
 Common Libraries Reference
Manual
 Open Client™ and Open Server™

 12.5.1

DOCUMENT ID: DC32850-01-1251-01

LAST REVISED: September 2003

Copyright © 1989-2003 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture,
Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server
Enterprise Replication, Adaptive Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, Anywhere Studio, Application
Manager, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Translator, APT-Library, AvantGo,
AvantGo Application Alerts, AvantGo Mobile Delivery, AvantGo Mobile Document Viewer, AvantGo Mobile Inspection, AvantGo
Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon Application Server,
AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BizTracker, ClearConnect, Client-Library,
Client Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer,
DataWindow, DB-Library, dbQueue, Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution Director, e-ADK,
E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway, ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise
Application Studio, Enterprise Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server
Manager, Enterprise Work Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA,
Financial Fusion, Financial Fusion Server, Gateway Manager, GlobalFIX, ImpactNow, Industry Warehouse Studio, InfoMaker,
Information Anywhere, Information Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, Mail
Anywhere Studio, MainframeConnect, Maintenance Express, Manage Anywhere Studio, M-Business Channel, M-Business Network,
M-Business Server, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, My AvantGo, My AvantGo Media Channel,
My AvantGo Mobile Marketing, MySupport, Net-Gateway, Net-Library, New Era of Networks, ObjectConnect, ObjectCycle,
OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open
Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC
Net Library, PocketBuilder, Pocket PowerBuilder, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class
Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft, PowerStage,
PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst,
Rapport, Report Workbench, Report-Execute, Replication Agent, Replication Driver, Replication Server, Replication Server Manager,
Replication Toolkit, Resource Manager, RW-DisplayLib, S-Designor, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian,
SKILS, smart.partners, smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL
Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART,
SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, S.W.I.F.T.
Message Format Libraries, Sybase Central, Sybase Client/Server Interfaces, Sybase Financial Server, Sybase Gateways, Sybase MPP,
Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financial,
SyberAssist, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, TradeForce, Transact-SQL,
Translation Toolkit, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual
Components, VisualSpeller, VisualWriter, VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse
WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup
SQL Server, XA-Library, XA-Server and XP Server are trademarks of Sybase, Inc. 03/03

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents
About This Book .. vii

CHAPTER 1 Introducing CS-Library ... 1
CS-Library overview... 1
Using CS-Library .. 2

Open Client and Open Server applications 2
A standalone CS-Library application ... 2

Structures... 3
The CS_CONTEXT structure .. 3

Datatypes, constants, and conventions ... 4
Error handling... 4

Two methods of handling messages... 4
Using a callback to handle messages 5
Inline message handling.. 7

CHAPTER 2 CS-Library Routines ... 9
CS-Library routines .. 9
cs_calc ... 10
cs_cmp... 12
cs_config .. 13
cs_conv_mult ... 23
cs_convert .. 25
cs_ctx_alloc.. 32
cs_ctx_drop.. 35
cs_ctx_global ... 37
cs_diag... 38
cs_dt_crack .. 43
cs_dt_info ... 45
cs_loc_alloc.. 51
cs_loc_drop.. 53
cs_locale .. 53
cs_manage_convert ... 60
cs_objects .. 66
Common Libraries Reference Manual iii

Contents
cs_prop_ssl_localid.. 72
cs_set_convert ... 72
cs_setnull ... 76
cs_strbuild .. 78
cs_strcmp... 81
cs_time... 83
cs_validate_cb ... 85
cs_will_convert ... 86

CHAPTER 3 Bulk-Library.. 91
Overview of Bulk-Library .. 91

Client-side and server-side routines.. 91
Header files ... 92
Linking with Bulk-Library ... 92
The CS_BLKDESC structure .. 93

Bulk-Library client programming .. 93
Bulk-Copy-In operations.. 94
Bulk-Copy-Out operations ... 98
Copying to and from Secure SQL Server.............................. 100

Bulk-Library gateway programming ... 100
Inside the SRV_LANGUAGE event handler.......................... 102
Inside the SRV_BULK event handler 103
Example .. 104

CHAPTER 4 Bulk-Library Routines ... 105
List of Bulk-Library routines.. 105
blk_alloc ... 106
blk_bind.. 109
blk_colval ... 120
blk_default.. 122
blk_describe ... 123
blk_done... 126
blk_drop ... 129
blk_getrow.. 130
blk_gettext.. 132
blk_init .. 134
blk_props.. 136
blk_rowalloc ... 141
blk_rowdrop.. 142
blk_rowxfer... 143
blk_rowxfer_mult .. 146
blk_sendrow ... 151
blk_sendtext ... 152
iv Open Client and Open Server

Contents
blk_srvinit ... 154
blk_textxfer... 155

Index .. i
Common Libraries Reference Manual v

Contents
vi Open Client and Open Server

About This Book

This book, the Open Client and Open Server Common Libraries
Reference Manual, contains reference information regarding:

• The C version of CS-Library, which contains utility routines that are
useful to both Open Client™ Client-Library™ and Open Server™
Server-Library applications.

• The C version of Bulk-Library, which provides bulk copy routines for
Client-Library and Server-Library applications. Bulk copy allows
high-speed transfer of data between a database table and program
variables.

Note Bulk-Library was referred to in previous Open Client/Server™
releases as “the Bulk Copy routines.”

Audience This manual is designed to serve as a reference manual for programmers
who are writing Client-Library or Open Server applications. It is written
for application programmers who are familiar with the C programming
language.

How to use this book When writing an Open Client or Open Server application, use the
Common Libraries Reference Manual as a source of reference information
for CS-Library and Bulk-Library routines.

• Chapter 1, “Introducing CS-Library” contains a brief introduction to
CS-Library.

• Chapter 2, “CS-Library Routines” contains specific information
about each CS-Library routine, such as what parameters the routine
takes and what it returns.

• Chapter 3, “Bulk-Library” contains a brief introduction to Bulk-
Library.

• Chapter 4, “Bulk-Library Routines” contains specific information on
each Bulk-Library routine.
Common Libraries Reference Manual vii

Related documents • The Open Client Client-Library Programmer’s Guide contains
information on how to design and implement Client-Library programs.

• The Open Client Client-Library Reference Manual contains reference
information for Client-Library.

• The Open Server Server-Library Reference Manual contains reference
information for Server-Library.

• The Open Client/Server Programmer’s Supplement contains platform-
specific material needed by developers who use the Open Client/Server
products. This document includes information about:

• Compiling and linking an application

• The example programs that are included online with Open
Client/Server products

• Routines that have platform-specific behavior

• The Open Client/Server Configuration Guide contains information needed
by system administrators who configure the Open Client/Server
installation environment. This document includes information about:

• Platform-specific localization mechanisms

• Configuring Sybase drivers for network services

• The interfaces file and other configuration files

• The Open Client/Server International Developer’s Guide contains
information needed by programmer’s who develop international
applications with Client-Library. This document includes:

• A description of the localization mechanism used by the Open Client
and Open Server libraries

• Guidelines for developing international applications with the Open
Client and Open Server libraries

Other sources of
information

Use the Sybase Getting Started CD, the Sybase Technical Library CD and the
Technical Library Product Manuals Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the Technical Library CD. It is included with
your software. To read or print documents on the Getting Started CD you
need Adobe Acrobat Reader (downloadable at no charge from the Adobe
Web site, using a link provided on the CD).
viii Open Client and Open Server

 About This Book
• The Technical Library CD contains product manuals and is included with
your software. The DynaText reader (included on the Technical Library
CD) allows you to access technical information about your product in an
easy-to-use format.

Refer to the Technical Library Installation Guide in your documentation
package for instructions on installing and starting the Technical Library.

• The Technical Library Product Manuals Web site is an HTML version of
the Technical Library CD that you can access using a standard Web
browser. In addition to product manuals, you will find links to
EBFs/Updates, Technical Documents, Case Management, Solved Cases,
newsgroups, and the Sybase Developer Network.

To access the Technical Library Product Manuals Web site, go to Product
Manuals at http://www.sybase.com/support/manuals/.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select Products from the navigation bar on the left.

3 Select a product name from the product list and click Go.

4 Select the Certification Report filter, specify a time frame, and click Go.

5 Click a Certification Report title to display the report.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software updates

❖ Finding the latest information on EBFs and software updates

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.
Common Libraries Reference Manual ix

2 Select EBFs/Updates. Enter user name and password information, if
prompted (for existing Web accounts) or create a new account (a free
service).

3 Select a product.

4 Specify a time frame and click Go.

5 Click the Info icon to display the EBF/Update report, or click the product
description to download the software.

Conventions CS-Library routine syntax is show in a bold, monospace font:

CS_RETCODE cs_ctx_alloc(version, ctx_pointer)

Program text and computer output are shown in a monospace font:

cs_ctx_alloc(CS_VERSION_100, &context);

Structure names and symbolic constants appear in capital letters (to match their
definitions in the csstypes.h header file):

CS_CONTEXT, CS_EXTRA_INF

Routine names and Transact_SQL® keywords are written in a narrow, bold
font:

cs_ctx_alloc, the select statement

Code fragments in this book are taken from the online example programs that
are included with Client-Library and Server-Library.

The example programs and the code fragments in this book use EX_*, Ex_*,
and ex_* #defines, variables, and routines. These #defines, variables, and
routines are part of the example programs, but are not a part of CS-Library,
Client-Library, or Server-Library.

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.
x Open Client and Open Server

C H A P T E R 1 Introducing CS-Library

CS-Library overview
CS-Library provides utility routines for use in application program
development to support:

• Datatype conversion

• Arithmetic operations

• Character-set conversion

• Datetime operations

• Sort-order operations

• Localized error messages

CS-Library also includes routines to allocate and deallocate CS-Library
structures.

Although you can write a standalone CS-Library application,
CS-Library’s primary function is to provide common utility routines to
Client-Library and Server-Library applications.

Because Client-Library and Server-Library programs require a context
structure, which can only be allocated using CS-Library, all Client-
Library and Server-Library programs include at least two calls to CS-
Library—one to allocate a CS_CONTEXT and one to deallocate it.

Topic Page
CS-Library overview 1

Using CS-Library 2

Structures 3

Error handling 4
Common Libraries Reference Manual 1

Using CS-Library
A context structure contains information about an application’s runtime
environment, or “context.” For more information about the CS_CONTEXT
structure, see “Structures” on page 3.

Using CS-Library
You can call CS-Library routines either from within a Client-Library or Server-
Library application, or from within a standalone CS-Library application.

Open Client and Open Server applications
Most typically, CS-Library routines are called from within a Client-Library or
Server-Library application.

Because the Client-Library and Server-Library header files ctpublic.h and
ospublic.h include the CS-Library header file cspublic.h, Client-Library or
Server-Library applications do not have to include an additional header file to
make CS-Library calls.

After calling cs_ctx_alloc to allocate a CS_CONTEXT, a Client-Library or
Server-Library application is free to call any other CS-Library routine.

A standalone CS-Library application
It is possible to write a standalone CS-Library application, although this is not
a typical use of CS-Library. For example, a standalone application might make
CS-Library calls to use the Open Client/Server datatypes and datatype
conversion routines.

This type of application needs to include the standard CS-Library header file,
cspublic.h.

The Open Client/Server Programmer’s Supplement includes compiling and
linking instructions for CS-Library on your platform.
2 Open Client and Open Server

CHAPTER 1 Introducing CS-Library
Structures
CS-Library makes use of several structures, including the CS_CONTEXT
control structure, the CS_DATAFMT data format structure, and the
CS_LOCALE locale information structure.

The CS_CONTEXT structure is a hidden structure whose internals are not
available to an application. The CS_CONTEXT is discussed briefly in the
following section.

The CS_CONTEXT structure is also required for Client-Library and Server-
Library applications.

• For more information about how Client-Library uses the CS_CONTEXT
structure, see the Open Client Client-Library/C Reference Manual or the
Open Client Client-Library/C Programmer’s Guide.

• For more information about how Server-Library uses the CS_CONTEXT
structure, see the Open Server Server-Library/C Reference Manual.

The CS_DATAFMT and CS_LOCALE structures are documented in Chapter
2, “Topics,” in the Open Client Client-Library/C Reference Manual.

The CS_CONTEXT structure
CS-Library defines a single control structure, the CS_CONTEXT.

A CS_CONTEXT structure stores configuration information that describes a
particular programming context. An application must allocate a
CS_CONTEXT structure before calling any other Client-Library, Server-
Library, or CS-Library routine.

An application allocates a CS_CONTEXT structure by calling cs_ctx_alloc or
cs_ctx_global.

An application can customize a CS_CONTEXT by changing the values of
context properties. The following routines change the values of context
properties:

• The CS-Library routine cs_config (after the context has been allocated)

• The Client-Library routine ct_config (after the Client-Library routine
ct_init has been called for the context)

• The Server-Library routine srv_props (after calling the Server-Library
routine srv_version for the context)
Common Libraries Reference Manual 3

Datatypes, constants, and conventions
An application should deallocate all existing context structures before exiting.
An application deallocates a CS_CONTEXT structure by calling cs_ctx_drop.

Datatypes, constants, and conventions
CS-Library uses the same datatypes, constants, and conventions as Client-
Library and Server-Library and can be found in the following documents:

• The “Using Open Client/Server Datatypes” chapter in the Open Client
Client-Library/C Programmer’s Guide

• The “Types” section in the Open Client Client-Library/C Reference
Manual

• The “Types” section in the Open Server Server-Library/C Reference
Manual

Error handling
All CS-Library routines return success or failure indications. Sybase strongly
recommends that applications check these return codes.

In addition, CS-Library routines can generate CS-Library messages, which
range in severity from informational messages to fatal errors. Applications
should take steps to receive and handle these messages. In most cases, when a
CS-Library routine fails, CS-Library generates a message that describes the
reason for the failure.

Two methods of handling messages
An application can handle CS-Library messages in one of two ways:

• By installing a callback routine to handle messages

• Inline, using the CS-Library routine cs_diag

The callback method has the advantages of:

• Gracefully handling unexpected errors
4 Open Client and Open Server

CHAPTER 1 Introducing CS-Library
CS-Library automatically calls the appropriate message callback routine
whenever a message is generated, so an application will not fail to trap
unexpected errors. An application using only inline error-handling logic
may not successfully trap errors that have not been anticipated.

• Centralizing message-handling code

Since all errors are handled in the callback, there is no need to add inline
message-handling code after each CS-Library call.

Inline message handling has the advantage of allowing an application to check
for messages at particular times. For example, an application that makes a
sequence of calls to establish a connection might wait until the connection-
related call sequence is complete before checking for messages.

Most applications use the callback method to handle messages.

An application indicates which method it will use for a particular context either
by calling cs_config to install a message callback routine or by calling cs_diag
to initialize inline message handling.

An application can switch back and forth between the inline method and the
callback method:

• Installing a message callback routine turns off inline message handling.
Any saved messages are discarded.

• Likewise, calling cs_diag to initialize inline message handling “de-
installs” the application’s CS-Library message callback. As a result, the
application’s first CS_GET call to cs_diag will retrieve a warning message
to this effect.

If a message callback is not installed and inline message handling is not
enabled, CS-Library discards message information.

Using a callback to handle messages
To handle CS-Library errors with a callback function, your application must:

• Declare the callback function as described in “Defining a CS-Library
message callback” on page 6.

• Install the callback error handler by calling cs_config to set the
CS_MESSAGE_CB property. For a detailed description, see “CS-Library
Message Callback property” on page 20.
Common Libraries Reference Manual 5

Error handling
Defining a CS-Library message callback

A CS-Library message callback is defined as follows:

CS_INT cslibmsg_cb(context, message)

 CS_CONTEXT *context;
 CS_CLIENTMSG *message;

where:

context is a pointer to the CS_CONTEXT structure for which the message
occurred.
message is a pointer to a CS_CLIENTMSG structure containing message
information. For information on the CS_CLIENTMSG structure, see the
“CS_CLIENTMSG Structure” topics page in the Open Client Client-
Library/C Reference Manual. Note the following similarities with Client-
Library:
• Error severities for CS-Library errors have the same meaning as for

Client-Library errors.
• The message->msgnumber field is a bit-packed CS_INT. This number

is unpacked with the macros CS_LAYER, CS_ORIGIN,
CS_NUMBER, and CS_SEVERITY. This method is the same for
Client-Library messages.

Note that message can have a new value each time the message callback
is called.

A CS-Library message callback must return either:

• CS_SUCCEED, to instruct CS-Library to continue any processing that is
currently occurring on this context, or

• CS_FAIL, to instruct CS-Library to terminate any processing that is
currently occurring on this context.

CS-Library message callback example
/*
 ** cslib_err_handler() - CS-Library error handler.
 **
 ** This routine is the CS-Library error handler used by this
 ** application. It is called by CS-Library whenever an error
 ** occurs. Here, we simply print the error and return.
 **
 ** Parameters:
 ** context
 ** A pointer to the context handle for context
 ** on which the error occurred.
6 Open Client and Open Server

CHAPTER 1 Introducing CS-Library
 ** error_msg
 ** The structure containing information about the
 ** error.
 **
 ** Returns:
 ** CS_SUCCEED
 */
 CS_RETCODE CS_PUBLIC cslib_err_handler(context, errmsg)
 CS_CONTEXT *context;
 CS_CLIENTMSG *errmsg;
 {
 /*
 ** Print the error details.
 */
 fprintf(stdout, "CS-Library error: “);
 fprintf(stdout, “LAYER = (%ld) ORIGIN = (%ld) ",
 CS_LAYER(errmsg->msgnumber),
 CS_ORIGIN(errmsg->msgnumber));
 fprintf(stdout, "SEVERITY = (%ld) NUMBER = (%ld)\n",
 CS_SEVERITY(errmsg->msgnumber),
 CS_NUMBER(errmsg->msgnumber));
 fprintf(stdout, "\t%s\n", errmsg->msgstring);
 /*
 ** Print any operating system error information.
 */
 if(errmsg->osstringlen > 0)
 {
 fprintf(stdout, "CS-Library OS error %ld - %s.\n",
 errmsg->osnumber, errmsg->osstring);
 }
 /*
 ** All done.
 */
 return (CS_SUCCEED);
 }

Inline message handling
An application calls cs_diag to initialize inline CS-Library message handling
for a context.

An application that is retrieving messages into SQLCA, SQLCODE, or
SQLSTATE must set the CS-Library property CS_EXTRA_INF to CS_TRUE.
Common Libraries Reference Manual 7

Error handling
For information on the inline method of handling CS-Library messages, see the
reference page for cs_diag in Chapter 2, “CS-Library Routines.”
8 Open Client and Open Server

C H A P T E R 2 CS-Library Routines

This chapter contains a reference page for each CS-Library routine.

CS-Library routines
The following cotains a list of the CS-Library routines and a brief
description.

Routine Description

cs_calc Perform an arithmetic operation on two operands.

cs_cmp Compare two data values.

cs_config Set or retrieve CS-Library properties.

cs_conv_mult Retrieve the conversion multiplier for converting
character data from one character set to another.

cs_convert Convert a data value from one datatype, locale, or format
to another datatype, locale, or format.

cs_ctx_alloc Allocate a CS_CONTEXT structure.

cs_ctx_drop Deallocate a CS_CONTEXT structure.

cs_ctx_global Allocate or return a CS_CONTEXT structure.

cs_diag Manage inline error handling.

cs_dt_crack Convert a machine-readable datetime value into a user-
accessible format.

cs_dt_info Set or retrieve language-specific datetime information.

cs_loc_alloc Allocate a CS_LOCALE structure.

cs_loc_drop Deallocate a CS_LOCALE structure.

cs_locale Load a CS_LOCALE structure with localization values or
retrieve the locale name previously used to load a
CS_LOCALE structure.

cs_manage_convert Install or retrieve a user-defined character set conversion
routine.
Common Libraries Reference Manual 9

cs_calc
cs_calc
Description Performs an arithmetic operation on two operands.

Syntax CS_RETCODE cs_calc(context, op, datatype, var1,
 var2, dest)

 CS_CONTEXT *context;
 CS_INT op;
 CS_INT datatype;
 CS_VOID *var1;
 CS_VOID *var2;
 CS_VOID *dest;

Parameters context
A pointer to a CS_CONTEXT structure.

op
One of the following symbolic values:

cs_objects Save, retrieve, or clear objects and data associated with
them.

cs_set_convert Install or retrieve a user-defined conversion routine.

cs_setnull Define a null substitution value to be used when binding
or converting NULL data.

cs_strbuild Construct native language message strings.

cs_strcmp Compare two strings using a specified sort order.

cs_time Retrieve the current time.

cs_will_convert Indicate whether a specific datatype conversion is
available in the Client/Server libraries.

Routine Description

Value of op Arithmetic operation *dest Value on return

CS_ADD Addition var1 + var2

CS_SUB Subtraction var1 - var2

CS_MULT Multiplication var1 * var2

CS_DIV Division var1 /var2
10 Open Client and Open Server

CHAPTER 2 CS-Library Routines
datatype
One of the following symbolic values, to indicate the datatype of var1, var2,
and dest:

*var1, *var2, and *dest must all be the same datatype as indicated by the
value of datatype.

var1
A pointer to the first operand for the arithmetic operation.

var2
A pointer to the second operand for the arithmetic operation.

dest
A pointer to a destination buffer. If cs_calc returns CS_FAIL, *dest is not
modified.

Return value cs_calc can return the following values:

Common reasons for a cs_calc failure include:

• An invalid parameter

• Attempted division by 0

• Destination overflow

cs_calc generates a CS-Library error message for most failure conditions. For
more information on CS-Library error handling, see “Error handling” on page
4.

Usage • var1, var2, and dest must have the same datatype, as indicated by the
datatype parameter.

• In case of error, *dest is not modified.

See also cs_convert

Value of datatype Indicates this datatype

CS_DECIMAL_TYPE CS_DECIMAL

CS_MONEY_TYPE CS_MONEY

CS_MONEY4_TYPE CS_MONEY4

CS_NUMERIC_TYPE CS_NUMERIC

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.
Common Libraries Reference Manual 11

cs_calc
cs_cmp
Description Compare two data values.

Syntax CS_RETCODE cs_cmp(context, datatype, var1, var2,
 result)
 CS_CONTEXT *context;
 CS_INT datatype;
 CS_VOID *var1;
 CS_VOID *var2;
 CS_INT *result;

Parameters context
A pointer to a CS_CONTEXT structure.

datatype
One of following symbolic values, to indicate the datatype of var1 and var2:

var1
A pointer to the first operand for the comparison.

var2
A pointer to the second operand for the comparison.

result
On successful return, *result is set to indicate the result of the comparison:

Return value cs_cmp can return the following values:

Value of datatype Indicates this datatype

CS_DATE_TYPE CS_DATE

CS_TIME_TYPE CS_TIME

CS_DATETIME_TYPE CS_DATETIME

CS_DATETIME4_TYPE CS_DATETIME4

CS_DECIMAL_TYPE CS_DECIMAL

CS_MONEY_TYPE CS_MONEY

CS_MONEY4_TYPE CS_MONEY4

CS_NUMERIC_TYPE CS_NUMERIC

Value of *result Indicates

-1 var1 is less than var2.

0 var1 is equal to var2.

1 var1 is greater than var2.

Returns Indicates

CS_SUCCEED The routine completed successfully.
12 Open Client and Open Server

CHAPTER 2 CS-Library Routines
The most common reasonifor a cs_cmp failure is an invalid parameter.

cs_cmp generates a CS-Library error message for most failure conditions. For
more information on CS-Library error handling, see “Error handling” on page
4.

Usage • cs_cmp sets *result to indicate the result of the comparison.

• var1 and var2 must have the same datatype, as indicated by the datatype
parameter.

• To compare string values, an application can call cs_strcmp.

See also cs_calc, cs_convert, cs_strcmp

cs_config
Description Set or retrieve CS-Library properties.

Syntax CS_RETCODE cs_config(context, action, property,
 buffer, buflen, outlen)

 CS_CONTEXT *context;
 CS_INT action;
 CS_INT property;
 CS_VOID *buffer;
 CS_INT buflen;
 CS_INT *outlen;

Parameters context
A pointer to a CS_CONTEXT structure.

action
One of the following symbolic values:

CS_FAIL The routine failed. If cs_cmp returns CS_FAIL, *result is
undefined.

Returns Indicates

action cs_config

CS_SET Sets the value of the property.

CS_GET Retrieves the value of the property.

CS_CLEAR Clears the value of the property by resetting it to
its default value.
Common Libraries Reference Manual 13

cs_calc
property
The property whose value is being set or retrieved, according to the
following table:

Table 2-1: Values for cs_config’s property parameter

Value of property Controls Action *buffer is

CS_APPNAME The name the
application calls itself.

Set, retrieve,
or clear.

A CS_CHAR
string.

The default is
NULL.

CS_CONFIG_FILE The name and path of
the Open
Client/Server runtime
configuration file.
Meaningful only
when external
configuration has
been enabled by
setting
CS_EXTERNAL_CO
NFIG.

Set, retrieve,
or clear.

A CS_CHAR
string.

The default is
NULL, which
means a platform-
specific default is
used. See
“Configuration file
property” on page
18 for more
information.

CS_EXTERNAL_
 CONFIG

Whether or not the
Client-Library routine
ct_init reads an
external configuration
file to set default
property values.

Set, retrieve,
or clear.

CS_TRUE or
CS_FALSE.

The default
depends on
whether the
external
configuration file
exists. See
“External
configuration
property” on page
18 for more
information.

CS_EXTRA_INF Whether or not to
return the extra
information that is
required when
processing messages
inline using a
SQLCA, SQLCODE,
or SQLSTATE
structure.

Set, retrieve,
or clear.

CS_TRUE or
CS_FALSE.

CS_FALSE is the
default.
14 Open Client and Open Server

CHAPTER 2 CS-Library Routines
CS_LOC_PROP A CS_LOCALE
structure that defines
localization
information for this
context.

Set, retrieve,
or clear.

A CS_LOCALE
structure
previously
allocated by the
application.

CS_MESSAGE_CB The CS-Library
message callback
routine, which is an
application-provided
handler for CS-
Library error and
informational
messages.

Set, retrieve,
or clear.

If action is
CS_SET, *buffer is
the message
callback routine.

If action is
CS_GET, *buffer
is set to the address
of the message
callback routine
that is currently
installed.

The default is
NULL, which
means no handler
is installed.

CS_NOAPI_CHK Whether or not CS-
Library validates
function arguments
when library functions
are called.

Set, retrieve,
or clear.

CS_TRUE or
CS_FALSE.

CS_FALSE, the
default, indicates
that argument
checking is
performed.

CS_USERDATA User-allocated data. Set, retrieve,
or clear.

User-allocated
data.

A default is not
applicable.

Value of property Controls Action *buffer is
Common Libraries Reference Manual 15

cs_calc
buffer
If a property value is being set, buffer points to the value to use in setting the
property.

If a property value is being retrieved, buffer points to the space in which
cs_config will place the value of the property.

If a property value is being cleared, pass buffer as NULL and buflen as
CS_UNUSED.

buflen
Generally, buflen is the length, in bytes, of *buffer.

If a property value is being set and the value in *buffer is null-terminated,
pass buflen as CS_NULLTERM.

If *buffer is a fixed-length or symbolic value, pass buflen as CS_UNUSED.

CS_VERSION The version of CS-
Library.

Retrieve only. A symbolic code
indicating the
library version:

• CS_VERSION_1
00 indicates the
context exhibits
version 10.0
behavior.

• CS_VERSION_1
10 indicates
version 11.1
behavior.

• CS_VERSION_1
20 indicates the
context exhibits
version 12.0
behavior.

• CS_VERSION_1
25 indicates
version 12.5
behavior.

Value of property Controls Action *buffer is
16 Open Client and Open Server

CHAPTER 2 CS-Library Routines
outlen
A pointer to an integer variable.

outlen is not used if a property value is being set.

If a property value is being retrieved, cs_config sets *outlen to the length, in
bytes, of the requested information.

If the information is larger than buflen bytes, an application can use the
value of *outlen to determine how many bytes are needed to hold the
information.

outlen can be passed as NULL if the application is setting a property value
or does not require the output length of a retrieved value.

Return value cs_config returns:

Usage • There are three kinds of context properties:

• Context properties specific to CS-Library

• Context properties specific to Client-Library

• Context properties specific to Server-Library

cs_config sets and retrieves the values of CS-Library context properties.
With the exception of CS_LOC_PROP, properties set using cs_config
affect only CS-Library.

ct_config sets and retrieves the values of Client-Library-specific context
properties. Properties set using ct_config affect only Client-Library.

srv_props sets and retrieves the values of Server-Library-specific context
properties. Properties set using srv_props affect only Server-Library.

• See the “Properties” topics page in the Open Client Client-Library/C
Reference Manual for information about Client-Library properties.

Application name property

• CS_APPNAME specifies the name that the application calls itself.

• cs_config sets the application name for a CS_CONTEXT structure. In a
Client-Library application, allocated connections inherit the application
name from their parent CS_CONTEXT structure.

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.
Common Libraries Reference Manual 17

cs_calc
• The application name specifies a section name in the Open Client/Server
runtime configuration file. See “Configuration file property” on page 18
for more information.

• CS_APPNAME cannot be set, retrieved, or cleared unless the
CS_CONTEXT structure was allocated with CS_VERSION_110 or later.

Configuration file property

• CS_CONFIG_FILE specifies the name and path to the Open Client/Server
runtime configuration file.

• The default value is NULL, which means that the a platform-specific
default file will be used:

• On UNIX platforms, the default file is
$SYBASE/SYBASE_OCS/ocs.cfg where $SYBASE is the path to the
Sybase installation directory; this path is specified as the value of the
SYBASE environment variable.

• On Windows platforms, the default file is
%SYBASE%\SYBASE_OCS\ocs.cfg, where %SYBASE% is the path to
the Sybase installation directory; this path is specified as the value of
the SYBASE environment variable.

• For other platforms, see the Open Client/Server Configuration Guide
for the name of the default Open Client/Server runtime configuration
file.

The Open Client/Server Configuration Guide describes the structure of the
Sybase installation directory.

• If the default external-configuration file exists, Client-Library reads
configuration settings from it unless the application explicitly sets the
CS_EXTERNAL_CONFIG property to CS_FALSE. See “External
configuration property” on page 18.

• CS_CONFIG_FILE cannot be set, retrieved, or cleared unless the
CS_CONTEXT structure was allocated with CS_VERSION_110 or later.

External configuration property

• CS_EXTERNAL_CONFIG controls whether the Client-Library routine
ct_init will read the Open Client/Server runtime configuration file to set
default Client-Library property values for the CS_CONTEXT structure.

• The name of the Open Client/Server runtime configuration file is specified
with the CS_CONFIG_FILE property. See “Configuration file property”
on page 18.
18 Open Client and Open Server

CHAPTER 2 CS-Library Routines
• The default for CS_EXTERNAL_CONFIG depends on whether the
default external-configuration file exists (see “Configuration file
property” on page 18). If the default external-configuration file exists,
then CS_EXTERNAL_CONFIG defaults to CS_TRUE. Otherwise,
CS_EXTERNAL_CONFIG defaults to CS_FALSE.

• Configuration information is read from the section of the file labeled:

[appname]

where appname is the value of the CS_APPNAME property. (See
“Application name property” on page 17.) If the application has not set the
CS_APPNAME property, the configuration reads the section labeled:

[DEFAULT]

• The “Using the Open Client/Server Runtime Configuration File” topics
page in the Open Client Client-Library/C Reference Manual describes the
syntax and keywords for configuration file entries.

• CS_EXTERNAL_CONFIG cannot be set, retrieved, or cleared unless the
CS_CONTEXT structure is allocated with CS_VERSION_110 or later.
(See cs_ctx_alloc for more information.)

Extra Information property

• CS_EXTRA_INF determines whether or not CS-Library returns the extra
information that is required to fill in a SQLCA, SQLCODE, or
SQLSTATE structure.

• If an application is not retrieving messages into a SQLCA, SQLCODE, or
SQLSTATE structure, the extra information is returned as ordinary CS-
Library messages.

Locale information property

• The CS_LOC_PROP property defines a CS_LOCALE structure that
contains localization information for a context. Localization information
includes a language, character set, datetime, money, and numeric formats,
and a collating sequence.

• CS_LOC_PROP affects both CS-Library and Client-Library, because a
new connection picks up default localization information from its parent
context.
Common Libraries Reference Manual 19

cs_calc
• If an application does not call cs_config to define localization information
for a context, the context uses default localization information that it picks
up from the operating system environment when it is allocated. If
localization information is not available in the operating system
environment, the context uses platform-specific default localization
values.

• The cs_loc_alloc routine allocates a CS_LOCALE structure.

CS-Library Message Callback property

• The CS_MESSAGE_CB property consists of a pointer to a user-supplied
CS-Library message callback routine. The application uses this property
to install a handler for error or informational messages from CS-Library.

• The default value is NULL, meaning that no handler is installed.

• An application function can be installed as a handler for CS-Library
errors.

