
Programmer’s Guide

EAServer
Version 5.2

DOCUMENT ID: DC38036-01-0520-01

LAST REVISED: January 2005

Copyright © 1997-2005 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication,
Adaptive Server Everywhere, Adaptive Warehouse, Afaria, Answers Anywhere, Anywhere Studio, Application Manager, AppModeler,
APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Translator, APT-Library, AvantGo Mobile Delivery, AvantGo Mobile
Inspection, AvantGo Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon
Application Server, AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BizTracker,
ClearConnect, Client-Library, Client Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench, DataArchitect, Database
Analyzer, DataExpress, DataServer, DataWindow, DataWindow .NET, DB-Library, dbQueue, Developers Workbench, Direct Connect
Anywhere, DirectConnect, Distribution Director, e-ADK, E-Anywhere, e-Biz Impact, e-Biz Integrator, E-Whatever, EC Gateway,
ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise
Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work
Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA, Financial Fusion, Financial Fusion Server, Gateway Manager,
GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information
Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, M2M Anywhere, Mail Anywhere Studio,
MainframeConnect, Maintenance Express, Manage Anywhere Studio, M-Business Channel, M-Business Network, M-Business Server,
MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, mFolio, Mirror Activator, My AvantGo, My AvantGo Media
Channel, My AvantGo Mobile Marketing, MySupport, Net-Gateway, Net-Library, New Era of Networks, ObjectConnect, ObjectCycle,
OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open
Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, Orchestration Studio, PB-Gen,
PC APT Execute, PC DB-Net, PC Net Library, PocketBuilder, Pocket PowerBuilder, Power++, power.stop, PowerAMC, PowerBuilder,
PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerScript, PowerSite, PowerSocket,
Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare
Enterprise, ProcessAnalyst, QAnywhere, Rapport, RemoteWare, RepConnector, Replication Agent, Replication Driver, Replication
Server, Replication Server Manager, Replication Toolkit, Report-Execute, Report Workbench, Resource Manager, RFID Anywhere, RW-
DisplayLib, RW-Library, S-Designor, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners,
smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL
Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/
CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, S.W.I.F.T. Message Format Libraries,
Sybase Central, Sybase Client/Server Interfaces, Sybase Financial Server, Sybase Gateways, Sybase IQ, Sybase MPP, Sybase SQL
Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financial, SyberAssist,
SybFlex, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, TradeForce, Transact-SQL, Translation
Toolkit, UltraLite, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, VisualWriter, VQL,
WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL Server,
Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, XcelleNet, and
XP Server are trademarks of Sybase, Inc. 10/04

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

Programmer’s Guide iii

About This Book ... xix

PART 1 OVERVIEW

CHAPTER 1 Creating Component-Based Applications 3
Application architecture .. 3
Designing the EAServer application... 4
Implementing components and clients... 8
Deploying the application ... 11

Deploying components.. 11
Deploying clients ... 12

CHAPTER 2 Understanding Transactions and Component Lifecycles......... 13
Component lifecycles ... 13
EAServer’s transaction processing model...................................... 19

How EAServer transactions work.. 19
Benefits of using EAServer transactions 20
Defining transactional semantics... 21
Example .. 28
Dynamic enlistment in bean-managed transactions................ 29

EAServer Transaction Manager ... 31
Resource recovery and transaction logging 33
Transaction interoperability ... 34
Resource manager .. 35
Enlisting XA resources with Transaction Manager 35

CHAPTER 3 Managing Applications and Packages in EAServer Manager... 37
Defining applications .. 37

Creating and installing applications... 37
Deleting and removing applications .. 39
Configuring application properties... 39

Defining packages.. 41

Contents

iv EAServer

Creating a new package.. 42
Installing packages to a server.. 44
Modifying packages... 45
Configuring package properties .. 45

CHAPTER 4 Defining Components ... 49
Defining components ... 49
Installing components .. 51
Configuring component properties ... 52

Component properties: General .. 54
Component properties: Transactions 58
Component properties: Instances ... 61
Component properties: Environment....................................... 64
Component properties: EJB Local Refs 64
Component properties: EJB Refs.. 64
Component properties: Resource Refs 64
Component properties: Resource Environment Refs.............. 65
Component properties: Role Refs ... 65
Component properties: Resources.. 65
Component properties: Persistence .. 68
Component properties: Run-As Identity 68
Component properties: Run-As Mode..................................... 69
Component properties: Java Classes 69
Component properties: Additional Files 70
Component properties: JAXP Support 72
Component properties: Advanced... 72

Running components externally ... 74
Configuring components to run externally............................... 74
Configuring servers to host external components 75

CHAPTER 5 Defining Component Interfaces ... 77
Defining interfaces graphically ... 77

Editing interfaces... 79
Method properties ... 81
Parameter properties... 82
Parameter and return value datatypes 83

Importing interfaces from compiled Java files 85
Coding classes, interfaces, and JavaBeans for import 85
Importing a Java class or interface in EAServer Manager 88

