
 Embedded SQL™/COBOL
Programmer’s Guide
 Open Client™

12.5.1

DOCUMENT ID: DC37696-01-1251-01

LAST REVISED: September 2003

Copyright © 1989-2003 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture,
Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server
Enterprise Replication, Adaptive Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, Anywhere Studio, Application
Manager, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Translator, APT-Library, AvantGo,
AvantGo Application Alerts, AvantGo Mobile Delivery, AvantGo Mobile Document Viewer, AvantGo Mobile Inspection, AvantGo
Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon Application Server,
AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BizTracker, ClearConnect, Client-Library,
Client Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer,
DataWindow, DB-Library, dbQueue, Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution Director, e-ADK,
E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway, ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise
Application Studio, Enterprise Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server
Manager, Enterprise Work Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA,
Financial Fusion, Financial Fusion Server, Gateway Manager, GlobalFIX, ImpactNow, Industry Warehouse Studio, InfoMaker,
Information Anywhere, Information Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, Mail
Anywhere Studio, MainframeConnect, Maintenance Express, Manage Anywhere Studio, M-Business Channel, M-Business Network,
M-Business Server, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, My AvantGo, My AvantGo Media Channel,
My AvantGo Mobile Marketing, MySupport, Net-Gateway, Net-Library, New Era of Networks, ObjectConnect, ObjectCycle,
OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open
Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC
Net Library, PocketBuilder, Pocket PowerBuilder, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class
Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft, PowerStage,
PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst,
Rapport, Report Workbench, Report-Execute, Replication Agent, Replication Driver, Replication Server, Replication Server Manager,
Replication Toolkit, Resource Manager, RW-DisplayLib, S-Designor, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian,
SKILS, smart.partners, smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL
Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART,
SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, S.W.I.F.T.
Message Format Libraries, Sybase Central, Sybase Client/Server Interfaces, Sybase Financial Server, Sybase Gateways, Sybase MPP,
Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financial,
SyberAssist, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, TradeForce, Transact-SQL,
Translation Toolkit, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual
Components, VisualSpeller, VisualWriter, VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse
WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup
SQL Server, XA-Library, XA-Server and XP Server are trademarks of Sybase, Inc. 03/03

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents
About This Book ... ix

CHAPTER 1 Introduction ... 1
 Embedded SQL overview ... 1
Embedded SQL features.. 2
New features and enhancements .. 2

HA failover ... 2
Precompiler compatibility .. 3
Localization ... 3
FIPS flagger .. 4

Transact-SQL support in Embedded SQL.. 4
Getting started.. 5

Using the examples... 5
Backward compatibility .. 5

Creating and running an Embedded SQL program.......................... 6
How the precompiler processes your applications 7

Multiple Embedded SQL source files .. 7
Precompiler-generated files .. 8
Group element referencing.. 8

CHAPTER 2 General Information .. 11
Five tasks of an Embedded SQL program 11

Simplified Embedded SQL program.. 12
General rules for Embedded SQL.. 13

Statement placement .. 14
Comments ... 14
Identifiers ... 15
Quotation marks .. 15
Reserved words .. 15
Variable naming conventions .. 15
Scoping rules... 16
Statement batches .. 16

Embedded SQL constructs .. 16
Embedded SQL/COBOL Programmer’s Guide iii

Contents
CHAPTER 3 Communicating with Adaptive Server ... 19
Scoping rules: SQLCA, SQLCODE, and SQLSTATE.................... 20
Declaring SQLCA... 20

Multiple SQLCAs ... 20
SQLCA variables... 20
Accessing SQLCA variables ... 21
SQLCODE within SQLCA ... 22

Declaring SQLCODE as a standalone area................................... 22
Using SQLSTATE .. 23

Obtaining SQLSTATE codes and error messages.................. 24

CHAPTER 4 Using Variables.. 25
Declaring variables... 25

Declaring a character array ... 26
Using host variables... 27

Host input variables... 27
Host result variables.. 28
Host status variables ... 28
Host output variables... 29

Using indicator variables .. 29
Indicator variables and server restrictions............................... 29
Using host variables with indicator variables........................... 29
Host variable conventions ... 32

Using arrays ... 33
Multiple arrays ... 33

Scoping rules ... 33
Datatypes ... 35

Elementary data items... 35
Group data items... 36
Special data items ... 37
Comparing COBOL and Adaptive Server datatypes 37
Converting datatypes .. 37

CHAPTER 5 Connecting to Adaptive Server .. 41
Connecting to a server ... 41

user ... 41
password .. 42
connection_name.. 42
server .. 42
labelname.. 43
labelvalue .. 43
connect example ... 43

Changing the current connection ... 43
iv Open Client

Contents
Establishing multiple connections .. 44
Naming a connection... 45
Using Adaptive Server connections .. 45

Disconnecting from a server .. 46

CHAPTER 6 Using Transact-SQL Statements ... 49
Transact-SQL statements in Embedded SQL................................ 49

exec sql syntax.. 49
Invalid statements ... 50
Transact-SQL statements that differ in Embedded SQL 50

Selecting rows.. 50
Selecting one row.. 51
Selecting multiple rows through arrays 51
Using stored procedures ... 59

Grouping statements.. 62
Grouping statements by batches... 62
Grouping statements by transactions...................................... 63

Including files and directories... 65

CHAPTER 7 Using Dynamic SQL.. 67
When to use dynamic SQL .. 67
Dynamic SQL protocol ... 68
Method 1: Using execute immediate.. 69

Method 1 examples ... 70
Method 2: Using prepare and execute ... 71

prepare .. 71
execute.. 72
Method 2 example... 73

Method 3: Using prepare and fetch with a cursor 74
prepare .. 74
declare... 74
open .. 75
fetch and close .. 76
Method 3 example... 76

Method 4: Using prepare and fetch with system descriptors 78
Method 4 dynamic descriptors .. 78
Dynamic descriptor statements ... 79
Method 4 example... 80
About SQLDAs .. 84
Using SYBSETSQLDA.. 85
Method 4 example using SQLDAs .. 88
Embedded SQL/COBOL Programmer’s Guide v

Contents
CHAPTER 8 Handling Errors.. 93
Testing for errors.. 94

Using SQLCODE... 94
Testing for warning conditions ... 94
Trapping errors with the whenever statement................................ 95

whenever testing conditions .. 96
whenever actions .. 97

Using get diagnostics ... 98
Writing routines to handle warnings and errors.............................. 98
Precompiler-detected errors... 99

CHAPTER 9 Embedded SQL Statements: Reference Pages 101
allocate descriptor .. 102
begin declare section ... 104
begin transaction.. 105
close... 107
commit.. 108
connect... 111
deallocate cursor.. 113
deallocate descriptor .. 114
deallocate prepare ... 116
declare cursor (dynamic).. 117
declare cursor (static)... 119
declare cursor (stored procedure) .. 121
delete (positioned cursor)... 123
delete (searched) ... 125
describe input (SQL descriptor) ... 127
describe input (SQLDA) ... 129
describe output (SQL descriptor) ... 131
describe output (SQLDA) ... 133
disconnect .. 135
exec.. 137
exec sql .. 139
execute... 141
execute immediate ... 143
exit.. 144
fetch ... 145
get descriptor ... 148
get diagnostics ... 150
include “filename”... 151
include sqlca .. 153
include sqlda .. 154
initialize_application ... 154
open (dynamic cursor) ... 156
vi Open Client

Contents
open (static cursor) .. 158
prepare... 159
rollback... 161
select.. 162
set connection .. 164
set descriptor.. 165
update .. 167
whenever.. 169

CHAPTER 10 Open Client/Server Configuration File...................................... 175
Purpose of the Open Client/Server configuration file 175
Accessing the configuration functionality 175
Default settings .. 176
Syntax for the Open Client/Server configuration file 177

Syntax ... 177
Sample programs... 179

Embedded SQL/COBOL sample programs 180
Embedded SQL program version for use with the -x option.. 180
Same Embedded SQL program with the -e option................ 182

APPENDIX A Precompiler Warning and Error Messages 185
Understanding the codes in the tables... 185

Glossary ... 199

Index ... 207
Embedded SQL/COBOL Programmer’s Guide vii

viii Open Client

About This Book

The Open Client Embedded SQL/COBOL Programmer’s Manual explains
how to use Embedded SQL™ and the Embedded SQL precompiler with
COBOL applications. Embedded SQL is a superset of Transact-SQL®
that lets you place Transact-SQL statements in application programs
written in languages such as COBOL and C.

The information in this guide is platform-independent. For platform-
specific instructions on using Embedded SQL, see the Open Client/Server
Programmer’s Supplement.

Audience This guide is intended for application developers and others interested in
Embedded SQL concepts and uses. To use this guide, you should:

• Be familiar with the information in the SQL Server Reference Manual

• Have COBOL programming experience

How to use this book The first two chapters of this guide are introductory. If you are an
experienced Embedded SQL user, you may go directly to Chapter 3,
“Communicating with SQL Server.” The manual is organized as follows:

• Chapter 1, “Introduction,” presents a brief overview of Embedded
SQL and describes its advantages and capabilities.

• Chapter 2, “General Information,” describes the tasks of an
Embedded SQL program and provides general rules for programming
with Embedded SQL.

• Chapter 3, “Communicating with Adaptive Server,” describes how
to establish and use a communication area with SQLCA, SQLCODE,
and SQLSTATE. This chapter also describes the system variables
used in the communication area.

• Chapter 4, “Using Variables,” explains how to declare and use host
and indicator variables in Embedded SQL. This chapter also
describes arrays and explains datatype conversions.

• Chapter 5, “Connecting to Adaptive Server,” explains how to use
Embedded SQL to connect an application program to Sybase® SQL
Server® or Adaptive Server™ Enterprise, and data servers in general.
Embedded SQL/COBOL Programmer’s Guide ix

• Chapter 6, “Using Transact-SQL Statements,” describes how to use
Transact-SQL in an Embedded SQL application program. This chapter
describes how to select rows using arrays and batches, and how to group
Transact-SQL statements.

• Chapter 7, “Using Dynamic SQL,” describes how to create Embedded
SQL statements that your application’s users can enter interactively at
runtime.

• Chapter 8, “Handling Errors,” describes return codes and the Embedded
SQL precompiler’s facilities for detecting and handling errors.

• Chapter 9, “Embedded SQL Statements: Reference Pages,” provides a
reference page for each Embedded SQL statement.

• Chapter 10, “Open Client/Server Configuration File,” describes the use of
an external configuration file with Embedded SQL.

• Appendix A, “Precompiler Warning and Error Messages,” lists
precompiler and runtime messages.

• The Glossary defines many of the terms used in this manual.

Other sources of
information

Use the Sybase Getting Started CD, the Sybase Technical Library CD, and the
Technical Library Product Manuals Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the Technical Library CD. It is included with
your software. To read or print documents on the Getting Started CD, you
need Adobe Acrobat Reader (downloadable at no charge from the Adobe
Web site, using a link provided on the CD).

• The Technical Library CD contains product manuals and is included with
your software. The DynaText reader (included on the Technical Library
CD) allows you to access technical information about your product in an
easy-to-use format.

Refer to the Technical Library Installation Guide in your documentation
package for instructions on installing and starting the Technical Library.

• The Technical Library Product Manuals Web site is an HTML version of
the Technical Library CD that you can access using a standard Web
browser. In addition to product manuals, you will find links to
EBFs/Updates, Technical Documents, Case Management, Solved Cases,
newsgroups, and the Sybase Developer Network.
x Open Client

 About This Book
To access the Technical Library Product Manuals Web site, go to Product
Manuals at http://www.sybase.com/support/manuals/.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select Products from the navigation bar on the left.

3 Select a product name from the product list and click Go.

4 Select the Certification Report filter, specify a time frame, and click Go.

5 Click a Certification Report title to display the report.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software updates

❖ Finding the latest information on EBFs and software updates

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Updates. Enter user name and password information, if
prompted (for existing Web accounts) or create a new account (a free
service).

3 Select a product.

4 Specify a time frame and click Go.

5 Click the Info icon to display the EBF/Update report, or click the product
description to download the software.

Conventions This section describes font style and naming conventions used in this book.

• Bold type indicates keywords and command names that you type exactly
as they appear in the text, as in the following sentence:
Embedded SQL/COBOL Programmer’s Guide xi

You can also include update and delete where current of cursor statements

• In all examples and syntax statements, each clause of a statement begins
on a new line. Clauses that have more than one part extend to additional
lines, which are indented.

• Monospace type indicates keywords you enter exactly as shown. For
example:

exec sql init;

• Italic

type indicates syntax elements that you supply. In the following example,
cursor is a keyword, and cursor_name represents a user-supplied
identifier:

exec sql declare cursor_name cursor for
 select_statement
 end-exec

• Embedded SQL keywords are not case sensitive. You can enter them in
uppercase, lowercase, or mixed case. This guide lists Embedded SQL
keywords in lowercase.

This distinguishes Embedded SQL statements from COBOL commands,
which this guide shows in upper case. For example:

 DISPLAY "PLEASE ENTER USER-ID".

• Square brackets indicate that a word or phrase is optional. In the following
example, at connection_name is optional:

 exec sql [at connection_name]

• An ellipsis (...) indicates that you can repeat the item that precedes it as
many times as necessary. In the following example, one or more columns
and one or more host variables can be listed:

 exec sql select column [, column] ...
 into host_variable [, host_variable] ...
 end-exec

• Curly braces and vertical bars indicate a choice you must make. You can
choose only one option. The syntax for the whenever statement, for
example, gives a choice of three conditions and five actions:

exec sql whenever {sqlerror | sqlwarning | not found}
 {continue | goto label |
 call function_name([param [, param]...]) |
 perform para_name [through para_name] | stop}
xii Open Client

 About This Book
Online help If you have access to SQL Server release 10.0 or later, you can use sp_syntax,
a system procedure, to retrieve the syntax of Embedded SQL statements. For
information on how to install sp_syntax, see the System Administration Guide.
For information on how to run sp_syntax, see sp_syntax in the SQL Server
Reference Manual.

Note When using sp_syntax to retrieve a statement’s syntax, enclose the
procedure name in quotation marks. For example, to get a display of the syntax
for the exec sql statement, enter this command:
 sp_syntax “exec sql”

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.
Embedded SQL/COBOL Programmer’s Guide xiii

xiv Open Client

C H A P T E R 1 Introduction

This chapter includes the following topics to introduce Embedded SQL
and the Embedded SQL precompiler.

 Embedded SQL overview
Embedded SQL is a superset of Transact-SQL that lets you place
Transact-SQL statements in application programs written in languages
such as COBOL and C.

Embedded SQL is a product that enables you to create programs that
access and update Adaptive Server data. Embedded SQL programmers
write SQL statements directly into an application program written in a
conventional programming language such as C or COBOL. A
preprocessing program—the Embedded SQL precompiler—processes the
completed application program, resulting in a program that the host
language compiler can compile. The program is linked with Open Client
Client-Library before it is executed.

Embedded SQL is one of the two programming methods Sybase provides
for accessing Adaptive Server. The other programming method is the call-
level interface. With the call-level interface, you place Client-Library calls
directly into an application program and then link with Client-Library.

You can place Embedded SQL statements anywhere in a host program
and mix them with host language statements. All Embedded SQL
statements must begin with the keywords exec sql and end with end-exec.

Topic Page
Embedded SQL overview 1

Embedded SQL features 2

Transact-SQL support in Embedded SQL 4

Getting started 5

Creating and running an Embedded SQL program 6
Embedded SQL/COBOL Programmer’s Guide 1

Embedded SQL features
You can use host variables in Embedded SQL statements to store data retrieved
from Adaptive Server and as parameters in Embedded SQL statements; for
example, in the where clause of a select statement. In Dynamic SQL, host
variables can also contain text for Embedded SQL statements.

Embedded SQL features
Embedded SQL provides several advantages over a call-level interface:

• Embedded SQL is easy to use because it is simply Transact-SQL with
some added features that facilitate using it in an application.

• It is an ANSI/ISO-standard programming language.

• It requires less coding to achieve the same results as a call-level approach.

• Embedded SQL is essentially identical across different host languages.
Programming conventions and syntax change very little. Therefore, to
write applications in different languages, you need not learn new syntax.

• The precompiler can optimize execution time by generating stored
procedures for the Embedded SQL statements.

New features and enhancements
The following are new features and enhancements for Embedded SQL.

HA failover
The new feature called High Availability (HA) failover allows you to designate
and connect to a second server when a connection to the primary server fails.
The implementation is straightforward for the COBOL precompiler.

The command line argument parser reads the -H flag, stores the failover server
name, and generates the necessary CT-Lib statements to implement HA
failover., as in the following example:
2 Open Client

CHAPTER 1 Introduction
$SYBASE/bin/cobpre -H filename.cp

Note To use this option, the secondary server must be up and running and
correctly listed in the interfaces file as the HA failover server.

For more information, see the Open Client/Server Programmer’s Supplement
for UNIX platforms.

Precompiler compatibility
 Embedded SQL version 11.1 and later is completely ANSI SQL-89-compliant.
Therefore, it is compatible with other precompilers that conform to ANSI-89
standards.

Note To run programs created for version 11.1and earlier precompilers, you
must precompile them again with the system 11 and later precompiler and
make changes, if necessary. For details, see “Backward compatibility” on page
5.

Localization
An Embedded SQL application program can make calls to CS-Library
routines that specify:

• A language, character set, and collating sequence

• How to represent dates, times, and numeric and monetary values in
character format

Note See the Open Client/Server Programmer’s Supplement for details about
localization.
Embedded SQL/COBOL Programmer’s Guide 3

Transact-SQL support in Embedded SQL
FIPS flagger
The Federal Information Processing Standards (FIPS) implementation upholds
the goal of SQL standardization by issuing a warning when it encounters
Sybase extensions to SQL statements. FIPS uses SQL-89 as the standard.

When you set the FIPS flagger, you can still use Transact-SQL extensions such
as triggers and stored procedures. FIPS flags these non-ANSI statements and
issues warning messages, but the application still compiles and executes.

Transact-SQL support in Embedded SQL
With the exception of print, raiserror, readtext, and writetext, all Transact-SQL
statements, functions, and control-of-flow language are valid in Embedded
SQL. You can develop an interactive prototype of your Embedded SQL
application in Transact-SQL to facilitate debugging your application, then
easily incorporate it into your application.

Most Adaptive Server datatypes have an equivalent in Embedded SQL. Also,
you can use host language datatypes in Embedded SQL. Many datatype
conversions occur automatically when a host language datatype does not
exactly match an Adaptive Server datatype.

You can place host language variables in Embedded SQL statements wherever
literal quotes are valid in Transact-SQL. Enclose the literal with either single
(‘) or double (“) quotation marks. For information on delimiting literals that
contain quotation marks, see the Adaptive Server Enterprise Reference
Manual.

Embedded SQL has several features that Transact-SQL does not have:

• Automatic datatype conversion occurs between host language types and
Adaptive Server types.

• Dynamic SQL lets you define SQL statements at runtime.

• SQLCA, SQLCODE, and SQLSTATE lets you communicate between
Adaptive Server and the application program. The three entities contain
error, warning, and informational message codes that Adaptive Server
generates.

• Return code testing routines detect error conditions during execution.
4 Open Client

CHAPTER 1 Introduction
Getting started
Before attempting to run the precompiler, make sure that Client-Library
version 11.1 or later is installed, since the precompiler uses it as the runtime
library. Also, make sure Adaptive Server version 11.1 or later is installed. If
products are missing, contact your System Administrator.

Invoke the precompiler by issuing the appropriate command at the operating
system prompt. See the Open Client/ Server Programmer’s Supplement for
details.

The precompiler command can include several flags that let you determine
options for the precompiler, including the input file, login user name and
password, invoking HA failover, and precompiler modes. The Open
Client/Server Programmer’s Supplement contains operating system-specific
information on precompiling, compiling, and linking your Embedded SQL
application.

Using the examples
The examples in this guide use the pubs2 database. To run the examples,
specify the pubs2 database with the Transact-SQL use statement.

This product is shipped with several online examples. For information on
running these examples, see the Open Client/Server Programmer’s
Supplement.

Backward compatibility
The precompiler is compatible with precompilers that are ANSI SQL-89-
compliant. However, you may have applications created with earlier
Embedded SQL versions that are not ANSI compliant. This precompiler uses
most of the same Embedded SQL statements used in previous precompiler
versions, but it processes them differently.

To migrate applications created for earlier precompiler versions:

1 Remove the following SQL statements and keywords from the
application, because System 11 and later does not support them:

• release connection_name

• recompile
Embedded SQL/COBOL Programmer’s Guide 5

Creating and running an Embedded SQL program
• noparse

• noproc

• pcoptions sp_syntax

• cancel

release causes a precompiler error; the precompiler ignores the other
keywords. The cancel statement causes a runtime error.

2 Use the precompiler to precompile the application again.

Creating and running an Embedded SQL program
Follow these steps to create and run your Embedded SQL application program:

1 Write the application program and include the Embedded SQL statements
and variable declarations.

2 Save the application in a .pco file.

3 Precompile the application. If there are no severe errors, the precompiler
generates a file containing your application program. The file has the same
name as the original source file, with a different extension, depending on
the requirements of your COBOL compiler. For details, see the Open
Client/Server Programmer’s Supplement.

4 Compile the new source code as you would compile a standard COBOL
program.

5 Link the compiled code, if necessary, with the required libraries.

6 If you specified the precompiler option to generate stored procedures, load
them into Adaptive Server by executing the generated script with isql.

7 Run the application program as you would any standard COBOL program.
6 Open Client

CHAPTER 1 Introduction
How the precompiler processes your applications
The Embedded SQL precompiler translates Embedded SQL statements into
COBOL data declarations and call statements. After precompiling, you can
compile the resulting source program as you would any conventional COBOL
program.

The precompiler processes your application in two passes. In the first pass, the
precompiler parses the Embedded SQL statements and variable declarations,
checking the syntax and displaying messages for any errors it detects. If the
precompiler detects no severe errors, it proceeds with the second pass, wherein
it does the following:

• Adds declarations for the precompiler variables, which begin with “SQL-
-”. To prevent confusion, do not begin your variable names with “SQL”.

• Converts the text of the original Embedded SQL statements to comments.

• Generates stored procedures and calls to stored procedures if you set this
option in the precompile command line.

• Converts Embedded SQL statements to calls to runtime routines.

• Generates up to three files: a target file, an optional listing file, and an
optional isql script file.

Note For detailed descriptions of precompiler command line options, see the
Open Client/Server Programmer’s Supplement.

Multiple Embedded SQL source files
If the Embedded SQL application consists of more than one source file, the
following statements apply:

• Connection names are unique and global to the entire application.

• Cursor names are unique for a given connection.

• Prepared statement names are global to the connection.

• Dynamic descriptors are global to the application.
Embedded SQL/COBOL Programmer’s Guide 7

How the precompiler processes your applications
Precompiler-generated files
The target file is similar to the original input file, except that all SQL
statements are converted to runtime calls.

The listing file contains the input file and its source statements, plus any
informational, warning, or error messages.

The isql script file contains the precompiler-generated stored procedures. The
stored procedures are written in Transact-SQL.

Group element referencing
The Embedded SQL COBOL precompiler supports the C language structure
syntax for host variables in exec sql statements. For example, for a structure A
containing structure B, which in turn contains a fundamental structure data
item C, A.B.C is equivalent to C OF B OF A.

White spaces are allowed between the elements and the period (.). It is illegal
to mix the two syntaxes, such as C OF A .B . Following is an example of group
element referencing:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC .

 01 AU-IDPIC X(15).
 01 GROUP1.
 05 GROUP2.
 10 LNAME PIC X(40).
 10 FNAME PIC X(40).
 10 PHONE PIC X(15).

EXEC SQL END DECLARE SECTION END-EXEC.

 ...

EXEC SQL USE pubs2 END-EXEC.

OVE "724-80-9391" TO AU-ID.
XEC SQL SELECT INTO :GROUP1. GROUP2.LNAME,
 :GROUP2.FNAME, :PHONE
 au_lname, au_fname, phone
 FROM authors
 WHERE au_id = :AU-ID END-EXEC.
DISPLAY "LAST NAME = ", LNAME.
8 Open Client

CHAPTER 1 Introduction
DISPLAY "FIRST NAME = ", FNAME.
DISPLAY "PHONE # = ", PHONE.

* This SELECT does the same thing. You can use
:GROUP1.GROUP2
* which refers to the entire structure, but partially
qualified
* names such as :LNAME OF GROUP1 do not work.

EXEC SQL SELECT INTO :GROUP1. GROUP2
 au_lname, au_fname, phone
 FROM authors
 WHERE au_id = :AU-ID END-EXEC.

DISPLAY "--".
DISPLAY "GROUP LISTING FROM ENTIRE STRUCTURES".
DISPLAY "--".
 DISPLAY "LAST NAME = ", LNAME.
 DISPLAY "FIRST NAME = ", FNAME.
 DISPLAY "PHONE # = ", PHONE.

 ...
Embedded SQL/COBOL Programmer’s Guide 9

How the precompiler processes your applications
10 Open Client

C H A P T E R 2 General Information

This chapter provides general information about Embedded SQL.

Five tasks of an Embedded SQL program
In addition to containing the host language code, an Embedded SQL
program performs five tasks. Each Embedded SQL program must perform
all these tasks, to successfully precompile, compile, and execute.
Subsequent chapters discuss these five tasks.

1 Establish SQL communication using SQLCA, SQLCODE, or
SQLSTATE.

Set up the SQL communication area (SQLCA, SQLCODE, or
SQLSTATE) to provide a communication path between the
application program and Adaptive Server. These structures contain
error, warning and information message codes that Adaptive Server
and Client-Library generate. See Chapter 3, “Communicating with
Adaptive Server.”

2 Declare Variables.

Identify host variables used in Embedded SQL statements to the
precompiler. See Chapter 4, “Using Variables.”

3 Connect to Adaptive Server.

Connect the application to Adaptive Server. See Chapter 5,
“Connecting to Adaptive Server.”

4 Send Transact-SQL statements to Adaptive Server.

Topic Page
Five tasks of an Embedded SQL program 11

General rules for Embedded SQL 13

Embedded SQL constructs 16
Embedded SQL/COBOL Programmer’s Guide 11

Five tasks of an Embedded SQL program
Send Transact-SQL statements to Adaptive Server to define and
manipulate data. See Chapter 6, “Using Transact-SQL Statements.”

5 Handle errors and return codes.

Handle and report errors returned by Client-Library and Adaptive Server
using SQLCA, SQLCODE, or SQLSTATE. See Chapter 8, “Handling
Errors.”

Simplified Embedded SQL program
Following is a simplified Embedded SQL program. At this point, you need not
understand everything shown in the program. Its purpose is to demonstrate the
parts of an Embedded SQL program. The details are explained in subsequent
chapters.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. EXAMPLE.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 * Communicating with Adaptive Server - Chapter 3
 exec sql include sqlca end-exec.

 * Declaring variables - Chapter 4
 exec sql begin declare section end-exec
 01 MY-ID PIC X(30).
 01 MYPASS PIC X(30).
 01 MYSERVER PIC X(30).
 exec sql end declare section end-exec.

 PROCEDURE DIVISION.
 MAIN-SECTION.
 PARA-1.

 * Initializing error-handling routines - Chapter 8

 exec sql whenever sqlerror perform ERR-PARA
 through ERR-PARA-END end-exec.

* Connecting to Adaptive Server - Chapter 5

 DISPLAY "PLEASE ENTER USER-ID".
 ACCEPT MY-ID.
 DISPLAY "PLEASE ENTER PASSWORD".
12 Open Client

CHAPTER 2 General Information
 ACCEPT MYPASS.
 DISPLAY "SERVER TO USE?".
 ACCEPT MYSERVER.
 exec sql connect :MY-ID identified by :MYPASS
 using :MYSERVER end-exec.

*Issuing Transact-SQL statements - Chapter 6
 exec sql update alltypes set account = account * 2 end-
exec.

exec sql commit work end-exec.

*Closing connection to the server - Chapter 5

 exec sql disconnect default end-exec.
 STOP RUN.

Error-handling routine - Chapter 8

 ERR-PARA.
 DISPLAY " ERROR CODE " SQLCODE
 " ERROR MESSAGE: " SQLERRMC.
 ERR-PARA-END.
END PROGRAM.

General rules for Embedded SQL
The following rules apply to Embedded SQL statements:

• Embedded SQL statements begin with these keywords:

exec sql

• Embedded SQL requires continuation characters in column 7 and tokens
from column 8 to column 72. Place exec sql at the beginning of the
statement.

• The exec sql begin declare section statement must be aligned at the correct
column for data declarations for the generated declaration section to be
properly aligned, and to avoid compiler warnings.

If the source is in VMS TERMINAL format, Embedded SQL does not require
that exec sql begin in any particular column.
Embedded SQL/COBOL Programmer’s Guide 13

General rules for Embedded SQL
• Embedded SQL keywords are not case sensitive. exec sql, EXEC SQL,
Exec Sql, or any other of case mix is equally valid. This manual
consistently shows Embedded SQL keywords in lowercase. For example:

 exec sql commit work end-exec.

• All Embedded SQL statements end with the keyword end-exec. Place a
period after end-exec when your program’s syntax or logic requires it. For
example, the following code requires a period after end-exec because a
COBOL paragraph must end with a period:

 PARA-1.
 IF SQLCODE = 0
 exec sql commit work end-exec.
 PARA-2.

In the next example, there is no period after the first end-exec because
COBOL does not allow periods between if and else.

 IF SQLCODE NOT = 0
 exec sql rollback transaction disconnect
 end-exec
 ELSE
 exec sql commit work end-exec.

• Embedded SQL statements can extend across several lines. end-exec must
be at the end of the statement’s last line or on a new line following the last
line of code.

Statement placement
In general, an application program can have Embedded SQL statements
wherever COBOL statements are valid. However, Embedded SQL statements
cannot be made until the WORKING-STORAGE SECTION of a program's
DATA DIVISION has been defined. Thus, the FILE SECTION, for example,
cannot contain Embedded SQL statements.

Comments
Comments placed within Embedded SQL and COBOL statements must follow
one of three conventions.

The Transact-SQL convention is:

/* comments */
14 Open Client

CHAPTER 2 General Information
The COBOL convention is:

* (in column 7)

The ANSI convention is:

-- comments

Comments placed outside SQL statements must conform to COBOL
programming conventions.

Identifiers
Identifiers are used as procedure names or data names within your application.
You cannot split identifiers across lines.

Quotation marks
Enclose literal character strings in Embedded SQL statements within single or
double quotation marks. If a character string begins with a double quotation
mark, end it with a double quotation mark. If a character string begins with a
single quotation mark, end it with a single quotation mark.

Reserved words
Do not use COBOL, Transact-SQL, or Embedded SQL reserved words except
as intended by the respective languages.

You can write Embedded SQL keywords in uppercase, lowercase, or mixed
case. This guide shows Embedded SQL keywords in lowercase.

Variable naming conventions
Embedded SQL variables must conform to COBOL naming conventions. Do
not place variable names within quotation marks. Applicable quotations marks
are inserted automatically when the variable names are replaced with actual
values. While parsing your application, the precompiler adds declarations for
variables. These declarations begin “SQL--”. So, to avoid confusion, do not
begin variable names with “SQL”.
Embedded SQL/COBOL Programmer’s Guide 15

Embedded SQL constructs
Scoping rules
Embedded SQL and precompiler-generated statements adhere to host language
scoping rules. The whenever statement and cursor names are exceptions.

Statement batches
As in Transact-SQL, you can batch several SQL statements in a single exec sql
statement. Batches are useful and more efficient when an application executes
a fixed set of Transact-SQL statements each time it runs.

For example, some applications create temporary tables and indexes when they
start up. You could send these statements in a single batch. See the Adaptive
Server Enterprise Reference Manual for rules about statement batches.

The following restrictions apply to statement batches:

• Statements in a batch cannot return results to the program. That is, a batch
cannot contain select statements.

• All statements in a batch must be valid Transact-SQL statements. You
cannot place Embedded SQL statements such as declare cursor and
prepare in a statement batch.

• The same rules that apply to Transact-SQL batches apply to Embedded
SQL batches. For example, you cannot put a use database statement in an
Embedded SQL batch.

Embedded SQL constructs
The following are valid constructs in Embedded SQL statements:
16 Open Client

CHAPTER 2 General Information
Table 0-1: Embedded SQL constructs

begin declare section
begin tran
begin work
checkpoint
close cursor_name
commit tran
commit work
connect
create database
create default
create table
create index
create unique index
create clustered index
create nonclustered index
create unique clustered index
create unique nonclustered index
create proc
create rule
create trigger
create view
declare cursor
delete
disconnect
drop table
drop default
drop index
drop proc
drop rule

drop trigger
drop view
dump database
dump tran
end declare section
exec procedure_name
execute name
execute immediate
fetch cursor_name
grant
include sqlca or file
insert
open cursor_name
prepare statement_name
revoke
rollback tran
rollback work
select
set
truncate
update
use
whenever condition action
Embedded SQL/COBOL Programmer’s Guide 17

Embedded SQL constructs
18 Open Client

C H A P T E R 3 Communicating with Adaptive
Server

This chapter explains how to enable an application program to receive
status information from Adaptive Server. The topics covered include:

To create a communication path and declare system variables to be used
in communications from Adaptive Server to the application, you must
create one of the following entities:

• A SQL Communication Area (SQLCA), which includes SQLCODE

• A standalone SQLCODE long integer

• A SQLSTATE character array

SQLCODE, SQLCA, and SQLSTATE are system variables used in
communication from Adaptive Server to the application.

After Adaptive Server executes each Embedded SQL statement, it stores
return codes in SQLCA, SQLCODE, or SQLSTATE. An application
program can access the variables to determine whether the statement
succeeded or failed.

Note The precompiler automatically sets SQLCA, SQLCODE, and
SQLSTATE variables, which are critical for runtime access to the
database. You need not initialize or modify them.

For details on detecting and handling errors, multiple error messages, and
other return codes, see Chapter 8, “Handling Errors.”

Topic Page
Scoping rules: SQLCA, SQLCODE, and SQLSTATE 20

Declaring SQLCA 20

Declaring SQLCODE as a standalone area 22

Using SQLSTATE 23
Embedded SQL/COBOL Programmer’s Guide 19

Scoping rules: SQLCA, SQLCODE, and SQLSTATE
Scoping rules: SQLCA, SQLCODE, and SQLSTATE
You can declare SQLCA anywhere in the application program where a
COBOL variable can be declared. The scope of the structure follows COBOL
scoping rules.

If you declare SQLCA, SQLCODE, or SQLSTATE within your file, each
variable must be in scope for all executable Embedded SQL statements in the
file. The precompiler generates code to set each of these status variables for
each Embedded SQL statement. So, if the variables are not in scope, the
generated code will not compile.

Declaring SQLCA

 Warning! Although SQLSTATE is preferred over SQLCODE and SQLCA,
this version of the precompiler supports only SQLCODE. A future version will
fully support both SQLCA and SQLSTATE.

Declare SQLCA in your application program’s WORKING-STORAGE
SECTION. The syntax for declaring SQLCA is:

exec sql include sqlca [is external] [is global]
 end-exec.

Multiple SQLCAs
Because a single file can contain multiple COBOL programs, you may have
multiple SQLCAs. However, each SQLCA must be in a separate WORKING-
STORAGE SECTION.

SQLCA variables
When the precompiler encounters the include sqlca statement, it inserts the
SQLCA structure declaration into the application program. SQLCA is a data
structure containing 26 precompiler-determined system variables, each of
which can be accessed independently.
20 Open Client

CHAPTER 3 Communicating with Adaptive Server
SQLCA variables pass information to your application program about the
status of the most recently executed Embedded SQL statement.

The following table describes the SQLCA variables that hold status
information, return codes, error codes, and error messages generated by
Adaptive Server:

Table 3-1: ASE SQLCA variables

Accessing SQLCA variables
The SQLCA variables listed in the previous section provide additional
information about errors and return codes to help in debugging as well as in the
normal processing of your application.

 Warning! Do not define both a SQLCODE and a SQLCA as SQLCODE, as
SQLCODE is a field within the SQLCA structure.

Variable Datatype Description

SQLCAID PIC X(8) Text string that contains “SQLCA”.

SQLCABC PIC S9(9) COMP Length of SQLCA.

SQLCODE PIC S9(9) COMP Contains the return code of the most
recently executed SQL statement. See
the SQLCODE values in Table 3-2 on
page 23 for return code definitions.

SQLWARN0
to
SQLWARN7

PIC X(1) Warning flags. Each flag indicates
whether a warning has been issued: a
“W” for warning, or a blank space for no
warning.
 Chapter 8 describes the SQLWARN
flags.

SQLERRMC PIC X(256) Error message.

SQLERRML PIC S9(9) COMP Error message length.

SQLERRP PIC X(8) Procedure that detected error/warning.

SQLERRD PIC S9(9) COMP
OCCURS 6 TIMES

Details of error/warning. SQLERRD(3)
is number of rows affected.
Embedded SQL/COBOL Programmer’s Guide 21

Declaring SQLCODE as a standalone area
SQLCODE within SQLCA
The application should test SQLCODE after each statement executes, because
Adaptive Server updates it after each execution. As a rule, use the whenever
statement, described in Chapter 8, “Handling Errors,” to perform the
SQLCODE test.

 Following are examples of using SQLCODE:

IF SQLCODE = 100
 PERFORM END-DATA-PARA.

or

DISPLAY "SQL status code is" SQLCODE.

Declaring SQLCODE as a standalone area

Note Although SQLSTATE is preferred over SQLCODE and SQLCA, this
version of the precompiler supports only SQLCODE. A future version will
fully support both SQLCA and SQLSTATE.

As an alternative to creating a SQLCA, use SQLCODE independently. It
contains the return code of the most recently executed SQL statement. The
benefit of declaring SQLCODE as a standalone area is that it executes code
faster. If you have no need to review the other information that SQLCA holds
and are interested only in return codes, consider using SQLCODE.

