalized Open Server applications

Responding to requests to change language and character set

28

When aclient connects to an Open Server application, Open Server
automatically createsaCS_LOCALE structure reflecting the client’slanguage
and character set (The client’s collating sequence is NOT included in the
CS_LOCALE: Collating sequence information is not transmitted to the server
at logintime.)

For example, when a french/cp850 client logsinto aus_english/iso_1 Open
Server application, the Open Server application creates a french/cp850
CS_LOCALE structure.

The Open Server application uses this CS_LOCALE structure to set up
character set conversion routines for the client thread.

Note Theinformation inthis CS LOCALE structure is available to Open
Server programmers, who can call srv_thread_props to copy the information
into anewly allocated CS LOCALE structure.

If, after logging in, aclient sends arequest to change its language or character
set, the Open Server application must make the requested changesin the client
thread’'s CS _LOCALE structure.

A client can request a change of language or character set in one of two ways;

e Using alanguage-based option command (sent with ct_command). This
type of command triggersaSRV_LANGUA GE event, so the Open Server
application processes the request inside a SRV_LANGUAGE event
handler.

e Using an option command (sent with ct_options). This type of command
triggersa SRV_OPTION event, so the Open Server application processes
the request inside a SRV_OPTION event handler.

The following table describes how to change the language or character set for
aclient thread:

Table 3-7: Changing language or character set for a client thread

Step Application step Purpose Details
1 Call cs_loc_alloc. AllocateaCS LOCALE Thiscall copiesthe Open Server
structure. application context’s current

localization information into the
new CS_LOCALE structure.

Open Client and Open Server

CHAPTER 3 Writing Internationalized Open Client/Server Applications

Step Application step Purpose Details
2 Call srv_thread_props Copy theclient thread’s
(GET) with propertyas existing localization
SRV_T _LOCALE. valuesinto the new
CS _LOCALE structure.
3 Cadl cs_locale. Overwrites the For moreinformation about this
CS LOCALE structure process, see “Thecs_|locale
with the requested routine” on page 12.
language or character set.
4 Call srv_thread_props Set up the client thread
(SET) with property as with the new language or
SRV_T LOCALE. character set.
5 Optionally, call Deallocate the An application can reuse the
cs_loc_drop. CS LOCALE structure. CS_LOCALE structure before

deallocating it.

If necessary, the application can
cal cs_locale to change the
localization valuesin the
structure before reusing it.

Server-Library localization properties

The following table lists Server-Library properties that are related to

locadlization:

Table 3-8: Server-Library properties related to localization

For more
Property Description Applies to information
SRV_S USESRVLANG Whether or not to Application- Open Server
generate messagesin widecontext Server-Library
the server’slanguage. Reference Manual
SRV_T_USESRVLANG Whether or not to Thread Open Server
generate messagesin Server-Library
the server’slanguage. Reference Manual

These properties determine whether Open Server generates error messages in
the Open Server application’s language or a client’s language:

SRV_S USESRVLANG isaserver-wide property, set using srv_props. Its
value serves as the default value for SRV_T_USESRVLANG

International Developer’s Guide

29

Writing internationalized DB-Library applications

SRV_T_USESRVLANG isathread property, set using srv_thread_props.
When anew thread structureisallocated, SRV_T_USESRVLANG picksup a
default value from SRV_S USESRVLANG:

e If SRV_T_USESRVLANG isCS TRUE, Open Server generates error
messages for the thread in the language of the server.

e If SRV_T _USESRVLANG isCS FALSE, Open Server generates error
messages for the thread in the language of the client.

Writing internationalized DB-Library applications

When writing anew client application, programmers should use Client-Library
instead of DB-Library. Theinformation in thissection isfor siteswith existing
DB-Library applications.

Unlike Client-Library, DB-Library does not examine environment variablesto
determineinitial localization values. Instead, in DB-Library, initial localization
values are pre-defined on a per-platform basis.

An application can change these initial values for a specific connection by
changing the language name and character set name in the login record that is
used to open the connection:

» Tochange the language name, call DBSETLNATLANG
(login,Janguage_name).

¢ To change the character set name, call DBSETLCHARSET
(login,charset_name). An application can call DBSETLCHARSET
(login,NULL) to specify that the server should not perform character set
conversion.

An application can use a different language and character set for each server
connection.

For more information about DB-Library routines that support localization,
see the Open Client DB-Library Reference Manual.

Internationalizing with Embedded SQL

As an Embedded SQL application programmer, you can localize:

30 Open Client and Open Server

CHAPTER 3 Writing Internationalized Open Client/Server Applications

The Embedded SQL precompiler
A precompiled Embedded SQL application

Localizing the precompiler

Precompiler users can either run the precompiler with default localization
values or custom localization values.

How default values are determined

If command line options are not specified, the precompiler’slocalization
values are determined at precompiler runtime as follows:

If the LC_ALL environment variableis set, the application usesits value
to localize, matching LC_ALL’svaueto an entry in the localesfileto
determine what language and character set to use.

If theLC_ALL environment variableisnot set but the LANG environment
variableis, the application usesits vaue to localize, matching LANG’s
value to an entry in the locales file to determine what language and
character set to use.

If neither environment variable is set, the application uses the “default”
entry in the localesfile to localize.

Specifying custom localization values

Precompiler users can use command line optionsto specify custom localization
values for the following:

Source file character sets

To specify the character set of the sourcefilethat isbeing precompiled, use
the following command line option:

-J locale_for_charset

wherelocale for_charset isalocale name that has an entry in the locales
file

If you do not specify -J, the precompiler interprets the source file as being
in the precompiler’s default character set.

Precompiler messages

International Developer’s Guide 31

Internationalizing standalone utilities

To specify the language and character set that the precompiler uses for
messages, use the following command line option:

-Z local e_for_nessages

wherelocale_for_messagesisalocale namethat hasanentry inthelocales
file

If you do not specify -z, the precompiler uses its default language and
character set for messages.

Localizing an Embedded SQL application

An Embedded SQL application’s |ocalization values are determined at
application runtime as follows:

e IftheLC_ALL environment variable is set, the application usesits value
to localize, matching LC_ALL’'svalueto an entry in the localesfileto
determine what language and character set to use.

e IftheLC_ALL environment variableisnot set but the LANG environment
variableis, the application usesits value to localize, matching LANG's
value to an entry in the locales file to determine what language and
character set to use.

» If neither environment variable is set, the application uses the “ default”
entry in the localesfile to localize.

A typical Embedded SQL application localizes by setting the LC_ALL
environment variable.

Internationalizing standalone utilities

32

Standalone utilities includeisql, bep, and defncopy. Utilities that are built on
Client-Library and utilities that are built on DB-Library localize differently.

Utilities built on top of Client-Library examine environment variables to
determine default localization values. For more information on this process,
see “Deciding what localization values to use” on page 5 and “Using initial
localization values’ on page 6. All version 11.1 and later standalone utilities
for UNIX platforms are built on top of Client-Library.

Open Client and Open Server

CHAPTER 3 Writing Internationalized Open Client/Server Applications

Tips

Utilities built on top of DB-Library use platform-specific default localization
values. Pre-version 11.1 and PC utilities may be built on top of DB-Library.

All utilities provide a mechanism to enable users to specify custom values for
the following:

e Thedisplay character set
« Thelanguage to use for server messages
e The character set that the utility isusing

For more information, see the Open Client/Server Programmer’s Supplement
for your platform.

This section contains tips on writing and running internationalized
applications.

Make sure required files are installed

Certain Open Client/Server routines require that certain localization files be
installed. If these files are not installed, Client-Library or Server-Library
generates an error message in English and writes it to standard error output.

Thefollowing tableslists Open Client/Server routinesthat require localization
files:

International Developer’s Guide 33

Tips

Table 3-9: Open Client/Server routines that require localization files

Routine Required files File location

cs_ctx_alloc locales.dat locales/
objectid.dat locales/
cdib.loc locales/message/language_name
common.loc |ocalesmessage/language_name
charset_name.cfg for the charsets/charset_name
default character set
charset.loc charsets/charset_name
binary.srt or charsets/charset_name

the sort file specified in the
meatching locales file entry

cs_locale charset_name.cfg for the charsets/charset_name
default character set
charset.loc charsets/charset_name
binary.srt or charsets/charset_name

the sort file specified in the
matching locales file entry

ct_init ctlib.loc locales/message/language_name

srv_init srvlib.loc locales/message/language_name

Using CS_NULLTERM with Open Client/Server routines

When passed to a Client-Library, Server-Library, or CS-Library routine asa
buffer’'slength, CS_NULLTERM indicates that the value contained in the
buffer is null-terminated (terminated with a single byte with value 0).

Some character sets do not support unambiguous null-terminated strings. Do
not use CS_NULLTERM if your application needs to support these types of
character sets.

34 Open Client and Open Server

CHAPTER 4

Definitions

International Developer’s Guide

Coded Character Set Conversion
Support

This chapter explains how character set conversion worksin Open
Client/Server products.

Topic

Definitions

Supported character sets

Understanding coded character set conversion

Using custom coded character set conversion

Character set conversionin SQL Server releases prior to 4.9

Mainframe support

The following definitions apply throughout this chapter:

A character set isafinite set of characters or glyphs without
encoding.

Encoding is the process of uniquely identifying each character in a
character set with a numeric code.

A coded character set isthe set of numeric codes that represents a
character set.

This chapter uses the term, “coded character set,” rather than
“character set,” since conversion relies on encoding.

Character set conversion isthe process of mapping charactersin one
coded character set to charactersin another.

A direct conversion is a conversion from one coded character set to
another. Adaptive Server and Open Server support direct conversion
between character sets within the Western European and Japanese
language groups.

35

Supported character sets

* Anindirect conversion is a conversion from one coded character set to
another by way of an intermediate coded character set.

Because indirect conversion allows any character set to be converted to
any other character set, regardless of whether the character sets are in the
same language group, it is sometimes called universal conversion.