Importing interfaces from registered ActiveX components............. 89
Defining modules, interfaces, and types in IDL.............................. 89

Learning IDL.. 89
Creating and editing IDL modules, interfaces, and types........ 90

Contents

Programmer’s Guide v

Using the IDL editor window.. 93
Creating and editing interfaces.. 94
Adding IDL documentation comments 102
Refreshing the HTML documentation.................................... 104
Viewing HTML documentation for IDL modules 104
Importing existing IDL modules ... 104

PART 2 ENTERPRISE JAVABEANS

CHAPTER 6 Enterprise JavaBeans Overview ... 109
About Enterprise JavaBeans components 109

EJB component types ... 111
EJB transaction attribute values.. 112
EJB container services.. 114

EAServer EJB support ... 115
Running EJB components in EAServer................................. 115
EJB clients connecting to EAServer...................................... 116
For more information ... 117

EJB 2.0 differences from 1.1.. 117
Message-driven beans .. 117
Home interface methods ... 118
Local interfaces ... 118
CMP enhancements.. 118
EJB 2.0 interoperability ... 119

EJB 1.1 differences from EJB 1.0 .. 119
Component differences ... 120
Client model differences.. 123

CHAPTER 7 Creating Enterprise JavaBeans Components 125
Defining an EJB component... 125

Defining the primary key type.. 130
Defining home interface methods.. 131
Defining remote interface methods 133
Defining local interfaces .. 134

Configuring the component properties ... 135
Configuring EJB references .. 136
Configuring resource references ... 137
Configuring role references and method permissions........... 137
Configuring environment properties 137

Deploying the component classes ... 138

CHAPTER 8 Creating Enterprise JavaBeans Clients.................................... 141

Contents

vi EAServer

Developing an EJB client ... 141
Generating EJB stubs .. 142
Instantiating home interface proxies .. 144

Obtaining an initial naming context 144
Resolving JNDI names.. 151

Instantiating remote or local interface proxies.............................. 152
Calling remote interface methods .. 154
Calling local interface methods .. 154
Managing transactions ... 155
Serializing and deserializing bean proxies 156
Runtime requirements.. 157

CHAPTER 9 EAServer EJB Interoperability.. 159
Intervendor EJB interoperability ... 159

Interoperable naming URLs .. 161
Classes for RMI/IIOP connections from third-party containers 163

Invoking non-EJB components from EJB clients 164
Invoking EJB components from CORBA C++ clients................... 166
Invoking EJB components from PowerBuilder clients.................. 169
Invoking EJB components from ActiveX clients 170

Supported datatypes ... 170
About overloaded methods and nested IDL 170
Using the home interface .. 171
Serializing and deserializing instance references 174

Invoking EJB components from CORBA Java clients.................. 174
Invoking EJB components using the MASP interface 178

CHAPTER 10 Creating Application Clients... 179
Creating an application client ... 179
Configuring application client properties 180

General properties... 181
EJB references.. 181
Resource references ... 181
Resource environment references .. 181
Environment properties ... 181
Java classes.. 182
JAXP properties .. 182
Application client files .. 182

Running application clients .. 182
Setting up a client’s workstation .. 183
Starting the runtime container ... 183

Contents

Programmer’s Guide vii

PART 3 CORBA-JAVA COMPONENTS AND CLIENTS

CHAPTER 11 Creating CORBA Java Components ... 187
Requirements... 187
Procedure for creating Java components 188
Define the component interface and properties 188
Choose implementation datatypes... 189
Write the Java source file ... 194

Generate stub, skeleton, and implementation files 195
Add package import statements.. 197
Code the constructor ... 199
Implement control interface methods 199
Add error handling code .. 200

Advanced techniques... 201
Issue intercomponent calls .. 201
Manage database connections ... 202
Return result sets .. 203
Access SSL client certificates ... 203
Set transactional state... 204
Retrieve user-defined component properties 205

Deploy Java components... 206
Debug Java components ... 208

CHAPTER 12 Creating CORBA Java Clients ... 211
Overview .. 211
Procedure for creating CORBA-compatible Java clients 212
Generating Java stubs ... 213
Instantiating proxy instances.. 216
Executing component methods.. 227
Cleaning up client resources.. 231
Serializing component instance references 231
Handling exceptions... 232
Deploying and running Java clients ... 234
Instantiating proxies with the CosNaming API 235
Using other CORBA ORB implementations 242

Connecting to EAServer with a third-party client ORB 242
Connecting to third-party ORBs using the EAServer client ORB .