• Once the handler is installed, CS-Library calls the handler when an
error or exception occurs in a CS-Library routine.

• For a description and an example of coding a CS-Library error handler, see
“Defining a CS-Library message callback” on page 6.

• The following code fragment demonstrates how a handler function is
installed for CS-Library errors:

/*
** Install the function cslib_err_handler as the
** handler for CS-Library errors.
*/
if (cs_config(context, CS_SET, CS_MESSAGE_CB,
 (CS_VOID *)cslib_err_handler,
 CS_UNUSED, NULL)
 != CS_SUCCEED)
{
 /* Release the context structure. */
 (void)cs_ctx_drop(context);
 fprintf(stdout,
 "Can't install CS-Lib error handler.\
 Exiting.\n");
 exit(1);
}

20 Open Client and Open Server

CHAPTER 2 CS-Library Routines
• Client-Library applications that call CS-Library routines besides
cs_ctx_alloc and cs_ctx_drop need dedicated CS-Library error handling.
Applications should either install a CS-Library error handler or handle CS-
Library errors inline with cs_diag.

Note CS-Library error messages are not sent to the Client-Library error
handler.

• Callback error handlers for Client-Library and CS-Library are installed
differently:

• An application installs Client-Library callback routines by calling
ct_callback.

• An application installs a CS-Library message callback routine by
calling cs_config to set the value of the CS_MESSAGE_CB property.

Aside from this difference, the CS-Library message callback is similar to
the Client-Library client message callback. For general information on
callback routines, see the “Callbacks” topics page in the Open Client
Client-Library/C Reference Manual.

Argument checking for CS-Library calls

• The CS_NOAPI_CHK property determines whether or not CS-Library
validates function arguments when a library function is called.

• If the value of CS_NOAPI_CHK is CS_FALSE (the default), then CS-
Library checks arguments when API functions are called. Setting
CS_NOAPI_CHK to CS_TRUE disables API checking.

• For argument checking, CS-Library validates the parameters passed with
each function call. Pointers to CS-Library hidden structures such as
CS_LOCALE are checked. Field values in structures are also checked for
illegal combinations. If CS-Library finds invalid arguments and API
checking is enabled, CS-Library generates error messages and the function
fails. These messages can be trapped and displayed with a CS-Library
callback error handler.
Common Libraries Reference Manual 21

cs_calc
• If the value of CS_NOAPI_CHK is CS_TRUE, arguments are not
validated before they are used. If the application passes invalid arguments
to CS-Library, the application will not work right, resulting in memory
corruption, memory access violations (UNIX “core dumps”), or incorrect
results. No error messages are generated to warn the application of the
condition. Do not disable API argument checking until the application has
been completely debugged with API checking enabled.

 Warning! Do not set CS_NOAPI_CHK to CS_TRUE unless your
application has been completely debugged with the default setting
(CS_FALSE).

User-allocated data property

• The CS_USERDATA property defines user-allocated data. This property
allows an application to associate user data with a particular context
structure.

• CS-Library copies the user data into internal data space. An application
can then call cs_config at a later time to retrieve the data.

• If you do not include a string’s null terminator when calculating its length
during the input stage, a call to cs_config (CS_GET) will return only the
string (minus its null terminator). For example, if you input a 2-byte string
with a null terminator, and specify the string’s length as 2 bytes, cs_config
(CS_GET) will return only the string. If, on the other hand, you input a 2-
byte string with a null terminator and specify the string’s length as 3 bytes,
cs_config (CS_GET) will return the string and its null terminator.

• Although Client-Library also has a CS_USERDATA property, the Client-
Library CS_USERDATA is set only at the connection and command
levels.

Version level property

• The CS_VERSION property represents the version of CS-Library
behavior that an application has requested using cs_ctx_alloc.

• An application can only retrieve the value of CS_VERSION.

• Possible values for CS_VERSION include the following:

• CS_VERSION_100 indicates version 10.0 behavior

• CS_VERSION_110 indicates version 11.1 behavior

• CS_VERSION_120 indicates version 12.0 behavior

• CS_VERSION_125 indicates version 12.5 behavior
22 Open Client and Open Server

CHAPTER 2 CS-Library Routines
See also cs_ctx_alloc, ct_con_props, ct_config, ct_init

cs_conv_mult
Description Retrieves the conversion multiplier for converting character data from one

character set to another.

Syntax CS_RETCODE cs_conv_mult(context,
 srcloc,
 destloc,
 conv_multiplier)
 CS_CONTEXT *context;
 CS_LOCALE *srcloc;
 CS_LOCALE *destloc;
 CS_INT *conv_multiplier;

Parameters context
A pointer to a CS_CONTEXT structure.

srcloc
A pointer to the CS_LOCALE structure that describes the source variable’s
character set. This parameter cannot be NULL.

destloc
A pointer to the CS_LOCALE structure that describes the destination
variable’s character set. This parameter cannot be NULL.

conv_multiplier
A pointer to a CS_INT variable. cs_conv_mult retrieves the conversion
multiplier for conversions from the character set indicated by srcloc to the
character set indicated by destloc and places it into *conv_multiplier.

Return value cs_conv_mult returns the following values:

The most common reason for a cs_conv_mult failure is an invalid parameter.

Examples The following code fragment retrieves the conversion multiplier for
conversions from the iso_1 character set to the eucjis character set:

#define EXIT_ON_FAIL(context, ret, msg) \
{ if (ret != CS_SUCCEED) \
 { \

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.
Common Libraries Reference Manual 23

cs_conv_mult
 fprintf(stdout,"Fatal error(%ld): %s\n",(long)ret,msg); \
 if (context != (CS_CONTEXT *)NULL) \
 { (CS_VOID)ct_exit(context, CS_FORCE_EXIT); \
 (CS_VOID)cs_ctx_drop(context); } \
 exit(-1); \
 } }

** usa_locale uses the iso_1 character set.
*/
ret = cs_loc_alloc(context, &usa_locale);
EXIT_ON_FAIL(context, ret, "cs_loc_alloc(usa) failed.");
ret = cs_locale(context, CS_SET, usa_locale,
 CS_SYB_CHARSET, "iso_1", CS_NULLTERM, NULL);
EXIT_ON_FAIL(context, ret, "cs_locale(usa, CHARSET) failed.");

/*
 ** japan_locale uses eucjis.
 */
 ret = cs_loc_alloc(context, &japan_locale);
 EXIT_ON_FAIL(context, ret, "cs_loc_alloc(japan) failed.");

ret = cs_locale(context, CS_SET, japan_locale,
 CS_SYB_CHARSET, "eucjis", CS_NULLTERM, NULL);
 EXIT_ON_FAIL(context, ret, "cs_locale(japan, CHARSET) failed.");

/*
 ** Get the conversion multiplier for iso_1 to eucjis conversions.
 */
 ret = cs_conv_mult(context,
 usa_locale, japan_locale, &conv_mult);
 EXIT_ON_FAIL(context, ret, "cs_conv_mult(usa, japan) failed.");

fprintf(stdout,
 "Conversion multiplier for iso_1 to eucjis is %ld.\n",
 (long)conv_mult);

Usage • cs_conv_mult retrieves the conversion multiplier for converting character
data from one character set to another.

• The conversion multiplier allows an application to size the destination data
space for conversion of character data into a different character set.
24 Open Client and Open Server

CHAPTER 2 CS-Library Routines
• When converted to another character set, character strings can grow or
shrink in length, and applications need to make sure that the destination
data space is large enough for the result. With a multi-byte character set
destination, one byte in the source can convert to several bytes in the
destination. Also, when converting to a single-byte character set, some
characters may convert to multi-character mnemonics. For example, if the
destination character set does not contain a character for ™ (the trademark
symbol), it might convert to the 2-character mnemonic “TM”.

• A conversion multiplier equals the largest number of bytes in the
destination that can replace 1 source byte.

• When converting a character string to a different character set, the
application uses the conversion multiplier to size the destination data
space, as follows:

bytes_needed = conv_mult
 * srclen
 * CS_SIZEOF(CS_BYTE)
 + NTB

where:

• bytes_needed is the necessary length, in bytes, of the destination data
space.

• conv_mult is the the conversion multiplier value.

• srclen is the length, in bytes, of the source string.

• NTB is 1 if null termination is requested and 0 otherwise.

• For more information on character set conversion, see the
 Open Client/Server International Developer's Guide.

See also cs_convert, cs_locale, cs_manage_convert

cs_convert
Description Converts a data value from one datatype, locale, or format to another datatype,

locale, or format.

Syntax CS_RETCODE cs_convert(context, srcfmt, srcdata,
 destfmt, destdata, resultlen)
 CS_CONTEXT *context;
 CS_DATAFMT *srcfmt;
 CS_VOID *srcdata;
Common Libraries Reference Manual 25

cs_conv_mult
 CS_DATAFMT *destfmt;
 CS_VOID *destdata;
 CS_INT *resultlen;

Parameters context
A pointer to a CS_CONTEXT structure.

srcfmt
A pointer to a CS_DATAFMT structure describing the source data format.
The fields in *srcfmt are used as follows:

For general information on the CS_DATAFMT structure, see the
“CS_DATAFMT Structure” topics page in the Open Client Client-Library/C
Reference Manual.

srcdata
A pointer to the source data. To indicate that the source data represents a null
value, pass srcdata as NULL. If srcdata is NULL, cs_convert places the null
substitution value for the datatype indicated by destfmt−>datatype in
*destdata.

Table 2-15 on page 77 lists the default null substitution value for each
datatype. An application can define custom null substitution values by
calling cs_setnull.

destfmt
A pointer to a CS_DATAFMT structure describing the destination data
format. The following table lists the fields in *destfmt that are used.

Field name Set it to

datatype A type constant representing the type of the source data
(CS_CHAR_TYPE, CS_BINARY_TYPE, and so on).

maxlength The length of the data in the *srcdata buffer. This value is
ignored for fixed-length datatypes or if srcdata is NULL.

locale A pointer to a CS_LOCALE structure containing localization
values for the source data, or NULL to use localization values
from *context.

All other fields Are ignored.
26 Open Client and Open Server

CHAPTER 2 CS-Library Routines
Table 2-2: CS_DATAFMT fields for cs_convert’s *destfmt parameter

For general information on the CS_DATAFMT structure, see the
“CS_DATAFMT Structure” topics page in the Open Client Client-Library/C
Reference Manual.

destdata
A pointer to the destination buffer space.

Field Name Set It To

datatype A type constant representing the desired destination datatype
(CS_CHAR_TYPE, CS_BINARY_TYPE, and so on).

maxlength The length of the destdata buffer.

locale A pointer to a CS_LOCALE structure containing localization
values for the destination data, or NULL to use localization
values from *context.

format A bit mask of the following symbols:

• For character and text destinations only, use
CS_FMT_NULLTERM to null-terminate the data, or
CS_FMT_PADBLANK to pad to the full length of the
variable with spaces.

• For character, binary, text, and image destinations, use
CS_FMT_PADNULL to pad to the full length of the variable
with nulls.

• When converting from a character source to a character
destination, use CS_FMT_SAFESTR to double any
occurrences of the single-quote character (') in the
destination. CS_FMT_SAFESTR can be combined with
CS_FMT_NULLTERM, CS_FMT_PADBLANK, or
CS_FMT_PADNULL.

• For any type of destination, use CS_FMT_UNUSED if no
format information is being provided.

scale The scale used for the destination variable.

If the source data is the same type as the destination, scale can
be set to CS_SRC_VALUE to indicate that the destination
should pick up its value for scale from the source data.

scale must be less than or equal to precision.

precision The precision used for the destination variable.

If the source data is the same type as the destination, precision
can be set to CS_SRC_VALUE to indicate that the destination
should pick up its value for precision from the source data.

precision must be greater than or equal to scale.

All other fields Are ignored.
Common Libraries Reference Manual 27

cs_conv_mult
resultlen
A pointer to an integer variable. cs_convert sets *resultlen to the length, in
bytes, of the data placed in *destdata. If the conversion fails, cs_convert sets
*resultlen to CS_UNUSED.

resultlen is an optional parameter and can be passed as NULL.

Datatype Conversion Chart

The chart in Table 2-3 indicates which datatype conversions are supported
by cs_convert. The source datatypes are listed in the leftmost column and the
destination datatypes are listed in the top row of the chart. “X” indicates that
the conversion is supported; a blank space indicates that the conversion is
not supported.

Table 2-3: Datatype conversion chart

Open Client
Datatypes C

S
_B

IN
A

R
Y

C
S

_L
N

G
B

IN
A

R
Y

C
S

_V
A

R
B

IN
A

R
Y

C
S

_B
IT

C
S

_C
H

A
R

C
S

_L
O

N
G

C
H

A
R

C
S

_V
A

R
C

H
A

R
C

S
_D

A
T

E
T

IM
E

C
S

_D
A

T
E

T
IM

E
4

C
S

_T
IN

Y
IN

T
C

S
_S

M
A

L
L

IN
T

C
S

_I
N

T
C

S
_D

E
C

IM
A

L
C

S
_N

U
M

E
R

IC
C

S
_F

L
O

A
T

C
S

_R
E

A
L

C
S

_M
O

N
E

Y
C

S
_M

O
N

E
Y

4
C

S
_B

O
U

N
D

A
R

Y
C

S
_S

E
N

S
IT

IV
IT

Y
C

S
_T

E
X

T
C

S
_I

M
A

G
E

C
S

_U
N

IC
H

A
R

C
S

_D
A

T
E

C
S

_T
IM

E

CS_BINARY X

CS_LONGBINARY X

CS_VARBINARY X

CS_BIT X X X X X X X X X X X X X X X X X X X

CS_CHAR X

CS_LONGCHAR X

CS_VARCHAR X

CS_DATETIME X X X X X X X X X X X

CS_DATETIME4 X X X X X X X X X X X

CS_TINYINT X X X X X X X X X X X X X X X X X X
28 Open Client and Open Server

CHAPTER 2 CS-Library Routines
Return value

CS_SMALLINT X X X X X X X X X X X X X X X X X X

CS_INT X X X X X X X X X X X X X X X X X X

CS_DECIMAL X X X X X X X X X X X X X X X X X X

CS_NUMERIC X X X X X X X X X X X X X X X X X X

CS_FLOAT X X X X X X X X X X X X X X X X X X

CS_REAL X X X X X X X X X X X X X X X X X X

CS_MONEY X X X X X X X X X X X X X X X X X X

CS_MONEY4 X X X X X X X X X X X X X X X X X X

CS_BOUNDARY X X X X X

CS_SENSITIVITY X X X X X

CS_TEXT X

CS_IMAGE X

CS_UNICHAR X X X X X X X X X

CS_DATE X X X X X X X X X X

CS_TIME X X X X X X X X X X

Open Client
Datatypes C

S
_B

IN
A

R
Y

C
S

_L
N

G
B

IN
A

R
Y

C
S

_V
A

R
B

IN
A

R
Y

C
S

_B
IT

C
S

_C
H

A
R

C
S

_L
O

N
G

C
H

A
R

C
S

_V
A

R
C

H
A

R
C

S
_D

A
T

E
T

IM
E

C
S

_D
A

T
E

T
IM

E
4

C
S

_T
IN

Y
IN

T
C

S
_S

M
A

L
L

IN
T

C
S

_I
N

T
C

S
_D

E
C

IM
A

L
C

S
_N

U
M

E
R

IC
C

S
_F

L
O

A
T

C
S

_R
E

A
L

C
S

_M
O

N
E

Y
C

S
_M

O
N

E
Y

4
C

S
_B

O
U

N
D

A
R

Y
C

S
_S

E
N

S
IT

IV
IT

Y
C

S
_T

E
X

T
C

S
_I

M
A

G
E

C
S

_U
N

IC
H

A
R

C
S

_D
A

T
E

C
S

_T
IM

E

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.
Common Libraries Reference Manual 29

cs_conv_mult
A common reason for a cs_convert failure is that CS-Library does not support
the requested conversion.

cs_convert conversion errors will generate CS-Library error messages. For
more information about CS-Library error handling, see “Error handling” on
page 4.

Usage • To determine whether a particular conversion is permitted, use
cs_will_convert.

• In Client-Library applications, ct_bind sets up automatic, implicit data
conversion, which makes it unnecessary for an application to explicitly
convert result data that is bound to program variables.

• An application can install custom conversion routines by calling
cs_set_convert. Once a custom routine for a particular type of conversion
is installed, cs_convert or ct_bind call the custom routine whenever a
conversion of that type is required.

• cs_convert can convert between standard and user-defined datatypes. To
enable these types of conversions, an application must install the
appropriate custom conversion routines using cs_set_convert.

• For more information about CS-Library datatypes, see the “Types” topics
page in the Open Client Client-Library/C Reference Manual. For
information about Adaptive Server datatypes, see the Adaptive Server
Enterprise Reference Manual.

About specific conversions

• A conversion to or from binary and image datatypes is a straight byte-
copy, except when the conversion involves character or text data. When
converting character or text data to binary or image, cs_convert interprets
the character or text string as hexadecimal, whether or not the string
contains a leading “0x.” There must be a match in the lengths of binary
data and fixed length data. If the data lengths do not match, there will be
underflow or overflow.

• Converting a money, character, or text value to float can result in a loss of
precision. Converting a float value to character or text can also result in a
loss of precision.

• Any length mismatch in the conversion to and from binary and image
datatypes cause error underflow or overflow. This may happen, for
example, if you are converting one-byte binary data to integer data. Use
datatype CS_TINYINT (1 byte integer) to avoid an error.
30 Open Client and Open Server

CHAPTER 2 CS-Library Routines
• Converting a float value to money can result in overflow, because the
maximum CS_MONEY value is $922,337,203,685,477.5807, and the
maximum CS_MONEY4 value is $214,748.3648.

• If overflow occurs when converting integer or float data to character or
text, the first character of the resulting value will contain an asterisk (*) to
indicate the error.

• A conversion to bit has the following effect: If the value being converted
is not 0, the bit value is set to 1; if the value is 0, the bit value is set to 0.

• When converting decimal or numeric data to decimal or numeric data,
CS_SRC_VALUE can be used in destfmt−>scale and destfmt−>precision
to indicate that the destination data should have the same scale and
precision as the source. CS_SRC_VALUE is valid only when the source
data is decimal or numeric.

Note Open Client and Open Server 12.5 support the unichar datatype. For
information about this datatype, see Chapter 3, “Using Open Client/Server
Datatypes”, in the Open Client Client Library/C Programmer’s Guide.

Converting between character sets

• cs_convert performs character set conversion when:

• srctype and desttype both represent character-based types and

• srcfmt−>locale specifies a different character set than
destfmt−>locale.

The character-based types are CS_CHAR, CS_LONGCHAR, CS_TEXT,
or CS_VARCHAR.

• You can program an application to perform character-set conversion by
following these steps:

a Call cs_loc_alloc twice to allocate two CS_LOCALE structures,
src_locale and dest_locale, which will be configured to describe the
locale of the source data and destination data, respectively.

b Configure the character set associated with src_locale by calling
cs_locale. The call can specify either a locale name or a character set
name.

To use a character set name, pass action as CS_SET, type as
CS_SYB_CHARSET, and buffer as the name of the character set.
Repeat to configure the character set for dest_locale.
Common Libraries Reference Manual 31

cs_conv_mult
To use a locale name, pass action as CS_SET, type as
CS_LC_CTYPE, and buffer as a locale name (the character set
associated with the locale name will be used). Repeat to configure the
character set for dest_locale.

c (Optional) Call cs_conv_mult to get the conversion multiplier for
conversions between src_locale’s character set and dest_locale’s
character set. The conversion multiplier can be used to determine
whether the result can possibly overflow the destination space.

d Configure the CS_DATAFMT structures to describe the datatype,
length, and format of the source and destination data. Set the locale
field in the source CS_DATAFMT structure to src_locale, and set the
locale field in the destination CS_DATAFMT structure to dest_locale.

e Call cs_convert to perform the conversion. This step can be repeated
as many times as necessary, using the configured CS_LOCALE and
CS_DATAFMT structures.

f Call cs_loc_drop to deallocate each of src_locale and dest_locale
when they are no longer needed.

See also cs_conv_mult, cs_manage_convert, cs_set_convert, cs_setnull,
cs_will_convert

cs_ctx_alloc
Description Allocates a CS_CONTEXT structure.

Syntax CS_RETCODE cs_ctx_alloc(version, ctx_pointer)

 CS_INT version;
 CS_CONTEXT **ctx_pointer;

Parameters version
One of the following symbolic values, to indicate the intended version of
CS-Library behavior:

Value of version Indicates Features Supported

CS_VERSION_100 10.0 behavior Initial version.

CS_VERSION_110 11.1 behavior Unicode character set support.

Use of external configuration
files to control Client-Library
property settings.

CS_VERSION_120 12.0 behavior All above features.
32 Open Client and Open Server

CHAPTER 2 CS-Library Routines
ctx_pointer
The address of a pointer variable. cs_ctx_alloc sets *ctx_pointer to the
address of a newly allocated CS_CONTEXT structure.

In case of error, cs_ctx_alloc sets *ctx_pointer to NULL.

Return value cs_ctx_alloc returns:

The most common reason for a cs_ctx_alloc failure is a misconfigured system
environment. cs_ctx_alloc must read the locales file that specifies the default
localization values for the allocated context. If CS-Library cannot find the
locales file or if the locales file is misconfigured, cs_ctx_alloc fails.

Note When cs_ctx_alloc returns CS_FAIL an extended error message is sent
to standard error (SDTERR) and to the sybinit.err file that is created in the
current working directory.

On most systems, the SYBASE environment variable or logical name
specifies the location of the locales file. The Open Client/Server Configuration
Guide describes the environmental configuration required for CS-Library
localization values.

Other common reasons for a cs_ctx_alloc failure include:

• Insufficient memory.

• Missing localization files.

CS_VERSION_125 12.5 behavior unichar support, wide data and
columns, SSL.

Value of version Indicates Features Supported

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS_MEM_ERROR The routine failed because it could not allocate sufficient
memory.

CS_FAIL The routine failed for other reasons.
Common Libraries Reference Manual 33

cs_conv_mult
• The value of the LANG environment variable does not match an entry in
the locales file.

Note On platforms that have a standard error device, cs_ctx_alloc prints U.S.
English error messages to the standard error device when CS-Library cannot
find the locales file. For Windows and other platforms that lack a standard error
device, U.S. English error messages are written to a text file called sybinit.err
in the application’s working directory.

Examples

 /*
 ** ex_init()
 */

 CS_RETCODE CS_PUBLIC
 ex_init(context)
 CS_CONTEXT* *context;
 {
 CS_RETCODE retcode;
 CS_INT netio_type = CS_SYNC_IO;

 /* Get a context handle to use */
 retcode = cs_ctx_alloc(CS_VERSION_125, context);
 if (retcode != CS_SUCCEED)
 {
 ex_error("ex_init: cs_ctx_alloc() failed");
 return retcode;
 }

 /* Initialize Open Client */
 ...CODE DELETED.....

 /* Install client and server message handlers */
 ...CODE DELETED.....

 if (retcode != CS_SUCCEED)
 {
 ct_exit(*context, CS_FORCE_EXIT);
 cs_ctx_drop(*context);
 *context = NULL;
 }

 return retcode;
 }
34 Open Client and Open Server

CHAPTER 2 CS-Library Routines
Usage • A CS_CONTEXT structure, also called a “context structure,” contains
information that describes an application context. For example, a context
structure contains default localization information and defines the version
of CS-Library that is in use.

• Allocating a context structure is the first step in any Client-Library or
Server-Library application.

• After allocating a CS_CONTEXT structure, a Client-Library application
typically customizes the context by calling cs_config and/or ct_config to
create one or more connections within the context. A Server-Library
application can customize a context by calling cs_config and srv_props.

• To deallocate a context structure, an application can call cs_ctx_drop.

• cs_ctx_global also allocates a context structure. The difference between
cs_ctx_alloc and cs_ctx_global is that cs_ctx_alloc allocates a new context
structure each time it is called, while cs_ctx_global allocates a new context
structure only once, the first time it is called. On subsequent calls,
cs_ctx_global simply returns a pointer to the existing context structure.

See also ct_con_alloc, ct_config, cs_ctx_drop, cs_ctx_global, cs_config

cs_ctx_drop
Description Deallocates a CS_CONTEXT structure.

Syntax CS_RETCODE cs_ctx_drop(context)

 CS_CONTEXT *context;

Parameters context
A pointer to a CS_CONTEXT structure.

Return value cs_cxt_drop returns:

cs_ctx_drop returns CS_FAIL if the context contains an open connection.

Examples

 /*
 ** ex_ctx_cleanup()
 **

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.
Common Libraries Reference Manual 35

cs_conv_mult
 ** Parameters:
 ** context Pointer to context structure.
 ** status Status of last interaction with Client-
 ** Library. If not ok, this routine will perform
 ** a force exit.
 **
 ** Returns:
 ** Result of function calls from Client-Library.
 */
 CS_RETCODE CS_PUBLIC
 ex_ctx_cleanup(context, status)
 CS_CONTEXT *context;
 CS_RETCODE status;
 {
 CS_RETCODE retcode;
 CS_INT exit_option;
 exit_option = (status != CS_SUCCEED) ? CS_FORCE_EXIT :
 CS_UNUSED;
 retcode = ct_exit(context, exit_option);
 if (retcode != CS_SUCCEED)
 {
 ex_error("ex_ctx_cleanup: ct_exit() failed");
 return retcode;
 }
 retcode = cs_ctx_drop(context);
 if (retcode != CS_SUCCEED)
 {
 ex_error("ex_ctx_cleanup: cs_ctx_drop() failed");
 return retcode;
 }
 return retcode;
 }

Usage • A CS_CONTEXT structure describes a particular context, or operating
environment, for a set of server connections.

• Once a CS_CONTEXT has been deallocated, it cannot be used again. To
allocate a new CS_CONTEXT, an application can call cs_ctx_alloc.

Note Sybase supports only one context handler per application program.

• A Client-Library application cannot call cs_ctx_drop to deallocate a
CS_CONTEXT structure until it has called ct_exit to clean up Client-
Library space associated with the context.

See also cs_ctx_alloc, ct_close, ct_exit
36 Open Client and Open Server

CHAPTER 2 CS-Library Routines
cs_ctx_global
Description Allocates or returns a CS_CONTEXT structure.

Syntax CS_RETCODE cs_ctx_global(version, ctx_pointer)

 CS_INT version;
 CS_CONTEXT **ctx_pointer;

Parameters version
One of the following symbolic values, to indicate the intended version of
CS-Library behavior:

If an application has already allocated a CS_CONTEXT structure, version
must match the version previously requested.

ctx_pointer
The address of a pointer variable. cs_ctx_global sets *ctx_pointer to the
address of a new or previously allocated CS_CONTEXT structure.

In case of error, cs_ctx_global sets *ctx_pointer to NULL.

Return value cs_ctx_global returns:

Common reasons for a cs_ctx_global failure include:

• A lack of available memory

• A version value that does not match a previously requested version

Value of version Indicates Features Supported

CS_VERSION_100 10.0 behavior Initial version.

CS_VERSION_110 11.1 behavior Unicode character set support.

Use of external configuration
files to control Client-Library
property settings.

CS_VERSION_120 12.0 behavior

CS_VERSION_125 12.5 behavior

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS_MEM_ERROR The routine failed because it could not allocate sufficient
memory.

CS_FAIL The routine failed for other reasons.
Common Libraries Reference Manual 37

cs_conv_mult
Note When cs_ctx_global returns CS_FAIL an extended error message is sent
to standard error (SDTERR) and to the sybinit.err file that is created in the
current working directory.

The first cs_ctx_global call to execute in an application can fail due to
configuration problems. See “Returns” under cs_ctx_alloc in this chapter for
more information.

Usage • cs_ctx_alloc also allocates a context structure. The only difference between
cs_ctx_alloc and cs_ctx_global is that cs_ctx_alloc allocates a new context
structure each time it is called, while cs_ctx_global allocates a new context
structure only once, the first time it is called. On subsequent calls,
cs_ctx_global simply returns a pointer to the existing context structure.

• cs_ctx_global is of use in applications that need to access a single context
structure from multiple independent modules.

• For more information on context structures, see cs_ctx_alloc in this
chapter.

See also cs_ctx_alloc, cs_ctx_drop, cs_config, ct_con_alloc, ct_config

cs_diag
Description Manages inline error handling.

Syntax CS_RETCODE cs_diag(context, operation, type, index,
 buffer)

 CS_CONTEXT *context;
 CS_INT operation;
 CS_INT type;
 CS_INT index;
 CS_VOID *buffer;

Parameters context
A pointer to a CS_CONTEXT structure.

operation
The operation to perform. Table 2-4 on page 40 lists the legal symbolic
values for operation.
38 Open Client and Open Server

CHAPTER 2 CS-Library Routines
type
Depending on the value of operation, type indicates either the type of
structure to receive message information or the type of message on which to
operate, or both.

Possible values are:

index
The index of the message of interest. The first message has an index of 1,
the second an index of 2, and so forth.

buffer
A pointer to data space.

Depending on the value of operation, buffer can point to a structure or a
CS_INT.

Return value cs_diag returns:

Common reasons for a cs_diag failure include:

• Invalid context

• Inability to allocate memory

• Invalid parameter combination

Value of type Indicates

SQLCA_TYPE A SQLCA structure.

SQLCODE_TYPE A SQLCODE structure, which is a long integer.

SQLSTATE_TYPE A SQLSTATE structure, which is a 6-element
character array.

CS_CLIENTMSG_TYPE A CS_CLIENTMSG structure. Also used to indicate
CS-Library messages.

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_NOMSG The application attempted to retrieve a message whose
index is higher than the highest valid index. For example,
the application attempted to retrieve message number 3 but
only 2 messages were available.
Common Libraries Reference Manual 39

cs_conv_mult
Usage Table 2-4: Summary of cs_diag parameter usage

• An application that includes calls to CS-Library can handle CS-Library
messages in one of two ways:

• The application can call cs_config to install a CS-Library message
callback, or

• The application can handle CS-Library messages inline, using
cs_diag.

An application can switch back and forth between the inline method and
the callback method:

• Installing a CS-Library message callback turns off inline message
handling. Any saved messages are discarded.

Value of
operation cs_diag type is index is buffer is

CS_INIT Initializes inline
error handling.

CS_UNUSED CS_UNUSED NULL

CS_MSGLIMIT Sets the
maximum
number of
messages to
store.

CS_CLIENTMSG_
TYPE

CS_UNUSED A pointer to
an integer
value.

CS_CLEAR Clears message
information for
this context.

If buffer is not
NULL, cs_diag
also clears the
*buffer structure
by initializing it
with blanks
and/or NULLs,
as appropriate.

One of the legal type
values.

CS_UNUSED A pointer to a
structure
whose type is
defined by
type, or
NULL.

CS_GET Retrieves a
specific
message.

One of the legal type
values.

The one-based
index of the
message to
retrieve.

A pointer to a
structure
whose type is
defined by
type.

CS_STATUS Returns the
current number
of stored
messages.

CS_CLIENTMSG_
TYPE

CS_UNUSED A pointer to
an integer
value.
40 Open Client and Open Server

CHAPTER 2 CS-Library Routines
• Likewise, cs_diag(CS_INIT) “de-installs” an application’s CS-
Library message callback. If the application has a message callback
installed when cs_diag(CS_INIT) is called, the application’s first
CS_GET call to cs_diag will retrieve a warning message to this effect.

If a CS-Library message callback is not installed and inline message
handling is not enabled, CS-Library discards message information.

• cs_diag manages inline message handling for a specific context. If an
application has more than one context, it must make separate cs_diag calls
for each context.

• In a multithreaded application, cs_diag reports only those messages that
pertain to CS-Library calls made by the thread which has called cs_diag.
For more information on multithreaded applications, see the
“Multithreaded Programming” topics page in the Open Client Client-
Library/C Reference Manual.

• cs_diag allows an application to retrieve message information into a
CS_CLIENTMSG structure or a SQLCA, SQLCODE, or SQLSTATE
structure. When retrieving messages, cs_diag assumes that buffer points to
a structure of the type indicated by type.

An application that is retrieving messages into a SQLCA, SQLCODE, or
SQLSTATE structure must set the CS-Library context property
CS_EXTRA_INF to CS_TRUE. This is because the SQL structures
contain information that is not ordinarily returned by CS-Library’s error-
handling mechanism.

An application that is not using the SQL structures can also set
CS_EXTRA_INF to CS_TRUE. In this case, the extra information is
returned as standard CS-Library messages.

• If cs_diag does not have sufficient internal storage space in which to save
a new message, it throws away all unread messages and stops saving
messages. The next time it is called with operation as CS_GET, it returns
a special message to indicate the space problem.

After returning this message, cs_diag starts saving messages again.

Initializing inline error handling

• To initialize inline error handling, an application calls cs_diag with
operation as CS_INIT.

