SYBASE

Common Libraries Reference
Manual

Open Client™ and Open Server™

12.5.1

DOCUMENT ID: DC32850-01-1251-01
LAST REVISED: September 2003

Copyright © 1989-2003 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein isfurnished under alicense agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with aU.S. license agreement may contact Customer Fulfillment viathe above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software rel ease dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture,
Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server
Enterprise Replication, Adaptive Server Everywhere, Adaptive Server 1Q, Adaptive Warehouse, Anywhere Studio, Application
Manager, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Trandlator, APT-Library, AvantGo,
AvantGo Application Alerts, AvantGo Mobile Delivery, AvantGo Mobile Document Viewer, AvantGo Mobile | nspection, AvantGo
Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon Application Server,
AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BizTracker, ClearConnect, Client-Library,
Client Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer,
DataWindow, DB-Library, dbQueue, Devel opers Workbench, Direct Connect Anywhere, DirectConnect, Distribution Director, e ADK,
E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway, ECMAP, ECRTP, eFulfillment Accel erator, Embedded SQL, EMS, Enterprise
Application Studio, Enterprise Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server
Manager, Enterprise Work Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA,
Financial Fusion, Financia Fusion Server, Gateway Manager, GlobalFIX, ImpactNow, |ndustry Warehouse Studio, InfoMaker,
Information Anywhere, Information Everywhere, | nformationConnect, InternetBuilder, i Script, Jaguar CTS, jConnect for JDBC, Mail
Anywhere Studio, MainframeConnect, Maintenance Express, Manage Anywhere Studio, M-Business Channel, M-Business Network,
M-Business Server, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, My AvantGo, My AvantGo Media Channel,
My AvantGo Mobile Marketing, MySupport, Net-Gateway, Net-Library, New Era of Networks, ObjectConnect, ObjectCycle,
OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open
Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC
Net Library, PocketBuilder, Pocket PowerBuilder, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class
Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft, PowerStage,
PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst,
Rapport, Report Workbench, Report-Execute, Replication Agent, Replication Driver, Replication Server, Replication Server Manager,
Replication Toolkit, Resource Manager, RW-DisplayLib, S-Designor, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian,
SKILS, smart.partners, smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL
Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART,
SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, SW.I.ET.
Message Format Libraries, Sybase Central, Sybase Client/Server Interfaces, Sybase Financial Server, Sybase Gateways, Sybase MPP,
Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financial,
SyberAssist, SyBooks, System 10, System 11, System X| (logo), SystemTools, Tabular Data Stream, TradeForce, Transact-SQL,
Trand ation Toolkit, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual
Components, Visual Speller, VisuaWriter, VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse
WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup
SQL Server, XA-Library, XA-Server and XP Server are trademarks of Sybase, Inc. 03/03

Unicode and the Unicode L ogo are registered trademarks of Unicode, Inc.
All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

F N oo 10 B I gV =T o Yo SO vii
CHAPTER 1 INtroducing CS-Librarycccccvveeieiiies e 1
CS-Library OVEIVIEWcc.uviiiiiie ettt a e 1
USING CS-LIDIary ..ocoieeiiiiiiiiie ettt a e 2
Open Client and Open Server applicationsccccceveeenininns 2

A standalone CS-Library applicationcccccceeeniiiiiiineenennnn, 2
SHUCTUMNES ..ottt 3
The CS_CONTEXT StrUCIUIEcceevvvvviiiiiieeeeeeeeeeeeeeeeeeeeeee e, 3
Datatypes, constants, and CONVENLIONSooovvviieeieeeniiiiiiieeneeen 4
Error handling.......ooooiviiiie i 4
Two methods of handling messages..........cccccccvveeeviiciiiieeeeeenn, 4
Using a callback to handle messages............occvvvveeeeeeiiivvvnnenn. 5
Inline message handling.........cccccoooeiiiiiieee e 7
CHAPTER 2 CS-Library ROULINESovvvieeeiiiic e r e 9
CS-Library roUtiNeSoccuviiiiiee et e 9
CS_CAIC .uvviiiee ettt e 10
Lot o3 1] o PP PRSPPI 12
CS_CONTIG 1eriiiiiiiiiet et e e aane 13
Lot ST oo] 1Y 1110 1 S PSPPSR 23
(ot T o0 1)Y= ¢ S SUPPPPPTN 25
Lot ST o1 oG 11 [TP PPPPPPPN 32
CS_CEX_AFOP ettt ettt et e e st ae e e e e e e s ennee 35
CS_CEX_gloBal ... 37
Lot o 1= To PR PPPRPRN 38
CS_ AL CraCK ..ciioiiiiiiiie ettt e e e e e e e eane 43
CS_ At INTO .iiiii i 45
CS_10C_AllOC.. ... it 51
Lot (o o o [o] o PP PRSRPR 53
CS_lOCAIE ..oeee e e 53
CS_MANAJE_CONVEITuuveeeeereeeeeeeeeeenennneeeseenessssnsnssnnsssssssnnnsnssssnnnnnns 60
CS_ODJECTS 1ottt 66

Common Libraries Reference Manual iii

Contents

CHAPTER 3

CHAPTER 4

CS_Prop_SSl_10Calid.........eeviiiiiiiiiiiiiee i 72
(ol SRS T=] A 0] 1Y/ o SRR 72
CS_SEtNUIl .. 76
CS_SHBUII ... 78
(XS] 1 (0] 1 1] o PRSP PPPPPRPPP 81
CS M it e 83
cs_validate _Chcoooiii 85
CS_WIll_CONVEIT....ciiiiiiiiieee et 86
BUIK-LIDIAIY ..ot 91
Overview of BUlk-Librarycccovviieiiiiiiiie e 91
Client-side and server-side routines............ccccvevvvveeeinieeennnne 91
Header fileS ... 92
Linking with Bulk-Librarycccoooiiiiiiiiiiii e, 92
The CS_BLKDESC Structureccoooeeieeiiiiiieeeeeee, 93
Bulk-Library client programmingcccvveeieeniniiiiieeneee i 93
Bulk-Copy-INn OperationS...........oocvvviiiieeiiiiiiiiiicee e 94
Bulk-Copy-Out OperationSccccvvvvrreeeeeesiiiiiiieeeeeeessivveeeens 98
Copying to and from Secure SQL Server.........ccovvvevveeeiiiinnns 100
Bulk-Library gateway programmingccccceeeeeeeniiivvreeeeeessiiinnns 100
Inside the SRV_LANGUAGE event handler................cc....... 102
Inside the SRV_BULK event handler............ccccccovvivvieeneenn. 103
EXAMPIE . 104
Bulk-Library ROULINESuuiiiiiiiiiiiiiiiiiieeee e 105
List of Bulk-Library routines..........ccccoovviiiiiiiiieeniiniiieeiee e 105
BIK @llOC ... 106
BIK_DING ... 109
bIk_colval ... 120
BIK_defAUIL.......coiiiiiie e 122
BIK_deSCriDe ... 123
o] 1o (o] o = PP URRPP 126
o] Qo [(o] « SR PRRPP 129
o] 12 o =Y (o U SRPRR 130
o] 10 =Y 1 L2 P ERRR 132
0] 1 T SRR 134
BIK PrOPS .. ettt 136
BIK rowalloc ... 141
o] LG (o)1 o [o] o R T PO PPRPPPR TP 142
BIK TOWXIEI ... 143
blk_rowxfer mult............ccc s 146
BIK SENAIOW ... 151
BIK_SENAtEXt ... 152

Open Client and Open Server

Contents

BIK _SIVINIT ... 154
0] L (=) 4 0= PSR 155
1T L= PRSI i

Common Libraries Reference Manual \%

Contents

Vi

Open Client and Open Server

About This Book

This book, the Open Client and Open Server Common Libraries
Reference Manual, contains reference information regarding:

e TheC version of CS-Library, which contains utility routinesthat are
useful to both Open Client™ Client-Library™ and Open Server™
Server-Library applications.

e TheCversion of Bulk-Library, which providesbulk copy routinesfor
Client-Library and Server-Library applications. Bulk copy allows
high-speed transfer of data between a database table and program
variables.

Note Bulk-Library was referred to in previous Open Client/Server™
releases as “the Bulk Copy routines.”

Audience This manual is designed to serve as a reference manual for programmers
who are writing Client-Library or Open Server applications. It iswritten
for application programmers who are familiar with the C programming
language.

How to use this book When writing an Open Client or Open Server application, use the
Common Libraries Reference Manual asasource of referenceinformation
for CS-Library and Bulk-Library routines.

e Chapter 1, “Introducing CS-Library” containsabrief introduction to
CS-Library.

e Chapter 2, “CS-Library Routines” contains specific information
about each CS-Library routine, such as what parameters the routine
takes and what it returns.

e Chapter 3, “Bulk-Library” contains a brief introduction to Bulk-
Library.

e Chapter 4, “Bulk-Library Routines’ contains specific information on
each Bulk-Library routine.

Common Libraries Reference Manual Vii

Related documents

Other sources of
information

Viii

The Open Client Client-Library Programmer’s Guide contains
information on how to design and implement Client-Library programs.

The Open Client Client-Library Reference Manual contains reference
information for Client-Library.

The Open Server Server-Library Reference Manual contains reference
information for Server-Library.

The Open Client/Server Programmer’s Supplement contains platform-
specific material needed by devel opers who use the Open Client/Server
products. This document includes information about:

e Compiling and linking an application

e The example programs that are included online with Open
Client/Server products

* Routines that have platform-specific behavior

The Open Client/Server Configuration Guide containsinformation needed
by system administrators who configure the Open Client/Server
installation environment. This document includes information about:

» Platform-specific localization mechanisms
e Configuring Sybase drivers for network services
» Theinterfacesfile and other configuration files

The Open Client/Server International Developer’s Guide contains
information needed by programmer’s who develop international
applications with Client-Library. This document includes:

e A description of the localization mechanism used by the Open Client
and Open Server libraries

e Guidelinesfor developing international applications with the Open
Client and Open Server libraries

Use the Sybase Getting Started CD, the Sybase Technical Library CD and the
Technical Library Product ManualsWeb site to learn more about your product:

The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the Technical Library CD. It isincluded with
your software. To read or print documents on the Getting Started CD you
need Adobe Acrobat Reader (downloadable at no charge from the Adobe
Web site, using alink provided on the CD).

Open Client and Open Server

About This Book

Sybasecertifications
on the Web

Sybase EBFs and
software updates

The Technical Library CD contains product manuals and isincluded with
your software. The DynaText reader (included on the Technical Library
CD) allows you to access technical information about your product in an
easy-to-use format.

Refer to the Technical Library Installation Guide in your documentation
package for instructions on installing and starting the Technical Library.

The Technical Library Product Manuals Web siteisan HTML version of
the Technical Library CD that you can access using a standard Web
browser. In addition to product manuals, you will find linksto
EBFs/Updates, Technical Documents, Case Management, Solved Cases,
newsgroups, and the Sybase Developer Network.

To access the Technical Library Product Manuals Web site, go to Product
Manuals at http://www.sybase.com/support/manuals/.

Technical documentation at the Sybase Web site is updated frequently.

Finding the latest information on product certifications

1

a A W N

Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

Select Products from the navigation bar on the left.

Select a product name from the product list and click Go.

Select the Certification Report filter, specify atime frame, and click Go.
Click a Certification Report title to display the report.

Creating a personalized view of the Sybase Web site (including support
pages)

Set up aMySybase profile. MySybaseisafree servicethat allowsyouto create
apersonalized view of Sybase Web pages.

1

2

Point your Web browser to Technical Documents at
http://lwww.sybase.com/support/techdocs/.

Click MySybase and create a MySybase profile.

Finding the latest information on EBFs and software updates

1

Point your Web browser to the Sybase Support Page at
http://lwww.sybase.com/support.

Common Libraries Reference Manual iX

Conventions

If you need help

2 Select EBFs/Updates. Enter user name and password information, if
prompted (for existing Web accounts) or create a new account (afree
service).

Select a product.
4 Specify atime frame and click Go.

Click the Infoicon to display the EBF/Update report, or click the product
description to download the software.

CS-Library routine syntax is show in a bold, monospace font:
CS_RETCODE cs_ctx_al l oc(version, ctx_pointer)

Program text and computer output are shown in a monospace font:
cs_ctx_all oc(CS_VERSI ON_100, &context);

Structure names and symbolic constants appear in capital letters (to match their
definitions in the csstypes.h header file):

CS_CONTEXT, CS_EXTRA | NF

Routine names and Transact_SQL ® keywords are written in a narrow, bold
font:

cs_ctx_alloc, the select statenent

Code fragments in this book are taken from the online example programs that
are included with Client-Library and Server-Library.

The example programs and the code fragmentsin thisbook use EX_*, Ex_*,
and ex_* #defines, variables, and routines. These #defines, variables, and
routines are part of the example programs, but are not a part of CS-Library,
Client-Library, or Server-Library.

Each Sybaseinstallation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve aproblem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

Open Client and Open Server

CHAPTER 1 Introducing CS-Library

Topic Page
CS-Library overview 1
Using CS-Library 2
Structures 3
Error handling 4

CS-Library overview

CS-Library provides utility routines for use in application program
development to support:

e Datatype conversion

e Arithmetic operations

e Character-set conversion
e Datetime operations

e Sort-order operations

e Localized error messages

CS-Library also includes routines to all ocate and deall ocate CS-Library
structures.

Although you can write a standalone CS-Library application,
CS-Library’s primary function is to provide common utility routines to
Client-Library and Server-Library applications.

Because Client-Library and Server-Library programs require a context
structure, which can only be allocated using CS-Library, al Client-
Library and Server-Library programsinclude at least two callsto CS-
Library—oneto allocateaCS CONTEXT and oneto dedllocate it.

Common Libraries Reference Manual

Using CS-Library

A context structure contains information about an application’s runtime
environment, or “context.” For more information about the CS_ CONTEXT
structure, see “ Structures’ on page 3.

Using CS-Library

You can call CS-Library routines either from within aClient-Library or Server-
Library application, or from within a standalone CS-Library application.

Open Client and Open Server applications

Most typically, CS-Library routines are called from within a Client-Library or
Server-Library application.

Because the Client-Library and Server-Library header files ctpublic.h and
ospublic.h include the CS-Library header file cspublic.h, Client-Library or
Server-Library applications do not have to include an additional header fileto
make CS-Library calls.

After calling cs_ctx_alloc to allocate a CS_CONTEXT, a Client-Library or
Server-Library application isfreeto call any other CS-Library routine.

A standalone CS-Library application

It is possibleto write a standalone CS-Library application, although thisis not
atypical use of CS-Library. For example, astandal one application might make
CS-Library callsto use the Open Client/Server datatypes and datatype
conversion routines.

Thistype of application needs to include the standard CS-Library header file,
cspublic.h.

The Open Client/Server Programmer’s Supplement includes compiling and
linking instructions for CS-Library on your platform.

2 Open Client and Open Server

CHAPTER 1 Introducing CS-Library

Structures

CS-Library makes use of severa structures, including the CS_CONTEXT
control structure, the CS_DATAFMT data format structure, and the
CS _LOCALE locae information structure.

The CS_CONTEXT structure is a hidden structure whose internals are not
available to an application. The CS_CONTEXT is discussed briefly in the
following section.

The CS_CONTEXT structure is also required for Client-Library and Server-
Library applications.

* For more information about how Client-Library usesthe CS_ CONTEXT
structure, see the Open Client Client-Library/C Reference Manual or the
Open Client Client-Library/C Programmer’s Guide.

« For moreinformation about how Server-Library usesthe CS_ CONTEXT
structure, see the Open Server Server-Library/C Reference Manual.

The CS_DATAFMT and CS_L OCALE structures are documented in Chapter
2, “Topics,” in the Open Client Client-Library/C Reference Manual.

The CS_CONTEXT structure

CS-Library defines asingle control structure, the CS_ CONTEXT.

A CS_CONTEXT structure stores configuration information that describes a
particular programming context. An application must allocate a
CS_CONTEXT structure before calling any other Client-Library, Server-
Library, or CS-Library routine.

Anapplication allocatesaCS_CONTEXT structure by calling cs_ctx_alloc or
cs_ctx_global.

An application can customize aCS_CONTEXT by changing the values of
context properties. The following routines change the values of context
properties:

« TheCS-Library routine cs_config (after the context has been all ocated)

* TheClient-Library routine ct_config (after the Client-Library routine
ct_init has been called for the context)

e The Server-Library routine srv_props (after calling the Server-Library
routine srv_version for the context)

Common Libraries Reference Manual 3

Datatypes, constants, and conventions

An application should deallocate all existing context structures before exiting.
An application deallocatesa CS_CONTEXT structure by calling cs_ctx_drop.

Datatypes, constants, and conventions

CS-Library uses the same datatypes, constants, and conventions as Client-
Library and Server-Library and can be found in the following documents:

» The"Using Open Client/Server Datatypes’ chapter in the Open Client
Client-Library/C Programmer’s Guide

» The“Types’ sectionin the Open Client Client-Library/C Reference
Manual

* The"Types’ sectionin the Open Server Server-Library/C Reference
Manual

Error handling

All CS-Library routines return success or failure indications. Sybase strongly
recommends that applications check these return codes.

In addition, CS-Library routines can generate CS-Library messages, which
range in severity from informational messages to fatal errors. Applications
should take steps to receive and handl e these messages. |n most cases, when a
CS-Library routine fails, CS-Library generates a message that describes the
reason for the failure.

Two methods of handling messages
An application can handle CS-Library messagesin one of two ways:
e By instaling acallback routine to handle messages
e Inline, using the CS-Library routine cs_diag
The callback method has the advantages of:

e Gracefully handling unexpected errors

4 Open Client and Open Server

CHAPTER 1 Introducing CS-Library

CS-Library automatically calls the appropriate message callback routine
whenever amessage is generated, so an application will not fail to trap
unexpected errors. An application using only inline error-handling logic
may not successfully trap errors that have not been anticipated.

e Centralizing message-handling code

Since dl errors are handled in the callback, thereis no need to add inline
message-handling code after each CS-Library call.

Inline message handling has the advantage of allowing an application to check
for messages at particular times. For example, an application that makes a
sequence of calls to establish a connection might wait until the connection-
related call sequence is complete before checking for messages.

Most applications use the callback method to handle messages.

An application indicateswhich method it will usefor aparticular context either
by calling cs_config to install a message callback routine or by calling cs_diag
toinitialize inline message handling.

An application can switch back and forth between the inline method and the
callback method:

« Installing a message callback routine turns off inline message handling.
Any saved messages are discarded.

e Likewise, cdling cs_diag to initialize inline message handling “de-
installs’ the application’s CS-Library message callback. As aresult, the
application’sfirst CS_GET call to cs_diag will retrieve awarning message
to this effect.

If amessage callback is not installed and inline message handling is not
enabled, CS-Library discards message information.

Using a callback to handle messages
To handle CS-Library errors with a callback function, your application must:

» Declare the callback function as described in “ Defining a CS-Library
message callback” on page 6.

« Instal the callback error handler by calling cs_config to set the
CS_MESSAGE_CB property. For adetailed description, see“ CS-Library
M essage Callback property” on page 20.

Common Libraries Reference Manual 5

Error handling

Defining a CS-Library message callback
A CS-Library message callback is defined as follows:

CS_INT cslibmsg_cb(context, message)

CS_CONTEXT *context;
CS_CLIENTMSG *message;

where;

context isapointer to the CS_CONTEXT structure for which the message
occurred.
message isapointer toaCS_CLIENTMSG structure containing message
information. For information on the CS_CLIENTMSG structure, see the
“CS_CLIENTMSG Structure” topics page in the Open Client Client-
Library/C Reference Manual. Note the following similarities with Client-
Library:
» Error severities for CS-Library errors have the same meaning as for
Client-Library errors.
» Themessage->msgnumber fieldisabit-packed CS_INT. Thisnumber
is unpacked with the macros CS_LAYER, CS _ORIGIN,
CS NUMBER, and CS_SEVERITY. This method is the same for
Client-Library messages.
Note that message can have a new value each time the message callback
iscalled.

A CS-Library message callback must return either:

* CS_SUCCEED, toinstruct CS-Library to continue any processing that is
currently occurring on this context, or

* CS FAIL, toinstruct CS-Library to terminate any processing that is
currently occurring on this context.

CS-Library message callback example
/*

** cslib_err_handler() - CS-Library error handler.
* %

*x This routine is the CS-Library error handler used by this
*x application. It is called by CS-Library whenever an error
*x occurs. Here, we sinply print the error and return.

* %

** Paraneters:

** cont ext
*x A pointer to the context handle for context
*x on which the error occurred.

6 Open Client and Open Server

CHAPTER 1 Introducing CS-Library
** error_nsg
** The structure containing informati on about the
** error.
* *
** Returns:
** CS_SUCCEED

*/

CS_RETCODE CS_PUBLI C cslib_err_handl er(context, errnsg)
CS_CONTEXT *cont ext ;
CS_CLI ENTMSG *errnsg;

{

/*
** Print the error details.
*/
fprintf(stdout, "CS-Library error: “);
fprintf(stdout, “LAYER = (% d) ORIG N = (%d)
CS_LAYER(err nsg- >nsgnunber),
CS_ORI G N(errnmsg->msgnunber));
fprintf(stdout, "SEVERITY = (% d) NUMBER = (% d)\n",
CS_SEVERI TY(er r msg- >nsgnunber),
CS_NUMBER(er r nsg- >nsgnunber));
fprintf(stdout, "\t%\n", errnsg->nsgstring);
/*
** Print any operating systemerror information.
*/
if(errnmsg->osstringlen > 0)
{
fprintf(stdout, "CS-Library OS error %d - %.\n",
errnsg- >osnunber, errmsg->0sstring);

}

/*

** Al done.

*/

return (CS_SUCCEED);

Inline message handling
An application calls cs_diag to initialize inline CS-Library message handling

for a context.

An application that is retrieving messages into SQLCA, SQLCODE, or
SQLSTATE must set the CS-Library property CS EXTRA_INFtoCS _TRUE.

Common Libraries Reference Manual

Error handling

For information on theinline method of handling CS-Library messages, seethe
reference page for cs_diag in Chapter 2, “CS-Library Routines.”

8 Open Client and Open Server

CHAPTER 2 CS-Library Routines

This chapter contains a reference page for each CS-Library routine.

CS-Library routines

The following cotains alist of the CS-Library routines and a brief
description. I

Routine Description

cs calc Perform an arithmetic operation on two operands.

cs_cmp Compare two data values.

cs _config Set or retrieve CS-Library properties.

cs_conv_mult Retrieve the conversion multiplier for converting
character data from one character set to another.

cs_convert Convert adatavalue from one datatype, locale, or format
to another datatype, locale, or format.

cs ctx_alloc AllocateaCS_CONTEXT structure.

cs _ctx_drop Deallocate aCS_CONTEXT structure.

cs _ctx_global Allocate or returnaCS_CONTEXT structure.

cs diag Manage inline error handling.

cs dt_crack Convert amachine-readable datetime value into auser- ||
accessible format.

cs dt_info Set or retrieve language-specific datetime information. |

¢s loc_aloc Allocate aCS_LOCALE structure.

¢s loc_drop Deallocate aCS_LOCALE structure.

cs locale LoadaCS_LOCALE structurewith localization valuesor
retrieve the locale name previously used to load a
CS_LOCALE structure.

CS_manage_convert Install or retrieve a user-defined character set conversion
routine.

Common Libraries Reference Manual 9

cs_calc

Routine Description

cs objects Save, retrieve, or clear objects and data associated with
them.

cs set_convert Install or retrieve a user-defined conversion routine.

cs_setnull Define anull substitution value to be used when binding
or converting NULL data

cs strbuild Construct native language message strings.

cs_stremp Compare two strings using a specified sort order.

cs time Retrieve the current time.

cs will_convert Indicate whether a specific datatype conversion is
availablein the Client/Server libraries.

cs_calc
Description Performs an arithmetic operation on two operands.
Syntax CS_RETCODE cs_calc(context, op, datatype, varl,
var2, dest)
CS_CONTEXT *context;
CS_INT op;
CS_INT datatype;
CS_VOID *varl;
CS_VOID *var2;
CS_VOID *dest;
Parameters context
A pointer toaCS _CONTEXT structure.
op
One of the following symbolic values:
Value of op Arithmetic operation *dest Value on return
CS ADD Addition varl +var2
CS SuB Subtraction varl - var2
CS MULT Multiplication varl * var2
CS DIV Division varl var2

10 Open Client and Open Server

CHAPTER 2 CS-Library Routines

Return value

Usage

See also

datatype
Oneof thefollowing symbolic values, toindicate the datatype of varl, var2,
and dest:

Value of datatype Indicates this datatype
CS DECIMAL_TYPE CS DECIMAL

CS MONEY _TYPE CS MONEY

CS MONEY4 TYPE CS MONEY4

CS NUMERIC_TYPE CS _NUMERIC

*varl, *var2, and *dest must all be the same datatype asindicated by the
value of datatype.

varl
A pointer to the first operand for the arithmetic operation.

var2
A pointer to the second operand for the arithmetic operation.

dest
A pointer to adestination buffer. If cs_calc returns CS_FAIL, *dest is not
modified.

cs_calc can return the following values:

Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

Common reasons for acs_calc failure include:
e Aninvalid parameter

e Attempted division by O

» Destination overflow

cs_calc generates a CS-Library error message for most failure conditions. For
more information on CS-Library error handling, see“Error handling” on page
4.

e varl, var2, and dest must have the same datatype, as indicated by the
datatype parameter.

¢ |Incaseof error, *dest is not modified.

cs_convert

Common Libraries Reference Manual 11

cs_calc

cs_cmp
Description

Syntax

Parameters

Return value

12

Compare two data values.

CS_RETCODE cs_cmp(context, datatype, varl, var2,

result)
CS_CONTEXT *context;
CS_INT datatype;
CS_VOID *varl;
CS_VOID *varz;
CS_INT *result;
context

A pointer toaCS_CONTEXT structure.

datatype

Oneof following symbolic values, to indicatethe datatype of var1 and var 2:

Value of datatype

Indicates this datatype

CS DATE_TYPE CS DATE
CS TIME_TYPE CS TIME

CS DATETIME_TYPE CS DATETIME
CS DATETIME4 TYPE CS DATETIME4
CS DECIMAL_TYPE CS DECIMAL
CS MONEY_TYPE CS MONEY
CS MONEY4 TYPE CS MONEY4
CS NUMERIC TYPE CS NUMERIC

varl

A pointer to the first operand for the comparison.

var2

A pointer to the second operand for the comparison.

result

On successful return, *result is set to indicate the result of the comparison:

Value of *result

Indicates

-1 varl islessthan var2.
0 varlisequal to var2.
1 varl is greater than var2.

cs_cmp can return the following values:

Returns

Indicates

CS_SUCCEED

The routine completed successfully.

Open Client and Open Server

CHAPTER 2 CS-Library Routines

Usage

See also

cs_config
Description

Syntax

Parameters

Returns Indicates
CS FAIL The routinefailed. If cs_cmp returns CS_FAIL, *result is
undefined.

The most common reasonifor acs_cmp failureis an invalid parameter.

cs_cmp generates a CS-Library error message for most failure conditions. For
more information on CS-Library error handling, see“Error handling” on page
4.

e cs_cmp sets*result to indicate the result of the comparison.

e varl and var2 must have the same datatype, as indicated by the datatype
parameter.

e To compare string values, an application can call cs_strcmp.

cs calc, cs_convert, cs_stremp

Set or retrieve CS-Library properties.

CS_RETCODE cs_config(context, action, property,
buffer, buflen, outlen)

CS_CONTEXT *context;

CS_INT action;
CS_INT property;
CS_VOID *pbuffer;
CS_INT buflen;
CS_INT *outlen;
context

A pointer to aCS _CONTEXT structure.

action
One of the following symbolic values:

action cs_config

CS SET Sets the value of the property.

CS GET Retrieves the value of the property.

CS CLEAR Clearsthevalue of the property by resettingit to
its default value.

Common Libraries Reference Manual 13

cs_calc

14

property

The property whose value is being set or retrieved, according to the

following table:

Table 2-1: Values for cs_config’s property parameter

Value of property Controls Action *puffer is

CS_ APPNAME The name the Set, retrieve, A CS_CHAR
application callsitself. or clear. string.

The default is
NULL.

CS CONFIG_FILE Thenameand pathof Set, retrieve, A CS CHAR
the Open or clear. string.
Client/Server runtime Thedefault is
configuration file. NULL, which
Meaningful only means a platform-
when external specific default is
configuration has used. See
been enabled by “Configurationfile
setting property” on page
CS_EXTERNAL_CO 18 for more
NFIG information.

CS EXTERNAL_ Whether or not the Set, retrieve, CS_TRUE or

CONFIG Client-Library routine or clear. CS FALSE.
ct_init reads an The default
external configuration depends on
file to set default whether the
property values. external

configuration file
exists. See
“Externa
configuration
property” on page
18 for more
information.

CS EXTRA_INF Whether or not to Set, retrieve, CS_TRUE or
return the extra or clear. CS FALSE.
information that is CS FALSE isthe
required when defaullt.
processing messages
inlineusing a
SQLCA, SQLCODE,
or SQLSTATE
structure.

Open Client and Open Server

CHAPTER 2 CS-Library Routines

Value of property Controls Action *puffer is
CS LOC_PROP A CS LOCALE Set, retrieve, A CS_LOCALE
structure that defines or clear. structure
localization previously
information for this allocated by the
context. application.
CS MESSAGE_CB TheCS-Library Set, retrieve, If actionis
message callback or clear. CS_SET, *buffer is
routine, which isan the message
application-provided callback routine.
handler for CS- If action is
Library error and CS GET, *buffer
informational isset to the address
Messages. of the message
callback routine
that is currently
installed.
The default is
NULL, which
means no handler
isinstalled.
CS NOAPI_CHK Whether or not CS- Set, retrieve, CS_TRUE or
Library validates or clear. CS FALSE.
function arguments CS FALSE, the
whenlibrary functions default, indicates
are called. that argument
checkingis
performed.
CS_USERDATA User-allocated data. Set, retrieve, User-alocated
or clear. data.
A default is not
applicable.

Common Libraries Reference Manual

15

cs_calc

16

Value of property

Controls

Action

*buffer is

CS VERSION

The version of CS-
Library.

Retrieve only.

A symbolic code

indicating the

library version:

¢ CS VERSION_1
00 indicates the
context exhibits
version 10.0
behavior.

¢ CS VERSION 1
10 indicates
version 11.1
behavior.

« CS VERSON 1
20 indicates the
context exhibits
version 12.0
behavior.

« CSVERSION_1
25 indicates

version 12.5
behavior.

buffer

If aproperty valueisbeing set, buffer pointsto the valueto usein setting the

property.

If aproperty valueis being retrieved, buffer points to the space in which
cs_config will place the value of the property.

If aproperty valueis being cleared, pass buffer as NULL and buflen as

CS_UNUSED.

buflen

Generally, buflen is the length, in bytes, of *buffer.

If aproperty valueis being set and the value in * buffer is null-terminated,
pass buflen as CS_ NULLTERM.

If *buffer isafixed-length or symbolic value, pass buflen asCS UNUSED.

Open Client and Open Server

CHAPTER 2 CS-Library Routines

outlen
A pointer to an integer variable.

outlenis not used if a property value is being set.

If aproperty value isbeing retrieved, cs_config sets*outlen to the length, in
bytes, of the requested information.

If the information is larger than buflen bytes, an application can use the
value of *outlen to determine how many bytes are needed to hold the
information.

outlen can be passed as NULL if the application is setting a property value
or does not require the output length of aretrieved value.

Return value cs_config returns:
Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL The routine failed.

Usage e Therearethree kinds of context properties:

« Context properties specific to CS-Library
» Context properties specific to Client-Library
« Context properties specific to Server-Library

cs_config sets and retrieves the values of CS-Library context properties.
With the exception of CS_LOC_PROP, properties set using cs_config
affect only CS-Library.

ct_config sets and retrieves the values of Client-Library-specific context
properties. Properties set using ct_config affect only Client-Library.

srv_props sets and retrieves the values of Server-Library-specific context
properties. Properties set using srv_props affect only Server-Library.

e Seethe“Properties’ topics page in the Open Client Client-Library/C
Reference Manual for information about Client-Library properties.

Application name property

« CS _APPNAME specifies the name that the application callsitself.

e cs_config setsthe application name for aCS_CONTEXT structure. In a
Client-Library application, alocated connections inherit the application
name from their parent CS_CONTEXT structure.

Common Libraries Reference Manual 17

cs_calc

18

The application name specifies a section name in the Open Client/Server
runtime configuration file. See “Configuration file property” on page 18
for more information.

CS_APPNAME cannot be set, retrieved, or cleared unless the
CS _CONTEXT structure was allocated with CS VERSION_110 or later.

Configuration file property

CS_CONFIG_FILE specifiesthe name and path to the Open Client/Server
runtime configuration file.

The default value is NULL, which means that the a platform-specific
default file will be used:

* OnUNIX platforms, the default fileis
$SYBASE/SYBASE_OCSocs.cfg where $SYBASE is the path to the
Sybaseinstallation directory; this path is specified as the value of the
SYBASE environment variable.

» On Windows platforms, the default fileis
%SYBASEY\SYBASE _OCS\ocs.cfg, where %SYBASE% isthe path to
the Sybase installation directory; this path is specified asthe value of
the SY BASE environment variable.

