Programmer’s Reference

jConnect™ for JDBC™
9.5

DOCUMENT ID: DC39001-01-0550-04
LAST REVISED: September 2003

Copyright © 1989-2003 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein isfurnished under alicense agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with aU.S. license agreement may contact Customer Fulfillment viathe above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software rel ease dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture,
Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server
Enterprise Replication, Adaptive Server Everywhere, Adaptive Server 1Q, Adaptive Warehouse, Anywhere Studio, Application
Manager, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Trandlator, APT-Library, AvantGo,
AvantGo Application Alerts, AvantGo Mobile Delivery, AvantGo Mobile Document Viewer, AvantGo Mobile | nspection, AvantGo
Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon Application Server,
AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BizTracker, ClearConnect, Client-Library,
Client Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer,
DataWindow, DB-Library, dbQueue, Devel opers Workbench, Direct Connect Anywhere, DirectConnect, Distribution Director, e ADK,
E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway, ECMAP, ECRTP, eFulfillment Accel erator, Embedded SQL, EMS, Enterprise
Application Studio, Enterprise Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server
Manager, Enterprise Work Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA,
Financial Fusion, Financia Fusion Server, Gateway Manager, GlobalFIX, ImpactNow, |ndustry Warehouse Studio, InfoMaker,
Information Anywhere, Information Everywhere, | nformationConnect, InternetBuilder, i Script, Jaguar CTS, jConnect for JDBC, Mail
Anywhere Studio, MainframeConnect, Maintenance Express, Manage Anywhere Studio, M-Business Channel, M-Business Network,
M-Business Server, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, My AvantGo, My AvantGo Media Channel,
My AvantGo Mobile Marketing, MySupport, Net-Gateway, Net-Library, New Era of Networks, ObjectConnect, ObjectCycle,
OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open
Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC
Net Library, PocketBuilder, Pocket PowerBuilder, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class
Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft, PowerStage,
PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst,
Rapport, Report Workbench, Report-Execute, Replication Agent, Replication Driver, Replication Server, Replication Server Manager,
Replication Toolkit, Resource Manager, RW-DisplayLib, S-Designor, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian,
SKILS, smart.partners, smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL
Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART,
SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, SW.I.ET.
Message Format Libraries, Sybase Central, Sybase Client/Server Interfaces, Sybase Financial Server, Sybase Gateways, Sybase MPP,
Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financial,
SyberAssist, SyBooks, System 10, System 11, System X| (logo), SystemTools, Tabular Data Stream, TradeForce, Transact-SQL,
Trand ation Toolkit, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual
Components, Visual Speller, VisuaWriter, VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse
WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup
SQL Server, XA-Library, XA-Server and XP Server are trademarks of Sybase, Inc. 03/03

Unicode and the Unicode L ogo are registered trademarks of Unicode, Inc.
All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

About This Book..........

CHAPTER 1

CHAPTER 2

Programmer’s Reference

.. vii
INEFOAUCTION i 1
Y LR SN | B =T O PR 1
What iS JCONNECL?vviiiee ettt e e e e 2
Programming INfOrmationccccoooii i 5
Setting UP JCONNECT......ccuiiiiiiii ettt 5
Setting the JCONNECt VEISIONuveeiiiiiiiiiiieee e 6
Invoking the JConNect driver..........cccuvvvveeei i, 11
Establishing a connectioncccccceviiiiiiiiiiiee e 11
Setting coONNECLiON ProPertieS........cuueviiiiiiieiieeniiriiieieee e 11
Connecting to Adaptive SErVer........cccovuvvieeiieeniiiiiieee e 20
Connecting to Adaptive Server Anywhere...........cccccceeveeeiiinns 21
Connecting to a server using JNDI.........cccccevveeiiiiiiiiineeee e 22
Implementing custom socket plug-iNScccccceeviiiiiiieeeie e 28
SYBSOCKET_FACTORY connection property..............ccuvv... 29
Creating and configuring a custom socketcccccvveeeeinnns 29
Handling internationalization and localizationc...c..cocvvvee.. 32
Using jConnect to pass Unicode datacccvvveveeeeiiiiinnnen. 33
jConnect character-set CONVErersccccccveeviiniiieeeieee s 34
Working with databases ..., 39
Implementing high availability failover support.............ccuveeee.. 40
Performing server-to-server remote procedure calls............... 45
Wide table support for Adaptive Server version 12.5 and later 46
Accessing database metadatacc.cccoovviiieiiieiiiiiieeen 47
Using cursors with result SetS...........cccvvvvreeeeiiciieeiiee e, 48
Support for batch updatesccccoevviiiiiiiei e, 59
Updating a database from a result set of a stored procedure . 61
Working with datatypescccceeeeiiiiiiiee e 62
Implementing advanced featuresccccvvveveeeeiicciiieeeie e 68
Using event NOtIficationccvveeveeiiiiiiiiiec e 69
Handling error MESSAQESuvvveeieeiiiiiiiiiie e 71

iii

CHAPTER 3

CHAPTER 4

Storing Java objects as column data in a table 76

Dynamic class 10adingccooecvviieiieeiiiiciiieee e 80
JDBC 2.0 optional package extensions support.........cccccceees 84
Restrictions on and interpretations of JDBC standards.................. 95
Connection.isClosed() and the IS_CLOSED_TEST connection
PIOPEITY ..ttt 95
Statement.close() with unprocessed results..........ccccccveevinnins 96
Making adjustments for multithreading...........ccccccoviviiiiiennennn. 97
Using ResultSet.getCursorName()oovvvvveeeeieeeniiniiieeeeeennnn 98
Using setLong() with large parameter values..............cccee...... 98
Using COMPUTE statementS........cccevveeeeeiiiiiiiereeeeeesinneeeeenn 98
Executing stored proCedures..........cooueeeeiiieeeeiiieeeeiieee e 99
TroubleShOOtING . .uuiieiiiiiie e 101
Debugging with JCONNECL..........cccooiiiiiiiiiiiee e 101
Obtaining an instance of the Debug class.............cccccceeeins 101
Turning on debugging in your application..............cccccvvvee.... 102
Turning off debugging in your application...............ccccvveeeeenn. 102
Setting the CLASSPATH for debuggingccccvvveevieeniinnns 103
Using the Debug methods ... 103
Capturing TDS cOmMMUNICALION.........uvviieeeeiiiiiiiiiee e eeseiiiieeee e 104
PROTOCOL_CAPTURE connection property.........ccccceeeeennn. 105
pause() and resume() methods in the Capture class........... 105
Unsuccessful conNection errorscceeeviiieeeiiieee e 106
Gateway connection refusedcccccoevvvvvieeeeeeiiiiciiieee e 106
Unable to connect to a 4.9.2 SQL Server........ccccccveeeveevvvnnnn. 107
Memory usage in jConnect applications..........ccccccccveeviiiciiieeneeenn, 107
Stored ProCEAUIE EITOISceiiiiiieeeiieee it e et et 108
RPC returns fewer output parameters than registered.......... 108
Fetch/state errors when output params returned................... 108
Stored procedure executed in unchained transaction mode . 109
Custom socket implementation error...........cccoccvveeeriieeenneee e, 109
Performance and TUNINGoooiiiiiiiiiiie e 111
Improving jConnect performancecccccceeeeiiiiiiieeee e, 111
BigDecimal rescalingcovveiviiiiiiiiiiee i 112
REPEAT_READ connection Property........cccccceeeeviiivveeeeeeenns 112
Character-set CONVEISION..........veverrieeiriiiee e 113
Performance tuning for prepared statements in dynamic SQL..... 114
Choosing prepared statements and stored procedures......... 115
Prepared statements in portable applications........................ 115
Prepared statements with jConnect extensions.................... 116
Connection.prepareStatement()cccoccvvveeeeeeeeniiciiieeeeeeenn 117

jConnect for JDBC

Contents

DYNAMIC_PREPARE connection propertycccccoecvvveeen. 118
SybConnection.prepareStatement()cccccceeevvvcvveeeieeeniinnns 119
ESCAPE_PROCESSING_DEFAULT connection property... 120

CUrSOr PErfOrMAaNnCEueviieiiiiiiiiiiiiee e 120

LANGUAGE_CURSOR connection propertycoccvvveeee. 121

CHAPTER 5 Migrating jConnect Applications ..., 123
Migrating jConnect appliCationsocccuvvivieeeiiiiiiiiiiiee e 123

Migrating applications to jConnect 4.5 and 5.5c......... 123

Sybase EXtENSIONSuvviiiieiiiiiiiieee e 125

Change exampleccccviiiiiiiiiiie e 125

Method NAMES........ooiiiiiieie e 126

DEDUQ ClIasS.....ccuiiiiiee it 126

CHAPTER 6 WED Server GatEWaY'Sccceveeeeeeiiiiiiieieeireeieeee e s s sssninnneeeereeeeeeeen 127
About Web server gatewaysccccvvviiieee i 127

TDS tUNNEHING ..eviieieceee e 127

jConnect and gateway configurationccccveeveeeniiivvnnnnn. 128

USAQe reQUITEMENESuuvveeeeiieiiiieeeeeeesestiireeeeaeesssairaneeaaeesansneneees 132

Reading the index.html fileoooiiiiiiiiii 132

Running the sample Isgl applet........ccccooeiiiniiiiiiiiieniiie, 133

Using the TDS-tunnelling Serviet..........occvvvvieeeiiiiiiiiiiiee e, 134

TDS-tunnelling servlet system requirements............ccccceee.... 135

Installing the Serviet.........ccccviiiiii e 136

INVOKING the SErvIetueviiieiiiii e 137

Tracking active TDS SESSIONSuuuviieeeiiiiiiiiiirieeeesisiiinneeeaens 137

Resuming @ TDS SESSIONuuuviieeiiiiiiiiieeeeeesiirireeeeeeeesnens 138

TDS and Netscape Enterprise Server 3.5.1 on Solaris.......... 138

APPENDIX A SQL Exception and Warning MesSSagesooevevvvvvvvvennnennenn 141
APPENDIX B jConnect Sample Programscccccccvveeeeeiiissciiniieeneeeee e e e e 163
RUNNING ISOIAPD oottt e e 163

Running jConnect sample programs and code.................cccuvveee.. 165

Sample appliCationscccvviieiiee e 165

SAMPIE COUE ..ot 166

Programmer’s Reference %

Vi

jConnect for JDBC

About This Book

Audience

Related Documents

Other sources of
information

Programmer’s Reference

The Sybase jConnect for JDBC Programmer’s Reference describes the
jConnect™ for JIDBC™ product and explains how to useit to access data
stored in relational database management systems.

This manual is for database-application programmers who are familiar
with the Java programming language, JDBC, and Transact-SQL®, the
Sybase version of Structured Query Language.

You may find the following documents helpful:
* The Sybase jConnect for JDBC Installation Guide
e The Sybase jConnect for JDBC Release Bulletin

e Thejavadoc documentation of jConnect extensions to JDBC. The
Java Development Kit (JDK) from Java Software contains ajavadoc
script for extracting comments from source-codefiles. This script has
been used to extract documentation of jConnect packages, classes,
and methods from jConnect source files. When you install jConnect
using thefull installation or javadocs option, the javadoc information
is placed in the javadocs directory:

Installation_directory/docs/en/javadocs

Usethe Sybase Getting Started CD, the Sybase Technical Library CD and
the Technical Library Product Manuals Web siteto learn more about your
product:

e The Getting Started CD contains rel ease bulletins and installation
guidesin PDF format, and may also contain other documents or
updated information not included on the Technical Library CD. It is
included with your software. To read or print documents on the
Getting Started CD you need Adobe Acrobat Reader (downloadable
at no charge from the Adobe Web site, using alink provided on the
CD).

e TheTechnical Library CD contains product manuals and isincluded
with your software. The DynaText reader (included on the Technical
Library CD) allows you to access technical information about your
product in an easy-to-use format.

Vii

Sybase certifications
on the Web

Sybase EBFs and
software updates

Viii

Refer to the Technical Library Installation Guide in your documentation
package for instructions on installing and starting the Technical Library.

The Technical Library Product Manuals Web siteisan HTML version of
the Technical Library CD that you can access using a standard Web
browser. In addition to product manuals, you will find links to
EBFs/Updates, Technical Documents, Case Management, Solved Cases,
newsgroups, and the Sybase Developer Network.

To access the Technical Library Product Manuals Web site, go to Product
Manuals at http://www.sybase.com/support/manuals/.

Technical documentation at the Sybase Web site is updated frequently.

Finding the latest information on product certifications

1

2
3
4
5

Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

Select Products from the navigation bar on the | eft.

Select a product name from the product list and click Go.

Select the Certification Report filter, specify atime frame, and click Go.
Click a Certification Report title to display the report.

Creating a personalized view of the Sybase Web site (including support
pages)

Set up aMySybase profile. MySybase isafree service that allowsyou to create
apersonalized view of Sybase Web pages.

1

2

Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

Click MySybase and create a MySybase profile.

Finding the latest information on EBFs and software updates

1

Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

Select EBFs/Updates. Enter user name and password information, if
prompted (for existing Web accounts) or create a new account (afree
service).

Select a product.

jConnect for JDBC

About This Book

Conventions

If you need help

Programmer’s Reference

4 Specify atime frame and click Go.

5 Click thelInfoicon to display the EBF/Update report, or click the product
description to download the software.

This manual uses the following font and syntax conventions:

e Classes, interfaces, methods, and packages are shown in Helvetica within
paragraph text. For example:

SybConnection class

SybEventHandler interface
setBinaryStream() method
com.sybase.jdbcx package

e Objects, instances, and parameter names are shown in italics. For
example:

“In the following example, ctx is a DirContext object.”

“ eventHdler is an instance of the SybEventHandler class that you
implement.”

“The classes parameter is a string that lists specific classes you want to
debug.”

e Code fragments are shown in a monospaced font. Variablesin code
fragments (that is, wordsthat stand for valuesthat youfill in) areitalicized.
For example:

Connection con = DriverManager. get Connecti on("j dbc:
sybase: Tds: host: port", props);

Each Sybaseinstallation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve aproblem using the manuals or online help, please havethe
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

jConnect for JDBC

CHAPTER 1

What is JDBC?

Introduction

This chapter introduces you to jConnect for JDBC and describes its
concepts and components.
This chapter contains:

Topics
What is JIDBC?
What is jConnect?

JDBC (Java Database Connectivity) from the Java Software Division of
Sun MicroSystems, Inc. is a specification for an application program
interface (API) that allows Java applications to access multiple database
management systems using Structured Query Language (SQL). The
JDBC driver manager handles multiple drivers that connect to different
databases.

A set of interfacesisincluded in the standard JDBC API so you can open
connections to databases, execute SQL commands, and process results.
The interfaces are described in Table 1-1.

Table 1-1: JDBC interfaces

Interface

Description

java.sql.Driver

Locates the driver for a database URL

java.sql.Connection

Connection to a specific database

java.sql.Statement

Executes SQL statements

java.sql.PreparedStatement

Handles parameterized SQL statements

java.sqgl.CallableStatement

Handles database stored procedure calls

java.sql.ResultSet

Getsthe results of SQL statements

java.sql.DatabaseMetaData

Used to access a variety of information about a connection’s DBM S and database

java.sql.ResultSetMetaData

Programmer’s Reference

Used to access a variety of information describing a ResultSet’s attributes

What is jConnect?

Each relational database management system requires adriver to implement
these interfaces. All JDBC calls are sent to the JDBC driver manager, which
passes the call to the specified driver.

There are four types of JDBC drivers:

e TypelJDBC-ODBC bridge —translates JDBC callsinto ODBC callsand
passes them to an ODBC driver. Some ODBC software must be resident
on the client machine. Some client database code may also reside on the
client machine.

» TypeZ2 native-API partly-Java driver —converts JDBC callsinto database-
specific calls. Thisdriver, which communicates directly with the database
server, also requires some binary code on the client machine.

» Type3net-protocol all-Java driver —communicatesto amiddle-tier server
using a DBM S-independent net protocol. A middle-tier gateway then
converts the request to a vendor-specific protocol.

» Type 4 native-protocol all-Java driver — converts JDBC calls to the
vendor-specific DBMS pratocol, alowing client applications direct
communication with the database server.

What is jConnect?

jConnect is Sybase’s high-performance JDBC driver. jConnect is both:
* A net-protocol/all-Java driver within a three-tier environment, and
* A native-protocol/all-Javadriver within atwo-tier environment.

The protocol used by jConnect isTDS 5.0 (Tabular Data Stream™, version 5),
the native protocol for Adaptive Server® and Open Server™ applications.
jConnect implementsthe JDBC standard to provide optimal connectivity tothe
complete family of Sybase products, allowing accessto over 25 enterprise and
legacy systems, including:

» Adaptive Server Enterprise

» Adaptive Server Anywhere

* Adaptive Server 1Q (formerly Sybase IQ™)
* Replication Server®

jConnect for JDBC

CHAPTER 1 Introduction

Programmer’s Reference

¢« OmniConnect™

Note Since changing the name of Sybase SQL Server™ to Adaptive Server
Enterprise, Sybase may use the names Adaptive Server and Adaptive Server
Enterpriseto refer collectively to all supported versions of Sybase SQL Server
and Adaptive Server Enterprise. From this point forward, in this document,
Adaptive Server Enterprise will be referred to as Adaptive Server.

In addition, jConnect for JDBC can access Oracle, AS/400, and other data
sources using Sybase DirectConnect™.

In some instances, jConnect’s implementation of JDBC deviates from the
JDBC 1.x or 2.x specifications. For moreinformation, see “ Restrictionson and
interpretations of JDBC standards” on page 95.

What is jConnect?

4 jConnect for JDBC

CHAPTER 2

Programming Information

This chapter describes the basic components and programming
reguirements that comprise jConnect for JDBC. It explains how to invoke
the jConnect driver, set connection properties, and connect to a database
server. It also contains information about using jConnect features.

Note For information about JDBC programming, go to
http://java.sun.com/jdbc.

To access the JDBC Guide: Getting Sarted manual for JDBC 1.0, go to
http://java.sun.com/products/jdk/1.1/docs/guide/jdbc.

To access the JDBC Guide: Getting Sarted manual for JDBC 2.1, go to
http://java.sun.com/products/jdk/1.2/docs/guide/jdbc/.

The following topics are included in this chapter:

Topics

Setting up jConnect

Establishing a connection

Implementing custom socket plug-ins

Handling internationalization and localization
Working with databases

Implementing advanced features

Restrictions on and interpretations of JDBC standards

Setting up jConnect

Programmer’s Reference

This section describes the tasks you need to perform before you use
jConnect.

Setting up jConnect

Setting the jConnect version

There are severa versions of jConnect; use a version setting to determine:

The default value of the LANGUAGE connection property.
The version-specific features that are available.

The default character set, if no character set is specified through the
CHARSET connection property.

The default value of the CHARSET CONVERTER connection property.

The default value of the CANCEL_ALL connection property, which is
used to set the behavior of Statement.cancel(), which by default cancels
the object onwhichit isinvoked and any other Statement objectsthat have
begun to execute and are waiting for results.

If you are requesting support for wide tables from the server.

If you would like to request server support for storing character datain
unichar (Unicode) columns.

Note Only Adaptive Server version 12.5 and later support widetablesand
unichar character data.

If you would like to request support from the server for the date and time
SQL datatypes.

Note Only Adaptive Server version 12.5.1 and later support the date and
time SQL datatypes.

Table 2-1 lists the version settings available and their features.

jConnect for JDBC

CHAPTER 2 Programming Information

Table 2-1: jConnect version settings and their features

Version
constant Features Comments
VERSION_6 » jConnect requests support for thedateand For jConnect version 5.x, the default is
time SQL datatypes from the server. This VERSION_5.
request is ignored by servers other than For additional information, see the comments
Adaptive Server version 12.5.1 and later. for VERSION 4.
* jConnect requests support for the unichar For aqditional information for date and time
and univarchar datatypes from the server. atatypes, see “ Using Date and Time
Thisrequest isignored by serversother than gatatypes” on page 67.
Adaptlve Server 125 and later. . For more information on wide tables, see
* jConnect requests support for wide tables «\yjide table support for Adaptive Server
from the server. Thisrequestisignored by yergion 12,5 and later” on page 46.
servers other than Adaptive Server 12.5 and . .)
later For more information on unichar and
' univarchar datatypes and Unicode, see “Using
* Thedefault value of the LANGUAGE jConnect to pass Unicode data’ on page 33.
connection property is null.
¢ |If the CHARSET connection property does
not specify acharacter set, jConnect usesthe
database’s default character set.The default
value for CHARSET_CONVERTER isthe
PureConverter class.
« By default, Statement.cancel() cancelsonly
the Statement object it isinvoked on.
» JDBC 2.0 methods can be used to store and
retrieve Java objects as column data.
VERSION_5 ¢ Thedefault value of the LANGUAGE For jConnect version 5.x, the default is

connection property is null.

If the CHARSET connection property does
not specify acharacter set, jConnect usesthe
database's default character set.The default
valuefor CHARSET_CONVERTER isthe
PureConverter class.

By default, Statement.cancel() cancelsonly
the Statement object it isinvoked on.

JDBC 2.0 methods can be used to store and
retrieve Java objects as column data.

Programmer’s Reference

VERSION _5.

For additional information, see the comments
for VERSION_4.

Setting up jConnect

Version

constant Features Comments

VERSION_4 ¢ Thedefault value of the LANGUAGE Server messages are localized according to the
connection property is null. language setting in your local environment.

« If the CHARSET connection property does | "€ languages supported are: Chinese, U.S.
not specify acharacter set, jConnect usesthe ENglish, French, German, Japanese, Korean,
database's default character set. The default Polish, Portuguese, and Spanish.
value for CHARSET_CONVERTER isthe The default behavior of Statement.cancel() is
PureConverter class. JDBC-compliant.

¢ By default, Statement.cancel() cancelsonly Use CANCEL_ALL to set the behavior of
the Statement object it isinvoked on. Statement.cancel(). See“CANCEL_ALL

« JDBC 2.0 methods can be used to storeand ~ CoNNection property” on page 10.
retrieve Java objects as column data. For information on Java objects as column

data, see” Storing Java objects as column data
in atable” on page 76.
VERSION_3 ¢ Thedefault value of the LANGUAGE See the comments for VERSION_2.
connection property isus_english.

« If the CHARSET connection property does
not specify acharacter set, jConnect usesthe
database's default character set.

e The default value for
CHARSET_CONVERTER isthe
PureConverter class.

* By default, Statement.cancel() cancelsthe
object it isinvoked on and any other
Statement objects that have begun to
execute and are waiting for results.

VERSION_2 ¢ Thedefault value of the LANGUAGE The LANGUAGE connection property

connection property isus_english.
If the CHARSET connection property does

not specify a character set, the default
character setisiso_1.

The default value for
CHARSET_CONVERTER isthe
TruncationConverter class, unlessthe
CHARSET connection property specifiesa
multibyte or 8-bit character set, in which
casethe default CHARSET_CONVERTER
isthe PureConverter class.

By default, Statement.cancel() cancelsthe
object it isinvoked on and any other
Statement objects that have begun to
execute and are waiting for results.

determines the language in which messages
from jConnect and the server appear.

For information on the CHARSET and
CHARSET_CONVERTER connection
classes, see “jConnect character-set
converters’ on page 34.

The VERSION_2 default behavior of
Statement.cancel() is not JDBC-compliant.
Use CANCEL_ALL to set the behavior of
Statement.cancel(). See “CANCEL_ALL
connection property” on page 10.

jConnect for JDBC

CHAPTER 2 Programming Information

Programmer’s Reference

The version values are constant values from the SybDriver class. When
referring to the version constant, use this syntax:

com sybase. j dbcx. SybDri ver. VERSI ON_5

Use SybDriver.setVersion() to set the jConnect version. The setVersion method
will affect the jConnect default behavior for all Connections created by the
SybDriver object. However, you can use the JCONNECT _VERSION
connection property to set version-specific behavior for individual
connections. The following code samples show how to load the jConnect
driver and set the version:

i nport com sybase. j dbcx. SybDri ver;
SybDriver sybDriver = (SybDriver)
Cl ass. f or Name
("com sybase. j dbc2.j dbc. SybDriver"). new nstance();
sybDri ver. set Ver si on
(com sybase. j dbcx. SybDri ver. VERSI ON_5) ;
Driver Manager.regi sterDriver(sybDriver);

You can call setVersion() multiple times to change the version setting. New
connectionsinherit the behavior associated with the version setting at the time
the connection was made. Changing the version setting during a session does
not affect the current connection. jConnect provides a
com.sybase.jdbex.SybDriver.VERSION_L ATEST constant which can be used
to ensure that you are always requesting the highest version value possible for
the jConnect driver you're using. However, by setting the version to
VERSION_LATEST, you may see behavior changes, if you replace your
jConnect driver with a newer one.

As described in the next section, you can use JCONNECT_VERSION to
overridethe SybDriver version setting and specify adifferent version setting for
a specific connection.

For widetable, unichar, and date/time datatype support with
jConnect 5.5:

To enable wide table, unichar, and date/time datatype support with Adaptive
Server version 12.5 and later, (date/time datatype support isonly availablein
Adaptive Server version 12.5.1 and later), use SybDriver.setVersion() to set the
jConnect version to 6:

sybDri ver. set Versi on
(com sybase. j dbcx. SybDri ver. VERSI ON_6) ;

Setting up jConnect

JCONNECT_VERSION connection property

Use JCONNECT_VERSION to specify the version setting for a specific
session.You can set JCONNECT_VERSION to an integer value of “2,” “3,"
“4,” “5" or “6" depending on the characteristics you want (see Table 2-1).

CANCEL_ALL connection property

CANCEL_ALL isaBoolean-valued connection property for specifying the
behavior of the Statement.cancel() method.

Note InjConnect version 4.0 and earlier, the default for CANCEL_ALL is
true. InjConnect version 4.1 and later, to comply with the JDBC specification,
if you set the connection property JCONNECT _VERSION to“4” or above, the
default setting for CANCEL_ALL isfalse.

The settingsfor CANCEL_ALL have the following effect on
Statement.cancel():

e If CANCEL_ALL isfalse, invoking Statement.cancel() cancels only the
Statement object it isinvoked on. Thus, if stmtA is a Statement object,
stmtA.cancel() cancels the execution of the SQL statement contained in
stmtA in the database, but no other statements are affected. stmtA is
canceled whether it isin cache waiting to execute or has started to execute
and iswaiting for results.

e If CANCEL_ALL istrue, invoking Statement.cancel() cancels not only
the object it isinvoked on, but also any other Statement objects on the
same connection that have executed and are waiting for results.

The following example sets CANCEL_ALL to false. In the example, propsis
a Properties object for specifying connection properties.

props.put("CANCEL_ALL", "false");

Note To cancel the execution of all Statement objects on a connection,
regardless of whether or not they have begun execution on the server, use the
extension method SybConnection.cancel().

10 jConnect for JDBC

CHAPTER 2 Programming Information

Invoking the jConnect driver

To register and invoke the Sybase jConnect driver, use either of the following
two suggested methods:

1 Useaclass.forName call asin the following example:

Cl ass. for Nane("com sybase. j dbc2. j dbc. SybDri ver")
. newl nst ance();

2 Add the jConnect driver to the jdbc.drivers system property. At
initialization, the DriverManager class attemptsto load the driverslistedin
jdbc.drivers. Thisis less efficient than the Class.forName call approach.
You can list multiple driversin this property, separated with acolon (3).
The following code samples show how to add a driver to jdbc.drivers
within a program:

Properties sysProps = System getProperties();
String drivers = "com sybase.jdbc2.jdbc. SybDriver";
String ol dDrivers =
sysProps. get Property("jdbc.drivers");
if (oldDrivers !'= null)
drivers += ":" + ol dDrivers;
sysProps. put ("jdbc.drivers", drivers.toString());

Note System.getProperties() isnot allowed for Java applets. Use the
Class.forName() method, instead.

Establishing a connection

This section describes how to establish a connection to an Adaptive Server or
Adaptive Server Anywhere database using jConnect.

Setting connection properties

Table 2-2 lists the connection properties for jConnect and indicates their
default values. You must set the connection properties before you make a
connection.

There are two ways to set the driver connection properties.

Programmer’s Reference 11

Establishing a connection

e Usethe DriverManager.getConnection() method in your application.
e When you define the URL.

Note Driver connection properties set in the URL do not override any
corresponding connection properties set in the application using the
DriverManager.getConnection() method.

To obtain acurrent list of properties for any driver, use the
Driver.getDriverPropertylnfo(String url, Properties props), which returns an array
of DriverPropertylnfo objects. The array lists:

e Driver properties
e Current settings on which the driver properties are based
e TheURL and props passed in

Driver connection property names are not case-sensitive (jConnect uses the
String.equalsignoreCase(String) method to compare property hames).

Table 2-2: Connection properties

Property

Description Default value

APPLICATIONNAME

A user-defined property. The server sidecanbe Null
programmed to interpret the value given to this

property.
BE_AS JDBC_COMPLIANT_ Adjusts other propertiesto ensure that jConnect False
AS POSSIBLE (only for jConnect methods respond in away that isascompliant as

version 5.5 or later)

possible with the JDBC 2.1 standard.

These properties are affected (and overridden)
when this property is set to true:

« CANCEL_ALL (set to false)

* LANGUAGE CURSOR (set to truefor
jConnect 4.x, set to false for jConnect 5.x)

« SELECT_OPENS CURSOR (set to true)
+ FAKE_METADATA (set to true)
« GET_BY_NAME USES COLUMN_LABEL

(set to false)
CANCEL_ALL Determines the behavior of the Depends on version
Statement.cancel() method. See setting (see “ Setting
“CANCEL_ALL connection property” on page thejConnect
10. version” on page 6.
12 jConnect for JDBC

CHAPTER 2 Programming Information

Property

Description Default value

CHARSET

Specifies the character set for stringspassedto Null
the database. If the CHARSET vaueisnull,
jConnect will use the server’s default character
set to send string datato the server. If you specify
a CHARSET, the database must be able to
handle charactersin that format. If the database
cannot do so, amessage will be generated
indicating that character conversion cannot be
properly completed. Note that when using
jConnect 5.5 with unichar enabled, jConnect will
detect when aclient istrying to send characters
to the server that cannot be represented in the
character set that is being used for the
Connection. When that occurs, jConnect will
send the character data to the server as unichar
data; this allows clients to insert unicode data
into unichar/univarchar columns and
parameters.

CHARSET_CONVERTER_CLASS

Use this property to specify the character-set Version dependent
converter class you want jConnect to use.

jConnect uses the version setting from

SybDriver.setVersion(), or the version passed

in with the JCONNECT_VERSION

property, to determine the default character-

set converter classto use. See “Selecting a

character-set converter” on page 35 for details.

CLASS LOADER

Set this property to a DynamicClassL oader Null
object that you create. The DynamicClassL oader
isused to load Java classes that are stored in the
database, but which are not in the CLASSPATH

at application start-up time. See” Dynamic class
loading” on page 80 for more information.

CONNECTION_FAILOVER

For use with the Java Naming and Directory True
Interface (JNDI). See

“CONNECTION_FAILOVER connection

property” on page 25.

DISABLE_UNICHAR_SENDING
(Only for jConnect version 5.5 or later)

Programmer’s Reference

When a client application sends unichar True
charactersto the server (along with non-unichar
characters), there is a dight performance hit for

any character data sent to the database. Because

this property defaultsto true, clientswhowishto

send unichar data to the database must set this

property value to false. See “Using jConnect to

pass Unicode data” on page 33.

13

Establishing a connection

Property

Description Default value

DISABLE_UNPROCESSED_
PARAM_WARNINGS

During resultsprocessing for astored procedure, False
jConnect often reads return values other than

row data. If you do not process the return value,
jConnect raises awarning. To disable these

warnings (which can help performance), set this
property to true.

DYNAMIC_PREPARE

Determines whether dynamic SQL prepared False
statements are precompiled in the database. See
“DYNAMIC_PREPARE connection property”

on page 118.

ESCAPE_PROCESSING_DEFAULT

By default, jConnect parses all SQL statements True
submitted to the database for valid JDBC

function escapes. If your applicationisnot going

to use JDBC function escapesin its SQL calls,

you can set this connection property to false to
circumvent this processing. This can provide a

slight performance benefit.

EXPIRESTRING

A read-only property that contains the license Never
expiration date. Expiration is never except for
evaluation copies of jConnect.

FAKE_METADATA (Only for
jConnect version 5.5 or later)

14

When you call the ResultSetMetaData methods ~ False
getCatalogName, getSchemaName, and

getTableName and thisproperty issetto true, the

call will return empty strings ("") because the

server does not supply useful metadata.

When this property is set to false, calling these
methods throws a “ Not |mplemented”

SQL Exception.

Note If you have enabled wide tables and are
using an Adaptive Server 12.5 or later, this
property setting is ignored, because the server
does supply useful metadata.

jConnect for JDBC

CHAPTER 2 Programming Information

Property

Description

Default value

GET_BY_NAME_USES
COLUMN_LABEL (Only for jConnect
version 5.5 or later)

Provides backward compatibility with versions
of jConnect earlier than 5.5.

With Adaptive Server version 12.5, jConnect has
access to more metadata than was previously
available. Previoustoversion 12.5, column name
and column alias meant the same thing. jConnect
can now differentiate between the two when
used with a12.5 or later Adaptive Server with
wide tables enabled.

To preserve backward compatibility, set this
property to true.

If you want calls to getByte, getint, get* (String
columnName) to look at the actual name for the
column (called for in the JDBC 2.0
specification), set this property to false.

True

HOSTNAME

The name of the current host.

None

Themax lengthis 30
characters and if
exceeded, it will be
truncated to 30

HOSTPROC

Identifies the application’s process on the host
machine.

None

IGNORE_DONE_IN_PROC

When set to true, intermediate update results (as
in stored procedures) are not returned, only the
final result set.

Fase

IS CLOSED_TEST

Allows you to specify what query, if any, issent
to the database when Connection.isClosed() is
called. For additional information , see the
“Connection.isClosed() and the

IS CLOSED_TEST connection property” on

page 95.

Null

JCONNECT_VERSION

Use this property to set version-specific
characteristics. See “JCONNECT_VERSION
connection property” on page 10.

LANGUAGE

Set this property for error messages returned
from the server and for jConnect messages. It
must match alanguage in syslanguages.