• Generally, if a context will use inline error handling, the application
should call cs_diag to initialize inline error handling for the context
immediately after allocating it.
Common Libraries Reference Manual 41

cs_conv_mult
Clearing messages

• To clear message information for a context, an application calls cs_diag
with operation as CS_CLEAR.

• cs_diag assumes that buffer points to a structure whose datatype
corresponds to the value of type.

• cs_diag clears the *buffer structure by setting it to blanks and/or
NULLs, as appropriate.

• Message information is not cleared until an application explicitly calls
cs_diag with operation as CS_CLEAR. Retrieving a message does not
remove it from the message queue.

Retrieving messages

• To retrieve message information, an application calls cs_diag with
operation as CS_GET, type as the type of structure in which to retrieve the
message, index as the one-based index of the message of interest, and
*buffer as a structure of the appropriate type.

• cs_diag fills in the *buffer structure with the message information.

• If an application attempts to retrieve a message whose index is higher than
the highest valid index, cs_diag returns CS_NOMSG to indicate that no
message is available.

• See the “SQLCA Structure,” “SQLCODE Structures”, “SQLSTATE
structure,” and “CS_CLIENTMSG Structure” topics pages in the Open
Client Client-Library/C Reference Manual for information on these
structures.

Limiting messages

• If an application runs on platforms with limited memory, you may want to
limit the number of messages that CS-Library saves in that application.

• To limit the number of saved messages, an application calls cs_diag with
operation as CS_MSGLIMIT and type as CS_CLIENTMSG_TYPE.

• When a message limit is reached, CS-Library discards any new messages.

• An application cannot set a message limit that is less than the number of
messages currently saved.

• CS-Library’s default behavior is to save an unlimited number of messages.
An application can restore this default behavior by setting a message limit
of CS_NO_LIMIT.
42 Open Client and Open Server

CHAPTER 2 CS-Library Routines
Retrieving the number of messages

• To retrieve the number of current messages, an application calls cs_diag
with operation as CS_STATUS and type as the CS_CLIENTMSG_TYPE.

See also ct_callback, ct_options

cs_dt_crack
Description Converts a machine-readable datetime value into a user-accessible format.

Syntax CS_RETCODE cs_dt_crack(context, datetype, dateval,
 daterec)

 CS_CONTEXT *context;
 CS_INT datetype;
 CS_VOID *dateval;
 CS_DATEREC *daterec;

Parameters context
A pointer to a CS_CONTEXT structure.

datetype
A symbolic value indicating the datatype of *dateval:

dateval
A pointer to the date, time, or datetime value to be converted.

daterec
A pointer to a CS_DATEREC structure. cs_dt_crack fills this structure with
the translated date, time, or datetime value. A CS_DATEREC is defined as
follows:

typedef struct cs_daterec {
 CS_INT dateyear; /* year */
 CS_INT datemonth; /* month */
 CS_INT datedmonth; /* day of month */
 CS_INT datedyear; /* day of year */
 CS_INT datedweek; /* day of week */

Value of datetype Indicates

CS_DATE_TYPE CS_DATE*dateval.

CS_TIME_TYPE CS_TIME*

dateval

CS_DATETIME_TYPE A CS_DATETIME *dateval.

CS_DATETIME4_TYPE A CS_DATETIME4 *dateval.
Common Libraries Reference Manual 43

cs_conv_mult
 CS_INT datehour; /* hour */
 CS_INT dateminute; /* minute */
 CS_INT datesecond; /* second */
 CS_INT datemsecond; /* millisecond */
 CS_INT datetzone; /* timezone */

 } CS_DATEREC;

where:

• dateyear is a value greater than or equal to 1900.

• datemonth is a value from 0 to 11.

• datedmonth is a value from 1 to 31.

• datedyear is a value from 1 to 366.

• datedweek is a value from 0 to 6.

• datehour is a value from 0 to 23.

• dateminute is a value from 0 to 59.

• datesecond is a value from 0 to 59.

• datemsecond is a value from 0 to 999.

• datetzone is reserved for future use. cs_dt_crack does not set this field.

The meanings of these numbers vary according to an application’s locale.
For example, if localization information specifies that Sunday is the first day
of the week, then a datedweek value of 2 represents Tuesday. If localization
information specifies that Monday is the first day of the week, then a
datedweek value of 2 represents Wednesday.

An application can call cs_dt_info to find out what date-related localization
values are in effect.

The time zone field (datetzone) is reserved for future use. This field will not
be set.

For more information on localization, see the “International Support” topics
page in the Open Client Client-Library/C Reference Manual.

Return value cs_dt_crack returns:

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.
44 Open Client and Open Server

CHAPTER 2 CS-Library Routines
The most common reason for a cs_dt_crack failure is an invalid parameter.

Usage • cs_dt_crack converts a date, time or datetime value into its integer
components and places those components into a CS_DATEREC structure.

• Datetime values are stored in an internal format. For example, a
CS_DATETIME value is stored as the number of days since January 1,
1900 plus the number of three hundredths of a second since midnight.
cs_dt_crack converts a value of this type into a format that an application
can more easily access.

See also cs_dt_info

cs_dt_info
Description Sets or retrieves language-specific date, time, or datetime information.

Syntax CS_RETCODE cs_dt_info(context, action, locale, type,
 item, buffer, buflen, outlen)

 CS_CONTEXT *context;
 CS_INT action;
 CS_LOCALE *locale;
 CS_INT type;
 CS_INT item;
 CS_VOID *buffer;
 CS_INT buflen;
 CS_INT *outlen;

Parameters context
A pointer to a CS_CONTEXT structure.

When retrieving date, time, or datetime information, if locale is NULL,
cs_dt_info uses the default locale information contained in this context
structure.

action
One of the following symbolic values:

Value of action cs_dt_info

CS_SET Sets a date, time, or datetime conversion format.

CS_GET Retrieves date, time or datetime information.
Common Libraries Reference Manual 45

cs_conv_mult
locale
A pointer to a CS_LOCALE structure. A locale structure contains locale
information, including datetime information.

When setting datetime information, locale must be supplied.

When retrieving datetime information, locale can be NULL. If locale is
NULL, cs_dt_info uses the default locale information contained in *context.

type
The type of information of interest. Table 2-5 lists the symbolic values that
are legal for type.

item
When retrieving information, item is the item number of the type category
to retrieve. For example, to retrieve the name of the first month, an
application passes type as CS_MONTH and item as 0.

When setting a datetime conversion format, pass item as CS_UNUSED.

buffer
If datetime information is being retrieved, buffer points to the space in which
cs_dt_info will place the requested information.

If buflen indicates that *buffer is not large enough to hold the requested
information, cs_dt_info sets *outlen to the length of the requested
information and returns CS_FAIL.

If a datetime conversion format is being set, buffer points to a symbolic
value representing a conversion format.

buflen
The length, in bytes, of *buffer.

If item is CS_12HOUR, pass buflen as CS_UNUSED.

outlen
A pointer to an integer variable.

cs_dt_info sets *outlen to the length, in bytes, of the requested information.

If the requested information is larger than buflen bytes, an application can
use the value of *outlen to determine how many bytes are needed to hold the
information.

Return value cs_dt_info returns:

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.
46 Open Client and Open Server

CHAPTER 2 CS-Library Routines
The most common reason for a cs_dt_info failure is an invalid parameter.

Usage Table 2-5: Summary of cs_dt_info parameter usage

• cs_dt_info sets or retrieves native language-specific datetime information:

• cs_dt_info can return native language date part names, date part
ordering information, datetime format information, and whether or
not the language uses 12-hour date formats.

• cs_dt_info can set datetime format information.

• If locale is NULL, cs_dt_info looks for native language locale information
in *context. An application can set locale information for a
CS_CONTEXT by calling cs_config with property as CS_LOC_PROP.

If not specifically set, locale information in a CS_CONTEXT defaults to
information that CS-Library picks up from the operating system when the
context is allocated. If locale information is not available from the
operating system, CS-Library uses platform-specific localization values in
the new context.

Value of type cs_dt_info action can be item can be *buffer is

CS_MONTH Retrieves the month
name string.

CS_GET 0–11 A character string.

CS_SHORTMONTH Retrieves the short
month name string.

CS_GET 0–11 A character string.

CS_DAYNAME Retrieves the day
name string.

CS_GET 0–6 A character string.

CS_DATEORDER Retrieves the date
order string.

CS_GET CS_UNUSED A string containing the three
characters “m,” “d,” and “y”
to indicate the position of the
month, day, and year in the
datetime format.

CS_12HOUR Retrieves whether
or not the language
uses 12-hour time
formats.

CS_GET CS_UNUSED CS_TRUE if 12-hour formats
are used; CS_FALSE if 24-
hour formats are used.

CS_DT_CONVFMT Sets or retrieves the
datetime conversion
format.

CS_GET or
CS_SET

CS_UNUSED A symbolic value. See the
Comments section, below, for
a list of possible values.
Common Libraries Reference Manual 47

cs_conv_mult
• A locale’s date-order string, which can be retrieved by calling cs_dt_info
with type as CS_DATEORDER, describes how ambiguous date strings are
resolved when converting from character datatypes to CS_DATE,
CS_DATETIME or CS_DATETIME4. For example, “04/05/96” could be
interpreted as “April 5, 1996” or “May 4, 1996”. The former result
corresponds to the date-order string of “mdy”, and the latter corresponds
to “dmy”.

Although an application cannot set a locale’s date-order string directly, it
can call cs_locale and change the national-language used when converting
dates. To do this, the application calls cs_locale with action as CS_SET,
type as CS_LC_TIME, and *buffer as a locale name. The application can
specify a locale whose national language is configured to use a different
date-order string. A national language’s date-order string is configured as
follows:

• For each national language, a common.loc file is located in a language
subdirectory in the $SYBASE/locales/messages subdirectory.

• The “dateformat” setting in the [datetime] section of the file specifies
the date-order string. For example:

 [datetime]
dateformat=dmy

For more information on the common.loc file, see the Open Client/Server
Configuration Guide.

• The date conversion format, which can be set or retrieved by calling
cs_dt_info with type as CS_DT_CONVFMT, describes the format of the
result when a CS_DATE, CS_TIME, CS_DATETIME, and
CS_DATETIME4, value is converted to a character-based datatype.

• Date:Table 2-6 lists the values that are legal for *buffer when type is
CS_DT_CONVFMT:

Table 2-6: Values for *buffer when type is CS_DT_CONVFMT
(cs_dt_info)

Symbolic value

CS_CHAR converted from
CS_DATETIME, for
example:
Aug 24 1998 5:36PM

CS_CHAR converted
from CS_DATE, for
example:
Aug 24 1998

CS_CHAR converted
from CS_TIME, for
example:
5:36PM

CS_DATES_HM hh:mm

17:36

hh:mm

00:00

hh:mm

17:36

CS_DATES_HMA hh:mm[AM|PM]

5:36PM

hh:mm

12:00AM

hh:mm

5:36PM
48 Open Client and Open Server

CHAPTER 2 CS-Library Routines
CS_DATES_HMS hh:mm:ss

17:36:00

hh:mm:ss

00:00:00

hh:mm:ss

17:36:00

CS_DATES_HMS_
ALT

hh:mm:ss

17:36:32

hh:mm:ss

00:00:00

hh:mm:ss

17:36:32

CS_DATES_HMSZA hh:mm:ss:zzz[AM|PM]

5:36:00:000PM

hh:mm:ss:zzz[AM|PM]

12:00:00:000AM

hh:mm:ss:zzz[AM|PM]

5:36:00:000PM

CS_DATES_HMSZ hh:mm:ss:zzz

17:36:00:000

hh:mm:ss:zzz

00:00:00:000

hh:mm:ss:zzz

17:36:00:000

CS_DATES_LONG mon dd yyyy hh:mm:ss:zzz
[AM|PM]

Aug 24 1998
05:36:00:000PM

mon dd yyyy

Aug 24 1998

hh:mm:ss:zzz [AM|PM]

 05:36:00:000PM

CS_DATES_LONG_
ALT

mon dd yyyy hh:mm:ss:zzz
[AM|PM]

Aug 24 1998
05:36:00:000PM

mon dd yyyy
hh:mm:ss:zzz [AM|PM]

Aug 24 1998
12:00:00:000
AM

mon dd yyyy
hh:mm:ss:zzz [AM|PM]

Jan 01 1900
05:36:00:000
PM

CS_DATES_
MDYHMS

mon dd yyyy hh:mm:ss

Aug 24 1998 17:36:00

mon dd yyyy

Aug 24 1998

hh:mm:ss

17:36:00

CS_DATES_
MDYHMS_ALT

mon dd yyyy hh:mm:ss

Aug 24 1998 17:36:00

mon dd yyyy hh:mm:ss

Aug 24 1998
00:00:00

mon dd yyyy hh:mm:ss

Jan 1 1900
17:36:00

CS_DATES_SHORT mon dd yyyy hh:mm [AM|PM]

Aug 24 1998 5:36PM

mon dd yyyy

Aug 24 1998

hh:mm [AM|PM]

5:36PM

CS_DATES_SHORT_
ALT

mon dd yyyy hh:mm [AM|PM]

Aug 24 1998 5:36PM

mon dd yyyy hh:mm
[AM|PM]

Aug 24 1998
12:00AM

mon dd yyyy hh:mm
[AM|PM]

Jan 1 1900
5:36PM

CS_DATES_DMY1 dd/mm/yy

24/08/98

dd/mm/yy

24/08/98

CS_DATES_DMY1_Y
YYY

dd/mm/yyyy

24/08/1998

dd/mm/yyyy

24/08/1998

CS_DATES_DYM1 dd/yy/mm

24/98/08

dd/yy/mm

24/98/08

Symbolic value

CS_CHAR converted from
CS_DATETIME, for
example:
Aug 24 1998 5:36PM

CS_CHAR converted
from CS_DATE, for
example:
Aug 24 1998

CS_CHAR converted
from CS_TIME, for
example:
5:36PM
Common Libraries Reference Manual 49

cs_conv_mult
CS_DATES_DYM1_Y
YYY

dd/yyyy/mm

24/1998/08

dd/yy/mm

24/1998/08

CS_DATES_MDY1 mm/dd/yy

08/24/98

mm/dd/yy

08/24/98

CS_DATES_MDY1_Y
YYY

mm/dd/yyyy

08/24/1998

mm/dd/yyyy

08/24/1998

CS_DATES_MYD1 mm/yy/dd

08/98/24

mm/yy/dd

08/1998/24

CS_DATES_MYD1_Y
YYY

mm/yyyy/dd

08/1998/24

mm/yyyy/dd

08/1998/24

CS_DATES_YDM1 yy/dd/mm

98/24/08

yy/dd/mm

98/24/08

CS_DATES_YDM1_Y
YYY

yyyy/dd/mm

1998/24/08

yyyy/dd/mm

1998/24/08

CS_DATES_YMD1 yy.mm.dd

98.08.24

yy.mm.dd

98.08.24

CS_DATES_YMD1_Y
YYY

yyyy.mm.dd

1998.08.24

yyyy.mm.dd

1998.08.24

CS_DATES_DMY2 dd.mm.yy

24.08.98

dd.mm.yy

24.08.98

CS_DATES_DMY2_Y
YYY

dd.mm.yyyy

24.08.1998

dd.mm.yyyy

24.08.1998

CS_DATES_MDY2 mon dd, yy

Aug 24,98

mon dd, yy

Aug 24,98

CS_DATES_MDY2_Y
YYY

mon dd, yyyy

Aug 24,1998

mon dd, yyyy

Aug 24,1998

CS_DATES_YMD2 yy/mm/dd

98/08/24

yy/mm/dd

98/08/24

CS_DATES_YMD2_Y
YYY

yyyy/mm/dd

1998/08/24

yyyy/mm/dd

1998/08/24

Symbolic value

CS_CHAR converted from
CS_DATETIME, for
example:
Aug 24 1998 5:36PM

CS_CHAR converted
from CS_DATE, for
example:
Aug 24 1998

CS_CHAR converted
from CS_TIME, for
example:
5:36PM
50 Open Client and Open Server

CHAPTER 2 CS-Library Routines
• A cs_locale (CS_SET, CS_LC_TIME) call or a cs_locale (CS_SET,
CS_LC_ALL) call resets date/time conversion information to the default
settings for the specified national language.

See also cs_dt_crack, cs_locale

cs_loc_alloc
Description Allocate a CS_LOCALE structure.

Syntax CS_RETCODE cs_loc_alloc(context, loc_pointer)

 CS_CONTENT *context;
 CS_LOCALE **loc_pointer;

Parameters context
A pointer to a CS_CONTEXT structure.

CS_DATES_DMY3 dd-mm-yy

24-08-98

dd-mm-yy

24-08-98

CS_DATES_DMY3_Y
YYY

dd-mm-yyyy

24-08-1998

dd-mm-yyyy

24-08-1998

CS_DATES_MDY3 mm-dd-yy

08-24-98

mm-dd-yy

08-24-98

CS_DATES_MDY3_Y
YYY

mm-dd-yyyy

08-24-1998

mm-dd-yyyy

08-24-1998

CS_DATES_YMD3 yymmdd

980824

yymmdd

980824

CS_DATES_YMD3_Y
YYY

yyyymmdd

19980824

yyyymmdd

19980824

CS_DATES_DMY4 dd mon yy

24 Aug 98

dd mon yy

24 Aug 98

CS_DATES_DMY4_Y
YYY

dd mon yyyy

24 Aug 1998

dd mon yyyy

24 Aug 1998

Symbolic value

CS_CHAR converted from
CS_DATETIME, for
example:
Aug 24 1998 5:36PM

CS_CHAR converted
from CS_DATE, for
example:
Aug 24 1998

CS_CHAR converted
from CS_TIME, for
example:
5:36PM
Common Libraries Reference Manual 51

cs_conv_mult
loc_pointer
The address of a pointer variable. cs_loc_alloc sets *loc_pointer to the
address of a newly allocated CS_LOCALE structure.

Return value cs_loc_alloc returns:

The most common reason for a cs_loc_alloc failure is a lack of adequate
memory.

Usage • An Open Client/Server application can use a CS_LOCALE structure to
define custom localization values for a context, thread, connection, or data
element. To define custom localization values, an application:

• Calls cs_loc_alloc to allocate a CS_LOCALE structure.

• Calls cs_locale (CS_SET) to load the CS_LOCALE with custom
values.

• Uses the CS_LOCALE to set the CS_LOC_PROP property for a
context or connection; calls srv_thread_props to set the
SRV_T_LOCALE property for a thread; uses the CS_LOCALE in a
CS_DATAFMT structure that describes a program variable; or uses
the CS_LOCALE as a parameter to an Open Client/Server routine.

• Calls cs_loc_drop to drop the CS_LOCALE.

• Localization values define:

• The language and character set to use for Open Client/Server and
Adaptive Server messages

• How to represent dates and times

• The character set to use when converting data to and from character
datatypes

• The collating sequence used to define the sort order used by
cs_strcmp

See also cs_ctx_alloc, cs_loc_drop, cs_locale

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.
52 Open Client and Open Server

CHAPTER 2 CS-Library Routines
cs_loc_drop
Description Deallocate a CS_LOCALE structure.

Syntax CS_RETCODE cs_loc_drop(context, locale)

 CS_CONTEXT *context;
 CS_LOCALE *locale;

Parameters context
A pointer to the CS_CONTEXT structure that represents the context in
which the CS_LOCALE was allocated.

locale
A pointer to a CS_LOCALE structure.

Return value cs_loc_drop returns:

Usage • A CS_LOCALE structure contains localization information.

• Once a CS_LOCALE structure has been deallocated, it cannot be used
again. To allocate a new CS_LOCALE structure, an application can call
cs_loc_alloc.

• An application should take care to ensure that it does not deallocate a
CS_LOCALE structure that is still in use. A CS_LOCALE structure is
considered to be in use if a CS_DATAFMT structure references it.

• An application can deallocate a CS_LOCALE structure after calling
cs_config or ct_con_props to set the CS_LOC_PROP property for a
context or connection. This is because cs_config and ct_con_props copy
information from the user-supplied CS_LOCALE structure rather than
setting up direct references to it.

See also cs_loc_alloc, cs_locale

cs_locale
Description Load a CS_LOCALE structure with localization values or retrieve the locale

name previously used to load a CS_LOCALE structure.

Syntax CS_RETCODE cs_locale(context, action, locale, type,
 buffer, buflen, outlen)

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.
Common Libraries Reference Manual 53

cs_conv_mult

 CS_CONTEXT *context;
 CS_INT action;
 CS_LOCALE *locale;
 CS_INT type;
 CS_CHAR *buffer;
 CS_INT buflen;
 CS_INT *outlen;

Parameters context
A pointer to the CS_CONTEXT structure that represents the context in
which the CS_LOCALE was allocated.

action
One of the following symbolic values:

locale
A pointer to a CS_LOCALE structure. If action is CS_SET, cs_locale
modifies this structure. If action is CS_GET, cs_locale examines the
structure to determine the locale name that was previously used to load it.

Value of action cs_locale

CS_SET Loads the CS_LOCALE with new localization values.

CS_GET Retrieves the locale name that was used to load the
CS_LOCALE.
54 Open Client and Open Server

CHAPTER 2 CS-Library Routines
type
One of the following symbolic values:

 Warning! Open Server application programmers must set type to
CS_LC_ALL when configuring the CS_LOCALE structure that applies to the
Open Server application as a whole.

buffer
If action is CS_SET, buffer points to a character string that represents a
locale name, a character set name, a language name, a sort order name, or a
language/character set pair.

If action is CS_GET, buffer points to the space in which cs_locale will place
a locale name, a character set name, a language name, a sort order name, or
a language/character set pair. On output, all names are null-terminated. The
buffer must be long enough for the name plus a null terminator.

Value of type Indicates

CS_LC_ALL All types of localization information.

Note CS_LC_ALL is “set only”; that is, action
must be CS_SET when type is CS_LC_ALL.

CS_LC_COLLATE The collating sequence (also called “sort order”).
Open Client uses a collating sequence when
sorting and comparing character data.

CS_LC_CTYPE The character set. Open Client uses a character set
when it converts to or from character datatypes.

CS_LC_MESSAGE The language and character set to use for Open
Client/Server and Adaptive Server error messages.

CS_LC_TIME The language and character set to use when
converting between datetime and character
datatypes. CS_LC_TIME controls month names
and abbreviations, datepart ordering, and whether
the “am/pm” string is used.

CS_SYB_LANG,
 CS_SYB_CHARSET,
 CS_SYB_SORTORDER,
 CS_SYB_LANG_CHARSET

For information on these values, see “Using
language, character set, and sort order names with
cs_locale” on page 58.
Common Libraries Reference Manual 55

cs_conv_mult
buflen
The length, in bytes, of *buffer.

If action is CS_SET and the value in *buffer is null-terminated, pass buflen
as CS_NULLTERM.

outlen
A pointer to an integer variable.

outlen is not used if action is CS_SET.

If action is CS_GET and outlen is supplied, cs_locale sets *outlen to the
length, in bytes, of the locale name.

If the name is larger than buflen bytes, an application can use the value of
*outlen to determine how many bytes are needed to hold the name.

If action is CS_SET or if an application does not require return length
information, it can pass outlen as NULL.

Return value cs_locale returns:

Common reasons for a cs_locale failure include:

• action is CS_SET and the *buffer locale name cannot be found in the
Sybase locales file.

• action is CS_GET and buflen indicates that the *buffer data space is too
small.

• Missing localization files.

Usage Note cs_locale’s behavior depends on platform-specific configuration issues.
You must read the localization chapter in the Open Client/Server Configuration
Guide to obtain a full understanding of Client-Library’s localization
mechanism. For a discussion of programming issues related to localization, see
the Open Client/Server International Developer’s Guide.

• cs_locale (CS_SET) loads a CS_LOCALE structure with localization
values. cs_locale (CS_GET) retrieves current settings from the
CS_LOCALE structure.

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.
56 Open Client and Open Server

CHAPTER 2 CS-Library Routines
• A locale name is a character string that represents a language/ character
set/sort order combination. For example, the locale name “fr” might
represent the language/character set/sort order combination “French,
iso_1, binary.”

• Sybase predefines some locale names in the default locales file.

• A System Administrator can define additional locale names and add
them to the Sybase locales file. The Open Client/Server
Configuration Guide contains instructions for adding locale names.

• For more information on localization, see the Open Client/Server
International Developer’s Guide.

Loading a CS_LOCALE structure

• An application needs to initialize, or “load,” a CS_LOCALE before using
it to define custom localization values for a context, connection, or data
element.

• cs_locale(CS_SET) loads a CS_LOCALE structure with localization
values. Any localization value can be specified by giving a locale name.
Character sets, languages, and sort orders can also be specified directly by
name.

• When specifying a locale name, buffer must specify a name that
corresponds to an entry in the Sybase locales file.

buffer can also be passed as NULL to specify the default locale. In this
case, cs_locale searches the operating system for a locale name to use. If
an appropriate locale name cannot be found in the operating system
environment, cs_locale uses a platform-dependent default locale name.

The localization item(s) of interest are loaded based on the configuration
of the locales file entry. For more information about the locales file and the
cs_locale search process, see the Open Client/Server Configuration Guide.

• For instructions for directly specifying character set, language, or sort
order names, see “Using language, character set, and sort order names
with cs_locale” on page 58.

• After loading a CS_LOCALE with custom values, an application can:

• Call cs_config with property as CS_LOC_PROP to copy the custom
localization values into a context structure.

• Call ct_con_props with property as CS_LOC_PROP to copy the
custom localization values into a connection structure.
Common Libraries Reference Manual 57

cs_conv_mult
• Supply the CS_LOCALE as a parameter to a routine that accepts
custom localization values (cs_dt_info, cs_strcmp, cs_time).

• Include the CS_LOCALE in a CS_DATAFMT structure describing a
destination program variable (cs_convert, ct_bind).

• Because cs_config copies locale information, an application can deallocate
a CS_LOCALE structure after calling cs_config to set the
CS_LOC_PROP property. Likewise, an application can deallocate a
CS_LOCALE structure after calling ct_con_props to set the
CS_LOC_PROP property. If a CS_DATAFMT structure uses a
CS_LOCALE structure, however, the application must not deallocate the
CS_LOCALE until the CS_DATAFMT no longer references it.

• The first time a locale name is referenced, all localization information for
the language, character set, and sort order that the locale name identifies is
read from the environment and cached into *context. If this locale name is
referenced again, cs_locale reads the information from the CS_CONTEXT
instead of the environment.

Retrieving a locale name

• An application can retrieve the locale name that was used to load a
CS_LOCALE by calling cs_locale(CS_GET) with type as the type of
localization information of interest and locale as a pointer to the
CS_LOCALE structure.

• cs_locale sets *buffer to a null-terminated character string representing the
locale name that was used to load the CS_LOCALE.

Using language, character set, and sort order names with cs_locale

• It is possible for an application to use language, character set, and sort
order names, instead of a locale name, when calling cs_locale.

• To use a language, character set, or sort order name, an application calls
cs_locale with type as CS_SYB_LANG, CS_SYB_CHARSET,
CS_SYB_SORTORDER, or CS_SYB_LANG_CHARSET. The
following table summarizes cs_locale parameters for these values of type:

Table 2-7: Using language, character set, and sort order names with
cs_locale

Value of type action is buffer is cs_locale

CS_SYB_LANG CS_SET A pointer to a language
name.

Loads the CS_LOCALE with the
specified language information.

CS_GET A pointer to data space. Places the current language name in
*buffer. The name is null terminated.
58 Open Client and Open Server

CHAPTER 2 CS-Library Routines
• The application must have previously loaded the CS_LOCALE structure
with consistent information by calling cs_locale with type as
CS_LC_ALL.

• If an application specifies only a language name, then cs_locale uses the
character set and sort order already specified in the preloaded
CS_LOCALE structure.

If an application specifies only a character-set name, then cs_locale uses
the language and sort order already specified in the preloaded
CS_LOCALE structure.

If an application specifies only a sort-order name, then cs_locale uses the
language and character set already specified in the preloaded
CS_LOCALE structure.

If a language, character set, and sort-order combination is not valid,
cs_locale returns CS_FAIL.

• Valid language names correspond to subdirectories in the
$SYBASE/locales directory. Valid character-set names correspond to
subdirectories in the $SYBASE/charsets directory. Valid sort-order names
for a character set correspond to file names, stripped of any suffix, in the
$SYBASE/charsets/character_set_name directory.

• If the required localization files for the requested language or character set
do not exist, cs_locale returns CS_FAIL.

See also cs_loc_alloc, cs_loc_drop

CS_SYB_CHARSET CS_SET A pointer to a character
set name.

Loads the CS_LOCALE with the
specified character set information.

CS_GET A pointer to data space. Places the current character set name in
*buffer. The name is null terminated.

CS_SYB_SORTORDER CS_SET A pointer to a sort order
name.

Loads the CS_LOCALE with the
specified sort order information.

CS_GET A pointer to data space. Places the current sort order name in
*buffer. The name is null terminated.

CS_SYB_LANG_CHARSET CS_SET A pointer to a string of
the form
language_name.
character_set_name.

Loads the CS_LOCALE with the
specified language and character set
information.

CS_GET A pointer to data space. Places a string of the form
language_name.character_set_ name in
*buffer. The string is null terminated.

Value of type action is buffer is cs_locale
Common Libraries Reference Manual 59

cs_manage_convert
cs_manage_convert
Description Installs or retrieves a user-defined character-set conversion routine.

Syntax CS_RETCODE cs_manage_convert(context, action,
 srctype, srcname, srcnamelen,
 desttype, destname, destnamelen,
 conv_multiplier, func)

CS_CONTEXT *context;
CS_INT action;
CS_INT srctype;
CS_CHAR *srcname;
CS_INT srcnamelen;
CS_INT desttype;
CS_CHAR *destname;
CS_INT destnamelen;
CS_INT *conv_multiplier;
CS_CONV_FUNC *func;

Parameters context
A pointer to a CS_CONTEXT structure.

action
One of the following symbolic values:

srctype
The datatype of the source data for the conversion. In the current version,
srctype must be CS_CHAR_TYPE.

srcname
The name of the character set associated with srctype. This name must
correspond to the name of a subdirectory within the charsets subdirectory of
the Sybase installation directory.

srcnamelen
The length, in bytes, of srcname. If srcname is null-terminated, srcnamelen
can be passed as CS_NULLTERM.

Value of action cs_manage_convert

CS_SET Installs a conversion routine and conversion multiplier
for conversions between the indicated datatypes and
character-set names.

CS_GET Retrieves the current conversion routine and conversion
multiplier for the indicated datatypes and character-set
names.

CS_CLEAR Clears the current conversion routine by replacing it
with CS-Library’s default conversion routine for the
indicated datatypes and character-set names.
60 Open Client and Open Server

CHAPTER 2 CS-Library Routines
desttype
The datatype of the destination data. In the current version, desttype must be
CS_CHAR_TYPE.

destname
The name of the destination character set. This name must correspond to the
name of a subdirectory within the charsets subdirectory of the Sybase
installation directory.

destnamelen
The length, in bytes, of destname. If destname is null-terminated,
destnamelen can be passed as CS_NULLTERM.

conv_multiplier
The address of a CS_INT variable. When action is CS_SET, pass
*conv_multiplier as the conversion multiplier for the indicated character-set
conversion. When action is CS_GET, *conv_multiplier receives the
conversion multiplier for the indicated character-set conversion. When
action is CS_CLEAR, pass conv_multiplier as NULL.

See “Meaning of the conversion multiplier” on page 63 for a explanation of
how applications use this number.

func
The address of a CS_CONV_FUNC variable, which itself is a pointer to a
character-set conversion routine. “Defining a custom character set
conversion routine” on page 63 describes the requirements for coding a
custom character-set conversion routine.

If a conversion routine is being installed, *func points to the conversion
routine to be installed.

If a conversion routine is being retrieved, cs_manage_convert sets *func to
point to the currently installed character-set conversion routine for srcname
to destname conversions, or to NULL if no custom routine is installed.

If a conversion routine is being cleared, pass *func as NULL.

Note func represents a pointer to a pointer to a function. There are special
requirements for passing this parameter. See the example code fragment under
“Installing a custom character set conversion routine” on page 65.

Return value cs_manage_convert returns:

Returns Indicates

CS_SUCCEED The routine completed successfully.
Common Libraries Reference Manual 61

cs_manage_convert
The most common reason for a cs_manage_convert failure is an invalid
parameter.

Usage • cs_manage_convert allows an application to install a custom character-set
conversion routine that converts data from one character set to another.

Character set conversion

• Client-Library, CS-Library, and Server-Library can all perform character-
set conversion. Character-set conversion occurs when an application
converts between any two character datatypes and associates different
character sets with the source and destination.

• In CS-Library, cs_convert performs character-set conversion when
converting between two character datatypes if the destfmt
CS_DATAFMT structure specifies (or defaults to) a different locale
than the srcfmt CS_DATAFMT structure.