244

PART 4 CORBA-C++ COMPONENTS AND CLIENTS

CHAPTER 13 CORBA C++ Overview .. 247

Contents

viii EAServer

Overview .. 247
Requirements... 247
Supported datatypes .. 248

Mapping for predefined EAServer Manager datatypes 248
Using mapped IDL types ... 250
Overloaded methods ... 252

CHAPTER 14 Creating CORBA C++ Components ... 253
Procedure for creating C++ components 253
Defining C++ components.. 254
Generating required C++ files .. 256
Writing the class implementation ... 259

Write methods ... 260
Compiling source files .. 268

Compiling on UNIX platforms .. 269
Compiling on Windows.. 270

Debugging C++ components ... 271
Running C++ components externally ... 273

Limitations ... 273
Configuring a component to run externally............................ 274
Building and deploying the external component executable . 275

Creating C++ components for multiplatform clusters 275

CHAPTER 15 Creating CORBA C++ Clients ... 277
Procedure for creating CORBA C++ clients................................. 277
Generating stubs.. 278
Writing CORBA C++ clients ... 279

Adding required include and namespace declarations.......... 279
Instantiating stub instances ... 280
Invoking methods .. 287
Processing result sets ... 288
Handling exceptions .. 296

Compiling C++ clients .. 297
Deploying C++ clients .. 298
Using the CosNaming interface ... 298

Configure and initialize the ORB for CosNaming use 299
Obtain an initial naming context .. 300
Resolving component proxies ... 301

Using CORBA ORB implementations other than EAServer......... 303
Connecting to EAServer with a third-party client ORB.......... 303
Connecting to third-party ORBs using the EAServer client ORB .

305

Contents

Programmer’s Guide ix

PART 5 POWERBUILDER COMPONENTS AND CLIENTS

CHAPTER 16 Creating PowerBuilder Components .. 309

CHAPTER 17 Creating PowerBuilder Clients .. 311

PART 6 ACTIVEX COMPONENTS AND CLIENTS

CHAPTER 18 ActiveX Overview.. 315
Overview .. 315
Requirements... 316

ActiveX component requirements ... 316
ActiveX client requirements... 316

ActiveX datatype support ... 318
Structure support ... 321
Union support .. 322
Sequence support ... 325
IDL typedef support ... 325
IDL enumeration support ... 326
Result-set support ... 327

CHAPTER 19 Creating ActiveX Components .. 331
Procedure for creating ActiveX components................................ 331
Defining ActiveX components .. 332

Importing ActiveX components.. 332
Defining methods .. 333
Defining return and parameter datatypes.............................. 334
Defining the transaction property .. 334
Defining instance properties.. 335

Writing ActiveX components .. 336
Implementing a constructor and destructor 338
Sharing data between components....................................... 338
Issuing intercomponent calls ... 339
Managing database connections... 340
Sending result sets from an ActiveX component................... 340
Setting transactional state ... 340
Adding error-handling code ... 341

Deploying ActiveX components ... 341

CHAPTER 20 Creating ActiveX Clients .. 343

Contents

x EAServer

Procedure for creating ActiveX clients ... 343
Generate .tlb and .reg files for components 343

Before you start ... 344
Check the ProgID for each interface 344
Generating TLB/REG files... 345
Files generated.. 346

Develop and test the ActiveX client.. 347
Instantiating proxies using CORBA-style interfaces.............. 347
Instantiating stub instances using the EAServer 1.1 interface 353
Invoke component methods .. 356
Code exception handling... 357

Deploy the ActiveX client ... 369

PART 7 WEB APPLICATIONS

CHAPTER 21 Creating Web Applications ... 375
What is a Web application?.. 375
Contents of a Web application ... 376

Servlet files.. 376
JSP files and tag libraries.. 376
Static files .. 377
Java classes.. 377
Deployment descriptor .. 379

Creating Web applications ... 379
Configuring Web application properties 380

General properties... 380
Context initialization properties ... 382
Welcome and error page specifications 383
Tag library descriptor references... 384
Naming references .. 386
Request path mappings .. 392
MIME mappings .. 394
JAXP properties .. 394
Java Classes properties .. 395
Extensions properties.. 395
Additional files ... 395
Security properties .. 395
Page Caching properties... 396
Listener properties... 396
Filter Mapping properties... 396

The EASDefault Web application... 397
Using Java extensions ... 398

Installing extensions in EAServer.. 399

Contents

Programmer’s Guide xi

Defining required extensions for Web applications 399
Localizing Web applications... 401

Enabling accept-language header parsing............................ 402
Internationalization for servlets.. 402
Deploying localized static files... 402
Language selection algorithm ... 403
Localizing JSP content .. 403

CHAPTER 22 Creating Java Servlets ... 405
Introduction to Java servlets .. 405
Writing servlets for EAServer ... 406

Connection caching... 407
Component invocations... 407
Threading .. 409
Logging.. 409
Request dispatching.. 410
Response buffering ... 412
Encoding responses and double-byte characters 412

Installing and configuring servlets .. 413
Installing servlets... 413
Configuring servlet properties ... 415
Deploying and refreshing servlet classes.............................. 420