Version dependent
(see“ Setting the
jConnect version” on
page 6).

LANGUAGE_CURSOR

Programmer’s Reference

Set this property to trueif you want jConnect to
use “language cursors’ instead of “protocol
cursors.”

See “Cursor performance’ on page 120.

False

15

Establishing a connection

Property

Description

Default value

LITERAL_PARAMS

Usethis property primarily when using jConnect
with Adaptive Server Anywhere version 5.5.
ASA 5.5 requiresyou to send prepared statement
parameters as literals. For all other Sybase
databases (including ASA 6 and later), this
property can be set to false.

When set to true, any parameters set by the
setXXX methods in the PreparedStatement

interface are inserted literally into the SQL

statement when it is executed.

If set to false, parameter markers are left in the
SQL statement and the parameter val ues are sent
to the server separately.

False

USE_METADATA

When set to true, a DatabaseMetaData object
will be created and initialized when you
establish a connection. The DatabaseMetaData
object is necessary to connect to a specified
database.

jConnect uses DatabaseMetaData for some
features, including Distributed Transaction
Management support (JTA/JTS) and dynamic
classloading (DCL).

If you receive error 010SJ, which indicates that
your application requires metadata, install the
stored procedures for returning metadata that
come with jConnect (see “Installing Stored
Procedures’ in Chapter 3 of the jConnect for
JDBC Installation Guide).

true

PACKETSIZE

Network packet size.

512

PASSWORD

Login password.

Set automaticaly if using the
getConnection(String, String, String) method, or
explicitly if using getConnection(String, Props).

None

PRELOAD_JARS

16

A comma-separated list of jar file namesthat are
associated with the CLASS | OADER that you
specify. Thesejars are loaded at connect time,
and are available for use by any other
Connection using the same jConnect driver. See
“Preloading JARS’ on page 83 for more
information.

Null

jConnect for JDBC

CHAPTER 2 Programming Information

Property

Description

Default value

PROTOCOL_CAPTURE

The PROTOCOL_CAPTURE connection
property is used to specify afile for capturing
TDS communi cation between an application and
an Adaptive Server.

Null

PROXY

Gateway address. For the HTTP protocol, the
URL is http://host: port.

To use the HTTPS protocol that supports
encryption, the URL is
https://host:port/serviet_alias.

None

REMOTEPWD

Remote server passwords for access through
server-to-server remote procedure calls. See
“Performing server-to-server remote procedure
cals’ on page 45.

None

REPEAT_READ

Determines whether the driver keeps copies of
columns and output parameters so that columns
can be read out of order or repeatedly. See
“REPEAT_READ connection property” on
page 112.

True

REQUEST_HA_SESSION

This property indicates whether the connecting
client wantsto begin an HA failover sessionwith
aversion 12 or later Adaptive Server configured
for failover. See “Implementing high
availability failover support” on page 40.

Setting this property to true causes jConnect to
attempt afailover login. If you do not set this
connection property, a failover session will not

start, even if the server is configured for failover.

You cannot reset the property once a connection
has been made.

If you want more flexibility for requesting
failover sessions, code the client application to
set REQUEST_HA_SESSION at runtime.

Fase

RMNAME

Programmer’s Reference

This property is used to set the Resource
Manager name when using distributed
transactions (XA). This property will override a
Resource Manager name that may be setin an
LDAP server entry. See“ Distributed transaction
management support” on page 91 for more
information.

Null

17

Establishing a connection

Property

Description

Default value

SECONDARY_SERVER _
HOSTPORT

Sets the hostname and port for the secondary
server when the client is using an HA failover
session. The valuefor this property should bein
the form of hostName:portNumber. This
property isignored unless you have also set
REQUEST_HA_SESSION to true. See
“Implementing high availability failover
support” on page 40 for more information.

Null

SELECT_OPENS CURSOR

If set totrue, callsto
Statement.executeQuery() will automatically
generate a cursor when the query contains a
“FOR UPDATE" clause.

If you have previoudly called
Statement.setFetchSize() or
Statement.setCursorName() on the same
statement, a setting of truefor
SELECT_OPENS_CURSOR has no effect.

Note You may experience some performance
degradation when SELECT_OPENS_CURSOR
isset totrue.

See “Using cursors with result sets’ on page 48
for more information on using cursors with
jConnect.

False

SERIALIZE_REQUESTS

If set to true, jConnect waits for responses from
the server before sending additional requests.

False

SERVICENAME

The name of a back-end database server that a
DirectConnect gateway serves. Also used to
indicate which database should be used upon
connecting to Adaptive Server Anywhere.

None

SESSION_ID

18

When this property is set, jConnect assumesthat
an application is trying to resume
communication on an existing TDS session held
open by the TDS-tunnelling gateway. jConnect
skips the login negotiations and forwards all
requests from the application to the specified
session ID.

Null

jConnect for JDBC

CHAPTER 2 Programming Information

Property

Description

Default value

SESSION_TIMEOUT

Use this property to specify the amount of time
(in seconds) that an http-tunnelled session
(created using the jConnect TDS-tunnelling
servlet) will remain alive whileidle. After the
specified time, the connection will be
automatically closed. For more information
about the TDS-tunnelling servlet, see page 134.

Null

SQLINITSTRING

Usethis property to define aset of commandsto
be passed to the database server when a
Connection is opened. These must be SQL
commands that can be executed using the
Statement.executeUpdate() method.

Null

STREAM_CACHE_SIZE

Maximum size used to cache statement response
streams.

Null (unlimited cache
size)

SYBSOCKET_FACTORY

Use this property to enable jConnect to use your

custom socket implementation.

Set SYBSOCKET_FACTORY either to:

* Thename of aclassthat implements
com.sybase.jdbcx.SybSocketFactory; or

 “DEFAULT,” which instantiates a new
java.net.Socket()

See “Implementing custom socket plug-ins’ on

page 28.

Null

USER

Login ID.

Set automaticaly if using the
getConnection(String, String, String) method, or
explicitly if using getConnection(String, Props).

None

VERSIONSTRING

Read-only version information for the JDBC
driver.

jConnect driver
version

Programmer’s Reference

Thefollowing codeisan example of setting connection properties. The sample
programs provided with jConnect also contain examples of setting these

properties.

Properties props = new Properties();
props. put ("user", "userid");

pr ops. put (" password"”,

/*

"user_password");

* |f the programis an applet that wants to access

* a server that

is not on the sane host as the

* web server, then it uses a proxy gateway.

*/

19

Establishing a connection

Connecting to Ad

Example

20

props. put ("proxy", "local host:port");
/*
* Make sure you set connection properties before
* attenpting to make a connection. You can al so
* set the properties in the URL.
*/
Connection con = DriverManager. get Connecti on
("jdbc: sybase: Tds: host: port", props);

aptive Server

In your Java application, definea URL using the jConnect driver to connect to
an Adaptive Server. The basic format of the URL is;

j dbc: sybase: Tds: host : port
where:
jdbc:sybase identifies the driver.
Tds isthe Sybase communication protocol for Adaptive Server.

host: port is the Adaptive Server host name and listening port. See
$SYBASE/interfaces (UNIX) or %SYBASEY\ini\sgl.ini (Windows) for the
entry that your database or Open Server application uses. Obtain the host: port
from the “query” entry.

You can connect to a specific database using this format:

j dbc: sybase: Tds: host : port/ dat abase

Note To connect to a specific database using Adaptive Server Anywhere 6.x
and later or DirectConnect, use the SERVICENAME connection property to
specify the database name instead of “/database.”

The following code creates a connection to an Adaptive Server on host
“myserver” listening on port 3697:

SysProps. put ("user", "userid");
SysProps. put ("password", "user _password");
String url = "jdbc:sybase: Tds: nyserver: 3697";
Connection_con =

Dri ver Manager . get Connecti on(url, SysProps);

jConnect for JDBC

CHAPTER 2 Programming Information

URL connection property parameters

You can specify the values for the jConnect driver connection propertieswhen
you definea URL .

Note Driver connection properties set in the URL do not override any
corresponding connection properties set in the application using the
DriverManager.getConnection() method.

To set aconnection property in the URL, append the property name and its
value to the URL definition. Use this syntax:

j dbc: sybase: Tds: host : port/ dat abase?
property_nane=val ue

To set multiple connection properties, append each additional connection
property and value, preceded by “&.” For example:

j dbc: sybase: Tds: myserver: 1234/ nydat abase?
LI TERAL_PARANMS=t r ue&PACKETSI ZE=512&HOSTNAME=y host

If the valuefor one of the connection propertiescontains“&,” precedethe“&”
in the connection property value with abacksash (\). For example, if your host
nameis“a&bhost,” use this syntax:

j dbc: sybase: Tds: nmyserver: 1234/ nydat abase?
LI TERAL _PARANMS=t r ue&PACKETSI ZE=512&HOSTNAME=
a\ &host

Do not use quotes for connection property values, even if they are strings. For
example, use:

HOSTNAME=my host
not:

HOSTNAME="nyhost "

Connecting to Adaptive Server Anywhere

Programmer’s Reference

To use jConnect with Adaptive Server Anywhere, you should upgrade to
Adaptive Server Anywhere version 6.x and later.

21

Establishing a connection

Connecting to Adaptive Server Anywhere 5.x.X

If you have to connect to Adaptive Server Anywhere version 5.x.x through
jConnect, you must run the Adaptive Server Anywhere Open Server Gateway
dbos50, which is distributed with Adaptive Server Anywhere.

1

Install Open Server Gateway 5.5.x3 or later and the Open Server DLLs.
Use Open Server DLLs, version 11.1.

Add an entry for the gateway to your %SYBASE%\ini\sgl.ini file (using,
for example, sqledit).

Start the gateway by entering:
start dbos50 gateway-denp
where gateway-demo is the gateway name defined in step 2.

When the Open Server Gateway is running, you can define a connection
asfollows:

j dbc: sybase: Tds: host : port

host is the host name where the Adaptive Server Anywhere and Open
Server gateway is running, and port is the port number defined in sgl.ini.

Note To support multiple Adaptive Server Anywhere databases, use sqgledit to
add an entry with a different port for each database, then run the Open Server
Gateway for each database.

Connecting to a server using JNDI

InjConnect 4.0 and | ater, you can use the Java Naming and Directory Interface
(JNDI) to provide connection information, which offers:

22

A centralized location where you can specify host names and ports for
connecting to aserver. You do not need to hard code a specific host and
port number in an application.

A centralized location where you can specify connection properties and a
default database for all applicationsto use.

The jConnect CONNECTION_FAILOVER property for handling
unsuccessful connection attempts. When CONNECTION_FAILOVER is
set to true, jConnect attempts to connect to a sequence of host/port server
addresses in the INDI name space until one succeeds.

jConnect for JDBC

CHAPTER 2 Programming Information

To use jConnect with INDI, you need to make sure that certain information is
availablein any directory service that INDI accesses and that required
information is set in the javax.naming.Context class. This section covers the
following topics:

e Connection URL for using JNDI
* Required directory service information
e CONNECTION_FAILOVER connection property

e Providing JNDI context information

Connection URL for using JNDI

To specify that jConnect use INDI to obtain connection information, place
“jndi” asthe URL's subprotocol after “sybase”:

j dbc: sybase: j ndi: protocol -i nformati on-for-use-w t h-JINDI

Anything that follows “jndi” in the URL is handled through JNDI. For
example, to use INDI with the Lightweight Directory Access Protocol
(LDAP), you might enter:

jdbc: sybase: j ndi: | dap:// LDAP_host nane: port _nunber/ server nane=
Sybasell, o=MyConpany, c=US

This URL tells INDI to obtain information from an LDAP server, gives the
host name and port number of the LDAP server to use, and provides the name
of adatabase server in an LDAP-specific form.

Required directory service information

When you use INDI with jConnect, INDI needs to return the following
information for the target database server:

e A host name and port humber to connect to
e The name of the database to use

* Any connection properties that individual applications are not allowed to
set on their own

Programmer’s Reference 23

Establishing a connection

24

Thisinformation needsto be stored according to afixed format in any directory
service used for providing connection information. The required format
consists of anumerical object identifier (OID), which identifies the type of
information being provided (for example, the destination database), followed
by the formatted information (see “Example 1" on page 23).

Note You can use the alias name for to reference the attribute instead of the
OID. See “Example 2" on page 24.

Table 2-3 shows the required formatting.

Table 2-3: Directory service information for JNDI

Attribute description Alias OID (object_id)

Interfacesentry replacementin sybaseServer 1.36.1.4.18974.1.1

LDAP directory services

Collection point for sybaseServer 1.3.6.1.4.1.897.4.2

sybaseServer LDAP attributes

Version Attribute sybaseVersion 1.3.6.1.4.1.897.4.2.1

Servername Attribute sybaseServer 1.3.6.1.4.1.897.4.2.2

Service Attribute sybaseService 1.3.6.1.4.1.897.4.2.3

Status Attribute sybaseStatus 1.3.6.1.4.1.897.4.2.4

Address Attribute sybaseAddress 1.3.6.1.4.1.897.4.25

Security Mechanism Attribute sybaseSecurity 1.3.6.1.4.1.897.4.2.6

Retry Count Attribute sybaseRetryCount 1.3.6.1.4.1.897.4.2.7

Loop Delay Attribute sybaseRetryDelay 1.3.6.1.4.1.897.4.2.8

jConnect Connection Protocol sybaseJconnectProtocol 1.3.6.1.4.1.897.4.29

jConnect Connection Property sybaseJconnectProperty 1.3.6.1.4.1.897.4.2.10

Database Name sybaseDatabasename 13.6.1.4.1.897.4.2.11

High Availability Failover sybaseHAservername 1.3.6.1.4.1.897.4.2.15

Servername Attribute

ResourceM anager Name sybaseResourceManager 1.3.6.1.4.1.897.4.2.16
Name

ResourceM anager Type sybaseResourceManager 1.3.6.1.4.1.897.4.2.17
Type

JDBCDataSource Interface sybaseJdbcDataSource- 1.3.6.1.4.1.897.4.2.18
Interface

ServerType sybaseServerType 1.3.6.1.4.1.897.4.2.19

Note Attributesinitalics are required.

jConnect for JDBC

CHAPTER 2 Programming Information

dn:

RPRRPRRPRERER
WwWwwwww

dan:

3.

Thefollowing examples show connection information entered for the database
server SYBASELL under an LDAP directory service. Example 1 usesthe
attribute’s OID, Example 2 usesthe attribute’s alias, which is case insensitive.
You can use either the OID or the dlias.

Example 1

server nane=SYBASE11, o=MyConpany, c=US
server nane: SYBASE11l

6.

000000

1.

PR RPRRPRR

EEEEREESE
i o

897.
897.
897.
897.
897.
897.
897.

4.

bl o o o
NN

2.

5: TCP#1#gi otto 1266

. 5: TCP#1#gi otto 1337
. 5: TCP#1#st andbyl 4444
. 10: REPEAT_READ=f al se&PACKETSI ZE=1024
. 10: CONNECTI ON_FAI LOVER=t r ue
. 11: pubs2
9: Tds
Example 2

server nane=SYBASE11, o=MyConpany, c=US
servernane: SYBASE11l
sybaseAddr ess: TCP#1#gi otto 1266

sybaseAddr ess: TCP#1#gi otto 1337

sybaseAddr ess: TCP#1#st andbyl 4444

sybaseJconnect Property: REPEAT READ=f al se&PACKETSI ZE=1024
sybaseJconnect Property: CONNECTI ON_FAI LOVER=t r ue
sybaseDat abasenane: pubs2

sybaseJconnect Pr ot ocol : Tds

In these examples, SYBASE11 can be accessed through either port 1266 or
port 1337 on host “giotto” and it can be accessed through port 4444 on host
“standby1.” Two connection properties, REPEAT_READ and PACKETSIZE,
are set within one entry. The CONNECTION_FAILOVER connection
property is set as a separate entry. Applications connecting to SYBASE11 are
initially connected with the pubs2 database. You do not need to specify a
connection protocol, but if you do, you must enter the attribute as “Tds”, not
“TDS”.

CONNECTION_FAILOVER connection property

Programmer’s Reference

CONNECTION_FAILOVER is aBoolean-valued connection property you
can use when jConnect uses JNDI to get connection information.

25

Establishing a connection

If CONNECTION_FAILOVER is set to true, jConnect makes multiple
attempts to connect to a server. If one attempt to connect to a host and port
number associated with a server fails, jConnect uses JNDI to get the next host
and port number associated with the server and attempts to connect through
them. Connection attempts proceed sequentially through all the hosts and ports
associated with a server.

For example, suppose CONNECTION_FAILOVER isset to true, and a
database server is associated with the following hosts and port numbers, asin
the earlier LDAP example:

1.3.6.1.4.1.897.4.2.5: TCP#1#gi otto 1266
1.3.6.1.4.1.897.4.2.5: TCP#1#gi otto 1337
1.3.6.1.4.1.897. 4. 2. 5: TCP#1#st andby 4444

To get aconnection to the server, jConnect tries to connect to the host “ giotto”
at port 1266. If thisfails, jConnect tries port 1337 on “giotto.” If thisfails,
jConnect triesto connect to host “standby1” through port 4444.

The default for CONNECTION_FAILOVER istrue.

If CONNECTION_FAILOVER isset tofalse, jConnect attemptsto connect to
aninitial host and port number. If the attempt fails, jConnect throws a SQL
exception and does not try again.

Providing JNDI context information

26

To use jConnect with INDI, adeveloper should be familiar with the INDI
specification from Sun Microsystems, available from the Web:

http://java.sun.com/products/jndi

In particular, the devel oper needs to make sure that required initialization
propertiesare set in javax.naming.directory.DirContext when INDI and jConnect
are used together. These properties can be set either at the system level or at
runtime.

Two key properties are:
e Context.INITIAL_CONTEXT_FACTORY

This property takes the fully qualified class name of the initial context
factory for INDI to use. This determinesthe JINDI driver that is used with
the URL specified in the Context. PROVIDER_URL property.

» Context.PROVIDER_URL

jConnect for JDBC

CHAPTER 2 Programming Information

This property takes the URL of the directory service that the driver (for
example, the LDAP driver) isto access. The URL should be astring, such
as “ldap://ldaphost: 427" .

Thefollowing exampl e shows how to set context propertiesat runtime and how
to get a connection using JINDI and LDAP. In the example, the
INITIAL_CONTEXT_FACTORY context property is set to invoke Sun
Microsystem’s implementation of an LDAP service provider. The
PROVIDER_URL context property is set to the URL of an LDAP directory
service located on the host “ldap_serverl” at port 983.

Properties props = new Properties();

/* W want to use LDAP, so I NI TI AL_CONTEXT_FACTCORY is set to the
* class name of an LDAP context factory. In this case, the
* context factory is provided by Sun’s inplenmentation of a
* driver for LDAP directory service.
*/
props. put (Cont ext. | NI TI AL_CONTEXT_FACTORY,
"com sun. j ndi .| dap. LdapCt xFactory");

/* Now, we set PROVIDER URL to the URL of the LDAP server that
* is to provide directory information for the connection.

*/

props. put (Cont ext. PROVI DER_URL, "I dap://|dap_server1:983");

/* Set up additional context properties, as needed. */
props. put ("user", "xyz");
props. put ("password", "123");

/* get the connection */

Connecti on con = DriverManager. get Connecti on
("jdbc:sybase: jndi:ldap://1dap_server1: 983" +
"/ servernane=Sybasell, o=MyConpany, c=US", props) ;

The connection string passed to getConnection() contains L DAP-specific
information, which the devel oper must provide.

When JNDI properties are set at runtime, as in the preceding example,
jConnect passes them to INDI to be used in initiadlizing a server, asin the
following jConnect code:

javax. nam ng.directory. DirContext ctx =
new j avax. nam ng. directory. I nitial D r Cont ext (props);

jConnect then obtains the connection information it needs from JNDI by
invoking DirContext.getAtributes(), asin the following example, where ctxisa
DirContext object:

Programmer’s Reference 27

Implementing custom socket plug-ins

javax. nam ng.directory. Attributes attrs =

ctx.getAttributes(ldap://|dap_serverl: 983/ servernane=
Sybasell, SYBASE_SERVER ATTRI BUTES);

In the example, SYBASE_SERVER_ATTRIBUTES isan array of strings
defined within jConnect. The array values are the OIDs for the required
directory information listed in Table 2-3.

Implementing custom socket plug-ins

I I D S T R

~

*

This section discusses how to plug a custom socket implementation into an
application to customize the communication between a client and server.
javax.net.ssl.SSLSocket is an example of a socket that you could customize to
enable encryption.

com.sybase.jdbcx.SybSocketFactory is a Sybase extension interface that
contains the createSocket(String, int, Properties) method that returns a
java.net.Socket.For ajConnect version 4.1 or later driver to load a custom
socket, an application must:

e Implement thisinterface
* Definethe createSocket(..) method

jConnect uses the new socket for its subsequent input/output operations.
Classesthat implement SybSocketFactory create sockets and provide ageneral
framework for the addition of public socket-level functionality.

Returns a socket connected to a Server Socket on the named host,
at the given port.

@ar am host the server host

@aram port the server port

@aram props Properties passed in through the connection
@eturns Socket

@xception | OException, UnknownHost Excepti on

public java. net. Socket createSocket(String host, int port, Properties props)
t hrows | CException, UnknownHost Excepti on;

28

Passing in properties allows instances of SybSocketFactory to use connection
properties to implement an intelligent socket.

jConnect for JDBC

CHAPTER 2 Programming Information

When you implement SybSocketFactory to produce a socket, the same
application code can use different kinds of sockets by passing the different
kinds of factories or pseudo-factoriesthat create socketsto the application. You
can customize factories with parameters used in socket construction. For
example, you could customize factories to return sockets with different
networking time outs or security parameters already configured. The sockets
returned to the application can be subclasses of java.net.Socket to directly
expose new APIs for features such as compression, security, record marking,
statistics collection, or firewall tunnelling (javax.net.SocketFactory).

Note SybSocketFactory isintended to be an overly simplified
javax.net.SocketFactory, enabling applications to bridge from java.net.* to
javax.net.* if desired.

To use a custom socket with jConnect:

1 ProvideaJavaclassthat implements com.sybase.jdbcx.SybSocketFactory.
See “Creating and configuring a custom socket” on page 29.

2 Setthe SYBSOCKET_FACTORY connection property so that jConnect
can use your implementation to obtain a socket.

SYBSOCKET_FACTORY connection property

To use a custom socket with jConnect, set the SYBSOCKET_FACTORY
connection property to a string that is either:

e The name of aclass that implements com.sybase.jdbcx.SybSocketFactory
or
e DEFAULT, which instantiates a new java.net.Socket()

See “ Setting connection properties’ on page 11 for instructions on how to set
SYBSOCKET_FACTORY.

Creating and configuring a custom socket

Programmer’s Reference

OncejConnect obtains acustom socket, it usesthe socket to connect to aserver.
Any configuration of the socket must be completed before jConnect obtainsit.

29

Implementing custom socket plug-ins

This section explains how to plug in an SSL socket implementation, such as
javax.net.ssl.SSLSocket, with jConnect.

Note Currently, only Adaptive Server version 12.5 and later supports SSL.

The following example shows how an implementation of SSL can create an
instance of SSLSocket, configure it, and then return it. In the example, the
MySSLSocketFactory class implements SybSocketFactory and extends
javax.net.ssl.SSLSocketFactory to implement SSL. It containstwo createSocket
methods—one for SSLSocketFactory and one for SybSocketFactory—that:

e Create an SSL socket

* Invoke SSLSocket.setEnableCipherSuites() to specify the cipher suites
available for encryption

e Return the socket to be used by jConnect

Example
public class MySSLSocket Factory extends SSLSocket Factory

{

i mpl enents SybSocket Fact ory

/**

*

*

*

*

*

*

*/

Create a socket, set the cipher suites it can use, return

t he socket.

Denonstrates how cither suites could be hard-coded into the
i mpl enent ati on.

See j avax. net. SSLSocket Fact or y#cr eat eSocket

publ i c Socket createSocket(String host, int port)

{

30

t hrows | OException, UnknownHost Exception

/1 Prepare an array containing the cipher suites that are to
/'l be enabl ed.
String enabl eThese[] =

{
"SSL_DH DSS EXPORT_W TH_DES40_CBC_SHA",
"SSL_RSA EXPORT_W TH_RC2_CBC 40_MD5",
"SSL_DH RSA EXPORT_W TH_DES40_CBC_SHA'

}

Socket s =

SSLSocket Fact ory. get Def aul t () . cr eat eSocket (host, port);

jConnect for JDBC

CHAPTER 2 Programming Information

~

E R B R S T . R N N N S N N . e g

~

((SSLSocket) s) . set Enabl edCi pher Sui t es(enabl eThese) ;
return s;

*

Ret urn an SSLSocket .
Denmonstrates how to set cipher suites based on connection
properties |ike:
Properties _props = new Properties();
Set other url, password, etc. properties.
_props. put (("Cl PHER_SUl TES_1",

"SSL_DH DSS_EXPORT_W TH_DES40_CBC_SHA") ;
_props. put (" Cl PHER_SUI TES_2",

" SSL_RSA EXPORT_W TH_RC2_CBC_40_MD5");
_props. put ("Cl PHER_SUI TES_3",

"SSL_DH RSA EXPORT_W TH_DES40_CBC_SHA");

_conn = _driver.getConnection(url, _props);

See com sybase. j dbcx. SybSocket Fact or y#cr eat eSocket

publi ¢ Socket createSocket(String host, int port,

Properties props)
t hrows | CException, UnknownHost Excepti on

/'l check to see if cipher suites are set in the connection
/'l properites

Vect or cipherSuites = new Vector();

String cipherSuiteval = null;

int cipherlndex = 1;

do

i f((cipherSuiteval = props.getProperty("Cl PHER_SU TES "

+ ci pherlndex++)) == null)
{

i f(cipherlndex <= 2)

{
/1 No cipher suites avail able
/1 return what the object considers its default
/1 SSLSocket, with cipher suites enabl ed.
return createSocket (host, port);

}

el se

{
/1l we have at |east one cipher suite to enable
/'l per request on the connection
br eak;

}

Programmer’s Reference 31

Handling internationalization and localization

el se

}
/1 add to the cipher suit Vector, so that

/1 we may enabl e them toget her
ci pher Sui t es. addEl enment (ci pher SuiteVal);
}
}
whil e(true);

/] lets you create a String[] out of the created vector
String enabl eThese[] = new String[cipherSuites.size()];
ci pher Sui t es. copyl nt o(enabl eThese) ;

/'l enabl e the cipher suites
Socket s =

SSLSocket Factory. get Defaul t (). creat eSocket
(host, port);
((SSLSocket) s) . set Enabl edCi pher Sui t es(enabl eThese) ;

/1 return the SSLSocket
return s;

}

/! ot her nethods

}
Since jConnect requires no information about the kind of socket it is, you must
complete any configuration before you return a socket.
For additional information, see:

» Encrypt.java —located in the sample2 (jConnect 5.x) subdirectories of
your jConnect directory, this sample shows you how to use the
SybSocketFactory interface with jConnect applications.

* MySS SocketFactory.java— aso located in the sample2 (jConnect 5.x)
subdirectories of your jConnect directory, thisis asample implementation
of the SybSocketFactory interface that you can plug in to your application
and use.

Handling internationalization and localization

This section discusses internationalization and localization issues relevant to
jConnect.

32 jConnect for JDBC

CHAPTER 2 Programming Information

Using jConnect to pass Unicode data

Programmer’s Reference

In Adaptive Server version 12.5 and later, database clients can take advantage
of the unichar and univarchardatatypes. The two datatypes allow for the
efficient storage and retrieval of Unicode data.

Quoting from the Unicode Standard, version 2.0:

“The Unicode Standard is a fixed-width, uniform encoding scheme for
encoding charactersand text. Therepertoire of thisinternational character code
for information processing includes characters for the major scripts of the
world, aswell as technical symbolsin common. The Unicode character
encoding treats al phabetic characters, ideographic characters, and symbols
identically, which means they can be used in any mixture and with equal
facility. The Unicode Standard ismodel ed on the ASCI| character set, but uses
a 16-bit encoding to support full multilingual text.”

Thismeansthat the user can designate database table columnsto store Unicode
data, regardless of the default character set of the server.

Note In Adaptive Server version 12.5 through 12.5.0.3, the server had to have
adefault character set of utf-8 in order to use the unicode datatypes. However,
in Adaptive Server 12.5.1 and later, database users can use unichar and
univarchar without having to consider the default character set of the server.

To use the unichar and univarchar datatypes with jConnect, you must perform
the following two tasks:

1 SetthejConnect versionto 6. See“ Setting the jConnect version” on page
6 for more information.

2 Setthe DISABLE_UNICHAR_SENDING connection property to false.
See “ Setting connection properties’ on page 11for more information.

When the server accepts unichar and univarchar data, jConnect will behave as
follows:

e For al character datathat a client wishes to send to the server — for
example using the PreparedStatement.setString (int column, String value)—
jConnect will determineif the string can be converted to the default
character set of the server.

e |f jConnect determines that the characters cannot be converted to the
character set of the server (For example, some characters cannot be
represented in the character set of the server), it will send the datato the
server encoded as unichar/univarchar data.

33

Handling internationalization and localization

For example, if aclient attempted to send a unicode Japanese character to an
Adaptive Server 12.5.1 which had iso_1 as the default character set, jConnect
would detect that the Japanese character could not be convertedtoaniso 1
character. jConnect would then send the String as unicode data.

There is a performance penalty when a client sends unichar/univarchar data to
aserver. Thisis because jConnect must perform character-to-byte conversion
twice for all Strings and characters that do not map directly to the default
character set of the server. This penalty is why the
DISABLE_UNICHAR_SENDING connection property defaults to true.

Note For more information on support for unichar and univarchar datatypes,
see the manuals for Adaptive Server version 12.5 or later.

jConnect character-set converters

34

jConnect uses specia classes for al character-set conversions. By selecting a
character-set converter class, you specify how jConnect should handle
single-byte and multibyte character-set conversions, and the performance
impact the conversions will have on your applications.

There are two character-set conversion classes. The conversion class that
jConnect usesisbased on the version setting (for example, VERSION_4), and
the CHARSET and CHARSET CONVERTER_CLASS connection
properties.

» The TruncationConverter class works only with single-byte character sets
that use ASCII characters such asiso_1 and cp850. It does not work with
multibyte character sets or single-byte character setsthat use non-ASCI|
characters.

Using the TruncationConverter class, jConnect 5.x handlescharacter setsin
the same manner asjConnect version 2.2. The TruncationConverter classis
the default converter when the version setting is VERSION_2.

» ThePureConverter classis a pure Java, multibyte character-set converter.
jConnect usesthis class if the version setting is VERSION_4 or later.
jConnect also uses this converter with VERSION_2 if it detects a
character set specified in the CHARSET connection property that is not
compatible with the TruncationConverter class.

jConnect for JDBC

CHAPTER 2 Programming Information

Although it enables multibyte character-set conversions, the
PureConverter class may negatively impact jConnect driver performance.
If driver performance is a concern, see “Improving character-set
conversion performance” on page 36.

Selecting a character-set converter

jConnect uses the version setting from SybDriver.setVersion() to determine the
default character-set converter classto use. For VERSION_2, the default is
TruncationConverter. For VERSION_4 and later, the default is PureConverter.

You can also set the CHARSET _CONVERTER_CLASS connection property
to specify which character-set converter you want jConnect to use. Thisis
useful if you want to use a character-set converter other than the default for
your jConnect version.

For example, if you set jConnect to VERSION_4 or later, but want to use the
TruncationConverter class rather than the multibyte PureConverter class, you
can set CHARSET_CONVERTER_CLASS:

props. put (" CHARSET_CONVERTER_CLASS",
"com sybase.jdbc2. utils. Truncati onConverter")

Setting the CHARSET connection property

You can specify the character set to usein your application by setting the
CHARSET driver property. If you do not set the CHARSET property:

e For VERSION_2, jConnect usesiso_1 asthe default character set.

* For VERSION_3, VERSION_4, VERSION_5, and VERSION_6,
jConnect uses the database's default character set, and adjusts
automatically to perform any necessary conversions on the client side.

You can also usethe -J char set command line option for thelsqlApp application
to specify a character set.

To determine which character sets are installed on your Adaptive Server, issue
the following SQL query on your server:

sel ect nane from syscharsets
go

Programmer’s Reference 35

Handling internationalization and localization

For the PureConverter class, if the designated CHARSET does not work with
the client’s Java Virtual Machine (VM), the connection failswith a
SQLException, indicating that you must set CHARSET to acharacter setthatis
supported by both Adaptive Server and the client.

When the TruncationConverter class is used, character truncation is applied
regardless of whether the designated CHARSET is 7-bit ASCII or not.

Improving character-set conversion performance

If you use multibyte character sets and need to improve driver performance,
you can use the SunloConverter class provided with the jConnect samples. See
“Character-set conversion” on page 113 for details.

Supported character sets

Table 2-4 lists the Sybase character sets that are supported by jConnect. The
table also lists the corresponding JDK byte converter for each supported
character set.

Although jConnect supports UCS-2, currently no Sybase databases or open
servers support UCS-2.

Adaptive Server versions 12.5 and later support a version of Unicode known
as the UTF-16 encoding.

Table 2-4 lists the character sets currently supported by Sybase.

36 jConnect for JDBC

CHAPTER 2 Programming Information

Table 2-4: Supported Sybase character sets

SybCharset name JDK byte converter
ascii_7 ASCII
bigs Big5
bigshk (see note) Bigs HKSCS
cp037 Cp037
cp437 Cp437
cp500 Cp500
cp850 Cp850
cp852 Cp852
cp855 Cp855
cp857 Cp857
cp860 Cp860
cp863 Cp863
cp864 Cp864
cp866 Cp866
cp869 Cp869
cp874 Cp874
cp932 MS932
cp936 GBK
cp950 Cp950
cpl250 Cpl1250
cpl251 Cpl251
cpl252 Cpl1252
cpl253 Cp1253
cpl254 Cpl254
cpl255 Cpl255
cpl256 Cpl1256
cpl257 Cpl1257
cpl258 Cpl258
deckanyji EUC_JP
eucgb EUC_CN
eucjis EUC_JP
eucksc EUC_KR
ibm420 Cp420
ibm918 Cp918
iso_1 1SO8859_1
15088592 1S08859-2

Programmer’s Reference 37

Handling internationalization and localization

SybCharset name JDK byte converter
15088595 1S08859_5
15088596 1SO8859_6
is088597 1S08859 7
is088598 1S08859 8
15088599 1S08859_9

isol15 1S08859_15 FDIS
koi8 KOI8 R

mac Macroman
mac_cyr MacCyrillic
mac_ee MacCentral Europe
macgreek MacGreek

macturk MacTurkish

gis MS932

tis620 MS874

utf8 UTF8

Note Thebig5hk character set will be supported only if you areusing JDK 1.3
or later.