» For other platforms, see the Open Client/Server Configuration Guide
for the name of the default Open Client/Server runtime configuration
file.

The Open Client/Server Configuration Guidedescribesthe structure of the
Sybase installation directory.

If the default external-configuration file exists, Client-Library reads
configuration settings from it unless the application explicitly setsthe
CS _EXTERNAL_CONFIG property to CS_FALSE. See “External
configuration property” on page 18.

CS_CONFIG_FILE cannot be set, retrieved, or cleared unless the
CS _CONTEXT structure was allocated with CS_VERSION_110 or later.

External configuration property

CS EXTERNAL_CONFIG controls whether the Client-Library routine
ct_init will read the Open Client/Server runtime configuration file to set
default Client-Library property values for the CS_CONTEXT structure.

The name of the Open Client/Server runtime configurationfileis specified
with the CS_CONFIG_FILE property. See “ Configuration file property”
on page 18.

Open Client and Open Server

CHAPTER 2 CS-Library Routines

e Thedefault for CS EXTERNAL_CONFIG depends on whether the
default external-configuration file exists (see “ Configuration file
property” on page 18). If the default external-configuration file exists,
then CS_EXTERNAL_CONFIG defaultsto CS_TRUE. Otherwise,
CS_EXTERNAL_CONFIG defaultsto CS_FALSE.

e Configuration information is read from the section of the file labeled:
[appnane]

where appname is the value of the CS_APPNAME property. (See
“ Application name property” on page 17.) If the application hasnot set the
CS_APPNAME property, the configuration reads the section labeled:

[DEFAULT]

« The"Using the Open Client/Server Runtime Configuration File’ topics
page in the Open Client Client-Library/C Reference Manual describesthe
syntax and keywords for configuration file entries.

e CS EXTERNAL_CONFIG cannot be set, retrieved, or cleared unlessthe
CS _CONTEXT structureisallocated with CS VERSION_110 or later.
(See cs_ctx_alloc for more information.)

Extra Information property
e CS_EXTRA_INF determines whether or not CS-Library returnsthe extra

information that is required to fill in a SQLCA, SQLCODE, or
SQLSTATE structure.

e Ifanapplicationisnot retrieving messagesinto a SQLCA, SQLCODE, or
SQL STATE structure, the extrainformation is returned as ordinary CS-
Library messages.

Locale information property

e TheCS_LOC_PROP property definesa CS_LOCALE structure that
contains localization information for a context. Localization information
includes alanguage, character set, datetime, money, and numeric formats,
and a collating sequence.

*« CS _LOC_PROP affects both CS-Library and Client-Library, because a
new connection picks up default localization information from its parent
context.

Common Libraries Reference Manual 19

cs_calc

e If anapplication does not call cs_config to define localization information
for acontext, the context uses default |ocalization information that it picks
up from the operating system environment when it is allocated. If
localization information is not available in the operating system
environment, the context uses platform-specific default localization
values.

e Thecs loc_alloc routine allocatesaCS LOCALE structure.

CS-Library Message Callback property

» TheCS _MESSAGE_CB property consists of a pointer to a user-supplied
CS-Library message callback routine. The application uses this property
to install ahandler for error or informational messages from CS-Library.

» Thedefault valueis NULL, meaning that no handler isinstalled.

* Anapplication function can be installed as a handler for CS-Library
errors.

* Oncethehandler isinstalled, CS-Library calls the handler when an
error or exception occursin a CS-Library routine.

» Foradescription and an example of codingaCS-Library error handler, see
“Defining a CS-Library message callback” on page 6.

» Thefollowing code fragment demonstrates how a handler function is
installed for CS-Library errors:

/*

** |nstall the function cslib_err_handler as the

** handl er for CS-Library errors.

*/

if (cs_config(context, CS_SET, CS_MESSAGE CB,
(CS_ VA D *)cslib_err_handler,
CS_UNUSED, NULL)

I = CS_SUCCEED)

/* Rel ease the context structure. */
(void)cs_ctx_drop(context);
fprintf(stdout,
"Can't install CS-Lib error handler.\
Exiting.\n");
exit(1);

20 Open Client and Open Server

CHAPTER 2 CS-Library Routines

e Client-Library applications that call CS-Library routines besides
cs_ctx_alloc and cs_ctx_drop need dedicated CS-Library error handling.
Applications should either install aCS-Library error handler or handle CS-
Library errorsinlinewith cs_diag.

Note CS-Library error messages are not sent to the Client-Library error
handler.

e Callback error handlersfor Client-Library and CS-Library are installed
differently:

* An application installs Client-Library callback routines by calling
ct_callback.

* Anapplication installs a CS-Library message callback routine by
calling cs_config to set the value of the CS_MESSAGE_CB property.

Aside from this difference, the CS-Library message callback is similar to
the Client-Library client message callback. For general information on
callback routines, see the “ Callbacks’ topics page in the Open Client
Client-Library/C Reference Manual.

Argument checking for CS-Library calls

e TheCS _NOAPI_CHK property determines whether or not CS-Library
validates function arguments when alibrary function is called.

e Ifthevalueof CS NOAPI_CHK isCS FALSE (the default), then CS-
Library checks arguments when API functions are called. Setting
CS NOAPI_CHK to CS TRUE disables API checking.

e For argument checking, CS-Library validates the parameters passed with
each function call. Pointersto CS-Library hidden structures such as
CS _LOCALE are checked. Field valuesin structures are al so checked for
illegal combinations. If CS-Library findsinvalid arguments and API
checkingisenabled, CS-Library generateserror messagesand thefunction
fails. These messages can be trapped and displayed with a CS-Library
callback error handler.

Common Libraries Reference Manual 21

cs_calc

22

If the value of CS NOAPI_CHK is CS TRUE, arguments are not
validated before they are used. If the application passesinvalid arguments
to CS-Library, the application will not work right, resulting in memory
corruption, memory access violations (UNIX “core dumps”), or incorrect
results. No error messages are generated to warn the application of the
condition. Do not disable API argument checking until the application has
been completely debugged with API checking enabled.

Warning! Do not set CS_ NOAPI_CHK to CS_TRUE unless your
application has been completely debugged with the default setting
(CS_FALSE).

User-allocated data property

The CS_USERDATA property defines user-allocated data. This property
allows an application to associate user data with a particular context
structure.

CS-Library copiesthe user datainto internal data space. An application
can then call cs_config at alater timeto retrieve the data.

If you do not include a string’s null terminator when calcul ating its length
during the input stage, acall to cs_config (CS_GET) will return only the
string (minusits null terminator). For example, if you input a2-byte string
with anull terminator, and specify the string’slength as 2 bytes, cs_config
(CS_GET) will return only the string. If, on the other hand, you input a 2-
byte string with anull terminator and specify the string’slength as 3 bytes,
cs_config (CS_GET) will return the string and its null terminator.

Although Client-Library also hasa CS_USERDATA property, the Client-
Library CS USERDATA isset only at the connection and command
levels.

Version level property

The CS_VERSION property represents the version of CS-Library
behavior that an application has requested using cs_ctx_alloc.

An application can only retrieve the value of CS_VERSION.
Possible values for CS_VERSION include the following:
CS VERSION_100 indicates version 10.0 behavior
CS VERSION_110indicates version 11.1 behavior
CS VERSION_120 indicates version 12.0 behavior
CS VERSION_125 indicates version 12.5 behavior

Open Client and Open Server

CHAPTER 2 CS-Library Routines

See also cs ctx_alloc, ct_con_props, ct_config, ct_init

cs_conv_mult

Description Retrieves the conversion multiplier for converting character data from one
character set to another.

Syntax CS_RETCODE cs_conv_mult(context,
srcloc,
destloc,
conv_multiplier)
CS_CONTEXT *context;
CS_LOCALE *srcloc;
CS_LOCALE *destloc;
CS_INT *conv_multiplier;
Parameters context
A pointer to aCS_CONTEXT structure.

srcloc
A pointer to the CS_L OCALE structure that describes the source variable's
character set. This parameter cannot be NULL.

destloc
A pointer to the CS_LOCALE structure that describes the destination
variabl€'s character set. This parameter cannot be NULL.

conv_multiplier
A pointer to aCS_INT variable. cs_conv_mult retrieves the conversion
multiplier for conversions from the character set indicated by srcloc to the
character set indicated by destloc and places it into *conv_multiplier.

Return value cs_conv_mult returns the following values:
Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL The routine failed.

The most common reason for acs_conv_mult failureis an invalid parameter.

Examples The following code fragment retrieves the conversion multiplier for
conversions from theiso_1 character set to the eucjis character set:

#define EXIT_ON_FAI L(context, ret, nsg) \
{ if (ret !'= CS_SUCCEED) \
{\

Common Libraries Reference Manual 23

cs_conv_mult

fprintf(stdout,"Fatal error(%d): %\n",(long)ret,nsg); \
if (context !'= (CS_CONTEXT *)NULL) \
{ (CS_ VO D)ct_exit(context, CS FORCE EXIT); \
(CsS_ v D)cs_ctx_drop(context); } \
exit(-1); \
P}

** usa_l ocale uses the iso_1 character set.
*/
ret = cs_loc_alloc(context, &usa_locale);
EXIT_ON FAIL(context, ret, "cs_loc_alloc(usa) failed.");
ret = cs_local e(context, CS _SET, usa_local e,
CS_SYB_CHARSET, "iso_1", CS_NULLTERM NULL);

EXIT_ON FAIL(context, ret, "cs_local e(usa, CHARSET) failed.");
/*

** japan_|l ocal e uses eucjis.

*/

ret = cs_loc_alloc(context, & apan_|ocale);

EXIT_ON FAIL(context, ret, "cs_loc_alloc(japan) failed.");

ret = cs_local e(context, CS _SET, japan_locale,
CS_SYB_CHARSET, "eucjis", CS_NULLTERM NULL);

EXIT_ON _FAIL(context, ret, "cs_local e(japan, CHARSET) failed.");
/*

** Get the conversion multiplier for iso_1 to eucjis conversions.

*/

ret = cs_conv_nult(context,

usa_l ocal e, japan_locale, &conv_nult);
EXI T_ON_FAI L(context, ret, "cs_conv_rult(usa, japan) failed.");

fprintf(stdout,
"Conversion multiplier for iso_1 to eucjis is %d.\n",
(long)conv_nmult);

Usage e cs_conv_mult retrieves the conversion multiplier for converting character
data from one character set to another.

e Theconversionmultiplier allowsan application to size the destination data
space for conversion of character datainto a different character set.

24 Open Client and Open Server

CHAPTER 2 CS-Library Routines

See also

CS_convert

Description

Syntax

When converted to another character set, character strings can grow or
shrink in length, and applications need to make sure that the destination
data space is large enough for the result. With a multi-byte character set
destination, one byte in the source can convert to several bytesin the
destination. Also, when converting to a single-byte character set, some
characters may convert to multi-character mnemonics. For example, if the
destination character set does not contain acharacter for ™ (the trademark
symboal), it might convert to the 2-character mnemonic “TM”.

A conversion multiplier equals the largest number of bytesin the
destination that can replace 1 source byte.

When converting a character string to a different character set, the
application uses the conversion multiplier to size the destination data
space, as follows:

byt es_needed = conv_mul t

* srclen
* CS_SI ZEOF(CS_BYTE)
+ NTB

where;

« bytes needed isthe necessary length, in bytes, of the destination data
space.

e conv_mult isthe the conversion multiplier value.
e srclenisthelength, in bytes, of the source string.
e« NTBis1if null termination is requested and O otherwise.

For more information on character set conversion, see the
Open Client/Server International Developer's Guide.

cs _convert, cs locale, cs_ manage _convert

Converts a datavaue from one datatype, locale, or format to another datatype,
locale, or format.

CS_RETCODE cs_convert(context, srcfmt, srcdata,

destfmt, destdata, resultlen)

CS_CONTEXT *context;
CS_DATAFMT *srcfmit;
CS_VOID *srcdata,;

Common Libraries Reference Manual 25

cs_conv_mult

CS_DATAFMT *destfmt;
CS_VOID *destdata;
CS_INT *resultlen;
Parameters context
A pointer toaCS_CONTEXT structure.
srcfmt

A pointer to aCS DATAFMT structure describing the source data format.
Thefieldsin *srcfmt are used as follows:

Field name Set it to

datatype A type constant representing the type of the source data
(CS_CHAR_TYPE, CS BINARY_TYPE, and so on).

maxlength Thelength of the datain the * srcdata buffer. Thisvalueis
ignored for fixed-length datatypes or if srcdata isNULL.

locale A pointer to aCS_LOCALE structure containing localization
values for the source data, or NULL to use localization values
from *context.

All other fields Areignored.

For general information on the CS_DATAFMT structure, see the
“CS_DATAFMT Structure” topics pageinthe Open Client Client-Library/C
Reference Manual.

srcdata
A pointer to the source data. To indicate that the source datarepresentsanull
value, passsrcdataasNULL. If srcdataisNULL, cs_convert placesthe null
substitution value for the datatype indicated by destfmt—>datatype in
*destdata.

Table 2-15 on page 77 lists the default null substitution value for each
datatype. An application can define custom null substitution values by
caling cs_setnull.

destfmt
A pointer to aCS_DATAFMT structure describing the destination data
format. The following table lists the fields in * destfmt that are used.

26 Open Client and Open Server

CHAPTER 2 CS-Library Routines

Table 2-2: CS_DATAFMT fields for cs_convert’'s *destfmt parameter

Field Name

Set It To

datatype

A type constant representing the desired destination datatype
(CS_CHAR_TYPE, CS BINARY_TYPE, and so on).

maxlength

The length of the destdata buffer.

locale

A pointer to aCS_LOCALE structure containing localization
values for the destination data, or NULL to use localization
values from * context.

format

A bit mask of the following symbols:

¢ For character and text destinations only, use
CS FMT_NULLTERM to null-terminate the data, or
CS FMT_PADBLANK to pad to the full length of the
variable with spaces.

¢ For character, binary, text, and image destinations, use
CS FMT_PADNULL to pad to the full length of thevariable
with nulls.

« When converting from a character source to a character
destination, use CS_ FMT_SAFESTR to double any
occurrences of the single-quote character (') in the
destination. CS_FMT_SAFESTR can be combined with
CS_ FMT_NULLTERM, CS FMT_PADBLANK, or
CS FMT_PADNULL.

« For any type of destination, use CS_ FMT_UNUSED if no
format information is being provided.

scale

The scale used for the destination variable.

If the source data is the same type as the destination, scale can
be set to CS_SRC_VALUE to indicate that the destination
should pick up its value for scale from the source data.

scale must be less than or equal to precision.

precision

The precision used for the destination variable.

If the source data is the same type as the destination, precision
can be set to CS_SRC_VALUE to indicate that the destination
should pick up its value for precision from the source data.

precision must be greater than or equa to scale.

All other fields

Areignored.

For general information on the CS_DATAFMT structure, see the
“CS_DATAFMT Structure” topics pageinthe Open Client Client-Library/C
Reference Manual.

destdata

A pointer to the destination buffer space.

Common Libraries Reference Manual

27

cs_conv_mult

resultlen
A pointer to an integer variable. cs_convert sets *resultlen to the length, in
bytes, of the data placed in * destdata. If the conversion fails, cs_convert sets
*resultlen to CS_UNUSED.

resultlen is an optional parameter and can be passed asNULL.
Datatype Conversion Chart

The chart in Table 2-3 indicates which datatype conversions are supported
by cs_convert. The source datatypesarelisted in theleftmost column and the
destination datatypesarelisted in the top row of the chart. “ X" indicatesthat
the conversion is supported; a blank space indicates that the conversionis
not supported.

Table 2-3: Datatype conversion chart

CS_SENSITIVITY

«<| CS_TEXT
x| CS_IMAGE

Open Client
Datatypes

CS BINARY

CS_BOUNDARY

x| CS_BINARY
«<| CS_LNGBINARY
x| CS_VARBINARY
x| cs BIT

x| CS_CHAR

«<| CS_LONGCHAR
x| CS_VARCHAR
«<| CS_DATETIME
x| CS_DATETIME4
x| CS_TINYINT

| CS_SMALLINT
x| CS_INT

«<| CS_DECIMAL
x| CS_NUMERIC
«<| CS_FLOAT

«<| CS_REAL

«<| CS_MONEY

x| CS_MONEY4

| CS_UNICHAR
«<| CS_DATE

«<| CS_TIME

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

CS LONGBINARY X X X

x
x
x
x
x
x
x
x
x
x
x
x
x

CS VARBINARY X X X X X XXX XX

CS BIT XXX XXXX XXX XXXX XXX XX

CS CHAR XXXXXXXXXXXXXXXXXXXXXXXXX

CS LONGCHAR XXXXXXXXXXXXXXXXXXXXXXXXX

CS VARCHAR XXXXXXXXXXXXXXXXXXXXXXXXX
CS DATETIME X XXXXX XXX XX
CS DATETIME4 X XXXXX XX X XX
CS_TINYINT XX XX XXX XXXXXXXXX X X

28 Open Client and Open Server

CHAPTER 2 CS-Library Routines

Return value

> > @ < >
o ww x
<< §§zz z 29 <= x
¥z _OIEEET f@. zFoE 4%
T0m x0owwsd ZSWUc UUzZ2g-gFwy
Z0x, <zZeE-E2<, _0O20< 2Zxg=ES
ZZgET0ggsgZsEWoDwoQoWmusSzg=2
] DIS5S0n0OISO00FNEQZLIESESONF=D0F
Open Client R D R Dt B R B R DU Dt DR B O B R DU B e SR B B N
NNNNNNNNNNNNNNNNNNNNNVNN Y
Datatypes O0OO0OO0OLOLLOLOLOLOLOLOLLLOLLOLLLOLLOLOLLOLOOLOOLOO
CS SMALLINT XX XX XXX XXXXXXXXX X X
CS INT XX XX XXX XXX XXXXXX X X
CS DECIMAL XX XX XXX XXX XXXXXX X X
CS_NUMERIC XX XX XXX XXX XXXXXX X X
CS FLOAT XX XX XXX XXX XXXXXX X X
CS REAL XX XX XXX XXX XXXXXX X X
CS_MONEY XX XX XXX XXX XXXXXX X X
CS MONEY4 XX XX XXX XXXXXXXXX X X
CS BOUNDARY X X X X X
CS SENSITIVITY X X X X X
CS TEXT XXXXXXXXXXXXXXXXXXXXXX
CS_IMAGE XXXXXXXXXXXXXXXXXX X X
CS_UNICHAR XXXXXXXXX
CS DATE X XXXXX X X X X
CS TIME X XXXXX X X X X 1
Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.
29

Common Libraries Reference Manual

cs_conv_mult

Usage

30

A common reason for acs_convert failureisthat CS-Library does not support
the reguested conversion.

cs_convert conversion errors will generate CS-Library error messages. For
more information about CS-Library error handling, see “Error handling” on

page 4.

To determine whether a particular conversion is permitted, use
cs will_convert.

In Client-Library applications, ct_bind sets up automatic, implicit data
conversion, which makes it unnecessary for an application to explicitly
convert result data that is bound to program variables.

An application can install custom conversion routines by calling
cs_set_convert. Once a custom routine for a particular type of conversion
isinstalled, cs_convert or ct_bind call the custom routine whenever a
conversion of that typeis required.

cs_convert can convert between standard and user-defined datatypes. To
enable these types of conversions, an application must install the
appropriate custom conversion routines using cs_set_convert.

For more information about CS-Library datatypes, see the “Types’ topics
page in the Open Client Client-Library/C Reference Manual. For
information about Adaptive Server datatypes, see the Adaptive Server
Enterprise Reference Manual.

About specific conversions

A conversion to or from binary and image datatypes is a straight byte-
copy, except when the conversion involves character or text data. When
converting character or text data to binary or image, cs_convert interprets
the character or text string as hexadecimal, whether or not the string
contains aleading “0x.” There must be a match in the lengths of binary
data and fixed length data. If the data lengths do not match, there will be
underflow or overflow.

Converting amoney, character, or text valueto float can result in aloss of
precision. Converting afloat value to character or text can also resultina
loss of precision.

Any length mismatch in the conversion to and from binary and image
datatypes cause error underflow or overflow. This may happen, for
example, if you are converting one-byte binary data to integer data. Use
datatype CS_TINYINT (1 byte integer) to avoid an error.

Open Client and Open Server

CHAPTER 2 CS-Library Routines

e Converting afloat value to money can result in overflow, because the
maximum CS_MONEY value is $922,337,203,685,477.5807, and the
maximum CS_MONEY 4 value is $214,748.3648.

« If overflow occurs when converting integer or float data to character or
text, thefirst character of the resulting value will contain an asterisk (*) to
indicate the error.

e A conversion to hit has the following effect: If the value being converted
isnot O, the bit value is set to 1; if the valueis 0, the bit valueis set to 0.

e When converting decimal or numeric datato decimal or numeric data,
CS _SRC_VALUE can be used in destfmt—>scale and destfmt—>precision
to indicate that the destination data should have the same scale and
precision as the source. CS_SRC VALUE isvalid only when the source
datais decimal or numeric.

Note Open Client and Open Server 12.5 support the unichar datatype. For
information about this datatype, see Chapter 3, “Using Open Client/Server
Datatypes’, in the Open Client Client Library/C Programmer’s Guide.

Converting between character sets
e cs_convert performs character set conversion when:

» srctype and desttype both represent character-based types and

« srcfmt—>locale specifies a different character set than
destfmt—>locale.

The character-based typesare CS_CHAR, CS L ONGCHAR, CS_TEXT,
or CS VARCHAR.

* You can program an application to perform character-set conversion by
following these steps:

a Cadl cs loc_alloctwiceto allocate two CS_LOCALE structures,
src_locale and dest_locale, which will be configured to describe the
locale of the source data and destination data, respectively.

b Configure the character set associated with src_locale by calling
cs locale. The call can specify either alocale name or acharacter set
name.

To use a character set name, pass action as CS_SET, type as
CS _SYB_CHARSET, and buffer as the name of the character set.
Repeat to configure the character set for dest_locale.

Common Libraries Reference Manual 31

cs_conv_mult

See also

cs_ctx_alloc
Description

Syntax

Parameters

32

To use alocale name, pass action as CS_SET, type as

CS LC_CTYPE, and buffer as alocale name (the character set
associated with thelocale name will be used). Repeat to configurethe
character set for dest_locale.

(Optional) Call cs_conv_mult to get the conversion multiplier for
conversions between src_local€'s character set and dest_local€e's

character set. The conversion multiplier can be used to determine
whether the result can possibly overflow the destination space.

Configurethe CS_DATAFMT structures to describe the datatype,
length, and format of the source and destination data. Set the locale
fieldinthe source CS DATAFMT structureto src_locale, and set the
localefieldinthedestination CS_DATAFMT structureto dest_|ocale.

Call cs_convert to perform the conversion. This step can be repeated
as many times as necessary, using the configured CS LOCALE and
CS _DATAFMT structures.

Call cs _loc_drop to deallocate each of src_locale and dest_locale
when they are no longer needed.

cs_conv_mult, cs_manage _convert, cs set_convert, cs_setnull,

cs will_convert

AllocatesaCS CONTEXT structure.

CS_RETCODE cs_ctx_alloc(version, ctx_pointer)

CS_INT version;
CS_CONTEXT **ctx_pointer;
version

One of the following symbolic values, to indicate the intended version of

CS-Library behavior:

Value of version Indicates Features Supported

CS VERSION_100 10.0 behavior Initial version.

CS VERSION_110 11.1 behavior Unicode character set support.
Use of external configuration
filesto control Client-Library
property settings.

CS VERSION_120 12.0 behavior All above features.

Open Client and Open Server

CHAPTER 2 CS-Library Routines

Return value

Value of version Indicates Features Supported
CS VERSION_125 12.5 behavior unichar support, wide data and
columns, SSL.
Ctx_pointer

The address of apointer variable. cs ctx_alloc sets* ctx_pointer to the
address of anewly allocated CS_ CONTEXT structure.

In case of error, cs_ctx_alloc sets*ctx_pointer to NULL.

cs_ctx_alloc returns:

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS MEM_ERROR The routine failed because it could not allocate sufficient
memory.

CS FAIL Theroutine failed for other reasons.

The most common reason for a cs_ctx_alloc failure is a misconfigured system
environment. cs_ctx_alloc must read the locales file that specifies the default
localization values for the allocated context. If CS-Library cannot find the
localesfile or if the locales file is misconfigured, cs_ctx_alloc fails.

Note When cs_ctx_alloc returns CS_FAIL an extended error message is sent
to standard error (SDTERR) and to the sybinit.err file that is created in the
current working directory.

On most systems, the SYBA SE environment variable or logical name
specifiesthelocation of thelocalesfile. The Open Client/Server Configuration
Guide describes the environmental configuration required for CS-Library
localization values.

Other common reasons for acs_ctx_alloc failure include:
e Insufficient memory.

e Missing localization files.

Common Libraries Reference Manual 33

cs_conv_mult

e Thevalue of the LANG environment variable does not match an entry in
the localesfile.

Note On platformsthat have a standard error device, cs_ctx_alloc prints U.S.
English error messages to the standard error device when CS-Library cannot
find thelocal esfile. For Windows and other platformsthat |ack astandard error
device, U.S. English error messages are written to atext file called sybinit.err
in the application’s working directory.

Examples
/*
** ex_init()
*/
CS_RETCODE CS_PUBLIC
ex_init(context)

CS_CONTEXT* *cont ext ;
{
CS_RETCODE r et code;
CS_INT netio_type = CS_SYNC IO

/* Get a context handle to use */
retcode = cs_ctx_all oc(CS_VERSI ON_ 125, context);
if (retcode != CS_SUCCEED)
{
ex_error("ex_init: cs_ctx_alloc() failed");
return retcode;

}

/* Initialize Open dient */
...CODE DELETED.....

/* Install client and server nessage handlers */
...CODE DELETED.....

if (retcode != CS_SUCCEED)

{
ct_exit(*context, CS FORCE EXIT);
cs_ctx_drop(*context);
*cont ext = NULL;

}

return retcode;

34 Open Client and Open Server

CHAPTER 2 CS-Library Routines

Usage

See also

cs_ctx_drop
Description

Syntax

Parameters

Return value

Examples

/*

A CS _CONTEXT structure, also called a“context structure,” contains
information that describes an application context. For example, a context
structure contai ns default localization information and definesthe version
of CS-Library that isin use.

Allocating a context structure isthe first step in any Client-Library or
Server-Library application.

After alocatinga CS_CONTEXT structure, a Client-Library application
typically customizes the context by calling cs_config and/or ct_config to
create one or more connections within the context. A Server-Library
application can customize a context by calling cs_config and srv_props.

To deallocate a context structure, an application can call cs_ctx_drop.

cs_ctx_global also allocates a context structure. The difference between
cs_ctx_alloc and cs_ctx_global isthat cs_ctx_alloc allocates anew context
structureeachtimeitiscalled, whilecs_ctx_global allocates anew context
structure only once, the first timeit is called. On subsequent calls,
cs_ctx_global simply returns a pointer to the existing context structure.

ct_con_alloc, ct_config, cs_ctx_drop, cs_ctx_global, cs_config

Deallocatesa CS CONTEXT structure.
CS_RETCODE cs_ctx_drop(context)

CS_CONTEXT *context;

context
A pointer to aCS_CONTEXT structure.

cs_cxt_drop returns:

Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

cs_ctx_drop returns CS_FAIL if the context contains an open connection.

** ex_ctx_cl eanup()

* %

Common Libraries Reference Manual

35

cs_conv_mult

Usage

* %

* %

* %

* %

* %

* %

* %

* %

See also

36

Par anet er s:
cont ext Poi nter to context structure.
st at us Status of last interaction with Cient-
Li brary. If not ok, this routine will perform
a force exit.
Ret ur ns:

Result of function calls fromdient-Library.

*/

CS_RETCODE CS_PUBLIC
ex_ct x_cl eanup(cont ext, status)

CS_CONTEXT *cont ext ;
CS_RETCODE st at us;
{
CS_RETCCDE r et code;
CS_INT exit_option;

exit_option = (status != CS_SUCCEED) ? CS FORCE EXIT :
CS_UNUSED;

retcode = ct_exit(context, exit_option);

if (retcode != CS_SUCCEED)

{

ex_error("ex_ctx_cleanup: ct_exit() failed");
return retcode;

}

retcode = cs_ctx_drop(context);
if (retcode != CS_SUCCEED)

{

ex_error("ex_ctx_cleanup: cs_ctx_drop() failed");
return retcode;

}

return retcode;

e A CS _CONTEXT structure describes a particular context, or operating
environment, for a set of server connections.

e OnceaCS _CONTEXT has been deallocated, it cannot be used again. To
allocateanew CS_CONTEXT, an application can call cs_ctx_alloc.

Note Sybase supports only one context handler per application program.

» A Client-Library application cannot call cs_ctx_drop to deallocate a
CS_CONTEXT dtructure until it has called ct_exit to clean up Client-
Library space associated with the context.

cs ctx_alloc, ct_close, ct_exit

Open Client and Open Server

CHAPTER 2 CS-Library Routines

cs_ctx_global

Description Allocates or returnsa CS_CONTEXT structure.
Syntax CS_RETCODE cs_ctx_global(version, ctx_pointer)
CS_INT version;
CS_CONTEXT **ctx_pointer;
Parameters version

One of the following symbolic values, to indicate the intended version of
CS-Library behavior:

Value of version Indicates Features Supported
CS VERSION_100 10.0 behavior Initial version.
CS VERSION_110 11.1 behavior Unicode character set support.

Use of external configuration
filesto control Client-Library
property settings.

CS VERSION_120 12.0 behavior
CS VERSION_125 12.5 behavior

If an application has already alocated a CS_ CONTEXT structure, version
must match the version previously requested.

ctx_pointer
The address of a pointer variable. cs ctx_global sets*ctx_pointer to the
address of anew or previously allocated CS_CONTEXT structure.

In case of error, cs_ctx_global sets *ctx_pointer to NULL.

Return value cs_ctx_global returns:
Returns Indicates
CS_SUCCEED The routine completed successfully.
CS MEM_ERROR The routine failed because it could not allocate sufficient
memory.
CS FAIL Theroutine failed for other reasons.

Common reasons for acs_ctx_global failure include:
e A lack of available memory

e A version value that does not match a previously requested version

Common Libraries Reference Manual 37

cs_conv_mult

Usage

See also

cs_diag
Description

Syntax

Parameters

38

Note When cs_ctx_global returns CS_FAIL an extended error message is sent
to standard error (SDTERR) and to the sybinit.err filethat is created in the
current working directory.

Thefirst cs_ctx_global call to execute in an application can fail dueto
configuration problems. See “Returns’ under cs_ctx_alloc in this chapter for
more information.

» cs_ctx_alloc also allocatesacontext structure. Theonly difference between
cs_ctx_alloc and cs_ctx_global isthat cs_ctx_alloc allocates a new context
structureeachtimeitiscalled, whilecs_ctx_global allocates a new context
structure only once, the first timeit is called. On subsequent calls,
cs_ctx_global simply returns a pointer to the existing context structure.

e cs_ctx_global is of usein applications that need to access a single context
structure from multiple independent modul es.

* For more information on context structures, see cs_ctx_alloc in this
chapter.

cs ctx_alloc, cs ctx_drop, cs_config, ct_con_alloc, ct_config

Manages inline error handling.

CS_RETCODE cs_diag(context, operation, type, index,

buffer)
CS_CONTEXT *context;
CS_INT operation;
CS_INT type;
CS_INT index;
CS_VOID *pbuffer;
context

A pointer toaCS_CONTEXT structure.

operation
The operation to perform. Table 2-4 on page 40 lists the legal symbolic
values for operation.

Open Client and Open Server

CHAPTER 2 CS-Library Routines

type

Depending on the value of operation, type indicates either the type of
structure to recei ve message information or the type of message on which to

operate, or both.

Possible values are:

Value of type

Indicates

SQLCA_TYPE

A SQLCA structure.

SQLCODE_TYPE

A SQLCODE structure, which isalong integer.

SQLSTATE_TYPE

A SQLSTATE structure, which is a 6-element
character array.

CS CLIENTMSG_TYPE A CS _CLIENTMSG structure. Also used to indicate

CS-Library messages.

index

The index of the message of interest. The first message has an index of 1,
the second an index of 2, and so forth.

buffer

A pointer to data space.

Depending on the value of operation, buffer can point to a structure or a

CS_INT.

Return value cs_diag returns:

Returns

Indicates

CS_SUCCEED

The routine completed successfully.

CS FAIL

Theroutine failed.

CS_NOMSG

The application attempted to retrieve a message whose
index is higher than the highest valid index. For example,
the application attempted to retrieve message number 3 but
only 2 messages were available.

Common reasons for acs_diag failure include;

* Invalid context

e Inability to allocate memory

e Invalid parameter combination

Common Libraries Reference Manual

39

cs_conv_mult

Usage

40

Table 2-4: Summary of cs_diag parameter usage

Value of

operation cs diag typeis index is buffer is

CS INIT Initializesinline CS_UNUSED CS UNUSED NULL
error handling.

CS MSGLIMIT Setsthe CS CLIENTMSG_ CS _UNUSED A pointer to
maximum TYPE an integer
number of value.
messages to
store.

CS CLEAR Clearsmessage One of thelegal type CS UNUSED Anpointertoa
information for ~ values. structure
this context. whosetypeis
If buffer is not defined by
NULL, cs_diag type, or
also clearsthe NULL.
*puffer structure
by initiaizing it
with blanks
and/or NULLs,
as appropriate.