Supported character sets

Adaptive Server and Open Client/Server products typically come with filesto
support the following character sets:

e Apple Macintosh Roman (mac)

¢ IBM Code Page 850 (cp850)

¢ IBM Code Page 437 (cp437)

* 1S08859-1 (iso_1)

» Hewlett-Packard Roman 8 (roman8)

» Unicode UTF-8 encoding (utf8)

» Chinese following standard GB18030-2000

Files to support the following character sets are included with the Japanese
Language Module product:

* DEC Kanji (deckanji)
» EUCJIS (eucjis)
o Shift-JIS (gis)

Additional character set files may be available through the Sybase Character
Sets product, which includes files to support data processing for the major
business languages of Western Europe, Eastern Europe, the Middle East, Latin
America, and Asia

36 Open Client and Open Server

CHAPTER 4 Coded Character Set Conversion Support

Understanding coded character set conversion

Character set conversion allows clients and servers that use different coded
character sets to communicate.

At the present time in Sybase systems, automatic character set conversion
occurs only on the server. Adaptive Server and Open Server support direct
coded character set conversion between character setsin the Western European
and Japanese language groups.

These are the only direct character set conversions that Adaptive Server and
Open Server support, that is, Adaptive Server and Open Server do not support
direct conversion for character setsin language groups other than Western
European and Japanese. However, Open Server does support the conversion of
any Sybase-supported character set to or from the Unicode character set (1SO
10646) in UTF-8 form. This allows Open Server to perform an indirect
conversion (charset_1 to Unicode to charset_2) between any two Sybase
character sets.

The Unicode standard is an international character set. Unicode has the
capacity to encode virtually al characters used in the world's major written
languages.

UTF-8 is amulti-byte encoding of Unicode that is compatible with stream-
based applications. It is recommended for data exchange and storage by
X/Open, POSIX, and X11 standards.

Establishing the language and character set for a connection

When aclient application attempts to connect to aserver, it sends a connection
request specifying the following:

* Whether or not character set conversion should be disabled for the
connection (through the CS_NOCHARSETCNV property for Client-
Library or the DBSETLCHARSET routine for DB-Library)

* Thecharacter set to use for the connection
* Thelanguage to use for the connection

Before accepting the connection, the server checksto see if it can support the
reguested language and character set.

The following table summarizes Adaptive Server and Open Server behavior at
connection time;

International Developer’s Guide 37

Understanding coded character set conversion

Table 4-1: Client and server conversion behavior

Server

supports Server

client’s supports

character client’s

set language Server action ct_connect dbopen

Yes Yes Accepts the connection in the clients Returns Returns
language and character set. CS SUCCEED SUCCEED

No Yes If character set conversionisdisabled, it Returns Returns
accepts the connection but forcesittoits CS SUCCEED SUCCEED
own character set.
If character set conversionisnot disabled, Returns Returns
it rgjects the connection. CS FAIL FAIL

Yes No Informsthe client that the connectionwill Returns Returns
use: CS SUCCEED SUCCEED

» us_english language
e Theclient's character set

No No If character set conversionisdisabled, it Returns Returns
accepts the connection but forcesit to: CS_SUCCEED SUCCEED

e us_english language
» Itsown character set

If character set conversionisnot disabled, Returns Returns
it rejects the connection. CS_FAIL FAIL

Once a connection is established, the server:

e Generates all messagesin the connection’s negotiated language and
character set

e Performsall necessary character set conversion for both incoming and
outgoing data (provided that character set conversion is not disabled for
the connection)

Disabling character set conversion

Client applications typically disable character set conversion for one of the
following reasons:

e Theclient application needsto store and retrieve datain acharacter set that
the server does not support.

e Theclient application will itself perform any necessary character set
conversion.

38 Open Client and Open Server

CHAPTER 4 Coded Character Set Conversion Support

When character set conversion is disabled, Adaptive Server does not perform
character set conversion on Transact-SQL statements, procedure, table, view
and other names, or data. The server behaves as follows:

* It assumesthat Transact-SQL statements and names are in standard
Transact-SQL.

e |t storesdata values exactly asthey are sent.
e |t generates messagesin its default character set.

Client-Library applications can disable character set conversion for a
connection by setting the CS_ NOCHARSETCNV connection property to
CS TRUE before calling ct_connect to open the connection.

DB-Library applications can disable character set conversion for a connection
by calling DBSETLCHARSET with char_set as NULL before calling dbopen
to open the connection.

Using Open Server as a conversion gateway

Because Open Server can convert all Sybase-supported character setsto and
from Unicode (1SO 10646), UTF-8, an Open Server application can perform
indirect conversions between any two Sybase-supported character sets.

This ability to perform indirect conversion means that an Open Server
application can be used to enable communication between applications and
servers that use character setsin different language groups (note that loss of
data may occur).

For information on how to set up an Open Server application to act asa
conversion gateway, see “Creating localized connections for Open Server
gateways’ on page 27.

Files used during character set conversion

This section contains information about files used during character set
conversion.

International Developer’s Guide 39

Using custom coded character set conversion

The mnemonics file

Conversion files

The mnemonics file, mnemonics.dat, contains POSIX mnemonic strings that
can be used to replace unmappable source characters, if necessary, during
character set conversion.

For more information on the mnemonicsfile, see “ The mnemonics file” on
page 76.

The conversion files for a character set include:

e A conversion description file, to_charset.cvt, which contains a user-
readabl e character set mapping tablefor aconversion. Thisfileisprovided
for your information only.

e A conversion table loading file, to_charset.ctb, which is used during
Sybase's internal table-driven conversion process.

e A conversion configuration file, charset_name.cfg, which contains
information on how the conversion process should proceed when
charset_nameisthe destination character set. For more information onthe
conversion configuration file, see “ The conversion configuration file” on
page 78.

Using custom coded character set conversion

Open Server allows applications to install custom conversion routines. Once
installed, Open Server uses the custom conversion routines automatically
whenever a conversion of the specified typeis required.

Why install custom conversion routines?

40

Install custom character set conversion routinesif the conversion functionality
supplied with Open Server does not meet your needs. The most common
reason for installing a custom conversion routineisto improve performance by
replacing an indirect conversion with a direct conversion.

Open Client and Open Server

CHAPTER 4 Coded Character Set Conversion Support

Writing a custom

For example, an Open Server application could install a custom routine to
convert between 1SO 8859-1 and EUC JIS. Thisdirect conversion may be
faster than the indirect conversion (1SO 8859-1 to/from Unicode UTF-8
to/from EUC JIS) that is supplied with Open Server.

conversion routine
A custom character set conversion routine is defined as follows:

CS_RETCODE convfunc(context, srcfmt, srcdata,
destfmt, destdata, destlen)
CS_CONTEXT *context;

CS_DATAFMT *srcfmt;

CS_VOoID *srcdata;

CS_DATAFMT *destfmt;

CS_VOoID *destdata;

CS_INT *destlen;
where:

e context isapointer toaCS _CONTEXT structure.

» srcfmt isapointer to aCS _DATAFMT structure describing the source
data. srcfmt — maxlength describesthe actual length, in bytes, of the source
data.

« srcdataisapointer to the source data.

e destfmtisapointer toaCS DATAFMT structure describing the
destination data. destfmt — maxlength describes the actua length, in bytes,
of the destination data space.

» destdata is apointer to the destination data space.

* destlenisapointer to aninteger. If the conversionissuccessful, the custom
routine should set *destlen to the number of bytes placed in * destdata.

cs_config istheonly CS-Library, Client-Library, or Server-Library routine that
can be called from within a custom conversion routine.

CS-Library raisesa CS-Library error if the custom routine returns any value
other than CS_SUCCEED. Thetype of error that CS-Library rai sesdependson
the value that the custom routine returns. The following table lists the legal
return values for a custom conversion routine:

International Developer’s Guide 41

Character set conversion in SQL Server releases prior to 4.9

Table 4-2: Return values for a custom conversion routine

Return value

Indicates

CS_SUCCEED

The conversion is successful.

CS_TRUNCATED

The conversion resulted in truncation.

CS MEM_ERROR

A memory allocation failure has occurred.

CS EBADXLT Some characters could not be converted.

CS_ENOXLT The requested conversion is not supported.

CS EDOMAIN The source value is outside the domain of legal values for
the datatype.

CS EDIVZERO Division by zero is not allowed.

CS_EOVERFLOW

The conversion resulted in overflow.

CS_EUNDERFLOW

The conversion resulted in underflow.

CS_EPRECISION

The conversion resulted in loss of precision.

CS ESCALE Anillegal scale vaue was encountered.

CS_ESYNTAX The conversion resulted in avalue that is not syntactically
correct for the destination type.

CS ESTYLE The conversion operation was stopped due to astyle error.

Installing a custom conversion routine

An application callscs_manage_convert toinstall acustom conversion routine.
For information on cs_manage_convert, see the Open Client and Open Server
Common Libraries Reference Manual.

Character set conversion in SQL Server releases prior

to 4.9

42

Pre-release 4.9 SQL Servers do not perform character set conversion. If your
client application communicates with a pre-release 4.9 SQL Server but uses a
different character set from the server, international characters may not be

represented correctly.

To solve the problem, you can:

e Change your client application’s character set to match that of the SQL

Server, or

Open Client and Open Server

CHAPTER 4 Coded Character Set Conversion Support

e Install custom character set conversion routines using cs_manage_convert
and call cs_convert to convert the data before sending it to the server.

Mainframe support

Mainframe systems commonly use run-encoded character encoding, which
provides escapes into other character encoding within asingle character string.

Open Client/Server products do not support this mechanism.

International Developer’s Guide 43

Mainframe support

44

Open Client and Open Server

CHAPTER 5

Quick start

International Developer’s Guide

Editing the Locales File

This chapter describes the locales file and explains how to changeit.
Topic
Quick start
When to edit the localesfile
Localesfile sections and entries
Editing the localesfile

Thelocalesfileis named locales.dat and resides in the locales
subdirectory of the Sybase directory tree. For more information on the
Sybase directory tree, see Appendix B, “Directories and Files Related to
Internationalization.”

This section summarizes the process of adding or changing alocale
definition. For more detailed information on the locales file and how to
edit it, read the remainder of the chapter.

To add or change alocale definition:

1 Makeacopy of thelocalesfile (locales.dat), found in the locales
directory, in case problems occur with the edited version.