European currency symbol support

38

jConnect version 4.1 and later support the use of the new European currency
symbol, or “euro” and its conversion to and from UCS-2 Unicode.

The euro has been added to the following Sybase character sets: cp1250,
cpl251, cpl252, cpl253, cpl254, cpl255, cpl256, cpl257, cpl258, cp874,
is0885915, and utf8.

To use the euro symbol:

» Usethe PureConverter class, a pure Java, multibyte character-set
converter. See “jConnect character-set converters’ on page 34 for more
information.

* Verify that the new character sets are installed on the server.

The euro symbol is currently supported only on Adaptive Server version
11.9.2 and later; Adaptive Server Anywhereversion 8.0 and later provides
support for the euro symbol.

jConnect for JDBC

CHAPTER 2 Programming Information

e Select the appropriate character set on the client. See “ Setting the
CHARSET connection property” on page 35 for more information.

Unsupported character sets

Thefollowing Sybase character sets are not supported in jConnect 5.x because
no JDK byte converters are analogous to the Sybase character sets:

e cplo47

e eucens
e greek8

e roman8
e turkish8

You can use these character sets with the TruncationConverter class aslong as
the application uses only the 7-bit ASCII subsets of these characters.

Working with databases

Programmer’s Reference

This section discusses database issues relevant to jConnect and includes these
topics:

e Implementing high availability failover support

e Performing server-to-server remote procedure calls

e Widetable support for Adaptive Server version 12.5 and later
e Accessing database metadata

e Using cursors with result sets

e Support for batch updates

e Updating a database from aresult set of a stored procedure

e Working with datatypes

39

Working with databases

Implementing high availability failover support

Overview

40

jConnect version 5.2 and later support the failover feature availablein
Adaptive Server version 12.0 and later.

Note Sybasefailover in ahigh availability systemis adifferent feature than
“connection failover.” Sybase strongly recommends that you read this section
very carefully if you want to use both.

Sybase failover allows you to configure two version 12.0 or later Adaptive
Servers as companions. If the primary companion fails, that server’s devices,
databases, and connections can be taken over by the secondary companion.

You can configure a high availability system either asymmetrically or
symmetrically.

An asymmetric configuration includes two Adaptive Servers, each physically
located on a different machine, that are connected so that if one of the servers
is brought down, the other assumes its workload. The secondary Adaptive
Server acts asa“ hot standby” and does not perform any work until failover
occurs.

A symmetric configuration also includes two Adaptive Servers running on
separate machines. However, if failover occurs, either Adaptive Server can act
asaprimary or secondary companion for the other Adaptive Server. In this
configuration, each Adaptive Server isfully functional with its own system
devices, system databases, user databases, and user logins.

In either setup, the two machines are configured for dual access, which makes
the disks visible and accessible to both machines.

You can enable failover in jConnect and connect a client application to an
Adaptive Server configured for failover. If the primary server fails over to the
secondary server, the client application aso automatically switches to the
second server and reestablishes network connections.

Note Refer to Using Sybase Failover in High Availability Systems Manual for
Adaptive Server for more detailed information.

jConnect for JDBC

CHAPTER 2 Programming Information

Requirements, dependencies, and restrictions

You must have two version 12.0 or later Adaptive Servers configured for
failover.

You must use jConnect version 5.2, or later. Earlier driver versions do not
support this feature.

Only changes that were committed to the database before failover are
retained when the client fails over.

You must set the REQUEST_HA_SESSION jConnect connection
property to true (see “ Setting connection properties’ on page 11).
jConnect event notification does not work when failover occurs. See
“Using event notification” on page 69.

Close all statements when they are no longer used. jConnect stores
information on statements to enable failover. If you do not close
statements, you will experience memory leaks.

Implementing failover in jConnect

Programmer’s Reference

To implement failover support in jConnect choose one of the following two
methods:

1 Usethetwo connection properties, REQUEST HA_SESSION and

SECONDARY_SERVER_HOSTPORT and set the following:
e set REQUEST_HA_SESSION to true

e setthe SECONDARY_SERVER HOSTPORT to the host name and
port number where your secondary server is listening (see “ Setting
connection properties’ on page 11, and the
'SECONDARY_SERVER_HOSTPORT' connection property in
Table 2-2).

Use JNDI to connect to the server (See “ Connecting to a server using
JNDI"). Include an entry for the primary server and aseparate entry for the
secondary server in the directory service information file required by
JNDI. The primary server entry will have an attribute (the HA OID) that
refersto the entry for the secondary server.

Using LDAP asthe service provider for INDI, there are three possible
formsthat this HA attribute can have:

41

Working with databases

» Reative Distinguished Name (RDN) — this form assumes that the
search base (typically provided by the java.naming.provider.url
attribute) combined with this attribute’s value is enough to identify
the secondary server. For example, assume the primary server is at
hostname: 4200 and the secondary server is at hostname:4202:

dn: servernanme=hapri mary, o=Sybase, c=US
1.3.6.1.4.1.897.4.2.5: TCP#l#host name 4200
1.3.6.1.4.1.897.4.2.15: servernane=hasecondary
obj ectcl ass: sybaseServer

dn: servernane=hasecondary, o=Sybase, c=US
1.3.6.1.4.1.897.4.2.5: TCP#1l#host name 4202
obj ectcl ass: sybaseServer

» Distinguished Name (DN) —thisform assumesthat the HA attribute’s
value uniquely identifies the secondary server, and may or may not

duplicate values found in the search base. For example:
n: servernane=hapri mary, o=Sybase, c=US
1.4.1.897.4.2.5: TCP#l#host nanme 4200
1.4.1.897.4.2.15: servernanme=hasecondary,
o=Sybase, c=US ou=Accounti ng
obj ectcl ass: sybaseServer

=R a

. S
.3.6. 1.
.3.6. 1.

dn: servernane=hasecondary, o=Sybase, c¢=US, ou=Accounting
1.3.6.1.4.1.897.4.2.5: TCP#1l#host name 4202
obj ectcl ass: sybaseServer

Noticethat hasecondary islocated in adifferent branch of the tree
(see the additional ou=Account i ng qudlifier).

e Full LDAP URL - this form assumes nothing about the search base.
The HA attribute is expected to be a fully-qualified LDAP URL that
isused to identify the secondary (it may even point to a different
LDAP server). For example:

42 jConnect for JDBC

CHAPTER 2 Programming Information

dn: servernane=hafail over, o=Sybase, c¢=US

1.3.6.1.4.1.897.4.2.5. TCP#l#host nane 4200

1.3.6.1.4.1.897.4.2.15:

| dap:/ /| dapserver: 386/ server name=secondary,
o=Sybase, c=US ou=Accounti ng

obj ectcl ass: sybaseServer

dn: servernane=secondary, o0=Sybase, c=US, ou=Accounting
1.3.6.1.4.1.897.4.2.5: TCP#1#host name 4202
obj ectcl ass: sybaseServer

* Inthedirectory service information file required by JNDI, set the
REQUEST_HA_SESSION connection property to true to enable a
failover session every time you make a connection.

The REQUEST_HA_SESSION connection property is used to
indicate that the connecting client wants to begin afailover session
with Adaptive Server version 12.0 or later, that is configured for
failover. Setting this property to true causes jConnect to attempt a
failover login. If you do not set this connection property, afailover
session will not start, even if the server is configured correctly. The
default value for REQUEST _HA_ SESSION isfalse.

Set the connection property like any other connection property. You
cannot reset the property once a connection has been made.

If you want more flexibility for requesting failover sessions, code the
client application to set REQUEST_HA_SESSION at runtime.

The following example shows connection information entered for the
database server SYBASE11 under an LDAP directory service:

dn: server nane=SYBASE11, o=MyConpany, c=US
1.3.6.1.4.1.897.4.2.5: TCP#1#tahiti 3456
1.3.6.1.4.1.897.4. 2. 10: REPEAT_READ=f al se&PACKETSI ZE=1024
1.3.6.1.4.1.897.4.2. 10: CONNECTI ON_FAI LOVER=f al se
1.3.6.1.4.1.897.4.2.11: pubs2

1.3.6.1.4.1.897.4.2.9:Tds

1.3.6.1.4.1.897. 4. 2. 15: ser ver name=SECONDARY
1.3.6.1.4.1.897.4.2.10: REQUEST_HA_ SESSI ON=t r ue

dn: ser ver nane=SECONDARY, o=M/Conpany, c=US
1.3.6.1.4.1.897.4.2.5: TCP#1#npor ea 6000

where “tahiti” isthe primary server and “moorea’ isthe secondary
companion server.

3 Reguest aconnection using JNDI and LDAP.

Programmer’s Reference 43

Working with databases

e jConnect usesthe LDAP server’s directory server to determine the
name and location of the primary and secondary servers:

/* get the connection */

Connection con = DriverManager. get Connecti on
("jdbc:sybase:jndi:ldap://|dap_server1: 983" +
"/ servername=Sybasell, o=MyConpany, c=US", props) ;

or
» Specify asearchbase:

props. put (Cont ext . PROVI DER_URL,
"l dap:/ /1 dap_server1: 983/ o=MyConpany, c=US");

Connecti on con=Driver Manager. get Connecti on
("j dbc: sybase: j ndi : server nane=Sybasell", props);

Logging in to the primary server

If an Adaptive Server isnot configured for failover, or for some reason cannot
grant afailover session, the client cannot log in, and the following warning

displays:

' The server denied your request to use the high-
availability feature.

Pl ease reconfigure your database, or do not request a
hi gh-avail ability session.'

Failing over to the secondary server

When failover occurs, the SQL exception JZOF2 is thrown:

‘ Sybase high-availability failover has occurred. The
current transaction is aborted, but the connection is
still usable. Retry your transaction.’

Theclient then automatically reconnectsto the secondary database using JINDI.
Note that:

» Theidentity of the database to which the client was connected and any
committed transactions are retained.

» Partialy read result sets, cursors, and stored procedure invocations are
lost.

» When failover occurs, your application may need to restart a procedure or
go back to the last completed transaction or activity.

44 jConnect for JDBC

CHAPTER 2 Programming Information

Failing back to the primary server

At some point, theclient will fail back from the secondary server to the primary
server. When failback occursis determined by the System Administrator who
issues sp_failback on the secondary server. Afterward, the client can expect the
same behavior and results on the primary server as documented in “ Failing
over to the secondary server” on page 44.

Performing server-to-server remote procedure calls

Programmer’s Reference

A Transact-SQL language command or stored procedure running on one server
can execute a stored procedure located on another server. The server to which
an application has connected logsin to the remote server, and executes aserver-
to-server remote procedure call.

An application can specify a“universal” password for server-to-server
communication; that is, a password used in all server-to-server connections.
Once the connection is open, the server uses this password to log in to any
remote server. By default, jConnect uses the current connection’s password as
the default password for server-to-server communications.

However, if the passwords are different on two servers for the same user and
that user is performing server-to-server remote procedure calls, the application
must explicitly define passwords for each server it plansto use.

jConnect versions 4.1 and later include a property that lets you set a universal
“remote”’ password or different passwordson several servers. jConnect letsyou
set and configure the property using the setRemotePassword() method in the
SybDriver class;

Properties connectionProps = new Properties();

public final void setRenotePassword(String server Nane,
String password, Properties connectionProps

To use this method, the application needs to import the SybDriver class, then
call the method:

i mport com sybase. j dbcx. SybDri ver;
SybDri ver sybDriver = (SybDriver)
Cl ass. for Name(" com sybase. j dbc2. j dbc. SybDriver").n
ewl nstance();
sybDri ver. set Renot ePasswor d
(server Nane, password, connecti onProps);

45

Working with databases

Note To set different remote passwords for various servers, repeat the
preceding call (appropriate for your version of jConnect) for each server.

This call adds the given server name-password pair to the given Properties
object, which can be passed by the application to DriverManager in
DriverManager.getConnection (server_url, props).

If serverName isNULL, the universal password will be set to password for
subsequent connections to all servers except the ones specifically defined by
previous calls to setRemotePassword().

When an application setsthe REMOTEPWD property, jConnect no longer sets
the default universal password.

Wide table support for Adaptive Server version 12.5 and later

46

Adaptive Server version 12.5 and later offers limits and parameters that are
larger than in previous versions of the database server. For example:

Note You must usejConnect 5.5 or later to access the wide table functionality
in Adaptive Server version 12.5 and later.

» Tables can contain 1,024 columns.
* Varchar and varbinary columns can contain more than 255 bytes of data.

* You can send and retrieve up to 2,048 parameters when invoking stored
procedures or inserting data into tables.

jConnect for JDBC

CHAPTER 2 Programming Information

To take advantage of this capability, jConnect version 5.5 and later users need
to set their JCONNECT _VERSION property to VERSION_6 or
VERSION_LATEST. Thiswill request that the server enable wide table
support.

Note jConnect continuesto work with an Adaptive Server version 12.5 and
later if you set the versionto below VERSION_6. However, if you try selecting
from atable that requires wide table support to fully retrieve the data, you may
encounter unexpected errors or data truncation.

You can also set theversionto VERSION_6 or VERSION_LATEST whenyou
access datafrom a Sybase server that does not support wide tables. Inthiscase,
the server ssmply ignores your request for wide table support.

Wide table support offers an extra benefit for jConnect users, besidesthelarger
number of columns and parameters—a greater amount of ResultSetMetaData.
For example, in versions of jConnect earlier than 5.5, the ResultSetMetaData
methods getCatalogName, getSchemaName, and getTableName all returned
“Not Implemented” SQL Exceptions because that metadata was not supplied
by the server. When you enable wide table support, the server now sends back
this information, and the three methods return useful information.

Accessing database metadata

Programmer’s Reference

To support JDBC DatabaseMetaData methods, Sybase provides a set of stored
procedures that jConnect can call for metadata about a database. These stored
procedures must be installed on the server for the JDBC metadata methods to
work.

If the stored procedures for providing metadata are not already installed in a
Sybase server, you can install them using stored procedure scripts provided
with jConnect:

e sgl_server.sgl installs stored procedures on pre-12.0 Adaptive Server
databases.

e sgl_server12.sqgl installs stored procedures on aversion 12.0 Adaptive
Server database.

e sgl_server12.5.5ql ingtalls stored procedures on Adaptive Server
databases of version 12.5 and later.

47

Working with databases

e ggl_asa.sgl ingtalls stored procedures on an Adaptive Server Anywhere
database.

Note The most recent version of these scripts is compatible with all versions
of jConnect.

See the Sybase jConnect for JDBC Installation Guide and Release Bulletin for
complete instructions on installing stored procedures.

In addition, to use the metadata methods, you must set the USE_ METADATA
connection property to true (its default value) when you establish a connection.

You cannot get metadata about temporary tables in a database.

Note The DatabaseMetaData.getPrimaryKeys() method finds primary keys
declared in atable definition (CREATE TABLE) or with alter table (ALTER
TABLE ADD CONSTRAINT). It does not find keys defined using
sp_primarykey.

Server-side metadata installation

M etadata support can be implemented in either the client (ODBC, JDBC) or in
the data source (server stored procedures). jConnect provides metadata support
on the server, which results in the following benefits:

e MaintainsjConnect’'s small size, which ensures the driver can be quickly
downloaded from the Internet.

e Gainsruntime efficiency from preloaded stored procedures on the data
source.

» Providesflexibility—jConnect can connect to a variety of databases.

Using cursors with result sets

48

jConnect 5.x implements many JDBC 2.0 cursor and update methods. These
methods make it easier to use cursors and to update rowsin atable based on
valuesin aresult set.

In IDBC 2.0, ResultSets are characterized by their type and their concurrency.
Thetypeand concurrency valuesare part of thejava.sql.ResultSet interface and
are described in its javadocs.

jConnect for JDBC

CHAPTER 2 Programming Information

Table 2-5identifiesthe characteristics of java.sql.ResultSet that are availablein
jConnect 5.x.

Table 2-5: java.sql.ResultSet options available in jConnect 5.x

Type
TYPE_FORWARD_ TYPE_SCROLL_ TYPE_SCROLL_
Concurrency ONLY INSENSITIVE SENSITIVE
CONCUR_READ_ONLY Supported in 5.x Supported in 5.x Not availablein 5.x
CONCUR_UPDATABLE Supported in 5.x Not availablein 5.x Not availablein 5.x

This section includes the following topics:

e Creating a cursor

* Positioned updates and deletes using JDBC 1.x methods

« Using acursor with a PreparedStatement object

e Support for SCROLL_INSENSITIVE result setsin jConnect

Creating a cursor
To create a cursor using jConnect there are two methods:
* SybStatement.setCursorName()

Use SybStatement.setCursorName(), to explicitly assign the cursor a
name. The signature for SybStatement.setCursorName() is:

void setCursorName(String name) throws SQLException;

* SybStatement.setFetchSize()

Use SybStatement.setFetchSize() to create a cursor and specify the
number of rowsreturned from the databasein each fetch. Thesignaturefor
SybStatement.setFetchSize() is:

void setFetchSize(int rows) throws SQLException;

When you use setFetchSize() to create acursor, thejConnect driver names
the cursor. To get the cursor’s name, use ResultSet.getCursorName().

Another way you can create cursorsisto specify thekind of ResultSet you want
returned by the statement, using the following JDBC 2.0 method on the
connection:

St atenent createStatenent (int resultSetType, int
resul t Set Concurrency)throws SQ. Exception

Programmer’s Reference 49

Working with databases

50

The type and concurrencies correspond to the types and concurrencies found
on the ResultSet interface listed in Table 2-5. If you request an unsupported
ResultSet, a SQL warning is chained to the connection. When the returned
Statement is executed, you will receive the kind of ResultSet that is most like
the one you requested. Seethe JDBC 2.0 specification for more details on this
method’s behavior.

If you do not use createStatement(), the default types of ResultSet are:

e If you cal only Statement.executeQuery(), then the ResultSet returned isa
SybResultSet that is TY PE_FORWARD_ONLY and
CONCUR_READ_ONLY.

» If you call setFetchSize() or setCursorName(), then the ResultSet returned
from executeQuery() isa SybCursorResultSet that is
TYPE_FORWARD_ONLY and CONCUR_UPDATABLE.

To verify that the kind of ResultSet object iswhat you intended, use the
following two ResultSet methods:

int getConcurrency() throws SQ.Exception;
int getType() throws SQ.Exception;

The basic steps for creating and using a cursor are:

1 Createthe cursor using Statement.setCursorName() or
SybStatement.setFetchSize().

2 Invoke Statement.executeQuery() to open the cursor for a statement and
return a cursor result set.

3 Invoke ResultSet.next() to fetch rows and position the cursor in the result
Set.

The following example uses each of the two methods for creating cursors
and returning aresult set. It al so uses ResultSet.getCursorName() to get the
name of the cursor created by SybStatement.setFetchSize().

/1 Wth conn as a Connection object, create a

/1 Statenent object and assign it a cursor using
/1 Statenent.setCursorName().

Statement stmt = conn.createStatenent();
stnt. set Cursor Nane("aut hor _cursor");

/1 Use the statement to execute a query and return
/1 a cursor result set.
ResultSet rs = stm.executeQuery("SELECT au_id,
au_l name, au_fnanme FROM aut hors
VWHERE city = 'CQakland' ");

jConnect for JDBC

CHAPTER 2 Programming Information

Programmer’s Reference

whil e(rs.next())
{

/1l Create a second statenent object and use

/1 SybStatenent.setFetchSize()to create a cursor
/] that returns 10 rows at a tine.

SybSt at enent syb_stm = conn.createStatenent();
syb_stnt. setFetchSi ze(10);

/1 Use the syb_stnt to execute a query and return
/'l a cursor result set.
SybCur sorResul t Set rs2 =
(SybCur sor Resul t Set) syb_st nt . execut eQuery
("SELECT au_id, au_l nanme, au_fname FROM
aut hors
WHERE city = '"Pinole'");
whil e(rs2. next())
{

/1 Get the name of the cursor created through the
/'l setFetchSize() nethod.
String cursor_nane = rs2.getCursorNane();

/1 For jConnect 5.x, create a third statenent
/1 object using the new nmet hod on Connecti on,
/1 and obtain a SCROLL_I NSENSI Tl VE Resul t Set .
/1 Note: you no |onger have to downcast the
/] Statenent or the Result Set.
Statenent stnmt = conn. createStatenent (
Resul t Set . TYPE_SCROLL_I NSENSI TI VE,
Resul t Set . CONCUR_READ ONLY) ;
Result Set rs3 = stnt.executeQuery
("SELECT ... [whatever]");
/1 Execute any of the JDBC 2.0 nethods that
/1 are valid for read only ResultSets.
rs3.next();
rs3. previous();
rs3.relative(3);
rs3.afterLast();

51

Working with databases

Positioned updates and deletes using JDBC 1.x methods

The following example shows how to use methodsin JDBC 1.x to do a
positioned update. The example creates two Statement objects, one for
selecting rows into a cursor result set, and the other for updating the database
from rowsin the result set.

Note Although thismanual provides sample coderelatingto JDBC 1.0and 2.0
methods, Sybase strongly suggests that you use JDBC 2.0 for ease of use and
portability.

/1l Create two statenent objects and create a cursor
/1 for the result set returned by the first
/] statenent, stnmtl. Use stntl to execute a query
/1 and return a cursor result set.
Statement stmt 1l = conn.createStatenent();
Statement stmt2 = conn.createStatenent();
stnt 1. set Cur sor Name(" aut hor _cursor");
ResultSet rs = stmt 1. execut eQuery("SELECT

au_i d, au_l nanme, au_f nane

FROM aut hors WHERE city = ' Oakl and’

FOR UPDATE OF au_l nane");

/!l Get the nane of the cursor created for stntl so
// that it can be used with stnt?2.
String cursor = rs.getCursorName();

/1l Use stnt2 to update the database fromthe
/1 result set returned by stntl.

String last_nanme = new String("Snmith");
while(rs.next())

{
if (rs.getString(l).equal s("274-80-9391"))
{
st nt 2. execut eUpdat e(" UPDATE aut hors "+
"SET au_l nanme = "+l ast_nane +
"WHERE CURRENT OF " + cursor);
}
}

Deletions in aresult set

The following example uses Statement object stmt2, from the preceding code,
to perform a positioned deletion:

52 jConnect for JDBC

CHAPTER 2 Programming Information

st nt 2. execut eUpdat e(" DELETE FROM aut hor s
WHERE CURRENT OF " + cursor);

Positioned updates and deletes using JDBC 2.0 methods

This section discusses JDBC 2.0 methods for updating columns in the current
cursor row and updating the database from the current cursor row in aresult
set. They are followed by an example.

Updating columns in aresult set

JDBC 2.0 specifies a number of methods for updating column values from a
result set in memory, on the client. The updated values can then be used to
perform an update, insert, or delete operation on the underlying database. All
of these methods are implemented in the SybCursorResultSet class.

Examples of some of the IDBC 2.0 update methods available in jConnect are:

voi d updateAscii Strean(String col umNane, java.io.|nputStream x,
int length) throws SQLException;
voi d updat eBool ean(int col uml ndex, bool ean x) throws
SQLExcepti on;
voi d updat eFl oat (i nt columlndex, float x) throws SQLException;
voi d updatelnt(String columNane, int x) throws SQ.Excepti on;
voi d updatelnt(int columlndex, int x) throws SQ.Exception;
voi d updat eCbj ect (String col umNanme, Cbject x) throws
SQLExcepti on;

Methods for updating the database from a result set

JDBC 2.0 specifies two new methods for updating or deleting rowsin the
database, based on the current valuesin aresult set. These methods are smpler
in form than Statement.executeUpdate() in JDBC 1.x and do not require a
cursor name. They are implemented in SybCursorResultSet:

void updateRow() throws SQLException;
void deleteRow() throws SQLException;

Note The concurrency of the result set must be CONCUR_UPDATABLE,
otherwise the above methods will raise an exception. For insertRow(), all table
columns that require non-null entries must be specified.

Methods provided on DatabaseMetaData dictate when these changes are
visible.

Programmer’s Reference 53

Working with databases

Example The following example creates a single Statement object that is used to return

54

acursor result set. For each row in the result set, column values are updated in
memory and then the database is updated with the row’s new column values.

/!l Create a Statenent object and set fetch size to
/1 25. This creates a cursor for the Statenent
/1 object Use the statenent to return a cursor
/'l result set.
SybSt at ement syb_stnt =
(SybSt at ement) conn. createStatenent () ;
syb_stnt.setFetchSi ze(25);
SybCur sor Resul t Set syb rs =
(SybCur sorResul t Set) syb_st nt . execut eQuer y(
"SELECT * fromTl WHERE ... ")

/1 Update each row in the result set according to
/1 code in the follow ng while | oop. jConnect

/| fetches 25 rows at a tine, until fewer than 25
/1 rows are left. Its last fetch takes any

/1 remaining rows.

whil e(syb_rs.next())

/1 Update colums 2 and 3 of each row, where
/1 colum 2 is a varchar in the database and
/1 colum 3 is an integer.
syb_rs.updateString(2, "xyz");
syb_rs. updat el nt (3, 100);
/1 Now, update the row in the database.
syb_rs. updat eRow() ;
}
/!l Create a Statenent object using the
/1 JDBC 2.0 nethod inplenmented in jConnect 5.x
Statenment stnt = conn. createSt at ement
(Resul t Set. TYPE_FORWARD _ONLY, Resul t Set . CONCUR_UPDATABLE) ;
/1 In jConnect 5.x, downcasting to SybCursorResultSet is not
/'l necessary. Update each row in the ResultSet in the sane
/1l manner as above
while (rs.next())
{
rs.updateString(2, “xyz”);
rs. updatelnt(3,100);
rs. updat eRow) ;
/1 Use the Statement to return an updatabl e Result Set
ResultSet rs = stnt.executeQuery(“SELECT * FROM T1 WHERE. ..");

}

jConnect for JDBC

CHAPTER 2 Programming Information

Deleting a row from a ResultSet

To delete arow from a cursor result set, you can use
SybCursorResultSet.deleteRow() as follows:

whi | e(syb_rs. next())

{
int col3 = getint(3);
if (col3 >100)
{
syb_rs. del eteRow);
}
}

Inserting arow into a ResultSet

The following example illustrates how to do inserts using the JDBC 2.0 API.
Thereis no need to downcast to a SybCursorResultSet.

/] prepare to insert

rs. noveTol nsert Row() ;

/1 popul ate new row wi th col um val ues
rs.updateString(1, "New entry for col 1");
rs.updatelnt (2, 42);

/'l insert newrowinto db

rs.insertRow);

/1 return to current rowin result set

rs. noveToCurrent Row) ;

Using a cursor with a PreparedStatement object

Programmer’s Reference

Onceyou create aPreparedStatement object, you can useit multiple timeswith
the same or different values for itsinput parameters. If you use acursor with a
PreparedStatement object, you need to close the cursor after each use and then
reopen the cursor to use it again. A cursor is closed when you close its result
set (ResultSet.close()). It is opened when you execute its prepared statement
(PreparedStatement.executeQuery()).

The following example shows how to create a PreparedStatement object,
assign it acursor, and execute the PreparedStatement object twice, closing and
then reopening the cursor.

/] Create a prepared statenent object with a
/] parameterized query.

PreparedSt atement prep_stnt =

conn. prepar eSt at ement (

"SELECT au_id, au_l name, au_fnane "+

55

Working with databases

"FROM aut hors WHERE city = ? "+
"FOR UPDATE OF au_l nane");

//Create a cursor for the statement.
prep_stnt. set Cur sor Nane("aut hor _cursor");

/1 Assign the paraneter in the query a val ue.
/1 Execute the prepared statenment to return a
/'l result set.

prep_stnt.setString(1, "OCakland");

ResultSet rs = prep_stnt. executeQuery();

// Do sone processing on the result set.
whil e(rs. next())

{
}

// Close the result, which also closes the cursor.
rs.close();

/1 Execute the prepared statement again with a new
/| paraneter val ue.

prep_stnt.setString(1,"San Francisco");

rs = prep_stmt.executeQery();

/1 reopens cursor

Support for SCROLL_INSENSITIVE result sets in jConnect

jConnect version 5.x supports only TYPE_SCROLL_INSENSITIVE result
Sets.

56 jConnect for JDBC

CHAPTER 2 Programming Information

Programmer’s Reference

jConnect uses the Tabular Data Stream (TDS)—Sybase’s proprietary
protocol—to communicate with Sybase database servers. As of jConnect 5.x,
TDS does not support scrollable cursors. To support scrollable cursors,
jConnect caches the row data on demand, on the client, on each call to
ResultSet.next(). However, when the end of the result set is reached, the entire
result set is stored in the client’s memory. Because this may cause a
performance strain, we recommend that you use
TYPE_SCROLL_INSENSITIVE result sets only when the result set is
reasonably small.

Note Whenyou use TYPE_SCROLL_INSENSITIVE ResultSets in jConnect
5.x, you canonly call theisLast() method after the last row of the ResultSet has
been read. Calling isLast() before the last row is reached will cause an
UnimplementedOperationException to be thrown.

jConnect provides the ExtendResultSet in the sample2 directory; this sample
providesalimited TYPE_SCROLL_INSENSITIVE ResultSet using JDBC 1.0
interfaces.

This implementation uses standard JDBC 1.0 methods to produce a scroll-
insensitive, read-only result set; that is, astatic view of the underlying datathat
is not sensitiveto changes made whiletheresult set isopen. ExtendedResultSet
caches all of the ResultSet rows on the client. Be cautious when you use this
class with large result sets.

The sample.ScrollableResultSet interface:
* Isanextension of JDBC 1.0 java.sql.ResultSet.

« Definesadditional methodsthat have the same signatures asthe JDBC 2.0
java.sgl.ResultSet.

e Doesnot contain all of the JDBC 2.0 methods. The missing methods deal
with modifying the ResultSet.

The methods from the JDBC 2.0 API are:

bool ean previous() throws SQLException;

bool ean absol ute(int row) throws SQ.Exception;
bool ean relative(int rows) throws SQLException;
bool ean first() throws SQLException;

bool ean last() throws SQLException;

voi d beforeFirst() throws SQ.Exception;

void afterLast() throws SQLException;

bool ean isFirst() throws SQ.Exception;

bool ean isLast() throws SQ.Excepti on;

57

Working with databases

58

bool ean i sBeforeFirst() throws SQ.Excepti on;
bool ean i sAfterLast() throws SQLException;

int getFetchSize() throws SQLException;

voi d setFetchSi ze(int rows) throws SQLExcepti on;
int getFetchDirection() throws SQ.Exception;

voi d setFetchDirection(int direction) throws
SQLException;

int getType() throws SQ.Exception;

int getConcurrency() throws SQ.Exception;

int getRow() throws SQ.Excepti on;

To use the new sample classes, create an ExtendedResultSet using any JDBC
1.0java.sql.ResultSet. Below are the relevant piecesof code (assumeaJaval.l
environment):

/1 inport the sanple files
i mport sanple. *;
//inmport the JDBC 1.0 cl asses
i mport java.sql.*;
/1 connect to some db using sone driver;
/1 create a statenment and a query;
/1l Get a reference to a JDBC 1.0 Result Set
ResultSet rs = stmt.executeQuery(_query);
/'l Create a ScrollableResultSet with it
Scrol | abl eResul t Set srs = new Ext endedResul t Set(rs);
/'l invoke nethods fromthe JDBC 2.0 API
srs. beforeFirst();
/1 or invoke nmethods fromthe JDBC 1.0 API
if (srs.next())

String columl = srs.getString(1);

Figure 2-1 is a class diagram that shows the relationships between the new
sample classes and the JIDBC API.

jConnect for JDBC

CHAPTER 2 Programming Information

Figure 2-1: Class diagram

java.sql.ResultSet
(JDBC 1.0 API)

extends

sample.ScrollableResultSet
(adds some methods
from JDBC 2.0 API)

implements

sample.ExtendedResultSet
(wrapper for
java.sgl.ResultSet)

See the IDBC 2.0 API at http://java.sun.conVproducts/jdbc/jdbcse2.html for
more details.

Support for batch updates

Batch updates allow a Statement object to submit multiple update commands
as one unit (batch) to an underlying database for processing together.

Note To use batch updates, you must install the latest metadata scripts
provided in the sp directory under your jConnect installation directory.

Programmer’s Reference 59

Working with databases

See BatchUpdates.java in the sample2 subdirectories for an example of using
batch updates with Statement, PreparedStatement, and CallableStatement.

jConnect also supports dynamic PreparedStatements in batch.

Implementation notes

jConnect implements batch updates as specified in the JDBC 2.0 AP, except
as described below.

60

If the IDBC 2.0 standard for implementing —
BatchUpdateException.getUpdateCounts() is modified or relaxed in the
future, jConnect will continue to implement the original standard by
having BatchUpdateException.getUpdateCounts() return an int[] length of
M < N, indicating that the first M statements in the batch succeeded, that
the M+1 statement failed, and M+2..N statements were not executed;
where “N” equalsthe total statementsin the batch.

Batch updates of stored procedures—to call stored procedures in batch
(unchained) mode, you must create the stored procedure in unchained
mode. For more information, see “ Stored procedure executed in
unchained transaction mode” on page 109.

Adaptive Server version 11.5.x and later —if the server encountersan error
during batch execution, BatchUpdateException.getUpdateCounts() will
return only an int[] length of zero. The entire transaction isrolled back if
an error is encountered, resulting in zero successful rows.

Note Thetransactionisnot rolled back if the error isaduplicate key row
insert (see next note for more information).