CS GET Retrievesa One of the legal type Theone-based A pointertoa
specific values. index of the structure
message. message to whosetypeis

retrieve. defined by
type.

CS _STATUS Returns the CS CLIENTMSG_ CS UNUSED A pointer to
current number TYPE an integer
of stored value.
messages.

e Anapplication that includes callsto CS-Library can handle CS-Library
messages in one of two ways:

The application can call cs_config to install a CS-Library message

callback, or

The application can handle CS-Library messagesinline, using

cs_diag.

An application can switch back and forth between the inline method and

the callback method:

Installing a CS-Library message callback turns off inline message
handling. Any saved messages are discarded.

Open Client and Open Server

CHAPTER 2 CS-Library Routines

e Likewise, cs_diag(CS INIT) “de-installs’ an application’s CS-
Library message callback. If the application has a message callback
installed when cs_diag(CS _INIT) is called, the application’s first
CS_GET call to cs_diag will retrieve awarning message to this effect.

If aCS-Library message callback is not installed and inline message
handling is not enabled, CS-Library discards message information.

e cs_diag manages inline message handling for a specific context. If an
application has more than one context, it must make separate cs_diag calls
for each context.

e Inamultithreaded application, cs_diag reports only those messages that
pertain to CS-Library calls made by the thread which has called cs_diag.
For more information on multithreaded applications, see the
“Multithreaded Programming” topics page in the Open Client Client-
Library/C Reference Manual.

e cs_diag allows an application to retrieve message information into a
CS_CLIENTMSG structure or a SQLCA, SQLCODE, or SQLSTATE
structure. When retrieving messages, cs_diag assumesthat buffer pointsto
a structure of the type indicated by type.

An application that is retrieving messages into a SQL CA, SQLCODE, or
SQL STATE structure must set the CS-Library context property

CS EXTRA_INFto CS TRUE. Thisis because the SQL structures
contain information that is not ordinarily returned by CS-Library’s error-
handling mechanism.

An application that is not using the SQL structures can also set
CS EXTRA _INFto CS TRUE. Inthis case, the extrainformation is
returned as standard CS-Library messages.

e If cs_diag does not have sufficient internal storage space in which to save
anew message, it throws away all unread messages and stops saving
messages. The next timeit is called with operation asCS_GET, it returns
a special message to indicate the space problem.

After returning this message, cs_diag starts saving messages again.
Initializing inline error handling

« Toinitidizeinline error handling, an application calls cs_diag with
operation asCS_INIT.

« Generdly, if acontext will useinline error handling, the application
should call cs_diag to initialize inline error handling for the context
immediately after allocating it.

Common Libraries Reference Manual 41

cs_conv_mult

42

Clearing messages

» To clear message information for a context, an application calls cs_diag
with operation asCS_CLEAR.

* cs_diag assumes that buffer points to a structure whose datatype
corresponds to the value of type.

» cs_diag clearsthe *buffer structure by setting it to blanks and/or
NULLSs, as appropriate.

* Message information is not cleared until an application explicitly calls
cs_diag with operation as CS_CLEAR. Retrieving a message does not
remove it from the message queue.

Retrieving messages

e Toretrieve message information, an application callscs_diag with
operation asCS_GET, type asthetype of structureinwhichtoretrievethe
message, index as the one-based index of the message of interest, and
*buffer as a structure of the appropriate type.

e cs_diag fillsin the *buffer structure with the message information.

» If anapplication attemptsto retrieve amessage whoseindex is higher than
the highest valid index, cs_diag returns CS_NOMSG to indicate that no
message is available.

e Seethe“SQLCA Structure,” “SQLCODE Structures’, “SQLSTATE
structure,” and “CS_CLIENTMSG Structure” topics pages in the Open
Client Client-Library/C Reference Manual for information on these
structures.

Limiting messages

» If anapplication runson platformswith limited memory, you may want to
[imit the number of messages that CS-Library saves in that application.

» Tolimit the number of saved messages, an application calls cs_diag with
operation as CS_ MSGLIMIT and typeas CS_CLIENTMSG_TY PE.

* When amessagelimit isreached, CS-Library discards any new messages.

» Anapplication cannot set a message limit that is less than the number of
messages currently saved.

* CS-Library’ sdefault behavior isto save an unlimited number of messages.
An application can restore this default behavior by setting a message limit
of CS_NO_LIMIT.

Open Client and Open Server

CHAPTER 2 CS-Library Routines

Retrieving the number of messages

* To retrieve the number of current messages, an application calls cs_diag
with operation asCS_STATUS and typeasthe CS_CLIENTMSG_TY PE.

See also ct_callback, ct_options

cs_dt_crack

Description Converts a machine-readabl e datetime value into a user-accessible format.
Syntax CS_RETCODE cs_dt_crack(context, datetype, dateval,
daterec)

CS_CONTEXT *context;

CS_INT datetype;

CS_VOID *dateval;

CS_DATEREC *daterec;
Parameters context

A pointer to aCS_CONTEXT structure.

datetype

A symbolic value indicating the datatype of *dateval:

Value of datetype

Indicates

CS DATE_TYPE

CS DATE*dateval.

CS TIME_TYPE

CS TIME*
dateval

CS DATETIME_TYPE

A CS_DATETIME *dateval.

CS DATETIME4 TYPE

A CS_DATETIME4 *dateval.

dateval

A pointer to the date, time, or datetime value to be converted.

daterec

A pointer toaCS_DATEREC structure. cs_dt_crack fills this structure with
the trangated date, time, or datetime value. A CS_DATEREC isdefinedas ||

follows:

typedef struct cs_daterec {

Common Libraries Reference Manual

CS_INT
CS_INT
CS_INT
CS_INT
CS_INT

dat eyear;
dat enont h;
dat ednont h;
dat edyear ;
dat edweek;

/*
/*
/*
/*

year
nont h
day of nonth
day of year
day of week

*/
*/
*/
*/
*/

43

cs_conv_mult

Return value

44

CS_INT dat ehour; /* hour */
CS_INT dat em nut g; /* mnute */
CS_INT dat esecond; /* second */
CS_INT dat emrsecond; /* mllisecond */
CS_INT dat et zone; /* tinezone */

} CS_DATEREC;

where:

dateyear is avalue greater than or equal to 1900.
datemonth isavalue from 0 to 11.

datedmonth is a value from 1 to 31.

datedyear isavaue from 1 to 366.

datedweek is a value from O to 6.

datehour is avalue from 0 to 23.

dateminute is avalue from O to 59.

datesecond is avalue from 0 to 59.

datemsecond is avalue from O to 999.

datetzone isreserved for future use. cs_dt_crack does not set this field.

The meanings of these numbers vary according to an application’s locale.
For example, if localization information specifiesthat Sunday isthefirst day
of the week, then a datedweek val ue of 2 represents Tuesday. If localization
information specifies that Monday is the first day of the week, then a
datedweek value of 2 represents Wednesday.

An application can call cs_dt_info to find out what date-related localization
values are in effect.

Thetime zonefield (datetzone) isreserved for future use. Thisfield will not
be set.

For moreinformation on localization, seethe” International Support” topics
page in the Open Client Client-Library/C Reference Manual.

cs_dt_crack returns:

Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL The routine failed.

Open Client and Open Server

CHAPTER 2 CS-Library Routines

The most common reason for acs_dt_crack failureisan invalid parameter.

Usage e cs_dt_crack converts a date, time or datetime value into itsinteger |
components and places those componentsinto aCS _DATEREC structure.

+ Datetime values are stored in an internal format. For example, a |
CS DATETIME value is stored as the number of days since January 1,
1900 plus the number of three hundredths of a second since midnight.
cs_dt_crack converts avalue of thistype into aformat that an application
can more easily access.

See also cs dt info

cs_dt_info

Description Sets or retrieves language-specific date, time, or datetime information. |
Syntax CS_RETCODE cs_dt_info(context, action, locale, type,

item, buffer, buflen, outlen)

CS_CONTEXT *context;

CS_INT action;
CS_LOCALE *|locale;
CS_INT type;
CS_INT item;
CS_VOID *buffer;
CS_INT buflen;
CS_INT *outlen;
Parameters context

A pointer to aCS _CONTEXT structure.

When retrieving date, time, or datetime information, if localeis NULL, |
cs _dt_info uses the default locale information contained in this context
structure.

action
One of the following symbolic values:

Value of action c¢s _dt_info
CS SET Sets adate, time, or datetime conversion format. |
CS GET Retrieves date, time or datetime information. |

Common Libraries Reference Manual 45

cs_conv_mult

Return value

46

locale
A pointer to aCS_LOCALE structure. A locale structure contains locale
information, including datetime information.

When setting datetime information, locale must be supplied.

When retrieving datetime information, locale can be NULL. If locale is
NULL, cs dt_info uses the default locale information contained in * context.

type
The type of information of interest. Table 2-5 lists the symbolic values that
are legal for type.

item
When retrieving information, item is the item number of the type category
to retrieve. For example, to retrieve the name of the first month, an
application passes type asCS MONTH and item as 0.

When setting a datetime conversion format, passitemas CS_ UNUSED.

buffer
If datetimeinformationishbeing retrieved, buffer pointsto the spaceinwhich
cs_dt_info will place the requested information.

If buflen indicates that *buffer is not large enough to hold the requested
information, cs dt_info sets * outlen to the length of the requested
information and returns CS_FAIL.

If a datetime conversion format is being set, buffer pointsto a symbolic
value representing a conversion format.

buflen
Thelength, in bytes, of *buffer.

If itemis CS _12HOUR, pass buflen as CS_UNUSED.

outlen
A pointer to an integer variable.

cs dt_info sets *outlen to the length, in bytes, of the requested information.

If the requested information is larger than buflen bytes, an application can
usethe value of * outlen to determine how many bytes are needed to hold the
information.

cs_dt_info returns:

Returns Indicates
CS _SUCCEED The routine completed successfully.
CS FAIL The routine failed.

Open Client and Open Server

CHAPTER 2 CS-Library Routines

The most common reason for acs_dt_info failureis an invalid parameter.

format.

Usage Table 2-5: Summary of cs_dt_info parameter usage

Value of type cs _dt_info action can be itemcan be *puffer is

CS MONTH Retrievesthemonth CS_GET 0-11 A character string.
name string.

CS SHORTMONTH Retrievestheshort CS GET 0-11 A character string.
month name string.

CS DAYNAME Retrieves the day CS GET 0-6 A character string.
name string.

CS DATEORDER Retrieves the date CS GET CS _UNUSED A string containing the three
order string. characters“m,” “d,” and “y”

to indicate the position of the
month, day, and year in the
datetime format.

CS 12HOUR Retrieves whether CS GET CS_UNUSED CS_TRUEIf 12-hour formats
or not the language areused; CS FALSE if 24-
uses 12-hour time hour formats are used.
formats.

CS DT_CONVFMT Setsorretrievesthe CS_GET or CS_UNUSED A symbolic value. Seethe
datetimeconversion CS _SET Comments section, below, for

alist of possible vaues.

e cs_dt_info setsor retrieves native language-specific datetime information:

e cs_dt_info can return native language date part names, date part
ordering information, datetime format information, and whether or
not the language uses 12-hour date formats.

e c¢s_dt_info can set datetime format information.

e IflocaleisNULL, cs dt_info looksfor native language locale information
in *context. An application can set locale information for a
CS _CONTEXT by calling cs _config with property asCS LOC_PROP.

If not specifically set, localeinformationinaCS_CONTEXT defaultsto
information that CS-Library picks up from the operating system when the
context is allocated. If locale information is not available from the
operating system, CS-Library uses platform-specific localization valuesin
the new context.

Common Libraries Reference Manual 47

cs_conv_mult

A locale's date-order string, which can be retrieved by calling cs_dt_info
withtypeasCS DATEORDER, describeshow ambiguous date stringsare
resolved when converting from character datatypesto CS DATE,

CS DATETIME or CS_ DATETIMEA. For example, “04/05/96” could be
interpreted as “April 5, 1996” or “May 4, 1996". The former result
corresponds to the date-order string of “mdy”, and the |atter corresponds
to “dmy”.

Although an application cannot set alocale's date-order string directly, it
cancall cs_locale and changethe national-language used when converting
dates. To do this, the application calls cs_locale with action as CS_SET,
typeas CS _LC_TIME, and *buffer asalocale name. The application can
specify alocale whose national language is configured to use a different
date-order string. A national language’s date-order string is configured as
follows:

e For each national language, acommon.locfileislocated in alanguage
subdirectory in the $SYBASE/l ocal esmessages subdirectory.

e The"dateformat” setting in the [datetime] section of the file specifies
the date-order string. For example:

[dat eti me]
dat ef or mat =dny

For more information on the common.loc file, see the Open Client/Server
Configuration Guide.

The date conversion format, which can be set or retrieved by calling

cs dt_infowithtypeasCS DT_CONVFMT, describes the format of the
result when aCS _DATE, CS TIME, CS_DATETIME, and

CS DATETIME4, valueis converted to a character-based datatype.

Date:Table 2-6 lists the values that are legal for *buffer when typeis
CS DT_CONVFMT:

Table 2-6: Values for *buffer when type is CS_DT_CONVFMT

(cs_dt_info)
CS_CHAR converted from CS_CHAR converted CS_CHAR converted
CS_DATETIME, for from CS_DATE, for from CS_TIME, for
example: example: example:
Symbolic value Aug 24 1998 5:36PM Aug 24 1998 5:36PM
CS DATES HM hh:mm hh:mm hh:mm
17: 36 00: 00 17: 36
CS DATES HMA hh:mm[AM|PM] hh:mm hh:mm
5: 36PM 12: 00AM 5: 36PM

48

Open Client and Open Server

CHAPTER 2 CS-Library Routines

CS_CHAR converted from
CS_DATETIME, for

CS_CHAR converted
from CS_DATE, for

CS_CHAR converted
from CS_TIME, for

example: example: example:
Symbolic value Aug 24 1998 5:36PM Aug 24 1998 5:36PM
CS DATES HMS hh:mm:ss hh:mm:ss hh:mm:ss
17:36: 00 00: 00: 00 17:36: 00
CS DATES HMS hh:mm:ss hh:mm:ss hh:mm:ss
ALT 17: 36: 32 00: 00: 00 17: 36: 32

CS DATES HMSZA

hh:mm:ssizzz[AM|PM]
5:36: 00: 000PM

hh:mm:ssizzz[AM|PM]
12: 00: 00: 000AM

hh:mm:ssizzz[AM|PM]
5:36: 00: 000PM

CS DATES HMSZ hh:mm:ss.zzz hh:mm:ss.zzz hh:mm:ss.zzz
17:36: 00: 000 00: 00: 00: 000 17:36: 00: 000
CS DATES LONG mon dd yyyy hh:mm:ss:zzz mon dd yyyy hh:mm:ss:izzz [AM|PM]
[AM|PM] Aug 24 1998 05: 36: 00: 000PM
Aug 24 1998
05: 36: 00: 000PM
CS DATES LONG_ mon dd yyyy hh:mm:ss:zzz mon dd yyyy mon dd yyyy
ALT [AM|PM] hh:mm:ssizzz[AM|PM] hh:mm:ss:zzz [AM|PM]
Aug 24 1998 Aug 24 1998 Jan 01 1900
05: 36: 00: 000PM 12: 00: 00: 000 05: 36: 00: 000
AM PM
CS DATES mon dd yyyy hh:mm:ss mon dd yyyy hh:mm:ss
MDYHMS Aug 24 1998 17:36: 00 Aug 24 1998 17: 36: 00
CS DATES mon dd yyyy hh:mm:ss mon dd yyyy hh:mm:ss ~ mon dd yyyy hh:mm:ss
MDYHMS_ALT Aug 24 1998 17:36: 00 Aug 24 1998 Jan 1 1900
00: 00: 00 17: 36: 00
CS DATES_SHORT mon dd yyyy hh:mm [AM|PM] mon dd yyyy hh:mm [AM|PM]
Aug 24 1998 5: 36PM Aug 24 1998 5: 36PM
CS DATES SHORT_ monddyyyy hhimm [AM|PM] mon dd yyyy hh:mm mon dd yyyy hh:mm
ALT Aug 24 1998 5: 36PM [AM|PM] [AM|PM]
Aug 24 1998 Jan 1 1900
12: 00AM 5: 36PM
CS DATES DMY1 dd/mm/yy dd/mm/yy
24/ 08/ 98 24/ 08/ 98
CS DATES DMY1.Y dd/mm/yyyy dd/mm/yyyy
Yy 24/ 08/ 1998 24/ 08/ 1998
CS DATES DYM1 dd/yy/mm dd/yy/mm
24/ 98/ 08 24/ 98/ 08

Common Libraries Reference Manual

49

cs_conv_mult

CS_CHAR converted from

CS_DATETIME, for

CS_CHAR converted
from CS_DATE, for

CS_CHAR converted
from CS_TIME, for

example: example: example:
Symbolic value Aug 24 1998 5:36PM Aug 24 1998 5:36PM
CS DATES DYM1_Y ddlyyyy/mm dd/yy/mm
YYY 24/ 1998/ 08 24/ 1998/ 08
CS DATES MDY1 mm/dd/yy mm/dd/yy
08/ 24/ 98 08/ 24/ 98
CS DATES MDY1.Y mm/ddlyyyy mm/dd/lyyyy

YYY

08/ 24/ 1998

08/ 24/ 1998

CS DATES MYD1 mm/yy/dd mm/yy/dd

08/ 98/ 24 08/ 1998/ 24
CS DATES MYD1Y mm/yyyy/dd mm/yyyy/dd
YYy 08/ 1998/ 24 08/ 1998/ 24
CS DATES YDM1 yy/dd/mm yy/dd/mm

98/ 24/ 08 98/ 24/ 08
CS DATES YDM1.Y yyyy/dd/mm yyyy/dd/mm
YYy 1998/ 24/ 08 1998/ 24/ 08
CS DATES YMD1 yy.mm.dd yy.mm.dd

98. 08. 24 98. 08. 24
CS DATES YMD1.Y yyyy.mm.dd yyyy.mm.dd
YYy 1998. 08. 24 1998. 08. 24
CS DATES DMY?2 dd.mm.yy dd.mm.yy

24.08. 98 24.08. 98
CS DATES DMY2_Y dd.mm.yyyy dd.mm.yyyy
YYy 24.08. 1998 24.08. 1998
CS DATES MDY?2 mon dd, yy mon dd, yy

Aug 24, 98 Aug 24, 98
CS DATES MDY2_Y mondd, yyyy mon dd, yyyy
YYy Aug 24, 1998 Aug 24, 1998
CS DATES YMD2 yy/mm/dd yy/mm/dd

98/ 08/ 24 98/ 08/ 24
CS DATES YMD2_Y yyyy/mm/dd yyyy/mm/dd

YYY

50

1998/ 08/ 24

1998/ 08/ 24

Open Client and Open Server

CHAPTER 2 CS-Library Routines

CS_CHAR converted from
CS_DATETIME, for

CS_CHAR converted
from CS_DATE, for

CS_CHAR converted
from CS_TIME, for

example: example: example:

Symbolic value Aug 24 1998 5:36PM Aug 24 1998 5:36PM
CS DATES DMY3 dd-mm-yy dd-mm-yy

24-08-98 24-08-98
CS DATES DMY3.Y dd-mm-yyyy dd-mm-yyyy
YYy 24-08-1998 24-08-1998
CS DATES MDY3 mm-dd-yy mm-dd-yy

08-24-98 08-24-98
CS DATES MDY3.Y mm-dd-yyyy mm-dd-yyyy
YYy 08-24-1998 08-24-1998
CS DATES YMD3 yymmdd yymmdd

980824 980824
CS DATES YMD3.Y yyyymmdd yyyymmdd
YYy 19980824 19980824
CS DATES DMY4 dd monyy dd monyy

24 Aug 98 24 Aug 98
CS DATES DMY4_Y dd mon yyyy dd mon yyyy
YYy 24 Aug 1998 24 Aug 1998

See also

cs_loc_alloc

Description

Syntax

Parameters

e Acs locale(CS SET,CS LC TIME) call or acs locale (CS_SET,
CS LC_ALL) call resets date/time conversion information to the default
settings for the specified national language.

cs dt crack, cs locale

Allocate aCS LOCALE structure.
CS_RETCODE cs_loc_alloc(context, loc_pointer)

CS_CONTENT *context;
CS_LOCALE **|oc_pointer;
context

A pointer to aCS _CONTEXT structure.

Common Libraries Reference Manual 51

cs_conv_mult

Return value

Usage

See also

52

loc_pointer
The address of apointer variable. cs_loc_alloc sets*loc_pointer to the
address of anewly allocated CS_LOCALE structure.

cs_loc_alloc returns:

Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

The most common reason for acs_loc_alloc failureisalack of adequate
memory.

» AnOpen Client/Server application can use aCS_LOCALE structure to

define custom localization values for acontext, thread, connection, or data

element. To define custom localization values, an application:
e Cadllscs_loc_alloc to alocate aCS LOCALE structure.

e Cadlscs |locale (CS _SET) toload the CS_LOCALE with custom
values.

e Usesthe CS LOCALE to set the CS LOC_PROP property for a
context or connection; calls srv_thread_props to set the

SRV_T_LOCALE property for athread; usesthe CS LOCALEina

CS DATAFMT structure that describes a program variable; or uses
the CS_LOCALE as a parameter to an Open Client/Server routine.

e Cadllscs_loc_drop to dropthe CS LOCALE.
e Localization values define:

e Thelanguage and character set to use for Open Client/Server and
Adaptive Server messages

e How to represent dates and times

* The character set to use when converting data to and from character

datatypes

» The collating sequence used to define the sort order used by
cs_strcmp

cs ctx_alloc, cs loc_drop, cs locale

Open Client and Open Server

CHAPTER 2 CS-Library Routines

cs_loc_drop
Description

Syntax

Parameters

Return value

Usage

See also

cs_locale

Description

Syntax

Deallocate aCS LOCALE structure.
CS_RETCODE cs_loc_drop(context, locale)

CS_CONTEXT *context;
CS_LOCALE *locale;

context
A pointer to the CS_CONTEXT structure that represents the context in
which the CS LOCALE was allocated.

locale
A pointer to aCS_L OCALE structure.

cs_loc_drop returns:

Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

¢ A CS LOCALE sructure contains localization information.

¢ OnceaCS _LOCALE structure has been deall ocated, it cannot be used
again. To alocate anew CS_|L OCALE structure, an application can call
cs_loc_alloc.

* An application should take care to ensure that it does not deallocate a
CS _LOCALE structure that is still in use. A CS_LOCALE structureis
considered to bein useif aCS_DATAFMT structure referencesiit.

« An application can deallocate a CS_L OCALE structure after calling
cs _config or ct_con_props to set the CS_LOC_PROP property for a
context or connection. This is because cs_config and ct_con_props copy
information from the user-supplied CS_L OCALE structure rather than
setting up direct referencesto it.

cs loc_alloc, cs locale

Load aCS_LOCALE structure with localization values or retrieve the locale
name previously used to load aCS_L OCALE structure.

CS_RETCODE cs_locale(context, action, locale, type,
buffer, buflen, outlen)

Common Libraries Reference Manual 53

cs_conv_mult

CS_CONTEXT *context;

CS_INT action;

CS_LOCALE *locale;

CS_INT type;

CS_CHAR *buffer;

CS_INT buflen;

CS_INT *outlen;
Parameters context

A pointer to the CS_CONTEXT structure that represents the context in
which the CS_ LOCALE was alocated.

action
One of the following symbolic values:

Value of action cs_locale
CS SET Loads the CS_LOCALE with new localization values.
CS GET Retrieves the local e name that was used to load the
CS LOCALE.
locale

A pointer to aCS _LOCALE structure. If actionisCS_SET, cs_locale
modifies this structure. If action isCS_GET, cs_locale examines the
structure to determine the locale name that was previously used to load it.

54 Open Client and Open Server

CHAPTER 2 CS-Library Routines

type
One of the following symbolic values:
Value of type Indicates
CS LC ALL All types of localization information.

Note CS LC_ALL is“set only”; that is, action
must be CS_SET whentypeisCS LC_ALL.

CS LC COLLATE The collating sequence (also called “sort order”).
Open Client uses a collating sequence when
sorting and comparing character data.

CS LC CTYPE The character set. Open Client uses a character set
when it converts to or from character datatypes.
CS LC_MESSAGE The language and character set to use for Open
Client/Server and Adaptive Server error messages.
CS LC TIME The language and character set to use when

converting between datetime and character
datatypes. CS_LC_TIME controls month names
and abbreviations, datepart ordering, and whether
the“am/pm” string is used.

CS SYB_LANG, For information on these values, see “Using
CS SYB_CHARSET, language, character set, and sort order nameswith
CS_SYB_SORTORDER, cs _locale’ on page 58.

CS SYB_LANG_CHARSET

Warning! Open Server application programmers must set type to
CS LC_ALL when configuring the CS_LOCALE structure that appliesto the
Open Server application as awhole.

buffer
If action is CS _SET, buffer pointsto a character string that represents a
locale name, a character set name, alanguage name, a sort order name, or a
language/character set pair.

If actionisCS_GET, buffer pointsto the space in which cs_locale will place
alocale name, acharacter set name, alanguage name, a sort order name, or
alanguage/character set pair. On output, all names are null-terminated. The
buffer must be long enough for the name plus anull terminator.

Common Libraries Reference Manual 55

cs_conv_mult

Return value

Usage

56

buflen
Thelength, in bytes, of *buffer.

If actionis CS_SET and the value in * buffer is null-terminated, pass buflen
asCS_NULLTERM.

outlen
A pointer to an integer variable.

outlen isnot used if actionis CS_SET.

If actionis CS_GET and outlen is supplied, cs_locale sets * outlen to the
length, in bytes, of the locale name.

If the name is larger than buflen bytes, an application can use the value of
*outlen to determine how many bytes are needed to hold the name.

If actionis CS_SET or if an application does not require return length
information, it can pass outlen as NULL.

cs_locale returns:

Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL The routine failed.

Common reasons for acs_locale failureinclude:

e actionisCS_SET and the * buffer locale name cannot be found in the
Sybase locales file.

e actionisCS_GET and buflen indicates that the * buffer data space istoo
small.

e Missina localization files.

Note cs_locale’s behavior depends on platform-specific configuration issues.
You must read the localization chapter in the Open Client/Server Configuration
Guide to obtain afull understanding of Client-Library’s localization
mechanism. For adiscussion of programming issuesrelated to localization, see
the Open Client/Server International Developer’s Guide.

e cs_locale (CS_SET) loadsaCS_LOCALE structure with localization
values. cs_locale (CS_GET) retrieves current settings from the
CS_LOCALE structure.

Open Client and Open Server

CHAPTER 2 CS-Library Routines

A locale name is a character string that represents a language/ character
set/sort order combination. For example, the locale name “fr” might
represent the language/character set/sort order combination “French,
iso_1, binary.”

e Sybase predefines some locale names in the default localesfile.

e A System Administrator can define additional locale names and add
them to the Sybase locales file. The Open Client/Server
Configuration Guide contains instructions for adding locale names.

For more information on localization, see the Open Client/Server
International Developer’s Guide.

Loading a CS_LOCALE structure

An application needsto initialize, or “load,” aCS_L OCALE before using
it to define custom localization values for a context, connection, or data
element.

cs_locale(CS_SET) loadsa CS_LOCALE structure with localization
values. Any localization value can be specified by giving alocale name.
Character sets, languages, and sort orders can also be specified directly by
name.

When specifying alocale name, buffer must specify a name that
corresponds to an entry in the Sybase locales file.

buffer can also be passed as NULL to specify the default locale. In this
case, cs_locale searches the operating system for alocale name to use. If
an appropriate locale name cannot be found in the operating system
environment, cs_locale uses a platform-dependent default locale name.

The localization item(s) of interest are loaded based on the configuration
of thelocalesfileentry. For moreinformation about thelocalesfileand the
cs_locale search process, seethe Open Client/Server Configuration Guide.

For instructions for directly specifying character set, language, or sort
order names, see “Using language, character set, and sort order names
with cs_locale” on page 58.

After loading a CS_L OCALE with custom values, an application can:

e Call cs_config with property asCS L OC_PROP to copy the custom
localization values into a context structure.

e Call ct_con_props with property as CS L OC_PROP to copy the
custom localization values into a connection structure.

Common Libraries Reference Manual 57

cs_conv_mult

e Supply the CS_LOCALE as a parameter to aroutine that accepts
custom localization values (cs_dt_info, cs_strcmp, cs_time).

e IncludetheCS LOCALEinaCS DATAFMT structure describing a
destination program variable (cs_convert, ct_bind).

Becausecs_config copieslocal einformation, an application can deallocate
aCS _LOCALE structure after calling cs_config to set the

CS LOC_PROP property. Likewise, an application can deallocate a
CS _LOCALE structure after calling ct_con_props to set the

CS LOC_PROP property. If aCS DATAFMT structure uses a
CS_LOCALE structure, however, the application must not deallocate the
CS LOCALE until the CS DATAFMT no longer referencesit.

Thefirst time alocale nameis referenced, all localization information for
thelanguage, character set, and sort order that thelocale nameidentifiesis
read from the environment and cached into * context. If thislocale nameis
referenced again, cs_locale readstheinformationfromthe CS_CONTEXT
instead of the environment.

Retrieving a locale name

An application can retrieve the locale name that was used to load a
CS LOCALE by calling cs_locale(CS_GET) with type as the type of
localization information of interest and locale as a pointer to the
CS_LOCALE structure.

cs_locale sets* buffer to anull-terminated character string representing the
locale name that was used to load the CS_ LOCALE.

Using language, character set, and sort order names with cs_locale

Itis possible for an application to use language, character set, and sort
order names, instead of alocale name, when calling cs_locale.

To use alanguage, character set, or sort order name, an application calls
cs_locale withtypeas CS SYB_LANG CS SYB_CHARSET,
CS_SYB_SORTORDER, or CS_SYB_LANG_CHARSET. The
following table summarizes cs_locale parameters for these values of type:

Table 2-7: Using language, character set, and sort order names with

cs_locale
Value of type actionis buffer is cs locale
CS SYB_LANG CS SET A pointer to alanguage Loadsthe CS_LOCALE with the
name. specified language information.
CS GET A pointer to dataspace. Placesthe current language name in
*puffer. The name is null terminated.
58 Open Client and Open Server

CHAPTER 2 CS-Library Routines

Value of type actionis buffer is cs _locale
CS SYB_CHARSET CS SET A pointer to acharacter Loadsthe CS_LOCALE with the
set name. specified character set information.
CS GET A pointer to dataspace. Placesthe current character set namein
*puffer. The nameis null terminated.
CS _SYB_SORTORDER CS SET A pointertoasortorder Loadsthe CS_LOCALE with the
name. specified sort order information.
CS GET A pointer to dataspace. Placesthe current sort order namein
*puffer. The name is null terminated.
CS SYB_LANG_CHARSET CS SET A pointer toastringof Loadsthe CS_LOCALE with the
theform specified language and character set
language_name. information.
character_set_name.
CS GET A pointer to dataspace. Placesastring of the form

language_name.character_set_namein
*puffer. The string is null terminated.

e The application must have previously loaded the CS_L OCALE structure
with consistent information by calling cs_locale with type as
CS LC ALL.

e |f an application specifies only alanguage name, then cs_locale uses the
character set and sort order already specified in the prel oaded
CS_LOCALE structure.

If an application specifies only a character-set name, then cs_locale uses
the language and sort order already specified in the preloaded
CS_LOCALE structure.

If an application specifies only a sort-order name, then cs_locale usesthe
language and character set already specified in the prel oaded
CS_LOCALE structure.

If alanguage, character set, and sort-order combination is not valid,
cs_locale returns CS_FAIL.

< Valid language names correspond to subdirectoriesin the

$SYBASE/locales directory. Valid character-set names correspond to
subdirectories in the $SYBASE/char sets directory. Valid sort-order names
for a character set correspond to file names, stripped of any suffix, in the
$SYBASE/charsets/character_set_name directory.

e Iftherequired localization filesfor the requested language or character set
do not exist, cs_locale returns CS_FAIL.

See also c¢s loc_alloc, cs loc_drop

Common Libraries Reference Manual 59

cs_manage_convert

CS_manage_convert

Description

Syntax

Parameters

60

Installs or retrieves a user-defined character-set conversion routine.

CS_RETCODE cs_manage_convert(context, action,
srctype, srcname, srcnamelen,
desttype, destname, destnamelen,
conv_multiplier, func)

CS_CONTEXT *context;

CS_INT action;

CS_INT srctype;
CS_CHAR *srcname;
CS_INT srcnamelen;
CS_INT desttype;
CS_CHAR *destname;
CS_INT destnamelen;
CS_INT *conv_multiplier;
CS_CONV_FUNC *func;

context

A pointer toaCS_CONTEXT structure.

action
One of the following symbolic values:

Value of action CS_manage_convert

CS SET Installs a conversion routine and conversion multiplier
for conversions between the indicated datatypes and
character-set names.

CS GET Retrievesthe current conversion routineand conversion
multiplier for the indicated datatypes and character-set
names.

CS CLEAR Clears the current conversion routine by replacing it

with CS-Library’s default conversion routine for the
indicated datatypes and character-set names.

srctype

The datatype of the source data for the conversion. In the current version,
srctype must be CS CHAR _TYPE.