Despite SQLCODE’s faster execution speed, SQLSTATE is preferred over
SQLCODE because SQLCODE is a deprecated feature that is compatible with
earlier versions of Embedded SQL.

 Warning! Do not declare SQLCODE within a declare section.

 Following is an example of declaring SQLCODE as a standalone area:

01 SQLCODE S9(9) COMP.
 exec sql open cursor pub_id end-exec.

PARAGRAPH-1:
 exec sql fetch pub_id into :PUB_NAME end-exec.
 IF SQLCODE = 0 GOTO PARAGRAPH-1.
22 Open Client

CHAPTER 3 Communicating with Adaptive Server
For details on debugging any errors SQLCODE indicates, see Chapter 8,
“Handling Errors”

Following is a table of SQLCODE values:

Table 3-2: SQLCODE values

Using SQLSTATE

 Warning! Although SQLSTATE is preferred over SQLCODE and SQLCA,
this version of the precompiler supports only SQLCODE. A future version will
fully support both SQLCA and SQLSTATE.

SQLSTATE is a status parameter. Its codes indicate the status of the most
recently attempted statement—either the statement completed successfully or
an error occurred during the execution of the statement.

The following example illustrates a declaration of SQLSTATE:

WORKING-STORAGE SECTION.

01 SQLSTATE PIC x(5)
 . . .

exec sql whenever sqlerror perform ERR-PARA
 end-exec
 . . .

ERR-PARA.

 IF sqlstate = "ZD000" or
 sqlstate = "ZE000" or
 sqlstate = "ZF000" or
 sqlstate = "ZG000" or
 sqlstate = "ZH000"
 DISPLAY "Unexpected results were ignored"

Value Description

0 Statement executed successfully.

-n Error occurred. See Server-Library or Client-Library
error messages. -n represents the number associated
with the error or exception.

+100 No data exists, no rows left after fetch, or no rows met
search condition for update, delete, or insert.
Embedded SQL/COBOL Programmer’s Guide 23

Using SQLSTATE
 ELSE

 IF sqlstate = "08001" or sqlstate = "08000"
 DISPLAY "Connection failed-quitting"
 STOP RUN
 ELSE

 DISPLAY "A non-results, non-connect
 — error occurred"

 END_IF

 END_IF

The following table lists SQLSTATE values:

Table 3-3: SQLSTATE values

Obtaining SQLSTATE codes and error messages
SQLSTATE can contain a list of one or more error and/or warning messages.
The messages can be informational, warning, severe, or fatal messages. Open
Client Client-Library and Open Server Server Library generate the majority of
SQLSTATE messages. See the appropriate documentation for a complete list
of SQLSTATE codes and error messages.

See Appendix A, “Precompiler Warning and Error Messages,” for the table of
SQLSTATE messages that the precompiler can generate.

Value Description

00XXX Successful execution

01XXX Warning

02XXX No data exists; no rows affected

Any other value Error
24 Open Client

C H A P T E R 4 Using Variables

This chapter details the following two types of variables that pass data
between your application and Adaptive Server:

• Host variables, which are COBOL variables you use in Embedded
SQL statements to hold data that is retrieved from and sent to
Adaptive Server

• Indicator variables, which you associate with host variables to
indicate null data and data truncation

Declaring variables
As discussed in Chapter 3, “Communicating with Adaptive Server,” the
precompiler automatically sets the system variables when you include
SQLCA, SQLCODE, or SQLSTATE in the application program.
However, you must explicitly declare host and indicator variables in a
declare section before using them in Embedded SQL statements.

 Warning! The precompiler generates some variables, all of which begin
with “SQL--”. Do not begin your variables with “SQL,” or you may
receive an error message or unreliable data.

You cannot use COPY statements in a declare section. The syntax for a
declare section is:

Topic Page
Declaring variables 25

Using host variables 27

Using indicator variables 29

Using arrays 33

Scoping rules 33

Datatypes 35
Embedded SQL/COBOL Programmer’s Guide 25

Declaring variables
exec sql begin declare section end-exec

 declarations ...

exec sql end declare section end-exec.

Host variable declarations must conform to the COBOL rules for data
declarations. You need not declare all variables in one declare section, since
you can have an unlimited number of declare sections in a program.

Note Version 11.1 and later does not support updates to the PIC clause.

When declaring variables, you must also specify the picture and usage clauses.
For valid picture and usage clauses, see the section “Comparing COBOL and
Adaptive Server datatypes” on page 37

The following example shows a sample declare section:

exec sql begin declare section end-exec
 01 E-NAME PIC X(30).
 01 E-TYPE PIC X(3).
 01 TINY-INT PIC S9(2) COMP.
 01 SHORT-INT PIC S9(4) COMP.
 01 MONEY-DATA CS-MONEY.
 exec sql end declare section end-exec.

Declaring a character array
The precompiler supports complex definitions, which are structures and arrays.
You can nest structures, but you cannot have an array of structures.

The precompiler recognizes single-dimensional arrays of all datatypes.

The precompiler also recognizes double-dimensional arrays of characters, as
demonstrated in the following example:

01 NUMSALES PIC S9(9) OCCURS 25 TIMES.

exec sql begin declare section end-exec.
 01 DAYS-OF-THE-WEEK PIC X(31) OCCURS 7 TIMES.
 exec sql end declare section end-exec.

For details on arrays, see “Using arrays” on page 33.
26 Open Client

CHAPTER 4 Using Variables
Using host variables
Host variables let you transfer values between Adaptive Server and the
application program.

Declare the host variable within the application program’s Embedded SQL
declare section. Only then can you use the variable in SQL statements.

When you use the variable within an Embedded SQL statement, prefix the host
variable with a colon. When you use the variable elsewhere in the program, do
not use a colon. When you use several host variables successively in an
Embedded SQL statement, separate them with commas or follow the grammar
rules of the SQL statement.

The following example demonstrates correct host variable usage. PAR-1,
PAR-2, and PAR-3 are declared as host variables and are then used as
parameters to the myproc procedure:

exec sql begin declare section end-exec
 01 PAR-1 PIC X(10).
 01 PAR-2 PIC X(10).
 01 PAR-3 PIC X(10).
 exec sql end declare section end-exec

 exec sql exec myproc :PAR-1, :PAR-2, :PAR-3 end-exec.

There are four ways to use host variables. Use them as:

• Input variables for SQL statements and procedures

• Result variables

• Status variables from calls to SQL procedures

• Output variables for SQL statements and procedures

Regardless of their function, declare all host variables as described in
“Declaring variables” on page 25. Following are instructions for using host
variables.

Host input variables
These variables pass information to Adaptive Server. The application program
assigns values to them. They hold data used in executable statements such as
stored procedures, select statements with where clauses, insert statements with
values clauses, and update statements with set clauses.
Embedded SQL/COBOL Programmer’s Guide 27

Using host variables
The following example uses the TITLE-ID1, TITLE-ID2, and PUB-ID
variables as input variables:

exec sql begin declare section end-exec
 01 TITLE-ID1 PIC X(6).
 01 TITLE-ID2 PIC X(6).
 01 PUB-ID PIC X(4).
 exec sql end declare section end-exec

 exec sql delete from titles
 where title_id = :TITLE-ID1 end-exec.
 exec sql update titles set pub_id = :PUB-ID
 where title_id = :TITLE-ID2 end-exec.

Host result variables
These variables receive the results of select and fetch statements.

The following example uses the TITLE-ID variable as a result variable:

exec sql begin declare section end-exec
 01 TITLE-ID PIC X(6).
 exec sql end declare section end-exec

 exec sql select title_id into :TITLE-ID from titles
 where pub_id = "0736"
 and type = "business" end-exec.

Host status variables
These variables receive the return status values of stored procedures. Status
variables indicate whether the stored procedure completed successfully or the
reasons it failed. You must use a variable that can be converted from the
Adaptive Server type to smallint.

The following example uses the RET-CODE variable as a status variable:

exec sql begin declare section end-exec
 01 RET-CODE PIC S9(4) COMP.
 exec sql end declare section end-exec.
 . . .
 exec sql exec :RET-CODE = update_pubs end-exec.
 IF RET-CODE NOT = 0
 exec sql rollback transaction end-exec.
28 Open Client

CHAPTER 4 Using Variables
Host output variables
These variables pass data from stored procedures to the application program.
Use host output variables when stored procedures return the value of
parameters declared as out. For more information on stored procedures, see
“Using stored procedures” on page 59.

The following example uses the PAR1 and PAR2 variables as output variables:

exec sql exec a_proc :PAR1 out, :PAR2 out end-exec.

Using indicator variables
You can associate indicator variables with host variables to indicate when a
database value is null. Use a space and, optionally, the indicator keyword to
separate each indicator variable from the host variable with which it is
associated. Each indicator variable must immediately follow its host variable.

Without indicator variables, Embedded SQL cannot indicate null values.

Indicator variables and server restrictions
Embedded SQL is a generic interface that can run on a variety of servers,
including Adaptive Server.

Because it is generic, Embedded SQL does not enforce or reflect any particular
server’s restrictions. For example, Embedded SQL allows text and image
stored procedure parameters, but Adaptive Server does not.

When writing an Embedded SQL application, keep the application’s ultimate
target server in mind. If you are unsure about what is legal on a server and what
is not, consult your server documentation.

Using host variables with indicator variables
Declare host and indicator variables in a declare section before using them
anywhere in an application program containing Embedded SQL statements.

You must declare indicator variables as one of the following in a declare
section:
Embedded SQL/COBOL Programmer’s Guide 29

Using indicator variables
PIC S9(4) COMP
 DISPLAY SIGN LEADING (and, optionally, SEPARATE)
 DISPLAY SIGN TRAILING (and, optionally, SEPARATE)
 COMP-3
 COMP-4
 COMP-5
 BINARY

Prefix indicator variables with a colon when using them in an Embedded SQL
statement. The syntax for associating an indicator variable with a host variable
is:

:host_variable [[indicator] :indicator_variable]

The association between an indicator and host variable lasts only for the
duration of one exec sql statement.

ASE sets the indicator variable only when you assign a value to the host
variable. Therefore, you can declare an indicator variable once and reuse it
with different host variables in different statements.

You can use indicator variables with output, result, and input variables. When
used with output and result variables, Embedded SQL sets the variable to
indicate the null status of the associated host variable. When used with input
variables, you set the value of the indicator variable to show the null status of
the input variable before submitting it to Adaptive Server.

Note You can use indicator variables with output, result, and input variables.

Using indicator variables with host output and result variables

When you associate an indicator variable with an output or result variable,
Client-Library automatically sets it to one of the following values:

Table 4-1: Indicator variable values used with output or result variable

Value Meaning

 -1 The corresponding database column in Adaptive Server contains
a null value.

 0 A non-null value was assigned to the host variable.

 >0 An overflow occurred while data was being converted for the
host variable. The host variable contains truncated data. The
positive number represents the length, in bytes, of the value
before it was truncated.
30 Open Client

CHAPTER 4 Using Variables
The following example demonstrates associating the INDIC-V indicator
variable with the PUB-NAME result variable:

exec sql begin declare section end-exec
 01 INDIC-V PIC S9(4) COMP.
 01 PUB-ID PIC X(4).
 01 PUB-NAME PIC X(20).
 exec sql end declare section end-exec

 exec sql select pub_name into :PUB-NAME :INDIC-V
 from publishers where pub_id = :PUB-ID
 end-exec.

 if INDIC-V = -1
 display "No Publisher name"
 else
 display "Publisher Name is: " PUB-NAME.

Using indicator variables with host input variables

When you associate an indicator variable with an input variable, you must
explicitly set the indicator variable, using the values in the following table as a
guide.

Table 4-2: Indicator variable values used with input variable

You must supply host language code to test for a null input value and set the
indicator variable to -1. This informs Client-Library of a null value. When you
set the indicator variable to -1, null is used regardless of the host variable’s
actual value.

The following example demonstrates associating an indicator variable with an
input variable. The database royalty column will be set to a null value because
R-INDIC is set to -1. Changing the value of R-INDIC changes the value of
royalty.

exec sql begin declare section end-exec
 01 R-INDIC PIC S9(4) COMP.
 01 R-VAR PIC X(10).
 exec sql end declare section end-exec.

 MOVE -1 TO R-INDIC.
 exec sql update titles

Value Meaning

-1 Treat the corresponding input as a null value.

0 Assign the value of the host variable to the column.
Embedded SQL/COBOL Programmer’s Guide 31

Using indicator variables
 set royalty = :R-VAR :R-INDIC
 where pub_id="0736" end-exec.

Host variable conventions
A host variable name must conform to COBOL naming conventions.

You can use a host variable in an Embedded SQL statement only if a Transact-
SQL literal can be used in a Transact-SQL statement at the same location.

A host variable must conform to the valid precompiler datatypes. The datatype
of a host variable must be compatible with the datatype of the database column
values that are returned. See Figure 4-1 on page 39 and Figure 4-2 on page 40
for details.

Do not use host language reserved words and Embedded SQL keywords as
variable names.

A host variable cannot represent Embedded SQL keywords or database
objects, except as specified in dynamic SQL. For more information on using
host variables to represent keywords for database objects, see Chapter 4,
“Using Variables.”

When a host variable represents a character string in a SQL statement, do not
place it within quotes.

The following example is invalid because the precompiler inserts quotes
around values when necessary. You should not type the quotes.

exec sql select pub_id from publishers
 where pub_id like ":PUB-ID"

end-exec

The following example is valid:

exec sql select pub_id from publishers
 where pub_id like :PUB-ID

end-exec
32 Open Client

CHAPTER 4 Using Variables
Using arrays
An array is a group of related pieces of data associated with one variable. You
can use arrays as output variables for the into clause of select and fetch
statements.

For example:

01 author-array.
 10 author-name PIC X(30) occurs 100 times.

exec sql
 select au_lname
 from authors
 into :au_array

end-exec.

Note You can fetch a single item anywhere into an array. However, you can
fetch multiple rows only into the beginning of an array.

For details on using arrays with select and fetch into, see “Selecting multiple
rows through arrays” on page 51 in Chapter 6.

Multiple arrays
When you use multiple arrays within a single SQL statement, they must be the
same size. Otherwise, you will receive an error message.

Scoping rules
The precompiler supports nested COBOL programs and COBOL’s rules for
variable scoping. Host variables can use the is global and is external clauses.
Following is a nested example:

IDENTIFICATION DIVISION.
 PROGRAM-ID. outer.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. xyz.
 OBJECT-COMPUTER. xyz.
Embedded SQL/COBOL Programmer’s Guide 33

Scoping rules
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 exec sql begin declare section end-exec.
 01 global-var is global pic x(10).
 01 not-global-var pic x(10).
 01 shared-var is external pic x(10).
 exec sql end declare section end-exec.
procedure division.
 p0.
 . . .
IDENTIFICATION DIVISION.
 PROGRAM-ID. inner.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. xyz.
 OBJECT-COMPUTER. xyz.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
procedure division.
p0.
 . . .
* This is legal because global-var was
 * declared using is global
 exec sql
 select au_lname into :global-var
 where au_id = "998-72-3567"
 end-exec.
* This is not legal because not-global-var was
 * not declared using is global
 exec sql
 select au_lname into :not-global-var
 where au_id = "998-72-3567"
 end-exec.
 . . .
end program inner.
end program outer.
IDENTIFICATION DIVISION.
 PROGRAM-ID. nonest.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. xyz.
 OBJECT-COMPUTER. xyz.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 exec sql begin declare section end-exec.
 01 local-var pic x(10).
34 Open Client

CHAPTER 4 Using Variables
 01 shared-var is external pic x(10).
 exec sql end declare section end-exec.
procedure division.
p0.
 . . .
* This is legal.
 exec sql
 select au_lname into :local-var
 where au_id = "998-72-3567"
 end-exec.
* So is this.
 exec sql
 select au_lname into :shared-var
 where au_id = "998-72-3567"
 end-exec.
 . . .

end program nonest.

Datatypes
The COBOL veneer layer is a library used by the precompiled application
along with Open Client Client-Library. The COBOL code generated by the
precompiler calls functions in the veneer layer, each of which calls a specific
Client-Library function. The veneer layer performs conversions and other
operations that make it possible for COBOL to communicate with Client-
Library. The veneer layer also provides conversions that translate between
COBOL host variables and Adaptive Server datatypes.

There are two types of data items: elementary and group data items. The
following subsections describe these types of data items.

Elementary data items
An elementary data item is a complete item that cannot be broken into separate
parts. You can use elementary data items as host variables.

Following is an example of an elementary data item:

01 MYSTR PIC X(26).
Embedded SQL/COBOL Programmer’s Guide 35

Datatypes
You can use MYSTR as a host variable (:MYSTR) because it is an elementary
data item.

Group data items
When multiple elementary data items combine to form a group of related items
they become a group data item. You can use group data items as host variables.
Declare group data items in declare sections.

Following is an example of a group item:

01 AUTH-REC.
10 AUTH-NAME PIC X(25).
10 STATE PIC X(25).
10 TOTAL-SALES PIC S9(9) COMP SYNC

Following is an example of selecting into a group item whose data items are
host variables:

exec sql select au_lname, salary, tot_sales
 from table into :AUTH-REC end-exec

The preceding example has the same effect as the following code:

exec sql select au_lname, salary, tot_sales
 from table into :AUTH-NAME, :SALARY, :TOTAL-SALES

Another equivalent example is:

exec sql select au_lname, salary, tot_sales
 from table into :AUTH-NAME OF AUTH-REC,
 :SALARY OF AUTH-REC, :TOTAL-SALES OF AUTH-REC

Embedded SQL/COBOL also supports C language structure syntax for host
variables in exec sql statements. For example, the preceding example could be
rewritten as follows:

exec sql select au_lname, salary, tot_sales
 from table into :AUTH-REC.AUTH-NAME,
 :AUTH-REC.SALARY, :AUTH-REC.TOTAL-SALES

Use SYNC with COMP, COMP-4, COMP-5, and BINARY data items declared
within group data items.
36 Open Client

CHAPTER 4 Using Variables
Special data items
Special Sybase datatypes, such as CS_MONEY, CS-TEXT, and CS-IMAGE
are declared as shown in the following example:

 01 MYTEXT PIC x(100) USAGE IS CS-TEXT.

Comparing COBOL and Adaptive Server datatypes
Host variable datatypes must be compatible with the datatypes of the
corresponding database columns. So, before writing your application program,
check the datatypes of the database columns.

The following rules apply to datatypes:

• When you use any of the host variables in the “To: COBOL Datatype”
column as input or output, the appropriate conversions occur
automatically.

• Indicator variables must be of usage COMP, COMP-3, COMP-4, COMP-
5, BINARY, or a variant of DISPLAY. They must have a picture string of
S9(4) or equivalent.

• You can use any value with PIC S9(1-9) COMP. If decimal truncation
occurs, no truncation message results. Instead, a SQLCA or SQLSTATE
error message results, which specifically indicates digital truncation.

For example, if you select the value “1234” into a PIC S9(4), no truncation
message occurs because the value fits in the given bytes. However, if you
select “1234567” into PIC S9(3), a truncation message results because the
value does not fit in the given bytes.

Converting datatypes
The precompiler automatically compares the datatypes of host variables with
the datatypes of table columns in Adaptive Server. If the Adaptive Server
datatype and the host language datatype are compatible but not identical, the
COBOL veneer layer converts one type to the other. Datatypes are compatible
if the precompiler can convert the data from one type to the other. If the
datatypes are incompatible, a conversion error occurs at runtime and
SQLCODE or SQLSTATE is set to a negative number.
Embedded SQL/COBOL Programmer’s Guide 37

Datatypes
Be careful when converting a longer datatype into a shorter one, such as a long
integer into PIC S9(4) COMP, because there is always a possibility of
truncating data. If a truncation occurs, SQLWARN1 is set.

Note Do not fetch Adaptive Server data into COBOL numeric fields that
contain editing characters such as commas and decimal characters. Instead,
fetch the data into an unedited field such as comp or display sign leading
separate and then move the data into an edited field.

Converting datatypes for result variables

The following figure shows which data conversions are valid for result
variables. A bullet indicates that conversion is possible, but be aware that
certain types of errors can result if you are not careful when choosing host
variable datatypes.
38 Open Client

CHAPTER 4 Using Variables
Figure 4-1: Datatype conversions for result variables

Converting datatypes for input variables

The following figure shows which data conversions are valid for input
variables. A bullet indicates that conversion is possible. Errors, including
truncation, can result if you choose nonconvertible host variable datatypes.
Embedded SQL/COBOL Programmer’s Guide 39

Datatypes
Figure 4-2: Datatype conversions for input variables
40 Open Client

C H A P T E R 5 Connecting to Adaptive Server

This chapter explains how to connect an Embedded SQL program to
Adaptive Server and describes how to specify servers, user names, and
passwords. Topics include:

Connecting to a server
Use the connect statement to establish a connection between an
application program and Adaptive Server. If an application uses both C
and COBOL languages, the first connect statement must be issued from a
COBOL program.

The syntax for the connect statement is:
exec sql connect :user [identified by :password]
 [at :connection_name] [using :server]
 [label_name label_name label_value label_value...]
 end-exec

Each of the following sections describes one of the connect statement’s
arguments. Only the user argument is required for the connect statement.
The other arguments are optional.

user
user is a host variable or quoted string that represents a Adaptive Server
user name. The user name must be valid for the server specified.

Topic Page
Connecting to a server 41

Changing the current connection 43

Establishing multiple connections 44

Disconnecting from a server 46
Embedded SQL/COBOL Programmer’s Guide 41

Connecting to a server
password
password is a host variable or quoted string that represents the password
associated with the specified user name. This argument is necessary only if a
password is required to access Adaptive Server. If the password argument is
null, the user does not need to supply a password.

connection_name
connection_name uniquely identifies the Adaptive Server connection. It can be
a double-quoted or an unquoted literal. You can create an unlimited number of
connections in an application program, one of which can be unnamed.
connection_name has a maximum size of 128 characters.

When you use connection_name in a connect statement, all subsequent
Embedded SQL statements that specify the same connection automatically use
the server indicated in the connect statement. If the connect statement specifies
no server, the default server is used. See the Open Client/Server Programmer’s
Supplement for details on how the default server is determined.

Note To change the current server connection, use the set connection statement
described in “Changing the current connection” on page 43.

An Embedded SQL statement should reference only a connection_name
specified in a connect statement. At least one connect statement is required for
each server that the application program uses.

server
server is a host variable or quoted string that represents a server name. server
must be a character string that uniquely and completely identifies a server.
42 Open Client

CHAPTER 5 Connecting to Adaptive Server
labelname
labelname is only valid with a connect statement that is used for B1 SQL
Secure Server™ applications. labelname is not case sensitive. You can have
multiple labels, each one referring to a connection to a B1 Secure Server. The
labelname and labelvalue clause(s) must be the last clause(s) within the
connect statement. labelname is either a literal string or a character string host
variable.

labelvalue
labelvalue is valid only with a connect statement that is used for B1 Secure
Adaptive Server applications. labelvalue is not case sensitive. You can have
multiple labels, each one referring to a connection to a B1 Secure Adaptive
Server. The labelvalue and labelname clause(s) must be the last clause(s)
within the connect statement. labelvalue is either a literal string or a character
string host variable.

connect example
The following example uses the UNIX format to connect to the server
SYBASE.

exec sql begin declare section end-exec

01 USER PIC X(16) VALUE "myname"
01 PASSWD PIC X(16) VALUE "abcdefg".
01 SERV-NAME PIC X(16).
01 MY-SERVER PIC X(512).

exec sql end declare section end-exec.

 MOVE "SYBASE" TO SERV-NAME.

exec sql connect :USER identified by :PASSWD
 using :SERV-NAME end-exec.

Changing the current connection
Use the set connection statement to change the current connection. The
statement’s syntax is:
Embedded SQL/COBOL Programmer’s Guide 43

Establishing multiple connections
exec sql set connection {connection_name | default}

where “default” is the unnamed connection, if any.

The following example changes the current connection:

exec sql connect "ME" at connect1 using "SERVER1" end-
exec
exec sql connect "ME" at connect2 using "SERVER2" end-
exec
exec sql set connection connect1 end-exec
exec-sql select user_id()into :MYID end-exec

Establishing multiple connections
Some Embedded SQL applications require or benefit from having more than
one active Adaptive Server connection. For example:

• An application that requires multiple Adaptive Server login names can
have a connection for each login account name.

• By connecting to more than one server, an application can simultaneously
access data stored on different servers.

A single application can have multiple connections to a single server or
multiple connections to different servers. Use the connect statement’s at
connection_name clause to name additional connections for an application.

If you open one connection and then another new named or unnamed
connection, the new connection is the current connection.

Note If you are creating stored procedures with the precompiler for
appropriate SQL statements with the precompiler, then for each Embedded
SQL file, the precompiler will generate a single file for all stored procedures
on all servers. You can load this file into the appropriate server(s). Although
the server(s) will report warnings and errors about being unable to read the
procedures intended for other servers, ignore them. The stored procedures
appropriate for each server will load properly on that server. Be sure to load the
stored procedures on all applicable servers or your queries will fail.
44 Open Client

CHAPTER 5 Connecting to Adaptive Server
Naming a connection
The following table shows how a connection is named:

Table 5-1: How a connection is named

Invalid statements with the at clause

The following statements are invalid with the at clause:

• connect

• begin declare section

• end declare section

• include file

• include sqlca

• set connection

• whenever

Using Adaptive Server connections
Specify a connection name for any Embedded SQL statement that you want to
execute on a connection other than the default unnamed connection. If your
application program uses only one connection, you can leave the connection
unnamed and omit the at clause.

The syntax for using multiple connections is:
exec sql [at connection_name] sql_statement
 end-exec

where sql_statement is a Transact-SQL statement.

The following example shows how two connections can be established to
different servers and used in consecutive statements:

exec sql begin declare section end-exec

If this clause is
used

Without
this clause The connection name is

at connection_name connection_name

using server_name at server_name

None The actual name of the connection
“DEFAULT”
Embedded SQL/COBOL Programmer’s Guide 45

Disconnecting from a server
 01 USER PIC X(16) VALUE "myname".
 01 PASSWD PIC X(16) VALUE "mypass".
 01 AU-NAME PIC X(20).
 01 A-VALUE PIC S9(9) COMP.
 01 A-TEST PIC S9(9) COMP.
 01 SERVER-1 PIC X(16).
 01 SERVER-2 PIC X(16).
 exec sql end declare section end-exec.
 . . .
 MOVE "sybase1" TO SERVER-1.
 MOVE "sybase2" TO SERVER-2.

 exec sql connect :USER identified by :PASSWD
 using :SERVER-1 end-exec.
 exec sql connect :USER identified by :PASSWD
 at connection-2 using :SERVER-2 end-exec.

 * This statement uses the current connection
 * (connection-2)
 exec sql select royalty into :A-VALUE from pubs
 where author = :AU-NAME end-exec.

 * This statement uses connection "SERVER-1"
 IF A-VALUE = A-TEST
 exec sql at SERVER-1 update titles
 set column = :A-VALUE * 2
 where author = :AU-NAME end-exec.

Disconnecting from a server
The connections your application program establishes remain open until you
explicitly close them or until your program terminates. Use the disconnect
statement to close a connection between the application program and Adaptive
Server.

The statement’s syntax is as follows:

exec sql disconnect {connection_name | current |
 default | all} end-exec

where:

• current specifies the current connection
46 Open Client

CHAPTER 5 Connecting to Adaptive Server
• default specifies the unnamed default connection

• all specifies all connections currently open

The disconnect statement:

1 Rolls back the transaction, ignoring any established savepoints.

2 Closes the connection.

3 Drops all temporary objects, such as tables.

4 Closes all open cursors.

5 Releases locks established for the current transactions.

6 Terminates access to the server’s databases.

disconnect does not implicitly commit current transactions.

 Warning! Before the program exits, make sure you perform an exec sql
disconnect or exec sql disconnect all statement for each open connection. In
some configurations, Adaptive Server may not be notified when a client exits
without disconnecting. If this happens, resources held by the application will
not be released.
Embedded SQL/COBOL Programmer’s Guide 47

Disconnecting from a server
48 Open Client

C H A P T E R 6 Using Transact-SQL Statements

This chapter explains how to use Transact-SQL statements with
Embedded SQL and host variables. It also explains how to use stored
procedures, which are collections of SQL statements stored in Adaptive
Server. Since stored procedures are compiled and saved in the database,
they execute quickly without being recompiled each time you invoke
them.

Transact-SQL statements in Embedded SQL

exec sql syntax
Embedded SQL statements must begin with the keywords exec sql and
end with the keyword end-exec. The syntax for Embedded SQL
statements is:

exec sql [at connection_name] sql_statement end-exec

where:

• connection_name specifies the connection for the statement. See
Chapter 5, “Connecting to Adaptive Server,” for a description of
connections. The at keyword is valid for Transact-SQL statements
and the disconnect statement.

• sql_statement is one or more Transact-SQL statements.

Topic Page
Transact-SQL statements in Embedded SQL 49

Selecting rows 50

Grouping statements 62

Including files and directories 65
Embedded SQL/COBOL Programmer’s Guide 49

Selecting rows
Invalid statements
Except for the following Transact-SQL statements, all Transact-SQL
statements are valid in Embedded SQL:

• print

• raiserror

• readtext

• writetext

Transact-SQL statements that differ in Embedded SQL
While most Transact-SQL statements retain their functionality and syntax
when used in Embedded SQL, the select, update, and delete statements (the
Data Manipulation Language, or DML, statements) can be slightly different in
Embedded SQL:

• The following four items are specific to the into clause of the select
statement.

• The into clause can assign one row of data to scalar host variables.
This clause is valid only for select statements that return just one row
of data. If you select multiple rows, a negative SQLCODE results, and
only the first row is returned.

• If the variables in an into clause are arrays, you can select multiple
rows. If you select more rows than the array holds, an exception of
SQLCODE <0 is raised, and the extra rows are lost.

• select cannot return multiple rows of data in host variables, except
through a cursor or by selecting into an array.

• The update and delete statements can use the search condition where
current of cursor_name.

Selecting rows
There can be a maximum of 256 columns in a select statement. For the
complete listing of the select statement’s syntax, see the Adaptive Server
Enterprise Reference Manual.
50 Open Client

CHAPTER 6 Using Transact-SQL Statements
Selecting one row
When you use the select statement without a cursor or array, it can return only
one row of data. Embedded SQL requires a cursor or an array to return more
than one row of data.

In Embedded SQL, a select statement must have an into clause. The clause
specifies a list of host variables to be assigned values.

Note The current Embedded SQL precompiler version does not support into
clauses that specify tables.

The syntax of the Embedded SQL select statement is:

exec sql [at connect_name]
 select [all | distinct] select_list into
 :host_variable[[indicator]:indicator_variable]
 [, :host_variable
 [[indicator]:indicator_variable]...]
 end-exec

For additional information on select statement clauses, see the Adaptive Server
Enterprise Reference Manual.

The following select statement example accesses the authors table in the pubs2
database and assigns the value of au_id to the host variable ID:

exec sql select au_id into :ID from authors
 where au_lname = "Stringer"
 end-exec

Selecting multiple rows through arrays
You can return multiple rows with arrays. The two array actions involve
selecting and fetching into arrays.

select into arrays

Use the select into array method when you know the maximum number of rows
that will be returned. If a select into statement attempts to return more rows than
the array can hold, the statement returns the maximum number of rows that the
smallest array can hold.

Following is an example of selecting into an array:
Embedded SQL/COBOL Programmer’s Guide 51

Selecting rows
exec sql begin declare section end-exec
 01 TITLEID-ARRAY PIC X(6) OCCURS 100 TIMES.
 exec sql end declare section end-exec
 ...
 exec sql select title_id into :titleid-array
 from titles end-exec.

Indicator arrays

To use indicators with array fetches, declare an array of indicators of the same
length as the host_variable array, and use the syntax for associating the
indicator with the host variable.

Example

exec sql begin declare section end-exec
 01 ITEM-NUMBERS S9(9) OCCURS 100 TIMES.
 01 I-ITEM-NUMBERS S9(4) OCCURS 100 TIMES.
 exec sql end declare section end-exec
 ...
 exec sql select it_n from item.info
 into :item-numbers :i-item-numbers end-exec.
 ...

fetch into: batch arrays

fetch returns the specified number of rows from the currently active set. Each
fetch returns the subsequent batch of rows. For example, if the currently active
set has 150 rows and you select and fetch 60 rows, the first fetch returns the first
60 rows. The next fetch returns the following 60 rows. The third fetch returns
the last 30 rows.

Note To find the total number of rows fetched, see the SQLERRD variable in
the SQLCA, as described in “SQLCA variables” on page 20.

Following is an example of selecting into an array:

exec sql begin declare section end-exec
 TITLEID-ARRAY PIC X(6) occurs 100 times.
exec sql end declare section end-exec
...
exec sql
52 Open Client

CHAPTER 6 Using Transact-SQL Statements
select title_id into :titleid_array
 from titles
end-exec
IF (SQLERRD OF SQLCA LESS THAN 50)
 DISPLAY "No of title_ids is less than 50");
ENDIF.

Cursors and arrays

Use the fetch into array method when you do not know the number of rows to
be returned into the array. Declare and open a cursor, then use fetch to retrieve
groups of rows. If a fetch into attempts to return more rows than the array can
hold, the statement returns the maximum number of rows that the smallest
array can hold and SQLCODE displays a negative value, indicating that an
error or exception occurred.

Using cursors

A cursor is a data selector that passes multiple rows of data to the host program,
one row at a time. The cursor indicates the first row, also called the current
row, of data and passes it to the host program. With the next fetch statement,
the cursor advances to the next row, which has now become the current row.
This continues until all requested rows are passed to the host program.

Use a cursor when a select statement returns more than one row of data. Client-
Library tracks the rows Adaptive Server returns and buffers them for the
application. To retrieve data with a cursor, use the fetch statement.

The cursor mechanism is composed of these statements:

• declare

• open

• fetch

• update and delete where current of

• close

Cursor scoping rules

The scope of a cursor declaration is the file in which it is declared. The open
statement(s) for a cursor must reside in the same file in which the cursor is
declared. Once a cursor is open, its scope is the connection on which it was
opened.
Embedded SQL/COBOL Programmer’s Guide 53

Selecting rows
The same cursor name can be opened for multiple connections. Cursor fetch,
update, delete, and close operations can occur in files other than the one in
which the cursor was declared, as long as they are executed on the same
connection on which the cursor was opened.

Cursor names must be unique within a program. If, at runtime, an application
attempts to declare two identically named cursors, the application fails. The
following error message would result:

There is already another cursor with the name ‘XXX’.

Declaring cursors

The declare cursor statement is a declaration, not an executable statement.
Therefore, it may appear anywhere in a file; SQLCODE, SQLSTATE, and
SQLCA are not set after this statement.

Declare a cursor for each select statement that returns multiple rows of data.
You must declare the cursor before using it, and you cannot declare it within a
declare section.

The syntax for declaring a cursor is:

exec sql declare cursor_name cursor
 for select_statement end-exec.

where:

• cursor_name identifies the cursor. The name must be unique and have a
maximum of 30 characters. The name must begin with a letter of the
alphabet or with the symbols # or _.

• select_statement is a select statement that can return multiple rows of data.
The syntax for select is the same as that shown in the Adaptive Server
Enterprise Reference Manual, except that you cannot use into or compute
clauses.

Example: Declaring a cursor

The following example demonstrates declaring cursors:

exec sql declare C1 cursor for
 select type, price from titles
 where type like :WK-TYPE end-exec
54 Open Client

CHAPTER 6 Using Transact-SQL Statements
In this example, C1 is declared as a cursor for the rows that will be returned for
the type and price columns. The precompiler generates no code for the declare
cursor statement. It simply stores the select statement associated with the
cursor.

When the cursor opens, the select statement or procedure in the declare cursor
statement executes. When the data is fetched, the results are copied to the host
variables.

Note Each cursor’s open and declare statements must be in the same file. Host
variables used within the declare statement must have the same scope as the
one in which the open statement is defined. However, once the cursor is open,
you can perform fetch and update/delete where current of on the cursor in any
file.

Opening cursors

To retrieve the contents of selected rows, you must first open the cursor. The
open statement executes the select statement associated with the cursor in the
declare statement. The open statement’s syntax is:

exec sql open cursor_name end-exec

After you declare a cursor, you can open it wherever you can issue a select
statement. When the open statement executes, Embedded SQL substitutes the
values of any host variables referenced in the declare cursor statement’s where
clause.

The number of cursors you may have open depends on the resource demands
of the current session. Adaptive Server does not limit the number of open
cursors. However, you cannot open a currently open cursor. Doing so results in
an error message.

While an application executes, you can open a cursor as many times as
necessary, but you must close it before reopening it. You need not retrieve all
the rows from a cursor result set before retrieving rows from another cursor
result set.

Fetching data

Use a fetch statement to retrieve data through a cursor and assign it to host
variables. The syntax for the fetch statement is:
Embedded SQL/COBOL Programmer’s Guide 55

Selecting rows
exec sql fetch [at connect_name] fetch cursor_name
 into :host_variable [[indicator]:indicator_variable]
 [,:host_variable
 [[indicator]:indicator_variable]...]
 end-exec

where there is one host_variable for each column in the result rows.

Prefix each host variable with a colon and separate it from the next host
variable with a comma. The host variables listed in the fetch statement must
correspond to Adaptive Server values that the select statement retrieves. Thus,
the number of variables must match the number of returned values, they must
be in the same order, and they must have compatible datatypes.

An indicator_variable is a 2-byte signed integer declared in a previous declare
section. If a value retrieved from Adaptive Server is null, the runtime system
sets the corresponding indicator variable to -1. Otherwise, the indicator is set
to 0.

The data that the fetch statement retrieves depends on the cursor position. The
cursor points to the current row. The fetch statement always returns the current
row. The first fetch retrieves the first row and copies the values into the host
variables indicated. Each fetch advances the cursor to the next result row.

Normally, you should place the fetch statement within a loop so all values
returned by the select statement can be assigned to host variables. Following is
a loop that is commonly used:

 exec sql
 whenever sqlerror perform err-para thru err-para-end
 end-exec.
 exec sql
 whenever not found go to read-end
 end-exec.