Adaptive Server —aduplicate key row insertion does not result in the
termination and rollback of batch statements. The server will continue
processing the statementsin the batch until you issue acancel, or the batch
completes or encounters an error, other than aduplicate key row insertion.
Because jConnect sends a cancel to the server when it detects any
exception (including duplicate key row insertion) during batch processing,
it isimpossible to determine exactly how much of the batch the server
executed before receiving the cancel. Therefore, Sybase strongly
recommends that in accordance with the JIDBC specification, you should
execute batches inside of transactions with autoCommit set to false. In
doing it thisway, you can roll back your transactions and return the
database to a known state before retrying the batch.

jConnect for JDBC

CHAPTER 2 Programming Information

e Adaptive Server version 11.0.1 —returns O (zero) rows affected for stored
procedures.

e SQL Anywhere version 5.5.x:

e SQL Anywhere version 5.5.x does not allow you to obtain inserted
row counts from stored procedures that contain inserts. For example:

create proc sp_A as insert tableA values (1,

‘“hello A)
create proc sp_B
as

insert tableA values (1, ‘hello A")
updat e tabl eA set col 1=2
create proc sp_C
as
updat e tabl eA set col 1=2
del ete tabl eA

Running executeBatch on the preceding stored procedures would
result in, respectively:

0 Rows Affected
1 Rows Affected
2 Rows Affected

e Thereisno support for dynamic PreparedStatements in batch.

e Because SQL Anywhere 5.5.x does not natively support batch
updates according to the JDBC 2.0 specification, batch updates are
carried out in an executeUpdate loop.

« Batch updates in databases that do not support batch updates — jConnect
carries out batch updates in an executeUpdate loop even if your database
does not support batch updates. This allows you to use the same batch
code, regardless of the database to which you are pointing.

See Qun Microsystems, Inc. JIDBC™ 2.0 API for more details on batch updates.

Updating a database from a result set of a stored procedure

Programmer’s Reference

jConnect includes update and del ete methods that allow you to get a cursor on
the result set returned by a stored procedure. You can then use the cursor’s
position to update or delete rowsin the underlying table that provided the result
set. The methods are in SybCursorResultSet:

void updateRow(String tableName) throws SQLEXxception;

61

Working with databases

void deleteRow(String tableName) throws SQLException;

The tableName parameter identifies the database table that provided the result
Set.

To get acursor on the result set returned by a stored procedure, you need to use
either SybCallableStatement.setCursorName() or
SybCallableStatement.setFetchSize() before you execute the callable statement
that contains the procedure. The following example shows how to create a
cursor ontheresult set of astored procedure, update valuesin the result set, and
then update the underlying table using the SybCursorResultSet.update()
method:

/1l Create a Call abl eStatement object for executing the stored
/1l procedure.
Cal | abl eSt at enent sproc_stnmt =

conn. prepareCal |l ("{call update_titles}");

/! Set the nunber of rows to be returned fromthe database with
/! each fetch. This creates a cursor on the result set.
(SybCal | abl eSt at enent) sproc_st nt . set Fet chSi ze(10) ;

// Execute the stored procedure and get a result set fromit.
SybCur sor Resul t Set sproc_result = (SybCursorResultSet)
sproc_stnt. executeQuery();

/1 Move through the result set row by row, updating values in the
/1 cursor’s current row and updating the underlying titles table
/1 with the nodified row val ues.

whi |l e(sproc_result.next())

{
sproc_result.updateString(...);
sproc_result.updatelnt(...);
sproc_result.updateRowmtitles);
}

Working with datatypes

Sending numeric data

jConnect has added the SybPreparedStatement extension to support the way
Adaptive Server handles the NUMERIC datatype where precision (total digits)
and scale (digits after the decimal) can be specified.

62 jConnect for JDBC

CHAPTER 2 Programming Information

The corresponding datatype in Java—java.math.BigDecimal—is slightly
different, and these differences can cause problems when jConnect
applications use the setBigDecimal method to control values of an input/output
parameter. Specifically, there are cases where the precision and scale of the
parameter must precisely match that precision and scale of the corresponding
SQL object, whether it is a stored procedure parameter or a column.

To give jConnect applications fuller control over the setBigDecimal method,
The SybPreparedStatement extension has been added with this method:

public void setBigDecimal (int paraneterlndex, BigDecimal X, int scale,
int precision) throws SQ.Exception

See the SybPrepExtension.java sample in the /sample2 subdirectories under
your jConnect installation directory for more information.

Updating image data in the database

jConnect has a TextPointer class with sendData() methods for updating an
image column in an Adaptive Server or Adaptive Server Anywhere database.
In earlier versions of jConnect, you had to send image data using the
setBinaryStream() method in java.sgl.PreparedStatement. The
TextPointer.sendData() methods use java.io.InputStream and greatly improve
performance when you send image datato an Adaptive Server database.

Warning! The TextPointer class has been deprecated; that is, it isno longer
recommended and may cease to exist in a future version of jConnect.

If your data server is Adaptive Server version 12.5 or later or Adaptive Server
Anywhere version 6.0 or later, use the standard JDBC form to send image data:

Prepar edSt at enent . set Bi naryStrean(i nt parani ndex,
| nput Stream i mage)

To obtain instances of the TextPointer class, you can use either of two
getTextPtr() methods in SybResultSet:

public TextPointer getTextPtr(String columnName)
public TextPointer getTextPtr(int columnindex)

Public methods in the TextPointer class

The com.sybase.jdbc package contains the TextPointer class. Its public method
interfaceis:

Programmer’s Reference 63

Working with databases

Getting a TextPointer
object

64

public void sendData(InputStream is, boolean log)
throws SQLException

public void sendData(InputStream is, int length,
boolean log) throws SQLEXxception

public void sendData(InputStream is, int offset,
int length, boolean log) throws SQLException

public void sendData(byte[] bytelnput, int offset,
int length, boolean log) throws SQLEXception

sendData(InputStream is, boolean log) — Updates an image column with datain
the specified input stream.

sendData(InputStream is, int length, boolean log) — updates an image column
with datain the specified input stream. length isthe number of bytesbeing sent.

sendData(InputStream is, int offset, int length, boolean log) — updates an image
column with datain the specified input stream, starting at the byte offset given
in the offset parameter and continuing for the number of bytes specified in the
length parameter.

sendData(byte[] bytelnput, int offset, int length, boolean log) —updatesacolumn
with image data contained in the byte array specified in the bytel nput
parameter. The update starts at the byte offset given in the offset parameter and
continues for the number of bytes specified in the length parameter.

Each method has alog parameter. The log parameter specifies whether image
dataisto befully logged in the database transaction log. If the log parameter is
set to true, the entire binary image is written into the transaction log. If thelog
parameter is set to false, the update islogged, but the image itself is not
included in the log.

Updating an image column with TextPointer.sendData()

To update a column with image data:

1 Get aTextPointer object for the row and column that you want to update.
2 Use TextPointer.sendData() to execute the update.

The next two sectionsillustrate these steps with an example. In the example,
image datafrom thefile Anne_Ringer.gif is sent to update the pic column of the
au_pix table in the pubs2 database. The update is for the row with author ID
899-46-2035.

text and image columns contain timestamp and page-location information that
is separate from their text and image data. When datais selected from atext or
image column, this extrainformation is “hidden” as part of the result set.

jConnect for JDBC

CHAPTER 2 Programming Information

A TextPointer object for updating an image column requires this hidden
information, but does not need theimage portion of the column data. To get this
information, you need to select the column into aResultSet object and then use
SybResultSet.getTextPtr() (see the example that follows the next paragraph).
SybResultSet.getTextPtr() extracts text-pointer information, ignores image
data, and creates a TextPointer object.

When a column contains a significant amount of image data, selecting the
column for one or more rows and waiting to get all the dataiis likely to be
inefficient, sincethedataisnot used. You can shortcut this process by using the
set textsize command to minimize the amount of datareturned in apacket. The
following code example for getting a TextPointer object includes the use of set
textsize for this purpose.

/*

* Define a string for selecting pic colum data for author ID

* 899-46- 2035.

*/

String get Col umbData = "sel ect pic fromau_pi x where au_id ="' 899-46-2035"";

*

Use set textsize to return only a single byte of colum data
to a Statenment object. The packet with the columm data will
contain the "hidden" information necessary for creating a

* Text Poi nter object.

*/

Statenent stmt= connection.createStatenent();

stnt . execut eUpdat e("set textsize 1");

* X ¥ T~

/*

* Sel ect the colum data into a ResultSet object--cast the

* ResultSet to SybResultSet because the getTextPtr method is

* in SybResultSet, which extends Result Set.

*/

SybResul t Set rs = (SybResultSet)stnt.executeQuery(getCol umbat a);

/*

* Position the result set cursor on the returned colum data
* and create the desired TextPointer object.

*/

rs.next();

Text Pointer tp = rs.getTextPtr("pic");

/*
* Now, assuming we are only updating one row, and won't need

Programmer’s Reference 65

Working with databases

* the mininumtextsize set for the next return fromthe server,
* we reset textsize to its default val ue.

*/

st nt. execut eUpdat e("set textsize 0");

Exgcuting rt]he The following code uses the TextPointer object from the preceding section to
update wit ; ith i i i ; ;
TextPointer sendData update the pic column with image data in the file Anne_Ringer.gif.
/ *
*First, define an input streamfor the file.
*/

FilelnputStreamin = new Fil el nput Streanm("Anne_Ri nger.gif");

/*

* Prepare to send the input streamwi thout |ogging the image data
* in the transaction |og.

*/

bool ean 1 og = fal se;

/*

* Send the inage data in Anne_Ringer.gif to update the pic
* colum for author | D 899-46-2035.

*/

tp.sendData(in, |og);

See the TextPointers.java sample in the sample2 subdirectories under your
jConnect installation directory for more information.

Using text data

66

In earlier versions, jConnect used a TextPointer classwith sendData() methods
for updating atext columnin an Adaptive Server or Adaptive Server Anywhere
database.

The TextPointer class has been deprecated; that is, it isno longer recommended
and may cease to exist in afuture version of Java.

If your data server is Adaptive Server 12.5 or later or Adaptive Server
Anywhere version 6.0 or later, use the standard JDBC form to send text data:

Prepar edSt at ement . set Ascii Stream(int paranl ndex,
I nput Stream text, int |ength)

or

jConnect for JDBC

CHAPTER 2 Programming Information

or

Pr epar edSt at enent . set Uni codeStrean(i nt param ndex,
Input Streamtext, int |ength)

Prepar edSt at ement . set Char act er St rean(i nt par am ndex,
Reader reader, int |ength)

Using Date and Time datatypes

Adaptive Server versions 12.5.1 and later offer support for the SQL date and
time datatypes. Previously, Adaptive Server offered only support for the
datetime and smalldatetime datatypes. These datatypes were limited for the
following reasons:

Implementation notes

Programmer’s Reference

There was not away to have separate time and date datatypes.

Datesprior to 1/1/1753 wereillegal. Datetime val ues could hold only dates
between 1/1/1753 and 12/31/9999.

When JDBC clients used the setTime and setDate methods to insert
java.sgl.Time or java.sgl.Date methods, the values were converted to
datetime datatypes in the server. This conversion resulted in the addition
of adefault date or time to the insert value supplied by the client.

The addition of the date and time datatypes provides the following advantages:

Date values can now be between Jan. 1, 0001 and Dec. 31, 9999, exactly
matching the allowable valuesin java.sgl.Date.

A direct mapping now exists between java.sgl.Date and the date dataype,
aswell as between java.sgl.Time and the time datatype.

The date and time datatypes can be used only with jConnect 5.5 and later. To
use them, ajConnect client must set the driver version to 6. To do so, the client
can use the SybDriver.setVersion() method, or use the
JCONNECT_VERSION connection property.

You will not have to change any of the application code if you decide to
use the date and time datatypes by setting the version to 6.

67

Implementing advanced features

If you select from atable that contains adate or time column, and you have
not enabled date/time support in jConnect (by setting the version), the
server will try to convert the date or time to a datetime value before
returning it. This can cause problems if the date to be returned is prior to
1/1/1753. Inthat case, aconversion error will occur, and the database will
inform you of the error.

Adaptive Server Anywhere supports adate and time datatype, but the date
and time datatypes are not yet directly compatible with those in Adaptive
Server version 12.5.1 and later. Using jConnect, you should continue to
use the datetime and smalldatetime datatypes when communicating with
Adaptive Server Anywhere.

The maximum value in a datetime column in Adaptive Server Anywhere
is 1-1-7911 00:00:00.

Using jConnect you will receive conversion errorsif you attempt to insert
dates prior to 1/1/1753 into datetime columns or parameters

Refer to the Adaptive Server manuals for more information on the date
and time datatypes; of specia note is the section on allowable implicit
conversions.

If you use getObject() with an Adaptive Server date, time, or datetime
column, the value returned will be, respectively, ajava.sgl.Date,
java.sgl.Time, or java.sgl. Timestamp datatype.

Char/Varchar/Text datatypes and getByte()

Do not use rs.getByte() on achar, univarchar, unichar, varchar, or text field
unless the datais hex, octal, or decimal.

Implementing advanced features

This section describes how to use advanced jConnect features and contains the
following topics:

68

Using event notification
Handling error messages
Storing Java objects as column datain atable

Dynamic class loading

jConnect for JDBC

CHAPTER 2 Programming Information

« JDBC 2.0 optional package extensions support

Using event notification

Programmer’s Reference

You can use the jConnect event notification feature to have your application
notified when an Open Server procedure is executed.

To use this feature, you must use the SybConnection class, which extends the

Connection interface. SybConnection contains aregWatch() method for turning
event notification on and aregNowatch() method for turning event notification
off.

Your application must also implement the SybEventHandler interface. This
interface contains one public method, void event(String proc_name, ResultSet
params), which is called when the specified event occurs. The parameters of
the event are passed to event() and it tells the application how to respond.

To use event notification in your application, call SybConnection.regwatch() to
register your application in the notification list of aregistered procedure. Use
this syntax:

SybConnection.regWatch(proc_name,eventHdIr,option)

e proc_nameisaString that is the name of the registered procedure that
generates the notification.

e eventHdler isan instance of the SybEventHandler class that you
implement.

e optioniseither NOTIFY_ONCE or NOTIFY_ALWAYS. Use
NOTIFY_ONCE if you want the application to be notified only the first
time a procedure executes. Use NOTIFY _ALWAY Sif you want the
application to be notified every time the procedure executes.

Whenever an event with the designated proc_name occurs on the Open Server,
jConnect calls eventHdlir.event() from a separate thread. The event parameters
are passed to eventHdIr.event() when it is executed. Because it is a separate
thread, event notification does not block execution of the application.

If proc_nameis not aregistered procedure, or if Open Server cannot add the
client to the notification list, the call to regwatch() throws a SQL exception.

To turn off event notification, use this call:

69

Implementing advanced features

SybConnect i on. r egNoWat ch(pr oc_nan®)

Note When you use Sybase event notification extensions, the application
needs to call the close() method on the connection to remove a child thread
created by thefirst call to regwatch(). Failing to do so may cause the Virtual

Machine to hang when exiting the application.

Event notification example

The following example shows how to implement an event handler and then
register an event with an instance of your event handler, once you have a

connection:

public class MyEvent Handl er inpl enents SybEvent Handl er

{

70

/! Declare fields and constructors, as needed.

public MyEvent Handl er (Stri ng event nane)

{
}
/1 | npl enent SybEvent Handl er. event.
public void event(String event Nane, ResultSet parans)
{
try
{

/1 Check for error nessages received prior to event
/1 notification.

SQLWar ni ng sql w = par ans. get War ni ngs() ;

if sglw!= null

{

/1 process errors, if any

}
/1 process parans as you would any result set wth
/1l one row.
Resul t Set Met aDat a rsnd = par ans. get Met abDat a() ;
i nt nunCol utms = rsnd. get Col umCount ();
whil e (parans. next()) /1 optional
{

for (int i = 1; i <= nunCol umms; i ++)

{

System out . println(rsnd. get Col umNane(i) + " =

jConnect for JDBC

CHAPTER 2 Programming Information

' + parans.getString(i));
}
/| Take appropriate action on the event. For exanple,
/'l perhaps notify application thread.

}
}
catch (SQ.Exception sqge)
{
/'l process errors, if any
}

}
}

public class MyProgram

{

/1 Get a connection and register an event with an instance
/1 of MyEvent Handl er.

Connection conn = Driver Manager. get Connection(...);
MyEvent Handl er nyHdl r = new MEvent Handl er (" MY_EVENT") ;

/1 Register your event handl er.
((SybConnecti on) conn). regWat ch("MY_EVENT", nyHdlr,
SybEvent Handl er . NOTI FY_ALWAYS) ;

conn. r egNoVat ch(" MY_EVENT") ;
conn. cl ose();

}

Handling error messages

jConnect providestwo classesfor returning Sybase-specific error information,
SybSQLException and SybSQLWarning, as well as a SybMessageHandler
interface that allows you to customize the way jConnect handles error
messages received from the server.

Programmer’s Reference 71

Implementing advanced features

Retrieving Sybase-specific error information

jConnect provides an Eedinfo interface that specifies methods for obtaining
Sybase-specific error information. The Eedinfo interface isimplemented in
SybSQLException and SybSQLWarning, which extend the SQLException and
SQLWarning classes.

72

SybSQLException and SybSQLWarning contain the following methods:

public ResultSet getEedParams();

Returns aone-row result set containing any parameter values that
accompany the error message.

public int getStatus();

Returnsa“1” if there are parameter values, returnsa“0” if there are no
parameter values in the message.

public int getLineNumber();

Returns the line number of the stored procedure or query that caused the
error message.

public String getProcedureName();

Returns the name of the procedure that caused the error message.
public String getServerName();

Returns the name of the server that generated the message.

public int getSeverity();

Returns the severity of the error message.

public int getState();

Returns information about the internal source of the error message in the
server. For use by Sybase Technical Support only.

public int getTranState();

Returns one of the following transaction states:

* 0 Theconnectionis currently in an extended transaction.
» 1 The previous transaction committed successfully.

» 3 Theprevious transaction aborted.

jConnect for JDBC

CHAPTER 2 Programming Information

Some error messages may be SQLException or SQLWarning messages, without
being SybSQLException or SybSQLWarning messages. Your application should
check the type of exception it is handling before it downcasts to
SybSQLEXxception or SybSQLWarning.

Customizing error-message handling

Programmer’s Reference

You can use the SybMessageHandler interface to customize the way jConnect
handles error messages generated by the server. Implementing
SybMessageHandler in your own classfor handling error messages can provide
the following benefits:

e “Universal” error handling

Error-handling logic can be placed in your error-message handler, instead
of being repeated throughout your application.

e “Universal” error logging

Your error-message handler can contain the logic for handling al error
logging.
* Remapping of error-message severity, based on application requirements.

Your error-message handler can contain logic for recognizing specific
error messages and downgrading or upgrading their severity based on
application considerations rather than the server’s severity rating. For
example, during a cleanup operation that deletes old rows, you might want
to downgrade the severity of amessage that arow does not exist; you may
want to upgrade the severity in other circumstances.

Note Error-message handlersimplementing the SybMessageHandler interface
only receive server-generated messages. They do not handle messages
generated by jConnect.

When jConnect receives an error message, it checksto seeif a
SybMessageHandler class has been registered for handling the message. If so,
jConnect invokes the messageHandler() method. The messageHandler()
method accepts a SQL exception as its argument, and jConnect processes the
message based on what value is returned from messageHandler(). The error-
message handler can:

¢ Return the SQL exception asis.

e Return anull. Asaresult, jConnect ignores the message.

73

Implementing advanced features

e CreateaSQL warning from a SQL exception, and returnit. Thisresultsin
the warning being added to the warning-message chain.

e If the originating message is a SQL warning, messageHandler() can
evaluate the SQL warning as urgent and create and return a SQL exception
to be thrown once contral is returned to jConnect.

Installing an error-message handler

You caninstall an error-message handl er implementing SybMessageHandler by
calling the setMessageHandler() method from SybDriver, SybConnection, or
SybStatement. If you install an error-message handler from SybDriver, all
subsequent SybConnection objects inherit it. If you install an error-message
handler from aSybConnection object, it isinherited by all SybStatement objects
created by that SybConnection.

This hierarchy only applies from the time the error-message handler object is
installed. For example, if you create a SybConnection object, myConnection,
and then call SybDriver.setMessageHandler() to install an error-message
handler object, myConnection cannot use that object.

To return the current error-message handler object, use
getMessageHandler().

Error-message-handler example

i mport j
i nport
i nport
i mport
i mport
i mport

public

{

74

stati
stati
stati
stati
stati
stati
stati

publ i

The following example uses jConnect version 5.2.

ava.io.*;

java.sql.*;

com sybase. j dbcx. SybMessageHandl er;
com sybase. j dbcx. SybConnecti on;
com sybase. j dbcx. SybSt at enment ;
java.util.*;

cl ass MyApp

¢ SybConnection conn = null;

c SybStatenment stnt = null

c ResultSet rs = null;

c String user = "guest";

c String password = "sybase";

c String server = "jdbc:sybase: Tds: 192. 138. 151. 39: 4444";
c final int AVO D _SQLE = 20001;

My App()

jConnect for JDBC

CHAPTER 2 Programming Information

try

Cl ass. for Name(" com sybase. j dbc2. j dbc. SybDri ver"). newl nst ance;
Properties props = new Properties();
props. put ("user", user);
props. put (" password", password);
conn = (SybConnecti on)
Dri ver Manager . get Connecti on(server, props);
conn. set MessageHand! er (new NoResul t Set Handl er ()) ;
stnmt =(SybStatement) conn.createStatenment();
st nt. execut eUpdat e("rai serror 20001 'your error'");

for (SQWarning sqw = _stnt.get Warni ngs();
sqw !'= nul | ;
sqw = sqgw. get Next ar ni ng()) ;

{
if (sqw. getErrorCode() == AVO D_SQE);
Systemout.printin("Error" + sqw. get Error Code() +
"'was found in the Statenment’s warning list.");
br eak;
}
}

stnt.close();
conn. cl ose();

}

cat ch(Exception e)

{
System out . printl n(e.get Message());
e.printStackTrace();

}

}

cl ass NoResul t Set Handl er i npl ements SybMessageHandl! er

publ i c SQ.Excepti on nessageHandl er (SQLExcepti on sqge)
{
int code = sqe.getErrorCode();
if (code == AVO D_SQLE)
{
Systemout.println("User " + _user + " downgrading " +
AVO D SQLE + " to a warning");
sgqe = new SQLWar ni ng(sge. get Message(),
sge. get SQLSt at e(), sqe. get Error Code()) ;

Programmer’s Reference 75

Implementing advanced features

return sqge,;

}
}
public static void main(String args[])
{
new MyApp();
}

Storing Java objects as column data in a table

Some database products enable you to directly store Java objects as column
datain adatabase. In such databases, Java classes are treated as datatypes, and
you can declare a column with a Java class as its datatype.

jConnect supports storing Java objects in a database by implementing the
setObject() methods defined in the PreparedStatement interface and the
getObject() methods defined in the CallableStatement and ResultSet interfaces.
This alows you to use jConnect with an application that uses native JDBC
classes and methods to directly store and retrieve Java objects as column data.

Note To use getObject() and setObject(), Set the jConnect version to
VERSION_4 or later. See “ Setting the jConnect version” on page 6.

The following sections describe the requirements and procedures for storing
objects in atable and retrieving them using JDBC with jConnect:

e Prerequisites for storing java objects as column data
* Sending Java objects to a database

» Receiving Java objects from the database

Note Adaptive Server version 12.0 and later and Adaptive Server Anywhere
version 6.0.x and later can store Java objectsin atable, with some limitations.
See the jConnect for JDBC Release Bulletin for more information.

Prerequisites for storing java objects as column data

To store Java objects belonging to a user-defined Java class in a column, three
requirements must be met:

76 jConnect for JDBC

CHAPTER 2 Programming Information

e Theclassmustimplement thejava.io.Serializable interface. Thisisbecause
jConnect uses native Java serialization and deserialization to send objects
to a database and receive them back from the database.

e Theclassdefinition must be installed in the destination database, or you
must be using the DynamicClassLoader (DCL) to load aclassdirectly from
an Adaptive Server Anywhere or an Adaptive Server server and useit as
if it was present in the local CLASSPATH. See “Dynamic class loading”
on page 80 for more information.

e Theclient system must have the class definition in a.classfile that is
accessible through the local CLASSPATH environment variable.

Sending Java objects to a database

To send an instance of a user-defined class as column data, use one of the
following setObject() methods, asspecified in the PreparedStatement interface:

voi d set Qbj ect (int paraneterlndex, Object x, int targetSql Type,
int scale) throws SQLException;

voi d set Gbj ect (i nt paraneterlndex, Object x, int targetSql Type)
t hrows SQLExcepti on;

voi d set Obj ect (int paraneterlndex, Object x) throws SQ.Exception;

In jConnect 5.5, to send a Java object, you can use the
java.sgl. Types.JAVA_OBJECT target sgl Type, or you can use
java.sql.Types.OTHER.

The following example defines an Address class, shows the definition of a
Friends table that has an Address column whose datatype is the Address class,
and inserts arow into the table.

public class Address inplenments Serializable
{
public String st reet Nunber;
public String street;
public String apar t nent Nunber ;
public String city;
public int zi pCode;
[/ Met hods

}

/* This code assunes a table with the followi ng structure
** Create table Friends:

** (firstnane varchar(30)

*x | ast nane var char (30),

Programmer’s Reference 77

Implementing advanced features

** address Address,
** phone varchar (15))
*/

/1 Connect to the database containing the Friends table.
Connection conn =
Dri ver Manager . get Connecti on("j dbc: sybase: Tds: | ocal host: 5000",
"user nane", "password");

/1l Create a Prepared Statenent object with an insert statenent

//for updating the Friends table.

Prepar edSt at ement ps = conn. prepareStat enent ("1 NSERT | NTO
Friends values (?,?2,?2,?2)");

/1 Now, set the values in the prepared statenent object, ps.
/1 set firstname to "Joan."
ps.setString(l, "Joan");

/!l Set last nane to "Smith."
ps.setString(2, "Snmith");

/1 Assuming that we already have "Joan_address" as an instance
/1 of Address, use setCbject(int paraneterlndex, Object x) to
/1 set the address columm to "Joan_address."

ps. set Obj ect (3, Joan_address);

/1 Set the phone colum to Joan’s phone nunber.
ps.setString(4, "123-456-7890");

// Performthe insert.
ps. execut eUpdat e() ;

Receiving Java objects from the database

A client JDBC application can receive a Java object from the database in a
result set or as the value of an output parameter returned from a stored
procedure.

If aresult set contains a Java object as column data, use one of the following
getObject() methods in the ResultSet interface to retrieve the object:

oj ect get Obj ect (int col umml ndex) throws SQLException;
oj ect get Gbj ect (String col uimNane) throws SQ.Exception;

78 jConnect for JDBC

CHAPTER 2 Programming Information

If an output parameter from a stored procedure contains a Java object, use the
following getObject() method in the CallableStatement interface to retrieve the
object:

hj ect get Ghj ect(int paraneterlndex) throws SQLException;

The following example illustrates the use of

ResultSet.getObject(int parameterindex) to assign an object received in aresult
set to a class variable. The example uses the Address class and Friends table
used in the previous section and presents a simple application that prints a
name and address on an envelope.

/*
** This application takes a first and | ast nane, gets the
** gpecified person’s address fromthe Friends table in the
** dat abase, and addresses an envel ope using the nanme and
** retrieved address.
*/
public class Envel ope
{

Connection conn = null;

String firstName = null;

String |astNane = nul | ;

String street = null;

String city = null;

String zip = null;

public static void main(String[] args)
{

if (args.length < 2)

{

Systemout. println("Usage: Envel ope <firstNane>

<l ast Name>") ;

Systemexit(1);

}

/1 create a 4" x 10" envel ope

Envel ope e = new Envel ope(4, 10);

try

{

/1 connect to the database with the Friends table.
conn = Driver Manager. get Connecti on(

"j dbc: sybase: Tds: | ocal host: 5000", "usernane",

"password");

/1 1ook up the address of the specified person
firstName = args[0];
| ast Nane = args[1];
Prepar edSt at ement ps = conn. prepar eSt at ement (

Programmer’s Reference 79

Implementing advanced features

"SELECT address FROM friends WHERE " +
"firstnane = ? AND | astnane = ?");
ps.setString(1, firstNane);
ps.setString(2, |astNane);
Resul t Set rs = ps. executeQuery();
if (rs.next())
{
Address a = (Address) rs.getnject(1);
/1 set the destination address on the envel ope
e.set Address(firstNane, |astNanme, a);

conn. cl ose();
}
catch (SQLException sqge)
{
sqge. print StackTrace();
System exit(2);
}
/1 if everything was successful, print the envel ope
e.print();
}
private void set Address(String fname, String | name, Address a)
{
street = a.streetNunber + " " + a.street + " " +
a. apart ment Nunber ;
city = a.city;

zip ="" + a.zipCode;
}
private void print()
{

/1 Print the nane and address on the envel ope.

You can find a more detailed example of HandleObject.java in the sample2
subdirectory under your jConnect installation directory.

Dynamic class loading

Adaptive Server Anywhere version 6.0 and Adaptive Server version 12.0 and
later allow you to specify Java classes as:

e Datatypes of SQL columns

80 jConnect for JDBC

CHAPTER 2 Programming Information

e Datatypes of Transact-SQL variables
» Default values for SQL columns

Inearlier versions, only classesthat appeared injConnect’s CLASSPATH were
accessible; that is, if ajConnect application attempted to access an instance of
aclassthat was not in thelocal CLASSPATH, ajava.lang.ClassNotFound
exception would result.

jConnect version 5.x and later implements DynamicClassLoader (DCL) to load
aclassdirectly from an Adaptive Server Anywhere or Adaptive Server server
and useit asif it was present in the local CLASSPATH.

All security features present in the superclass are inherited. The loader
delegation model implemented in Java 2 is followed—first jConnect attempts
toload arequested classfrom the CLASSPATH; if that fails, jConnect triesthe
DynamicClassLoader.

See Java in Adaptive Server for more detailed information about use Javaand
Adaptive Server.

Using DynamicClassLoader
To use DCL functionality:

1 Create and configure aclass loader. Your jConnect application’s code
should look similar to this:

Properties props = new Properties();

/1 URL of the server where the classes |ive.
String classesU | = "jdbc: sybase: Tds: nyase: 1200";

/1 Connection properties for connecting to above server.
props. put("user", "grinch");
props. put ("password", "neanone");

/1 Ask the SybDriver for a new class | oader.
Dynam cd assLoader | oader = driver.getC assLoader(cl assesU |, props);

2 Usethe CLASS LOADER connection property to make the new class
loader available to the statement that executes the query. Once you create
the class |oader, passit to subsequent connections as shown below
(continuing from the code example in step 1).

/1 Stash the class | oader so that other connection(s)
/] can know about it.
props. put (" CLASS LOADER', | oader);

Programmer’s Reference 81

Implementing advanced features

/1 Additional connection properties
props. put ("user", "joeuser");
props. put (" password”, "joespassword");

/1 URL of the server we now want to connect to.
String url = "jdbc:sybase: Tds:j dbc. sybase. com 4446";

/1 Make a connection and go.
Connection conn = DriverManager. get Connection(url, props);

Assuming the following Java class definition:

class Addr {
String street;
String city;
String state;
}

and the following SQL table definition:
create tabl e enpl oyee (char(100) nane, int enpid, Addr address)

3 Usethefollowing client-side code in the absence of an Addr classin the
client application's CLASSPATH:

Statement stmimt = conn.createStatenent();
/1 Retrieve some rows fromthe table that has a Java cl ass
/1l as one of its fields.
ResultSet rs = stmt. execut eQuery(
"select * from enpl oyee where enpid = '19"");
if (rs.next() {
/1 Even though the class is not in our class path,
/1 we should be able to access its instance.
Chj ect obj = rs.getCbject("address");
/1 The cl ass has been | oaded fromthe server,
/]l so let's take a | ook.
Class ¢ = obj.getd ass();

/1 Sonme Java Reflection can be done here
/1 to access the fields of obj.

TheCLASS L OADER connection property providesaconvenient mechanism
for sharing one class |oader among several connections.

82 jConnect for JDBC

CHAPTER 2 Programming Information

You should ensure that sharing aclass|oader across connections does not result
in class conflicts. For example, if two different, incompatibleinstances of class
org.foo.Bar exist in two different databases, problems can ariseif you use the
same | oader to access both classes. The first classis loaded when examining a
result set from the first connection. When it istimeto examine aresult set from
the second connection, the classis already |oaded. The second classis never
loaded, and thereis no direct way for jConnect to detect this situation.

However, Java has abuilt-in mechanism for ensuring that the version of aclass
matches the version information in a deserialized object. The above situation
is at least detected and reported by Java.

Classes and their instances do not need to reside in the same database or server,
but there is no reason why both the loader and subsequent connections cannot
refer to the same database/server.

Deserialization

Thefollowing exampleillustrates how to deserialize an object fromalocal file.
The serialized object is an instance of a class that resides on a server and does
not exist in the CLASSPATH.

SybResultSet.getObject() makes use of DynamicObjectinputStream, whichisa
subclass of ObjectinputStream that loads a class definition from
DynamicClassLoader, rather than the default system (“boot”) class |oader.

/1 Make a streamon the file containing the

//serialized object.

FilelnputStreamfil eStream = new Fil el nput Stream("serFile");
/1 Make a "deserializer" on it. Notice that, apart
//fromthe additional paraneter, this is the sane

/1 as Obj ect | nput StreanDynam cCbj ect | nput St r eam

stream = new Dynam cObj ect | nput Strean(fil eStream | oader);
/1 As the object is deserialized, its class is

[/retrieved through the | oader from our server.

bj ect obj = streamreadQbject();stream cl ose();

Preloading JARS

jConnect version 5.x and later have a connection property called
PRELOAD_JARS. When defined as a comma-delimited list of JAR file
names, the JAR files are loaded in their entirety. In this context, “JAR” refers
to the“retained JARname” used by the server. Thisisthe JAR name specified
in theinstall Java program, for example:

Programmer’s Reference 83

Implementing advanced features

install java new jar 'myJarName' fromfile '/tnp/nystuff.jar’

Advanced features

If you set PRELOAD_JARS, the JAR filesare associated with the class | oader,
so it is unnecessary to preload them with every connection. You should only
specify PRELOAD_JARSfor one connection. Subsequent attemptsto preload
the same JAR files may result in performance problems asthe JAR datais
retrieved from the server unnecessarily.