• In Client-Library, an application can request character-set conversion
for fetched character data by binding the column to a character-
datatype variable and passing a pointer to a CS_LOCALE in ct_bind’s
datafmt that is different from the connection’s locale (that is, the
CS_LOC_PROP connection property).

• In Server-Library, all character data sent to a client or received from
a client is automatically converted between the client thread’s
character set and the Open Server character set.

• The character datatypes are CS_CHAR, CS_LONGCHAR, CS_TEXT,
CS_UNICHAR and CS_VARCHAR.

• cs_manage_convert requires an application to pass both srctype and
desttype as CS_CHAR_TYPE. However, CS-Library, Client-Library, and
Server-Library will call the conversion routine to convert between any two
character-based types when the conversion locales specify the character
sets associated with the conversion routine.

• The most common reason for installing a custom conversion routine is to
improve performance by replacing an indirect conversion with a direct
conversion.

CS_FAIL The routine failed.

Returns Indicates
62 Open Client and Open Server

CHAPTER 2 CS-Library Routines
A custom character-set conversion routine can improve performance in
applications that rely on character-set conversions where CS-Library does
not use direct character-set conversion. Indirect character-set conversion
converts first to Unicode UTF-8, and then from Unicode UTF-8 to the
destination character set. Applications that perform these conversions can
improve performance by installing a custom routine that supports direct
conversion.

For example, an Open Server application could install a custom routine to
convert between ISO 8859-1 and EUC JIS. This direct conversion may be
faster than the indirect conversion (ISO 8859-1 to/from Unicode UTF-8
to/from EUC JIS) that is supplied with Open Server.

• To find out whether a specific character conversion is direct or indirect,
look in the source character set’s conversion configuration file. If there is
an entry for the destination character set, then the conversion is direct.
Character set configuration files are described in the Open Client/Server
International Developer's Guide.

• For more information on character-set conversion, see the Open
Client/Server International Developer's Guide.

Meaning of the conversion multiplier

• Applications must provide cs_manage_convert with a conversion
multiplier for conversions between the indicated character sets.

• The value of the conversion multiplier equals the largest number of bytes
in the destination result that can replace one source byte when converting
between the indicated character sets.

• Applications can retrieve the conversion multiplier for a specific
character-set conversion with cs_conv_mult. This number allows the
application to determine the destination space needed for a conversion.

Defining a custom character set conversion routine

• A custom character-set conversion routine is defined as follows:

CS_RETCODE CS_PUBLIC
 convfunc(context, srcfmt, srcdata,
 destfmt, destdata, destlen)
 CS_CONTEXT *context;
 CS_DATAFMT *srcfmt;
 CS_VOID *srcdata;
 CS_DATAFMT *destfmt;
 CS_VOID *destdata;
 CS_INT *destlen;
Common Libraries Reference Manual 63

cs_manage_convert
where:

• context is a pointer to a CS_CONTEXT structure.

• srcfmt is a pointer to a CS_DATAFMT structure describing the source
data. srcfmt−>maxlength describes the actual length, in bytes, of the
source data.

• srcdata is a pointer to the source data.

• destfmt is a pointer to a CS_DATAFMT structure describing the
destination data. destfmt−>maxlength describes the actual length, in
bytes, of the destination data space.

• destdata is a pointer to the destination data space.

destlen is a pointer to an integer. The conversion routine should set
*destlen to the number of bytes placed in *destdata. If the routine writes a
truncated result, it should set *destlen as the number of bytes written
before truncation.

Note When converting into a CS_VARCHAR structure, the conversion
routine should set both *destlen and the CS_VARCHAR’s len field to the
number of bytes written to the CS_VARCHAR’s str field.

• cs_config is the only CS-Library, Client-Library, or Server-Library
function that can be called from within a custom conversion routine.

• A custom character-set conversion routine can return any of the values
listed in Table 2-8.

• If the conversion routine returns a value from Table 2-8 other than
CS_SUCCEED, then the application receives a Client-Library or CS-
Library message that corresponds to the indicated error condition.

• If the conversion routine returns a value that is not listed in
Table 2-8, then the application receives an “Unknown return code”
error message from Client-Library or CS-Library.

Table 2-8: Return values for a custom conversion routine

Return value Indicates

CS_SUCCEED Successful conversion.

CS_TRUNCATED The conversion resulted in truncation.

CS_MEM_ERROR A memory allocation failure has occurred.

CS_EBADXLT Some characters could not be translated.

CS_ENOXLT The requested translation is not supported.
64 Open Client and Open Server

CHAPTER 2 CS-Library Routines
Installing a custom character set conversion routine

• The following code demonstrates calling cs_manage_convert to install a
custom conversion routine. The code is based on the assumption that the
installed routine has been defined correctly. (See “Defining a custom
character set conversion routine” on page 63.) The program variable
p_conv_func is used to pass the address of the conversion routine.

#define MULT_ISO_1_TO_EUCJIS 4
 CS_CONV_FUNC p_conv_func;
 CS_INT conv_mult = MULT_ISO_1_TO_EUCJIS;

/*
 ** Install the routine charconv_iso_1_TO_eucjis() to convert
 ** character data from iso_1 character set to eucjis character
 ** set.
 */
 p_conv_func = charconv_iso_1_TO_eucjis;
 if (cs_manage_convert(context, CS_SET,
 CS_CHAR_TYPE, "iso_1", CS_NULLTERM,
 CS_CHAR_TYPE, "eucjis", CS_NULLTERM,
 &conv_mult, &p_conv_func)
 != CS_SUCCEED)
 {
 fprintf(stdout, "cs_manage_convert() failed!\n");
 (CS_VOID)ct_exit(context, CS_FORCE_EXIT);
 (CS_VOID)cs_ctx_drop(context);
 exit(-1);
 }

See also cs_conv_mult, cs_convert, cs_locale, cs_set_convert

CS_EDOMAIN The source value is outside the domain of
legal values for the datatype.

CS_EDIVZERO Division by 0 is not allowed.

CS_EOVERFLOW The conversion resulted in overflow.

CS_EUNDERFLOW The conversion resulted in underflow.

CS_EPRECISION The conversion resulted in loss of precision.

CS_ESCALE An illegal scale value was encountered.

CS_ESYNTAX The conversion resulted in a value which is
not syntactically correct for the destination
type.

CS_ESTYLE The conversion operation was stopped due to
a style error.

Return value Indicates
Common Libraries Reference Manual 65

cs_manage_convert
cs_objects
Description Saves, retrieves, or clears objects and data associated with them.

Syntax CS_RETCODE cs_objects(context, action, objname,
 objdata)

 CS_CONTEXT *context;
 CS_INT action;
 CS_OBJNAME *objname;
 CS_OBJDATA *objdata;

Parameters context
A pointer to a CS_CONTEXT structure.

action
One of the following symbolic values:

objname
A pointer to an object name structure. *objname names and describes the
object of interest. An object name structure is defined as follows:

/*
 ** CS_OBJNAME
 */
 typedef struct _cs_objname
 {
 CS_BOOL thinkexists;
 CS_INT object_type;
 CS_CHAR last_name[CS_MAX_NAME];
 CS_INT lnlen;
 CS_CHAR first_name[CS_MAX_NAME];
 CS_INT fnlen;
 CS_VOID *scope;
 CS_INT scopelen;
 CS_VOID *thread;
 CS_INT threadlen;
 } CS_OBJNAME;

The object_type, last_name, first_name, scope, and thread fields form a
five-part key that identifies a stored object (see “cs_objects naming keys”
on page 70 for more information). The following table describes the
CS_OBJNAME fields:

Value of action cs_objects

CS_SET Saves an object.

CS_GET Retrieves the first matching object that it finds.

CS_CLEAR Clears all matching objects.
66 Open Client and Open Server

CHAPTER 2 CS-Library Routines
Table 2-9: CS_OBJNAME fields

Field Description Notes

thinkexists Indicates whether the
application expects this
object to exist.

The value of thinkexists affects the cs_objects
return code. For more information, see the
Return values.

object_type The type of the object. This field is the first part of a five-part key.

object_type can be one of these values:

• CS_CONNECTNAME

• CS_CURSORNAME

• CS_STATEMENTNAME

• CS_CURRENT_CONNECTION

• CS_WILDCARD (matches any value)

• A user-defined value. User-defined
values must be >= 100.

last_name The “last name”
associated with the
object of interest, if any.

This field is the second part of a 5-part key.

lnlen The length, in bytes, of
last_name.

Can be CS_NULLTERM to indicate a null-
terminated last_name.

Can be CS_UNUSED to indicate an internal
“unused” value for last_name.

For CS_GET and CS_CLEAR operations,
can be CS_WILDCARD to match any
last_name value.

first_name The “first name”
associated with the
object of interest, if any.

This field is the third part of a five-part key.

fnlen The length, in bytes, of
first_name.

Can be CS_NULLTERM to indicate a null-
terminated first_name.

Can be CS_UNUSED to indicate an internal
“unused” value for first_name.

For CS_GET and CS_CLEAR operations,
can be CS_WILDCARD to match any
first_name value.

scope Data that describes the
scope of the object.

This field is the fourth part of a five-part key.
Common Libraries Reference Manual 67

cs_manage_convert
objdata
A pointer to an object data structure. *objdata is the object of interest and
any data associated with it. An object data structure is defined as follows:

/*
 ** CS_OBJDATA
 */
 typedef struct _cs_objdata
 {
 CS_BOOL actuallyexists;
 CS_CONNECTION *connection;
 CS_COMMAND *command;
 CS_VOID *buffer;
 CS_INT buflen;
 } CS_NAMEDATA;

The following table describes the CS_OBJDATA fields:

scopelen The length, in bytes, of
scope.

Can be CS_NULLTERM to indicate null-
terminated scope data.

Can be CS_UNUSED to indicate an internal
“unused” value for *scope.

For CS_GET and CS_CLEAR operations,
can be CS_WILDCARD to match any scope
value.

thread Platform-specific data
that is used to
distinguish threads in a
multi-threaded
execution environment.

This field is the fifth part of a five-part key.

threadlen The length, in bytes, of
thread.

Can be CS_NULLTERM to indicate null-
terminated thread data.

Can be CS_UNUSED to indicate an internal
“unused” value for *thread.

For CS_GET and CS_CLEAR operations,
can be CS_WILDCARD to match any
thread value.

Field Description Notes
68 Open Client and Open Server

CHAPTER 2 CS-Library Routines
Table 2-10: CS_OBJDATA fields

Return value cs_objects returns CS_SUCCEED or CS_FAIL depending on the values passed
as action and objname−>thinkexists (See Table 2-9 on page 67). The following
table lists the return code for each combination:

Field Description Notes

actuallyexists Indicates whether this
object actually exists.

cs_objects sets actuallyexists to
CS_TRUE if it finds a matching object.

cs_objects sets actuallyexists to
CS_FALSE if it does not find a
matching object.

connection A pointer to the
CS_CONNECTION
structure representing the
connection in which the
object exists.

command A pointer to the
CS_COMMAND structure
representing the command
space with which the
object is associated.

Can be NULL.

buffer A pointer to data space. An
application can use buffer
to associate data with a
saved object.

If action is CS_SET, *buffer contains
the data to associate with the object.

If action is CS_GET, cs_objects sets
*buffer to the data associated with the
object being retrieved.

buflen The length, in bytes, of
*buffer.

If action is CS_SET, buflen is the length
of the data contained in *buffer. Can be
CS_NULLTERM to indicate null-
terminated data. Can be CS_UNUSED
to indicate that there is no data
associated with the object being saved.

If action is CS_GET, buflen is the
maximum capacity of *buffer.
cs_objects overwrites buflen with the
number of bytes copied to *buffer. If
buflen is CS_UNUSED, cs_objects
overwrites buflen with the length of the
data but does not copy it to *buffer.
Common Libraries Reference Manual 69

cs_manage_convert
Table 2-11: cs_objects return values

Usage Table 2-12: Summary of cs_objects parameter usage

• cs_objects is useful in precompiler applications that need to retrieve
structures and data items by name.

cs_objects naming keys

• cs_objects uses a five-part key, composed of the object_type, last_name,
first_name, scope, and thread fields of *objname structure.

• On CS_SET operations, cs_objects uses this key to store the *objdata
object.

• On CS_GET operations, cs_objects uses this key to retrieve an object
specification into *objdata.

• On CS_CLEAR operations, cs_objects clears all objects that match
the key.

• The following table describes the rules that cs_objects uses to determine
whether or not key fields match:

cs_objects Called with cs_objects returns

action As
objname→th
inkexists As No match

Last-name
match Full match

CS_GET CS_TRUE CS_FAIL CS_FAIL CS_SUCCEED

CS_GET CS_FALSE CS_SUCCEED CS_SUCCEED CS_SUCCEED

CS_SET CS_TRUE CS_FAIL CS_FAIL CS_SUCCEED

CS_SET CS_FALSE CS_SUCCEED CS_SUCCEED CS_FAIL

CS_CLEAR CS_TRUE CS_FAIL CS_FAIL CS_SUCCEED

CS_CLEAR CS_FALSE CS_SUCCEED CS_SUCCEED CS_SUCCEED

Value of
action objname is objdata is

CS_SET A five-part key for the
object.

The object to save and any additional
data to save with it.

CS_GET A five-part key for the
object.

Set to the retrieved object.

CS_CLEAR A five-part key for the
object.

CS_UNUSED.
70 Open Client and Open Server

CHAPTER 2 CS-Library Routines
Table 2-13: cs_objects key matching rules

• cs_objects can achieve two types of matches:

• “last-name matches,” in which the last_name, scope, and thread parts
of the key match.

• “full matches,” in which all five parts of the key match.

The type of match that cs_objects achieves, together with action and
objname−>thinkexists, determine its return code.

• On CS_GET and CS_CLEAR operations, an application may specify
CS_WILDCARD for one or more *objname key fields:

• On a CS_GET operation, cs_objects sets *objdata to reflect the first
matching object that it finds.

• On a CS_CLEAR operation, cs_objects clears all matching objects.

Retrieving “Current Connection” objects

• If an application has previously saved a CS_CURRENT_CONNECTION
object, it can retrieve the current connection by:

• Calling cs_objects with objname−>object_type as
CS_CURRENT_CONNECTION, lnlen as CS_UNUSED, and fnlen
as CS_UNUSED. cs_objects ignores the last_name and first_name
fields of objname, and sets objdata−>buffer to the name of the current
connection and objdata−>buflen to the length of this name.

• Calling cs_objects with objname−>object_type as
CS_CONNECTNAMEand objname−>last_name and objname−
>lnlen as the newly retrieved connection name and name length.
cs_objects sets objdata to the retrieved connection.

 Warning! An application cannot call cs_objects(CS_SET) from within a
completion callback routine.

See also cs_ctx_alloc

 *objname key length is

Stored key length is
CS_UNUSED

Stored key length is
another legal value

CS_WILDCARD Match Match

CS_UNUSED Match No match

Another Legal Value No match Match, if the names match
and have the same length.
Common Libraries Reference Manual 71

cs_prop_ssl_localid
cs_prop_ssl_localid
Description Specifies the path to the local ID (certificates) file.

Syntax typedef struct _cs_sslid
{
 CS_CHAR *identity_file;
 CS_CHAR *identity_password;
} CS_SSLIDENTITY

Parameters identity_file
provides a path to the file containing a digital certificate and the associated
private key.

CS_GET only returns the indentity_file used, and only if it is set with
CS_CONNECTION.

identity_password
used to decrypt the private key.

cs_set_convert
Description Installs or retrieves a user-defined conversion routine.

Syntax CS_RETCODE cs_set_convert(context, action, srctype,
 desttype, func)

 CS_CONTEXT *context;
 CS_INT action;
 CS_INT srctype;
 CS_INT desttype;
 CS_CONV_FUNC *func;

Parameters context
A pointer to a CS_CONTEXT structure. A CS_CONTEXT structure
defines a Client-Library application context.

action
One of the following symbolic values:

Value of action cs_set_convert

CS_SET Installs a conversion routine.

CS_GET Retrieves the current conversion routine of this type.

CS_CLEAR Clears the current conversion routine by replacing it
with CS-Library’s default conversion routine of this
type.
72 Open Client and Open Server

CHAPTER 2 CS-Library Routines
srctype
The datatype of the source data for the conversion.

desttype
The datatype of the destination data.

func
A pointer to a CS_CONV_FUNC variable, which is a pointer to a custom
conversion function. “Defining a custom conversion routine” on page 74
describes the prototype for a custom conversion function.

If a conversion routine is being installed, *func points to the conversion
routine that you wish to install.

If a conversion routine is being retrieved, cs_set_convert sets *func to point to
the currently installed conversion routine.

If a conversion routine is being cleared, pass *func as NULL.

Note func represents a pointer to a pointer to a function. There are special
requirements for passing this parameter. See the example code fragment under
“Installing a custom conversion routine” on page 76.

Return value cs_set_convert returns:

The most common reason for a cs_set_convert failure is an invalid parameter.

Usage • An application can install custom conversion routines to convert data
between:

• Standard Open Client or Open Server datatypes

• Standard and user-defined datatypes

• User-defined datatypes

• Once a custom routine is installed for a particular conversion, the
client/server libraries call the custom routine transparently whenever a
conversion of the specified type is required.

• A Client-Library or Server-Library application creates a user-defined
datatype by declaring it:

typedef CS_SMALLINT EMPLOYEE_ID;

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.
Common Libraries Reference Manual 73

cs_set_convert
Because the Open Client routines ct_bind and cs_convert use integer
symbolic constants to identify datatypes, it is often convenient for an
application to declare a type constant for a user-defined type. User-defined
types must be defined as greater than or equal to CS_USERTYPE:

#define EMPLOYEE_ID_TYPE CS_USERTYPE + 1;

To enable conversion between a user-defined type and standard CS-
Library datatypes, an application can call cs_set_convert to install user-
defined conversion routines for the new type.

• To clear a custom conversion routine, an application can call cs_set_convert
with action as CS_CLEAR and func as NULL. cs_set_convert replaces the
custom routine with CS-Library’s default conversion routine of the
appropriate type, if any.

• An application can call cs_setnull to define null substitution values for a
user-defined type.

Defining a custom conversion routine

• A custom conversion routine is defined as follows:

CS_RETCODE CS_PUBLIC
 convfunc(context, srcfmt, srcdata,
 destfmt, destdata, destlen)
 CS_CONTEXT *context;
 CS_DATAFMT *srcfmt;
 CS_VOID *srcdata;
 CS_DATAFMT *destfmt;
 CS_VOID *destdata;
 CS_INT *destlen;

where:

• context is a pointer to a CS_CONTEXT structure.

• srcfmt is a pointer to a CS_DATAFMT structure describing the source
data. srcfmt−>maxlength describes the actual length, in bytes, of the
source data.

• srcdata is a pointer to the source data.

• destfmt is a pointer to a CS_DATAFMT structure describing the
destination data. destfmt→maxlength describes the actual length, in
bytes, of the destination data space.

• destdata is a pointer to the destination data space.
74 Open Client and Open Server

CHAPTER 2 CS-Library Routines
• destlen is a pointer to an integer. If the conversion is successful, the
custom routine should set *destlen to the number of bytes placed in
*destdata.

• cs_config is the only CS-Library, Client-Library, or Server-Library
function that can be called from within a custom conversion routine.

• The following table lists the legal return values for a custom conversion
routine. CS-Library will raise a CS-Library error if any value other than
CS_SUCCEED is returned. Other values should be returned to indicate
error conditions, as described in Table 2-14.

• If the conversion routine returns a value listed in Table 2-14 other than
CS_SUCCEED, then the application receives a Client-Library or CS-
Library message that corresponds to the indicated error condition.

• If the conversion routine returns a value that is not listed in Table 2-
14, then the application receives an “Unknown return code” error
message from Client-Library or CS-Library:

Table 2-14: Return values for a custom conversion routine

Return value Indicates

CS_SUCCEED Successful conversion.

CS_TRUNCATED The conversion resulted in truncation.

CS_MEM_ERROR A memory allocation failure has occurred.

CS_EBADXLT Some characters could not be translated.

CS_ENOXLT The requested translation is not supported.

CS_EDOMAIN The source value is outside the domain of
legal values for the datatype.

CS_EDIVZERO Division by 0 is not allowed.

CS_EOVERFLOW The conversion resulted in overflow.

CS_EUNDERFLOW The conversion resulted in underflow.

CS_EPRECISION The conversion resulted in loss of precision.

CS_ESCALE An illegal scale value was encountered.

CS_ESYNTAX The conversion resulted in a value which is
not syntactically correct for the destination
type.

CS_ESTYLE The conversion operation was stopped due to
a style error.
Common Libraries Reference Manual 75

cs_set_convert
Installing a custom conversion routine

The following code demonstrates calling cs_set_convert to install a custom
conversion routine, MyConvert, which converts from CS_CHAR to the user
defined type indicated by MY_USER_TYPE. The code assumes that
MyConvert is a a custom conversion routine that has been defined correctly.
(See “Defining a custom conversion routine” on page 74.) The program
variable myfunc is used to pass the address of the conversion routine.

#define MY_USER_TYPE (CS_USER_TYPE + 2)

CS_CONV_FUNC p_conv_func;

p_conv_func = MyConvert;
 if (cs_set_convert(context, CS_SET, CS_CHAR_TYPE, MY_USER_TYPE,
 &p_conv_func) != CS_SUCCEED)
 {
 fprintf(stdout, "cs_set_convert(MY_USER_TYPE) failed!\n");
 (CS_VOID)ct_exit(context, CS_FORCE_EXIT);
 (CS_VOID)cs_ctx_drop(context);
 exit(1);
 }

See also cs_convert, cs_manage_convert, cs_setnull, ct_bind

cs_setnull
Description Defines a null substitution value to be used when binding or converting NULL

data.

Syntax CS_RETCODE cs_setnull(context, datafmt, buffer,
 buflen)

 CS_CONTEXT *context;
 CS_DATAFMT *datafmt;
 CS_VOID *buffer;
 CS_INT buflen;

Parameters context
A pointer to a CS_CONTEXT structure. cs_setnull defines a null
substitution value for this context.

datafmt
A pointer to a CS_DATAFMT structure describing the datatype for which a
null substitution value is being defined.
76 Open Client and Open Server

CHAPTER 2 CS-Library Routines
buffer
A pointer to the null substitution value. *buffer’s datatype must match
datafmt−>type.

buflen
The length, in bytes, of *buffer.

Return value cs_set_null returns:

Common reasons for a cs_setnull failure include:

• A memory allocation error.

• An invalid parameter.

Usage • If ANSI-style binds are in effect, CS-Library does not use null substitution
values. To activate ANSI-style binds, an application sets the Client-
Library property CS_ANSI_BINDS to CS_TRUE.

• When ANSI-style binds are not in effect and source data for a conversion
is NULL, CS-Library sets the destination data to the predefined null
substitution value for that destination type. For example, converting a
NULL value of any type to a CS_CHAR destination results in an empty
string.

• In a Client-Library application, null substitution values are defined at the
context level. When a Client-Library connection is allocated, it picks up
null substitution values from its parent context.

• When converting a NULL source value to a CS_CHAR or CS_BINARY
destination variable, CS-Library first puts 0 bytes into the destination and
then uses the format field of the CS_DATAFMT structure that describes
the destination to determine whether to pad or null-terminate.

• To reinstate CS-Library’s original default null substitution value for a
particular datatype, an application can call cs_setnull with buffer as NULL.

• CS-Library and Client-Library use the following default null substitution
values:

Table 2-15: Default null substitution values

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

Destination type Null substitution value

CS_BINARY_TYPE Empty array

CS_VARBINARY_TYPE Empty array
Common Libraries Reference Manual 77

cs_set_convert
See also cs_set_convert, cs_will_convert

cs_strbuild
Description Constructs native language message strings.

Syntax CS_RETCODE cs_strbuild(context, buffer, buflen,
 resultlen, text, textlen
 [, formats, formatlen]
 [, arguments]);

 CS_CONTEXT *context;
 CS_CHAR *buffer;
 CS_INT buflen;
 CS_INT *resultlen;
 CS_CHAR *text;
 CS_INT textlen;
 CS_CHAR *formats; /* Optional */

CS_BIT_TYPE 0

CS_CHAR_TYPE Empty string

CS_VARCHAR_TYPE Empty string

CS_DATE 4 bytes of zeros

CS_TIME 4 bytes of zeros

CS_DATETIME_TYPE 8 bytes of zeros

CS_DATETIME4_TYPE 4 bytes of zeros

CS_TINYINT_TYPE 0

CS_SMALLINT_TYPE 0

CS_INT_TYPE 0

CS_DECIMAL_TYPE 0.0 (with default scale and precision)

CS_NUMERIC_TYPE 0.0 (with default scale and precision)

CS_FLOAT_TYPE 0.0

CS_REAL_TYPE 0.0

CS_MONEY_TYPE $0.0

CS_MONEY4_TYPE $0.0

CS_BOUNDARY_TYPE Empty string

CS_SENSITIVITY_TYPE Empty string

CS_TEXT_TYPE Empty string

CS_IMAGE_TYPE Empty array

Destination type Null substitution value
78 Open Client and Open Server

CHAPTER 2 CS-Library Routines
 CS_INT formatlen; /* Optional */
 <optional arguments>

Parameters context
A pointer to a CS_CONTEXT structure.

buffer
A pointer to the space in which cs_strbuild places the finished message. Note
that the finished message is not null-terminated. An application must use
*resultlen to determine the length of the message placed in *buffer.

buflen
The length, in bytes, of the *buffer data space.

resultlen
A pointer to an integer variable. cs_strbuild sets *resultlen to the length, in
bytes, of the string placed in *buffer.

text
A pointer to the unfinished text of the message. The *text string contains
message text and placeholders for variables. A placeholder has the form
%integer!, for example, %1!, %2!, and so forth. The integer indicates which
argument to substitute for a particular placeholder. Arguments are numbered
from left to right.

textlen
The length, in bytes, of *text. If *text is null-terminated, pass textlen as
CS_NULLTERM.

formats
A pointer to a string containing one sprintf-style format specifier for each
place holder in the *text string.

formatlen
The length, in bytes, of *formats. If *formats is null-terminated, pass
formatlen as CS_NULLTERM.
Common Libraries Reference Manual 79

cs_set_convert
arguments
The values which will be converted to character according to the *formats
string and substituted into the *text string to produce the message that is
placed in *buffer.

There must be one argument for each place holder. The first value
corresponds to the first format and the %1! placeholder, the second value
corresponds to the second format and the %2! placeholder, and so forth.

If insufficient arguments are supplied, cs_strbuild generates unpredictable
results.

If too many arguments are supplied, the excess arguments are ignored.

Return value cs_str_build returns:

Usage • cs_strbuild builds a printable native language message string from a text
containing place holders for values, a format string containing information
on the types and appearances of the values, and a variable number of
arguments that represent the values.

• Parameters in error messages can occur in different orders in different
languages. cs_strbuild allows an application to construct error messages in
a sprintf-like fashion to ensure easy translation of error messages from one
language to another.

For example, consider an error message that informs the user of a misused
keyword in a stored procedure. The message requires three arguments: the
misused keyword, the line in which the keyword occurs, and the name of
the stored procedure. In the U.S. English localization file, the message text
appears as:

The keyword ‘%1!‘ is misused in line %2! of stored
procedure ‘%3!‘.

In the Spanish localization file, the same message appears as:

En linea %2! de stored procedure ‘%3!‘, la palabra ‘%1!‘
esta mal usado!

The cs_strbuild call for either of the above messages is:

cs_strbuild(context, &mybuffer, buflength,
 &resultlength, messagetext, CS_NULLTERM,
 “%s, %d, %s”, CS_NULLTERM,

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.
80 Open Client and Open Server

CHAPTER 2 CS-Library Routines
 keyword, linenum, sp_name);

The only difference is the content of messagetext.

• cs_strbuild format specifiers can be separated by other characters, or they
can be adjacent to each other. This allows existing message strings in U.S.
English to be used as format parameters. The first format specifier
describes the %1! placeholder, the second describes the %2! placeholder,
and so forth.

See also cs_dt_crack, cs_dt_info, cs_locale

cs_strcmp
Description Compares two strings using a specified sort order.

Syntax CS_RETCODE cs_strcmp(context, locale, type, str1,
 len1, str2, len2, result)

 CS_CONTEXT *context;
 CS_LOCALE *locale;
 CS_INT type;
 CS_CHAR *str1;
 CS_INT len1;
 CS_CHAR *str2;
 CS_INTl len2;
 CS_INT *result;

Parameters context
A pointer to a CS_CONTEXT structure.

locale
A pointer to a CS_LOCALE structure. A CS_LOCALE structure contains
locale information, including the collating sequence that cs_strcmp uses to
define a sort order.

An application can call cs_locale with type as CS_LC_COLLATE or
CS_SYB_SORTORDER to change the collating sequence in a
CS_LOCALE structure.

locale can be NULL. If locale is NULL, cs_strcmp uses whatever
localization information is defined in the context CS_CONTEXT structure.
Localization information is always defined at the context level, because a
CS_CONTEXT picks up default localization information when it is
allocated.
Common Libraries Reference Manual 81

cs_set_convert
type
The type of comparison to perform.

If type is CS_COMPARE, cs_strcmp performs a lexicographic comparison.

If type is CS_SORT, the values are compared as they would appear in a
sorted list. It is possible for strings that are lexicographically equal to belong
in different places in a sorted list.

str1
A pointer to the first string for the comparison.

len1
The length, in bytes, of *str1. If *str1 is null-terminated, pass len1 as
CS_NULLTERM.

str2
A pointer to the second string for the comparison.

len2
The length, in bytes, of *str2. If *str2 is null-terminated, pass len2 as
CS_NULLTERM.

result
A pointer to the result of the comparison. The following table lists the
possible values for *result:

Return value cs_strcmp returns:

Usage • cs_strcmp sets *result to indicate the result of the comparison.

• Some languages contain strings that are lexicographically equal,
according to a specific sort order, but contain different characters.
Although the strings are lexicographically equal, there is a standard order
used when placing them into a sorted list.

Value of *result Indicates

<0 str1 is lexicographically less than str2, or str1 appears
before str2 in a sorted list.

 0 str1 is lexicographically equal to str1, or str1 is identical
to str2.

>0 str1 is lexicographically greater than str2, or str1 appears
after str2 in a sorted list.

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.
82 Open Client and Open Server

CHAPTER 2 CS-Library Routines
An application can use cs_strcmp to compare strings either
lexicographically or how they appear in a sorted list. For example, given a
sort order that specifies that uppercase characters appear before lowercase
characters in a sorted list:

• The strings “ABC” and “abc” are lexicographically equal.

A call to cs_strcmp that compares “ABC” (as str1) and “abc” as (str2)
with type as CS_COMPARE returns with result set to 0.

• “ABC” appears before “abc” in a sorted list.

A call to cs_strcmp that compares “ABC” (as str1) and “abc” as (str2)
with type as CS_SORT returns with result set to a value less than 0.

• cs_strcmp determines which sort order to use by examining *locale, (or
*context, if locale is NULL).

• To change the sort order in a CS_LOCALE structure, an application
calls cs_locale with type as CS_LC_COLLATE or
CS_SYB_SORTORDER.

• To change the sort order in a CS_CONTEXT structure, an application
must first set up a CS_LOCALE structure with the desired sort order
and then call cs_config to set the CS_LOC_PROP property for the
context.

See also cs_cmp, cs_locale, cs_config

cs_time
Description Retrieves the current date and time.

Syntax CS_RETCODE cs_time(context, locale, buffer, buflen,
 outlen, daterec)

 CS_CONTEXT *context;
 CS_LOCALE *locale;
 CS_VOID *buffer;
 CS_INT buflen;
 CS_INT *outlen;
 CS_DATEREC *daterec;

Parameters context
A pointer to a CS_CONTEXT structure.
Common Libraries Reference Manual 83

cs_set_convert
locale
A pointer to a CS_LOCALE structure. A CS_LOCALE structure contains
locale information, including formatting information that cs_time uses to
create a current datetime string.

locale can be NULL. If locale is NULL, cs_time uses whatever localization
information is defined in the CS_CONTEXT structure indicated by context.
Localization information is always defined at the context level, because a
CS_CONTEXT picks up default localization information when it is
allocated.

buffer
A pointer to the space in which cs_time will place a character string
representing the current date and time.

buffer is an optional parameter and can be passed as NULL. If buffer is
NULL, daterec must be supplied.

buflen
The length, in bytes, of *buffer.

If buffer is supplied and buflen indicates that *buffer is not large enough to
hold the current datetime string, cs_time sets *outlen to the length of the
datetime string and returns CS_FAIL.

If buffer is NULL, pass buflen as CS_UNUSED.

outlen
A pointer to an integer variable.

cs_time sets *outlen to the length, in bytes, of the current datetime string.

If the string is larger than buflen bytes, an application can use the value of
*outlen to determine how many bytes are needed to hold the string.

If buffer is NULL, pass outlen as NULL.