2 Editthelocaesfile: Add or change the desired entriesin the
appropriate platform-specific section.

3 Update localization environment variables (LC_ALL,LC CTYPE,
LC MESSAGE, LC TIME, LANG) as appropriate.

4 If you have added anew locale name and you want existing
applications to use thisnew namein cs_locale calls, edit and
recompile the applications as appropriate.

45

When to edit the locales file

When to edit the locales file

If the predefined locales file entries do not meet your needs, you can either
change them or add entries that define new locale names. For example, you
may want to edit the locales file to do the following:

e Changethelanguage, character set, or collating sequence specified in a
locale entry.

e Add locale definitions, such asthose needed for new language modules.

» Match locale names used by non-Sybase software. For example, one
Sybase predefined locale nameis “fr”:

locale = fr, french, iso_1

If anon-Sybase application requiresthe LC_ALL environment variableto
have avalue of “french” and you want your Open Client/Server
applicationsto use LC_ALL to localize with thislocales file entry, you
need to add anew entry or change the locale name specified in the existing
entry asfollows:

|l ocale = french, french, iso_1

Locales file sections and entries

Thelocalesfile resides in the Sybase rel ease directory under the locales
subdirectory.

The localesfile contains:
e Standard sections (for more information, see Table C-2 on page 85)

» Platform-specific sections containing locale definition entries

Locale definition entries

46

The locales file has platform-specific sections, each of which contains
predefined locale definition entries. These entries vary by platform, but all
sections include an entry defining a“default” locale.

Local e definition entries have the form:

| ocal e = | ocal e_nane, |anguage_nane, charset_nane

Open Client and Open Server

CHAPTER 5 Editing the Locales File

[, sortorder _nane]
where:

* locale_nameisthe name of the locale definition. locale nameisusualy
vendor-specified, based on POSIX terminology. Comments at the end of
the localesfile list POSIX values for locale names.

e, (comma) isthelist separator character for thefile.

* language name isthe subdirectory name by which Sybase products
recognize the language.

e charset_nameis the subdirectory name by which Sybase products
recognize the character set.

» sortorder_name isthe file name by which Sybase products recognize the
collating sequence. sortorder_name is optional. If not specified, Open
Client/Server products use a binary collating sequence.

Thefollowingloca esfileentry specifiesaFrenchlocale. Because no sort order
is specified, the default sort order “binary” will be used with thislocale:

| ocale = fr.FR 88591, french, iso_1

Locales file example

[ner]
; local
| ocal e
| ocal e
| ocal e
| ocal e
| ocal e
| ocal e
| ocal e
| ocal e
| ocal e
| ocal e
| ocal e
| ocal e
| ocal e
| ocal e
| ocal e

L 1 1 1 T 1 1 Y 1 O 1 A N | B 0]

Thefollowing fragment illustrates some platform-specific sectionsin alocales
file

= default, japanese, eucjis

en,

us_english, iso_1

en_US, us_english, iso_1
en_US. 437, us_english, cp437
en_US. 850, us_english, cp850
en_GB, us_english, iso_1
en_GB. 437, us_english, cp437
en_@B. 850, us_english, cp850
en_AU, us_english, iso_1
en_AU. 437, us_english, cp437
en_AU. 850, us_english, cp850
j apan, japanese, eucjis

fr,

french, iso_1

fr_FR 437, french, cp437
fr_FR 850, french, cp850
fr_BE, french, iso_1

International Developer’s Guide a7

Editing the locales file

wi n3]

[NT]

| ocal e
| ocal e
| ocal e
| ocal e
| ocal e
| ocal e
| ocal e
| ocal e
| ocal e
| ocal e
| ocal e
| ocal e
| ocal e
| ocal e
| ocal e
| ocal e
| ocal e

| ocal e
| ocal e
| ocal e
| ocal e

| ocal e
| ocal e
| ocal e
| ocal e

fr_BE. 437, french, cp437
fr_BE. 850, french, cp850
fr_CA french, iso_1
fr_CA 850, french, cp850
fr_CH french, iso_1
fr_CH. 437, french, cp437
fr_CH. 850, french, cp850
de, german, iso_1

de_DE. 437, german, cp437
de_DE. 850, german, cp850
de_CH, german, iso_1
de_CH. 437, gernman, cp437
de_CH. 850, gernman, cp850
de_ AT, german, iso_1
de_AT. 437, german, cp437
de_AT. 850, german, cp850

defaul t,

us_english, iso_1

enu, us_english, cpl252
fra, french, cpl252
deu, german, cpl252

defaul t,

us_english, cpl252

enu, us_english, cpl252
fra, french, cpl252
deu, german, cpl252

defaul t,

us_english, cpl252

Editing the locales file

48

Before editing the localesfile:

Review the entrieslisted for your platform to seeif asuitableentry already
exists. If so, you do not have to edit the localesfile.

Make a backup copy of the original localesfile, in case problems occur

with the edited version.

Open Client and Open Server

CHAPTER 5 Editing the Locales File

Adding or changing entries
To add a new entry to the locales file or to change an existing entry:
1 Chooseavauefor locale name.

locale_name can have any value. Sybase recommends names of the form
language.territory.

2 Determine the value to use for language_name.

When a Sybase language module is installed, a subdirectory for the
language is created in the local essmessage directory of the Sybase
directory tree. language _name must correspond to this subdirectory’s
name.

3 Determine the value to use for charset_name.

When a Sybase language module is installed, subdirectories for each
supported character set are created in the charsets directory of the Sybase
directory tree. charset_namemust correspond to one of these subdirectory
names.

4 Determine the value to use for sortorder_name (if you want a sort order
other than binary).

The charsets/charset_name subdirectory contains the sort order (*.srt)
filesfor the character set. sortorder_name must correspond to one of these
file's names (without the .srt).

5 Inthe appropriate platform-specific section of the localesfile, typein or
change the appropriate entry.

After you make the change:

e Update localization environment variables (LC_ALL, LC CTYPE,
LC MESSAGE, LC TIME, LANG) as appropriate.

e |f you have added a new locale name and you want existing applications
to usethisnew namein cs_locale calls, edit and recompilethe applications
as appropriate.

Deleting entries

Itisnot necessary to delete entries from the localesfile, evenif applicationsno
longer usethem. If you decideto delete an entry, make sure no application uses
it.

International Developer’s Guide 49

Editing the locales file

50 Open Client and Open Server

CHAPTER 6

Quick start

International Developer’s Guide

Creating or Changing Collating
Sequences

This chapter explains how to create and change collating sequence (sort
order) files.

Topic

Quick start

About collating sequences

When to create a custom collating sequence file

About collating sequence files

Creating a custom collating sequence file

Collating sequence file example

This section summarizes the process of creating and changing sort order
files. For more detailed information, read the remainder of the chapter.

To create or change a sort order file:

1 Copy one of the shipped *.srt files and rename it, keeping the .srt
suffix.

2 Edit the newly created file, changing or adding entries as follows:

» Specify general entries for the [sortorder] section, including
“class,” “id,” “menuname,” “charset,” “preference,” and
“description.”

e Listligatures, using the entry form “lig = value.” Group ligature
entries before character entries.

e List al the character set’s characters and glyphsin the desired
primary sort order, using the entry form “char = value.”

51

About collating sequences

e For the secondary sort order, add values horizontally to the primary
sort order entries, using the entry form “char = valuel, value2, ..."

e For case-insensitive sorting, put equal signs between uppercase and
lowercase counterparts.

3 Savethe new .srtfilein the charsets directory under the charset name
subdirectory.

4 Edit localesfile entries, as appropriate, to refer to the new collating
sequencefile.

About collating sequences

Definitions

52

The order in which a system sorts charactersis called its collating sequence or
sort order.

Collating sequence definitions are built on top of character set definitions, but
languages that use the same character set can order characters differently. For
example, in Spanish “Co” comes before“Cho”, because“ Ch” isconsidered to
be asingle letter; in English “Cho” alphabetically precedes“Co”.

Ordering conventions can also vary between languages for letter-diacritic
combinations. For instance, “A” might come after “z”, even though “a’
(without diacritics) comes before “b”.

This section discusses some common considerations in defining collating
sequences, but it is not intended to be comprehensive. Please refer to general
references on collating sequences for more information.

If you are unfamiliar with Sybase collating sequences, the following
definitions may be useful:

e Thecollating sequence’'s primary sort order isthe vertical sequence of
lines beginning with “char=".

e A primary entry’s secondary sort order isthe horizontal sequence of
characterson asingle “char = line.

Open Client and Open Server

CHAPTER 6 Creating or Changing Collating Sequences

Types of sorts

There are many ways to sort characters. An Open Client/Server collating
sequence file can use one or more of the types of sorts listed in the following

table:

Table 6-1: Types of sort orders

Type of
sort

Description

Single-
level

Characters sort according to their primary sort order value.

A character that appears on aline higher in the vertical list of “char="
entries always sorts before a character that appearson alinelower inthe
list.

Two-
level

Characters sort according to their primary and secondary sort order
values. If all the charactersin two strings have the same primary sort
values, then the characters secondary sort values are used to break the
ordering tie.

If two characters appear on the same*“ char =" line, the onefurthest to the
left sorts first.

For example, suppose a sort order file contains:

char =AaA 4

char =B,b

char =C,c,C¢

Some strings using these characters would sort as follows:

ABC

ABC

abc

acb

ach

Because the strings ABC, ABC, and &bc have the same primary values,
they are ordered by their secondary sort values. acb and & 138#;cb are
similarly sorted according to secondary values. abc is ranked before ach
because b has an earlier primary value than c.

One-to-
two

A single character that is sorted as multiple charactersis called a
ligature. For example, the German character “[3" is sorted as “ss”.

Two-to-
one

A multiple character string that is sorted as one character is called asort
double. For example, the Spanish character string “ch” is sorted as one
character that comes between “c” and “d".

International Developer’s Guide

53

When to create a custom collating sequence file

Determining case sensitivity

Most collating sequencefileslist all variants of asingle letter on one*“ char ="
line.