Note Adaptive Server Anywhere 6.x and later cannot return aJAR file as one
entity, so jConnect iteratively retrieves each classin turn. However, Adaptive
Server 12.x and later retrieves the entire JAR and loads each class that it
contains.

There are various public methods in DynamicClassLoader. For more
information, see the javadocs information in JDBC_HOME/docs/en/javadocs.

Additional features include the ability to keep aloader’s database connection
“alive” when a series of classloads is expected, and to explicitly load asingle
class by name.

Public methods inherited from java.lang.ClassLoader can also be used.
Methods in java.lang.Class that deal with loading classes are aso available;
however, use these methods with caution since some of them make
assumptions about which class loader gets used. In particular, you should use
the 3-argument version of Class.forName(), otherwise the system (“boot”) class
loader will be used. See “Handling error messages’ on page 71.

JDBC 2.0 optional package extensions support

84

The JDBC 2.0 Optional Package (formerly the JDBC 2.0 Standard Extension
API) defined several featuresthat JDBC 2.0 drivers could implement. jConnect
version 5.x and later have implemented the following optional package
extension features:

e JINDI for naming databases
(works with any Sybase DBM S supported by jConnect)

e Connection pooling
(works with any Sybase DBM S supported by jConnect)

jConnect for JDBC

CHAPTER 2 Programming Information

e Distributed transaction management support
(works only with Adaptive Server version 12.0 and later, or version 11.x
using XA-Server™)

The above features require classes and/or interfaces that are not found in
standard JDK 1.2.x distributions. You must download javax.sql.* and
javax.naming.* to implement them if you're using aJDK 1.2.x or JRE
installation. However, if you are using JDK 1.3.x or later, no additional
download is necessary since the classes are part of the standard Java
installation Databases and Connection Pooling, and you must download
javax.transaction.xa.* to implement Distributed Transaction Management
Support.

Note Sybase recommends that you use JINDI 1.2, which is compatible with
Java 1.1.6 and later.

JNDI for naming databases

Reference

Related interfaces

Programmer’s Reference

The JDBC 2.0 Optional Package (formerly the JDBC 2.0 Sandard Extension
API), Chapter 5, “IJNDI and the JDBC API.”

* javax.sqgl.DataSource
¢ javax.naming.Referenceable
* javax.naming.spi.ObjectFactory

Thisfeature provides IDBC clientswith an alternative to the standard approach
for obtaining database connections. Instead of invoking Class.forName
(“com.sybase.jdbc2.jdbc.SybDriver”), then passing a JDBC URL to the
DriverManager's getConnection() method, clients can access a JNDI name
server using alogical name to retrieve ajavax.sql.DataSource object. This
object isresponsible for loading the driver and establishing the connection to
the physical database it represents. The client code is simpler and reusable
because the vendor-specific information has been placed within the
DataSource object.

The Sybase implementation of the DataSource object is
com.sybase.jdbcx.SybDataSource (See the javadocs for details). This
implementation supports the following standard properties using the design
pattern for JavaBean components:

85

Implementing advanced features

* databaseName

* dataSourceName

* description

* networkProtocol

e password

e portNumber

* serverName

* user

roleName is not supported.

jConnect provides an implementation of the javax.naming.spi.ObjectFactory
interface so the DataSource object can be constructed from the attributes of a
name server entry. When given a javax.naming.Reference, or a
javax.naming.Name and a javax.naming.DirContext, this factory can construct
com.sybase.jdbcx.SybDataSource objects. To use this factory, set the
java.naming.object.factory system property to include
com.sybase.jdbc2.SybObjectFactory.

Usage

You can use DataSource in different ways, in different applications. All options
are discussed below with some code examples to guide you through the
process. For more information, see the JDBC 2.0 Optional Package (formerly
the JDBC 2.0 Sandard Extension API), and the JINDI documentation on Sun’s
Web site.

1a. Configuration by jConnect has supported LDAP connectivity since version 4.0. As aresult, the
administrator: LDAP recommended approach, which requires no custom software, isto configure

86

DataSources as LDAP entries using the LDAP Data Interchange Format
(LDIF). For example:

er nanme: nyASE, o=MyConpany, c=US
97. 4. 2.5: TCP#1# nymachi ne 4000
7.4.2.10: PACKETSI ZE=1024&user =me&passwor d=secr et

rna
.4.1.8
.4.1.89

.4.1.897.4.2.11: userdb

jConnect for JDBC

CHAPTER 2 Programming Information

1b. Access by client Thisisthetypical JDBC client application. The only difference isthat you
access the name server to obtain areference to a DataSource object, instead of
accessing the DriverManager and providing aJDBC URL. Once you obtain the
connection, theclient codeisidentical to any other JDBC client code. The code
is very generic and references Sybase only when setting the object factory
property, which can be set as part of the environment.

The jConnect installation contains the sample program
sample2/SmpleDataSource.java to illustrate the use of DataSource. This
sampleisprovided for reference only; that is, you cannot run the sampl e unless
you configure your environment and edit the sample appropriately.
SmpleDataSource.java contains the following critical code:

i mport javax. nam ng.*;
i nport javax.sql.*;
i nport java.sql.*;

/1 set necessary JNDI properties for your environnent (sanme as above)
Properties jndi Props = new Properties();

/1 used by JNDI to build the SybDat aSource
j ndi Props. put (Cont ext . OBJECT_FACTORI ES,
"com sybase. j dbc2. j dbc. Sybhj ect Factory");

/1l naneserver that JNDI should talk to
j ndi Props. put (Cont ext . PROVI DER_URL, "l dap:
[l some_| dap_server: 238/ o=MyConpany, c=Us") ;

/1 used by JNDI to establish the nam ng context
j ndi Props. put (Cont ext. | N Tl AL_CONTEXT_FACTCRY,
"com sun. j ndi .| dap. LdapC xFact ory") ;

/1 obtain a connection to your nane server
Context ctx = new Initial Context(jndiProps);
Dat aSource ds = (DataSource) ctx.|ookup("servernanme=nyASE");

/1 obtains a connection to the server as configured earlier.
/1 in this case, the default username and password will be used
Connection conn = ds. get Connection();

/1 do standard JDBC net hods

Explicitly passing the Properties to the InitialContext constructor isnot required
if the properties have already been defined within the virtual machine; that is,
passed when Java was either set as part of the browser properties, or by using:

Programmer’s Reference 87

Implementing advanced features

java -Djava. nam ng. obj ect. fact ory=com sybase. j dbc2.j dbc. SybOhj ect Factory

See your Java VM documentation for more information about setting
environment properties.

2a. Configuration by This phaseistypically done by the person who does database system
administrator: custom administration or application integration for their company. The purposeisto

88

define a data source, then deploy it under alogical name to a name server. If
the server needs to be reconfigured (for example, moved to another machine,
port, and so on), then the administrator runsthis configuration utility (outlined
below) and reassignsthe logical nameto the new data source configuration. As
aresult, the client code does not change, since it knows only the logical name.

i mport javax.sql.*;
i mport com sybase. j dbcx. *;

/1 create a SybDataSource, and configure it

SybDat aSource ds = new com sybase. j dbc2. j dbc. SybDat aSour ce() ;

ds. set User (" my_user nane");

ds. set Passwor d(" ny_password");

ds. set Dat abaseName("nmy_favorite_db");

ds. set Server Nane("db_nachi ne");

ds. set Port Nunmber (4000) ;

ds. set Descri ption("This DataSource represents the Adaptive Server
Enterprise server running on db_rmachine at port 2638. The default
usernane and password have been set to 'ne' and 'mine' respectively.
Upon connection, the user will access the nmy_favorite_db database on
this server.");

Properties props = newProperties()

props. put (" REPEAT_READ', "fal se");

props. put (" REQUEST_HA SESSI ON', "true");

ds. set Connecti onProperti es(props);

/1 store the DataSource object. Typically this is

/1 done by setting JNDI properties specific to the

/1 type of JNDI service provider you are using.

/1 Then, initialize the context and bind the object.

Context ctx = new Initial Context();

ctx. bind("jcbc/ myASE", ds);

Onceyou set up your DataSource, you decide where and how you want to store
the information. To assist you, SybDataSource is both java.io.Serializable and
javax.naming.Referenceable, but it is still up to the administrator to determine
how the data is stored depending on what service provider you are using for
JNDI.

jConnect for JDBC

CHAPTER 2 Programming Information

2h. Access by client

The client retrieves the DataSource object by setting its INDI properties the
same way the DataSource was deployed. The client needs to have an object
factory available that can transform the object asit is stored (for example,
serialized) into a Java object.

Context ctx = new Initial Context();
Dat aSource ds = (DataSource ctx. | ookup("jchc/nyASE");

Connection pooling

Reference

Related interfaces

Overview

Programmer’s Reference

The JDBC 2.0 Optional Package (formerly the JDBC 2.0 Sandard Extension
API), Chapter 6, “Connection Pooling.”

¢ javax.sgl.ConnectionPoolDataSource

* javax.sqgl.PooledConnection

Traditional database applications create one connection to a database that you
use for each session of an application. However, a Web-based database
application may need to open and close anew connection several times during
the application’s use. An efficient way to handle Web-based database
connections is to use connection pooling, which maintains open database
connections and manages connection sharing across different user requeststo
maintain performance and to reduce the number of idle connections. On each
connection request, the connection pool first determines if thereisanidle
connection in the pooal. If thereis, the connection pool returns that connection
instead of making a new connection to the database.

Connection pooling capabilities are provided by ConnectionPoolDataSource. If
you use this interface, you can pool connections. If you use the DataSource
interface, you cannot pool connections.

When you use ConnectionPoolDataSource, pool implementations listen to the
PooledConnection. The implementation is notified when a user closes the
connection, or if the user has an error that destroys the connection. At this
point, the pool implementation decides what to do with the PooledConnection.

Without connection pooling, a transaction:

1 Creates aconnection to the database.

89

Implementing advanced features

2 Sendsthe query to the database.

3 Getsback the result set.

4 Displaystheresult set.

5 Destroys the connection.

With connection pooling, the sequence looks more like this:
1 Seesif an unused connection existsin the “pool” of connections.
2 If s0, usesit; otherwise creates a new connection.

3 Sendsthe query to the database.

4 Getsback the result set.

5 Displaystheresult set.

6

Returnsthe connection to the “pool.” The user till calls“close()”, but the
connection remains open and the pool is notified of the close request.

Itisless costly to reuse a connection than to create a new one every time a
client needs to establish a connection to a database.

To enable athird party to implement the connection pool, the jConnect
implementation has the ConnectionPoolDataSource interface produce
PooledConnections, similar to how the DataSource interface produces
Connections.

The pool implementation creates “real” database connections, using the
getPooledConnection() methods of ConnectionPoolDataSource. Then, the pool
implementation registersitself as alistener to the PooledConnection.

Currently, when a client requests a connection, the pool implementation
invokes getConnection() on an available PooledConnection. When the client
finishes with the connection and calls close(), the pool implementationis
notified through the ConnectionEventListener interface that the connection is
free and available for reuse.

The pool implementation is aso notified through the ConnectionEventListener
interface if the client somehow corrupts the database connection, so that the
pool implementation can remove that connection from the poal.

For more information, refer to Appendix B of the JIDBC 2.0 Optional Package
(formerly the JIDBC 2.0 Sandard Extension API).

90 jConnect for JDBC

CHAPTER 2 Programming Information

Configuration by This approach is the same as “ 1a. Configuration by administrator: LDAP”

administrator: LDAP described in“ JNDI for naming databases,” except that you enter an additional
line to your LDIF entry. In the following example, the added line of codeis
bolded for your reference.

dn: server name=nyASE, o=MyConpany, c=US

1.3.6.1.4.1.897.4.2.5: TCP#1# nynmachi ne 4000
1.3.6.1.4.1.897.4.2.10: PACKETSI ZE=1024&user =ne&passwor d=secr et
1.3.6.1.4.1.897.4.2.11: userdb

1.3.6.1.4.1.897.4.2.18: Connect i onPool Dat aSour ce

Access by middle-tier Thisprocedureinitializesthree properties (INITIAL_CONTEXT_FACTORY,

clients PROVIDER_URL, and OBJECT_FACTORIES as shown on page 78), and
retrieves a ConnectionPoolDataSource object. For a more complete code
example, see sample2/S mpleConnectionPool.java. The fundamental
differenceis:

Connect i onPool Dat abase cpds = (Connecti onPool Dat aSour ce)
ct x. | ookup("server nane=nyASE") ;
Pool edConnecti on pconn = cpds. get Pool edConnecti on();

Distributed transaction management support

This feature provides a standard Java API for performing distributed
transactions with either Adaptive Server version 12.x or version 11.x with XA-
Server.

Note Thisfeatureisdesigned for usein alarge multitier environment.

Reference

See Chapter 7, “ Distributed Transactions,” in the JDBC 2.0 Optional Package
(formerly the JDBC 2.0 Sandard Extension API).

Programmer’s Reference 91

Implementing advanced features

Related interfaces

* javax.sql.XADataSource
* javax.sgl.XAConnection

* javax.transaction.xa.XAResource

Background and system requirements

For Adaptive Server e Because jConnect is communicating directly with the resource manager
12.0 and later within Sybase Adaptive Server version 12.0 and | ater, theinstallation must
have Distributed Transaction Management support.

e Any user that wants to participate in a distributed transaction must have
the “dtm_tm_rol€” granted to them or the transactions will fail.

e Tousedistributed transactions, you must install the stored proceduresin
the /sp directory. Refer to “Installing Stored Procedures’ in Chapter 1 of
your jConnect for JDBC Installation Guide.

Figure 2-2: Distributed transaction management
support with version 12.x

Middle-tier
Components

JTA
Client _ TDS || ASE 12.x
Application jConnect
DTM
For Adaptive Server jConnect also provides a standard Java API for performing distributed
11.x transactions with Adaptive Server version 11.x as your database server.

» Thisimplementation works only with Sybase Adaptive Server version
11.x and XA-Server 11.1.

92 jConnect for JDBC

CHAPTER 2 Programming Information

Figure 2-3: Distributed transaction management support with version

11.x
Middle-tier ITA .
COmponentS < » JConnect
ITDS
Client XA-Server TDS .| ASE 11.x
Application 11.1 >

e Thelogin chosen cannot have adefault |ogin database of master, model, or
sybsystemdb. This is because XA-Server connects only when the user's
work is associated with a distributed transaction, and distributed
transactions are not permitted on those databases.

* Thereis no access to metadata. While this restricts the client, it is most
likely not the part of the API being used within the boundaries of
distributed transactions.

Adaptive Server 12.x use

Configuration by This approach is the same as * 1a. Configuration by administrator:

administrator: LDAP LDAP” described in “ INDI for naming databases’ on page 85, except that you
enter an additional lineto the LDIF entry. In the following example, the added
line of codeis displayed in bold.

dn: server nanme: nyASE, o=MyConpany, c=US

1.3.6.1.4.1.897.4.2.5: TCP#1# nymachi ne 4000
1.3.6.1.4.1.897.4.2.10: PACKETSI ZE=1024&user =ne&passwor d=secr et
1.3.6.1.4.1.897.4.2.11: userdb

1.3.6.1.4.1.897. 4. 2. 18: XADat aSour ce

Access by middle-tier Thisprocedureinitializesthree properties (INITIAL_CONTEXT_FACTORY,
clients PROVIDER_URL, and OBJECT_FACTORIES), and retrieves a
XADataSource object. For example:

XADat aSour ce xads = (XADat asource) ctx. | ookup("servername=nyASE") ;
XAConnecti on xaconn = xads. get XAConnecti on();

or override the default settings for the user name and password:

XADat aSour ce xads = (XADat asource) ctx. | ookup("servername=nmyASE");

Programmer’s Reference 93

Implementing advanced features

XAConnecti on xaconn = xads. get XAConnecti on("my_usernane", "nmy_password");

Adaptive Server 11.x use

Configuration by This approach isthe same as “ 1a. Configuration by administrator:
administrator: LDAP LDAP" described in“ INDI for naming databases’ on page 85, except that you
enter an additional three linesto the LDIF entry.

In the following example, the additional code lines are displayed in bold.

dn: server name: nyASE, o=MyConpany, c=US

1.3.6.1.4.1.897.4.2.5: TCP#1# nynmachi ne 4000
1.3.6.1.4.1.897.4.2.10: PACKETSI ZE=1024&user =ne&passwor d=secr et
1.3.6.1.4.1.897.4.2.11: userdb

1.3.6.1.4.1.897.4.2.16: userconnecti on

1.3.6.1.4.1.897:4.2.17:1

1.3.6.1.4.1.897. 4. 2. 18: XADat aSour ce

where . . .4.2.17: 1 indicatesthat jConnect is going to connect to an XA-
Server and user connect i on corresponds to the Logical Resource Manager
(LRM) to use. XA-Server has an xa_config file that contains these entries:

[xa]

| r mruser connecti on
server=mnmy_ase_11 server
XASer ver =nmy_xa_server

Figure 2-4: Distributed transaction management support sample
configuration

Middle-tier | JTA)
» jConnect

Components|*
A A
TDS
v v
Client my_xa_l_serv.er . ./my_ase 11 server
Application running on. “tos |
mymachine:4000

Seethe X A-Server documentation for details on how to write an xa_config file.

Access by middle-tier Thisprocedureinitializesthree properties (INITIAL_CONTEXT_FACTORY,
clients PROVIDER_URL, and OBJECT_FACTORIES), and retrieves a
XADataSource object. For example:

XADat aSour ce xads = (XADat asource) ctx. | ookup("servernanme=nyASE");

94 jConnect for JDBC

CHAPTER 2 Programming Information

XAConnecti on xaconn = xads. get XAConnecti on();

With Adaptive Server 11.x, you cannot override the default user name and
password; that is, you cannot call:

xads. get XAConnecti on(" my_user nane", "ny_password");

because the Irmis associated with a specific user name and password.

Restrictions on and interpretations of JDBC standards

This section discusses restrictions on and interpretations of JDBC standards
that apply to jConnect, including how the jConnect implementation of JDBC
deviates from the JDBC 1.x and 2.0 standards. The following topics are
covered:

e Connection.isClosed() and the IS CLOSED_TEST connection property
o Statement.close() with unprocessed results

* Making adjustments for multithreading

* Using ResultSet.getCursorName()

e Using setLong() with large parameter values

e Using COMPUTE statements

» Executing stored procedures

Connection.isClosed() and the IS_ CLOSED_TEST connection
property
According to section 11.1 of the JIDBC 2.1 specification:

“The Connection.isClosed() method is only guaranteed to return true after
Connection.close() has been called. Connection.isClosed() cannot be called, in
general, to determine if a database connection isvalid or invalid. A typical
client can determine that aconnection isinvalid by catching the exception that
is thrown when an operation is attempted.”

Programmer’s Reference 95

Restrictions on and interpretations of JDBC standards

jConnect offersadefault interpretation of theisClosed() method that isdifferent
from the behavior that is defined in the spec. When you call
Connection.isClosed(), jConnect will first check if Connection.close() has been
called on this connection. If close() has been called, jConnect will return true
for isClosed().

However, if Connection.close() has not been called, jConnect will next try to
execute the sp_mda stored procedure on the database. The sp_mda stored
procedureis part of the standard metadata that jConnect users must install
when they use jConnect with a database.

The purpose of calling sp_mda is so that jConnect can try to execute a
procedurethat isknown (or at least, expected) to reside on the database server.
If the stored procedure executes normally, then jConnect returns false for
isClosed() because we have verified that the database Connection is valid and
working. However, if the call to sp_mda results in a SQL Exception being
thrown, jConnect catches the exception and returns true for isClosed() because
it appears that there is something wrong with the Connection.

If you wish to force jConnect to more closely follow the standard JDBC
behavior for isClosed(), you can do so by setting the IS CLOSED_TEST
connection property to the special value ‘INTERNAL'. The INTERNAL
setting means that jConnect will return true for isClosed() only when
Connection.close() has been called, or when jConnect has detected an

| OException that has disabled the Connection.

You can also specify aquery other than sp_mda to use when isClosed() is
called. For example, if you wanted jConnect to try a select 1 when isClosed()
was called, you could set the IS CLOSED_TEST connection property to
select 1.

Statement.close() with unprocessed results

The JDBC specification is somewhat vague on how a driver should behave
when you call Statement.execute() and later call close() on that same Statement
object without processing all of the results (update counts and ResultSets)
returned by the Statement.

96 jConnect for JDBC

CHAPTER 2 Programming Information

For example, assumethat thereis a stored procedure on the database that does
seven row inserts. An application then executes that stored procedure using a
Statement.execute(). In this case, a Sybase database will return seven update
counts (one for each inserted row) to the application. In normal JDBC
application logic, you would process those update counts in aloop using the
getMoreResults(), getResultSet() and getUpdateCount() methods. These are
clearly explained on thejava.sun.comwebsitein thejavadocsfor thejava.sql.*
package.

An application programmer, however, might incorrectly choose to call
Statement.close() before reading through all of the returned update counts. In
this case, jConnect will send a cancel to the database, which could have
unexpected and unwanted side effects.

Inthis particular example, if the application called Statement.close() beforethe
database had completed the inserts, the database might not execute all of the
inserts. It might stop, for example, after only five rows were inserted because
the cancel would be processed on the database before the stored procedure
completed.

The missing inserts would not be reported to you in this case. Future releases
of jConnect may throw a SQL Exception when you try to close a Statement
when there are still unprocessed results, but until then, jConnect programmers
are strongly advised to adhere to the following guidelines:

* Whenyou call Sstatement.close(), acancel issent to the server if not all the
results (update counts and ResultSets) have been completely processed by
you. In cases where you only executed select statements, thisis fine.
However, in cases where you executed insert/update/del ete operations,
this could result in not all of those operations completing as expected.

e Therefore, you should never call close() with unprocessed results when
you have executed anything but pure select statements.

« Instead, if you call Statement.execute() be sure your code processesall the
results by using the getUpdateCount(), getMoreResults() and getResultSet()
methods.

Making adjustments for multithreading

If several threads simultaneously call methods on the same Statement instance,
CallableStatement, or PreparedStatement—which we do not recommend— you
have to manually synchronize the calls to the methods on the Statement;
jConnect does not do this automatically.

Programmer’s Reference 97

Restrictions on and interpretations of JDBC standards

For example, if you have two threads operating on the same Statement
instance—one thread sending a query and the other thread processing
warnings—you have to synchronize the calls to the methods on the Statement
or conflicts may occur.

Using ResultSet.getCursorName()

Some JDBC drivers generate a cursor name for any SQL query so that astring
can always be returned. However, jConnect does not return a name when
ResultSet.getCursorName() is called, unless you either

» called setFetchSize() or setCursorName() on the corresponding Statement,
or

» settheSELECT_OPENS CURSOR connection property to true, and your
query was in the form of SELECT... FOR UPDATE; for example,

select au_id fromauthors for update

If you do not call setFetchSize() or setCursorName() on the corresponding
Statement, or setthe SELECT_OPENS_CURSOR connection property totrue,
null is returned.

According to the JIDBC 2.0 API (chapter 11, “Clarifications”), all other SQL
statements do not need to open a cursor and return a name.

For more information on how to use cursorsin jConnect, see “Using cursors
with result sets’ on page 48.

Using setLong() with large parameter values

Implementations of the PreparedStatement.setLong() method set a parameter

valueto a SQL BIGINT datatype. Most Adaptive Server databases do not have
an 8-byte BIGINT datatype. If a parameter value requires more than 4 bytes of
aBIGINT, using setLong() may result in an overflow exception.

Using COMPUTE statements

jConnect does not support computed rows. Results are automatically cancelled
when a query contains a computed row. For example, the following statement
isrejected:

98 jConnect for JDBC

CHAPTER 2 Programming Information

SELECT nane FROM sysobj ects
WHERE type="S" COVPUTE COUNT(nane)

To avoid this problem, substitute the following code:

SELECT name from sysobj ects WHERE type="S"
SELECT COUNT(nane) from sysobjects WHERE type="S"

Executing stored procedures

e If you execute a stored procedure in a CallableStatement object that
represents parameter val ues as question marks, you get better performance
than if you use both question marks and literal values for parameters.
Further, if you mix literals and question marks, you cannot use output
parameters with a stored procedure.

The following example creates sp_stmt as a CallableStatement object for
executing the stored procedure MyProc:

Cal | abl eStatenent sp_stnt = conn. prepareCall (
"{call MyProc(?,?)}");

Thetwo parametersin MyProc are represented as question marks. You can
register one or both of them as output parameters using the
registerOutParameter() methods in the CallableStatement interface.

In the following example, sp_stmt2 is a CallableStatement object for
executing the stored procedure MyProc?2.

Cal | abl eStatenent sp_stnmt 2 = conn. prepareCal | (
{"call MyProc2(?,'javelin)}");

In sp_stmt2, one parameter value is given as aliteral value and the other
as a question mark. You cannot register either parameter as an output
parameter.

e To execute stored procedures with RPC commands using name-binding
for parameters, use either of the following procedures.

e Uselanguage commands, passing input parameters to them directly
from Java variables using the PreparedStatement class. Thisis
illustrated in the following code fragment:

/1 Prepare the statenent

Systemout.println("Preparing the statenent...");

String stntString = "exec " + prochame + " @3=?, @1=?";
Prepar edSt at enent pstmt = con. preparedStatenment(stntString);

Programmer’s Reference 99

Restrictions on and interpretations of JDBC standards

/1 Set the val ues
pstnt.setString(1, "xyz");
pstnt.setlnt(2, 123);

/1 Send the query
System out. println("Executing the query...");
ResultSet rs = pstnt. executeQuery();

* With jConnect version 5.x and later, use the

com.sybase.jdbcx.SybCallableStatement interface, illustrated in this

example:

i mport com sybase. j dbcx. *;

/1 prepare the call for the stored procedure to execute as an RPC

String execRPC = "{call " + procName + " (?, ?)}";
SybCal | abl eSt at ement scs = (SybCal | abl eSt at enment)
con. prepareCal | (execRPC) ;

/1 set the values and nane the paraneters

/1 also (optional) register for any output paraneters
scs.set String(1, "xyz");

scs. set Par anet er Name(1, " @3");

scs.setlnt (2, 123);

scs. set Par anet er Nane(2, "@1");

/'l execute the RPC
/1 may al so process the results using getResultSet()
/1 and get MoreResul ts()

/1l see the sanples for nore informati on on processing results

Resul t Set

100

rs = scs. executeQuery();

jConnect for JDBC

CHAPTER 3 Troubleshooting

This chapter describes solutions and workaroundsfor problemsyou might
encounter when using jConnect.

Topics

Debugging with jConnect

Capturing TDS communication
Unsuccessful connection errors
Memory usage in jConnect applications
Stored procedure errors

Custom socket implementation error

Debugging with jConnect

jConnect includes a Debug class that contains a set of debugging
functions. The Debug methodsinclude avariety of assert, trace, and timer
functions that let you define the scope of the debugging process and the
output destination for the debugging results.

The jConnect installation al so includes a compl ete set of debug-enabled
classes. These classes are located in the devclasses subdirectory under
your jConnect installation directory. For debugging purposes, you must
redirect your CLASSPATH environment variable to reference the debug
mode runtime classes (devclasses/jconn2d.jar), rather than the standard
jConnect classes directory. You can also do this by explicitly providing a
-classpath argument to the java command when you run a Java program.

Obtaining an instance of the Debug class

To use the jConnect debugging feature, your application must import the
Debug interface and obtain an instance of the Debug class by calling the
getDebug() method on the SybDriver class.

Programmer’s Reference 101

Debugging with jConnect

i mport com sybase. j dbcx. Debug
i nport.com sybase. j dbcx. SybDebug
/1

SybDriver sybDriver = (SybDriver)
Cl ass. for Name("com sybase. j dbc2. j dbc. SybDriver"). newi n

stance();
Debug sybdebug = sybDri ver. get Debug();

Turning on debugging in your application

To use the debug() method on the Debug object to turn on debugging within
your application, add this call:

sybdebug. debug(true, [classes], [printstrean]);

The classes parameter is a string that lists the specific classes you want to
debug, separated by colons. For example:

sybdebug. debug(true, "Myd ass")
and
sybdebug. debug(true, "M/d ass: Your C ass")

“STATIC” in the class string turns on debugging for all static methodsin
jConnect in addition to the designated classes. For example:

sybdebug. debug(true, " STATI C. My ass")
You can specify “ALL" to turn on debugging for all classes. For example:
sybdebug. debug(true, "ALL");

The printstream parameter is optional. If you do not specify a printstream, the
debug output goes to the output file you specified with
DriverManager.setLogStream().

Turning off debugging in your application

102

To turn off debugging, add this call:
sybdebug. debug(f al se);

jConnect for JDBC

CHAPTER 3 Troubleshooting

Setting the CLASSPATH for debugging

Before you run your debug-enabled application, redefine the CLASSPATH
environment variable to reference the /devclasses subdirectory under your
jConnect installation directory.

e For UNIX, replace $IDBC_HOME/classes/jconn2.jar with
$JDBC_HOME/devclasses/jconn2d.jar.

e For Windows, replace %JDBC_HOME%\classes\jconn2.jar with
%JDBC_HOME%\devclasses\jconn2d.jar.

Using the Debug methods

To customize the debugging process, you can add calls to other Debug
methods.

In these methods, the first (object) parameter is usually this to specify the
calling object. If any of these methods are static, use null for the object
parameter.

e printin()

Use this method to define the message to print in the output log if
debugging is enabled and the abject isincluded in the list of classesto
debug. The debug output goes to the file you specified with
sybdebug.debug().

The syntax is:
sybdebug. printl n(obj ect, nessage string);
For example:
sybdebug. printIn(this,"Query: "+ query);
produces a message similar to thisin the output log:
myApp(thread[x,y, z]): Query: select * from authors
e assert()

Usethis method to assert a condition and throw a runtime exception when
the condition is not met. You can also define the message to print in the
output log if the condition is not met. The syntax is:

sybdebug. assert (obj ect, bool ean condition, message
string);

Programmer’s Reference 103

Capturing TDS communication

For example:

sybdebug. assert (thi s, anount <=buf. | engt h, amount +"
too big!");

produces a message similar to thisin the output log if “amount” exceeds
the value of buf.length:

java. |l ang. Runti meExcepti on: myApp(thread[x,y, z]):
Assertion failed: 513 too big!

at jdbc.sybase. utils. sybdebug. assert (

sybdebug. j ava: 338)

at nyApp. nyCal | (nyApp. j ava: xxx)
at nore stack:

* startTimer()
stopTimer()

Use these methods to start and stop atimer that measures the milliseconds
that elapse during an event. The method keeps one timer per object, and
one for all static methods. The syntax to start the timer is:

sybdebug. start Ti ner (obj ect);
The syntax to stop the timer is:

sybdebug. st opTi mer (obj ect, message string);
For example:

sybdebug. start Ti ner(this);
stnt. execut eQuery(query);
sybdebug. st opTi mer (t hi s, "execut eQuery");

produces a message similar to thisin the output log:

myApp(thread[x,y, z]): executeQuery el apsed time =
25ns

Capturing TDS communication

Tabular Data Stream (TDS) is Sybase's proprietary protocol for handling
communication between a client application and Adaptive Server. jConnect
includes a PROTOCOL_CAPTURE connection property that allows you to
capture raw TDS packetsto afile.

104 jConnect for JDBC

CHAPTER 3 Troubleshooting

If you are having problems with an application that you cannot resolve within
either the application or the server, you can use PROTOCOL_CAPTURE to
capture the communi cation between the client and the server in afile. You can
then send the file, which contains binary data and is not directly interpretable,
to Sybase Technical Support for analysis.

Note You can also usethe Ribo utility to capture, translate, and display the
protocol stream flowing between the client and the server. For details on how
to obtain and use Ribo, visit the jConnect utilities Web page at at
http://lwww.sybase.com/detail/1.6904.1009793.00.html.

PROTOCOL_CAPTURE connection property

Use the PROTOCOL _CAPTURE connection property to specify afile for
receiving the TDS packets exchanged between an application and an Adaptive
Server. PROTOCOL _CAPTURE takeseffectimmediately sothat TDS packets
exchanged during connection establishment arewritten to the specifiedfile. All
packets continue to be written to the file until Capture.pause() is executed or
the session is closed.

The following example shows the use of PROTOCOL_CAPTURE to send
TDS datato thefiletds data:

props. put (" PROTOCOL_CAPTURE", "tds_data") Connecti on
conn = Driver Manager. get Connection(url, props);

where url isthe connection URL and propsisaProperties object for specifying
connection properties.

pause() and resume() methods in the Capture class

Programmer’s Reference

The Capture classis contained inthe com.sybase.jdbcx package. It containstwo
public methods:

* public void pause()
* public void resume()

Capture.pause() stops the capture of raw TDS packetsinto afile;
Capture.resume() restarts the capture.

105

Unsuccessful connection errors

The TDS capture file for an entire session can become very large. If you want
to limit the size of the capturefile, and you know where in an application you
want to capture TDS data, you can do the following:

1 Immediately after you have established a connection, get the Capture
object for the connection and use the pause() method to stop capturing
TDS data:

Capture cap = ((SybConnection)conn). get Capture();
cap. pause();

2 Placecap.resume() just beforethe point where you want to start capturing
TDS data.

3 Placecap.pause() just after the point where you want to stop capturing
data.

Unsuccessful connection errors

This section addresses problemsthat may arise when you aretrying to establish
aconnection or start a gateway.

Gateway connection refused

106

Gat eway connection refused
HTTP/ 1.0 502 Bad Gat eway| Restart Connection

This error message indicates that something is wrong with the hosthame or
port# used to connect to your Adaptive Server. Check the [query] entry in
$SYBASE/interfaces (UNIX) or in %SYBASEY\ini\sgl.ini (Windows).

If the problem persists after you have verified the hostname and port#, you can
learn more by starting the HTTP server using the “verbose” system property.

For Windows, go to a DOS prompt and enter:
httpd -Dverbose=1 > fil enane
For UNIX, enter:
sh httpd.sh -Dverbose=1 > fil ename &

where filename is the debug messages output file.

jConnect for JDBC

CHAPTER 3 Troubleshooting

Your Web server probably does not support the connect method. Applets can
connect only to the host from which they were downl oaded.

