
Programmer’s Reference for Remote Stored
Procedures

Mainframe Connect Server Option
12.6

IBM CICS, IMS, and MVS

DOCUMENT ID: DC35605-01-1260-01

LAST REVISED: March 2005

Copyright © 1989-2005 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication,
Adaptive Server Everywhere, Adaptive Warehouse, Afaria, Answers Anywhere, Anywhere Studio, Application Manager, AppModeler,
APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Translator, APT-Library, AvantGo Mobile Delivery, AvantGo Mobile
Inspection, AvantGo Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon
Application Server, AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BizTracker,
ClearConnect, Client-Library, Client Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench, DataArchitect, Database
Analyzer, DataExpress, DataServer, DataWindow, DataWindow .NET, DB-Library, dbQueue, Developers Workbench, Direct Connect
Anywhere, DirectConnect, Distribution Director, e-ADK, E-Anywhere, e-Biz Impact, e-Biz Integrator, E-Whatever, EC Gateway,
ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise
Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work
Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA, Financial Fusion, Financial Fusion Server, Gateway Manager,
GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information
Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, M2M Anywhere, Mail Anywhere Studio,
MainframeConnect, Maintenance Express, Manage Anywhere Studio, M-Business Channel, M-Business Network, M-Business Server,
MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, mFolio, Mirror Activator, MySupport, Net-Gateway, Net-
Library, New Era of Networks, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz,
Open Client, Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server, Open
ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, PocketBuilder, Pocket
PowerBuilder, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner,
PowerDimensions, PowerDynamo, PowerScript, PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft
Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst, QAnywhere, Rapport, RemoteWare,
RepConnector, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit, Report-
Execute, Report Workbench, Resource Manager, RFID Anywhere, RW-DisplayLib, RW-Library, S-Designor, SDF, Secure SQL Server,
Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL
Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL
Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL
Station, SQLJ, STEP, SupportNow, S.W.I.F.T. Message Format Libraries, Sybase Central, Sybase Client/Server Interfaces, Sybase
Financial Server, Sybase Gateways, Sybase IQ, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup,
Sybase User Workbench, SybaseWare, Syber Financial, SyberAssist, SybFlex, SyBooks, System 10, System 11, System XI (logo),
SystemTools, Tabular Data Stream, TradeForce, Transact-SQL, Translation Toolkit, UltraLite, UltraLite.NET, UNIBOM, Unilib,
Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, VisualWriter, VQL, WarehouseArchitect, Warehouse Control Center,
Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL,
WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, XcelleNet, and XP Server are trademarks of Sybase, Inc.
11/04

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

Programmer’s Reference for Remote Stored Procedures iii

About This Book .. vii

CHAPTER 1 Overview of RSPs ... 1
RSP overview... 1

What is an RSP? ... 1
What does an RSP do?... 2
How does an RSP access and return DB2 data? 2

How RSPs process .. 5
How RSPs are processed through TRS.................................... 5
How RSPs are processed through an Access Service Library . 7

Exchanging information between RSPs and the client................... 11
System requirements ... 12

Host platform ... 12
DirectConnect platform (optional).. 12

Migration considerations .. 13
Coding changes .. 13
Recompiling and relinking existing RSPs................................ 13
New data format .. 13

Summary of RSP programming tasks.. 14

CHAPTER 2 Designing an RSP ... 15
Using RSP commands ... 15
Reviewing sample RSPs.. 16
Making design decisions .. 17

Choosing RSP functions ... 18
Choosing client application functions 18
Accessing databases .. 18
Using temporary storage/transient data queues 19
Understanding data transmission formats............................... 19
Using data pipes.. 19
Linking to other programs.. 22
Handling errors.. 23

Considering environmental issues ... 23

Contents

iv Mainframe Connect Server Option

How data is transferred to Adaptive Server Enterprise 23
How configuration property settings affect RSP processing ... 24

Understanding how to invoke an RSP ... 26
Invoking with keyword variables and variable text 26
Invoking with data pipes .. 29

Specifying error handling ... 32

CHAPTER 3 Writing an RSP... 35
Overview .. 35

Choosing a sample RSP ... 35
Renaming the sample ... 37
Testing the sample .. 37

Writing the RSP.. 37

CHAPTER 4 Compiling an RSP.. 39
Overview .. 39
Compiling an RSP without DB2 ... 39
Compiling an RSP with DB2 .. 41

Using DB2 plans (TRS Only)... 43
Using DB2 packages (TRS or MainframeConnect)

or gateway-less .. 43
Understanding the linkage ... 44

Linking RSPs... 44
Linking load modules... 44
Linking object code.. 45

CHAPTER 5 Testing and invoking an RSP ... 47
Overview .. 47
Before you test or invoke an RSP .. 47
Testing an RSP using an ASPT transaction 48

Creating a temporary storage queue....................................... 48
Running the RSP test program ... 49

Invoking an RSP .. 51
Invoking RSPs through Access Service Library 52
Invoking RSPs through TRS ... 55
Migrating from TSQL0, TSQL1, and TSQL2 modes 55
Sending data to the RSP... 56

CHAPTER 6 Troubleshooting .. 59
Overview .. 59
MainframeConnect errors related to RSPs 59
Troubleshooting errors ... 60

Contents

Programmer’s Reference for Remote Stored Procedures v

DB2 errors ... 60
CICS ASRA abend errors.. 60

APPENDIX A RSP Commands .. 63
Command examples .. 63
Commands... 64
CLOSPIPE ... 64
COMMIT... 65
GETPIPE.. 65
MESSAGE ... 66
OPENPIPE... 67
PUTPIPE.. 68
ROLLBACK .. 69
RPDONE.. 70
RPSETUP .. 70
STATUS ... 70

APPENDIX B MODELRSP DB2 Output Pipe Sample RSP................................ 73
Understanding MODELRSP... 73
The SPAREA in MODELRSP .. 74

How MODELRSP uses SPAREA fields 74
Using RSP commands with the SPAREA 75
SPAREA example ... 76

The SQLDA in MODELRSP... 77
Invoking MODELRSP from the client application........................... 78

PASSTHROUGH TSQL setting... 78
SYBASE TSQL setting .. 78

MODELRSP DB2 output pipe sample code................................... 78

APPENDIX C RSP3C STD Input and Output Pipe Sample RSP 95
Using the SPAREA with RSP3C .. 95

SPMAXLEN and SPRECLEN ... 95
SPINTO and SPFROM.. 97

Specifying error handling ... 98
Client application processing ... 98

Invoking from the client application (ISQL).............................. 99
Returning results to the client application................................ 99

RSP3C STD input and output pipe sample code 100

APPENDIX D RSP4C Keyword Variable Sample RSP..................................... 109
Client application processing ... 109
Sample input and results.. 110

Contents

vi Mainframe Connect Server Option

RSP4C.SQL sample input... 110
RSP4C.LOG sample results.. 110

RSP4C error handling .. 111
Keyword sample code fragment... 113
RSP4C keyword variable sample code.. 114

APPENDIX E RSP8C Variable Text Sample RSP ... 127
Client application processing ... 127
RSP8C variable text sample code ... 129

APPENDIX F The SPAREA .. 139
SPAREA field descriptions... 139
Copying SPAREA definitions to the RSP..................................... 141
SPAREA definitions ... 142
SPAREAA assembler definition ... 143
SPAREAC COBOL II definition .. 143
SPAREAP PL/1 definition .. 144
SPAREAX C definition ... 145

APPENDIX G The SQLDA... 149
SQLDA variables and fields ... 149
SQLDA datatypes .. 150
Writing a SQLDA.. 151
Sample COBOL II SQLDA ... 152
Sample C SQLDA .. 152

Glossary ... 155

Index ... 165

Programmer’s Reference for Remote Stored Procedures vii

About This Book

Remote stored procedures (RSPs) are written by customers to access DB2
in the MVS CICS environment. The Mainframe Connect Server Option
Programmer’s Reference for Remote Stored Procedures describes how to
design, code, and test RSPs.

This chapter contains the following topics:

• Audience

• How to use this book

• Other sources of information

• Sybase certifications on the Web

• Sybase EBFs and software maintenance

• Conventions

• If you need help

Audience This guide is for anyone responsible for the following tasks:

• Designing, coding, and testing RSPs in one of the supported
programming languages (COBOL II, assembler, PL/I, and C)

• Preparing client applications

• Implementing RSPs

• Administering Open ClientConnect™, Open ServerConnect™, or
DirectConnect™ environments

• Administering database management systems

• Supporting data transfer and staging

Product name changes The following table describes new names for products in the 12.6 release
of the Mainframe Connect Integrated Product Set.

Old product names New product name

• Open ClientConnect for CICS

• Open ClientCONNECT for CICS

Mainframe Connect Client Option for
CICS

viii Mainframe Connect Server Option

The old product names are used throughout this book, except for on the title
page.

Note This book also uses the terms MVS and OS/390 where the newer term
z/OS would otherwise be used.

How to use this
book

The majority of Sybase customers using COBOL II write RSPs to access DB2
in the MVS CICS environment. This guide therefore provides COBOL II
examples. However, the Open ServerConnect API tape provides examples in
all the supported programming languages.

If you are not familiar with CICS and the CICS control tables, ask your CICS
programmer or system programmer to make the required CICS entries.

This guide provides a set of tasks and reference information, with each chapter
representing a task and each appendix representing reference information to
help you accomplish a task. This reference guide provides the following
information:

• Open Client Connect for IMS and
MVS

• Open ClientCONNECT for IMS and
MVS

Mainframe Connect Client Option for
IMS and MVS

• Open ServerConnect for CICS

• Open ServerCONNECT for CICS

Mainframe Connect Server Option for
CICS

• Open ServerConnect for IMS and
MVS

• Open ServerCONNECT for IMS and
MVS

Mainframe Connect Server Option for
IMS and MVS

• MainframeConnect™ for DB2 UDB

• MainframeCONNECT for
DB2/MVS-CICS

Mainframe Connect DB2 UDB Option
for CICS

• DirectConnect for OS/390

• DirectCONNECT for DB2/MVS

DirectConnect for z/OS

Old product names New product name

 About This Book

Programmer’s Reference for Remote Stored Procedures ix

Table 1: Contents of each chapter

Other sources of
information

Use the Sybase Getting Started CD, the Sybase Technical Library CD, and the
Technical Library Product Manuals Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the Technical Library CD. It is included with
your software. To read or print documents on the Getting Started CD, you
need Adobe Acrobat Reader (downloadable at no charge from the Adobe
Web site, using a link provided on the CD).

Chapter Contents

Chapter 1, “Overview of RSPs” Provides an overview of RSPs and how
they work.

Chapter 2, “Designing an RSP” Discusses information to consider before
you design an RSP.

Chapter 3, “Writing an RSP” Explains how to write an RSP.

Chapter 4, “Compiling an RSP” Explains how to compile an RSP.

Chapter 5, “Testing and invoking an
RSP”

Explains how to test and invoke an RSP.

Chapter 6, “Troubleshooting” Explains how to troubleshoot problems.

Appendix A, “RSP Commands” Lists and explains the RSP commands.

Appendix B, “MODELRSP DB2 Output
Pipe Sample RSP”

Provides and explains a sample RSP with
DB2-formatted output pipes or multiple-
column rows.

Appendix C, “RSP3C STD Input and
Output Pipe Sample RSP”

Provides and explains a sample RSP that
sends single-column rows of character
strings.

Appendix D, “RSP4C Keyword Variable
Sample RSP”

Provides and explains a sample RSP that
passes keyword values.

Appendix E, “RSP8C Variable Text
Sample RSP”

Provides and explains a sample RSP that
reads variable text and uses output pipes
to echo data that a client application
sends to it.

Appendix F, “The SPAREA” Explains how the SPAREA is used by
RSPs. It includes SPAREA fields and
SPAREA definitions.

Appendix G, “The SQLDA” Explains how the SQLDA is used by
RSPs.

Glossary Provides definitions of technical terms
used in this book.

x Mainframe Connect Server Option

• The Technical Library CD contains product manuals and is included with
your software. The DynaText reader (included on the Technical Library
CD) allows you to access technical information about your product in an
easy-to-use format.

Refer to the Technical Library Installation Guide in your documentation
package for instructions on installing and starting the Technical Library.

• The Technical Library Product Manuals Web site is an HTML version of
the Technical Library CD that you can access using a standard Web
browser. In addition to product manuals, you will find links to
EBFs/Maintenance, Technical Documents, Case Management, Solved
Cases, newsgroups, and the Sybase Developer Network.

To access the Technical Library Product Manuals Web site, go to Product
Manuals at http://www.sybase.com/support/manuals/.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select Products from the navigation bar on the left.

3 Select a product name from the product list and click Go.

4 Select the Certification Report filter, specify a time frame, and click Go.

5 Click a Certification Report title to display the report.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

 About This Book

Programmer’s Reference for Remote Stored Procedures xi

2 Select EBFs/Maintenance. Enter user name and password information, if
prompted (for existing Web accounts) or create a new account (a free
service).

3 Select a product.

4 Specify a time frame and click Go.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Conventions The following sections describe syntax and style conventions used in this
guide.

Note Throughout this book, all references to MVS refer to native MVS
programs, and all references to Adaptive Server™ Enterprise also apply to its
predecessor, SQL Server®.

Syntax statements that display options for a command look like this:

COMMAND [object_name, [{TRUE | FALSE}]]

The following table explains the syntax conventions used in this guide.

Table 2: Syntax conventions

The following style conventions are used in this guide:

• The names of files and directories are shown as:

econnect\ServerName\CFG

• The names of programs, utilities, procedures, and commands are shown
as:

Symbol Convention

() Include parentheses as part of the command.

{ } Braces indicate that you must choose at least one of the enclosed
options. Do not type the braces when you type the option.

[] Brackets indicate that you can choose one or more of the enclosed
options, or none. Do not type the brackets when you type the
options.

| The vertical bar indicates that you can select only one of the
options shown. Do not type the bar in your command.

, The comma indicates that you can choose one or more of the
options shown. Separate each choice by using a comma as part of
the command.

xii Mainframe Connect Server Option

snrfck

• The names of properties are shown as:

Allocate

• The names of options are shown as:

connect

• Code examples and text on screen are shown as:

this font

• In a sample command line display, commands you should enter are shown
as:

this font

• In a sample command line display, variables (words you should replace
with the appropriate value for your system) are shown as:

this font

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

Programmer’s Reference for Remote Stored Procedures 1

C H A P T E R 1 Overview of RSPs

This chapter contains the following topics:

• RSP overview

• How RSPs process

• Exchanging information between RSPs and the client

• System requirements

• Migration considerations

• Summary of RSP programming tasks

RSP overview
This overview answers the following questions:

• What is an RSP?

• What does an RSP do?

• How does an RSP access and return DB2 data?

What is an RSP?
An RSP is a CICS command-level program that contains the Sybase RSP
calls to the RSP API. The RSP API converts RSP commands to Open
ServerConnect commands.

You can write RSPs in any of the four programming languages supported
by CICS:

• COBOL II

• assembler

• PL/I

RSP overview

2 Mainframe Connect Server Option

• C (SAS/C or IBM C/370)

What does an RSP do?
An RSP allows a client application to access data and services on the
mainframe. Workstation users or client applications on the LAN use RSPs to
send requests through DirectConnect for OS/390 (hereafter called
DirectConnect), optionally, using MainframeConnect for DB2 UDB (hereafter
called MainframeConnect), and directly using TCP/IP.

An RSP uses standard CICS command-level services to perform its processing.
It can receive arguments or data sent from the client and generate results to
return to the client. You can write an RSP to do one or more of the following:

• Access DB2 data or other relational databases (such as ADABAS),
statically or dynamically

For example, an RSP can update all relevant host tables with a changed
part number. In this case, the RSP contains multiple UPDATE statements
targeted to each table.

• Access non-relational data (such as VSAM, IDMS, or IMS)

For example, an RSP could retrieve data from IMS and deliver it to the
workstation, where the client application converts it into an appropriate
format.

• Invoke other CICS programs

• Schedule other CICS tasks for execution

• Issue RSP commands

• Access temporary storage or transient data queues

How does an RSP access and return DB2 data?
This section explains how RSPs access data within the Enterprise Connect
structure. The following figure shows how RSPs access and return DB2 data.

CHAPTER 1 Overview of RSPs

Programmer’s Reference for Remote Stored Procedures 3

Figure 1-1: How RSPs access and return DB2 data

As Figure 1-1 shows, RSPs reside with Open ServerConnect. When one of
your client applications invokes an RSP (using Open Client), the request passes
to a DirectConnect server. At this point, depending on your configuration,
either Transaction Router Service (TRS) Library or the DB2/MVS Access
Service Library (hereafter called Access Service Library) invokes the RSP.

TRS accesses DB2 data by directly invoking an RSP through Open
ServerConnect. Access Service Library accesses DB2 data by invoking an RSP
through MainframeConnect. The software installed on your network
determines your application request options and capabilities.

Using TCP/IP for communications allows your client to access the Mainframe
environment directly without going through DirectConnect (gateway-less) as
indicated in Figure 1-2.

O
p

e
n

S
e r v e r

D i r e c t C O N N E C T
S e r v e r

W o r k s t a t i o n
E n v i r o n m e n t

Open Client

L A N
E n v i r o n m e n t

M a i n f r a m e
E n v i r o n m e n t

TRS
Library

DB2/MVS
Access Service

Library

DB2

O
p

e
n

S
e
r v e r

O p e n
S e r v e r C O N N E C T

(R S P s)

O
p

e
n

S

e
r v

e r

Client

VSAM/
other

M a i n f r a m e
C O N N E C T f o r

D B 2 / M V S - C I C S

RSP overview

4 Mainframe Connect Server Option

Figure 1-2: Mainframe access without using DirectConnect (gateway-
less)

Note You must have Open ServerConnect installed to implement RSPs.

Table 1-1 summarizes the functions available with the possible software
configurations.

W o r k s t a t i o n
E n v i r o n m e n t

Open Client

L A N
E n v i r o n m e n t

M a i n f r a m e
E n v i r o n m e n t

DB2

O
p

e
n

S
e r v e r

O p e n
S e r v e r C o n n e c t

(R S P s)

O
p

e
n

S
e

r v

e r

VSAM/
other

M a i n f r a m e
C o n n e c t f o r

D B 2 / M V S - C I C S

CHAPTER 1 Overview of RSPs

Programmer’s Reference for Remote Stored Procedures 5

Table 1-1: Software configuration options

How RSPs process
This section explains how RSPs process through TRS and an Access Service
Library.

How RSPs are processed through TRS
TRS is a component of DirectConnect. It routes requests from remote clients
to Open ServerConnect and returns results to the clients. For more information
on TRS, see the Mainframe Connect DirectConnect for z/OS Option User's
Guide for Transaction Router Services.

The following figure illustrates RSP processing through TRS.

If installed: You can access:
This software does not
support:

DirectConnect and
Open ServerConnect

• TRS

• RSPs and RPCs
through TRS only

• Dynamic SQL access to
DB2

• SPTEST utility

• The mainframe as a
client, either through
Open Client or CSAs

DirectConnect, Open
ServerConnect, and
MainframeConnect

• TRS and Access
Service Library

• RSPs and RPCs
through TRS

• RSPs through Access
Service Library

• Dynamic SQL access
to DB2

• SPTEST utility to test
RSPs

• The mainframe as a
client, either through
Open Client or CSAs

How RSPs process

6 Mainframe Connect Server Option

Figure 1-3: RSP processing through TRS

The following explains each step in Figure 1-3:

1 The client application requests a remote procedure call (RPC) with the
following command:

Client Workstation

TCP/IP for MVS

MAINFRAME

1

63

VTAM/NCP or

CICS Region
MVS

Database Management System

DB2 VSAM/
other

RSP

Open ServerCONNECT

4

5

7

SPAREA

LAN Server

DirectCONNECT for DB2/MVS

TRS
2

Client Application

CHAPTER 1 Overview of RSPs

Programmer’s Reference for Remote Stored Procedures 7

EXEC rpcname @VARNAME1=’value’

Note In TRS, you invoke an RSP using the remote procedure call (RPC)
name.

2 TRS searches the RPC name for the TP name (transaction program name)
and passes the request to DirectConnect. The TP name (which is
associated with the RSP program) is invoked in the CICS region.

(The RSP and the Open ServerConnect API use the Stored Procedure
Communication Area (SPAREA). For more information on the SPAREA,
see “SPAREA” on page 11.

3 DirectConnect invokes the RSP.

4 The RSP performs the desired processing (for example, accessing DB2
data).

5 Open ServerConnect packages the data and messages produced by the
RSP.

6 The RSP returns results to TRS.

7 TRS returns the results to the client application.

Note The RSP must call RPSETUP and RPDONE.

How RSPs are processed through an Access Service Library
The Access Service Library is the program component of DirectConnect that
works with MainframeConnect to provide access to DB2 data. For more
information on the Access Service Library, see the Mainframe Connect
DirectConnect for z/OS Option User's Guide for DB2 Access Services for your
database system.

Earlier releases of RSPs used a processing technique similar to the current
processing through Access Service Library. The following figure illustrates
RSP processing through Access Service Library.

How RSPs process

8 Mainframe Connect Server Option

Figure 1-4: RSP processing through Access Service Library

1

LAN Server

DirectCONNECT for DB2/MVS

Access
Service
Library

Client Workstation

TCP/IP for MVS

MAINFRAME

3

VTAM/NCP or

CICS Region
MVS

DB2 VSAM/
other

RSP

Open ServerCONNECT

4

5

6

MainframeCONNECT
for DB2/MVS-CICS

SPAREA

8

7

Database Management System

2

Client Application

CHAPTER 1 Overview of RSPs

Programmer’s Reference for Remote Stored Procedures 9

The following explains each step in Figure 1-4:

1 The client application requests a remote procedure call (RPC) using one of
the following commands:

USE PROCEDURE rspname &VARNAME1=value1
EXECUTE rspname @VARNAME1=value1

Note In Access Service Library, you invoke an RSP using the RSP name.

2 Access Service Library passes the request to DirectConnect.

3 DirectConnect passes the command, containing the RSP name and any
necessary arguments, to MainframeConnect. The request can contain a
number of other statements, any of which can also invoke RSPs.

4 MainframeConnect invokes the RSP through the CICS LINK command.
Arguments and other parameters are passed to the RSP using the Stored
Procedure Communication Area (SPAREA). For more information on the
SPAREA, see “SPAREA” on page 11.

5 The RSP performs the desired processing (for example, accessing DB2
data).

6 Open ServerConnect packages the data and messages produced by the
RSP, and sends them to DirectConnect.

7 DirectConnect returns results to the client application.

8 The RSP returns program control to MainframeConnect with a CICS
RETURN command

How RSPs process

10 Mainframe Connect Server Option

Figure 1-5: Direct RSP processing using TCP/IP

TCP/IP for MVS

MAINFRAME

2

VTAM/NCP or

CICS Region
MVS

DB2 VSAM/
other

RSP

Open ServerConnect

3

4

5

MainframeConnect
for DB2/MVS-CICS

SPAREA

7

Database Management System

1

Client Workstation

6
Client Application

CHAPTER 1 Overview of RSPs

Programmer’s Reference for Remote Stored Procedures 11

The following explains each step in Figure 1-5:

1 The client application invokes an RSP using the following command:

USE PROCEDURE rspname &VARNAME1=value1

2 MainframeConnect invokes the RSP through the CICS LINK command.

3 Arguments and other parameters are passed to the RSP using the Stored
Procedure Communication Area (SPAREA). For more information on the
SPAREA, see “SPAREA” on page 11.

4 The RSP performs the desired processing (for example, accessing DB2
data).

5 Open ServerConnect packages the data and messages produced by the
RSP.

6 Open Server sends the data and messages to the Client Workstation.

7 The RSP returns program control to MainframeConnect with a CICS
RETURN command.

Exchanging information between RSPs and the client
There are three methods for exchanging information between the RSP and the
client application: the SPAREA (keywords or variable text) and the data pipe.

SPAREA The SPAREA contains all the pointers, codes, and command details that the
RSP needs to exchange with the RSP API. Every RSP receives or sends
information using the SPAREA.

When an RSP processes through TRS, it creates its own SPAREA through the
RPSETUP call. When an RSP processes through Access Service Library, it
uses an existing SPAREA on the mainframe to send parameters or data to or
from MainframeConnect.

RSP commands (OPENPIPE, PUTPIPE, STATUS, and so on) are small
assembler programs that call Open ServerConnect. The RSP commands use the
values of fields in the SPAREA as parameters.

Before you issue an RSP command, you first move values to the relevant fields
in the SPAREA, then issue a standard system CALL statement. The syntax used
for these operations varies with the programming language used. For more
information, see Appendix A, “RSP Commands” and Appendix F, “The
SPAREA.”

System requirements

12 Mainframe Connect Server Option

Data Pipes When processing, the RSP uses a data pipe to pass rows of data to or from the
client application. The RSP can open a data pipe either to receive or send data.
The RSP can only receive data from an input pipe through Access Service
Library. Examples of data pipes are provided in “Using data pipes” on page 19.

System requirements
This section lists the system requirements for the:

• Host platform

• DirectConnect platform (optional)

Host platform
The following are system requirements for the host platform:

• Open ServerConnect for CICS must be installed and operational. Detailed
system requirements for Open ServerConnect are provided in the
Mainframe Connect Server Option Installation and Administration Guide
(platform-specific).

• MainframeConnect software is optional for RSP use. If your site chooses
to use MainframeConnect in RSP processing, the MainframeConnect
software must be installed and operational. Detailed system requirements
for MainframeConnect are provided in the Mainframe Connect DB2 UDB
Option for CICS Installation and Administration Guide.

• If the RSP accesses DB2, DB2 packages and plans must be set up for the
RSP transaction. If you plan to invoke RSPs with MainframeConnect or
through TRS, use plans or packages. See Mainframe Connect DB2 UDB
Option for CICS Installation and Administration Guide for details on
setting up DB2 packages and plans.

DirectConnect platform (optional)
DirectConnect must be installed and operational except when using TCP/IP for
communications (gateway-less).

CHAPTER 1 Overview of RSPs

Programmer’s Reference for Remote Stored Procedures 13

Detailed system requirements for DirectConnect are provided in the
Mainframe Connect DirectConnect for z/OS Option Installation Guide.

Migration considerations
This section discusses the following migration considerations:

• Necessary coding changes

• Recompiling and relinking existing RSPs

• New data format for RSPs

Coding changes
If you are invoking RSPs through MainframeConnect (using the Access
Service Library), there are no changes. If you are invoking RSPs directly
through the RSP API (using TRS), you need to make the following coding
changes:

• The first API call must be RPSETUP.

• The last API call must be RPDONE.

Recompiling and relinking existing RSPs
If you are migrating from an earlier release of any Sybase product, you must
recompile and relink your existing RSPs with the Open ServerConnect RSP
stub routines before using those RSPs.

Summary of RSP programming tasks

14 Mainframe Connect Server Option

New data format
All data that moves between the RSP, DirectConnect, and MainframeConnect
is in Tabular Data Stream™ (TDS) format, which replaces Integrated
Exchange Format (IXF). TDS is a Sybase proprietary format, which manages
data formatting for you. DirectConnect translates the records it receives into a
standard CT-Library format that the client application can handle.
DirectConnect no longer converts IXF format input pipes to DB2 format.

 Warning! Preformatted IXF data is not converted to DB2-format input pipes
any more. Convert your source data to ASCII for DB2-formatted input pipes.

Summary of RSP programming tasks
These are the general steps to build an RSP within a TSO development
environment.

1 Review the design considerations.

See Chapter 2, “Designing an RSP.”

2 Prepare a sample RSP to use as a shell and write the RSP program.

See Chapter 3, “Writing an RSP.”

3 Compile and link-edit the RSP in the standard manner for CICS command-
level programs.

See Chapter 4, “Compiling an RSP.”

4 Test and invoke the RSP in the standard manner for CICS command-level
programs.

See Chapter 5, “Testing and invoking an RSP.”

If you encounter problems while processing your completed RSP,

See Chapter 6, “Troubleshooting.”

Programmer’s Reference for Remote Stored Procedures 15

C H A P T E R 2 Designing an RSP

This chapter contains the information you must consider when designing
an RSP and contains the following topics:

• Using RSP commands

• Reviewing sample RSPs

• Making design decisions

• Considering environmental issues

• Understanding how to invoke an RSP

• Specifying error handling

Using RSP commands
This section is a brief introduction to RSP commands. In addition to
reading this introductory material, you should review each command in
detail before continuing with the next section, “Reviewing sample RSPs.”
See Appendix A, “RSP Commands” for detailed information about each
command.

Use the RSP commands to:

• Communicate message and status information to Open
ServerConnect and the client application

• Manage COMMITs and ROLLBACKs

• Manage data pipes and exchange data with Open ServerConnect

The following table summarizes the RSP commands and their functions.

Table 2-1: RSP commands and functions

This
command: Performs this function: See

CLOSPIPE Closes the data pipe CLOSPIPE on page 64

COMMIT Commits a unit of work COMMIT on page 65

Reviewing sample RSPs

16 Mainframe Connect Server Option

Reviewing sample RSPs
Now that you reviewed RSP commands you are ready to review a sample RSP.

Sybase provides sample RSPs for you to use as shells for the RSPs you write.
This guide contains four of the sample programs. These samples include
explanatory material detailing what the RSP does. Review the sample or
samples that fit your RSP needs before continuing with the next section,
“Making design decisions.”

• MODELRSP shows you how to use a DB2 format output pipe and a
SQLDA definition. See Appendix B, “MODELRSP DB2 Output Pipe
Sample RSP” for a reproduction of the sample.

• RSP3C shows you how to use STD format input and output pipes to
transmit (send or receive) data. See Appendix C, “RSP3C STD Input and
Output Pipe Sample RSP” for a reproduction of the sample.

• RSP4C shows an example of how to transmit keyword variables. See
Appendix D, “RSP4C Keyword Variable Sample RSP” for a reproduction
of the sample.

GETPIPE Reads a record from the data pipe GETPIPE on page 65

MESSAGE Sends a message to the client
application

MESSAGE on page 66

OPENPIPE Opens the data pipe OPENPIPE on page 67

PUTPIPE Writes a record to the data pipe PUTPIPE on page 68

ROLLBACK Rolls back a unit of work ROLLBACK on page 69

RPDONE Ends processing for an RSP initiated
using TRS

RPDONE on page 70

RPSETUP Initializes an RSP RPSETUP on page 70

STATUS Indicates the success or failure of
processing

STATUS on page 70

This
command: Performs this function: See

CHAPTER 2 Designing an RSP

Programmer’s Reference for Remote Stored Procedures 17

• RSP8C shows an example of how to transmit variable text. See Appendix
E, “RSP8C Variable Text Sample RSP” for a reproduction of the sample.

Note See Table 3-1 on page 36 for a complete list of the samples provided on
the Open ServerConnect API tape.

Making design decisions
Now that you reviewed the RSP commands and a sample RSP, you are ready
to make decisions regarding the design of your RSP. Before writing an RSP,
you need to make the following design decisions:

• What functions will the RSP perform?

• What functions will the client application perform? Will the client
application expect data structure information with results from the RSP?

• Which databases (if any) will the RSP access?

• Will the RSP access temporary storage or transient data queues?

• What type of data (character or binary) will be transmitted?

• Which data pipe format should the RSP use?

• Will the RSP link to other programs or functions?

• What kind of error handling does the RSP require?

• Will the RSP be using input pipes, output pipes, keyword variables, or
variable text?

Each of these decisions is discussed in the following subsections.

Note RSPs operate in your environment like any other CICS command-level
program. An RSP can access any CICS program or function that you can
access with other programs in that environment.

Making design decisions

18 Mainframe Connect Server Option

Choosing RSP functions
According to your users' requirements, decide what functions the RSP will
perform. For example, your RSP might:

• Access DB2 data, statically or dynamically

Note With RSPs that contain static SQL, the client application does not
need authorization on the DB2 objects accessed by the RSP; authorization
to execute the application plan or package of the RSP is all that is required.

• Transfer DB2 data to Adaptive Server Enterprise, or any other supported
data source, through DirectConnect

• Access other relational data sources (for example, ADABAS), statically or
dynamically

• Access non-relational data (for example, VSAM, IDMS, and IMS)

• Invoke other CICS programs

• Schedule other CICS tasks for execution

Choosing client application functions
You need to understand what functions the client application that calls the RSP
is going to perform. Coordinate with the client application programmer to
determine the data (that is, keyword variables, variable text, or data) being sent
to the RSP and the kind of formatting the client application is capable of
performing on the results.

For example, if your RSP provides data structure information with the data it
is sending, the client application does less decoding of results. If the RSP sends
unformatted data, the client must include more logic to decode the results.

Accessing databases
Your RSP can access any database you have in your CICS environment; for
example:

• DB2

• BDAM

CHAPTER 2 Designing an RSP

Programmer’s Reference for Remote Stored Procedures 19

• IMS

• VSAM

• ADABAS

• IDMS

For more information on the setup necessary to access DB2 through an RSP,
see Chapter 4, “Compiling an RSP.”