 * 0 is never equal to 1, so the perform will run
 * until the whenever NOT FOUND clause causes
 * a jump to READ-END

 PERFORM READ-PARA UNTIL 0 = 1.

 READ-END.
 . . .

 READ-PARA.
 exec sql fetch cursor_name into host-variable-list
 end-exec.
 . . .
56 Open Client

CHAPTER 6 Using Transact-SQL Statements
 OTHER-PARA.
 . . .

This loop continues until all rows are returned or an error occurs. In either case,
SQLCODE or SQLSTATE, which the whenever statement checks after each
fetch, indicates the reason for exiting the loop. The error-handling routines
ensure that an action is performed when either condition arises, as described in
Chapter 8, “Handling Errors”

Using cursors to update and delete rows

To update or delete the current row of a cursor, specify where current of
cursor_name as the search condition in an update or delete statement.

To update rows through a cursor, the result columns to be used in the updates
must be updatable. They cannot be the result of SQL expressions such as
max(colname). In other words, there must be a valid correspondence between
the result column and the database column to be updated.

The following example demonstrates how to use a cursor to update rows:

 exec sql declare c1 cursor for
 select title_id, royalty, ytd_sales
 from titles
 where royalty < 12
 end-exec

 exec sql open C1 end-exec

 PERFORM READ-PARA UNTIL SQLCODE = 100.
 exec sql close C1 end-exec.
 STOP RUN.
 READ-PARA.
 exec sql fetch C1 into :TITLE-ID, :ROYALTY,
 :SALES end-exec.
 IF SALES > 10000
 exec sql update titles
 set royalty = :roy + 2
 where current of C1 end-exec.

The Embedded SQL syntax of the update and delete statements is the same as
in Transact-SQL, with the addition of the where current of cursor_name search
condition.

For details on determining table update protocol and locking, see the Transact-
SQL User’s Guide.
Embedded SQL/COBOL Programmer’s Guide 57

Selecting rows
Closing cursors

Use the close statement to close an open cursor. The syntax for the close
statement is:

exec sql [at connection] close cursor_name end-exec

To reuse a closed cursor, issue another open statement. When you reopen a
cursor, it points to the first row. Do not issue a close statement for a cursor that
is not open or an error will result.

Cursor example

The following example shows how to nest two cursors. Cursor C2 depends
upon the value fetched into TITLE-ID from cursor C1.

The program gets the value of TITLE-ID at open time, not at declare time.

 ...
 exec sql declare C1 cursor for
 select title_id, title, royalty from titles
 end-exec

 exec sql declare C2 cursor for
 select au_lname, au_fname, from authors
 where au_id in
 (select au_id from titleauthor
 where title_id = :TITLE-ID)
 end-exec

 exec sql open C1 end-exec.

 PERFORM READ-TITLE UNTIL SQLCODE = 100.

 READ-END.
 . . .

 READ-TITLE.
 exec sql fetch C1 into
 :TITLE-ID, :TITLE, :ROYALTY end-exec.
 IF SQLCODE NOT = 100
 MOVE ROYALTY TO DISP-ROY
 DISPLAY "Title ID: " TITLE-ID
 ", Royalty: " DISP-ROY
 IF ROYALTY > 10
 exec sql open C2 end-exec
 PERFORM READ-AUTH UNTIL SQLCODE = 100
58 Open Client

CHAPTER 6 Using Transact-SQL Statements
 exec sql close C2 end-exec.

 READ-AUTH.
 exec sql fetch C2 into :AU-LNAME, :AU-FNAME
 end-exec
 IF SQLCODE NOT = 100
 DISPLAY " AUTHOR: " AU-LNAME " "
 AU-FNAME.

See the online sample programs for more examples using cursors. For details
on accessing the online examples, see the Open Client/Server Programmer’s
Supplement.

Using stored procedures
There are two types of stored procedures: user-defined and precompiler-
generated. Both types run faster than standalone statements because Adaptive
Server preoptimizes the queries. You create user-defined stored procedures,
and the precompiler generates stored procedures.

User-defined stored procedures

With Embedded SQL version 11.1 and later, you can execute stored procedures
with select statements that return data rows. Stored procedures can return
results to your program through output parameters and through a return status
variable.

Stored procedure parameters can be either input or both input and output. For
details on stored procedures, see the Transact-SQL User’s Guide.

Syntax

Valid stored procedure names consist of uppercase and lowercase letters and
the characters $, _, and #.

Do not include the use statement in a stored procedure.

To execute a stored procedure, use the following syntax:

exec sql [at connection_name]
 exec [:status_variable = status_value] procedure_name
 [([[@parameter_name =]parameter_value [out[put]]],...)]
 [into :hostvar_1 [:indicator_1]
 [, hostvar_n [indicator_n, ...]]]
 [with recompile]
Embedded SQL/COBOL Programmer’s Guide 59

Selecting rows
 end-exec

where:

• status_variable can return either an Adaptive Server return status value or
a return code, which either indicates that the stored procedure completed
successfully or gives the reasons for the failure. Negative status values are
reserved for Adaptive Server use. See the Transact-SQL User’s Guide for
a list of return status values for stored procedures.

• status_value is the value of the stored procedure return status variable
status_variable.

• procedure_name is the name of the stored procedure to execute.

• parameter_name is the name of a variable in the stored procedure. You can
pass parameters either by position or by name, using the
@parameter_name format. If one parameter is named, all of them must be
named. For more information on stored procedures, see the Transact SQL
User’s Guide.

• parameter_value is a literal constant or host variable whose value is
passed to the stored procedure. If it is a host variable, you can associate an
indicator with it. Note that this variable has no keyword associated with it.

• output indicates that the stored procedure returns a parameter value. The
matching parameter in the stored procedure must also have been created
using the output keyword.

• into:hostvar_1 causes row data returned from the stored procedure to be
stored in the specified host variables (hostvar_1 through hostvar_n). Each
host variable can have an indicator variable.

• indicator_n is a two-byte host variable declared in a previous declare
section. If the value for the associated hostvar_n is null, the indicator
variable is set to -1 when the row data is retrieved. If truncation occurs, the
indicator variable is set to the actual length of the result column.
Otherwise, the indicator variable is 0.

• with recompile causes Adaptive Server to create a new query plan for this
stored procedure each time the procedure executes.

Note In Embedded SQL, the exec keyword is required to execute a stored
procedure. You cannot substitute execute for exec.
60 Open Client

CHAPTER 6 Using Transact-SQL Statements
Stored procedure example

The following example shows a call to a stored procedure where RET-CODE
is a status variable, a_proc is the stored procedure, PAR–1 is an input parameter,
and PAR–2 is an output parameter:

exec sql begin declare section end-exec
 01 PAR-1 PIC S9(9) COMP.
 01 PAR-2 PIC S9(9) COMP.
 01 RET-CODE PIC S9(4) COMP.
 exec sql end declare section end-exec
 . . .
 exec sql exec :RET-CODE=a_proc :PAR-1,
 :PAR-2 out end-exec.

The next example demonstrates the use of a stored procedure that retrieves data
rows. The name of the stored procedure is get_publishers:

exec sql begin declare section end-exec.
 01 PUB-ID PIC X(4).
 01 NAME PIC X(45).
 01 CITY PIC X(25).
 01 STATE PIC X(2).
 01 RET-CODE PIC S9(9).
 exec sql end declare section end-exec.
 . . .
 exec sql exec :RET-CODE = get_publishers :PUB-ID
 into :NAME :CITY :STATE END-EXEC.

See Chapter 10, “Open Client/Server Configuration File” for a more detailed
example of the exec statement.

Conventions

The datatypes of the stored procedure parameters must be compatible with the
COBOL host variables. Client-Library only converts certain combinations. See
Chapter 4, “Using Variables” for a table of compatible datatypes.

Precompiler-generated stored procedures

You can set an optional command line switch so that the precompiler
automatically generates stored procedures that can optimize the execution of
Transact-SQL statements in your program.

For the list of precompiler command line option switches, see the Open
Client/Server Programmer’s Supplement.

Follow these steps to activate precompiler-generated stored procedures:
Embedded SQL/COBOL Programmer’s Guide 61

Grouping statements
1 Set the appropriate command line switch so that the precompiler
automatically generates stored procedures for the Transact-SQL
statements to be optimized.

The precompiler generates an isql file containing statements that generate
the stored procedures.

2 Use interactive SQL (the isql program) to execute the file.

This loads the stored procedures on Adaptive Server. The precompiler also
creates the stored procedure calls in its output file.

By default, precompiler-generated stored procedures have the same name as
the source program, minus any file extensions. The stored procedures are
numbered sequentially and the file name and number are separated by a
semicolon (;).

For example, the stored procedures for a source program named test1.pco,
would be named test1;1 through test1;n, where n is the number of the source
program’s last stored procedure.

Optionally, you can set a command line flag that lets you alter the stored
procedures’ names. By using this flag, you can test a modified application
without deleting a stored procedure already in production. After successfully
testing the application, you can precompile it without the flag to install the
stored procedure.

Note When you issue the declare cursor statement, only the select clause is
saved as a stored procedure. If an application has syntax errors, the precompiler
generates neither the target file nor stored procedures.

Grouping statements
Statements can be grouped for execution by batch or by transactions.

Grouping statements by batches
A batch is a group of statements you submit as one unit for execution. The
precompiler executes all Transact-SQL statements within the exec sql and end-
exec keywords in batch mode.
62 Open Client

CHAPTER 6 Using Transact-SQL Statements
Although the precompiler saves stored procedures, it does not save batches for
re-execution. The batch is effective only for the current execution.

The precompiler supports only batch mode statements that return no result sets.

exec sql insert into TABLE1 values (:val1)
 insert into TABLE2 values (:val2)
 insert into TABLE3 values (:val3)
 end-exec.

The three insert statements are processed as a group, which is more efficient
than being processed individually. Use the get diagnostics method of error
handling with batches. For details, see “Using get diagnostics” on page 98.

These statements are legal within a batch because none of them returns results.
For more information on batches, see the
Transact-SQL User’s Guide.

Grouping statements by transactions
A transaction is a single unit of work, whether the unit consists of one or 100
statements. The statements in the transaction execute as a group, so either all
or none of them execute.

The precompiler supports two transaction modes: default ANSI/ISO and
optional Transact-SQL. In the Transact-SQL transaction mode, each statement
is implicitly committed unless it is preceded by a begin transaction statement.

The Transact-SQL mode uses relatively few system resources, while the
default ANSI/ISO transaction mode can dramatically affect system response
time. For details on choosing the appropriate mode for your application, see the
Transact-SQL User’s Guide.

You can use a precompiler option to determine the transaction mode of the
connections your application opens. See the Open Client/Server Programmer’s
Supplement for details.

Transact-SQL transaction mode

In this optional Transaction mode, the Embedded SQL syntax is the same as
that used in Transact-SQL. The begin transaction statement explicitly initiates
transactions.

The syntax of the Embedded SQL transaction statements is:

exec sql [at connect_name]
Embedded SQL/COBOL Programmer’s Guide 63

Grouping statements
 begin transaction [transaction_name] end-exec

exec sql [at connect_name]
 save transaction [savepoint_name] end-exec

exec sql [at connect_name] commit transaction
 [transaction_name] end-exec
exec sql [at connect_name] rollback transaction
 [savepoint_name | transaction_name] end-exec

Note disconnect rolls back all open transactions. For details on this statement,
see Chapter 5, “Connecting to Adaptive Server.”

When you issue a begin transaction on a connection, you must also issue a save,
commit, or roll back transaction on the same connection. Otherwise, an error is
generated.

Default ANSI/ISO transaction mode

ANSI/ISO SQL does not provide a save transaction or begin transaction
statement. Instead, transactions begin implicitly when the application program
executes one of the following statements:

• delete

• insert

• select

• update

• open

• exec

The transaction ends explicitly when you issue either a commit work or rollback
work statement. You must use the ANSI/ISO forms of the commit and rollback
statements.

The syntax is:

exec sql commit [work] end-exec

exec sql rollback [work] end-exec
64 Open Client

CHAPTER 6 Using Transact-SQL Statements
Extended transactions

An extended transaction is a unit of work that has multiple Embedded SQL
statements. In the Transact-SQL transaction mode, you surround an extended
transaction statement with the begin transaction and commit transaction
statements.

In the default ANSI mode, you are constantly within an extended transaction.
When you issue a commit work statement, the current extended transaction ends
and another begins. For details, see the Transact-SQL User’s Guide.

Note Unless the database option allow ddl in tran is set, do not use the following
Transact-SQL statements in an extended, ANSI-mode transaction: alter
database, create database, create index, create table, create view, disk init, grant,
load database, load transaction, reconfigure, revoke, truncate table, and update
statistics.

Including files and directories
The include statement is essentially the same as the COBOL COPY command,
except that file search and copy occur at precompile time. At precompile time,
include searches for the file in the directory or directories specified in the
precompile statement. See the Open Client/Server Programmer’s Supplement
for details about using the precompile statement and the COBOL compiler in
your environment.

You can use the Embedded SQL include statement to add any source code file
to your application, such as common data definitions, just as you use the
COBOL COPY command. Hence, the following example is valid:

exec sql include "myfile" end-exec.

The precompiler changes include statements into COBOL COPY commands,
surrounding the file name with quotation marks.
Embedded SQL/COBOL Programmer’s Guide 65

Including files and directories
You can also set a precompiler command option to specify an include file
directory. At precompile time, the precompiler searches the path specified in
the COBOL compile command. When you specify a directory using this
option, the precompiler adds the directory to the file name and encloses the
entire path name in quotation marks. The file’s path is then hard-coded into the
target program. See the Open Client/Server Programmer’s Supplement for
details.
66 Open Client

C H A P T E R 7 Using Dynamic SQL

This chapter explains dynamic SQL, an advanced methodology that lets
your Embedded SQL application users enter SQL statements while the
application is running. While static SQL will suffice for most of your
needs, dynamic SQL provides the flexibility to build diverse SQL
statements at runtime.

Dynamic SQL is a set of Embedded SQL statements that permit users of
online applications to access the database interactively at runtime.
Dynamic SQL is part of ANSI and the ISO SQL2 standard. It is useful for
running interactive applications.

Use dynamic SQL when one or more of the following conditions is not
known until runtime:

• SQL statement the user will execute

• Column, index, and table references

• Number of host variables or their datatypes

When to use dynamic SQL
If the application accepts only a small set of SQL statements, you can
embed them within the program. However, if the application accepts
many types of SQL statements, you can benefit from constructing SQL
statements, and then binding and executing them dynamically.

Topic Page
When to use dynamic SQL 67

Method 1: Using execute immediate 69

Method 2: Using prepare and execute 71

Method 3: Using prepare and fetch with a cursor 74

Method 4: Using prepare and fetch with system descriptors 78
Embedded SQL/COBOL Programmer’s Guide 67

Dynamic SQL protocol
The following type of situation would benefit from using dynamic SQL: The
application program searches a bookseller’s database of books for sale. A
potential buyer can apply many criteria, including price, subject matter, type of
binding, number of pages, publication date, language, and so on.

A customer might say, “I want a nonfiction book about business that costs
between $10 and $20.” This request is readily expressed as a Transact-SQL
statement:

select * from titles where
 type = "business"
 and price between $10 and $20

It is not possible to anticipate the combinations of criteria that all buyers will
apply to their book searches. Therefore, without using dynamic SQL, an
Embedded SQL program could not easily generate a list of prospective books
with a single query.

With dynamic SQL, the bookseller can enter a query with a different where
clause search condition for each buyer. The seller can vary requests based on
the publication date, book category, and other data, and can vary the columns
to be displayed.

For example:

select * from titles
 where type = ?
 and price between ? and ?

The question marks (“?”) are dynamic parameter markers that represent places
where the user can enter search values.

Dynamic SQL protocol

Note The precompiler does not generate stored procedures for dynamic SQL
statements because the statements are not complete until runtime. At runtime,
Adaptive Server stores them as temporary stored procedures in the tempdb
database. The tempdb database must contain the user name "guest", which in
turn must have create procedure permission. Otherwise, attempting to execute
one of these temporary stored procedures generates the error message "Server
user id user_id is not a valid user in database database_name", where user_id
is the user’s user ID, and database_name is the name of the user’s database.
68 Open Client

CHAPTER 7 Using Dynamic SQL
The dynamic SQL prepare statement sends the actual SQL statement, which
can be any Data Definition Language (DDL) or Data Manipulation Language
(DML) statements or any Transact-SQL statement, except create procedure, to
the server.

The dynamic SQL facility performs these actions:

1 Translates the input data into a SQL statement.

2 Verifies that the SQL statement can execute dynamically.

3 Prepares the SQL statement for execution, sending it to Adaptive Server,
which compiles and saves it as a temporary stored procedure (for methods
2, 3, and 4).

4 Binds all input parameters or descriptor (for methods 2, 3, and 4).

5 Executes the statement.

For a varying-list select, it uses a descriptor to reference the data items and
rows returned (for method 2 or 4).

6 Binds the output parameters or descriptor (for method 2, 3, or 4).

7 Obtains results (for method 2, 3, or 4).

8 Drops the statement (for methods 2, 3, and 4) by reactivating the stored
procedure in Adaptive Server.

9 Handles all error and warning conditions from Adaptive Server and
Client-Library.

Method 1: Using execute immediate
Use execute immediate to send a complete Transact-SQL statement, stored in a
host variable or literal string, to Adaptive Server. The statement cannot return
any results—you cannot use this method to execute a select statement.

The dynamically entered statement executes as many times as the user invokes
it during a session.

With this method:

1 The Embedded SQL program passes the text to Adaptive Server.

2 ASE verifies that the statement can execute dynamically and does not
return rows.
Embedded SQL/COBOL Programmer’s Guide 69

Method 1: Using execute immediate
3 ASE compiles and executes the statement.

With execute immediate, you can let the user enter all or part of a Transact-SQL
statement.

The syntax for execute immediate is:

exec sql [at connection_name] execute immediate
 {:host_variable | "string"} end-exec

where:

• host_variable is a character-string variable defined in a declare section.
Before calling execute immediate, the host variable should contain a
complete and syntactically correct Transact-SQL statement.

• string is a literal Transact-SQL statement string that can be used in place
of host_variable.

Embedded SQL sends the statement in host_variable or string to Adaptive
Server without any processing or checking. If the statement attempts to return
results or fails, an error occurs. You can test the value of SQLCODE after
executing the statement or use the whenever statement to set up an error
handler. See Chapter 8, “Handling Errors” for information about handling
errors in Embedded SQL programs.

Method 1 examples
The following two examples demonstrate using method 1, execute immediate.
The first example prompts the user to enter a statement and then executes it:

 exec sql begin declare section end-exec
 01 CMD-1 PIC X(50).
 01 SRC-COND PIC X(50).
 01 SQLSTR1 PIC X(200).
 exec sql end declare section end-exec

 DISPLAY "ENTER statement".
 ACCEPT SQLSTR1.
 exec sql execute immediate :SQLSTR1 end-exec.

The next example prompts the user to enter a search condition to specify rows
in the titles table to update. Then, it concatenates the search condition to an
update statement and sends the complete statement to Adaptive Server.

 MOVE "UPDATE titles SET price = price*1.10 WHERE "
70 Open Client

CHAPTER 7 Using Dynamic SQL
 TO CMD-1.
 DISPLAY "ENTER SEARCH CONDITION:".
 ACCEPT SRC-COND.
 STRING CMD-1 delimited by size SRC-COND DELIMITED BY
 SIZE INTO SQLSTR1.
 exec sql execute immediate :SQLSTR1 end-exec.

Method 2: Using prepare and execute
Use method 2, prepare and execute, when one of the following cases is true:

• You are certain that no data will be retrieved and you want the statement
to execute more than once.

• A select statement is to return a single row. With this method, you cannot
associate a cursor with the select statement.

This process is also called a single-row select. If a user needs to retrieve
multiple rows, use method 3 or 4.

This method uses prepare and execute to substitute data from COBOL
variables into a Transact-SQL statement before sending the statement to
Adaptive Server. The Transact-SQL statement is stored in a character buffer
with dynamic parameter markers to show where to substitute values from
COBOL variables.

Because this statement is prepared, Adaptive Server compiles and saves it as a
temporary stored procedure. Then, the statement executes repeatedly, as
needed, during the session.

The prepare statement associates the buffer with a statement name and prepares
the statement for execution. The execute statement substitutes values from a
list of COBOL variables into the buffer and sends the completed statement to
Adaptive Server. You can execute any Transact-SQL statement this way.

prepare
The syntax for the prepare statement is:

exec sql [at connection_name] prepare
 statement_name from {:host_variable | "string"}
 end-exec
Embedded SQL/COBOL Programmer’s Guide 71

Method 2: Using prepare and execute
where:

• statement_name is a name up to 30 characters long that identifies the
statement. It is not a COBOL variable or a literal string. It is a symbolic
name that the precompiler uses to associate an execute statement with a
prepare statement.

• host_variable is a dynamic parameter marker.

Precede the dynamic parameter marker with a colon in standard
Embedded SQL statements.

• string is a literal string that can be used in place of host_variable.

execute
The syntax for the execute statement is:

exec sql [at connection_name] execute statement_name
 [into {host_var_list | sql descriptor
 descriptor_name | descriptor sqlda_name }]
 [using {host_var_list | sql descriptor
 descriptor_name | descriptor sqlda_name}]
 end-exec

where:

• statement_name is the name assigned in the prepare statement. into is used
for a single-row select.

• into is used for a single-row select.

• using specifies the COBOL variables or descriptors that are substituted for
dynamic parameter markers in variables in the host_var_list. The
variables, which you must define in a declare section, are substituted in the
order listed. You need only this clause when the statement contains
variables using dynamic parameter markers.

• descriptor_name represents the area of memory that holds a description of
the dynamic SQL statement’s dynamic parameter markers.

• host_var_list is a list of host variables to substitute into the parameter
markers (“?”) in the query.

• sqlda_name is the name of the SQLDA.
72 Open Client

CHAPTER 7 Using Dynamic SQL
Method 2 example
The following example demonstrates using prepare and execute in method 2.
In this example, the user is prompted to enter a where clause that determines
which rows in the titles table to update. For example, entering “1.1” increases
the price by 10 percent.

01 CUST-TYPE PIC X.
 88 BIG-CUSTOMER VALUE "B".
 88 OTHER-CUSTOMER VALUE "O".
 . . .
 exec sql begin declare section end-exec
 01 MULTIPLIER PIC S9(2) COMP.
 01 CMD-1 PIC X(50).
 01 SRC-COND PIC X(50).
 01 SQLSTR1 PIC X(200).
 exec sql end declare section end-exec

 MOVE "UPDATE titles SET
 " price = price + (price * ? / 100)
 WHERE "
 TO CMD-1.
 DISPLAY "ENTER SEARCH CONDITION:".
 ACCEPT SRC-COND.
 STRING CMD-1 SRC-COND DELIMITED BY SIZE
 INTO SQLSTR1.

 exec sql prepare statement1 from :SQLSTR1
 end-exec.

 IF BIG-CUSTOMER
 MOVE 10 TO MULTIPLIER
 ELSE
 MOVE 25 TO MULTIPLIER.

 exec sql execute statement1 using :MULTIPLIER
 end-exec.
Embedded SQL/COBOL Programmer’s Guide 73

Method 3: Using prepare and fetch with a cursor
Method 3: Using prepare and fetch with a cursor
Method 3 uses the prepare statement with cursor statements to return results
from a select statement. Use this method for fixed-list select statements that
may return multiple rows. That is, use it when the application has determined
in advance the number and type of select column list attributes to be returned.
You must anticipate and define host variables to accommodate the results.

When you use method 3, include the declare, open, fetch, and close cursor
statements to execute the statement. This method is required because the
statement returns more than one row. There is an association between the
prepared statement identifier and the specified cursor name. You can also
include update and delete where current of cursor statements.

As with method 2, a Transact-SQL select statement is first stored in a character
host variable or string. It can contain dynamic parameter markers to show
where to substitute values from input variables. The statement is given a name
to identify it in the prepare, declare, and open statements.

Method 3 requires five steps:

1 prepare

2 declare

3 open

4 fetch (and, optionally, update and delete)

5 close

These steps are described below.

prepare
The prepare statement is the same as that used with method 2. For details, see
“prepare” on page 71.

declare
The declare statement is similar to the standard declare statement for cursors.
In dynamic SQL, however, you declare the cursor for a prepared
statement_name instead of for a select statement, and any input host variables
are referenced in the open statement instead of in the declare statement.
74 Open Client

CHAPTER 7 Using Dynamic SQL
A dynamic declare statement is an executable statement rather than a
declaration. As such, it must be positioned in the code where executable
statements are legal, and the application should check status codes
(SQLCODE, SQLCA, or SQLSTATE) after executing the declaration.

The dynamic SQL syntax for the declare statement is:

exec sql [at connection_name] declare cursor_name
 cursor for statement_name end-exec

where:

• at connection_name specifies the Adaptive Server connection the cursor
will use

• cursor_name identifies the cursor, used with the open, fetch, and close
statements

• statement_name is the name specified in the prepare statement, and
represents the select statement to be executed

open
The open statement substitutes any input variables in the statement buffer, and
sends the result to Adaptive Server for execution. The syntax for the open
statement is:

exec sql [at connection_name] open cursor_name
 [using {host_variable_list |

 sql descriptor descriptor_name | descriptor sqlda_name}]
 end-exec

where:

• cursor_name is the name given to the cursor in the declare statement

• host_variable_list consists of the names of the host variables that contain
the value for a dynamic parameter marker

• descriptor_name is the name of the descriptor that contains the value for
the dynamic parameter markers

• sqlda_name is the name of the SQLDA
Embedded SQL/COBOL Programmer’s Guide 75

Method 3: Using prepare and fetch with a cursor
fetch and close
After a cursor opens, the result sets are returned to the application. Then, the
data is fetched and loaded into the application program host variables.
Optionally, you can update or delete the data. The fetch and close statements
are the same as in static Embedded SQL.

The syntax for the fetch statement is:

exec sql [at connection_name] fetch cursor_name
 into :host_variable
 [[indicator]:indicator_variable]
 [,:host_variable
 [[indicator]:indicator_variable]...]
 end-exec

where:

• cursor_name is the name given to the cursor in the declare statement.

• There is one COBOL host_variable for each column in the result rows.
The variables must have been defined in a declare section, and their
datatypes must be compatible with the results returned by the cursor.

The syntax for the close statement is:

exec sql [at connection_name] close cursor_name
end-exec

where cursor_name is the name assigned to the cursor in the declare statement.

Method 3 example
The following example uses prepare and fetch, and prompts the user for an
order by clause in a select statement:

exec sql begin declare section end-exec
 01 AGE PIC S9(2) COMP.
 01 R-AGE PIC S9(2).
 01 ROYALTY PIC S9(9) COMP.
 01 TITLE PIC X(25).
 01 MANAGER PIC X(25).
 01 SQLSTR2 PIC X(100).
 01 I-TITLE PIC S9(4) COMP.
 01 I-AGE PIC S9(4) COMP.
 exec sql end declare section end-exec

 01 DSP-AGE PIC 9(2).
76 Open Client

CHAPTER 7 Using Dynamic SQL
 01 DSP-ROYALTY PIC -ZZZ,ZZZ,ZZZ.

 PROCEDURE DIVISION.

 MOVE 60 TO R-AGE.

MOVE "select age, royalty, title, manager from
 - " inprogr where age !=?" TO SQLSTR2
 MOVE 0 TO I-AGE.
 exec sql prepare statement2 from :SQLSTR2
 end-exec.
 exec sql declare C1 cursor for statement2
 end-exec
 exec sql whenever not found goto NOT-FOUND
 end-exec
 exec sql open C1 using :R-AGE indicator :I-AGE
 end-exec.

 RET-LOOP.
 MOVE 0 TO I-TITLE.

 exec sql fetch C1 into
 :AGE, :ROYALTY,
 :TITLE indicator :I-TITLE,
 :MANAGER end-exec.

 MOVE AGE TO DSP-AGE.
 MOVE ROYALTY TO DSP-ROYALTY.
 IF I-TITLE = -1
 MOVE "Null" TO TITLE.

 DISPLAY "Age = " DSP-AGE
 " Royalty = " DSP-ROYALTY
 " Title = " TITLE
 " Manager = " MANAGER.
 DISPLAY " ".
 GO TO RET-LOOP.

 NOT-FOUND.
 exec sql close C1 end-exec.
Embedded SQL/COBOL Programmer’s Guide 77

Method 4: Using prepare and fetch with system descriptors
Method 4: Using prepare and fetch with system
descriptors

This method permits varying-list select statements. That is, when you write the
application, you need not know the formats and number of items the select
statement will return.

Use this method when you cannot define the host variables in advance because
you do not know how many variables are needed or of what type they should
be.

Method 4 dynamic descriptors
A dynamic descriptor is a data structure that holds a description of the
variables used in a dynamic SQL statement. There are two kinds of dynamic
descriptors—SQL descriptors and SQLDA structures. Both are described later
in this chapter.

When a cursor opens, it can have an input descriptor associated with it. The
input descriptor contains the values to be substituted for the dynamic SQL
statement’s parameter markers.

Before the cursor is opened, the user fills in the input descriptor with the
appropriate information, including the number of parameters, and, for each
parameter, its type, length, precision, scale, indicator, and data.

Associated with the fetch statement is an output descriptor, which holds the
resultant data. Adaptive Server fills in the data item’s attributes, including its
type and the actual data being returned. If you are using an SQL descriptor, use
the get descriptor statement to copy the data into host variables.

Dynamic SQL method 4 performs the following:

1 Prepares the statement for execution.

2 Associates a cursor with the statement.

3 Defines and binds the input parameters or descriptor and:

• If using an input descriptor, allocates it

• If using an input host variable, associates it with the statement or
cursor

4 Opens the cursor with the appropriate input parameter(s) or descriptor.
78 Open Client

CHAPTER 7 Using Dynamic SQL
5 Allocates the output descriptor if different from the input descriptor and
binds the output descriptor to the statement.

6 Retrieves the data by using fetch cursor and the output descriptor

7 Copies data from the dynamic descriptor into host program variables. If
you are using an SQLDA, this step does not apply; the data is copied in
step 6.

8 Closes the cursor.

9 Deallocates the dynamic descriptor(s).

10 Drops the statement (ultimately, the stored procedure).

Dynamic descriptor statements
There are statements that associate the descriptor with a SQL statement and
with a cursor associated with the SQL statement. The following list briefly
describes dynamic SQL statements for method 4:

For complete descriptions of these statements, see Chapter 9, “Embedded SQL
Statements: Reference Pages.”

Statement Description

allocate descriptor Notifies Client-Library to allocate a SQL descriptor.

describe input Obtains information about the dynamic parameter
marker in the prepare statement.

set descriptor Inserts or updates data in the system descriptor.

get descriptor Moves row or parameter information stored in a
descriptor into host variables, thereby allowing the
application program to use the information.

execute Executes a prepared statement.

open cursor Associates a descriptor with a cursor and opens the
cursor.

describe output Obtains information about the select list columns in the
prepared dynamic SQL statement.

fetch cursor Retrieves a row of data for a dynamically declared
cursor.

deallocate descriptor Deallocates a dynamic descriptor.
Embedded SQL/COBOL Programmer’s Guide 79

Method 4: Using prepare and fetch with system descriptors
About SQL descriptors

A SQL descriptor is an area of memory that stores a description of the variables
used in a prepared dynamic SQL statement. A SQL descriptor can contain the
following information about data attributes See the descriptions of the
set descriptor and get descriptor commands in Chapter 9, “Embedded SQL
Statements: Reference Pages.”

• precision – integer.

• scale – integer.

• nullable – 1 (cs_true) if the column can contain nulls; 0 (cs_false) if it
cannot. Valid only with get descriptor statement.

• indicator – value for the indicator parameter associated with the dynamic
parameter marker.

• name – name of the dynamic parameter marker. Valid only with get
descriptor statement.

• data – value for the dynamic parameter marker specified by the item
number. If the value of indicator is -1, the value of data is undefined.

• count – number of dynamic parameter markers described in the descriptor.

• type – datatype of the dynamic parameter marker or host variable.

• returned_length – actual length of the data in an output column.

Method 4 example
The following example uses prepare and fetch with dynamic parameter
markers and SQL descriptors.

exec sql begin declare section end-exec.

 01 COLTYPE IS GLOBAL PIC S9(9) COMP.
 01 INDEX-COLCNT IS GLOBAL PIC S9(9) COMP.
 01 INT-BUFF IS GLOBAL PIC S9(9) COMP.
 01 CHAR-BUFF IS GLOBAL PIC X(255).
 01 MISC-BUFF IS GLOBAL PIC X(255).
 01 TYPE IS GLOBAL PIC X(255).
 01 TITLE IS GLOBAL PIC X(255).
 01 COLNAME IS GLOBAL PIC X(255).
 01 SALES IS GLOBAL PIC S9(9) COMP.
 01 DESCNT IS GLOBAL PIC S9(9) COMP.
 01 OCCUR IS GLOBAL PIC S9(9) COMP.
80 Open Client

CHAPTER 7 Using Dynamic SQL
 01 CNT IS GLOBAL PIC S9(9) COMP.
 01 CONDCNT IS GLOBAL PIC S9(9) COMP.
 01 DIAG-CNT IS GLOBAL PIC S9(9) COMP.
 01 NUM-MSGS IS GLOBAL PIC S9(9) COMP.
 01 USER-ID IS GLOBAL PIC X(30).
 01 PASS IS GLOBAL PIC X(30).
 01 SERVER-NAME IS GLOBAL PIC X(30).
 01 STR1 IS GLOBAL PIC X(1024).
 01 STR2 IS GLOBAL PIC X(1024).
 01 STR3 IS GLOBAL PIC X(1024).
 01 STR4 IS GLOBAL PIC X(1024).

 exec sql end declare section end-exec.

...

PROCEDURE DIVISION.
 P0.

DISPLAY "Dynamic sql Method 4".
 DISPLAY "Enter in a Select statement to retrieve
 any kind "
 DISPLAY "of information from the pubs database:".
 accept str4.
 DISPLAY "Enter in the larger of the columns to be "
 DISPLAY "retrieved or the number "
 DISPLAY "of ? in the SQL statement:".
 ACCEPT occur.

exec sql prepare S4 from :str4 end-exec

exec sql declare c2 cursor for s4 end-exec

exec sql describe input s4 using sql descriptor dinout
end-exec

 call "filldesc".

exec sql open c2 using sql descriptor dinout
 end-exec

PERFORM UNTIL SQLCODE = 100 OR SQLCODE < 0

exec sql fetch c2 into sql descriptor dinout end-exec

PERFORM "prtdesc".

 END-PERFORM.

exec sql close c2 end-exec

exec sql deallocate descriptor dinout end-exec

exec sql deallocate prepare s4 end-exec
Embedded SQL/COBOL Programmer’s Guide 81

Method 4: Using prepare and fetch with system descriptors
DISPLAY "Dynamic SQL Method 4 completed".

 goback.

END PROGRAM dyn-m4.

IDENTIFICATION DIVISION.
 PROGRAM-ID. prtdesc is common.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. xyz.
 OBJECT-COMPUTER. xyz.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

PROCEDURE DIVISION.

P0.

exec sql get descriptor dinout :descnt = count
 end-exec

DISPLAY "Column name Column data".

DISPLAY "----------- --------------------------"

DISPLAY "---------------".

PERFORM VARYING CNT FROM 1 BY 1 UNTIL cnt > descnt

* get each column attribute
 exec sql get descriptor dinout

 VALUE :index-colcnt :coltype = TYPE end-exec
 IF coltype = 1

* character type

exec sql get descriptor dinout VALUE :index-colcnt

 :colname = NAME, :char-buff = data end-exec

DISPLAY colname char-buff.

ELSE IF coltype = 4
 * integer type

exec sql get descriptor dinout
 VALUE :index-colcnt :colname = NAME, :int-buff = DATA
end-exec

DISPLAY colname int-buff.
 else

* other types
82 Open Client

CHAPTER 7 Using Dynamic SQL
 exec sql get descriptor dinout
 VALUE :index-colcnt
 :colname = NAME, :misc-buff = DATA end-exec

DISPLAY colname misc-buff

 end-perform.

 goback.

 END PROGRAM prtdesc.

...

PROCEDURE DIVISION.
 P0.

exec sql get descriptor dinout :descnt = count
 end-exec
 PERFORM varying cnt from 1 by 1 UNTIL cnt >
 descnt

 DISPLAY "Enter in the data type of the " cnt "
 ?".
 accept &coltype.
 IF coltype = 1

 * character type
 DISPLAY "Enter in the value of the data:".

 ACCEPT char-buff.
 exec sql set descriptor dinout
 VALUE :cnt TYPE = 1,
 LENGTH = 255, DATA = :char-buff
 end-exec

 ELSE IF coltype = 4
 * integer type
 DISPLAY "Enter in the value of the data:".
 ACCEPT int-buff.
 exec sql set descriptor dinout
 VALUE :cnt TYPE = :coltype,
 DATA = :int-buff END-EXEC
 ELSE
 DISPLAY "non-supported column type.".
 END-IF.
 END-PERFORM

 GOBACK

 END PROGRAM filldesc.
 ...
Embedded SQL/COBOL Programmer’s Guide 83

Method 4: Using prepare and fetch with system descriptors
About SQLDAs
SQLDA is a host-language structure that, like an SQL descriptor, describes the
variables used in a dynamic SQL prepared statement. Unlike SQL descriptors,
SQLDAs are public data structures whose fields you can access. Statements
using SQLDAs may execute faster than equivalent statements using SQL
descriptors.

The SQLDA structure is not part of the SQL standard. Different
implementations of Embedded SQL define the SQLDA structure differently.
Embedded SQL version 11.1 and later supports the SQLDA defined by Sybase;
it does not support SQLDA datatypes defined by other vendors.

Embedded SQL does not limit the number of SQLDA structures that can be
created by a program.

Table 7-1 describes the fields of the SQLDA structure.