The HTTP gateway and your Web server must run on the same host. In this
scenario, your applet can connect to the same machine/host through the port
controlled by the HTTP gateway, which routes the request to the appropriate
database.

To see how thisis accomplished, review the source of Isgl.java and
gateway.html in the sample2 subdirectory under the jConnect installation
directory. Search for “proxy.”

Unable to connect to a 4.9.2 SQL Server

jConnect uses TDS 5.0 (Sybase transfer protocol). SQL Server 4.9.x usesTDS
4.6, which is not compatible with TDS 5.0.

SQL Server 10.0.2 or later isrequired for use with jConnect.

Memory usage in jConnect applications

The following situations and their solutions may be helpful if you notice
increased memory use in jConnect applications.

Programmer’s Reference

In jConnect applications, you should explicitly close all Statement objects
and subclasses (for example, PreparedStatement, CallableStatement) after
their last useto prevent statements from accumulating in memory. Closing
the ResultSet is not sufficient.

For example:
ResultSet rs = _conn. prepareCall (_query).execute();
rs.close();

will cause problems. Instead use:

Prepar edSt atenent ps = _conn. prepareCal |l (_query);
ResultSet rs = ps. execute();

ps.cl ose();
rs.close();

107

Stored procedure errors

e jConnect uses the Tabular Data Stream (TDS)—Sybase's proprietary
protocol—to communicate with Sybase database servers. As of jConnect
5.5, TDS does not support scrollable cursors. To support scrollable
cursors, jConnect caches the row data on demand, on the client, on each
call to ResultSet.next(). However, when the end of theresult set isreached,
the entire result set is stored in the client’s memory. Because this may
cause a performance strain, Sybase recommends that you use
TYPE_SCROLL_INSENSITIVE result sets only when the result set is
reasonably small.

Stored procedure errors

This section addresses problems that may arise when you are trying to use
jConnect and stored procedures.

RPC returns fewer output parameters than registered

SQ.State: JZ0OSG - An RPC did not return as nany out put
parameters as the application had registered for it.

This error occursif you call CallableStatement.registerOutParam() for more
parameters than you have declared as“ OUTPUT” parameters in the stored
procedure. Make sure that you have declared all of the appropriate parameters
as“OUTPUT.” Look at the line of code that reads:

create procedure yourproc (@1 int OUTPUT,

Note If you receive this error while using Adaptive Server Anywhere
(previoudly known as SQL Anywhere), upgrade to Adaptive Server Anywhere
version 5.5.04 or later.

Fetch/state errors when output params returned

If aquery does not return row data, then it should use the
CallableStatement.executeUpdate() or execute() methods rather than the
executeQuery() method.

108 jConnect for JDBC

CHAPTER 3 Troubleshooting

Asrequired by the JIDBC standards, jConnect throws a SQL exception if an
executeQuery() has no result sets.

Stored procedure executed in unchained transaction mode

Sybase Error 7713 - Stored Procedure can only be
executed in unchai ned transacti on node.

JDBC attempts to put the connection in autocommit(true) mode. The
application can change the connection to chained mode using
Connection.setAutoCommit(false) or by using a “set chained on” language
command. This error occursif the stored procedure was not created in a
compatible mode.

To fix the problem, use:

sp_procxmode procedure_name,"anymode”

Custom socket implementation error

You may receive an exception similar to the following whiletrying to set up an
SSL socket when calling
sun.security.ssl.SSLSocketlmpl.setEnabledCipherSuites:

java.lang. Il egal Argunent Excepti on:
SSL_SH_anon_EXPORT_W TH_RC4_40_MDS

Verify that the SSL libraries are in the system library path.

Programmer’s Reference 109

Custom socket implementation error

110 jConnect for JDBC

CHAPTER 4

Performance and Tuning

This chapter describes how to fine-tune or improve performance when
working with jConnect.

Topics

Improving jConnect performance

Performance tuning for prepared statements in dynamic SQL
Cursor performance

Improving jConnect performance

Programmer’s Reference

There are anumber of ways to optimize the performance of an application
using jConnect:

e UseTextPointer.sendData() methodsto send text and image datato an
Adaptive Server database. See“ Updating image datain the database”
on page 63.

e Create precompiled PreparedStatement objects for dynamic SQL
statements that are used repeatedly during a session. See
“Performance tuning for prepared statementsin dynamic SQL” on
page 114.

e Batch updates improve performance by reducing network traffic;
specificaly, all queries are sent to the server in one group and al
responses returned to the client are sent in one group. See “ Support
for batch updates’ on page 59.

« For sessionsthat are likely to move image data, large row sets, and
lengthy text data, use the PACKETSIZE connection property to set
the maximum feasible packet size.

e For TDStunneled HTTR, set the maximum TDS packet size and
configure your Web server to support the HTTP1.1 Keep-Alive
feature. Also set the SkipDoneProc servlet argument to true.

111

Improving jConnect performance

e Use protocol cursors, the default setting of the LANGUAGE_CURSOR
connection property. See“LANGUAGE_CURSOR connection property”
on page 121 for more information.

* If youuse TYPE _SCROLL_INSENSITIVE result sets, only use them
when the result set is reasonably small. See “ Support for
SCROLL_INSENSITIVE result setsin jConnect” on page 56 for more
information.

Additional considerations for improving performance are described bel ow.

BigDecimal rescaling

The JDBC 1.0 specification requires ascale factor with getBigDecimal(). Then,
when aBigDecimal object isreturned from the server, it must be rescaled using
the original scale factor you used with getBigDecimal().

To eliminate the processing time required for rescaling, use the JDBC 2.0
getBigDecimal() method, which jConnect implementsin the SybResultSet class
and does not require a scale value:

public BigDecimal getBigDecimal(int columnindex)
throws SQLException

For example:

SybResultSet rs =
(SybResul t Set) stmt . execut eQuer y(" SELECT
numeric_colum from T1");
while (rs.next())

{
Bi gDeci nal bd rs. get Bi gDeci mal (

"numeric_colum");

REPEAT_READ connection property

You can improve performance on retrieving aresult set from the database if
you set the REPEAT _READ connection property to false. However, when
REPEAT_READ is“false”

112 jConnect for JDBC

CHAPTER 4 Performance and Tuning

e Youmust read column valuesin order, according to column index. Thisis
difficult if you want to access columns by name rather than column
number.

* You cannot read a column value in arow more than once.

Character-set conversion

SunloConverter

Programmer’s Reference

If you are using multibyte character sets and need to improve driver
performance, you can use the SunloConverter class provided with the jConnect
samples. This converter is based on the sun.io classes provided by the Java
Software Division of Sun Microsystems, Inc.

The SunloConverter classisnot apure Javaimplementation of the character-set
converter feature, and therefore is not integrated with the standard jConnect
product. However, we have provided this converter class for your reference,
and you can useit with the jConnect driver to improve character-set conversion
performance.

Note Based on Sybase testing, the SunloConverter class improved
performance on al VMs on which it was tested. However, the Java Software
Division of Sun Microsystems, Inc. reserves the right to remove or change the
sun.io classes with future releases of the JDK, and therefore this
SunloConverter class may not be compatible with later JDK releases.

To use the SunloConverter class, you must install the jConnect sample
applications. See the Sybase jConnect for JDBC Installation Guide for
completeinstructionson installing jConnect and its components, including the
sample applications. Once the samples are installed, set the
CHARSET_CONVERTER_CLASS connection property to reference the
SunloConverter class in the sample2 subdirectory under your jConnect
installation directory.

If you are using a database with its default character set asiso_1, or if you are
using only the first 7 bits of ASCII, you can gain significant performance
benefits by using the TruncationConverter. See “jConnect character-set
converters’ on page 34.

113

Performance tuning for prepared statements in dynamic SQL

Performance tuning for prepared statements in

dynamic SQL

114

In Embedded SQL, dynamic statements are SQL statements that need to be
compiled at runtime, rather than statically. Typically, dynamic statements
contain input parameters, although thisis not a requirement. In SQL, the
prepare command isused to precompile adynamic statement and saveit so that
it can be executed repeatedly without being recompiled during a session.

If astatement is used multiple timesin a session, precompiling it provides
better performance than sending it to the database and compiling it for each
use. The more complex the statement, the greater the performance benefit.

If astatement islikely to be used only afew times, precompiling it may be
inefficient because of the overhead involved in precompiling, saving, and later
deallocating it in the database.

Precompiling adynamic SQL statement for execution and saving it in memory
uses time and resources. If a statement is not likely to be used multiple times
during a session, the costs of doing a database prepare may outweigh its
benefits. Another consideration is that once a dynamic SQL statement is
prepared in the database, it isvery similar to astored procedure. In some cases,
it may be preferable to create stored procedures and have them reside on the
server, rather than defining prepared statements in the application. Thisis
discussed under “ Choosing prepared statements and stored procedures’ on
page 115.

You can use jConnect to optimize the performance of dynamic SQL statements
on a Sybase database as follows:

» Create PreparedStatement objects that contain precompiled statementsin
cases where a statement is likely to be executed several timesin asession.

» Create PreparedStatement objects that contain uncompiled SQL
statements in cases where a statement will be used very few timesin a
Session.

As described in the following sections, the optimal way to set the
DYNAMIC_PREPARE connection property and create PreparedStatement
objectsislikely to depend on whether your application needs to be portable
across JDBC drivers or whether you are writing an application that allows
jConnect-specific extensionsto JDBC.

jConnect 4.1 and later provide performance tuning features for dynamic SQL
Statements.

jConnect for JDBC

CHAPTER 4 Performance and Tuning

Choosing prepared statements and stored procedures

If you create a PreparedStatement object containing a precompiled dynamic
SQL statement, once the statement is compiled in the database, it effectively
becomes a stored procedure that isretained in memory and attached to the data
structure associated with your session. In deciding whether to maintain stored
procedures in the database or to create PreparedStatement objects containing
compiled SQL statementsin your application, resource demands and database
and application maintenance are important considerations:

Once a stored procedure is compiled, it is globally available across all
connections. In contrast, adynamic SQL statement in aPreparedStatement
object needs to be compiled and deallocated in every session that usesit.

If your application accesses multiple databases, using stored procedures
means that the same stored procedures need to be available on all target
databases. This can create a database maintenance problem. If you use
PreparedStatement objects for dynamic SQL statements, you avoid this
problem.

If your application creates CallableStatement objects for invoking stored
procedures, you can encapsulate SQL code and table referencesin the
stored procedures. You can then modify the underlying database or SQL
code without have to change the application.

Prepared statements in portable applications

If your application isto run on databases from different vendors and you want
some PreparedStatement objects to contain precompiled statements and others
to contain uncompiled statements, proceed as follows:

Programmer’s Reference

When you access a Sybase database, make sure that the
DYNAMIC_PREPARE connection property is set to true.

To return PreparedStatement objects containing precompiled statements,
use Connection.prepareStatement() in the standard way:

Pr epar edSt at ement ps_preconp =
Connecti on. prepareSt at ement (sql _string);

To return PreparedStatement objects containing uncompiled statements,
use Connection.prepareCall().

115

Performance tuning for prepared statements in dynamic SQL

Connection.prepareCall() returns a CallableStatement object, but since
CallableStatement is a subclass of PreparedStatement, you can upcast a
CallableStatement object to aPreparedStatement object, asin thefollowing
example:

Pr epar edSt at ement ps_unconp =
Connecti on. prepareCal | (sql _string);

The PreparedStatement object ps_uncomp is guaranteed to contain an
uncompiled statement, since only Connection.prepareStatement() iS
implemented to return PreparedStatement objects containing precompiled
Statements.

Prepared statements with jConnect extensions

If you are not concerned about portability across drivers, you can write code
that uses SybConnection.prepareStatement() to specify whether a
PreparedStatement object contains precompiled or uncompiled statements. In
this case, how you code prepared statementsiis likely to depend on whether
most of the dynamic statementsin an application are likely to be executed
many times or only afew times during a session.

If most dynamic statements are executed very few times

For an application in which most dynamic SQL statements are likely to be
executed only once or twice in a session:

* Set the connection property DY NAMIC_PREPARE to false.

» Toreturn PreparedStatement objects containing uncompiled statements,
use Connection.prepareStatement() in the standard way:

Pr epar edSt at ement ps_unconp =
Connecti on. prepareSt at ement (sql _string);

» Toreturn PreparedStatement objects containing precompiled statements,
use SybConnection.prepareStatement() with dynamic set to “true:”

Prepar edSt at ement ps_preconp =
(SybConnecti on) conn. prepar eSt at enent (sql _string, true);

If most dynamic statements are executed many times in a session

If most of the dynamic statements in an application are likely to be executed
many times in the course of a session, proceed as follows:

116 jConnect for JDBC

CHAPTER 4 Performance and Tuning

e Set the connection property DYNAMIC_PREPARE to true.

e To return PreparedStatement objects containing precompiled statements,
use Connection.prepareStatement() in the standard way:

Pr epar edSt at ement ps_preconp =
Connecti on. prepareSt at ement (sql _string);

» To return PreparedStatement objects containing uncompiled statements,
you can use either Connection.prepareCall() (see the third bullet under
Prepared statements in portabl e applications) or
SybConnection.prepareStatement(), with dynamic set to “false:”

Prepar edSt at ement ps_unconp =
(SybConnecti on) conn. pr epar eSt at enent (sql _stri ng,
fal se);

Pr epar edSt at ement ps_unconp =
Connecti on. prepareCal | (sql _string);

Connection.prepareStatement()

Programmer’s Reference

jConnect implements Connection.prepareStatement() SO you can set it to return
either precompiled SQL statements or uncompiled SQL statementsin
PreparedStatement objects. If you set Connection.prepareStatement() to return
precompiled SQL statements in PreparedStatement objects, it sends dynamic
SQL statements to the database to be precompiled and saved exactly as they
would be under direct execution of the prepare command. If you set
Connection.prepareStatement() to return uncompiled SQL statements, it
returns them in PreparedStatement objects without sending them to the
database.

The type of SQL statement that Connection.prepareStatement() returnsis
determined by the connection property DY NAMIC_PREPARE, and applies
throughout a session.

For Sybase-specific applications, jConnect 5.5 provides a prepareStatement()
method under the jConnect SybConnection class.
SybConnection.prepareStatement() allows you to specify whether an individual
dynamic SQL statement isto be precompiled, independent of the session-level
setting of the DYNAMIC_PREPARE connection property.

117

Performance tuning for prepared statements in dynamic SQL

DYNAMIC_PREPARE connection property

DYNAMIC_PREPARE is aBoolean-valued connection property for enabling
dynamic SQL prepared statements:

118

If DYNAMIC _PREPARE is set to true, every invocation of
Connection.prepareStatement() during a session attempts to return a
precompiled statement in a PreparedStatement object.

In this case, when a PreparedStatement is executed, the statement it
containsis already precompiled in the database, with place holders for
dynamically assigned values, and the statement needs only to be executed.

If DYNAMIC_PREPARE is set to false for a connection, the
PreparedStatement object returned by Connection.prepareStatement() does
not contain a precompiled statement.

In this case, each time a PreparedStatement is executed, the dynamic SQL
statement it contains must be sent to the database to be both compiled and
executed.

The default value for DYNAMIC_PREPARE isfalse.

In the following example, DYNAMIC_PREPARE is set to true to enable
precompilation of dynamic SQL statements. In the example, props isa
Properties object for specifying connection properties.

props. put ("DYNAM C_PREPARE", "true")
Connecti on conn = Driver Manager. get Connection(url,
props);

When DY NAMIC_PREPARE is set to true, note that:

Not all dynamic statements can be precompiled under the prepare
command. The SQL-92 standard places some restrictions on the
statements that can be used with the prepare command, and individual
database vendors may have their own constraints.

If the database generates an error because it is unable to precompile and
save a statement sent to it through Connection.prepareStatement(),
jConnect trapsthe error and returns a PreparedStatement object containing
an uncompiled dynamic SQL statement. Each time the PreparedStatement
object is executed, the statement is re-sent to the database to be compiled
and executed.

jConnect for JDBC

CHAPTER 4 Performance and Tuning

e A precompiled statement resides in memory in the database and persists
either to the end of a session or until its PreparedStatement object is
explicitly closed. Garbage collection on a PreparedStatement object does
not remove the prepared statement from the database.

Asageneral rule, you should explicitly close every PreparedStatement
object after itslast use to prevent prepared statements from accumulating
in server memory during a session and slowing performance.

SybConnection.prepareStatement()

If your application allows jConnect-specific extensionsto JDBC, you can use
the SybConnection.prepareStatement() extension method to return dynamic
SQL statementsin PreparedStatement objects:

Pr epar edSt at enent SybConnecti on. pr epar eSt at enent
(String sql _stnt,
bool ean dynamic) throws SQ.Exception

SybConnection.prepareStatement() can return PreparedStatement objects
containing either precompiled or uncompiled SQL statements, depending on
the setting of the dynamic parameter. If dynamic istrue,
SybConnection.prepareStatement() returns a PreparedStatement object with a
precompiled SQL statement. If dynamicisfalse, it returns aPreparedStatement
object with an uncompiled SQL statement.

The following example shows the use of
SybConnection.prepareStatement() to return a PreparedStatement object
containing a precompiled statement:

Prepar edSt at ement preconp_stm =

((SybConnection) conn). prepareStatenent("SELECT *
FROM

aut hors WHERE au_fnane LIKE ?", true);

In the example, the connection object conn is downcast to a SybConnection
object to alow the use of SybConnection.prepareStatement(). The SQL string
passed to SybConnection.prepareStatement() will be precompiled in the
database, even if the connection property DY NAMIC_PREPARE isfalse.

Programmer’s Reference 119

Cursor performance

If the database generates an error becauseit is unableto precompile astatement
sent to it through SybConnection.prepareStatement(), jConnect throws a
SQLException and the call fails to return a PreparedStatement object. Thisis
unlike Connection.prepareStatement(), which traps SQL errors and, in the
event of an error, returns a PreparedStatement object contai ning an uncompiled
statement.

ESCAPE_PROCESSING_DEFAULT connection property

By default jConnect parses all SQL statements submitted to the database for
valid JIDBC function escapes. If your application is hot going to use JDBC
function escapesin its SQL calls, you can set this connection property to false
to circumvent this parsing. This may give adight performance benefit.

Cursor performance

120

When you use the Statement.setCursorName() method or the setFetchSize()
method in the SybCursorResultSet class, jConnect creates a cursor in the
database. Other methods cause jConnect to open, fetch, and update a cursor.

Versionsof jConnect earlier than 4.0 can create and manipul ate cursors only by
sending SQL statements with explicit cursor commands to the database for
parsing and compilation.

jConnect version 4.0 and later create and manipulate cursors either by sending
SQL statements to the database or by encoding cursor commands as tokens
within the Tabular Data Stream (TDS) communication protocol. Cursors of the
first type are “language cursors;” cursors of the second type are “ protocol
cursors.”

Protocol cursors provide better performance than language cursors. In
addition, not all databases support language cursors. For example, Adaptive
Server Anywhere databases do not support language cursors.

In jConnect, the default condition isfor all cursorsto be protocol cursors.
However, the LANGUAGE_CURSOR connection property gives you the
option of having cursors created and manipul ated through language commands
in the database.

jConnect for JDBC

CHAPTER 4 Performance and Tuning

LANGUAGE_CURSOR connection property

LANGUAGE_CURSOR isaBoolean-valued connection property in jConnect
that allows you to determine whether cursors are created as protocol cursors or
language cursors.

« If LANGUAGE CURSOR isset to false, all cursors created during a
session are protocol cursors, which provide better performance. jConnect
creates and manipulates the cursors by sending cursor commands as
tokensin the TDS protocal.

By default, LANGUAGE_CURSOR is set to false.

e |f LANGUAGE_CURSOR isset totrue, al cursors created during a
session are language cursors. jConnect creates and mani pul atesthe cursors
by sending SQL statements to the database for parsing and compilation.

There is no known advantage to setting LANGUAGE_CURSOR to true,
but the option is provided in case an application displays unexpected
behavior when LANGUAGE_CURSOR isfalse.

Programmer’s Reference 121

Cursor performance

122 jConnect for JDBC

CHAPTER 5 Migrating jConnect Applications

This chapter explains how to migrate applications that use Sybase
extensions from jConnect version 4.0 or earlier to use jConnect versions
4.1 and later.

Topics
Migrating applicationsto jConnect 4.5 and 5.5
Sybase extensions

Migrating jConnect applications

Migrating applications to jConnect 4.5 and 5.5

If you upgrade to jConnect 4.5 or 5.5 from earlier versions, the following
table shows which upgrade paths require you to make changes and
recompile the source code.

Legend:

A Change CLASSPATH for new installation structure

B Recompile to use new jConnect 5.x driver

C Verify that the new driver isfirst in your CLASSPATH.
See below for additional details.

Upgrading from To jConnect version

jConnect version 45 5.2 55

4.2/45 A BC BC

5.2 - - A
A. Use the new Sybase 1 Change package importsfrom

extensions.
import com.sybase.jdbc.*

Programmer’s Reference 123

Migrating jConnect applications

to
import com.sybase.jdbcx.*;

2 Usenew Sybase extentions APIs. See “ Sybase extensions’ on page 125.

A. Change Set IDBC_HOME to the top directory of the jConnect driver you installed.
CLASSPATH for new For example:

JDBC_HOME)

installation structure For jConnect 4.5;

JDBC_HOVE=j Connect-4_5
For jConnect 5.5:
JDBC_HOVE=<j Connect installation directory>

For more information on setting JDBC_HOME, see “ Setting Environment
Variables’ in Chapter 1 of the jConnect for JDBC Installation Guide.

Version change CLASSPATH includes

From 4.2/4.5 JDBC_HOME/classes

To 52 JDBC_HOME/jconn2.jar

From 42 JDBC_HOME/classes

To 45 JDBC_HOME/classes

From 5.2 JDBC_HOME/classes/jconn2.jar

To 55 JDBC_HOME/classes/jconn2.jar
B. Recompile to use Change the source code where the driver is loaded from:
new jConnect 5.x
driver Cl ass. f or Name(" com sybase. j dbc. SybDriver");

to
Cl ass. for Name("com sybase. j dbc2. j dbc. SybDriver");

C. Verify that new To verify that the new jConnect driver isfirst in your CLASSPATH, display
18322%% A?‘lqzll erisin your CLASSPATH and find thedirectory where youinstalled the new jConnect

driver.

Verify that the classes for the new driver (in the classes/jconn2.jar for 5.x)
appear in the CLASSPATH before the classes for any previoudly installed
driver.

124 jConnect for JDBC

CHAPTER 5 Migrating jConnect Applications

Sybase extensions

jConnect version 4.1 and later include the package com.sybase.jdbcx that
contains al of the Sybase extensions to JDBC. In versions of jConnect
previous to 4.1, these extensions were avail able in the com.sybase.jdbc and
com.sybase.utils packages.

com.sybase.jdbcx provides a consistent interface across different versions of
jConnect. All of the Sybase extensions are defined as Java interfaces, which
allows the underlying implementations to change without affecting
applications built using these interfaces.

When you develop new applications that use Sybase extensions, use
com.sybase.jdbcx. The interfaces in this package alow you to upgrade
applications to versions of jConnect that follow version 4.0 with minimal
changes.

Note Applications previously built using the Sybase extensions to the JDBC
API, which were available in com.sybase.jdbc and com.sybase.utils, will
continue to work under jConnect 4.x; however, all Sybase extensionsin
com.sybase.jdbc and com.sybase.utils have been marked deprecated.

Some of the Sybase extensions have been changed to accommodate the new
com.sybase.jdbcx interface.

Change example
If an application uses the SybMessageHandler, the code differenceswould be:
e jConnect 4.0 code:

i mport com sybase. j dbc. SybConnecti on;
i mport com sybase. j dbc. SybMessageHandl er;

Connection con = DriverManager. get Connection(url, props);
SybConnecti on sybCon = (SybConnection) con;
sybCon. set MessageHandl er (new Connecti onMsgHandl er());

e jConnect 4.1 and later code:

i mport com sybase. j dbcx. SybConnecti on;
i nport com sybase. j dbcx. SybMessageHandl er;

Programmer’s Reference 125

Sybase extensions

Connection con = DriverManager. get Connection(url, props);
SybConnecti on sybCon = (SybConnection) con;
sybCon. set SybMessageHandl er (new Connecti onMsgHandl er());

See the sampl es provided with jConnect for more examples of how to use
Sybase extensions.

Method names

Thefollowing table lists how methods were been renamed in the new interface.

Class Old name New name
SybConnection getCapture() createCapture()
SybConnection setMessageHandler() setSybMessageHandler()
SybConnection getMessageHandler() getSybMessageHandler()
SybStatement setMessageHandler() setSybMessageHandler()
SybStatement getMessageHandler() getSybMessageHandler()

Debug class

Direct static referencesto the Debug class are no longer supported, but exist in
deprecated form in the com.sybase.utils package. To use jConnect debugging
facilities, use the getDebug() method of the SybDriver classto obtain a
reference to the Debug class. For example:

i mport com sybase. jdbcx. SybDri ver;
i mport com sybase. j dbcx. Debug;

SybDriver sybDriver =

SybDriver)d ass. f or Nane

("com sybase. jdbc2.jdbc. SybDriver") new nstance();
Debug sybDebug = sybDri ver. get Debug();
sybDebug. debug(true, "ALL", System out);

A completelist of Sybase extensionsisin the jConnect javadoc documentation
located in the docs/ directory of your jConnect installation directory.

126 jConnect for JDBC

CHAPTER 6

Web Server Gateways

Thischapter describesWeb server gateways and explains how to usethem
with jConnect.

TOPICS
About Web server gateways
Using the TDS-tunnelling servlet

About Web server gateways

TDS tunnelling

Programmer’s Reference

If your database server runs on a different host than your Web server, or if
you are developing Internet applications that must connect to a secure
database server through afirewall, you need a gateway to act as a proxy,
providing a path to the database server.

To connect to servers using the Secure Sockets Layer (SSL) protocol,
jConnect provides a Java servlet that you can install on any Web server
that supports the javax.servlet interfaces. This servlet enables jConnect to
support encryption using the Web server as the gateway.

Note jConnect includes support for SSL on the client system. For
information on jConnect’s client-side support of SSL, see“Implementing
custom socket plug-ins’ on page 28.

jConnect uses TDS to communicate with database servers. HTTP-
tunnelled TDSisuseful for forwarding requests. Requestsfrom aclient to
aback-end server that go through the gateway contain TDSin the body of
the request. The request header indicates the length of the TDS included
in the request packet.

127

About Web server gateways

TDSisaconnection-oriented protocol, whereas HTTP is not. To support
security features such as encryption for Internet applications, jConnect uses a
TDS-tunnelling servlet to maintain alogical connection acrossHT TP requests.
The servlet generates a session ID during the initial login request, and the
session ID isincluded in the header of every subsequent request. Using session
IDs lets you identify active sessions, and even resume a session as long as the
servlet has an open connection using that specific session ID.

Thelogical connection provided by the TDS-tunnelling servlet enables
jConnect to support encrypted communication between two systems—for
example, ajConnect client with the CONNECT_PROTOCOL connection
property set to “https’ connecting to a\Web server running the TDS-tunnelling
servlet.

jConnect and gateway configuration

There are several options for setting up your Web servers and Adaptive
Servers. Four common configurations are described below. These examples
show where to install the jConnect driver and when to use a gateway with the
TDS-tunnelling servlet.

Web server and Adaptive Server on one host

In this two-tier configuration, the Web server and Adaptive Server are both
installed on the same host.

e Install jConnect on the Web server host.
* No gateway required.

128 jConnect for JDBC

CHAPTER 6 Web Server Gateways

Figure 6-1: Web server and Adaptive Server on one host

Client Host
Browser URL
(Web
Downloaded Server
appplets and | | Download applets and
jConnect applets and jConnect
driver . jConnect
\ Adaptive
TDS 5.0 Server

Dedicated JDBC Web server and Adaptive Server on one host

With this configuration, you have a separate host for your main Web server. A
second host is shared by a Web server specifically for Adaptive Server access
and the Adaptive Server. Links from the main server direct requests requiring
SQL access to the dedicated Web server.

« Ingtal jConnect on the second (Adaptive Server) host.
e No gateway required.

Programmer’s Reference 129

About Web server gateways

Figure 6-2: Main Web server on separate host

Host A

Web server and Adaptive Server on separate hosts

TDS 5.0

Client
Browser
URL
Downloaded * non-SQL
appplets and applets
jConnect
driver Host B
URL
AN
Download A Web
applets and~_| Server
jConnect
applets and
jConnect

In thisthree-tier configuration, the Adaptive Server is on a separate host from
the Web server. jConnect requires a gateway to act as a proxy to the Adaptive

Server.

e Install jConnect on the Web server host.

* RequiresaTDS-tunnelling servlet or adifferent gateway.

130

jConnect for JDBC

CHAPTER 6 Web Server Gateways

Figure 6-3: Web Server and Adaptive Server on separate hosts

Host A

Client
Browser
URL
Downloaded \¢7— Download —
appplets and applets and
jConnect jConnect
driver
L
HTTP
tunneled
TDS
TDS 5.0

Main Web
Server

jConnect

Connecting to a server through a firewall

To connect to aserver protected by afirewall, you must use a Web server with
the TDS-tunnelling servlet to support transmission of database request
responses over the Internet.

Programmer’s Reference

Install jConnect on the Web server host.

Requires a Web server that supports the javax.servlet interfaces.

applets and

131

Usage requirements

Figure 6-4: Connect a server through a firewall

|
Client | Host A
URL
Browser f
| Download
Downloaded T applets and 7 Web Server
apppletsand | || iConnect ~Supporting
jConnect javax.servlet
driver | HTTP/HTTPS | \|TDS serviet
‘T tunneled
I TDS
I » applets and
| jConnect
Firewall |
I
I Host B
: TDS 5.0
I >
I
I

Usage requirements

Reading the index.html file

Use your Web browser to view the index.html filein your jConnect installation
directory. index.html provideslinksto the jConnect documentation and sample
code.

132 jConnect for JDBC

CHAPTER 6 Web Server Gateways

Note If you use Netscape on the same machine where you have installed
jConnect, make sure that your browser does not have access to your
CLASSPATH environment variable. See “ Restrictions on Setting
CLASSPATH When You Use Netscape” in Chapter 3 of the Sybase jConnect
for JDBC Installation Guide and Release Bulletin.

1 Openyour Web browser.

2 Enter the URL that matches your setup. For example, if your browser and
the Web server are running on the same host, enter:

http://1 ocal host: 8000/i ndex. ht m
If the browser and the Web server are running on different hosts, enter:
http://host: port/index. htm

where host isthe name of the host on which the Web server isrunning, and
port is the listening port.

Running the sample Isqgl applet

Troubleshooting

Programmer’s Reference

After loading the index.html file in your browser:
1 Click “Run Sample JDBC Applets.”
This takes you to the jConnect Sample Programs page.

2 Movedown the Sample Programspageto find thetable under “ Executable
Samples.”

3 Locate “Isgl.java’ in the table and click Run at the end of the row.

The sample Isqgl.java applet prompts for a simple query on a sample database
and displays the results. The applet displays a default Adaptive Server host
name, port number, user name (guest), password (sybase), database, and query.
Using the default val ues, the applet connects to the Sybase demonstration
database. It returns results after you click Go.

Under UNIX, if the applet does not appear as expected, you can modify the
applet screen dimensions:

1 Useatext editor to edit the following:

133

Using the TDS-tunnelling servlet

$IDBC_HOME/sample2/gateway.html

2 Change the height parameter in line 7 to 650. You can experiment with
different height settings.

3 Reload the Web page on your browser.

Using the TDS-tunnelling servlet

134

To use the TDS-tunnelling servlet, you need a Web server that supports the
javax.servlet interfaces, such as Sun Microsystems, Inc.’s Java Web server.
When you install the Web server, include the jConnect TDS-tunnelling servlet
inthelist of active servlets. You can also set servlet parameters to define
connection timeouts and maximum packet size.

With the TDS-tunnelling servlet, requests from a client to the back-end server
that go through the gateway include a GET or POST command, the TDS
session ID (after the initial request), back-end address, and status of the
request.

TDSisinthe body of the request. Two header fields indicate the length of the
TDS stream and the session |D assigned by the gateway.

When the client sends a request, the Content-L ength header field indicatesthe
size of the TDS content, and the request command is POST. If thereisno TDS
datain the request because the client is either retrieving the next portion of the
response datafrom the server, or closing the connection, the request command
is GET.

Thefollowing exampleillustrateshow information ispassed between the client
and an HTTPS gateway using the TDS-tunneled HTTPS protocol; it shows a
connection to a back-end server named DBSERV ER with a port number
“1234.

jConnect for JDBC

CHAPTER 6 Web Server Gateways

Table 6-1: Client to gateway login request. No session ID.

Query POST/tds?ServerHost=dbserver& ServerPort=1234&
Operation=more HTTP/1.0

Header Content-Length: 605

Content Login request
(TDS)

Table 6-2: Gateway to client. Header contains session ID
assigned by the TDS servlet.

Query 200 SUCCESSHTTP/1.0
Header Content-Length: 210
TDS-Session: TDS00245817298274292

Content Login acknowledgment
(TDS) EED

Table 6-3: Client to gateway. Headers for all subsequent requests
contain the session ID.

Query POST/tds?TDS-
Session=TDS00245817298274292& Operation=more HTTP/1.0

Header Content-Length: 32

Content Query “SELECT * from authors’
(TDS)

Table 6-4: Gateway to client. Headers for all subsequent responses
contain the session ID.

Query 200 SUCCESSHTTP/1.0

Header Content-Length: 2048
TDS-Session: TDS00245817298274292

Content Row format and some rows from query response
(TDS)

TDS-tunnelling servlet system requirements

Programmer’s Reference

To use the jConnect servlet for TDS-tunneled HTTP, you need:

e A Web server that supports javax.servlet interfaces. To install the server,
follow the instructions that are provided with it.

e A Web browser that supports JDK 1.1, such as Netscape 4.0, Internet
Explorer 4.0, or HotJava.

135

Using the TDS-tunnelling servlet

Installing the servlet

Your jConnect installation includes a gateway?2 subdirectory under the classes
directory. The subdirectory contains files required for the TDS-tunnelling
servlet.

Copy the jConnect gateway package to a gateway2 subdirectory under your
Web server’s servletsdirectory. Onceyou have copied the servlets, activate the
servlets by following the instructions for your Web server.