Web application support... 422
Adding servlets to a Web application 422

Server properties for servlets ... 424

CHAPTER 23 Using Filters and Event Listeners ... 425
Servlet filters .. 425

Custom headers .. 430
Application lifecycle event listeners.. 431

CHAPTER 24 Creating JavaServer Pages.. 435
About JavaServer Pages ... 435

How JavaServer Pages work .. 436
What a JSP contains ... 436

Why use JSPs?.. 438
Syntax summary .. 439

Directives... 440
Scripting elements... 440
Comments ... 441
Standard tags .. 441

Objects and scopes.. 442

Contents

xii EAServer

Scopes .. 442
Implicit objects... 443

Application logic in JSPs .. 443
Error handling... 446
Using JSPs in EAServer .. 447

JSP and EAServer overview ... 448
JSP 1.2 highlights.. 449
Compiling JSPs ... 449
JSP file locations ... 451
Creating and configuring JSPs in EAServer.......................... 452
Internationalization .. 454
Mapping JSPs ... 454
Page caching... 455
Filters... 455

PART 8 ADVANCED FEATURES

CHAPTER 25 Sending Result Sets .. 459
Overview .. 459
Sending result sets with Java... 460

Forwarding a ResultSet object .. 461
Sending results row-by-row... 461

Sending result sets from a PowerBuilder component 465
Sending result sets from an ActiveX component 466

Forwarding a result set with ResultsPassthrough 466
Sending results row-by-row... 466

Sending result sets from a C or C++ component 471
Forwarding a result set with JagResultsPassthrough 471
Sending results row-by-row... 472

CHAPTER 26 Using Connection Management ... 479
Overview of connection management.. 479
When to use Connection Manager... 479
Connection caches and security .. 480
Defining connection caches ... 481

JDBC DataSource lookup ... 481
Using Java Connection Manager classes 482

Classes.. 482
Java Connection Manager example...................................... 483

Using Connection Manager routines in C, C++, and ActiveX
components .. 486

ODBC connection caches ... 486

Contents

Programmer’s Guide xiii

Client-Library connection caches .. 489
Oracle connection caches ... 491

Using cached connections in PowerBuilder components 495
Connection Manager guidelines... 496

Avoiding results-pending errors... 496
Connections and cache handles ... 497
Maintaining connection state... 497

CHAPTER 27 Creating Entity Components.. 499
Implementing entity components ... 499
Coding to support manual persistence... 500
Understanding the automatic persistence architecture 501
Configuring automatic or EJB CMP persistence 503
Specifying the CMP version for EJB 2.0 entity beans.................. 505
Setting Persistence/General subtab properties............................ 505
Enabling automatic key generation .. 509
Creating database tables ... 512
Configuring concurrency control .. 513
Setting field-mapping properties .. 517
Specifying finder- and ejbSelect-method queries......................... 519
Configuring table-mapping properties .. 522
Using relationship components .. 526

CHAPTER 28 Configuring Persistence for Stateful Session Components... 531
How it works... 531
Supported component implementations....................................... 533
Using EJB activation and passivation .. 533

Configuring stateful session beans to support failover.......... 534
Configuring passivation after timeout 535

Using automatic persistence .. 536
Defining the IDL state type .. 537
Accessing the state data in the implementation 538

CHAPTER 29 Configuring Persistence Mechanisms...................................... 541
Storage components .. 541
Supported Java, IDL, and JDBC/SQL types 543
Table schema for binary storage.. 545
Requirements for in-memory stateful failover 545

Cluster configuration for in-memory failover.......................... 546
Mirror Cache tab component properties................................ 547

CHAPTER 30 Configuring Custom Java Class Lists 549

Contents

xiv EAServer

Understanding how the class loader works.................................. 549
Class loader versions .. 550
The class loader hierarchy and delegation policy 550
The system class loader.. 552

Deciding which classes to add to the custom list 554
Custom class lists for Java and EJB components................. 554
Custom class lists for Web applications 555
Custom class lists for servlets installed directly in the server 557
Custom class lists for packages, applications, or servers 558

Configuring an entity’s custom class list 559
Troubleshooting class loader configuration issues 560

Commonly encountered problems .. 560
Custom class loader tracing .. 561
JAR file locking and copying ... 562

CHAPTER 31 Using the Message Service .. 563
Overview .. 564

High availability and load balancing 565
Message security .. 565
Reliable delivery .. 565
Scalable notification .. 566
Transaction management.. 566

Developing JMS applications ... 566
Creating a JMS InitialContext object 567
Looking up a ConnectionFactory object 568
Creating permanent destinations .. 568
Creating connections... 570
Creating sessions.. 571
Creating message producers .. 573
Creating message consumers... 573
Implementing and installing message listeners..................... 575
Creating messages ... 579
Sending messages.. 580
Publishing messages .. 581
Receiving messages ... 582
Browsing messages .. 583
Enabling JMS tracing .. 584
Closing connections, sessions, consumers, and producers.. 584
JMS interfaces not supported.. 584

Developing EAServer messaging service applications 586
Obtaining CtsComponents::MessageService object references ..