Using temporary storage/transient data queues
You access temporary storage or transient data queues with RSPs the same way
you access them with any other program in CICS. Refer to your CICS
documentation for information on accessing temporary storage or transient
data queues.

Understanding data transmission formats
You need to determine what type of data to transmit to and from the RSP. The
type of data your RSP handles determines, in part, the format of the data pipes
you define to send and receive data. For example, if the RSP sends and receives
only binary, you define data pipes in the BIN format. For more information on
data pipe formats, see Appendix B, “MODELRSP DB2 Output Pipe Sample
RSP.”

When you send multiple rows of columns, no matter which data pipe you
specify, all data transmitted between the RSP and DirectConnect is sent in TDS
record format. TRS and DirectConnect translate the TDS records they receive
into a standard CT-Library format that the client application can handle. The
TDS format is proprietary.

Using data pipes
RSPs use data pipes to receive data from or send results to the client
application. There are two types of data pipes: input and output. Use the RSP
commands described in Appendix B, “MODELRSP DB2 Output Pipe Sample
RSP” to define the type of pipe (input or output) and the format of the data
being transmitted. The data pipe management commands are OPENPIPE,
GETPIPE, PUTPIPE, and CLOSPIPE.

Making design decisions

20 Mainframe Connect Server Option

This section explains input and output data pipes.

Note An input pipe and an output pipe can both be open simultaneously.

Input pipes

You can only use input pipes when an RSP is invoked through the Access
Service Library or gateway-less; you cannot use input pipes when an RSP is
invoked through TRS. The RSP uses input pipes to read rows of data from the
client application.

Note Input pipes must be defined as standard (STD) or binary (BIN) format.

The following code example shows how an RSP uses the SPAREA fields to
define an input pipe, then opens, reads from, and closes the input pipe:

A STD or BIN format pipe requires that the SPMAXLEN field provides the
maximum size (in bytes) of the data record written to or read from the data
pipe.

When defining an input pipe, you need to specify the format of the data to be
transmitted through the pipe. An input pipe uses only STD and BIN formats,
which do not require data structure information.

MOVE 'INPUT' TO
SPMODE
 MOVE 'STD' TO
SPFORMAT
 MOVE nnnn TO
SPMAXLEN
 SET ADDRESS SPINTO
TO dataarea
 CALL 'OPENPIPE'
USING SPAREA
 CALL 'GETPIPE' USING
SPAREA
 PROCESS INPUT DATA
CALL 'CLOSPIPE' USING
SPAREA
 CALL ‘MESSAGE’ USING
SPAREA
 CALL 'STATUS' USING
SPAREA

— defines an input pipe
 — defines input pipe as STD format
 — set maximum size of data record
 — sets input pointer to record

 — opens the pipe
 — reads from the pipe where
 your code processes data
 — closes the pipe
 — writes messages
 — sets the return code and returns
 messages & data

CHAPTER 2 Designing an RSP

Programmer’s Reference for Remote Stored Procedures 21

STD (Standard) The simplest type of data pipe to use is the STD format. With a
standard data pipe, records are transmitted as a single character string between
the client and the RSP. The data is transmitted as variable-length character
(VARCHAR) records. Use STD only with input pipes.

BIN (Binary) With the BIN format, data is transmitted as a binary string. If you
transmit records of binary data and you do not want ASCII-EBCDIC or
EBCDIC-ASCII conversion done, specify a data pipe in the BIN format. Use
BIN only with input pipes.

Note You can transmit any data, including DB2 data, using a STD or BIN data
pipe.

For more information about input pipes, see “Using input pipes” on page 29
and “Using concurrent input and output pipes” on page 30.

Output pipes

The RSP uses output pipes to return multiple rows of data to the client
application. The following code example shows how an RSP uses the SPAREA
fields to define an output pipe, then opens, writes to, and closes the output pipe:

For a DB2 format pipe, the SQLDA describes the location and length of the
data columns. However, a STD or BIN format pipe requires that the SPRECLEN
field contains the length of the data record. It cannot exceed the SPMAXLEN
that was specified when the pipe was opened.

MOVE 'OUTPUT' TO
SPMODE
 MOVE 'DB2' TO
SPFORMAT
 SET ADDRESS OF
SPSQLDA TO SQLDA
 CALL 'OPENPIPE'
USING SPAREA
 PROGRAM GETS DATA
CALL 'PUTPIPE' USING
SPAREA
 CALL 'CLOSPIPE'
USING SPAREA
 CALL ‘MESSAGE’ USING
SPAREA
 CALL 'STATUS' USING
SPAREA

— defines the output pipe
 — defines output pipe as DB2 format
 — sets a pointer to the SQLDA
 — opens the pipe
 where your code processes data
 — writes the record
 — closes the pipe
 — writes messages
 — sends the return code and returns
 messages and data

Making design decisions

22 Mainframe Connect Server Option

An output pipe uses the DB2, STD or Binary format. The DB2 format requires
data structure information.

DB2 With the DB2 format, include a SQLDA definition in your RSP when you
return data to the client application. You can use these formats to transmit any
type of data, not just data from DB2.

The SQLDA is a standard data structure used to define a multi-column result
passed to Open ServerConnect. It describes the content of the transmitted data
records and, as such, it handles much of the data definition logic that the client
application would otherwise have to provide. All files are exchanged between
the RSP and MainframeConnect using the SQLDA.

As the RSP programmer, you must define the SQLDA for the data you send to
the client and provide a pointer to the SQLDA when you open a data pipe for
output. The data structure information passes to Open ServerConnect when the
pipe opens. DirectConnect sends this information, in CT-Library format, to the
client application.

Note A SQLDA definition is required for all data pipes in DB2 format.

For DB2 output pipes, the RSP must create a SQLDA definition and pass its
address to Open ServerConnect through the SPSQLDA field in the SPAREA.

For sample COBOL-language and C-language SQLDA declarations for DB2
datatypes and more information about the SQLDA, see Appendix G, “The
SQLDA” For an extensive discussion of the SQLDA, see the IBM reference
manual for DB2 SQL.

For information about STD and BIN output pipes, see “Using output pipes” on
page 30 and “Using concurrent input and output pipes” on page 30.

Linking to other programs
When you link to, or call, another program from an RSP, you must use a
command format that allows the program to return to the RSP if you want the
called program to share the same pipes. If the program does not return control
to the RSP (for example, with an XCTL), CICS makes a copy of the SPAREA
for the called program instead of pointing to the original SPAREA, the results
of which are unpredictable.

To avoid this, use one of the following commands to link to another program:

CICS LINK

CHAPTER 2 Designing an RSP

Programmer’s Reference for Remote Stored Procedures 23

programname

CALL programname

Handling errors
You must write your RSP to handle the errors it receives from Open
ServerConnect, MainframeConnect, and, optionally, from DB2 or any other
database it accesses.

Errors are recorded in the SPRC field of the SPAREA. Your RSP code must
check the SPRC field for errors after issuing any RSP command.

See Mainframe Connect Client Option and Server Option Messages and Codes
for information on Open ServerConnect error messages and actions. See
Mainframe Connect DB2 UDB Option for CICS Installation and
Administration Guide for information on MainframeConnect error messages
and actions. Also see Chapter 6, “Troubleshooting” for more information on
MainframeConnect errors.

Considering environmental issues
This section discusses the environmental issues you should consider when you
design an RSP. Specifically, it discusses how data is transferred to Adaptive
Server Enterprise and how DirectConnect configuration property settings
affect RSP processing.

How data is transferred to Adaptive Server Enterprise
You can write an RSP to transfer data, as part of a TRANSFER function, from
a data source other than DB2 (for example, VSAM) to Adaptive Server
Enterprise (or another database). However, the RSP must define a SQLDA for
the data so that it is formatted like DB2, and it must use a data pipe in DB2
format to send the data to Adaptive Server Enterprise.

Considering environmental issues

24 Mainframe Connect Server Option

How configuration property settings affect RSP processing
This section describes the DirectConnect and MainframeConnect
configuration property settings that affect how an RSP processes.

Access service library

If client applications invoke an RSP through the Access Service Library, you
need to be aware of how some of the DirectConnect configuration properties
affect both client application and RSP processing. This section explains the
following information:

• Datatype conversion

• Preventing inconsistencies in SQL transformation

• Managing COMMIT/ROLLBACK

Datatype conversion

Adaptive Server Enterprise applications are designed to manipulate data in
Adaptive Server Enterprise datatypes. When these applications execute an RSP
to retrieve host data, DirectConnect converts the result rows into the
corresponding Adaptive Server Enterprise datatypes.

Preventing inconsistencies in SQL transformation

Adaptive Server Enterprise uses the Transact-SQL™ query language, while
DB2 uses IBM’s version of SQL. Consequently, SQL statements written for
Adaptive Server Enterprise generally do not perform as expected when
executed against DB2. To prevent SQL inconsistencies, each DirectConnect
Access Service is configured either for native SQL or for Transact-SQL
transformation.

Note DirectConnect Access Service is a specific set of configuration
properties working with the Access Service Library. The Access Service
Library is the program component that works with MainframeConnect to
provide access to DB2 data.

CHAPTER 2 Designing an RSP

Programmer’s Reference for Remote Stored Procedures 25

The corresponding DirectConnect Access Service transformation modes are
PASSTHROUGH for native DB2 SQL and SYBASE for Transact-SQL.

Note TSQL transformation modes (TSQL0, TSQL1 and TSQL2) are
supported to provide backward compatibility.

If you write a client application to invoke an RSP, you must be aware of how
the SQL transformation level is configured for the Access Service because it
determines the format of the RSP invocation command you use. See Figure 5-
3 on page 50 for more information.

Note TRS always uses PASSTHROUGH.

Managing COMMIT /ROLLBACK

When you write an RSP, be aware of how DirectConnect configuration
property settings affect COMMIT/ROLLBACK management under normal and
error conditions. The following table shows the interaction of the configuration
property settings under normal processing conditions.

Table 2-2: Configuration properties and COMMIT/ROLLBACK

Therefore, if TRS invokes an RSP, the transaction is committed (unless the
transaction failed) because TRS always runs in SHORT.

The client application uses standard SQL statements to issue COMMITs and
ROLLBACKs; the RSP uses the special RSP COMMIT and ROLLBACK
commands.

If the RSP invokes through Access Service Library, COMMIT and ROLLBACK
processing under error conditions is also affected by the DirectConnect Stop
Condition configuration property.

This property can be set as follows:

Transaction mode
DirectConnect configuration
property setting Outcome

SHORT MainframeConnect issues
COMMIT/ROLLBACK after each batch

LONG Client application or RSP issues
COMMIT/ROLLBACK

Understanding how to invoke an RSP

26 Mainframe Connect Server Option

• None—If an error occurs, the RSP continues processing despite error
status messages.

• Error—If an error occurs, the RSP receives a STATUS message from
MainframeConnect and RSP processing stops.

• Err/Warn—If either an error or a DB2 warning message occurs, RSP
processing stops (for Database Gateway release 2.03 only).

Note The client application can override the DirectConnect StopCondition
configuration property with the following set statement: set StopCondition
{error|none|warning}.

MainframeConnect

If your site uses exits, review the MainframeConnect Request Exit and Parse
Exit user configuration properties in the Mainframe Connect DB2 UDB Option
for CICS Installation and Administration Guide. If either of the exits transform
requests, you need to be aware of that transformation.

Understanding how to invoke an RSP
The client can invoke an RSP with two kinds of variables: keyword variables
or variable text. The client can also send data to the RSP using a STD input
pipe. How the RSP is invoked affects how you design it. Refer to “Output
pipes” on page 21.

Invoking with keyword variables and variable text
If your RSP passes keyword variables or variable text, your code accesses the
following fields in the SPAREA:

CHAPTER 2 Designing an RSP

Programmer’s Reference for Remote Stored Procedures 27

Table 2-3: SPAREA variable fields

See Appendix F, “The SPAREA” for more information.

Processing with keyword variables

If the client application is sending keyword variables, MainframeConnect
(with the Access Service Library) or Open ServerConnect (with TRS):

• Parses the arguments

• Builds a table of keywords and associated values (the keyword variable
substitution table)

• Places the address of this table in SPVARTAB

If the arguments are not in keyword format, MainframeConnect or Open
ServerConnect sets the SPVARTAB to '0'.

The keyword variable substitution table contains a full word count of the
number of keywords that were specified, followed by one keyword entry for
each keyword specified. The following figure illustrates the variable
substitution table.

Figure 2-1: Keyword variable substitution table

The following figure illustrates the keyword entry format.

SPAREA Field Use

SPVARTXT Specifies the address of the variable text that the client
application sent to the RSP

SPVARLEN Specifies the length of the variable text the client
application sent to the RSP

SPVARTAB Specifies the address of the variable substitution table
keyword variables that the client application sent to the
RSP

Keyword Count Keyword Entry Keyword Entry Keyword Entry

4 bytes 12 bytes 12 bytes 12 bytes

Understanding how to invoke an RSP

28 Mainframe Connect Server Option

Figure 2-2: Keyword entry format

The fields in the keyword entry are in integer format; addresses are 4 bytes
long and lengths are 2 bytes long. For example, if the client application passed
the following single variable:

&DATE=1991-12-04

the variable substitution table built by MainframeConnect or Open
ServerConnect might appear as follows:

10000253D000254F 5 10

• where 1 is the keyword count indicating the number of keyword entries; in
this case, the &DATE is the only keyword.

• where 0000253D is the address of the variable name in the SPAREA.

• where 0000254F is the address of the variable value in the SPAREA.

• where 5 is the length of the variable name; in this case, &DATE.

• where 10 is the length of the variable value; in this case, 1991-12-04.

See Appendix D, “RSP4C Keyword Variable Sample RSP” and Appendix E,
“RSP8C Variable Text Sample RSP” for sample RSPs that handle variables.

Processing with variable text

If the client application sends variable text, Open ServerConnect (if TRS is
used) or MainframeConnect (if Access Service Library is used) places:

• The address of the variable text in SPVARTXT

• The length of the variable text in SPVARLEN

If the client application does not pass any arguments, Open ServerConnect sets
SPVARTXT and SPVARLEN to 0.

See Chapter 5, “Testing and invoking an RSP” for details on sending variables
and data from the client application.

Length of
Variable Value

Length of
Variable Name

Address of
Variable Value

Address of
Variable Name

4 bytes 4 bytes 2 bytes 2 bytes

CHAPTER 2 Designing an RSP

Programmer’s Reference for Remote Stored Procedures 29

Invoking with data pipes
The data pipe is the mechanism by which an RSP sends results to or receives
data records from the client application. Both an input pipe and an output pipe
can be open at the same time.

You can use a combination of different data pipe formats for input and output.
For example, you can define input pipes as STD format and output pipes as
DB2 format.

This section describes what you need to consider when using input and output
pipes with fixed- and variable-length records and binary data.

Transmitting fixed-length or variable-length records

STD and BIN format pipes can transmit either fixed- or variable-length
records. They are the only data pipe formats that use the SPAREA SPMAXLEN
and SPRECLEN properties. SPMAXLEN sets the maximum length for data
records to be passed through a data pipe; SPRECLEN specifies the actual length
of a particular data record.

Using input pipes

When you define an input pipe to handle fixed-length records, you set
SPMAXLEN. The RSP needs to read SPMAXLEN only once. SPRECLEN is not
required and is set by MainframeConnect.

For every record sent through an input pipe, MainframeConnect places the
record length in SPRECLEN, overwriting the existing SPRECLEN value. You
must check this value (record length) for each record after every GETPIPE.

The following table explains how to set input pipes for fixed- or variable-
length records.

Understanding how to invoke an RSP

30 Mainframe Connect Server Option

Table 2-4: Setting input pipes

Using output pipes

For every record sent through an output pipe—that is, before every PUTPIPE—
the RSP must place the record length in SPRECLEN. The following table
explains how to set output pipes for fixed- or variable-length records.

Table 2-5: Setting output pipes

Using concurrent input and output pipes

If both an input pipe and an output pipe are open simultaneously, the RSP needs
to know whether the value in SPMAXLEN reflects the input or output pipe. In
addition, depending on whether the data is fixed- or variable-length, the RSP
may need to reset or restore and reread the SPRECLEN value for every output
data record. The following table summarizes how you set fixed- and variable-
length data for concurrent input and output pipes.

Fixed-length data Set SPMAXLEN on the OPENPIPE command to the
length of a single data record.

Variable-length data Set SPMAXLEN; then after each GETPIPE, check
SPRECLEN and process the incoming record
accordingly. Check SPRECLEN only if it is possible
that the client application passes variable-length
records.

Fixed-length data Set SPMAXLEN with the OPENPIPE command.

Variable-length data Set SPMAXLEN with the OPENPIPE command, then set
SPRECLEN with every PUTPIPE.

CHAPTER 2 Designing an RSP

Programmer’s Reference for Remote Stored Procedures 31

Table 2-6: Setting concurrent input and output pipes

Transmitting binary data

When an RSP uses a DB2 format data pipe, EBCDIC-ASCII or ASCII-
EBCDIC conversion does not occur for the columns defined as binary. When
you use DB2 format data, each binary column is indicated by setting the
corresponding SQLDATA field to X'0000FFFF' at OPENPIPE. You can define
only CHAR, VARCHAR, and LVARCHAR columns as binary.

The RSP must set the SQLDATA field appropriately. To indicate whether a
column contains binary or normal data, you place the appropriate value in the
corresponding SQLDATA field before issuing the OPENPIPE command:

X'xxxxxxxx' (for normal data)
 X'0000FFFF' (for binary data)

where:

Input and output pipes both
fixed-length data

If both data records are the same length:

1 Set SPMAXLEN with each OPENPIPE command.

2 Check SPRECLEN only if it is possible that the
client application passes variable-length records. If
this occurs, reset the SPRECLEN value for
subsequent PUTPIPE commands.

If the data records are different lengths:

1 Set SPMAXLEN with each OPENPIPE command.
Then set SPRECLEN with each PUTPIPE
command.

2 Check SPRECLEN only if it is possible that the
client application passes variable-length records. If
this occurs, check the SPRECLEN value for that
GETPIPE command, then restore it for subsequent
PUTPIPE or GETPIPE commands.

Input and output pipes both
variable-length data

1 Set SPMAXLEN with each OPENPIPE command.

2 Check SPRECLEN before each GETPIPE and
place the value in the GETPIPE command.

3 Reset SPRECLEN with each PUTPIPE.

Input pipe fixed-length;
Output pipe variable- length

Handle as if they were both fixed-length, and of the
length set in the output pipe SPMAXLEN.

Input pipe variable- length;
Output pipe fixed-length

Handle as if they were both variable-length.

Specifying error handling

32 Mainframe Connect Server Option

• xxxxxxxx is a pointer to the actual data.

• 0000FFFF is the DRDA/DB2 V2R3 “for bit data” indicator.

If any columns were defined as binary, the corresponding SQLDATA fields must
be reset to point to the actual column data after the OPENPIPE is issued.

See Appendix G, “The SQLDA” for more information on the SQLDA.

Specifying error handling
When Open ServerConnect executes a command, it uses the SPAREA SPRC
field to send a return code that indicates the success or failure of the command.

• If the command succeeds, the SPRC field is set to '000'.

• If an error occurs:

a The SPRC field is set to a 3-character Open ServerConnect error code.
Mainframe Connect Client Option and Server Option Messages and
Codes contains the Open ServerConnect error codes related to RSPs.

b Open ServerConnect issues a STATUS command.

c The RSP is not allowed to issue any more commands. The RSP should
perform any termination processing and then return control to Open
ServerConnect.

The following COBOL II statements show an example of return code checking
after issuing an OPENPIPE command:

CALL 'OPENPIPE' USING SPAREA
 IF SPRC NOT EQUAL '000' THEN GOTO PERFORM-TERMINATE.

In addition to '000', the SPRC field can contain other codes. For example:
’EOF’, ‘ACE’, and ‘CAN’. See the following table for an explanation of those
codes and the SPAREA fields used to communicate status and messages
between Open ServerConnect and the RSP.

CHAPTER 2 Designing an RSP

Programmer’s Reference for Remote Stored Procedures 33

Table 2-7: SPAREA error handling fields

For a complete list of MainframeConnect error messages, see Mainframe
Connect Client Option and Server Option Messages and Codes.

SPAREA Field Use

SPRC RSP API indicates the success or failure of an RSP command
in this field. Possible values are:

• '000' indicates successful completion.

• 'xxx' indicates a Open ServerConnect error message.

• 'EOF' indicates an End of File on input data.

• 'ACE' indicates an APPC communication error (when the
MainframeConnect configuration property Temporary
Storage Type is set to None).

• 'CAN' indicates the client issued a DBCANCEL command.

SPSTATUS RSP API communicates the status of processing in the remote
database to the RSP. The RSP also uses the SPSTATUS field to
communicate status on its own processing to the client
application. Possible values are:

• 'OK' indicates success.

• 'E' indicates an error.

• 'W' indicates a warning.

SPMSG RSP communicates messages back to the client using this field.

SPCODE An error code that is sent in a message to the client application
appears in this field.

Specifying error handling

34 Mainframe Connect Server Option

Programmer’s Reference for Remote Stored Procedures 35

C H A P T E R 3 Writing an RSP

This chapter provides information to help you write an RSP and covers the
following topics:

• Overview

• Choosing a sample RSP

• Renaming the sample

• Testing the sample

• Writing the RSP

Overview
Sybase provides sample RSPs for you to use as shells for the RSPs you
write. When you write an RSP, select a sample, rename and test the
sample, and then alter it to fit your needs.

Choosing a sample RSP
Sybase recommends that you select a sample RSP in the programming
language you are using as a shell for your application. The sample RSPs
are provided on the Open ServerConnect API tape.

The following table lists the sample programs and definitions available to
you:

Overview

36 Mainframe Connect Server Option

Table 3-1: Samples on the Open ServerConnect API tape

Sample Description

MODELRSP Shows how to use a DB2 format output pipe and a SQLDA
definition. MODELRSP is reproduced in Appendix B,
“MODELRSP DB2 Output Pipe Sample RSP.”

RSP3C Shows how to use STD format input and output pipes to
transmit data. RSP3C is reproduced in Appendix C, “RSP3C
STD Input and Output Pipe Sample RSP.”

RSP4C Shows an example of transmitting keyword variables. RSP4C
is reproduced in Appendix D, “RSP4C Keyword Variable
Sample RSP.”

RSP8C Shows an example of transmitting variable text. RSP8C is
reproduced in Appendix E, “RSP8C Variable Text Sample
RSP.”

SAMP01A Assembler sample program RSP 1. Shows how to use a text
property to select data in DB2 and write the results to a CICS
temporary storage queue.

SAMP01C COBOL II sample program RSP 1. (See SAMP01A for
description of what it does.)

SAMP02A Assembler sample program RSP 2. Shows how to select the
contents of an entire DB2 table and write the results to STD-
format output pipes.

SAMP02C COBOL II sample program RSP 2. (See SAMP02A for
description of what it does.)

SAMP03A Assembler sample program RSP 3. Shows how to use a
keyword property to select data from DB2 and write the results
to DB2-format output pipes.

SAMP03C COBOL II sample program RSP 3. (See SAMP03A for
description of what it does.)

SAMP04A Assembler sample program RSP 4, which demonstrates VSAM
access. Shows how to use a text property as a partial key to
perform a partial-key “browse” on a VSAM KSDS dataset and
write the results to DB2-format output pipes.

SAMP04C COBOL II sample program RSP 4. (See SAMP04A for
description of what it does.)

EMPDATA Test data for sample program SAMP04.

EMPFILE VSAM define for sample program SAMP04.

EMPREPRO JCL to populate sample VSAM file.

EMPTAB Create table for sample SAMP04.

SPAREAP PL/I RSP communication area.

SPAREAX C RSP communication area.

SQLDAX C sample SQLDA.

CHAPTER 3 Writing an RSP

Programmer’s Reference for Remote Stored Procedures 37

Renaming the sample
After selecting a sample RSP to use as a shell, rename the sample using the
naming conventions of standard mainframe programs at your site for the RSP
name.

Testing the sample
 Before you begin to write your RSP, test the sample you are using as a shell.
The samples use a table called PCSQL.SAMPLE_PARTS. The CREATE TABLE
statement for this table is member PARTSTAB in the
SYBASE.ORSP310B.CICS.SOURCE library.

If you want to compile these examples and test them, Sample 1 (SAMP01A or
SAMP01C) requires you to provide a 5-byte character value for PARTNO. This
variable is not in keyword format, so the statement that executes this stored
procedure would appear as:

USE PROCEDURE SAMP01x 'xxxxx'

Sample 3 (SAMP03A or SAMP03C) requires you to provide an ISO-format
(yyyy-mm-dd) date value in keyword format for &DATE, as follows:

USE PROCEDURE SAMP03x &DATE='yyyy-mm-dd'

If you need detailed instructions on testing the sample, go to Chapter 5,
“Testing and invoking an RSP.”

Writing the RSP
By now you should have:

• Reviewed the RSP commands

• Reviewed one of the four sample RSPs provided in the appendixes

• Reviewed Chapter 2, “Designing an RSP”

• Gathered requirements for and designed your RSP, determining:

PARTSTAB Create SQL statement table for sample RSPs.

Writing the RSP

38 Mainframe Connect Server Option

• The processing to be done by both the client application and the RSP

• The type of data (character or binary) to transmit

• The types of data pipes (input or output) to use

• The format of data to transmit through those data pipes (STD or DB2)

• Whether you need to use a SQLDA definition (if you are using DB2
format)

You may find it helpful to use existing data definitions or data access code from
other programs. Some of the programming tasks involved in writing RSPs are
as follows:

• Defining input and output data pipes

• Using the provided RSP commands, such as MESSAGE and STATUS,
whenever appropriate (see Appendix A, “RSP Commands” for details)

• Accessing the SPAREA, which the RSP shares with MainframeConnect

• Specifying keyword and variable handling

• Specifying error handling

Programmer’s Reference for Remote Stored Procedures 39

C H A P T E R 4 Compiling an RSP

This chapter discusses the following topics:

• Overview

• Compiling an RSP without DB2

• Compiling an RSP with DB2

• Understanding the linkage

Overview
This chapter explains how to compile an RSP with and without DB2 and
includes an explanation of linking.

Compiling an RSP without DB2
Compile and link-edit the RSP in the standard manner for CICS
command-level programs. Use the following figure as a guide when
performing steps to compile an RSP without DB2.

Compiling an RSP without DB2

40 Mainframe Connect Server Option

Figure 4-1: Compiling an RSP without DB2

As Figure 4-1 shows, you perform the following tasks to compile an RSP
without DB2:

1 Run the RSP source program through the CICS precompiler.

2 Compile the RSP source program.

3 Link-edit the RSP source program with the stub routines.

The RSP load module is created.

For more information on linking, see “Understanding the linkage” on
page 44.

CHAPTER 4 Compiling an RSP

Programmer’s Reference for Remote Stored Procedures 41

Compiling an RSP with DB2
Compile and link-edit the RSP in the standard manner for CICS command-
level programs. If the RSP accesses DB2, be sure the RSP is processed by the
DB2 precompiler program before running it through the CICS precompiler. In
addition, you need to bind the resulting application plan. Be sure that your
systems administrator grants users EXECUTE authority on the RSP plan and
package. See Mainframe Connect DB2 UDB Option for CICS Installation and
Administration Guide for details.

Use the following figure as a guide when performing steps to compile an RSP
with DB2.

Compiling an RSP with DB2

42 Mainframe Connect Server Option

Figure 4-2: Compiling an RSP with DB2

As Figure 4-2 shows, you perform the following tasks to compile an RSP with
DB2:

1 Run the RSP source program through the DB2 precompiler.

2 Run the RSP source program through the CICS precompiler.

3 Compile and link-edit the RSP source program with the stub routines.

The RSP load module is created.

4 Bind the database request module (DBRM) created in the DB2 precompile
process to DB2 as a plan or package.

Stub Routines

RSP Source
Program

DB2
Precompiler

CICS Precompiler

LNKEDT

RSP Load
Module

DB2 Application
Plan or Package

Compiler

Bind

CHAPTER 4 Compiling an RSP

Programmer’s Reference for Remote Stored Procedures 43

For more information on linking, see “Understanding the linkage” on page 44.

Using DB2 plans (TRS Only)
You can have a separate plan for each RSP. If you do, you need an entry in the
CICS RCT table for each RSP transaction that points to each RSP plan name.

Using DB2 packages (TRS or MainframeConnect)
or gateway-less

DB2 packages allow you to use one plan for all of the RSPs that access DB2,
provided that MainframeConnect, if installed, and all the RSP DBRMs are
bound in packages included in that plan. After creating the DB2 collection and
plan, you can bind RSP packages in the collection instead of rebinding the plan.
This eliminates the need for dynamic plan allocation when MainframeConnect
is installed. All the RSP entries in the CICS RCT table can point to the same
plan name.

If you are using DB2 packages, ask your DB2 systems administrator for the
reference guide for DB2 commands and utilities for information on preparing
to use DB2 packages.

Creating a DB2 package

To create a DB2 package, follow these steps:

1 Create the collection using the following command:

GRANT CREATE ON COLLECTION SYAMD2 TO PUBLIC

2 Bind the plan to include the collection and grant access to the packages
using the following command:

BIND PLAN(AMD2PLAN) ACTION(REPLACE) PKLIST(*.SYAMD2.*) +
ISOLATION(CS) VALIDATE(BIND)
GRANT RUN ON PLAN
AMD2PLAN TO PUBLIC

3 Bind the packages in the collection using the following command:

Understanding the linkage

44 Mainframe Connect Server Option

BIND PACKAGE(SYAMD2) ACT(REPLACE) +
LIBRARY('SYBASE.AMD2105.CICSDB2.DBRM') MEMBER(RSPA) +
ISOLATION(CS) VALIDATE(BIND)
GRANT EXECUTE ON PACKAGE SYAMD2.RSPA TO PUBLIC
BIND PACKAGE(SYAMD2) ACT(REPLACE) +
LIBRARY('SYBASE.AMD2105.CICSDB2.DBRM') MEMBER(RSPB) +
ISOLATION(CS) VALIDATE(BIND)
GRANT EXECUTE ON PACKAGE SYAMD2.RSPB TO PUBLIC

Understanding the linkage
During the link-edit step, stub routines are included in the resulting load
module for the RSP. The stub routines provide the linkage between the RSP
and Open ServerConnect.

Note Each time you link-edit, you must also perform a CICS NEWCOPY.

Linking RSPs
MVS requires that RSPs be linked above the 16MB line in 31-bit addressing
mode. To do this, add a line to the RSP source program similar to the following
JCL:

//LNKEDT EXEC PGM=IEWL,PARM='parms AMODE(31)
 RMODE(ANY)'

The concatenation sequence for SYSLIB in the link edit step must include a DD
statement for the stub library, either in load format or object format.

Linking load modules
When you link load modules, add a line similar to the following to the SYSLIB
DD concatenation in the JCL:

//SYSLIB DD DSN=SYBASE.ORSP310B.CICS.LOADLIB,
 DISP=SHR

CHAPTER 4 Compiling an RSP

Programmer’s Reference for Remote Stored Procedures 45

Linking object code
When you link object code, add a line similar to the following to the SYSLIB
DD concatenation in the JCL:

//SYSLIB DD DSN=SYBASE.ORSP310B.CICS.OBJLIB,
 DISP=SHR

The SYBASE.ORSP310B.CICS.xxxxx value varies with the Open
ServerConnect version you are using. See the Mainframe Connect Server
Option Installation and Administration Guide (platform-specific) for more
information.

Note If you are using COBOL II, CICS requires that you link-edit the stub
routine DFHECI at the top of the RSP.

Understanding the linkage

46 Mainframe Connect Server Option

Programmer’s Reference for Remote Stored Procedures 47

C H A P T E R 5 Testing and invoking an RSP

This chapter discusses the following topics:

• Overview

• Before you test or invoke an RSP

• Testing an RSP using an ASPT transaction

• Running the RSP test program

Overview
For installations that include MainframeConnect, the Transaction ASPT
(RSP Test Screen) utility allows you to view the first 15 rows of results
from the RSP. In addition, you can test the RSP fully by invoking it. This
chapter explains how to do both.

Before you test or invoke an RSP
Each RSP must have a CICS PPT entry. (Generally, the systems
administrator or system programmer makes CICS entries.)

In addition, if the RSP runs through TRS and accesses DB2, a transaction
definition in CICS is required for each RSP and an RCT entry is required
for that transaction.

Testing an RSP using an ASPT transaction

48 Mainframe Connect Server Option

Testing an RSP using an ASPT transaction
The ASPT Transaction allows you to test RSPs using STD input pipe data
(keyword, variable text). Although you can write RSPs to use BIN input pipes,
for testing with ASPT, you must use STD format.

Note Test the RSP in the standard manner for CICS command-level programs.

Testing an RSP involves creating a temporary storage queue and running
ASPT.

Creating a temporary storage queue
To provide input pipe data to RSP Testor, create a temporary storage queue and
populate it with data of the same type and format that will be sent to the RSP
in normal use. You must name the temporary storage queue with the same
name as the RSP being tested.