A case-sensitive collating sequence lists uppercase and lowercase variants of a
letter in the order in which they are to be sorted and separates them with a
comma. For example:

char = 0x41, 0x61, 0xC0, OxEQ, 0xC1, OxE1, 0xC2, OxE2, OxC3, OxE3
;A, a, A-grave, a-grave, A-acute, a-acute, A-tilde, a-tilde,
;A-di aeresis, a-diaeresis

char = 0x42, 0x62
;letter B, b

A case-insensitive collating sequence lists the uppercase and lowercase
variants of aletter in any order and joins them with an equals sign. For
example:

char = 0x41=0x61, 0OxC0=0xEQ, OxC1=0xE1, 0xC2=0xE2, 0xC3=0xE3
;A, a, A-grave, a-grave, A-acute, a-acute, A-tilde, a-tilde,
;A-di aeresis, a-diaeresis

char = 0x42=0x62
;letter B, b

When to create a custom collating sequence file

On most platforms, Open Client/Server products include the following
standard collating sequencefiles:

54 Open Client and Open Server

CHAPTER 6 Creating or Changing Collating Sequences

Table 6-2: Commonly-supplied collating sequences

File name Description

binary.srt Ordering corresponds to the internal binary value for each
character. binary.srt contains the entry “binary = true”.

No localization file is necessary for this sort order.

dictionary.srt Dictionary order, case sensitive. Primary lexicographic ordering
with uppercase letters before their lowercase counterparts.
Secondary ordering for accented characters.

The file name varies according to language. For example, the
Spanish versionis called espdict.srt.

noaccents.srt Dictionary order, accent insensitive. Intermingles words that begin
with an unaccented letter and words that begin with the letter’s
accented counterparts.

The file name varies according to language. For example, the
Spanish version is called espnoac.srt.

nocase.srt Dictionary order, not case sensitive. Intermingles words that begin
with an uppercase |etter with words that begin with the lowercase
counterpart.

The file name varies according to language. For example, the
Spanish version is called espnocs.srt.

nocasepref.srt Dictionary order, not case sensitive with preference for uppercase
only when there is alowercase equivalent.

The Sybase Character Sets CD contains other sort orders for specific regions,
such as Turkey, Russia, and Greece.

If alanguage you are using has further collating sequence requirements, you
can create a custom collating sequence file according to the guidelinesin
“About collating sequence files’ on page 55.

About collating sequence files

Sybase collating sequence files are named *.srt and are located in the
charsets/charset_name/ directory. All collating sequence files use standard
Sybase external localization file syntax.

For more information on localization file syntax, see Appendix C, “Externa
Localization File Syntax.”

International Developer’s Guide 55

About collating sequence files

Collating sequence file sections and entries
All collating sequence files include the following elements:

e Thecomment ling, copyright section, and file format section, described in
Table C-2 on page 85.

e General entries, described in Table 6-4 on page 59.

e Ligature entries, described in step 3 under “ Creating a custom collating
sequence file” on page 58.

e Character entries, described in steps 4, 5, 6, and 7 under “Creating a
custom collating sequence file” on page 58.

Writing characters in a collating sequence file
There are three ways to write characters in a collating sequence file entry:

e By typing the hexadecimal character encoding for the character. For
example:

char = 0x20 ;() space
char = 0x3D ; (=) equals sign

e By typing the character, quoted. For example:

char = “ * ;() space
char = “=" ;(=) equals sign

e By typing the character itself. For example:

char = A a
char = B, b

Thefollowing table classifies characters according to how they can be written
in collating sequence file entries:

56 Open Client and Open Server

CHAPTER 6 Creating or Changing Collating Sequences

Table 6-3: Writing characters in a collating sequence file entry

Can be Can be
written as Can be typed in
hexadecimal typedinwith without
Type of character numbers? gquotes? guotes?
Non-printable charactersand ~ Yes No No
characters that do not appear
on the keyboard
space (* ")
equalssign (“=")
comment character Yes Yes No
escape character
list separator character
backdlash ("\") Yes Yes, but must No
be doubled
inside of
quotes ("\\")
All other characters Yes Yes Yes

The preference keyword and the order by clause

A collating sequencefilethat is not case sensitive can use apreference entry to
indicate whether lettersto theleft of the equal sign should sort before lettersto
theright of theequal sign when sorting output generated asthe result of aselect
statement with an order by clause.

For example, suppose that a collating sequence file contains the following
entries:

char = A=a, A=a4
char = B=b

If preference=true, then order by output will sort as follows:

Aab
aAb
Aab
If preference=false, then order by output could sort either as:

aAb
Aab
Aab

or

International Developer’s Guide 57

Creating a custom collating sequence file

Aab
aAb
Aab
The preference keyword:
e Appliesonly to sort ordersthat are not case-sensitive
e Affectsonly sortsthat occur asthe result of an order by clause

If “preference=true,” then charactersto the left of the equal sign sort first. If
“preference=false,” then characters to the left of the equal sign may not sort
first.

The preference keyword hasa default value of “true.” That is, if acollating file
does not contain apreference entry, order by sorts give precedenceto characters
to the left of the equal sign.

Most typically, preference = true means that uppercase characters sort before
lowercase characters.

Creating a custom collating sequence file

58

This section explains how to create a custom collating sequence file. Before
you begin, please read this entire section and familiarize yourself with the
collating sequence files included with your Open Client/Server products.

“Collating sequence file exampl€” on page 62 illustrates a collating sequence
file

Appendix C, “External Localization File Syntax” provides general
information about localization file syntax.

To create or change a collating sequence file;

1 If youplantouseashipped .srt fileasamodel, be sureto copy and rename
it so you do not overwrite the original file. The new file's name must
includethe .srt suffix. In addition, adescriptive name hel psto associate the
file with the language it supports.

2 Determinethe values for general entries. The following table describes
these entries:

Open Client and Open Server

CHAPTER 6 Creating or Changing Collating Sequences

Table 6-4: .srt file general entries

Entry

keyword Description Required Entry value

class The sort order class. Yes 0x01d
Currently, class 1 for 8-
bit character setsisthe
only supported class.

id A unique hexadecimal Yes For user-defined collating
number that identifiesthe sequences, ID must have a
collating sequence. value of 0xC9 through

OXFF.

Sybase reserves
hexadecimal 0x00 through
0xC8.

menuname Thenameof thecollating Yes A string no longer than 64
sequenceasitisto appear charactersisrecommended.
in the sybinit program. sybinit truncates strings to

64 characters.
Thisvalue is user-defined.

name Thenameof thecollating No A string no longer than 30
sequence. characters.

Thisvalue is user-defined.

charset The character set with Yes The value must match a
which this collating character set subdirectory
sequence fileis intended name in the Sybase
for use. directory tree.

Thisis also the name of
thedirectory inwhichthis
collating sequencefile
will reside.

preference For sort ordersthat are No false — no preference.
not case-sensitive, true — preference for
whether to give characters to the | eft of the
preference to characters equalssign. A value of
to the left of the equals “true’ has a greater
sign when sorting output performance impact than
generated by aselect “false”
statement with an order - R
by clause. The default is “true.

description Phrasethat describesthe No A string no longer than 255

collating sequence.
Stored with the collating
sequence.

characters.
Thisvalueis user-defined.

International Developer’s Guide

59

Creating a custom collating sequence file

60

3

Determine whether there are any ligatures. A ligatureisasingle character
that is sorted as multiple characters. If there are ligatures:

e Placetheligature (“lig") entriestogether, preceding the “char”
entries.

e Include both the uppercase and lowercase forms of aligature, if
applicable.

The syntax for a case-sensitive ligatureis:
lig = value, after characters ;case-sensitive sort
where:

e charactersisastring representing the characters after which the
ligature will sort.

» valueisthe hexadecimal encoding for the ligature character, or the
typed or quoted ligature character.

The syntax for aligature that is not case-sensitive:

lig = valuel=val ue2, after characters ;case-
insensitive sort

where:

e valuel and value2 are the hexadecimal encodings for the uppercase
and lowercase ligature characters, or the typed or quoted ligature
characters.

e charactersisastring representing the characters after which the
ligature will sort.

The following example shows ligature entriesin a case-insensitive
collating sequencefile for SO 8859-1:

lig = OxC6, after AE ;diphthong AE, A with E
lig = OxE6, after ae ;diphthong ae, a with e
char = 0x41, 0x61, 0xC0, OxEOQ, OxC1, OxE1, 0xC2, OxE2x
;varieties of letter A
char = 0x42,0x62 ;B, b

Verticaly list al the character entriesfor the sort order. Thisvertical listis
the primary sort order.

The syntax for a character entry is:

char = val ue

Open Client and Open Server

CHAPTER 6 Creating or Changing Collating Sequences

where value isthe hexadecimal code set encoding for the character, or the
typed or quoted character.

For example:
char = 0x41 ;1SO 8859-1 code set.
5 If applicable, add secondary sort order information to the file as follows:

» For acase-sensitive sort order, put the lowercase variant to the right
of the uppercase character (if youwant the uppercase character totake
precedence). Separate the characters with the list separator character.

» For asort order that is not case-sensitive, put equal signs between
each uppercase character and its lowercase equivalent (including
accented characters).

* Put acharacter and its variantsin relative order to each other. For
example, the French “€" goesto theright of “€’. Make sure these
characters are not ligatures or separate primary sort order entries.
Separate variants with the list separator character.

Thefollowing exampl e shows secondary sort order informationfor aLatin
alphabet, case-sensitive sort order:

char = 0x41, 0x61, 0xC0, OxEOQ, 0xC1, OxE1, 0xC2, OxE2,
0xC3, OxE3, OxC4, OxE4, 0xC5, OXE5
A, a, A-grave, a-grave, A-acute, a-acute,
iA-circunflex, a-circunflex, A-tilde, a-tilde,
;A-di aeresis, a-diaeresis, Aring, a-ring

char = Ox4E, Ox6E, 0xD1, OxF1 ; N, n, N-tilde, n-tilde

6 Determinewhether there are any sort doubles. A sort double or digraphis
apair of charactersthat is sorted as asingle character. If there are any sort
doubles:

e List each sort double as a separate “char” entry.