Srchame

The name of the character set associated with srctype. This name must
correspond to the name of asubdirectory within the char sets subdirectory of
the Sybase installation directory.

srcnamelen

Thelength, in bytes, of srcname. If srcnameis null-terminated, srcnamelen
can be passed as CS_ NULLTERM.

Open Client and Open Server

CHAPTER 2 CS-Library Routines

desttype
Thedatatype of the destination data. In the current version, desttype must be
CS CHAR_TYPE.

destname
The name of the destination character set. This name must correspond to the
name of a subdirectory within the char sets subdirectory of the Sybase
installation directory.

destnamelen
The length, in bytes, of destname. If destname is null-terminated,
destnamelen can be passed as CS NULLTERM.

conv_multiplier
The address of aCS_INT variable. When action is CS_SET, pass
*conv_multiplier asthe conversion multiplier for theindicated character-set
conversion. When action isCS_GET, *conv_multiplier receives the
conversion multiplier for the indicated character-set conversion. When
actionisCS_CLEAR, pass conv_multiplier asNULL.

See“Meaning of the conversion multiplier” on page 63 for aexplanation of
how applications use this number.

func
The address of aCS_CONV_FUNC variable, which itself isa pointer to a
character-set conversion routine. “ Defining a custom character set
conversion routing” on page 63 describes the requirements for coding a
custom character-set conversion routine.

If aconversion routine is being installed, *func points to the conversion
routine to be installed.

If aconversion routine is being retrieved, cs manage convert sets *func to
point to the currently installed character-set conversion routine for srcname
to destname conversions, or to NULL if no custom routineis installed.

If aconversion routine is being cleared, pass *func asNULL.

Note func represents a pointer to a pointer to a function. There are special
reguirements for passing this parameter. See the example code fragment under
“Installing a custom character set conversion routine” on page 65.

Return value cs_manage_convert returns:
Returns Indicates
CS_SUCCEED The routine completed successfully.

Common Libraries Reference Manual 61

cs_manage_convert

Usage

62

Returns Indicates

CS FAIL Theroutine failed.

The most common reason for acs_manage_convert failureis an invalid
parameter.

cs_manage_convert allows an application to install a custom character-set
conversion routine that converts data from one character set to another.

Character set conversion

Client-Library, CS-Library, and Server-Library can all perform character-
set conversion. Character-set conversion occurs when an application
converts between any two character datatypes and associates different
character sets with the source and destination.

e InCS-Library, cs_convert performs character-set conversion when
converting between two character datatypesif the destfmt
CS DATAFMT structure specifies (or defaults to) a different locale
than the srcfmt CS_DATAFMT structure.

e InClient-Library, an application can request character-set conversion
for fetched character data by binding the column to a character-
datatype variable and passing apointer toaCS _LOCALE inct_bind's
datafmt that is different from the connection’slocale (that is, the
CS _LOC_PROP connection property).

e InServer-Library, al character data sent to aclient or received from
aclient is automatically converted between the client thread's
character set and the Open Server character set.

The character datatypes are CS_CHAR, CS LONGCHAR, CS_TEXT,
CS_UNICHAR and CS_ VARCHAR.

cs_manage_convert requires an application to pass both srctype and
desttypeas CS CHAR_TY PE. However, CS-Library, Client-Library, and
Server-Library will call the conversion routineto convert between any two
character-based types when the conversion local es specify the character
sets associated with the conversion routine.

The most common reason for installing a custom conversion routine isto
improve performance by replacing an indirect conversion with adirect
conversion.

Open Client and Open Server

CHAPTER 2 CS-Library Routines

A custom character-set conversion routine can improve performancein
applicationsthat rely on character-set conversionswhere CS-Library does
not use direct character-set conversion. Indirect character-set conversion
convertsfirst to Unicode UTF-8, and then from Unicode UTF-8 to the
destination character set. Applicationsthat perform these conversions can
improve performance by installing a custom routine that supports direct
conversion.

For example, an Open Server application could install acustom routineto
convert between | SO 8859-1 and EUC JIS. Thisdirect conversion may be
faster than the indirect conversion (1SO 8859-1 to/from Unicode UTF-8
to/from EUC JIS) that is supplied with Open Server.

« Tofind out whether a specific character conversion isdirect or indirect,
look in the source character set’s conversion configuration file. If thereis
an entry for the destination character set, then the conversion is direct.
Character set configuration files are described in the Open Client/Server
International Developer's Guide.

e For more information on character-set conversion, see the Open
Client/Server International Developer's Guide.

Meaning of the conversion multiplier

« Applications must provide cs_manage_convert with a conversion
multiplier for conversions between the indicated character sets.

e Thevalue of the conversion multiplier equals the largest number of bytes
in the destination result that can replace one source byte when converting
between the indicated character sets.

« Applications can retrieve the conversion multiplier for a specific
character-set conversion with cs_conv_mult. This number allows the
application to determine the destination space needed for a conversion.

Defining a custom character set conversion routine
* A custom character-set conversion routine is defined as follows:

CS_RETCODE CS_PUBLI C
convfunc(context, srcfnt, srcdata,
destfnt, destdata, destlen)

CS_CONTEXT *cont ext ;
CS_DATAFMI *srcfnt;
CS_ va D *srcdat a;
CS_DATAFMI *destfnt;
CS_ va D *dest dat a;
CS_INT *dest | en;

Common Libraries Reference Manual 63

cs_manage_convert

64

where:
e contextisapointer to aCS CONTEXT structure.

» scfmtisapointertoaCS DATAFMT structure describing the source
data. srcfmt—>maxlength describes the actual length, in bytes, of the
source data.

e srcdataisapointer to the source data.

e destfmtisapointer to aCS DATAFMT structure describing the
destination data. destfmt—>maxlength describes the actual length, in
bytes, of the destination data space.

» destdata isapointer to the destination data space.

destlen is a pointer to an integer. The conversion routine should set
*destlen to the number of bytesplaced in * destdata. If the routinewritesa
truncated result, it should set *destlen as the number of bytes written
before truncation.

Note When converting into aCS_VARCHAR structure, the conversion
routine should set both *destlen and the CS VARCHAR'slen field to the
number of bytes written to the CS VARCHAR's str field.

cs_config isthe only CS-Library, Client-Library, or Server-Library
function that can be called from within a custom conversion routine.

A custom character-set conversion routine can return any of the values
listed in Table 2-8.

» If the conversion routine returns a value from Table 2-8 other than
CS_SUCCEED, then the application receivesa Client-Library or CS-
Library message that corresponds to the indicated error condition.

» If the conversion routine returns avalue that is not listed in
Table 2-8, then the application receives an “Unknown return code”
error message from Client-Library or CS-Library.

Table 2-8: Return values for a custom conversion routine

Return value Indicates

CS_SUCCEED Successful conversion.

CS TRUNCATED The conversion resulted in truncation.
CS MEM_ERROR A memory allocation failure has occurred.
CS EBADXLT Some characters could not be transl ated.
CS ENOXLT The requested translation is not supported.

Open Client and Open Server

CHAPTER 2 CS-Library Routines

Return value

Indicates

CS EDOMAIN

The source value is outside the domain of
legal valuesfor the datatype.

CS_EDIVZERO

Division by 0 is not allowed.

CS_EOVERFLOW

The conversion resulted in overflow.

CS_EUNDERFLOW

The conversion resulted in underflow.

CS _EPRECISION

The conversion resulted in loss of precision.

CS ESCALE

Anillega scale value was encountered.

CS ESYNTAX

The conversion resulted in avalue which is
not syntactically correct for the destination
type.

CS ESTYLE

The conversion operation was stopped dueto
astyleerror.

Installing a custom character set conversion routine

e Thefollowing code demonstrates calling cs_manage_convert to install a
custom conversion routine. The code is based on the assumption that the
installed routine has been defined correctly. (See “ Defining a custom
character set conversion routing” on page 63.) The program variable
p_conv_func is used to pass the address of the conversion routine.

#define MULT_ISO 1 _TO EUCIIS 4

CS_CONV_FUNC p_conv_func;

CS_INT conv_mult = MILT_ISO 1_TO EUCII S;

/*

** |nstall the routine charconv_iso_1 TO eucjis() to convert
** character data fromiso_1 character set to eucjis character

** set.
*/

p_conv_func = charconv_iso_1 TO eucjis;

if (cs_manage_convert (context,
CS _CHAR TYPE, "iso_1",
CS_CHAR TYPE, "eucjis",
&conv_nmult, &p_conv_func)

| = CS_SUCCEED)

CS_NULLTERM
CS_NULLTERM

fprintf(stdout, "cs_manage_convert() failed!'\n");

(CS_VA D)ct _exit(context,

exit(-1);

CS_FORCE_EXI T) ;
(CS_VA D)cs_ctx_drop(context);

See also cs_conv_mult, cs convert, cs locale, cs set convert

Common Libraries Reference Manual

65

cs_manage_convert

cs_objects
Description

Syntax

Parameters

66

Saves, retrieves, or clears objects and data associated with them.

CS_RETCODE cs_objects(context, action, objname,
objdata)

CS_CONTEXT *context;
CS_INT action;
CS_OBJNAME *objname;
CS_OBJDATA *objdata;
context
A pointer toaCS_CONTEXT structure.

action
One of the following symbolic values:

Value of action cs objects
CS SET Saves an object.
CS GET Retrieves the first matching object that it finds.
CS CLEAR Clears all matching objects.
objname

A pointer to an object name structure. * objname names and describes the
object of interest. An object name structure is defined as follows:

/*

** CS_OBINAME

*/

typedef struct _cs_objnanme

{
CS_BOOL t hi nkexi sts;
CS_INT obj ect _type;
CS_CHAR | ast _nanme[CS_MAX_NAME] ;
CS_INT I nl en;
CS_CHAR first_nanme[CS_MAX_NAME] ;
CS_INT fnl en;
CS_ va D *scope;
CS_INT scopel en;
CsS_ va D *t hr ead;
CS_INT t hr eadl en;

} CS_OBINAME;
The object_type, last_name, first_name, scope, and thread fieldsform a
five-part key that identifies a stored object (see “cs_objects naming keys”
on page 70 for more information). The following table describes the
CS_OBJINAME fields:

Open Client and Open Server

CHAPTER 2 CS-Library Routines

Table 2-9: CS_OBJNAME fields

Field Description Notes
thinkexists Indicates whether the Thevalue of thinkexists affectsthecs_objects
application expectsthis return code. For more information, see the
object to exist. Return values.
object_type Thetypeof theobject. Thisfield isthefirst part of afive-part key.
object_type can be one of these values:
¢ CS_CONNECTNAME
¢ CS_CURSORNAME
¢ CS _STATEMENTNAME
¢ CS CURRENT_CONNECTION
¢ CS_WILDCARD (matches any value)
¢ A user-defined value. User-defined
values must be >= 100.
last_name The“last name” Thisfield isthe second part of a 5-part key.
associated with the
object of interest, if any.
Inlen Thelength, in bytes, of Canbe CS_NULLTERM to indicate anull-
last_name. terminated last_name.
CanbeCS_UNUSED toindicate an internal
“unused” valuefor last_name.
For CS_GET and CS_CLEAR operations,
can be CS_WILDCARD to match any
last_name value.
first_ name The“first name’ Thisfield isthe third part of afive-part key.
associated with the
object of interest, if any.
fnlen Thelength, in bytes, of Canbe CS_NULLTERM to indicate anull-
first_name. terminated first_name.
CanbeCS_UNUSED toindicate aninternal
“unused” valuefor first_name.
For CS_GET and CS_CLEAR operations,
can be CS_WILDCARD to match any
first_name value.
scope Datathat describesthe Thisfield isthefourth part of afive-part key.

Common Libraries Reference Manual

scope of the object.

67

cs_manage_convert

Field

Description

Notes

scopelen

Thelength, in bytes, of
scope.

Canbe CS_NULLTERM to indicate null-
terminated scope data.
CanbeCS_UNUSED toindicateaninternal
“unused” value for * scope.

For CS_GET and CS_CLEAR operations,
canbeCS_WILDCARD to match any scope
value.

thread

Platform-specific data
that is used to
distinguish threadsin a
multi-threaded
execution environment.

Thisfield isthe fifth part of afive-part key.

threadlen

Thelength, in bytes, of
thread.

Canbe CS_NULLTERM to indicate null-
terminated thread data.
CanbeCS_UNUSED toindicateaninternal
“unused” value for *thread.

For CS_GET and CS_CLEAR operations,
can be CS_WILDCARD to match any
thread value.

objdata

A pointer to an object data structure. * objdata is the object of interest and
any data associated with it. An object data structure is defined as follows:

/*

** CS_OBJDATA

*/

typedef struct _cs_objdata

{
CS_BOOL actual | yexi st s;
CS_CONNECTI ON *connecti on;
CS_COVVAND *conmmand;
CS_ va D *buffer;
CS_INT buf | en;

} CS_NAMEDATA;
The following table describes the CS_OBJDATA fields:

68

Open Client and Open Server

CHAPTER 2 CS-Library Routines

Table 2-10: CS_OBJDATA fields

Field Description

Notes

actuallyexists Indicates whether this
object actually exists.

cs objects sets actuallyexists to
CS_TRUE if it finds a matching object.

cs objects sets actuallyexists to
CS FALSE if it doesnot find a
matching object.

connection A pointer to the
CS_CONNECTION
structure representing the
connection in which the
object exists.

command A pointer to the
CS_COMMAND structure
representing the command
space with which the
object is associated.

CanbeNULL.

buffer A pointer to dataspace. An
application can use buffer
to associate datawith a
saved object.

If actionis CS_SET, *buffer contains
the data to associate with the object.

If actionis CS_GET, cs objects sets
*puffer to the data associated with the
object being retrieved.

buflen Thelength, in bytes, of
*puffer.

If actionisCS_SET, buflenisthelength
of the data contained in *buffer. Can be
CS NULLTERM to indicate null-
terminated data. Can be CS_UNUSED
to indicate that there is no data
associated with the object being saved.

If actionis CS_GET, buflen isthe
maximum capacity of *buffer.
cs_objects overwrites buflen with the
number of bytes copied to * buffer. If
buflenis CS_UNUSED, cs_objects
overwrites buflen with the length of the
data but does not copy it to *buffer.

Return value cs_objects returnsCS_SUCCEED or CS_FAIL depending on the val ues passed
asaction and objname—>thinkexists (See Table 2-9 on page 67). Thefollowing
table lists the return code for each combination:

Common Libraries Reference Manual

69

cs_manage_convert

Table 2-11: cs_objects return values

cs_objects Called with

cs_objects returns

objname - th Last-name
action As inkexisssAs No match match Full match
CS GET CS TRUE CS FAIL CS FAIL CS_SUCCEED
CS GET CS FALSE CS SUCCEED CS SUCCEED CS SUCCEED
CS SET CS TRUE CS FAIL CS FAIL CS_SUCCEED
CS SET CS FALSE CS_SUCCEED CS SUCCEED CS FAIL
CS CLEAR CS TRUE CS FAIL CS FAIL CS_SUCCEED
CS CLEAR CS FALSE CS SUCCEED CS SUCCEED CS SUCCEED
Usage Table 2-12: Summary of cs_objects parameter usage
Value of
action objname is objdata is
CS SET A five-part key for the The object to save and any additional
object. datato save with it.
CS GET A five-part key for the Set to the retrieved object.
object.
CS CLEAR A five-part key for the CS_UNUSED.
object.
* cs_objects is useful in precompiler applications that need to retrieve
structures and data items by name.
cs_objects naming keys
» cs_objects uses afive-part key, composed of the object_type, last_name,
first_name, scope, and thread fields of * objname structure.
e OnCS_SET operations, cs_objects usesthiskey to storethe* objdata
object.
e OnCS_GET operations, cs_objects usesthiskey to retrieve an object
specification into * objdata.
e OnCS CLEAR operations, cs_objects clearsall objects that match
the key.
» Thefollowing table describes the rules that cs_objects usesto determine
whether or not key fields match:
70 Open Client and Open Server

CHAPTER 2 CS-Library Routines

Table 2-13: cs_objects key matching rules
Stored key length is Stored key length is

*objname key lengthis CS_UNUSED another legal value
CS WILDCARD Match Match

CS _UNUSED Match No match

Another Lega Value No match Match, if thenamesmatch

and have the same length.

e cs_objects can achieve two types of matches:

« “last-namematches,” inwhichthelast_name, scope, and thread parts
of the key match.

o “full matches,” in which all five parts of the key match.

The type of match that cs_objects achieves, together with action and
objname->thinkexists, determine its return code.

¢ OnCS _GET and CS_CLEAR operations, an application may specify
CS _WILDCARD for one or more * objname key fields:

e OnaCS_GET operation, cs_objects sets * objdata to reflect the first
matching object that it finds.

¢ OnaCS_CLEAR operation, cs_objects clears all matching objects.

Retrieving “Current Connection” objects

e |fanapplication haspreviously sasvedaCS CURRENT_CONNECTION
object, it can retrieve the current connection by:

e Cdling cs_objects with objname->object_type as
CS_CURRENT_CONNECTION, Inlen as CS_UNUSED, and fnlen
asCS_UNUSED. cs_objects ignores the last_name and first_name
fields of objname, and sets objdata—>buffer to the name of the current
connection and objdata—>buflen to the length of this name.

e Cdling cs_objects with objname->object_type as
CS_CONNECTNAMEand objname—>last_name and objname-
>Inlen as the newly retrieved connection name and name length.
cs_objects sets objdata to the retrieved connection.

Warning! An application cannot call cs_objects(CS_SET) from within a
completion callback routine.

See also cs ctx_alloc

Common Libraries Reference Manual 71

cs_prop_ssl_localid

cs_prop_ssl localid
Description Specifies the path to the local ID (certificates) file.

Syntax typedef struct _cs_sslid

CS_CHAR *identity_file;
CS_CHAR *identity_password;
} CS_SSLIDENTITY

Parameters identity file
provides a path to the file containing adigital certificate and the associated
private key.

CS_GET only returnsthe indentity_file used, and only if it is set with
CS_CONNECTION.

identity password
used to decrypt the private key.

cs_set_convert

Description Installs or retrieves a user-defined conversion routine.

Syntax CS_RETCODE cs_set_convert(context, action, srctype,
desttype, func)

CS_CONTEXT *context;

CS_INT action;

CS_INT srctype;

CS_INT desttype;

CS_CONV_FUNC *func;
Parameters context

A pointer toaCS _CONTEXT structure. A CS_CONTEXT structure
defines a Client-Library application context.

action
One of the following symbolic values:

Value of action cs set_convert

CS SET Installs a conversion routine.

CS GET Retrieves the current conversion routine of thistype.

CS CLEAR Clears the current conversion routine by replacing it
with CS-Library’s default conversion routine of this
type.

72 Open Client and Open Server

CHAPTER 2 CS-Library Routines

Return value

Usage

srctype

The datatype of the source data for the conversion.

desttype

The datatype of the destination data.

func

A pointer toaCS_CONV_FUNC variable, which is apointer to a custom
conversion function. “Defining a custom conversion routine” on page 74
describes the prototype for a custom conversion function.

If aconversion routine is being installed, *func points to the conversion
routine that you wish to install.

If aconversion routineisbeing retrieved, cs_set_convert sets* func to point to
the currently installed conversion routine.

If aconversion routine is being cleared, pass *func asNULL.

Note func represents a pointer to a pointer to a function. There are special
reguirements for passing this parameter. See the example code fragment under
“Installing a custom conversion routine” on page 76.

cs_set_convert returns:

Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

The most common reason for acs_set_convert failureis an invalid parameter.

An application caninstall custom conversion routines to convert data
between:

e Standard Open Client or Open Server datatypes
e Standard and user-defined datatypes
e User-defined datatypes

Once acustom routine isinstalled for a particular conversion, the
client/server libraries call the custom routine transparently whenever a
conversion of the specified typeis required.

A Client-Library or Server-Library application creates a user-defined
datatype by declaring it:

typedef CS_SMALLINT EMPLOYEE_| D;

Common Libraries Reference Manual 73

cs_set_convert

74

Because the Open Client routines ct_bind and ¢cs_convert use integer
symbolic constants to identify datatypes, it is often convenient for an
application to declare atype constant for auser-defined type. User-defined
types must be defined as greater than or equal to CS_USERTY PE:

#def i ne EMPLOYEE_| D_TYPE CS_USERTYPE + 1;

To enable conversion between a user-defined type and standard CS-
Library datatypes, an application can call cs_set_convert to install user-
defined conversion routines for the new type.

To clear acustom conversion routine, an application can call cs set_convert
withactionasCS_CLEARandfuncasNULL. cs_set_convert replacesthe
custom routine with CS-Library’s default conversion routine of the
appropriate type, if any.

An application can call cs_setnull to define null substitution values for a
user-defined type.

Defining a custom conversion routine

A custom conversion routine is defined as follows:

CS_RETCODE CS_PUBLIC
convfunc(context, srcfnt, srcdata,
destfnt, destdata, destlen)

CS_CONTEXT *cont ext ;

CS_DATAFMI *srcfnt;

CS_ va D *srcdat a;

CS_DATAFMI *destfnt;

CS_ va D *dest dat a;

CS_INT *dest | en;
where:

» contextisapointer to aCS CONTEXT structure.

» gcfmtisapointertoaCS_DATAFMT structure describing the source
data. srcfmt—>maxlength describes the actua length, in bytes, of the
source data.

» grcdatais apointer to the source data.

* destfmtisapointer to aCS DATAFMT structure describing the
destination data. destfmt — maxlength describes the actual length, in
bytes, of the destination data space.

* destdata isapointer to the destination data space.

Open Client and Open Server

CHAPTER 2 CS-Library Routines

e destlenisapointer to an integer. If the conversion is successful, the
custom routine should set * destlen to the number of bytes placed in

* destdata.

cs_config isthe only CS-Library, Client-Library, or Server-Library
function that can be called from within a custom conversion routine.

The following table lists the legal return values for a custom conversion
routine. CS-Library will raise aCS-Library error if any value other than
CS _SUCCEED is returned. Other values should be returned to indicate
error conditions, as described in Table 2-14.

» Iftheconversionroutinereturnsavaluelistedin Table 2-14 other than
CS _SUCCEED, then the application receivesaClient-Library or CS-
Library message that corresponds to the indicated error condition.

» If the conversion routine returns a value that is not listed in Table 2-
14, then the application receives an “ Unknown return code” error
message from Client-Library or CS-Library:

Table 2-14: Return values for a custom conversion routine

Return value

Indicates

CS_SUCCEED

Successful conversion.

CS_TRUNCATED

The conversion resulted in truncation.

CS MEM_ERROR

A memory allocation failure has occurred.

CS EBADXLT Some characters could not be trandl ated.

CS ENOXLT The requested trandlation is not supported.

CS _ EDOMAIN The source value is outside the domain of
legal valuesfor the datatype.

CS EDIVZERO Division by 0 is not allowed.

CS EOVERFLOW

The conversion resulted in overflow.

CS_ EUNDERFLOW

The conversion resulted in underflow.

CS_EPRECISION

The conversion resulted in loss of precision.

CS ESCALE Anillega scale value was encountered.

CS ESYNTAX The conversion resulted in avalue which is
not syntactically correct for the destination
type.

CS ESTYLE The conversion operation was stopped dueto

astyleerror.

Common Libraries Reference Manual

75

cs_set_convert

Installing a custom conversion routine

The following code demonstrates calling cs_set_convert to install a custom
conversion routine, MyConvert, which converts from CS_CHAR to the user
defined typeindicated by MY_USER_TY PE. The code assumes that
MyConvert iS a a custom conversion routine that has been defined correctly.
(See “ Defining a custom conversion routing” on page 74.) The program
variable myfunc is used to pass the address of the conversion routine.

#define MY_USER TYPE (CS_USER _TYPE + 2)
CS_CONV_FUNC p_conv_func;

p_conv_func = MyConvert;
if (cs_set_convert(context, CS_SET, CS _CHAR TYPE, My_USER TYPE,

&p_conv_func)

{

I = CS_SUCCEED)

fprintf(stdout, "cs_set_convert(MY_USER TYPE) failed!'\n");
(CS_ VA D)ct_exit(context, CS FORCE EXIT);
(CS_VA D)cs_ctx_drop(context);

exit(1);
}

See also

cs_setnull

Description

Syntax

Parameters

76

Cs _convert, cs_manage_convert, cs_setnull, ct_bind

Definesanull substitution val ue to be used when binding or converting NULL
data.

CS_RETCODE cs_setnull(context, datafmt, buffer,
buflen)

CS_CONTEXT *context;
CS_DATAFMT *datafmt;

CS_VOID *pbuffer;
CS_INT buflen;
context

A pointer to aCS_CONTEXT structure. cs_setnull defines a null
substitution value for this context.

datafmt
A pointer toaCS_DATAFMT structure describing the datatype for which a
null substitution value is being defined.

Open Client and Open Server

CHAPTER 2 CS-Library Routines

buffer
A pointer to the null substitution value. * buffer’s datatype must match
datafmt—>type.

buflen
The length, in bytes, of *buffer.

Return value cs_set_null returns:
Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

Common reasons for acs_setnull failure include:
A memory alocation error.
e Aninvalid parameter.

Usage e If ANSI-stylebindsarein effect, CS-Library doesnot use null substitution
values. To activate ANSI-style binds, an application sets the Client-
Library property CS ANSI_BINDSto CS TRUE.

« When ANSI-style binds are not in effect and source data for aconversion
isNULL, CS-Library sets the destination data to the predefined null
substitution value for that destination type. For example, converting a
NULL value of any typeto aCS_CHAR destination resultsin an empty
string.

« InacClient-Library application, null substitution values are defined at the
context level. When a Client-Library connection is alocated, it picks up
null substitution values from its parent context.

e When converting aNULL source valueto aCS CHAR or CS BINARY
destination variable, CS-Library first puts 0 bytesinto the destination and
then uses the format field of the CS_DATAFMT structure that describes
the destination to determine whether to pad or null-terminate.

e Toreinstate CS-Library’s origina default null substitution value for a
particular datatype, an application can call cs_setnull with buffer asNULL.

e CS-Library and Client-Library use the following default null substitution
values:

Table 2-15: Default null substitution values

Destination type Null substitution value
CS BINARY_TYPE Empty array
CS_VARBINARY_TYPE Empty array

Common Libraries Reference Manual 77

cs_set_convert

Destination type Null substitution value
CS BIT_TYPE 0
CS CHAR_TYPE Empty string
CS VARCHAR_TYPE Empty string
CS DATE 4 bytes of zeros
CS TIME 4 bytes of zeros
CS DATETIME_TYPE 8 bytes of zeros
CS DATETIME4 TYPE 4 bytes of zeros
CS_TINYINT_TYPE 0
CS SMALLINT_TYPE 0
CS_INT_TYPE 0
CS DECIMAL_TYPE 0.0 (with default scale and precision)
CS NUMERIC _TYPE 0.0 (with default scale and precision)
CS FLOAT_TYPE 0.0
CS REAL_TYPE 0.0
CS_MONEY_TYPE $0.0
CS MONEY4_TYPE $0.0
CS BOUNDARY_TYPE Empty string
CS_SENSITIVITY_TYPE Empty string
CS TEXT_TYPE Empty string
CS IMAGE_TYPE Empty array
See also cs set_convert, cs will_convert
cs_strbuild
Description Constructs native language message strings.
Syntax CS_RETCODE cs_strbuild(context, buffer, buflen,

resultlen, text, textlen
[, formats, formatlen]
[, arguments));

CS_CONTEXT *context;
CS_CHAR *puffer;

CS_INT buflen;
CS_INT *resultlen;
CS_CHAR *text;
CS_INT textlen;

CS_CHAR *formats; /* Optional */

78 Open Client and Open Server

CHAPTER 2 CS-Library Routines

Parameters

CS_INT formatlen; /* Optional */
<optional arguments>
context

A pointer to aCS_CONTEXT structure.
buffer

A pointer to the spacein which cs_strbuild places the finished message. Note
that the finished message is not null-terminated. An application must use
*resultlen to determine the length of the message placed in * buffer.

buflen
The length, in bytes, of the *buffer data space.

resultlen
A pointer to an integer variable. cs_strbuild sets *resultlen to the length, in
bytes, of the string placed in *buffer.

text
A pointer to the unfinished text of the message. The *text string contains
message text and placeholders for variables. A placeholder has the form
%integer!, for example, %1!, %2!, and so forth. Theinteger indicateswhich
argument to substitutefor aparticular placeholder. Arguments are numbered
from left to right.

textlen
The length, in bytes, of *text. If *text is null-terminated, passtextlen as
CS NULLTERM.

formats
A pointer to a string containing one sprintf-style format specifier for each
place holder in the *text string.

formatlen
The length, in bytes, of *formats. If *formatsis null-terminated, pass
formatlen as CS_NULLTERM.

Common Libraries Reference Manual 79

cs_set_convert

Return value

Usage

80

arguments
The values which will be converted to character according to the * formats
string and substituted into the *text string to produce the message that is
placed in *buffer.

There must be one argument for each place holder. The first value
corresponds to the first format and the %1! placeholder, the second value
corresponds to the second format and the %2! placeholder, and so forth.

If insufficient arguments are supplied, cs_strbuild generates unpredictable
results.

If too many arguments are supplied, the excess arguments are ignored.

cs_str_build returns:

Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL The routine failed.

* cs_strbuild builds a printable native language message string from a text
containing place holdersfor values, aformat string containing information
on the types and appearances of the values, and a variable number of
arguments that represent the values.

» Parametersin error messages can occur in different ordersin different
languages. cs_strbuild allows an application to construct error messagesin
asprintf-like fashion to ensure easy tranglation of error messages from one
language to another.

For example, consider an error message that informsthe user of amisused
keyword in astored procedure. The message requires three arguments: the
misused keyword, the line in which the keyword occurs, and the name of
the stored procedure. Inthe U.S. English localization file, the message text
appears as.

The keyword ‘9%d!‘ is msused in line %! of stored
procedure ‘98!°

In the Spanish localization file, the same message appears as:

En | inea %2! de stored procedure ‘9%3!‘, |la palabra ‘%!"’
esta nmal usado!

The cs_strbuild call for either of the above messagesis:

cs_strbuild(context, &mrybuffer, buflength,
& esul tl ength, nessagetext, CS_NULLTERM
“%, %, %", CS_NULLTERM

Open Client and Open Server

CHAPTER 2 CS-Library Routines

See also

cs_strcmp
Description

Syntax

Parameters

keyword, |inenum sp_nane);
The only differenceis the content of messagetext.

* cs_strbuild format specifiers can be separated by other characters, or they
can be adjacent to each other. Thisallows existing message stringsin U.S.
English to be used as format parameters. The first format specifier
describes the %1! placeholder, the second describes the %2! placeholder,
and so forth.

cs dt_crack, cs dt_info, cs locale

Compares two strings using a specified sort order.

CS_RETCODE cs_strcmp(context, locale, type, strl,
lenl, str2, len2, result)

CS_CONTEXT *context;
CS_LOCALE *locale;

CS_INT type;
CS_CHAR *strl;
CS_INT lenl;
CS_CHAR *str2;
CS_INTI len2;
CS_INT *result;
context
A pointer to aCS_CONTEXT structure.
locale

A pointer to aCS_LOCALE structure. A CS_LOCALE structure contains
locale information, including the collating sequence that cs_strcmp uses to
define a sort order.

An application can call cs_locale withtypeasCS LC_COLLATE or
CS_SYB_SORTORDER to change the collating sequence in a
CS_LOCALE structure.

locale can be NULL. If localeisNULL, cs_strcmp uses whatever
localization information is defined in the context CS_CONTEXT structure.
Localization information is always defined at the context level, because a
CS_CONTEXT picks up default localization information when it is
allocated.

Common Libraries Reference Manual 81

cs_set_convert

type
The type of comparison to perform.

If typeis CS_COMPARE, cs_strcmp performs alexicographic comparison.

If typeis CS_SORT, the values are compared as they would appear in a
sorted list. Itispossiblefor stringsthat arelexicographically equal to belong
in different placesin a sorted list.

strl
A pointer to the first string for the comparison.

lenl
Thelength, in bytes, of *strl. If *strl is null-terminated, passlenl as
CS NULLTERM.

str2
A pointer to the second string for the comparison.

len2
Thelength, in bytes, of *str2. If *str2 is null-terminated, pass len2 as
CS NULLTERM.

result
A pointer to the result of the comparison. The following table lists the
possible values for *result:

Value of *result Indicates
<0 strlislexicographically less than str2, or str1 appears
before str2 in a sorted list.
0 strlislexicographically equal tostrl, or strlisidentical
tostr2.
>0 strlislexicographically greater than str2, or str1 appears

after str2 in asorted list.

Return value cs_strcmp returns:
Returns Indicates
CS _SUCCEED The routine completed successfully.
CS FAIL The routine failed.
Usage e cs_strcmp sets *result to indicate the result of the comparison.

» Some languages contain strings that are lexicographically equal,
according to a specific sort order, but contain different characters.
Although the strings are lexicographically equal, there is a standard order
used when placing them into a sorted list.

82 Open Client and Open Server

CHAPTER 2 CS-Library Routines

An application can use cs_strcmp to compare strings either
lexicographically or how they appear in asorted list. For example, given a
sort order that specifiesthat uppercase characters appear beforelowercase
charactersin a sorted list:

e« Thestrings“ABC” and “abc” are lexicographically equal.