Note Because the RSP Testor screen is case sensitive, you must enter the RSP
name in capital letters so the temporary storage queue that holds your input
records can be located. If you receive an EOF ALREADY ENCOUNTERED
message, be sure you entered the RSP name correctly.

Use program function keys to work with the results. The following table
describes the program function key operations.

Table 5-1: Function key operations

The CICS CECI transaction is a convenient tool for creating and populating the
temporary storage queue with STD-format data. The following example uses
the CECI command to create and load a temporary storage queue for input
records:

CECI WRITEQ TS QUEUE('RSPNAME') FROM('THIS IS A DATA RECORD')A

This key: Performs this function:

F3 Terminates the RSP test

F5 Displays the arguments that were specified for the RSP test.
You can specify new arguments if you want.

F6 Displays the messages or data produced by the RSP

CHAPTER 5 Testing and invoking an RSP

Programmer’s Reference for Remote Stored Procedures 49

Running the RSP test program
To test an RSP using the RSP test program, perform the following steps:

1 Sign on to CICS and enter the command for RSP Test program:

ASPT

The Stored Procedures Test window appears as shown in the following
figure:

Figure 5-1: Stored Procedure Test window

2 At the following prompt,

Stored Procedure Name

specify the name of the RSP you are testing. If the RSP expects variables,
specify the values in the format the RSP expects.

The completed information in the Stored Procedure Test window is shown
in the following figure.

S T O R E D P R O C E D U R E T E S T
��
Stored Procedure Name ===>

Specify Variables Below:

Testing an RSP using an ASPT transaction

50 Mainframe Connect Server Option

Figure 5-2: Completed Stored Procedure Test window

3 Press Enter to perform the test.

When the RSP completes processing, the results from the test appear on
the screen. If the RSP produced any output (messages or data), the first 15
lines of the output also appear.

The following figure shows the test results for the sample program
SAMP02C RSP. The output consists of four data records and messages.

Figure 5-3: Stored Procedure Test results window

S T O R E D P R O C E D U R E T E S T
���-
Stored Procedure Name ===>> SAMP02C
Specify Variables Below:

&PARTNO=100 &COLOR=’BLUE’

S T O R E D P R O C E D U R E T E S T
��
TEST COMPLETE STATUS: OK ERRCODE: ROW COUNT: 4
Stored Procedure Name ===>> SAMP02C
Data Records Shown Below:
0003800300PART NUMBER 300 Z15
0003800300PART NUMBER 300 Z15
0003800200PART NUMBER 200 A15
0003800100PART NUMBER 100 A14

CHAPTER 5 Testing and invoking an RSP

Programmer’s Reference for Remote Stored Procedures 51

Invoking an RSP
Both the client application programmer and the RSP programmer need to be
aware of how client applications interact with RSPs. This section describes
how to invoke RSPs, how to migrate from previous modes, and how to send
data to the RSP.

How the RSP will be invoked (through Access Service Library, TRS, or both)
or Gatewayless determines the command you use to invoke it. When a client
application invokes an RSP, arguments are passed to the RSP on the USE
PROCEDURE, EXECUTE, or EXEC statement. The RSP accesses these values
through the SPAREA. When you write a client application to invoke an RSP,
the format of the invocation command you use depends on:

• The SQL transformation (TSQL) configuration property setting on the
DirectConnect Access Service

If you write a client application to invoke an RSP, ask your LAN
administrator how the DirectConnect Access Service TSQL configuration
property is set at your site.

• A setting of PASSTHROUGH mode allows you to issue statements in
the target’s SQL dialect.

• A setting of SYBASE mode transforms most syntax of the received
SQL text into the SQL syntax that is supported by the target DBMS.

• The type of data (if any) you send with the RSP invocation request

The data you transmit can be in binary format or ASCII text.

Note DirectConnect and Open ServerConnect support MDI Database
Gateway™ TSQL modes of TSQL0, TSQL1, and TSQL2 for backward
compatibility only. TSQL0 corresponds to PASSTHROUGH mode, and TSQL2
corresponds to SYBASE mode. For these modes, your SQL should not require
any modification. TSQL1 and TSQL2 continue to work as they do in MDI
Database Gateway for DB2, Version 2.05, but Sybase is planning to phase them
out. These modes will not be defined or documented beyond what was
provided for that version. See “Migrating from TSQL0, TSQL1, and TSQL2
modes” on page 55 for more information.

Invoking an RSP

52 Mainframe Connect Server Option

When invoking an RSP, the client application can specify keyword variables,
variable text, or input pipes to pass to the RSP. In turn, the RSP uses pointers in
the SPAREA to access the values. Keyword variables have the typical MVS
format of &VARNAME=value. The client application passes values according to
the DirectConnect TSQL setting for SQL transformation.

Invoking RSPs through Access Service Library
This section explains how to use the PASSTHROUGH and SYBASE
transformation mode commands to invoke RSPs through Access Service
Library. It also explains how to pass keyword variables and variable text, and
how to handle quotes in variables.

Using the PASSTHROUGH mode commands

If the DirectConnect TSQL configuration property is set to PASSTHROUGH,
use this command syntax to invoke RSPs:

USE PROCEDURE procedurename

If you pass variables to the RSP, you must also supply the appropriate
arguments in the invoking statement, and the form of the arguments must
match the SQL transformation level. See your Transact-SQL manual for more
information on variables and arguments.

Passing keyword variables

Use this command syntax to pass keyword variable values to the RSP:

USE PROCEDURE procedurename &VARNAME1=value1
&VARNAME2=value2 ... &VARNAMEn=valuen

Passing variable text

The client application passes variable text to the RSP as a single text string; the
RSP is responsible for interpreting the string.

If the DirectConnect TSQL configuration property is set to PASSTHROUGH,
use this command syntax to pass variable text to the RSP:

CHAPTER 5 Testing and invoking an RSP

Programmer’s Reference for Remote Stored Procedures 53

USE PROCEDURE procedurename valuestring

Note There is a 32K limit for variable text string size for DB2 Access Service.
This limit is not valid for TRS Access Service.

Using the SYBASE mode command

If the DirectConnect TSQL configuration property is set to SYBASE, use this
command syntax to invoke RSPs:

EXECUTE procedurename

If you pass variables to the RSP, you must also supply the appropriate
arguments in the invoking statement, and the form of the arguments must
match the SQL transformation level. See your Transact-SQL manual for more
information on variables and arguments.

Passing keyword variables

Use this command syntax to pass keyword variable values to the RSP:

EXECUTE procedurename @VARNAME1=value1,
@VARNAME2=value2 ... , @VARNAMEn=valuen

With TSQL set to SYBASE, you must comply with Transact-SQL syntax for
variables. In particular, be sure to prefix your variable names with the at sign
(@) instead of the ampersand (&) and to separate the variables with commas.

Passing variable text

The client application passes variable text to the RSP as a single text string; the
RSP is responsible for interpreting the string. When using variable text, you
can include an unlimited number of variables in the string.

Note There is a 32K limit for variable text string size.

• If TSQL is set to PASSTHROUGH, use this command syntax to pass
variable text to the RSP:

USE PROCEDURE procedurename valuestring

• If TSQL is set to SYBASE, use this command syntax to pass variable text
to the RSP:

EXECUTE procedurename valuestring

Invoking an RSP

54 Mainframe Connect Server Option

Handling quotes in variables

In some cases, the values the client application sends to the RSP contain
quotation mark characters, either single or double. Because these characters are
frequently used as string delimiters, DirectConnect can misinterpret strings
containing quotes. Therefore, it may transform the values in ways that the RSP
does not expect, for example by replacing the carriage return-linefeed sequence
(CR/LF) with spaces.

To provide maximum control over quote handling in USE statements, Sybase
implemented the following rules:

Note These rules apply only if your setting is TSQL1 or PASSTHROUGH.

• The first non-white-space character following the procedure or request
name is tested by MainframeConnect for the possibility that it is a special
delimiter. Special delimiters can be used to enclose the entire set of
argument strings sent to the request or RSP. If the argument string is
enclosed by such delimiters, then the characters between the delimiters
(including the delimiters themselves) are not modified in any way. In other
words, quote processing, uppercasing and so on, is not performed by
MainframeConnect.

• DirectConnect recognizes a character as a delimiter if it is a member of the
following set of characters:

! % () * / : << >> ? \ ' { } | ~

Note The same delimiter character must be used at both ends of the string: for
example, (xxxxxxxx(or {xxxxxxxx{ (not (xxxxxxxx)).

If the first non-white-space character is not a delimiter, then
MainframeConnect handles quotes according to the following standard TSQL1
rules:

• It passes doubled occurrences of either quote character—that is, '' or ""—
without modification.

• It assumes the first single occurrence of either quote character is a
delimiter beginning a quoted string, and it assumes the next single
occurrence of the same character ends the quoted string.

• It compares the delimiter to the setting in the DirectConnect configuration
(.cfg) file, and converts the delimiter if required; that is, double quotes may
be converted to single quotes.

CHAPTER 5 Testing and invoking an RSP

Programmer’s Reference for Remote Stored Procedures 55

• It passes occurrences of the other quote characters (that is, double quotes
occurring in a string delimited by single quotes or single quotes occurring
in a string delimited by double quotes) without modification.

Invoking RSPs through TRS
If you invoke the RSP through TRS, use this command syntax:

EXEC rpcname

Passing keyword variables

Use this command syntax to pass keyword variable values to the RSP:

EXEC rpcname @VARNAME1=’value1’, @VARNAME2=’value2’ ...
, @VARNAMEn=’valuen’

Passing variable text

The client application passes variable text to the RSP as a single text string; the
RSP is responsible for interpreting the string. When using variable text, the
number of variables you can include in the string is unlimited.

Note There is a 32K limit for variable text string size.

If TSQL is set to SYBASE, use this command syntax to pass variable text to the
RSP:

EXEC rpcname ‘value’

Migrating from TSQL0, TSQL1, and TSQL2 modes
TSQL0 corresponds to PASSTHROUGH mode, and TSQL2 corresponds to
SYBASE mode. For these modes, your SQL should not require any
modification.

If you used TSQL1 mode for earlier releases, review your SQL.

Invoking an RSP

56 Mainframe Connect Server Option

If you migrate to a setting of PASSTHROUGH mode, your code will probably
fail because the TSQL1 partial conversion does not occur. If you migrate to a
new setting of SYBASE mode, your code should work because DirectConnect
passes any SQL statement that the parser cannot identify on to the server
without changes.

Sending data to the RSP
You can use STD input pipes to send data to an RSP only if your DirectConnect
TSQL setting is PASSTHROUGH (or TSQL0 or TSQL1 for backward
compatibility only). You can send ASCII data through parameters and pipes;
however, binary data can only be sent through pipes.

Note If your DirectConnect setting is SYBASE (or TSQL2, for backward
compatibility only), you must pass data as parameters.

When invoking an RSP, the client application can send ASCII formatted data
or binary data. If it sends binary data, see “Sending binary data” on page 57.

Sending ASCII-formatted data

To send ASCII data to an RSP, you use this command syntax:

USE PROCEDURE WITH DATA rspname [keywords or variable text];

ASCII data records

The following list describes the previous syntax:

• The WITH DATA clause appends input records.

• A carriage return or line feed separates data records.

• A semicolon and carriage return/linefeed must separate the USE
PROCEDURE clause from the data.

• When another statement follows the data records, the data records must
end with a semicolon on a line by itself.

This is an example of ASCII-formatted data:

521-44-3201 JOHN SMITH 1991-04-16 00004 012.25
 521-56-4368 JERRY GREEN 1987-11-02 00001 018.75
 522-63-7188 SALLY JONES 1988-09-21 00002 015.00

CHAPTER 5 Testing and invoking an RSP

Programmer’s Reference for Remote Stored Procedures 57

 521-44-3201 BILL SMITH 1981-12-16 00004 012.25
 521-56-4368 GEORGE BROWN 1986-05-24 00001 018.75
 522-63-7188 KATHY JOHNSON 1987-09-19 00002 015.00

Sending binary data

The client application can send RSPs binary input data using a BIN-format
input pipe. The client application specifies the USE PROCEDURE statement
using the WITH BINARY DATA option in this command syntax:

To send binary data to an RSP, use this command syntax:

USE PROCEDURE WITH BINARY DATA rspname [keywords or variable text];

....binary data....

The following describes the syntax:

• The WITH BINARY DATA clause appends the input file as binary data.

• rspname represents the name of the RSP.

• A semicolon and carriage return/linefeed must separate the USE
PROCEDURE clause from the data.

The RSP assumes all data between the semicolon and the end of the buffer
is binary. Because there is no internal formatting in the binary file, the RSP
must be able to interpret the data appropriately.

• With a BIN-format data pipe, ASCII-EBCDIC conversion does not occur.

Understanding input data requirements

All data, except binary, the client sends as input to the RSP must meet the
following requirements:

• All characters must be printable ASCII characters (20–7F hexadecimal).

• Records must be delimited by either linefeed or carriage return/linefeed.

In PASSTHROUGH mode, input pipe data passes unchanged to the RSP, except
that control characters are deleted and ASCII is converted to EBCDIC. All line
feeds in the input data serve to separate data records, and their positions control
what the RSP receives as a single record.

Invoking an RSP

58 Mainframe Connect Server Option

Programmer’s Reference for Remote Stored Procedures 59

C H A P T E R 6 Troubleshooting

This chapter describes the following topics:

• Overview

• MainframeConnect errors related to RSPs

• Troubleshooting errors

Overview
This chapter describes how to use the output records of an RSP to
troubleshoot problems in the RSP.

MainframeConnect errors related to RSPs
Your RSP receives error messages, if there are any, in the SPRC field of
the SPAREA.

MainframeConnect invokes the RSP through the CICS LINK command,
which causes the CICS program table to be searched for the RSP name.

If CICS does not find the RSP name, one of three messages returns:

• If DB2 does not exist in this CICS region, then MainframeConnect
returns a RSP or REQUEST not found message or a CICS Abend
AEY9.

• If DB2 does exist in this CICS region but the host request table does
not exist, then MainframeConnect returns a RSP or REQUEST not
found message.

• If DB2 and the host request table both exist but the RSP name is not
in the table, then MainframeConnect returns an RSP or REQUEST
not found message.

Troubleshooting errors

60 Mainframe Connect Server Option

See Mainframe Connect DB2 UDB Option for CICS Installation and
Administration Guide for the valid message numbers, the message text, the
reason the message was issued, and the required action.

Note snaping and cicsping are troubleshooting programs available with
MainframeConnect. See Mainframe Connect DB2 UDB Option for CICS
Installation and Administration Guide for more information.

Troubleshooting errors
This section covers DB2 errors, and what to do if ASRA abends at PUTPIPE
and at OPENPIPE.

DB2 errors
If you receive a DB2 -805 error when you execute RSPs that access DB2,
ensure that:

• Pooled threads are specified

• The package was bound with the current database request module
(DBRM)

If you receive other DB2 error messages, refer to your DB2 documentation.

CICS ASRA abend errors
ASRA is an abend error indicating that CICS found a problem in a program that
was running. It is the most common CICS abend.

If a CICS ASRA abend (OC4) occurs at PUTPIPE

There are two common causes of ASRA abends at the PUTPIPE command: a
SQLLEN packed decimal error and VARCHAR or LVARCHAR definition error.

CHAPTER 6 Troubleshooting

Programmer’s Reference for Remote Stored Procedures 61

A SQLLEN packed decimal error

Defining packed decimals in the SQLDA is a common source of errors. When
you define the length of a packed decimal in the SQLLEN field, the length is a
decimal translation of hexadecimal 'PPSS', where:

• PP (precision) is the number of total digits in the decimal.

• SS (scale) is the number of those digits to the right of the decimal.

An incorrect length causes an ASRA abend at the PUTPIPE command. The
following table shows how the problem can occur.

Table 6-1: Coding decimal and hexadecimal values

You can calculate the hex value using the following formula:

pp x 256 + ss = length

where pp is precision and ss is scale.

For example:

05 SQLLEN PIC S9(4) COMP VALUE +3330.
13 x 256 + 02 = 3330

You can avoid decimal translation by redefining the SQLLEN field as a PIC(2)
with a hexadecimal value:

05 SQLLEN-X PIC X(2)VALUE X'0D02’.
 05 SQLLEN REDEFINES SQLLEN-X PIC S9(4)COMP.

VARCHAR or LVARCHAR definition error

When VARCHAR and LVARCHAR are defined in the LINKAGE SECTION,
they each require a preceding 2-byte field for their length. Not including this
length field causes an ASRA abend at the PUTPIPE command.

The code must include a computed field, which passes the amount of space that
is required for the text:

01 VARCHAR-HOLD.
 05 VARCHAR-LENGTH PIC S9(4)COMP.
 05 VARCHAR-TEXT PIC X(200).

Code Picture Hex value
Decimal
value

PIC S9(03)V99 nnn.nn X'0502' '1282'

PAC S9(11)V99 nnnnnnnnnnn.nn X'0D02' '3330'

Troubleshooting errors

62 Mainframe Connect Server Option

If the code omits the computed field, the first two characters in the text field
are used for the length of the text field:

01 VARCHAR-HOLD.
 05 VARCHAR-TEXT PIC X(200).

The hexadecimal value for alphas can be very large. The result is an ASRA
abend, or even a CICS crash.

If a CICS ASRA abend occurs at OPENPIPE

Errors in the model SQLDA definition cause an ASRA abend at the OPENPIPE
command. MainframeConnect does not check errors for the SQLDA structure,
so any typing error causes an abend. Recheck the RSP code, or copy the
SQLDA definition from another file.

Programmer’s Reference for Remote Stored Procedures 63

A P P E N D I X A RSP Commands

This appendix discusses the following topics:

• Command examples

• Commands

Command examples
The following examples show commands in assembler, COBOL II, PL/I,
and C languages:

Assembler language
example

MVC SPMODE,=C'INPUT'
 MVC SPFORMAT,=C'STD'
 MVC SPMAXLEN,=F'400'
 CALL OPENPIPE,SPAREA

COBOL I I language
example

MOVE 'INPUT' TO SPMODE.
 MOVE 'STD' TO SPFORMAT.
 MOVE 400 TO SPMAXLEN.
 CALL 'OPENPIPE' USING SPAREA.

PL/I language example SPMODE='INPUT';
 SPFORMAT='STD';
 SPMAXLEN=400;
 CALL OPENPIPE(SPAREA);

C language example memcpy(spPointer->spmode, “INPUT ”,
 sizeof(spPointer->spmode));
 memcpy(spPointer->spformat, “STD”,
 sizeof(spPointer->spformat));
 spPointer->spmaxlen = 400;
 openpipe(spPointer);

Note All the other examples in the command explanations in this
appendix are in COBOL II.

Commands

64 Mainframe Connect Server Option

Commands
The following RSP commands are explained in this appendix:

• CLOSPIPE on page 64

• COMMIT on page 65

• GETPIPE on page 65

• MESSAGE on page 66

• OPENPIPE on page 67

• PUTPIPE on page 68

• ROLLBACK on page 69

• RPDONE on page 70

• RPSETUP on page 70

• STATUS on page 70

CLOSPIPE
Description Closes a data pipe.

Syntax Syntax varies with the programming language.

Examples COBAL II

1 Closing an input pipe:

MOVE 'INPUT' TO SPMODE.
 CALL 'CLOSPIPE' USING SPAREA.

2 Closing an output pipe:

MOVE 'OUTPUT' TO SPMODE.
 CALL 'CLOSPIPE' USING SPAREA.

Usage Properties

The CLOSPIPE command uses the value from the SPAREA field SPMODE (see
“SPMODE” on page 140), which specifies whether the data pipe is opened for
input or output.

APPENDIX A RSP Commands

Programmer’s Reference for Remote Stored Procedures 65

COMMIT
Description Commits database processing of the most recent unit of work.

Syntax Syntax varies with the programming language.

Examples COBAL II The equivalent to SYNCPOINT is:

CALL 'COMMIT' USING SPAREA.

Usage The RSP COMMIT command is provided because the standard SQL COMMIT
statement cannot be executed in CICS environments. MainframeConnect
converts the command to the equivalent CICS SYNCPOINT command.

GETPIPE
Description Reads data records from an input pipe.

Syntax Syntax varies with the programming language.

Note STD and BIN pipes are the only valid formats for the GETPIPE command.

Parameters The GETPIPE command uses values from these SPAREA fields:
• SPINTO (see “SPINTO” on page 140) specifies the address of the RSP

storage area to receive the input data. MainframeConnect places the
data record into this area.

• SPRECLEN (see “SPRECLEN” on page 141) specifies the length of the
data record. Open ServerConnect sets the SPRECLEN for a GETPIPE.

Note GETPIPE is used with Access Service Library only; it is not used with
TRS.

Examples COBOL II This example reads data from a STD format input pipe into the
DATAREC storage area (DATAREC is a data area defined in the RSP program):

SET ADDRESS OF DATAREAC TO SPINTO.
 CALL 'GETPIPE' USING SPAREA.

Usage • If you write fixed-length records of the same size as SPMAXLEN, the
SPRECLEN value is not required.

MESSAGE

66 Mainframe Connect Server Option

• However, when you have both an input pipe and an output pipe open, both
pipes use this field and each must set the field value before writing or
reading the record. See “Transmitting fixed-length or variable-length
records” for more information.

MESSAGE
Description Communicates error and informational messages to the client application.

Syntax Syntax varies with the programming language.

Examples COBOL II 1Provide the message text:

MOVE 'E' TO SPSTATUS.
 MOVE 'DATA REQUESTED CANNOT BE FOUND' TO SPMSG.
 CALL 'MESSAGE' USING SPAREA.

2 Repeat the message previously stored in SPMSG:

MOVE 'E' TO SPSTATUS.
 CALL 'MESSAGE' USING SPAREA.

Usage The MESSAGE command uses values from these SPAREA fields:

• SPMSG (see “SPMSG” on page 141) specifies the message text. Message
text can be up to 100 bytes long.

• SPSTATUS (see “SPSTATUS” on page 139) specifies processing status.
Use one of these codes:

• OK indicates success.

• E indicates an error.

• W indicates a warning.

Your RSP can issue as many MESSAGE commands as you need. The RSP API
sends the messages to the client application immediately.

To send messages and status to the client, the RSP places message text in an
SPAREA field (SPMSG) and issues the RSP MESSAGE command, which
signals to the RSP API that a message is ready to be sent.

Note A call to MESSAGE cannot be made between an OPENPIPE and a
PUTPIPE.

APPENDIX A RSP Commands

Programmer’s Reference for Remote Stored Procedures 67

OPENPIPE
Description Opens a data pipe either to send output to or receive input from the client

application.

Syntax Syntax varies with the programming language.

Examples COBOL II

1 Open a STD output pipe:

MOVE 'OUTPUT' TO SPMODE.
 MOVE 'STD' TO SPFORMAT.
 MOVE 450 TO SPMAXLEN.
 CALL 'OPENPIPE' USING SPAREA.

2 Open a BIN input pipe:

MOVE 'INPUT' TO SPMODE.
 MOVE 'BIN' TO SPFORMAT.
 MOVE 625 TO SPMAXLEN.
 CALL 'OPENPIPE' USING SPAREA.

Usage The OPENPIPE command uses values from these SPAREA fields:

• SPMODE (see “SPMODE” on page 140) specifies whether the data pipe
is opened for input or output.

• INPUT indicates the RSP reads data records sent from the client
application.

• OUTPUT indicates the RSP writes data records to be sent to the client
application.

• SPFORMAT (see “SPFORMAT” on page 140) specifies the data pipe
format.

• STD indicates standard format, in which each data record is
transmitted to or from the client application as a single-text column
record.

• BIN indicates a single-binary column format, like STD, except that the
data is binary. No ASCII-EBCDIC or EBCDIC-ASCII conversion
occurs on binary data.

Note Use STD and BIN only for input pipes.

PUTPIPE

68 Mainframe Connect Server Option

• DB2 indicates data is transmitted from the RSP as a multiple-column
record, where the column definitions are contained in an associated
SQLDA. The SQLDA is a collection of variables and pointers that
provide column information about data being transmitted to the client
application. See Appendix G, “The SQLDA” for more information.

Note Use DB2 only for output pipes.

• SPMAXLEN (see “SPMAXLEN” on page 141) specifies the maximum
size, in bytes, of the data records written to or read from the data pipe.

• SPSQLDA (see “SPSQLDA” on page 140) specifies the address of a
SQLDA that describes the content of the data records. Use only for output
pipes.

• STD and BIN format pipes must use SPMAXLEN to identify the maximum
record length.

• For DB2 format pipes, the RSP must supply the SPSQLDA address. DB2
format pipes must use SPSQLDA.

• Both an input pipe and an output pipe can be open at the same time.

• As part of opening a pipe, you must specify the format of the data the pipe
handles. RSPs can handle DB2, BIN, and STD format data. See Chapter 2,
“Designing an RSP” for more information on these formats.

• When a data pipe of any format opens for output with the OPENPIPE
command, it issues Open Server describe and bind commands. You cannot
subsequently change the maximum column length of any columns or types
in the SQLDA definition when you issue a PUTPIPE command.

PUTPIPE
Description Writes data records to an output pipe. Open ServerConnect then reads the

records and sends them to the client application.

Syntax Syntax varies with the programming language.

Examples COBOL II This example writes a 130-byte data record built in a storage area
called AREA1 to a STD format input pipe:

MOVE 130 TO SPRECLEN.
 SET ADDRESS OF AREA1 TO SPFROM.

APPENDIX A RSP Commands

Programmer’s Reference for Remote Stored Procedures 69

 CALL 'PUTPIPE' USING SPAREA.

Usage The PUTPIPE command uses values from these SPAREA fields:

• SPFROM (see “SPFROM” on page 140) specifies the address of the data
record.

• SPRECLEN (see “SPRECLEN” on page 141) specifies the length of the
data record.

• SPSQLDA (see “SPSQLDA” on page 140) provides the SQLDA address.

• Only STD and BIN format pipes use the SPFROM field. For a DB2 format
pipe, the SQLDA describes the location and length of the data columns.

• If you have a single output pipe open, you can set the SPFROM value once
for all records. However, when you have both an input pipe and an output
pipe open, both pipes use this field and each must set the field value before
writing or reading the record.

• For STD and BIN pipes, the SPRECLEN value must not exceed the value
that was specified for SPMAXLEN (see “SPMAXLEN” on page 141) when
the pipe was opened.

• If you write fixed-length records of the same size as SPMAXLEN, the
SPRECLEN value is not required.

ROLLBACK
Description Rolls back database processing to the last syncpoint (COMMIT).

Syntax Syntax varies with the programming language.

Examples COBOL II The equivalent to SYNCPOINT WITH ROLLBACK is:

CALL 'ROLLBACK' USING SPAREA.

Usage The RSP ROLLBACK command is provided because the standard SQL
ROLLBACK statement cannot be executed in CICS environments.
MainframeConnect converts the command to the equivalent CICS
SYNCPOINT WITH ROLLBACK command.

RPDONE

70 Mainframe Connect Server Option

RPDONE
Description Ends processing for an RSP invoked through TRS.

Syntax Syntax varies with the programming language.

Examples COBOL II CALL 'RPDONE' USING SPAREA.

Usage • This must be the last API call in an RSP invoked through TRS.

• It cleans up RSP memory (the SPAREA) because MainframeConnect is
not involved.

RPSETUP
Description Initiates an RSP invoked through TRS.

Syntax Syntax varies with the programming language.

Examples COBOL II CALL 'RPSETUP' USING SPAREA.

Usage This must be the first API call in an RSP invoked through TRS. It is used
because MainframeConnect is not involved. It allocates and initializes memory
for the SPAREA.

STATUS
Description Communicates to MainframeConnect the success or failure of the processing

it performed.

Syntax Syntax varies with the programming language.

Examples COBOL II This example sets the status to indicate an error condition:

MOVE 'E' TO SPSTATUS.
 CALL 'STATUS' USING SPAREA.

Usage The STATUS command uses the SPSTATUS field (see “SPSTATUS” on page
139) to specify processing status. Use one of these codes:

• 'OK' indicates success.

• 'E' indicates an error.

• 'W' indicates a warning.

APPENDIX A RSP Commands

Programmer’s Reference for Remote Stored Procedures 71

• STATUS releases results and messages to the client application.

• An RSP must issue at least one STATUS command. If an RSP terminates
without issuing a STATUS command, MainframeConnect automatically
issues a STATUS message indicating an error occurred.

• For each result set returned to the client application, the RSP must issue a
STATUS command after the output pipe closes. Issuing a STATUS
command while a data pipe is open automatically closes the pipe.

• An RSP can issue the STATUS command as many times as necessary.

STATUS

72 Mainframe Connect Server Option

Programmer’s Reference for Remote Stored Procedures 73

A P P E N D I X B MODELRSP DB2 Output Pipe
Sample RSP

If you want to write an RSP with DB2-formatted output pipes or multiple
column rows, review MODELRSP.

This appendix discusses the following topics:

• Understanding MODELRSP

• The SPAREA in MODELRSP

• The SQLDA in MODELRSP

• Invoking MODELRSP from the client application

• MODELRSP DB2 output pipe sample code

Understanding MODELRSP
MODELRSP is a RSP sample COBOL II program that provides examples
of:

• Using a DB2-format output pipe

• Defining a SQLDA with all possible datatypes represented

• Using the SPAREA to communicate with MainframeConnect

• Using the RSP commands to manage a data pipe and communicate
status

• Sending data to the client application

• Handling errors

In the MODELRSP example, keyword variables, variable text, or data are
not sent as input to the RSP. The sample program is shown in its entirety.
The program also contains many in-line comments (denoted with standard
asterisks) to explain the flow of processing and clarify points.

The SPAREA in MODELRSP

74 Mainframe Connect Server Option

For simplicity, the example does not include database access code. Instead, it
sends 11 columns of employee data to illustrate 11 types of data you can
transmit to the client application.

The SPAREA in MODELRSP
This section describes how MODELRSP uses SPAREA fields and RSP
commands, as well as a brief example of the SPAREA from MODELRSP.

How MODELRSP uses SPAREA fields
This section explains how MODELRSP uses the return code, status, and
message fields. See Appendix F, “The SPAREA” for detailed information on
all SPAREA fields.

SPRC The SPRC (return code) field communicates the success or failure of an RSP
command.

Note Your code should check the SPRC field after issuing any RSP command.

The following MODELRSP code fragment shows how an RSP accesses the
SPRC field to get this information:

IF SPRC IS NOT EQUAL TO '000'
 MOVE WS-CLOSPIPE TO ERROR1-CALL
 PERFORM 9800-PIPE-ERROR-MSG THRU 9800-EXIT
 GO TO 9999-RETURN-TO-CALLER.

SPSTATUS The SPSTATUS field communicates processing status in the remote database to
the RSP. As shown in the following MODELRSP code fragment, the RSP also
uses the SPSTATUS field to communicate status on its own processing to the
client application.

MOVE ‘OK’ TO SPSTATUS.
CALL ‘STATUS’ USING SPAREA.

SPMSG The SPMSG field communicates messages back to the client application. Then
the SPAREA issues the RSP MESSAGE command as shown in the following
modified MODELRSP code fragment:

 MOVE SPRC TO ERROR1-SPRC.

APPENDIX B MODELRSP DB2 Output Pipe Sample RSP

Programmer’s Reference for Remote Stored Procedures 75

 MOVE ERROR1-MSG TO SPMSG.
 MOVE 'E' TO SPSTATUS.
 CALL 'MESSAGE' USING SPAREA.

In this case, the client application receives the error message in SPMSG.

You can issue the MESSAGE command with message text of up to 100 bytes
with USING SPAREA:

MOVE 'OK' TO SPSTATUS.
MOVE 'THIS IS THE OK MESSAGE' TO SPMSG.
CALL 'MESSAGE' USING SPAREA.

Refer to Appendix A, “RSP Commands” for detail about the MESSAGE
command.

Using RSP commands with the SPAREA
The MODELRSP program uses these RSP commands: OPENPIPE, PUTPIPE,
CLOSPIPE, STATUS, and MESSAGE. In all the supported programming
languages, the RSP commands are invoked with a standard CALL statement.

In COBOL II, the RSP command can be enclosed in single quotes; in the other
supported languages, quotes are not necessary. The following COBOL II
statements show how your RSP code must use the RSP commands.

Note Single quotes in a COBOL CALL statement indicate a “static call.”

CALL 'OPENPIPE' USING SPAREA.
CALL 'PUTPIPE' USING SPAREA
CALL 'CLOSPIPE' USING SPAREA.
CALL 'STATUS' USING SPAREA.
CALL 'MESSAGE' USING SPAREA.

The previous sample shows:

• Data pipe mode and format values are moved to the corresponding
SPAREA fields. Then the command is issued

 CALL ‘OPENPIPE’ USING SPAREA.

• Each PUTPIPE generates one result row. Therefore, your code must issue
the PUTPIPE command for every row of data you send.

The SPAREA in MODELRSP

76 Mainframe Connect Server Option

• A STATUS command always follows the CLOSPIPE command. This
ensures the processing status is communicated to the client application and
clears out the data pipe and all messages.