* For case-sensitive sorting, put al permutations of the sort doublein
the desired sort order.

The syntax for a sort doubleis:
char = val uelval ue2

where valuel isthefirst character in the sort double pair, and value2 isthe
second character in the pair.

International Developer’s Guide 61

Collating sequence file example

If valuel and value2 are written as hexadecimal numbers, use aleading
‘Ox” with valuel but not with value2. For example:

char = 0x4348, 0x4368, 0x6348, 0x6368 ; CH, Ch, cH, ch
valuel and value2 can also be typed or quoted characters. For example:
char = CH, Ch, cH ch
or
char = "CH', "Ch", "cH', "ch"

The following example shows the placement of the Spanish sort double
“ch” in acase-sengitive .srt filefor theiso_1
(1SO 8859-1) character set:

char = 0x41, 0x61, 0xC0, OxEQ, OxC1, OxEl, OxC2, OxE2
;varieties of letter A

char = 0x42,0x62 ;B, b

char = 0x44, 0x64, 0xC7,0xE7 ;C, ¢, Ccedilla, c-
cedilla

char = 0x4348, 0x4368, 0x6348, 0x6368 ; CH, Ch, cH, ch

7 Include al other charactersin the vertical list, such as non-printable
characters, characters not on akeyboard, symbols, and characters related
tolinguistic style. Use“char " or “lig” entries, as appropriate. Be sureto
group al “lig” entries together before “char” entries.

For information on how to write nonal phabetic characters in a collating
sequence file, see Table 6-3 on page 57.

8 Savethe new .srt filein the charsets directory under the charset name
subdirectory.

9 Edit localesfile entries, as appropriate, to refer to the new collating
sequence file. For more information, see Chapter 5, “Editing the Locales
File”

Collating sequence file example

This section contains an example of a case-sensitive collating sequencefile.

Actua collating sequence files are included in your Sybase directory tree as
charsets/charset_name/* .srt.

62 Open Client and Open Server

CHAPTER 6 Creating or Changing Collating Sequences

; sem-colon is the comment character
[sortorder]

; @#)dictionary.srt

; Sort Order Overview

; Based on the I1SO 8859-1 ("Latin 1") character set, this sort order is
; a case-sensitive ordering. Upper case letters always sort before their
; lower case counterparts.

; It is useful for at l|east the English, French and Gernman | anguages,
; and may work for nmany others.

Li gatures, Sort-Doubles, etc.:
; AE, ae ligatures
; German sharp-s ligature with "ss"

; The ordering:

; first all non-al phanuneric characters in binary order

; followed by all numeric digits

; then all al phabetic characters used in English, French and Gernan
; and ended by all al phabetic characters not used in English, French
; or German

class = 0x01 ; Cass ‘1" sort order
id=0x33; Unique ID# (51) for the sort order
nane = dictionary_iso_1

menunane = "CGeneral purpose dictionary ordering."
charset = iso_1
description = "CGeneral purpose dictionary sort order for use with several

West er n- Eur opean | anguages i ncl udi ng English, French, and German. Uses the

| SO 8859-1 character set and is case-sensitive."
; ligatures for English, French, and Gernan

lig = OxC6, after AE ;AE ligature

lig = OxE6, after ae ;ae ligature

lig = OxDF, after ss ;small gernman letter sharp s
; Control characters

char = 0x01 ; (SOH) start of heading

char = 0x02 ; (STX) start of text

char 0x03 ; (ETX) end of text

International Developer’s Guide

63

Collating sequence file example

char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char

AL

0x04
0x05
0x06
0x07
0x08
0x09
Ox0A
0x0B
0ox0C
0x0D
Ox0E
OxO0F
0x10
Ox11
0x12
0x13
0x14
0x15
0x16
0x17
0x18
0x19
Ox1A
0x1B
0x1C
0x1D
Ox1E

; (EOT) end of transm ssion
; (ENQ enquiry

; (ACK) acknow edge

; (BEL) bel

; (BS)
; (HT)
; (LF)
; (V1)
» (FF)
y (CR
(SO
;(S)

backspace

hori zontal tab

new ine, or line feed
vertical tab

form feed

carriage return

shift out

shift in

; (DLE) data |ink escape

; (DC1l) device control 1

; (DC2) device control 2

; (DC3) device control 3

; (DC4) device control 4

; (NAK) negative acknow edge
; (SYN) synchronous idle

; (ETB) end transm ssion blk
; (CAN) cancel

; (EM end of medium

; (SUB) substitute

; (ESC) escape

i (FS) file separator

; (GS) group separator

i (RS)

record separator

Ox1F ; (US) unit separator

non- al phanuneric characters

i ncl udi ng puntuati on.

These are sorted by their numerical ordering, based on the

| SO 8859-1 standard,

char
char
char
char
char
char
char
char
char
char
char
char
char

64

0x20
0x21
0x22
0x23

0x24 ;

0x25
0x26
0x27
0x28
0x29
Ox2A
0x2B
0x2C

space
excl amati on nmark
quot ati on mark
nunber sign

dol lar sign
percent sign
anper sand

apost rophe

| eft parenthesis
ri ght parenthesis
asteri sk

pl us sign

comma

for clarity and consi stency

Open Client and Open Server

CHAPTER 6 Creating or Changing Collating Sequences

char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char

ful

col

til

undefi
undefi
undefi
undefi
undefi
undefi
undefi
undefi
undefi
undefi
undefi
undefi
undefi
undefi
undefi
undefi
undefi
undefi
undefi
undefi
undefi
undefi
undefi
undefi
undefi

hyphen,

m nus sign

| stop

sol i dus

on

)
)
)
)
;) sem col on
)
)
)
)

de
or
ned
ned
ned
ned
ned
ned
ned
ned
ned
ned
ned
ned
ned
ned
ned
ned
ned
ned
ned
ned
ned
ned
ned
ned
ned

International Developer’s Guide

| ess-than sign
equal s sign
greater-than sign
question mark

@ comercial at

) left square bracket
) reverse solidus

) right square bracket
) circunflex accent

) low line

) grave accent

) left curly bracket
) vertical line

) right curly bracket
)
|

r ubout

65

Collating sequence file example

char = 0x99 ;
char = O0x9A ;
char = 0x9B
char = 0x9C
char = 0x9D
char = Ox9E ;
char = Ox9F ;
char = 0xA0
char = OxAl
char = 0xA2
char = 0xA3
char = 0xA4
char = 0xA5
char = 0xA6
char = OxA7
char = 0xA8
char = 0xA9
char = OxAA
char = O0xAB
char = 0xAC
char = 0xAD
char = OxAE
char = OxAF
char = 0xBO
char = 0xB1
char = 0xB2
char = 0xB3
char = 0xB4
char = 0xB5
char = 0xB6
char = 0xB7
char = 0xB8
char = 0xB9
char = OxBA
char = 0xBB
char = 0xBC
char = 0xBD
char = OxBE
char = OxBF
char = 0xD7
char =

; Digits
char =

char =

char =
66

0x30 ;(0) digit zero
0x31 ;(1) digit one
0x32 ;(2) digit two

undefi
undefi
;undefi
;undefi
;undefi
undefi
undefi

; no- break space
inverted exclamation mark

;cent si

ned
ned
ned
ned
ned
ned
ned

gn

; pound sign

;currency sign

;yen sign

; broken

; par agr aph si gn,

bar

;diaeresis

;copyright sign
;fem nine ordina
;left angle quotation mark

;not sign

;soft hyphen
;registered trade mark sign

,macron

;ring above or degree sign
;plus/ mnus (+/-) sign
;superscript 2
;superscript 3

;acute accent

;mcro sign
;pilcrow or

;mddle

;cedilla
;superscript 1

; mascul i ne ordi nal
;right angle quotation mark
;vul gar fraction one quarter
;vulgar fraction one half
;vulgar fraction three quarter
;inverted question mark

;mul tiplication sign

OxF7 ;division sign

dot

section sign

par agr aph sign

Open Client and Open Server

CHAPTER 6 Creating or Changing Collating Sequences

char = 0x33 ;(3) digit three
char = 0x34 ;(4) digit four

char = 0x35 ;(5) digit five
char = 0x36 ;(6) digit six

char = 0x37 ;(7) digit seven
char = 0x38 ;(8) digit eight
char = 0x39 ;(9) digit nine

; Latin Al phabet

char = 0x41, 0x61, 0xC0, OxEO, OxC1, OxE1l, 0xC2, OxE2, 0xC3, OxE3, O0xC4, OxE4, 0xC5, OxE5
; A, a, A-grave, a-grave, A-acute, a-acute, A-circunflex,

a-circunflex, A-tilde, a-tilde, ;A-diaeresis, a-diaeresis,

; A-ring, a-ring

char

= 0x42, 0x62 ;letter B, b
char = 0x43, 0x63, 0xC7, OxE7
; letters C, ¢, CGcedilla, c-cedilla
char = 0x44, 0x64 ;letter D, d
char = 0x45, 0x65, 0xC8, OxE8, 0xC9, OxE9, OxCA, OxEA, 0xCB, OxEB
; E, e, E-grave, e-grave, E-acute, e-acute, E-circunflex,
; e-circunflex, E-diaeresis, e-diaeresis
char = 0x46, 0x66 ;letter F, f
char = 0x47, 0x67 ;letter G ¢
char = 0x48, 0x68 ;letter H h
char = 0x49, 0x69, OxCC, OxEC, O0xCD, OxED, OxCE, OxEE, OxCF, OxEF
; I, i, I-grave, i-grave, l-acute, i-acute, |-circunflex,
; i-circunflex, |-diaeresis, i-diaeresis
char = Ox4A, Ox6A ;letter J, j
char = 0x4B, 0x6B ;letter K, k
char = 0x4C, 0x6C ;letter L, |
char = 0x4D, 0x6D ;letter M m
char = Ox4E, O0x6E, 0xD1, OxF1

;letters N, n, N-tilde, n-tilde
char = Ox4F, Ox6F, 0xD2, 0xF2, 0xD3, 0xF3, 0xD4, 0xF4, 0xD5, 0xF5, 0xD6, OxF6, 0xD8, 0xF8
; O o, Ograve, o-grave, O acute, o-acute, O-circunflex,
; o-circunflex,Otilde, o-tilde, O diaeresis, o-diaeresis,
; O stroke, o-stroke
char