Table 7-1: Fields of the SQLDA structure

Field Datatype Description

SD-SQLN PIC S9(9)
COMP

The size of the sd_column array.

SD-SQLD PIC S9(9)
COMP

The number of columns in the
query being described, or 0 if the
statement being described is not a
query. For fetch, open, and execute
statements, this field indicates the
number of host variables described
by occurrences of sd_column or the
number of dynamic parameter
markers for the describe input
statement.

SD-DATAFMT OF SD-
COLUMN

Data format
structure

The Client-Library
CS_DATAFMT structure
associated with this column. Refer
to descriptions of ct_bind,
ct_param and ct_describe in the
Open Client Client-Library/C
Reference Manual for more
information.

SD-SQLDATA OF SD-
COLUMN

PIC S9(9)
COMP

or

PIC S9(18)
COMP

For fetch, open, and execute
statements, stores the address of
the statement’s host variable. This
field is not used for describe or
prepare statements.
84 Open Client

CHAPTER 7 Using Dynamic SQL
Using SYBSETSQLDA
Since definitions of SQLDA fields do not correspond clearly to COBOL
declarations, the SYBSETSQLDA function is provided so that you can use
familiar COBOL terms. SYBSETSQLDA allows you to set the fields of a
Sybase-style SQLDA. It sets the
 ITEM-NUMBER SQLDA-SQLDATA field of the given SQLDA to point to a
given buffer, and sets datafmt fields appropriately.

Syntax
01 SQLDA-NAME.

< rest of sqlda declaration >

01 ITEM-NUMBER PIC S9(9) COMP.
 01 DATA-BUFFER < picture >.
 01 PICTURE-TYPE PIC S9(9) COMP.
 01 M PIC S9(9) COMP.
 01 N PIC S9(9) COMP.
 01 USAGE-TYPE PIC S9(9) COMP.
 01 SIGN-TYPE PIC S9(9) COMP
 CALL “SYBSETSQLDA” USING SQLDA-NAME ITEM-NUMBER

SD-SQLIND OF SD-
COLUMN

PIC S9(4)
COMP

For fetch, open, and execute
statements, this field acts as an
indicator variable for the column
being described. If the column’s
value is null, this field is set to -1.
This field is not used for describe
or prepare statements. Set this field
using SYBSETSQLDA (see
“Using SYBSETSQLDA” on page
85).

SD-SQLLEN OF SD-
COLUMN

PIC S9(9)
COMP

The actual size of the Client
Library CS_DATAFMT structure
associated with this column.

SD-SQLMORE OF SD-
COLUMN

PIC S9(9)
COMP

or

PIC S9(18)
COMP

Reserved.

Field Datatype Description
Embedded SQL/COBOL Programmer’s Guide 85

Method 4: Using prepare and fetch with system descriptors
 DATA-BUFFER PICTURE-TYPE M N USAGE-TYPE SIGN-TYPE

where:

• SQLDA-NAME is the SQLDA to set the information in.

• ITEM-NUMBER is the item to set the information for.

• DATA-BUFFER is the host variable with data.

• PICTURE-TYPE is the kind of picture clause the data has. See Table 7-2
for possible values.

• M is the value of “m” in the picture clause, as described in the table, or 0
if no picture.

• N is the value of “n” in the picture clause as described above, or 0 if no
picture.

• SIGN-TYPE is the sign clause used to define the data.
SeeTable 7-2 for possible values.

• USAGE-TYPE is the usage clause used to define the data. See Table 7-2
for possible values.

Table 7-2: Values for SYBSETSQLDA

Argument Value Meaning

USAGE-
TYPE

SYB-BINARY-USAGE USAGE IS BINARY

USAGE-
TYPE

SYB-COMP-USAGE USAGE IS COMP

USAGE-
TYPE

SYB-COMP1-USAGE USAGE IS COMP-1

USAGE-
TYPE

SYB-COMP2-USAGE USAGE IS COMP-2

USAGE-
TYPE

SYB-COMP3-USAGE USAGE IS COMP-3

USAGE-
TYPE

SYB-COMP4-USAGE USAGE IS COMP-4

USAGE-
TYPE

SYB-COMP5-USAGE USAGE IS COMP-5

USAGE-
TYPE

SYB-COMP6-USAGE USAGE IS COMP-6

USAGE-
TYPE

SYB-COMPX-USAGE USAGE IS COMP-X

USAGE-
TYPE

SYB-DISPLAY-USAGE USAGE IS DISPLAY
86 Open Client

CHAPTER 7 Using Dynamic SQL
USAGE-
TYPE

SYB-POINTER-USAGE USAGE IS POINTER

USAGE-
TYPE

SYB-INDEX-USAGE USAGE IS INDEX

USAGE-
TYPE

SYB-MONEY-USAGE USAGE IS CS-MONEY

USAGE-
TYPE

SYB-MONEY4-USAGE USAGE IS CS-MONEY4

USAGE-
TYPE

SYB-DATE-USAGE USAGE IS CS-DATE

USAGE-
TYPE

SYB-TIME-USAGE USAGE IS CS-TIME

USAGE-
TYPE

SYB-DATETIME-
USAGE

USAGE IS CS-DATETIME

USAGE-
TYPE

SYB-DATETIME4-
USAGE

USAGE IS CS-DATETIME4

USAGE-
TYPE

SYB-NO-USAGE No usage clause

PICTURE-
TYPE

SYB-NO-PIC No picture clause

PICTURE-
TYPE

SYB-SNINES-PIC PIC S9(m)

PICTURE-
TYPE

SYB-NINES-PIC PIC 9(m)

PICTURE-
TYPE

SYB-SVNINES-PIC PIC S9(m)V9(n) or SV9(n)

PICTURE-
TYPE

SYB-VNINES-PIC PIC 9(m)V9(n) or V9(n)

PICTURE-
TYPE

SYB-X-PIC PIC X(m)

SIGN-TYPE SYB-NO-SIGN No sign clause (not an unsigned
PIC clause)

SIGN-TYPE SYB-LEADING-
SEPARATE-SIGN

SIGN LEADING SEPARATE

SIGN-TYPE SYB-TRAILING-
SEPARATE-SIGN

SIGN TRAILING SEPARATE

SIGN-TYPE SYB-LEADING-SIGN SIGN LEADING

SIGN-TYPE SYB-TRAILING-SIGN SIGN TRAILING

Argument Value Meaning
Embedded SQL/COBOL Programmer’s Guide 87

Method 4: Using prepare and fetch with system descriptors
Returns

No return value.

Method 4 example using SQLDAs
Following is an example that uses prepare and fetch with dynamic parameter
markers and SQL descriptors.

 IDENTIFICATION DIVISION.

 PROGRAM-ID. unittest.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SOURCE-COMPUTER. xyz.

 OBJECT-COMPUTER. xyz.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 exec sql begin declare section end-exec

 01 uid pic x(10).

 01 pass pic x(10).

 exec sql end declare section end-exec

 01 input-descriptor.

 09 SD-SQLN PIC S9(4) COMP.

 09 SD-SQLD PIC S9(4) COMP.

 09 SD-COLUMN OCCURS 3 TIMES.

 19 SD-DATAFMT.

 29 SQL--NM PIC X(132).

 29 SQL--NMLEN PIC S9(9) COMP.

 29 SQL--DATATYPE PIC S9(9) COMP.

 29 SQL--FORMAT PIC S9(9) COMP.

 29 SQL--MAXLENGTH PIC S9(9) COMP.

 29 SQL--SCALE PIC S9(9) COMP.

 29 SQL--PRECISION PIC S9(9) COMP.
88 Open Client

CHAPTER 7 Using Dynamic SQL
 29 SQL--STTUS PIC S9(9) COMP.

 29 SQL--COUNT PIC S9(9) COMP.

 29 SQL--USERTYPE PIC S9(9) COMP.

 29 SQL--LOCALE PIC S9(9) COMP.

 19 SD-SQLDATA PIC S9(9) COMP.

 19 SD-SQLIND PIC S9(4) COMP.

 19 SD-SQLLEN PIC S9(9) COMP.

 19 SD-SQLMORE PIC S9(9) COMP.

 01 output-descriptor.

 09 SD-SQLN PIC S9(4) COMP.

 09 SD-SQLD PIC S9(4) COMP.

 09 SD-COLUMN OCCURS 3 TIMES.

 19 SD-DATAFMT.

 29 SQL--NM PIC X(132).

 29 SQL--NMLEN PIC S9(9) COMP.

 29 SQL--DATATYPE PIC S9(9) COMP.

 29 SQL--FORMAT PIC S9(9) COMP.

 29 SQL--MAXLENGTH PIC S9(9) COMP.

 29 SQL--SCALE PIC S9(9) COMP.

 29 SQL--PRECISION PIC S9(9) COMP.

 29 SQL--STTUS PIC S9(9) COMP.

 29 SQL--COUNT PIC S9(9) COMP.

 29 SQL--USERTYPE PIC S9(9) COMP.

 29 SQL--LOCALE PIC S9(9) COMP.

 19 SD-SQLDATA PIC S9(9) COMP.

 19 SD-SQLIND PIC S9(4) COMP.

 19 SD-SQLLEN PIC S9(9) COMP.

 19 SD-SQLMORE PIC S9(9) COMP.

 01 conversion-tester pic s9(4) comp-3.

 01 charvar pic x(20).
Embedded SQL/COBOL Programmer’s Guide 89

Method 4: Using prepare and fetch with system descriptors
 01 temp-int-1 pic s9(9) comp.

 01 temp-int-2 pic s9(9) comp.

 01 temp-int-3 pic s9(9) comp.

 01 temp-int-4 pic s9(9) comp.

 01 SQLCODE pic s9(9) comp.

 01 retcode pic s9(9) comp.

PROCEDURE DIVISION.

P0.

 MOVE "sa" TO uid.

 move" "to pass.

 exec sql connect :uid identified by :pass end-exec.

* setup

 exec sql whenever sqlwarning perform err-paraend-exec.

 exec sql drop table example end-exec.

 exec sql create table example (fruit char(30),
 number int)end-exec.

 exec sql insert example values (‘tangerine’, 1) end-exec.

 exec sql insert example values (‘pomegranate’, 2) end-exec.

 exec sql insert example values (‘banana’, 3) end-exec.

* test functionality using execute

 exec sql prepare statement from
 "select fruit from example where number = ?" end-exec.

 exec sql describe input statement using descriptor
 input-descriptor end-exec.

 if sd-sqld of input-descriptor not equal 1
 or sql--datatype of sd-datafmt of sd-column of
 input-descriptor (1) not equal cs-int-type

 display "failed on first describe input"

 move cs-fail to p-retcode

 end-if.

 move 1 to temp-int-1.

 move 4 to temp-int-2.
90 Open Client

CHAPTER 7 Using Dynamic SQL
 move 0 to temp-int-3.

 call "SYBSETSQLDA" using retcode input-descriptor
 temp-int-1 conversion-tester syb-snines-pic
 temp-int-2 temp-int-3 syb-comp3-usage syb-no-sign .

 move 2 to conversion-tester.

 exec sql describe output statement using descriptor

 output-descriptor end-exec.

 if sd-sqld of output-descriptor not equal
 or sql--datatype of sd-datafmt of sd-column of
 output-descriptor (1) not equal cs-char-type
 display "failed on first describe output"

 move cs-fail to p-retcode

 end-if.

 move 1 to temp-int-1.

 move 20 to temp-int-2.

 move 0 to temp-int-3.

 call "SYBSETSQLDA" using retcode output-descriptor
 temp-int-1 charvar syb-x-pic temp-int-2
 temp-int-3 syb-no-usage syb-no-sign .

 exec sql execute statement into descriptor
 output-descriptor using descriptor
 input-descriptor end-exec.

 display "Expected pomegranate, got "charvar.

 exec sql deallocate prepare statement end-exec.

 exec sql prepare statement from
 "select number from example where fruit = ?" end-exec.

 exec sql declare c cursor for statement end-exec.

 exec sql describe input statement using descriptor
 input-descriptor end-exec.

 move 1 to temp-int-1.

 move 20 to temp-int-2.

 move 0 to temp-int-3.

 call "SYBSETSQLDA" using retcode input-descriptor
 temp-int-1 charvar syb-x-pic temp-int-2
 temp-int-3 syb-no-usage syb-no-sign .
Embedded SQL/COBOL Programmer’s Guide 91

Method 4: Using prepare and fetch with system descriptors
 move "banana" to charvar.

 exec sql open c using descriptor input-descriptor end-exec.

 exec sql describe output statement using descripto
 output-descriptor end-exec.

 move 1 to temp-int-1.

 move 20 to temp-int-2.

 move 0 to temp-int-3.

 call "SYBSETSQLDA" using retcode output-descriptor
 temp-int-1 charvar syb-x-pic temp-int-2 temp-int-3
 syb-no-usage syb-no-sign .

 exec sql fetch c into descriptor output-descriptor
 end-exec.

 display "Expected 3, got "charvar.

 exec sql commit work end-exec.

 end program unittest.
92 Open Client

C H A P T E R 8 Handling Errors

This chapter discusses how to detect and correct errors that can occur
during the execution of Embedded SQL programs. It covers the whenever
and get diagnostics statements, which you can use to process warnings and
errors, and the SQLCA variables that pertain to warnings and errors.

While an Embedded SQL application is running, some events may occur
that interfere with the application’s operation. Following are examples:

• Adaptive Server becomes inaccessible.

• The user enters an incorrect password.

• The user does not have access to a database object.

• A database object is deleted.

• A column’s datatype changes.

• A query returns an unexpected null value.

• A dynamic SQL statement contains a syntax error.

You can anticipate these events by writing warning and error handling
code to recover gracefully when one of these situations occurs.

Topic Page
Testing for errors 94

Testing for warning conditions 94

Trapping errors with the whenever statement 95

Using get diagnostics 98

Writing routines to handle warnings and errors 98

Precompiler-detected errors 99
Embedded SQL/COBOL Programmer’s Guide 93

Testing for errors
Testing for errors
Embedded SQL places a return code in the SQLCODE variable to indicate the
success or failure of each SQL statement sent to Adaptive Server. You can
either test the value of SQLCODE after each Embedded SQL statement or use
the whenever statement to instruct the precompiler to write the test code for
you. The whenever statement is described later in this chapter.

Using SQLCODE
The following table lists the values SQLCODE can contain:

Table 8-1: SQLCODE return values

Testing for warning conditions
Even when SQLCODE indicates that a statement has executed successfully, a
warning condition may still have occurred. The 8-character array
SQLCA.SQLWARN indicates such warning conditions. Each SQLWARN
array element (or “flag”) stores either the space character (blank) or the
character “W”. In each flag, “W” indicates that a warning condition has
occurred; the kind of warning condition differs for each flag.

The following table describes what the space character or “W” means in each
flag:

Value Meaning

0 No warnings or errors occurred.

<0 Error occurred and the SQLCA variables contain useful
information for diagnosing the error.

100 No rows returned from last statement although the statement
executed successfully. This condition is useful for driving a loop that
fetches rows from a cursor. When SQLCODE becomes 100, the loop
and all rows that have been fetched end. This technique is illustrated
in Chapter 6, “Using Transact-SQL Statements.”
94 Open Client

CHAPTER 8 Handling Errors
Table 8-2: SQLWARN flags

Test for a warning after you determine that a SQL statement executed
successfully. Use the whenever statement, as described in the next section, to
instruct the precompiler to write the test code for you.

Trapping errors with the whenever statement
Use the Embedded SQL whenever statement to trap errors and warning
conditions. It specifies actions to be taken depending on the outcome of each
Embedded SQL statement sent to Adaptive Server.

The whenever statement is not executable. Instead, it directs the precompiler to
generate COBOL code that tests for specified conditions after each executable
Embedded SQL statement in the program.

The syntax of the whenever statement is:

exec sql whenever {sqlwarning | sqlerror |
 not found]

Flag Description

SQLWARN1 If blank, no warning condition of any kind occurred, and all
other SQLWARN flags are blank. If SQLWARN1 is set to
“W,” one or more warning conditions occurred, and at least
one other flag is set to “W.”

SQLWARN2 If set to “W,” the character string variable that you designated
in a fetch statement was too short to store the statement’s
result data, so the result data was truncated. You designated
no indicator variable to receive the original length of the data
that was truncated.

SQLWARN3 If set to “W,” the input sent to Adaptive Server contained a
null value in an illegal context, such as in an expression or as
an input value to a table that prohibits null values.

SQLWARN4 The number of columns in a select statement’s result set
exceeds the number of host variables in the statement’s into
clause.

SQLWARN5 Reserved.

SQLWARN6 SQL Server generated a conversion error while attempting to
execute this statement.

SQLWARN7 Reserved.

SQLWARN8 Reserved.
Embedded SQL/COBOL Programmer’s Guide 95

Trapping errors with the whenever statement
 {continue | goto label |
 program call [using param . . .]) |
 perform paragraph_1 [through paragraph_2] |
 stop};

whenever testing conditions
Each whenever statement can test for one of the following three conditions:

• sqlwarning

• sqlerror

• not found

The precompiler generates warning messages if you do not write a whenever
statement for each condition. If you write your own code to check for errors
and warnings, suppress the precompiler warnings by writing a
whenever...continue clause for each condition. This instructs the precompiler to
ignore errors and warnings.

If you precompile with the verbose option, the precompiler generates a
ct_debug() function call as part of each connect statement. This causes Client-
Library to display informational, warning, and error messages to your screen
as your application runs. The whenever statement does not disable these
messages. For more information about precompiler options, see the Open
Client/Server Programmer’s Supplement.

After an Embedded SQL statement executes, the values of SQLCODE and
SQLWARN1 determine if one of the conditions exists. The following table
shows the criteria whenever uses to detect the conditions:

Table 8-3: Criteria for the whenever statement

To change the action of a whenever statement, write a new whenever statement
for the same condition. whenever applies to all Embedded SQL statements that
follow it, up to the next whenever statement for the same condition.

The whenever statement ignores the application program’s logic. For example,
if you place whenever at the end of a loop, it does not affect the preceding
statements in subsequent passes through the loop.

Condition Criteria

sqlwarning SQLCODE = 0 and SQLWARN1 = W

sqlerror SQLCODE < 0

not found SQLCODE = 100
96 Open Client

CHAPTER 8 Handling Errors
whenever actions
The whenever statement specifies one of the following five actions:

Table 8-4: whenever actions

 . . .
 exec SQL whenever sqlerror perform ERR-PARA
 thru ERR-PARA-END
 end-exec
 . . .
 exec SQL select au_lname from authors
 into :AU-LNAME
 where au_id = :AU-ID
 end-exec
 . . .
 exec SQL update authors set au_lname = :AU-LNAME
 where au_id = :AU-ID
 end-exec
 . . .

Action Description

continue Causes no special action when a SQL statement returns the
specified condition. Normal processing continues.

goto Causes a branch to an error-handling procedure within your
application program. You can enter goto as either “goto” or
“go to”, followed by a valid paragraph name. The
precompiler does not detect an error if the paragraph name is
not defined in the program, but the COBOL compiler does.

call Calls another COBOL program and, optionally, passes
variables.

perform Names at least one paragraph to execute when a SQL
statement results in the specified condition. You can use the
COBOL perform statement formats 1, 2, 3, and 4 in the
perform clause. If you use a paragraph name, the paragraph
must be in the section where the whenever condition applies.

stop Terminates the program when a SQL statement triggers the
specified condition.
Embedded SQL/COBOL Programmer’s Guide 97

Using get diagnostics
Using get diagnostics
The get diagnostics statement retrieves error, warning, and informational
messages from Client-Library. It is similar to— but more powerful than—the
whenever statement because you can expand it to retrieve more details of the
detected errors.

If, within a whenever statement, you specify the application to go to or call
another application or paragraph, specify get diagnostics in the procedure code,
as follows:

err-handler.
 exec sql get diagnostics :num-msgs = number
 end-exec.
 perform varying condcnt from 0 by 1
 until condcnt greater or equal num-msgs
 exec sql get diagnostics exception :condcnt
 :sqlca = sqlca_info end-exec
 display "sqlcode is " sqlcode
 display "message text is " sqlerrmc
 end-perform.

Writing routines to handle warnings and errors
A good strategy for handling errors and warnings in an Embedded SQL
application is to write custom procedures to handle them, then install the
procedures with the whenever...perform statement.

The following example shows sample warning and error handling routines. For
simplicity, both routines omit certain conditions that should normally be
included: warn_para omits the code for SQLWARN1, and err_para omits the
code that handles Client-Library errors and operating system errors:

* Declare the sqlca. *
 exec sql include sqlca end-exec
 exec sql whenever sqlerror call "ERR-PARA"
 end-exec
 exec sql whenever sqlwarning call
 "WARN-PARA" end-exec
 exec sql whenever not found continue end-exec

 WARN-PARA.
 * Displays error codes and numbers from the sqlca
98 Open Client

CHAPTER 8 Handling Errors
 * and exits with an ERREXIT status.

 DISPLAY "Warning code is " SQLCODE.
 DISPLAY "Warning message is " SQLERRMC.

 IF SQLWARN2 EQUAL “W”
 DISPLAY "Data has been truncated.".
 IF SQLWARN3 EQUAL “W”
 DISPLAY "A null value was eliminated from
 - " the argument set of a function.".
 IF SQLWARN4 EQUAL “W”
 DISPLAY "An into clause had too many or too
 - " few host variables.".
 IF SQLWARN5 EQUAL “W”
 DISPLAY "A dynamic update or delete was
 - " lacking a where clause.".
 IF SQLWARN6 EQUAL “W”
 DISPLAY "A server conversion or truncation
 - " error occurred.".
 WARN-PARA-END.
 EXIT.

 ERR-PARA.
 * Print the error code, the error message, and the
 * line number of the command that caused the
 * error.

 DISPLAY "Error code is " SQLCODE.
 DISPLAY "Error message is " SQLERRMC.
 STOP RUN.

Precompiler-detected errors
The Embedded SQL precompiler detects Embedded SQL errors at precompile
time. The precompiler detects syntax errors such as missing semicolons and
undeclared host variables in SQL statements. These are severe errors, so
appropriate error messages are generated.

You can also have the precompiler check Transact-SQL syntax errors.
Adaptive Server parses Transact-SQL statements at precompile time if the
appropriate precompiler command options are set. See the precompiler
reference page in the Open Client/Server Programmer’s Supplement.
Embedded SQL/COBOL Programmer’s Guide 99

Precompiler-detected errors
The precompiler substitutes host variables in Embedded SQL statements with
dynamic parameter markers (“?”). Occasionally, substituting host variables
with parameter markers causes syntax errors (for example, when rules or
triggers do not allow the parameters).

The precompiler does not detect the error in the following example, in which a
table is created and data is selected from it. The error is that the host variables’
datatypes do not match the columns retrieved. The precompiler does not detect
the error because the table does not yet exist when the precompiler parses the
statements:

exec sql begin declare section end-exec
 01 VAR1 PIC S9(9) COMP.
 02 VAR2 PIC X(20).
 exec sql end declare section end-exec

 exec sql create table T1
 (col1 int, col2 varchar(20)) end-exec
 ...

 exec sql select * from T1 into

 :VAR2, :VAR1 end-exec.

Note that the error will be detected and reported at runtime.
100 Open Client

C H A P T E R 9 Embedded SQL Statements:
Reference Pages

This chapter consists of a reference page for each Embedded SQL
statement that either does not exist in Transact-SQL or works differently
from the way it works in Transact-SQL. Refer to the Transact-SQL User’s
Guide for descriptions of all other Transact-SQL statements that are valid
in Embedded SQL.

Command Statements Page
allocate descriptor 102

begin declare section 104

begin transaction 105

close 107

commit 108

connect 111

deallocate cursor 113

deallocate descriptor 114

deallocate prepare 116

declare cursor (dynamic) 117

declare cursor (static) 119

declare cursor (stored procedure) 121

delete (positioned cursor) 123

delete (searched) 125

describe input (SQL descriptor) 127

describe input (SQLDA) 129

describe output (SQL descriptor) 131

describe output (SQLDA) 133

disconnect 135

exec 137

exec sql 139

execute 141

execute immediate 143

exit 144

fetch 145
Embedded SQL/COBOL Programmer’s Guide 101

allocate descriptor
Except for print, raiserror, readtext, and writetext, all Transact-SQL statements
can be used in Embedded SQL, although the syntax of some statements differs,
as described in this chapter.

The reference pages in this chapter are arranged alphabetically. Each
statement’s reference page:

• Briefly states what the statement does

• Describes the statement’s syntax

• Explains the statement’s keywords and options

• Comments on the statement’s proper use

• Lists related statements, if any

• Demonstrates the statement’s use in a brief example

allocate descriptor
Description Allocates a SQL descriptor.

get descriptor 148

get diagnostics 150

include “filename” 151

include sqlca 153

include sqlda 154

initialize_application 154

open (dynamic cursor) 156

open (static cursor) 158

prepare 159

rollback 161

select 162

set connection 164

set descriptor 165

update 167

whenever 169

Command Statements Page
102 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages
Syntax exec sql allocate descriptor descriptor_name
 [with max [host_variable | integer_literal]]
 end-exec

Parameters descriptor_name
The name of the SQL descriptor that will contain information about the
dynamic parameter markers in a prepared statement.

with max
The maximum number of columns in the SQL descriptor.

host_variable
An integer host variable defined in a declare section.

integer_literal
A numeric value representing the size, in number of occurrences, of the SQL
descriptor.

Examples

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 COLTYPE PIC S9(9) COMP.
 01 NUMCOLS PIC S9(9) COMP.
 01 COLNUM PIC S9(9) COMP.
 EXEC SQL END DECLARE SECTION END-EXEC.

 ...

 EXEC SQL ALLOCATE DESCRIPTOR big_desc WITH MAX 1000 END-EXEC.

 EXEC SQL PREPARE dynstmt FROM "select * from huge_table" END-EXEC.

 * Assume that the select returns only 1 row.
 EXEC SQL EXECUTE dynstmt INTO SQL DESCRIPTOR big_desc END-EXEC.

 EXEC SQL GET DESCRIPTOR big_desc :NUMCOLS = COUNT END-EXEC.

 MOVE 1 TO COLNUM.
 PERFORM GET-DESC-LOOP UNTIL COLNUM > NUMCOLS.

 EXEC SQL DEALLOCATE DESCRIPTOR big_desc END-EXEC.
 EXEC SQL DEALLOCATE PREPARE dynstmt END-EXEC.
 ...

 GET-DESC-LOOP.
 EXEC SQL GET DESCRIPTOR big_desc VALUE
 :COLNUM :COLTYPE = TYPE END-EXEC.
 DISPLAY "COLUMN ",COLNUM," IS OF TYPE ", COLTYPE.
 ADD 1 TO COLNUM.
Embedded SQL/COBOL Programmer’s Guide 103

begin declare section
Usage • The allocate descriptor command specifies the number of item descriptor
areas that Adaptive Server allocates.

• You can allocate any number of SQL descriptors.

• When a SQL descriptor is allocated, its fields are undefined.

• If you try to allocate a SQL descriptor that is already allocated, an error
occurs.

• If you do not specify a value for the with max clause, one item descriptor
is assigned.

• When a SQL descriptor is allocated, the value of each of its fields is
undefined.

See also deallocate descriptor, get descriptor, set descriptor

begin declare section
Description Begins a declare section, which declares host language variables used in an

Embedded SQL source file.

Syntax exec sql begin declare section end-exec
 host_variable_declaration.
 ...

exec sql end declare section end-exec

Parameters host_variable_declaration
The declaration of one or more host language variables.

Examples EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 TITLE PIC X(80).
 01 VAR1PIC S9(9) COMP.
 01 VAR2 PIC X(100).
 EXEC SQL END DECLARE SECTION END-EXEC.

Usage • A declare section must end with the Embedded SQL statement
end declare section.

• A source file can have any number of declare sections.

• declare sections can be placed anywhere that variables can be declared.
The declare section that declares a variable must precede any statement
that references the variable.
104 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages
• Variable declarations in a declare section must conform to the rules of the
host language.

• Nested structures are valid in a declare section; arrays of structures are not.

• A declare section can contain any number of Embedded SQL include
statements.

• In Embedded SQL/C routines, the Client-Library datatypes defined in
cspublic.h can be used in declare sections.

• In C routines, you can declare two-dimensional arrays of characters but
only one-dimensional arrays of other datatypes.

• When processing declare sections, the Embedded SQL precompiler
ignores C preprocessor macros and #include statements. When processing
Embedded SQL include statements within a declare section, the
Embedded SQL precompiler treats the contents of the included file as
though had been entered directly into the file being precompiled.

See also exec sql include "filename"

begin transaction
Description Marks the starting point of an unchained transaction.

Syntax exec sql [at connection_name]
 begin {transaction | tran} [transaction_name]
 end-exec

Parameters transaction | tran
The keywords transaction and tran are interchangeable.

transaction_name
The name that you are assigning to this transaction. The name must conform
to the rules for Transact-SQL identifiers.

Examples

 *
 * Use explicit transactions to synchronize tables on
 * two servers.
 *

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 TITLE-ID PIC X(6).
Embedded SQL/COBOL Programmer’s Guide 105

begin transaction
 01 NUM-SOLD PIX S9(9) COMP.
 EXEC SQL END DECLARE SECTION END-EXEC.

 ...

 EXEC SQL WHENEVER SQLERROR PERFORM ABORT-TRAN END-EXEC.

 EXEC SQL CONNECT :UID IDENTIFIED BY :PASS
 AT connect1 END-EXEC.
 EXEC SQL CONNECT :UID IDENTIFIED BY :PASS
 AT connect2 END-EXEC.

 PERFORM TRY-UPDATE.

 TRY-UPDATE.
 EXEC SQL AT connect1 BEGIN TRANSACTION END-EXEC.
 EXEC SQL AT connect2 BEGIN TRANSACTION END-EXEC.

 EXEC SQL AT connect1 SELECT sum(qty) INTO :NUM-SOLD
 FROM salesdetail
 WHERE title_id = :TITLE-ID END-EXEC.

 EXEC SQL AT connect2 UPDATE current_sales
 SET num_sold = :NUM-SOLD
 WHERE title_id = :TITLE-ID END-EXEC.

 EXEC SQL AT connect2 COMMIT TRANSACTION END-EXEC.
 EXEC SQL AT connect1 COMMIT TRANSACTION END-EXEC.

 IF SQLCODE <> 0
 DISPLAY "OOPS! Should have used 2-phase commit".

 ABORT-TRAN.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 DISPLAY "Error code is " SQLCODE.
 DISPLAY "Error message is " SQLERRMC.
 EXEC SQL AT connect2 ROLLBACK TRANSACTION END-EXEC.
 EXEC SQL AT connect1 ROLLBACK TRANSACTION END-EXEC.
 PERFORM TRY-UPDATE.

Usage • This reference page describes aspects of the Transact-SQL
begin transaction statement that differ when used with Embedded SQL.
See the Adaptive Server Enterprise Reference Manual for more
information about begin transaction and Transact-SQL transaction
management.
106 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages
• The begin transaction statement is valid only in unchained transaction
mode. In chained transaction mode, you cannot explicitly mark the starting
point of a transaction.

• When nesting transactions, assign a transaction name only to the
outermost begin transaction statement and its corresponding commit
transaction or rollback transaction statement.

• Unless you set the database option ddl in tran, Adaptive Server does not
allow the following statements inside an unchained transaction: create
database, create table, create index, create view, drop statements, select into
table_name, grant, revoke, alter database, alter table, truncate table, update
statistics, reconfigure, load database, load transaction, and disk init.

• A transaction includes only statements that execute on the connection that
is current when the transaction begins.

• Remote procedures execute independently of any transaction in which
they are included.

See also commit transaction, commit work, rollback transaction, rollback work

close
Description Closes an open cursor.

Syntax exec sql [at connection_name] close cursor_name
 end-exec

Parameters cursor_name
The name of the cursor to be closed; that is, the name that you assigned when
declaring the cursor.

Examples

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 LNAME PIC X(40).
 01 FNAME PIC X(20).
 01 PHONE PIC X(12).
 EXEC SQL END DECLARE SECTION END-EXEC.

 ...

 EXEC SQL DECLARE authorlist CURSOR FOR
 SELECT au_lname, au_fname, phone
 FROM authors END-EXEC.
Embedded SQL/COBOL Programmer’s Guide 107

commit

 EXEC SQL OPEN authorlist END-EXEC.
 PERFORM FETCH-LOOP UNTIL SQLCODE = 100.

 EXEC SQL CLOSE authorlist END-EXEC,
 ...

 FETCH-LOOP.
 EXEC SQL FETCH authorlist INTO
 :LNAME, :FNAME, :PHONE END-EXEC.
 DISPLAY LNAME, FNAME, PHONE.

Usage • The close statement closes an open cursor. Unfetched rows are canceled.

• Reopening a closed cursor executes the associated query again,
positioning the cursor pointer before the first row of the result set.

• A cursor must be closed before it is reopened.

• Attempting to close a cursor that is not open causes a runtime error.

• The commit transaction, rollback transaction, commit work, and rollback work
statements close a cursor automatically unless you set a precompiler
option to disable the feature.

• Closing and then reopening a cursor lets your program see any changes in
the tables from which the cursor retrieves rows.

See also declare cursor, fetch, open, prepare

commit
Description Ends a transaction, preserving changes made to the database during the

transaction.

Syntax exec sql [at connection_name]
 commit [transaction | tran | work]
 [transaction_name] end-exec

Parameters transaction | trans | work
The keywords transaction, trans, and work are interchangeable in the rollback
statement, except that only work is ANSI-compliant.

transaction_name
A name assigned to the transaction.
108 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages
Examples

Example 1
* Using unchained transaction mode to
 * synchronize tables on two servers.
 *
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 TITLE-ID PIC X(7).
 01 NUM-SOLD PIC S9(9).
 EXEC SQL END DECLARE SECTION END-EXEC.

 ...

 EXEC SQL CONNECT :UID IDENTIFIED BY :PASS
 AT connect1 END-EXEC.
 EXEC SQL CONNECT :UID IDENTIFIED BY :PASS
 AT connect2 END-EXEC.

 ...

 PERFORM TRY-UPDATE.

 TRY-UPDATE.
 EXEC SQL AT connect1 BEGIN TRANSACTION END-EXEC.
 EXEC SQL AT connect2 BEGIN TRANSACTION END-EXEC.

 EXEC SQL AT connect1 SELECT sum(qty) INTO :NUM-SOLD
 FROM salesdetail
 WHERE title_id = :TITLE-ID END-EXEC.

 EXEC SQL AT connect2 UPDATE current_sales
 SET num_sold = :NUM-SOLD
 WHERE title_id = :TITLE-ID END-EXEC.

 EXEC SQL AT connect2 COMMIT TRANSACTION END-EXEC.

 EXEC SQL AT connect1 COMMIT TRANSACTION END-EXEC.

 IF SQLCODE <> 0
 DISPLAY "Oops! Should have used 2-phase commit".

Example 2
 * Using chained transaction mode to synchronize
 * tables on two servers.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
Embedded SQL/COBOL Programmer’s Guide 109

commit
 01 TITLE-ID PIC X(7).
 01 NUM-SOLD PIX S9(9) COMP.
 EXEC SQL END DECLARE SECTION END-EXEC.

 ...

 EXEC SQL WHENEVER SQLERROR PERFORM ABORT-TRAN END-EXEC.

 PERFORM TRY-UPDATE.

 TRY-UPDATE.
 EXEC SQL AT connect1 SELECT sum(qty) INTO :NUM-SOLD
 FROM salesdetail
 WHERE title_id = :TITLE-ID END-EXEC.

 EXEC SQL AT connect2 UPDATE current_sales
 SET num_sold = :NUM-SOLD
 WHERE title_id = :TITLE-ID END-EXEC.

 EXEC SQL AT connect2 COMMIT WORK END-EXEC.
 EXEC SQL AT connect1 COMMIT WORK END-EXEC.

 IF SQLCODE <> 0
 DISPLAY "OOPS! Should have used 2-phase commit".

 ABORT-TRAN.
 DISPLAY "ERROR! ABORTING TRAN".
 DISPLAY "Error code is " SQLCODE.
 DISPLAY "Error message is " SQLERRMC.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 EXEC SQL AT connect2 ROLLBACK WORK END-EXEC.
 EXEC SQL AT connect1 ROLLBACK WORK END-EXEC.
 PERFORM TRY-UPDATE.

Usage • This reference page mainly describes aspects of the Transact-SQL commit
statement that differ when used with Embedded SQL. See the Adaptive
Server Enterprise Reference Manual for more information about commit
and Transact-SQL transaction management.

• Transaction names must conform to the Transact-SQL rules for identifiers.
Transaction names are a Transact-SQL extension: they cannot be used
with the ANSI-compliant keyword work.

• When nesting transactions, assign a transaction name only to the
outermost begin transaction statement and its corresponding commit
transaction or rollback transaction statement.
110 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages
See also begin transaction, commit work, rollback transaction, rollback work

connect
Description Creates a connection to Adaptive Server.

Syntax exec sql connect user_name
[identified by password] [at connection_name]
 [using server_name] [labelname label_name labelvalue label_value …] end-
exec

Parameters user_name
The user name to be used when logging into Adaptive Server.

password
The password to use to log in to Adaptive Server.

connection_name
A name that you choose to uniquely identify the Adaptive Server
connection.

server_name
The server name of the Adaptive Server to which you are connecting.

Examples

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 UID PIC X(32).
 01 PASS PIC X(32).
 01 SERVER PIC X(100).
 EXEC SQL END DECLARE SECTION END-EXEC.

 DISPLAY "UID NAME?".
 ACCEPT UID.
 DISPLAY "PASSWORD ?".
 ACCEPT PASS.
 DISPLAY "SERVER TO CONNECT TO ?".
 ACCEPT SERVER.

 EXEC SQL CONNECT :UID IDENTIFIED BY :PASS
 USING :SERVER END-EXEC.

Usage • In every Embedded SQL program, the connect statement must be executed
before any other executable SQL statement except allocate descriptor.
Embedded SQL/COBOL Programmer’s Guide 111

connect
• The label_name and label_value clauses, if used, must be the last clauses
of the connect statement.