For more information on the RSP commands, their formats and results, see
Appendix A, “RSP Commands.”

SPAREA example
In the following example, the LWKCOMMAREA is the RSP API
communication area. SPAREAC (the sample COBOL II copy book provided
on the Open ServerConnect base tape) is included in the linkage section with a
COPY statement.

01 LWKCOMMAREA.
 COPY SPAREAC.

Further on in the program, the SPAREA fields pass information about the type
of data pipe the RSP uses and the pointers to the SQLDA.

MOVE 'OUTPUT' TO SPMODE.
 MOVE 'DB2' TO SPFORMAT.
 SET SPSQLDA TO ADDRESS OF SQLDA.
CALL 'OPENPIPE' USING SPAREA.

The following three SPAREA fields are used by the RSP to communicate to the
Open ServerConnect RSP API:

• SPMODE specifies the mode (input or output) of the data pipe.

• SPFORMAT specifies the format (DB2, STD, or BIN) of the data to be
transmitted through the pipe.

• SPSQLDA specifies the pointer to the SQLDA.

See “SPAREA field descriptions” on page 139 for more information on all the
SPAREA fields.

APPENDIX B MODELRSP DB2 Output Pipe Sample RSP

Programmer’s Reference for Remote Stored Procedures 77

The SQLDA in MODELRSP
MODELRSP shows you how to create a SQLDA definition to send along with
data to the client application using a DB2 output pipe. (The SQLDA definition
in the RSP provides the data structure information sent along with the data to
the client.)

If you have not worked with a SQLDA definition, review Appendix G, “The
SQLDA.”

Note If the client application you are using expects data structure information
to be transmitted with the data, use the DB2 format even if the data source is
not DB2. For client application software, such as PowerBuilder, check data
structure requirements in the vendor documentation.

Relating the standard SQLDA fields to the example from MODELRSP that
follows, you can see the first SQLVAR definition is named MS-COL01. It is a
fixed-character datatype that can contain nulls (value 453) and is defined for
the first column of EMPLOYEE-DATA (FIXED-CHAR) that the sample RSP is
sending to the client. MODELRSP includes one SQLVAR definition for each of
the 11 columns of data it sends.

**
 * DESCRIPTION OF THE MODEL SQLDA *
 **
 01 MODEL-SQLDA.
 03 MS-SQLDAID PIC X(08) VALUE 'SQLDA '.
 03 MS-SQLDABC PIC S9(8) COMP VALUE 500.
 03 MS-SQLN PIC S9(4) COMP VALUE 11.
 03 MS-SQLD PIC S9(4) COMP VALUE 11.
 03 MS-COL01.
 * - 1ST COLUMN DATATYPE = FIXED CHAR (LENGTH 1 - 256)
 05 MS-COL01-SQLTYPE PIC S9(4) COMP VALUE 453.
 05 MS-COL01-SQLLEN PIC S9(4) COMP VALUE 5.
 05 MS-COL01-SQLDATA USAGE IS POINTER.
 05 MS-COL01-SQLIND USAGE IS POINTER VALUE NULL.
 05 MS-COL01-SQLNAMEL PIC S9(4) COMP VALUE 10.
 05 MS-COL01-SQLNAME PIC X(30) VALUE 'FIXED_CHAR'.
 :
 :

Invoking MODELRSP from the client application

78 Mainframe Connect Server Option

Invoking MODELRSP from the client application
The client application invokes MODELRSP using the command that
corresponds to the SQL transformation setting (TSQL) on DirectConnect:

PASSTHROUGH TSQL setting
USE PROCEDURE MODELRSRSP

SYBASE TSQL setting
EXECUTE MODELRSP

MODELRSP DB2 output pipe sample code
 IDENTIFICATION DIVISION.
 PROGRAM-ID. MODELRSP.
 AUTHOR. SYBASE ICD.
 DATE-WRITTEN. SEPTEMBER 15, 1993.

 * MODELRSP - SAMPLE TO ILLUSTRATE SQLDA USAGE. *
 * *
 * THIS SAMPLE STORED PROCEDURE HAS A LOT OF INTERNAL *
 * DOCUMENTATION TO HELP EXPLAIN AND ILLUSTRATE THE PROPER *
 * USAGE OF THE SQLDA FOR A DB2 OUTPUT PIPE. A ROW IS SET UP *
 * FOR ALL DATATYPES AND ALL WILL BE SET TO ALLOW NULLS. *
 * *

 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 FILLER PIC X(27) VALUE
 'WORKING-STORAGE STARTS HERE'.

 01 COMMAREA-POINTER USAGE IS POINTER.
 01 SQLDA-POINTER USAGE IS POINTER.
 01 EMPLOYEE-DATA-POINTER USAGE IS POINTER.
 01 INDICATOR-VAR-POINTER USAGE IS POINTER.

APPENDIX B MODELRSP DB2 Output Pipe Sample RSP

Programmer’s Reference for Remote Stored Procedures 79

 01 SQLDA-SIZE PIC S9(8) COMP.

 01 WS-LITERALS.
 05 WS-STATUS PIC X(06) VALUE 'STATUS'.
 05 WS-MESSAGE PIC X(07) VALUE 'MESSAGE'.
 05 WS-COMMIT PIC X(06) VALUE 'COMMIT'.
 05 WS-ROLLBACK PIC X(08) VALUE 'ROLLBACK'.
 05 WS-OPENPIPE PIC X(08) VALUE 'OPENPIPE'.
 05 WS-PUTPIPE PIC X(07) VALUE 'PUTPIPE'.
 05 WS-GETPIPE PIC X(07) VALUE 'GETPIPE'.
 05 WS-CLOSPIPE PIC X(08) VALUE 'CLOSPIPE'.

 01 MESSAGES.
 05 ERROR1-MSG.
 07 ERROR1-TEXT1 PIC X(19) VALUE
 'ERROR WITH CALL TO '.
 07 ERROR1-CALL PIC X(10) VALUE SPACES.
 07 ERROR1-TEXT2 PIC X(14) VALUE
 ' - SPRC CODE: '.
 07 ERROR1-SPRC PIC X(03) VALUE SPACES.
 05 ERROR2-MSG.
 07 ERROR2-TEXT2 PIC X(46) VALUE SPACES.
 05 WS-LONG-VARCHAR-TEXT.
 07 FILLER PIC X(50) VALUE
 'THIS IS A LINE OF VERY LONG TEXT TO DEMONSTRATE TH'.
 07 FILLER PIC X(50) VALUE
 'AT A LONG VARCHAR DATATYPE CAN BE SENT DOWN A DB2 '.
 07 FILLER PIC X(50) VALUE
 'OUTPUT PIPE WITH NO PROBLEMS, WORRIES, OR CONSTERN'.
 07 FILLER PIC X(50) VALUE
 'ATION, AS LONG AS ONE REMEMBERS THAT LARGE AMOUNTS'.
 07 FILLER PIC X(50) VALUE
 ' OF DATA WILL ALWAYS HAVE AN ELEMENT OF UNEXPECTED'.
 07 FILLER PIC X(50) VALUE
 'NESS. EVEN SO, USE SYBASE FOR ALL YOUR SOLUTIONS.'.

**
 * DESCRIPTION OF THE MODEL SQLDA *
 **
 *
 * SQLTYPES USED IN SQLDA:
 * VALUE DATA TYPE NULLS ALLOWED
 * ======= =================== =============
 * 384/385 DATE NO/YES
 * 388/389 TIME NO/YES
 * 392/393 TIMESTAMP NO/YES

MODELRSP DB2 output pipe sample code

80 Mainframe Connect Server Option

 * 448/449 CHAR VARIABLE LENG NO/YES
 * 452/453 CHAR FIXED LENGTH NO/YES
 * 456/457 CHAR LONG VARIABLE NO/YES
 * 480/481 FLOATING-POINT NO/YES
 * 484/485 DECIMAL NO/YES
 * 496/497 LARGE INTEGER NO/YES
 * 500/501 SMALL INTEGER NO/YES
 **
 * NOTE: ALL DATATYPES IN THIS EXAMPLE ARE DEFINED AS NULLABLE
 **
 --
 * MODEL-SQLDA IS USED TO HOLD THE COLUMN DESCRIPTIONS IN *
 * WORKING STORAGE. THIS IS DONE THIS WAY BECAUSE YOU CANNOT *
 * USE VALUE CLAUSES IN A COBOL LINKAGE SECTION.... *
 --
 01 MODEL-SQLDA.
* - EYE CATCHER - MUST ALWAYS SAY 'SQLDA '.
 03 MS-SQLAID PIC X(08) VALUE 'SQLDA '.
 * - SIZE OF SQLDA = 16 + (44 * SQLN VALUE)
 03 MS-SQLDABC PIC S9(8) COMP VALUE 500.
 * - NUMBER OF SQLVAR OCCURENCES
 * - MUST MATCH VALUE OF MS-SQLD
 03 MS-SQLN PIC S9(4) COMP VALUE 11.
 * - NUMBER OF SQLVAR OCCURENCES ACTUALLY USED
 * - MUST MATCH VALUE OF MS-SQLN
 03 MS-SQLD PIC S9(4) COMP VALUE 11.
 03 MS-COL01.
 * - 1ST COLUMN DATATYPE = FIXED CHAR (LENGTH 1 - 256)
 05 MS-COL01-SQLTYPE PIC S9(4) COMP VALUE 453.
 05 MS-COL01-SQLLEN PIC S9(4) COMP VALUE 5.
 * - SQLDATA WILL BE SET TO ADDRESS OF DATA FIELD
 05 MS-COL01-SQLDATA USAGE IS POINTER.
 * - SQLIND WILL BE SET TO ADDRESS OF A S9(4) COMP FIELD
 * - WHEN COMP FIELD'S VALUE IS LESS THAN ZERO THEN
 * - COLUMN IS NULL - ONLY USED WHEN COLUMN IS NULLABLE
 05 MS-COL01-SQLIND USAGE IS POINTER VALUE NULL.
 * - SQLNAMEL IS THE LENGTH OF THE COLUMN NAME
 05 MS-COL01-SQLNAMEL PIC S9(4) COMP VALUE 10.
 * - SQLNAME IS ALWAYS 30 IN LENGTH
 05 MS-COL01-SQLNAME PIC X(30) VALUE 'FIXED_CHAR'.
 03 MS-COL02.
 * - 2ND COLUMN DATATYPE = DATE (LENGTH ALWAYS 10)
 05 MS-COL02-SQLTYPE PIC S9(4) COMP VALUE 385.
 05 MS-COL02-SQLLEN PIC S9(4) COMP VALUE 10.
 05 MS-COL02-SQLDATA USAGE IS POINTER.
 05 MS-COL02-SQLIND USAGE IS POINTER VALUE NULL.

APPENDIX B MODELRSP DB2 Output Pipe Sample RSP

Programmer’s Reference for Remote Stored Procedures 81

 05 MS-COL02-SQLNAMEL PIC S9(4) COMP VALUE 4.
 05 MS-COL02-SQLNAME PIC X(30) VALUE 'DATE'.
 03 MS-COL03.
 * - 3RD COLUMN DATATYPE = VARIABLE LENGTH CHAR (1-256)
 05 MS-COL03-SQLTYPE PIC S9(4) COMP VALUE 449.
 05 MS-COL03-SQLLEN PIC S9(4) COMP VALUE 30.
 05 MS-COL03-SQLDATA USAGE IS POINTER
 05 MS-COL03-SQLIND USAGE IS POINTER VALUE NULL.
 05 MS-COL03-SQLNAMEL PIC S9(4) COMP VALUE 7.
 05 MS-COL03-SQLNAME PIC X(30) VALUE 'VARCHAR'.
 03 MS-COL04.
 * - 4TH COL - DATATYPE = SMALL INTEGER (LENGTH ALWAYS 2)
 * - CORRESPONDING PIC S9(4) COMP - UP TO 5 DIGITS.
 05 MS-COL04-SQLTYPE PIC S9(4) COMP VALUE 501.
 05 MS-COL04-SQLLEN PIC S9(4) COMP VALUE 2.
 05 MS-COL04-SQLDATA USAGE IS POINTER.
 05 MS-COL04-SQLIND USAGE IS POINTER VALUE NULL.
 05 MS-COL04-SQLNAMEL PIC S9(4) COMP VALUE 9.
 05 MS-COL04-SQLNAME PIC X(30) VALUE 'SMALL_INT'.
 03 MS-COL05.
 * - 5TH COL - DATATYPE = PACKED DECIMAL
 05 MS-COL05-SQLTYPE PIC S9(4) COMP VALUE 485.
 --
 * - NOTE: FOR PACKED DECIMAL DATATYPES ONLY!!!!! *
 * - LENGTH IS DECIMAL TRANSLATION OF HEX "PPSS" *
 * (PRECISION AND SCALE) *
 * - WHERE "PP" = NUMBER OF TOTAL DIGITS *
 * - AND "SS" = NUMBER OF DIGITS TO RIGHT OF DECIMAL *
 * - S9(3)V99 COMP-3 WOULD BE X'0502' OR IN DEC '1282' *
 * - S9(11)V99 COMP-3 WOULD BE X'0D02' OR IN DEC '3330' *
 * - SQLLEN = (PP * 256) + SS *
 * - 1282=5*256+2==> FOR S9(3)V99 *
 --
 05 MS-COL05-SQLLEN PIC S9(4) COMP VALUE +1282.
 05 MS-COL05-SQLDATA USAGE IS POINTER.
 05 MS-COL05-SQLIND USAGE IS POINTER VALUE NULL.
 05 MS-COL05-SQLNAMEL PIC S9(4) COMP VALUE 10.
 05 MS-COL05-SQLNAME PIC X(30) VALUE 'PACKED_DEC'.
 03 MS-COL06.
 * - 6TH COL - DATATYPE = TIME (LENGTH ALWAYS 8) 'HH.MM.SS'
 05 MS-COL06-SQLTYPE PIC S9(4) COMP VALUE 389.
 05 MS-COL06-SQLLEN PIC S9(4) COMP VALUE 8.
 05 MS-COL06-SQLDATA USAGE IS POINTER.
 05 MS-COL06-SQLIND USAGE IS POINTER VALUE NULL.
 05 MS-COL06-SQLNAMEL PIC S9(4) COMP VALUE 4.
 05 MS-COL06-SQLNAME PIC X(30) VALUE 'TIME'.

MODELRSP DB2 output pipe sample code

82 Mainframe Connect Server Option

 03 MS-COL07.
 * - 7TH COL - DATATYPE = TIMESTAMP (LENGTH 19 OR 26)
 * - PIC X(19) VALUE 'YYYY-MM-DD:HH:MM:SS'
 * - PIC X(26) VALUE 'YYYY-MM-DD:HH:MM:SS:NNNNNN'
 05 MS-COL07-SQLTYPE PIC S9(4) COMP VALUE 393.
 05 MS-COL07-SQLLEN PIC S9(4) COMP VALUE 26.
 05 MS-COL07-SQLDATA USAGE IS POINTER.
 05 MS-COL07-SQLIND USAGE IS POINTER VALUE NULL.
 05 MS-COL07-SQLNAMEL PIC S9(4) COMP VALUE 9.
 05 MS-COL07-SQLNAME PIC X(30) VALUE 'TIMESTAMP'.
 03 MS-COL08.
 * - 8TH COL - DATATYPE = FLOAT (COMP-1 LENGTH ALWAYS 4)
 * - SINGLE PRECISION FLOAT (COMP-1 LENGTH ALWAYS 4)
 05 MS-COL08-SQLTYPE PIC S9(4) COMP VALUE 481.
 05 MS-COL08-SQLLEN PIC S9(4) COMP VALUE 4.
 05 MS-COL08-SQLDATA USAGE IS POINTER.
 05 MS-COL08-SQLIND USAGE IS POINTER VALUE NULL.
 05 MS-COL08-SQLNAMEL PIC S9(4) COMP VALUE 10.
 05 MS-COL08-SQLNAME PIC X(30) VALUE 'FLOATING_P'.
 03 MS-COL09.
 * - 9TH COL - DATATYPE = FLOAT (COMP-2 LENGTH ALWAYS 8)
 * - DOUBLE PRECISION FLOAT (COMP-2 LENGTH ALWAYS 8)
 05 MS-COL09-SQLTYPE PIC S9(4) COMP VALUE 481.
 05 MS-COL09-SQLLEN PIC S9(4) COMP VALUE 8.
 05 MS-COL09-SQLDATA USAGE IS POINTER.
 05 MS-COL09-SQLIND USAGE IS POINTER VALUE NULL.
 05 MS-COL09-SQLNAMEL PIC S9(4) COMP VALUE 10.
 05 MS-COL09-SQLNAME PIC X(30) VALUE 'DBL_FLOATP'.
 03 MS-COL10.
 * -10TH COL - DATATYPE = LARGE INTEGER (LENGTH ALWAYS 4)
 * - CORRESPONDING PIC S9(8) COMP - UP TO 10 DIGITS.
 05 MS-COL10-SQLTYPE PIC S9(4) COMP VALUE 497.
 05 MS-COL10-SQLLEN PIC S9(4) COMP VALUE 4.
 05 MS-COL10-SQLDATA USAGE IS POINTER.
 05 MS-COL10-SQLIND USAGE IS POINTER VALUE NULL.
 05 MS-COL10-SQLNAMEL PIC S9(4) COMP VALUE 7.
 05 MS-COL10-SQLNAME PIC X(30) VALUE 'INTEGER'.
 03 MS-COL11.
 * - 11TH COL DATATYPE = LONG VARIABLE LENGTH CHAR (1-32K)
 05 MS-COL11-SQLTYPE PIC S9(4) COMP VALUE 457.
 05 MS-COL11-SQLLEN PIC S9(4) COMP VALUE 300.
 05 MS-COL11-SQLDATA USAGE IS POINTER.
 05 MS-COL11-SQLIND USAGE IS POINTER VALUE NULL.
 05 MS-COL11-SQLNAMEL PIC S9(4) COMP VALUE 8.
 05 MS-COL11-SQLNAME PIC X(30) VALUE 'LVARCHAR'.

APPENDIX B MODELRSP DB2 Output Pipe Sample RSP

Programmer’s Reference for Remote Stored Procedures 83

 * THIS SWITCH IS USED FOR TESTING IF RPC CALL
 77 RSPRPC-SWITCH PIC S9(4) COMP VALUE 0.
 88 RPC-CALL VALUE 0.

 LINKAGE SECTION.
 **
 * THE LINKAGE SECTION DEFINES MASKS FOR DATA AREAS
 * THAT ARE EITHER PASSED TO THE PROGRAM IN THE CASE OF THE
 * COMMAREA OR CREATED BY THE PROGRAM IN THE CASE OF THE SQLDA
 * AND DATA FIELDS.
 *
 * UNLIKE WORKING-STORAGE, STORAGE ASSOCIATED WITHIN THE LINKAGE
 * SECTION IS AVAILABLE TO OTHER PROGRAMS BY PASSING ADDRESSES
 * AND USING MASKS.
 *
 * IT IS IMPORTANT TO NOTE, THAT EVEN THOUGH THE DEFINES IN
 * THE LINKAGE SECTION LOOK EXACTLY LIKE THOSE IN WORKING
 * STORAGE, NO SPACE IS ASSOCIATED WITH THESE DEFINES IN LINKAGE
 * UNTIL IT IS "GETMAINED".
 **

 01 DFHCOMMAREA.
 05 NOT-USED PIC X(1).

**
 * THIS IS THE ACTUAL SPAREA POINTER AND DEFINITION *
 **
 01 LWKCOMMAREA.
 COPY SPAREAC.

**
 * NULL INDICATOR VARIABLES - SET TO -1 IF NULL; 0 IF NOT NULL. *
 * ONLY REQUIRED FOR COLUMNS DEFINED AS ALLOWING NULLS! *
 **
 01 INDICATOR-VARIABLES.
 10 FIXED-CHAR-IND PIC S9(4) COMP.
 10 DATE-OUT-IND PIC S9(4) COMP.
 10 VAR-CHAR-IND PIC S9(4) COMP.
 10 SMALL-INT-IND PIC S9(4) COMP.
 10 PACKED-DEC-IND PIC S9(4) COMP.
 10 TIME-OUT-IND PIC S9(4) COMP.
 10 TIMESTAMP-IND PIC S9(4) COMP.
 10 FLOAT-SGL-IND PIC S9(4) COMP.
 10 FLOAT-DBL-IND PIC S9(4) COMP.
 10 LARGE-INT-IND PIC S9(4) COMP.
 10 LARGE-VCHAR-IND PIC S9(4) COMP.

MODELRSP DB2 output pipe sample code

84 Mainframe Connect Server Option

**
 * DESCRIPTION OF THE EMPLOYEE DATA *
 **
 * NOTE THAT VARCHAR AND LONG-VARCHAR FIELDS ARE PRECEDED BY *
 * A TWO-BYTE COMP LENGTH FIELD. SQLDA KNOWS NOT TO INCLUDE THE *
 * EXTRA TWO BYTES IN THE LENGTH OF THE DATA. WANT TO SEE YOUR *
 * REGION COME DOWN? TRY LEAVING THE LENGTH FIELD OUT... *
 * THE FIRST TWO BYTES OF YOUR DATA WILL BE USED TO CALC THE *
 * LENGTH OF YOUR DATA AND CICS WILL START TO EAT ITSELF... *
 **
 01 EMPLOYEE-DATA.
 10 FIXED-CHAR PIC X(05).
 10 DATE-OUT PIC X(10).
 10 VAR-CHAR.
 15 VCHAR-LENGTH PIC S9(4) COMP.
 15 VCHAR-DATA PIC X(30).
 10 SMALL-INT PIC S9(4) USAGE COMP.
 10 PACKED-DEC PIC S999V99 USAGE COMP-3.
 10 TIME-OUT PIC X(08).
 10 TIMESTAMP PIC X(26).
 10 FLOAT-SGL COMP-1.
 10 FLOAT-DBL COMP-2.
 10 LARGE-INT PIC S9(8) USAGE COMP.
 10 LARGE-VAR-CHAR.
 15 L-VCHAR-LENGTH PIC S9(4) COMP.
 15 L-VCHAR-DATA PIC X(300).

--
 * SQLDA - THIS IS USED AS A PLACE HOLDER IN THE COMMUNICATION *
 * AREA FOR THE COLUMN VALUES DESCRIBED IN THE MODEL- *
 * SQLDA. THIS IS DONE BECAUSE SYBASE USES POINTERS TO *
 * PASS DATA AND ADDRESS IN COBOL CAN ONLY BE SET IN THE *
 * LINKAGE SECTION.......... *
 --
 01 SQLDA.
 03 SQLDAID PIC X(8).
 03 SQLDABC PIC S9(8) COMP.
 03 SQLN PIC S9(4) COMP.
 03 SQLD PIC S9(4) COMP.
 03 SQLVARN OCCURS 11.
 05 SQLTYPE PIC S9(4) COMP.
 05 SQLLEN PIC S9(4) COMP.
 05 SQLDATA USAGE IS POINTER.
 05 SQLIND USAGE IS POINTER.

APPENDIX B MODELRSP DB2 Output Pipe Sample RSP

Programmer’s Reference for Remote Stored Procedures 85

 05 SQLNAMEL PIC S9(4) COMP.
 05 SQLNAME PIC X(30).

 PROCEDURE DIVISION.

 EXEC CICS HANDLE CONDITION
 INVREQ(9999-RETURN-TO-CALLER)
 END-EXEC.

 0000-MAIN-PROCESSING.

 PERFORM 1000-INITIALIZATION THRU 1000-EXIT.

 PERFORM 5000-PROCESS-DATA THRU 5000-EXIT.

 PERFORM 9000-WRAP-UP THRU 9000-EXIT.

 EXEC CICS
 RETURN
 END-EXEC.

 GOBACK.

 1000-INITIALIZATION.

 PERFORM 1050-SPAREA-SETUP THRU 1050-EXIT.

 PERFORM 1100-TEST-SQLDA THRU 1100-EXIT.

 PERFORM 1200-GET-STORAGE THRU 1200-EXIT.

 PERFORM 1300-SET-ADDRESSES THRU 1300-EXIT.

 PERFORM 1400-OPEN-OUTPUT-PIPE THRU 1400-EXIT.

 1000-EXIT.
 EXIT.

 1050-SPAREA-SETUP.

 **

MODELRSP DB2 output pipe sample code

86 Mainframe Connect Server Option

 * IF THIS IS A RPC CALL, CALL RPSETUP TO INITIALIZE SPAREA
 * AND OPEN SERVER (TRANSACTION ROUTER SERVICE)
 * IF THIS IS A RSP CALL, SPAREA IS PASSED IN THE COMMAREA.
 * (DIRECTCONNECT).
 * FOR TRACING, MOVE 'Y' TO SPTRCOPT
 **

 MOVE EIBCALEN TO RSPRPC-SWITCH.

 IF RPC-CALL
 EXEC CICS GETMAIN
 SET (COMMAREA-POINTER)
 FLENGTH (LENGTH OF LWKCOMMAREA)
 END-EXEC
 SET ADDRESS OF LWKCOMMAREA TO COMMAREA-POINTER
 CALL 'RPSETUP' USING SPAREA
 ELSE
 SET ADDRESS OF LWKCOMMAREA TO ADDRESS OF DFHCOMMAREA.

 1050-EXIT.
 EXIT.

 1100-TEST-SQLDA.

 **
 * CALCULATE THE CORRECT SQLDA SIZE INTO "SQLDA-SIZE"

 MULTIPLY MS-SQLN BY 44 GIVING SQLDA-SIZE.
 ADD +16 TO SQLDA-SIZE.
 MOVE SQLDA-SIZE TO MS-SQLDABC.

 **
 * CHECK TO MAKE SURE THE CALCULATED SIZE EQUALS ACTUAL SIZE
 * IF IT DOESN'T THEN A SQLDA FIELD IS MISSING OR ONE
 * OF THE SQLDA FIELDS HAS THE WRONG PICTURE SIZE.

 IF (LENGTH OF MODEL-SQLDA) NOT EQUAL SQLDA-SIZE
 MOVE 'SQLDA/SQLN SIZE IN ERROR' TO ERROR2-TEXT2
 PERFORM 9810-ERROR-MSG THRU 9810-EXIT
 GO TO 9999-RETURN-TO-CALLER.

 1100-EXIT.
 EXIT.

APPENDIX B MODELRSP DB2 Output Pipe Sample RSP

Programmer’s Reference for Remote Stored Procedures 87

 1200-GET-STORAGE.

 **
 * ALLOCATE A BLOCK OF STORAGE TO BE USED FOR THE SQLDA
 * SET POINTER VARIABLE TO ADDRESS OF ALLOCATED STORAGE
 * USE FLENGTH TO ALLOCATE STORAGE ABOVE THE 16M LINE
 EXEC CICS GETMAIN
 SET (SQLDA-POINTER)
 FLENGTH (LENGTH OF SQLDA)
 END-EXEC.

 **
 * ASSOCIATE THE LINKAGE SQLDA MASK TO THE ALLOCATED STORAGE
 * BY SETTING THE MASK ADDRESS TO THE ADDRESS OF THE STORAGE
 SET ADDRESS OF SQLDA TO SQLDA-POINTER.

 **
 * ALLOCATE A BLOCK OF STORAGE TO BE USED FOR THE DATA
 * SET POINTER VARIABLE TO ADDRESS OF ALLOCATED STORAGE
 EXEC CICS GETMAIN
 SET(EMPLOYEE-DATA-POINTER)
 FLENGTH(LENGTH OF EMPLOYEE-DATA)
 END-EXEC.
 SET ADDRESS OF EMPLOYEE-DATA TO EMPLOYEE-DATA-POINTER.

 **
 * ALLOCATE A BLOCK OF STORAGE TO BE USED FOR NULL INDICATORS
 * ONLY REQUIRED FOR COLUMNS DEFINED AS ALLOWING NULLS
 * SET POINTER VARIABLE TO ADDRESS OF ALLOCATED STORAGE
 EXEC CICS GETMAIN
 SET(INDICATOR-VAR-POINTER)
 FLENGTH(LENGTH OF INDICATOR-VARIABLES)
 END-EXEC.
 SET ADDRESS OF INDICATOR-VARIABLES TO INDICATOR-VAR-POINTER.

 1200-EXIT.
 EXIT.

 1300-SET-ADDRESSES.

 * SET THE POINTER VARIABLES IN THE LINKAGE SECTION SQLDA TO
 * THE ADDRESSES OF THE DATA LOCATIONS ALSO IN THE LINKAGE

MODELRSP DB2 output pipe sample code

88 Mainframe Connect Server Option

 * SECTION IE: THE DATA FIELDS IN EMPLOYEE-DATA
 *
 * THESE ADDRESSES MUST BE ADDRESSES ASSOCIATED WITH VARIABLES
 * DEFINED IN THE LINKAGE SECTION BECAUSE THE OPEN SERVER API
 * PROGRAM MUST BE ABLE TO ACCESS THIS STORAGE.
 *
 * THE MODEL-SQLDA IS MOVED TO THE SQLDA TO INITIALIZE
 * THE COLUMN TYPES AND SIZES.........

 MOVE MODEL-SQLDA TO SQLDA.

 SET SQLDATA(1) TO ADDRESS OF FIXED-CHAR.
 SET SQLDATA(2) TO ADDRESS OF DATE-OUT.
 SET SQLDATA(3) TO ADDRESS OF VAR-CHAR.
 SET SQLDATA(4) TO ADDRESS OF SMALL-INT.
 SET SQLDATA(5) TO ADDRESS OF PACKED-DEC.
 SET SQLDATA(6) TO ADDRESS OF TIME-OUT.
 SET SQLDATA(7) TO ADDRESS OF TIMESTAMP.
 SET SQLDATA(8) TO ADDRESS OF FLOAT-SGL.
 SET SQLDATA(9) TO ADDRESS OF FLOAT-DBL.
 SET SQLDATA(10) TO ADDRESS OF LARGE-INT.
 SET SQLDATA(11) TO ADDRESS OF LARGE-VAR-CHAR.

 **
 * SET SQLIND TO ADDRESS OF NULL INDICATOR FIELDS
 * FOR ANY COLUMN DEFINED AS NULLABLE
 **

 SET SQLIND(1) TO ADDRESS OF FIXED-CHAR-IND.
 SET SQLIND(2) TO ADDRESS OF DATE-OUT-IND.
 SET SQLIND(3) TO ADDRESS OF VAR-CHAR-IND.
 SET SQLIND(4) TO ADDRESS OF SMALL-INT-IND.
 SET SQLIND(5) TO ADDRESS OF PACKED-DEC-IND.
 SET SQLIND(6) TO ADDRESS OF TIME-OUT-IND.
 SET SQLIND(7) TO ADDRESS OF TIMESTAMP-IND.
 SET SQLIND(8) TO ADDRESS OF FLOAT-SGL-IND.
 SET SQLIND(9) TO ADDRESS OF FLOAT-DBL-IND.
 SET SQLIND(10) TO ADDRESS OF LARGE-INT-IND.
 SET SQLIND(11) TO ADDRESS OF LARGE-VCHAR-IND.

 1300-EXIT.
 EXIT.

 1400-OPEN-OUTPUT-PIPE.

APPENDIX B MODELRSP DB2 Output Pipe Sample RSP

Programmer’s Reference for Remote Stored Procedures 89

 * AN OPEN PIPE WILL SET UP THE COLUMN INFORMATION, *
 * WHICH WILL EVENTUALLY BE SENT TO THE CLIENT....... *

 MOVE 'OUTPUT' TO SPMODE.
 MOVE 'DB2' TO SPFORMAT.
 SET SPSQLDA TO ADDRESS OF SQLDA.

 CALL 'OPENPIPE' USING SPAREA.

 IF SPRC IS NOT EQUAL TO '000'
 MOVE WS-OPENPIPE TO ERROR1-CALL
 PERFORM 9800-PIPE-ERROR-MSG THRU 9800-EXIT
 GO TO 9999-RETURN-TO-CALLER.

 1400-EXIT.
 EXIT.

 5000-PROCESS-DATA.

 PERFORM 5300-LOAD-A-ROW THRU 5300-EXIT.

 PERFORM 5500-SEND-A-ROW THRU 5500-EXIT.

 PERFORM 5400-LOAD-A-NULL-ROW THRU 5400-EXIT.

 PERFORM 5500-SEND-A-ROW THRU 5500-EXIT.

 5000-EXIT.
 EXIT.

 5300-LOAD-A-ROW.

 * COLUMN DATA IS HARDCODED FOR THIS EXAMPLE. *

 MOVE '00100' TO FIXED-CHAR.
 MOVE '1993-09-16' TO DATE-OUT.
 MOVE 30 TO VCHAR-LENGTH.
 MOVE 'A ROSE BY ANY OTHER..' TO VCHAR-DATA.
 MOVE 123 TO SMALL-INT.
 MOVE 123.45 TO PACKED-DEC.

MODELRSP DB2 output pipe sample code

90 Mainframe Connect Server Option

 MOVE '11.35.25' TO TIME-OUT.
 MOVE '1993-10-31:10:34:24' TO TIMESTAMP.
 MOVE 1.00345 TO FLOAT-SGL.
 MOVE 0.0023544 TO FLOAT-DBL.
 MOVE 1234567 TO LARGE-INT.
 MOVE 300 TO L-VCHAR-LENGTH.
 MOVE WS-LONG-VARCHAR-TEXT TO L-VCHAR-DATA.