586
Creating message consumers... 587
Creating message selectors.. 588

Contents

Programmer’s Guide xv

Creating thread pools programmatically................................ 588
Implementing and installing message listeners..................... 589
Sending messages.. 590
Publishing messages .. 591
Receiving messages ... 591
Subscribing to scheduled messages..................................... 592
EAServer message service CORBA API 593

CHAPTER 32 Using the Thread Manager... 595
About the Thread Manager .. 595

The Thread Manager and service components..................... 595
The Thread Manager and the message service.................... 596
Thread Manager interface documentation 596

Using the Thread Manager .. 597
Before you start ... 597
Instantiating the Thread Manager ... 599
Starting threads ... 600
Suspending and resuming execution 601
Stopping threads ... 601

CHAPTER 33 Creating Service Components... 603
Introduction .. 603
Creating service components... 606

Define the component interface and properties 606
Implement GenericService interface methods 608
Implement other required methods 612
Install the component as an EAServer service...................... 612

Determining service state... 613
Refreshing service components... 616

CHAPTER 34 Creating and Using EAServer Pseudocomponents................. 619
Benefits of pseudocomponents.. 619
Creating pseudocomponents ... 620

Implementation restrictions ... 620
Defining a pseudocomponent.. 621
Direct-access pseudocomponent stubs and skeletons 622

Instantiating pseudocomponents ... 622
Pseudocomponent object URLs.. 622
Instantiating pseudocomponents from Java.......................... 623
Instantiating pseudocomponents from C++........................... 624
Instantiating pseudocomponents from PowerBuilder 625

Debugging C++ pseudocomponents.. 626

Contents

xvi EAServer

CHAPTER 35 Creating JavaMail .. 629
Introduction to JavaMail ... 629
Writing JavaMail for EAServer ... 630

Creating a JavaMail session ... 630
Constructing a message.. 631
Sending a message... 631
Sample EAServer JavaMail program 631
JavaMail providers .. 632

Deploying JavaMail-enabled applications 633

CHAPTER 36 Configuring Java XML Parser Support...................................... 635
About JAXP.. 635
Configuring JAXP properties in EAServer Manager 636
Exporting and importing application clients.................................. 637

APPENDIXES

APPENDIX A Executing Methods As Stored Procedures............................... 641
Creating invocation commands.. 641
Limitations .. 642
Using MASP from isql .. 643
Using MASP from application builder tools 644

PowerBuilder ... 644
PowerDynamo... 644
Other tools... 645

Configuring the return status.. 645

APPENDIX B Migrating Open Server Applications to EAServer 647
Migration overview ... 647
Coding changes and examples.. 648

Modifying main .. 649
Open Server properties ... 652
Making your code thread-safe... 653
DLLs, shared objects, and makefiles 655

Modified APIs and new event handlers.. 657
Modified APIs .. 657
Event handler prototypes .. 659

EAServer configuration .. 660
Installing event handlers.. 661
Configuring an Open Server listener 662

Additional event handler information.. 662
Calling convention for event handlers 663

Contents

Programmer’s Guide xvii

Initialization, run, start and exit events 663
Connect and disconnect handlers ... 665
Build with the Visual C++ IDE ... 667
A sample module definition (.def) file 667

APPENDIX C Creating C Components... 669
C component lifecycle .. 669
Requirements... 671
Procedure for creating C components ... 671
Define component interface and properties 672

Define the component’s interfaces .. 672
Transaction property ... 673
Instance properties.. 673

Generate C component files .. 674
Procedure for generating C component files......................... 676
File naming conventions.. 677
Regenerate changed C component methods........................ 678

Write C components... 678
Define implementation functions ... 679
Implementing the method behavior 683
Components that require instance specific data 684
C components that are wrappers for C++ classes 684
Methods that interact with remote database servers............. 686
Methods that return row results... 686
Share data between C or C++ components 686
Methods that set transactional state...................................... 693
Customize the creation and destruction of components 694
Handle errors in your C component 694

Compile C components.. 695
Build on UNIX.. 695
Build on Windows.. 696

Debug C components .. 697

APPENDIX D Using the Command Line IDL Compiler 701
com.sybase.CORBA.idl.Compiler .. 701

Index ... 705

Contents

xviii EAServer

Programmer’s Guide xix

About This Book

Subject This book contains information about how to build distributed
applications that run on Sybase EAServer.

Audience The EAServer Programmer’s Guide is written for application developers
who are familiar with their chosen programming languages, specifically
Java, C++, C, or an ActiveX scripting language.

Though you do not need to know all of these languages to create EAServer
components or clients, the chapters that pertain to each language assume
a basic familiarity with that language.

How to use this book For an overview of EAServer design concepts, and the application
development process, see these chapters:

• Chapter 1, “Creating Component-Based Applications” provides a
level overview of a typical development process.

• Chapter 2, “Understanding Transactions and Component
Lifecycles” describes how EAServer manages multi-component
transactions and component lifecycles.