Setting servlet arguments

When you add the servlet to your Web server, you can enter optional arguments
to customize performance:

SkipDoneProc [truelfalse] — Sybase databases often return row count
information as intermediate processing steps are performed during the
execution of aquery. Usually client applicationsignorethisdata. If you set
SkipDoneProc to true, the servlet will remove this extrainformation from
responses “on the fly,” which reduces network usage and processing
requirements on the client. Thisis particularly useful when using
HTTPS/SSL because the unwanted data does not get encrypted/decrypted
beforeit isignored.

TdsResponseSze — set the maximum TDS packet size for the tunneled
HTTPS. A larger TdsResponseSzeismoreefficient if you have only afew
users with alarge volume of data. Use a smaller TdsResponseSze if you
have many users making smaller transactions.

TdsSessionl dleTimeout — define the amount of time (in milliseconds) that
the server connection can remain idle before the connection is
automatically closed. The default TdsSessionldleTimeout is 600,000 (10
minutes).

If you haveinteractive client programsthat may beidlefor long periods of
time and you do not want the connections broken, increase the
TdsSessionl dleTimeout.

You can also set the connection timeout value from the jConnect client
using the SESSION_TIMEOUT connection property. Thisisuseful if you
have specific applications that may beidlefor longer periods. In this case,
set alonger timeout for those connectionswith the SESSION_TIMEOUT
connection property, rather than setting it for the servlet.

Debug —turn on debugging. See* Debugging with jConnect” on page 101.

Enter the servlet arguments in a comma-delimited string. For example:

136

jConnect for JDBC

CHAPTER 6 Web Server Gateways

TdsResponseSi ze=[si ze] , TdsSessi onl dl eTi meout =
[timeout], Debug=true

Refer to your Web server documentation for complete instructions on entering
servlet arguments.

Invoking the servlet

jConnect determines when to use the gateway where the TDS-tunnelling
servlet isinstalled based on the path extension of the proxy connection
property. jConnect recognizes the servlet path extension to the proxy and
invokes the servlet on the designated gateway.

Define the connection URL using this format:
http://host: port/ TDS-servl et-path

jConnect invokes the TDS-tunnelling servlet on the Web server to tunnel TDS
through HTTPR. The servlet path must be the path you defined in your Web
server'sservlet diaslist.

Tracking active TDS sessions

You can view information about active TDS sessions, including the server
connectionsfor each session. Useyour Web browser to open the administrative
URL:

http://host: port/ TDS- servl et - pat h?Qper ati on=li st

For example, if your server isMY SERVER and the TDS servlet path is /tds,
enter:

http://nyserver: 8080/ tds?Operati on=li st

Thisshowsyou alist of active TDS sessions. You can click on asession to see
more information, including the server connection.

Terminating TDS sessions

You can use the URL described above to terminate any active TDS session.
Click on an active session from thelist of sessions on the first page, then click
Terminate This Session.

Programmer’s Reference 137

Using the TDS-tunnelling servlet

Resuming a TDS session

You can set the SESSION_|D connection property so that, if necessary, you
can resume an existing open connection. When you specify a SESSION_1D,
jConnect skipsthelogin phase of the protocol and resumesthe connection with
the gateway using the designated session ID. If the session ID you specified
does not exist on the servlet, jConnect throws a SQL exception the first time
you attempt to use the connection.

TDS and Netscape Enterprise Server 3.5.1 on Solaris

Netscape Enterprise Server 3.5.1 does not support the
javax.servlet.ServletConfig.getinitParameters() or
javax.servlet.ServletConfig.getinitParameterNames() methods. To provide the
necessary parameter values, you need to replace callsto getinitParameter() and
getlnitParameterNames() with hard-coded parameter valuesin

TDSTunnel Serviet.java.

To enter the required parameter valuesin TDSTunnel Serviet.java and use TDS
tunnelling with Netscape Enterprise Server 3.5.1 on Solaris:

1 Hard code parameter valuesin TDSTunnel Serviet.java.
2 Create .classfiles from the class declarations in TDSTunnel Serviet.java.
This should result in the following files:
* TDSTunnel Servet.class
* TdsSession.class
» TdsSessionManager.class

3 Createadirectory for the .class files under your Netscape Enterprise
Server 3.5.1 (NSE_3.5.1) installation directory, as follows:

nkdir NSE 3.5.1 install _dir/plugins/javalservlets/gateway

4 Copy the .classfilesderived from TDSTunnel Serviet.java to the directory
you just created.

5 Copy the classes under $IDBC_HOME/classes/com/sybase to
NSE_3.5.1 install_dir/docs/com/sybase.

An easy way to do thisisto recursively copy everything under
$IDBC_HOME/classesto NSE_3.5.1 install_dir/docs, as:

cp -r $JDBC HOVE/ cl asses NSE_3.5.1_install_dir/docs

138 jConnect for JDBC

CHAPTER 6 Web Server Gateways

This copies anumber of files and directories that are not under
$IDBC_HOME/classes/com/sybase. The extrafiles and directories are

harmless, but take up disk space. You can delete them to reclaim the disk
space.

Set the proxy URL to the TDS-tunnelling servlet.

For example, in $JDBC_HOME/sample2/gateway.html, you would edit
the proxy parameter to appear as follows:

<par am nane=pr oxy val ue="http://hostnane/servl et/
gat eway_nane. TDSTunnel _Servl et _name” >

Programmer’s Reference

139

Using the TDS-tunnelling servlet

140 jConnect for JDBC

appenDix A SQL Exception and Warning

Messages

The following table lists the SQL exception and warning messages that
you may encounter when using jConnect.

SQL state

Message/description/action

010AF

SEVERE WARNI NG An assertion has failed, please use devclasses to
determ ne the source of this serious bug. Message =

Description: Aninternal assertion in the jConnect driver has failed.

Action: Use the devclasses debug classes to determine the reason for this message

and report the problem to Sybase Technical Support.

010DF

Attenpt to set database at login failed. Error nessage:

Description: jConnect cannot connect to the database specified in the connection URL.

Action: Be surethe database nameinthe URL iscorrect. Also, if connecting to Adaptive Server
Anywhere, use the SERVICENAME connection property to specify the database.

010DP

Duplicate connection property ___ ignored.

Description: A connection property is defined twice. It may be defined twice in the driver
connection properties list with different capitalization, for example “ password” and
“PASSWORD.” Connection property names are not case-sensitive, and therefore jConnect does
not distinguish between property names with the same name but different capitalization.

The connection property may a so be defined both in the connection propertieslist, and in the
URL. Inthis case, the property value in the connection property list takes precedence.

Action: Make sure your application defines the connection property only once. However, you
may want you application to take advantage of the precedence of connection properties defined
inthe property list over those defined inthe URL. Inthiscase, you can safely ignore thiswarning.

010HA

The server denied your request to use the high-availability feature.
Pl ease reconfigure your database, or do not request a high-
availability session.

Description: The server to which jConnect attempted an HA-enabled connection did not allow
the connection.

Action: Reconfigure the server to support high availability failover or do not set
REQUEST_HA_SESSION to true.

Programmer’s Reference 141

SQL state

Message/description/action

010HD

Sybase high-availability failover is not supported by this type of
dat abase server.

Description: The database to which jConnect attempted a connection does not support high
availability failover.

Action: Connect only to database servers that support high availability failover.

010HT

Host name property truncated, maxi mumlength is 30.

Description: You provided a String greater than 30 charactersfor the HOSTNAME connection
property, or the host machine on which the jConnect application is running has a name longer
than 30 bytesin length.

Action: No action is necessary, sincethisisjust awarning to indicate that jConnect istruncating
the name to 30 bytes. However, if you wish to avoid this warning, you should set the
HOSTNAME to a String less than or equal to 30 bytesin length.

010MX

Met adat a accessor information was not found on this database. Pl ease
install the required tables as nentioned in the jConnect

document ation. Error encountered while attenpting to retrieve

met adata i nfornmation:

Description: The server may not have the necessary stored procedures for returning metadata
information.

Action: Make sure that stored proceduresfor providing metadataareinstalled on the server. See
“Installing Stored Procedures’ in Chapter 3 of the jConnect for JDBC Installation Guide.

010P4

An out put paraneter was received and ignored.

Description: The query you executed returned an output parameter but the application result-
processing code did not fetch it so it was ignored.

Action: If your application needs the output parameter data, you must rewrite the application so
it can get it. Thismay require using a CallableStatement to execute the query, and adding callsto
registerOutputParameter() and getXXX(). You can also prevent jConnect from returning this
warning, and possibly get a performance improvement, by setting the
DISABLE_UNPROCESSED_PARAM_WARNINGS connection property to true.

010PF

142

One or nore jars specified in the PRELOAD JARS connection property
coul d not be | oaded.

Description: This happens when using the DynamicClassLoader with the PRELOAD_JARS
connection property set to acomma-delimited list of JAR names. When the DynamicClassLoader
opensitsconnection to the server from which the classesareto beloaded, it attemptsto “ prel oad”
all the JAR files mentioned in this connection property. If one or more of the JAR names
specified does not exist on the server, the above error message results.

Action: Verify that every JAR file mentioned in your application’s PRELOAD_JARS
connection property exists and is accessible on the server.

jConnect for JDBC

APPENDIX A SQL Exception and Warning Messages

SQL state Message/description/action

010PO Property LI TERAL_PARAM has been reset to "fal se" because
DYNAM C_PREPARE was set to "true".

Description: If you wish to use precompiled dynamic statements, then you must allow for
parameters to be sent to those statements (if the statements take parameters). Setting
LITERAL_PARAMStotrueforcesall parametersto be sent asliteral valuesin the SQL that you
send to the server. Therefore, you cannot set both properties to true.

Action: To avoid thiswarning, do not set LITERAL_PARAMS to true when you wish to use
dynamic SQL. See“Performance tuning for prepared statementsin dynamic SQL” on page 114
for more information.

010RC The requested ResultSet type and concurrency i s not supported. They
have been converted.

Description: You requested atype and concurrency combination for the ResultSet that is not
supported. The requested values had to be converted. See “Using cursors with result sets’ on
page 48 for more information about what ResultSet types and concurrencies are availablein

jConnect
Action: Request atype and concurrency combination for the ResultSet that is supported.
010sSJ Met adat a accessor informati on was not found on this dat abase. Pl ease

install the required tables as nentioned in the jConnect

docunent ati on.

Description: The metadata information is not configured on the server.

Action: If your application requires metadata, install the stored procedures for returning
metadata that come with jConnect (see “Installing Stored Procedures” in Chapter 3 of the
jConnect for JDBC Installation Guide). If you do not need metadata, set the USE_ METADATA
property to false.

010SK Dat abase cannot set connection option _

Description: Your application attempted an operation that the database you are connected to
does not support.

Action: You may need to upgrade your database or make sure that the latest version of metadata
information isinstalled on it.

010SL Qut - of - dat e net adat a accessor i nfornmation was found on this dat abase.
Ask your database adm nistrator to |load the |atest scripts.

Description: The metadata information on the server is old and needs to be updated.

Action: Install the stored procedures for returning metadata that come with jConnect (see
“Installing Stored Procedures’ in Chapter 3 of the jConnect for JDBC Installation Guide).

Programmer’s Reference 143

SQL state

Message/description/action

010SM

Thi s dat abase does not support the initial proposed set of
capabilities, retrying.

Description: Adaptive Server Enterprise versions 11.9.2 and lower had a bug that caused them
torgect loginsfrom clientsthat requested capabilities that the serversdid not have. Thiswarning
indicates that jConnect has detected this condition and is retrying the connection using the
greatest number of capabilities that the server can accept. When jConnect encountersthis bug, it
attempts to connect to the server twice.

Action: Clients can safely ignore this warning, but if they wish to eliminate the warning and
ensure that jConnect makes only one connection attempt, they can set the ELIMINATE_010SM
connection property to true. Please note that this property should not be set to true when
connecting to Adaptive Server versions 12.0 and | ater.

010SN

Perm ssion to wite to file was denied. File: __ . Error nessage:
Description: Permission to write to afile specified in the PROTOCOL_CAPTURE connection
property is denied because of asecurity violationinthe VM. Thiscan occur if an applet attempts
to write to the specified file.

Action: If you are attempting to write to the file from an applet, make sure that the applet has
access to the target file system.

010SP

File could not be opened for witing. File: ___ . Error nessage:

Action: Make sure that the file nameis correct and that the file is writable.

010SQ

The connection or login was refused, retrying connection with the
host/port address.

Description: The CONNECTION_FAILOVER connection property is set to true, and jConnect
was unable to connect to one of the database serversin the list of serversto which to connect.
Therefore, jConnect will now try to connect to the next server in thelist.

Action: No actionisrequired, aslong asjConnect is able to connect to another database server.
However, you should determine why jConnect was unableto connect to the particular server that
caused the connection warning to be issued.

010TP

144

The connection’s initial character set,____ , could not be converted
by the server. The server’s proposed character set,____ , will be
used, with conversions perfornmed by jConnect.

Description: The server cannot use the character set initially requested by jConnect, and has
responded with a different character set. jConnect accepts the change, and will perform the
necessary character-set conversions.

The message s strictly informational and has no further consequences.

Action: To avoid this message, set the CHARSET connection property to acharacter set that the
server supports.

jConnect for JDBC

APPENDIX A SQL Exception and Warning Messages

SQL state

Message/description/action

010TQ

j Connect coul d not determ ne the server's default character set. This
is likely because of a nmetadata problem Please install the required
tabl es as nmentioned i n the j Connect docunmentation. The connection is
defaulting to the ascii_7 character set, which can handle only
characters in the range from 0x00 through Ox7F.

Description: jConnect could not determine the server's default character set. When this occurs,
the only characters that are guaranteed to trandlate properly are the first 127 ASCII characters.
Therefore, jConnect will revert to 7-bit ASCII in this case. The message is strictly informational
and has no further consequences.

Action: Install the stored procedures for returning metadata that comes with jConnect (see
“Installing Stored Procedures’ in Chapter 3 of the jConnect for JDBC Installation Guide).

010UF

Attenpt to execute use database command failed. Error nessage:

Description: jConnect cannot connect to the database specified in the connection URL. Two
possibilities are:
¢ The name was entered incorrectly in the URL.

* USE_METADATA istrue (the default condition), but the stored procedures for returning
metadata have not been installed. As aresult, jConnect tried to execute the use database
command with the database in the URL, but the command failed. This may be because you
attempted to access an Adaptive Anywhere database. SQL Anywhere databases do not
support the use database command.

Action: Make surethe database namein the URL iscorrect. Make sure that the stored procedures
for returning metadata are installed on the server (see“Installing Stored Procedures’ in Chapter
3 of thejConnect for JDBC Installation Guide and Release Bulletin). If you are attempting to
access a SQL Anywhere database, either do not specify a database hame in the URL, or set
USE_METADATA to false.

010UP

Unr ecogni zed connection property __ ignored.

Description: You attempted to set a connection property in the URL that jConnect does not
currently recognize. jConnect ignores the unrecognized property.

Action: Check the URL definition in your application to make sureit references only valid
jConnect driver connection properties.

0100V

The version of TDS protocol being used is too old.
Ver si on:

Description: The server does not support the required version of the TDS protocol. jConnect
requiresversion 5.0 or later.

Action: Use a server that supports the required version of TDS. See the jConnect installation
guide's system requirements section for details.

Jz001

User nane property ‘' too long. Maxi mumlength is 30.

Action: Do not exceed the 30 byte maximum.

JZ002

Passwor d property too long. Maxi mumlength is 30.

Action: Do not exceed the 30-byte maximum.

Programmer’s Reference 145

SQL state Message/description/action
Jz003 Incorrect URL format. URL: __
Action: Verify the URL format. See “URL connection property parameters’ on page 21.
If you are using the PROXY connection property, you may get a JZ003 exception while trying
to connect if the format for the PROXY property isincorrect.
The PROXY format for the Cascade proxy is:
ip_address:port_number
The PROXY format for the TDS tunnelling servlet is:
http[s]://host:port/tunneling_serviet_alias
Jz004 User nane property missing in DriverManager. get Connection(.. .,
Properties)
Action: Provide the required user property.
JZ006 Caught | OExcepti on: -
Description: An unexpected 1/O error was detected from alower layer. When such I/O
exceptions are caught, they are rethrown as SQL exceptions using the ERR_IO_EXCEPTION
JZ006 sglstate. These errors are often the result of hetwork communication problems. If the I/O
exception causes the database connection to be closed, jConnect will chain aJZ0C1 exception to
the JZ006. Client applications can look for the JZZOC1 exception in the chain to seeif the
connection is still usable.
Action: Examine the text of the original 1/0 exception message, and proceed from there.
Jz008 Invalid colum index value __
Description: You have requested acolumn index value of lessthan 1 or greater than the highest
available value.
Action: Check call to the getxXxX() method and the text of the original query, or be sure to call
rs.next().
Jz009 Error encountered in conversion. Error nmessage: __
Description: Some of the possibilities are:
« A conversion between two incompatible datatypes was attempted, such as date to int.
« Therewasan attempt to convert a string containing a nonnumeric character to anumeric type.
* Therewas aformatting error, such as an incorrectly formatted time/date string.
Action: Make sure that the JDBC specification supports the attempted type conversion. Make
sure that strings are correctly formatted. If a string contains non-numeric characters, do not
attempt to convert it to a numeric type.
JZ00B Nuneric overfl ow

146

Description: You tried to send aBiginteger as a TDS numeric, and the value was too large, or
you tried to send a Javalong as an int and the value was too large.

Action: These values cannot be stored in Sybase. For long, consider using a Sybase numeric.
Thereis no solution for Bignum.

jConnect for JDBC

APPENDIX A SQL Exception and Warning Messages

SQL state Message/description/action

Jz0ooC The precision and scal e specified cannot accommpdate nuneric val ue
Description: When using the setBigDecimal method, the BigDecimal value has a precision or
scale that exceeds the specified precision or scale.
Action: Make sure that the specified precision and scale can accommodate the BigDecimal
value.

JZ00E Attenpt to call execute() or executeUpdate() for a statenent where
set Cursor Nane() has been call ed.
Action: Do not try to call execute or executeUpdate on a statement that has a cursor name set.
Use aseparate statement to delete or update acursor. See“ Using cursorswith result sets’ on page
48 for more information

JZOOF Cursor nanme has al ready been set by set Cursor Name().
Action: Do not set the cursor nametwice for astatement. Closetheresult set of the current cursor
statement.

JZ00G No colum val ues were set for this row update.
Description: You attempted to update arow in which no column values were changed.
Action: To change column vauesin arow, call updatexX() methods before calling updateRow().

JZ00H The result set is not updatable. Use
St at ement . set Resul t Set ConcurrencyType() .
Action: To change aresult set from read-only to updatable, use the
Statement.setResultSetConcurrencyType() method or add afor update clause to your SQL select
Statement.

Jz0ol Invalid scale. The specidfied scale nust be >=0.
Description: The scale value must be greater than zero.
Action: Be surethe scale value is not negative.

JZ00L Login failed. Exam ne the SQ.\Warnings chained to this exception for
t he reason(s).
Action: See message text; proceed according to the reason(s) given for the login failure.

JZ0OM Login timed out. Check that your database server is running on the
host and port nunber you specified. Also check the database server
for other conditions (such as a full tenpdb) that m ght be causing
it to hang.
Action: Follow the recommended actions in the error message.

Jz010 Unabl e to deserialize an Object value. Error text:

Action: Make sure that the Java object from the database implements the Serializable interface
and isin your local CLASSPATH variable.

Programmer’s Reference 147

SQL state

Message/description/action

Jz011

Nunber format excepti on encountered whil e parsing numeric connection
property __ .
Description: A noninteger value was specified for a numeric connection property.

Action: Specify an integer value for the connection property.

Jz012

Internal Error. Please report it to Sybase technical support. Wong
access type for connection property _

Action: Please contact Sybase Technical Support.

Jz013

Error obtaining JND entry:

Action: Correct the INDI URL or make a new entry in the directory service.

Jz014

You may not setTransacti onl sol ati on(Connecti on. TRANSACTI ON_NONE) .
This |l evel cannot be set; it can only be returned by a server.

Action: Check your application code, where it calls Connection.setTransactionlsolation(), and
verify the value you are passing to the method.

JZ0BD

Qut of range or invalid value used for nethod paraneter.
Action: Verify that the parameter value in the method is correct.

Jz0BI

Message: set Fet chSi ze: The fetch size should be set with the follow ng
restrictions — 0 <= rows <= (maxi mumnunber of rows in the ResultSet).

Description: The client application hastried to call setFetchSize with an invalid number of
rows.

Action: Verify that you are calling setFetchSize with the parameter falling within the above
range of values.

JZ0BP

Qut put paraneters are not allowed in Batch Update Statenents.
Action: Examine your application code and check that you did not try to declare an output
parameter in your batch.

JZ0BR

The cursor is not positioned on a rowthat supports the __ nmethod.

Description: You attempted to call aResultSet method that isinvalid for the current row position
(for example, calling insertRow() when the cursor is not on the insert row).

Action: Do not attempt to call a ResultSet method that isinvalid for the current row position.

JZOBS

Bat ch Statenments not supported.

Action: Install or update the jConnect metadata stored procedures on your database with the
latest versions.

JZ0BT

148

The __ method is not supported for ResultSets of type

Description: You attempted to call a ResultSet method that isinvalid for the type of ResultSet.
Action: Do not attempt to call aResultSet method that isinvalid for the type of ResultSet.

jConnect for JDBC

APPENDIX A SQL Exception and Warning Messages

SQL state

Message/description/action

JZ0CO0

Connection is already closed.

Description: The application has already called Connection.close() on this connection object; it
cannot be used any more.

Action: Fix the code so that connection object references are nulled out when a connection is
closed.

JZ0C1

An | OException occurred which closed the connecti on.

Description: An unrecoverable |OException occurred which caused the Connection to be
closed. The Connection cannot be used for any further database activity. If this exception occurs,
it will always be found in an exception chain with the 32006 Exception (explained earlier).

Action: Determine the cause of the |OException that disrupted the Connection.

JZOCL

You nust define the CLASS LOADER property when usi ng the PRELOAD_JARS
property.

Action: Make sureto specify a CLASS LOADER when setting PRELOAD_JARSto a
non-null value.

JzZOoCuU

get Updat eCount can only be called once after a successful call to
get MoreResults, or execute nethods.

Description: As per the JDBC API, getUpdateCount should be called only once per result.
Action: Make sure your code does not call getUpdateCount more than once per result.

JZ0D4

Unr ecogni zed protocol in Sybase JDBC URL:

Description: You specified aconnection URL using aprotocol other than TDS, whichistheonly
protocol currently supported by jConnect.

Action: Check the URL definition. If the URL specifies TDS as a subprotocol, make sure that
the entry uses the following format and capitalization:

jdbc:sybase: Tds:host:port
If the URL specifies INDI as a subprotocol, make sure that it starts with:
jdbc:sybase:jndi:

JZ0D5

Error | oadi ng protocol .
Action: Check the settings for the CLASSPATH system variable.

JZ0D6

Unr ecogni zed version nunber __ specifiedin setVersion. Choose one
of the SybDriver.VERSI ON_* val ues, and make sure that the version of
j Connect that you are using is at or beyond the version you specify.

Action: See message text.

JZ0D7

Error loading url provider ___ . Error nessage:

Action: Check the INDI URL to make sureit is correct.

JZ0D8

Error initializing url provider:
Action: Check the INDI URL to make sureit is correct.

Programmer’s Reference 149

SQL state

Message/description/action

JZODP

This statenent has no netadata because it was not dynamically
prepared. Set the DYNAM C_PREPARE connection property to true to
ensure use of dynamic statenents.

Action: Refer to the error message.

JZOEM

End of data.
Action: Please report this error to Sybase Technical Support.

JZ0F1

Sybase high-availability failover connection was requested but the
conpani on server address is mssing.

Description: When you set the REQUEST_HA_SESSION connection property to true, you
must also specify afailover server.

Action: You can specify the secondary server using the SECONDARY _SERVER_HOSTPORT

connection property, or you can set the secondary server using JNDI (see “Implementing high
availability failover support” on page 40).

JZOF2

Sybase high-availability failover has occurred. The current
transaction is aborted, but the connection is still usable. Retry
your transaction.

Description: The backend database server to which you were connected has gone down, but you
have failed over to a secondary server. The database connection is still usable.
Action: Client code should catch this exception, then restart the transaction from the last

committed point. Assuming you properly handle the exception, you can continue executing
JDBC calls on the same Connection object.

JZOHO

Unable to start thread for event handl er; event nane =

Action: Please report this error to Sybase Technical Support.

JZ0H1

An event notification was received but the event handl er was not
found; event nane =

Action: Please report this error to Sybase Technical Support.

JZOHC

Il'l egal character
nunber .

Description: A string that is supposed to represent abinary value contains a character that is not
in the range (0-9, a-f) that is required for a hexadecimal number.

Action: Check the character values in the string to make sure they are in the required range.

encountered whil e parsing hexadeci nal

Jz0I1

I/ O Layer: Error reading stream

Description: The connection was unable to read the amount requested. Most likely, the
statement timeout period was exceeded and the connection timed out.

Action: Increase the statement timeout value.

Jz012

150

I/O layer: Error witing stream

Description: The connectionwasunableto writethe output requested. Most likely, the statement
time-out period was exceeded and the connection timed out.

Action: Increase the statement time out value.

jConnect for JDBC

APPENDIX A SQL Exception and Warning Messages

SQL state Message/description/action

Jz0I3 Unknown property. Thi s nessage i ndi cates an i nternal product problem
Report this error to Sybase Technical support.
Action: Indicates an internal product problem. Please report this error to Sybase Technical
Support.

JZ0I5 An unrecogni zed CHARSET property was specified: ___ .
Description: You specified an unsupported character set code for the CHARSET connection
property.
Action: Enter avalid character-set code for the connection property. See*jConnect character-set
converters’ on page 34.

JZ016 An error occurred converting UNICODE to the charset used by the
server. Error nessage: -
Action: Choose a different character set code for the CHARSET connection property on the
jConnect client that can support all the characters you need to send to the server. You may need
to install a different character set on the server, too. Also, if you are using jConnect version 5.5
or later, and Adaptive Server Enterprise 12.5 or later, you can send your data to the server as
unichar/univarchar datatypes. Please see “ Using jConnect to pass Unicode data’ on page 33.

Jz017 No response from proxy gateway.
Description: The Cascade or security gateway is not responding.
Action: Make sure the gateway is properly installed and running.

JzZ0I18 Proxy gateway connection refused. Gateway response: -
Description: TheWeb server/gateway indicated by the PROXY connection property hasrefused
your connection request.
Action: Check the access and error logs on the proxy to determine why the connection was
refused. Make sure the proxy isa JDBC gateway.

Jz0I19 This I nput Stream was cl osed.
Description: You tried to read an InputStream obtained from getAsciiStream(),
getUnicodeStream(), or getBinaryStream(), but the InputStream was already closed. The stream
may have been closed because you moved to another column or cancelled the result set and there
were not enough resources to cache the data.
Action: Increase the cache size or read columnsin order.

JZOIA Truncation error trying to send___
Description: There was atruncation error on character set conversion prior to sending a string.
The converted string is longer than the size allocated for it.
Action: Choose a different character-set code for the CHARSET connection property on the
jConnect client that can support all the characters you need to send to the server. You may need
to install adifferent character set on the server, too.

JZO0IR get XXX may not be called on a colum after it has been updated in the

result set with a java.io.Reader.
Action: Remove the getxXxX call on the ResultSet column which you updated using a Reader.

Programmer’s Reference 151

SQL state

Message/description/action

JZ0IS get XXXSt ream may not be called on a colum after it has been updated
in the result set.

Description: After updating acolumn in aresult set, you attempted to read the updated column
value using one of the following SybResultSet methods: getAsciiStream(), getUnicodeStream(),
getBinaryStream(). jConnect does not support this usage.

Action: Do not attempt to fetch input streams from columns you are updating.

Jz0J0 O fset and/or |ength val ues exceed the actual text/image |ength.
Action: Check the offset and/or length values you used to make sure they are correct.

JzoLC You cannot call the __ nethod on a ResultSet which is using a
| anguage cursor to fetch rows. Try setting the LANGUAGE CURSOR
connection property to fal se.

Description: The application tried to call one of the ResultSet cursor scrolling methods on a
ResultSet which was created with alanguage cursor.
Action: See the error message.

JZONC wasNul | called without a preceding call to get a col um.

Description: You can only call wasNull() after acall to get a column, such as getint() or
getBinaryStream().
Action: Change the code to move the call to wasNull().

JZONE Incorrect URL format. URL: __ . Error nessage: __

Action: Check the format of the URL. Make sure that the port number consists only of numeric
characters.

JZONF Unabl e to | oad SybSocket Factory. Make sure that you have spelled the
class name correctly, that the package is fully specified, that the
class is available in your class path, and that it has a public zero-
argunent constructor.

Action: See message text.

JZ0P1 Unexpected result type.

Description: The database has returned a result that the statement cannot return to the
application, or that the application is not expecting at this point. This generally indicates that the
application isusing JDBC incorrectly to execute the query or stored procedure. If the JDBC
application is connected to an Open Server application, it may indicate an error in the Open
Server application that causes the Open Server to send unexpected sequences of results.
Action: Use the com.sybase.utils.Debug(true, “ALL") debugging toolsto try to figure out what
unexpected result is seen, and to understand its causes.

JZ0P4 Protocol error. This nmessage indicates an internal product problem
Report this error to Sybase technical support.

Action: See message text.
152 jConnect for JDBC

APPENDIX A SQL Exception and Warning Messages

SQL state

Message/description/action

JZOP7

Colum is not cached; use RE- READABLE _COLUWNS property.
Description: With the REPEAT_READ connection property set to false, an attempt was made
to reread a column or read a column in the wrong order.

When REPEAT_READ isfalse, you can only read the column value for arow once, and you can
only read columns in ascending column-index order. For example, after reading column 3 for a
row, you cannot read its value a second time and you cannot read column 2 for the row.

Action: Either set REPEAT_READ totrue, or do not attempt to reread a column value and make
sure that you read columns in ascending column-index order.

JZ0P8

The RSMDA Col umm Type Name you requested is unknown.

Description: jConnect cannot determine the name of a column typein the
ResultSetMetaData.getColumnTypeName() method.

Action: Make sure that your database has the most recent stored procedures for metadata.

JZ0P9

A COWUTE BY query has been detected. That type of result is
unsupported and has been cancel | ed.

Description: The query you executed returned COMPUTE results, which are not supported by
jConnect.

Action: Change your query or stored procedure so it does not use COMPUTE BY.

JZOPA

The query has been cancell ed and the same response discarded.
Description: A cancel was probably issued by another statement on the connection.

Action: Check the chain of SQL exceptions and warnings on this and other statements to
determine the cause.

JZ0PB

The server does not support a requested operation.

Description: When jConnect creates a connection with a server, it informs the server of
capabilitiesit wants supported and the server informsjConnect of the capabilitiesthat it supports.
This error message is sent when an application requests an operation that was denied in the
original capabilities negotiation.

For example, if the database does not support precompilation of dynamic SQL statements, and
your code invokes SybConnection.prepareStatement(sgl_stmt, dynamic), and dynamic is set to
true, jConnect generates this message.

Action: Modify your code so that it does not request an unsupported capability.

Programmer’s Reference 153

SQL state Message/description/action

JZOPC The nunber and size of paranmeters in your query require wide table
support. But either the server does not offer such support, or it was
not requested during the |ogin sequence. Try setting the
JCONNECT_VERSI ON property to >=6 if you wish to request wi detable
support.

Description: You are trying to execute a statement with alarge number of parameters, and the
server is not configured to handle that many parameters. The number of parameters that can
produce this exception will vary, depending on the datatypes of the data you are sending. You
will never get this exception if you are sending 481 or fewer parameters.

Action: You must run this query against an Adaptive Server 12.5 or later server. When you
connect to the database, set the JCONNECT_VERSION property to VERSION_6 or
VERSION_LATEST.

JZOPD The size of the query in your dynanmic prepare is |arge enough that
you require wi detabl e support. But either the server does not offer
such support, or it was not requested during the | ogin sequence. Try
setting the JCONNECT_VERSI ON property to >=6 if you wi sh to request
wi det abl e support.

Description: You are trying to execute a dynamic prepared statement with alarge number of
parameters, and the server is not configured to handle that many parameters.

Action: You must run this query against an Adaptive Server 12.5 or later server. When you
connect to the database, set the JCONNECT_VERSION property to VERSION_6 or
VERSION_LATEST.

JZOPE The nunber of columms in your cursor declaration ORthe size of your
cursor declarationitself are |l arge enough that you require wi detable
support. But either the server does not offer such support, or it was
not requested during the |ogin sequence. Try setting the
JCONNECT_VERSI ON property to >= 6 if you wish to request wi de table
support.

Description: Thiserror can occur when your SELECT statement tries to return data from more
than 255 columns, or when the actual length of the SELECT statement isvery large (greater than
approximately 65500 characters).

Action: You must run this query against aversion 12.5 or later Adaptive Server. When you
connect to the database, set the JCONNECT_VERSION property to VERSION_6 or
VERSION_LATEST.

JZOPN Specified port nunmber of __ was out of range. Port nunbers nust
meet the follow ng conditions: 0<= portNumber <=65535.

Action: Check the port number that is specified in the database URL.

154 jConnect for JDBC

APPENDIX A SQL Exception and Warning Messages

SQL state Message/description/action

JZORO Result set has al ready been cl osed.

Description: The ResultSet.close() method has already been called on the result set object; you
cannot use the result set for anything else.

Action: Fix the code so that ResultSet object references are set to null whenever aresult set is
closed.

JZOR1 Result set is IDLE as you are not currently accessing a row.
Description: The application has called one of the ResultSet.getXXX column-data retrieval
methods, but there is no current row; the application has not called ResultSet.next(), or
ResultSet.next() returned false to indicate that there is no data.

Action: Check that rs.next() is set to true before calling rs.getXXX.

JZ0R2 No result set for this query.

Description: You used Statement.executeQuery(), but the statement returned no rows.
Action: Use executeUpdate for statements returning no rows.

JZO0R3 Colum is DEAD. This is aninternal error. Please report it to Sybase
techni cal support.
Action: See message text.