If an application does not care about return length information, it can pass
outlen as NULL.
84 Open Client and Open Server

CHAPTER 2 CS-Library Routines
daterec
A pointer to a CS_DATEREC structure in which cs_time will place the
current date and time. Note that cs_time does not set the datemsecond and
datetzone fields of the CS_DATEREC structure.

For more information on the CS_DATEREC structure, see cs_dt_crack in
this chapter.

daterec is an optional parameter and can be passed as NULL. If daterec is
NULL, buffer must be supplied.

Return value cs_time returns:

Common reasons for a cs_time failure include:

• An invalid parameter.

• buflen indicates that the *buffer data space is not large enough to hold the
formatted datetime string.

Usage • cs_time returns the current date and time either in character string format
or in a CS_DATEREC structure, or both.

• cs_time formats the date and time according to locale information
contained in *context.

See also cs_config, cs_dt_crack, cs_dt_info, cs_locale

cs_validate_cb
Description A Client-Library callback routine, registered through ct_callback.

Syntax typedef struct _cs_sslcertfield
{
 CS_VOID *value;
 CS_INT field_id;
 CS_INT length;
} CS_SSLCERT_FIELD;

typedef struct _cs_sslcert
{
 CS_INT field_count;
 CS_INT extension_count;

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.
Common Libraries Reference Manual 85

cs_will_convert
 CS_UINT start_date;
 CS_UINT end_date;
 CS_SSLCERT_FIELD *fieldptr;
 CS_SSLCERT_FIELD *extensionptr;
} CS_SSLCERT;

typedef CS_INT (CS_PUBLIC * CS_CERT_CB) PROTOTYPE ((
 CS_VOID *user_data,
 CS_SSLCERT *certptr,
 CS_INT cert_count,
 CS_INT valid
));

Parameters certptr
A pointer to an array of CS_SSLCERT which has cert_count elements. On
return from the callback, all memory used is freed.

Note The array is not null terminated.

fieldptr
A pointer to field_count elements.

extensionptr
A pointer extension_count elements.

cs_will_convert
Description Indicates whether a specific datatype conversion is available in the

Client/Server libraries.

Syntax CS_RETCODE cs_will_convert(context, srctype, desttype,
 result)

 CS_CONTEXT *context;
 CS_INT srctype;
 CS_INT desttype;
 CS_BOOL *result;

Parameters context
A pointer to a CS_CONTEXT structure.

srctype
A symbolic constant representing the datatype of the source data (for
example, CS_BYTE_TYPE, CS_CHAR_TYPE, and so forth).
86 Open Client and Open Server

CHAPTER 2 CS-Library Routines
desttype
A symbolic constant representing the datatype of the destination data.

result
A pointer to a boolean variable. cs_will_convert sets *result to CS_TRUE if
the datatype conversion is supported and CS_FALSE if the datatype
conversion is not supported.

Return value cs_will_convert returns:

Examples

/*
 ** ex_display_column()
 */

CS_RETCODE CS_PUBLIC
 ex_display_column(context, colfmt, data, datalength,
 indicator)
 CS_CONTEXT *context;
 CS_DATAFMT *colfmt;
 CS_VOID *data;
 CS_INT datalength;
 CS_SMALLINT indicator;
 {
 char *null = "NULL";
 char *nc = "NO CONVERT";
 char *cf = "CONVERT FAILED";
 CS_DATAFMT srcfmt;
 CS_DATAFMT destfmt;
 CS_INT olen;
 CS_CHAR wbuf[MAX_CHAR_BUF];
 CS_BOOL res;
 CS_INT i;
 CS_INT disp_len;

 if (indicator == CS_NULLDATA)
 {
 olen = strlen(null);
 strcpy(wbuf, null);
 }
 else

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.
Common Libraries Reference Manual 87

cs_will_convert
 {
 cs_will_convert(context, colfmt->datatype,
 CS_CHAR_TYPE, &res);

 if (res != CS_TRUE)
 {
 olen = strlen(nc);
 strcpy(wbuf, nc);
 }
 else
 {
 srcfmt.datatype = colfmt->datatype;
 srcfmt.format = colfmt->format;
 srcfmt.locale = colfmt->locale;
 srcfmt.maxlength = datalength;

 destfmt.maxlength = MAX_CHAR_BUF;
 destfmt.datatype = CS_CHAR_TYPE;
 destfmt.format = CS_FMT_NULLTERM;
 destfmt.locale = NULL;

 if (cs_convert(context, &srcfmt, data,
 &destfmt, wbuf, &olen) != CS_SUCCEED)
 {
 olen = strlen(cf);
 strcpy(wbuf, cf);
 }
 else
 {
 /*
 ** output length include null
 ** termination
 */
 olen -= 1;
 }

 }
 }
 fprintf(stdout, "%s", wbuf);

 disp_len = ex_display_dlen(colfmt);
 for (i = 0; i < (disp_len - olen); i++)
 {
 fputc(' ', stdout);
 }

88 Open Client and Open Server

CHAPTER 2 CS-Library Routines
 return CS_SUCCEED;
 }

Usage • cs_will_convert allows an application to determine whether cs_convert or
ct_bind/ct_fetch are capable of performing a specific conversion. When
cs_convert is called to perform a conversion that it does not support, it
returns CS_FAIL and generates a CS-Library error.

• cs_convert can convert between standard and user-defined datatypes. To
enable these types of conversions, an application must install custom
conversion routines through cs_set_convert. If a custom routine is
supplied for a conversion, cs_will_convert indicates that the conversion is
supported.

Datatype conversion chart

A chart listing the datatype conversions that cs_convert supports is included on
the manual page for cs_convert. (See “Datatype Conversion Chart.”

See also cs_convert, cs_set_convert, cs_setnull
Common Libraries Reference Manual 89

cs_will_convert
90 Open Client and Open Server

C H A P T E R 3 Bulk-Library

This chapter introduces Bulk-Library:

Overview of Bulk-Library
Bulk-Library/C provides routines that allow Client-Library and Server-
Library applications to use the Adaptive Server bulk-copy interface.

The Adaptive Server bulk-copy interface allows high-speed transfer of
data between a client application’s program variables and the server’s
database tables. It provides an alternative to the use of the SQL insert and
select commands to transfer data.

Administrators can perform bulk copy using the bcp utility; programmers
can use Bulk-Library to create customized bulk-copy tools. Bulk-Library
also provides the necessary routines to enable bulk-copy support in an
Open Server gateway application.

Note The Bulk-Library/C routines are for use with Open Client Client-
Library and Open Server Server-Library applications. DB-Library
provides its own bulk-copy interface, which is documented in the Open
Client DB-Library/C Reference Manual.

Client-side and server-side routines
Bulk-Library contains client-side and server-side routines.

Topic Page
Overview of Bulk-Library 91

Bulk-Library client programming 93

Bulk-Library gateway programming 100
Common Libraries Reference Manual 91

Overview of Bulk-Library
Client-side Bulk-Library routines

Client-side routines allow Client-Library programmers to execute bulk-copy
commands from their programs. Client-side routines allow a program to:

• Transmit bulk-copy data to the remote server for database table population

• Extract the contents of a database table into program memory

Server-side Bulk-Library routines

Server-side routines are used with Open Server. Open Server programmers can
use these routines together with the client-side routines to allow bulk-copy
transfers through an Open Server gateway. A gateway server uses the client-
side routines to obtain bulk-copy data from the remote server and server-side
routines to forward the data to its own client. Any routine that requires a
SRV_PROC (Open Server thread-control structure) pointer as an argument is
a server-side routine.

The server-side Bulk-Library routines require the application to be linked with
Server-Library and must be used together with the client-side routines.

Header files
The header file bkpublic.h contains Bulk-Library definitions and is required in
all application source files that contain calls to Bulk-Library routines.

Client-Library applications that call Bulk-Library routines need to include only
bkpublic.h, since bkpublic.h includes ctpublic.h. No harm is done if the
application includes both files.

Gateway Open Server applications that call Bulk-Library routines need to
include bkpublic.h in addition to the other include files required by Server-
Library. bkpublic.h does not include any Open Server header files.

Linking with Bulk-Library
On most platforms, Bulk-Library is a separate library file and must be specified
on the link line for the application. See the Open Client/Server Programmer’s
Supplement for compiling and linking instructions for your platform.
92 Open Client and Open Server

CHAPTER 3 Bulk-Library
The CS_BLKDESC structure
All bulk-copy operations performed with Bulk-Library calls require a
CS_BLKDESC structure. This structure is also called the bulk-descriptor
structure. The bulk-descriptor structure is a hidden structure that controls a
particular bulk-copy operation.

Applications allocate a bulk-descriptor structure with blk_alloc on page 106
and free the bulk descriptor’s memory with blk_drop on page 129. The
structure’s internals are not documented, but the properties of the structure can
be retrieved and modified with the blk_props on page 136 routine.

All Bulk-Library routines except for blk_alloc require a valid bulk-descriptor
structure pointer as an input parameter.

The bulk-descriptor structure is considered a child structure of Client-Library’s
connection structure. Bulk-copy operations require the connection to interact
with the remote server.

Bulk-Library client programming
Client-side Bulk-Library routines provide bulk-copy functionality to Client-
Library programs. A Client-Library programmer may find bulk-copy useful if
the application under development must exchange data with a non-database
application, load data into a new database, or move data from one database to
another.

A Client-Library application can call Bulk-Library routines to copy data either
into a database table or out from a database table.

• Bulk-copy-in operations move data from the client machine into a
database table and are typically used for database table population. For
bulk copies into the database, Bulk-Library transmits tabular data over the
network in its “raw” form. Bulk copies into the database can be
considerably faster than embedding the data in equivalent SQL insert
statements.
Common Libraries Reference Manual 93

Bulk-Library client programming
• Bulk-copy-out operations move data from a database table to the client
program’s memory space and are typically used for data extracts. For data
extracts, bulk copy offers no performance advantage over the equivalent
SQL select statements. However, the Bulk-Library interface may be more
convenient for programmers.

Note Errors resulting from client-side Bulk-Library routines are reported as
Client-Library errors. Applications should install a Client-Library message
callback to handle these errors or handle them inline with ct_diag.

Bulk-Copy-In operations
An application can call Bulk-Library routines to copy data from program
variables into a database table.

When copying into a database, the chief advantage of bulk copy over the SQL
insert alternative is speed.

When copying data into a non-indexed table, the high speed version of bulk
copy is used. Adaptive Server performs no data logging during high-speed
transfers. If the system fails before the transfer is complete, no new data will
remain in the database. Because high-speed transfer affects the recoverability
of the database, it is enabled only when the Adaptive Server option select
into/bulkcopy has been turned on. An application can call the Adaptive Server
system procedure sp_dboption to turn this option on or use the Client Library
connection property CS_BULK_LOGIN.

If the select into/bulkcopy option is not turned on and a user tries to copy data
into a table that has no indexes, Adaptive Server generates an error message.

After a bulk-copy operation is complete, the System Administrator should
dump the database to ensure its future recoverability.

When copying data into an indexed table, a slower version of bulk copy is
automatically used, and row inserts are logged.

The Bulk-Copy-In process

A typical application follows these steps to perform a bulk-copy-in operation:
94 Open Client and Open Server

CHAPTER 3 Bulk-Library
1 Initializes the application in the same way as for a Client-Library
application and sets up Client-Library error handling. Bulk-Library
reports errors generated by calls to client-side routines as Client-Library
messages.

2 Allocates the connection structure to be used.

3 Calls ct_con_props to set the necessary properties to connect to the target
server. In addition, the application must set the CS_BULK_LOGIN
property to CS_TRUE to enable the connection to perform bulk copies.

Note Programmers can often tune the Tabular Data Stream™ (TDS)
packet size to increase throughput. A packet size larger than the default
usually increases performance. First, make sure that the Adaptive Server
is configured to accept a larger TDS packet size, then set the
CS_PACKET_SIZE connection property in your application. See the
Adaptive Server Enterprise System Administration Guide for details on
increasing the allowable network packet size and the Open Client Client-
Library/C Reference Manual for details on connection properties.

4 Calls ct_connect to open the connection.

5 Calls blk_alloc to allocate a bulk-descriptor structure.

6 Calls blk_init to initialize the bulk-copy operation.

7 For each column in the target table, the application:

• (Optional) Calls blk_describe. blk_describe returns a target column’s
description, allowing the application determine the column’s datatype
or size.

• (Optional) Calls blk_default. blk_default returns a column’s default
value, if a default is defined by the table schema. An application can
call blk_bind with *datalen as 0 to indicate that the bulk-copy-in
operation should use a column’s default value.

• Calls blk_bind to bind the variable to the target column. If data for the
column will be transferred using blk_textxfer, the application must
call blk_bind with buffer as NULL.
Common Libraries Reference Manual 95

Bulk-Library client programming
Columns can be bound either to scalar variables or to arrays. When
columns are bound to scalar variables, each call to blk_rowxfer_mult
transfers column values for a single row from the bound variables into
the database. For array binding, an array is bound to each column, and
multiple rows are transferred by each call to blk_rowxfer_mult. In
either case, the application also binds indicator and datalen variables
to the column as well. These are used to indicate the condition of the
data to be transferred.

The discussion in this chapter assumes that array binding is not in
effect. For more information about array binding, see blk_bind in
Chapter 4, “Bulk-Library Routines”

8 Transfers the data.

While data remains to be transferred, the application places data into the
program variables that are bound to the table columns, then calls
blk_rowxfer_mult to transfer the row.

Before each call to blk_rowxfer_mult, for each bound column, the
application sets datalen and indicator values to specify what value should
be inserted:

If the row contains columns whose data is being transferred in chunks, the
application calls blk_textxfer in a loop for each column. Data being
transferred via blk_textxfer must reside at the end of the row, following any
bound columns.

The application can call blk_done(CS_BLK_BATCH), if needed, to send
a batch of rows. This call instructs the Adaptive Server to permanently
save all rows transferred since the application’s last blk_done call.

9 Calls blk_done(CS_BLK_ALL) to send the last batch of rows and indicate
that the bulk-copy operation is complete.

datalen value indicator value Result

> 0 Any (is ignored). blk_rowxfer_mult reads datalen
bytes from buffer as the column
value.

0 0 The column’s default value, if
available, is inserted. If no default is
available, NULL is inserted.

0 -1 NULL is inserted.
96 Open Client and Open Server

CHAPTER 3 Bulk-Library
10 Calls blk_drop to deallocate the bulk-descriptor structure.

Note An application can call blk_bind between calls to blk_rowxfer_mult to
specify a different program variable address or length.

Program structure for Bulk-Copy-In operations

Most applications use a program structure similar to the following pseudocode
to perform a bulk-copy-in operation:

ct_con_props to set connection properties
 ct_connect to open the connection
 blk_alloc to allocate a CS_BLKDESC
 blk_init to initiate the bulk copy

for each column
 (optional: blk_describe to get a description of
 the column)
 (optional: blk_default to get the column’s default
 value)
 blk_bind to bind the column to a program
 variable, or to mark the column for transfer
 via blk_textxfer
 endfor

while there’s data to transfer
 if it’s time to save a batch of rows
 blk_done(CS_BLK_BATCH)
 endif
 copy row values to program variables
 call blk_rowxfer_mult to transfer the row data

 if data is being transferred via blk_textxfer
 for each column to transfer
 while there’s data for this column
 blk_textxfer to tranfer a chunk of data
 endwhile
 endfor
 endif
 endwhile
blk_done(CS_BLK_ALL)
 blk_drop to deallocate the CS_BLKDESC
Common Libraries Reference Manual 97

Bulk-Library client programming
Bulk-Copy-Out operations
The bulk-copy-out process reads rows from the server and places the column
values into program variables.

The Bulk-Copy-Out process

A typical application follows these steps to perform a bulk-copy-out operation:

1 Calls ct_con_props to set the required properties to open the connection.

2 Calls ct_connect to open the connection.

3 Calls blk_alloc to allocate a bulk-descriptor structure.

4 For each column of interest, the application:

• (Optional) Calls blk_describe to retrieve a column’s description. This
step is necessary if an application lacks information about a column’s
datatype or size.

• (Optional) Calls blk_bind to bind a program variable to the source
column. If the data for a column will be transferred via blk_textxfer,
call blk_bind with *buffer as NULL.

Columns can be bound either to scalar variables or to arrays. When
columns are bound to scalar variables, each call to blk_rowxfer_mult
transfers column values for a single row into the bound variables into
the database. For array binding, an array is bound to each column, and
multiple column values are transferred into each array by each call to
blk_rowxfer_mult.

The discussion in this chapter assumes that array binding is not used.
For more information about array binding, see blk_bind in Chapter 4,
“Bulk-Library Routines”

5 Transfers the data by calling blk_rowxfer_mult in a loop:

The application calls blk_rowxfer_mult repeatedly to transfer each row to
program variables until blk_rowxfer_mult returns CS_END_DATA.

If the row contains columns whose data is transferred in chunks, the
application calls blk_textxfer in a loop for each column. Data being
transferred via blk_textxfer must reside at the end of the row, following any
bound columns.
98 Open Client and Open Server

CHAPTER 3 Bulk-Library
For example, suppose an application bulk-copies columns 1, 3, 5, 7, and 9
and must call blk_textxfer to copy columns 7 and 9. The application calls
blk_bind once for each column, passing buffer as NULL for columns 7 and
9. After calling blk_rowxfer_mult to transfer a row from the table, the
application must call blk_textxfer in a loop to copy the data for column 7
and then call blk_textxfer in another loop to copy the data for column 9.

6 Calls blk_done(CS_BLK_ALL) to indicate that the bulk-copy operation is
complete.

7 Calls blk_drop to deallocate the bulk-descriptor structure.

Note An application can call blk_bind between calls to blk_rowxfer_mult to
specify different program variable address or length.

Program structure for Bulk-Copy-Out operations

Most applications use a program structure similar to the following pseudocode
to perform a bulk-copy-out operation:

ct_con_props to set connection properties
 ct_connect to open the connection
 blk_alloc to allocate a CS_BLKDESC
 blk_init to initiate the bulk copy
 for each column of interest
 (optional: blk_describe to get a description of
 the column)
 blk_bind to either bind the column to a program
 variable or to indicate that blk_textxfer will
 be used to transfer data for the column.
 endfor
while there’s data to transfer
 call blk_rowxfer_mult to transfer the row data
 pull data from program variables to a permanent
 location, if desired.
 if data is being transferred via blk_textxfer
 for each column to transfer
 while there’s data for this column
 blk_textxfer to tranfer a chunk of data
 endwhile
 endfor
 endif
 endwhile
 blk_done(CS_BLK_ALL)
 blk_drop to deallocate the CS_BLKDESC
Common Libraries Reference Manual 99

Bulk-Library gateway programming
Copying to and from Secure SQL Server
Each row in a Secure SQL ServerTM table has a sensitivity column, which
contains the sensitivity label for the row. Secure SQL Server uses sensitivity
labels to mediate access to data.

When bulk copying into or from a Secure SQL Server table, an application can
choose whether or not to include the table’s sensitivity column in the bulk-copy
operation.

To include the sensitivity column, an application sets the
BLK_SENSITIVITY_LBL property to CS_TRUE.
BLK_SENSITIVITY_LBL has a default value of CS_FALSE, which means
that by default the sensitivity column is not included.

Users copying into the sensitivity column must have the bcpin_labels_role
activated on Secure SQL Server. If a user does not have this role, the bulk-copy
operation will fail. See your Secure SQL Server documentation for more
information on setting this role.

Bulk-Library gateway programming
The server-side Bulk-Library routines are designed to be used in gateways in
conjunction with the client-side routines. Note that Open Server applications
must have available a valid CS_CONNECTION structure (set up with Client-
Library calls) to call Bulk-Library routines.

Open Server provides bulk-copy functionality that allows gateway Open
Server applications to filter bulk-copy data. A gateway Open Server can
examine each row of a bulk-copy operation and implement any of the
following filters:

• Discard certain rows while keeping others,

• Send all rows to the remote server, or

• Route bulk-copy requests to multiple remote servers based on the row
content, as shown in the diagram below.
100 Open Client and Open Server

CHAPTER 3 Bulk-Library
Figure 3-1: Gateway routing bulk-copy requests

A gateway’s client can issue two types of bulk requests, a TDS text/image
insert request or a TDS bulk-copy request. In the case of a TDS text/image
insert, the client simply wishes to send a text or image stream. In the case of a
TDS bulk-copy request, the client is actually initiating a bulk-copy request. In
both cases, the request handling involves processing both language
(SRV_LANGUAGE) events and bulk (SRV_BULK) events.

An Open Server application processes both requests using two event handlers:
SRV_LANGUAGE and SRV_BULK. Inside the SRV_LANGUAGE event
handler, the application determines which kind of bulk request has been issued
by the client and records this information internally. In addition, if the request
is for bulk copy, the application allocates and initializes a bulk-descriptor
structure. Inside the SRV_BULK handler, the application retrieves the request
type and then processes the data accordingly.

The discussion in this section assumes that the gateway application is intended
to accept both bulk-copy insert requests and text/image insert requests. For a
description of how to handle text/image insert commands only, see the “Text
and Image” topics page in the Open Server Server-Library/C Reference
Manual.

Note Bulk-Library reports errors resulting from calls to server-side routines as
Server-Library errors. Applications that call server-side Bulk-Library routines
should install a Server-Library error handler to receive notification of these
errors.
Common Libraries Reference Manual 101

Bulk-Library gateway programming
Inside the SRV_LANGUAGE event handler
If you intend for your gateway application to handle either type of bulk request,
you must code the SRV_LANGUAGE event handler to parse for the phrase
“insert bulk” or “writetext bulk.” These phrases indicate the following:

• The phrase “insert bulk” indicates the initiation of a bulk-copy request; the
request handling will be started in the language handler and finished in the
SRV_BULK handler.

• The phrase “writetext bulk” indicates that the client will issue a stream of
text or image bytes to be handled in the SRV_BULK event handler.

“Insert Bulk” requests

The text of an “insert bulk” language request looks like this:

insert bulk tablename [with nodescribe]

where “with nodescribe” is optional.

In response, the SRV_LANGUAGE event handler should:

1 Record the bulk type internally by calling srv_thread_props with cmd set
to CS_SET, property set to SRV_T_BULKTYPE, and bufp pointing to a
value of SRV_BULKLOAD.

2 Continue parsing to extract the table name, which is an argument to the
blk_init routine.

3 Allocate a bulk-descriptor structure, CS_BLKDESC, with a call to
blk_alloc.

4 Initialize the client half of the exchange with a call to blk_init.

5 If “with nodescribe” is specified, it means that this data is part of a batch,
and the table into which the bulk data will be loaded has already been
described. The application need not call blk_srvinit a second time.

If “with nodescribe” is not specified, initialize the server half of the
exchange with a call to blk_srvinit.

“Writetext Bulk” requests

The text of a “writetext bulk” language request looks like this:

writetext bulk dbname.tblname.colname textptr
[timestamp=timestamp] [with log]
102 Open Client and Open Server

CHAPTER 3 Bulk-Library
where the timestamp and logging indicator are optional.

In response, the SRV_LANGUAGE event handler should:

1 Record the bulk type internally by calling srv_thread_props with cmd set
to CS_SET, property set to SRV_T_BULKTYPE, and bufp pointing to a
value of SRV_TEXTLOAD or SRV_IMAGELOAD.

2 Continue parsing to extract the object name, which is generally of the form
“dbname.tblname.colname”. This name can then be stored in the name and
namelen fields of a CS_IODESC structure, which can later be used in the
SRV_BULK event handler as an argument to ct_data_info, if the data
stream is being passed on to a server in a gateway application.

3 Continue parsing to extract the text pointer, which will appear as a large
hexadecimal number. Once converted from a character string to an actual
CS_BINARY value, the text pointer and its length are stored in the textptr
and textptrlen fields of the CS_IODESC structure.

4 Continue parsing to extract the timestamp, which, if present, will appear
as “timestamp = large_hexadecimal_number”. Once converted from a
character string to an actual CS_BINARY value, the timestamp and its
length can be stored in the timestamp and timestamplen fields of the
CS_IODESC structure.

5 Finally, parse to extract the logging indicator, which, if present, will
appear as “with log”. If this indicator is present, the log_on_update field of
the CS_IODESC structure should be set to CS_TRUE.

Inside the SRV_BULK event handler
Inside the SRV_BULK event handler, the application must respond to the bulk
request that triggered the handler. However, its response depends on which
type of bulk request the client issued. The application retrieves the request type
by calling srv_thread_props with cmd set to CS_GET and property set to
SRV_T_BULKTYPE.

If the request type is SRV_TEXTLOAD or SRV_IMAGELOAD, the
application reads the text or image data from the client in chunks, using the
srv_text_info and srv_get_text routines. For details, see the “Text and Image”
topics page in the Open Server Server-Library/C Reference Manual.

If the request type is SRV_BULKLOAD, the application processes the bulk-
copy rows using a combination of client-side and server-side routines. To
process the bulk-copy rows, the SRV_BULK event handler should:
Common Libraries Reference Manual 103

Bulk-Library gateway programming
1 Call blk_rowalloc to allocate a CS_BLK_ROW structure.

The CS_BLK_ROW structure is a hidden structure that holds formatted
bulk-copy rows sent from the client.

2 Call blk_getrow to retrieve the formatted row from the client. This call
retrieves all column data except columns of type text, image, sensitivity,
or boundary. The gateway can process these later. If the row contains text,
image, sensitivity, or boundary data, blk_getrow returns
CS_BLK_HASTEXT. Otherwise, it returns CS_SUCCEED. If there are
no more rows, the bulk-copy operation is complete and blk_getrow returns
CS_END_DATA.

3 If the gateway must examine the row content (for example, to route rows
to particular remote servers or reject data), it calls blk_colval to examine
the value of each column in the bulk row.

4 Call the client-side routine blk_sendrow to send the formatted rows to the
remote server.

5 If an incoming bulk row contains text, image, sensitivity, or boundary
data, the server portion of the gateway calls blk_gettext to retrieve the
row’s text, image, sensitivity, or boundary portion. The handler calls the
client-side routine blk_sendtext to send it on to the remote server.

6 Call blk_rowdrop to deallocate the CS_BLK_ROW structure allocated by
blk_rowalloc.

7 Call the client-side routine blk_done to indicate that the batch or bulk-
copy operation is complete.

8 Call blk_drop to deallocate the bulk-descriptor structure.

Example
The online Open Server sample ctosdemo.c includes code to process bulk-copy
requests.
104 Open Client and Open Server

C H A P T E R 4 Bulk-Library Routines

This chapter contains a reference page for each Bulk-Library routine.

List of Bulk-Library routines

Routine Description

blk_alloc Allocates a CS_BLKDESC structure.

blk_bind Binds a program variable and a database column.

blk_colval A server-side routine obtains the column value from a
formatted bulk copy row.

blk_default Retrievse a column’s default value.

blk_describe Retrieves a description of a database column.

blk_done Marks a complete bulk copy operation or a complete
bulk copy batch.

blk_drop Deallocates a CS_BLKDESC structure.

blk_getrow A server-side routine retrieves and stores a formatted
bulk copy row.

blk_gettext A server-side routine retrieves the text, image,
sensitivity, or boundary portion of an incoming bulk
copy formatted row.

blk_init Initiates a bulk copy operation.

blk_props Sets or retrieve bulk descriptor structure properties.

blk_rowalloc A server-side routine allocates space for a formatted
bulk copy row.

blk_rowdrop A server-side routine frees space previously allocated
for a formatted bulk copy row.

blk_rowxfer Transfers one or more rows during a bulk copy
operation without specifying or receiving a row count.

blk_rowxfer_mult Transfers one or more rows during a bulk copy
operation.
Common Libraries Reference Manual 105

blk_alloc
blk_alloc
Description Allocates a CS_BLKDESC structure.

Syntax CS_RETCODE blk_alloc(connection, version, blk_pointer)

 CS_CONNECTION *connection;
 CS_INT version;
 CS_BLKDESC **blk_pointer;

Parameters connection
A pointer to a CS_CONNECTION structure that has been allocated with
ct_con_alloc and opened with ct_connect. A CS_CONNECTION structure
contains information about a particular client/server connection.

The connection must not have any pending results.

blk_sendrow A server-side routine sends a formatted bulk copy row
obtained from blk_getrow.

blk_sendtext A server-side routine sends text, image, sensitivity, or
boundary data in a formatted bulk copy row obtained
from blk_sendtext.

blk_srvinit A server-side routine copies descriptions of server table
columns to the client, if required.

blk_textxfer Transfers a column’s data in chunks during a bulk copy
operation.

Routine Description
106 Open Client and Open Server

CHAPTER 4 Bulk-Library Routines
version
The intended version of Bulk-Library behavior. During initialization,
version’s value is checked for compatibility with Client-Library’s version
level. version can take the following values:

Note BLK_VERSION_100 can only be used with Open Client/Server
versions 11.x and higher, regardless of whether the context/ctlib is initialized
to CS_VERSION_100 or CS_VERSION_110.

The application’s Client-Library version level is determined by the call to
ct_init that initializes the connection’s parent context structure.

blk_pointer
The address of a pointer variable. blk_alloc sets *blk_pointer to the address
of a newly allocated CS_BLKDESC structure.

In case of error, blk_alloc sets *blk_pointer to NULL.

Return value blk_alloc returns:

The most common reason for a blk_alloc failure is a lack of adequate memory.

Examples

/*
 ** BulkCopyIn()
 ** Ex_tabname is globally defined.
 */
 CS_STATIC CS_RETCODE
 BulkCopyIn(connection)

Value Meaning
Compatible Client-Library
version Level(s)

BLK_VERSION_100 Version 10.0 behavior CS_VERSION_110,
CS_VERSION_100

BLK_VERSION_110 Version 11.0 behavior Same as BLK_VERSION_100

BLK_VERSION_120 Version 12.0 behavior. Same as
BLK_VERSION_100, 110

BLK_VERSION_125 Version 12.5 behavior. Same as
BLK_VERSION_100, 110,
120

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.
Common Libraries Reference Manual 107

blk_alloc
 CS_CONNECTION *connection;
 {
 CS_BLKDESC *blkdesc;
 CS_DATAFMT datafmt; /* variable descriptions */
 Blk_Data *dptr; /* data for transfer */
 CS_INT datalen[5]; /* variable data length */
 CS_INT len;
 CS_INT numrows;

 /*
 ** Ready to start the bulk copy in now that all the
 ** connections have been made and have a table name.
 ** Start by getting the bulk descriptor and
 ** initializing.
 */
 if (blk_alloc(connection, BLK_VERSION_100, &blkdesc)
 != CS_SUCCEED)
 {
 ex_error("BulkCopyIn: blk_alloc() failed");
 return CS_FAIL;
 }
 if (blk_init(blkdesc, CS_BLK_IN,
 Ex_tabname, strlen(Ex_tabname)) == CS_FAIL)
 {
 ex_error("BulkCopyIn: blk_init() failed");
 return CS_FAIL;
 }
 /*
 ** Bind the variables to the columns and send the rows,
 ** and then clean up.
 */
 ...CODE DELETED.....

 return CS_SUCCEED;
 }

Usage • A CS_BLKDESC structure, also called a bulk-descriptor structure, is the
control structure for sending and receiving bulk-copy data. It is a hidden
structure that contains information about a particular bulk-copy operation.

• Before calling blk_alloc, an application must call the Client-Library
routines ct_con_alloc and ct_connect to allocate a CS_CONNECTION
structure and open the connection.

• blk_alloc must be the first routine called in a bulk-copy operation.
108 Open Client and Open Server

CHAPTER 4 Bulk-Library Routines
• Multiple CS_BLKDESC and CS_COMMAND structures can be allocated
on a connection, but only one CS_BLKDESC or CS_COMMAND
structure can be active at a time. For more information, see blk_init on
page 134 in this chapter.

• To deallocate a CS_BLKDESC structure, an application can call blk_drop.

See also blk_drop, blk_init, ct_con_alloc, ct_connect

blk_bind
Description Bind a program variable to a database column.

Syntax CS_RETCODE blk_bind(blkdesc, colnum, datafmt, buffer,
 datalen, indicator)

 CS_BLKDESC *blkdesc;
 CS_INT colnum;
 CS_DATAFMT *datafmt;
 CS_VOID *buffer;
 CS_INT *datalen;
 CS_SMALLINT *indicator;

Parameters blkdesc
A pointer to the CS_BLKDESC that is serving as a control block for the
bulk-copy operation. blk_alloc allocates a CS_BLKDESC structure.

colnum
The number of the column to bind to the program variable. The first column
in a table is column number 1, the second is number 2, and so forth.

datafmt
A pointer to the CS_DATAFMT structure that describes the program
variable to bind to the column.

Table 4-1 lists the fields in *datafmt that are used by blk_bind and contains
general information about the fields. blk_bind ignores fields that it does not
use:

Table 4-1: Fields in the CS_DATAFMT structure for blk_bind

Field name When used Set the field to

name Not used. Not applicable.

namelen Not used. Not applicable.
Common Libraries Reference Manual 109

blk_bind
datatype Always. A type constant (CS_xxx_TYPE) representing
the datatype of the program variable.