A call tocs_strcmp that compares“ABC” (asstrl) and “abc” as(str2)
with type as CS_COMPARE returns with result set to 0.

e “ABC” appearsbefore“abc” in asorted list.

A call tocs_strcmp that compares“ABC” (asstrl) and “abc” as(str2)
with type as CS_SORT returns with result set to avalue less than 0.

e cs_strcmp determines which sort order to use by examining *locale, (or
*context, if localeis NULL).

e Tochangethe sort order in aCS_LOCALE structure, an application
callscs_locale withtypeas CS LC _COLLATE or
CS_SYB_SORTORDER.

e Tochangethesort orderinaCS _CONTEXT structure, an application
must first set up aCS_LOCALE structure with the desired sort order
and then call cs_config to set the CS_LOC_PROP property for the

context.
See also cs_cmp, cs _locale, cs config
cs_time
Description Retrieves the current date and time.
Syntax CS_RETCODE cs_time(context, locale, buffer, buflen,
outlen, daterec)
CS_CONTEXT *context;
CS_LOCALE *locale;
CS_VOID *puffer;
CS_INT buflen;
CS_INT *outlen;
CS_DATEREC *daterec;
Parameters context

A pointer toaCS _CONTEXT structure.

Common Libraries Reference Manual 83

cs_set_convert

84

locale

A pointer to aCS _LOCALE structure. A CS_LOCALE structure contains
locale information, including formatting information that cs_time usesto
create a current datetime string.

localecan be NULL. If localeisNULL, cs_time useswhatever localization
informationisdefined inthe CS_CONTEXT structureindicated by context.
Locadlization information is always defined at the context level, because a
CS CONTEXT picks up default localization information when it is
allocated.

buffer

A pointer to the spacein which cs_time will place a character string
representing the current date and time.

buffer is an optional parameter and can be passed as NULL. If buffer is
NULL, daterec must be supplied.

buflen

Thelength, in bytes, of *buffer.

If buffer is supplied and buflen indicates that *buffer is not large enough to
hold the current datetime string, cs_time sets * outlen to the length of the
datetime string and returns CS_FAIIL.

If buffer isNULL, pass buflen as CS_UNUSED.

outlen

A pointer to an integer variable.
cs_time sets *outlen to the length, in bytes, of the current datetime string.

If the string is larger than buflen bytes, an application can use the value of
*outlen to determine how many bytes are needed to hold the string.

If buffer isNULL, pass outlen as NULL.

If an application does not care about return length information, it can pass
outlen asNULL.

Open Client and Open Server

CHAPTER 2 CS-Library Routines

daterec
A pointer to aCS_DATEREC structure in which cs_time will place the
current date and time. Note that cs_time does not set the datemsecond and
datetzone fields of the CS_DATEREC structure.

For more information on the CS_DATEREC structure, see cs dt_crack in
this chapter.

daterec is an optional parameter and can be passed as NULL. If daterecis
NULL, buffer must be supplied.

Return value cs_time returns:
Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

Common reasons for acs_time failure include:
e Aninvalid parameter.

« buflenindicatesthat the * buffer data space is not large enough to hold the
formatted datetime string.

Usage e cs_time returns the current date and time either in character string format
orinaCS _DATEREC structure, or both.

e cs time formats the date and time according to locale information
contained in * context.

See also cs _config, cs_dt_crack, cs dt_info, cs locale

cs_validate cb
Description A Client-Library callback routine, registered through ct_callback.

Syntax typedef struct _cs_sslcertfield

CS_VOID *value;

CS_INT field_id;

CS_INT length;
} CS_SSLCERT_FIELD;

typedef struct _cs_sslcert

CS_INT field_count;
CS_INT extension_count;

Common Libraries Reference Manual 85

cs_will_convert

Parameters

CS_UINT start_date;

CS_UINT end_date;

CS_SSLCERT_FIELD *fieldptr;

CS_SSLCERT_FIELD *extensionptr;
} CS_SSLCERT;

typedef CS_INT (CS_PUBLIC * CS_CERT_CB) PROTOTYPE ((

CS_VOID *user_data,
CS_SSLCERT *certptr,
CS_INT cert_count,
CS_INT valid
)i

certptr

A pointer to an array of CS_SSL CERT which has cert_count el ements. On
return from the callback, all memory used is freed.

Note Thearray isnot null terminated.

fieldptr
A pointer to field_count elements.

extensionptr
A pointer extension_count €l ements.

cs_will_convert

Description

Syntax

Parameters

86

Indicates whether a specific datatype conversion is available in the

Client/Server libraries.

CS_RETCODE cs_will_convert(context, srctype, desttype,

result)

CS_CONTEXT *context;

CS_INT srctype;
CS_INT desttype;
CS_BOOL *result;
context

A pointer toaCS_CONTEXT structure.

srctype

A symbolic constant representing the datatype of the source data (for
example, CS BYTE _TYPE, CS CHAR_TYPE, and so forth).

Open Client and Open Server

CHAPTER 2 CS-Library Routines

Return value

Examples

/*

desttype
A symbolic constant representing the datatype of the destination data.

result
A pointer to aboolean variable. cs_will_convert sets*result to CS_TRUE if
the datatype conversion is supported and CS_FAL SE if the datatype
conversion is not supported.

cs_will_convert returns:

Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

** ex_di splay_col um()

*/

CS_RETCODE CS_PUBLI C
ex_di spl ay_col um(context, colfm, data, datal ength,

i ndi cator)
CS_CONTEXT
CS_DATAFMI
CS_ va D
CS_INT
CS_SMALLI NT
{

char

char

char
CS_DATAFMI
CS_DATAFMI
CS_INT
CS_CHAR
CS_BOOL
CS_INT
CS_INT

*cont ext ;
*col fnm;
*dat a;

dat al engt h;
i ndi cator;

*nul |
*nc
*cf
srcfnt;

destfnt;

ol en;

wbuf [MAX_CHAR _BUF] ;
res;

i

di sp_l en;

"NULL";
"NO CONVERT";
" CONVERT FAI LED';

if (indicator == CS_NULLDATA)

{

olen = strlen(null);

st rcpy(wbuf,

el se

nul I');

Common Libraries Reference Manual 87

cs_will_convert

88

{
cs_wll _convert(context, colfnt->datatype,
CS_CHAR TYPE, &res);
if (res !'= CS_TRUE)
{
olen = strlen(nc);
strcpy(wouf, nc);
el se
{
srcfm.datatype = colfnt->datatype;
srcfnt.format = col fnt->f ornat;
srcfnt.local e = col fnt->| ocal e;
srcfm . maxl ength = dat al engt h;
destfnt. maxl ength = MAX_CHAR BUF;
destfnt.datatype = CS_CHAR TYPE;
destfnt. fornat = CS_FMI_NULLTERM
destfnt.local e = NULL;
if (cs_convert(context, &srcfnt, data,
&destfnt, wbuf, &olen) != CS_SUCCEED)
{
olen = strlen(cf);
strecpy(wouf, cf);
}
el se
{
/*
** output |ength include null
** termnation
*/
olen -= 1;
}
}
}

fprintf(stdout, "9%", wbuf);

disp_len = ex_display_dlen(colfnt);

for (i = i < (disp_len - olen); i++)
{

fputc(' ', stdout);
}

Open Client and Open Server

CHAPTER 2 CS-Library Routines

return CS_SUCCEED;

}

Usage * cs_will_convert alows an application to determine whether cs_convert or
ct_bind/ct_fetch are capable of performing a specific conversion. When
cs_convert is called to perform a conversion that it does not support, it
returns CS_FAIL and generatesa CS-Library error.

e cs_convert can convert between standard and user-defined datatypes. To
enabl e these types of conversions, an application must install custom
conversion routines through cs_set_convert. If acustom routineis
supplied for a conversion, cs_will_convert indicates that the conversion is
supported.

Datatype conversion chart

A chart listing the datatype conversionsthat cs_convert supportsisincluded on

the manual page for cs_convert. (See “ Datatype Conversion Chart.”

See also cs_convert, cs_set_convert, cs_setnull

Common Libraries Reference Manual 89

cs_will_convert

90 Open Client and Open Server

CHAPTER 3 Bulk-Library

This chapter introduces Bulk-Library:

Topic Page
Overview of Bulk-Library 91
Bulk-Library client programming 93
Bulk-Library gateway programming 100

Overview of Bulk-Library

Bulk-Library/C provides routines that allow Client-Library and Server-
Library applications to use the Adaptive Server bulk-copy interface.

The Adaptive Server bulk-copy interface allows high-speed transfer of
data between a client application’s program variables and the server’s
database tables. It provides an aternative to the use of the SQL insert and
select commands to transfer data.

Administrators can perform bulk copy using the bep utility; programmers
can use Bulk-Library to create customized bulk-copy tools. Bulk-Library
also provides the necessary routines to enable bulk-copy support in an
Open Server gateway application.

Note The Bulk-Library/C routines are for use with Open Client Client-
Library and Open Server Server-Library applications. DB-Library
provides its own bulk-copy interface, which is documented in the Open
Client DB-Library/C Reference Manual.

Client-side and server-side routines

Bulk-Library contains client-side and server-side routines.

Common Libraries Reference Manual 91

Overview of Bulk-Library

Client-side Bulk-Library routines

Client-side routines allow Client-Library programmers to execute bulk-copy
commands from their programs. Client-side routines allow a program to:

» Transmit bulk-copy datato the remote server for database table population

» Extract the contents of a database table into program memory

Server-side Bulk-Library routines

Server-side routines are used with Open Server. Open Server programmers can
use these routines together with the client-side routines to allow bulk-copy
transfers through an Open Server gateway. A gateway server uses the client-
side routines to obtain bulk-copy data from the remote server and server-side
routines to forward the data to its own client. Any routine that requires a
SRV_PROC (Open Server thread-control structure) pointer as an argument is
aserver-side routine.

The server-side Bulk-Library routinesrequire the application to be linked with
Server-Library and must be used together with the client-side routines.

Header files

The header file bkpublic.h contains Bulk-Library definitionsand isrequired in
all application source files that contain calls to Bulk-Library routines.

Client-Library applicationsthat call Bulk-Library routinesneed toincludeonly
bkpublic.h, since bkpublic.h includes ctpublic.h. No harm is done if the
application includes both files.

Gateway Open Server applications that call Bulk-Library routines need to
include bkpublic.h in addition to the other include files required by Server-
Library. bkpublic.h does not include any Open Server header files.

Linking with Bulk-Library

Onmost platforms, Bulk-Library isaseparatelibrary fileand must be specified
on thelink line for the application. See the Open Client/Server Programmer’s
Supplement for compiling and linking instructions for your platform.

92 Open Client and Open Server

CHAPTER 3 Bulk-Library

The CS_BLKDESC structure

All bulk-copy operations performed with Bulk-Library callsrequire a

CS BLKDESC structure. This structure is also called the bulk-descriptor
structure. The bulk-descriptor structure is a hidden structure that controls a
particular bulk-copy operation.

Applications allocate a bulk-descriptor structure with blk_alloc on page 106
and free the bulk descriptor’s memory with blk_drop on page 129. The
structure’sinternals are not documented, but the properties of the structure can
be retrieved and modified with the blk_props on page 136 routine.

All Bulk-Library routines except for blk_alloc require avalid bulk-descriptor
structure pointer as an input parameter.

Thebulk-descriptor structureisconsidered achild structure of Client-Library’s
connection structure. Bulk-copy operations require the connection to interact
with the remote server.

Bulk-Library client programming

Client-side Bulk-Library routines provide bulk-copy functionality to Client-
Library programs. A Client-Library programmer may find bulk-copy useful if
the application under development must exchange data with a non-database
application, load datainto a new database, or move data from one database to
another.

A Client-Library application can call Bulk-Library routinesto copy dataeither
into a database table or out from a database table.

« Bulk-copy-in operations move data from the client machine into a
database table and are typically used for database table population. For
bulk copiesinto the database, Bulk-Library transmitstabular dataover the
network inits“raw” form. Bulk copiesinto the database can be
considerably faster than embedding the data in equivalent SQL insert
statements.

Common Libraries Reference Manual 93

Bulk-Library client programming

» Bulk-copy-out operations move data from a database table to the client
program’s memory space and are typically used for data extracts. For data
extracts, bulk copy offers no performance advantage over the equivalent
SQL select statements. However, the Bulk-Library interface may be more
convenient for programmers.

Note Errorsresulting from client-side Bulk-Library routines are reported as
Client-Library errors. Applications should install a Client-Library message
callback to handle these errors or handle them inline with ct_diag.

Bulk-Copy-In operations

An application can call Bulk-Library routines to copy data from program
variablesinto a database table.

When copying into a database, the chief advantage of bulk copy over the SQL
insert alternative is speed.

When copying data into a non-indexed table, the high speed version of bulk
copy is used. Adaptive Server performs no data logging during high-speed
transfers. If the system fails before the transfer is complete, no new datawill
remain in the database. Because high-speed transfer affects the recoverability
of the database, it is enabled only when the Adaptive Server option select
into/bulkcopy has been turned on. An application can call the Adaptive Server
system procedure sp_dboption to turn this option on or use the Client Library
connection property CS BULK_LOGIN.

If the select into/bulkcopy option is not turned on and a user triesto copy data
into atable that has no indexes, Adaptive Server generates an error message.

After abulk-copy operation is complete, the System Administrator should
dump the database to ensure its future recoverahility.

When copying datainto an indexed table, a slower version of bulk copy is
automatically used, and row inserts are logged.

The Bulk-Copy-In process
A typical application follows these steps to perform a bulk-copy-in operation:

94 Open Client and Open Server

CHAPTER 3 Bulk-Library

1 Initializesthe application in the same way as for a Client-Library
application and sets up Client-Library error handling. Bulk-Library
reports errors generated by calls to client-side routines as Client-Library
messages.

2 Allocates the connection structure to be used.

3 Callsct_con_props to set the necessary properties to connect to the target
server. In addition, the application must set the CS BULK_LOGIN
property to CS_TRUE to enable the connection to perform bulk copies.

Note Programmers can often tune the Tabular Data Stream™ (TDS)
packet size to increase throughput. A packet size larger than the default
usualy increases performance. First, make sure that the Adaptive Server
is configured to accept alarger TDS packet size, then set the
CS_PACKET_SIZE connection property in your application. See the
Adaptive Server Enterprise System Administration Guide for details on
increasing the allowable network packet size and the Open Client Client-
Library/C Reference Manual for details on connection properties.

Calls ct_connect to open the connection.
Callsblk_alloc to allocate a bulk-descriptor structure.
Callsblk_init to initialize the bulk-copy operation.

N o o b~

For each column in the target table, the application:

e (Optional) Callsblk_describe. blk_describe returns atarget column’s
description, allowing the application determine the column’sdatatype
or size.

e (Optional) Calls blk_default. blk_default returns a column’s default
value, if a default isdefined by the table schema. An application can
call blk_bind with * datalen as O to indicate that the bulk-copy-in
operation should use a column’s default value.

e Calsblk_bindto bind the variableto the target column. If datafor the
column will be transferred using blk_textxfer, the application must
call blk_bind with buffer asNULL.

Common Libraries Reference Manual 95

Bulk-Library client programming

96

Columns can be bound either to scalar variables or to arrays. When
columns are bound to scalar variables, each call to blk_rowxfer_mult
transfers column valuesfor asinglerow from thebound variablesinto
the database. For array binding, an array isbound to each column, and
multiple rows are transferred by each call to blk_rowxfer_mult. In
either case, the application also bindsindicator and datalen variables
to the column as well. These are used to indicate the condition of the
data to be transferred.

The discussion in this chapter assumes that array binding isnot in
effect. For more information about array binding, see blk_bind in
Chapter 4, “Bulk-Library Routines”

8 Transfersthe data

While data remains to be transferred, the application places data into the
program variables that are bound to the table columns, then calls
blk_rowxfer_mult to transfer the row.

Before each call to blk_rowxfer_muilt, for each bound column, the
application sets datalen and indicator values to specify what value should
be inserted:

datalen value indicator value Result

>0 Any (isignored). blk_rowxfer_mult reads datalen
bytes from buffer as the column
value.

0 0 The column’s default value, if

available, isinserted. If nodefaultis
available, NULL isinserted.

0 -1 NULL isinserted.

If the row contains columns whose datais being transferred in chunks, the
application calls blk_textxfer in aloop for each column. Data being
transferred viablk_textxfer must reside at the end of the row, following any
bound columns.

The application can call blk_done(CS BLK_BATCH), if needed, to send
abatch of rows. This call instructs the Adaptive Server to permanently
save all rows transferred since the application’s last blk_done call.

Callsblk_done(CS BLK_ALL)tosendthelast batch of rowsandindicate
that the bulk-copy operation is compl ete.

Open Client and Open Server

CHAPTER 3 Bulk-Library

10 Callsblk_drop to deallocate the bulk-descriptor structure.

Note An application can call blk_bind between callsto blk_rowxfer mult to
specify adifferent program variable address or length.

Program structure for Bulk-Copy-In operations
Most applications use aprogram structure similar to the following pseudocode

to perform a bulk-copy-in operation:

ct_con_props to set connection properties

ct _connect to open the connection
blk_alloc to allocate a CS_BLKDESC
blk init to initiate the bulk copy

for each colum
(optional: blk_describe to get a description of

the col um)
(optional: blk _default to get the colum’s default

val ue)
bl k_bind to bind the colum to a program
variable, or to mark the columm for transfer

via bl k_textxfer
endf or
while there's data to transfer
if it’s time to save a batch of rows
bl k_done(CS_BLK BATCH)

endi f
copy row val ues to program vari abl es
call blk_rowxfer_nmult to transfer the row data

if data is being transferred via bl k_textxfer
for each colum to transfer
while there's data for this colum
bl k_textxfer to tranfer a chunk of data
endwhi | e
endf or
endi f

endwhi | e
bl k_done(CS_BLK_ALL)
bl k_drop to deallocate the CS_BLKDESC

Common Libraries Reference Manual 97

Bulk-Library client programming

Bulk-Copy-Out operations

The bulk-copy-out process reads rows from the server and places the column
valuesinto program variables.

The Bulk-Copy-Out process
A typical application followsthese stepsto perform abulk-copy-out operation:

1 Cadllsct_con_props to set the required properties to open the connection.
2 Cadllsct_connect to open the connection.

3 Cdlsblk_alloc to allocate a bulk-descriptor structure.

4 For each column of interest, the application:

* (Optiona) Calsblk_describeto retrieve acolumn’sdescription. This
stepisnecessary if an application lacks information about a column’s
datatype or size.

* (Optiona) Calls blk_bind to bind a program variable to the source
column. If the data for a column will be transferred via blk_textxfer,
call blk_bind with *buffer asNULL.

Columns can be bound either to scalar variables or to arrays. When
columns are bound to scalar variables, each call to blk_rowxfer_mult
transfers column values for asingle row into the bound variablesinto
the database. For array binding, an array isbound to each column, and
multiple column values are transferred into each array by each call to
blk_rowxfer_muilt.

The discussion in this chapter assumes that array binding is not used.
For more information about array binding, see blk_bind in Chapter 4,
“Bulk-Library Routines’

5 Transfersthe data by calling blk_rowxfer_mult in aloop:

The application calls blk_rowxfer_mult repeatedly to transfer each row to
program variables until blk_rowxfer_mult returns CS_END_DATA.

If the row contains columns whose data is transferred in chunks, the
application cals blk_textxfer in aloop for each column. Data being
transferred viablk_textxfer must reside at the end of the row, following any
bound columns.

98 Open Client and Open Server

CHAPTER 3 Bulk-Library

For example, suppose an application bulk-copiescolumns1, 3,5, 7,and 9
and must call blk_textxfer to copy columns 7 and 9. The application calls
blk_bind oncefor each column, passing buffer asNULL for columns7 and
9. After calling blk_rowxfer_mult to transfer arow from the table, the
application must call blk_textxfer in aloop to copy the datafor column 7
and then call blk_textxfer in another loop to copy the data for column 9.

6 Cadlsblk_done(CS BLK_ALL)toindicatethat the bulk-copy operationis
complete.

7 Cadlsblk_drop to deallocate the bulk-descriptor structure.

Note An application can call blk_bind between callsto blk_rowxfer_ mult to
specify different program variable address or length.

Program structure for Bulk-Copy-Out operations

Most applications use aprogram structure similar to the following pseudocode
to perform a bulk-copy-out operation:

ct_con_props to set connection properties
ct _connect to open the connection
blk_alloc to allocate a CS_BLKDESC
blk init to initiate the bulk copy
for each colum of interest
(optional: blk_describe to get a description of
t he col umm)
bl k_bind to either bind the colum to a program
variable or to indicate that bl k_textxfer wll
be used to transfer data for the col um.
endf or
while there’s data to transfer
call blk_rowxfer_mult to transfer the row data
pul | data from program variables to a pernmanent
location, if desired.
if data is being transferred via bl k_textxfer
for each colum to transfer
while there’'s data for this colum
bl k_textxfer to tranfer a chunk of data
endwhi | e
endf or
endi f
endwhi | e
bl k_done(CS_BLK ALL)
bl k_drop to deallocate the CS_BLKDESC

Common Libraries Reference Manual 99

Bulk-Library gateway programming

Copying to and from Secure SQL Server

Each row in a Secure SQL Server™ table has a sensitivity column, which
contains the sensitivity label for the row. Secure SQL Server uses sensitivity
labels to mediate access to data.

When bulk copying into or from a Secure SQL Server table, an application can
choose whether or not to include the tabl€'s sensitivity column in the bulk-copy
operation.

To include the sensitivity column, an application sets the
BLK_SENSITIVITY_LBL property to CS_TRUE.
BLK_SENSITIVITY_LBL has adefault value of CS_FAL SE, which means
that by default the sensitivity column is not included.

Users copying into the sensitivity column must have the bepin_labels_role
activated on Secure SQL Server. If auser does not havethisrole, the bulk-copy
operation will fail. See your Secure SQL Server documentation for more
information on setting thisrole.

Bulk-Library gateway programming

The server-side Bulk-Library routines are designed to be used in gatewaysin
conjunction with the client-side routines. Note that Open Server applications
must have available avalid CS_CONNECTION structure (set up with Client-
Library calls) to call Bulk-Library routines.

Open Server provides bulk-copy functionality that allows gateway Open
Server applications to filter bulk-copy data. A gateway Open Server can
examine each row of abulk-copy operation and implement any of the
following filters:

e Discard certain rows while keeping others,
e Send all rowsto the remote server, or

* Route bulk-copy requests to multiple remote servers based on the row
content, as shown in the diagram below.

100 Open Client and Open Server

CHAPTER 3 Bulk-Library

Figure 3-1: Gateway routing bulk-copy requests

Client > Gateway Seiver - Serverl
Client sends Gateway moutes
bulk-copy-in rowdatatotable T Sarver?
rows fortableT. on Serverl, Server2,
or Server3 depending
oncontent Sarver

A gateway’s client can issue two types of bulk requests, a TDStext/image
insert request or a TDS bulk-copy request. In the case of a TDS text/image
insert, the client simply wishes to send atext or image stream. In the case of a
TDS bulk-copy request, the client is actually initiating a bulk-copy request. In
both cases, the request handling involves processing both language
(SRV_LANGUAGE) events and bulk (SRV_BULK) events.

An Open Server application processes both requests using two event handlers:
SRV_LANGUAGE and SRV_BULK. Inside the SRV_L ANGUAGE event
handler, the application determines which kind of bulk request has been issued
by the client and records this information internally. In addition, if the request
is for bulk copy, the application allocates and initializes a bulk-descriptor
structure. Inside the SRV_BULK handler, the application retrieves the request
type and then processes the data accordingly.

Thediscussion in this section assumes that the gateway application isintended
to accept both bulk-copy insert requests and text/image insert requests. For a
description of how to handle text/image insert commands only, see the “ Text
and Image” topics page in the Open Server Server-Library/C Reference
Manual.

Note Bulk-Library reportserrorsresulting from callsto server-sideroutines as
Server-Library errors. Applications that call server-side Bulk-Library routines
should install a Server-Library error handler to receive notification of these
errors.

Common Libraries Reference Manual 101

Bulk-Library gateway programming

Inside the SRV_LANGUAGE event handler

If youintend for your gateway application to handle either type of bulk request,
you must code the SRV_LANGUAGE event handler to parse for the phrase
“insert bulk” or “writetext bulk.” These phrases indicate the following:

e Thephrase“insert bulk” indicatestheinitiation of abulk-copy request; the
request handling will be started in the language handler and finished inthe
SRV_BULK handler.

e Thephrase “writetext bulk” indicates that the client will issue a stream of
text or image bytes to be handled in the SRV_BULK event handler.

“Insert Bulk” requests
Thetext of an “insert bulk” language request looks like this:

insert bulk tablenane [w th nodescri be]
where “with nodescribe” is optional.
In response, the SRV_L ANGUAGE event handler should:

1 Record the bulk typeinternally by calling srv_thread_props with cmd set
to CS_SET, property set to SRV_T_BULKTYPE, and bufp pointing to a
value of SRV_BULKLOAD.

2 Continue parsing to extract the table name, which is an argument to the
blk_init routine.

3 Allocate abulk-descriptor structure, CS BLKDESC, with a call to
blk_alloc.

4 |Initialize the client half of the exchange with a call to blk_init.

If “with nodescribe” is specified, it means that this datais part of abatch,
and the table into which the bulk data will be loaded has already been
described. The application need not call blk_srvinit a second time.

If “with nodescribe” is not specified, initialize the server half of the
exchange with acall to blk_srvinit.

“Writetext Bulk” requests
The text of a“writetext bulk” language request looks like this;

writetext bul k dbnane.tbl nane. col name textptr
[timestanp=tinestanp] [w th | og]

102 Open Client and Open Server

CHAPTER 3 Bulk-Library

where the timestamp and logging indicator are optional.
In response, the SRV_LANGUAGE event handler should:

1 Record the bulk typeinternally by calling srv_thread_props with cmd set
to CS_SET, property set to SRV_T_BULKTY PE, and bufp pointing to a
value of SRV_TEXTLOAD or SRV_IMAGELOAD.

2 Continue parsing to extract the object name, which isgenerally of theform
“dbname.tblname.colname” . This name can then be stored in the name and
namelen fields of aCS_IODESC structure, which can later be used in the
SRV_BULK event handler as an argument to ct_data_info, if the data
stream is being passed on to a server in agateway application.

3 Continue parsing to extract the text pointer, which will appear as alarge
hexadecimal number. Once converted from a character string to an actual
CS BINARY value, thetext pointer and itslength are stored in the textptr
and textptrlen fields of the CS_IODESC structure.

4 Continue parsing to extract the timestamp, which, if present, will appear
as “timestamp = large_hexadecimal_number”. Once converted from a
character string to an actual CS_BINARY value, the timestamp and its
length can be stored in the timestamp and timestamplen fields of the
CS_IODESC structure.

5 Finaly, parse to extract the logging indicator, which, if present, will
appear as“withlog”. If thisindicator is present, thelog_on_update field of
the CS_IODESC structure should be set to CS TRUE.

Inside the SRV_BULK event handler

Insidethe SRV_BULK event handler, the application must respond to the bulk
reguest that triggered the handler. However, its response depends on which
type of bulk request the client issued. The application retrievesthe request type
by calling srv_thread_props with cmd set to CS_GET and property set to
SRV_T_BULKTYPE.

If the request typeis SRV_TEXTLOAD or SRV_IMAGELOAD, the
application reads the text or image data from the client in chunks, using the
srv_text_info and srv_get_text routines. For details, see the “ Text and Image”
topics page in the Open Server Server-Library/C Reference Manual.

If the request typeis SRV_BULKLOAD, the application processes the bulk-
copy rows using a combination of client-side and server-side routines. To
process the bulk-copy rows, the SRV_BULK event handler should:

Common Libraries Reference Manual 103

Bulk-Library gateway programming

Example

104

Call blk_rowalloc to allocate aCS BLK_ROW structure.

The CS_BLK_ROW structure is a hidden structure that holds formatted
bulk-copy rows sent from the client.

Call blk_getrow to retrieve the formatted row from the client. This call
retrieves all column data except columns of type text, image, sensitivity,
or boundary. The gateway can processtheselater. If the row containstext,
image, sensitivity, or boundary data, blk_getrow returns

CS BLK_HASTEXT. Otherwise, it returns CS_SUCCEED. If there are
no more rows, the bulk-copy operation is compl ete and blk_getrow returns
CS_END_DATA.

If the gateway must examine the row content (for example, to route rows
to particular remote servers or reject data), it callsblk_colval to examine
the value of each column in the bulk row.

Call the client-side routine blk_sendrow to send the formatted rowsto the
remote server.

If an incoming bulk row contains text, image, sensitivity, or boundary
data, the server portion of the gateway calls blk_gettext to retrieve the
row’s text, image, sensitivity, or boundary portion. The handler calls the
client-side routine blk_sendtext to send it on to the remote server.

Call blk_rowdrop to deallocatethe CS BLK_ROW structure allocated by
blk_rowalloc.

Call the client-side routine blk_done to indicate that the batch or bulk-
copy operation is complete.

Call blk_drop to deallocate the bulk-descriptor structure.

Theonline Open Server sampl e ctosdemo.c includes codeto process bulk-copy
requests.

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

This chapter contains a reference page for each Bulk-Library routine.

List of Bulk-Library routines

Routine Description

blk_alloc AllocatesaCS _BLKDESC structure.

blk_bind Binds a program variable and a database column.

blk_colval A server-side routine obtains the column value from a
formatted bulk copy row.

blk_default Retrievse a column’s default value.

blk_describe Retrieves a description of a database column.

blk_done Marks a complete bulk copy operation or acomplete
bulk copy batch.

blk_drop Deallocates aCS_BLKDESC structure.

blk_getrow A server-side routine retrieves and stores aformatted
bulk copy row.

blk_gettext A server-side routine retrieves the text, image,
sensitivity, or boundary portion of an incoming bulk
copy formatted row.

blk_init Initiates a bulk copy operation.

blk_props Sets or retrieve bulk descriptor structure properties.

blk_rowalloc A server-side routine all ocates space for aformatted
bulk copy row.

blk_rowdrop A server-side routine frees space previously alocated
for aformatted bulk copy row.

blk_rowxfer Transfers one or more rows during a bulk copy
operation without specifying or receiving arow count.

blk_rowxfer_mult Transfers one or more rows during a bulk copy
operation.

Common Libraries Reference Manual 105

blk_alloc

Routine Description

blk_sendrow A server-side routine sends a formatted bulk copy row ||
obtained from blk_getrow.

blk_sendtext A server-side routine sends text, image, sensitivity, or |

boundary datain aformatted bulk copy row obtained
from blk_sendtext.

blk_srvinit A server-side routine copies descriptions of server table
columnsto the client, if required.
blk_textxfer Transfersacolumn’s datain chunks during a bulk copy
operation.
blk alloc
Description AllocatesaCS BLKDESC structure.
Syntax CS_RETCODE blk_alloc(connection, version, blk_pointer)
CS_CONNECTION *connection;
CS_INT version;
CS_BLKDESC **plk_pointer;
Parameters connection

A pointer toaCS_CONNECTION structure that has been allocated with
ct_con_alloc and opened with ct_connect. A CS_CONNECTION structure
contains information about a particular client/server connection.

The connection must not have any pending results.

106 Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

Return value

Examples

/*
** Bul kCopyl n()

version
The intended version of Bulk-Library behavior. During initialization,
version’s value is checked for compatibility with Client-Library’s version
level. version can take the following values:

Compatible Client-Library
Value Meaning version Level(s)

BLK_VERSION_100 Version 10.0 behavior CS_VERSION_110,
CS_VERSION_100
BLK_VERSION_110 Version 11.0 behavior Same as BLK_VERSION_100
BLK_VERSION_120 Version 12.0 behavior. Same as
BLK_VERSION_100, 110
BLK_VERSION_125 Version 12.5 behavior. Same as

BLK_VERSION_100, 110,
120

Note BLK_VERSION_100 can only be used with Open Client/Server
versions 11.x and higher, regardless of whether the context/ctlib isinitialized
to CS_VERSION_100 or CS_VERSION_110.

The application’s Client-Library version level is determined by the call to
ct_init that initializes the connection’s parent context structure.

blk_pointer
The address of a pointer variable. blk_aloc sets *blk_pointer to the address
of anewly allocated CS BLKDESC structure.

In case of error, blk_alloc sets*blk_pointer to NULL.

blk_alloc returns:

Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

The most common reason for ablk_alloc failure isalack of adequate memory.

** Ex_tabname is globally defined.

*/

CS_STATI C CS_RETCODE
Bul kCopyl n(connect i on)

Common Libraries Reference Manual 107

blk_alloc

CS_CONNECTION *connecti on;

{
CS_BLKDESC *bl kdesc;
CS_DATAFMT dat af nt ; /* variabl e descriptions */
Bl k_Dat a *dptr; /* data for transfer */
CS_INT datalen[5]; /* variable data length */
CS_INT I en;
CS_INT nunT ows;
/*
** Ready to start the bulk copy in now that all the
** connections have been nade and have a table nane.
** Start by getting the bulk descriptor and
** jinitializing.
*/
if (blk_alloc(connection, BLK VERSI ON 100, &bl kdesc)
I = CS_SUCCEED)
{
ex_error ("Bul kCopyln: blk_alloc() failed");
return CS_FAIL;
}

if (blk_init(blkdesc, CS_BLK_IN,
Ex_t abnane, strlen(Ex_tabnanme)) == CS_FAIL)

ex_error("Bul kCopyln: blk_init() failed");
return CS_FAIL;

}
/*

** Bind the variables to the colums and send the rows,
** and then clean up.

*/

... CODE DELETED....

return CS_SUCCEED,
}

Usage .