• If a program uses both C and COBOL languages, the first connect
statement must be issued from a COBOL program.

• If a program has multiple connections, only one can be unnamed.

• If an Embedded SQL statement does not have an at connection_name
clause to direct it to a specific named connection, the statement is executed
on the current connection.

• To specify a null password, omit the identified by clause or use an empty
string.

• If the connect statement does not specify an Adaptive Server, the server
named by the DSQUERY environment variable or logical name is used. If
DSQUERY is not defined, the default server is SYBASE.

• Client-Library looks up the server name in the interfaces file located in the
directory specified by the SYBASE environment variable or logical name.

• The Adaptive Server connection ends when the Embedded SQL program
exits or issues a disconnect statement.

• Opening a new connection, named or unnamed, results in the new
connection becoming the current connection.

• A program that requires multiple Adaptive Server login names can have a
connection for each login account.

• By connecting to more than one server, a program can simultaneously
access data stored on different servers.

• A single program can have multiple connections to a single server or
multiple connections to different servers.

• The following table shows how a connection is named:

Table 9-1: How a connection is named

See also at connection_name, exec sql, disconnect, set connection

If this clause is used But without
Then, the ConnectionName
is

at connection_name connection_name

using server_name at server_name

None DEFAULT
112 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages
deallocate cursor
Description Deallocates a cursor for a static SQL statement or for a dynamic SQL

statement.

Syntax exec sql [at connection_name] deallocate cursor cursor_name end-exec

Parameters cursor_name
The name of the cursor to be deallocated. The cursor_name must be a
character string enclosed in double quotation marks or in no quotation
marks—for example "my_cursor" or my_cursor. It cannot be a host
variable.

Examples

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 TITLE-ID PIC X(7).
 01 BOOK-NAME PIC X(80).
 01 TTYPE PIC X(12).
 01 TITLE-INDIC S9(9).
 01 TYPE-INDIC S9(9).
 EXEC SQL END DECLARE SECTION END-EXEC.

 ...

 EXEC SQL DECLARE titlelist CURSOR FOR
 SELECT type, title_id, title FROM titles
 order by type END-EXEC.

 EXEC SQL OPEN titlelist END-EXEC.

 PERFORM FETCH-PARA UNTIL SQLCODE = 100.

 EXEC SQL CLOSE titlelist END-EXEC.
 EXEC SQL DEALLOCATE CURSOR titlelist END-EXEC.
 ...

 FETCH-PARA.
 EXEC SQL FETCH titlelist INTO
 :TTYPE :TYPE-INDIC,
 :TITLE-ID,
 :BOOK-NAME :TITLE-INDIC END-EXEC.

 IF TYPE-INDIC <> -1
 DISPLAY "TYPE : ", TTYPE
 ELSE
 DISPLAY "TYPE : UNDECIDED"
Embedded SQL/COBOL Programmer’s Guide 113

deallocate descriptor
 END-IF.

 DISPLAY "TITLE ID : ",TITLE-ID.

 IF TITLE-INDIC <> -1
 DISPLAY "TITLE : ", BOOK-NAME
 ELSE
 DISPLAY "TITLE : Null value"
 END-IF.
 END-FETCH-PARA.

Usage • Deallocating a cursor releases all resources allocated to the cursor. In
particular, deallocate cursor drops the Client-Library command handle and
CS_COMMAND structure associated with the cursor.

• A static cursor can be deallocated at any time after it is opened. A dynamic
cursor can be deallocated at any time after it is declared.

• If cursor_name is open, deallocate cursor closes it and then deallocates it.

• You cannot reference a deallocated cursor, nor can you reopen it. If you
try, an error occurs.

• You can declare a new cursor having the same name as that of a
deallocated cursor. Opening a cursor with the same name as a deallocated
cursor is not the same as reopening the deallocated cursor. Other than the
name, the new cursor shares nothing with the deallocated cursor.

• Declaring a new cursor with the same name as that of a deallocated cursor
can cause the precompiler to generate a warning message.

• The deallocate cursor statement is a Sybase extension; it is not defined in
the SQL standard.

Note If you are using persistent binding in your Embedded SQL program, use
the deallocate cursor statement carefully. Needlessly deallocating cursors can
negate the advantage of persistent binding.

See also close cursor, declare cursor, open (static cursor)

deallocate descriptor
Description Deallocates a SQL descriptor.
114 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages
Syntax exec sql deallocate descriptor descriptor_name
 end-exec

Parameters descriptor_name
The name of the SQL descriptor that contains information about the
dynamic parameter markers or return values in a prepared statement.

Examples

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 NUMCOLS PIC S9(9) COMP.
 01 COLNUM PIC S9(9) COMP.
 01 COLTYPE PIC S9(9) COMP.
 EXEC SQL END DECLARE SECTION END-EXEC.

 ...

 EXEC SQL ALLOCATE DESCRIPTOR big_desc WITH MAX 100 END-EXEC.
 EXEC SQL PREPARE dynstmt FROM "select * from huge_table" END-EXEC.

 * Assume that only one row of data is returned.
 EXEC SQL EXECUTE dynstmt INTO SQL DESCRIPTOR big_desc END-EXEC.
 EXEC SQL GET DESCRIPTOR big_desc :NUMCOLS = COUNT END-EXEC.

 MOVE 1 TO COLNUM.
 PERFORM GET-DESC-LOOP UNTIL COLNUM > NUMCOLS.

 EXEC SQL DEALLOCATE DESCRIPTOR big_desc END-EXEC.

 ...

 GET-DESC-LOOP.
 EXEC SQL GET DESCRIPTOR big_desc VALUE
 :COLNUM :COLTYPE = TYPE END-EXEC.
 DISPLAY "COLUMN TYPE = ",COLTYPE.
 ADD 1 TO COLNUM.

Usage • If you attempt to deallocate a SQL descriptor that has not been allocated,
an error occurs.

See also allocate descriptor
Embedded SQL/COBOL Programmer’s Guide 115

deallocate prepare
deallocate prepare
Description Deallocates a dynamic SQL statement that was prepared in a prepare

statement.

Syntax exec sql [at connection_name]
 deallocate prepare statement_name end-exec

Parameters statement_name
The identifier assigned to the dynamic SQL statement when the statement
was prepared.

Examples

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 CMDBUF PIC X(120).
 01 STATE PIC X(3).
 EXEC SQL END DECLARE SECTION END-EXEC.

 ...

 * The ’select into table’ statement returns no results
 * to the program, so it does not need a cursor.

 MOVE "select * into tmp from authors where state = ?"
 TO CMDBUF.

 DISPLAY "STATE ? ".
 ACCEPT STATE.

 EXEC SQL PREPARE dynstmt FROM :CMDBUF END-EXEC.
 EXEC SQL EXECUTE dynstmt USING :STATE END-EXEC.

 EXEC SQL DEALLOCATE PREPARE dynstmt END-EXEC.
 EXEC SQL COMMIT WORK END-EXEC.

Usage • A statement must be prepared before it is deallocated. Attempting to
deallocate a statement that has not been prepared results in an error.

• statement_name must uniquely identify a statement buffer and must
conform to the SQL identifier rules for naming variables. statement_name
can be either a literal or a character array host variable.
116 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages
• The deallocate prepare statement closes and deallocates any dynamic
cursors declared for statement_name.

 Warning! If you are using persistent binds in your Embedded SQL program,
use the deallocate prepare statement carefully. Needlessly deallocating
prepared statements can negate the advantage of persistent binds.

See also declare cursor (dynamic), execute, execute immediate, prepare

declare cursor (dynamic)
Description Declares a cursor for processing multiple rows returned by a prepared dynamic

select statement.

Syntax exec sql [at connection_name]
 declare cursor_name
 cursor for prepped_statement_name end-exec

Parameters cursor_name
The cursor’s name, used to reference the cursor in open, fetch, and close
statements. A cursor’s name must be unique on each connection and must
have no more than 128 characters.

prepped_statement_name
The name (specified in a previous prepare statement) that represents the
select statement to be executed.

Examples

 EXEC SQL BEGIN DECLARE SECTION END-EXEC

 01 QUERY PIC X(100).
 01 DATAVAL PIC X(100).
 01 COUNTER PIC S9(9) COMP.
 01 NUMCOLS PIC S9(9) COMP.
 01 COLNAME PIC X(32).
 01 COLTYPE PIC S9(9) COMP.
 01 COLLEN PIC S9(9) COMP.

 EXEC SQL END DECLARE SECTION END-EXEC.

 ...
Embedded SQL/COBOL Programmer’s Guide 117

declare cursor (dynamic)

 EXEC SQL WHENEVER SQLERROR PERFORM ERR-PARA END-EXEC.
 EXEC SQL WHENEVER SQLWARNING PERFORM WARN-PARA END-EXEC
 EXEC SQL WHENEVER NOT FOUND STOP END-EXEC.

 ...

 EXEC SQL USE pubs2 END-EXEC.

 MOVE "SELECT * FROM publishers " TO QUERY.

 EXEC SQL ALLOCATE DESCRIPTOR dout WITH MAX 100 END-EXEC.
 EXEC SQL PREPARE dynstmt FROM :QUERY END-EXEC.
 EXEC SQL DECLARE dyncur CURSOR FOR dynstmt END-EXEC.
 EXEC SQL OPEN dyncur END-EXEC.
 PERFORM FETCH-LOOP UNTIL SQLCODE = 100.

 * Clean-up all open cursors, descriptors and dynamic statements.

 EXEC SQL CLOSE dyncur END-EXEC.
 EXEC SQL DEALLOCATE CURSOR dyncur END-EXEC.
 EXEC SQL DEALLOCATE PREPARE dynstmt END-EXEC.
 EXEC SQL DEALLOCATE DESCRIPTOR dout END-EXEC.
 EXEC SQL COMMIT WORK END-EXEC.

 STOP RUN.

 FETCH-LOOP.
 EXEC SQL FETCH dyncur INTO SQL DESCRIPTOR dout END-EXEC
 EXEC SQL GET DESCRIPTOR dout :NUMCOLS = COUNT END-EXEC
 DISPLAY "COLS = ", NUMCOLS
 MOVE 1 TO COUNTER
 PERFORM GET-DESC-PARA UNTIL COUNTER > NUMCOLS.
 END-FETCH-LOOP.

 GET-DESC-PARA.
 EXEC SQL GET DESCRIPTOR dout VALUE :COUNTER
 :COLNAME = NAME,
 :COLTYPE = TYPE,
 :COLLEN = LENGTH
 END-EXEC
 DISPLAY "NAME :", COLNAME
 DISPLAY "TYPE :", COLTYPE
 DISPLAY "LENGTH :", COLLEN

118 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages
 EXEC SQL GET DESCRIPTOR dout VALUE :COUNTER
 :DATAVAL = DATA END-EXEC
 DISPLAY "DATA :", DATAVAL
 DISPLAY " "
 ADD 1 TO COUNTER.
 END-GET-DESC-PARA.

Usage • The prepped_statement_name must not have a compute clause.

• The cursor_name must be declared on the connection where
prepped_statement_name was prepared.

• The dynamic declare cursor statement is an executable statement, whereas
the static declare cursor statement is simply a declaration. The dynamic
declare statement must be located where the host language allows
executable statements and the program should check return codes
(SQLCODE, SQLCA, or SQLSTATE).

• The for update and read only clauses for a dynamic cursor are not part of
the declare cursor statement but rather should be included in the prepared
statement‘s select query.

See also close, connect, fetch, open, prepare

declare cursor (static)
Description Declares a cursor for processing multiple rows returned by a select statement.

Syntax exec sql declare cursor_name
 cursor for select_statement
 [for update [of col_name_1 [, col_name_n]…]|
 for read only] end-exec

Parameters cursor_name
The cursor’s name, used to reference the cursor in open, fetch, and close
statements. A cursor’s name must be unique on each connection and must
have no more than 128 characters.

select_statement
The Transact-SQL select statement to be executed when the cursor is
opened. See the description of the select statement in the Adaptive Server
Enterprise Reference Manual for more information.
Embedded SQL/COBOL Programmer’s Guide 119

declare cursor (static)
for update
Specifies that the cursor’s result list can be updated. (To update the result
list, you use the update statement.

of col_name_n
The name of a column to be updated.

for read only
Specifies that the cursor’s result list cannot be updated.

Examples

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 TITLE-ID PIC X(6).
 01 BOOK-NAME PIC X(25).
 01 TYPE PIC X(15).
 EXEC SQL END DECLARE SECTION END-EXEC.

 01 ANSWER PIC X(1).

 DISPLAY "TYPE OF BOOKS TO RETRIEVE ? ".
 ACCEPT BOOK-TYPE.
 EXEC SQL DECLARE titlelist CURSOR FOR
 SELECT title_id, substring(title,1,25) FROM
 titles WHERE type = :BOOK-TYPE END-EXEC.

 EXEC SQL OPEN titlelist END-EXEC.
 PERFORM FETCH-PARA UNTIL SQLCODE = 100.
 EXEC SQL CLOSE titlelist END-EXEC.
 EXEC SQL DEALLOCATE CURSOR titlelist END-EXEC.
 EXEC SQL COMMIT WORK END-EXEC.

 FETCH-PARA.
 EXEC SQL FETCH titlelist INTO
 :TITLE-ID, :BOOK-NAME END-EXEC.
 DISPLAY "TITLE ID : ",TITLE-ID
 DISPLAY "TITLE : ",BOOK-NAME
 IF SQLCODE = 100
 DISPLAY "NO RECORDS TO FETCH. END OF PROGRAM RUN."
 ELSE
 DISPLAY "UPDATE/DELETE THIS RECORD (U/D)? "
 ACCEPT ANSWER.

 IF ANSWER = "U"
120 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages
 DISPLAY "ENTER NEW TITLE :"
 ACCEPT BOOK-NAME
 EXEC SQL UPDATE titles SET title = :BOOK-NAME
 WHERE CURRENT OF titlelist END-EXEC
 ELSE
 IF ANSWER = "D"
 EXEC SQL DELETE titles
 WHERE CURRENT OF titlelist END-EXEC
 END-IF
 END-IF
 END-IF.
 END-FETCH-PARA.

Usage • The Embedded SQL precompiler generates no code for the declare cursor
statement.

• The select_statement does not execute until your program opens the cursor
by using the open cursor statement.

• The syntax of the select_statement is identical to that shown in the
Adaptive Server Enterprise Reference Manual, except that you cannot use
the compute clause in Embedded SQL.

• The select_statement can contain host variables. The values of the host
variables are substituted when your program opens the cursor.

• If you omit either the for update or read only clause, Adaptive Server
determines whether the cursor is updatable.

See also close, connect, deallocate cursor, declare cursor (stored procedure),
declare cursor (dynamic), fetch, open, update

declare cursor (stored procedure)
Description Declares a cursor for a stored procedure.

Syntax exec sql declare cursor_name
 cursor for execute procedure_name
 ([[@param_name =]:host_var]
 [,[@param_name =]:host_var]…) end-exec

Parameters cursor_name
The cursor’s name, used to reference the cursor in open, fetch, and close
statements. A cursor’s name must be unique on each connection and must
have no more than 128 characters.
Embedded SQL/COBOL Programmer’s Guide 121

declare cursor (stored procedure)
procedure_name
The name of the stored procedure to be executed.

param_name
The name of a parameter in the stored procedure.

host_var
The name of a host variable to be passed as a parameter value.

Examples

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 TITLE-ID PIC X(6).
 01 BOOK-NAME PIC X(65).
 01 BOOK-TYPE PIC X(15).
 EXEC SQL END DECLARE SECTION END-EXEC.

 01 ANSWER PIC X(1).

 * Create the stored procedure.

 EXEC SQL create procedure p_titles (@p_type varchar(30))
 as
 select title_id, substring(title,1,64)
 from titles
 where type = @p_type
 END-EXEC.

 * To execute stored procedures, you must disable chained mode.
 EXEC SQL SET CHAINED OFF END-EXEC.

 DISPLAY "TYPE OF BOOKS TO RETRIEVE ? ".
 ACCEPT BOOK-TYPE.
 EXEC SQL DECLARE titlelist CURSOR FOR
 execute p_titles :BOOK-TYPE END-EXEC.
 EXEC SQL OPEN titlelist END-EXEC.
 PERFORM FETCH-LOOP UNTIL SQLCODE = 100.
 EXEC SQL CLOSE titlelist END-EXEC.
 EXEC SQL DEALLOCATE CURSOR titlelist END-EXEC.
 EXEC SQL COMMIT WORK END-EXEC.

 FETCH-LOOP.
 EXEC SQL FETCH titlelist INTO
 :TITLE-ID, :BOOK-NAME END-EXEC
 DISPLAY "TITLE ID : ", TITLE-ID
122 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages
 DISPLAY "TITLE : ", BOOK-NAME
 IF SQLCODE = 100
 DISPLAY "NO RECORDS TO FETCH. END OF PROGRAM RUN."
 ELSE
 DISPLAY "UPDATE/DELETE THIS RECORD ? "
 ACCEPT ANSWER

 IF ANSWER = "U"
 DISPLAY "ENTER NEW TITLE :"
 ACCEPT BOOK-NAME
 EXEC SQL UPDATE titles SET title = :BOOK-NAME
 WHERE CURRENT OF titlelist END-EXEC.
 ELSE
 IF ANSWER = "D"
 EXEC SQL DELETE titles WHERE CURRENT OF
 titlelist END-EXEC
 END-IF
 END-IF.
 END-IF.

Usage • procedure_name must consist of only one select statement.

• It is not possible to retrieve output parameter values from a stored
procedure executed using a cursor.

• It is not possible to retrieve the return status value of a stored procedure
executed using a cursor.

See also close, deallocate cursor, declare cursor (static), declare cursor (dynamic), fetch,
open, update

delete (positioned cursor)
Description Removes, from a table, the row indicated by the current cursor position for an

open cursor.

Syntax exec sql [at connection_name] delete
 [from] table_name
 where current of cursor_name end-exec

Parameters table_name
The name of the table from which the row will be deleted.
Embedded SQL/COBOL Programmer’s Guide 123

delete (positioned cursor)
where current of cursor_name
Causes Adaptive Server to delete the row of the table indicated by the
current cursor position for the cursor cursor_name.

Examples

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 PUB-NAME PIC X(40).
 01 PUB-ID PIC X(4).
 01 PUB-CTY PIC X(15).
 01 PUB-ST PIC X(2).
 01 ANSWER PIC X(1).
 EXEC SQL END DECLARE SECTION END-EXEC.

 EXEC SQL DECLARE delcursor CURSOR FOR
 SELECT * FROM publishers END-EXEC.

 EXEC SQL OPEN delcursor END-EXEC.
 PERFORM FETCH-LOOP UNTIL SQLCODE = 100.
 EXEC SQL CLOSE delcursor END-EXEC.
 EXEC SQL DEALLOCATE CURSOR delcursor END-EXEC.
 EXEC SQL COMMIT WORK END-EXEC.

 ...

 FETCH-LOOP.
 EXEC SQL FETCH delcursor INTO
 :PUB-ID, :PUB-NAME,
 :PUB-CTY, PUB-ST END-EXEC.
 DISPLAY "PUB ID :", PUB-ID
 DISPLAY "PUB NAME :", PUB-NAME
 DISPLAY "PUB CITY :", PUB-CTY
 DISPLAY "PUB STATE :", PUB-ST

 IF SQLCODE = 100
 DISPLAY "NO MORE RECORDS TO FETCH. END OF PROGRAM RUN."
 ELSE
 DISPLAY "DELETE THIS RECORD ?(Y/N) "
 ACCEPT ANSWER
 IF ANSWER = "Y"
 EXEC SQL DELETE publishers WHERE CURRENT OF
124 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages
 delcursor END-EXEC
 END-IF.

Usage • This reference page mainly describes aspects of the Transact-SQL delete
statement that differ when used with Embedded SQL. See the Adaptive
Server Enterprise Reference Manual for more information about the delete
statement.

• This form of the delete statement must execute on the connection where
the cursor cursor_name was opened. If the delete statement includes the
atconnection_name clause, the clause must match the
atconnection_nameclause of the open cursor statement that opened
cursor_name.

• The delete statement fails if the cursor was declared for read only, or if the
select statement included an order by clause.

See also close, declare cursor, fetch, open, update

delete (searched)
Description Removes rows specified by search conditions.

Syntax exec sql [at connection_name] delete table_name_1
 [from table_name_n
 [, table_name_n]…]
 [where search_conditions] end-exec

Parameters table_name_1
The name of the table from which this delete statement deletes rows.

from table_name_n
The name of a table to be joined with table_name_1 to determine which
rows of table_name_1 will be deleted. The delete statement does not delete
rows from table_name_n.

where search_conditions
Specifies which rows will be deleted. If you omit the where clause, the delete
statement deletes all rows of table_name_1.

Examples

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 AU-FNAME PIC X(30).
 01 AU-LNAME PIC X(30).
 01 AU-ID PIC X(11).
Embedded SQL/COBOL Programmer’s Guide 125

delete (searched)
 01 TITLE-ID PIC X(6).
 EXEC SQL END DECLARE SECTION END-EXEC.

 ...

 EXEC SQL WHENEVER SQLERROR PERFORM ROLLBACK-PARA.

 EXEC SQL USE pubs2 END-EXEC.

 DISPLAY "AUTHOR FIRST NAME ? "
 ACCEPT AU-FNAME.
 DISPLAY "AUTHOR LAST NAME ? "
 ACCEPT AU-LNAME.

 EXEC SQL SELECT au_id FROM authors INTO :AU-ID
 WHERE au_fname = :AU-FNAME
 AND au_lname = :AU-LNAME END-EXEC.

 EXEC SQL BEGIN TRANSACTION END-EXEC.

 * Delete matching records from the ’au_pix’ table.
 EXEC SQL DELETE au_pix WHERE au_id = :AU-ID END-EXEC.

 * Delete matching records from the ’blurbs’ table.
 EXEC SQL DELETE blurbs WHERE au_id = :AU-ID END-EXEC.

 * Delete matching records from the titleauthor table. Since
 * we can’t have titles associated with this author in other
 * related tables, we delete those records too.
 EXEC SQL DECLARE selcursor CURSOR FOR
 SELECT title_id FROM titleauthor
 WHERE au_id = :AU-ID END-EXEC.
 EXEC SQL OPEN selcursor END-EXEC.
 PERFORM FETCH-DEL-LOOP UNTIL SQLCODE = 100.

 EXEC SQL CLOSE selcursor END-EXEC.
 EXEC SQL DEALLOCATE CURSOR selcursor END-EXEC.

 * Delete matching records from the ’authors’ table.
 EXEC SQL DELETE authors WHERE au_id = :AU-ID END-EXEC.

 * Commit all the transactions to the database.
 EXEC SQL COMMIT TRANSACTION END-EXEC.

 ...

126 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages
 FETCH-DEL-LOOP.
 EXEC SQL FETCH selcursor INTO :TITLE-ID END-EXEC
 IF SQLCODE <> 100
 EXEC SQL DELETE salesdetail WHERE title_id = :TITLE-ID END-EXEC
 EXEC SQL DELETE roysched WHERE title_id = :TITLE-ID END-EXEC
 EXEC SQL DELETE titles WHERE title_id = :TITLE-ID END-EXEC
 EXEC SQL DELETE titleauthor WHERE CURRENT OF selcursor END-EXEC
 END-IF.
 END-FETCH-LOOP.

 * Rollback the transacion in case of errors.
 ROLLBACK-PARA.
 DISPLAY "ERROR! ROLLING BACK TRANSACTION!"
 DISPLAY "Error code is " SQLCODE.
 DISPLAY "Error message is " SQLERRMC.

 EXEC SQL ROLLBACK TRANSACTION END-EXEC.
 ...

Usage • This reference page describes mainly aspects of the Transact-SQL delete
statement that differ when used with Embedded SQL. See the Adaptive
Server Enterprise Reference Manual for more information about the delete
statement.

• If you need to remove rows specified by the current position of a cursor
pointer, use the delete (positioned cursor) statement.

See also close, declare cursor, fetch, open, update

describe input (SQL descriptor)
Description Obtains information about dynamic parameter markers in a prepared dynamic

SQL statement and stores that information in a SQL descriptor.

For a list of possible SQL descriptor datatype codes, see Table 9-5 on
page 172.

Syntax exec sql describe input statement_name
 using sql descriptor descriptor_name end-exec

Parameters statement_name
The name of the prepared statement about which you want information.
statement_name must identify a prepared statement.
Embedded SQL/COBOL Programmer’s Guide 127

describe input (SQL descriptor)
sql descriptor
Identifies descriptor_name as a SQL descriptor.

descriptor_name
The name of the SQL descriptor that is to store information about the
dynamic parameter markers in the prepared statement.

Examples

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 QUERY PIC X(100).
 01 NIN PIC S9(9) COMP.
 01 COUNTER PIC S9(9) COMP.
 01 COLTYPE PIC S9(9) COMP.
 01 COLLEN PIC S9(9) COMP.
 EXEC SQL END DECLARE SECTION END-EXEC.

 ...

 EXEC SQL ALLOCATE DESCRIPTOR din WITH MAX 256 END-EXEC.

 DISPLAY "ENTER QUERY :"
 ACCEPT QUERY.

 EXEC SQL PREPARE dynstmt FROM :QUERY END-EXEC.
 EXEC SQL DESCRIBE INPUT dynstmt USING
 SQL DESCRIPTOR din END-EXEC.

 EXEC SQL GET DESCRIPTOR din :NIN = COUNT END-EXEC.
 MOVE 1 TO COUNTER.
 PERFORM GET-DESC-LOOP UNTIL COUNTER > NIN.
 EXEC SQL DEALLOCATE PREPARE dynstmt END-EXEC.
 EXEC SQL DEALLOCATE DESCRIPTOR din END-EXEC.

 ...

 GET-DESC-LOOP.
 EXEC SQL GET DESCRIPTOR din VALUE
 :COUNTER :COLTYPE = TYPE END-EXEC
 EXEC SQL GET DESCRIPTOR din VALUE
 :COUNTER :COLLEN = LENGTH END-EXEC
 DISPLAY "TYPE OF INPUT = ", COLTYPE
 DISPLAY "INPUT LENGTH = ", COLLEN
 ADD 1 TO COUNTER .
 END-GET-DESC-LOOP.
128 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages
Usage • Information about the statement is written into the descriptor provided in
the using clause. Use the get descriptor statement after executing the
describe input statement to extract information from the descriptor into
host variables.

• The descriptor must be allocated before the describe input statement can be
executed.

See also allocate descriptor, deallocate descriptor, describe output, get descriptor, prepare,
set descriptor

describe input (SQLDA)
Description Obtains information about dynamic parameter markers in a prepared dynamic

SQL statement and stores that information in a SQLDA structure.

Syntax exec sql describe input statement_name
 using descriptor descriptor_name end-exec

Parameters statement_name
The name of the prepared statement about which you want information.
statement_name must identify a prepared statement.

descriptor
Identifies descriptor_name as a SQLDA structure.

descriptor_name
The name of the SQLDA structure that is to store information about the
dynamic parameter markers in the prepared statement.

Examples

 ...
 ...

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 QUERY PIC X(100).
 EXEC SQL END DECLARE SECTION END-EXEC.

 01 din.
 05 SD-SQLN PIC S9(4) COMP.
 05 SD-SQLD PIC S9(4) COMP.
 05 SD-COLUMN OCCURS 3 TIMES.
 10 SD-DATAFMT.
Embedded SQL/COBOL Programmer’s Guide 129

describe input (SQLDA)
 15 SQL--NM PIC X(132).
 15 SQL--NMLEN PIC S9(9) COMP.
 15 SQL--DATATYPE PIC s9(9) COMP.
 15 SQL--FORMAT PIC S9(9) COMP.
 15 SQL--MAXLENGTH PIC S9(9) COMP.
 15 SQL--SCALE PIC S9(9) COMP.
 15 SQL--PRECISION PIC S9(9) COMP.
 15 SQL--STTUS PIC S9(9) COMP.
 15 SQL--COUNT PIC S9(9) COMP.
 15 SQL--USERTYPE PIC S9(9) COMP.
 15 SQL--LOCALE PIC S9(9) COMP.
 10 SD-SQLDATA PIC S9(9) COMP.
 10 SD-SQLIND PIC S9(9) COMP.
 10 SD-SQLLEN PIC S9(9) COMP.
 10 SD-SQLMORE PIC S9(9) COMP.
 01 TMP PIC Z(8)9.

 ...

 DISPLAY "ENTER QUERY :"
 ACCEPT QUERY.

 EXEC SQL ALLOCATE DESCRIPTOR din WITH MAX 256 END-EXEC.
 EXEC SQL PREPARE dynstmt FROM :QUERY END-EXEC.
 EXEC SQL DECLAR selcursor CURSOR FOR dynstmt END-EXEC.
 EXEC SQL DESCRIBE INPUT dynstmt USING DESCRIPTOR din END-EXEC.

 * SD-SQLD contains the number of columns in the query being described
 MOVE SD-SQLD TO TMP.
 DISPLAY "Number of input parameters = ", SD-SQLD.

 ...

Usage • Information about the statement is written into the descriptor specified in
the using clause. After the get descriptor statement is executed, you can
read the information out of the SQLDA structure.

See also allocate descriptor, deallocate descriptor, describe output, get descriptor, prepare,
set descriptor
130 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages
describe output (SQL descriptor)
Description Obtains row format information about the result set of a prepared dynamic

SQL statement.

For a list of possible SQL descriptor datatype codes, see Table 9-5 on
page 172.

Syntax exec sql describe [output] statement_name
 using sql descriptor descriptor_name end-exec

Parameters output
An optional keyword that has no effect on the describe output statement but
provides conformance to the SQL standard.

statement_name
The name (specified in a prepare statement) that represents the select
statement to be executed.

sql descriptor
Identifies descriptor_name as a SQL descriptor.

descriptor_name
The name of a SQL descriptor that is to store the information returned by the
describe output statement.

Examples

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 QUERY PIC X(100).
 01 NOUT PIC S9(9) COMP.
 01 DATAVAL PIC X(100).
 01 COUNTER PIC S9(9) COMP.
 01 NUMCOLS PIC S9(9) COMP.
 01 COLNAME PIC X(32).
 01 COLTYPE PIC S9(9) COMP.
 01 COLLEN PIC S9(9) COMP.
 EXEC SQL END DECLARE SECTION END-EXEC.

 ...

 DISPLAY "ENTER QUERY :"
 ACCEPT QUERY.

 EXEC SQL ALLOCATE DESCRIPTOR desc_out WITH MAX 256 END-EXEC.
 EXEC SQL PREPARE dynstmt FROM :QUERY END-EXEC.
 EXEC SQL DECLARE selcursor CURSOR FOR dynstmt END-EXEC.
 EXEC SQL OPEN selcursor USING SQL DESCRIPTOR desc_out END-EXEC.
Embedded SQL/COBOL Programmer’s Guide 131

describe output (SQL descriptor)
 EXEC SQL DESCRIBE OUTPUT dynstmt USING SQL DESCRIPTOR desc_out END-EXEC.

 PERFORM FETCH-LOOP UNTIL SQLCODE = 100.
 EXEC SQL CLOSE selcursor END-EXEC.
 EXEC SQL DEALLOCATE CURSOR selcursor END-EXEC.
 EXEC SQL DEALLOCATE PREPARE dynstmt END-EXEC.
 EXEC SQL DEALLOCATE DESCRIPTOR desc_out END-EXEC.

 ...

 FETCH-LOOP.
 EXEC SQL FETCH selcursor INTO SQL DESCRIPTOR desc_out END-EXEC
 EXEC SQL GET DESCRIPTOR desc_out :NOUT = COUNT END-EXEC
 DISPLAY "COLS RETRIEVED = ", NOUT
 MOVE 1 TO COUNTER
 PERFORM GET-DESC-PARA UNTIL COUNTER > NOUT.
 END-FETCH-LOOP.

 GET-DESC-PARA.
 EXEC SQL GET DESCRIPTOR desc_out VALUE :COUNTER
 :COLNAME = NAME,
 :COLTYPE = TYPE,
 :COLLEN = LENGTH
 END-EXEC
 DISPLAY "NAME :", COLNAME
 DISPLAY "TYPE :", COLTYPE
 DISPLAY "LENGTH :", COLLEN

 EXEC SQL GET DESCRIPTOR desc_out VALUE :COUNTER
 :DATAVAL = DATA END-EXEC
 DISPLAY "DATA :", DATAVAL
 DISPLAY " "
 ADD 1 TO COUNTER.
 END-GET-DESC-PARA.

Usage • The information obtained is the type, name, length (or precision and scale,
if a number), nullable status, and number of items in the result set.

• The information is about the result columns from the select column list.

• Execute this statement before the prepared statement executes. If you
perform a describe output statement after you execute and before you
perform a get descriptor, the results will be discarded.

See also allocate descriptor, describe input, execute, get descriptor, prepare
132 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages
describe output (SQLDA)
Description Obtains row format information about the result set of a prepared dynamic

SQL statement and stores that information in a SQLDA structure.

Syntax exec sql describe [output] statement_name
 using descriptor sqlda_name end-exec

Parameters output
An optional keyword that has no effect on the describe output statement but
provides conformance to the SQL standard.

statement_name
The name (specified in a prepare statement) that represents the select
statement to be executed.

descriptor
Identifies descriptor_name as a SQLDA structure.

sqlda_name
The name of a SQLDA structure that is to store the information returned by
the describe output statement:

Examples

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 QUERY PIC X(100).
 01 CHARVAR PIC X(100).
 EXEC SQL END DECLARE SECTION END-EXEC.

 01 dout.
 05 SD-SQLN PIC S9(4) COMP.
 05 SD-SQLD PIC S9(4) COMP.
 05 SD-COLUMN OCCURS 3 TIMES.
 10 SD-DATAFMT.
 15 SQL--NM PIC X(132).
 15 SQL--NMLEN PIC S9(9) COMP.
 15 SQL--DATATYPE PIC s9(9) COMP.
 15 SQL--FORMAT PIC S9(9) COMP.
 15 SQL--MAXLENGTH PIC S9(9) COMP.
 15 SQL--SCALE PIC S9(9) COMP.
 15 SQL--PRECISION PIC S9(9) COMP.
 15 SQL--STTUS PIC S9(9) COMP.
 15 SQL--COUNT PIC S9(9) COMP.
 15 SQL--USERTYPE PIC S9(9) COMP.
 15 SQL--LOCALE PIC S9(9) COMP.

 10 SD-SQLDATA PIC S9(9) COMP.
 10 SD-SQLIND PIC S9(9) COMP.
Embedded SQL/COBOL Programmer’s Guide 133

describe output (SQLDA)
 10 SD-SQLLEN PIC S9(9) COMP.
 10 SD-SQLMORE PIC S9(9) COMP.
 01 TMP PIC Z(8)9.
 01 COLNUM PIC S9(9) COMP.
 01 TMP1 PIC S9(9) COMP.
 01 TMP2 PIC S9(9) COMP.
 01 RETCODE PIC S9(9) COMP.

 ...

 DISPLAY "ENTER QUERY :"
 ACCEPT QUERY.

 EXEC SQL ALLOCATE DESCRIPTOR dout WITH MAX 256 END-EXEC.
 EXEC SQL PREPARE dynstmt FROM :QUERY END-EXEC.
 EXEC SQL DECLARE selcursor CURSOR FOR dynstmt END-EXEC.
 EXEC SQL OPEN selcursor END-EXEC.
 EXEC SQL DESCRIBE OUTPUT dynstmt
 USING DESCRIPTOR dout END-EXEC.

 MOVE 1 TO COLNUM.
 MOVE 25 TO TMP1.
 MOVE 0 TO TMP2.

 CALL "SYBSETSQLDA" USING RETCODE dout COLNUM
 CHARVAR SYB-X-PIC TMP1 TMP2 SYB-NO-USAGE
 SYB-NO-SIGN.

 EXEC SQL FETCH selcursor INTO DESCRIPTOR dout END-EXEC.
 DISPLAY "CHARVAR = ", CHARVAR.

 EXEC SQL CLOSE selcursor END-EXEC.
 EXEC SQL DEALLOCATE CURSOR selcursor END-EXEC.
 EXEC SQL DEALLOCATE PREPARE dynstmt END-EXEC.
 EXEC SQL DEALLOCATE DESCRIPTOR dout END-EXEC.

Usage • The information obtained is data held in the SQLDA fields, such as the
type, name, length (or precision and scale, if a number), nullable status,
and number of items in the result set.

• The information is about the result columns from the select column list.

See also describe input, execute, prepare
134 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages
disconnect
Description Closes one or more connections to a Adaptive Server.

Syntax exec sql disconnect
 {connection_name | current | DEFAULT| all} end-exec

Parameters connection_name
The name of a connection to be closed.

current
Specifies that the current connection is to be closed.

DEFAULT
Specifies that the default connection is to be closed. This keyword must be
in uppercase letters if you specify the default connection_name using a
character string variable, for example:

exec sql disconnect :hv;

all
Specifies that all active connections be closed.

Examples

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 SERV-NAME PIC X(25).
 01 USER-NAME PIC X(25).
 01 PASSWORD PIC X(25).
 01 CONN-NAME PIC X(25).
 EXEC SQL END DECLARE SECTION END-EXEC.

 ...

 MOVE "sa" TO USER-NAME.
 MOVE "" TO PASSWORD.

 * Make a default connection.
 EXEC SQL CONNECT :USER-NAME IDENTIFIED BY :PASSWORD END-EXEC.
 EXEC SQL SELECT @@servername into :srvname END-EXEC.
 DISPLAY "NOW CONNECTED TO SERVER ", srvname.

 * Accept a server name from the user and make a new connection.
 DISPLAY "SERVER NAME? ".
 ACCEPT SERV-NAME.
 EXEC SQL CONNECT :USER-NAME IDENTIFIED BY :PASSWORD
 At conn2 USING :SERV-NAME END-EXEC.