All type constants listed on the “Types” topics
page in the Open Client Client-Library/C
Reference Manual are valid.

Open Client user-defined types are not valid.

blk_bind supports a wide range of type
conversions, so datatype can be different from
the column’s type. For instance, by specifying
a variable type of CS_FLOAT_TYPE, a money
column can be bound to a CS_FLOAT
program variable. blk_rowxfer_mult on page
146 or blk_rowxfer on page 143 perform
appropriate conversions when transferring
data. For a list of the data conversions
provided by Client-Library, see cs_convert on
page 25 in Chapter 2, “CS-Library Routines”

If datatype is CS_BOUNDARY_TYPE or
CS_SENSITIVITY_TYPE, the *buffer
program variable must be of type CS_CHAR.

format When binding
to character- or
binary-type
destination
variables
during copy-
out operations;
otherwise,
CS_FMT_UN
USED.

For variable-length datatypes, the setting is a
bit mask that indicates the format of data to be
read or the format to write data in.

For bulk-copy-out operations, the format flags
are the same as for ct_bind.

For bulk-copy-in operations, the only format
flag is CS_BLK_ARRAY_MAXLEN. For
more information on the use of this flag, see
“Array binding” on page 119.

Field name When used Set the field to
110 Open Client and Open Server

CHAPTER 4 Bulk-Library Routines
maxlength When binding
to a variable
length
datatype.

When binding
to a fixed-
length
datatype,
maxlength is
ignored.

The maximum length of the *buffer program
variable.

When binding character or binary variables,
maxlength must describe the total maximum
length of the program variable, including any
space required for special terminating bytes,
such as a null terminator.

During a bulk-copy-in operation, maxlength
specifies the maximum length of the data that
will be copied from the *buffer program
variable.

During a bulk-copy-out operation, maxlength
is the length of the *buffer program variable.

scale Only when
binding to
numeric or
decimal
variables.

The scale of the program variable.

If the source data is the same type as the
destination, then scale can be set to
CS_SRC_VALUE to indicate that the
destination should pick up its value for scale
from the source data.

scale must be less than or equal to precision.

precision Only when
binding
numeric or
decimal
destinations.

The precision of the program variable.

If the source data is the same type as the
destination, then precision can be set to
CS_SRC_VALUE to indicate that the
destination should pick up its value for
precision from the source data.

precision must be greater than or equal to
scale.

status Not used. Not applicable.

Field name When used Set the field to
Common Libraries Reference Manual 111

blk_bind
buffer
The address of the program variable to be bound to the column specified by
colnum.

For a bulk-copying-in operations, *buffer is the program variable from
which blk_rowxfer_mult copies the data.

For bulk-copying-out operations, buffer* is the program variable in which
blk_rowxfer_mult places the copied data. If datafmt−>maxlength indicates
that *buffer is not large enough to hold the copied data, blk_rowxfer_mult
truncates the data at row transfer time. If this occurs, Bulk-Library sets
*indicator to the actual length of the available data.

A NULL buffer indicates that data for the column will be transferred using
the blk_textxfer routine.

count Always. count is the number of rows to transfer per
blk_rowxfer_mult on page 146 or
blk_rowxfer on page 143 call. If count is
greater than 1, array binding is considered to
be in effect.

During a bulk-copy-out operation, if count is
larger than the number of available rows, only
the available rows are copied.

count must have the same value for all
columns being transferred, with one
exception: An application can intermix counts
of 0 and 1. This is because when count is 0, 1
row is transferred.

usertype Not used. Not applicable.

locale If supplied,
locale is used.
Otherwise,
default
localization
applies.

A pointer to a CS_LOCALE structure
containing locale information for the *buffer
program variable.

Field name When used Set the field to
112 Open Client and Open Server

CHAPTER 4 Bulk-Library Routines
datalen
A pointer to the length, in bytes, of the *buffer data.

For bulk-copy-in operations:

• If *buffer is not NULL, *datalen represents the actual length of the data
contained in the *buffer program variable. An application must set this
length before calling blk_rowxfer_mult or blk_rowxfer to transfer
rows. In case of variable-length data, the length may be different for
each row. If the data is fixed-length, *datalen can be CS_UNUSED,
except for array binding. If *datalen is 0, the value of *indicator is used
to determine whether the column’s default value or a NULL should be
inserted—see Table 4-2 on page 117 for details.

• If *buffer is NULL (indicating that the data will be transferred with
blk_textxfer), *datalen indicates the total length of the value to be
transferred.

For bulk-copy-out operations:

• *datalen represents the actual length of the data copied to *buffer.
blk_rowxfer_mult or blk_rowxfer sets *datalen each time it is called to
transfer a row.

• Since blk_rowxfer_mult or blk_rowxfer sets datalen each time it is called
to transfer a row, the datalen parameter must remain local to the
function calling blk_bind() and blk_rowxfer(), or blk_rowxfer_mult().
Failure to do so causes invalid results.

indicator
A pointer to a CS_INT variable, or for array binding, an array of CS_INT.
At row-transfer time, blk_rowxfer_mult or blk_rowxfer read the indicator’s
contents to determine certain conditions about the bulk-copy data. See the
“List of Bulk-Library routines” on page 105 section for details.

Return value blk_bind returns:

blk_bind returns CS_FAIL if the application has not called blk_init to initialize
the bulk-copy operation.

Examples

/*
 ** BulkCopyIn()

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.
Common Libraries Reference Manual 113

blk_bind
 ** BLKDATA and DATA_END are defined in the bulk copy
 ** example program.
 */

 CS_STATIC CS_RETCODE

 BulkCopyIn(connection)
 CS_CONNECTION *connection;
 {
 CS_BLKDESC *blkdesc;
 CS_DATAFMT datafmt; /* variable descriptions */
 Blk_Data *dptr; /* data for transfer */
 CS_INT datalen[5]; /* variable data length */
 CS_INT len;
 CS_INT numrows;

 /*
 ** Ready to start the bulk copy in now that all the
 ** connections have been made and have a table name.
 ** Start by getting the bulk descriptor initializing.
 */
 ...CODE DELETED.....

 /*
 ** Bind the variables to the columns and
 ** transfer the data.
 */
 datafmt.locale = 0;
 datafmt.count = 1;
 dptr = BLKDATA;
 while (dptr->pub_id != DATA_END)
 {
 datafmt.datatype = CS_INT_TYPE;
 datafmt.maxlength = sizeof(CS_INT);
 datalen[0] = CS_UNUSED;

 if (blk_bind(blkdesc, 1, &datafmt, &dptr->pub_id,

 &datalen[0], NULL) != CS_SUCCEED)
 {
 ex_error("BulkCopyIn: blk_bind(1) failed");
 return CS_FAIL;
 }
 datafmt.datatype = CS_CHAR_TYPE;
 datafmt.maxlength = MAX_PUBNAME - 1;
 datalen[1] = strlen(dptr->pub_name);
 if (blk_bind(blkdesc, 2, &datafmt, dptr->pub_name,
114 Open Client and Open Server

CHAPTER 4 Bulk-Library Routines
 &datalen[1], NULL) != CS_SUCCEED)
 {
 ex_error("BulkCopyIn: blk_bind(2) failed");
 return CS_FAIL;
 }
 datafmt.maxlength = MAX_PUBCITY - 1;
 datalen[2] = strlen(dptr->pub_city);
 if (blk_bind(blkdesc, 3, &datafmt, dptr->pub_city,
 &datalen[2], NULL) != CS_SUCCEED)
 {
 ex_error("BulkCopyIn: blk_bind(3) failed");
 return CS_FAIL;
 }
 datafmt.maxlength = MAX_PUBST - 1;
 datalen[3] = strlen(dptr->pub_st);
 if (blk_bind(blkdesc, 4, &datafmt, dptr->pub_st,
 &datalen[3], NULL) != CS_SUCCEED)
 {
 ex_error("BulkCopyIn: blk_bind(4) failed");
 return CS_FAIL;
 }
 datafmt.maxlength = MAX_BIO - 1;
 datalen[4] = strlen((char *)dptr->pub_bio);
 if (blk_bind(blkdesc, 5, &datafmt, dptr->pub_bio,
 &datalen[4], NULL) != CS_SUCCEED)
 {
 ex_error("BulkCopyIn: blk_bind(5) failed");
 return CS_FAIL;
 }
 if (blk_rowxfer (blkdesc) == CS_FAIL)
 {
 ex_error("BulkCopyIn: blk_rowxfer() failed");
 return CS_FAIL;
 }
 dptr++;
 }

 /* Mark the operation complete and then clean up */
 ...CODE DELETED.....

 return CS_SUCCEED;
 }

Usage • blk_bind is a client-side routine.
Common Libraries Reference Manual 115

blk_bind
• blk_bind binds program variables to table columns in the database. Once
variables are bound, subsequent calls to blk_rowxfer_mult copy row data
between the database and the bound variables. The copy direction is
determined by the application’s earlier call to blk_init.

• When copying into a database, an application must call blk_bind once for
each column in the database table. When copying out, an application need
not call blk_bind for columns in which it has no interest.

• To indicate that a column value will be transferred using blk_textxfer, an
application calls blk_bind with buffer as NULL. A typical application will
use blk_textxfer to transfer large text or image values.

If a text, image, boundary, or sensitivity datatype column is marked for
transfer using blk_textxfer, all subsequent columns of these types must also
be marked for transfer using blk_textxfer. For example, an application
cannot mark the first text column in a row for transfer using blk_textxfer
and then bind a subsequent text column to a program variable.

• An application can call blk_bind in between calls to blk_rowxfer_mult to
reflect changes in a variable’s address or length. If an application calls
blk_bind multiple times for a single column or variable, only the last
binding takes effect.

• An application can call blk_describe to initialize a CS_DATAFMT
structure that describes the format of a particular column.

blk_bind for Bulk-Copy-In operations

The following table summarizes blk_bind usage when used for bulk-copy-in
operations. For information on datafmt fields, see Table 4-1 on page 109.
116 Open Client and Open Server

CHAPTER 4 Bulk-Library Routines
Table 4-2: blk_bind parameter values for bulk copy in

When a Bulk-Library application calls blk_bind in a bulk-copy-in operation the
buffer, datalen, and indicator pointers passed to blk_bind are recorded. The data
at those locations must remain valid until it is read during the call to blk_rowxfer
or blk_rowxfer_mult.

blk_bind for Bulk-Copy-Out operations

The following table summarizes blk_bind usage when used for bulk-copy-out
operations. For information on datafmt fields, see Table 4-1 on page 109.

When calling
blk_bind to buffer is datalen is *indicator is

Bind to a scalar or
array variable from
which
blk_rowxfer_mult
will read column
values.

The address of a
program variable
or array.

A pointer to a variable or array
that indicates the length of the
values to be read from *buffer.

• If *datalen is greater than 0,
*datalen values are read from
*buffer and sent as the
column value.

• When *datalen is 0, the value
of *indicator is used to
determine whether the
column’s default value (if
any) or NULL should be
inserted.

The address of a variable or array
that supplies indicator values for
the column.

*indicator is only considered
when *datalen is 0:

• If *indicator is 0, the
column’s default value (if
available) is inserted. If no
default value is available, a
NULL is inserted.

• If *indicator is -1, NULL is
always inserted.

Indicate that a column
value will be
transferred using
blk_textxfer.

NULL The total length of the data that
will be sent using blk_textxfer.

In this case, datafmt−
>maxlength is ignored.

Ignored.
Common Libraries Reference Manual 117

blk_bind
Table 4-3: blk_bind parameter values for bulk copy out

Specifying Null values for Bulk Copy into the database

• When copying in, an application can instruct blk_rowxfer_mult to use a
column’s default value by setting *datalen to 0 and *indicator to 0 before
calling blk_rowxfer_mult. If no default value is defined for the column,
blk_rowxfer_mult inserts a NULL value.

• To instruct blk_rowxfer_mult to insert a NULL regardless of a column’s
default value, set *datalen to 0 and *indicator to -1 before calling
blk_rowxfer_mult.

Clearing bindings

• To clear a binding, call blk_bind with buffer, datafmt, datalen, and
indicator as NULL. Otherwise, bindings remain in effect until an
application calls blk_done with type as CS_BLK_ALL to indicate that the
bulk-copy operation is complete.

• To clear all bindings, pass colnum as CS_UNUSED, with buffer, datafmt,
datalen, and indicator as NULL. An application typically clears all
bindings when it needs to change the count that is being used for array
binding.

When calling
blk_bind to buffer is *datalen is *indicator is

Bind to a scalar or
array variable into
which
blk_rowxfer_mult
will write column
values.

The address of a
program variable
or array.

A pointer to a variable or to a
CS_INT variable for an array,
where blk_rowxfer_mult on page
146 places the length of the
values written to *buffer.

The address of a variable or array
that supplies indicator values for
the column.

blk_rowxfer_mult sets
*indicator as follows:

• -1 indicates the data is null.

• 0 indicates good data.

• A value greater than 0
indicates truncation occurred.
The value is the actual length
of the available data.

Indicate that a column
value will be
transferred using
blk_textxfer.

NULL Ignored.

In this case, datafmt−>maxlength
represents the length of the
*buffer data space.

Ignored.
118 Open Client and Open Server

CHAPTER 4 Bulk-Library Routines
Array binding

• Array binding is the process of binding a column to an array of program
variables. At row-transfer time, multiple rows of the column are
transferred either to or from the array of variables with a single
blk_rowxfer_mult call. An application indicates array binding by setting
datafmt−>count to a value greater than 1.

• Array binding works differently for bulk-copy-in and bulk-copy-out
operations.

• For bulk-copy-in operations that use array binding, you must call blk_bind
with buffer, datalen, and indicator pointing to arrays. Each length and
indicator variable describes the corresponding data in the buffer array. For
fixed-length data, buffer is always a pointer to an array of fixed-length
values. For variable-length data (specifically character or binary data),
buffer is a pointer to an array of bytes. In the latter case, the packing of
values can be loose or dense. The application specifies the packing method
for each column by setting flags in the datafmt−>format field:

• Setting the BLK_ARRAY_MAXLEN bit in datafmt−>format
specifies loose packing of values in the array. blk_rowxfer_mult
retrieves the value i by reading datalen[i-1] bytes starting at the byte
position computed as:

 (i -1) * datafmt−>maxlength

• If the BLK_ARRAY_MAXLEN bit is not set in datafmt−>format,
column values must be densely packed for blk_rowxfer_mult. Each
value must be placed in the column array immediately after the
previous value, without padding. blk_rowxfer_mult gets value i by
reading datalen[i-1] bytes starting at the byte position computed as:

 datalen[i-2] + datalen[i-3] + ... + datalen[0]

In other words, the first value starts at 0, the second at datalen[0], the
third at datalen[1] + datalen[0], and so forth.

For example, consider a character column that will receive the values
“girl,”,“boy,”,“man,”,and “woman,” and assume that this column is bound
with datafmt−>maxlength passed as 7. With loose array binding, the buffer
and datalen contents would be:

buffer: girl boy man woman
 0 7 14 21
 datalen: 4, 3, 3, 5

With densely packed array binding, the buffer and datalen contents would
be:
Common Libraries Reference Manual 119

blk_colval
buffer: girlboymanwoman
 0 4 7 10
 datalen: 4, 3, 3, 5

• For bulk-copy-out operations, array binding performed with blk_bind
works the same as array binding performed with ct_bind. Column arrays
for bulk-copy-out are always loosely packed.

• While using array binding during a bulk-copy-out operation, it is possible
for conversion, memory, or truncation errors to occur while
blk_rowxfer_mult is writing to the destination arrays. In this case,
blk_rowxfer_mult writes a partial result to the destination arrays and returns
CS_ROW_FAIL.

• If array binding is in effect (for either direction), an application cannot use
blk_textxfer to transfer data.

See also blk_describe, blk_default, blk_init

blk_colval
Description A server-side routine obtains the column value from a formatted bulk-copy

row.

Syntax CS_RETCODE blk_colval(srvproc, blkdescp, rowp, colnum,
 valuep, valuelen, outlenp)

 SRV_PROC *srvproc;
 CS_BLKDESC *blkdescp;
 CS_BLK_ROW *rowp;
 CS_INT colnum;
 CS_VOID *valuep;
 CS_INT valuelen;
 CS_INT *outlen;

Parameters srvproc
A pointer to the SRV_PROC structure associated with the client sending the
bulk-copy row. It contains all the information that Server-Library uses to
manage communications and data between the Open Server application and
the client.
120 Open Client and Open Server

CHAPTER 4 Bulk-Library Routines
blkdescp
A pointer to a CS_BLKDESC structure containing information about bulk-
copy data. This structure must have been previously allocated with a call to
blk_alloc and initialized with a call to blk_init. This structure is used to
interpret incoming formatted bulk-copy rows.

rowp
A pointer to the CS_BLK_ROW structure filled in by a prior call to
blk_getrow.

The CS_BLK_ROW structure is a hidden structure that holds formatted
bulk-copy rows sent from the client.

colnum
The column number of the column of interest. Column numbers start at 1.

valuep
A pointer to the application buffer in which the column value from the bulk-
copy row is placed.

valuelen
The size, in bytes, of the buffer to which valuep points.

outlen
A pointer to a CS_INT variable. blk_colval sets *outlen to the size, in bytes,
of the column data.

Return value blk_colval returns:

Usage • blk_colval is a server-side routine. After getting the value of a specified
column from a formatted bulk-copy row, it stores the value in an
application buffer.

• This routine performs no implicit data conversion. Use cs_convert to
convert the data.

• To examine the column value after a call to blk_colval, the application must
know the column‘s datatype before making the call.

• An Open Server application cannot use this routine to retrieve text, image,
sensitivity, or boundary columns. Use blk_gettext to retrieve such
columns.

See also blk_getrow, blk_gettext

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.
Common Libraries Reference Manual 121

blk_default
blk_default
Description Retrieves a column’s default value.

Syntax CS_RETCODE blk_default(blkdesc, colnum, buffer,
 buflen, outlen)
 CS_BLKDESC *blkdesc;
 CS_INT colnum;
 CS_VOID *buffer;
 CS_INT buflen;
 CS_INT *outlen;

Parameters blkdesc
A pointer to the CS_BLKDESC that serves as a control block for the bulk-
copy operation. blk_alloc allocates a CS_BLKDESC structure.

colnum
The number of the column of interest. The first column in a table is column
number 1, the second is number 2, and so forth.

buffer
A pointer to the space in which blk_default will place the default value.

buflen
The length, in bytes, of the *buffer data space.

outlen
A pointer to an integer variable.

If supplied, blk_default sets *outlen to the length, in bytes, of the default
value.

If the default value is larger than buflen bytes, an application can use the
value of *outlen to determine how many bytes are needed to hold the value.

Return value blk_default returns:

blk_default returns CS_FAIL if the application has not called blk_init to
initialize the bulk-copy operation.

Usage • blk_default is a client-side routine.

• An application can call blk_default to find out whether a default value is
defined for a particular target column, and, if so, what the default value is.

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.
122 Open Client and Open Server

CHAPTER 4 Bulk-Library Routines
This information can be useful while preparing to bulk copy rows into a
database. The application can set *datalen and *indicator values to
specify whether a column’s default value should be used. (datalen and
indicator are the addresses of program variables that were bound to the
column with blk_bind). See “Specifying Null values for Bulk Copy into
the database” on page 118 for more information.

• If the column of interest does not have a default value, blk_default sets
*outlen to CS_NO_DEFAULT and returns CS_SUCCEED.

• An application can retrieve column defaults with blk_default only during a
bulk-copy-in operation. The application cannot call blk_default until
blk_init(CS_BLK_IN) returns CS_SUCCEED.

See also blk_bind, blk_describe, blk_init

blk_describe
Description Retrieves a description of a database column.

Syntax CS_RETCODE blk_describe(blkdesc, colnum, datafmt)

 CS_BLKDESC *blkdesc;
 CS_INT colnum;
 CS_DATAFMT *datafmt;

Parameters blkdesc
A pointer to the CS_BLKDESC that is serving as a control block for the
bulk-copy operation. blk_alloc allocates a CS_BLKDESC structure.

colnum
The number of the column of interest. The first column in a table is column
number 1, the second is number 2, and so forth.

datafmt
A pointer to a CS_DATAFMT structure. blk_describe fills *datafmt with a
description of the database column referenced by colnum.

During a bulk-copy-in operation, blk_describe fills in the following fields in
the CS_DATAFMT:
Common Libraries Reference Manual 123

blk_describe
Table 4-4: CS_DATAFMT fields, as set by blk_describe for bulk copy in

During a bulk-copy-out operation, blk_describe fills in the following fields
in the CS_DATAFMT:

Table 4-5: CS_DATAFMT fields, as set by blk_describe for bulk copy out

Field
name blk_describe sets the field to

name The null-terminated name of the column, if any. A NULL name is
indicated by a namelen of 0.

namelen The actual length of the name, not including the null terminator.
0 indicates a NULL name.

datatype A type constant representing the datatype of the column. All type
constants listed on the “Types” topics page are valid, with the
exception of CS_VARCHAR_TYPE and CS_VARBINARY_TYPE.

maxlength The maximum possible length of the data for the column.

scale The scale of the column.

precision The precision of the column.

Field
name blk_describe sets the field to

name The null-terminated name of the column, if any. A NULL name is
indicated by a namelen of 0.

namelen The actual length of the name, not including the null terminator.

0 indicates a NULL name.

datatype The datatype of the column. All datatypes listed on the “Types” topics
page in the Open Client Client-Library/C Reference Manual are valid.

maxlength The maximum possible length of the data for the column.

scale The scale of the column.

precision The precision of the column.

status A bit mask of the following symbols, combined with a bitwise OR:

• CS_CANBENULL to indicate that the column can contain NULL
values.

• CS_HIDDEN to indicate that this column is a hidden column that
has been exposed. Hidden columns are exposed when the
CS_HIDDEN_KEYS property is set for the bulk descriptor’s parent
connection.

• CS_IDENTITY to indicate that the column is an identity column.

• CS_KEY to indicate the column is part of the key for a table.

• CS_VERSION_KEY to indicate the column is part of the version
key for the row.
124 Open Client and Open Server

CHAPTER 4 Bulk-Library Routines
Return value blk_describe returns:

blk_describe returns CS_FAIL if colnum does not represent a valid result
column.

Usage • blk_describe is a client-side routine.

• blk_describe describes the format of a database column. The application
can use this information to:

• Determine the datatype and size requirements for allocating storage
for retrieving rows (for bulk copy out of the database).

• Determine compatibility between program variable datatypes and the
database columns (by calling cs_will_convert to determine whether
the conversion is supported and, if necessary, by checking the data
lengths).

• Perform error checking. For example, the debug version of a bulk-
copy application might call blk_describe to confirm assumptions
about the format of table columns.

• An application typically uses a column description while determining
compatible program variable types and sizes.

• See the “CS_DATAFMT Structure” topics page in the Open Client Client-
Library/C Reference Manual for a complete description of the
CS_DATAFMT structure.

See also blk_default, blk_init

usertype The Adaptive Server user-defined datatype of the column, if any.
usertype is set in addition to (not instead of) datatype.

locale A pointer to a CS_LOCALE structure that contains locale information
for the data.

Field
name blk_describe sets the field to

Returns Indicatse

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.
Common Libraries Reference Manual 125

blk_done
blk_done
Description Marks a complete bulk-copy operation or a complete bulk-copy batch.

Syntax CS_RETCODE blk_done(blkdesc, type, outrow)

 CS_BLKDESC *blkdesc;
 CS_INT type;
 CS_INT *outrow;

Parameters blkdesc
A pointer to the CS_BLKDESC that is serving as a control block for the
bulk-copy operation. blk_alloc allocates a CS_BLKDESC structure.

type
One of the following symbolic values:

outrow
A pointer to an integer variable. If type is CS_BLK_BATCH or
CS_BLK_ALL, blk_done sets *outrow to the number of rows bulk copied to
Adaptive Server since the application’s last blk_done call. When type is
CS_BLK_CANCEL, *outrow is set to 0.

Return value blk_done returns:

Common reasons for blk_done failure include:

• An invalid blkdesc pointer

• An invalid value for type

Examples

/*
 ** BulkCopyIn()

Value of type blk_done

CS_BLK_ALL Marks a complete bulk-copy-in or bulk-copy-out operation.

CS_BLK_BATCH Marks the end of a batch of rows in a batched bulk-copy-in
operation.

CS_BLK_CANCEL Cancels a bulk-copy batch or bulk-copy operation.

Returns Iindicates

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_PENDING Asynchronous network I/O is in effect. For more
information, see the “Asynchronous Programming” topics
page in the Open Client Client-Library/C Reference Manual.
126 Open Client and Open Server

CHAPTER 4 Bulk-Library Routines
 */

CS_STATIC CS_RETCODE
 BulkCopyIn(connection)
 CS_CONNECTION *connection;
 {
 CS_BLKDESC *blkdesc;
 CS_DATAFMT datafmt; /* variable descriptions */
 Blk_Data *dptr; /* data for transfer */
 CS_INT datalen[5]; /* variable data length */
 CS_INT len;
 CS_INT numrows;

 /*
 ** Ready to start the bulk copy in now that all the
 ** connections have been made and have a table name.
 ** Start by getting the bulk descriptor initializing.
 */
 ...CODE DELETED.....

 /*

 ** Now to bind the variables to the columns and

 ** transfer the data
 */
 ...CODE DELETED.....

 /* ALL the rows sent so clear up */
 if (blk_done(blkdesc, CS_BLK_ALL, &numrows) == CS_FAIL)
 {
 ex_error("BulkCopyIn: blk_done() failed");
 return CS_FAIL;
 }
 if (blk_drop(blkdesc) == CS_FAIL)
 {
 ex_error("BulkCopyIn: blk_drop() failed");
 return CS_FAIL;
 }
 return CS_SUCCEED;
 }
Common Libraries Reference Manual 127

blk_done
Usage • A client-side-routine blk_done is necessary in both client-only and
gateway applications.

Note Setting CS_OPT_NOCOUNT before doing a bulk copy operation
on a connection, causes blk_done to erroneously report errors.

• Calling blk_done with type as CS_BLK_ALL marks the end of a bulk-
copy operation. Once an application marks the end of a bulk-copy
operation, it cannot call any Bulk-Library routines (except for blk_drop
and blok_alloc) until it begins a new bulk-copy operation by calling
blk_init.

• Calling blk_done with type as CS_BLK_BATCH marks the end of a batch
of rows in a bulk-copy-in operation. CS_BLK_BATCH is legal only
during bulk-copy-in operations.

• Calling blk_done with type as CS_BLK_CANCEL cancels the current
bulk-copy operation. Rows transferred since an application’s last
blk_done(CS_BLK_BATCH) call are not saved in the database. Once an
application cancels a bulk-copy operation, it cannot call any bulk-copy
routines (except for blk_drop and blk_alloc) until it initializes a new bulk-
copy operation by calling blk_init.

Calling blk_done during Bulk-Copy-In operations

• When an application bulk copies data into a database, the rows are
permanently saved only when the application calls blk_done. During a
large data transfer, blk_done(CS_BLK_BATCH) can be called
periodically to “batch” the transmitted rows into smaller units of
recoverability.

• An application can batch rows by calling blk_done with type as
CS_BLK_BATCH once every n rows or when there is a lull between
periods of data, as in a telemetry application. This causes all rows
transferred since the application’s last blk_done call to be permanently
saved.

• After saving a batch of rows, an application’s first call to blk_rowxfer or
blk_rowxfer_mult implicitly starts the next batch.

• An application must call blk_done with type as CS_BLK_ALL to send its
final batch of rows. This call permanently saves the rows, marks the end
of the bulk-copy operation, and cleans up internal bulk-copy data
structures.
128 Open Client and Open Server

CHAPTER 4 Bulk-Library Routines
Calling blk_done during bulk-copy-out operations

• After transferring the last row in a bulk-copy-out operation, an application
must call blk_done with type as CS_BLK_ALL to mark the end of the
bulk-copy operation and clean up internal bulk-copy data structures.

See also blk_init, blk_rowxfer, blk_rowxfer_mult

blk_drop
Description Deallocates a CS_BLKDESC structure.

Syntax CS_RETCODE blk_drop(blkdesc)

 CS_BLKDESC *blkdesc;

Parameters blkdesc
A pointer to a CS_BLKDESC previously allocated through blk_alloc.

Return value blk_drop returns:

Examples

/*
 ** BulkCopyIn()
 */

 CS_STATIC CS_RETCODE
 BulkCopyIn(connection)
 CS_CONNECTION *connection;
 {

 CS_BLKDESC *blkdesc;
 CS_DATAFMT datafmt; /* variable descriptions */
 Blk_Data *dptr; /* data for transfer */
 CS_INT datalen[5]; /* variable data length */
 CS_INT len;

 CS_INT numrows;

 /*

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.
Common Libraries Reference Manual 129

blk_getrow
 ** Ready to start the bulk copy in now that all the
 ** connections have been made and have a table name.
 ** Start by getting the bulk descriptor initializing.
 */
 ...CODE DELETED.....

 /*
 ** Now to bind the variables to the columns and
 ** transfer the data
 */
 ...CODE DELETED.....

 /* ALL the rows sent so clear up */
 if (blk_done(blkdesc, CS_BLK_ALL, &numrows) == CS_FAIL)
 {
 ex_error("BulkCopyIn: blk_done() failed");
 return CS_FAIL;
 }
 if (blk_drop(blkdesc) == CS_FAIL)
 {
 ex_error("BulkCopyIn: blk_drop() failed");
 return CS_FAIL;
 }

 return CS_SUCCEED;
 }

Usage • A CS_BLKDESC structure, also called a bulk-descriptor structure,
contains information about a particular bulk-copy operation.

• Once a bulk-descriptor structure has been deallocated, it cannot be used
again. To allocate a new CS_BLKDESC, an application can call blk_alloc.

• blk_drop is typically called after blk_done. It must be the last routine called
in a bulk-copy operation.

See also blk_alloc, blk_done

blk_getrow
Description Server-side routine retrieves and stores a formatted bulk-copy row.

Syntax CS_RETCODE blk_getrow(srvproc, blkdescp, rowp)
130 Open Client and Open Server

CHAPTER 4 Bulk-Library Routines
 SRV_PROC *srvproc;
 CS_BLKDESC *blkdescp;
 CS_BLK_ROW *rowp;

Parameters srvproc
A pointer to the SRV_PROC structure associated with the client sending the
bulk-copy row. It contains all the information that Server-Library uses to
manage communications and data between the Open Server and the client.

blkdescp
A pointer to a CS_BLKDESC structure containing information about bulk-
copy data. This structure must have been previously allocated with a call to
blk_alloc and initialized with a call to blk_init. This structure is used to
interpret incoming formatted bulk-copy rows.

rowp
A pointer to a CS_BLK_ROW structure containing space for a formatted
bulk-copy row. Space must have been previously allocated with
blk_rowalloc.

The CS_BLK_ROW structure is a hidden structure that holds formatted
bulk-copy rows sent from the client.

Return value blk_getrow returns:

Usage • blk_getrow is a server-side routine that is useful in gateway applications.

• This routine copies the incoming formatted bulk-copy row into the
CS_BLK_ROW structure to which rowp points. The row data is saved
only until the next call to blk_getrow. The application must have previously
allocated the space for the row using blk_rowalloc.

• Once a row has been received through blk_getrow, the application may
examine the contents of any fields (other than text, image, sensitivity, or
boundary fields) using blk_colval.

• Use blk_gettext to retrieve text, image, sensitivity, and boundary fields.

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS_END_DATA There are no more rows.

CS_BLK_HAS_TEXT The row contains some text, image, sensitivity, or
boundary data. Use blk_gettext to retrieve the text, image,
sensitivity, or boundary data. Note that a return value of
CS_BLK_HAS_TEXT implies a successful return, just
like CS_SUCCEED.

CS_FAIL The routine failed.
Common Libraries Reference Manual 131

blk_gettext
• A bulk-copy row may subsequently be sent to another server using the
blk_sendrow routine.

• An application must read all incoming rows with blk_getrow, until there
are no more rows.

• Once blk_getrow returns CS_END_DATA, the application must drop the
space allocated for the row using blk_rowdrop.

See also blk_colval, blk_gettext, blk_rowalloc

blk_gettext
Description Server-side routine retrieves the text, image, sensitivity, or boundary portion of

an incoming formatted bulk-copy row.

Syntax CS_RETCODE blk_gettext(srvproc,blkdescp, rowp, bufp, bufsize, outlenp)

 SRV_PROC *srvproc;
 CS_BLKDESC *blkdescp;
 CS_BLK_ROW *rowp;
 CS_BYTE *bufp;
 CS_INT bufsize;
 CS_INT *outlenp;

Parameters srvproc
A pointer to the SRV_PROC structure associated with the client sending the
bulk-copy row. This structure contains all the information that Server-
Library uses to manage communications and data between the Open Server
application and the client.

blkdescp
A pointer to a CS_BLKDESC structure containing information about bulk-
copy data. This structure must have been previously allocated with a call to
blk_alloc and initialized with a call to blk_init. This structure is used to
interpret incoming formatted bulk-copy rows.

rowp
A pointer to the formatted bulk-copy row read from the client through a
prior call to blk_getrow.