108

A CS BLKDESC structure, also called abulk-descriptor structure, isthe
control structure for sending and receiving bulk-copy data. It is ahidden
structure that contains information about a particular bulk-copy operation.

Before calling blk_alloc, an application must call the Client-Library
routines ct_con_alloc and ct_connect to allocate aCS CONNECTION

structure and open the connection.

blk_alloc must be the first routine called in a bulk-copy operation.

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

See also

blk_bind

Description

Syntax

Parameters

e MultipleCS BLKDESCandCS_ COMMAND structures can beallocated
on aconnection, but only one CS BLKDESC or CS COMMAND
structure can be active at atime. For more information, see blk_init on
page 134 in this chapter.

e TodedlocateaCS BLKDESC structure, an application can call blk_drop.

blk_drop, blk_init, ct_con_alloc, ct_connect

Bind a program variable to a database column.

CS_RETCODE blk_bind(blkdesc, colnum, datafmt, buffer,
datalen, indicator)

CS_BLKDESC *blkdesc;

CS_INT colnum;
CS_DATAFMT *datafmt;
CS_VOID *puffer;
CS_INT *datalen;
CS_SMALLINT *indicator;
blkdesc

A pointer to the CS_BLKDESC that is serving as a control block for the
bulk-copy operation. blk_alloc allocatesa CS _BLKDESC structure.

colnum
The number of the column to bind to the program variable. Thefirst column
in atableis column number 1, the second is number 2, and so forth.

datafmt
A pointer to the CS_DATAFMT structure that describes the program
variable to bind to the column.

Table 4-1 lists the fields in * datafmt that are used by bik_bind and contains
general information about the fields. blk_bind ignores fields that it does not
use:

Table 4-1: Fields in the CS_DATAFMT structure for blk_bind

Field name When used Set the field to
name Not used. Not applicable.
namelen Not used. Not applicable.

Common Libraries Reference Manual 109

blk_bind

Field name When used

Set the field to

datatype Always.

A typeconstant (CS_xxx_TY PE) representing
the datatype of the program variable.

All type constants listed on the “ Types” topics
page in the Open Client Client-Library/C
Reference Manual are valid.

Open Client user-defined types are not valid.

blk_bind supports a wide range of type
conversions, so datatype can be different from
the column’stype. For instance, by specifying
avariabletypeof CS_FLOAT_TY PE, amoney
column can be bound to aCS_FLOAT
program variable. blk_rowxfer_mult on page
146 or blk_rowxfer on page 143 perform
appropriate conversions when transferring
data. For alist of the data conversions
provided by Client-Library, see cs_convert on
page 25 in Chapter 2, “CS-Library Routines’

If datatypeis CS_ BOUNDARY_TYPE or
CS_SENSITIVITY_TYPE, the * buffer
program variable must be of type CS_CHAR.

format When binding
to character- or
binary-type
destination
variables
during copy-
out operations;
otherwise,
CS FMT_UN
USED.

110

For variable-length datatypes, the settingisa
bit mask that indicates the format of datato be
read or the format to write datain.

For bulk-copy-out operations, the format flags
arethe same asfor ct_bind.

For bulk-copy-in operations, the only format
flagis CS_BLK_ARRAY_MAXLEN. For
more information on the use of thisflag, see
“Array binding” on page 119.

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

Field name When used Set the field to
maxlength When binding The maximum length of the * buffer program
toavariable variable.
length When binding character or binary variables,
datatype. maxlength must describe the total maximum
When binding length of the program variable, including any
to afixed- space required for special terminating bytes,
length such as anull terminator.
datatype, During a bulk-copy-in operation, maxlength
maxlength is specifies the maximum length of the data that
ignored. will be copied from the *buffer program
variable.
During a bulk-copy-out operation, maxlength
isthe length of the *buffer program variable.
scale Only when The scale of the program variable.
binding to If the source datais the same type as the
numeric or destination, then scale can be set to
decimal CS_SRC_VALUE toindicate that the
variables. destination should pick up its value for scale
from the source data.
scale must be less than or equal to precision.
precision Only when The precision of the program variable.
binding If the source datais the same type as the
numeric or destination, then precision can be set to
decimal CS SRC_VALUE toindicate that the
destinations. destination should pick up its value for
precision from the source data.
precision must be greater than or equal to
scale.
status Not used. Not applicable.

Common Libraries Reference Manual

111

blk_bind

112

Field name When used Set the field to
count Always. count is the number of rowsto transfer per
blk_rowxfer_mult on page 146 or
blk_rowxfer on page 143 call. If count is
greater than 1, array binding is considered to
bein effect.
During a bulk-copy-out operation, if count is
larger than the number of available rows, only
the available rows are copied.
count must have the same value for all
columns being transferred, with one
exception: An application can intermix counts
of 0 and 1. Thisis because when count is 0, 1
row istransferred.
usertype Not used. Not applicable.
locale If supplied, A pointer to aCS_LOCALE structure
localeisused. containing locale information for the * buffer
Otherwise, program variable.
default
localization
applies.
buffer

The address of the program variable to be bound to the column specified by

colnum.

For a bulk-copying-in operations, * buffer isthe program variable from
which blk_rowxfer_mult copies the data.

For bulk-copying-out operations, buffer* isthe program variable in which
blk_rowxfer_mult places the copied data. If datafmt—>maxlength indicates
that * buffer is not large enough to hold the copied data, blk_rowxfer_mult
truncates the data at row transfer time. If this occurs, Bulk-Library sets
*indicator to the actual length of the available data.

A NULL buffer indicates that data for the column will be transferred using

the blk_textxfer routine.

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

Return value

Examples

/*
** Bul kCopyl n()

datalen
A pointer to the length, in bytes, of the * buffer data.

For bulk-copy-in operations:

If *buffer isnot NULL, *datalen representsthe actual length of the data
contained in the * buffer program variable. An application must set this
length before calling blk_rowxfer_mult or blk_rowxfer to transfer
rows. In case of variable-length data, the length may be different for
each row. If the data is fixed-length, *datalen can be CS_UNUSED,
except for array binding. If *datalenis0, thevalue of *indicator isused
to determine whether the column’s default value or aNULL should be
inserted—see Table 4-2 on page 117 for details.

If *buffer isNULL (indicating that the data will be transferred with
blk_textxfer), *datalen indicates the total length of the value to be
transferred.

For bulk-copy-out operations:

*datalen represents the actual length of the data copied to * buffer.
blk_rowxfer_mult or blk_rowxfer sets *datalen each timeitis called to
transfer arow.

Since blk_rowxfer_mult or blk_rowxfer sets datalen each timeitiscalled
to transfer arow, the datalen parameter must remain local to the
function calling blk_bind() and blk_rowxfer(), or blk_rowxfer_mult().
Failure to do so causesinvalid results.

indicator
A pointer to aCS _INT variable, or for array binding, an array of CS_INT.
At row-transfer time, blk_rowxfer_mult or blk_rowxfer read the indicator’s
contents to determine certain conditions about the bulk-copy data. See the
“List of Bulk-Library routines’ on page 105 section for details.

blk_bind returns;

Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

blk_bind returns CS_FAIL if the application has not called blk_init to initialize
the bulk-copy operation.

Common Libraries Reference Manual 113

blk_bind

114

** BLKDATA and DATA END are defined in the bul k copy
** exanpl e program

*/

CS_STATI C CS_RETCODE

Bul kCopyl n(connecti on)
CS_CONNECTION *connecti on;

{

/*
* %

* %

* %

*/

/*
* %

* %

*/

CS_BLKDESC * bl kdesc;

CS_DATAFMT dat af nt ; /* variabl e descriptions */
Bl k_Dat a *dptr; /* data for transfer */
CS_INT datalen[5]; /* variable data |l ength */
CS_INT | en;

CS_INT nunT OWS;

Ready to start the bulk copy in now that all the
connections have been nade and have a tabl e nane.
Start by getting the bulk descriptor initializing.

. CCDE DELETED.. ...

Bind the variables to the colums and
transfer the data.

datafnmt .| ocale = 0O;

dat af nt . count = 1;

dptr = BLKDATA;

while (dptr->pub_id != DATA _END)

{

dat af nt . dat at ype = CS_| NT_TYPE;
dat af mt . maxl ength = si zeof (CS_I NT);
dat al en[0] = CS_UNUSED;

i f (bl k_bind(bl kdesc, 1, &datafm, &dptr->pub_id,
&dat al en[0], NULL) != CS_SUCCEED)

ex_error ("Bul kCopyln: blk_bind(1) failed");
return CS_FAI L,

}

dat af nt . dat at ype = CS_CHAR TYPE;

dat af nt . maxl ength = MAX_PUBNAME - 1;

datal en[1] = strlen(dptr->pub_nane);

if (bl k_bind(bl kdesc, 2, &datafnt, dptr->pub_nane,

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

&dat al en[1], NULL) != CS_SUCCEED)

ex_error("Bul kCopyl n: bl k_bind(2) failed");
return CS_FAI L,

}

dat af mt . maxl ength = MAX_PUBCI TY - 1;

datal en[2] = strlen(dptr->pub_city);

if (bl k_bind(bl kdesc, 3, &datafnt, dptr->pub_city,

&dat al en[2], NULL) != CS_SUCCEED)

{
ex_error("Bul kCopyl n: bl k_bind(3) failed");
return CS_FAIL;

}

dat af mt . maxl ength = MAX_PUBST - 1;

datal en[3] = strlen(dptr->pub_st);

if (bl k_bind(bl kdesc, 4, &datafm, dptr->pub_st,

&dat al en[3], NULL) != CS_SUCCEED)

{
ex_error("Bul kCopyl n: blk_bind(4) failed");
return CS_FAIL;

}

dat af mt . maxl ength = MAX_BIO - 1;

datal en[4] = strlen((char *)dptr->pub_bio);

if (blk_bind(bl kdesc, 5, &datafnt, dptr->pub_bi o,

&dat al en[4], NULL) != CS_SUCCEED)

ex_error ("Bul kCopyln: blk_bind(5) failed");
return CS_FAlL,;

if (blk_rowxfer (blkdesc) == CS_FAIL)

{
ex_error("Bul kCopyln: blk_rowfer() failed");
return CS_FAIL;

}

dpt r ++;

}

/* Mark the operation conplete and then clean up */
...CODE DELETED.....

return CS_SUCCEED,

Usage * blk_bind isaclient-side routine.

Common Libraries Reference Manual 115

blk_bind

blk_bind binds program variables to table columns in the database. Once
variables are bound, subsequent callsto blk_rowxfer_mult copy row data
between the database and the bound variables. The copy directionis
determined by the application’s earlier call to blk_init.

When copying into a database, an application must call blk_bind once for
each column in the database table. When copying out, an application need
not call bik_bind for columnsin which it has no interest.

To indicate that a column value will be transferred using blk_textxfer, an
application callsblk_bind with buffer asNULL. A typical application will
use blk_textxfer to transfer large text or image values.

If atext, image, boundary, Or sensitivity datatype column is marked for
transfer using bik_textxfer, all subsequent columns of these typesmust also
be marked for transfer using blk_textxfer. For example, an application
cannot mark the first text column in arow for transfer using blk_textxfer
and then bind a subsequent text column to a program variable.

An application can call blk_bind in between callsto blk_rowxfer_mult to
reflect changesin avariable's address or length. If an application cals
blk_bind multiple times for a single column or variable, only the last
binding takes effect.

An application can call blk_describeto initializeaCS_ DATAFMT
structure that describes the format of a particular column.

blk_bind for Bulk-Copy-In operations

The following table summarizes blk_bind usage when used for bulk-copy-in
operations. For information on datafmt fields, see Table 4-1 on page 109.

116

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

Table 4-2: blk_bind parameter values for bulk copy in

When calling
blk_bind to

buffer is

datalen is

*indicator is

Bind to a scalar or
array variable from
which
blk_rowxfer_mult
will read column
values.

The address of a
program variable
or array.

A pointer to avariable or array
that indicates the length of the
values to be read from * buffer.

« If *datalenis greater than O,
*datalen values areread from
*puffer and sent asthe
column value.

* When*datalenisO, thevalue
of *indicator is used to
determine whether the
column’s default value (if
any) or NULL should be
inserted.

Theaddressof avariableor array
that suppliesindicator values for
the column.

*indicator is only considered

when *datalen is O:

* |f *indicator is O, the
column’s default value (if
available) isinserted. If no
default value is available, a
NULL isinserted.

e |f *indicator is-1, NULL is
aways inserted.

Indicatethat acolumn
valuewill be
transferred using
blk_textxfer.

NULL

Thetota length of the data that
will be sent using blk_textxfer.

In this case, datafmt—
>maxlength isignored.

Ignored.

When aBulk-Library application callsblk_bind in abulk-copy-in operation the
buffer, datalen, andindicator pointers passed toblk_bind arerecorded. Thedata
at thoselocationsmust remain valid until it isread during the call to blk_rowxfer
or blk_rowxfer_mult.

blk_bind for Bulk-Copy-Out operations

The following table summarizes blk_bind usage when used for bulk-copy-out
operations. For information on datafmt fields, see Table 4-1 on page 109.

Common Libraries Reference Manual

117

blk_bind

Table 4-3: blk_bind parameter values for bulk copy out

When calling
blk_bind to

buffer is

*datalen is

*indicator is

Bind to ascalar or
array variableinto

The address of a
program variable

A pointer to avariable or to a
CS_INT variable for an array,

Theaddressof avariableor array
that suppliesindicator valuesfor

which or array. whereblk_rowxfer_multonpage the column.
blk_rowxfer_mult 146 placesthe length of the blk rowxfer mult sets
will write column values written to *buffer. *indicator as follows:
values. - .
e -lindicatesthe dataisnull.
e Oindicates good data.
* A value greater than 0
indicatestruncation occurred.
Thevalueisthe actua length
of the available data.
Indicatethatacolumn NULL Ignored. Ignored.

value will be
transferred using
blk_textxfer.

Inthis case, datafmt—>maxlength
represents the length of the
*puffer data space.

118

Specifying Null values for Bulk Copy into the database

* When copying in, an application can instruct blk_rowxfer_mult to use a
column’s default value by setting *datalen to 0 and *indicator to 0 before
calling blk_rowxfer_mult. If no default value is defined for the column,

blk_rowxfer_mult insertsa NULL value.

e Toinstruct blk_rowxfer_mult to insert aNULL regardliess of acolumn’s
default value, set *datalen to 0 and *indicator to -1 before calling

blk_rowxfer_mult.

Clearing bindings

» Toclear abinding, call blk_bind with buffer, datafmt, datalen, and
indicator as NULL. Otherwise, bindings remain in effect until an
application callsblk_donewithtypeasCS BLK_ALL toindicatethat the

bulk-copy operation is complete.

» Toclear al bindings, pass colnumas CS_UNUSED, with buffer, datafmt,
datalen, and indicator as NULL. An application typically clearsall
bindings when it needs to change the count that is being used for array

binding.

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

Array binding

« Array binding isthe process of binding a column to an array of program
variables. At row-transfer time, multiple rows of the column are
transferred either to or from the array of variables with asingle
blk_rowxfer_mult call. An application indicates array binding by setting
datafmt—>count to a value greater than 1.

e Array binding works differently for bulk-copy-in and bulk-copy-out
operations.

» For bulk-copy-in operationsthat use array binding, you must call bik_bind
with buffer, datalen, and indicator pointing to arrays. Each length and
indicator variabl e describes the corresponding datain the buffer array. For
fixed-length data, buffer is always a pointer to an array of fixed-length
values. For variable-length data (specifically character or binary data),
buffer isa pointer to an array of bytes. In the latter case, the packing of
valuescan beloose or dense. The application specifiesthe packing method
for each column by setting flags in the datafmt—>format field:

e Setting the BLK_ARRAY_MAXLEN bit in datafmt—>format
specifies |oose packing of valuesin the array. blk_rowxfer_mult
retrieves the valuei by reading datalen[i-1] bytes starting at the byte
position computed as:

(i -1) * datafnt->maxl ength

e IftheBLK_ARRAY_MAXLEN bhit is not set in datafmt—>format,
column values must be densely packed for blk_rowxfer_mult. Each
value must be placed in the column array immediately after the
previous value, without padding. blk_rowxfer_mult gets value i by
reading datalen[i-1] bytes starting at the byte position computed as:

datalen[i-2] + datalen[i-3] + ... + datal en[O0]

In other words, thefirst value starts at 0, the second at datalen[0], the
third at datalen[1] + datalen[Q], and so forth.

For example, consider a character column that will receive the values
“girl,” ,“boy,”,“man,” ,and “woman,” and assumethat this columnisbound
with datafmt—>maxlength passed as 7. With locose array binding, the buffer

and datalen contents would be;

buffer: girl boy man wormrman
0 7 14 21
datalen: 4, 3, 3, 5

With densely packed array binding, the buffer and datalen contentswould
be:

Common Libraries Reference Manual 119

blk_colval

See also

blk colval

Description

Syntax

Parameters

120

buf fer: girl boymanwonman
0 4 7 10
datalen: 4, 3, 3, 5

» For bulk-copy-out operations, array binding performed with blk_bind
works the same as array binding performed with ct_bind. Column arrays
for bulk-copy-out are always loosely packed.

* Whileusing array binding during a bulk-copy-out operation, it is possible
for conversion, memory, or truncation errors to occur while
blk_rowxfer_mult iswriting to the destination arrays. In this case,
blk_rowxfer_mult writesapartial result to the destination arrays and returns
CS ROW_FAIL.

» If array binding isin effect (for either direction), an application cannot use
blk_textxfer to transfer data.

blk_describe, bik_default, blk_init

A server-side routine obtains the column value from a formatted bulk-copy
row.

CS_RETCODE blk_colval(srvproc, blkdescp, rowp, colnum,
valuep, valuelen, outlenp)

SRV_PROC *Srvproc;
CS_BLKDESC *blkdescp;
CS_BLK_ROW *rowp;

CS_INT colnum;
CS_VOID *valuep;
CS_INT valuelen;
CS_INT *outlen;
srvproc

A pointer to the SRV_PROC structure associated with the client sending the
bulk-copy row. It contains all the information that Server-Library usesto
manage communications and data between the Open Server application and
the client.

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

Return value

Usage

See also

blkdescp
A pointer to aCS _BLKDESC structure containing information about bulk-
copy data. This structure must have been previously allocated with acall to
blk_alloc and initialized with a call to blk_init. This structure is used to
interpret incoming formatted bulk-copy rows.

rowp
A pointer to the CS BLK_ROW structurefilled in by aprior call to
blk_getrow.

The CS_BLK_ROW structure is a hidden structure that holds formatted
bulk-copy rows sent from the client.

colnum
The column number of the column of interest. Column numbers start at 1.

valuep
A pointer to the application buffer in which the column value from the bulk-
copy row is placed.

valuelen
The size, in bytes, of the buffer to which valuep points.

outlen
A pointer toaCS_INT variable. blk_colval sets*outlen to the size, in bytes,
of the column data.

blk_colval returns:

Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

e blk_colval isaserver-side routine. After getting the value of a specified
column from a formatted bulk-copy row, it stores the value in an
application buffer.

e Thisroutine performs no implicit data conversion. Use cs_convert to
convert the data.

e Toexaminethe columnvalueafter acall toblk_colval, the application must
know the column's datatype before making the call.

« AnOpen Server application cannot usethisroutineto retrieve text, image,
sensitivity, or boundary columns. Use blk_gettext to retrieve such
columns.

blk_getrow, blk_gettext

Common Libraries Reference Manual 121

blk_default

blk_default

Description

Syntax

Parameters

Return value

Usage

122

Retrieves a column’s default value.

CS_RETCODE blk_default(blkdesc, colnum, buffer,
buflen, outlen)
CS_BLKDESC *blkdesc;

CS_INT colnum;
CS_VOID *puffer;
CS_INT buflen;
CS_INT *outlen;
blkdesc

A pointer to the CS_ BLKDESC that serves as a control block for the bulk-
copy operation. blk_alloc allocatesa CS_BLKDESC structure.

colnum
The number of the column of interest. The first column in atableis column
number 1, the second is number 2, and so forth.

buffer
A pointer to the spacein which blk_default will place the default value.

buflen
Thelength, in bytes, of the *buffer data space.

outlen
A pointer to an integer variable.

If supplied, blk_default sets * outlen to the length, in bytes, of the default
value.

If the default value is larger than buflen bytes, an application can use the
value of *outlen to determine how many bytes are needed to hold the value.

blk_default returns:

Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

blk_default returns CS_FAIL if the application has not called blk_init to
initialize the bulk-copy operation.

* blk_default isaclient-side routine.

e Anapplication can call blk_default to find out whether a default valueis
defined for a particular target column, and, if so, what the default valueis.

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

This information can be useful while preparing to bulk copy rowsinto a
database. The application can set *datalen and *indicator valuesto
specify whether a column’s default value should be used. (datalen and
indicator are the addresses of program variables that were bound to the
column with blk_bind). See “ Specifying Null values for Bulk Copy into
the database” on page 118 for more information.

* If the column of interest does not have a default value, blk_default sets
*outlen to CS NO_DEFAULT and returns CS_SUCCEED.

e Anapplication can retrieve column defaults with blk_default only during a
bulk-copy-in operation. The application cannot call blk_default until
blk_init(CS BLK_IN) returns CS_SUCCEED.

See also blk_bind, blk_describe, blk_init

blk _describe

Description Retrieves a description of a database column.

Syntax CS_RETCODE blk_describe(blkdesc, colnum, datafmt)
CS_BLKDESC *blkdesc;
CS_INT colnum;
CS_DATAFMT *datafmt;

Parameters blkdesc

A pointer to the CS_BLKDESC that is serving as a control block for the
bulk-copy operation. blk_alloc allocatesa CS_BLKDESC structure.

colnum
The number of the column of interest. Thefirst column in atableiscolumn
number 1, the second is number 2, and so forth.

datafmt
A pointer to aCS_DATAFMT structure. blk_describe fills * datafmt with a
description of the database column referenced by colnum.

During abulk-copy-in operation, blk_describe fillsin thefollowing fieldsin
the CS_DATAFMT:

Common Libraries Reference Manual 123

blk_describe

Table 4-4: CS_DATAFMT fields, as set by blk_describe for bulk copy in

Field
name

blk_describe sets the field to

name

The null-terminated name of the column, if any. A NULL nameis
indicated by a namelen of 0.

namelen

The actual length of the name, not including the null terminator.
OindicatesaNULL name.

datatype

A type constant representing the datatype of the column. All type
constants listed on the “Types’ topics page are vaid, with the
exception of CS VARCHAR_TYPE and CS_VARBINARY _TY PE.

maxlength

The maximum possible length of the data for the column.

scale

The scale of the column.

precision

The precision of the column.

During a bulk-copy-out operation, blk_describe fillsin the following fields
inthe CS_DATAFMT:

Table 4-5: CS_DATAFMT fields, as set by blk_describe for bulk copy out

Field
name

blk_describe sets the field to

name

The null-terminated name of the column, if any. A NULL nameis
indicated by anamelen of 0.

namelen

The actual length of the name, not including the null terminator.
OindicatesaNULL name.

datatype

The datatype of the column. All datatypes listed on the “ Types’ topics
page in the Open Client Client-Library/C Reference Manual are valid.

maxlength

The maximum possible length of the data for the column.

scale

The scale of the column.

precision

The precision of the column.

status

124

A bit mask of the following symbols, combined with a bitwise OR:

¢ CS_CANBENULL to indicate that the column can contain NULL
values.

¢ CS_HIDDEN to indicate that this column is a hidden column that
has been exposed. Hidden columns are exposed when the
CS _HIDDEN_KEY Sproperty isset for thebulk descriptor’sparent
connection.

¢ CS_IDENTITY toindicate that the column is an identity column.
e CS KEY toindicate the column is part of the key for atable.

¢ CS VERSION_KEY toindicate the columnis part of the version
key for the row.

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

Return value

Usage

See also

Field
name blk_describe sets the field to

usertype The Adaptive Server user-defined datatype of the column, if any.
usertypeis set in addition to (not instead of) datatype.

locale A pointer toaCS_L OCALE structure that containslocaleinformation
for the data.

blk_describe returns:

Returns Indicatse
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

blk_describe returns CS_FAIL if colnum does not represent avalid result
column.

* blk_describe isaclient-side routine.

e blk_describe describes the format of a database column. The application
can use thisinformation to:

< Determine the datatype and size requirements for all ocating storage
for retrieving rows (for bulk copy out of the database).

e Determine compatibility between program variable datatypes and the
database columns (by calling cs_will_convert to determine whether
the conversion is supported and, if necessary, by checking the data
lengths).

e Perform error checking. For example, the debug version of a bulk-
copy application might call blk_describe to confirm assumptions
about the format of table columns.

e An application typically uses a column description while determining
compatible program variable types and sizes.

e Seethe“CS DATAFMT Structure” topics page in the Open Client Client-
Library/C Reference Manual for a complete description of the
CS _DATAFRMT structure.

blk_default, blk_init

Common Libraries Reference Manual 125

blk_done

blk _done

Description

Syntax

Parameters

Return value

Examples
/ *

** Bul kCopyl n()

126

Marks a complete bulk-copy operation or a complete bulk-copy batch.
CS_RETCODE blk_done(blkdesc, type, outrow)

CS_BLKDESC *blkdesc;

CS_INT type;
CS_INT *outrow;
blkdesc

A pointer to the CS_BLKDESC that is serving as a control block for the
bulk-copy operation. blk_alloc alocatesa CS BLKDESC structure.

type
One of the following symbolic values:

Value of type blk_done

CS BLK_ALL Marks a compl ete bulk-copy-in or bulk-copy-out operation.

CS BLK_BATCH Marks the end of a batch of rowsin a batched bulk-copy-in
operation.

CS BLK_CANCEL Cancels abulk-copy batch or bulk-copy operation.

outrow
A pointer to an integer variable. If typeisCS BLK_BATCH or
CS BLK_ALL, blk_done sets* outrow to the number of rows bulk copied to
Adaptive Server since the application’s last blk_done call. When typeis
CS BLK_CANCEL, *outrow is set to 0.

blk_done returns:

Returns lindicates

CS _SUCCEED The routine completed successfully.

CS FAIL The routine failed.

CS _PENDING Asynchronous network 1/O isin effect. For more

information, see the “ Asynchronous Programming” topics
pagein the Open Client Client-Library/C Reference Manual.

Common reasons for blk_done failure include:
e Aninvalid blkdesc pointer
e Aninvalid value for type

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

*/

CS_STATI C CS_RETCODE

Bul kCopyl n(connect i on)
CS_CONNECTI ON *connecti on;
{
CS_BLKDESC *bl kdesc;
CS_DATAFMI datafnt; [* variabl e descriptions */
Bl k_Dat a *dptr; /* data for transfer */
CS_INT datalen[5]; /* variable data length */
CS_INT | en;
CS_INT nunr ows;
/*
** Ready to start the bulk copy in nowthat all the
** connections have been nade and have a table nane.
** Start by getting the bulk descriptor initializing.
*/
. CODE DELETED.. ...
/*
** Now to bind the variables to the colums and
** transfer the data
*/
. CODE DELETED.. ...
/* ALL the rows sent so clear up */
if (blk_done(bl kdesc, CS BLK_ALL, &nunrows) == CS_FAIL)
{
ex_error("Bul kCopyln: blk_done() failed");
return CS_FAIL;
}
if (blk_drop(bl kdesc) == CS_FAIL)
{
ex_error("Bul kCopyln: blk_drop() failed");
return CS_FAIL;
}
return CS_SUCCEED;
}

Common Libraries Reference Manual 127

blk_done

Usage

128

A client-side-routine blk_done is necessary in both client-only and
gateway applications.

Note Setting CS OPT_NOCOUNT before doing a bulk copy operation
on a connection, causes blk_done to erroneously report errors.

Calling blk_done with typeas CS BLK_ALL marksthe end of abulk-
copy operation. Once an application marks the end of a bulk-copy
operation, it cannot call any Bulk-Library routines (except for blk_drop
and blok_alloc) until it begins a new bulk-copy operation by calling
blk_init.

Calling bik_done with typeas CS BLK_BATCH marksthe end of abatch
of rows in abulk-copy-in operation. CS BLK_BATCH islegal only
during bulk-copy-in operations.

Calling blk_done with type as CS_BLK_CANCEL cancels the current
bulk-copy operation. Rows transferred since an application’s last
blk_done(CS BLK_BATCH) call are not saved in the database. Once an
application cancels a bulk-copy operation, it cannot call any bulk-copy
routines (except for bik_drop and bik_alloc) until it initializes a new bulk-
copy operation by calling blk_init.

Calling blk_done during Bulk-Copy-In operations

When an application bulk copies data into a database, the rows are
permanently saved only when the application calls blk_done. During a
large data transfer, blk_done(CS_BLK_BATCH) can be called
periodically to “batch” the transmitted rows into smaller units of
recoverability.

An application can batch rows by calling blk_done with type as

CS BLK_BATCH once every n rows or when thereisalull between
periods of data, asin atelemetry application. This causes al rows
transferred since the application’s last bik_done call to be permanently
saved.

After saving a batch of rows, an application’sfirst call to blk_rowxfer or
blk_rowxfer_mult implicitly starts the next batch.

An application must call blk_done with typeas CS BLK_ALL to sendits
final batch of rows. This call permanently saves the rows, marks the end
of the bulk-copy operation, and cleans up internal bulk-copy data
structures.

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

Calling blk_done during bulk-copy-out operations

« Aftertransferring thelast row in abulk-copy-out operation, an application
must call blk_done with typeas CS BLK_ALL to mark the end of the
bulk-copy operation and clean up internal bulk-copy data structures.

See also blk_init, blk_rowxfer, blk_rowxfer_mult
blk _drop

Description Deallocates aCS BLKDESC structure.
Syntax CS_RETCODE blk_drop(blkdesc)

CS_BLKDESC *blkdesc;

Parameters blkdesc
A pointer to aCS BLKDESC previoudly allocated through blk_alloc.

Return value blk_drop returns:
Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.
Examples
/ *
** Bul kCopyl n()
*/

CS_STATI C CS_RETCODE
Bul kCopyl n(connect i on)
CS_CONNECTI ON *connecti on;

{
CS_BLKDESC *bl kdesc;
CS_DATAFMI datafnt; [* variabl e descriptions */
Bl k_Dat a *dptr; /* data for transfer */
CS_INT dat al en[5] ; /* variable data length */
CS_INT | en;
CS_INT nunT ows;
/*

Common Libraries Reference Manual 129

blk_getrow

* %

* %

* *

Ready to start the bulk copy in now that all the
connections have been made and have a tabl e nane.
Start by getting the bulk descriptor initializing.

*/
. CODE DELETED.
/ *
** Now to bind the variables to the colums and
** transfer the data
*/
. CODE DELETED.
/* ALL the rows sent so clear up */
if (blk_done(bl kdesc, CS BLK ALL, &nunrows) == CS_FAIL)
{
ex_error("Bul kCopyl n: bl k_done() failed");
return CS_FAIL;
}
if (blk_drop(bl kdesc) == CS_FAIL)
{
ex_error("Bul kCopyln: blk _drop() failed");
return CS_FAIL;
}
return CS_SUCCEED,
}
Usage e A CS BLKDESC structure, also called a bulk-descriptor structure,
contains information about a particular bulk-copy operation.
e Once abulk-descriptor structure has been deall ocated, it cannot be used
again. Toallocateanew CS_BLKDESC, an application can call blk_alloc.
e Dblk_dropistypicaly called after blk_done. It must bethelast routine called
in abulk-copy operation.
See also blk_alloc, blk_done
blk getrow
Description Server-side routine retrieves and stores a formatted bulk-copy row.
Syntax CS_RETCODE blk_getrow(srvproc, blkdescp, rowp)
130 Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

Parameters

Return value

Usage

SRV_PROC *srvproc;
CS_BLKDESC *blkdescp;
CS_BLK_ROW *rowp;
srvproc
A pointer to the SRV_PROC structure associated with the client sending the
bulk-copy row. It contains all the information that Server-Library usesto
manage communications and data between the Open Server and the client.

blkdescp
A pointer to aCS _BLKDESC structure containing information about bulk-
copy data. This structure must have been previously allocated with acall to
blk_alloc and initialized with a call to blk_init. This structure is used to
interpret incoming formatted bulk-copy rows.

rowp
A pointer to aCS BLK_ROW structure containing space for a formatted
bulk-copy row. Space must have been previously allocated with
blk_rowalloc.

The CS_BLK_ROW structure is a hidden structure that holds formatted
bulk-copy rows sent from the client.

blk_getrow returns:

Returns Indicates
CS_SUCCEED The routine completed successfully.
CS END_DATA There are no more rows.

CS BLK_HAS TEXT Therow contains some text, image, sensitivity, or
boundary data. Use blk_gettext to retrieve the text, image,
sensitivity, or boundary data. Note that a return value of
CS BLK_HAS TEXT implies a successful return, just
like CS_SUCCEED.