 EXEC SQL SELECT @@servername into :srvname END-EXEC
Embedded SQL/COBOL Programmer’s Guide 135

disconnect
 DISPLAY "NOW CONNECTED TO SERVER ", srvname.

 * Make a third connection.
 EXEC SQL CONNECT :USER-NAME IDENTIFIED BY :PASSWORD
 At conn3 USING :SERV-NAME END-EXEC.

 EXEC SQL SELECT @@servername into :srvname END-EXEC.
 DISPLAY "NOW CONNECTED TO SERVER ", srvname.

 * Now set the current connection to DEFAULT.
 EXEC SQL SET CONNECTION DEFAULT END-EXEC.

 * Now disconnect the first connection which is the default.
 DISPLAY "DISCONNECTING DEFAULT!".
 EXEC SQL DISCONNECT DEFAULT END-EXEC.

 * Now sdet the current connection to connection2.
 EXEC SQL SET CONNECTION conn2 END-EXEC.

 * Now disconnect the third connection.
 DISPLAY "DISCONNECTING THIRD!".
 EXEC SQL DISCONNECT conn3 END-EXEC.

 * Disconnect remaining connections - case ’conn2’ will be closed.
 DISPLAY "DISCONNECTING ALL!".
 EXEC SQL DISCONNECT ALL END-EXEC.

Usage • By itself, the disconnect keyword is not a valid statement. Instead, it must
be followed by connection_name, current, DEFAULT, or all.

• Closing a connection releases all memory and resources associated with
that connection.

• disconnect does not commit current transactions; it rolls them back. If an
unchained transaction is active on the connection, disconnect rolls it back,
ignoring any savepoints.

• Closing a connection closes open cursors, drops temporary Adaptive
Server objects, releases any locks the connection has in the Adaptive
Server, and closes the network connection to the Adaptive Server.

See also commit work, commit transaction, connect, rollback transaction, rollback work
136 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages
exec
Description Runs a system procedure or a user-defined stored procedure.

Syntax exec sql [at connection_name]
 exec [:status_var = status_value] procedure_name
[([[@parameter_name =]param_value [out[put]]],...)]
 [into :hostvar_1 [:indicator_1]
 [, hostvar_n [indicator_n,…]]]
 [with recompile] end-exec

Note Do not confuse the exec statement with the Embedded SQL execute
statement; they are not related. The Embedded SQL exec statement is,
however, the equivalent of the Transact-SQL execute statement.

Parameters status_var
A host variable to receive the return status of the stored procedure.

status_value
The value of the stored procedure return status variable status_var.

procedure_name
The name of the stored procedure to be executed.

parameter_name
The name(s) of the stored procedure’s parameter(s).

param_value
A host variable or literal value.

output
Indicates that the stored procedure returns a parameter value. The matching
parameter in the stored procedure must also have been created using the
output keyword.

into :hostvar_1
Causes row data returned from the stored procedure to be stored in the
specified host variables (hostvar_1 through hostvar_n). Each host variable
can have an indicator variable.

with recompile
Causes Adaptive Server to create a new query plan for this stored procedure
each time the procedure executes.

Examples Example 1

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 TITLE-ID PIC X(6).
Embedded SQL/COBOL Programmer’s Guide 137

exec
 01 TOTAL-DISC PIC S9(9).
 01 RET-STATUS PIC S9(9).
 EXEC SQL END DECLARE SECTION END-EXEC.

 ...
 EXEC SQL CREATE PROC get_sum_discounts(@title_id tid,
 @discount int output) as
 begin
 select @discount = sum (qty*discount)
 from salesdetail
 where title_id = @title_id
 end
 END-EXEC.

 EXEC SQL SET CHAINED ON END-EXEC.
 DISPLAY "TITLE ID ? ".
 ACCEPT TITLE-ID.

 EXEC SQL EXEC :RET-STATUS = get_sum_discounts
 :TITLE-ID, :TOTAL-DISC OUT END-EXEC.

 DISPLAY "TOTAL DISCOUNTS FOR TITLE ID ", TITLE-ID," = ",TOTAL-DISC.

 ...

Example 2
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 PUB-ID PIC X(4).
 01 NAME PIC X(25).
 01 CITY PIC X(25).
 01 STATE PIC X(2).
 01 RET-STATUS PIC S9(9).
 EXEC SQL END DECLARE SECTION END-EXEC.

 ...

 EXEC SQL CREATE PROC get_publishers(@pubid char(4))
 as
 select pub_name, city, state from
 publishers where pub_id = @pubid
 END-EXEC.

 DISPLAY " DETAIL RECORD FOR PUBLISHER ? ".
 ACCEPT PUB-ID.

 EXEC SQL EXEC :RET-STATUS = get_publishers :PUB-ID
138 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages
 INTO :NAME, :CITY, :STATE END-EXEC.

 IF RET-STATUS = 0
 DISPLAY " PUBLISHER NAME : ", NAME
 DISPLAY " CITY : ", CITY
 DISPLAY " STATE : ", STATE

Usage • Only one select statement can return rows to the client application.

• If the stored procedure contains select statements that can return row data,
you must use one of two methods to store the data. You can either use the
into clause of the exec statement or declare a cursor for the procedure. If
you use the into clause, the stored procedure must not return more than one
row of data, unless the host variables that you specify are arrays.

• The value param_value can be a host variable or literal value. If you use
the output keyword, param_value must be a host variable.

• You can specify the output keyword for parameter_name only if that
keyword was also used for the corresponding parameter of the create
procedure statement that created procedure_name.

• The Embedded SQL exec statement works much like the Transact-SQL
execute statement.

See also declare cursor (stored procedure), select

exec sql
Description Marks the beginning of a SQL statement embedded in a host language

program.

Syntax exec sql [at connection_name] sql_statement end-exec

Parameters at
Causes the SQL statement sql_statementto execute at the SQL Server
connection connection_name.

connection_name
The connection name that identifies the SQL Server connection where
sql_statement is to execute. The connection_name must be defined as a
previous connect statement.

sql_statement
A Transact-SQL statement or other Embedded SQL statement.
Embedded SQL/COBOL Programmer’s Guide 139

exec sql
Examples

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 SITE1 PIC X(25).
 01 SALES1 PIC S9(9) COMP.
 EXEC SQL END DECLARE SECTION END-EXEC.

 EXEC SQL CONNECT "user" identified by "password"
 AT server1 USING "server1" END-EXEC.
 EXEC SQL CONNECT "user" identified by "password"
 AT server2 USING "server2" END-EXEC.

 EXEC SQL AT server1 USE pubs2 END-EXEC.
 EXEC SQL AT server2 USE pubmast END-EXEC.

 EXEC SQL AT server1 SELECT count(*) FROM sales
 INTO :sales1 END-EXEC.

 MOVE "server1" TO SITE1.

 EXEC SQL SET CONNECTION server2 END-EXEC.
 EXEC SQL INSERT numsales VALUES (:SITE1, :SALES1) END-EXEC.
 EXEC SQL COMMIT WORK END-EXEC.

 ...

Usage • SQL statements embedded in a host language must begin with “exec sql”.
The keywords exec sql can appear anywhere that a host language
statement can begin.

• The statement sql_statement can occupy one or more program lines;
however, it must conform to host language rules for line breaks and
continuation lines.

• The at clause affects only the statement sql_statement. The clause does not
affect subsequent SQL statements, and does not reset the current
connection.

• The at clause is not valid when sql_statement is one of the following SQL
statements:

Table 9-2: Statements that cannot use the at clause of exec sql

allocate descriptor begin declare section connect

deallocate descriptor declare cursor
(dynamic)

end declare section
140 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages
• connection_name must be defined in a previous connect statement.

• Each Embedded SQL statement must end with a terminator. In COBOL,
the terminator is the keyword end-exec.

See also begin declare section, connect, disconnect, set connection

execute
Description Executes a dynamic SQL statement from a prepared statement.

See execute immediate on page 143.

Syntax exec sql [at connection_name] execute statement_name
 [into {host_var_list |
 descriptor descriptor_name |
 sql descriptor descriptor_name}]
 [using {host_var_list |
 descriptor descriptor_name |
 sql descriptor descriptor_name}] end-exec

Note Do not confuse the Embedded SQL execute statement with the
Embedded SQL exec statement or the Transact-SQL execute statement.

Parameters statement_name
A unique identifier for the statement, defined in a previous prepare
statement.

descriptor_name
Specifies the area of memory, or the SQLDA structure, that describes the
statement’s dynamic parameter markers or select column list.

exit get diagnostics include file

include sqlca set connection set diagnostics

whenever
Embedded SQL/COBOL Programmer’s Guide 141

execute
into
An into clause is required when the statement executes a select statement,
which must be a single-row select. The target of the into clause can be a SQL
descriptor, a SQLDA structure, or a list of one or more Embedded SQL host
variables.

Each host variable in the host_var_list must first be defined in a declare
section. An indicator variable can be associated with a host variable to show
when a null data value is retrieved.

descriptor
Identifies descriptor_name as a SQLDA structure.

sql descriptor
Identifies descriptor_name as a SQL descriptor.

using
The host variables that are substituted for dynamic parameter markers in
host_var_list. The host variables, which you must define in a declare
section, are substituted in the order listed. Use this clause only when
statement_name contains dynamic parameter markers. The dynamic
descriptor can also contain the values for the dynamic parameter markers.

Examples

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 DEMO-BUF PIC X(100).
 01 TITLE-ID PIC X(6).
 01 ORDER-NO PIC X(20).
 01 QTY PIC S9(9).
 EXEC SQL END DECLARE SECTION END-EXEC.

 ...

 MOVE "INSERT salesdetail(ord_num, title_id, qty) VALUES(:?, :?, :?)"
 - TO DEMO-BUF.
 EXEC SQL PREPARE ins_stmt FROM :DEMO-BUF END-EXEC.

 DISPLAY "RECORDING BOOK SALES".
 DISPLAY "ORDER # ? ".
 ACCEPT ORDER-NO.
 DISPLAY "TITLE ID? ".
 ACCEPT TITLE-ID.
 DISPLAY "QTY SOLD? ".
 ACCEPT QTY.

 EXEC SQL EXECUTE ins_stmt USING :ORDER-NO, :TITLE-ID, :QTY END-EXEC.
142 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages

 ...

Usage • execute is the second step in method 2 of dynamic SQL. The first step is
the prepare statement.

• prepare and execute are valid with any SQL statement except a multirow
select statement. For multirow select statements, use either dynamic
cursor.

• The statement in statement_name can contain dynamic parameter markers
(“?”). They mark the positions where host variable values are to be
substituted before the statement executes.

• The execute keyword distinguishes this statement from exec. See the exec
on page 137 reference page for information on exec.

See also declare section, get descriptor, prepare, set descriptor

execute immediate
Description Executes a dynamic SQL statement stored in a character-string host variable or

quoted string.

Syntax exec sql [at connection_name] execute immediate
 {:host_variable | “string”} end-exec

Parameters host_variable
A character-string host variable defined in a declare section. Before calling
execute immediate, the host variable should contain a complete and
syntactically correct Transact-SQL statement.

string
A quoted literal Transact-SQL statement string that can be used in place of
host_variable.

Examples EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 HOST-VAR PIC X(100).
 EXEC SQL END DECLARE SECTION END-EXEC.

 ...

 DISPLAY "ENTER A NON-SELECT SQL STATEMENT: ".
 ACCEPT HOST-VAR.

 EXEC SQL EXECUTE IMMEDIATE :HOST-VAR END-EXEC.
Embedded SQL/COBOL Programmer’s Guide 143

exit

 ...

Usage • Using the execute immediate statement is dynamic SQL method 1. See
Chapter 7, “Using Dynamic SQL” for information about the four
dynamic SQL methods.

• Except for messages, the statement in host_variable cannot return results
to the your program. Thus, the statement cannot be, for example, a select
statement.

• The Embedded SQL precompiler does not check the syntax of the
statement stored in host_variable before sending it to Adaptive Server. If
the statement’s syntax is incorrect, Adaptive Server returns an error code
and message to your program.

• Use prepare and execute (dynamic SQL method 2) to substitute values
from host variables into a dynamic SQL statement.

• Use prepare, open, and fetch (dynamic SQL method 3) to execute select
statements with dynamic SQL statements that return results.

See also execute, prepare

exit
Description Closes Client-Library and deallocates all Embedded SQL resources allocated

to your program.

Syntax exec sql exit end-exec

Examples

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 HOST-VAR PIC X(100).
 EXEC SQL END DECLARE SECTION END-EXEC.

 ...

 EXEC SQL SELECT getdate() INTO :HOST-VAR END-EXEC.

 DISPLAY "THE CURRENT DATE AND TIME IS: ", HOST-VAR.

 * Note that the exit statement must be the last embedded SQL statement
144 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages
 * in the program.

 EXEC SQL EXIT END-EXEC.

Usage • The exit statement closes all connections that your program opened. Also,
exit deallocates all Embedded SQL resources and Client-Library resources
allocated to your program.

• Although the exit statement is valid on all platforms, it is required only on
some. For more information, see the Open Client/Server Programmer’s
Supplement.

• You cannot use Client-Library functions after using the exit statement,
unless you initialize Client-Library again. See the Open Client Client-
Library/C Programmer’s Guide for information about initializing Client-
Library.

• The exit statement is a Sybase extension; it is not defined in the SQL
standard.

See also disconnect

fetch
Description Copies data values from the current cursor row into host variables or a dynamic

descriptor.

Syntax exec sql [at connection_name] fetch [rebind | norebind] cursor_name
into {:host_variable [[indicator]:indicator_variable]
 [,:host_variable
 [[indicator]:indicator_variable]]… |
 descriptor descriptor_name |
 sql descriptor descriptor_name} end-exec

Parameters rebind | norebind
Specifies whether host variables require rebinding for this fetch statement.
The rebind clause overrides precompiler options that control rebinding.

cursor_name
The name of the cursor. The name is defined in a preceding declare cursor
statement.

host_variable
A host language variable defined in a declare section.
Embedded SQL/COBOL Programmer’s Guide 145

fetch
indicator_variable
A 2-byte host variable declared in a previous declare section. If the value for
the associated variable is null, fetch sets the indicator variable to -1. If
truncation occurs, fetch sets the indicator variable to the actual length of the
result column. Otherwise, it sets the indicator variable to 0.

descriptor
Identifies descriptor_name as a SQLDA structure.

sql descriptor
Identifies descriptor_name as a SQL descriptor.

descriptor_name
The name of the dynamic descriptor that is to hold a result set.

Examples

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 TITLE-ID PIC X(6).
 01 BOOK-NAME PIC X(80).
 01 BOOK-TYPE PIC X(12).
 01 I-TITLE PIC S9(9).
 01 I-TYPE PIC S9(9).
 EXEC SQL END DECLARE SECTION END-EXEC.

 ...

 EXEC SQL DECLARE title_list CURSOR FOR
 SELECT type, title_id, title FROM titles
 ORDER BY type END-EXEC.

 EXEC SQL OPEN title_list END-EXEC.
 PERFORM FETCH-LOOP UNTIL SQLCODE = 100.
 EXEC SQL CLOSE title_list END-EXEC.

 ...

 FETCH-LOOP.
 EXEC SQL FETCH title_list INTO
 :BOOK-TYPE :I-TYPE,
 :TITLE-ID,
 :BOOK-NAME :I-TITLE END-EXEC
 * Check the indicator value - if not null display the value, else
 * display UNDECIDED.
 IF I-TYPE <> -1
 DISPLAY "TYPE : ", BOOK-TYPE
 ELSE
 DISPLAY "TYPE : UNDECIDED"
146 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages
 END-IF

 DISPLAY "TITLE ID : ", TITLE-ID

 IF I-TITLE <> -1
 DISPLAY "TITLE : ", BOOK-NAME
 ELSE
 DISPLAY "TITLE : UNDECIDED"
 END-IF.
 END-FETCH-LOOP.

Usage • The fetch statement can be used both with static cursors and with cursors
in dynamic SQL.

• The open statement must execute before the fetch statement executes.

• The first fetch on an open cursor returns the first row or group of rows from
the cursor’s result table. Each subsequent fetch returns the next row or
group of rows.

• You can fetch multiple rows into an array.

• The “current row” is the row most recently fetched. To update or delete it,
use the where current of cursor_name clause with the update or delete
statement. These statements are not valid until after a row has been
fetched.

• After all rows have been fetched from the cursor, calling fetch sets
SQLCODE to 100. If the select statement furnishes no results on
execution, SQLCODE is set to 100 on the first fetch.

• There must be one, and only one, host_variable for each column of the
result set.

• When neither the rebind nor the norebind option is specified, the binding
behavior is determined by the precompiler option -b. See the Open
Client/Server Programmer’s Supplement for details on precompiler
options.

• An indicator_variable must be provided for a host_variable that can
receive a null value. A runtime error occurs when a null value is fetched
for a host variable that has no indicator variable.

• When possible, Client-Library converts the datatype of a result column to
the datatype of the corresponding host variable. If Client-Library cannot
convert a datatype, it issues an error message. If conversion is not possible,
an error occurs.
Embedded SQL/COBOL Programmer’s Guide 147

get descriptor
See also allocate descriptor, close, declare, delete (positioned cursor), open, prepare,
update

get descriptor
Description Retrieves attribute information about dynamic parameter markers and select

column list attributes and data from a SQL descriptor.

For a list of SQL descriptor datatype codes, see Table 9-5 on page 172.

Syntax exec sql get descriptor descriptor_name
 {:host_variable = count |
 value item_number :host_variable = item_name
[, :host_variable = item_name]...} end-exec

Parameters descriptor_name
The name of the SQL descriptor that contains information about the
dynamic parameter markers or return columns in a prepared statement.

host_variable
A variable defined in a declare section.

count
The number of dynamic parameters retrieved.

item_number
A number specifying the nth dynamic parameter marker or select column,
for which get descriptor is to retrieve information.

item_name
The name of an attribute to be retrieved. See Table 9-3 for details.

Table 9-3: Valid item_name values

Value Description

data Value for the dynamic parameter marker or target
associated with the specified SQL descriptor. If
indicator is negative, this field is undefined.

indicator Value for the indicator parameter associated with
the dynamic parameter marker or target.

length The length, in characters, of the dynamic
parameter marker of target for the specified SQL
descriptor.
148 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages
Examples

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 QUERY PIC X(100).
 01 CHARBUF PIC X(100).
 01 NUMCOLS PIC S9(9) COMP.
 01 COLNUM PIC S9(9) COMP.
 01 COLTYPE PIC S9(9) COMP.
 01 INTBUF PIC S9(9).
 EXEC SQL END DECLARE SECTION END-EXEC.

 ...

 DISPLAY "ENTER A SELECT STATEMENT :"
 ACCEPT QUERY.
 EXEC SQL ALLOCATE DESCRIPTOR big_desc WITH MAX 256 END-EXEC.
 EXEC SQL PREPARE dynstmt FROM :QUERY END-EXEC.
 EXEC SQL EXECUTE dynstmt INTO SQL DESCRIPTOR big_desc END-EXEC.
 EXEC SQL GET DESCRIPTOR big_desc :NUMCOLS = COUNT END-EXEC.

 MOVE 1 TO COLNUM.
 PERFORM GET-DESC-LOOP UNTIL COLNUM > NUMCOLS.
 EXEC SQL DEALLOCATE PREPARE dynstmt END-EXEC.
 EXEC SQL DEALLOCATE DESCRIPTOR big_desc END-EXEC.

 ...

 GET-DESC-LOOP.

name The name of the specified SQL descriptor
containing information about the dynamic
parameter markers.

nullable Equals 0 if the dynamic parameter marker can
accept a null value; otherwise, equals 1.

precision An integer specifying the total number of digits of
precision for the CS_NUMERIC variable.

returned_length The length of character types of the values from
the select column list.

scale An integer specifying the total number of digits
after the decimal point for the CS_NUMERIC
variable.

type The datatype of this column (item number) in the
row. For values, see Table 9-5 on page 172.

Value Description
Embedded SQL/COBOL Programmer’s Guide 149

get diagnostics
 EXEC SQL GET DESCRIPTOR big_desc
 VALUE :COLNUM
 :COLTYPE = TYPE END-EXEC
 * Check the type data returned and store in appropriate host variables.
 IF COLTYPE = 4
 DISPLAY "INTEGER DATA! "
 EXEC SQL GET DESCRIPTOR big_desc
 VALUE :COLNUM :INTBUF = DATA END-EXEC
 ELSE
 IF COLTYPE = 1
 DISPLAY "CHARACTER DATA! "
 EXEC SQL GET DESCRIPTOR big_desc
 VALUE :COLNUM :CHARBUF = DATA END-EXEC

 * Handle other data types accordingly or store them all as characters.
 ...

 ADD 1 TO COLUMN.
 END-GET-DESC-LOOP.

Usage • The get descriptor statement returns information about the number or
attributes of dynamic parameters specified or the select list columns in a
prepared statement.

• This statement should be executed after a describe input, describe output,
execute, or fetch (dynamic) statement has been issued.

• It is not possible to retrieve data, indicator, or returned_length until the
data associated with the descriptor is retrieved from the server by an
execute statement or fetch statement.

See also describe input, describe output, fetch, set descriptor

get diagnostics
Description Retrieves error, warning, and informational messages from

Client-Library.

Syntax get diagnostics
 {:hv = statement_info [, :hv = statement_info]...|
 exception :condition_number
 :hv = condition_info [, :hv = condition_info]...}
 end-exec
150 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages
Parameters statement_info
The keyword number is currently the only supported statement_info type. It
returns the total number of exceptions in the diagnostics queue.

condition_info
Any one of the keywords sqlca_info, sqlcode_number, and returned_sqlstate.

Examples

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 NUM-MSGS PIC S9(9) COMP.
 01 CONDCNT PIC S9(9) COMP.
 EXEC SQL END DECLARE SECTION END-EXEC.

 ...
 EXEC SQL GET DIAGNOSTICS :NUM-MSGS = NUMBER END-EXEC.
 MOVE 1 TO CONDCNT.
 PERFORM GET-DIAG-PARA UNTIL CONDCNT > NUM-MSGS.
 ...

 GET-DIAG-PARA.
 EXEC SQL GET DIAGNOSTICS EXCEPTION
 :CONDCNT :SQLCA = SQLCA_INFO END-EXEC
 DISPLAY "DIAG. SQLCODE = ",SQLCODE
 DISPLAY "DIAG. MESSAGE = ",SQLERRMC

 ADD 1 TO CONDCNT.
 END-GET-DIAG-PARA.

Usage • Many Embedded SQL statements are capable of causing multiple
warnings or errors. Typically, only the first error is reported using
SQLCODE, SQLCA, or SQLSTATE. Use get diagnostics to process all the
errors.

• You can use get diagnostics, which is the target of the call, perform, or go to
clause of a whenever statement, in the code.

• You can use get diagnostics after a statement for which you want to retrieve
informational messages.

See also whenever

include “filename”
Description Includes an external file in an Embedded SQL source file.
Embedded SQL/COBOL Programmer’s Guide 151

include “filename”
Syntax exec sql include "filename" end-exec

Parameters “filename”
The name of the file to be included in the Embedded SQL source file
containing this statement.

Note The maximum supported length for the COPY statement is 70 characters,
including the file and pathname.

Examples

Example 1: using COPY
 COPY "generic".

 ...

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 SRV-NAME PIC X(80).
 01 UID PIC X(32).
 01 PASS PIC X(32).
 EXEC SQL END DECLARE SECTION END-EXEC.

 ...

 MOVE USER-NAME TO UID.
 MOVE PASSWORD TO PASS.

 EXEC SQL CONNECT :UID IDENTIFIED BY :PASS END-EXEC.

 EXEC SQL SELECT @@servername INTO :SRV-NAME END-EXEC.

 DISPLAY "CONNECTED TO SERVER ",SRV-NAME.

Copy-file code:

 01 USER-NAME PIC X(33) VALUE IS "sa".
 01 PASSWORD PIC X(33) VALUE IS "syb123".

Example 2: using INCLUDE
 EXEC SQL INCLUDE "./generic" END-EXEC.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 SRV-NAME PIC X(80).
 EXEC SQL END DECLARE SECTION END-EXEC.
152 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages

 EXEC SQL CONNECT :USER-NAME IDENTIFIED BY :PASSWORD END-EXEC.

 EXEC SQL SELECT @@servername INTO :SRV-NAME END-EXEC.

 DISPLAY "CONNECTED TO SERVER ",SRV-NAME.

Copy-file code:

 01 USER-NAME PIC X(33) VALUE IS "sa".
 01 PASSWORD PIC X(33) VALUE IS "syb123".

Usage • The Embedded SQL precompiler processes the included file as though it
were part of the Embedded SQL source file, recognizing all declare
sections and SQL statements. The Embedded SQL precompiler writes the
resulting host language source code into the generated file.

• Use the include path precompiler command line option to specify the
directories to be searched for any included files. Refer to the Open
Client/Server Programmer’s Supplement for more information on
precompiler command line options.

• Included files can be nested up to a maximum depth of 32 files.

• The include "filename" statement can be used anywhere.

See also declare section

include sqlca
Description Defines the SQL Communications Area (SQLCA) in an Embedded SQL

program.

Syntax exec sql include sqlca end-exec

Examples

 EXEC SQL INCLUDE SQLCA END-EXEC.

 ...

 EXEC SQL UPDATE test SET col1 = col1 + 100 END-EXEC.
 IF SQLCODE = 0
 DISPLAY "UPDATED ",SQLERRD(3), " ROWS."
 ELSE
 IF SQLCODE = 100
Embedded SQL/COBOL Programmer’s Guide 153

include sqlda
 DISPLAY "NO ROWS WERE AFFECTED."
 ELSE
 DISPLAY "AN ERROR OCCURED - ",SQLERRMC.
 END-IF
 END-IF.
 EXEC SQL COMMIT WORK END-EXEC.

Usage • The include sqlca statement can be used anywhere that host language
declarations are allowed.

See also begin declare section

include sqlda
Description Defines the SQLDA structure in an Embedded SQL program.

Syntax exec sql include sqlda;

Usage • The include sqlda statement can be used anywhere that host language
declarations are allowed.

initialize_application
Description Generates a call to set the application name on the global CS_CONTEXT

handle. If precompiled with the -x option, it will also set the cs_config(CS_SET,
CS_EXTERNAL_CONFIG, CS_TRUE) property.

Syntax exec sql initialize_application
 [application_name “=” application_name] end-exec

Examples

 EXEC SQL INCLUDE SQLCA END-EXEC.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 SPID PIC S9(9) COMP.
 01 PROG-NAME PIC X(33).
 01 UID PIC X(33).
 01 PASS PIC X(33).
 EXEC SQL END DECLARE SECTION END-EXEC.
154 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages

 PROCEDURE DIVISION.
 PO.

 * The INITIALIZE_APPLICATION MUST be the FIRST embedded SQL statement
 * in the program.

 EXEC SQL INITIALIZE_APPLICATION APPLICATION_NAME
 = "TEST" END-EXEC.
 * The body of the main procedure division goes here including all ESQL
 * statements.
 ...EXEC SQL CONNECT :UID IDENTIFIED BY :PASS END-EXEC.
 EXEC SQL SELECT @@spid INTO :SPID END-EXEC.
 EXEC SQL SELECT program_name INTO :PROG-NAME
 FROM master..sysprocesses
 WHERE spid = :SPID END-EXEC.
 DISPLAY "THIS APPLICATION’S NAME IN SYSPROCESSES IS ", PROG-NAME.

 ...EXEC SQL EXIT END-EXEC.

Usage • application_name is either a string literal or a character variable
containing the name of the application.

• If initialize_application is the first Embedded SQL statement executed by an
application, -x causes ct_init to use external configuration options to
initialize the Client-Library part of the CS_CONTEXT structure.

• If initialize_application is not the first Embedded SQL statement, ct_init
does not pick up external configuration options.

• Regardless of whether or not initialize_application is the first Embedded
SQL statement, -x causes exec sql connect statements to use external
configuration data. If -e is also specified, Sybase uses the server name as
a key to the configuration data. If -e is not specified, then the application
name (or DEFAULT) is used as the key to the configuration data.

• If you specify -x and the application name, the following applies:

• ct_init uses the application name to determine which section of the
external configuration file to use for initialization.

• The application name is passed to Adaptive Server as part of the
connect statement. The application name is entered in the
sysprocesses.program_name table.
Embedded SQL/COBOL Programmer’s Guide 155

open (dynamic cursor)
• If -e is specified without -x, then ct_init uses external configuration data
when initializing, but every connection will use the server name as a key
to the external configuration data. See the Open Client/Server
Programmer’s Supplement for information on command-line options.

See also exit

open (dynamic cursor)
Description Opens a previously declared dynamic cursor.

Syntax exec sql [at connection_name] open cursor_name
[row_count = size] [using {host_var_list |
 descriptor descriptor_name |
 sql descriptor descriptor_name}] end-exec

Parameters cursor_name
Names a cursor that has been declared using the declare cursor statement.

size
The number of rows moved in a network roundtrip, not the number fetched
into the host variable. The size argument can be either a literal or a declared
host variable.

host_var_list
Names the host variables that contain the values for dynamic parameter
markers.

descriptor
Identifies descriptor_name as a SQLDA structure.

sql descriptor
Identifies descriptor_name as a SQL descriptor.

descriptor_name
Names the dynamic descriptor that contains information about the dynamic
parameter markers in a prepared statement.

Examples

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 DYNABUF PIC X(200).
 01 TITLE-ID PIC X(6).
 01 LNAME PIC X(15).
 01 FNAME PIC X(15).
 01 PHONE PIC X(15).
156 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages
 EXEC SQL END DECLARE SECTION END-EXEC.

 ...

 MOVE "SELECT a.au_lname, a.au_fname, a.phone
 FROM authors a, titleauthor t
 WHERE a.au_id = t.au_id
 AND t.title_id = ? " TO DYNABUF.

 EXEC SQL PREPARE dynastmt FROM :DYNABUF END-EXEC.
 EXEC SQL DECLARE who_wrote CURSOR FOR dynastmt END-EXEC.

 DISPLAY "LIST AUTHORS FOR WHAT TITLE ? "
 ACCEPT TITLE-ID.

 EXEC SQL OPEN who_wrote USING :TITLE-ID END-EXEC.
 PERFORM FETCH-LOOP UNTIL SQLCODE = 100.
 EXEC SQL CLOSE who_wrote END-EXEC.
 EXEC SQL DEALLOCATE CURSOR who_wrote END-EXEC.
 EXEC SQL DEALLOCATE dynastmt END-EXEC.

 ...

 FETCH-LOOP.
 EXEC SQL FETCH who_wrote INTO
 :LNAME, :FNAME, :PHONE END-EXEC
 DISPLAY "LAST NAME : ", LNAME
 DISPLAY "FIRST NAME : ", FNAME
 DISPLAY "PHONE : ", PHONE.
 END-FETCH-LOOP.

Usage • open executes the statement specified in the corresponding declare cursor
statement. You can then use the fetch statement to retrieve the results of the
prepared statement.

• You can have any number of open cursors.

• The using clause substitutes host-variable or dynamic-descriptor contents
for the dynamic parameter markers (“?”) in the select statement.

See also close, declare, fetch, prepare
Embedded SQL/COBOL Programmer’s Guide 157

open (static cursor)
open (static cursor)
Description Opens a previously declared static cursor. This statement can be used to open

any static cursor, including one for a stored procedure.

Syntax exec sql [at connection_name] open cursor_name
 [row_count = size] end-exec

Parameters cursor_name
The name of the cursor to be opened.

row_count
The number of rows moved in a network roundtrip, not the number fetched
into the host variable.

size
The number of rows that are moved at the same time from Adaptive Server
to the client. The client buffers the rows until they are fetched by the
application. This parameter allows you to tune network efficiency.

Examples

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 TITLE-ID PIC X(6).
 01 BOOK-NAME PIC X(25).
 01 BOOK-TYPE PIC X(15).
 EXEC SQL END DECLARE SECTION END-EXEC.

 01 ANSWER PIC X(1).

 ...

 DISPLAY "TYPE OF BOOKS TO RETRIEVE ? ".
 ACCEPT BOOK-TYPE.
 EXEC SQL DECLARE titlelist CURSOR FOR
 SELECT title_id, substring(title,1,25) FROM
 titles WHERE type = :BOOK-TYPE END-EXEC.

 EXEC SQL OPEN titlelist END-EXEC.
 PERFORM FETCH-LOOP UNTIL SQLCODE = 100.
 EXEC SQL CLOSE titlelist END-EXEC.
 EXEC SQL DEALLOCATE CURSOR titlelist END-EXEC.
 EXEC SQL COMMIT WORK END-EXEC.

 FETCH-LOOP.
 EXEC SQL FETCH titlelist INTO :TITLE-ID, :BOOK-NAME END-EXEC.
 DISPLAY "TITLE ID : ", TITLE-ID
158 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages
 DISPLAY "TITLE : ", BOOK-NAME
 DISPLAY "UPDATE/DELETE THIS RECORD ? "
 ACCEPT ANSWER

 IF ANSWER = "U"
 DISPLAY "ENTER NEW TITLE :"
 ACCEPT BOOK-NAME
 EXEC SQL UPDATE titles SET title = :TITLE
 WHERE CURRENT OF titlelist END-EXEC
 ELSE
 IF ANSWER = "D"
 EXEC SQL DELETE titles WHERE CURRENT OF
 titlelist END-EXEC
 END-IF
 END-IF.
 END-FETCH-LOOP.

Usage • open executes the select statement given by the declare cursor statement
and prepares results for the fetch statement.

• You can have an unlimited number of open cursors.

• A static cursor must be opened only in the file where the cursor is declared.
The cursor can be closed in any file.

• The values of host variables embedded in the declare cursor statement are
taken at open time.

• When specifying cursor_name, you can use the name of a deallocated
static cursor. If you do, the precompiler declares and opens a new cursor
having the same name as that of the deallocated cursor. Thus, the
precompiler does not reopen the deallocated cursor but instead creates a
new one. The results sets for the two cursors can differ.

prepare
Description Declares a name for a dynamic SQL statement buffer.

Syntax exec sql [at connection_name] prepare statement_name from {:host_variable
| "string"} end-exec
Embedded SQL/COBOL Programmer’s Guide 159

prepare
Parameters statement_name
An identifier used to reference the statement.

The statement_name must uniquely identify the statement buffer and must
conform to the SQL identifier rules for naming variables. It can also be a
host_variable string containing a valid SQL identifier. statement_name
must not be longer than 30 characters.

host_variable
A character-string host variable that contains an executable SQL statement.
Place dynamic parameter markers (“?”) anywhere in the select statement
where a host variable value will be substituted.

string
A literal string that can be used in place of host_variable.

Examples

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 DEMO-BUFFER PIC X(120).
 01 STATE PIC X(3).
 EXEC SQL END DECLARE SECTION END-EXEC.

 ...

 * The ’select into table’ statement returns no results
 * to the program, so it does not need a cursor.

 MOVE "select * into #work from authors where state = ?" TO
 - DEMO-BUFFER.

 DISPLAY "STATE ? ".
 ACCEPT STATE.

 EXEC SQL PREPARE dynstmt FROM :DEMO-BUFFER END-EXEC.
 EXEC SQL EXECUTE dynstmt USING :STATE END-EXEC.

 EXEC SQL DEALLOCATE PREPARE dynstmt END-EXEC.

Usage • In the current implementation, Sybase creates a temporary stored
procedure for a dynamic SQL statement stored in a character string literal
or host variable.

• prepare sends the contents of host_variable to the Adaptive Server to
convert into a temporary stored procedure. This temporary stored
procedure remains in tempdb on Adaptive Server until the statement is
deallocated or the connection is disconnected.
160 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages
• The scope of statement_name is global to your program but local to the
connection connection_name. The statement persists until the program
either deallocates it or closes the connection.

• prepare is valid with Dynamic SQL methods 2, 3, and 4.

• With method 2, (prepare and execute), an execute statement substitutes
values from host variables, if any, into the prepared statement and sends
the completed statement to Adaptive Server. If there are no host variables
to substitute and no results, you can use execute immediate, instead.

• With method 3, prepare and fetch, a declare cursor statement associates the
saved select statement with a cursor. An open statement substitutes values
from host variables, if any, into the select statement and sends the result to
Adaptive Server for execution.

• With methods 2, 3, and 4, prepare and fetch with parameter descriptors, the
dynamic parameter descriptors, represented by question marks (“?”),
indicate where host variables will be substituted.

• A prepared statement must be executed on the same connection on which
it was prepared. If the prepared statement is used to declare a cursor, all
operations on that cursor use the same connection as the prepared
statement.

• The statement in host_variable can contain dynamic parameter markers
that indicate where to substitute values of host variables into the statement.

See also declare cursor, execute, execute immediate, deallocate prepare

rollback
Description Rolls a transaction back to a savepoint inside the transaction or to the beginning

of the transaction.

Syntax exec sql [at connection_name]
 rollback [transaction | tran | work]
 [transaction_name | savepoint_name] end-exec

Parameters transaction | trans | work
The keywords transaction, trans, and work are interchangeable in the rollback
statement, but only work is ANSI-compliant.

transaction_name
The name of the transaction being rolled back.
Embedded SQL/COBOL Programmer’s Guide 161

select
savepoint_name
The name assigned to the savepoint in a save transaction statement. If you
omit savepoint_name, SQL Server rolls back the entire transaction.

Examples

 ...

 EXEC SQL CONNECT "user" IDENTIFIED BY "password"
 AT connect1 USING "srvname" END-EXEC.

 ...

 EXEC SQL AT connect1 UPDATE test SET col1 = ’x’ END-EXEC.
 IF SQLCODE = 0
 DISPLAY "ROWS UPDATED = ",SQLERRD(3)
 ELSE
 DISPLAY "AN ERROR OCCURED -",SQLERRMC
 ESQL SQL AT connect1 ROLLBACK TRANSACTION END-EXEC
 END-IF.

Usage • This reference page mainly describes aspects of the Transact-SQL rollback
statement that differ when used with Embedded SQL. See the Adaptive
Server Enterprise Reference Manual for more information about the
rollback statement, savepoints, and Transact-SQL transaction
management.