The CS_BLK_ROW structure is a hidden structure that holds formatted
bulk-copy rows sent from the client.
132 Open Client and Open Server

CHAPTER 4 Bulk-Library Routines
bufp
A pointer to the application buffer in which Bulk-Library places the text,
image, sensitivity, or boundary data.

bufsize
The size, in bytes, of the space pointed at by bufp.

outlenp
A pointer to a CS_INT variable, which is set to the number of bytes actually
read by blk_gettext. It may be less than bufsize. To determine whether all of
the text, image, sensitivity, or boundary part of the row has been read, check
for a return code of CS_END_DATA. A *outlenp value that is less than
bufsize does not necessarily indicate the end of a row. For example, it could
indicate the end of a text, image, sensitivity, or boundary column that is not
the last column in the row.

Return value blk_gettext returns:

Usage • blk_gettext is a server-side routine that is useful in gateway applications.

• This routine is used with blk_getrow and blk_colval to receive formatted
bulk-copy rows and route them to an Adaptive Server. This routine
retrieves the text, image, sensitivity, or boundary portions of the row.

• Bulk-copy rows are formatted so that all text, image, sensitivity, and
boundary fields occur at the end of the row, after all the other types of
fields. To route a row to an Adaptive Server, first call blk_getrow to retrieve
all the parts of the row containing other types of fields. Call blk_colval to
retrieve and store portions of the row containing other types of fields.
Decide where this data goes and send it to the remote server, using
blk_sendrow. Call blk_gettext to copy text, image, sensitivity, or
boundary data into an application buffer. Finally, call blk_sendtext to send
this information to the remote server.

• If an incoming bulk-copy row has any text, image, sensitivity, or boundary
fields, blk_getrow returns CS_BLK_HAS_TEXT.

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS_END_DATA There are no more text, image, sensitivity, or boundary fields
for the current incoming bulk-copy row. Call blk_getrow to
get the next bulk-copy row.

CS_FAIL The routine failed.
Common Libraries Reference Manual 133

blk_init
• It is not an error to call blk_gettext if the row contains no text, image,
sensitivity, or boundary fields. The routine simply returns
CS_END_DATA.

• This routine must be called after blk_getrow. Also, it must be called until
it returns CS_END_DATA, to fully read in a bulk-copy row.

• Before rows can be sent to a server, the gateway application must have set
up the bulk-copy operation with a call to blk_init.

• It is critical that the table for which the bulk-copy operation was initialized
and the table into which the client is bulk copying are the same table.

See also blk_colval, blk_getrow, blk_gettext, blk_sendtext

blk_init
Description Initiates a bulk-copy operation.

Syntax CS_RETCODE blk_init(blkdesc, direction, tablename,
 tnamelen)

 CS_BLKDESC *blkdesc;
 CS_INT direction;
 CS_CHAR *tablename;
 CS_INT tnamelen;

Parameters blkdesc
A pointer to the CS_BLKDESC controlling the bulk-copy operation. An
application can allocate a CS_BLKDESC by calling blk_alloc.

The parent connection of the CS_BLKDESC must be open when blk_init is
called and cannot have any pending results.

direction
One of the following symbolic values, to indicate the direction of the bulk-
copy operation:

Value of
direction blk_init

CS_BLK_IN Begins a bulk-copy operation to upload rows from the client to
the server.

CS_BLK_OUT Begins a bulk-copy operation to download rows from the
server to the client.
134 Open Client and Open Server

CHAPTER 4 Bulk-Library Routines
tablename
A pointer to the name of the table of interest. Any legal server table name is
acceptable.

tnamelen
The length, in bytes, of *tablename. If *tablename is null-terminated, pass
tnamelen as CS_NULLTERM.

Return value blk_init returns:

A common cause of failure is specifying a non-existent table.

Examples

/*
 ** BulkCopyIn()
 ** Ex_tabname is globally defined.
 */
 CS_STATIC CS_RETCODE
 BulkCopyIn(connection)
 CS_CONNECTION *connection;
 {
 CS_BLKDESC *blkdesc;
 CS_DATAFMT datafmt; /* variable descriptions */
 Blk_Data *dptr; /* data for transfer */
 CS_INT datalen[5]; /* variable data length */
 CS_INT len;
 CS_INT numrows;

 /*
 ** Ready to start the bulk copy in now that all the
 ** connections have been made and have a table name.
 ** Start by getting the bulk descriptor and
 ** initializing.
 */
 if (blk_alloc(connection, BLK_VERSION_100, &blkdesc)
 != CS_SUCCEED)
 {
 ex_error("BulkCopyIn: blk_alloc() failed");

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_PENDING Asynchronous network I/O is in effect. For more
information, see the “Asynchronous Programming”
topics page in the Open Client Client-Library/C
Reference Manual.
Common Libraries Reference Manual 135

blk_props
 return CS_FAIL;
 }

 if (blk_init(blkdesc, CS_BLK_IN,
 Ex_tabname, strlen(Ex_tabname)) == CS_FAIL)
 {
 ex_error("BulkCopyIn: blk_init() failed");
 return CS_FAIL;
 }

 /*
 ** Bind the variables to the columns and send the rows,
 ** and then clean up.
 */
 ...CODE DELETED.....

 return CS_SUCCEED;
 }

Usage • blk_init begins a bulk-copy operation.

• blk_init is a client-side routine. However, it is necessary in both client-only
and gateway applications.

• Multiple CS_BLKDESC and CS_COMMAND structures can exist on the
same connection, but only one CS_BLKDESC or CS_COMMAND
structure can be active at the same time.

• A bulk-copy operation begun with blk_init must be completed before
the connection can be used for any other operation.

• A bulk-copy operation cannot be started when the connection is being
used to initiate, send, or process the results of other Client-Library or
Bulk-Library commands.

• When a bulk-copy operation is complete, an application must call
blk_done with type as CS_BLK_ALL to mark the end of the bulk-copy
operation and clean up internal Bulk-Library data structures.

See also blk_alloc, blk_bind, blk_done, blk_rowxfer_mult

blk_props
Description Sets or retrieves bulk-descriptor structure properties.
136 Open Client and Open Server

CHAPTER 4 Bulk-Library Routines
Syntax CS_RETCODE blk_props(blkdesc, action, property,
 buffer, buflen, outlen)

 CS_BLKDESC *blkdesc;
 CS_INT action;
 CS_INT property;
 CS_VOID *buffer;
 CS_INT buflen;
 CS_INT *outlen;

Parameters blkdesc
A pointer to a CS_BLKDESC structure. A bulk-descriptor structure
contains information about a bulk-copy operation. blk_alloc allocates a bulk-
descriptor structure.

action
One of the following symbolic constants:

property
A symbolic constant that indicates the property of interest. Table 4-6 on
page 138 lists valid property constants and describes each property.

buffer
If a property value is being set, buffer points to the value to use in setting the
property.

If a property value is being retrieved, buffer points to the space in which
blk_props will place the requested information.

The C datatype of the value depends on the property. Refer to Table 4-6 on
page 138 for the datatype of the property of interest.

buflen
Generally, buflen is the length, in bytes, of *buffer.

If a property value is being set and the value in *buffer is null-terminated,
pass buflen as CS_NULLTERM.

If *buffer is a fixed-length or symbolic value, pass buflen as CS_UNUSED.

Value of
action blk_props

CS_SET Sets the value of the property

CS_GET Retrieves the value of the property

CS_CLEAR Clears the value of the property by resetting it to its default value
Common Libraries Reference Manual 137

blk_props
outlen
A pointer to an integer variable.

If a property value is being set, outlen is not used and should be passed as
NULL.

If a property value is being retrieved and outlen is supplied, blk_props sets
*outlen to the length, in bytes, of the requested information.

If the information is larger than buflen bytes, an application can use the
value of *outlen to determine how many bytes are needed to hold the
information.

Return value blk_props returns:

Usage • Bulk-descriptor properties define aspects of a specific bulk-copy
operation.

• Applications that set Bulk-Library properties must do so after calling
blk_alloc to allocate a bulk-descriptor structure and before calling blk_init
to initiate a specific bulk-copy operation.

• An application can use blk_props to set or retrieve the following properties:

Table 4-6: Client/Server bulk descriptor properties

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

Property name Description *buffer is Applies to Notes

BLK_IDENTITY Whether values for a
table’s identity column
are specified explicitly
for each row to be
inserted.

This property cannot be
set to CS_TRUE if
BLK_IDSTARTNUM
has been set for a bulk-
copy-in operation.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE, which
indicates that identity
values are either:

• Computed from the
starting value
indicated by
BLK_IDSTARTN
UM, or

• Computed by
Adaptive Server as
data is inserted,
based on existing
identity values in
the table.

IN copies
only
138 Open Client and Open Server

CHAPTER 4 Bulk-Library Routines
BLK_IDENTITY property

• BLK_IDENTITY determines whether a table’s identity column is
included in a bulk-copy-in operation.

• BLK_IDENTITY does not affect bulk-copy-out operations.

• If BLK_IDENTITY is CS_TRUE, the application must supply data for the
identity column.

BLK_IDSTARTNUM The starting value for
identity columns in
inserted rows. The first
inserted row uses this
value, and the value is
incremented for each
subsequent row.

This property cannot be
set if BLK_IDENTITY
has been set to
CS_TRUE for the bulk-
copy-in operation.

A CS_NUMERIC
variable containing
the starting identity
value.

There is no default.

IN copies
only

BLK_NOAPI_CHK Whether parameter and
error checking for illegal
parameter values and
state transitions are
disabled for Bulk-
Library calls.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE, which
means error checking
is performed.

Both IN and
OUT copies

BLK_SENSITIVITY_ LBL Whether a table’s
sensitivity column is
included in the bulk-
copy operation.

CS_TRUE or
CS_FALSE (default).

Both IN and
OUT copies

Secure
SQL Server
only

BLK_SLICENUM For bulk-copy into a
partitioned table.
Specifies the partition
number that copied rows
are inserted to.

A CS_INT variable
containing a positive
value representing the
partition number.

The default is
CS_UNUSED, which
indicates that
Adaptive Server will
randomly choose a
partition number.

IN copies
only

Property name Description *buffer is Applies to Notes
Common Libraries Reference Manual 139

blk_props
If BLK_IDENTITY is CS_FALSE, the application does not need to
supply data for the identity column. In this case, the server supplies a
default value for the column.

• BLK_IDENTITY works by setting identity_insert on for the database table
of interest. This allows values to be inserted into the identity column.
When the bulk-copy operation is finished, the identity_insert option for the
table is turned off.

For more information about identity_insert, see the Adaptive Server
Enterprise Reference Manual.

BLK_NOAPI_CHK property

• BLK_NOAPI_CHK can be set to CS_TRUE to disable parameter and
state checking of Bulk-Library calls. The default is CS_FALSE, which
enables parameter checking and state checking of each Bulk-Library call.
These two types of error checking are described below:

• Parameter checking determines whether the application has passed
valid parameters and combinations of parameters in the call.

• State checking ensures that calls are made in the required sequence.
For example, blk_init must be called before blk_bind.

The default error checking ensures that your application calls Bulk-
Library routines in the appropriate manner. With API checking enabled, a
descriptive error message is raised when the application commits a usage
error, and the routine that discovers the error returns CS_FAIL.

 Warning! With API checking disabled, Bulk-Library usage errors may
lead to unexpected behavior or even program crashes.

• If your application has been fully tested and completely debugged, you
may see improved performance with API checking disabled. Bulk-Library
also calls Client-Library internally, so to get the full benefit, you should
also disable API checking in Client-Library (by calling ct_config to set the
CS_NOAPI_CHK context property to CS_TRUE).

• BLK_NOAPI_CHK does not affect testing for errors, such as network
errors or conversion overflow, that can occur in well-behaved
applications.

BLK_SENSITIVITY_LBL property

• BLK_SENSITIVITY_LBL is useful in applications that perform bulk-
copy operations to or from Secure SQL Server.
140 Open Client and Open Server

CHAPTER 4 Bulk-Library Routines
• BLK_SENSITIVITY_LBL determines whether or not data for the
sensitivity column is included in a bulk-copy operation. By default,
sensitivity column data is not included.

• BLK_SENSITIVITY_LBL affects both bulk-copy-in and bulk-copy-out
operations.

• If BLK_SENSITIVITY_LBL is CS_TRUE, the application must supply
data for the sensitivity column on bulk-copy-in operations and will receive
data from the sensitivity column on bulk-copy-out operations.

If BLK_SENSITIVITY_LBL is CS_FALSE, the application does not
need to supply data for the sensitivity column on bulk-copy- in operations
and will not receive data from the sensitivity column on bulk-copy-out
operations.

• BLK_SENSITIVITY_LBL is applicable to Secure SQL Server copies
only. blk_init fails if BLK_SENSITIVITY_LBL is CS_TRUE and the
application attempts a bulk-copy operation against a standard Adaptive
Server.

• Application users copying into the sensitivity column must have the
bcpin_labels_role role activated on Secure SQL Server. blk_init fails if the
bcpin_labels_role is not activated for the connection’s user.

• For more information about Secure SQL Server, see your Secure SQL
Server documentation.

See also blk_alloc, blk_init

blk_rowalloc
Description A server-side routine allocates space for a formatted bulk-copy row.

Syntax CS_RETCODE blk_rowalloc(srvproc, row)

 SRV_PROC *srvproc;
 CS_BLK_ROW **row;

Parameters srvproc
A pointer to the SRV_PROC structure associated with the client sending
formatted bulk-copy rows. It contains all the information that Server-
Library uses to manage communications and data between the Open Server
and the client.
Common Libraries Reference Manual 141

blk_rowdrop
row
A pointer to a pointer to a CS_BLK_ROW structure.

The CS_BLK_ROW structure is a hidden structure that holds formatted
bulk-copy rows sent from the client.

Return value blk_rowalloc returns:

Usage • blk_rowalloc is a server-side routine that is useful in gateway applications.

• This routine allocates space in which blk_getrow will place the formatted
bulk-copy row.

• The row space is used by all calls to blk_getrow.

• When all rows have been retrieved and sent to the remote server, call
blk_rowdrop to drop the space allocated for the row.

See also blk_getrow, blk_rowdrop, blk_gettext

blk_rowdrop
Description A server-side routine, frees space previously allocated for a formatted bulk-

copy row.

Syntax CS_RETCODE blk_rowdrop(srvproc, row)

 SRV_PROC *srvproc;
 CS_BLK_ROW *row;

Parameters srvproc
A pointer to the SRV_PROC structure associated with the client sending
formatted bulk-copy rows. It contains all the information that Server-
Library uses to manage communications and data between the Open Server
application and the client.

row
A pointer to a hidden CS_BLK_ROW structure that was allocated by a call
to blk_rowalloc.

Return value blk_rowdrop returns:

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.
142 Open Client and Open Server

CHAPTER 4 Bulk-Library Routines
Usage • blk_rowdrop is a server-side routine that is useful in gateway applications.

• This routine frees space previously allocated by blk_rowalloc.

• It must be called after all formatted bulk-copy rows have been retrieved
and sent to the remote server.

See also blk_getrow, blk_rowalloc, blk_gettext

blk_rowxfer
Description Transfers one or more rows during a bulk-copy operation without specifying or

receiving a row count.

Syntax CS_RETCODE blk_rowxfer(blkdesc)

 CS_BLKDESC *blkdesc;

Parameters blkdesc
A pointer to the CS_BLKDESC that is serving as a control block for the
bulk-copy operation. blk_alloc allocates a CS_BLKDESC structure.

Return value blk_rowxfer returns:

Table 4-7: blk_rowxfer return values

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_PENDING Asynchronous network I/O is in effect. For more
information, see the “Asynchronous Programming” topics
page in the Open Client Client-Library/C Reference
Manual.

CS_BLK_HAS_TEXT The row contains one or more columns which have been
marked for transfer using blk_textxfer.

The application must call blk_textxfer to transfer data for
these columns before calling blk_rowxfer to transfer the
next row.
Common Libraries Reference Manual 143

blk_rowxfer
Examples

/*
 ** BulkCopyIn()
 ** BLKDATA and DATA_END are defined in the bulk copy
 ** example program.
 */

 CS_STATIC CS_RETCODE
 BulkCopyIn(connection)
 CS_CONNECTION *connection;
 {
 CS_BLKDESC *blkdesc;
 CS_DATAFMT datafmt;/* variable descriptions */
 Blk_Data *dptr;/* data for transfer */
 CS_INTdatalen[5];/* variable data length */
 CS_INT len;
 CS_INT numrows;

 /*
 ** Ready to start the bulk copy in now that all the
 ** connections have been made and have a table name.
 ** Start by getting the bulk descriptor initializing.
 */
 ...CODE DELETED.....

CS_END_DATA When copying data out from a database, blk_rowxfer
returns CS_END_DATA to indicate that all rows have been
transferred.

When copying data into a database, blk_rowxfer does not
return CS_END_DATA.

CS_ROW_FAIL A recoverable error occurred while fetching a row.

Applies to bulk-copy-out operations only.

Recoverable errors include memory allocation failures and
conversion errors (such as overflowing the destination
buffer) that occur while copying row values to program
variables. In the case of buffer-overflow errors, blk_rowxfer
sets the corresponding *indicator variable(s) to a value
greater than 0. Indicator variables must have been specified
in the application’s calls to blk_bind.

When blk_rowxfer returns CS_ROW_FAIL, the application
must continue calling blk_rowxfer to keep retrieving rows,
or it can call ct_cancel to cancel the remaining results.

Returns Indicates
144 Open Client and Open Server

CHAPTER 4 Bulk-Library Routines
 /*
 ** Now to bind the variables to the columns and
 ** transfer the data
 */
 datafmt.locale = 0;
 datafmt.count = 1;
 dptr = BLKDATA;
 while (dptr->pub_id != DATA_END)
 {
 datafmt.datatype = CS_INT_TYPE;
 datafmt.maxlength = sizeof(CS_INT);
 datalen[0] = CS_UNUSED;

 if (blk_bind(blkdesc, 1, &datafmt, &dptr->pub_id,
 &datalen[0], NULL) != CS_SUCCEED)
 {
 ex_error("BulkCopyIn: blk_bind(1) failed");
 return CS_FAIL;
 }
 datafmt.datatype = CS_CHAR_TYPE;
 datafmt.maxlength = MAX_PUBNAME - 1;
 datalen[1] = strlen(dptr->pub_name);
 if (blk_bind(blkdesc, 2, &datafmt, dptr->pub_name,
 &datalen[1], NULL) != CS_SUCCEED)
 {
 ex_error("BulkCopyIn: blk_bind(2) failed");
 return CS_FAIL;
 }
 datafmt.maxlength = MAX_PUBCITY - 1;
 datalen[2] = strlen(dptr->pub_city);
 if (blk_bind(blkdesc, 3, &datafmt, dptr->pub_city,
 &datalen[2], NULL) != CS_SUCCEED)
 {
 ex_error("BulkCopyIn: blk_bind(3) failed");
 return CS_FAIL;
 }
 datafmt.maxlength = MAX_PUBST - 1;
 datalen[3] = strlen(dptr->pub_st);
 if (blk_bind(blkdesc, 4, &datafmt, dptr->pub_st,
 &datalen[3], NULL) != CS_SUCCEED)
 {
 ex_error("BulkCopyIn: blk_bind(4) failed");
 return CS_FAIL;
 }
 datafmt.maxlength = MAX_BIO - 1;
 datalen[4] = strlen((char *)dptr->pub_bio);
 if (blk_bind(blkdesc, 5, &datafmt, dptr->pub_bio,
Common Libraries Reference Manual 145

blk_rowxfer_mult
 &datalen[4], NULL) != CS_SUCCEED)
 {
 ex_error("BulkCopyIn: blk_bind(5) failed");
 return CS_FAIL;
 }
 if (blk_rowxfer (blkdesc) == CS_FAIL)
 {
 ex_error("BulkCopyIn: blk_rowxfer() failed");
 return CS_FAIL;
 }
 dptr++;
 }

 /* ALL the rows sent so clear up */
 ...CODE DELETED.....

 return CS_SUCCEED;
 }

Usage • blk_rowxfer is a client-side routine.

• blk_rowxfer is equivalent to calling blk_rowxfer_mult with a NULL
row_count parameter.

• See blk_rowxfer_mult in this chapter for more information.

See also blk_bind, blk_rowxfer_mult, blk_textxfer

blk_rowxfer_mult
Description Transfers one or more rows during a bulk-copy operation.

Syntax CS_RETCODE blk_rowxfer_mult(blkdesc, row_count)

 CS_BLKDESC *blkdesc;
 CS_INT *row_count;

Parameters blkdesc
A pointer to the CS_BLKDESC that is serving as a control block for the
bulk-copy operation. blk_alloc allocates a CS_BLKDESC structure.
146 Open Client and Open Server

CHAPTER 4 Bulk-Library Routines
row_count
A pointer to a CS_INT variable or NULL.

For bulk-copy-out operations, blk_rowxfer_mult returns with *row_count set
to the number of rows read by the call. If row_count is NULL, this
information is not available to the application. (The application can call
blk_done to determine how many rows have been transferred by the
cumulative number of blk_rowxfer_mult calls since the last blk_done call—
but it is simpler to use a row count variable.

For bulk-copy-in operations, blk_rowxfer_mult sends the number of rows
specified by *row_count to the server. If row_count is NULL or *row_count
is 0, then the number of rows specified by datafmt−>count in previous calls
to blk_bind are sent to the server.

row_count is used by applications that perform array binding. For more
information on this feature, see “Array binding” on page 119.

Return value blk_rowxfer_mult returns:

Table 4-8: blk_rowxfer_mult return values

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_PENDING Asynchronous network I/O is in effect. For more
information, see the “Asynchronous Programming”
topics page in the Open Client Client-Library/C
Reference Manual.

CS_BLK_HAS_TEXT The row contains one or more columns which have been
marked for transfer using blk_textxfer.

The application must call blk_textxfer to transfer data for
these columns row before calling blk_rowxfer_mult to
transfer the next row.

CS_END_DATA When copying data out from a database, blk_rowxfer_mult
returns CS_END_DATA to indicate that all rows have
been transferred.

When copying data into a database, blk_rowxfer_mult does
not return CS_END_DATA.
Common Libraries Reference Manual 147

blk_rowxfer_mult
A common reason for a blk_rowxfer_mult failure is conversion error.

Usage • blk_rowxfer_mult is a client-side routine.

• An application calls blk_rowxfer_mult to transfer rows between program
variables (bound with blk_bind) and the database table:

• During a bulk-copy-in operation, blk_rowxfer_mult copies data from
program variables to the database.

• During a bulk-copy-out operation, blk_rowxfer_mult copies data from
the database and places it in program variables.

• Application variables must first be bound to table columns with blk_bind
for blk_rowxfer_mult to read or write their contents.

blk_rowxfer_mult and Bulk-Copy-In operations

• To transfer rows into a database, an application calls blk_rowxfer_mult
repeatedly to transfer values from program variables to the database table.
See “Program structure for Bulk-Copy-In operations” on page 97 for the
sequence of Bulk-Library calls used to transfer data into a database table.

CS_ROW_FAIL A recoverable error occurred while fetching a row.
Applies to bulk-copy-out operations only.

blk_rowxfer_mult sets *row_count to indicate the number
of rows transferred (including the row containing the
error) and transfers no rows after that row. The next call
to blk_rowxfer_mult will read rows starting with the row
after the one where the error occurred.

Recoverable errors include memory allocation failures
and conversion errors (such as overflowing the
destination buffer) that occur while copying row values to
program variables. In the case of buffer-overflow errors,
blk_rowxfer_mult sets the corresponding *indicator
variable(s) to a value greater than 0. Indicator variables
must have been specified in the application’s calls to
blk_bind.

When blk_rowxfer_mult returns CS_ROW_FAIL, the
application must continue calling blk_rowxfer_mult to
keep retrieving rows, or it can call ct_cancel to cancel the
remaining results.

Returns Indicates
148 Open Client and Open Server

CHAPTER 4 Bulk-Library Routines
• During bulk-copy-in operations, the value of blk_rowxfer_mult’s
*row_count parameter overrides the array lengths that were passed to
blk_bind (as datafmt−>count). The number of rows transferred per call is
determined as follows:

• If the application passes the address of a row count variable as the
row_count parameter, then blk_rowxfer_mult transfers either
 datafmt−>count or *row_count rows, whichever is smaller.

• If the application passes row_count as NULL, blk_rowxfer_mult always
transfers datafmt−>count rows.

For example, if an application was uploading 103 rows and it used array
binding to transfer 10 rows at a time, the application would:

• Pass datafmt−>count as 10 in all calls to blk_bind

• Set *row_count to 10 for the first 10 calls to blk_rowxfer_mult

• Set *row_count to 3 for the final call to blk_rowxfer_mult

• To upload row data that contains large text or image column values, you
can forgo array binding and use blk_textxfer together with blk_rowxfer_mult
to send large values one piece at a time. See “Transferring large text or
image values in chunks” on page 150 for details.

• A bulk-copy-in operation is not automatically terminated if
blk_rowxfer_mult returns CS_FAIL. An application can continue to call
blk_rowxfer_mult after correcting or discarding the problem row.

blk_rowxfer_mult and bulk-copy-out operations

• To transfer rows out of a database, an application calls blk_rowxfer_mult
repeatedly to read column values from the server and place them in
program variables. See “Program structure for Bulk-Copy-Out
operations” on page 99 for the sequence of Bulk-Library calls used to read
data from a database table.

• For bulk copies out of a database, the use of blk_rowxfer_mult is similar to
the use of the Client-Library ct_fetch routine.

• The number of rows to be read by blk_rowxfer_mult is determined by the
value passed as datafmt−>count in the application’s calls to blk_bind.
blk_rowxfer_mult attempts to read this number of rows and write the data
to program variables.
Common Libraries Reference Manual 149

blk_rowxfer_mult
Fewer rows may be read by the final call to blk_rowxfer_mult (that is, the
call that retrieves the last row in the table) or if a conversion error occurs
while data is being retrieved. The former condition is indicated by a return
code of CS_END_DATA; the latter, by CS_ROW_FAIL. In either case,
blk_rowxfer_mult returns with *row_count set to the actual number of rows
read.

• To download row data that contains large text or image column values, you
can forgo array binding and use blk_textxfer together with blk_rowxfer_mult
to read large values one piece at a time. See Transferring large text or
image values in chunks, below, for details.

Transferring large text or image values in chunks

• If array binding is not in effect, an application can use blk_textxfer in
conjunction with blk_rowxfer_mult to transfer rows containing large text or
image values. For information on how to do this, see “Bulk-Library client
programming” on page 93.

• For tables that contain large text or image columns, it is often convenient
for an application to transfer the text or image data in fixed-size chunks
rather than all at once. If a column is transferred all at once, the application
must have sufficient buffer space to hold the value in its entirety.

• To transfer large column values in chunks:

• The application passes buffer as NULL in its blk_bind call for the
column. This setting specifies that data for this column will be
transferred using blk_textxfer. For a bulk-copy-in operation, the
application must also specify the length of the column value as
blk_bind’s *datalen parameter.

• The application calls blk_rowxfer_mult to transfer the row.
blk_rowxfer_mult returns CS_BLK_HAS_TEXT, indicating that Bulk-
Library expects further data for this row to be transferred with
blk_textxfer.

• For each column requiring transfer, the application calls blk_textxfer
in a loop until blk_textxfer returns CS_END_DATA, indicating that all
of the data for this column has been transferred.

See also blk_bind, blk_textxfer
150 Open Client and Open Server

CHAPTER 4 Bulk-Library Routines
blk_sendrow
Description A server-side routine, sends a formatted bulk-copy row obtained from

blk_getrow.

Syntax CS_RETCODE blk_sendrow(blkdesc, row)

 CS_BLKDESC *blkdesc;
 CS_BLK_ROW *row;

Parameters blkdesc
A pointer to the CS_BLKDESC that is serving as a control block for the
bulk-copy operation. blk_alloc allocates a CS_BLKDESC structure.

row
A pointer to a CS_BLK_ROW structure. The CS_BLK_ROW is a hidden
structure that holds formatted bulk-copy rows sent from the client. A
gateway application can fill in a CS_BLK_ROW structure with a formatted
row by calling the server-side routine blk_getrow.

Return value blk_sendrow returns:

Table 4-9: blk_sendrow return values

Usage • blk_sendrow is a server-side routine.

• A gateway application uses blk_sendrow in conjunction with blk_getrow.
Together, the two routines enable a gateway application to receive
formatted bulk-copy rows from an Open Client application and send them
on to Adaptive Server.

• blk_sendrow is a gateway-specific substitute for blk_rowxfer or
blk_rowxfer_mult. An application can call blk_sendrow only after calling
blk_getrow to retrieve a formatted row.

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BLK_HAS_TEXT The row contains one or more text, image, sensitivity, or
boundary columns. The application must call blk_gettext
and blk_sendtext to transfer the columns for this row
before calling blk_getrow and blk_sendrow to transfer the
next row.

CS_PENDING Asynchronous network I/O is in effect. For more
information, see the “Asynchronous Programming” topics
page in the Open Client Client-Library/C Reference
Manual.
Common Libraries Reference Manual 151

blk_sendtext
• The sequence of calls in the gateway application is:

• blk_getrow, to obtain a formatted bulk-copy row

• blk_sendrow, to send the formatted row to Adaptive Server

If blk_getrow returns CS_BLK_HAS_TEXT, the application must call the
following routines in a loop, until blk_gettext returns CS_END_DATA:

• blk_gettext, to pick up a chunk of text, image, sensitivity, or boundary
data

• blk_sendtext, to send a chunk of text, image, sensitivity, or boundary
data

Only one blk_gettext/blk_sendtext loop is required, no matter how many
text, image, sensitivity, or boundary columns are being transferred.

See also blk_init, blk_sendtext, blk_colval, blk_getrow, blk_gettext

blk_sendtext
Description A server-side routine, sends text, image, sensitivity, or boundary data in a

formatted bulk-copy row obtained from blk_getrow.

Syntax CS_RETCODE blk_sendtext(blkdesc, row, buffer,
 buflen)

 CS_BLKDESC *blkdesc;
 CS_BLK_ROW *row;
 CS_BYTE *buffer;
 CS_INT buflen;

Parameters blkdesc
A pointer to the CS_BLKDESC that is serving as a control block for the
bulk-copy operation. blk_alloc allocates a CS_BLKDESC structure.

row
A pointer to a CS_BLK_ROW structure. The CS_BLK_ROW structure is a
hidden structure that holds formatted bulk-copy rows sent from the client. A
gateway application can fill in a CS_BLK_ROW structure with a formatted
row by calling the blk_getrow routine.

buffer
A pointer to the space from which blk_sendtext picks up the chunk of text,
image, sensitivity, or boundary data.
152 Open Client and Open Server

CHAPTER 4 Bulk-Library Routines
buflen
The length, in bytes, of the *buffer data space.

Return value blk_sendtext returns:

Table 4-10: blk_sendtext return values

Usage • blk_sendtext is a client-side routine.

• A gateway application uses blk_sendtext in conjunction with blk_gettext.
Together, the two routines enable a gateway application to receive chunks
of text, image, sensitivity, or boundary data in formatted bulk-copy rows
from an Open Client application and send them on to Adaptive Server.

• blk_sendtext is a gateway-specific substitute for blk_textxfer. An
application can call blk_sendtext only after calling blk_gettext to retrieve a
chunk of text, image, sensitivity, or boundary data belonging to a
formatted row.

• The sequence of calls in the gateway application is:

• blk_getrow, to pick up a formatted bulk-copy row

• blk_sendrow, to send the formatted row to Adaptive Server

If blk_sendrow returns CS_BLK_HAS_TEXT, the application must call
the following routines in a loop, until blk_gettext returns CS_END_DATA:

• blk_gettext, to pick up a chunk of text, image, sensitivity, or boundary
data

• blk_sendtext, to send a chunk of text, image, sensitivity, or boundary
data

Only one blk_gettext/blk_sendtext loop is required, no matter how many
text, image, sensitivity, or boundary columns are being transferred.

See also blk_init, blk_sendrow, blk_colval, blk_getrow, blk_gettext

Returns indicateS

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_PENDING Asynchronous network I/O is in effect. For more
information, see the “Asynchronous Programming” topics
page in the Open Client Client-Library/C Reference Manual.
Common Libraries Reference Manual 153

blk_srvinit
blk_srvinit
Description a Server-side routine, copies descriptions of server table columns to the client,

if required.