 * MOVE ZERO TO NULL INDICATOR FIELDS TO INDICATE NOT NULL

 MOVE 0 TO FIXED-CHAR-IND.
 MOVE 0 TO DATE-OUT-IND.
 MOVE 0 TO VAR-CHAR-IND.
 MOVE 0 TO SMALL-INT-IND.
 MOVE 0 TO PACKED-DEC-IND.
 MOVE 0 TO TIME-OUT-IND.
 MOVE 0 TO TIMESTAMP-IND.
 MOVE 0 TO FLOAT-SGL-IND.
 MOVE 0 TO FLOAT-DBL-IND.
 MOVE 0 TO LARGE-INT-IND.
 MOVE 0 TO LARGE-VCHAR-IND.

 5300-EXIT.
 EXIT.

 5400-LOAD-A-NULL-ROW.

 * MOVE -1 TO NULL INDICATOR FIELDS TO INDICATE NULL
 * LEFTOVER DATA IN DATA FIELDS WILL BE IGNORED

 MOVE -1 TO FIXED-CHAR-IND.
 MOVE -1 TO DATE-OUT-IND.
 MOVE -1 TO VAR-CHAR-IND.
 MOVE -1 TO SMALL-INT-IND.
 MOVE -1 TO PACKED-DEC-IND.
 MOVE -1 TO TIME-OUT-IND.
 MOVE -1 TO TIMESTAMP-IND.
 MOVE -1 TO FLOAT-SGL-IND.
 MOVE -1 TO FLOAT-DBL-IND.
 MOVE -1 TO LARGE-INT-IND.
 MOVE -1 TO LARGE-VCHAR-IND.

APPENDIX B MODELRSP DB2 Output Pipe Sample RSP

Programmer’s Reference for Remote Stored Procedures 91

 5400-EXIT.
 EXIT.

 5500-SEND-A-ROW.

 * PUTPIPE SENDS A RESULT ROW TO THE OUTPUT BUFFER, WHICH*
 * WILL EVENTUALLY BE SENT DOWN TO THE CLIENT.... *

 CALL 'PUTPIPE' USING SPAREA.

 IF SPRC IS NOT EQUAL TO '000'
 MOVE WS-PUTPIPE TO ERROR1-CALL
 PERFORM 9800-PIPE-ERROR-MSG THRU 9800-EXIT
 GO TO 9999-RETURN-TO-CALLER.

 5500-EXIT.
 EXIT.

 9000-WRAP-UP.

 PERFORM 9200-CLOSE-PIPE THRU 9200-EXIT.

 PERFORM 9900-ALL-DONE THRU 9900-EXIT.

 * IF THIS IS AN RPC CALL, PERFORM OPEN SERVER CLOSE
 IF RPC-CALL
 PERFORM 9950-RPDONE THRU 9950-EXIT.

 9000-EXIT.
 EXIT.

 9200-CLOSE-PIPE.

 CLOSEPIPE IS LIKE CLOSING A FILE, PLACES AN EOF MARKER

 CALL 'CLOSPIPE' USING SPAREA.

MODELRSP DB2 output pipe sample code

92 Mainframe Connect Server Option

 IF SPRC IS NOT EQUAL TO '000'
 MOVE WS-CLOSPIPE TO ERROR1-CALL
 PERFORM 9800-PIPE-ERROR-MSG THRU 9800-EXIT
 GO TO 9999-RETURN-TO-CALLER.

 9200-EXIT.
 EXIT.

 9800-PIPE-ERROR-MSG.

 **
 * IF NO ERRORS, MOVE 'OK' TO SPSTATUS BEFORE CALLING MESSAGE.
 * IF ERRORS, MOVE 'E' TO SPSTATUS.
 * EITHER WAY MOVE A MESSAGE UP TO A 100 CHAR INTO SPMSG
 **

 * MESSAGE WILL WRITE THE 100 BYTE SPMSG TO A MSG BUFFER,*
 * WHICH WILL EVENTUALLY BE WRITTEN TO THE CLIENT... *

 MOVE SPRC TO ERROR1-SPRC.
 MOVE ERROR1-MSG TO SPMSG.
 MOVE 'E' TO SPSTATUS.

 CALL 'MESSAGE' USING SPAREA.

 9800-EXIT.
 EXIT.

 9810-ERROR-MSG.

 * MESSAGE WILL WRITE THE 100 BYTE SPMSG TO A MSG BUFFER,*
 * WHICH WILL EVENTUALLY BE WRITTEN TO THE CLIENT... *

 MOVE ERROR2-MSG TO SPMSG.
 MOVE 'E' TO SPSTATUS.

 CALL 'MESSAGE' USING SPAREA.

 9810-EXIT.

APPENDIX B MODELRSP DB2 Output Pipe Sample RSP

Programmer’s Reference for Remote Stored Procedures 93

 EXIT.

 9900-ALL-DONE.

 * IF NO ERRORS, MOVE 'OK' TO SPSTATUS BEFORE CALLING STATUS*
 * IF ERRORS, MOVE 'E' TO SPSTATUS BEFORE CALLING STATUS *
 * CAN MOVE UP TO 8 CHARS INTO SPCODE (SPMSG IS IGNORED) *
 * BUT EITHER WAY ALWAYS CALL STATUS AFTER CLOSPIPE *
 * CALLING STATUS WILL AUTOMATIC CLOSE ANY OPEN PIPES *
 * *
 * CALLING STATUS WILL ALSO FLUSH ANY RESULTS AND/OR *
 * MESSAGES FROM THE BUFFERS, TO THE CLIENT *

 MOVE 'OK' TO SPSTATUS.
 CALL 'STATUS' USING SPAREA.

 9900-EXIT.
 EXIT.

 9950-RPDONE.

 **
 * CLOSE OPEN SERVER
 * IF THIS IS AN RPC CALL, PERFORM OPEN SERVER CLOSE
 **
 CALL 'RPDONE' USING SPAREA.

 9950-EXIT.
 EXIT.

 9999-RETURN-TO-CALLER.

 * FOR EMERGENCY BAIL-OUT

 CALL 'RPDONE' USING SPAREA.

 EXEC CICS

MODELRSP DB2 output pipe sample code

94 Mainframe Connect Server Option

 RETURN
 END-EXEC.

 9999-EXIT.
 EXIT.

Programmer’s Reference for Remote Stored Procedures 95

A P P E N D I X C RSP3C STD Input and Output
Pipe Sample RSP

If you want to write an RSP to send single-column rows of character
strings, review the RSP3C sample RSP. RSP3C illustrates how to use input
and output data pipes in STD format to echo data records sent to it from
the client application. Recall that with STD format data pipes, the data is
transmitted as one VARCHAR column.

This appendix discusses the following topics:

• Using the SPAREA with RSP3C

• Specifying error handling

• Client application processing

• RSP3C STD input and output pipe sample code

Using the SPAREA with RSP3C
The SPAREA is the storage area used to pass information between the
RSP and Open ServerConnect.

In the following code fragment, the DFHCOMMAREA is the Open
ServerConnect communication area. SPAREAC is the COBOL COPY
definition.

01 DFHCOMMAREA.
 COPY SPAREAC.

SPMAXLEN and SPRECLEN
RSP3C uses the SPAREA to pass information about the type of data pipe
to MainframeConnect.

Using the SPAREA with RSP3C

96 Mainframe Connect Server Option

MOVE 'INPUT' TO SPMODE.
 MOVE 'STD' TO SPFORMAT.
 MOVE 55 TO SPMAXLEN.
 CALL 'OPENPIPE' USING SPAREA.

In this example, the type and format of the pipe are specified using the
SPAREA SPMODE and SPFORMAT fields. Because the exact length of the
record is not known, a maximum record length is specified with SPMAXLEN.

In the following example, you can see that because you already set the
maximum input record size with SPMAXLEN and the OPENPIPE command,
you do not need to reset SPRECLEN for each GETPIPE command.
MainframeConnect determines the size of the input record and sets SPRECLEN
accordingly.

SET SPINTO TO ADDRESS OF WS-INPUT-REC
 CALL 'GETPIPE' USING SPAREA

In the following example, RSP3C uses SPRECLEN with a PUTPIPE command
to pass the length of an output record to MainframeConnect.

SET SPFROM TO ADDRESS OF WS-INPUT-REC
 MOVE 55 TO SPRECLEN
 CALL 'PUTPIPE' USING SPAREA

The following table describes these SPAREA fields in RSP3C and explains
how they are used.

APPENDIX C RSP3C STD Input and Output Pipe Sample RSP

Programmer’s Reference for Remote Stored Procedures 97

Table C-1: SPAREA fields describing records

Note You must specify either SPMAXLEN or SPRECLEN, which defines the
actual length of a particular data record.

SPINTO and SPFROM
The following sample shows how to use the SPINTO field.

SET SPINTO TO ADDRESS OF WS-INPUT-REC
 CALL 'GETPIPE' USING SPAREA

Use the SPINTO field to specify the address of the storage location where the
RSP places the input data it receives from the client application. The SPINTO
field is used with the GETPIPE command, which reads client application data
from an input pipe.

In RSP3C, the input and output storage area are defined as follows:

• A GETMAIN is issued to allocate this storage area

• A pointer was set to the area

• The WS-INPUT-REC variable is associated with that pointer, as shown:

SPAREA
Field Use

SPMODE Specifies the mode of the data pipe. Valid values are 'INPUT'
or 'OUTPUT'.

SPFORMAT Specifies the format of the data to be transmitted through the
pipe. Valid values are:

• 'DB2' (only for output pipes)

• 'STD'

• 'BIN'

SPMAXLEN Specifies the maximum record length of records transmitted
through a STD or BIN format pipe.

Note For DB2 or STD format pipes, you provide maximum
record length information in the SQLDA.

SPRECLEN Specifies the length of a particular record transmitted through
a STD or BIN format pipe. For output pipes, the RSP sets this
value; for input pipes, MainframeConnect sets this value.

Specifying error handling

98 Mainframe Connect Server Option

EXEC CICS
 GETMAIN SET(PARTSPOINTER)
 FLENGTH(55)
 END-EXEC.
SET ADDRESS OF WS-INPUT-REC TO PARTSPOINTER.

RSP3C uses a corresponding field, SPFROM, to specify the address of storage
where the RSP places the data it is returning with the PUTPIPE command. The
PUTPIPE command returns data to the client application through an output
pipe.

SET SPFROM TO ADDRESS OF WS-INPUT-REC
MOVE 55 TO SPRECLEN
CALL 'PUTPIPE' USING SPAREA

Again, the storage is defined within the RSP.

Note You must specify SPINTO for input pipes.

Specifying error handling
RSP3C handles status and messages the same way MODELRSP does. It uses
three SPAREA fields to communicate status and messages to
MainframeConnect: SPRC, SPSTATUS, and SPMSG. See “SPAREA
definitions” on page 142 for a description of how they are used.

Note Your code should always check the SPRC field after issuing any RSP
command. See “Specifying error handling” on page 32 for more information
on error handling.

Client application processing
RSP3C uses both input and output data pipes in STD format to transmit data to
and from the client application. It includes a sample of the ISQL you might use
to call it.

APPENDIX C RSP3C STD Input and Output Pipe Sample RSP

Programmer’s Reference for Remote Stored Procedures 99

You can use STD format input and output pipes to transmit data when you have
mirror applications on the host and on the LAN. If both programs contain the
same data definitions, or if only one column is returned, the additional data
structure information that would come from a SQLDA definition is not needed.

The statement that can invoke RSP3C from the client application is shown in
the next subsection, followed by the results echoed back to the client
application. RSP3C requires at least one data record. This program reads
standard input records of up to 55 characters in length. It allows any number of
rows to be sent and returned.

Invoking from the client application (ISQL)
The following ISQL invokes RSP3C:

C:\DIRECTCONNECT>> isql -Sdcservice -Uuserid
1 USE PROCEDURE WITH DATA RSP3C ;
2 THIS IS THE FIRST STRING OF DATA
3 AND THIS IS THE SECOND RECORD OF DATA
4 AND THIS IS THE THIRD AND SO ON
5 ;
6 GO

The USE PROCEDURE statement includes a WITH DATA clause preceding the
RSP name. WITH DATA indicates that ISQL should send the ASCII format data
following the USE PROCEDURE statement to the RSP.

Returning results to the client application
RSP3C returns the following results to the client.

COLUMN01

 **-- THE FOLLOWING IS A LIST OF THE DATA RECORDS SENT.
 REC#- 01:THIS IS THE FIRST STRING OF DATA
 REC#- 02:AND THIS IS THE SECOND RECORD OF DATA
 REC#- 03:AND THIS IS THE THIRD AND SO ON

 (4 rows affected)
 1 QUIT

 C:\DIRECTCONNECT>>

RSP3C STD input and output pipe sample code

100 Mainframe Connect Server Option

RSP3C STD input and output pipe sample code
 IDENTIFICATION DIVISION.
 PROGRAM-ID. RSP3C.
 **
 * RSP3C - STD INPUT PIPES PROCEDURE *
 * *
 * THIS SAMPLE STORED PROCEDURE WAS WRITTEN TO USE A "STD" INPUT *
 * AND OUTPUT PIPE FOR ILLUSTRATION. IT REQUIRES AT LEAST ONE *
 * DATA RECORD TO BE PASSED TO IT WHEN INVOKED. *
 * AN EXAMPLE OF INVOKING IT: *
 * *
 * USE PROCEDURE WITH DATA RSP3C ; *
 * THIS IS THE FIRST AND ONLY DATA RECORD *
 * ; *
 * *
 * DATA RECORDS ARE SET FOR UP TO 55 CHARS IN LENGTH. ALL *
 * DATA RECORDS WILL BE RETURNED THROUGH THE OUTPUT PIPE AS *
 * VERIFICATION. *
 * *
 **

 ENVIRONMENT DIVISION.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

**
 * ONE POINTER IS USED FOR BOTH INPUT AND OUTPUT RECORD AREA
 * IN THIS CASE BECAUSE THE RECORDS WILL BE THE SAME LENGTH.
 **
 01 SAMPLE-POINTER.
 10 PARTSPOINTER USAGE IS POINTER.

**
 * SWITCHES FOR RECORD PROCESSING CONTROL. *
 **
 01 WS-SWITCHES.
 10 WS-MORE-RECORDS-IN-SW PIC X(01) VALUE 'Y'.
 88 MORE-RECORDS-IN VALUE 'Y'.
 88 NO-MORE-RECORDS-IN VALUE 'N'.

 10 WS-ERROR-HAPPENED-SW PIC X(01) VALUE 'N'.
 88 ERROR-HAPPENED VALUE 'Y'.
 88 NO-ERROR-YET VALUE 'N'.

APPENDIX C RSP3C STD Input and Output Pipe Sample RSP

Programmer’s Reference for Remote Stored Procedures 101

**
 * A NUMBER FOR INCRIMENTING. *
 **
 01 WS-VARIABLES.
 05 WS-INCRINUM PIC 99 VALUE ZEROES.
 05 INREC-CTR PIC S9(8) COMP VALUE 0.
 05 WS-DIS-NUM PIC 9(4) VALUE ZEROES.

 01 MESSAGES.
 05 ERROR1-MSG.
 07 ERROR1-TEXT1 PIC X(19) VALUE
 'ERROR WITH CALL TO '.
 07 ERROR1-CALL PIC X(10) VALUE SPACES.
 07 ERROR1-TEXT2 PIC X(14) VALUE
 ' - SPRC CODE: '.
 07 ERROR1-SPRC PIC X(03) VALUE SPACES.

**
 * OUTPUT RECORD DESCRIPTIONS. *
 **
 01 WS-OUTPUT-REC.
 10 WS-OUT-MSG-AREA.
 15 FILLER PIC X(07) VALUE 'REC#-> '.
 15 WS-OUT-MSG-NUM PIC X(02) VALUE SPACES.
 15 FILLER PIC X(01) VALUE ':'.
 10 WS-OUT-SOME-DATA PIC X(45) VALUE SPACES.

 01 WS-OUT-DATA-MSG.
 10 FILLER PIC X(55) VALUE
 '**--> THE FOLLOWING IS A LIST OF THE DATA RECORDS SENT.'.

 * THIS SWITCH IS USED FOR TESTING IF RPC CALL
 77 RSPRPC-SWITCH PIC S9(4) COMP VALUE 0.
 88 RPC-CALL VALUE 0.

 01 COMMAREA-POINTER USAGE IS POINTER.

 LINKAGE SECTION.
 **
 * THE LINKAGE SECTION DEFINES MASKS FOR DATA AREAS THAT ARE
 * PASSED BETWEEN THIS PROGRAM AND MAINFRAMECONNECT.
 **

 01 DFHCOMMAREA.
 05 NOT-USED PIC X(1).

RSP3C STD input and output pipe sample code

102 Mainframe Connect Server Option

 **
 * THIS IS THE ACTUAL SPAREA POINTER AND DEFINITION *
 **
 01 LWKCOMMAREA.
 COPY SPAREAC.

 **
 * THIS AREA IS USED FOR BOTH INPUT AND OUTPUT BECAUSE BOTH
 * TYPES OF RECORDS ARE THE SAME LENGTH IN THIS CASE.
 **
 01 WS-INPUT-REC.
 10 WS-INPUT-DATA.
 15 WS-INPUT-1ST-5 PIC X(05).
 15 FILLER PIC X(40).
 10 WS-INPUT-REST PIC X(10).

 PROCEDURE DIVISION.

 000-MAIN-PROCESSING.

 PERFORM 100-INITIALIZE THRU 100-EXIT.

 IF NO-ERROR-YET
 PERFORM 500-PROCESS-I-O THRU 500-EXIT.

 PERFORM 900-WRAP-UP THRU 900-EXIT.

 EXEC CICS
 RETURN
 END-EXEC.

 GOBACK.

 000-EXIT.
 EXIT.

 100-INITIALIZE.
 **
 * IF THIS IS A RPC CALL, CALL RPSETUP TO INITIALIZE SPAREA
 * AND OPEN SERVER (TRANSACTION ROUTER SERVICE)
 * IF THIS IS A RSP CALL, SPAREA IS PASSED IN THE COMMAREA.
 * (DIRECTCONNECT).
 * FOR TRACING, MOVE 'Y' TO SPTRCOPT
 **

APPENDIX C RSP3C STD Input and Output Pipe Sample RSP

Programmer’s Reference for Remote Stored Procedures 103

 MOVE EIBCALEN TO RSPRPC-SWITCH.

 IF RPC-CALL
 EXEC CICS GETMAIN
 SET (COMMAREA-POINTER)
 FLENGTH (LENGTH OF LWKCOMMAREA)
 END-EXEC
 SET ADDRESS OF LWKCOMMAREA TO COMMAREA-POINTER
 CALL 'RPSETUP' USING SPAREA
 ELSE
 SET ADDRESS OF LWKCOMMAREA TO ADDRESS OF DFHCOMMAREA.

 MOVE 'OK' TO SPSTATUS.
 SET MORE-RECORDS-IN TO TRUE.

 **
 * ALLOCATE A BLOCK OF STORAGE TO BE USED FOR THE DATA
 * SET POINTER VARIABLE TO ADDRESS OF ALLOCATED STORAGE
 **

 EXEC CICS
 GETMAIN SET(PARTSPOINTER)
 FLENGTH(55)
 END-EXEC.
 SET ADDRESS OF WS-INPUT-REC TO PARTSPOINTER.

 PERFORM 110-OPEN-INPUT-PIPE THRU 110-EXIT.

 IF NO-ERROR-YET
 PERFORM 120-OPEN-OUTPUT-PIPE THRU 120-EXIT.

 100-EXIT.
 EXIT.

 110-OPEN-INPUT-PIPE.
 **
 * OPEN THE INPUT PIPE. *
 **
 MOVE 'INPUT' TO SPMODE.
 MOVE 'STD' TO SPFORMAT.
 MOVE 55 TO SPMAXLEN.
 CALL 'OPENPIPE' USING SPAREA.

 **
 * IF OPEN FAILED, THEN ISSUE AN ERROR MESSAGE. *
 **

RSP3C STD input and output pipe sample code

104 Mainframe Connect Server Option

 IF SPRC NOT = '000'
 SET ERROR-HAPPENED TO TRUE
 MOVE 'OPENPIPE' TO ERROR1-CALL
 PERFORM 800-DO-MESSAGE THRU 800-EXIT.

 110-EXIT.
 EXIT.

 120-OPEN-OUTPUT-PIPE.
 **
 * AFTER A SUCCESSFUL OPENPIPE FOR OUTPUT: HEADER, TABLE, AND
 * COLUMN IXF RECORDS ARE GENERATED AND SENT TO APPC.
 **
 MOVE 'OUTPUT' TO SPMODE.
 MOVE 'STD' TO SPFORMAT.
 MOVE 55 TO SPMAXLEN.

 CALL 'OPENPIPE' USING SPAREA.

 **
 * IF OPEN FAILED, THEN ISSUE AN ERROR MESSAGE. *
 **
 IF SPRC NOT = '000'
 SET ERROR-HAPPENED TO TRUE
 MOVE 'OPENPIPE' TO ERROR1-CALL
 PERFORM 800-DO-MESSAGE THRU 800-EXIT.

 120-EXIT.
 EXIT.

 500-PROCESS-I-O.

 MOVE 0 TO WS-INCRINUM.

 PERFORM 510-SEND-RECORDS-HEADING THRU 510-EXIT.

 IF NO-ERROR-YET
 PERFORM 540-PROCESS-DATA-RECS THRU 540-EXIT
 UNTIL NO-MORE-RECORDS-IN.

 500-EXIT.
 EXIT.

 510-SEND-RECORDS-HEADING.

 MOVE WS-OUT-DATA-MSG TO WS-INPUT-REC.

APPENDIX C RSP3C STD Input and Output Pipe Sample RSP

Programmer’s Reference for Remote Stored Procedures 105

 SET SPFROM TO ADDRESS OF WS-INPUT-REC.

 * PUTPIPE SENDS A RESULT ROW TO THE OUTPUT BUFFER, WHICH*
 * WILL EVENTUALLY BE SENT DOWN TO THE CLIENT APPLICATION*

 CALL 'PUTPIPE' USING SPAREA.

 IF SPRC NOT = '000'
 SET ERROR-HAPPENED TO TRUE
 MOVE 'PUTPIPE ' TO ERROR1-CALL
 PERFORM 800-DO-MESSAGE THRU 800-EXIT.

 510-EXIT.
 EXIT.

 540-PROCESS-DATA-RECS.
 **
 * OBTAIN THE DATA RECORDS SENT WITH PROGRAM AND SEND BACK TO PIPE*
 **

 IF NO-ERROR-YET
 PERFORM 542-READ-RECORDS THRU 542-EXIT.

 IF NO-ERROR-YET
 AND MORE-RECORDS-IN
 PERFORM 544-WRITE-RECORDS THRU 544-EXIT.

 540-EXIT.
 EXIT.

 542-READ-RECORDS.
 **
 * READ AN INPUT RECORD THROUGH THE INPUT PIPE *
 * NOTE THAT THE SPRECLEN DOESN'T NEED TO BE SET BECAUSE THE *
 * MAINFRAMECONNECT SETS THIS FIELD WHEN IT SENDS THE INPUT RECORD.

 ADD 1 TO INREC-CTR
 SET SPINTO TO ADDRESS OF WS-INPUT-REC.
 CALL 'GETPIPE' USING SPAREA.

 EVALUATE SPRC
 WHEN '000' CONTINUE
 WHEN 'EOF' SET NO-MORE-RECORDS-IN TO TRUE
 WHEN OTHER PERFORM

RSP3C STD input and output pipe sample code

106 Mainframe Connect Server Option

 SET NO-MORE-RECORDS-IN TO TRUE
 SET ERROR-HAPPENED TO TRUE
 MOVE 'GETPIPE ' TO ERROR1-CALL
 PERFORM 800-DO-MESSAGE THRU 800-EXIT
 END-PERFORM
 END-EVALUATE.

 **
 * THIS IS JUST TO PREVENT ACCIDENTAL RUNAWAY.
**
 IF WS-INPUT-1ST-5 = SPACES
 OR INREC-CTR > 500
 SET NO-MORE-RECORDS-IN TO TRUE
 SET ERROR-HAPPENED TO TRUE
 MOVE 'RUNAWAY ' TO ERROR1-CALL
 PERFORM 800-DO-MESSAGE THRU 800-EXIT
 END-IF.

 542-EXIT.
 EXIT.

 544-WRITE-RECORDS.
 **
 * REFORMAT THE INPUT RECORD AND SEND BACK DOWN THE OUTPUT PIPE *
 * NOTE THAT SPRECLEN IS RESET TO 55 EACH TIME BECAUSE THE VALUE *
 * MIGHT BE CHANGED BY THE PREVIOUS GETPIPE. *
 **

 ADD 1 TO WS-INCRINUM.
 MOVE WS-INCRINUM TO WS-OUT-MSG-NUM.
 * MOVE WS-INPUT-DATA TO WS-OUT-SOME-DATA.
 MOVE SPACES TO WS-OUT-SOME-DATA.
 MOVE WS-INPUT-DATA (1:SPRECLEN) TO WS-OUT-SOME-DATA.
 MOVE WS-OUTPUT-REC TO WS-INPUT-REC.
 MOVE 55 TO SPRECLEN.
 SET SPFROM TO ADDRESS OF WS-INPUT-REC.

 * PUTPIPE SENDS A RESULT ROW TO THE OUTPUT BUFFER, WHICH*
 * WILL EVENTUALLY BE SENT DOWN TO THE CLIENT APPLICATION*

 CALL 'PUTPIPE' USING SPAREA.

 IF SPRC NOT = '000'
 SET NO-MORE-RECORDS-IN TO TRUE
 SET ERROR-HAPPENED TO TRUE

APPENDIX C RSP3C STD Input and Output Pipe Sample RSP

Programmer’s Reference for Remote Stored Procedures 107

 MOVE 'PUTPIPE ' TO ERROR1-CALL
 PERFORM 800-DO-MESSAGE THRU 800-EXIT.

 544-EXIT.
 EXIT.

 800-DO-MESSAGE.
 **
 * SOMETHING FAILED, SO ISSUE AN ERROR MESSAGE AND GET OUT. *
 **
 MOVE SPRC TO ERROR1-SPRC.
 MOVE ERROR1-MSG TO SPMSG.
 MOVE 'E' TO SPSTATUS.

 * MESSAGE WILL WRITE THE 100 BYTE SPMSG TO A MSG BUFFER,*
 * WHICH WILL EVENTUALLY BE WRITTEN TO THE CLIENT *
 * APPLICATION *

 CALL 'MESSAGE' USING SPAREA.

 IF SPRC NOT = '000'
 SET NO-MORE-RECORDS-IN TO TRUE
 SET ERROR-HAPPENED TO TRUE.

 800-EXIT.
 EXIT.

 900-WRAP-UP.
 **
 * CLOSE PIPES - ISSUE STATUS. *
 **

 CLOSEPIPE IS LIKE CLOSING A FILE, PLACES AN EOF MARKER

 IF NO-ERROR-YET
 MOVE 'INPUT' TO SPMODE
 CALL 'CLOSPIPE' USING SPAREA
 IF SPRC NOT = '000'
 SET ERROR-HAPPENED TO TRUE
 MOVE 'CLOSPIPE' TO ERROR1-CALL
 PERFORM 800-DO-MESSAGE THRU 800-EXIT.

 IF NO-ERROR-YET
 MOVE 'OUTPUT' TO SPMODE

RSP3C STD input and output pipe sample code

108 Mainframe Connect Server Option

 CALL 'CLOSPIPE' USING SPAREA
 IF SPRC NOT = '000'
 SET ERROR-HAPPENED TO TRUE
 MOVE 'CLOSPIPE' TO ERROR1-CALL
 PERFORM 800-DO-MESSAGE THRU 800-EXIT
 END-IF
 END-IF.

 IF NO-ERROR-YET
 MOVE 'OK' TO SPSTATUS

 * CALLING STATUS WILL FLUSH ANY RESULTS AND/OR *
 * MESSAGES FROM THE BUFFERS, TO THE CLIENT APPLICATION *

 CALL 'STATUS' USING SPAREA
 IF SPRC NOT = '000'
 SET ERROR-HAPPENED TO TRUE
 MOVE 'STATUS ' TO ERROR1-CALL
 PERFORM 800-DO-MESSAGE THRU 800-EXIT
 END-IF
 ELSE
 MOVE 'E' TO SPSTATUS
 MOVE 'MYERCODE' TO SPCODE
 CALL 'STATUS' USING SPAREA
 END-IF.

 **
 * CLOSE OPEN SERVER
 * IF THIS IS AN RPC CALL, PERFORM OPEN SERVER CLOSE
 **
 IF RPC-CALL
 CALL 'RPDONE' USING SPAREA.

 900-EXIT.
 EXIT.

Programmer’s Reference for Remote Stored Procedures 109

A P P E N D I X D RSP4C Keyword Variable
Sample RSP

If you want to pass keyword values, use sample RSP4C. RSP4C is an RSP
that reads up to 50 keywords and echoes them to a client application
through a STD format output pipe. It also includes code that allows you to
control whether messages and return codes return as output. The examples
in this section illustrate its capabilities.

This appendix discusses the following topics:

• Client application processing

• Sample input and results

• RSP4C error handling

• Keyword sample code fragment

• RSP4C keyword variable sample code

Client application processing
The RSP4C sample RSP is written to receive keywords that are up to 15
characters in length (including the &) and keyword values up to 28
characters in length. All keywords and their values are returned to the
client application through a STD format output pipe for display.

For display purposes only, RSP4C overwrites the rightmost five
characters (positions 24–28) of the keyword values with the length of the
values (determined by Open ServerConnect or MainframeConnect) and
sends them to the RSP through the keyword variable table. RSP4C does
not corrupt the actual data.

Sample input and results

110 Mainframe Connect Server Option

Sample input and results
Figure D-1 on page 110 shows an example of a file used as input to ISQL.EXE
to send keywords and values to an RSP program named RSP4C. Figure D-2 on
page 111 shows an example of the echoed input.

You can use input and output files in your ISQL command. This example uses
RSP4C.SQL as the input file and RSP4C.LOG as the output file:

ISQL -SDB2T -Uxxxxxxxx -Pyyyyyyyy -iRSP4C.SQL -oRSP4C.LOG

RSP4C.SQL sample input
The following figure illustrates the use of keyword variables.

Figure D-1: RSP4C.SQL

The RSP accepts a text string and converts it to uppercase for processing.

To process text strings with embedded blanks, mixed-case, or special
characters, enclose them within delimiters. The value passed in &KEY2 is
counted only to the blank and is only partially echoed. The value passed in
&KEY1 is enclosed in single quotes, while the value passed in &KEY3 is
enclosed in double quotes.

RSP4C.LOG sample results
RSP4C.LOG, the following figure, contains the results the client application
receives after invoking RSP4C:

===
C:\DIRECTCONNECT>> isql -Sdcservice -Uuserid
USE PROCEDURE RSP4C &KEY1=’A Test of keywords’ &KEY2=Another test
&KEY3="SO?"
GO
===

APPENDIX D RSP4C Keyword Variable Sample RSP

Programmer’s Reference for Remote Stored Procedures 111

Figure D-2: RSP4C.LOG

You can see that &KEY2, input as ANOTHER, is counted only to the blank.

RSP4C error handling
The examples in this section demonstrate how the sample RSP suppresses the
error code or the text of the error message.

No error code The code in the following figure passes &ERRORMSG= to ERROR-CHECK.

Figure D-3: ERRORMSG example

The following figure contains the results that the client application receives:

==
1 2 1 2
 COLUMN01

 **-- THE FOLLOWING IS A LIST OF THE KEYWORDS SENT.
 KEYW- 01:&KEY1 = ’A Test of keywords’ 0020
 KEYW- 02:&KEY2 = ANOTHER 0007
 KEYW- 03:&KEY3 = ’SO?’ 0005

(4 rows affected)
1
==

===
C:\DIRECTCONNECT>> isql -Sdcservice -Uuserid
USE PROCEDURE RSP4C &ERRORMSG=TESTIT
GO
1 2
===

RSP4C error handling

112 Mainframe Connect Server Option

Figure D-4: ERRORMSG response

The RSP code does not set

SPSTATUS='E'

 and so does not pass a value through the SPRC field. As a result, the
“DG21002: Result failed. Database server error code” message does not
display an error code.

No message The code in the following figure passes &STATUSMSG= to STATUS-CHECK.

Figure D-5: STATUSMSG example

The following figure contains the results that the client application receives:

==
RSP_STD_PIPE

**-- THE FOLLOWING IS A LIST OF THE KEYWORDS SENT.
 KEYW- 01:&ERRORMSG = TESTIT 0006

 (2 rows affected)

 THIS IS YOUR ERROR MESSAGE TEXT.