= 0x50, Ox70 ;letter P, p
char = 0x51, 0x71 ;letter Q ¢
char = 0x52, 0x72 ;letter R r
char = 0x53, 0x73 ;letter S, s
char = 0x54, 0x74 ;letter T, t
char = 0x55, 0x75, 0xD9, 0xF9, 0xDA, OxFA, 0xDB, 0xFB, 0xDC, OxFC
; U u, Ugrave, u-grave, U acute, u-acute,
; U-circunflex, u-circunflex, U diaeresis, u-diaeresis
char = 0x56, 0x76 ;letter V, v
char = 0x57, Ox77 ;letter W w

International Developer’s Guide 67

Collating sequence file example

char = 0x58, 0x78 ;letter X, Xx
char = 0x59, 0x79, 0xDD, OxFD, OxFF

; letters Y, y, Y-acute, y-acute, y-diaeresis

char = Ox5A, Ox7A ;letter Z, z

; Al pha characters not used in English, French or Gernan:
letter Eth, small letter eth

char = 0xD0, OxFO ;icelandic capital
char = OxDE, OxFE ;icelandic capital

68

| etter Thorn,

small letter thorn

Open Client and Open Server

aprenpix o What's New in This Release

This appendix describes the changes and additions to Open Client/Server
librariesthat arerelated to internationalization features, as of version 11.1
and later:

* Open Client/Server products support the Unicode standard

e Open Client/Server products support custom character set conversion
routines

CS-Library changes

The following table summarizes changes to CS-Library routines that are
related to localization:

Table A-1: New and changed CS-Library routines
New or

Routine changed Description

cs_convert Changed Can now convert from single-byte to double-
byte character setsand vice versa. Loss of data
may occur.

cs_manage_convert New Allows users to manage custom character set
conversion routines.

For the cs_manage_convert reference page,
seethe Open Client and Open Server Common
Libraries Reference Manual.

Note Theexisting cs_set_convert routineis
used for installing and retrieving datatype
conversion routines, not routines related to
locales.

cs_conv_mult New Returns the conversion multiplier for two
character sets.

International Developer’s Guide 69

Server-Library changes

Server-Library changes

The following table summarizes changes to Server-Library routines that are
related to localization:

Table A-2: New and changed Server-Library routines

New or
Routine Changed Description

srv_descfmt Changed Correctly reflects the length that data will be after
character set conversion has occurred.

For example, if aclient sends 10 single-byte
charactersto a server that is using a double-byte
character set, the maxiength field of the

CS DATAFMT structure describing the data will be
set to 20, not 10.

All libraries: CS_NULLTERM length parameter

Many Client-Library and Server-Library routines allow the use of
CS_NULLTERM to indicate that astring is null terminated.

Some character sets, however, do not support unambiguous null terminated
strings. Do not use CS_NULLTERM with character sets that do not support
null terminators.

Thefollowing table lists CS-Library, Client-Library, and Server-Library
routines that allow the use of CS_NULLTERM:

Table A-3: Open Client/Server routines that use CS_NULLTERM

Library Routine Description
CS-Library cs_objects Save, retrieve, or clear objects and data
associated with them.
cs_strbuild Construct native language message strings for
character sets without NULL bytes.
cs_stremp Compare two strings using a specified sort
order.

70 Open Client and Open Server

APPENDIX A What's New in This Release

Library Routine Description
Client- ct_connect Connect to a server.
Library ct_cursor Initiate a cursor command.
ct_debug Manage debug library operations.
ct_dyndesc Perform operations on adynamic SQL
descriptor area.
ct_labels Define a security label or clear security labels.
ct_options Set or retrieve the values of server options.

International Developer’s Guide

ct_remote_pwd

Defineor clear passwordsto be used for server-
to-server connections.

71

All libraries: CS_NULLTERM length parameter

72

Library Routine Description
Server- srv_config Set server configuration parameters.
Library srv_convert Convert data from one datatype to another.

srv_createmsgq

Create a message queue.

Srv_createmutex

Create a mutual exclusion semaphore.

srv_define_event

Define a user event.

srv_deletemsgq

Delete a message queue.

srv_deletemutex

Delete a mutex created by srv_createmutex.

srv_describe

Describe aresult row column and its data
source.

srv_envchange

Notify the client of an environment change.

srv_getobijid

Look up the object ID for a message queue or
mutex with a specified name.

srv_getobjname

Get the name of amessage queue or mutex with
an identifier.

srv_init Initialize an Open Server.
srv_log Write amessage to the Open Server log file.
srv_options Send option information to a client or receive

option information from aclient.

srv_paramnumber

Return the position number of a parameter for
the current remote procedure call.

srv_regdefine

Initiate the process of registering a procedure.

srv_regdrop

Unregister a procedure.

srv_reginit

Begin executing a registered procedure.

srv_regnowatch

Remove a client thread from the notification
list for aregistered procedure.

srv_regparam

Describe aparameter for aregistered procedure
being defined, or supply datafor the execution
of aregistered procedure.

srv_regwatch

Add aclient thread to the notification list for a
specified procedure.

srv_returnval

Define areturn value for a non-remote
procedure call.

srv_sendmsg

Send amessage to the client.

Srv_setustate

Set the user state field in the thread structure.
The registered procedures sp_ps and sp_who
display thisfield.

srv_tabname

Provide the name of the table(s) associated
with a set of browse mode results.

Open Client and Open Server

APPENDIX B

Overview

International Developer’s Guide

Directories and Files Related
to Internationalization

This appendix describes the Open Client/Server directories and files that
arerelated to internationalization and localization.

At runtime, Open Client/Server applications pick up localization
information from external files. Two directoriesin the Sybase release
directory contain thesefiles:

e Thelocalesdirectory contains:

« The message subdirectory, which contains localized error
messages for all products, organized by language name.

e Thelocalesfile, which mapslocale names to languages,
character sets, and collating sequences.

e Theglobal object identifiersfile, which maps global names for
objects such as character sets and languages to local platform-
specific names.

e The charsets directory contains:

e A subdirectory for each supported character set. Each
subdirectory contains sort and conversion files for the character
Set.

e The mnemonicsfile, which provides mnemonic strings for
replacing source Unicode, if necessary.

All Open Client/Server products include files to support at least one
language and one or more character sets and collating sequences.

73

The locales directory

During installation, these files are loaded into the Sybase release directory
structure in the correct locations.

Note Theinstallation process automatically loads any additional Open
Client/Server Language Module for connectivity into the Sybase release
directory in the correct locations.

The locales directory

The locales file

74

Thelocales directory contains:
¢ Thelocaesfile (locales.dat).

¢ The message directory, which contains alanguage name subdirectory for
each installed language. The language name subdirectories contain
localized messagefilesfor Open Client/Server products. At the minimum,
aninstallation receives a us_english subdirectory.

¢ Theglobal object identifiersfile (objectid.dat).

Thelocalesfile (locales.dat) provides platform-specific locale information in
a Sybase proprietary format. This file associates|ocale names with languages,
character sets and collating sequences.

The localesfile directs Open Client/Server applications to localization
information, but it does not contain actual localized messages or character set
information. Open Client/Server applications use the locales file when
determining what localization information to load.

For more information about the locaesfile, see Chapter 5, “ Editing the
Locales File.”

Open Client and Open Server

APPENDIX B Directories and Files Related to Internationalization

Localized message files

L ocalized message files contain product messages in a particular language.
These message files (the *.loc files in the locales/message/language_name
directories) enable Open Client/Server applications to generate messagesin a
variety of languages.

All Open Client/Server products include English (us_english) message files.
Your products may also include files to support additional languages.

If you purchase and install a new language module, the installation process
adds alanguage _name subdirectory containing message filesin the new
language.

Message file names sometimes vary by platform, but most resembl e the
following names:

e cdlib.loc — CS-Library messages

e ctlib.loc — Client-Library messages

e odib.loc — Server-Library messages

e blklib.loc — Bulk Library messages

e bcp.loc — Bulk Copy messages

e esgl.loc — Embedded SQL messages

All Open Client/Server message files use the Unicode UTF-8 character set.

Open Client/Server products convert messages from UTF-8 to other character
sets as needed.

The global object identifiers file

The global object identifiers file associates a unique global object identifier
with all local names that might be used for the object.

The global object identifiers fileisintended for Sybase internal use only.

The charsets directory

The charsets directory contains:

International Developer’s Guide 75

The charsets directory

e The mnemonics file (mnemonic.dat).

e A charset_name subdirectory for each character set. Each charset_name
subdirectory containsfiles related to a specific character set.

The mnemonics file

The mnemonics file, named mnemonics.dat, contains POSIX mnemonic
strings that can be used to replace unmappable source characters, if necessary,
during character set conversion.

The mnemonics file contains only UCS-2 <-> mnemonic string conversions.
Each Unicode mnemonic in the shipped mnemonicsfileis astring of
characters from the X PG4 Portable Character Set representing a Unicode
character.

How the mnemonics file works

The mnemonics file associates POSIX mnemonic strings with Unicode UCS-
2 character encodings. Becausethe mnemonic strings use X PG4 characters, the
strings are suitable for use in any destination character set.

The mnemonicsfileisused only if the conversion configuration file
(charset_name.cfg) for a destination character set specifies amode of
“MNEMONIC". If thisisthe case, then at conversion time the mnemonicsfile
isused as follows:

1 If asourcecharacter isfound to be unmappabl einthe destination character
set, Sybase software converts the source character to Unicode UCS-2.

2 Sybaselooks up the UCS-2 encoding in the mnemonics file and uses the
mnemonic string associated with it in the destination data stream.

3 If themnemonicsfile does not contain a suitable string, a Unicode UCS-2
hexadecimal string is used in the destination data stream.

Mnemonics file sections and entries

76

The mnemonics file contains:
e Standard sections

* A mnemonics section

Open Client and Open Server

APPENDIX B Directories and Files Related to Internationalization

The mnemonics section contains entries that associate UCS-2 encodings with
mnemonic strings.