CS FAIL The routine failed.

e blk_getrow isaserver-side routine that is useful in gateway applications.

e Thisroutine copies the incoming formatted bulk-copy row into the
CS BLK_ROW structure to which rowp points. The row datais saved
only until the next call toblk_getrow. The application must have previously
allocated the space for the row using blk_rowalloc.

e Oncearow has been received through blk_getrow, the application may
examine the contents of any fields (other than text, image, sensitivity, or
boundary fields) using blk_colval.

e Useblk_gettext to retrieve text, image, sensitivity, and boundary fields.

Common Libraries Reference Manual 131

blk_gettext

See also

blk gettext

Description

Syntax

Parameters

132

e A bulk-copy row may subsequently be sent to another server using the
blk_sendrow routine.

» Anapplication must read all incoming rows with blk_getrow, until there
are no more rows.

e Onceblk_getrow returns CS_END_DATA, the application must drop the
space allocated for the row using blk_rowdrop.

blk_colval, blk_gettext, blk_rowalloc

Server-sideroutineretrievesthetext, image, sensitivity, or boundary portion of
an incoming formatted bulk-copy row.

CS_RETCODE blk_gettext(srvproc,blkdescp, rowp, bufp, bufsize, outlenp)

SRV_PROC *srvproc;
CS_BLKDESC *blkdescp;
CS_BLK_ROW *rowp;

CS_BYTE *bufp;

CS_INT bufsize;

CS_INT *outlenp;
srvproc

A pointer to the SRV_PROC structure associated with the client sending the
bulk-copy row. This structure contains al the information that Server-
Library uses to manage communications and data between the Open Server
application and the client.

blkdescp
A pointer to aCS _BLKDESC structure containing information about bulk-
copy data. This structure must have been previously allocated with acall to
blk_alloc and initialized with a call to blk_init. This structure is used to
interpret incoming formatted bulk-copy rows.

rowp
A pointer to the formatted bulk-copy row read from the client through a
prior call to blk_getrow.

The CS_BLK_ROW structure is a hidden structure that holds formatted
bulk-copy rows sent from the client.

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

Return value

Usage

bufp

A pointer to the application buffer in which Bulk-Library placesthe text,
image, sensitivity, or boundary data.

bufsize

The size, in bytes, of the space pointed at by bufp.

outlenp

A pointer toaCS _INT variable, which is set to the number of bytes actually
read by blk_gettext. It may be less than bufsize. To determine whether all of
thetext, image, sensitivity, or boundary part of the row has been read, check
for areturn code of CS END_DATA. A *outlenp value that isless than
bufsize does not necessarily indicate the end of arow. For example, it could
indicate the end of atext, image, sensitivity, or boundary column that is not
the last column in the row.

blk_gettext returns:

Returns Indicates
CS_SUCCEED The routine completed successfully.
CS END_DATA There are no moretext, image, sensitivity, or boundary fields

for the current incoming bulk-copy row. Call blk_getrow to
get the next bulk-copy row.

CS FAIL The routine failed.

blk_gettext is a server-side routine that is useful in gateway applications.

Thisroutineis used with blk_getrow and blk_colval to receive formatted
bulk-copy rows and route them to an Adaptive Server. This routine
retrieves the text, image, sensitivity, or boundary portions of the row.

Bulk-copy rows are formatted so that all text, image, sensitivity, and
boundary fields occur at the end of the row, after all the other types of
fields. Toroutearow to an Adaptive Server, first call blk_getrow to retrieve
all the parts of the row containing other types of fields. Call blk_colval to
retrieve and store portions of the row containing other types of fields.
Decide where this data goes and send it to the remote server, using
blk_sendrow. Call blk_gettext to copy text, image, sensitivity, or
boundary datainto an application buffer. Finally, call blk_sendtext to send
this information to the remote server.

If an incoming bulk-copy row hasany text, image, sensitivity, or boundary
fields, blk_getrow returns CS BLK_HAS TEXT.

Common Libraries Reference Manual 133

blk_init

See also

blk_init
Description

Syntax

Parameters

134

e Itisnotan error to call blk_gettext if the row contains no text, image,
sensitivity, or boundary fields. The routine smply returns
CS END_DATA.

e Thisroutine must be called after blk_getrow. Also, it must be called until
it returns CS_END_DATA, to fully read in a bulk-copy row.

» Beforerows can be sent to a server, the gateway application must have set
up the bulk-copy operation with a call to blk_init.

e ltiscritical that thetablefor which the bulk-copy operation wasinitialized
and the table into which the client is bulk copying are the same table.

blk_colval, blk_getrow, blk_gettext, blk_sendtext

Initiates a bulk-copy operation.

CS_RETCODE blk_init(blkdesc, direction, tablename,
tnamelen)

CS_BLKDESC *blkdesc;

CS_INT direction;
CS_CHAR *tablename;
CS_INT tnamelen;
blkdesc

A pointer to the CS_BLKDESC controlling the bulk-copy operation. An
application can allocate aCS_BLKDESC by calling blk_alloc.

The parent connection of the CS_BLKDESC must be open when blk_init is
called and cannot have any pending results.

direction
One of the following symboalic values, to indicate the direction of the bulk-
copy operation:;

Value of
direction blk_init
CS BLK_IN Beginsabulk-copy operation to upload rowsfrom the client to

the server.

CS BLK_OUT Begins a bulk-copy operation to download rows from the
server to the client.

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

tablename
A pointer to the name of the table of interest. Any legal server table nameis
acceptable.

tnamelen
The length, in bytes, of *tablename. If *tablename is null-terminated, pass
tnamelen as CS_NULLTERM.

Return value blk_init returns:
Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL The routine failed.
CS PENDING Asynchronous network /O isin effect. For more

information, see the “ Asynchronous Programming”
topics page in the Open Client Client-Library/C
Reference Manual.

A common cause of failure is specifying a non-existent table.

Examples

/*
** Bul kCopyl n()
** Ex_tabnanme is globally defined.
*/
CS_STATI C CS_RETCODE
Bul kCopyl n(connect i on)
CS_CONNECTI ON *connecti on;
{
CS_BLKDESC *bl kdesc;
CS_DATAFMI dat af nt ; [* variabl e descriptions */

Bl k_Data *dptr; /* data for transfer */
CS_INT datal en[5]; /* variable data |l ength */
CS_INT Il en;

CS_I NT nunt ows;

** Ready to start the bulk copy in nowthat all the
** connections have been made and have a tabl e nane.
** Start by getting the bul k descriptor and

** jnitializing.

if (blk_alloc(connection, BLK VERSI ON_ 100, &bl kdesc)
! = CS_SUCCEED)

ex_error("Bul kCopyln: blk_alloc() failed");

Common Libraries Reference Manual 135

blk_props

return CS_FAIL;

}

if (blk_init(blkdesc, CS_BLK IN,

{

Ex_t abnane, strlen(Ex_tabname)) == CS_FAIL)

ex_error("Bul kCopyln: blk_init() failed");
return CS_FAIL;

}

/*

** Bind the variables to the colums and send the rows,
** and then clean up.

*/

... CODE DELETED... ..

return CS_SUCCEED;

Usage

See also

blk_props

Description

136

blk_init begins a bulk-copy operation.

blk_init isaclient-side routine. However, it is necessary in both client-only
and gateway applications.

Multiple CS_BLKDESC and CS_ COMMAND structures can exist onthe
same connection, but only one CS BLKDESC or CS_ COMMAND
structure can be active at the same time.

» A bulk-copy operation begun with blk_init must be completed before
the connection can be used for any other operation.

* A bulk-copy operation cannot be started when the connectionisbeing
used to initiate, send, or process the results of other Client-Library or
Bulk-Library commands.

When a bulk-copy operation is complete, an application must call
blk_done with type asCS BLK_ALL to mark the end of the bulk-copy
operation and clean up internal Bulk-Library data structures.

blk_alloc, blk_bind, blk_done, blk_rowxfer_mult

Sets or retrieves bulk-descriptor structure properties.

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

Syntax

Parameters

CS_RETCODE blk_props(blkdesc, action, property,
buffer, buflen, outlen)

CS_BLKDESC *blkdesc;

CS_INT action;
CS_INT property;
CS_VOID *buffer;
CS_INT buflen;
CS_INT *outlen;
blkdesc

A pointer to aCS BLKDESC structure. A bulk-descriptor structure
contains information about a bulk-copy operation. blk_alloc alocates a bulk-
descriptor structure.

action
One of the following symbolic constants:

Value of

action blk_props

CS SET Sets the value of the property

CS GET Retrieves the value of the property

CS CLEAR Clearsthe value of the property by resetting it to its default value
property

A symbolic constant that indicates the property of interest. Table 4-6 on
page 138 lists valid property constants and describes each property.

buffer
If aproperty valueisbeing set, buffer pointsto the valueto usein setting the

property.

If aproperty value is being retrieved, buffer points to the space in which
bik_props will place the requested information.

The C datatype of the value depends on the property. Refer to Table 4-6 on
page 138 for the datatype of the property of interest.

buflen
Generally, buflen isthe length, in bytes, of *buffer.

If aproperty value is being set and the value in *buffer is null-terminated,
pass buflen as CS NULLTERM.

If *buffer is afixed-length or symbolic value, pass buflen asCS_UNUSED.

Common Libraries Reference Manual 137

blk_props

Return value

Usage

outlen
A pointer to an integer variable.

If aproperty valueis being set, outlen is not used and should be passed as
NULL.

If aproperty valueis being retrieved and outlen is supplied, blk_props sets
*outlen to the length, in bytes, of the requested information.

If the information is larger than buflen bytes, an application can use the
value of *outlen to determine how many bytes are needed to hold the
information.

blk_props returns:

Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL The routine failed.

» Bulk-descriptor properties define aspects of a specific bulk-copy
operation.

» Applicationsthat set Bulk-Library properties must do so after calling
blk_allocto allocate abulk-descriptor structure and beforecalling blk_init
to initiate a specific bulk-copy operation.

* Anapplication can useblk_props to set or retrievethe following properties:

Table 4-6: Client/Server bulk descriptor properties

Property name Description *buffer is Appliesto Notes
BLK_IDENTITY Whether values for a CS TRUE or IN copies
table’sidentity coumn CS _FALSE. only
are specified explicitly The default is
for each row to be CS_FALSE, which
inserted. indicates that identity
This property cannot be values are either:
setto CS_TRUE if + Computed fromthe
BLK_IDSTARTNUM starting value
has been set for a bulk- indicated by
copy-in operation. BLK_IDSTARTN
UM, or
e Computed by
Adaptive Server as
dataisinserted,
based on existing
identity valuesin
thetable.
138 Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

Property name Description *puffer is Appliesto Notes

BLK_IDSTARTNUM The starting vaue for A CS_ NUMERIC IN copies
identity columnsin variable containing only
inserted rows. Thefirst the starting identity
inserted row usesthis value.
value, and thevalueis Thereis no default.
incremented for each
subsequent row.

This property cannot be
set if BLK_IDENTITY
has been set to
CS_TRUE for the bulk-
copy-in operation.

BLK_NOAPI_CHK Whether parameter and CS TRUE or Both IN and
error checkingforillegal CS_FALSE. OUT copies
parameter valuesand The defauilt is
state transitions are CS FALSE, which
disabled for Bulk- means error checking
Library calls. is performed.

BLK_SENSITIVITY_LBL Whether atable's CS TRUE or BothINand Secure
sensitivity column is CS FALSE (default). OUT copies SQL Server
included in the bulk- only
copy operation.

BLK_SLICENUM For bulk-copy into a A CS_INT variable IN copies
partitioned table. containing a positive only

Specifies the partition
number that copied rows
are inserted to.

value representing the
partition number.

The default is
CS_UNUSED, which
indicates that
Adaptive Server will
randomly choose a
partition number.

BLK_IDENTITY property

BLK_IDENTITY determines whether atable’'sidentity columnis
included in a bulk-copy-in operation.

BLK_IDENTITY does not affect bulk-copy-out operations.
If BLK_IDENTITY isCS_TRUE, the application must supply datafor the

identity column.

Common Libraries Reference Manual

139

blk_props

140

If BLK_IDENTITY isCS_FALSE, the application does not need to
supply data for the identity column. In this case, the server supplies a
default value for the column.

BLK_IDENTITY works by setting identity_insert on for the database table
of interest. This allows values to be inserted into the identity column.
When the bulk-copy operation isfinished, theidentity_insert option for the
table isturned off.

For more information about identity_insert, see the Adaptive Server
Enterprise Reference Manual.

BLK_NOAPI_CHK property

BLK_NOAPI_CHK can be set to CS_TRUE to disable parameter and
state checking of Bulk-Library calls. The default isCS_FALSE, which
enables parameter checking and state checking of each Bulk-Library call.
These two types of error checking are described below:

» Parameter checking determines whether the application has passed
valid parameters and combinations of parametersin the call.

» Sate checking ensures that calls are made in the required sequence.
For example, blk_init must be called before blk_bind.

The default error checking ensures that your application calls Bulk-
Library routinesin the appropriate manner. With API checking enabled, a
descriptive error message is raised when the application commits a usage
error, and the routine that discoversthe error returns CS_FAIL.

Warning! With API checking disabled, Bulk-Library usage errors may
lead to unexpected behavior or even program crashes.

If your application has been fully tested and completely debugged, you
may seeimproved performancewith API checking disabled. Bulk-Library
also calls Client-Library internally, so to get the full benefit, you should
also disable API checking in Client-Library (by calling ct_config to set the
CS NOAPI_CHK context property to CS_TRUE).

BLK_NOAPI_CHK does not affect testing for errors, such as network
errors or conversion overflow, that can occur in well-behaved
applications.

BLK_SENSITIVITY_LBL property

BLK_SENSITIVITY_LBL isuseful in applications that perform bulk-
copy operations to or from Secure SQL Server.

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

See also

blk _rowalloc

Description

Syntax

Parameters

e BLK_SENSITIVITY_LBL determines whether or not data for the
sensitivity column isincluded in a bulk-copy operation. By default,
sensitivity column datais not included.

e BLK_SENSITIVITY_LBL affects both bulk-copy-in and bulk-copy-out
operations.

e IfBLK_SENSITIVITY_LBL isCS _TRUE, the application must supply
datafor the sensitivity column on bulk-copy-in operationsand will receive
data from the sensitivity column on bulk-copy-out operations.

If BLK_SENSITIVITY_LBL isCS FALSE, the application does not
need to supply datafor the sensitivity column on bulk-copy- in operations
and will not receive data from the sensitivity column on bulk-copy-out
operations.

e BLK_SENSITIVITY_LBL isapplicable to Secure SQL Server copies
only. blk_init failsif BLK_SENSITIVITY_LBL isCS_TRUE and the
application attempts a bulk-copy operation against a standard Adaptive
Server.

e Application users copying into the sensitivity column must have the
bepin_labels_role role activated on Secure SQL Server. blk_init failsif the
bepin_labels_role is not activated for the connection’s user.

« For more information about Secure SQL Server, see your Secure SQL
Server documentation.

blk_alloc, blk_init

A Server-side routine all ocates space for a formatted bulk-copy row.
CS_RETCODE blk_rowalloc(srvproc, row)

SRV_PROC *srvproc;

CS_BLK_ROW **row;

srvproc
A pointer to the SRV_PROC structure associated with the client sending
formatted bulk-copy rows. It contains all the information that Server-
Library usesto manage communications and data between the Open Server
and the client.

Common Libraries Reference Manual 141

blk_rowdrop

Return value

Usage

See also

blk_rowdrop

Description

Syntax

Parameters

Return value

142

row
A pointer to apointer toaCS BLK_ROW structure.

The CS_BLK_ROW structure is a hidden structure that holds formatted
bulk-copy rows sent from the client.

blk_rowalloc returns:

Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

* blk_rowalloc is aserver-side routine that is useful in gateway applications.

» Thisroutine allocates spacein which blk_getrow will place the formatted
bulk-copy row.

» Therow spaceisused by all callsto blk_getrow.

* When al rows have been retrieved and sent to the remote server, call
blk_rowdrop to drop the space allocated for the row.

blk_getrow, blk_rowdrop, blk _gettext

A server-side routine, frees space previously allocated for a formatted bulk-
COpY row.

CS_RETCODE blk_rowdrop(srvproc, row)

SRV_PROC *srvproc;

CS_BLK_ROW *row;

srvproc
A pointer to the SRV_PROC structure associated with the client sending
formatted bulk-copy rows. It contains all the information that Server-
Library uses to manage communications and data between the Open Server
application and the client.

row
A pointer to ahidden CS_BLK_ROW structure that was allocated by acall
to blk_rowalloc.

blk_rowdrop returns:

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

Usage

See also

blk_rowxfer

Description

Syntax

Parameters

Return value

Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL The routine failed.

* blk_rowdrop is aserver-side routine that is useful in gateway applications.
« Thisroutine frees space previoudy allocated by blk_rowalloc.

e It must be called after al formatted bulk-copy rows have been retrieved
and sent to the remote server.

blk_getrow, blk_rowalloc, blk_gettext

Transfers one or more rows during a bulk-copy operation without specifying or
receiving arow count.

CS_RETCODE blk_rowxfer(blkdesc)

CS_BLKDESC *blkdesc;

blkdesc
A pointer to the CS BLKDESC that is serving as a control block for the
bulk-copy operation. blk_alloc allocatesa CS BLKDESC structure.

blk_rowxfer returns:

Table 4-7: blk_rowxfer return values

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS FAIL Theroutine failed.

CS _PENDING Asynchronous network 1/O isin effect. For more

information, see the “ Asynchronous Programming” topics
page in the Open Client Client-Library/C Reference
Manual.

CS BLK_HAS TEXT Therow contains one or more columns which have been
marked for transfer using blk_textxfer.

The application must call blk_textxfer to transfer data for
these columns before calling blk_rowxfer to transfer the
next row.

Common Libraries Reference Manual 143

blk_rowxfer

Returns

Indicates

CS END_DATA

When copying data out from a database, blk_rowxfer
returnsCS_END_DATA toindicatethat all rowshavebeen
transferred.

When copying datainto a database, blk_rowxfer does not
return CS_END_DATA.

CS ROW_FAIL

A recoverable error occurred while fetching a row.
Applies to bulk-copy-out operations only.

Recoverable errorsinclude memory allocation failures and
conversion errors (such as overflowing the destination
buffer) that occur while copying row values to program
variables. Inthe case of buffer-overflow errors, blk_rowxfer
sets the corresponding *indicator variable(s) to avalue
greater than 0. Indicator variablesmust have been specified
in the application’s calls to blk_bind.

When blk_rowxfer returnsCS_ROW_FAIL, theapplication
must continue calling blk_rowxfer to keep retrieving rows,
or it can cal ct_cancel to cancel the remaining results.

Examples

/*
** Bul kCopyl n()

** BLKDATA and DATA END are defined in the bul k copy

** exanpl e program
*/

CS_STATI C CS_RETCODE
Bul kCopyl n(connecti on)
CS_CONNECTION *connecti on;

{
CS_BLKDESC *bl kdesc;

CS_DATAFMI datafmt;/* variable descriptions */
Bl k_Data *dptr;/* data for transfer */
CS_INTdatal en[5];/* variable data length */

CS_INT |en;
CS_I NT nunr ows;

/*

** Ready to start the bulk copy in nowthat all the
** connections have been nade and have a table nane.
** Start by getting the bul k descriptor initializing.

*/
. CODE DELETED.. ...

144

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

/*

** Now to bind the variables to the colums and

** transfer the data

*/

datafnt.locale = 0O;

datafm.count = 1;

dptr = BLKDATA,;

while (dptr->pub_id ! = DATA _END)

{
dat af nt . dat at ype = CS_| NT_TYPE;
dat af mt . maxl ength = sizeof (CS_I NT);
dat al en[0] = CS_UNUSED;

f (bl k_bi nd(bl kdesc, 1, &datafnt, &dptr->pub_id,
&dat al en[0], NULL) != CS_SUCCEED)

{
ex_error("Bul kCopyl n: blk_bind(1) failed");
return CS_FAI L,
}
dat af nt . dat at ype = CS_CHAR TYPE;
dat af mt . maxl engt h = MAX_PUBNAME - 1;
datal en[1] = strlen(dptr->pub_nane);
if (bl k_bind(bl kdesc, 2, &datafnt, dptr->pub_nane,
&dat al en[1], NULL) != CS_SUCCEED)
{
ex_error("Bul kCopyln: blk_bind(2) failed");
return CS_FAIL;
}
dat af mt . maxl ength = MAX_PUBCI TY - 1;
datal en[2] = strlen(dptr->pub_city);
if (bl k_bind(bl kdesc, 3, &datafnt, dptr->pub_city,
&datal en[2], NULL) != CS_SUCCEED)
{
ex_error("Bul kCopyln: blk_bind(3) failed");
return CS_FAI L,
}
dat af mt . max|l engt h = MAX_PUBST - 1,
datal en[3] = strlen(dptr->pub_st);
if (bl k_bind(bl kdesc, 4, &datafnt, dptr->pub_st,
&dat al en[3], NULL) != CS_SUCCEED)
{
ex_error("Bul kCopyl n: bl k_bind(4) failed");
return CS_FAI L,
}
dataf mt. maxl ength = MAX BIO - 1;
datal en[4] = strlen((char *)dptr->pub_bio);
if (bl k_bind(bl kdesc, 5, &datafnt, dptr->pub_bi o,

Common Libraries Reference Manual 145

blk_rowxfer_mult

&datal en[4], NULL) != CS_SUCCEED)

ex_error ("Bul kCopyl n: bl k_bind(5) failed");
return CS_FAI L,

if (blk_rowxfer (blkdesc) == CS_FAIL)

{
ex_error ("Bul kCopyln: blk_rowfer() failed");
return CS_FAI L,

}

dptr ++;

}

/* ALL the rows sent so clear up */
... CODE DELETED.....

return CS_SUCCEED;

}
Usage * blk_rowxfer isaclient-side routine.
* blk_rowxfer is equivalent to calling blk_rowxfer_mult with a NULL
row_count parameter.
* Seehlk_rowxfer_mult in this chapter for more information.
See also blk_bind, blk_rowxfer_mult, blk_textxfer

blk_rowxfer_mult

Description Transfers one or more rows during a bulk-copy operation.
Syntax CS_RETCODE blk_rowxfer_mult(blkdesc, row_count)
CS_BLKDESC *blkdesc;
CS_INT *row_count;
Parameters blkdesc

A pointer to the CS_BLKDESC that is serving as a control block for the
bulk-copy operation. blk_alloc alocatesa CS BLKDESC structure.

146 Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

row_count
A pointer to aCS _INT variable or NULL.

For bulk-copy-out operations, blk_rowxfer_mult returnswith*row_count set
to the number of rows read by the call. If row_count isNULL, this
information is not available to the application. (The application can call
blk_done to determine how many rows have been transferred by the
cumulative number of blk_rowxfer_mult calls since the last blk_done call—
but it is simpler to use arow count variable.

For bulk-copy-in operations, blk_rowxfer_mult sends the number of rows
specified by *row_count to the server. If row_countisNULL or *row_count
is 0, then the number of rows specified by datafmt—>count in previous calls
to blk_bind are sent to the server.

row_count is used by applications that perform array binding. For more
information on this feature, see “Array binding” on page 119.

Return value blk_rowxfer_mult returns.

Table 4-8: blk_rowxfer_mult return values

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS FAIL Theroutine failed.

CS PENDING Asynchronous network 1/O isin effect. For more

information, see the “ Asynchronous Programming”
topics page in the Open Client Client-Library/C
Reference Manual.

CS BLK_HAS TEXT Therow contains one or more columns which have been
marked for transfer using blk_textxfer.

The application must call blk_textxfer to transfer datafor
these columns row before calling blk_rowxfer_mult to
transfer the next row.

CS END_DATA When copying dataout from adatabase, blk_rowxfer_mult
returns CS_END_DATA to indicate that all rows have
been transferred.

When copying datainto adatabase, blk_rowxfer_mult does
not return CS_END_DATA.

Common Libraries Reference Manual 147

blk_rowxfer_mult

Usage

148

Returns Indicates

CS ROW_FAIL A recoverable error occurred while fetching a row.

Appliesto bulk-copy-out operations only.

blk_rowxfer_mult sets *row_count to indicate the number
of rows transferred (including the row containing the
error) and transfers no rows after that row. The next call
to blk_rowxfer_mult will read rows starting with the row
after the one where the error occurred.

Recoverable errorsinclude memory allocation failures
and conversion errors (such as overflowing the
destination buffer) that occur while copying row valuesto
program variables. In the case of buffer-overflow errors,
blk_rowxfer_mult sets the corresponding * indicator
variable(s) to avalue greater than 0. Indicator variables
must have been specified in the application’s calls to
blk_bind.

When blk_rowxfer_mult returns CS_ROW_FAIL, the
application must continue calling blk_rowxfer_mult to
keep retrieving rows, or it can call ct_cancel to cancel the
remaining results.

A common reason for ablk_rowxfer_mult failure is conversion error.

blk_rowxfer_mult is aclient-side routine.

An application calls blk_rowxfer_mult to transfer rows between program
variables (bound with blk_bind) and the database table:

* During abulk-copy-in operation, blk_rowxfer_mult copies datafrom
program variables to the database.

e During abulk-copy-out operation, blk_rowxfer_mult copies datafrom
the database and placesit in program variables.

Application variables must first be bound to table columns with blk_bind
for blk_rowxfer_mult to read or write their contents.

blk_rowxfer_mult and Bulk-Copy-In operations

To transfer rows into a database, an application calls blk_rowxfer_mult

repeatedly to transfer values from program variablesto the database table.
See “Program structure for Bulk-Copy-1n operations’ on page 97 for the
sequence of Bulk-Library calls used to transfer data into a database table.

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

e During bulk-copy-in operations, the value of blk_rowxfer_mult's
*row_count parameter overrides the array lengths that were passed to
blk_bind (as datafmt—>count). The number of rows transferred per call is
determined as follows:

e |If the application passes the address of arow count variable as the
row_count parameter, then blk_rowxfer_mult transfers either
datafmt—>count or *row_count rows, whichever is smaller.

e Iftheapplication passesrow_count asNULL, blk_rowxfer_mult always
transfers datafmt—>count rows.

For example, if an application was uploading 103 rows and it used array
binding to transfer 10 rows at atime, the application would:

e Passdatafmt—>count as 10 in all callsto blk_bind
e Set*row_count to 10 for the first 10 calls to blk_rowxfer_mult
e Set*row_count to 3 for the final call to blk_rowxfer_mult

e To upload row data that contains large text or image column values, you
canforgo array binding and use blk_textxfer together with blk_rowxfer_mult
to send large values one piece at atime. See “ Transferring large text or
image values in chunks’ on page 150 for details.

e A bulk-copy-in operation is not automatically terminated if
blk_rowxfer_mult returns CS_FAIL. An application can continue to call
blk_rowxfer_mult after correcting or discarding the problem row.

blk_rowxfer_mult and bulk-copy-out operations

« Totransfer rows out of adatabase, an application calls blk_rowxfer_mult
repeatedly to read column values from the server and place them in
program variables. See “Program structure for Bulk-Copy-Out
operations’ on page 99 for the sequence of Bulk-Library callsused to read
data from a database table.

» For bulk copies out of adatabase, the use of blk_rowxfer_mult is similar to
the use of the Client-Library ct_fetch routine.

e The number of rowsto be read by blk_rowxfer_mult is determined by the
value passed as datafmt—>count in the application’s calls to blk_bind.
blk_rowxfer_mult attempts to read this number of rows and write the data
to program variables.

Common Libraries Reference Manual 149

blk_rowxfer_mult

See also

150

Fewer rows may be read by the final call to blk_rowxfer_mult (that is, the
call that retrieves the last row in the table) or if a conversion error occurs
whiledataisbeing retrieved. Theformer conditionisindicated by areturn
code of CS_END_DATA; the latter, by CS ROW_FAIL. In either case,
blk_rowxfer_mult returnswith * row_count set to the actual number of rows
read.

To download row datathat containslargetext or image column values, you
canforgo array binding and use blk_textxfer together with blk_rowxfer_muilt
to read large values one piece at atime. See Transferring large text or
image values in chunks, below, for details.

Transferring large text or image values in chunks

If array binding is not in effect, an application can use blk_textxfer in
conjunction with blk_rowxfer_mult to transfer rows containing large text or
image values. For information on how to do this, see“Bulk-Library client
programming” on page 93.

For tables that contain large text or image columns, it is often convenient
for an application to transfer the text or image data in fixed-size chunks
rather than all at once. If acolumnistransferred al at once, the application
must have sufficient buffer space to hold the value in its entirety.

To transfer large column values in chunks:

» Theapplication passes buffer asNULL initsblk_bind call for the
column. This setting specifies that data for this column will be
transferred using blk_textxfer. For a bulk-copy-in operation, the
application must also specify the length of the column value as
blk_bind’'s *datalen parameter.

» Theapplication calls blk_rowxfer_mult to transfer the row.
blk_rowxfer_mult returnsCS _BLK_HAS TEXT, indicating that Bulk-
Library expects further data for this row to be transferred with
blk_textxfer.

» For each column requiring transfer, the application callsblk_textxfer
inaloop until blk_textxfer returnsCS_END_DATA, indicating that all
of the data for this column has been transferred.

blk_bind, blk_textxfer

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

blk _sendrow

Description A server-side routine, sends a formatted bulk-copy row obtained from
blk_getrow.
Syntax CS_RETCODE blk_sendrow(blkdesc, row)

CS_BLKDESC *blkdesc;
CS_BLK_ROW *row;
Parameters blkdesc
A pointer to the CS_BLKDESC that is serving as a control block for the
bulk-copy operation. blk_alloc allocatesa CS BLKDESC structure.

row
A pointer to aCS BLK_ROW structure. The CS BLK_ROW isahidden
structure that holds formatted bulk-copy rows sent from the client. A
gateway application can fill inaCS _BLK_ROW structure with aformatted
row by calling the server-side routine blk_getrow.

Return value blk_sendrow returns:

Table 4-9: blk_sendrow return values

Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL The routine failed.

CS BLK_HAS TEXT Therow containsone or more text, image, sensitivity, or
boundary columns. The application must call blk_gettext
and blk_sendtext to transfer the columns for this row
before calling blk_getrow and blk_sendrow to transfer the
next row.

CS _PENDING Asynchronous network /O isin effect. For more
information, see the “ Asynchronous Programming” topics
page in the Open Client Client-Library/C Reference
Manual.

Usage * blk_sendrow is aserver-side routine.

e A gateway application uses blk_sendrow in conjunction with blk_getrow.
Together, the two routines enable a gateway application to receive
formatted bulk-copy rowsfrom an Open Client application and send them
on to Adaptive Server.

e blk_sendrow is a gateway-specific substitute for blk_rowxfer or
blk_rowxfer_mult. An application can call blk_sendrow only after calling
blk_getrow to retrieve aformatted row.

Common Libraries Reference Manual 151

blk_sendtext

See also

blk sendtext

Description

Syntax

Parameters

152

e The sequence of callsin the gateway application is:
* blk_getrow, to obtain a formatted bulk-copy row
* blk_sendrow, to send the formatted row to Adaptive Server

If blk_getrow returns CS BLK_HAS TEXT, the application must call the
following routines in aloop, until blk_gettext returns CS_END_DATA:

« blk_gettext, to pick up achunk of text, image, sensitivity, or boundary
data

» blk_sendtext, to send achunk of text, image, sensitivity, or boundary
data

Only one blk_gettext/blk_sendtext loop is required, no matter how many
text, image, sensitivity, or boundary columns are being transferred.

blk_init, blk _sendtext, blk_colval, blk_getrow, blk_gettext

A server-side routine, sends text, image, sensitivity, or boundary datain a
formatted bulk-copy row obtained from blk_getrow.

CS_RETCODE blk_sendtext(blkdesc, row, buffer,
buflen)

CS_BLKDESC *blkdesc;
CS_BLK_ROW *row;

CS_BYTE *buffer;
CS_INT buflen;
blkdesc

A pointer to the CS_ BLKDESC that is serving as a control block for the
bulk-copy operation. blk_alloc alocatesaCS BLKDESC structure.

row
A pointertoaCS BLK_ROW structure. TheCS BLK_ROW structureisa
hidden structure that holdsformatted bulk-copy rows sent from theclient. A
gateway application canfill inaCS_BLK_ROW structure with aformatted
row by calling the blk_getrow routine.

buffer
A pointer to the space from which blk_sendtext picks up the chunk of text,
image, sensitivity, or boundary data.

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

Return value

Usage

See also

buflen

The length, in bytes, of the *buffer data space.

blk_sendtext returns:

Table 4-10: blk_sendtext return values

Returns indicateS

CS_SUCCEED The routine completed successfully.

CS FAIL The routine failed.

CS _PENDING Asynchronous network /O isin effect. For more

information, see the “Asynchronous Programming” topics
pagein the Open Client Client-Library/C Reference Manual.

blk_sendtext is aclient-side routine.

A gateway application uses blk_sendtext in conjunction with blk_gettext.
Together, the two routines enable a gateway application to receive chunks
of text, image, sensitivity, or boundary datain formatted bulk-copy rows
from an Open Client application and send them on to Adaptive Server.

blk_sendtext is a gateway-specific substitute for blk_textxfer. An
application can call blk_sendtext only after calling blk_gettext to retrieve a
chunk of text, image, sensitivity, or boundary data belonging to a
formatted row.