 RSP Completion Code=152183236

==

==
USE PROCEDURE RSP4C &STATUSMSG=YES
GO
1 2
==

APPENDIX D RSP4C Keyword Variable Sample RSP

Programmer’s Reference for Remote Stored Procedures 113

Figure D-6: STATUSMSG response

RSP4C’s paragraph 522-SEND-KEYWORD-HEADING on writes the
following:

 **-- THE FOLLOWING IS A LIST OF THE KEYWORDS SENT.

In RSP4C’s paragraph 524-READ-WRITE-KEYWORDS on, however,
STATUS-CHECK sets the ERROR-HAPPENED switch.

Keyword sample code fragment
The following COBOL II code fragment shows one way to code an RSP to
handle keyword variables.

LINKAGE SECTION.
 01 DFHCOMMAREA.
 COPY SPAREAC.
 **
 * LINKAGE TO CALLING PROGRAM *
 **

 01 KEYWORD-VTABLE.
 10 VTABLE-SIZE PIC S9(8) COMP.
 10 VTABLE-ENTRY OCCURS 0 TO 50 TIMES
 DEPENDING ON VTABLE-SIZE
 INDEXED BY VTABLE-INDEX.
 15 VTABLE-NAME USAGE IS POINTER.
 15 VTABLE-VALUE USAGE IS POINTER.
 15 VTABLE-NAME-LENGTH PIC S9(4) COMP.

==
RSP_STD_PIPE

 **-- THE FOLLOWING IS A LIST OF THE KEYWORDS SENT.
 KEYW- 01:&STATUSMSG = YES 0003

RSP Completion Code=152183220
==

RSP4C keyword variable sample code

114 Mainframe Connect Server Option

 15 VTABLE-VALUE-LENGTH PIC S9(4) COMP.

 01 TABLE-NAME PIC X(15).
 01 TABLE-VALUE PIC X(28).

 01 WS-INPUT-REC.
 10 WS-INPUT-DATA PIC X(45).
 10 WS-INPUT-REST PIC X(10).
 :
 :
 :
 **
 * MAKE SURE AT LEAST ONE KEYWORD WAS SENT ALONG WITH PROGRAM *
 **

 MOVE 0 TO WS-INCRINUM.

 IF SPVARTAB = NULL
 PERFORM 700-LOAD-KEYWORD-ERROR THRU 700-EXIT
 GO TO 510-EXIT.

 IF VTABLE-SIZE NOT > 0
 PERFORM 700-LOAD-KEYWORD-ERROR THRU 700-EXIT
 GO TO 510-EXIT.

 SET ADDRESS OF KEYWORD-VTABLE TO SPVARTAB.

RSP4C keyword variable sample code
RSP4C is an example of a COBOL II RSP written to handle keyword variables
sent to it from the client application.

IDENTIFICATION DIVISION.
 PROGRAM-ID. RSP4C.
 **
 * RSP4C - DOCTORED STORED PROCEDURE *
 * *
 * THIS SAMPLE STORED PROCEDURE WAS WRITTEN TO USE A "STD" *
 * OUTPUT PIPE AND KEYWORDS FOR ILLUSTRATION. IT REQUIRES AT *
 * LEAST ONE KEYWORD/VALUE BE PASSED TO IT WHEN INVOKED.
 *
 * *
 * USE PROCEDURE RSP4C &FIRSTKEYWORD=FIRSTVALUE ; *

APPENDIX D RSP4C Keyword Variable Sample RSP

Programmer’s Reference for Remote Stored Procedures 115

 * *
 * THIS PROGRAM IS SET UP TO ACCEPT KEYWORDS OF UP TO 15 CHARS *
 * IN LENGTH AND UP TO 28 CHARS FOR THE KEYWORD VALUES. ALL *
 * KEYWORDS, KEYWORD VALUES, WILL BE RETURNED *
 * THROUGH THE OUTPUT PIPE AS VERIFICATION. *
 * *
 * ALSO: 2 SPECIAL KEYWORDS ARE SET UP TO TEST ERROR MESSAGING *
 * THE ERROR CONDITIONS SEND 'E' TO SPSTATUS *
 * - ONE USING "MESSAGE" AND ONE USING "STATUS". *
 * &ERRORMSG : 'E' TO SPSTATUS, MSG TO SPMSG, CALLS 'MESSAGE' *
 * &MESSAGE : 'OK'TO SPSTATUS, MSG TO SPMSG, CALLS 'MESSAGE' *
 * &STATUSMSG : 'E' TO SPSTATUS, MSG TO SPCODE, CALLS 'STATUS' *
 * &STATNEMSG : 'OK'TO SPSTATUS, MSG TO SPCODE, CALLS 'STATUS' *
 * *
 **

 ENVIRONMENT DIVISION.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 **
 * POINTERS TO INPUT AND OUTPUT RECORD AREA. *
 **
 01 WS-POINTERS.
 10 WS-OUTPUT-POINTER USAGE IS POINTER.

 **
 * SWITCHES FOR RECORD PROCESSING CONTROL. *
 **
 01 WS-SWITCHES.
 10 WS-ERROR-MSG-SW PIC X(01) VALUE 'N'.
 88 SEND-TEST-ERROR-MSG VALUE 'Y'.
 88 NO-MSG-REQUIRED VALUE 'N'.

 10 WS-ERROR-STATUS-MSG-SW PIC X(01) VALUE 'N'.
 88 SEND-TEST-ERR-STATUS-MSG VALUE 'Y'.
 88 NO-STATUS-REQUIRED VALUE 'N'.

 10 WS-NOERR-STATUS-MSG-SW PIC X(01) VALUE 'N'.
 88 SEND-NOERROR-STATUS-MSG VALUE 'Y'.
 88 NO-ERROR-REQUIRED VALUE 'N'.

 10 WS-ERROR-HAPPENED-SW PIC X(01) VALUE 'N'.
 88 ERROR-HAPPENED VALUE 'Y'.

RSP4C keyword variable sample code

116 Mainframe Connect Server Option

 88 NO-ERROR-YET VALUE 'N'.

 **
 * A NUMBER FOR INCRIMENTING. *
 **
 01 WS-VARIABLES.
 05 WS-INCRINUM PIC 99 VALUE ZEROES.
 05 WS-DIS-NUM PIC 9(4) VALUE ZEROES.
 05 VTABLE-CTR PIC S9(8) COMP VALUE 1.
 05 ERROR-CHECK PIC X(15) VALUE
 '&ERRORMSG '.
 05 STATUS-CHECK PIC X(15) VALUE
 '&STATUSMSG '.
 05 STATNE-CHECK PIC X(15) VALUE
 '&STATNEMSG '.
 05 MESSNE-CHECK PIC X(15) VALUE
 '&MESSAGE '.

 01 MESSAGES.
 05 ERROR1-MSG.
 07 ERROR1-TEXT1 PIC X(19) VALUE
 'ERROR WITH CALL TO '.
 07 ERROR1-CALL PIC X(10) VALUE SPACES.|
 07 ERROR1-TEXT2 PIC X(14) VALUE
 ' - SPRC CODE: '.
 07 ERROR1-SPRC PIC X(03) VALUE SPACES.

 **
 * OUTPUT RECORD DESCRIPTION. *
 **

 01 WS-OUT-KEYWORD-MSG.
 10 FILLER PIC X(55) VALUE
 '**--> THE FOLLOWING IS A LIST OF THE KEYWORDS SENT. '.

 01 H-TABLE-NAME.
 10 H-TABLE-NAME-T OCCURS 15 TIMES.
 15 H-T-NAME PIC X.
 01 H-TABLE-VALUE.
 10 H-TABLE-VALUE-T OCCURS 28 TIMES.
 15 H-T-VALUE PIC X.

 01 WS-KEYWORD-REC.
 10 WS-KEY-MSG-AREA.
 15 FILLER PIC X(07) VALUE 'KEYW-> '.
 15 WS-KEY-MSG-NUM PIC X(02) VALUE SPACES.

APPENDIX D RSP4C Keyword Variable Sample RSP

Programmer’s Reference for Remote Stored Procedures 117

 15 FILLER PIC X(01) VALUE ':'.
 10 WS-KEYWORD-OUT PIC X(15) VALUE SPACES.
 10 FILLER PIC X(02) VALUE '= '.
 10 WS-KEY-VALUE-OUT.
 15 FILLER PIC X(24) VALUE SPACES.
 15 WS-KEY-VAL-LEN PIC X(04) VALUE SPACES.

 * THIS SWITCH IS USED FOR TESTING IF RPC CALL
 77 RSPRPC-SWITCH PIC S9(4) COMP VALUE 0.
 88 RPC-CALL VALUE 0.

 01 COMMAREA-POINTER USAGE IS POINTER.

 LINKAGE SECTION.

 01 DFHCOMMAREA.
 05 NOT-USED PIC X(1).

**
 * THIS IS THE ACTUAL SPAREA POINTER AND DEFINITION *
 **
 01 LWKCOMMAREA.
 COPY SPAREAC.

**
 * THIS IS THE MASK FOR THE KEYWORD VARIABLE TABLE THAT THE
 * MAINFRAMECONNECT WILL CREATE FOR YOUR RSP TO PROCESS.
 **
 01 KEYWORD-VTABLE.
 10 VTABLE-SIZE PIC S9(8) COMP.
 10 VTABLE-ENTRY OCCURS 0 TO 50 TIMES
 DEPENDING ON VTABLE-SIZE
 INDEXED BY VTABLE-INDEX.
 15 VTABLE-NAME USAGE IS POINTER.
 15 VTABLE-VALUE USAGE IS POINTER.
 15 VTABLE-NAME-LENGTH PIC S9(4) COMP.
 15 VTABLE-VALUE-LENGTH PIC S9(4) COMP.

**
 * THESE ARE THE DATA VARIABLES THAT THE KEYWORDS AND THE
 * KEYWORD VALUES WILL BE PLACED INTO FOR ACCESS BY THE RSP.
 * IN THIS CASE THE LENGTHS WERE SET TO 15 FOR KEYWORDS AND
 * 28 FOR THE KEYWORD VALUE FOR TESTING PURPOSES.
 **
 01 TABLE-NAME PIC X(15).
 01 TABLE-VALUE PIC X(28).

RSP4C keyword variable sample code

118 Mainframe Connect Server Option

 01 LS-OUTPUT-REC.
 10 LS-OUTPUT-DATA PIC X(55).

==
 PROCEDURE DIVISION.
 ==

 000-MAIN-PROCESSING.

 PERFORM 100-INITIALIZE THRU 100-EXIT.

 IF NO-ERROR-YET
 PERFORM 500-PROCESS-I-O THRU 500-EXIT.

 PERFORM 900-WRAP-UP THRU 900-EXIT.

 EXEC CICS
 RETURN
 END-EXEC.

 GOBACK.

 000-EXIT.
 EXIT.

 100-INITIALIZE.

 **
 * IF THIS IS A RPC CALL, CALL RPSETUP TO INITIALIZE SPAREA
 * AND OPEN SERVER (TRANSACTION ROUTER SERVICE)
 * IF THIS IS A RSP CALL, SPAREA IS PASSED IN THE COMMAREA.
 * (DIRECTCONNECT).
 * FOR TRACING, MOVE 'Y' TO SPTRCOPT
 **

 MOVE EIBCALEN TO RSPRPC-SWITCH.

 IF RPC-CALL
 EXEC CICS GETMAIN
 SET (COMMAREA-POINTER)
 FLENGTH (LENGTH OF LWKCOMMAREA)
 END-EXEC
 SET ADDRESS OF LWKCOMMAREA TO COMMAREA-POINTER
 CALL 'RPSETUP' USING SPAREA
 ELSE

APPENDIX D RSP4C Keyword Variable Sample RSP

Programmer’s Reference for Remote Stored Procedures 119

 SET ADDRESS OF LWKCOMMAREA TO ADDRESS OF DFHCOMMAREA.

 **

 MOVE 'OK' TO SPSTATUS.

 **
 * ALLOCATE A BLOCK OF STORAGE TO BE USED FOR THE DATA
 * SET POINTER VARIABLE TO ADDRESS OF ALLOCATED STORAGE
 **

 EXEC CICS
 GETMAIN SET(WS-OUTPUT-POINTER)
 LENGTH(55)
 END-EXEC.
 SET ADDRESS OF LS-OUTPUT-REC TO WS-OUTPUT-POINTER.

 PERFORM 120-OPEN-OUTPUT-PIPE THRU 120-EXIT.

 100-EXIT.
 EXIT.

 120-OPEN-OUTPUT-PIPE.
 **
 * OPEN THE OUTPUT PIPE. *
 **
 MOVE 'STD' TO SPFORMAT.
 MOVE 55 TO SPMAXLEN.
 MOVE 'OUTPUT' TO SPMODE.

 * AN OPEN PIPE WILL SET UP THE COLUMN INFORMATION, WHICH*
 * WILL EVENTUALLY BE SENT TO THE CLIENT....... *

 CALL 'OPENPIPE' USING SPAREA.

 **
 * IF OPEN FAILED, THEN ISSUE AN ERROR MESSAGE. *
 **
 IF SPRC NOT = '000'
 SET ERROR-HAPPENED TO TRUE
 MOVE 'OPENPIPE' TO ERROR1-CALL
 PERFORM 800-ERROR-MESSAGE THRU 800-EXIT.

 120-EXIT.
 EXIT.

RSP4C keyword variable sample code

120 Mainframe Connect Server Option

 500-PROCESS-I-O.

 PERFORM 510-KEYWORD-INPUT-CHECK THRU 510-EXIT.|

 IF NO-ERROR-YET
 PERFORM 520-PROCESS-KEYWORDS THRU 520-EXIT.

 500-EXIT.
 EXIT.

 510-KEYWORD-INPUT-CHECK.
 **
 * MAKE SURE AT LEAST ONE KEYWORD WAS SENT ALONG WITH PROGRAM *
 **

 MOVE 0 TO WS-INCRINUM.

 IF SPVARTAB = NULL
 PERFORM 700-LOAD-KEYWORD-ERROR THRU 700-EXIT
 GO TO 510-EXIT.

 IF VTABLE-SIZE NOT > 0
 PERFORM 700-LOAD-KEYWORD-ERROR THRU 700-EXIT
 GO TO 510-EXIT.

 SET ADDRESS OF KEYWORD-VTABLE TO SPVARTAB.

 510-EXIT.
 EXIT.

 520-PROCESS-KEYWORDS.

 PERFORM 522-SEND-KEYWORD-HEADING THRU 522-EXIT.

 IF NO-ERROR-YET
 PERFORM 524-READ-WRITE-KEYWORDS THRU 524-EXIT.

 IF NO-ERROR-YET
 PERFORM 548-TEST-FOR-ERR-KEY THRU 548-EXIT.

 520-EXIT.
 EXIT.

 522-SEND-KEYWORD-HEADING.

APPENDIX D RSP4C Keyword Variable Sample RSP

Programmer’s Reference for Remote Stored Procedures 121

 MOVE WS-OUT-KEYWORD-MSG TO LS-OUTPUT-REC.
 MOVE 55 TO SPRECLEN.
 SET SPFROM TO ADDRESS OF LS-OUTPUT-REC.

 * PUTPIPE SENDS A RESULT ROW TO THE OUTPUT BUFFER, WHICH*
 * WILL EVENTUALLY BE SENT DOWN TO THE CLIENT APPLICATION.*

 CALL 'PUTPIPE' USING SPAREA.

 IF SPRC NOT = '000'
 SET ERROR-HAPPENED TO TRUE
 MOVE 'PUTPIPE ' TO ERROR1-CALL
 PERFORM 800-ERROR-MESSAGE THRU 800-EXIT.

 522-EXIT.
 EXIT.

 524-READ-WRITE-KEYWORDS.
 **
 * OBTAIN THE KEYWORD VARIABLES AND DISPLAY THEM DOWN OUTPUT PIPE *
 * THE KEYWORD VALUE LENGTH (VTABLE-VALUE-LENGTH(VTABLE-INDEX)) *
 * PASSED FROM MAINFRAMECONNECT WILL BE PLACED AT THE LAST FOUR *
 * BYTES OF THE KEYWORD VALUE DISPLAY. THIS WILL DEMONSTATE THE *
 * WAY MAINFRAMECONNECT DETERMINES THE LENGTH OF THE KEYWORD *
 * VALUE MAY NOT MATCH EXACTLY WHAT WAS SENT BECAUSE THE COUNTING *
 * STOPS AT THE FIRST SPACE IF THE DATA IS NOT DELIMITED. *
 * NOTE THAT THIS DOES NOT MEAN ONLY PART OF THE KEYWORD VALUE *
 * DATA WAS SENT - IT ONLY MEANS THE COUNTING STOPS AT THE SPACE *
 **
 PERFORM WITH TEST AFTER
 VARYING VTABLE-INDEX FROM 1 BY 1
 UNTIL VTABLE-SIZE = VTABLE-INDEX
 SET ADDRESS OF TABLE-NAME TO VTABLE-NAME(VTABLE-INDEX)
 MOVE TABLE-NAME TO H-TABLE-NAME
 MOVE VTABLE-NAME-LENGTH(VTABLE-INDEX)
 TO VTABLE-CTR
 ADD 1 TO VTABLE-CTR
 PERFORM UNTIL VTABLE-CTR > 16
 MOVE SPACE TO H-T-NAME (VTABLE-CTR)
 ADD 1 TO VTABLE-CTR
 END-PERFORM
 MOVE H-TABLE-NAME TO WS-KEYWORD-OUT
 IF WS-KEYWORD-OUT = ERROR-CHECK
 MOVE 'Y' TO WS-ERROR-MSG-SW
 END-IF

RSP4C keyword variable sample code

122 Mainframe Connect Server Option

 IF WS-KEYWORD-OUT = STATUS-CHECK
 MOVE 'Y' TO WS-ERROR-STATUS-MSG-SW
 END-IF
 IF WS-KEYWORD-OUT = STATNE-CHECK
 MOVE 'Y' TO WS-NOERR-STATUS-MSG-SW
 END-IF
 IF WS-KEYWORD-OUT = MESSNE-CHECK
 MOVE 'THIS IS YOUR NON ERROR MESSAGE TEXT.'
 TO SPMSG
 MOVE '14' TO SPCODE
 CALL 'MESSAGE' USING SPAREA
 END-IF
 SET ADDRESS OF TABLE-VALUE
 TO VTABLE-VALUE(VTABLE-INDEX)
 MOVE TABLE-VALUE TO H-TABLE-VALUE
 MOVE VTABLE-VALUE-LENGTH(VTABLE-INDEX)
 TO VTABLE-CTR, WS-DIS-NUM
 ADD 1 TO VTABLE-CTR
 PERFORM UNTIL VTABLE-CTR > 29
 MOVE SPACE TO H-T-VALUE (VTABLE-CTR)
 ADD 1 TO VTABLE-CTR
 END-PERFORM
 MOVE H-TABLE-VALUE TO WS-KEY-VALUE-OUT
 MOVE WS-DIS-NUM TO WS-KEY-VAL-LEN
 ADD 1 TO WS-INCRINUM
 MOVE WS-INCRINUM TO WS-KEY-MSG-NUM
 MOVE WS-KEYWORD-REC TO LS-OUTPUT-REC
 SET SPFROM TO ADDRESS OF LS-OUTPUT-REC
 MOVE 55 TO SPRECLEN
 CALL 'PUTPIPE' USING SPAREA
 IF SPRC NOT = '000'
 SET ERROR-HAPPENED TO TRUE
 MOVE 'PUTPIPE ' TO ERROR1-CALL
 PERFORM 800-ERROR-MESSAGE THRU 800-EXIT
 END-IF
 END-PERFORM.

 524-EXIT.
 EXIT.

 548-TEST-FOR-ERR-KEY.
 **
 * TEST FOR ERROR MESSAGE REQUESTED - SEND ONE IF SO. *
 **
 IF SEND-TEST-ERROR-MSG
 MOVE 'N' TO WS-ERROR-MSG-SW

APPENDIX D RSP4C Keyword Variable Sample RSP

Programmer’s Reference for Remote Stored Procedures 123

 MOVE 'THIS IS YOUR ERROR MESSAGE TEXT.'
 TO SPMSG
 MOVE 'ERR54321' TO SPCODE

 * MESSAGE WILL WRITE THE 100 BYTE SPMSG TO A MSG BUFFER,*
 * WHICH WILL EVENTUALLY BE WRITTEN TO THE CLIENT *
 * APPLICATION. *

 CALL 'MESSAGE' USING SPAREA.

 IF SPRC NOT = '000'
 SET ERROR-HAPPENED TO TRUE.

 548-EXIT.
 EXIT.

 700-LOAD-KEYWORD-ERROR.
 **
 * IF AT LEAST ONE KEYWORD IS NOT SUPPLIED - SEND MSG AND STOP. *
 **

 SET ERROR-HAPPENED TO TRUE.
 MOVE '* ERROR - NO KEYWORDS SENT' TO SPMSG.
 MOVE 'E' TO SPSTATUS.

 * MESSAGE WILL WRITE THE 100 BYTE SPMSG TO A MSG BUFFER,*
 * WHICH WILL EVENTUALLY BE WRITTEN TO THE CLIENT *
 * APPLICATION *

 CALL 'MESSAGE' USING SPAREA.

 IF SPRC NOT = '000'
 SET ERROR-HAPPENED TO TRUE.

 700-EXIT.
 EXIT.

 800-ERROR-MESSAGE.
 **
 * SOMETHING FAILED, SO ISSUE AN ERROR MESSAGE AND GET OUT. *
 **
 MOVE SPRC TO ERROR1-SPRC.
 MOVE ERROR1-MSG TO SPMSG.
 MOVE 'E' TO SPSTATUS.

RSP4C keyword variable sample code

124 Mainframe Connect Server Option

 * MESSAGE WILL WRITE THE 100 BYTE SPMSG TO A MSG BUFFER,*
 * WHICH WILL EVENTUALLY BE WRITTEN TO THE CLIENT *
 * APPLICATION *

 CALL 'MESSAGE' USING SPAREA.

 IF SPRC NOT = '000'
 SET ERROR-HAPPENED TO TRUE.

 800-EXIT.
 EXIT.

 900-WRAP-UP.
 **
 * CLOSE PIPES - ISSUE STATUS.
**

 IF NO-ERROR-YET
 MOVE 'OUTPUT' TO SPMODE

 CLOSEPIPE IS LIKE CLOSING A FILE, PLACES AN EOF MARKER

 CALL 'CLOSPIPE' USING SPAREA
 IF SPRC NOT = '000'
 SET ERROR-HAPPENED TO TRUE
 MOVE 'CLOSPIPE' TO ERROR1-CALL
 PERFORM 800-ERROR-MESSAGE THRU 800-EXIT.

 IF SEND-TEST-ERR-STATUS-MSG
 OR ERROR-HAPPENED
 MOVE 'N' TO WS-ERROR-MSG-SW
 MOVE 'THIS IS YOUR STATUS MESSAGE TEXT.'
 TO SPMSG
 MOVE '-321' TO SPCODE
 MOVE 'E' TO SPSTATUS
 ELSE
 IF SEND-NOERROR-STATUS-MSG
 MOVE 'N' TO WS-ERROR-MSG-SW
 MOVE 'THIS IS YOUR STATUS NOERROR TEXT.'
 TO SPMSG
 MOVE '12' TO SPCODE
 MOVE 'OK' TO SPSTATUS
 ELSE
 MOVE 'OK' TO SPSTATUS
 END-IF.

APPENDIX D RSP4C Keyword Variable Sample RSP

Programmer’s Reference for Remote Stored Procedures 125

 * CALLING STATUS WILL FLUSH ANY RESULTS AND/OR *
 * MESSAGES FROM THE BUFFERS, TO THE CLIENT APPLICATION *

 CALL 'STATUS' USING SPAREA.
 IF SPRC NOT = '000'
 SET ERROR-HAPPENED TO TRUE
 MOVE 'STATUS ' TO ERROR1-CALL
 PERFORM 800-ERROR-MESSAGE THRU 800-EXIT
 END-IF.

 **
 * CLOSE OPEN SERVER
 * IF THIS IS AN RPC CALL, PERFORM OPEN SERVER CLOSE
 **
 IF RPC-CALL
 CALL 'RPDONE' USING SPAREA.

 900-EXIT.
 EXIT.

RSP4C keyword variable sample code

126 Mainframe Connect Server Option

Programmer’s Reference for Remote Stored Procedures 127

A P P E N D I X E RSP8C Variable Text Sample
RSP

RSP8C is a sample RSP that reads variable text and uses output pipes to
echo the data the client application sends to it. If you want to pass
parameters to the RSP without using keywords, RSP8C is a useful sample.

This appendix discusses the following topics:

• Client application processing

• RSP8C variable text sample code

Client application processing
The following Figure E-1 contains an example that uses ISQL to invoke
the RSP8C sample RSP. RSP8C reads up to 10,000 bytes of variable text
as input and returns the same data for display in 50-byte blocks.

Client application processing

128 Mainframe Connect Server Option

Figure E-1: Sample RSP8C input

In the preceding figure, the variable input text string, 500 characters in length,
is separated into ten 50-byte blocks that have a carriage-control character at the
end of each block.

The carriage-control character counts as the 51st character of each block. The
following figure shows that the carriage-control characters are reflected in the
output data records as spaces, making the total number of characters returned
510.

===
C:\DIRECTCONNECT>> isql -Sdcservice -Uuserid
USE PROCEDURE RSP8C
12345678911234567892123456789312345678941234567895
12345678911234567892123456789312345678941234567895
12345678911234567892123456789312345678941234567895
12345678911234567892123456789312345678941234567895
12345678911234567892123456789312345678941234567895
12345678911234567892123456789312345678941234567895
12345678911234567892123456789312345678941234567895
12345678911234567892123456789312345678941234567895
12345678911234567892123456789312345678941234567895
12345678911234567892123456789312345678941234567895
;
GO
===

APPENDIX E RSP8C Variable Text Sample RSP

Programmer’s Reference for Remote Stored Procedures 129

Figure E-2: Sample RSP8C output

RSP8C variable text sample code
RSP8C is an example of an RSP written to handle variable text sent to it from
the client application. The code in this sample RSP follows.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. RSP8C
 **
 * RSP8C - DOCTORED STORED PROCEDURE *
 * *
 * THIS SAMPLE STORED PROCEDURE WAS WRITTEN TO USE A VARIABLE *
 * TEXT PARAMETER OF UP TO 10,000 BYTES AND ECHOES IT BACK THRU *
 * A STANDARD OUTPUT PIPE IN 50 BYTE INCREMENTS. *
 * *
 * USE PROCEDURE WITH DATA RSP8C 'THIS IS A VERY BIG PARAMETER' *
 * *
 * THE VARIABLE TEXT DOESN'T HAVE TO BE DELIMITED WITH QUOTES OR *
 * DOUBLE QUOTES. *
 **
 ENVIRONMENT DIVISION.

 DATA DIVISION.

===
1 2 3 4 5 6 7 8 9 10 11 12 13 COLUMN01
 --
 **-- THE FOLLOWING IS 50 BYTE BLOCKS OF VARIABLE TEXT RECVD
 REC#- 01:12345678911234567892123456789312345678941234567895
 REC#- 02: 1234567891123456789212345678931234567894123456789
 REC#- 03:5 123456789112345678921234567893123456789412345678
 REC#- 04:95 12345678911234567892123456789312345678941234567
 REC#- 05:895 1234567891123456789212345678931234567894123456
 REC#- 06:7895 123456789112345678921234567893123456789412345
 REC#- 07:67895 12345678911234567892123456789312345678941234
 REC#- 08:567895 1234567891123456789212345678931234567894123
 REC#- 09:4567895 123456789112345678921234567893123456789412
 REC#- 10:34567895 12345678911234567892123456789312345678941
 REC#- 11:234567895

(12 rows affected)
===

RSP8C variable text sample code

130 Mainframe Connect Server Option

 WORKING-STORAGE SECTION.

**
 * POINTERS TO INPUT AND OUTPUT RECORD AREA. *
 **
 01 WS-SAMPLE-POINTER.
 10 WS-OUTPUT-POINTER USAGE IS POINTER.

**
 * SWITCHES FOR RECORD PROCESSING CONTROL. *
 **
 01 WS-SWITCHES.
 10 WS-ERROR-HAPPENED-SW PIC X(01) VALUE 'N'.
 88 ERROR-HAPPENED VALUE 'Y'.
 88 NO-ERROR-YET VALUE 'N'.

 10 WS-OUTPUT-DONE-SW PIC X(01) VALUE 'N'.
 88 OUTPUT-DONE VALUE 'Y'.
 88 MORE-OUTPUT VALUE 'N'.

 * THIS SWITCH IS USED FOR TESTING IF RPC CALL
 77 RSPRPC-SWITCH PIC S9(4) COMP VALUE 0.
 88 RPC-CALL VALUE 0.

 01 COMMAREA-POINTER USAGE IS POINTER.

**
 * A NUMBER FOR INCREMENTING. *
 **
 01 WS-VARIABLES.
 05 WS-INCRINUM PIC 99 VALUE ZEROES.
 05 VTABLE-CTR PIC S9(8) COMP VALUE 0.
 05 WS-LEN-HOLD PIC 9(4) VALUE ZEROES.

 01 MESSAGES.
 05 ERROR1-MSG.
 07 ERROR1-TEXT1 PIC X(19) VALUE
 'ERROR WITH CALL TO '.
 07 ERROR1-CALL PIC X(10) VALUE SPACES.
 07 ERROR1-TEXT2 PIC X(14) VALUE
 ' - SPRC CODE: '.
 07 ERROR1-SPRC PIC X(03) VALUE SPACES.
**
 * OUTPUT RECORD DESCRIPTION. *
 **

APPENDIX E RSP8C Variable Text Sample RSP

Programmer’s Reference for Remote Stored Procedures 131

 01 WS-OUTPUT-REC.
 10 WS-OUT-MSG-AREA.
 15 FILLER PIC X(07) VALUE 'REC#-> '.
 15 WS-OUT-MSG-NUM PIC X(02) VALUE SPACES.
 15 FILLER PIC X(01) VALUE ':'.
 10 WS-OUT-SOME-DATA PIC X(50) VALUE SPACES.

 01 WS-OUT-DATA-MSG.
 10 FILLER PIC X(55) VALUE
 '**--> THE FOLLOWING IS 50 BYTE BLOCKS OF VARIABLE TEXT '.
 10 FILLER PIC X(05) VALUE 'RECVD'.

 01 V-TABLE-BLOCKS.
 10 V-TABLE-BLOCKS-T OCCURS 200 TIMES.
 15 V-ROW PIC X(50) VALUE SPACES.

 01 WS-VTABLE-REC.
 10 WS-VTABLE-AREA.
 15 FILLER PIC X(33) VALUE
 'THIS IS THE LENGTH IN SPVARLEN : '.
 15 WS-VTABLE-NUM PIC X(04) VALUE SPACES.
 15 FILLER PIC X(03) VALUE SPACES.

 LINKAGE SECTION.
 **
 * THE LINKAGE SECTION DEFINES MASKS FOR DATA AREAS THAT ARE
 * PASSED BETWEEN THIS PROGRAM AND MAINFRAMECONNECT.
 **

 **
 * LINKAGE TO CALLING PROGRAM *
 **

 01 DFHCOMMAREA.
 05 NOT-USED PIC X(1).
 05 DUMMY-AREA PIC X(1).

**
 * THIS IS THE ACTUAL SPAREA POINTER AND DEFINITION *
 **
 01 LWKCOMMAREA.
 COPY SPAREAC.
 **
 * VARIABLE FOR ALL INCOMING VARIABLE TEXT PARAMETERS *
 **
 01 INPUT-VALUE PIC X(10000).

RSP8C variable text sample code

132 Mainframe Connect Server Option

 01 WS-OUTPUT-RECORD.
 10 WS-OUTPUT-DATA PIC X(60).

==
 PROCEDURE DIVISION.
 ==
 000-MAIN-PROCESSING.

 PERFORM 100-INITIALIZE THRU 100-EXIT.

 IF NO-ERROR-YET
 PERFORM 500-PROCESS-I-O THRU 500-EXIT.

 PERFORM 900-WRAP-UP THRU 900-EXIT.

 EXEC CICS
 RETURN

 END-EXEC.

 GOBACK.

 000-EXIT.
 EXIT.

 100-INITIALIZE.

 **
 * IF THIS IS A RPC CALL, CALL RPSETUP TO INITIALIZE SPAREA
 * AND OPEN SERVER (TRANSACTION ROUTER SERVICE)
 * IF THIS IS A RSP CALL, SPAREA IS PASSED IN THE COMMAREA.
 * (DIRECTCONNECT).
 * FOR TRACING, MOVE 'Y' TO SPTRCOPT
 **

 MOVE EIBCALEN TO RSPRPC-SWITCH.

 IF RPC-CALL
 EXEC CICS GETMAIN
 SET (COMMAREA-POINTER)
 FLENGTH (LENGTH OF LWKCOMMAREA)
 END-EXEC
 SET ADDRESS OF LWKCOMMAREA TO COMMAREA-POINTER
 MOVE 'Y' TO SPTRCOPT
 CALL 'RPSETUP' USING SPAREA

APPENDIX E RSP8C Variable Text Sample RSP

Programmer’s Reference for Remote Stored Procedures 133

 ELSE
 SET ADDRESS OF LWKCOMMAREA TO ADDRESS OF DFHCOMMAREA
 MOVE 'Y' TO SPTRCOPT.