Mnemonics section entries have the form:

mem = <mmem string> <UCS-2_encodi ng> coment

where:

<isignored.

mnem_string is a string of XPG4 characters representing the mnemonic

string.

> isthelist separator character for thefile.

UCS-2_encoding isthe UCS-2 encoding for a character.

comment is a comment string.

M nemonics section entries look somewhat different from entries in other
Sybase localization files. Thisis because Sybase uses standard POSIX
definitions in the mnemonicsfile.

Mnemonics file example

The following example shows a mnemonics file fragment:

International Developer’s Guide

[file format]

5

<uU0000>
<uU0001>
<uU0002>
<U0003>
<U0004>
<U0005>
<U0006>
<U0007>

version = 12.
escape =/
|ist_separator = >
[copyright]
copyri ght
[menoni cs]
mem = <NU>
mem = <SH>
mem = <SX>
mem = <EX>
mem = <ET>
mem = <EQ>
mem = <AK>
mmem = <BL>
mem = <BS>

<U0008>

= "Copyright"

NULL (NUL)

START OF HEADI NGS(SOH)
START OF TEXT (STX)

END OF TEXT (ETX)

END OF TRANSM SSI ON (EOT)
ENQUI RY (ENQ)
ACKNOW.EDGE (ACK)

BELL (BEL)

BACKSPACE (BS)

77

The charsets directory

Adding strings to the mnemonics file

Conversion files

The mnemonicsfilethat Sybase shipsdoesnot contain stringsfor all characters
in al character sets. If the mnemonics file does not contain a string that you
need, you can insert the string by typing it into the mnemonicsfile. Theftp site
unicode.org has information on new Unicode mnemonic strings as well as
updates to existing strings.

When clients and servers use different character sets, conversion between the
character setsisnecessary. Open Client/Server productsincludefilesto support
conversions for the Group 1 (Western European) character sets.

The conversion files for a character set include:

e A conversion description file, charset_name.cvt, which contains a user-
readable character set mapping table for a conversion.

» Aconversiontableloadingfile, charset_name.ctb. Thisfileisused during
Sybase’s internal table-driven conversion process. Aninterna program
generatesthisfilebased oninformationinthe Conversion Description File
(charset_name.cvt).

e A conversion configuration file, charset_name.cfg. This file contains
information on how the conversion process should proceed when
charset_name is the source character set.

The conversion configuration file

The conversion configuration filefor acharacter set specifies how conversions
to other character sets should take place. Among other things, it indicates
whether a conversion istable- or algorithm-driven.

For more information about the conversion process, see Chapter 4, “ Coded
Character Set Conversion Support.”

Conversion configuration file sections and entries

78

Conversion configuration files contain:
e Standard sections

* A conversion section

Open Client and Open Server

APPENDIX B Directories and Files Related to Internationalization

The conversion section contains entries that describe how conversion to a
particular character set should take place. Conversion section entries can
indicate either table-driven or algorithm-driven conversion.

Table-driven entries have the following form:

[conversi on]
convertto = dest_charset,

where:

tabl e, node, replacenent_char

e dest_charset isthe name of the destination character set.

e, (comma) isthelist separator character for thefile.

* Thetable keyword indicates that the conversion is table-driven.

* modeisthe conversion modeto use. It appliesto table-driven conversions
only. The following table lists the legal values for mode:

Table B-1: Coded character set conversion modes

Value

Description

MATCH

Shipped files
contain this
value.

The conversion process converts matching source and destination
values.

If the code for a source character isillegal or unmappable, the
conversion process uses the destination replacement character that
is defined in the conversion configuration file.

BESTGUESS

The conversion process converts matching and best-guess source
and destination values.

If the code for a source character isillegal or unmappable, the
conversion process uses the destination replacement character that
is defined in the conversion configuration file.

MNEMONIC

Converts matching source and destination values. If thereisno
match for a source value, the conversion process uses a Unicode
mnemonic string as the destination value. If thereis no suitable
mnemonic string, the conversion process uses a Unicode
hexadecimal string as the destination value.

If the code for a source character isillegal, the conversion process
uses the destination replacement character that is defined in the
conversion configuration file.

« replacement_char isahexadecimal (without “0x” prefix) encoding of the
destination replacement character to use during MATCH and
BESTGUESS mode conversions.

Algorithm-driven entries have the following form:

[conver si on]

International Developer’s Guide

79

The charsets directory

convertto = dest_charset, sys algorithm nultiplier
where:
e dest_charset isthe name of the destination character set.
e, (comma) isthe list separator character for thefile.

e Thesys_algorithm keyword indicates that the conversion uses a standard
Open Client/Server conversion algorithm.

» multiplier isaninteger value representing the conversion multiplier for the
conversion. This value indicates the maximum amount that string length
can increase during conversion.

Conversion configuration file example
The following example shows a conversion configuration file:

; Conversion Configuration File for iso_1 charset.
[conversi on]

convertto = utf8, table, MATCH, 3F
convertto = cp850, sys-algorithm 1
convertto = cp437, sys-algorithm 1
convertto = roman8, sys-algorithm 1
convertto = nac, sys-algorithm 1

Collating sequence files

The order in which a system sorts charactersis called its collating sequence or
sort order.

Open Client/Server products include files to support a variety of collating
sequences. These files can vary by platform but generally include the
following:

* binary.srt

» dictionary.srt
* noaccents.srt
* nocase.srt

* nocasepref.srt

If these files do not meet your needs, you can create a custom collating
sequence file. For information on how to do this, see “ Creating a custom
collating sequence file” on page 58.

80 Open Client and Open Server

APPENDIX B Directories and Files Related to Internationalization

Callating sequences are specified in locales file entries. If alocaesfile entry

does not specify a collating sequence, then abinary sort order is used with the
locale. For more information, see Chapter 6, “ Creating or Changing Collating
Sequences.”

International Developer’s Guide 81

The charsets directory

82 Open Client and Open Server

APPENDIX C

External Localization File
Syntax

This appendix describes external localization file syntax and shows a
sample file. Use this information when creating or updating external
localization files.

External filesinclude;

Thelocalesfile (locales.dat)
The mnemonics file (mnemonics.dat)
Conversion configuration files (charset_name.cfg)

Collating sequence files (sort_order_name.srt)

Localization file syntax

Syntax rules

International Developer’s Guide

All external localization files observe the following basic syntax rules:

Comments start with a comment character and continue to the end of
theline. Thefirst character in thefirst line of thefileis defined to be
the comment character for thefile.

Sections begin with a section heading and contain entries. Section
headings use left and right delimiters. A section heading’s maximum
length is 63 bytes, including delimiters.

Thefirst linein thefile that does not begin with acomment character
defines section heading delimiters for the file. Itsfirst character is
defined to be left delimiter and its last character is defined to be the
right delimiter.

83

Localization file sections

Entries take the form:

keyword = value list

where;

L]

keyword is the entry keyword and can be up to 63 bytes long.

value listisalist of one or morevalues separated by the list separator
character. Each value can be a quoted or unquoted string or a
hexadecimal number. If no value list ispresent, the entry keyword is
assigned asingle zero-length string (that is, astring that contains only
aNULL terminator) asits value.

value_list can span multiplelinesif each line except the last endswith
the escape character.

value list can be up to 511 byteslong.

Only one entry can appear on aline. An entry can be preceded by tabs and
spaces.

Values can be hexadecimal numbers or quoted or unquoted strings.

Unquoted strings beginning with “0x” areinterpreted as hexadecimal
numbers.

Strings do not require quotes unless they contain list separators or
spaces. List separators and spacesthat occur inside aquoted string are
treated as though they were preceded by the escape character.

You can use either apostrophes or quotation marks to quote strings.
Apostrophes (*) can appear in strings delimited by quotation marks
(“string”) and quotation marks can appear in strings delimited by
apostrophes.

If either the apostrophe or quotation mark is repeated, then the two
charactersaretreated asasingleinstance of the character, not as string
delimiters, for example, “Jean’s book.”

Localization file sections

84

Different files have different types of sections, and different types of sections
have different entry keywords.

Open Client and Open Server

APPENDIX C External Localization File Syntax

This section contains specific information about the sections that are common
to all localization files.

Thefollowing table describes whereto find information on sections specific to
particular files;

Table C-1: References for sections specific to afile

File name See

Thelocalesfile (locales.dat) “Locaesfile sections and entries’ on page 46
The mnemonicsfile “Mnemonicsfile sections and entries’ on page 76
(mnemonic.dat)

Conversion configuration “Conversion configuration file sections and

files (charset_name.cfg) entries’ on page 78

Collating sequence files “Collating sequence file sections and entries” on
(sort_order_name.srt) page 56

The following table describes sections that are common to all external
localization files:

Table C-2: Standard sections in localization files

Section Description Example
File format This section is optional. [file format]
section If used, it has the form: version = 1

[file format]
versi on = versi on_nunber
|ist_separator =

| i st_separator_char
escape = escape_char

|ist_separator

escape =\

where:
e version_number isaversion number.

* list_separator_char isthelist separator
character to use for thefile.

» escape_char isthe escape character to use for the
file. If not specified, “list_separator” defaultsto“,”
(comma), and “escape” defaultsto “\” (backsash).

Copyrightsection This section is optional. [copyright]

If used, it has the form: . copyright =

[copyri ght] Copyri ght\

copyright = Excel | ent)
"copyri ght st at enent " Products, Inc.

where copyright_statement is a character string.

International Developer’s Guide 85

Example localization file

Example localization file

The partial collating sequence file included in this section illustrates some of

the syntax rules discussed in “L ocalization file syntax” on page 83.

When looking at the file, please note the following:

e Thefirst line defines the comment character as a semicolon. Any

subsequent lines or phrases beginning with a semicolon are comments.

e Thesecondline, [sortorder], isaheading for the sortorder section. Entries
in this section describe and define the collating sequence. Thisfile does

not contain copyright and file format sections, which are optional .

e Thelist separator for the file is a comma (the default).

e The escape character for the file is a backd ash (the default).

e Vauesthat include spacesbegin and end with quotation marks, such asthe

value for “description =".