The sequence of callsin the gateway application is:
e blk_getrow, to pick up aformatted bulk-copy row
e blk_sendrow, to send the formatted row to Adaptive Server

If blk_sendrow returns CS BLK_HAS TEXT, the application must call
thefollowing routinesin aloop, until blk_gettext returnsCS_END_DATA:

e blk_gettext, to pick up achunk of text, image, sensitivity, or boundary
data

e blk_sendtext, to send a chunk of text, image, sensitivity, or boundary
data

Only one blk_gettext/blk_sendtext loop is required, no matter how many
text, image, sensitivity, or boundary columns are being transferred.

blk_init, blk_sendrow, blk_colval, blk_getrow, blk_gettext

Common Libraries Reference Manual 153

blk_srvinit

blk _srvinit

Description

Syntax

Parameters

Return value

Usage

See also

154

a Server-side routine, copies descriptions of server table columnsto the client,
if required.

CS_RETCODE blk_srvinit(srvproc, blkdescp)

SRV_PROC *sSrvproc;
CS_BLKDESC *blkdescp;

srvproc
A pointer to the SRV_PROC structure associated with the client receiving
column descriptions. It contains all theinformation that Server-Library uses
to manage communications and data between the Open Server application
and the client.

blkdescp
A pointer to a structure containing information about bulk-copy data. This
structure must have been previously allocated with a call to blk_alloc and
initialized through acall to blk_init. This structureis used to correctly
interpret incoming formatted bulk-copy rows.

blk_srvinit returns:

Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL The routine failed; no action was taken.

* Dblk_srvinit isaserver-side routine that is useful in gateway applications.

» Thisroutine sends the current server table column descriptionsin the
CS BLKDESC structure to the client, if the client’s TDS (Tabular Data
Stream™) version is 5.0 or later.

e Thisroutine must be called from within a SRV_LANGUAGE event
handler, in response to an “insert bulk” request from the client.

» Once blk_srvinit has successfully returned descriptions to the client, the
Open Server application’s SRV_BULK event handler can begin reading
bulk data from the client. The event handler first callsblk_rowalloc, then
calls blk_getrow and blk_sendrow in aloop to transfer the bulk-copy
rows.

» blk_init placesthe descriptionsin the CS_BLKDESC structure, so the
gateway application must call blk_init before calling blk_srvinit.

blk_init, blk_getrow, blk_rowalloc, blk_sendrow

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

blk textxfer

Description

Syntax

Parameters

Return value

Transfers a column’s data in chunks during a bulk-copy operation.

CS_RETCODE blk_textxfer(blkdesc, buffer, buflen,
outlen)

CS_BLKDESC *blkdesc;

CS_BYTE *buffer;
CS_INT buflen;
CS_INT *outlen;
blkdesc

A pointer to the CS_BLKDESC that is serving as a control block for the
bulk-copy operation. blk_alloc allocatesa CS BLKDESC structure.

buffer
A pointer to the space from which blk_textxfer picks up the chunk of text,
image, sensitivity, or boundary data.

buflen
The length, in bytes, of the *buffer data space.

outlen
A pointer to an integer variable. outlen is not used for a bulk-copy-in
operation and should be passed as NULL.

For abulk-copy-out operation, * outlen represents the length, in bytes, of the
data copied to * buffer.

blk_textxfer returns:

Table 4-11: blk_textxfer return values

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS FAIL The routine failed.

CS END_DATA When copying data out from a database, blk_textxfer returns
CS_END_DATA to indicate that a complete column value
has been sent.

When copying datainto a database, bik_textxfer returns
CS_END_DATA when an amount of data equal to
blk_bind’s * datalen has been sent.

CS _PENDING Asynchronous network /O isin effect. For more
information, see the “Asynchronous Programming” topics
pagein the Open Client Client-Library/C Reference Manual.

Common Libraries Reference Manual 155

blk_textxfer

Examples

156

/*

** Bul kCopyl n()

* *

** BLKDATA and DATA END are defined in the bul k copy
** exanpl e program

*/

CS_STATI C CS_RETCODE
Bul kCopyl n(connect i on)
CS_CONNECTI ON *connecti on;

{

CS_BLKDESC *bl kdesc;

CS_DATAFMI datafnt; /* variabl e descriptions */
Bl k_Dat a *dptr; /* data for transfer */
CS_INT dat al en[5] ; /* variable data length */
CS_INT | en;

CS_INT nunr ows;

/*

** Ready to start the bulk copy in nowthat all the

** connections have been nmade and have a tabl e nane.

** Start by getting the bulk descriptor initializing.
*/

... CODE DELETED.....

/* Bind colums and transfer rows */
dptr = BLKDATA;
while (dptr->pub_id ! = DATA_END)
{
dat af nt . dat at ype = CS_| NT_TYPE;
datafnm.count = 1;
dat af nt . maxl ength = si zeof (CS_I NT);
dat al en[0] = CS_UNUSED;

if (bl k_bind(bl kdesc, 1, &datafnt, &dptr->pub_id,
&dat al en[0], NULL) != CS_SUCCEED)

{
ex_error (" Bul kCopyl n: bl k_bind(1) failed");
return CS_FAI L,

}

dat af nt . dat at ype = CS_CHAR TYPE;

dat af nt . maxl engt h = MAX_PUBNAME - 1;

datal en[1] = strlen(dptr->pub_nane);

i f (bl k_bind(bl kdesc, 2, &datafmt, dptr->pub_nane,

&dat al en[1], NULL) != CS_SUCCEED)

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

{
ex_error ("Bul kCopyln: blk_bind(2) failed");
return CS_FAI L,

}

dat af nt . maxl ength = MAX_PUBCI TY - 1;

datalen[2] = strlen(dptr->pub_city);

i f (bl k_bind(bl kdesc, 3, &datafmt, dptr->pub_city,

&dat al en[2], NULL) != CS_SUCCEED)

{
ex_error ("Bul kCopyln: blk_bind(3) failed");
return CS_FAI L,

}

dat af nt. maxl ength = MAX_PUBST - 1;

datalen[3] = strlen(dptr->pub_st);

i f (bl k_bind(bl kdesc, 4, &datafmt, dptr->pub_st,

&dat al en[3], NULL) != CS_SUCCEED)

{
ex_error ("Bul kCopyln: blk_bind(4) failed");
return CS_FAIL;

}

dat af nt . dat at ype = CS_TEXT_TYPE;

dataf nt. maxl ength = MAX BIO - 1;

datal en[4] = strlen((char *)dptr->pub_bio);

i f (bl k_bind(bl kdesc, 5, &datafmt, NULL,
&dat al en[4], NULL) != CS_SUCCEED)

{

ex_error ("Bul kCopyl n:
return CS_FAI L,

if (bl k_rowxfer (bl kdesc)

{

ex_error ("Bul kCopyl n:
bl k_rowxfer.");

return CS_FAI L,

}

i f (blk_textxfer (bl kdesc,
datal en[4], & en) ==

{
ex_error ("Bul kCopyl n:
return CS_FAI L,

}

dpt r ++;

}

bl k_bi nd(5) failed");

CS_FAI L)
EX BLK - Failed on \

dpt r - >pub_bi o,
CS_FAI L)

bl k_rowxfer() failed");

/* ALL the rows sent so clear up */

... CODE DELETED.

Common Libraries Reference Manual

157

blk_textxfer

Usage

158

return CS_SUCCEED;

blk_textxfer is a client-side routine.

blk_textxfer transfers large text or image values. blk_textxfer does not
perform any data conversion; it simply transfers data.

There are two ways for an application to transfer text and image values
during a bulk-copy operation:

» Theapplication can treat text or image datalike ordinary data: that is,
it can bind columns to program variables and transfer rows using
blk_rowxfer_mult. Generally, thismethod isconvenient for small text
and image values but not for larger ones. If the entire valueisto be
transferred by blk_rowxfer_mult, the application must allocate
program variables that are large enough to hold entire column values.

» Using blk_textxfer, the application can transfer text or image datain
chunks. This method allows the application to use atransfer buffer
that is smaller than the values to be transferred.

An application marks a column for transfer through blk_textxfer by calling
blk_bind for the column with aNULL buffer parameter. If the transfer is
going into the database, pass the total length of the value as blk_bind's
*datalen parameter.

For more information about using blk_textxfer, see Chapter 3, “Bulk-
Library.”

Using blk_textxfer for Bulk-Copy-In operations

Anapplication’sblk_bind callsdo not haveto bein column order, but data
for blk_textxfer columns must be transferred in column order.

For example, an application can bind columns 3 and 4, and then mark
columns 2 and 1 for transfer using blk_textxfer. After calling
blk_rowxfer_mult to copy datafor columns 3 and 4, the application needs
to call bik_textxfer to transfer datafor column 1 before calling it for column
2.

When copying datainto adatabase, if atext, image, boundary, or sensitivity
datatype column is marked for transfer using blk_textxfer, all subsegquent
columns of these types must also be marked for transfer using blk_textxfer.

For example, an application cannot mark the first text columnin arow for
transfer using blk_textxfer and then bind a subsequent text column to a
program variable.

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

* When copying data into a database, an application is responsible for
calling blk_textxfer the correct number of times to transfer the complete
text or image value.

Using blk_textxfer for Bulk-Copy-Out operations

e When using blk_textxfer to copy data out of a database, only columns that
follow bound columnsare availablefor transfer using blk_textxfer. |n other
words, columns being transferred using blk_textxfer must reside at the end
of row.

For example, an application cannot bind the first two columnsin arow to
program variables, mark the third for transfer using blk_textxfer, and bind
the fourth.

* When copying data out from a database, blk_textxfer returns
CS END_DATA toindicate that a complete column value has been
copied.

See also blk_bind, blk_rowxfer_mult

Common Libraries Reference Manual 159

blk_textxfer

160 Open Client and Open Server

Index

A

actions

CS CLEAR 13
CS GET 13
CS SET 13
addition operation 10
allocating

aCS BLKDESC structure 106
aCS _CONTEXT structure 32, 37
aCS LOCALE structure 51
ANSI-style binds
null substitution values not used when in effect
77
applications, compiling and linking. See Open
Client/Server Programmer’s Supplement viii
arithmetic operations
CS ADD 10
CsS DIV 10
CS MULT 10
CS SUB 10
performing 10
array binding 118
transferring rows during abulk copy operation
150
automatic datatype conversion 30

B

bepin_labels rolerole 100
binding

Seeblk_bind 116
bkpublic.h header file 92
blk_aloc 106, 109

code example 109
reason for failure 107
what to do beforecalling 108
blk_bind 109, 120

array binding 119

Common Libraries Reference Manual

binding a program variable and a database column
109
binding a program variable to a database column
109
clearing bindings 118
code example 120
usage for bulk-copy-in operations 116
usage for bulk-copy-out operations 117
using with blk_rowxfer 116
using with blk_textxfer 116
blk_colval 120, 121
blk_default 122,123
whennottocall 123
whentocall 122
blk_describe 123, 125
CS DATAFMT fieldsituses 123
purpose 125
blk _done 126, 129
code example 129
usage for bulk-copy-in operations 128
usage for bulk-copy-out operations 128
blk_drop 129, 130
code example 130
whentocal 130
blk_getrow 130, 132
difference from blk_gettext 131
what todo next 132
blk gettext 132,134
using with blk_getrow and blk_colval 133
whentocal 134
BLK_IDENTITY property 138
BLK_IDSTARTNUM property 139
blk_init 134,136
code example 136
BLK_NOAPI_CHK property 139
blk_props 136, 141
whentocall 138
blk_rowalloc 141, 142
blk_rowdrop 142, 143
whentocal 143

161

Index

blk_rowxfer 143, 146

code example 146

using with blk_bind 116

using with blk_textxfer 150
blk_rowxfer_mult 146, 150

purpose 148

reason for failure 148
blk_sendrow 151, 152

when to use instead of blk_rowxfer 151
blk_sendtext 152, 153

using in conjunction with blk_gettext 153

when to useinstead of blk_textxfer 153
BLK_SENSITIVITY_LBL property 100, 139
BLK_SLICENUM property 139
blk_srvinit 154

caled in response to an Idquoinsert bulkldquo request

154

blk_textxfer 155, 159

code example 159

usage for bulk-copy-in operations 158

usage for bulk-copy-out operations 159

using with blk_bind 116

using with blk_rowxfer_mult 150
BLK_VERSION_100 Bulk-Library versionindicator 107
BLK_VERSION_110Bulk-Library versionindicator 107
boundary

retrieving the boundary portion of an incoming bulk

copy formatted row 132
sending boundary datain aformatted bulk copy row
152

bulk copy

advantages over aternatives 94

allocating space for a formatted bulk copy row 141

array binding 150

bkpublic.h header file 92

BLK_SENSITIVITY_LBL property 100

bulk copy option 94

bulk copy request 101

client-side bulk copy routines 93

copying datainto adatabase 94

copying data out from adatabase 97

copying datato and from a Secure SQL Server 100

ctosdemo.c example program 104

deallocating descriptor structure 129

ensuring recoverability 94

error handling for client-side routines 94

162

error handling for server-sideroutines 101
examining each row of abulk copy operation 100
example program 104
freeing space for aformatted bulk copy row 142
getting the column value from aformatted bulk copy
row 120
high-speed transfer 94
identity column 139
logging row inserts 94
marking a complete bulk copy operation or batch
126
processing requests using event handlers 101
purpose 93
retrieving and storing a formatted bulk copy row
130
retrieving the text, image, sensitivity, or boundary
portion of an incoming bulk copy formatted row
132
sending aformatted bulk copy row 151
sending text, image, sensitivity, or boundary datain a
formatted bulk copy row 152
sensitivity column data 141
server-side bulk copy routines 100
sp_dboption system procedure 94
SQL Server bulk copy option 94
transferring acolumn’s datain chunks 155
transferring one or morerows 143, 146
transferring text and image datain chunks 150
typesof bulk requests 101
writetext request 101
bulk copy operations
canceling 128
CS BLK_ALL 126
CS BLK_BATCH 126
CS BLK_CANCEL 126
initiating 134
bulk copy option 94
bulk copy request types
SRV_IMAGELOAD 103
SRV_TEXTLOAD 103
Bulk descriptor structure
properties
BLK_IDENTITY 138
BLK_IDSTARTNUM 139

BLK_SLICENUM 139

bulk descriptor structure

Open Client and Open Server

alocating 106
setting and retrieving properties 136
bulk descriptor structure properties
BLK_NOAPI_CHK 139
BLK_SENSITIVITY_LBL 139
bulk-library
compatibility with Client-Library version levels
107
specifying the desired programming interface
versionlevel 107

C

character sets
converting between 31, 62
when to install custom character conversion
routines 63
Client-Library callbacks
installing 21
collating sequence
changing 81
column
binding a program variable and database column
109
copying acolumn descriptionto aclient 154
getting the column value from a formatted bulk
copy row 120
marking a column for transfer 158
retrieving acolumn’sdefault value 122
retrieving acolumn’ sdescription 123
transferring acolumn’sdatain chunks 155
comparing
datavalues 12
strings 81
compiling and linking. See Open Client/Server
Programmer’s Supplement viii
connection
retrieving the current connection 71
constructing native language message strings 78
context properties 17
changing thevaluesof 3
context structure. See CS_CONTEXT structure 3
conversion
and character sets 23
clearing a custom conversion routine 74

Common Libraries Reference Manual

Index

converting a machine-readabl e datetime valueinto a
user-accessible format 43
converting between datatypes 25
converting between standard and user-defined
datatypes 30
converting data between character sets 31
ct_bind sets up automatic datatype conversion 30
defining a custom conversion routine 74
exceptional behavior 30
how custom conversion routineswork 73
how to tell if adatatype conversionispermitted 30
indicating whether a specific datatype conversion is
avallable 86
installing custom conversion routines 30, 72
conversion multiplier
definitionof 25
installing with cs_manage_convert 60
CS 12HOUR information type 47
CS_ADD arithmetic operation 10
CS APPNAME property 14
CS_BINARY_TYPE datatypetype 77
CS BIT_TYPE datatypetype 78
CS BLK_ALL operation 126
CS BLK_BATCH operation 126
CS BLK_CANCEL operation 126
CS BLK_HAS TEXT return 131, 143, 147, 151
CS BLK_IN bulk copy direction 134
CS BLK_OUT hulk copy direction 134
CS BLK_ROW structure 131
CS BLKDESC structure
alocating 106
deallocating 109, 129
used by blk_srvinit 154
CS_BOUNDARY_TYPE datatypetype 78
cs cac 10,11
reasonsfor failure 11
CS CHAR_TYPE datatypetype 78
CS CLEAR action 13
CS CLEAR operation 40
CS _CLIENTMSG_TY PE structure or message type
39
cscmp 11,13
reason for failure 13
cs config 13,23
comparison to ct_config and srv_props 17
CS CONFIG_FILE property 14

163

Index

CS_CONTEXT structure 3

alocating 3,32, 37

contents 35

customizing 3,35

dedlocating 4, 35

purpose 3
cs conv_mult 23,25

reason for failure 23
cs convert 25, 32

reason for failure 29
cs ctx_aloc 35

code example 35

difference from cs_ctx_global 35

reasonsfor failure 33

whentocal 2
cs ctx_drop 35,36

code 35

whennottocal 36
cs ctx_global 36, 38

purpose 38

reasonsfor failure 37
CS_CURRENT_CONNECTION object

retrieving the current connection 71
CS DATAFMT structure 3

fields used by blk_bind 109

fields used by cs convert 26
CS DATE 48,50
CS DATE_TYPE datatypetype 43
CS DATEORDER informationtype 47
CS _DATEREC structure

definition 43
CS DATES DMY1 conversion format 49
CS DATES DMY1_YYYY conversion format
CS DATES DMY?2 conversion format 50
CS DATES DMY2_YYYY conversion format
CS DATES DMY3conversion format 51
CS DATES DMY3_YYYY conversion format
CS DATES DMY4 conversion format 51
CS DATES DMY4_YYYY conversion format
CS DATES DYM1 conversion format 49, 50
CS DATES HMS conversion format 49
CS DATES _LONG conversionformat 49
CS DATES MDY1 conversion format 50
CS DATES MDY1_YYYY conversion format
CS DATES MDY?2 conversion format 50
CS DATES MDY2_YYYY conversion format

164

49

51

51

50

50

CS DATES MDY 3 conversion format 51

CS DATES MDY3_YYYY conversionformat 51
CS DATES MYD1 conversion format 50

CS DATES_SHORT conversion format 49

CS DATES YDM1 conversion format 50

CS DATES YMD1 conversion format 50

CS DATES YMD1_YYYY conversionformat 50
CS DATES _YMD?2 conversion format 50

CS DATES YMD2_YYYY conversionformat 50
CS DATES YMD3 conversion format 51

CS DATES YMD3_YYYY conversionformat 51
CS DATETIME_TY PE datatypetype 12,43, 78
CS DATETIME4_TYPE datatypetype 12, 43,78
CS DAYNAME information type 47

CS DECIMAL_TYPE datatypetype 11, 12,78

cs diag 38,43

handles messages on a per-context basis 41

reasons for failure

39

CS DIV arithmetic operation 10
CS DT_CONVFMT information type 47

cs dt_crack 45

and CS_DATEREC structure 43

cs dt_info 45,51
reason for failure

46

where it looks for national language locale

information

47

CS EBADXLT return 64, 75
CS EDIVZEROreturn 65, 75
CS_EDOMAIN return 65, 75
CS_END_DATA return 131, 133, 144, 147, 155

CS_ENOXLT return

64, 75

CS_ EOVERFLOW return 65, 75
CS_EPRECISION return 65, 75

CS _ESCALE return
CS ESTYLE return

65, 75
65, 75

CS_ESYNTAX return 65, 75
CS_EUNDERFLOW return 65, 75
CS_EXTERNAL_CONFIG property 14
CS EXTRA_INF property 14

detailed description 19

inline message handlingand 7, 41
CS FLOAT_TYPE datatypetype 78

CS GET action 13
CS_GET operation

40

CS IMAGE_TYPE datatypetype 78

CS_INIT operation

40

Open Client and Open Server

CS_INT_TYPE datatypetype 78
CS LC_ALL locdizationinformationtype 55
CS LC _COLLATE locdlizationinformationtype 55
CS LC _CTYPE locdlization information type 55
CS LC_MESSAGE localization information type
55
CS LC _TIME localization informationtype 55
cs loc_alloc 51,52
reason for failure 52
cs loc_drop 52,53
CS LOC_PROP property 15
detailed description 19
cs locae 53,59
reasons for failure 56
using language, character set, and sort order names
58
CS LOCALE structure 3
allocating 20, 51
associating withaCS_CONTEXT structure 19
dedllocating 53
defining 19
initializing 57
loading with localization values 53
retrieving thelocale name 53
using an initialized structure 57
when a structure can be deallocated 53, 58
wheninuse 53
csS_manage_convert 60, 65
reason for failure 62
CS_MEM_ERROR return 64, 75
CS _MESSAGE_CB property 15
detailed description 20
CS_MONEY_TYPE datatypetype 11,12, 78
CS_MONEY4_TYPE datatypetype 11,12, 78
CS MONTH informationtype 47
CS MSGLIMIT operation 40
CS MULT arithmetic operation 10
CS NOMSGreturn 39
when returned 42
CS NUMERIC_TY PE datatype type
CS_OBJDATA structure
definition 68
cs objects 65, 71
object data structure 68
object name structure 66
saving, retrieving, or clearing objects 66

11,12, 78

Common Libraries Reference Manual

Index

types of matches achieved 71

use of afive-partkey 70

whennottocal 71

whentocal 70
CS_OBJINAME structure

definition 66
CS REAL_TYPE datatypetype 78
CS_ROW_FAIL return 144, 148
CS_SENSITIVITY_TYPE datatypetype 78
CS_SET action 13
CsS set_convert 71,76

reason for failure 73
cs setnull 76,78

reasons for failure 77
CS_SHORTMONTH information type 47
CS_SMALLINT_TYPE datatypetype 78
CS _STATUS operation 40
cs strbuild 81
cs stremp 81,83
CS_SUB arithmetic operation 10
CS _SYB_CHARSET localization information type

55
CS _SYB_LANG localization information type 55
CS _SYB_LANG_CHARSET localization information
type 55
CS _SYB_SORTORDER localization information type
55

CS TEXT_TYPE datatypetype 78
CS TIME 48,50
cs time 83,85

reasons for failure 85
CS TIME_TYPE datatypetype 43
CS_TINYINT_TYPE datatypetype 78
CS _USERDATA property 15

detailed description 22
CS _USERTYPE constant 74
CS_VARBINARY_TYPE datatypetype 77
CS_VARCHAR_TYPE datatypetype 78
CS VERSION property 16

detailed description 22

legal values 22
CS_VERSION_100 version number indicator
CS_VERSION_110 version number indicator
CS WILDCARD constant 71
cs will_convert 85, 89

code example 89

32,37
32,37

165

Index

CS-Library
APl argument checking property 21
defined 1
error handling 4
example message callback 6
handling errorsinline 38
handling errors with amessage callback 20
howtouse 2
installing amessage callback 20
message callback property 20
properties 13
usein Client-Library and Server-Library applications
1
cspublic.h header file 2
ct_config
compared with cs_config and srv_props 17
ctosdemo.c example program 104
ctpublic.h header file 2
customizing a context structure 35

D

data
transferring columnsin chunks 155
transferring datain chunks 150
data values
comparing 12
converting between datatypes 25
saving, retrieving, or clearing objects and the data
associated with them 66
datatype
creating a user-defined datatype 73
CS DATE 48
CS TIME 48
defining null substitution values for user-defined
datatypes 74

user-defined datatypes must be greater than or equal to

CS USERTYPE 74
datatype types

CS BINARY_TYPE 77
CS BIT_TYPE 78
CS BOUNDARY_TYPE 78
CS CHAR_TYPE 78
CS DATETIME_TYPE 12,78
CS DATETIME4 TYPE 12,78

166

CS DECIMAL_TYPE 11,12, 78
CS FLOAT TYPE 78

CS IMAGE_TYPE 78

CS INT_TYPE 78

CS MONEY_TYPE 11, 12,78
CS MONEY4 TYPE 11,12, 78
CS NUMERIC_TYPE 11,12, 78
CS REAL_TYPE 78

CS SENSITIVITY_TYPE 78

CS SMALLINT_TYPE 78

CS TEXT_TYPE 78

CS TINYINT_TYPE 78

CS VARBINARY _TYPE 77

CS VARCHAR TYPE 78

datatypes
CS DATE 50
CS TIME 50
Date 48
date, retrieving the current date 83
datetime

converting a machine-readabl e datetime valueinto a
user-accessible format 43
datetime values stored in an internal format 45
setting or retrieving language-specific datetime
information 45
deallocating
aCS_BLKDESC structure 129
aCS_CONTEXT structure 35
aCS LOCALE structure 53
space for aformatted bulk copy row 142
default
retrieving acolumn’sdefault value 122
description
copying acolumn descriptionto aclient 154
retrieving acolumn’sdescription 123
division operation 10

E

error handling
andcs config 5
andcs diag 5
4
and CS_NOAPI_CHK argument checking property
21

Open Client and Open Server

inline message handling 6
message callbacks 5
messages can bediscarded 5
methods of handling errors 4, 40
switching between error handling methods 5, 40
event handlers
SRV_BULK 101
SRV_LANGUAGE 101
EX_ #defines X
ex_routines x
Ex_variables x
example programs
ctosdemo.c 104
example programs, running. See Open Client/Server
Programmer’s Supplement viii
extrainformation property 19

F

file names, for libraries. See Open Client/Server
Programmer’s Supplement viii

G

gateway applications
and blk_getrow 131
and blk_gettext 133
and blk_rowalloc 142
and blk_rowdrop 143
and blk_sendrow 151
and blk_sendtext 153
and blk_srvinit 154

H

header files 2
bkpublic.h 92
cspublich 2
ctpublich 2
ospublich 2

hidden structures 3

Common Libraries Reference Manual

Index

Identity column
and BLK_IDSTARTNUM property 139
identity column
and BLK_IDENTITY property 138
and bulk copy operations 139
information types
CS 12HOUR 47
CS DATEORDER 47
CS DAYNAME 47
CS DT_CONVFMT 47
CS_ MONTH 47
CS_SHORTMONTH 47
inline message handling
andcs diag 5
and CS_EXTRA_INF property 7,41
advantages 5
clearing messages 41
initializing 7,41
limiting number of messages 42
managed on a per-context basis 41
managing 38
retrieving messages 41, 42
side effects of initializing 5

L

language message strings
constructing 78
lexicographical string comparison 83
localeinformation property 19
locale name
defined 57
referencing 58
retrieving fromaCS_LOCALE structure 53
retrieving the locale name previously used to load a
CS LOCALE structure 58
localization
and CS_LOCALE structure 53
default localization information 20
defining custom values 52
valid language, character set, and sort order names
59
what localization values define 52
localization information types

167

Index

CSLC ALL 55

CS LC COLLATE 55

CS LC CTYPE 55

CS LC_ MESSAGE 55

CS LC TIME 55

CS SYB_CHARSET 55

CS SYB LANG 55

CS SYB_LANG_CHARSET 55
CS SYB_SORTORDER 55

M

marking
acolumn for transfer 158
acomplete bulk copy operation or batch 126
message callback
example 6
message callbacks
andcs _config 5
4
advantages 4
consequences of installing amessage callback 5
defining 5
vaidreturnvalues 6
message strings
constructing native language message strings 78
multiplication operation 10

N

native language message strings
constructing 78

NULL data
converting aNULL sourcevalue 77
defining anull substitution value 76

O

Open Client/Server Programmer’s Supplement viii
operation
initiating a bulk copy operation 134
performing an arithmetic operation 10
ospublic.h header file 2

168

P

program variable

binding with a database column 109
properties

CS APPNAME 14

CS CONFIG_FILE 14

CS EXTERNAL_CONFIG 14

CS EXTRA_INF 14

CS LOC PROP 15

CS MESSAGE_CB 15

CS USERDATA 15

CS VERSION 16

setting and retrieving bulk descriptor structure

properties 136
setting and retrieving CS-Library properties 13

row
allocating space for aformatted bulk copy row 141
freeing space for aformatted bulk copy row 142
getting the column value from aformatted bulk copy
row 120
retrieving and storing aformatted bulk copy row
130
retrieving the text, image, sensitivity, or boundary
portion of an incoming bulk copy formatted row
132
sending aformatted bulk copy row 151
sending text, image, sensitivity, or boundary datain a
formatted bulk copy row 152
transferring one or more rows during a bulk copy
operation 143, 146

S

Secure SQL Server
bepin_labels rolerole 100
BLK_SENSITIVITY_LBL property 141
bulk copies 99
sensitivity labels 100
sensitivity column
bepin_labels rolerole 100
retrieving the sensitivity portion of an incoming bulk

Open Client and Open Server

copy formatted row 132
sending sensitivity datain aformatted bulk copy
row 152
sensitivity label 100
BLK_SENSITIVITY_LBL property 141
whether sensitivity column dataisincluded in a
bulk copy operation 141
sort order
changinginaCS_CONTEXT structure 83
changinginaCS_LOCALE structure 83
sorted string comparison 83
sp_dboption system procedure 94
SQL Server bulkcopy option 94
SQL CA structure
retrieving messagesinto 7
SQLCA_TYPE structuretype 39
SQLCODE structure
retrieving messagesinto 7
SQLCODE_TY PE structuretype 39
SQLSTATE structure
retrieving messagesinto 7
SQLSTATE_TYPE structuretype 39
SRV_BULK event handler 101
using with blk_srvinit 154
what it shoulddo 103
sv_get text 103
SRV_IMAGELOAD request type 103
SRV_LANGUAGE event handler 101
calling blk_srvinit from within the event handler
154
what it shoulddo 102
SIV_props
comparison to ¢cs_config and ct_config 17
srv_text_info 103
SRV_TEXTLOAD request type 103
strings
comparing using a specified sort order 81
constructing native language message strings 78
structure types
CS CLIENTMSG _TYPE 39
SQLCA_TYPE 39
SQLCODE_TYPE 39
SQLSTATE_TYPE 39
structures
CS BLK_ROW 131
CS CONTEXT 3

Common Libraries Reference Manual

Index

CS DATAFMT 3
CS LOCALE 3
hidden structures 3
retrieving message information into structures 41
setting and retrieving bulk descriptor structure
properties 136
substitution values
default null substitution values 77
defining anull substitution value 76
not null when ANSI-style binds arein effect 77
null substitution values defined at context level 77
subtraction operation 10

T

text and image data

retrieving the text or image portion of an incoming
bulk copy formatted row 132

sending atext or image stream 101

sending text and image datain aformatted bulk copy
row 152

transferring datain chunks 158

transferring rows during a bulk copy operation

150
transferring rowsin chunks 150
time
retrieving thecurrent time 83
transferring

acolumn’sdatain chunks 155

rows during abulk copy operation 143, 146

U

user-allocated data property 22
user-defined datatypes
must be greater than or equal to CS_USERTY PE
74

Vv

values
comparing datavalues 12
variable

169

Index

binding a program variable and database column 109
version level property 22

170 Open Client and Open Server

	Common Libraries Reference Manual
	Open Client™ and Open Server™
	About This Book
	Audience
	How to use this book
	Related documents
	Other sources of information
	Sybase certifications on the Web
	Finding the latest information on product certifications
	Creating a personalized view of the Sybase Web site (including support pages)
	Sybase EBFs and software updates
	Finding the latest information on EBFs and software updates
	Conventions
	If you need help

	CHAPTER 1 Introducing CS-Library
	CS-Library overview
	Using CS-Library
	Open Client and Open Server applications
	A standalone CS-Library application

	Structures
	The CS_CONTEXT structure

	Datatypes, constants, and conventions
	Error handling
	Two methods of handling messages
	Using a callback to handle messages
	Defining a CS-Library message callback
	CS-Library message callback example

	Inline message handling

	CHAPTER 2 CS-Library Routines
	CS-Library routines
	cs_calc
	cs_cmp
	cs_config

	cs_conv_mult
	cs_convert
	cs_ctx_alloc
	cs_ctx_drop
	cs_ctx_global
	cs_diag
	cs_dt_crack
	cs_dt_info
	cs_loc_alloc
	cs_loc_drop
	cs_locale

	cs_manage_convert
	cs_objects

	cs_prop_ssl_localid
	cs_set_convert
	cs_setnull
	cs_strbuild
	cs_strcmp
	cs_time

	cs_validate_cb
	cs_will_convert

	CHAPTER 3 Bulk-Library
	Overview of Bulk-Library
	Client-side and server-side routines
	Client-side Bulk-Library routines
	Server-side Bulk-Library routines

	Header files
	Linking with Bulk-Library
	The CS_BLKDESC structure

	Bulk-Library client programming
	Bulk-Copy-In operations
	The Bulk-Copy-In process
	Program structure for Bulk-Copy-In operations

	Bulk-Copy-Out operations
	The Bulk-Copy-Out process
	Program structure for Bulk-Copy-Out operations

	Copying to and from Secure SQL Server

	Bulk-Library gateway programming
	Inside the SRV_LANGUAGE event handler
	“Insert Bulk” requests
	“Writetext Bulk” requests

	Inside the SRV_BULK event handler
	Example

	CHAPTER 4 Bulk-Library Routines
	List of Bulk-Library routines
	blk_alloc
	blk_bind
	blk_colval
	blk_default
	blk_describe
	blk_done
	blk_drop
	blk_getrow
	blk_gettext
	blk_init
	blk_props
	blk_rowalloc
	blk_rowdrop
	blk_rowxfer
	blk_rowxfer_mult
	blk_sendrow
	blk_sendtext
	blk_srvinit
	blk_textxfer
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V