• Transaction names and savepoint names must conform to the Transact-
SQL rules for identifiers.

• Transaction names and savepoints are Transact-SQL extensions; they are
not ANSI-compliant. Do not use a transaction name or savepoint name
with the ANSI-compliant keyword work.

See also begin transaction, commit

select
Description Retrieves rows from database objects.

Syntax exec sql [at connect_name]
 select select_list
 into destination
from table_name… end-exec
162 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages
Parameters select_list
Same as select_list in the Transact-SQL select statement, except that
select_list cannot perform variable assignments in Embedded SQL.

destination
A table or a series of one or more Embedded SQL host variables. Each host
variable must first be defined in a previous declare section. Indicator
variables can be associated with the host variables.

Examples

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 LNAME PIC X(25).
 01 FNAME PIC X(25).
 01 PHONE PIC X(15).
 01 AU-ID PIC X(12).
 EXEC SQL END DECLARE SECTION END-EXEC.

 ...

 DISPLAY "AUTHOR ID ? ".
 ACCEPT AU-ID.

 EXEC SQL SELECT au_lname, au_fname, phone
 INTO :LNAME, :FNAME, :PHONE
 FROM authors
 WHERE au_id = :AU-ID END-EXEC.

 IF SQLCODE = 100
 DISPLAY "COULD NOT LOCATE AUTHOR ",AU-ID
 ELSE
 DISPLAY "DETAIL RECORD FOR AUTHOR: ", AU-ID
 DISPLAY "NAME :",LNAME, " ", FNAME
 DISPLAY "PHONE :",PHONE
 END-IF.

Usage • This reference page mainly describes aspects of the Transact-SQL select
statement that differ when the statement is used in Embedded SQL. See
the Adaptive Server Enterprise Reference Manual for more information
about the select statement.

• The compute clause of the Transact-SQL select statement cannot be used
in Embedded SQL programs.

• Host variables in a select statement are input variables only, except in the
statement’s into clause. Host variables in the into clause are output
variables.
Embedded SQL/COBOL Programmer’s Guide 163

set connection
• Previously declared input host variables can be used anywhere in a select
statement that a literal value or Transact-SQL variable is allowed.
Indicator variables can be associated with input host variables to specify
null values.

• If a select statement returns more than one row, each host variable in the
statement’s into clause must be an array with enough space for all the rows.
Otherwise, you must use a cursor to bring the rows back one at a time.

See also declare cursor

set connection
Description Causes the specified existing connection to become the current connection.

Syntax set connection {connection_name | DEFAULT} end-exec

Parameters connection_name
The name of an existing connection that you want to become the current
connection.

default
Specifies that the unnamed default connection is to become the current
connection.

Examples

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 MYID PIC X(33).
 EXEC SQL END DECLARE SECTION END-EXEC.

 ...

 EXEC SQL CONNECT "user1" AT connect1 USING "SERVER1" END-EXEC.
 EXEC SQL CONNECT "user2" AT connect2 USING "SERVER2" END-EXEC.

 * The next statement executes on connect2, because that was the
 * last connection made.

 EXEC SQL SELECT user_name() INTO :MYID END-EXEC.

 DISPLAY "The user connected to SERVER2 is: ",MYID.

 * Explicitly set the connection to now use to connect1.

164 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages
 EXEC SQL SET CONNECTION connect1 END-EXEC.

 * The following statement will execute on connect1.

 EXEC SQL SELECT user_name() INTO :MYID END-EXEC.

 DISPLAY "The user connected to SERVER1 is: ",MYID.

Usage • The set connection statement specifies the current connection for all
subsequent SQL statements, except those preceded by the exec sql clause
at.

• A set connection statement remains in effect until you choose a different
current connection by using the set connection statement again.

See also at connection_name, connect

set descriptor
Description Inserts or updates data in a SQL descriptor.

For a list of possible SQL descriptor datatypes, see Table 9-5 on page 172.

Syntax exec sql set descriptor descriptor_name
 {count = host_variable} |
 {value item_number {item_name =
 :host_variable}[,...] end-exec

Parameters descriptor_name
The name of the SQL descriptor that contains information about the
dynamic parameter markers in a prepared statement.

count
The number of dynamic parameter specifications to be described.

host_variable
A host variable defined in a declare section.

item_number
Represents the nth occurrence of either a dynamic parameter marker or a
select column.

item_name
Represents the attribute information of either a dynamic parameter marker
or a select list column. Table 9-4 lists the values for item_name.
Embedded SQL/COBOL Programmer’s Guide 165

set descriptor
Table 9-4: Values for item_name

Examples

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 TITLE-ID PIC X(6).
 01 SALES1 PIC S9(9).
 01 SALES2 PIC S9(9).
 01 ROYALTY PIC S9(9) COMP.
 EXEC SQL END DECLARE SECTION END-EXEC.

 ...

 EXEC SQL ALLOCATE DESCRIPTOR roy_desc WITH MAX 3 END-EXEC.
 EXEC SQL PREPARE getroylty FROM "SELECT royalty FROM roysched
 WHERE title_id = ? and lorange <= ?AND hirange > ?"
 END-EXEC.

 MOVE "BU1032" TO TITLE-ID.
 MOVE 1000 TO SALES1.
 MOVE 10 TO SALES2.

 EXEC SQL SET DESCRIPTOR roy_desc VALUE 1 DATA = :TITLE-ID END-EXEC.
 EXEC SQL SET DESCRIPTOR roy_desc VALUE 2 DATA = :SALES1 END-EXEC.
 EXEC SQL SET DESCRIPTOR roy_desc VALUE 3 DATA = :SALES2 END-EXEC.

 EXEC SQL EXECUTE getroylty INTO :ROYALTY USING SQL
 DESCRIPTOR roy_desc END-EXEC.

 DISPLAY "ROYALTY = ", ROYALTY.

Value Description

data Value for the dynamic parameter marker or target
associated with the specified SQL descriptor. If
indicator is negative, this field is undefined.

length The length, in characters, of the dynamic
parameter marker of target for the specified SQL
descriptor.

precision An integer specifying the total number of digits of
precision for the CS_NUMERIC variable.

scale An integer specifying the total number of digits
after the decimal point for the CS_NUMERIC
variable.

type The datatype of this column (item number) in the
row. For values, see Table 9-5 on page 172.
166 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages
Usage • An Embedded SQL program passes attribute and value information to
Client-Library, which holds the data in the specified SQL descriptor until
the program issues it a request to execute a statement.

See also allocate descriptor, describe input, describe output, execute, fetch, get descriptor,
open(dynamic cursor)

update
Description Modifies data in rows of a table.

Syntax exec sql [at connection_name] update table_name
 set [table_name]
 column_name1 = {expression1
 | NULL | (select_statement)}
 [, column_name2 =
 {expression2 | NULL
 | (select_statement)}]…
 [from table_name
 [, table_name]…
 [where {search_conditions | current of cursor_name}]
 end-exec

Parameters table_name
The name of a table or view, specified in any format that is valid for the
update statement in Transact-SQL.

Examples

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 STORE-NAME PIC X(40).
 01 DISC-TYPE PIC X(40).
 01 LOWQTY PIC S9(9) COMP.
 01 HIGHQTY PIC S9(9) COMP.
 01 DISCOUNT PIC S9(9) COMP.
 EXEC SQL END DECLARE SECTION END-EXEC.

 ...

 EXEC SQL DECLARE upd_cursor CURSOR FOR
 SELECT s.stor_name, d.discounttype, d.lowqty,
 d.highqty , d.discount
 FROM stores s, discounts d
 WHERE s.stor_id = d.stor_id END-EXEC.

 EXEC SQL OPEN upd_cursor END-EXEC.
Embedded SQL/COBOL Programmer’s Guide 167

update
 PERFORM FETCH-LOOP UNTIL SQLCODE = 100.
 EXEC SQL CLOSE upd_cursor END-EXEC.
 EXEC SQL DEALLOCATE CURSOR upd_cursor END-EXEC.
 EXEC SQL COMMIT WORK END-EXEC.

 ...

 FETCH-LOOP.
 EXEC SQL FETCH upd_cursor INTO :STORE-NAME, :DISC-TYPE,:LOWQTY ,
:HIGHQTY,:DISCOUNT END-EXEC.
 IF SQLCODE = 100
 DISPLAY "NO MORE RECORDS TO FETCH. END OF PROGRAM RUN."
 ELSE
 DISPLAY "NEW DISCOUNT : "
 ACCEPT DISCOUNT
 EXEC SQL UPDATE discounts
 SET discount = :DISCOUNT
 WHERE CURRENT OF upd_cursor END-EXEC
 END-IF.
 END-FETCH-LOOP.

Usage • This reference page mainly describes aspects of the Transact-SQL update
statement that differ when the statement is used in Embedded SQL. See
the Adaptive Server Enterprise Reference Manual for more information
about the update statement.

• Host variables can appear anywhere in an expression or in any where
clause.

• You can use the where clause to update selected rows in a table. Omit the
where clause to update all rows in the table. Use where current of
cursor_name to update the current row of an open cursor.

• When where current of cursor_name is specified, the statement must be
executed on the connection specified in the open cursor statement. If the at
connection_name clause is used, it must match the open cursor statement.

See also close, delete cursor, fetch, open, prepare
168 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages
whenever
Description Specifies an action to occur whenever an executable SQL statement causes a

specified condition.

Syntax exec sql whenever {sqlerror | not found | sqlwarning}
 {continue | go to label | goto label |
 stop | call routine_name [args]} end-exec

Parameters sqlerror
Specifies an action to take when an error is detected, such as a syntax error
returned to the Embedded SQL program from SQL Server.

not found
Specifies an action to take when a fetch or select into statement retrieves no
data or when a searched update or delete statement affects no rows.

sqlwarning
Specifies an action to take when a warning is received; for example, when a
character string is truncated.

continue
Take no action when the condition occurs.

go to | goto
Transfer control to the program statement at the specified label.

label
A host language statement label, such as a C label.

stop
Terminate the Embedded SQL program when the condition occurs.

call
Transfer control to a callable routine in the program, such as a user-defined
function or subroutine.

routine_name
A host language routine that can be called. The routine must be able to be
called from the source file that contains the whenever statement. You may
need to declare the routine as external to compile the Embedded SQL
program.

args
One or more arguments to be passed to the callable routine, using the
parameter-passing conventions of the host language. The arguments can be
any list of host variables, literals, or expressions that the host language
allows. A space character should separate each argument from the next.
Embedded SQL/COBOL Programmer’s Guide 169

whenever
Examples

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 LNAME PIC X(15).
 01 FNAME PIC X(15).
 01 PHONE PIC X(15).
 EXEC SQL END DECLARE SECTION END-EXEC.

 EXEC SQL WHENEVER SQLERROR PERFORM ERR-PARA END-EXEC.
 EXEC SQL WHENEVER SQLWARNING PERFORM WARN-PARA END-EXEC.
 * If there are no more records to process from the fetch, stop the
 * program.
 EXEC SQL WHENEVER NOT FOUND STOP END-EXEC.

 ...

 EXEC SQL DECLARE au_list CURSOR FOR
 SELECT au_lname, au_fname, phone
 FROM authors
 ORDER BY au_lname END-EXEC.

 EXEC SQL OPEN au_list END-EXEC.

 PERFORM FETCH-LOOP UNTIL SQLCODE = 100 END-EXEC.
 EXEC SQL CLOSE au_list END-EXEC.

 ...

 FETCH-LOOP.
 EXEC SQL FETCH au_list INTO
 :LNAME, :FNAME, :PHONE END-EXEC
 DISPLAY "LAST NAME : ",LNAME
 DISPLAY "FIRST NAME : ",FNAME
 DISPLAY "PHONE : ",PHONE
 END-FETCH-LOOP.

 WARN-PARA.
 DISPLAY "Warning code is " SQLCODE.

 DISPLAY "Warning message is " SQLERRMC.

 ...
 WARN-PARA-END.
 EXIT.

170 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages

 ERR-PARA.
 *
 * print the error code, the error message and the line number of
 * the command that caused the error.
 *

 DISPLAY "Error code is " SQLCODE.

 DISPLAY "Error message is " SQLERRMC.

 EXIT.

Usage • The whenever statement causes the Embedded SQL precompiler to
generate code following each executable SQL statement. The generated
code includes the test for the condition and the host language statement or
statements that carry out the specified action.

• The Embedded SQL precompiler generates code for the SQL statements
that follow the whenever statement in the source file, including SQL
statements in subroutines that are defined in the same source file.

• Use whenever…continue to cancel a previous whenever statement. The
continue action causes the Embedded SQL precompiler to ignore the
condition. To prevent infinite loops, use whenever…continue in an error
handler before executing any Embedded SQL statements.

• When you use whenever…go to label, label must represent a valid location
to resume execution. In C, for example, label must be declared in any
routine that has executable SQL statements within the scope of the
whenever statement. C does not allow a goto statement to jump to a label
declared in another function.

• If you have a whenever statement in your program but you have not
declared SQLCA or SQLSTATE status variables, the Embedded SQL
precompiler assumes that you are using the SQLCODE variable. Be sure
that SQLCODE is declared. Otherwise, the generated code will not
compile.

SQL descriptor codes

The following table pertains to the SQL descriptor used for dynamic SQL
statements. Sybase’s use of dynamic SQL values conforms to the ANSI/ISO
185-92 SQL-92 standards. For more information, see the appropriate
ANSI/ISO documentation.
Embedded SQL/COBOL Programmer’s Guide 171

whenever
Table 9-5: SQL descriptor datatype codes

Table 9-6: SQL descriptor identifier values

ANSI SQL datatype Code

bit 14

character 1

character varying 12

date, time 9

decimal 3

double precision 8

float 6

integer 4

numeric 2

real 7

smallint 5

Sybase-Defined datatype Client-Library code

smalldatetime -9

money -10

smallmoney -11

text -3

image -4

tinyint -8

binary -5

varbinary -6

long binary -7

longchar -2

Value Description

type The datatype of this column (item number) in the
row. For values, see Table 9-5 on page 172.

length The length, in characters, of the dynamic
parameter marker of target for the specified SQL
descriptor.

returned_length The length of char types of the values from the
select column list.

precision An integer specifying the total number of digits of
precision for the CS_NUMERIC variable.
172 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages
scale An integer specifying the total number of digits
after the decimal point for the CS_NUMERIC
variable.

nullable Equals 0 if the dynamic parameter marker can
accept a null value; otherwise, equals 1.

indicator Value for the indicator parameter associated with
the dynamic parameter marker or target.

data Value for the dynamic parameter marker or target
associated with the specified SQL descriptor. If
indicator is negative, this field is undefined.

name The name of the specified SQL descriptor
containing information about the dynamic
parameter markers.

Value Description
Embedded SQL/COBOL Programmer’s Guide 173

whenever
174 Open Client

C H A P T E R 1 0 Open Client/Server Configuration
File

Open Client/Server applications can easily be configured using the Open
Client/Server configuration file. By default, the file is named ocs.cfg and
is located in the $SYBASE/config directory.

Purpose of the Open Client/Server configuration file
The Open Client/Server configuration file provides a single location
where all Open Client/Server application connections can be configured.
Using the configuration file simplifies the tasks of establishing
configuration standards and managing configuration changes.

Accessing the configuration functionality
This feature is available through two new command-line options and the
initialize_application statement:

Topic Page
Purpose of the Open Client/Server configuration file 175

Accessing the configuration functionality 175

Default settings 176

Syntax for the Open Client/Server configuration file 177

Sample programs 179
Embedded SQL/COBOL Programmer’s Guide 175

Default settings
• -x – this option allows for external configuration. The application needs to
initialize an application with a name. The Open Client/Server
configuration file will have a section with this application name. Under
this section, place all properties that need to be set for this application. The
-x option is useful only when used with initialize_application. If initializing
is not done, and the -x option is used, the default section of the
configuration file will be accessed.

• -e – this option allows us to configure by SERVER NAME. No call to
initialize_application is required. The server name will be used as a key to
look up in the configuration file for properties to be set the section defined
by the server name. This allows users to associate connection names with
specific connection properties.

Note If INITIALIZE_APPLICATION is not the first Embedded SQL statement to
be executed, external configuration properties will not be set. If it is the first
Embedded SQL statement to be executed, then the external configuration
options will be used for initialization.

Default settings
The following is the Open Client/Server configuration file with default
settings. You can customize the file as needed.

[DEFAULT]

;This is the default section loaded by applications that use the
 ;external configuration feature, but which do not specify their
 ;own application name. Initially this section is empty.Defaults
 ;from all properties will be the same as earlier versions of
 ;Open Client libraries.

[ANSI_ESQL]

;This section defines configuration which an ANSI conforming
 ;Embedded SQL application should use to get ANSI-defined
 ;behavior from Adaptive Servers and Open Client libraries. This set of
176 Open Client

CHAPTER 10 Open Client/Server Configuration File
 ;configuration ;properties matches the set which earlier
 ;versions of Embedded SQL (version 10.0.x) automatically set for
 ;applications duringexecution of a CONNECT statement.

CS_CAP_RESPONSE=CS_RES_NOSTRIPBLANKS
 CS_EXTRA_INF=CS_TRUE
 CS_ANSI_BINDS=CS_TRUE
 CS_OPT_ANSINULL=CS_TRUE
 CS_OPT_ANSIPERM=CS_TRUE
 CS_OPT_STR_RTRUNC=CS_TRUE
 CS_OPT_ARITHABORT=CS_FALSE
 CS_OPT_TRUNCIGNORE=CS_TRUE
 CS_OPT_ISOLATION=CS_OPT_LEVEL3
 CS_OPT_CHAINXACTS=CS_TRUE
 CS_OPT_CURCLOSEONXACT=CS_TRUE
 CS_OPT_QUOTED_IDENT=CS_TRUE
 ;End of default sections

Syntax for the Open Client/Server configuration file
The syntax for the Open Client/Server configuration file matches the existing
syntax for Sybase localization and configuration files supported by CS-Library
with minor variations.

Syntax
• ; – Signifies a comment line.

• [section_name] – Section names are wrapped in square brackets. The Open
Client/Server configuration file comes with sections named DEFAULT
and ANSI_ESQL. The application name will be used as the section name
for an application that has been compiled with the -x option. For an
application that has been compiled with the -e option, the server name will
be used for the section name. Any name can be used as a section name for
those sections that contain settings that will be used in multiple sections.
The following example shows a section arbitrarily named GENERIC, and
how that section is included in other sections:

[GENERIC]
 CS_OPT_ANSINULL=CS_TRUE
Embedded SQL/COBOL Programmer’s Guide 177

Syntax for the Open Client/Server configuration file

[APP_PAYROLL]
 include=GENERIC
 CS_CAP_RESPONSE=CS_RES_NOSTRIPBLANKS

[APP_HR]
 include=GENERIC
 CS_OPT_QUOTED_IDENT=CS_TRUE

• entry_name=entry_value

• Entry values can be anything: integers, strings, and so on. If an entry
value line ends with '\'<newline>, the entry value continues to the next
line.

• White spaces are trimmed from the beginning and end of entry values.

• If white spaces are required at the beginning or end of an entry value,
wrap them in double quotes.

• An entry that begins with a double quote must end with a double
quote. Two double quote characters in a row within a quoted string
represent a single double quote in the value string. If a newline is
encountered within double quotes, it is considered to be literally part
of the value.

• Entry names and section names can consist of alphabetic characters
(both uppercase and lowercase), the digits 0-9, and punctuation
characters. The first letter MUST be alphabetic.

• Entry and section names are case sensitive.

• Include=earlier_section

If a section contains the entry include, then the entire contents of that
previously defined section are considered to be replicated within this
section. In other words, the properties defined in the previous section
are inherited by this section.

Note that the included section must have been defined before being
included in another section. This allows the configuration file parsing
to happen in a single pass and eliminates the need to detect recursive
included directives.

If an included section in turn includes another section, the order of
entry values is defined by a “depthfirst” search of the included
sections.
178 Open Client

CHAPTER 10 Open Client/Server Configuration File
Sections cannot include a reference to themselves. In other words,
recursion is not possible because you must include a previously
defined section—you cannot include the section being defined.

All direct entry values defined in a given section supersede any values
that may have been included from another section. In the following
example, CS_OPT_ANSINULL will be set to false in the
APP.PAYROLL application. Note that the position of the include
statement does not affect this rule.

[GENERIC]
 CS_OPT_ANSINULL=CS_TRUE

[APP_PAYROLL]
 CS_OPT_ANSINULL=CS_FALSE
 include=GENERIC

Sample programs
Consider the following scenario: An Embedded SQL program defines a cursor
to retrieve rows from the titles table in the pubs2 database. The WHERE clause
uses non-ANSI standard NULL checking. To clarify, IS NULL and IS NOT
NULL are ANSI standards which is the default used by Embedded SQL
programs. However, an Embedded SQL program wishing to use = NULL or !=
NULL will need to turn OFF ANSINULL behavior and use Transact-SQL
syntax instead. If you wanted to make comparisons with NULLs in Transact-
SQL syntax in Embedded SQL prior to version 11.1, you would need to make
the following call:

EXEC SQL set ansinull off END-EXEC.

In the following example, no change is made to the Embedded SQL code, but
the desired behavior is attained by setting appropriate properties in the Open
Client/Server configuration file.

There are two versions of the same program listed below. One is to be used with
the -e option and the other with the -x option.
Embedded SQL/COBOL Programmer’s Guide 179

Sample programs
Embedded SQL/COBOL sample programs
On IBM, the Embedded SQL/COBOL makefile, provided to build sample
programs, does not support setting the SYBPLATFORM environment variable
to “dce_rs6000.” If you set the variable this way when building Embedded
SQL/COBOL sample programs, the makefile will fail. Set the variable to
“rs6000” instead of “dce_rs6000.”

On Sun Solaris, the Embedded SQL/COBOL makefile, provided to build
sample programs, does not support setting the SYBPLATFORM environment
variable to “dce_sun_svr4.” Set the variable to “sun_svr4” instead of
“dce_sun_svr4.”

On HP, the Embedded SQL/COBOL makefile, provided to build sample
programs, does not support setting the SYBPLATFORM environment variable
to “dce_hp800.” Set the variable to “hp800” instead of “dce_hp800.”

On Digital UNIX, the Embedded SQL/COBOL makefile, provided to build
sample programs, works only with the DEC COBOL compiler. The makefile
does not work with the MicroFocus COBOL compiler unless it is modified.

If you are using DCE directory or security services, set the SYBPLATFORM
environment variable to “dce_axposf” when using this makefile. If you are not
using DCE, set the variable to “axposf.”

Embedded SQL program version for use with the -x option
* ocs_ex.pco

 * Description :
 * This program declares a cursor which retrieves rows from
 * the ’titles’ table based on condition checking for NULLS
 * in the NON-ANSI style (CS_OPT_ANSINULL = CS_FALSE).
 * The program will be compiled using the -x option which will
 * use an external configuration file (ocs.cfg) based on the
 * name of the application. The name of the application is
 * defined at the time of INITIALIZING the application.
 *
 *
 * Notes : Copy the file ocs.cfg in this directory to the $SYBASE direc-
 * tory or add the entries from the section TEST1 in this file
 * to your existing ocs.cfg file in the $SYBASE directory.
 * Compile the program using the pre-processor flag -x.
 * See the attached ocs.cfg file for details on the properties
 * being set.
180 Open Client

CHAPTER 10 Open Client/Server Configuration File

 EXEC SQL INCLUDE SQLCA END-EXEC.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 ...
 01 TITLE-ID PIC X(6).
 01 PRICE PIC X(30).
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...

 EXEC SQL INITIALIZE_APPLICATION APPLICATION_NAME
 = "TEST1" END-EXEC.

 EXEC SQL CONNECT :UID IDENTIFIED BY :PASS END-EXEC.
 EXEC SQL USE pubs2 END-EXEC.

 * Declare and open the cursor for select
 EXEC SQL DECLARE title_list CURSOR FOR
 SELECT title_id, price FROM titles
 WHERE price != NULL END-EXEC.

 EXEC SQL OPEN title_list END-EXEC.

 * Fetch the data into host variables.
 PERFORM FETCH-LOOP UNTIL SQLCODE = 100.

 ...

 EXEC SQL CLOSE title_list END-EXEC.
 EXEC SQL DEALLOCATE CURSOR title_list END-EXEC.

 STOP RUN.

 FETCH-LOOP.

 EXEC SQL FETCH title list INTO
 :TITLE-ID,
 :PRICE END-EXEC.
 ...

Embedded SQL/COBOL Programmer’s Guide 181

Sample programs
 END-IF.

Note Set the precompiler option in the makefile: cobpre -x.

The following is a sample configuration file for the preceding program:

[DEFAULT]
 ;

 [TEST1]
 ;This is name of the application set by INITIALIZE_APPLICATION. ;Therefore this
is the section that will be referred to a runtime.

 CS_OPT_ANSINULL=CS_FALSE

 ;The above option will enable comparisons of nulls in the NON-ANSI
 ;style.

Same Embedded SQL program with the -e option
* Program name: ocs_test.cp

 *
 * Description : This program declares a cursor that retrieves rows
 * from the ’titles’ table based on condition checking for NULLS
 * in the NON-ANSI style.
 * The program will be compiled using the -e option, which will
 * use the server name that the application connects to, as the
 * corresponding section to look up in the configuration file.
 *

 EXEC SQL INCLUDE SQLCA END-EXEC.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 ...
 01 TITLE-ID PIC X(6).
 01 PRICE PIC X(30).
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...

 EXEC SQL CONNECT :UID IDENTIFIED BY :PASS END-EXEC.
 EXEC SQL USE pubs2 END-EXEC.

 * Declare and open the cursor for select
 EXEC SQL DECLARE title_list CURSOR FOR
182 Open Client

CHAPTER 10 Open Client/Server Configuration File
 SELECT title_id, price FROM titles
 WHERE price != NULL END-EXEC.

 EXEC SQL OPEN title_list END-EXEC.

 * Fetch the data into host variables.
 PERFORM FETCH-LOOP UNTIL SQLCODE = 100.

 ...

 EXEC SQL CLOSE title_list END-EXEC.
 EXEC SQL DEALLOCATE CURSOR title_list END-EXEC.

 STOP RUN.

 FETCH-LOOP.

 EXEC SQL FETCH title list INTO
 :TITLE-ID,
 :PRICE END-EXEC.
 ...

 END-IF.

Note Precompiler option to set in the makefile: cobpre -e.

The following is a sample configuration file for the preceding program:

[DEFAULT]
 ;

 [SYBASE]
 ;This is name of the server that the application connect to. Therefore
 ;this is the section that will be referred to a runtime.
 ;
 CS_OPT_ANSINULL=CS_FALSE
 ;The above option will enable comparisons of nulls in the NON-ANSI
 ;style.

The above configuration files have been vastly simplified. A typical Open
Client/Server configuration file would be in the following format:

[DEFAULT]
 ;
Embedded SQL/COBOL Programmer’s Guide 183

Sample programs
 [ANSI_ESQL]
 CS_CAP_RESPONSE=CS_RES_NOSTRIPBLANKS
 CS_EXTRA_INF=CS_TRUE
 CS_ANSI_BINDS=CS_TRUE
 CS_OPT_ANSINULL=CS_TRUE
 CS_OPT_ANSIPERM=CS_TRUE
 CS_OPT_STR_RTRUNC=CS_TRUE
 CS_OPT_ARITHABORT=CS_FALSE
 CS_OPT_TRUNCIGNORE=CS_TRUE
 CS_OPT_ISOLATION=CS_OPT_LEVEL3
 CS_OPT_CHAINXACTS=CS_TRUE
 CS_OPT_CURCLOSEONXACT=CS_TRUE
 CS_OPT_QUOTED_IDENT=CS_TRUE
 ;
 ;The following is a sample section showing how to alter standard
 ;configuration:
 ;
 [RELEVANT_SECION_NAME]
 ;
 ;Use most of the ANSI properties defined above,
 ;
 include=ANSI_ESQL

 ;but override some default properties

 CS_OPT_ANSINULL=CS_TRUE ; enable non-ansi style null comparisons
 CS_OPT_CHAINXACTS=CS_FALSE ; run in autocommit mode
184 Open Client

A P P E N D I X A Precompiler Warning and
Error Messages

The Embedded SQL precompiler generates the informational, warning,
and error messages shown in this appendix’s tables.

Understanding the codes in the tables
Use this key for decoding the “Severity” column in Tables A-1 through
A-9:

• Information – no error or warning was detected, and the precompiler
succeeded. The message is purely informational.

• Warning – a noncritical error was detected, but the program
precompiled.

• Severe – an error occurred, and no code was generated. The
precompilation failed.

• Fatal – a severe error occurred from which the precompiler cannot
recover. No further attempt will be made to process your files.
Precompiler exits.

Table A-1: Command line option messages

Message ID Message text Severity Fix

M_COMPAT_INFO Compatibility mode
specified.

Information No fix required.

M_DUPOPT Duplicate command line
option specified.

Severe Do not duplicate the options
specified on the command line
remove the offending
duplicate option.
Embedded SQL/COBOL Programmer’s Guide 185

Understanding the codes in the tables
M_EXCFG_OVERRIDE The switch value will have
no effect because the
external switch value has
been specified.

Warning When you use an external
configuration file, you may
override configuration options
set on the command line.
Choose one means of setting
options.

M_INVALID_COMPAT Unrecognized compatibility
mode specified.

Information No fix required.

M_INVALID_FILE_FMT Invalid character in file value
at line value.

Severe Check to be sure that
characters in the input file are
valid and that you have
correctly set the character set
you want to use.

M_INVALID_FIPLEVEL Invalid FIPS level specified. Severe Valid values are SQL-92E and
SQL-89.

M_INVALID_SYNLEVEL Invalid syntax checking
level specified.

Severe Valid values are NONE,
SYNTAX, SEMANTIC.

M_INVLD_HLANG Host Language specified is
invalid.

Severe Valid options are COB_MF1,
COB_MF2, COB_RM1,
COB_RM2, COB_LPI,
COB_VAXVMS.

M_INVLD_OCLIB_VER The Open Client Client-
Library version is invalid.

Severe The correct version string is
"CS_VERSION_110" or later.

M_INVOPT Option is invalid. Severe Invalid option specified.
Substitute the correct value.

M_LABEL_SYNTAX Security label is improperly
specified; the proper format
is ‘labelname=
 labelvalue’.

Severe Use the allowed syntax.

M_MSGINIT_FAIL Error initializing localized
error messages.

Warning Verify that the Sybase
installation is complete and
that there is a valid entry for
the LANG variable in the
locales.dat file.

M_MULTI_IN_USE_DEF_OUT When precompiling multiple
input files, you cannot
specify output (Listing,
SQL, or Language) file
names.

Severe Remove all -G, -L, and
 -O flags from the command
line or precompile the files one
at a time.

Message ID Message text Severity Fix
186 Open Client

APPENDIX A Precompiler Warning and Error Messages
M_NO_INPUT_FILE Error: No input file is
specified to be precompiled.

Severe Specify an input file for
precompilation.

Note This error may occur if
you precede the input file
name with a flag (such as -G,
for generate stored
procedures), which takes an
optional argument. To fix, put
another flag in front of the
input file name. For example,
replace cpre -G file.pc with
cpre -G -Ccompilername.

M_NO_PERSISTENT_COBOL The option -p for persistent
input host variables is not
available.

Information No fix required.

M_OPEN_INCLUDE Unable to open the specified
include file file.

Severe The specified file is either not
in the path or is missing the
required read permission.
Specify the path with the -I flag
and verify the read permission.

M_OPEN_INPUT Unable to open the specified
input file file.

Severe Check the validity of the path
and file name specified. If the
file name extension is not
provided, the precompiler
searches for the default
extension.

M_OPEN_ISQL Unable to open the specified
ISQL file file.

Severe Check the validity of the isql
file name (the file in which the
stored procedures are written).
Verify that you have the write
permission in the directory
where the file is being created.

M_OPEN_LIST Unable to open the specified
listing file file.

Severe Check the validity of the
listing file name. Verify that
you have write permission in
the directory where the file is
being created.

Message ID Message text Severity Fix
Embedded SQL/COBOL Programmer’s Guide 187

Understanding the codes in the tables
Table A-2: First pass parser messages

M_OPEN_TARGET Unable to open the specified
target file file.

Severe Check the validity of the
output file name. Verify that
you have write permission in
the directory where the file is
being created.

M_OPT_MUST_BE_PROVIDED Option value must be
provided.

Severe Provide a value for option.

M_OPT_REINIT Warning: value switch
initialized multiple times.

Warning The specified switch has been
initialized multiple times. The
second and subsequent values
are ignored.

M_PATH_OFL Error: Max allowed paths for
"INCLUDE"
files is 64
(OVERFLOWED).

Severe The maximum allowed paths
on the command line have
been exceeded. Reduce the
number of directories from
which the INCLUDE files are
fetched.

M_STATIC_HV_CNAME Static cursor names cannot
be host-variables: line.

Severe Replace the host variable with
a SQL identifier.

M_UNBALANCED_DQ Unbalanced quotes in
delimited identifier.

Severe Balance the quote.

M_VMS_NO_PERSISTENT_
 COBOL

The persistent option is not
available.

Information

Message ID Message text Severity Fix

Message ID Message text Severity Fix

M_64BIT_INT Warning: 64 bit integer host
variables are not supported.
Line value.

Warning Use some other host variable
type (float, numeric, or 32-bit
integer). If necessary, copy
the value between the host
variable and the 64-bit
program variable.

M_BLOCK_ERROR Non-matching block
terminator in value at line:
value.

Severe Correct your program syntax.

M_COB_INC_SQLDA Error: the INCLUDE
SQLDA statement is not
valid in ESQL/COBOL.

Severe Use SYBSETSQLDA. See
“Using SYBSETSQLDA” on
page 85.

M_CONST_FETCH Error: Attempted fetch into
CONST storage class
variable value.

Severe You cannot fetch into a
constant type. To fetch the
value, remove the constant
qualifier in its declaration.
188 Open Client

APPENDIX A Precompiler Warning and Error Messages
M_DUP_HV Duplicate host variable in
file at line line.

Severe Another host variable with the
same name is already declared
in the same block. Verify that
each variable within a given
block has a unique name.

M_DUP_STRUNION Duplicate structure/union in
file at line.

Severe Another structure with the
same name is already declared
in the same block. Verify that
each variable within a given
block has a unique name.

M_IDENT_OR_STRINGVAR Error: item must be a SQL-
identifier or a string-type
variable.

Severe Verify that the connection,
cursor, or statement name is of
type string or SQL identifier.

M_ILL_LITERAL_USAGE Error: Use of literal
parameters to an RPC with
an OUTPUT qualifier is not
legal.

Severe Do not use a literal as an
OUTPUT parameter to a
stored procedure.

M_ILL_PARAM_MODE Error: Mixing calling modes
in an rpc call in file at line.

Severe Call the stored procedure with
arguments passed by name or
by position. Mixing these
modes in the same call is
illegal.

M_INDICVAR Error: item must be an
indicator-type variable.

Severe Use a short integer.

M_INTVAR Error: item must be an
integer-type variable.

Severe Use an integer.

M_INVLD_HV_BT Cobol host variable: value of
type: value is not supported.

Severe Check the datatypes of the
host variables. An
unsupported type was
detected.

M_MISMATCHED_QUOTES Error: mismatched quotes on
hex literal value.

Severe Make quotes match.

M_MULTIDIM_ARRAY Error: at line. Multiple-
dimensioned array variables
are not supported.

Severe Multiple-dimensional arrays
are not supported. Break up an
m x n array into m arrays of n
elements each.

Message ID Message text Severity Fix
Embedded SQL/COBOL Programmer’s Guide 189

Understanding the codes in the tables
M_MULTI_RESULTS Error: Embedded Query at
line line returns multiple
result sets.

Severe Break the query into multiple
queries, each returning one
result set. Alternatively,
rewrite the queries to fill a
temporary table with all the
values, then select from the
temporary table, thus giving a
single result set.

M_NODCL_NONANSI Warning: Neither
SQLCODE nor SQLCA
declared in non-ANSI mode.

Warning In non-ANSI mode, declare
either SQLCA, SQLCODE,
or both. Verify that the scope
is applicable for all Embedded
SQL statements within the
program.

M_NOLITERAL Error: Item may not be an
unquoted name.

Severe Use a quoted name or host
variable.

M_NOSQUOTE Error: Item may not be a
single quoted string. Use
double quotes.

Severe Use double quotes.

M_NOT_AT_ABLE An “at” clause is used with a
statement type which does
not allow it. This occurred at
line value.

Severe Remove the at clause from the
specified statement.

M_NUMBER_OR_INDICVAR Error: Item must be an
integer or an indicator-type
variable.

Severe Use a literal integer or a short
integer or CS_SMALLINT.

M_NUMBER_OR_INTVAR Error: Item must be an
integer constant or an integer
type variable.

Severe Unused. May be used to raise
an error if some field in the
dynamic SQL statements
(such as MAX, Value n,) is
not an integer type or an
integer constant.

M_PARAM_RESULTS Error: Embedded Query at
line line returns unexpected
parameter result sets.

Severe Arises only during optional
server syntax checking.
Determine why the query is
returning parameters, and
rewrite it.

M_PASS1_ERR File file: Syntax errors in
Pass 1: Pass 2 not done.

Information Errors in Pass 1 resulted in an
aborted precompilation.
Correct Pass 1 errors, then
proceed.

M_PTR_IN_DEC_SEC Warning: Pointers are not yet
supported in Declare section.

Warning None

Message ID Message text Severity Fix
190 Open Client

APPENDIX A Precompiler Warning and Error Messages
M_QSTRING_OR_STRINGVAR Error: Item must be a quoted
string or a type string
variable.

Severe Verify that server name, user
name, and password are either
double-quoted strings or of
type string.

M_SCALAR_CHAR Error: Non-array character
variable value is being used
illegally as a host variable at
line line.

Severe Use a character array.

M_SQLCA_IGNR Warning: Both SQLCODE
and SQLCA declared:
SQLCA ignored.