For general information on developing components for EAServer, see
these chapters:

• Chapter 3, “Managing Applications and Packages in EAServer
Manager” describes how to create applications and packages in
EAServer Manager. These items are required vehicles for component
deployment to EAServer.

• Chapter 4, “Defining Components” describes how to define packages
and components in EAServer Manager and configure component
properties.

• Chapter 5, “Defining Component Interfaces” describes how to
create, view, and edit component interfaces in EAServer Manager.

For information on developing Enterprise Java Beans (EJB) components,
see these chapters:

• Chapter 6, “Enterprise JavaBeans Overview” introduces the EJB
component model.

xx EAServer

• Chapter 7, “Creating Enterprise JavaBeans Components” describes how
to create Enterprise JavaBeans components.

• Chapter 8, “Creating Enterprise JavaBeans Clients” describes how to
implement a client that uses the EJB client interfaces to call EAServer
component methods.

• Chapter 9, “EAServer EJB Interoperability” describes how to call non-
EJB components from EJB clients or components, and how to call EJB
components from non-EJB clients.

• Chapter 10, “Creating Application Clients” describes how to create and
deploy EJB application clients.

For information on developing components using the Java/CORBA model, see
these chapters:

• Chapter 11, “Creating CORBA Java Components” contains information
about building CORBA-Java components.

• Chapter 12, “Creating CORBA Java Clients” describes how to implement
a client that uses EAServer’s CORBA-compatible Object Request Broker
(ORB) to call EAServer component methods. This chapter is also useful
to Java developers that use another vendor’s Java ORB to interact with
EAServer components.

For information on developing components using the CORBA/C++ model, see
these chapters:

• Chapter 13, “CORBA C++ Overview” describes EAServer’s C++ support
and explains how EAServer maps CORBA IDL datatypes to C++
datatypes.

• Chapter 14, “Creating CORBA C++ Components” contains information
about building C++ components.

• Chapter 15, “Creating CORBA C++ Clients” describes how to develop
C++ clients that connect to EAServer.

For information on developing EAServer components with PowerBuilder®,
see these chapters:

• Chapter 16, “Creating PowerBuilder Components” contains information
about building PowerBuilder components.

• Chapter 17, “Creating PowerBuilder Clients” describes how to develop
PowerBuilder clients that connect to EAServer.

For information on developing ActiveX components, see these chapters:

 About This Book

Programmer’s Guide xxi

• Chapter 18, “ActiveX Overview” describes EAServer’s ActiveX support,
including how EAServer maps CORBA IDL datatypes to ActiveX
datatypes.

• Chapter 19, “Creating ActiveX Components” contains information about
building ActiveX components.

• Chapter 20, “Creating ActiveX Clients” describes how to develop clients
that connect to EAServer using the EAServer ActiveX client proxy server.

For information on developing, configuring, and running Web applications,
servlets, and Java Server Page, see these chapters:

• Chapter 21, “Creating Web Applications” describes how to define and
configure Web applications.

• Chapter 22, “Creating Java Servlets” describes how to create and run Java
servlets in EAServer.

• Chapter 23, “Using Filters and Event Listeners” describes how to create
and install servlet request and response filters and event listeners for
EAServer Web applications.

• Chapter 24, “Creating JavaServer Pages” describes how to create and run
Java ServerPages in EAServer.

For information on advanced component features, see these chapters:

• Chapter 25, “Sending Result Sets” describes how to send result sets from
a method coded in C, C++, or Java.

• Chapter 26, “Using Connection Management” describes how to access
connection caches from a method coded in C, C++, or Java.

• Chapter 27, “Creating Entity Components” describes how to create
CORBA or EJB components that manage data using the EJB entity bean
model.

• Chapter 28, “Configuring Persistence for Stateful Session Components”
describes how to create stateful components that use a persistence
mechanism to support passivation for single-server deployments and load
balancing and failover for clustered server deployments.

• Chapter 29, “Configuring Persistence Mechanisms” contains reference
material that is useful in configuring stateful session components and
entity components.

xxii EAServer

• Chapter 30, “Configuring Custom Java Class Lists” describes how to
configure custom Java class lists for components, Web applications,
packages, J2EE applications, and servers.

• Chapter 31, “Using the Message Service” describes how to use
EAServer’s asynchronous messaging service to implement event- or
message-driven application logic in clients and components.

• Chapter 32, “Using the Thread Manager” describes how to create threads
to perform asynchronous processing in EAServer components.

• Chapter 33, “Creating Service Components” describes how to create
components that run as EAServer services.

• Chapter 34, “Creating and Using EAServer Pseudocomponents”
describes EAServer’s C++ and Java pseudocomponent support.

• Chapter 35, “Creating JavaMail” describes how to use the JavaMail API
to access an Internet mail server from Java components or servlets.

• Chapter 36, “Configuring Java XML Parser Support,” describes how to
configure Java components, application clients, and Web applications to
use standard APIs to parse XML.