Note Theellipsis®...” indicates deletion of actua file contents.

sem -colon is the coment character

[sortorder]

86

Case-sensitive sort order based on the |SO 8859-1 code set.
Upper case characters sort before | owercase counterparts.

Li gatures and sort doubl es
AE, ae l|igatures
German sharp-s ligature with “ss”

Sort order

1. non-al phanuneric characters in binary order

2. nuneric digits

3. al phabetic characters used in English, French, Gernan

4. Al phabetic characters not used in English, French, Gernan

Default formatting values. There is no [file format] section.

Open Client and Open Server

APPENDIX C External Localization File Syntax

id = 0x33

menunane = “Case-sensitive dictionary sort order”

nanme = dictionary

charset = iso_1

description = “Dictionary sort order for use with English,\ French and Ger man.

| SO 8859-1, case sensitive.”

; Ligatures for English, French, German
lig = 0xC6, after AE

lig = OxE6, after ae

lig OxDF, after ss

; Control characters

char = 0x01(SOH) start of heading

char = Ox1F; (US) unit separator

; Al non-al phanureric characters, including punctuation, sorted
; by nunerical ordering

char = 0x20;() space

char OxF7; di vi si on sign
; Digits
char = 0x30;(0) digit zero

char = 0x39;(9) digit nine

; Latin al phabet

char = 0x41, 0x61, 0xC0, OxEO, OxC1, OxE1l, 0xC2, OxE2, 0xC3, OxE3, OxC4,
OxE4, 0xC5, OXE5

; letter A, a, A-grave, a-grave, A-acute, a-acute, A-circunflex,

; a-circunflex, A-tilde, a-tilde, A-diaeresis, a-diaeresis,
; Aring, a-ring

char = Ox5A, Ox7A; letter Z,z

; Al phabetic characters not used in English, French, German
char = 0xDO, OxFO;lcelandic letter Eth, eth

International Developer’s Guide

87

Example localization file

88 Open Client and Open Server

Glossary

case-sensitive
character

character set

coded character set

coded character set
conversion

collating sequence
digraph

encoding
glyph
ideograph

internationalization

ligature

International Developer’s Guide

When applied to acollating sequence, it meansthat the collating sequence
distinguishes between uppercase and lowercase characters.

A member in aset of elements that represents data in a native language,
SJ(:l,] $ “e," " é," 515,11 Or “ C."!l

A finite set of characters and glyphs that can include letters, ideographs,
digits, symbols, and control functions. See also single-byte character set
and multi-byte character set.

A character set in which each character is assigned a numeric code value.
Also called a code page.

Changing the encoding of characters from one set of numeric codes to
another.

When clients and servers use different character sets, coded character set
conversion them to interpret data the same way.

The order in which a system sorts text.
See ligature.

For character sets, the unique identification of each character with a
numeric code.

The graphic representation of acharacter. For example, the character “f”
can be represented by the glyph “f” or “ f.”

A character or symbol that representsan idea, such asthose usedin written
Chinese and Japanese.

The process of enabling an application to support multiple languages and
cultural conventions. An internationalized application uses the language
and cultural conventions appropriate to the geographic areain which itis
running.

A single character that is sorted as multiple characters. For example, “ -”
issorted as“AE,” and “[3,” sorted as“ss.”

89

Glossary

locale

locales file

locales structure
(CS_LOCALE)

localization

multibyte character
set

single-byte
character set

sort double

sort order

Unicode

UTF-8

90

1. A specific geographic or national language region. 2. A collection of
information related to a specific geographic or national language region.

A Sybase-specific file that maps|ocale namesto languages, character sets, and
collating sequences. Open Client/Server products examine the localesfile
when loading localization information.

A CS-Library structure that is used to define custom localization valuesin
Client-Library and Server-Library applications. The CS-Library routines
cs_loc_alloc and cs_loc_drop allocate and drop alocale structure. The CS-
Library routine cs_locale loads alocale structure with information.

The process of setting up an application to execute using a specific language
and related cultural conventions.

A character set that includes characters that are encoded using more than one
byte, such as EUC JIS and Shift-JIS. A multibyte character set can include
characters of varying widths.

A character set in which all characters are encoded using asingle byte.

In acollating sequence, apair of charactersthat is sorted as a single character.
For example, “ch” in Spanish.

See collating sequence.

A universal, 16-bit encoded character set, defined by the Unicode Standard.
Unicode version 1.1 is code-for-code identical to 1SO 10646, the international
standard universal character set.

UTF-8 encoding is the UCS Transformation Format, 8-bit form. It uses
multibyte characters up to 4 byteslong.

Open Client/Open Server

Index

B
bep utility
localizing 32
message files 75
bind variables
defining custom locdization values 21
Bulk Library

message files 75

C
case sensitivity
determining 54
in collating sequence files 54
character set conversion 36
custom 40
disabling 38
filesused 39, 78
inpre-release 4.9 SQL Server 42
indirect 39
installing custom conversion routines 42
character set names
vauesinlocalesfile 47
character sets
client requeststo change 27
specified in localesfile entries 47
supported 36
characters
in collating sequence files 56
charsets directory
contents 73,75
Client-Library
localization properties 22
message files 75
Client-Library applications
using custom localization values 16
using initial localization values 16
collating sequencefiles 55

International Developer’s Guide

character entries 60
contents 55
creating 58
entering characters 56
example 62
generd entries 58
ligatureentries 60
sections and entries 55
shipped 54
collating sequence names
vauesinlocalesfile 47
collating sequences 52
collating sequencefiles 80
specified in localesfile entries 47
comments
localization files 83
connections
establishing the language and character set
conversion configuration file 78
contents 78
example 80
copyright section
localization files 85
CS_CONNECTION structure
defining custom localization values 18
CS_CONTEXT structure
defining custom localization values 17
cs _ctx_alloc routine
required files 34
CS EBADXLT return 42
CS EDIVZEROreturn 42
CS _EDOMAIN return = 42
CS ENOXLT return 42
CS EOVERFLOW return 42
CS EPRECISION return 42
CS ESCALEreturn 42
CS ESTYLEreturn 42
CS ESYNTAX return 42
CS_EUNDERFLOW return 42
cs locaeroutine 11

37

91

Index

how it works 12

required files 34
CS LOCALE structure 11

exampleof loading 12

howtouse 11
cs_manage_convert routine 42
CS_MEM_ERROR return 42
CS NULLTERM

routines 70
Cs_strcmp routine

defining custom locadlization values 21
CS SUCCEED return 42
cs_timeroutine

defining custom locdization values 21
CS TRUNCATED return 42
CS-Library

messagefiles 75

new routines and changes 69
ct_init routine

required files 34
custom collating sequencefiles 58
custom localization values 7

D

DB-Library applications

changing language and character sets 30
defncopy utility

localizing 32
desktop platforms 10
destination variables

defining custom locdization values 21
digraph 61

E

Embedded SQL
message files 75
embedded SQL application
locdizing 32
embedded SQL precompiler
localizing 31
entries
locdlization file 83

92

environment values 10
environment variables
LANG 10
LC ALL 9
LC CTYPE 10
LC MESSAGE 10
LC TIME 10
related to localization 8
examples
collating sequencefile 62
conversion configuration file 80
loading aCS LOCALE structure 12
localesfile 47
mnemonicsfile 77

F

file format section
localization files 85

files
character set conversion 40, 78
collating sequence 55, 80
conversion configuration file 78
global object identifiersfile 75
message 74
mnemonicsfile 76
required 33
syntax 83

international applications

advantages 1

writing Client-Library applications 15

writing DB-Library applications 30

writing Open Server applications 22
international systems

example 2

Open Client/Server support 3
internationalization

definition 1
isgl utility
localizing 32

Open Client and Open Server

K

keywords
localization files 84

L

LANG environment variable 10
language module

adding locale definition 46
language names
valuesinlocalesfile 47
languages

client requeststo change 27

specified in localesfileentries 47
LC_ALL environment variable 9
LC_CTYPE environment variable 10
LC_MESSAGE environment variable 10
LC_TIME environment variable 10
ligature 60
locale names

matching non-Sybase names 46

valuesinlocalesfile 47
locales directory

contents 73,74
locdesfile 74

adding entries 48

contents 46

deleting entries 49

entries 46

entry syntax 46

example 47

introduction 8

whento edit 45
localization

definition 1

environment variables 8
localization files

example 86

specific sections 85

standard sections 85

syntax 83
localization properties

Client-Library 22

Server-Library 29
localization values

International Developer’s Guide

Index

custom 5,7,8,17,19,21

defining at the connection level 19

defining at the context level 17

defining at the dataelement level 21

how loaded 6

howtosetup 8

howtouse 7

initiad 5,6,7

initial or customvalues 5

precedencein Client-Library applications 21

M

mainframes

run-encoded character encodings 43
messagefiles 74
mnemonicsfile 39, 76

adding strings 78

contents 76
example 77
MVS

environment variables 10

O

Open Server applications
creating localized connections 27
locdizing 23
localizing CS-Library messages for clients 25
localizing for client threads 26
localizing for gateway applications 27
processing arequest to change language 28
returning character set information to clients 24
returning localization information to clients 24
returning sort order information to clients 24
using asaconversion gateway 39
using custom localization values 23
using initial localization values 23

Open Server gateways
creating localized connections 27

order by clause 57

93

Index

P

preference keyword 57

in collating sequence files 57
primary sort order 52

product messagefiles 74
properties

localization 22,29

R

required files 33

routines
CS-Library new and changed 69
Server-Library new and changed 70
using CS NULLTERM 70

S

secondary sort order 52

sections
locdlization file 83
specific 85
standard 85

Server-Library

localization properties 29
message files 75
new routines and changes 70
Server-Library applications 23
sort double 61
sort order 52
sorts
types of character sorts 52
sp_serverinfo 24
srv_init routine
required files 34
SRV_S USERVLANG property 29
SRV_T_USERVLANG property 29
standalone utilities

locdlizing 32
strings

localization files 84
syntax

external localization files 83

94

locdizing 32

localizing aCS_CONTEXT structure for aclient

localization files 84

Open Client and Open Server