Warning Remove one of the two
declarations.

M_SQLCA_WARN Warning: An INCLUDE
SQLCA seen while in ANSI
mode: SQLCA ignored.

Warning None.

M_SQLCODE_UNDCL Warning: SQLCODE not
declared while in ANSI
mode.

Warning Declare SQLCODE.

M_STATE_CODE Warning: Both SQLSTATE
and SQLCODE declared:
SQLCODE ignored.

Warning Remove one of the two
declarations.

M_STATE_SQLCA Warning: Both SQLSTATE
and SQLCA declared:
SQLCA ignored.

Warning Remove one of the two
declarations.

M_STATUS_RESULTS Error: Embedded Query at
line line returns unexpected
status result sets.

Severe Arises only during optional
server syntax checking.
Determine why the query is
returning status results and
rewrite it.

M_STICKY_AUTOVAR Warning: Automatic variable
value used with sticky binds
at line line. This may cause
incorrect results or errors at
runtime.

Warning Be certain that your program
logic will not allow errors in
this case. Alternatively, use a
static or global variable.

M_STICKY_REGVAR Error: Register variable
value cannot be used with
sticky binds at line line.

Severe Remove the register qualifier.

M_STRUCT_NOTFOUND Structure/union definition
not found in scope in file at
line.

Severe Verify that the definition of
the structure or union is within
the scope of the specified line.

M_SYNTAX_PARSE Syntax error in file file at
line.

Severe Check the indicated line
number for a syntax error in
the Embedded SQL grammar.

Message ID Message text Severity Fix
Embedded SQL/COBOL Programmer’s Guide 191

Understanding the codes in the tables
Table A-3: Second pass parser messages

M_UNBALANCED_DQ Unbalanced quotes in
delimited identifier.

Severe Balance the quotes.

M_UNDEF_ELM Error value: illegal structure/
union element.

Severe The specified element of the
structure is not included in the
structure definition. Correct
the definition.

M_UNDEF_HV Host variable value
undefined.

Severe Define the host variable in the
proper place.

M_UNDEF_IV Indicator variable value
undefined.

Severe Define the indicator variable
in the proper place.

M_UNDEF_STR Error structure value
undefined.

Severe Undefined structure on the
specified line. Define the
structure in the proper scope.

M_UNSUP The value, feature is not
supported in this version.

Fatal This feature is not supported.

Message ID Message text Severity Fix

Message ID Message text Severity Fix

M_CURSOR_RD The cursor value is redefined at
line line in file.

Warning A cursor with same name
has already been declared.
Use a different name.

M_HOSTVAR_MULTIBIND Warning: host variable used as a
bind variable value more than
once per statement.

Warning Do not use a host variable
multiple times in a single
fetch statement. You
cannot fetch multiple
results into one location.
Client-Library causes the
last value fetched to be
put in the variable.

M_INVTYPE_IV Indicator variable is an incorrect
type.

Severe The indicator variable
should be of type
CS_SMALLINT or of
type INDICATOR.

M_PARSE_INTERNAL Internal parser error at line line.
Please contact a Sybase
representative.

Fatal Immediately report this
internal consistency
parser error to Sybase
Technical Support.

M_SQLCANF ‘INCLUDE SQLCA’ statement
not found.

Warning Add the statement.
192 Open Client

APPENDIX A Precompiler Warning and Error Messages
Table A-4: Code generation messages

M_TAB_IN_LIT Warning: TAB character in
quoted string converted to
space. (This warning will only
appear once.)

Warning If this is a problem,
manually expand quoted
<tabs> to spaces in your
queries.

M_WHEN_ERROR Unable to find the SQL
statement ‘WHENEVER
SQLERROR’.

Warning Add WHENEVER
SQLERROR statement ,or
use the command line
option to suppress
warning and INTO
messages (see the Open
Client/Server
Programmer’s
Supplement).

M_WHEN_NF Unable to find the SQL
statement "WHENEVER NOT
FOUND".

Warning Enter a WHENEVER NOT
FOUND statement, or use
the command line option
to suppress warning and
INTO messages (see the
Open Client/Server
Programmer’s
Supplement).

M_WHEN_WARN Unable to find the SQL
statement "WHENEVER
WARNING".

Warning Enter a WHENEVER
WARNING statement, or
use the command line
option to suppress
warning and INTO
messages (see the Open
Client/Server
Programmer’s
Supplement).

Message ID Message text Severity Fix

Message ID Message text Severity Fix

M_INCLUDE_PATHLEN An included or copied file path
was too long. Leaving the path
off the generated file name:
value.

Warning Use links or move the file
to a shorter path.

M_WRITE_ISQL Unable to write to the isql file.
Return code: value.

Fatal Verify your permission to
create and write to the isql
file and in the directory.
Also, verify that the file
system is not full.
Embedded SQL/COBOL Programmer’s Guide 193

Understanding the codes in the tables
Table A-5: FIPS flag messages

M_WRITE_TARGET Unable to write to the target file.
Return code: value.

 Fatal Unable to write to the
target file. Verify your
permission to create and
write to a file in the
directory where the
precompiler is generating
the target file. Also, verify
that the file system is not
full.

Message ID Message text Severity Fix

Message ID Message text Severity ANSI extension

M_FIPS_ARRAY FIPS-flagger Warning: ANSI
extension ARRAY type at line.

Information Arrays. As for all FIPS
messages, do not use this
feature if you need to be
ANSI-compliant.

M_FIPS_DATAINIT FIPS-flagger Warning: ANSI
extension Data Initialization at
line.

Information Data initialization.

M_FIPS_GPITEM FIPS-Flagger Warning: ANSI
extension group item syntax.
(line line).

Information

M_FIPS_HASHDEF FIPS-flagger Warning: ANSI
extension "#DEFINE" line.

Information Using #DEFIN in a
DECLARE section.

M_FIPS_LABEL FIPS-flagger Warning: ANSI
extension ’:’ with label in a
"WHENEVER" clause.

Information Allowing ":" with a label
in a WHENEVER clause.

M_FIPS_POINTER FIPS-flagger Warning: ANSI
extension POINTER type at
line.

Information The type POINTER.

M_FIPS_SQLDA FIPS-flagger Warning: ANSI
extension sqlda. (line line).

Information The SQLDA structure.

M_FIPS_STMT FIPS-flagger Warning: ANSI
extension statement (line line)

Information The statement at this line
is an extension.

M_FIPS_SYBTYPE FIPS-flagger Warning: ANSI
extension Sybase SQL-Type
line.

Information Sybase-specific
datatypes.

M_FIPS_TYPE FIPS-flagger Warning: ANSI
extension data type at line.

Information The specified syntax is
not ANSI-compliant.

M_FIPS_TYPEDEF FIPS-flagger Warning: ANSI
extension TYPEDEF line.

Information TYPEDEF.
194 Open Client

APPENDIX A Precompiler Warning and Error Messages
Table A-6: Internal error messages

Table A-7: Platform and language messages

Table A-8: Sybase and Client-Library messages

M_FIPS_VOID FIPS-flagger Warning: ANSI
extension VOID type line.

Information The type VOID.

Message ID Message text Severity ANSI extension

Message ID Message text Severity Fix

M_ALC_MEMORY Unable to allocate a block of
memory.

Fatal Check system resources.

M_FILE_STACK_OVFL File stack overflow: Max
allowed nesting is value.

Fatal The file stack overflowed
while trying to process the
nested INCLUDE
statement. Do not exceed
the nested depth
maximum of 32.

M_INTERNAL_ERROR Fatal Internal Error at file file line
line: Argument inconsistency
error. Please contact Sybase
representative.

Fatal This is an internal error.
Contact your Sybase
representative.

Message ID Message text Severity Fix

M_LONGLINE A line being printed is too long
and cannot be broken.

Warning Shorten the line to be
printed.

Message ID Message text Severity Fix

M_COLMCNT The bind count of the bind
variable count and the column
count of result set are
incompatible.

Warning The number of returned
columns is different
from the number of
results columns
returned with the bind
variable types and
number.

M_COLVARLM The host variable name length
value is less than the column
length of value.

Warning The host variable may
not be able to hold the
fetched column. Check
the column length and
adjust the length of the
host variable
accordingly.
Embedded SQL/COBOL Programmer’s Guide 195

Understanding the codes in the tables
Table A-9: Runtime messages

M_COLVARPS The host variable name precision
and scale: value are different
from the column’s precision
value and scale: value.

Warning The precision and scale
of the host variable is
different from that of
the column being
fetched or inserted into.
Make the scale and
precision compatible.

M_COLVARTM Open Client unable to convert
type value to type value for host
variable name.

Warning Illegal type. Use
cs_convert, as Open
Client cannot convert
by default.

M_CTMSG Client Library message: value. Information None. If needed,
contact Sybase
Technical Support for
assistance.

M_OCAPI Error during execution of the
Open Client API value. Error:
value.

Warning Depending on the
context in which this
warning occurs, you
may be required to take
corrective action before
proceeding.

M_OPERSYS Operating system error: value
occurred during execution of the
Open Client API.

Warning An operating system
error occurred. See the
systems administrator.

M_PRECLINE Warning(s) during check of
query on line value.

Information Examine the query for
problems.

M_SYBSERV Sybase Server error. Server:
value. Message: name.

Warning Check the syntax of the
statement sent to the
Server which caused
this error. Verify that all
resources are available
in Adaptive Server to
process the SQL
statement.

Message ID Message text Severity Fix

SQLSTATE Code Message text Severity Fix

ZZ000 Unrecoverable error occurred. Fatal Immediately report this
error to Sybase
Technical Support.

ZA000 Internal error occurred. Fatal Immediately report this
error to Sybase
Technical Support.
196 Open Client

APPENDIX A Precompiler Warning and Error Messages
ZD000 Unexpected
CS_COMPUTE_RESULT
received.

Severe Embedded SQL cannot
retrieve compute
results. Rewrite the
query so it does not
return them.

ZE000 Unexpected
CS_CURSOR_RESULT
received.

Severe Verify that the value
returned by the
CS_LIBRARY routine
is valid. Consult your
CS-Library
documentations for
details.

ZF000 Unexpected
CS_PARAM_RESULT
received.

Severe Verify that the value
returned by the
CS_LIBRARY routine
is valid. Consult your
CS-Library
documentation for
details.

ZG000 Unexpected
CS_ROW_RESULT received.

Severe Verify that the value
returned by the
CS_LIBRARY routine
is valid. Consult your
CS-Library
documentation for
details.

ZB000 No message(s) returned for
SQLCA, SQLCODE, or
SQLSTATE.

Information Informational message.
No action is required.

ZC000 Connection has not been defined
yet.

Severe Enter a valid connect
statement.

ZH000 Unexpected
CS_STATUS_RESULT
received.

Severe Verify that the value
returned by the
CS_LIBRARY routine
is valid. Consult your
CS-Library
documentation for
details.

SQLSTATE Code Message text Severity Fix
Embedded SQL/COBOL Programmer’s Guide 197

Understanding the codes in the tables
ZI000 Unexpected
CS_DESCRIBE_RESULT
received.

Severe Verify that the value
returned by the
CS_LIBRARY routine
is valid. Consult your
CS-Library
documentation for
details.

22005 Data exception—error in
assignment of item descriptor
type.

Severe Enter a valid descriptor
type.

ZJ000 Memory allocation failure. Severe There is an insufficient
amount of memory to
allocate to this
operation.

ZK000 SQL-Server must be version 10
or greater.

Severe Verify that your
installation has an
installed, functioning
copy of SQL Server
10.0 or later. If you do
not have SQL Server
10.0 or later, have your
installation’s
designated person
contact Sybase
Technical Support.

ZM000 Error initializing Client Library. Severe Check your $SYBASE
set-up.

ZN000 Error taking a mutex. Severe Unused.

08002 Connection name in use. Severe Check your program
logic: Are you re-
opening an open
connection? Or use a
new name for the
second connection.

Note You cannot have
two DEFAULT
connections.

SQLSTATE Code Message text Severity Fix
198 Open Client

Glossary

Adaptive Server
Enterprise (ASE)

A server in Sybase’s client/server architecture. Adaptive Server manages
multiple databases and multiple users, keeps track of the actual location of
data on disks, maintains mapping of logical data description to physical
data storage, and maintains data and procedure caches in memory. Prior to
version 11.5, Adaptive Server was known as SQL Server.

array A structure composed of multiple identical variables that can be
individually addressed.

array binding The process of binding a result column to an array variable. At fetch time,
multiple rows’ worth of the column are copied into the variable.

batch A group of commands or statements:

A Client-Library command batch is one or more Client-Library
commands terminated by an application’s call to ct_send. For example, an
application can batch together commands to declare, set rows for, and
open a cursor.

A Transact-SQL statement batch is one or more Transact-SQL statements
submitted to Adaptive Server by means of a single Client-Library
command or Embedded SQL statement.

browse mode A method that DB-Library and Client-Library applications can use to
browse through database rows, updating their values one row at a time.
Cursors provide similar functionality and are generally more portable and
flexible.

bulk copy A utility for copying data in and out of databases. Also called bcp.

callback event In Open Client and Open Server, an occurrence that triggers a callback
routine.

callback routine A routine that Open Client or Open Server calls in response to a triggering
event, known as a callback event.

capabilities Determine the types of client requests and server responses permitted for
a client/server connection.
Embedded SQL/COBOL Programmer’s Guide 199

 Glossary
character set A set of specific (usually standardized) characters with an encoding scheme
that uniquely defines each character. ASCII and ISO 8859-1 (Latin 1) are two
common character sets.

character set
conversion

Changing the encoding scheme of a set of characters on the way into or out of
a server. Conversion is used when a server and a client communicating with it
use different character sets. For example, if Adaptive Server uses ISO 8859-1
and a client uses Code Page 850, character set conversion must be turned on so
that both server and client interpret the data passing back and forth in the same
way.

client In client/server systems, the part of the system that sends requests to servers
and processes the results of those requests.

Client-Library Part of Open Client, a collection of routines for use in writing client
applications. Client-Library is a library designed to accommodate cursors and
other advanced features in the Sybase product line.

code set See character set.

collating sequence See sort order.

command In Client-Library, a server request initiated by an application’s call to
ct_command, ct_dynamic, or ct_cursor and terminated by the application’s call
to ct_send.

command structure A hidden Client-Library structure (CS_COMMAND) that Client-Library
applications use to send commands and process results.

connection structure A hidden Client-Library structure (CS_CONNECTION) that defines a
client/server connection within a context.

context structure A CS-Library hidden structure (CS_CONTEXT) that defines an application
“context,” or operating environment, within a Client-Library or Open Server
application. The CS-Library routines cs_ctx_alloc and cs_ctx_drop allocate and
drop a context structure, respectively.

conversion See character set conversion.

CS-Library Included with both the Open Client and Open Server products, a collection of
utility routines that are useful to both Client-Library and Server-Library
applications.

current row With respect to cursors, the row to which a cursor points. A fetch against a
cursor retrieves the current row.

cursor A symbolic name that is associated with a SQL statement.
200 Open Client

 Glossary
In Embedded SQL, a cursor is a data selector that passes multiple rows of data
to the host program, one row at a time.

database A set of related data tables and other database objects that are organized to
serve a specific purpose.

datatype A defining attribute that describes the values and operations that are legal for a
variable.

DB-Library Part of Open Client, a collection of routines for use in writing client
applications.

deadlock A situation that arises when two users, each having a lock on one piece of data,
attempt to acquire a lock on the other’s piece of data. Adaptive Server detects
deadlocks and resolves them by killing one user’s process.

default Describes the value, option, or behavior that Open Client/Server products use
when none is explicitly specified.

default database The database that a user gets by default when he or she logs in to a database
server.

default language 1. The language that Open Client/Server products use when an application does
no explicit localization. The default language is determined by the “default”
entry in the locales file.

2. The language that Adaptive Server uses for messages and prompts when a
user has not explicitly chosen a language.

Dynamic SQL Allows an Embedded SQL or Client-Library application to execute SQL
statements containing variables whose values are determined at runtime.

error message A message that an Open Client/Server product issues when it detects an error
condition.

event An occurrence that prompts an Open Server application to take certain actions.
Client commands and certain commands within Open Server application code
can trigger events. When an event occurs, Open Server calls either the
appropriate event-handling routine in the application code or the appropriate
default event handler.

event handler In Open Server, a routine that processes an event. An Open Server application
can use the default handlers Open Server provides or can install custom event
handlers.
Embedded SQL/COBOL Programmer’s Guide 201

 Glossary
exposed structure A structure whose internals are exposed to Open Client/Server programmers.
Open Client/Server programmers can declare, manipulate, and de-allocate
exposed structures directly. The CS_DATAFMT structure is an example of an
exposed structure.

extended
transaction

In Embedded SQL, a transaction composed of multiple Embedded SQL
statements.

FIPS Federal Information Processing Standards. If FIPS flagging is enabled,
Adaptive Server or the Embedded SQL precompiler issue warnings when a
non-standard extension to a SQL statement is encountered.

gateway A gateway is an application that acts as an intermediary for clients and servers
that cannot communicate directly. Acting as both client and server, a gateway
application passes requests from a client to a server and returns results from the
server to the client.

hidden structure A hidden structure is a structure whose internals are hidden from Open
Client/Server programmers. Open Client/Server programmers must use Open
Client/Server routines to allocate, manipulate, and de-allocate hidden
structures. The CS_CONTEXT structure is an example of a hidden structure.

host language The programming language in which an application is written.

host program In Embedded SQL, the host program is the application program that contains
the Embedded SQL code.

host variable In Embedded SQL, a variable that enables data transfer between Adaptive
Server and the application program. See also indicator variable, input variable,
output variable, result variable, and status variable.

indicator variable A variable whose value indicates special conditions about another variable’s
value or about fetched data.

When used with an Embedded SQL host variable, an indicator variable
indicates when a database value is null.

input variable A variable that is used to pass information to a routine, a stored procedure, or
Adaptive Server.

interfaces file A file that maps server names to transport addresses. When a client application
calls ct_connect or dbopen to connect to a server, Client-Library or DB-Library
searches the interfaces file for the server’s address. Note that not all platforms
use the interfaces file. On these platforms, an alternate mechanism directs
clients to server addresses.
202 Open Client

 Glossary
isql script file In Embedded SQL, one of the three files the precompiler can generate. An isql
script file contains precompiler-generated stored procedures, which are written
in Transact-SQL.

key A subset of row data that uniquely identifies a row. Key data uniquely describes
the current row in an open cursor.

keyword A word or phrase that is reserved for exclusive use in Transact-SQL or
Embedded SQL. Also called a reserved word.

listing file In Embedded SQL, one of the three files the precompiler can generate. A
listing file contains the input file’s source statements and informational,
warning, and error messages.

locales file A file that maps locale names to language/character set pairs. Open
Client/Server products search the locales file when loading localization
information.

locale name A character string that represents a language/character set pair. Locale names
are listed in the locales file. Sybase predefines some locale names, but a system
administrator can define additional locale names and add them to the locales
file.

locale structure A CS-Library hidden structure (CS_LOCALE) that defines custom
localization values for a Client-Library or Open Server application. An
application can use a CS_LOCALE to define the language, character set,
datepart ordering, and sort order it will use. The CS-Library routines
cs_loc_alloc and cs_loc_drop allocate and drop a locale structure.

localization The process of setting up an application to run in a particular national language
environment. An application that is localized typically generates messages in a
local language and character set and uses local date, time, and datetime
formats.

login name The name a user uses to log in to a server. An Adaptive Server login name is
valid if Adaptive Server has an entry for that user in the system table syslogins.

message number A number that uniquely identifies an error message.

message queue In Open Server, a linked list of message pointers through which threads
communicate. Threads can write messages into and read messages from the
queue.

multi-byte character
set

A character set that includes characters encoded using more than 1 byte.
EUC JIS and Shift-JIS are examples of multibyte character sets.
Embedded SQL/COBOL Programmer’s Guide 203

 Glossary
mutex A mutual exclusion semaphore. This is a logical object that an Open Server
application uses to ensure exclusive access to a shared object.

null Having no explicitly assigned value. NULL is not equivalent to zero or to
blank. A value of NULL is not considered to be greater than, less than, or
equivalent to any other value, including another value of NULL.

Open Server A Sybase product that provides tools and interfaces for creating custom
servers.

Open Server
application

A custom server constructed with Open Server.

output variable In Embedded SQL, a variable that passes data from a stored procedure to an
application program.

parameter 1. A variable that is used to pass data to and retrieve data from a routine.

2. An argument to a stored procedure.

passthrough mode When in passthrough mode, a gateway relays Tabular Data Stream (TDS)
packets between a client and a remote data source without unpacking the
packets’ contents.

property A named value stored in a structure. Context, connection, thread, and
command structures have properties. A structure’s properties determine how it
behaves.

query 1. A data retrieval request; usually a select statement.

2. Any SQL statement that manipulates data.

registered procedure In Open Server, a collection of C statements stored under a name. Open Server-
supplied registered procedures are called system registered procedures.

remote procedure
call

1. One of two ways in which a client application can execute an Adaptive
Server stored procedure. (The other is with a Transact-SQL execute statement.)
A Client-Library application initiates a remote procedure call command by
calling ct_command. A DB-Library application initiates a remote procedure
call command by calling dbrpcinit.

2. A type of request a client can make of an Open Server application. In
response, Open Server either executes the corresponding registered procedure
or calls the Open Server application’s RPC event handler.

3. A stored procedure executed on a different server from the server to which
the user is connected.
204 Open Client

 Glossary
result variable In Embedded SQL, a variable which receives the results of a select or fetch
statement.

server In client/server systems, the part of the system that processes client requests
and returns results to clients.

Server-Library A collection of routines for use in writing Open Server applications.

sort order Used to determine the order in which character data is sorted. Also called
collating sequence.

SQLCA 1. In an Embedded SQL application, SQLCA is a structure that provides a
communication path between Adaptive Server and the application program.
After executing each SQL statement, Adaptive Server stores return codes in
SQLCA.

2. In a Client-Library application, SQLCA is a structure that the application
can use to retrieve Client-Library and server error and informational messages.

SQLCODE 1. In an Embedded SQL application, SQLCODE is a structure that provides a
communication path between Adaptive Server and the application program.
After executing each SQL statement, Adaptive Server stores return codes in
SQLCODE. A SQLCODE can exist independently or as a variable within a
SQLCA structure.

2. In a Client-Library application, SQLCODE is a structure that the application
can use to retrieve Client-Library and server error and informational message
codes.

SQL Server See Adaptive Server.

statement In Transact-SQL or Embedded SQL, an instruction that begins with a keyword.
The keyword names the basic operation or command to be performed.

status variable In Embedded SQL, a variable that receives the return status value of a stored
procedure, thereby indicating the procedure’s success of failure.

stored procedure In Adaptive Server, a collection of SQL statements and optional control-of-
flow statements stored under a name. Adaptive Server-supplied stored
procedures are called system procedures.

System
Administrator

The user in charge of Adaptive Server system administration, including
creating user accounts, assigning permissions, and creating new databases. On
Adaptive Server, the System Administrator’s login name is “sa”.

system descriptor In Embedded SQL, a system descriptor is an area of memory that holds a
description of variables used in Dynamic SQL statements.
Embedded SQL/COBOL Programmer’s Guide 205

 Glossary
system procedures Stored procedures that Adaptive Server supplies for use in system
administration. These procedures are provided as shortcuts for retrieving
information from system tables, or as mechanisms for accomplishing database
administration and other tasks that involve updating system tables.

system registered
procedures

Internal registered procedures that Open Server supplies for registered
procedure notification and status monitoring.

target file In Embedded SQL, one of three files the precompiler can generate. A target file
is similar to the original input file, except that all SQL statements are converted
to Client-Library function calls.

TDS (Tabular Data Stream) An application-level protocol that Sybase clients and
servers use to communicate. It describes commands and results.

thread A path of execution through Open Server application and library code and the
path’s associated stack space, state information, and event handlers.

Transact-SQL An enhanced version of the database language SQL. Applications can use
Transact-SQL to communicate with Sybase Adaptive Server.

transaction One or more server commands that are treated as a single unit for the purposes
of backup and recovery. Commands within a transaction are committed as a
group; that is, either all of them are committed or all of them are rolled back.

transaction mode The manner in which Adaptive Server manages transactions. Adaptive Server
supports two transaction modes: Transact-SQL mode (also called “unchained
transactions”) and ANSI mode (also called “chained transactions”).

user name See login name.
206 Open Client

Index
Symbols
59
$ 59
?

and dynamic parameter markers 68
_ 59

A
allocate descriptor 102
allow ddl in tran 107
array

double-dimensional 26, 105
arrays 51

Indicator 51
multiple 33
select into 51
using 33

arrays, batch 52
at connect_name

named connection 112
at connection_name 44, 45

exec sql statement 139

B
B1 Secure SQL server 43
batch arrays

fetch into 52
batches

get diagnostics 63
restrictions 16
statements 16

begin transaction 63, 65
binding 60, 67
Embedded SQL/COBOL Programmer’s Guide
C
case sensitivity

Embedded SQL 13
character array

declaring 26
close 107
close and cursors 58
close cursor 58
COBOL

veneer layer 35
COBOL veneer layer

and conversions 37
colons

and host variables 27
and indicator variables 30

command line options, precompiler 7
comments

in Embedded SQL 14
commit 47
commit transaction 65, 108
commit work 64
compatibility 3, 50

backward 5
complex definition 26
compute clause

disallowed 163
connect 41

examples 43
multiple connections 44
using both COBOL and C 41

connections
closing 112, 135
default 112
multiple 44
named 112
naming 45

conversion, datatype 4
converting datatypes 37
COPY files 153, 154
207

Index
current row 53, 56
cursor position 56
cursors 53, 57, 58, 117, 119, 121, 156, 158

and scoping 53
closing 58, 107
declaring 54
deleting current row 57
deleting rows 125
dynamic 116, 159
example 58
opening 55
result sets 55
retrieving data 55
updating current row 57
updating rows 167

D
data declarations 26
Data Definition Language (DDL) 69
data definitions 65
data items

elementary and group 35
Data Manipulation Language (DML) 50, 69
databases

accessing 41
connecting to SQL Server 41
pubs2 5
selecting rows 162

datatype conversions 4
input variables 39
result variables 38

datatypes 35
COBOL and SQL Server 35, 37
converting 37

DDL (Data Definition Language) 69
ddl in tran 107
deallocate descriptor 114
deallocate prepare 116
declarations

data 26
declare cursor 54, 55, 62, 117, 119, 121

dynamic 117
static 119
stored procedure 121
208
declare sections 25
multiple 26

default server
connecting to 42

default transaction mode 63
delete 57

positioned cursor 123
searched 125
with cursors 57

describe input 127
describe output 130
descriptor area 69
directories

and searches 65
disconnect 46, 135
DML (Data Manipulation Language) 50, 69
documentation

online 59
double-dimensional array 26
DSQUERY environment variable 112
dynamic binding 67
dynamic parameter markers 68, 71, 143
dynamic SQL 67, 116, 143, 145, 159

method 1 69, 70
method 2 70, 73
method 3 73, 77
method 4 77, 83
prepare and execute 143, 161
prepare and fetch 161

E
elementary data items 35
Embedded SQL ix, 1, 2

constructs 16
definition 1

Embedded SQL statements
syntax-checking 99

environment variables 112
SYBASE 112

error
failure to detect example 100
testing 4

error handler
writing 98
Open Client

Index
error-handling
warning-handling routines 98

errors
SQLSTATE 24
testing for 94
trapping 95

host variables
using 27

examples 5
exec 137
exec sql 139
executable

building 6
execute 141
execute immediate 69, 70, 143

example 70
extended transaction 65
external configuration file 175

F
features and enhancements 2, 3
fetch 55, 145

and host variables 28
within a loop 56

fetch into 33
files

directory 66
isql 62
listing 96
multiple 7
precompiler-generated 7

FIPS flagger 4

G
get descriptor 148
get diagnostics 63, 98, 150

batches 63
group data items 36
group element referencing 8
Embedded SQL/COBOL Programmer’s Guide
H
HA failover 2
handlers

error and warning 98
help

sp_syntax xiii
host input variables 27
host output variables 29
host result variables 28
host status variables 28
host variables 2, 30, 32

and datatypes 39
assigning data to 55
character string 32
declaring 25, 26
in fetch 56
naming 32
using 27
with indicator variables, using 29

host variables with indicator variables
using 30

I
identifiers

in Embedded SQL 15
include 65, 153, 154

filename 151
include file directory 66
include sqlca 153, 154
indicator arrays 51
indicator variables

and colons 30
declaring 25, 26
using 29
with host input variables 31
with host output and result variables 30

input variables
converting datatypes for 39
host 27

interactive SQL 62
interfaces file 112
into 50, 60
invalid statements

print 50
209

Index
raiserror 50
readtext 50
writetext 50

is global 33
isql file 7, 62

K
keywords

in Embedded SQL 15

L
label

variable 41
labelname

variable 42
labels 171
labelvalue

variable 43
listing file 7
localization 3
logical names 112

M
markers

dynamic parameter 157, 161
markers, dynamic parameter 143
multiple arrays 33
multiple connections 44
multiple source files 7
multiple SQLCAs 20

N
named connections 112
nesting

stored procedure 61
null

input value 31
null password
210
specifying 112

O
online sample programs 59
open 55, 156

dynamic cursor 156
static cursor 158

output 60
output file 62

P
parse 7, 15, 100
password 41

null specifying 112
placement

Embedded SQL statements 14
precompiler

command line options 7
detected errors 99
diagnostics 99
functionality 7

prepare 71, 159
prepare and execute 71, 73, 143

example 73
prepare and fetch

example 76
procedure_name 60
product family x
program

creating 6
pubs2 database 5

Q
question mark

and dynamic parameter markers 68
quotation marks

in Embedded SQL 4, 15
Open Client

Index
R
related documents x
reserved words

in Embedded SQL 15
result set

cursor 55
result variables

converting datatypes for 38
host 28

return code 19, 22
SQLCODE 22
testing 4

return values
SQLCODE 94

rollback
and SQL Server triggers 66
in a trigger 63
work 64

rollback transaction 161
routines

error- and warning-handling 98
rows

current 56
deleting 123

rules 100

S
sample programs

online 59
scoping 15, 20, 33

and cursors 53
cursor 53
rules 15
SQLCA, SQLCODE, and SQLSTATE 19

select 16, 33, 62, 162
and host variables 28
cursors 117, 119, 121, 145
returning multiple rows 53, 57
returning single rows 51
syntax 51

servers
B1 Secure 43

set connection 43, 164
set descriptor 165
Embedded SQL/COBOL Programmer’s Guide
source files 65
multiple 7

sp_syntax xiii
SQL Server

connecting to 41
multiple connections 44

SQLCA
and include 65
declaring 20
declaring multiple 20

SQLCA variables 20
accessing 21
setting 19
SQL Server-related 21

SQLCODE
and multiple row selects 50
and whenever 57
as a standalone 22
return values 94
values 23
within SQLCA 22

sqlcode 94, 95
fetch 147

SQLCODE variables
setting 19

SQLSTATE
codes and error messages 24
using 23

SQLSTATE variables
setting 19

SQLWARN 94
statement batches 16
statement labels

whenever 171
statements

dynamic SQL 79
Embedded SQL 13, 14

status information 19
status variables

host 28
status_variable 60
stored procedures 2, 4, 49, 59, 62

and parameters 59
and return status variables 59
executing 59
types of 59
211

Index
SYBASE environment variable 112
syntax checking

Embedded SQL statements 99
syntax conventions

document xi, xii
system variables 19, 25

T
tables

deleting rows 123
target file 7
transaction mode

ANSI 64
default 63
Transact-SQL 63

transactions 63, 108
ANSI 63
extended 65
ISO 63
restricted statements 65
rolling back 161

Transact-SQL
invalid keywords in Embedded SQL 4, 50
keywords in Embedded SQL 15
support 4
using with Embedded SQL 49

Transact-SQL statements 123, 137, 162, 167
triggers 4, 63, 100
truncation 37

U
update 57, 167

protocol 57
with cursors 57

user 41

V
variables

declaring 25
examples in declare section 25, 26
212
host 4, 25, 32
host result 28
host status 28
indicator 25
input 25
input host 27
picture, usage clauses 26
precompiler 15
system 19, 25

veneer layer 35
and conversions 37

W
warning handler

writing 98
warnings

error-handling routines 98
testing for 94, 95

whenever
canceling 171
scope 171
statement 95, 96
testing 95

whenever action
call 97
continue 97
goto 97
perform 97, 98

whenever statement
 22

WORKING-STORAGE SECTION 20
Open Client

	Embedded SQL™/COBOL Programmer’s Guide
	Open Client™
	APPENDIX A Precompiler Warning and Error Messages 185

	About This Book
	Audience
	How to use this book
	Other sources of information
	Sybase certifications on the Web
	Finding the latest information on product certifications
	Creating a personalized view of the Sybase Web site (including support pages)
	Sybase EBFs and software updates
	Finding the latest information on EBFs and software updates
	Conventions
	Online help
	If you need help

	CHAPTER 1 Introduction
	Embedded SQL overview
	Embedded SQL features
	New features and enhancements
	HA failover
	Precompiler compatibility
	Localization
	FIPS flagger

	Transact-SQL support in Embedded SQL
	Getting started
	Using the examples
	Backward compatibility

	Creating and running an Embedded SQL program
	How the precompiler processes your applications
	Multiple Embedded SQL source files
	Precompiler-generated files
	Group element referencing

	CHAPTER 2 General Information
	Five tasks of an Embedded SQL program
	Simplified Embedded SQL program

	General rules for Embedded SQL
	Statement placement
	Comments
	Identifiers
	Quotation marks
	Reserved words
	Variable naming conventions
	Scoping rules
	Statement batches

	Embedded SQL constructs

	CHAPTER 3 Communicating with Adaptive Server
	Scoping rules: SQLCA, SQLCODE, and SQLSTATE
	Declaring SQLCA
	Multiple SQLCAs
	SQLCA variables
	Accessing SQLCA variables
	SQLCODE within SQLCA

	Declaring SQLCODE as a standalone area
	Using SQLSTATE
	Obtaining SQLSTATE codes and error messages

	CHAPTER 4 Using Variables
	Declaring variables
	Declaring a character array

	Using host variables
	Host input variables
	Host result variables
	Host status variables
	Host output variables

	Using indicator variables
	Indicator variables and server restrictions
	Using host variables with indicator variables
	Using indicator variables with host output and result variables
	Using indicator variables with host input variables

	Host variable conventions

	Using arrays
	Multiple arrays

	Scoping rules
	Datatypes
	Elementary data items
	Group data items
	Special data items
	Comparing COBOL and Adaptive Server datatypes
	Converting datatypes
	Converting datatypes for result variables
	Converting datatypes for input variables

	CHAPTER 5 Connecting to Adaptive Server
	Connecting to a server
	user
	password
	connection_name
	server
	labelname
	labelvalue
	connect example

	Changing the current connection
	Establishing multiple connections
	Naming a connection
	Invalid statements with the at clause

	Using Adaptive Server connections

	Disconnecting from a server

	CHAPTER 6 Using Transact-SQL Statements
	Transact-SQL statements in Embedded SQL
	exec sql syntax
	Invalid statements
	Transact-SQL statements that differ in Embedded SQL

	Selecting rows
	Selecting one row
	Selecting multiple rows through arrays
	select into arrays
	Indicator arrays
	fetch into: batch arrays
	Cursors and arrays
	Using cursors
	Cursor scoping rules
	Declaring cursors
	Example: Declaring a cursor
	Opening cursors
	Fetching data
	Using cursors to update and delete rows
	Closing cursors
	Cursor example

	Using stored procedures
	User-defined stored procedures
	Precompiler-generated stored procedures

	Grouping statements
	Grouping statements by batches
	Grouping statements by transactions
	Transact-SQL transaction mode
	Default ANSI/ISO transaction mode
	Extended transactions

	Including files and directories

	CHAPTER 7 Using Dynamic SQL
	When to use dynamic SQL
	Dynamic SQL protocol
	Method 1: Using execute immediate
	Method 1 examples

	Method 2: Using prepare and execute
	prepare
	execute
	Method 2 example

	Method 3: Using prepare and fetch with a cursor
	prepare
	declare
	open
	fetch and close
	Method 3 example

	Method 4: Using prepare and fetch with system descriptors
	Method 4 dynamic descriptors
	Dynamic descriptor statements
	About SQL descriptors

	Method 4 example
	About SQLDAs
	Using SYBSETSQLDA
	Syntax
	Returns

	Method 4 example using SQLDAs

	CHAPTER 8 Handling Errors
	Testing for errors
	Using SQLCODE

	Testing for warning conditions
	Trapping errors with the whenever statement
	whenever testing conditions
	whenever actions

	Using get diagnostics
	Writing routines to handle warnings and errors
	Precompiler-detected errors

	CHAPTER 9 Embedded SQL Statements: Reference Pages
	allocate descriptor
	begin declare section
	begin transaction
	close
	commit
	connect
	deallocate cursor
	deallocate descriptor
	deallocate prepare
	declare cursor (dynamic)
	declare cursor (static)
	declare cursor (stored procedure)
	delete (positioned cursor)
	delete (searched)
	describe input (SQL descriptor)
	describe input (SQLDA)
	describe output (SQL descriptor)
	describe output (SQLDA)
	disconnect
	exec
	exec sql
	execute
	execute immediate
	exit
	fetch
	get descriptor
	get diagnostics
	include “filename”
	include sqlca
	include sqlda
	initialize_application
	open (dynamic cursor)
	open (static cursor)
	prepare
	rollback
	select
	set connection
	set descriptor
	update
	whenever

	CHAPTER 10 Open Client/Server Configuration File
	Purpose of the Open Client/Server configuration file
	Accessing the configuration functionality
	Default settings
	Syntax for the Open Client/Server configuration file
	Syntax

	Sample programs
	Embedded SQL/COBOL sample programs
	Embedded SQL program version for use with the -x option
	Same Embedded SQL program with the -e option

	APPENDIX A Precompiler Warning and Error Messages
	Understanding the codes in the tables
	Glossary
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