If you have developed applications with Sybase Open Server™ or previous
EAServer versions, you may be interested in these features explained in the
Appendixes:

• Appendix A, “Executing Methods As Stored Procedures” contains
reference pages for invoking EAServer methods from any front-end tool
that can execute Sybase® stored procedures.

• Appendix B, “Migrating Open Server Applications to EAServer”
explains how to adapt existing Open Server applications to run in
EAServer.

• Appendix C, “Creating C Components” contains information about
building C components.

Finally, for information on generating stubs and skeletons with the command-
line IDL compiler, see Appendix D, “Using the Command Line IDL
Compiler”.

Conventions The formatting conventions used in this manual are:

 About This Book

Programmer’s Guide xxiii

Accessibility
features

EAServer has been tested for compliance with U.S. government Section 508
Accessibility requirements. The online help for this product is also provided in
HTML, JavaHelp, and Eclipse help formats, which you can navigate using a
screen reader.

EAServer Manager supports working without a mouse. For more information,
see “Keyboard navigation” in Chapter 2, “Sybase Central Overview,” in the
EAServer System Administration Guide.

The WST plug-in for Eclipse supports accessibility features for those that
cannot use a mouse, are visually impaired or have other special needs. For
information about these features refer to Eclipse help:

1 Start Eclipse

2 Select Help | Help Contents

3 Enter Accessibility in the Search dialog box

Formatting example To indicate

commands and methods When used in descriptive text, this font indicates keywords such as:

• Command names used in descriptive text

• C++ and Java method or class names used in descriptive text

• Java package names used in descriptive text

• Property names in the raw format, as when using jagtool to configure applications
rather than EAServer Manager

variable, package, or
component

Italic font indicates:

• Program variables, such as myCounter

• Parts of input text that must be substituted, for example:

Server.log

• File names

• Names of components, EAServer packages, and other entities that are registered in
the EAServer naming service

File | Save Menu names and menu items are displayed in plain text. The vertical bar shows you how
to navigate menu selections. For example, File | Save indicates “select Save from the File
menu.”

package 1 Monospace font indicates:

• Information that you enter in EAServer Manager, a command line, or as program text

• Example program fragments

• Example output fragments

xxiv EAServer

4 Select Accessible user interfaces or Accessibility features for Eclipse

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT as initials, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

For additional information about how Sybase supports accessibility, see
Sybase Accessibility at http://www.sybase.com/accessibility. The Sybase
Accessibility site includes links to information on Section 508 and W3C
standards.

Related documents Core EAServer documentation The core EAServer documents are
available in HTML format in your EAServer software installation, and in PDF
and DynaText format on the Technical Library CD.

What’s New in EAServer summarizes new functionality in this version.

The EAServer Cookbook contains tutorials and explains how to use the sample
applications included with your EAServer software.

The EAServer Feature Guide explains application server concepts and
architecture, such as supported component models, network protocols, server-
managed transactions, and Web applications.

The EAServer System Administration Guide explains how to:

• Start the preconfigured Jaguar server and manage it with the EAServer
Manager plug-in for Sybase Central™

• Create, configure, and start new application servers

• Define connection caches

• Create clusters of application servers to host load-balanced and highly
available components and Web applications

• Monitor servers and application components

• Automate administration and monitoring tasks with jagtool

The EAServer Web Services Toolkit User’s Guide describes Web services
support in EAServer, including:

• Support for standard Web services protocols such as Simple Object Access
Protocol (SOAP), Web Services Description Language (WSDL), and
Uniform Description, Discovery, and Integration (UDDI)

 About This Book

Programmer’s Guide xxv

• Administration tools for deployment and creation of new Web services,
WSDL document creation, UDDI registration, and SOAP management

The EAServer Security Administration and Programming Guide explains how
to:

• Understand the EAServer security architecture

• Configure role-based security for components and Web applications

• Configure SSL certificate-based security for client connections using the
Security Manager plug-in for Sybase Central

• Implement custom security services for authentication, authorization, and
role membership evaluation

• Implement secure HTTP and IIOP client applications

• Deploy client applications that connect through Internet proxies and
firewalls

The EAServer Performance and Tuning Guide describes how to tune your
server and application settings for best performance.

The EAServer API Reference Manual contains reference pages for proprietary
EAServer Java classes, ActiveX interfaces, and C routines.

The EAServer Troubleshooting Guide describes procedures for
troubleshooting problems that EAServer users may encounter. This document
is available only online; see the EAServer Troubleshooting Guide at
http://www.sybase.com/detail?id=1024509.

Message Bridge for Java™ Message Bridge for Java simplifies the parsing
and formatting of structured documents in Java applications. Message Bridge
allows you to define structures in XML or other formats, and generates Java
classes to parse and build documents and messages that follow the format. The
Message Bridge for Java User's Guide describes how to use the Message
Bridge tools and runtime APIs. This document is included in PDF and
DynaText format on your EAServer Technical Library CD.