JZ0R4 Col um does not have a text pointer. It is not a text/inmage colum
or the colum is NULL.

Description: You cannot update atext/image column if itisNULL. A NULL text/image column
does not contain atext pointer.

Action: Make sure that you are not trying to update or get atext pointer to a column that does
not support text/image data. Make sure that you are not trying to update atext/image column that
iSNULL. Insert datafirst, then make the update.

JZOR5 The ResultSet is currently positioned beyond the | ast row. You cannot
performa get* operation to read data in this state.

Description: The application has moved the ResultSet row pointer beyond the last row. In this
position, thereis no data to read, so any get* operations areillegal.

Action: Alter the code so that it does not attempt to read column data when the ResultSet is
positioned beyond the last row.

JZORD You cannot call any of the ResultSet.get* methods on a row that has

been deleted with the del et eRow() nethod.

Description: An application istrying to retrieve data from arow that has been deleted. Thereis
no valid data to be retrieved.

Action: Alter the code so that the application does not attempt to retrieve data from a
deleted row.

Programmer’s Reference 155

SQL state

Message/description/action

JZORM

refreshRow may not be called after updateRow or del et eRow.

Description: After updating arow in the database with SybCursorResult.updateRow(), or
deleting it with SybCursorResult.deleteRow(), you used SybCursorResult.refreshRow() to refresh
the row from the database.

Action: Do not attempt to refresh arow after updating it or deleting it from the database.

JZ00

St at enent state nachine: Statenment is BUSY.

Description: The only timethis error is raised is from the Statement.setCursorname() method,
if the application is trying to set the cursor name when the statement is already in use and has
noncursor results that need to be read.

Action: Set the cursor name on a statement before you execute any queries on it, or call
Statement.cancel() before setting the cursor name, to make sure that the statement isn't busy.

Jz0Ss1

Statement state nachine: Trying to FETCH on | DLE statenent.
Description: Aninternal error occurred on the statement.
Action: Close the statement and open another one.

Jz0S2

St at ement obj ect has al ready been cl osed.

Description: The Statement.close() method has aready been called on the statement object; you
cannot use the statement for anything else.

Action: Fix the application so that statement object references are set to null whenever a
statement is closed.

JZ0S3

The inherited nethod ___ cannot be used in this subcl ass.

Description: PreparedStatement does not support executeQuery(String), executeUpdate(String),
or execute(String).

Action: To pass aquery string, use Statement, not PreparedStatement.

JZ0S4

Cannot execute an enpty (zero-length) query.
Action: Do not execute an empty query (““).

JZ0S5

The |l ocal transaction nethod __ cannot be used while a gl obal
transaction is active on this connection.

Description: This exception can occur when using distributed transactions.

Action: See Chapter 7, “ Distributed Transactions,” inthe JDBC 2.0 Optional Package (formerly
the JDBC 2.0 Standard Extension API) for more information on diagnosing the problem.

JZ0S6

The | ocal transaction method ___ cannot be used on a pre-System12
XAConnecti on.

Description: This exception can occur when using distributed transactions.

Action: See Chapter 7, “ Distributed Transactions,” in the JDBC 2.0 Optional Package(formerly
the JDBC 2.0 Standard Extension API) for more information on diagnosing the problem.

JZ0S8

156

‘ ’

An escape sequence in a SQ Query was nal f or med:
Description: This error results from bad escape syntax.
Action: Check JDBC documentation for correct syntax.

jConnect for JDBC

APPENDIX A SQL Exception and Warning Messages

SQL state

Message/description/action

JZ0S9

Cannot execute an enpty (zero-length) query.
Action: Do not execute an empty query (““).

JZ0SA

Prepared Statenment: |nput paraneter not set, index:
Action: Make sure that each input parameter has avalue.

JZ0SB

Paraneter index out of range:

Description: You have attempted to get, set, or register a parameter that goes beyond the
maximum number of parameters.

Action: Check the number of parametersin your query.

JZ0SC

Callable Statenment: attenpt to set the return status as an
I nPar anet er .

Description: You have prepared a call to a stored procedure that returns a status, but you are
trying to set parameter 1, which is the return status.

Action: Parameters that you can set start at 2 with this type of call.

JZ0SD

No regi stered paraneter found for output paraneter.

Description: Thisindicates an application logic error. You attempted to call getxXXX() or
wasNull() on a parameter, but you have not read any parameters yet, or there are no output
parameters.

Action: Check to make sure that the application has registered output parameters on the

CallableStatement, that the statement has been executed, and that the output parameters were
read.

JZ0SE

I nvalid object type specified for setObject().
Description: Illega type argument passed to PreparedStatement.setObject.
Action: Check the IDBC documentation. The argument must be a constant from java.sqgl. Types.

JZ0SF

No Paraneters expected. Has query been sent?
Description: You tried to set a parameter on a statement with no parameters.
Action: Make sure the query has been sent before you set the parameters.

JZ0SG

An RPC did not return as many out put paranmeters as the application
had registered for it.

Description: Thiserror occursif you call CallableStatement.registerOutParam() for more
parameters than you declared as“OUTPUT"” parameters in the stored procedure. See “RPC
returns fewer output parameters than registered” on page 108 for more information.

Action: Check your stored procedures and registerOutParameter calls. Make sure that you have
declared all of the appropriate parameters as“OUTPUT.” Look at the line of code that reads:

create procedure yourproc (@1 int OUTPUT,

Note If you receivethiserror while using Adaptive Server Anywhere (previously known as SQL
Anywhere), upgrade to Adaptive Server Anywhere version 5.5.04.

Programmer’s Reference 157

SQL state Message/description/action

JZOSH A static function escape was used, but the netadata accessor
informati on was not found on this server.

Action: Install metadata accessor information before using static function escapes.

Jz0osl A static function escape
this server.

was used which is not supported by

Action: Do not use this escape.

JZ0SJ Met adat a accessor information was not found on this database.
Action: Install metadatainformation before making metadata calls.
JZ0OSK The oj escape is not supported for this type of database server.

Wor karound: use server-specific outer join syntax, if supported.
Consul t server docunentati on.

Action: Read the error message. Also, install the latest version of the jConnect metadata.

JZ0OSL Unsupported SQL type
Description: The application has declared a parameter to be of atype that jConnect does not
support.

Action: If possible, try declaring the parameter to be of adifferent type. Do not use Types.NULL
or PreparedStatement.setObject (null).

JZOSM j Connect could not execute a stored procedure because there was a
probl em sending the paraneter(s). This problemwas |ikely caused
because the server does not support a specific datatype, or because
j Connect did not request support for that datatype at connect tine.
Try setting the JCONNECT_VERSI ON connection property to a higher
value. O, if possible, try sendi ng your procedure execution conmand
as a | anguage statenent.

JZOSN set MaxFi el dSi ze: field size cannot be negati ve.
Action: Use apositive value or zero (unlimited) when calling setMaxFieldSize.

JZ0SO Invalid ResultSet concurrency type:

Action: Check that your declared concurrency is either ResultSet. CONCUR_READ_ONLY or
ResultSet. CONCUR_UPDATABLE.

JZ0OSsP Invalid ResultSet type:

Action: Check that your declared ResultSet type is ResultSet. TYPE_FORWARD_ONLY or
ResultSet. TYPE_SCROLL_INSENSITIVE. jConnect does not support the
ResultSet. TYPE_SCROLL_SENSITIVE ResultSet type.

JZ0SQ In valid UDT type __

Description: When calling the DatabaseM etaData.getUDTs method, jConnect will throw this
Exception if the user-defined typeis not either Types.JAVA_OBJECT, Types.STRUCT or
Types.DISTINCT.

Action: Use one of the three UDTs mentioned above.

158 jConnect for JDBC

APPENDIX A SQL Exception and Warning Messages

SQL state Message/description/action

JZOSR set MaxRows: max rows cannot be negati ve.

Action: Use a positive vaue or zero (unlimited) when calling setMaxRows.

JZ0SS set QueryTi meout: query tineout cannot be negati ve.

JZ0ST j Connect cannot send a Java object as a literal paraneter in a query.
Make sure that your database server supports Java objects and that
t he LI TERAL_PARAMS connection property is set to fal se when you
execute this query.

NAS A Date or Tinmestanp paranmeter was set with a year of ___ | but the
server can only support year val ues between and LI f
you're trying to send data to date or timestanp colums or paraneters
on Adaptive Server Anywhere, you nay wi sh to send your data as
Strings, and let the server convert them
Description: Adaptive Server Enterprise and Adaptive Server Anywhere have different
allowable ranges for datetime and date values. Datetime values must have years greater or equal
to 1753. The date datatype, however, can hold years greater or equal to 1.

Action: Make sure that the date/timestamp value you are sending falls in the acceptable range.

Jz0T2 Li stener thread read error.

Action: Check your network communications.

JzZ0T3 Read operation tined out.

Description: The time allotted to read the response to a query was exceeded.
Action: Increase the timeout period by calling Statement.setQueryTimeout().

Jz0T4 Wite operation tined out. Timeout in mlliseconds: __ .
Description: The time allotted to send a request was exceeded.

Action: Increase the timeout period by calling Statement.setQueryTimeout().

JZ0T5 Cache used to store responses is full.

Action: Use default or larger value for the STREAM_CACHE_SIZE connection property.

JZ0T6 Error reading tunnel ed TDS URL.

Description: The tunneled protocol failed while reading the URL header.
Action: Check the URL you defined for the connection.

JZ0T7 Li stener thread read error -- caught ThreadDeath. Check network
connecti on.

Action: Check the network connections and try to run the application again. If the threads
continue to be aborted, please contact Sybase Technical Support.

JZ0T8 Dat a received for an unknown request. Please report this error to
Sybase Techni cal Support.

JZ0T9 Request to send not synchroni zed. Please report this error to Sybase

Techni cal Support.
Action: See message text.

Programmer’s Reference 159

SQL state Message/description/action

Jz0TC Attenpted conversion between an illegal pair of types.
Description: Conversion between a Javatype and a SQL type failed.
Action: Check the requested type conversion to make sure it is supported in the JIDBC
specification.

JZOTE At t enpt ed conversi on between an illegal pair of types. Valid database
types are: ‘__ ’

Description: Thedatabase column datatype and the datatype requested in theResultSet.getXXX()
cal are not implicitly convertible.

Action: Use one of the valid datatypes listed in the error message.

JZOTI j Connect cannot make a neani ngful conversion between the database
type of and the requested type of

Description: Thiskind of exception can occur, for example, if an application tries to call
ResultSet.getObject (int, Types.DATE) on atime value that is returned from the database.

Action: Make sure that the database datatype is implicitly convertible to the Object type you
wish to retrieve.

JZ0TO Read operation tinmed out.
Description: This exception occurs when thereis a socket read timeout.

Action: Increase the timeout period by calling Statement.setQueryTimeout(). Also, check the
query or stored proc you are executing to determine why it is taking longer than expected.

JZOTS Truncation error trying to send

Description: The application specified aStrlng that was Ionger than the length that the
application wanted to send. Therefore, the String is truncated to the declared length.

Action: Set the length properly to avoid truncation.

JZ0US The SybSocket Factory connection property was set, and the PROXY
connection property was set to the URL of a servlet. The jConnect
driver does not support this conbination. If you want to send secure
HTTP from an applet running within a browser, use a proxy URL
beginning with “https://".

Action: See message text.
JZ0OXC is an unrecogni zed transacti on coordi nator type.

Description: The metadata information indicates that the server supports distributed
transactions, but jConnect does not support the protocol being used.

Action: Verify that you have installed the latest metadata scripts. If the error persists, please
contact Sybase Technical Support.

160 jConnect for JDBC

APPENDIX A SQL Exception and Warning Messages

SQL state Message/description/action

JZOXS The server does not support XA-style transactions. Pl ease verify that
the transaction feature is enabled and licensed on this server.
Description: The server to which jConnect attempted a connection does not support distributed
transactions.
Action: Do not use XADataSource with this server, or upgrade or configure the server for
distributed transactions.

JZOXU Current user does not have permi ssion to do XA-style transactions.
Be sure user has __ rol e.
Description: The user connected to the database is not authorized to conduct distributed
transactions. Most likely because they do not have the proper role (shown in the blank).
Action: Grant the user the role shown in the error message, or have another user with that role
conduct the transaction.

S0022 Invalid colum nanme ‘__ .
Description: You attempted to reference a column by name and there is no column with that
name.
Action: Check the spelling of the column name.

ZZ00A The method __ has not been conpleted and should not be called.

Description: You attempted to use a method that is not implemented.

Action: Check the release bulletin that came with your version of jConnect for further
information. You can also check the jConnect Web page at http://www.sybase.com to see
whether amore recent version of jConnect implements the method. If not, do not use the method.

Programmer’s Reference 161

162 jConnect for JDBC

appenpix 8 JConnect Sample Programs

This appendix is a guide to jConnect sample programs.
Topics
Running IsglApp
Running jConnect sample programs and code

Running IsqlApp

IsqlApp allows you to issue isql commands from the command line, and
run jConnect sample programs.

The syntax for IsglApp is:

I sqgl App [-U usernane] [-P password]
[-S servernane]
[- G gat eway]
[-p {http|https}]
[-D debug-cl ass-1list]
[-V]
[-1 input-comrand-file]
[-c command_t erni nator]
[-C charset] [-L |anguage]
[-T sessionlD]
[-V <version {2, 3,4,5}>]

Parameter Description
-U Thelogin ID with which you want to connect to a server.
P The password for the specified login ID.
-S The name of the server to which you want to connect.
G Gateway address. For the HTTP protocol, the URL is: http://host: port.

To use the HTTPS protocol that supports encryption, the URL is
https://host:port/serviet_alias.

-p Specifies whether you want to use the HTTP protocol or the HTTPS protocol that
supports encryption.

Programmer’s Reference 163

Running IsglApp

Parameter Description

-D Turns on debugging for all classes or for just the ones you specify, separated by a
comma. For example,
-D ALL

displays debugging output for all classes.

-D SybConnection, Tds

displays debugging output only for the SybConnection and Tds classes.
v Turns on verbose output for display or printing.
-l Causes IsglApp to take commands from afile instead of the keyboard.

After the parameter, you specify the name of thefileto usefor the IsglApp input. The
file must contain command terminators (“go” by default).

-c Letsyou specify akeyword (for example, “go”) that, when entered on aline by itself,
terminates the command. Thislets you enter multiline commands before using the
terminator keyword. If you do not specify a command terminator, each new line
terminates a command.

-C Specifies the character set for strings passed through TDS.
If you do not specify a character set, IsqlApp uses the server’s default charset.

-L The language in which to display error messages returned from the server and for
jConnect messages.

-T When this parameter is set, jConnect assumes that an application is trying to resume

communication on an existing TDS session held open by the TDS-tunnelling
gateway. jConnect skips the login negotiations and forwards all requests from the
application to the specified session ID.

-V Enables the use version-specific characteristics. See “JCONNECT_VERSION
connection property” on page 10.

Note You must enter a space after each option flag.

To obtain afull description of the command-line options, enter:
java |sql App -help

The following example shows how to connect to a database on a host named
“myserver” through port “3756” and run an isql script named “myscript”:

java Isql App -U sa -P sapassword
-S jdbc: sybase: Tds: myserver: 3756

164 jConnect for JDBC

APPENDIX B jConnect Sample Programs

-1 $JDBC HOWE sp/ nyscript -c run

Note An applet that provides GUI accessto isql commandsis available as:

$IDBC_HOME/sample2/gateway.html (UNIX)
%JDBC_HOMEY\sampl e2\gateway.html (Windows)

Running jConnect sample programs and code

jConnect includes several sample programs that illustrate many of the topics
covered in this chapter, and to help you understand how jConnect works with
various JDBC classes and methods. In addition, this section includes a sample
code fragment for your reference.

Sample applications

When you install jConnect, you can also the install sample programs. These
samples include the source code so that you can review how jConnect
implements various JDBC classes and methods. See the jConnect for JDBC
Installation Guide for complete instructions for installing the sample
programs.

Note ThejConnect sample programs are intended for demonstration purposes
only.

The sample programs are installed in the sample2 subdirectory under your
jConnect installation directory. Thefileindex.html in the sample2 subdirectory
contains acomplete list of the samples that are available along with a
description of each sample. index.html also lets you view and run the sample
programs as appl ets.

Running the sample applets

Using your Web browser, you can run some of the sampl e programs as appl ets.
This enables you to view the source code while viewing the output results.

To run the samples as appl ets, you need to start the Web server gateway.

Programmer’s Reference 165

Running jConnect sample programs and code

Use your Web browser to open index.html:
Enter:
http: //local host: 8000/sampl €2/index.html

Running the sample programs with Adaptive Server Anywhere

All of the sample programs are compatible with Adaptive Server, but only a
limited number are compatible with Adaptive Server Anywhere. Refer to
index.html inthe sample2 subdirectory for acurrent list of the sample programs
that are compatible with Adaptive Server Anywhere.

To run the sample programs that are available for Adaptive Server Anywhere,
you must install the pubs2_any.sqgl script on your Adaptive Server Anywhere
server. This script islocated in the sample2 subdirectory.

For Windows, go to DOS command window and enter:

java Isql App -U dba -P password
-S jdbc: sybase: Tds: [host nane] : [port]
-1 % DBC_HOVE% sanpl e2\ pubs2_any.sqgl -c go

For UNIX, enter:

java Isql App -U dba -P password
-S jdbc: sybase: Tds: [host nane] : [port]
-1 $JDBC _HOWE/ sanpl e2/ pubs2_any. sql -c go

Sample code

Thefollowing sample codeillustrates how to invoke the jConnect driver, make
aconnection, issue a SQL statement, and process results.

import java.io.*;
i nport java.sql.*;

public class Sanpl eCode

{
public static void main(String args[])
{
try
{
/*
* Qpen the connection. May throw a SQLExcepti on.
*/

166 jConnect for JDBC

APPENDIX B jConnect Sample Programs

Dri ver Manager.regi sterDriver(
(Driver) d ass.forNanmge(
"com sybase. j dbc2. j dbc. SybDriver"). new nstance());

Connection con = DriverManager. get Connecti on(
"j dbc: sybase: Tds: nyserver: 3767", "sa", "");

/*
* Create a statenent object, the container for the SQ
* statement. May throw a SQLExcepti on.
*/

Statenent stm = con.createStatenent();
/*
* Create a result set object by executing the query.
* May throw a SQLException.

*/
ResultSet rs = stmt.executeQuery("Select 1");
/*
* Process the result set.
*/
if (rs.next())
{
int value = rs.getlnt(1);
Systemout. println("Fetched value " + val ue);
}
rs.close()
stnt.close()
con. cl ose()
Y/ lend try
/*
* Exception handling.
*/
catch (SQLException sqge)
{
System out . println("Unexpected exception : " +
sge.toString() + ", sqlstate =" +

sge. get SQLState());
Systemexit(1);
}//end catch

catch (Exception e)

{
e.printStackTrace();

Systemexit(1);
}//end catch

Programmer’s Reference 167

Running jConnect sample programs and code

System exit(0);

168 jConnect for JDBC

Index

A

Adaptive Server
connectingto 19
connection example 20
Adaptive Server Anywhere 18
accessing metadata 48
connectingto 21
euro symbol 38
sending image data 63, 66
SERVICENAME connection property 20
storing and retrieving Javaobjects 76
advanced features 68
applets 132
APPLICATIONNAME connection property 12
applications
turning off debuggingin 102
turning on debuggingin 102
ASE dadatypes
date, time, and datetime 67
Audience vii

B

batch updates 61

stored procedures 60
BE_AS JDBC_COMPLIANT_ 12
BigDecimal rescaling

improving driver performance 112

C

CANCEL_ALL connection property 6, 10, 12
capturing TDS communication 104
character sets
setting 35
supported 36
character-set conversion

Programmer’s Reference

improving driver performance 113
improving performance 36
character-set converter classes
PureConverter 34
selecting 35
TruncationConverter 34
character-sets
converter classes 34
CHARSET connection property 6, 13
setting 35
CHARSET_CONVERTER connection property 6
CHARSET_CONVERTER_CLASS connection
property 13,35
CLASS_LOADER connection property 13
CLASSPATH
setting for debugging 103
columns
deletionsin cursor result sets 52
updating in cursor result sets 53
compute statements 98
connecting to
aserver using JINDI 22
Adaptive Server 19
Adaptive Server Anywhere 21
connection
errors 106, 107
pooling 89
Connection properties
EXPIRESTRING 14
connection properties
APPLICATIONNAME 12
BE_AS JDBC_COMPLIANT_ 12
CANCEL_ALL 6,10,12
CHARSET 6,13
CHARSET_CONVERTER 6
CHARSET_CONVERTER_CLASS 13,35
CLASS LOADER 13
CONNECTION_FAILOVER 13,22
DISABLE_UNICHAR_SENDING 13
DISABLE_UNPROCESSED_PARAM_WARNING

169

Index

S 14
DYNAMIC_PREPARE 14
ESCAPE_PROCESSING_DEFAULT 14,120
FAKE_METADATA 14
GET_BY_NAME_USES COLUMN_LABEL 15
HOSTNAME 15
HOSTPROC 15
IGNORE_DONE_IN_PROC 15
IS CLOSED_TEST 15
JCONNECT_VERSION 10, 15
LANGUAGE 6,15
LANGUAGE_CURSOR 15,121
LANGUAGE_CURSOR and cursor performance 120
LITERAL_PARAMS 16
PACKETSIZE 16
password 16
PRELOAD_JARS 16
PROTOCOL_CAPTURE 17
PROXY 17
REMOTEPWD 17
REPEAT_READ 17,112
REQUEST_HA_SESSION 17
RMNAME 17
SECONDARY_SERVER _HOSTPORT 18
SELECT_OPENS CURSOR 18
SERIALIZE REQUESTS 18
SERVICENAME 18
SESSION_ID 18
SESSION_TIMEOUT 19
setting 11
settinginURL 21
SQLINITSTRING 19
STREAM_CACHE_SIZE 19
SYBSOCKET_FACTORY 19
USE_METADATA 16
user 19
VERSIONSTRING 19
CONNECTION_FAILOVER connection property 13, 22
connections
gateway connection refused 106
Conventions ix
creatingacursor 49
currency symbol, euro 38
cursor performance 120
and the LANGUAGE_CURSOR connection property
120

170

cursor result sets
deletingarow 54
deletions 52
insertingarow 55
methods for updating the database 53
positioned updates 52
positioned updates and deletes using JDBC 1.x
methods 51
positioned updates and deletes using JDBC 2.0
methods 52
updating columns 53
cursors 48
creating 49
using with a PreparedStatement 55

D

data
image 63
databases
JNDI for naming 85
storing Java objects as column datain atable 76
datatypes
ASE date, time, and datetime 67
JDBC Date, Time, and Timestamp datatypes 67
unichar and univarchar 33
Debug class 101
Debug servlet argument 136
debugging 101
methods 103
obtaining an instance of the Debug class 101
setting CLASSPATH 103
turning off in your application 102
turning on in your application 102
deserialization 83
deviations from JDBC standards 95
DISABLE_UNICHAR_SENDING connection property
13
DISABLE_UNPROCESSED_PARAM_WARNINGS
connection property 14
distributed transaction support 91

driver
JDBCtypes 2
properties 12

dynamic classloading 80

jConnect for JDBC

DYNAMIC_PREPARE connection property 14

E

€rror messages
cutomizing handling 73
error-message handler example 74
handliing 71
installing an error-message-handler 74
SQL exception and warning 141
Sybase-specific 71
errors
connection 106, 107
stored procedure 108
ESCAPE_PROCESSING_DEFAULT connection
property 120
ESCAPE_PROCESSING_DEFAULT property 14
euro currency symbol 38
event notification 69
example 70
EXPIRESTRING connection property 14
extension changes, Sybase 125

F

FAKE_METADATA connection property 14
Font conventions ix

G

gateways 127
configuration 128
connection refused 106
Open Server 22
GET_BY_NAME_USES COLUMN_LABEL
connection property 15

H

handling
error messages 71
high availability (HA) support 40

Programmer’s Reference

Index

HOSTNAME connection property 15
HOSTPROC connection property 15
HTTP 127

IGNORE_DONE_IN_PROC connection property 15
image data
executing the update with TextPointer.sendData
65
getting a TextPointer object 64
public methods in the TextPointer class 63
sending 63
updating a column with TextPointer.sendData() 64
installing
an error-message-handler 74
theTDSservlet 136
interfaces, JIDBC 1
internationalization 32
invoking jConnect 11
IS CLOSED_TEST connection property 15
Isgl applet
running the sample 133
IsglApp utility 163

J

JAR files
preloading 84
Java objects
storing and retrievingin ASA 6.0 76
storing as column datain atable 76
javaobjects
storing as column datain atable 76
jConnect
debugging 101
definition 2
gateways 127
improving performance 111
invoking 11
memory problemsin applications 107
sample programs 165
setting connection properties 11
settingup 5

171

Index

using cursors 48
JCONNECT_VERSION connection property 10, 15
JDBC
definition 1
driver types 2
interfaces 1
restrictions, limitations, and deviations 95
JDBC 2.0
optional package extensions support 84
standard extensions 84
JDBC datatypes
Date, Time, and Timestamp 67
JDBC drivers
JDBC-ODBC bridge 2
native-APl/partly-Java 2
native-protocol/al-Java 2
net-protocol/all-Java 2
jdbc.drivers 11

JINDI
context information 26
using 22

JNDI for naming databases 85

L

LANGUAGE connection property 6, 15
LANGUAGE_CURSOR 121
LANGUAGE_CURSOR connection property 15
Lightweight Directory Access Protocol (LDAP) 23
LITERAL_PARAMS connection property 16
locdization 32

M

memory problemsin jConnect applications 107
metadata

accessing 47

server-side implementation 48

USE_ METADATA 16
migrating jConnect applications

jConnect applications, migrating 123
multibyte character sets

supported 36
multibyte character-sets

172

converter classes 34
multithreading
making adjustments 95

N

native-APl/partly-Javadriver 2
native-protocol/all-Javadriver 2
net-protocol/al-Javadriver 2

O

Open Server Gateway 22

P

PACKETSIZE connection property

password 16

performance, improving 111
BigDecimal rescaling 112
character-set conversion 113
cursors 120

16

tuning for prepared statementsin Dynamic SQL

114
pooling connections 89
positioned updates and deletes
using JDBC 1.x methods 51
using JDBC 2.0 methods 52

PRELOAD_JARS connection property 16

preloading JAR files 84
PreparedStatement

using with cursors 55
properties

driver 12

PROTOCOL_CAPTURE connection property 17

PROXY connection property 17
PureConverter class 34

R

Related documents vii
remote procedure calls (RPCs)

jConnect for JDBC

server-to-server 45
REMOTEPWD connection property 17
REPEAT_READ 112
REPEAT_READ connection property 17
REQUEST_HA_SESSION 17
resuming

TDSsessions 138
RMNAME connection property 17
rows

deleting from acursor result set 54

inserting in acursor result set 55
rs.getByte() 68

S

sample programs 165
SECONDARY_SERVER_HOSTPORT connection

property 18
SELECT_OPENS_CURSOR connection property
18

selecting a character-set converter class 35
sendingimagedata 63
SERIALIZE_REQUESTS connection property 18
server-to-server remote procedure calls 45
SERVICENAME connection property 18
servlet arguments

Debug 136

SkipDoneProc 136

TdsResponseSize 136

TdsSessionldleTimeout 136
servlets 127

TDS 127
SESSION_ID connection property 18
SESSION_TIMEOQOUT connection property 19
setRemotePassword() 45
setting

jConnect connection properties 11

TDS servlet arguments 136
setting up

jConnect 5
SkipDoneProc servlet argument 136
SQL exception and warning messages 141
SQLINITSTRING connection properties 19
Statement.cancel () method 10
stored procedures

Programmer’s Reference

Index

errors 108

executing 99

updating the database from theresult set 61
storing Java objects as column datain atable 76

prerequisites 76

receiving Java objects from the database 78

sending Java objectsto adatabase 77
STREAM_CACHE_SIZE connection property 19
Sybase extension changes 125
SybEventHandler 69
SybMessageHandler 73
SYBSOCKET_FACTORY connection property 19
Syntax conventions ix
system properties

jdbc.drivers 11

T

TDS 2

capturing communication 104

installing servlets 136

resuming sessions 138

servlet system requirements 135

servliets 127

setting servlet arguments 136

tracking sessions 137

tunnelling 127
TdsResponseSize serviet argument 136
TdsSessionldleTimeout servlet argument 136
tracking TDS sessions 137
troubleshooting 101
TruncationConverter class 34, 39
tunnelling

TDS 127
turning off debugging in your application 102
turning on debugging in your application 102
TYPE_SCROLL_INSENSITIVE limitations 57

U

unichar 6
unichar and univarchar datatypes 33
updating
database from the result set of a stored procedure

173

Index

61
URL
connection property parameters 21
syntax 20
USE_METADATA connection property 16
user 19
utilities
IsglApp 163

Vv

VERSIONSTRING connection property 19

W

Web server gateways 127
widetables 46

X

XAServer 91

174 jConnect for JDBC

	Programmer’s Reference
	About This Book
	CHAPTER 1 Introduction
	What is JDBC?
	What is jConnect?

	CHAPTER 2 Programming Information
	Setting up jConnect
	Setting the jConnect version
	JCONNECT_VERSION connection property
	CANCEL_ALL connection property

	Invoking the jConnect driver

	Establishing a connection
	Setting connection properties
	Connecting to Adaptive Server
	URL connection property parameters

	Connecting to Adaptive Server Anywhere
	Connecting to Adaptive Server Anywhere 5.x.x

	Connecting to a server using JNDI
	Connection URL for using JNDI
	Required directory service information
	CONNECTION_FAILOVER connection property
	Providing JNDI context information

	Implementing custom socket plug-ins
	SYBSOCKET_FACTORY connection property
	Creating and configuring a custom socket
	Example

	Handling internationalization and localization
	Using jConnect to pass Unicode data
	jConnect character-set converters
	Selecting a character-set converter
	Setting the CHARSET connection property
	Improving character-set conversion performance
	Supported character sets
	European currency symbol support
	Unsupported character sets

	Working with databases
	Implementing high availability failover support
	Overview
	Requirements, dependencies, and restrictions
	Implementing failover in jConnect

	Performing server-to-server remote procedure calls
	Wide table support for Adaptive Server version 12.5 and later
	Accessing database metadata
	Server-side metadata installation

	Using cursors with result sets
	Creating a cursor
	Positioned updates and deletes using JDBC 1.x methods
	Positioned updates and deletes using JDBC 2.0 methods
	Using a cursor with a PreparedStatement object
	Support for SCROLL_INSENSITIVE result sets in jConnect

	Support for batch updates
	Implementation notes

	Updating a database from a result set of a stored procedure
	Working with datatypes
	Sending numeric data
	Updating image data in the database
	Using text data
	Using Date and Time datatypes
	Char/Varchar/Text datatypes and getByte()

	Implementing advanced features
	Using event notification
	Event notification example

	Handling error messages
	Retrieving Sybase-specific error information
	Customizing error-message handling
	Installing an error-message handler
	Error-message-handler example

	Storing Java objects as column data in a table
	Prerequisites for storing java objects as column data
	Sending Java objects to a database
	Receiving Java objects from the database

	Dynamic class loading
	Using DynamicClassLoader
	Deserialization
	Preloading JARS
	Advanced features

	JDBC 2.0 optional package extensions support
	JNDI for naming databases
	Connection pooling
	Distributed transaction management support

	Restrictions on and interpretations of JDBC standards
	Connection.isClosed() and the IS_CLOSED_TEST connection property
	Statement.close() with unprocessed results
	Making adjustments for multithreading
	Using ResultSet.getCursorName()
	Using setLong() with large parameter values
	Using COMPUTE statements
	Executing stored procedures

	CHAPTER 3 Troubleshooting
	Debugging with jConnect
	Obtaining an instance of the Debug class
	Turning on debugging in your application
	Turning off debugging in your application
	Setting the CLASSPATH for debugging
	Using the Debug methods

	Capturing TDS communication
	PROTOCOL_CAPTURE connection property
	pause() and resume() methods in the Capture class

	Unsuccessful connection errors
	Gateway connection refused
	Unable to connect to a 4.9.2 SQL Server

	Memory usage in jConnect applications
	Stored procedure errors
	RPC returns fewer output parameters than registered
	Fetch/state errors when output params returned
	Stored procedure executed in unchained transaction mode

	Custom socket implementation error

	CHAPTER 4 Performance and Tuning
	Improving jConnect performance
	BigDecimal rescaling
	REPEAT_READ connection property
	Character-set conversion
	SunloConverter

	Performance tuning for prepared statements in dynamic SQL
	Choosing prepared statements and stored procedures
	Prepared statements in portable applications
	Prepared statements with jConnect extensions
	If most dynamic statements are executed very few times
	If most dynamic statements are executed many times in a session

	Connection.prepareStatement()
	DYNAMIC_PREPARE connection property
	SybConnection.prepareStatement()
	ESCAPE_PROCESSING_DEFAULT connection property

	Cursor performance
	LANGUAGE_CURSOR connection property

	CHAPTER 5 Migrating jConnect Applications
	Migrating jConnect applications
	Migrating applications to jConnect 4.5 and 5.5

	Sybase extensions
	Change example
	Method names
	Debug class

	CHAPTER 6 Web Server Gateways
	About Web server gateways
	TDS tunnelling
	jConnect and gateway configuration
	Web server and Adaptive Server on one host
	Dedicated JDBC Web server and Adaptive Server on one host
	Web server and Adaptive Server on separate hosts
	Connecting to a server through a firewall

	Usage requirements
	Reading the index.html file
	Running the sample Isql applet
	Troubleshooting

	Using the TDS-tunnelling servlet
	TDS-tunnelling servlet system requirements
	Installing the servlet
	Setting servlet arguments

	Invoking the servlet
	Tracking active TDS sessions
	Terminating TDS sessions

	Resuming a TDS session
	TDS and Netscape Enterprise Server 3.5.1 on Solaris

	APPENDIX A SQL Exception and Warning Messages
	APPENDIX B jConnect Sample Programs
	Running IsqlApp
	Running jConnect sample programs and code
	Sample applications
	Running the sample applets
	Running the sample programs with Adaptive Server Anywhere

	Sample code

	Index