 MOVE 'OK' TO SPSTATUS.

 PERFORM 110-ESTABLISH-INPUT THRU 110-EXIT.

 **
 * ALLOCATE A BLOCK OF STORAGE TO BE USED FOR THE DATA
 * SET POINTER VARIABLE TO ADDRESS OF ALLOCATED STORAGE
**

 EXEC CICS
 GETMAIN SET(WS-OUTPUT-POINTER)
 LENGTH(60)
 END-EXEC.

 SET ADDRESS OF WS-OUTPUT-RECORD TO WS-OUTPUT-POINTER.

 IF NO-ERROR-YET
 PERFORM 120-OPEN-OUTPUT-PIPE THRU 120-EXIT.

 100-EXIT.
 EXIT.

 110-ESTABLISH-INPUT.
 IF SPVARLEN < 1
 SET ERROR-HAPPENED TO TRUE
 MOVE 'NO PARMS' TO ERROR1-CALL
 PERFORM 800-ERROR-MESSAGE THRU 800-EXIT
 GO TO 110-EXIT
 ELSE
 MOVE SPVARLEN TO WS-LEN-HOLD
 MOVE WS-LEN-HOLD TO WS-VTABLE-NUM
 MOVE WS-VTABLE-REC TO SPMSG
 MOVE 'OK' TO SPSTATUS

 * MESSAGE WILL WRITE THE 100 BYTE SPMSG TO A MSG BUFFER,*
 * WHICH WILL EVENTUALLY BE WRITTEN TO THE CLIENT *
 * APPLICATION *

 CALL 'MESSAGE' USING SPAREA.

 SET ADDRESS OF INPUT-VALUE TO SPVARTXT.

RSP8C variable text sample code

134 Mainframe Connect Server Option

 MOVE INPUT-VALUE (1:SPVARLEN) TO V-TABLE-BLOCKS.

 IF V-ROW (1) = SPACES
 SET ERROR-HAPPENED TO TRUE
 MOVE 'SPACES ' TO ERROR1-CALL
 PERFORM 800-ERROR-MESSAGE THRU 800-EXIT.

 IF V-ROW (1) = LOW-VALUES
 SET ERROR-HAPPENED TO TRUE
 MOVE 'LOWVALUE' TO ERROR1-CALL
 PERFORM 800-ERROR-MESSAGE THRU 800-EXIT.

 110-EXIT.
 EXIT.

 120-OPEN-OUTPUT-PIPE.
 MOVE 'STD' TO SPFORMAT.
 MOVE 60 TO SPMAXLEN.
 MOVE 'OUTPUT' TO SPMODE.

 * AN OPEN PIPE WILL SET UP THE COLUMN INFORMATION, WHICH*
 * WILL EVENTUALLY BE SENT TO THE CLIENT APPLICATION *

 CALL 'OPENPIPE' USING SPAREA.

 IF SPRC NOT = '000'
 SET ERROR-HAPPENED TO TRUE
 MOVE 'OPENPIPE' TO ERROR1-CALL
 PERFORM 800-ERROR-MESSAGE THRU 800-EXIT.

 120-EXIT.
 EXIT.

500-PROCESS-I-O.

 IF NO-ERROR-YET
 PERFORM 540-PROCESS-DATA-RECS THRU 540-EXIT.

 500-EXIT.
 EXIT.

 540-PROCESS-DATA-RECS.
 **
 * OBTAIN VARIABLE TEXT SENT WITH PROGRAM. *
 **

APPENDIX E RSP8C Variable Text Sample RSP

Programmer’s Reference for Remote Stored Procedures 135

 MOVE 0 TO WS-INCRINUM.

 PERFORM 542-SEND-RECORDS-HEADING THRU 542-EXIT.

 IF NO-ERROR-YET
 PERFORM 544-READ-WRITE-RECORDS THRU 544-EXIT
 UNTIL OUTPUT-DONE OR ERROR-HAPPENED.

 540-EXIT.
 EXIT.

 542-SEND-RECORDS-HEADING.

 IF SPSTATUS = 'OK'
 MOVE WS-OUT-DATA-MSG TO WS-OUTPUT-RECORD
 MOVE 60 TO SPRECLEN
 SET SPFROM TO ADDRESS OF WS-OUTPUT-RECORD

 * PUTPIPE SENDS A RESULT ROW TO THE OUTPUT BUFFER, WHICH*
 * WHICH WILL EVENTUALLY BE WRITTEN TO THE CLIENT *
 * APPLICATION *

 CALL 'PUTPIPE' USING SPAREA
 IF SPRC NOT = '000'
 SET ERROR-HAPPENED TO TRUE
 MOVE 'PUTPIPE ' TO ERROR1-CALL
 PERFORM 800-ERROR-MESSAGE THRU 800-EXIT
 END-IF
 END-IF.

 542-EXIT.
 EXIT.

 544-READ-WRITE-RECORDS.
 **
 * LOOP THROUGH VARIABLE TEXT TABLE AND SEND BACK TO CLIENT IN *
 * 50-BYTE CHUNKS UNTIL ALL ARE RETURNED. *
 **

 ADD 1 TO WS-INCRINUM,
 VTABLE-CTR.

 IF V-ROW (VTABLE-CTR) IS = SPACES
 OR V-ROW (VTABLE-CTR) IS = LOW-VALUES
 OR VTABLE-CTR > 200

RSP8C variable text sample code

136 Mainframe Connect Server Option

 IF VTABLE-CTR = 1
 MOVE WS-INCRINUM TO WS-OUT-MSG-NUM
 MOVE V-ROW (VTABLE-CTR) TO WS-OUT-SOME-DATA
 MOVE WS-OUTPUT-REC TO WS-OUTPUT-RECORD
 SET SPFROM TO ADDRESS OF WS-OUTPUT-RECORD

 * PUTPIPE SENDS A RESULT ROW TO THE OUTPUT BUFFER, *
 * WHICH WILL EVENTUALLY BE WRITTEN TO THE CLIENT *
 * APPLICATION *

 CALL 'PUTPIPE' USING SPAREA
 IF SPRC NOT = '000'
 SET ERROR-HAPPENED TO TRUE
 MOVE 'PUTPIPE ' TO ERROR1-CALL
 PERFORM 800-ERROR-MESSAGE THRU 800-EXIT
 END-IF
 END-IF
 SET OUTPUT-DONE TO TRUE
 ELSE
 MOVE WS-INCRINUM TO WS-OUT-MSG-NUM
 MOVE V-ROW (VTABLE-CTR) TO WS-OUT-SOME-DATA
 MOVE WS-OUTPUT-REC TO WS-OUTPUT-RECORD
 SET SPFROM TO ADDRESS OF WS-OUTPUT-RECORD

 * PUTPIPE SENDS A RESULT ROW TO THE OUTPUT BUFFER, WHICH*
 * WILL EVENTUALLY BE SENT DOWN TO THE CLIENT APPLICATION*

 CALL 'PUTPIPE' USING SPAREA
 IF SPRC NOT = '000'
 SET ERROR-HAPPENED TO TRUE
 SET OUTPUT-DONE TO TRUE
 MOVE 'PUTPIPE ' TO ERROR1-CALL
 PERFORM 800-ERROR-MESSAGE THRU 800-EXIT
 END-IF
 END-IF.

 544-EXIT.
 EXIT.

 800-ERROR-MESSAGE.
 **
 * SOMETHING FAILED, SO ISSUE AN ERROR MESSAGE AND GET OUT. *
 **
 MOVE SPRC TO ERROR1-SPRC.
 MOVE ERROR1-MSG TO SPMSG.
 MOVE 'E' TO SPSTATUS.

APPENDIX E RSP8C Variable Text Sample RSP

Programmer’s Reference for Remote Stored Procedures 137

 * MESSAGE WILL WRITE THE 100 BYTE SPMSG TO A MSG BUFFER,*
 * WHICH WILL EVENTUALLY BE WRITTEN TO THE CLIENT *
 * APPLICATION *

 CALL 'MESSAGE' USING SPAREA.

 IF SPRC NOT = '000'
 SET ERROR-HAPPENED TO TRUE.

 800-EXIT.
 EXIT.

 900-WRAP-UP.
 **
 * CLOSE PIPES - ISSUE STATUS. *
 **

 IF NO-ERROR-YET
 MOVE 'OUTPUT' TO SPMODE

 CLOSEPIPE IS LIKE CLOSING A FILE, PLACES AN EOF MARKER

 CALL 'CLOSPIPE' USING SPAREA
 IF SPRC NOT = '000'
 SET ERROR-HAPPENED TO TRUE
 MOVE 'CLOSPIPE' TO ERROR1-CALL
 PERFORM 800-ERROR-MESSAGE THRU 800-EXIT.

 IF NO-ERROR-YET
 MOVE 'OK' TO SPSTATUS
 ELSE
 MOVE 'E' TO SPSTATUS
 MOVE 'MYERCODE' TO SPCODE
 END-IF.

 * CALLING STATUS WILL FLUSH ANY RESULTS AND/OR *
 * MESSAGES FROM THE BUFFERS, TO THE CLIENT APPLICATION *

 CALL 'STATUS' USING SPAREA.
 IF SPRC NOT = '000'
 SET ERROR-HAPPENED TO TRUE
 MOVE 'STATUS ' TO ERROR1-CALL
 PERFORM 800-ERROR-MESSAGE THRU 800-EXIT

RSP8C variable text sample code

138 Mainframe Connect Server Option

 END-IF.

 **
 * CLOSE OPEN SERVER
 * IF THIS IS AN RPC CALL, PERFORM OPEN SERVER CLOSE
 **
 IF RPC-CALL
 CALL 'RPDONE' USING SPAREA.

 900-EXIT.
 EXIT.

Programmer’s Reference for Remote Stored Procedures 139

A P P E N D I X F The SPAREA

The SPAREA contains all of the pointers, codes, and command details that
the RSP needs to exchange with the RSP API. Every RSP receives or
sends information using the SPAREA.

This appendix discusses the following topics:

• SPAREA field descriptions

• Copying SPAREA definitions to the RSP

• SPAREA definitions

SPAREA field descriptions
The RSP, Open ServerConnect, and MainframeConnect use the SPAREA
by accessing the values from the SPAREA fields. The word Reserved in the
descriptions indicates that the RSP cannot write to the field.

SPHEADER SPHEADER contains the character string *SPAREA*. The character
string serves as an eye catcher for locating the SPAREA in a dump.
 Reserved.

SPRESRVED SPRESRVD contains values used by MainframeConnect to process
commands. Reserved.

SPTRCOPT SPTRCOPT controls the trace option. If the field contains 'Y' when an
Open ServerConnect command is issued, trace records are written to the
TSQ, CExxxxxx, where xxxxxx is the first six characters of the user ID.

SPSTATUS SPSTATUS is used by an RSP or by Open ServerConnect to indicate the
success or failure of processing.

When used by an RSP, it refers to RSP processing. When used by Open
ServerConnect, it refers to processing on the remote database.

Valid values are:

• 'OK' indicates success.

SPAREA field descriptions

140 Mainframe Connect Server Option

• 'E' indicates an error.

• 'W' indicates a warning.

• 'R' indicates results.

SPCODE The RSP uses SPCODE to supply user-defined error codes.

SPFORMAT The RSP uses SPFORMAT to specify the data format when opening a data pipe.
Valid values are: DB2, STD, and BIN.

SPMODE The RSP uses SPMODE to specify the mode of the data pipe. Valid values are
INPUT or OUTPUT.

SPRC MainframeConnect uses SPRC to indicate the success or failure of an RSP
command. Valid return codes are:

• '000' indicates successful completion.

• 'xxx' indicates a MainframeConnect error number.

• 'EOF' indicates an End of File on input data.

• 'ACE' indicates an APPC communication error (when the
MainframeConnect Temporary Storage Type configuration property is set
to None).

• 'CAN' indicates that the client application issued a DBCANCEL command.

SPFROM The RSP uses SPFROM to specify the address of the STD or BIN format data
record that it writes to the output pipe. See PUTPIPE on page 68 for an
example of using SPFROM.

SPINTO The RSP uses SPINTO to specify the address of a storage area where the STD
or BIN format data record read from the input pipe can be placed. See
GETPIPE on page 65 for an example of using SPINTO.

SPSQLDA The RSP and MainframeConnect uses SPSQLDA to specify the address of an
SQLDA that describes the data records. This field is only used for DB2 format
output data pipes. The RSP must build the SQLDA and supply this pointer
when it opens the pipe.

For information on SQLDA structure, see the IBM SQL reference guide for
DB2. A sample SQLDA definition is provided in Appendix B, “MODELRSP
DB2 Output Pipe Sample RSP.”

SPVARTXT SPVARTXT contains the pointer of the variable text that the client application
may optionally send to the RSP. This field contains null.

APPENDIX F The SPAREA

Programmer’s Reference for Remote Stored Procedures 141

SPVARTAB SPVARTAB contains the pointer of the variable substitution table, which is
created if the client sends keyword variables (that is, &KEYWORD=value
format). If keyword variables are not sent, this field contains null.

SPMAXLEN The RSP uses SPMAXLEN to specify the maximum record length for records
read from or written to a STD or BIN format pipe. See “Using data pipes” on
page 19 for more information.

SPRECLEN The RSP and MainframeConnect uses SPRECLEN to specify the length of
records read from or written to a STD or BIN format data pipe.

For output pipes, the RSP must set this field to the length of the record it writes
(unless it is writing fixed-length records of the same size as SPMAXLEN). For
input pipes, Open ServerConnect sets this field to the length of the record it is
sending to the RSP.

For more information, see “SPMAXLEN and SPRECLEN” on page 95. Also
see “Using data pipes” on page 19 for more information.

SPVARLEN SPVARLEN contains the length of the variable text that the client may
optionally send to the RSP. This field contains zeros.

SPPREFIX Not used.

SPMSG The RSP uses SPMSG to place message text it sends the client application with
a MESSAGE command.

Copying SPAREA definitions to the RSP
SPAREA definitions in assembler, COBOL II, PL/I, and C are distributed with
Open ServerConnect and are reproduced in this appendix. You can copy the
appropriate definition into your RSP and provide the necessary information for
the relevant fields. The SPAREA definitions are in the
SYBASE.ORSP310B.CICS.SOURCE library, and their definitions are
reproduced on the indicated page:

• SPAREAA—Assembler on “SPAREAA assembler definition” on page
143

• SPAREAC—COBOL II on “SPAREAC COBOL II definition” on page
143

• SPAREAP—PL/1 on “SPAREAP PL/1 definition” on page 144

• SPAREAX—C on “SPAREAX C definition” on page 145

SPAREA definitions

142 Mainframe Connect Server Option

Within your RSP, copy the SPAREA definition as shown in the following table.
For an example of copying the SPAREA in the context of an RSP written in
COBOL II, see the samples in Chapter 3, “Writing an RSP.”

Table F-1: SPAREA copy statements

When you compile the RSP, the concatenation sequence for SYSLIB must
include a DD statement for the MainframeConnect sample program library.
See Chapter 4, “Compiling an RSP” and Chapter 5, “Testing and invoking an
RSP” for details.

The SPAREA definitions are reproduced on the following pages.

Note There are several fields in the SPAREA definitions in the following
section that are used only for Client Services Applications (CSAs). Those
fields are described in the Mainframe Connect Client Option Programmer’s
Reference for Client Services Applications.

SPAREA definitions
This section contains the following SPAREA definitions:

• SPAREAA assembler definition

• SPAREAC COBOL definition

• SPAREAP PL/1 definition

• SPAREAX C definition

These examples show how each programming language opens an input pipe for
a STD format data pipe with a maximum record length of 400 bytes.

Language Copy syntax

Assembler COPY SPAREAA

COBOL II COPY SPAREAC.

PL/I EXEC SQL INCLUDE SPAREAP;

C #include “SPAREAX.H”

APPENDIX F The SPAREA

Programmer’s Reference for Remote Stored Procedures 143

SPAREAA assembler definition
–––––––––––––––––––––––––––––––––––––––
 * STORED PROCEDURE COMMUNICATION AREA *
 –––––––––––––––––––––––––––––––––––––––
 SPAREA DSECT
 SPHEADER DS CL8 EYE CATCHER
 SPRESRVD DS CL33 SERVER INFORMATION
 SPTRCOPT DS CL1 TRACE OPT
 SPSTATUS DS CL2 STATUS INDICATOR
 SPCODE DS CL8 ERROR CODE
 SPFORMAT DS CL3 PIPE FORMAT
 SPMODE DS CL6 PIPE MODE
 SPRC DS CL3 RETURN CODE
 SPFROM DS 0F FROM ADDRESS
 SPINTO DS 0F INTO ADDRESS
 SPSQLDA DS F SQLDA ADDRESS
 SPVARTXT DS F VARIABLE TEXT
 SPVARTAB DS F VARIABLE TABLE
 SPROWS DS F ROWS AFFECTED
 SPMAXLEN DS 0H MAXIMUM LENGTH OF STD RECORD
 SPRECLEN DS H RECORD LENGTH
 SPVARLEN DS H VARIABLE TEXT LENGTH
 SPPREFIX DS CL1 MESSAGE FILE PREFIX
 SPMSG DS CL100 MESSAGE AREA
 SPFILL2 DS CL3 NOT USED
 SPSQL DS F SQL BUFFER ADDRESS
 SPATTACH DS CL8 ATTACHMENT NAME
 SPUSERID DS CL8 USERID
 SPPWD DS CL8 PASSWORD
 SPCMPOPT DS CL1 COMPRESSION OPTION
 SPIND DS CL1 MESSAGE INDICATOR
 SPDATE DS CL8 DATE
 SPTIME DS CL8 TIME
 SPCONFIG DS CL4 CONFIGURATION ID
 SPSERVER DS CL30 SERVER NAME
 DS CL32 FILLER
 SPEND EQU *

SPAREAC COBOL II definition
–––––––––––––––––––––––––––––––––––––––
 * STORED PROCEDURE COMMUNICATION AREA *

SPAREAP PL/1 definition

144 Mainframe Connect Server Option

 –––––––––––––––––––––––––––––––––––––––
 03 SPAREA.
 05 SPHEADER PIC X(8).
 05 SPRESRVD PIC X(33).
 05 SPTRCOPT PIC X.
 05 SPSTATUS PIC X(2).
 05 SPCODE PIC X(8).
 05 SPFORMAT PIC X(3).
 05 SPMODE PIC X(6).
 05 SPRC PIC X(3).
 05 SPFROM USAGE IS POINTER.
 05 SPINTO REDEFINES SPFROM USAGE IS POINTER.
 05 SPSQLDA REDEFINES SPINTO USAGE IS POINTER.
 05 SPVARTXT USAGE IS POINTER.
 05 SPVARTAB USAGE IS POINTER.
 05 SPROWS PIC S9(8) COMP.
 05 SPMAXLEN PIC S9(4) COMP.
 05 SPRECLEN REDEFINES SPMAXLEN PIC S9(4) COMP.
 05 SPVARLEN PIC S9(4) COMP.
 05 SPPREFIX PIC X.
 05 SPMSG PIC X(100).
 05 FILLER PIC X(3).
 05 SPSQL USAGE IS POINTER.
 05 SPATTACH PIC X(8).
 05 SPUSERID PIC X(8).
 05 SPPWD PIC X(8).
 05 SPCMPOPT PIC X(1).
 05 SPIND PIC X(1).
 05 SPDATE PIC X(8).
 05 SPTIME PIC X(8).
 05 SPCONFIG PIC(4).
 05 SPSERVER PIC(30).
 05 FILLER PIC X(32).

SPAREAP PL/1 definition
/**/
 /* STORED PROCEDURE COMMUNICATION AREA */
 /**/
DCL 1 COMMPTR POINTER;
 DCL 1 SPAREA BASED(COMMPTR),
 3 SPHEADER CHAR(8),
 3 SPRESRVD CHAR(33),

APPENDIX F The SPAREA

Programmer’s Reference for Remote Stored Procedures 145

 3 SPTRCOPT CHAR(1),
 3 SPSTATUS CHAR(2),
 3 SPCODE CHAR(8),
 3 SPFORMAT CHAR(3),
 3 SPMODE CHAR(6),
 3 SPRC CHAR(3),
 3 SPFROM POINTER ALIGNED,
 3 SPVARTXT POINTER,
 3 SPVARTAB POINTER,
 3 SPROWS FIXED BIN(31) ALIGNED,
 3 SPMAXLEN FIXED BIN(15) ALIGNED,
 3 SPVARLEN FIXED BIN(15) ALIGNED,
 3 SPPREFIX CHAR,
 3 SPMSG CHAR(100),
 3 SPFILL2 CHAR(3),
 3 SPSQL POINTER ALIGNED,
 3 SPATTACH CHAR(8),
 3 SPUSERID CHAR(8),
 3 SPPWD CHAR(8),
 3 SPCMPOPT CHAR(1),
 3 SPIND CHAR(1),
 3 SPDATE CHAR(8),
 3 SPTIME CHAR(8);
 3 SPCONFIG CHAR(4),
 3 SPSERVER CHAR(30),
 3 SPFILL3 CHAR(32);
 DCL SPINTO POINTER BASED(AD_SPFROM);
 DCL SPSQLDA POINTER BASED(AD_SPFROM);
 DCL SPRECLEN POINTER BASED(AD_SPMAXLEN);
 DCL SPSQL POINTER BASED(AD_SPSQL);
 DCL (AD_SPFROM, AD_SPMAXLEN, AD_SPSQL) POINTER;
 AD_SPFROM=ADDR(SPFROM);
 AD_SPMAXLEN=ADDR(SPMAXLEN);
 AD_SPSQL=ADDR(SPSQL);

SPAREAX C definition
#ifndef SP_DEFS
 #define SP_DEFS
 /*
 Various declarations and definitions for Stored Procedures for C.
 Should be usable with the SAS/C compiler, and with slight
 modification, the IBM C/370 compiler. Uses the SAS/C digraphs for

SPAREAX C definition

146 Mainframe Connect Server Option

 square brackets - "(]" for the left square bracket, and "])" for the
 right square bracket.
 SAS/C and C/370 are trademarks of the SAS Institute, Inc. and IBM
 Corporation respectively.
*/
 #include "sqlda.h"
/*
 Keyword variable table declaration.
 */
struct VARTAB {
 unsigned long varTabL; /* Number of entries in table (<<= 50) */
 struct VARENT {
 char *varName; /* Variable name */
 char *varValue; /* Variable value */
 short varNameL; /* Variable name length */
 short varValL; /* Variable value length */
 } varent(]50]);
 };
/*
 Stored Procedure Communication Area declaration.
 */
 struct SPAREA {
 char spheader(]8]); /* DS CL8 Eye catcher */
 char spresrvd(]33]) /* DS CL33 Server information */
 char sptrcopt; /* DS CL1 Trace options */
 char spstatus(]2]); /* DS CL2 Status indicator */
 char spcode(]8]); /* DS CL8 Error code */
 char spformat(]3]); /* DS CL3 Pipe format */
 char spmode(]6]); /* DS CL6 Pipe mode */
 char sprc(]3]); /* DS CL3 Return code */
 union {
 char *spfrom; /* DS 0A From address */
 char *spinto; /* DS 0A Into address */
 struct SQLDA *spsqlda; /* DS A SQLDA address */
 };
 char *spvartxt; /* DS A Variable text */
 struct VARTAB *spvartab; /* DS A Variable table */
 int sprows; /* DS F Rows affected */
 union {
 short spmaxlen; /* DS 0H Max length of STD rec */
 short spreclen; /* DS H Record length */
 };
 short spvarlen; /* DS H Variable text length */
 char spprefix; /* DS CL1 Message file prefix */
 char spmsg(]100]); /* DS CL100 Message area */
 char _f0(]3]); /* Padding for alignment */

APPENDIX F The SPAREA

Programmer’s Reference for Remote Stored Procedures 147

 struct SQLBUF *spsql; /* DS A SQL buffer address */
 char spattach(]8]); /* DS CL8 Attachment name */
 char spuserid(]8]); /* DS CL8 Userid */
 char sppwd(]8]); /* DS CL8 Password */
 char spcmpopt; /* DS CL1 Compression option */
 char spind; /* DS CL1 Message indicator */
 char spdate(]8]); /* DS CL8 Request execution date */
 char sptime(]8]); /* DS CL8 Request execution time */
 char spconfig]4]); /* DS CL4 Configuration name */
 char spserver(]30]); /* DS CL30 Server name */
 char _f1(]32]); /* Padding to end of record */
 };
/*
 Stored procedure function declarations.
 */
 void attach(struct SPAREA *); /* Attach to remote server */
 void clospipe(struct SPAREA *); /* Close input/output pipe */
 void commit(struct SPAREA *); /* Issue SYNCPOINT w/COMMIT */
 void cssetup(struct SPAREA *); /* Initialize SPAREA */
 void detach(struct SPAREA *); /* Detach from remote server */
 void getmsg(struct SPAREA *); /* Get a message */
 void getpipe(struct SPAREA *); /* Get row from input pipe */
 void getpipe(struct SPAREA *); /* Put row to output pipe */
 void message(struct SPAREA *); /* Issue message */
 void openpipe(struct SPAREA *); /* Open input/output pipe */
 void reqexec(struct SPAREA *); /* Execute SQL request */
 void rescheck(struct SPAREA *); /* Check for results */
 void rollback(struct SPAREA *); /* Issue SYNCPOINT w/ROLLBACK */
 void status(struct SPAREA *); /* Issue status */
#endif

SPAREAX C definition

148 Mainframe Connect Server Option

Programmer’s Reference for Remote Stored Procedures 149

A P P E N D I X G The SQLDA

The SQLDA is a collection of variables and pointers that provide column
information about data being transmitted to the client application.

Note The SQLDA is an IBM standard. See the IBM DB2 SQL Reference
for more information.

This appendix discusses the following topics:

• SQLDA variables and fields

• SQLDA datatypes

• Writing a SQLDA

• Sample COBOL II SQLDA

• Sample C SQLDA

SQLDA variables and fields
A SQLDA consists of four variables (SQLDAID, SQLDABC, SQLN, and
SQLD), followed by an arbitrary number of SQLVARs. A SQLVAR is a
structure containing five fields.

The following table describes the SQLDA variables.

SQLDA datatypes

150 Mainframe Connect Server Option

Table G-1: SQLDA variables

Each occurrence of SQLVAR describes one column of the result row you are
sending to the client application. The following table describes the five fields
that each occurrence of SQLVAR contains.

Table G-2: SQLDA fields

SQLDA datatypes
The following table contains the SQLDA datatypes and their 3-digit values.
Each datatype has two available values to indicate whether an occurrence of
the datatype allows nulls. (For up-to-date information, see the current SQL
manual.

This SQLDA
variable: Performs this function:

SQLDAID Contains an eye catcher of “SQLDA” for use in storage
dumps

SQLDABC Contains the length of the SQLDA, equal to
SQLN*44+16

SQLN Contains the total number of occurrences of SQLVAR

SQLD Indicates the number of columns described by
occurrences of SQLVAR

This SQLDA field: Performs this function:

SQLTYPE Contains a 3-digit value that represents the datatype of
the column and whether or not it allows null values.
Table G-3 on page 151 contains the valid datatype
values.

SQLLEN Contains the external length of a value from the
column.

SQLDATA Contains the address of the data being transmitted

SQLIND Contains the address of an indicator, which tells
whether the column is nullable. Use a value less than
zero if null.

SQLNAME Contains the name or label of the column, or a string of
length zero if the name or label does not exist.

SQLNAMEL Contains the length of the column.

APPENDIX G The SQLDA

Programmer’s Reference for Remote Stored Procedures 151

Table G-3: SQLDA datatypes

Writing a SQLDA
To write a model SQLDA definition, perform the following steps:

1 In the WORKING-STORAGE section of the RSP, include a SQLDA with
a SQLVAR definition for each column you send in your result.

Note Sybase APIs use pointers; COBOL can only handle setting pointers
in its linkage section.

2 Include a description of the SQLDA template.

The SQLDA template and the description go in the LINKAGE SECTION
so they can be accessed by programs outside the RSP, such as
MainframeConnect.

3 Optionally, re-calculate the size of your SQLDA definition or as an
alternative, you can have the compiler do this for you with (LENGTH OF).

For an example of the compiler alternative, see Appendix B,
“MODELRSP DB2 Output Pipe Sample RSP” in the 1100-TEST-
SQLDA paragraph.

4 Allocate storage for the model SQLDA definition and set a pointer to that
address.

For an example of this, see Appendix B, “MODELRSP DB2 Output Pipe
Sample RSP” in the 1200-GET-STORAGE paragraph.

Datatype Nulls not allowed Nulls allowed

DATE 384 385

TIME 388 389

TIMESTAMP 392 393

CHAR VARIABLE LENG 448 449

CHAR FIXED LENGTH 452 453

CHAR LONG VARIABLE 456 457

FLOATING-POINT 480 481

DECIMAL 484 485

LARGE INTEGER 496 497

SMALL INTEGER 500 501

Sample COBOL II SQLDA

152 Mainframe Connect Server Option

5 Move the model SQLDA definition residing in WORKING-STORAGE
into the template SQLDA (in the allocated storage in the linkage section).

 For an example of this, see Appendix B, “MODELRSP DB2 Output Pipe
Sample RSP” in the 1300-SET-ADDRESSES paragraph.

Sample COBOL II SQLDA

 * The following sample description of the SQLDA is for COBOL II.
 * A complete description of each field and its purpose may be
 * found in the “DB2 SQL Reference.” Note that SQLDABC (SQLDA
 * Byte Count) may be initialized with:
 *
 * MOVE LENGTH OF SQLDA TO SQLDABC.

 01 SQLDA.
 03 SQLDAID PIC X(8).
 03 SQLDABC PIC S9(8) COMP.
 03 SQLN PIC S9(4) COMP.
 03 SQLD PIC S9(4) COMP.
 03 SQLVAR OCCURS 0 TO 300 TIMES
 DEPENDING ON SQLN.
 05 SQLTYPE PIC S9(4) COMP.
 05 SQLLEN PIC S9(4) COMP.
 05 SQLDATA USAGE IS POINTER.
 05 SQLIND USAGE IS POINTER.
 05 SQLNAME.
 07 SQLNAMELENGTH PIC S9(4) COMP.
 07 SQLNAMEVALUE PIC X(30).

Sample C SQLDA
/*
 Sample SQLDA declaration and #defines for all DB2 datatypes.
 */
#ifndef SQLDA_DEF
 #define SQLDA_DEF
 struct SQLDA {
 unsigned char sqldaid[8];

APPENDIX G The SQLDA

Programmer’s Reference for Remote Stored Procedures 153

 long sqldabc;
 short sqln;
 short sqld;
 struct sqlvar {
 short sqltype;
 union {
 short sqllen;
 struct {
 unsigned char precision;
 unsigned char scale;
 } SQLDECIMAL;
 } SQLLEN;
 unsigned char *sqldata;
 short *sqlind;
 struct sqlname {
 short length;
 unsigned char data [30];
 } sqlname;
 } sqlvar[0];
 };
#define DATE 384 /* SQLTYPE for DATE */
 #define NDATE 385 /* SQLTYPE for DATE w/NULL */
 #define TIME 388 /* SQLTYPE for TIME */
 #define NTIME 389 /* SQLTYPE for TIME w/NULL */
 #define TIMESTAMP 392 /* SQLTYPE for TIMESTAMP */
 #define NTIMESTAMP 393 /* SQLTYPE for TIMESTAMP W/NULL */
 #define VARCHAR 448 /* SQLTYPE for VARCHAR */
 #define NVARCHAR 449 /* SQLTYPE for VARCHAR w/NULL */
 #define CHAR 452 /* SQLTYPE for CVARCHAR */
 #define NCHAR 453 /* SQLTYPE for VARCHAR w/NULL */
 #define LONGVARCHAR 456 /* SQLTYPE for LONG VARCHAR */
 #define NLONGVARCHAR 457 /* SQLTYPE for LVARCHAR w/ NULL */
 #define FLOAT 480 /* SQLTYPE for FLOAT */
 #define NFLOAT 481 /* SQLTYPE for FLOAT w/ NULL */
 #define DECIMAL 48 /* SQLTYPE for DECIMAL */
 #define NDECIMAL 485 /* SQLTYPE for DECIMAL w/ NULLS */
 #define INTEGER 496 /* SQLTYPE for INTEGER */
 #define NINTEGER 497 /* SQLTYPE for INTEGER w/ NULL */
 #define SMALLINT 500 /* SQLTYPE for SMALLINT Sa */
 #define NSMALLINT 501 /* SQLTYPE for SMALL w/ NULL Sa */
#endif

Sample C SQLDA

154 Mainframe Connect Server Option

Programmer’s Reference for Remote Stored Procedures 155

Glossary

access management A DirectConnect feature that provides connectivity to non-Sybase targets.

access service The named set of properties, used with a DirectConnect Access Service
Library, to which clients connect. Each DirectConnect Server can have
multiple services.

access service library A component of DirectConnect. A service library that provides access to
non-Sybase data contained in a database management system or other type
of repository. Each such repository is called a “target.” Each access
service library interacts with exactly one target and is named accordingly.
See also service library.