Syntax CS_RETCODE blk_srvinit(srvproc, blkdescp)

 SRV_PROC *srvproc;
 CS_BLKDESC *blkdescp;

Parameters srvproc
A pointer to the SRV_PROC structure associated with the client receiving
column descriptions. It contains all the information that Server-Library uses
to manage communications and data between the Open Server application
and the client.

blkdescp
A pointer to a structure containing information about bulk-copy data. This
structure must have been previously allocated with a call to blk_alloc and
initialized through a call to blk_init. This structure is used to correctly
interpret incoming formatted bulk-copy rows.

Return value blk_srvinit returns:

Usage • blk_srvinit is a server-side routine that is useful in gateway applications.

• This routine sends the current server table column descriptions in the
CS_BLKDESC structure to the client, if the client’s TDS (Tabular Data
Stream™) version is 5.0 or later.

• This routine must be called from within a SRV_LANGUAGE event
handler, in response to an “insert bulk” request from the client.

• Once blk_srvinit has successfully returned descriptions to the client, the
Open Server application’s SRV_BULK event handler can begin reading
bulk data from the client. The event handler first calls blk_rowalloc, then
calls blk_getrow and blk_sendrow in a loop to transfer the bulk-copy
rows.

• blk_init places the descriptions in the CS_BLKDESC structure, so the
gateway application must call blk_init before calling blk_srvinit.

See also blk_init, blk_getrow, blk_rowalloc, blk_sendrow

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed; no action was taken.
154 Open Client and Open Server

CHAPTER 4 Bulk-Library Routines
blk_textxfer
Description Transfers a column’s data in chunks during a bulk-copy operation.

Syntax CS_RETCODE blk_textxfer(blkdesc, buffer, buflen,
 outlen)

 CS_BLKDESC *blkdesc;
 CS_BYTE *buffer;
 CS_INT buflen;
 CS_INT *outlen;

Parameters blkdesc
A pointer to the CS_BLKDESC that is serving as a control block for the
bulk-copy operation. blk_alloc allocates a CS_BLKDESC structure.

buffer
A pointer to the space from which blk_textxfer picks up the chunk of text,
image, sensitivity, or boundary data.

buflen
The length, in bytes, of the *buffer data space.

outlen
A pointer to an integer variable. outlen is not used for a bulk-copy-in
operation and should be passed as NULL.

For a bulk-copy-out operation, *outlen represents the length, in bytes, of the
data copied to *buffer.

Return value blk_textxfer returns:

Table 4-11: blk_textxfer return values

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_END_DATA When copying data out from a database, blk_textxfer returns
CS_END_DATA to indicate that a complete column value
has been sent.

When copying data into a database, blk_textxfer returns
CS_END_DATA when an amount of data equal to
blk_bind’s *datalen has been sent.

CS_PENDING Asynchronous network I/O is in effect. For more
information, see the “Asynchronous Programming” topics
page in the Open Client Client-Library/C Reference Manual.
Common Libraries Reference Manual 155

blk_textxfer
Examples

 /*
 ** BulkCopyIn()
 **
 ** BLKDATA and DATA_END are defined in the bulk copy
 ** example program.
 */

 CS_STATIC CS_RETCODE
 BulkCopyIn(connection)
 CS_CONNECTION *connection;
 {
 CS_BLKDESC *blkdesc;
 CS_DATAFMT datafmt; /* variable descriptions */
 Blk_Data *dptr; /* data for transfer */
 CS_INT datalen[5]; /* variable data length */
 CS_INT len;
 CS_INT numrows;

 /*
 ** Ready to start the bulk copy in now that all the
 ** connections have been made and have a table name.
 ** Start by getting the bulk descriptor initializing.
 */
 ...CODE DELETED.....

 /* Bind columns and transfer rows */
 dptr = BLKDATA;
 while (dptr->pub_id != DATA_END)
 {
 datafmt.datatype = CS_INT_TYPE;
 datafmt.count = 1;
 datafmt.maxlength = sizeof(CS_INT);
 datalen[0] = CS_UNUSED;

 if (blk_bind(blkdesc, 1, &datafmt, &dptr->pub_id,
 &datalen[0], NULL) != CS_SUCCEED)
 {
 ex_error("BulkCopyIn: blk_bind(1) failed");
 return CS_FAIL;
 }
 datafmt.datatype = CS_CHAR_TYPE;
 datafmt.maxlength = MAX_PUBNAME - 1;
 datalen[1] = strlen(dptr->pub_name);
 if (blk_bind(blkdesc, 2, &datafmt, dptr->pub_name,
 &datalen[1], NULL) != CS_SUCCEED)
156 Open Client and Open Server

CHAPTER 4 Bulk-Library Routines
 {
 ex_error("BulkCopyIn: blk_bind(2) failed");
 return CS_FAIL;
 }
 datafmt.maxlength = MAX_PUBCITY - 1;
 datalen[2] = strlen(dptr->pub_city);
 if (blk_bind(blkdesc, 3, &datafmt, dptr->pub_city,
 &datalen[2], NULL) != CS_SUCCEED)
 {
 ex_error("BulkCopyIn: blk_bind(3) failed");
 return CS_FAIL;
 }
 datafmt.maxlength = MAX_PUBST - 1;
 datalen[3] = strlen(dptr->pub_st);
 if (blk_bind(blkdesc, 4, &datafmt, dptr->pub_st,
 &datalen[3], NULL) != CS_SUCCEED)
 {
 ex_error("BulkCopyIn: blk_bind(4) failed");
 return CS_FAIL;
 }
 datafmt.datatype = CS_TEXT_TYPE;
 datafmt.maxlength = MAX_BIO - 1;
 datalen[4] = strlen((char *)dptr->pub_bio);
 if (blk_bind(blkdesc, 5, &datafmt, NULL,
 &datalen[4], NULL) != CS_SUCCEED)
 {
 ex_error("BulkCopyIn: blk_bind(5) failed");
 return CS_FAIL;
 }
 if (blk_rowxfer (blkdesc) == CS_FAIL)
 {
 ex_error("BulkCopyIn: EX_BLK - Failed on \
 blk_rowxfer.");
 return CS_FAIL;
 }
 if (blk_textxfer(blkdesc, dptr->pub_bio,
 datalen[4], &len) == CS_FAIL)
 {
 ex_error("BulkCopyIn: blk_rowxfer() failed");
 return CS_FAIL;
 }
 dptr++;
 }
 /* ALL the rows sent so clear up */
 ...CODE DELETED.....

Common Libraries Reference Manual 157

blk_textxfer
 return CS_SUCCEED;
 }

Usage • blk_textxfer is a client-side routine.

• blk_textxfer transfers large text or image values. blk_textxfer does not
perform any data conversion; it simply transfers data.

• There are two ways for an application to transfer text and image values
during a bulk-copy operation:

• The application can treat text or image data like ordinary data: that is,
it can bind columns to program variables and transfer rows using
blk_rowxfer_mult. Generally, this method is convenient for small text
and image values but not for larger ones. If the entire value is to be
transferred by blk_rowxfer_mult, the application must allocate
program variables that are large enough to hold entire column values.

• Using blk_textxfer, the application can transfer text or image data in
chunks. This method allows the application to use a transfer buffer
that is smaller than the values to be transferred.

• An application marks a column for transfer through blk_textxfer by calling
blk_bind for the column with a NULL buffer parameter. If the transfer is
going into the database, pass the total length of the value as blk_bind’s
*datalen parameter.

• For more information about using blk_textxfer, see Chapter 3, “Bulk-
Library.”

Using blk_textxfer for Bulk-Copy-In operations

• An application’s blk_bind calls do not have to be in column order, but data
for blk_textxfer columns must be transferred in column order.

For example, an application can bind columns 3 and 4, and then mark
columns 2 and 1 for transfer using blk_textxfer. After calling
blk_rowxfer_mult to copy data for columns 3 and 4, the application needs
to call blk_textxfer to transfer data for column 1 before calling it for column
2.

• When copying data into a database, if a text, image, boundary, or sensitivity
datatype column is marked for transfer using blk_textxfer, all subsequent
columns of these types must also be marked for transfer using blk_textxfer.

For example, an application cannot mark the first text column in a row for
transfer using blk_textxfer and then bind a subsequent text column to a
program variable.
158 Open Client and Open Server

CHAPTER 4 Bulk-Library Routines
• When copying data into a database, an application is responsible for
calling blk_textxfer the correct number of times to transfer the complete
text or image value.

Using blk_textxfer for Bulk-Copy-Out operations

• When using blk_textxfer to copy data out of a database, only columns that
follow bound columns are available for transfer using blk_textxfer. In other
words, columns being transferred using blk_textxfer must reside at the end
of row.

For example, an application cannot bind the first two columns in a row to
program variables, mark the third for transfer using blk_textxfer, and bind
the fourth.

• When copying data out from a database, blk_textxfer returns
CS_END_DATA to indicate that a complete column value has been
copied.

See also blk_bind, blk_rowxfer_mult
Common Libraries Reference Manual 159

blk_textxfer
160 Open Client and Open Server

Index
A
actions

CS_CLEAR 13
CS_GET 13
CS_SET 13

addition operation 10
allocating

a CS_BLKDESC structure 106
a CS_CONTEXT structure 32, 37
a CS_LOCALE structure 51

ANSI-style binds
null substitution values not used when in effect

 77
applications, compiling and linking. See Open

Client/Server Programmer’s Supplement viii
arithmetic operations

CS_ADD 10
CS_DIV 10
CS_MULT 10
CS_SUB 10
performing 10

array binding 118
transferring rows during a bulk copy operation

 150
automatic datatype conversion 30

B
bcpin_labels_role role 100
binding

See blk_bind 116
bkpublic.h header file 92
blk_alloc 106, 109

code example 109
reason for failure 107
what to do before calling 108

blk_bind 109, 120
array binding 119
Common Libraries Reference Manual
binding a program variable and a database column
 109

binding a program variable to a database column
 109

clearing bindings 118
code example 120
usage for bulk-copy-in operations 116
usage for bulk-copy-out operations 117
using with blk_rowxfer 116
using with blk_textxfer 116

blk_colval 120, 121
blk_default 122, 123

when not to call 123
when to call 122

blk_describe 123, 125
CS_DATAFMT fields it uses 123
purpose 125

blk_done 126, 129
code example 129
usage for bulk-copy-in operations 128
usage for bulk-copy-out operations 128

blk_drop 129, 130
code example 130
when to call 130

blk_getrow 130, 132
difference from blk_gettext 131
what to do next 132

blk_gettext 132, 134
using with blk_getrow and blk_colval 133
when to call 134

BLK_IDENTITY property 138
BLK_IDSTARTNUM property 139
blk_init 134, 136

code example 136
BLK_NOAPI_CHK property 139
blk_props 136, 141

when to call 138
blk_rowalloc 141, 142
blk_rowdrop 142, 143

when to call 143
161

Index
blk_rowxfer 143, 146
code example 146
using with blk_bind 116
using with blk_textxfer 150

blk_rowxfer_mult 146, 150
purpose 148
reason for failure 148

blk_sendrow 151, 152
when to use instead of blk_rowxfer 151

blk_sendtext 152, 153
using in conjunction with blk_gettext 153
when to use instead of blk_textxfer 153

BLK_SENSITIVITY_LBL property 100, 139
BLK_SLICENUM property 139
blk_srvinit 154

called in response to an ldquoinsert bulkldquo request
 154

blk_textxfer 155, 159
code example 159
usage for bulk-copy-in operations 158
usage for bulk-copy-out operations 159
using with blk_bind 116
using with blk_rowxfer_mult 150

BLK_VERSION_100 Bulk-Library version indicator 107
BLK_VERSION_110 Bulk-Library version indicator 107
boundary

retrieving the boundary portion of an incoming bulk
copy formatted row 132

sending boundary data in a formatted bulk copy row
 152

bulk copy
advantages over alternatives 94
allocating space for a formatted bulk copy row 141
array binding 150
bkpublic.h header file 92
BLK_SENSITIVITY_LBL property 100
bulk copy option 94
bulk copy request 101
client-side bulk copy routines 93
copying data into a database 94
copying data out from a database 97
copying data to and from a Secure SQL Server 100
ctosdemo.c example program 104
deallocating descriptor structure 129
ensuring recoverability 94
error handling for client-side routines 94
162
error handling for server-side routines 101
examining each row of a bulk copy operation 100
example program 104
freeing space for a formatted bulk copy row 142
getting the column value from a formatted bulk copy

row 120
high-speed transfer 94
identity column 139
logging row inserts 94
marking a complete bulk copy operation or batch

 126
processing requests using event handlers 101
purpose 93
retrieving and storing a formatted bulk copy row

 130
retrieving the text, image, sensitivity, or boundary

portion of an incoming bulk copy formatted row
 132

sending a formatted bulk copy row 151
sending text, image, sensitivity, or boundary data in a

formatted bulk copy row 152
sensitivity column data 141
server-side bulk copy routines 100
sp_dboption system procedure 94
SQL Server bulk copy option 94
transferring a column’s data in chunks 155
transferring one or more rows 143, 146
transferring text and image data in chunks 150
types of bulk requests 101
writetext request 101

bulk copy operations
canceling 128
CS_BLK_ALL 126
CS_BLK_BATCH 126
CS_BLK_CANCEL 126
initiating 134

bulk copy option 94
bulk copy request types

SRV_IMAGELOAD 103
SRV_TEXTLOAD 103

Bulk descriptor structure
properties

BLK_IDENTITY 138

BLK_IDSTARTNUM 139

BLK_SLICENUM 139
bulk descriptor structure
Open Client and Open Server

Index
allocating 106
setting and retrieving properties 136

bulk descriptor structure properties
BLK_NOAPI_CHK 139
BLK_SENSITIVITY_LBL 139

bulk-library
compatibility with Client-Library version levels

 107
specifying the desired programming interface

version level 107

C
character sets

converting between 31, 62
when to install custom character conversion

routines 63
Client-Library callbacks

installing 21
collating sequence

changing 81
column

binding a program variable and database column
 109

copying a column description to a client 154
getting the column value from a formatted bulk

copy row 120
marking a column for transfer 158
retrieving a column’s default value 122
retrieving a column’s description 123
transferring a column’s data in chunks 155

comparing
data values 12
strings 81

compiling and linking. See Open Client/Server
Programmer’s Supplement viii

connection
retrieving the current connection 71

constructing native language message strings 78
context properties 17

changing the values of 3
context structure. See CS_CONTEXT structure 3
conversion

and character sets 23
clearing a custom conversion routine 74
Common Libraries Reference Manual
converting a machine-readable datetime value into a
user-accessible format 43

converting between datatypes 25
converting between standard and user-defined

datatypes 30
converting data between character sets 31
ct_bind sets up automatic datatype conversion 30
defining a custom conversion routine 74
exceptional behavior 30
how custom conversion routines work 73
how to tell if a datatype conversion is permitted 30
indicating whether a specific datatype conversion is

available 86
installing custom conversion routines 30, 72

conversion multiplier
definition of 25
installing with cs_manage_convert 60

CS_12HOUR information type 47
CS_ADD arithmetic operation 10
CS_APPNAME property 14
CS_BINARY_TYPE datatype type 77
CS_BIT_TYPE datatype type 78
CS_BLK_ALL operation 126
CS_BLK_BATCH operation 126
CS_BLK_CANCEL operation 126
CS_BLK_HAS_TEXT return 131, 143, 147, 151
CS_BLK_IN bulk copy direction 134
CS_BLK_OUT bulk copy direction 134
CS_BLK_ROW structure 131
CS_BLKDESC structure

allocating 106
deallocating 109, 129
used by blk_srvinit 154

CS_BOUNDARY_TYPE datatype type 78
cs_calc 10, 11

reasons for failure 11
CS_CHAR_TYPE datatype type 78
CS_CLEAR action 13
CS_CLEAR operation 40
CS_CLIENTMSG_TYPE structure or message type

 39
cs_cmp 11, 13

reason for failure 13
cs_config 13, 23

comparison to ct_config and srv_props 17
CS_CONFIG_FILE property 14
163

Index
CS_CONTEXT structure 3
allocating 3, 32, 37
contents 35
customizing 3, 35
deallocating 4, 35
purpose 3

cs_conv_mult 23, 25
reason for failure 23

cs_convert 25, 32
reason for failure 29

cs_ctx_alloc 35
code example 35
difference from cs_ctx_global 35
reasons for failure 33
when to call 2

cs_ctx_drop 35, 36
code 35
when not to call 36

cs_ctx_global 36, 38
purpose 38
reasons for failure 37

CS_CURRENT_CONNECTION object
retrieving the current connection 71

CS_DATAFMT structure 3
fields used by blk_bind 109
fields used by cs_convert 26

CS_DATE 48, 50
CS_DATE_TYPE datatype type 43
CS_DATEORDER information type 47
CS_DATEREC structure

definition 43
CS_DATES_DMY1 conversion format 49
CS_DATES_DMY1_YYYY conversion format 49
CS_DATES_DMY2 conversion format 50
CS_DATES_DMY2_YYYY conversion format 50
CS_DATES_DMY3 conversion format 51
CS_DATES_DMY3_YYYY conversion format 51
CS_DATES_DMY4 conversion format 51
CS_DATES_DMY4_YYYY conversion format 51
CS_DATES_DYM1 conversion format 49, 50
CS_DATES_HMS conversion format 49
CS_DATES_LONG conversion format 49
CS_DATES_MDY1 conversion format 50
CS_DATES_MDY1_YYYY conversion format 50
CS_DATES_MDY2 conversion format 50
CS_DATES_MDY2_YYYY conversion format 50
164
CS_DATES_MDY3 conversion format 51
CS_DATES_MDY3_YYYY conversion format 51
CS_DATES_MYD1 conversion format 50
CS_DATES_SHORT conversion format 49
CS_DATES_YDM1 conversion format 50
CS_DATES_YMD1 conversion format 50
CS_DATES_YMD1_YYYY conversion format 50
CS_DATES_YMD2 conversion format 50
CS_DATES_YMD2_YYYY conversion format 50
CS_DATES_YMD3 conversion format 51
CS_DATES_YMD3_YYYY conversion format 51
CS_DATETIME_TYPE datatype type 12, 43, 78
CS_DATETIME4_TYPE datatype type 12, 43, 78
CS_DAYNAME information type 47
CS_DECIMAL_TYPE datatype type 11, 12, 78
cs_diag 38, 43

handles messages on a per-context basis 41
reasons for failure 39

CS_DIV arithmetic operation 10
CS_DT_CONVFMT information type 47
cs_dt_crack 45

and CS_DATEREC structure 43
cs_dt_info 45, 51

reason for failure 46
where it looks for national language locale

information 47
CS_EBADXLT return 64, 75
CS_EDIVZERO return 65, 75
CS_EDOMAIN return 65, 75
CS_END_DATA return 131, 133, 144, 147, 155
CS_ENOXLT return 64, 75
CS_EOVERFLOW return 65, 75
CS_EPRECISION return 65, 75
CS_ESCALE return 65, 75
CS_ESTYLE return 65, 75
CS_ESYNTAX return 65, 75
CS_EUNDERFLOW return 65, 75
CS_EXTERNAL_CONFIG property 14
CS_EXTRA_INF property 14

detailed description 19
inline message handling and 7, 41

CS_FLOAT_TYPE datatype type 78
CS_GET action 13
CS_GET operation 40
CS_IMAGE_TYPE datatype type 78
CS_INIT operation 40
Open Client and Open Server

Index
CS_INT_TYPE datatype type 78
CS_LC_ALL localization information type 55
CS_LC_COLLATE localization information type 55
CS_LC_CTYPE localization information type 55
CS_LC_MESSAGE localization information type

 55
CS_LC_TIME localization information type 55
cs_loc_alloc 51, 52

reason for failure 52
cs_loc_drop 52, 53
CS_LOC_PROP property 15

detailed description 19
cs_locale 53, 59

reasons for failure 56
using language, character set, and sort order names

 58
CS_LOCALE structure 3

allocating 20, 51
associating with a CS_CONTEXT structure 19
deallocating 53
defining 19
initializing 57
loading with localization values 53
retrieving the locale name 53
using an initialized structure 57
when a structure can be deallocated 53, 58
when in use 53

cs_manage_convert 60, 65
reason for failure 62

CS_MEM_ERROR return 64, 75
CS_MESSAGE_CB property 15

detailed description 20
CS_MONEY_TYPE datatype type 11, 12, 78
CS_MONEY4_TYPE datatype type 11, 12, 78
CS_MONTH information type 47
CS_MSGLIMIT operation 40
CS_MULT arithmetic operation 10
CS_NOMSG return 39

when returned 42
CS_NUMERIC_TYPE datatype type 11, 12, 78
CS_OBJDATA structure

definition 68
cs_objects 65, 71

object data structure 68
object name structure 66
saving, retrieving, or clearing objects 66
Common Libraries Reference Manual
types of matches achieved 71
use of a five-part key 70
when not to call 71
when to call 70

CS_OBJNAME structure
definition 66

CS_REAL_TYPE datatype type 78
CS_ROW_FAIL return 144, 148
CS_SENSITIVITY_TYPE datatype type 78
CS_SET action 13
cs_set_convert 71, 76

reason for failure 73
cs_setnull 76, 78

reasons for failure 77
CS_SHORTMONTH information type 47
CS_SMALLINT_TYPE datatype type 78
CS_STATUS operation 40
cs_strbuild 81
cs_strcmp 81, 83
CS_SUB arithmetic operation 10
CS_SYB_CHARSET localization information type

 55
CS_SYB_LANG localization information type 55
CS_SYB_LANG_CHARSET localization information

type 55
CS_SYB_SORTORDER localization information type

 55
CS_TEXT_TYPE datatype type 78
CS_TIME 48, 50
cs_time 83, 85

reasons for failure 85
CS_TIME_TYPE datatype type 43
CS_TINYINT_TYPE datatype type 78
CS_USERDATA property 15

detailed description 22
CS_USERTYPE constant 74
CS_VARBINARY_TYPE datatype type 77
CS_VARCHAR_TYPE datatype type 78
CS_VERSION property 16

detailed description 22
legal values 22

CS_VERSION_100 version number indicator 32, 37
CS_VERSION_110 version number indicator 32, 37
CS_WILDCARD constant 71
cs_will_convert 85, 89

code example 89
165

Index
CS-Library
API argument checking property 21
defined 1
error handling 4
example message callback 6
handling errors inline 38
handling errors with a message callback 20
how to use 2
installing a message callback 20
message callback property 20
properties 13
use in Client-Library and Server-Library applications

 1
cspublic.h header file 2
ct_config

compared with cs_config and srv_props 17
ctosdemo.c example program 104
ctpublic.h header file 2
customizing a context structure 35

D
data

transferring columns in chunks 155
transferring data in chunks 150

data values
comparing 12
converting between datatypes 25
saving, retrieving, or clearing objects and the data

associated with them 66
datatype

creating a user-defined datatype 73
CS_DATE 48
CS_TIME 48
defining null substitution values for user-defined

datatypes 74
user-defined datatypes must be greater than or equal to

CS_USERTYPE 74
datatype types

CS_BINARY_TYPE 77
CS_BIT_TYPE 78
CS_BOUNDARY_TYPE 78
CS_CHAR_TYPE 78
CS_DATETIME_TYPE 12, 78
CS_DATETIME4_TYPE 12, 78
166
CS_DECIMAL_TYPE 11, 12, 78
CS_FLOAT_TYPE 78
CS_IMAGE_TYPE 78
CS_INT_TYPE 78
CS_MONEY_TYPE 11, 12, 78
CS_MONEY4_TYPE 11, 12, 78
CS_NUMERIC_TYPE 11, 12, 78
CS_REAL_TYPE 78
CS_SENSITIVITY_TYPE 78
CS_SMALLINT_TYPE 78
CS_TEXT_TYPE 78
CS_TINYINT_TYPE 78
CS_VARBINARY_TYPE 77
CS_VARCHAR_TYPE 78

datatypes
CS_DATE 50
CS_TIME 50

Date 48
date, retrieving the current date 83
datetime

converting a machine-readable datetime value into a
user-accessible format 43

datetime values stored in an internal format 45
setting or retrieving language-specific datetime

information 45
deallocating

a CS_BLKDESC structure 129
a CS_CONTEXT structure 35
a CS_LOCALE structure 53
space for a formatted bulk copy row 142

default
retrieving a column’s default value 122

description
copying a column description to a client 154
retrieving a column’s description 123

division operation 10

E
error handling

and cs_config 5
and cs_diag 5

 4
and CS_NOAPI_CHK argument checking property

 21
Open Client and Open Server

Index
inline message handling 6
message callbacks 5
messages can be discarded 5
methods of handling errors 4, 40
switching between error handling methods 5, 40

event handlers
SRV_BULK 101
SRV_LANGUAGE 101

EX_ #defines x
ex_ routines x
Ex_ variables x
example programs

ctosdemo.c 104
example programs, running. See Open Client/Server

Programmer’s Supplement viii
extra information property 19

F
file names, for libraries. See Open Client/Server

Programmer’s Supplement viii

G
gateway applications

and blk_getrow 131
and blk_gettext 133
and blk_rowalloc 142
and blk_rowdrop 143
and blk_sendrow 151
and blk_sendtext 153
and blk_srvinit 154

H
header files 2

bkpublic.h 92
cspublic.h 2
ctpublic.h 2
ospublic.h 2

hidden structures 3
Common Libraries Reference Manual
I
Identity column

and BLK_IDSTARTNUM property 139
identity column

and BLK_IDENTITY property 138
and bulk copy operations 139

information types
CS_12HOUR 47
CS_DATEORDER 47
CS_DAYNAME 47
CS_DT_CONVFMT 47
CS_MONTH 47
CS_SHORTMONTH 47

inline message handling
and cs_diag 5
and CS_EXTRA_INF property 7, 41
advantages 5
clearing messages 41
initializing 7, 41
limiting number of messages 42
managed on a per-context basis 41
managing 38
retrieving messages 41, 42
side effects of initializing 5

L
language message strings

constructing 78
lexicographical string comparison 83
locale information property 19
locale name

defined 57
referencing 58
retrieving from a CS_LOCALE structure 53
retrieving the locale name previously used to load a

CS_LOCALE structure 58
localization

and CS_LOCALE structure 53
default localization information 20
defining custom values 52
valid language, character set, and sort order names

 59
what localization values define 52

localization information types
167

Index
CS_LC_ALL 55
CS_LC_COLLATE 55
CS_LC_CTYPE 55
CS_LC_MESSAGE 55
CS_LC_TIME 55
CS_SYB_CHARSET 55
CS_SYB_LANG 55
CS_SYB_LANG_CHARSET 55
CS_SYB_SORTORDER 55

M
marking

a column for transfer 158
a complete bulk copy operation or batch 126

message callback
example 6

message callbacks
and cs_config 5

 4
advantages 4
consequences of installing a message callback 5
defining 5
valid return values 6

message strings
constructing native language message strings 78

multiplication operation 10

N
native language message strings

constructing 78
NULL data

converting a NULL source value 77
defining a null substitution value 76

O
Open Client/Server Programmer’s Supplement viii
operation

initiating a bulk copy operation 134
performing an arithmetic operation 10

ospublic.h header file 2
168
P
program variable

binding with a database column 109
properties

CS_APPNAME 14
CS_CONFIG_FILE 14
CS_EXTERNAL_CONFIG 14
CS_EXTRA_INF 14
CS_LOC_PROP 15
CS_MESSAGE_CB 15
CS_USERDATA 15
CS_VERSION 16
setting and retrieving bulk descriptor structure

properties 136
setting and retrieving CS-Library properties 13

R
row

allocating space for a formatted bulk copy row 141
freeing space for a formatted bulk copy row 142
getting the column value from a formatted bulk copy

row 120
retrieving and storing a formatted bulk copy row

 130
retrieving the text, image, sensitivity, or boundary

portion of an incoming bulk copy formatted row
 132

sending a formatted bulk copy row 151
sending text, image, sensitivity, or boundary data in a

formatted bulk copy row 152
transferring one or more rows during a bulk copy

operation 143, 146

S
Secure SQL Server

bcpin_labels_role role 100
BLK_SENSITIVITY_LBL property 141
bulk copies 99
sensitivity labels 100

sensitivity column
bcpin_labels_role role 100
retrieving the sensitivity portion of an incoming bulk
Open Client and Open Server

Index
copy formatted row 132
sending sensitivity data in a formatted bulk copy

row 152
sensitivity label 100

BLK_SENSITIVITY_LBL property 141
whether sensitivity column data is included in a

bulk copy operation 141
sort order

changing in a CS_CONTEXT structure 83
changing in a CS_LOCALE structure 83

sorted string comparison 83
sp_dboption system procedure 94
SQL Server bulkcopy option 94
SQLCA structure

retrieving messages into 7
SQLCA_TYPE structure type 39
SQLCODE structure

retrieving messages into 7
SQLCODE_TYPE structure type 39
SQLSTATE structure

retrieving messages into 7
SQLSTATE_TYPE structure type 39
SRV_BULK event handler 101

using with blk_srvinit 154
what it should do 103

srv_get_text 103
SRV_IMAGELOAD request type 103
SRV_LANGUAGE event handler 101

calling blk_srvinit from within the event handler
 154

what it should do 102
srv_props

comparison to cs_config and ct_config 17
srv_text_info 103
SRV_TEXTLOAD request type 103
strings

comparing using a specified sort order 81
constructing native language message strings 78

structure types
CS_CLIENTMSG_TYPE 39
SQLCA_TYPE 39
SQLCODE_TYPE 39
SQLSTATE_TYPE 39

structures
CS_BLK_ROW 131
CS_CONTEXT 3
Common Libraries Reference Manual
CS_DATAFMT 3
CS_LOCALE 3
hidden structures 3
retrieving message information into structures 41
setting and retrieving bulk descriptor structure

properties 136
substitution values

default null substitution values 77
defining a null substitution value 76
not null when ANSI-style binds are in effect 77
null substitution values defined at context level 77

subtraction operation 10

T
text and image data

retrieving the text or image portion of an incoming
bulk copy formatted row 132

sending a text or image stream 101
sending text and image data in a formatted bulk copy

row 152
transferring data in chunks 158
transferring rows during a bulk copy operation

 150
transferring rows in chunks 150

time
retrieving the current time 83

transferring
a column’s data in chunks 155
rows during a bulk copy operation 143, 146

U
user-allocated data property 22
user-defined datatypes

must be greater than or equal to CS_USERTYPE
 74

V
values

comparing data values 12
variable
169

Index
binding a program variable and database column 109
version level property 22
170
 Open Client and Open Server

	Common Libraries Reference Manual
	Open Client™ and Open Server™
	About This Book
	Audience
	How to use this book
	Related documents
	Other sources of information
	Sybase certifications on the Web
	Finding the latest information on product certifications
	Creating a personalized view of the Sybase Web site (including support pages)
	Sybase EBFs and software updates
	Finding the latest information on EBFs and software updates
	Conventions
	If you need help

	CHAPTER 1 Introducing CS-Library
	CS-Library overview
	Using CS-Library
	Open Client and Open Server applications
	A standalone CS-Library application

	Structures
	The CS_CONTEXT structure

	Datatypes, constants, and conventions
	Error handling
	Two methods of handling messages
	Using a callback to handle messages
	Defining a CS-Library message callback
	CS-Library message callback example

	Inline message handling

	CHAPTER 2 CS-Library Routines
	CS-Library routines
	cs_calc
	cs_cmp
	cs_config

	cs_conv_mult
	cs_convert
	cs_ctx_alloc
	cs_ctx_drop
	cs_ctx_global
	cs_diag
	cs_dt_crack
	cs_dt_info
	cs_loc_alloc
	cs_loc_drop
	cs_locale

	cs_manage_convert
	cs_objects

	cs_prop_ssl_localid
	cs_set_convert
	cs_setnull
	cs_strbuild
	cs_strcmp
	cs_time

	cs_validate_cb
	cs_will_convert

	CHAPTER 3 Bulk-Library
	Overview of Bulk-Library
	Client-side and server-side routines
	Client-side Bulk-Library routines
	Server-side Bulk-Library routines

	Header files
	Linking with Bulk-Library
	The CS_BLKDESC structure

	Bulk-Library client programming
	Bulk-Copy-In operations
	The Bulk-Copy-In process
	Program structure for Bulk-Copy-In operations

	Bulk-Copy-Out operations
	The Bulk-Copy-Out process
	Program structure for Bulk-Copy-Out operations

	Copying to and from Secure SQL Server

	Bulk-Library gateway programming
	Inside the SRV_LANGUAGE event handler
	“Insert Bulk” requests
	“Writetext Bulk” requests

	Inside the SRV_BULK event handler
	Example

	CHAPTER 4 Bulk-Library Routines
	List of Bulk-Library routines
	blk_alloc
	blk_bind
	blk_colval
	blk_default
	blk_describe
	blk_done
	blk_drop
	blk_getrow
	blk_gettext
	blk_init
	blk_props
	blk_rowalloc
	blk_rowdrop
	blk_rowxfer
	blk_rowxfer_mult
	blk_sendrow
	blk_sendtext
	blk_srvinit
	blk_textxfer
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V