ACSLIB See access service library.

Adaptive Server
Enterprise

The server in the Sybase Client-Server architecture. It manages multiple
databases and multiple users, tracks the actual location of data on disks,
maintains mapping of logical data description to physical data storage,
and maintains data and procedure caches in memory.

administrative service
library

A service library that provides remote management capabilities and
server-side support. It supports a number of remote procedures (invoked
as RPC requests) that enable remote DirectConnect management. See also
remote procedure call and service library.

ADMLIB See administrative service library.

American Standard Code
for Information
Interchange

The standard code used for information interchange among data
processing systems, data communication systems, and associated
equipment. The code uses a coded character set consisting of seven-bit
coded characters (eight bits including a parity check).

API See application program interface.

application program
interface

A functional interface, supplied by an operating system or other licensed
program, that allows an application program written in a high-level
language to use specific data or functions of the operating system or the
licensed program.

ASCII See American Standard Code for Information Interchange.

 Glossary

156 Mainframe Connect Server Option

ASE/CIS Adaptive Server Enterprise/ Component Integration Services (formerly
OmniConnect). An add-on product for Adaptive Server that provides a
Transact-SQL interface to external data sources, including host data files and
tables in other database systems. OmniConnect replaces OmniSQL Gateway
and OmniSQL Server.

bulk copy transfer A transfer method in which multiple rows of data are inserted into a table in the
target database. See also transfer. Compare with destination-template
transfer.

call level interface A programming style that calls database functions directly from the top level
of the code. Usually it is contrasted with embedded SQL. See also dynamic
SQL and embedded SQL.

catalog A system table that contains information about objects in a database, such as
tables, views, columns, and authorizations.

catalog stored
procedure

A stored procedure that provides information about tables, columns, and
authorizations. It is used in SQL generation and application development. See
also stored procedures.

character set A set of specific (usually standardized) characters with an encoding scheme
that uniquely defines each character. ASCII is a common character set.

CLI See call level interface.

client In client/server systems, the part of the system that sends requests to servers
and processes the results of those requests. See also client/server. Compare
with server.

client application Software that is responsible for the user interface, including menus, data entry
screens, and report formats. See also client/server.

Client-Library A library of routines that is part of Open ClientConnect™. See also Open
ClientConnect.

client-server An architecture in which the client is an application that handles the user
interface and local data manipulation functions, while the server provides data
processing access and management for multiple clients. See also client, client
application, and server.

clustered index An index in which the physical order and the logical (indexed) order is the
same. Compare with nonclustered index.

codeset See character set.

 Glossary

Programmer’s Reference for Remote Stored Procedures 157

commit An instruction to a database to make permanent all changes made to one or
more database files since the last commit or rollback operation and to make the
changed records available to other users. Compare with rollback.

commitment control A means of grouping file operations that allows a group of database changes to
be processed as a single unit, or the removal of a group of database changes as
a single unit. See also commit, rollback

configuration file A file that specifies the characteristics of a system or subsystem.

configuration set A section into which service library configuration files are divided.

connection
specification

Information required to make an Open ClientConnect or Open
ServerConnect™ connection. The connection specification consists of the
server name, platform, Net-Library™ driver name, and address information
required by the Net-Library driver being used.

conversion The transformation between values that represent the same data item but which
belong to different datatypes. Information can be lost due to conversion
because accuracy of data representation varies among different datatypes.

CSP See catalog stored procedure.

CT-Library See Client-Library.

data definition
language

A language for describing data and data relationships in a database.

database
management system

A computer-based system for defining, creating, manipulating, controlling,
managing, and using databases.

datatype A keyword that identifies the characteristics of stored information on a
computer.

DB-Library A Sybase and Microsoft API that allows client applications to interact with
ODS applications. See also application program interface.

DBMS See database management system.

DDL See data definition language.

destination-template
transfer

A transfer method in which source data is briefly put into a template where the
user can specify that some action be performed on it before execution against
a target database. See also transfer. Compare with bulk copy transfer.

direct resolution A type of service name resolution that relies upon a client application
specifying the exact name of the service to be used. See also service name
resolution. Compare with service name redirection.

 Glossary

158 Mainframe Connect Server Option

DirectConnect A Sybase Open Server application that provides access management for non-
Sybase databases, copy management, and remote systems management. Each
DirectConnect consists of a server and one or more service libraries to provide
access to a specific data source. DirectConnect replaces the MDI Database
Gateway™ and the OmniSQL Access Module™.

DirectConnect
Anywhere™

A Sybase solution that gives client applications ODBC data access. It
combines the functionality of the DirectConnect architecture with ODBC to
provide dynamic SQL access to target data, as well as the ability to support
stored procedures and text and image pointers.

DirectConnect
Manager

A Sybase application for Microsoft Windows that provides remote
management capabilities for DirectConnect products. These capabilities
include starting, stopping, creating, and copying services.

DirectConnect
Server

The component that provides general management and support functions (such
as log file management) to service libraries.

DirectConnect
Service

A named set of properties, used with a DirectConnect Service Library, to which
clients connect.

DirectConnect
Service Library

The component that provides a set of functions within the DirectConnect
Server environment.

dll See dynamic link library.

dynamic link library A file containing executable code and data bound to a program at load time or
run time, rather than during linking. The code and data in a dynamic link library
can be shared by several applications simultaneously.

dynamic SQL A term pertaining to the preparation and processing of SQL source statements
within a program while the program runs. The SQL source statements are
contained in host-language variables rather than coded directly into the
application program. Compare with static SQL.

embedded SQL A SQL statement embedded within a source program and prepared before the
program executes. After it is prepared, the statement itself does not change,
although values of host variables specified within the statement can change.

event handler A device that processes requests and manages client communication.

global variable System-defined variables that DirectConnect or the client application updates
on an ongoing basis.

globalization The combination of internationalization and localization. See also
internationalization, localization.

 Glossary

Programmer’s Reference for Remote Stored Procedures 159

interfaces file An operating system file that must be available on each machine from which
connections to DirectConnect Anywhere or other Sybase products are made.
Each entry in the file determines how the host client software connects to the
Sybase product.

internationalization The process of extracting locale-specific components from the source code and
moving them into one or more separate modules, making the code culturally
neutral so it can be localized for a specific culture. See also globalization.
Compare with localization.

keyword A word or phrase reserved for exclusive use by Transact-SQL.

localization The process of preparing an extracted module for a target environment, in
which messages are displayed and logged in the user’s language. Numbers,
money, dates, and time are represented using the user’s cultural convention,
and documents are displayed in the user’s language. See also globalization.
Compare with internationalization.

MDI Database
Gateway

An MDI legacy product that gives client applications access to supported data
sources, such as AS/400 and DB2.

Net-Library A Sybase product that lets PC applications become clients of Adaptive Server
or Open Server. See also client, Open Server.

nonclustered index An index that stores key values and pointers to data. Compare with clustered
index.

ODBC See Open Database Connectivity.

ODS See Open Data Services.

OmniConnect The CIS functionality of ASE has incorporated the functionality of
OmniConnect and is referred to as ASE/CIS. See ASE/CIS.

Open Client A Sybase product that provides customer applications, third-party products,
and other Sybase products with the interfaces required to communicate with
Open Server and Open Server applications.

Open ClientConnect A Sybase product that provides capability for the mainframe to act as a client
to LAN-based resources.

Open Data Services A product that provides a framework for creating server applications that
respond to DB-Library clients. See also DB-Library.

Open Database
Connectivity

A Microsoft API that allows access to both relational and nonrelational
databases.

 Glossary

160 Mainframe Connect Server Option

Open Server A Sybase product that provides the tools and interfaces required to create a
custom server.

Open ServerConnect A Sybase product that provides capability for programmatic access to
mainframe data.

parameter A variable with a constant value for a specified application that can denote the
application. Compare with property.

Partner Certification
Reports

Sybase publications that certify third-party or Sybase products to work with
other Sybase products.

precision The maximum number of digits that can be represented in a decimal, numeric,
or float column.

precision minus
scale

The number of digits to the left of the decimal point.

primary database In transfer processing, the database accessed by the access service in a transfer
statement. Compare with secondary database.

property A setting for a server or service that defines characteristics, such as how events
are logged or how datatypes are converted. Compare with parameter.

protocol A set of rules that governs the behavior of the computers communicating on a
network.

Registry The part of the Windows NT operating system that holds configuration
information for a particular machine.

relational operators Operators supported in search conditions.

relops See relational operators.

remote procedure
call

A stored procedure executed on a different server from the one onto which a
user is logged or on which the initiating application resides.

remote systems
management

A feature that allows a System Administrator to manage multiple
DirectConnect Servers and multiple services from a client.

request One or more database operations an application sends as a unit to the database.
During a request, the application gives up control to the DBMS and waits for a
response. See also commit, rollback, and unit of work.

rollback An instruction to a database not to implement the changes requested in a unit
of work and to return to the pretransaction state. See also transaction and
unit of work. Compare with commit.

 Glossary

Programmer’s Reference for Remote Stored Procedures 161

RPC See remote procedure call.

scale The maximum number of digits that can be stored to the right of the decimal
point by a numeric or decimal datatype.

secondary
connection

The connection specified in the transfer statement. It represents anything that
can be accessed using Open ClientConnect, such as Adaptive Server or another
access service.

secondary database In transfer processing, the supported database that is specified in the transfer
statement. Compare with primary database.

server A functional unit that provides shared services to clients over a network. See
also client/server. Compare with client.

server process ID A positive integer that uniquely identifies a client connection to the server.

service A functionality available to DirectConnect applications. It is the pairing of a
service library and a set of specific configuration properties.

service library A set of configuration properties that determines service functionality.
Examples of service libraries include access service libraries and
administrative service libraries. See also access service library and
administrative service library.

service name
redirection

A type of service name resolution that allows a System Administrator to map
alternative connections to services. See also service name resolution.
Compare with direct resolution.

service name
redirection file

The default name of the file used for the service name redirection feature. See
also service name redirection.

service name
resolution

The DirectConnect Server mapping of an incoming service name to an actual
service. See also direct resolution, service name redirection.

SNRF See service name redirection file.

SPID See server process ID.

SQL See structured query language.

SQL descriptor area A set of variables used in the processing of SQL statements.

SQL stored
procedure

A single SQL statement that is statically bound to the database. See also
stored procedures.

SQLDA See SQL descriptor area.

 Glossary

162 Mainframe Connect Server Option

sqledit A utility for creating and editing sql.ini files and file entries.

sql.ini The interfaces file containing definitions for each DirectConnect Server to
which a workstation can connect. See also interfaces file.

statement A single SQL operation, such as select, update, or delete.

static SQL SQL statements that are embedded within a program and prepared before the
program runs. The statement itself does not change, although values of host
variables specified by the statement can change. Compare with dynamic
SQL.

stored procedures A collection of SQL statements and optional control-of-flow statements stored
under a particular name. See also Catalog Stored Procedure, SQL stored
procedure, and system stored procedure.

structured query
language

An IBM industry-standard language for processing data in a relational
database.

System
Administrator

The user in charge of server system administration. For DirectConnect, the user
responsible for installing and maintaining DirectConnect Servers and
DirectConnect Service Libraries.

system stored
procedure

A Sybase-supplied store procedure that returns information about the access
service and the target database. See also stored procedures.

table An array of data or a named data object that contains a specific number of
unordered rows. Each item in a row can be identified unambiguously by means
of one or more arguments.

Tabular Data Stream An application-level protocol that Sybase clients and servers use to
communicate.

target A system, program, or device that interprets and replies to requests received
from a source.

target database The database to which DirectConnect transfers data or performs operations on
specific data.

TDS See Tabular Data Stream.

transaction An exchange between a program on a local system and a program on a remote
system that accomplishes a particular action or result.

Transact-SQL A Sybase enhanced version of the SQL database language used to
communicate with Adaptive Server.

 Glossary

Programmer’s Reference for Remote Stored Procedures 163

transfer A DirectConnect feature that allows users to move data or copies of data from
one database to another. See also bulk copy transfer and destination-
template transfer.

trigger A form of stored procedure that automatically executes when a user issues a
change statement to a specified table.

T-SQL See Transact-SQL.

unit of work One or more database operations grouped under a commit or rollback. A unit of
work ends when an application commits or rolls back a series of requests, or
when the application terminates. See also commit, rollback, and
transaction.

view An alternative representation of data from one or more tables. A view can
include all or some of the columns contained in the table or tables on which it
is defined.

wildcard A special character that represents a range of characters in a search pattern.

 Glossary

164 Mainframe Connect Server Option

Programmer’s Reference for Remote Stored Procedures 165

Symbols
&KEY1 keyword variable 110
&KEY2 keyword variable 110, 111
&KEY3 keyword variable 110
&VARNAME keyword variable 52
&YESSTATUSMSG keyword variable 112

A
abends, ASRA 60, 62
Access Service Library, processing RSPs

detailed information 8
overview 7

Adaptive Server Enterprise, transferring data to 23
AMST command 49
application plan 18

accessing DB2 data 43
authorization to execute 18

ASCII-formatted data 56
ASRA abends

and OPENPIPE command 62
and PUTPIPE command 61

assembler
SPAREAA definition 143
supported programming language 1
using RSP commands 63

authority, EXECUTE 41

B
BIN format

binary data 57
overview 21
specifying 140

binary data
in BIN format 21, 57, 140
in MIX format 31

transferring data to Adaptive Server Enterprise 57
bind command 68
buffer, request size limit 57
building blocks for RSP/CSA 51

C
C

SPAREAX definition 145
SQLDA sample 152
supported programming language 2
using RSP commands 63

CALL command 22
carriage return 54
CECI command 48
changes, coding 13
CHAR FIXED LENGTH datatype 151
CHAR LONG VARIABLE datatype 151
CHAR VARIABLE LENG datatype 151
choosing a sample RSP 35
CICS

CALL command 22
CECI command 48
LINK command 9, 11, 22, 59
NEWCOPY command 44
RETURN command 7, 9, 11
SYNCPOINT command 65, 69
SYNCPOINT WITH ROLLBACK command 69
using COBOL II in 45
viewing storage queues 48

clause, WITH DATA 99
client applications

and COMMIT/ROLLBACK 25
design considerations 18

client information exchange 11
client processing

and keyword variables 109
and variable text 127
RSP3C sample RSP 98

Index

Index

166 Mainframe Connect Server Option

CLOSPIPE command 64
COBOL II

COPY definition 95
keyword variable sample code 113
SPAREAC definition 143
SQLDA sample 152
supported programming language 1
using in CICS 45
using RSP commands 63

coding changes 13
command 78
commands

EXECUTE 78
ISQL 110
see also MainframeConnect commands 64
see also RSP commands 63
USE PROCEDURE 78

COMMIT command 65
COMMIT statement 65
COMMIT/ROLLBACK management 25
compiling RSPs

with DB2 42
without DB2 39

configuration properties
settings 24
SQL 52

configuration, software options 5
COPY definition 95
copy statements, SPAREA 142
copying definitions 141
CR/LF (carriage return/line feed) 54
CREATE TABLE statement 37
CSA requirements 51

D
data

ASCII-formatted 56
sending to RSP 56

data format 13
data pipes

BIN format 140
concurrent input and

 output 30
DB2 format 140

design considerations 19
getting input from 65
information exchange 12
input 20
opening 67
output 21
sending output through 68
specifying format 67, 140
specifying input or output 67, 140
STD format 140

data transmission format 13
databases supported 18
datatype conversion 24
datatypes. see SQLDA datatypes 150
DATE datatype 151
DB2 access

dynamic SQL 18
static SQL 18

DB2 data
accessing 43
application plan 43
transferring to other databases 43

DB2 errors 60
DB2 format

MODELRSP sample RSP 73
overview 22
specifying 140

DB2 output pipe sample RSP 74
DB2 packages 43
DB2 plans 43
DB2 pooled threads 60
DB2-805 error 60
DECIMAL datatype 151
decimal error 61
definition errors 61
definitions

COPY 95
copying SPAREA to the RSP 141
SQLVAR 151

delimiters
handling in DirectConnect 54
in variables 54

describe command 68
design considerations 17
DFHECI stub routine 45
DG21002 error message 112

Index

Programmer’s Reference for Remote Stored Procedures 167

DirectConnect
datatype conversion 24
delimiter handling 54
invoking RSPs 52
SQL transformation 24
translating TDS records 19

DirectConnect for OS/390 12
dynamic SQL 18

E
EMPDATA test data file 36
EMPFILE VSAM definition 36
EMPREPRO JCL 36
EMPTAB create table 36
error 60
error handling

and STATUS command 71
RSP design considerations 23
RSP3C sample RSP 98
SPAREA fields 32
specifying 32
SPRC error messages 59

errors
DB2 60
DB2-805 60
definition 61
DG21002 112
packed decimal 61

EXEC statement 51
EXECUTE authority 41
EXECUTE command 78
EXECUTE statement 51
existing RSPs 13

F
field descriptions, SPAREA 139
FLOATING-POINT datatype 151
function keys for testing 48

G
GETPIPE command 65

I
IDMS 2, 18
IMS 2, 18
information exchange

datapipes 12
SPAREA 11

input data requirements 57
input pipes

considerations for using 29
overview 20

input, for RSP8C sample RSP 128
integrated exchange format 13
invoking from client, MODELRSP sample RSP 78
invoking RSPs

through DirectConnect 52
through TRS 55

ISQL command 110
ISQL.EXE file 110
IXF 13

J
JCL, EMPREPRO 36

K
keyword variables

&KEY1 110
&KEY2 110, 111
&KEY3 110
&STATUSMSG 112
&VARNAME 52
quotation marks in 54
RSP4C sample RSP 109
sample code fragment 113
sample program 113
using 26

Index

168 Mainframe Connect Server Option

L
LARGE INTEGER datatype 151
LF (line feed) 54
limits, request buffer size 57
line feed 54
LINK command

invoking RSPs 9, 11, 59
linking to other programs 22

linking to other programs 22
listing of program RSPs 36
LVARCHAR definition error 61

M
MainframeConnect commands

AMST 49
SPTEST 5, 48
STATUS 32

MainframeConnect for DB2 UDB
configuration property settings 24
errors related to RSPs 59
setup 45
system requirements 12

MESSAGE command
description 66
exchanging information 66
use in writing RSPs 38
with USING SPAREA command 75

migration considerations
coding changes 13
existing RSP 13
from TSQL modes 55
new data format 13

MIX format
binary data in 31

MODELRSP sample RSP 36
content 73
description 73
invoking from client 78
overview 16
sample code 78

modes
PASSTHROUGH 51, 57, 78
SYBASE 51, 78
TSQL 55

TSQL0 51
TSQL1 51
TSQL2 51

MVS, setup 44

N
NEWCOPY command 44

O
Open ServerConnect

bind command 68
describe command 68
system requirements 12

OPENPIPE command
and RSP return code 32
and RSP3C sample RSP 96, 97
ASRA abends 62
description 67

options
WITH BINARY DATA 57
WITH DATA 56

options, software configuration 5
output pipes

and STATUS command 71
considerations for using 29
overview 21

output, for RSP8C sample RSP 129

P
packages, DB2 43
packed decimal error 61
PARTNO variable 37
PARTSTAB create table 37
PARTSTAB member 37
PASSTHROUGH mode 78

input data requirements 57
invoking RSPs 51

PCSQL.SAMPLE_PARTS table 37
PL/I

SPAREAP definition 144

Index

Programmer’s Reference for Remote Stored Procedures 169

supported programming language 1
using RSP commands 63

plans
application 18, 43
DB2 43

pooled threads 60
precompiler program 41
programming languages

assembler 1, 63, 143
C 2, 63, 145, 152
COBOL II 1, 45, 63, 95, 113, 143, 152
PL/I 1, 63, 144
supported 1

programming tasks, summary of 14
programs

precompiler 41
PUTPIPE command

and RSP3C sample RSP 96, 98
ASRA abend 60, 61
description 68
in definition error 61

Q
quotation marks in keyword variables 54

R
remote procedure call 7
rename the sample RSP 37
request buffer size limits 57
requirements

CSA 51
input data 57
RSP 51
see also system requirements 54

RETURN command 7, 9, 11
returning results, RSP3C sample RSP 99
reviewing a sample RSP 16
ROLLBACK command 25
ROLLBACK statement 69
RPC 7
RPDONE command 70
RPSETUP command 70

RSP
commands 63
compiling 39, 41, 42
copying SPAREA definitions 141
data pipes 29
DB2 packages 43
DB2 plans 43
design considerations 17
error handling 23, 32
existing and migration considerations 13
information exchange 11
linking to other programs 22
MainframeConnect for DB2 UDB errors related to

59
messages 71
overview 1
processing through Access Service Library 7, 8
processing through TRS 5, 6
requirements 51
return code 140
sending a special error code 140
sending data to 56
sending variables 140
specifying data format 140
stub routines 44
summary of programming tasks 14
supported environments 12
system requirements 12
transferring data to Adaptive Server Enterprise 23
troubleshooting 59
uses 2
with keyword variables 26
writing. see writing RSPs 37

RSP commands
CLOSPIPE 64
COMMIT 65
description 63
GETPIPE 65
MESSAGE 38, 66, 75
OPENPIPE 32, 62, 67, 96, 97
PUTPIPE 60, 61, 68, 96, 98
RPDONE 70
RPSETUP 70
STATUS 38, 70
using in assembler 63
using in C 63

Index

170 Mainframe Connect Server Option

using in COBOL II 63
using in PL/I 63

RSP DB2 errors 60
RSP stub routines. see stub routines 13
RSP/CSA building blocks 51
RSP3C sample RSP 36

client processing 98
error handling 98
overview 16
returning results 99
sample code 100
using SPAREA 95

RSP4C sample RSP 36
client processing 109
overview 16
sample code 114

RSP4C.LOG output file 110
RSP4C.SQL input file 110
RSP8C sample RSP 36

client processing 127
overview 17
sample code 129

runtime overhead 18

S
SAMP01A sample RSP 36
SAMP01C sample RSP 36
SAMP02A sample RSP 36
SAMP02C sample RSP 36, 50
SAMP03A sample RSP 36
SAMP03C sample RSP 36
SAMP04A sample RSP 36
SAMP04C sample RSP 36
sample code

keyword variables in COBOL II 113
MODELRSP 78
RSP3C 100
RSP4C 114
RSP8C 129
with keyword variables 113

sample RSPs
listing 36
MODELRSP 16, 73, 78
RSP3C 16, 95, 98

RSP4C 16, 109
RSP8C 17, 127
SAMP02C 50

sending data to RSPs 56
setup

DB2 packages 43
MainframeConnect for DB2 UDB 45
MVS 44

SMALL INTEGER datatype 151
software

configuration options 5
SPAREA

copy statements 142
error handling fields 32
field description 139
information exchange 11
passing arguments to 7, 9, 11
SPAREAA assembler definition 143
SPAREAC COBOL II definition 143
SPAREAP PL/I definition 144
SPAREAX C definition 145
SPCODE field 140
SPFORMAT field 67, 96, 140
SPFROM field 69, 97, 98, 140
SPHEADER field 139
SPINTO field 65, 97, 140
SPMAXLEN field 68, 96, 141
SPMODE field 64, 67, 96, 140
SPMSG field 66, 74, 98, 141
SPPREFIX field 141
SPRC field 23, 74, 98, 112, 140
SPRECLEN field 65, 69, 96, 141
SPRESRVED field 139
SPSQLDA field 22, 69, 140
SPSTATUS field 66, 70, 74, 98, 139
SPTRCOPT field 139
SPVARLEN field 141
SPVARTAB field 27, 141
SPVARTXT field 28, 140
Sybase-provided definitions 141
using with RSP3C sample RSP 95

SPAREAP communication area 36
SPAREAX communication area 36
SPCODE field 140
special characters in variables 54
SPFORMAT field

Index

Programmer’s Reference for Remote Stored Procedures 171

and RSP3C sample RSP 96
description 140
with OPENPIPE command 67

SPFROM field
and RSP3C sample RSP 98
description 140
with PUTPIPE command 69

SPHEADER field 139
SPINTO field

and RSP3C sample RSP 97
description 140
with GETPIPE command 65

SPMAXLEN field
and RSP3C sample RSP 96
description 141
with OPENPIPE command 68

SPMODE field
and RSP3C sample RSP 96
description 140
with CLOSPIPE command 64
with OPENPIPE command 67

SPMSG field
and RSP3C sample RSP 98
description 141
using 74
with MESSAGE command 66

SPPREFIX field 141
SPRC field

and error handling 23
and RSP3C sample RSP 98
and RSP4C sample RSP 112
description 140
using 74

SPRECLEN field
and RSP3C sample RSP 96
description 141
with PUTPIPE command 65, 69

SPRESRVED field 139
SPSQLDA field

description 140
using with output pipes 22
with PUTPIPE command 69

SPSTATUS field
and RSP3C sample RSP 98
description 139
using 74

with MESSAGE command 66
with STATUS command 70

SPTEST command 48
software configuration option 5

SPTRCOPT field
description 139

SPVARLEN field 141
SPVARTAB field

description 141
using 27

SPVARTXT field
description 140
using 28

SQL
COMMIT statement 65
dynamic 18
ROLLBACK statement 69
SQLLEN field 61
static 18

SQL configuration property 52
SQL transformation 24
SQLD variable 150
SQLDA

and output pipes 22
C sample 152
COBOL II sample 152
content 150
sample definition 73
SQLD variable 150
SQLDABC variable 150
SQLDAID variable 150
SQLDATA field 150
SQLIND field 150
SQLLEN field 150
SQLN variable 150
SQLNAME field 150
SQLNAMEL field 150
SQLTYPE field 150
SQLVAR field 150
using 77, 149
variables 150
writing 151

SQLDA datatypes
CHAR FIXED LENGTH 151
CHAR VARIABLE LENG 151
DATE 151

Index

172 Mainframe Connect Server Option

DECIMAL 151
FLOATING-POINT 151
LARGE INTEGER 151
SMALL INTEGER 151
TIME 151
TIMESTAMP 151

SQLDA fields 150
SQLDABC variable 150
SQLDAID variable 150
SQLDATA field 150
SQLDAX sample SQLDA 36
SQLIND field 150
SQLLEN field

description 150
packed decimal error 61

SQLN variable 150
SQLNAME field 150
SQLNAMEL field 150
SQLTYPE field 150
SQLVAR definition 151
SQLVAR field 150
statements

CREATE TABLE 37
EXEC 51
EXECUTE 51
SPAREA copy 142
USE PROCEDURE 51, 99

static SQL 18
STATUS command

and open output pipes 71
description 70
for error occurrence 32
use in writing RSPs 38

STD format
overview 21
sample program 95
specifying 140

Stored Procedure Communication Area. See SPAREA 7,
9, 11

Stored Procedure Test window 49, 50
stub routines

DFHECI 45
link-editing 44
migration considerations 13

summary of programming tasks 14
SYBASE mode

and EXECUTE command 78
invoking RSPs 51

SYNCPOINT command 65, 69
SYNCPOINT WITH ROLLBACK command 69
system requirements

DirectConnect for OS/390 12
MainframeConnect for DB2 UDB 12
Open ServerConnect 12

T
tasks, programming 14
TDS

overview 13
records 19

test results for SAMP02C sample RSP 50
testing

sample RSP 37
using function keys 48

text variables 26
threads, pooled 60
TIME datatype 151
TIMESTAMP datatype 151
traces

and TSQ 139
troubleshooting 60
TRS

invoking RSPs 55
processing RSPs 5, 6

TSQ
and traces 139

TSQL modes
migrating from 55
SQL transformation 24

TSQL settings
and EXECUTE 78
and USE PROCEDURE command 78

TSQL0 mode 51
TSQL1 mode 51
TSQL2 mode 51

U
USE PROCEDURE command 78

Index

Programmer’s Reference for Remote Stored Procedures 173

USE PROCEDURE statement 51, 99

V
VARCHAR definition error 61
variable substitution table 27
variable text

and client processing 127
RSP8C sample RSP 127

VSAM 2, 18, 19

W
window, Stored Procedure Test 49, 50
WITH BINARY DATA option 57
WITH DATA clause 99
WITH DATA option 56
writing a SQLDA 151
writing RSPs

choosing a sample 35
renaming the sample 37
reviewing a sample 16
testing the sample 37

Index

174 Mainframe Connect Server Option

	Programmer’s Reference for Remote Stored Procedures
	About This Book
	CHAPTER 1 Overview of RSPs
	RSP overview
	What is an RSP?
	What does an RSP do?
	How does an RSP access and return DB2 data?

	How RSPs process
	How RSPs are processed through TRS
	How RSPs are processed through an Access Service Library

	Exchanging information between RSPs and the client
	System requirements
	Host platform
	DirectConnect platform (optional)

	Migration considerations
	Coding changes
	Recompiling and relinking existing RSPs
	New data format

	Summary of RSP programming tasks

	CHAPTER 2 Designing an RSP
	Using RSP commands
	Reviewing sample RSPs
	Making design decisions
	Choosing RSP functions
	Choosing client application functions
	Accessing databases
	Using temporary storage/transient data queues
	Understanding data transmission formats
	Using data pipes
	Input pipes
	Output pipes

	Linking to other programs
	Handling errors

	Considering environmental issues
	How data is transferred to Adaptive Server Enterprise
	How configuration property settings affect RSP processing
	Access service library
	MainframeConnect

	Understanding how to invoke an RSP
	Invoking with keyword variables and variable text
	Processing with keyword variables
	Processing with variable text

	Invoking with data pipes
	Transmitting fixed-length or variable-length records
	Transmitting binary data

	Specifying error handling

	CHAPTER 3 Writing an RSP
	Overview
	Choosing a sample RSP
	Renaming the sample
	Testing the sample

	Writing the RSP

	CHAPTER 4 Compiling an RSP
	Overview
	Compiling an RSP without DB2
	Compiling an RSP with DB2
	Using DB2 plans (TRS Only)
	Using DB2 packages (TRS or MainframeConnect) or gateway-less
	Creating a DB2 package

	Understanding the linkage
	Linking RSPs
	Linking load modules
	Linking object code

	CHAPTER 5 Testing and invoking an RSP
	Overview
	Before you test or invoke an RSP
	Testing an RSP using an ASPT transaction
	Creating a temporary storage queue
	Running the RSP test program

	Invoking an RSP
	Invoking RSPs through Access Service Library
	Using the PASSTHROUGH mode commands
	Using the SYBASE mode command
	Handling quotes in variables

	Invoking RSPs through TRS
	Passing keyword variables
	Passing variable text

	Migrating from TSQL0, TSQL1, and TSQL2 modes
	Sending data to the RSP
	Sending ASCII-formatted data
	Sending binary data
	Understanding input data requirements

	CHAPTER 6 Troubleshooting
	Overview
	MainframeConnect errors related to RSPs
	Troubleshooting errors
	DB2 errors
	CICS ASRA abend errors
	If a CICS ASRA abend (OC4) occurs at PUTPIPE
	If a CICS ASRA abend occurs at OPENPIPE

	APPENDIX A RSP Commands
	Command examples
	Commands
	CLOSPIPE
	COMMIT
	GETPIPE
	MESSAGE
	OPENPIPE
	PUTPIPE
	ROLLBACK
	RPDONE
	RPSETUP
	STATUS

	APPENDIX B MODELRSP DB2 Output Pipe Sample RSP
	Understanding MODELRSP
	The SPAREA in MODELRSP
	How MODELRSP uses SPAREA fields
	Using RSP commands with the SPAREA
	SPAREA example

	The SQLDA in MODELRSP
	Invoking MODELRSP from the client application
	PASSTHROUGH TSQL setting
	SYBASE TSQL setting

	MODELRSP DB2 output pipe sample code

	APPENDIX C RSP3C STD Input and Output Pipe Sample RSP
	Using the SPAREA with RSP3C
	SPMAXLEN and SPRECLEN
	SPINTO and SPFROM

	Specifying error handling
	Client application processing
	Invoking from the client application (ISQL)
	Returning results to the client application

	RSP3C STD input and output pipe sample code

	APPENDIX D RSP4C Keyword Variable Sample RSP
	Client application processing
	Sample input and results
	RSP4C.SQL sample input
	RSP4C.LOG sample results

	RSP4C error handling
	Keyword sample code fragment
	RSP4C keyword variable sample code

	APPENDIX E RSP8C Variable Text Sample RSP
	Client application processing
	RSP8C variable text sample code

	APPENDIX F The SPAREA
	SPAREA field descriptions
	Copying SPAREA definitions to the RSP
	SPAREA definitions
	SPAREAA assembler definition
	SPAREAC COBOL II definition
	SPAREAP PL/1 definition
	SPAREAX C definition

	APPENDIX G The SQLDA
	SQLDA variables and fields
	SQLDA datatypes
	Writing a SQLDA
	Sample COBOL II SQLDA
	Sample C SQLDA

	Glossary
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