Adaptive Server Anywhere documents EAServer includes a limited-
license version of Adaptive Server Anywhere for use in running the samples
and tutorials included with EAServer. Adaptive Server Anywhere documents
are available on the Sybase Web site at http://sybooks.sybase.com/aw.html.

jConnect for JDBC documents EAServer includes the jConnect™ for
JDBC™ driver to allow JDBC access to Sybase database servers and gateways.
The Programmer’s Reference jConnect for JDBC is available on the Sybase
Web site at http://sybooks.sybase.com/jc.html.

xxvi EAServer

Other sources of
information

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase Product
Manuals Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It is included with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

• The Sybase Product Manuals Web site is an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://www.sybase.com/support/manuals/.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select Products from the navigation bar on the left.

3 Select a product name from the product list and click Go.

4 Select the Certification Report filter, specify a time frame, and click Go.

5 Click a Certification Report title to display the report.

 About This Book

Programmer’s Guide xxvii

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

xxviii EAServer

P A R T 1 Overview

This part provides an overview of EAServer features, design
concepts, and the application development process.

Programmer’s Guide 3

C H A P T E R 1 Creating Component-Based
Applications

This chapter describes the process of designing, building, and deploying
applications with components executing in EAServer.

Application architecture
EAServer applications are composed of clients and one or more
application servers to host business-logic components and Web
components. The clients can run on different machines; the components
execute on the server machine as part of the EAServer process. Some
components, in turn, connect to databases on other machines.

Building EAServer applications is different from building standard
client/server applications in that the parts of the application communicate
with each other across network lines in a three-tiered architecture.

EAServer three-tiered
architecture

In this figure, the client resides on the first tier, the application server and
components reside on the second tier, and databases reside on the third
tier. Executing methods on a component from the client or another
component, retrieving data from databases, and other communications are
managed by the application server. Because EAServer handles the details
of transactions, threads, security, database connections, and network
communication, you can concentrate on writing the business logic and
user interface for the components and clients.

Topic Page
Application architecture 3

Designing the EAServer application 4

Implementing components and clients 8

Deploying the application 11

Designing the EAServer application

4 EAServer

Figure 1-1: Component application architecture

As in traditional client/server applications, the client contains the user
interface. Unlike client/server applications, however, business logic (such as
stored procedures) is separate from both the clients and the database server.
Instead, business logic resides in the second tier as components that analyze
data, perform computations, or retrieve information from data sources and
process it. You design an EAServer application by coding these tasks into an
interface and into method prototypes.

A primary benefit of this model is that you can include pre-built components
in the EAServer application. If these components have been built outside
EAServer, you can import them using EAServer Manager. The client and
components are built from the same interface and method prototypes. You can
build the client and components concurrently, as long as the client and
component development teams notify each other if either of them changes the
interface or method prototypes.

Designing the EAServer application
In the design stage, you plan the infrastructure for developing and deploying
the application, define the EAServer components, the component interfaces,
and the EAServer packages that contain the components. At the end of this
phase, you will have packages and components defined in EAServer Manager.

Follow these steps to design the application:

Application
Server DB

DB

Component

Client

Component

First Tier Second Tier Third Tier

Method Execution Flow

CHAPTER 1 Creating Component-Based Applications

Programmer’s Guide 5

1 “Plan for server infrastructure needs” on page 5

2 “Define EAServer packages” on page 5

3 “Define components” on page 6

4 “Define connection caches” on page 7

Plan for server
infrastructure needs

For an enterprise application implemented by several developers, you may
need to create several application servers to increase developer productivity.
For example, you might want dedicated servers for each of the following:

• Component development Servers to test components that are under
development or revision. A typical configuration uses one server per
developer, running on the developer’s personal workstation. EAServer
components (other than ActiveX components) are portable between
Windows and UNIX. Your developers can develop and test components on
inexpensive Windows workstations; later, you can deploy production
versions to a high-end UNIX or Windows server.

• Client testing/Quality Assurance (QA) Client developers require a
server with a stable installation of the application components, to be used
by client developers to test their programs. During the early development
phase, you can deploy stubbed components to this server to allow testing
of client connectivity and basic method execution. (A stubbed component
has empty method implementations. For most component models,
EAServer Manager generates source for a stubbed implementation when
you generate the component skeleton.)

For a large application, you will need a dedicated QA team to test the
application and a QA server to host configurations that are candidates for
production release. The QA server and the client testing server can be the
same. The QA server machine should have the same hardware architecture
and operating system software as the production machine.

• Production You will need to install EAServer on the host machine for
the live version of the application. For Internet applications, this machine
must be available to clients that are outside your corporate firewall.

Define EAServer
packages

Components must be installed in a package before they are available for use in
applications. You should install components that perform related tasks together
in a single package. “Defining packages” on page 41 describes how to create
packages in EAServer Manager.

Designing the EAServer application

6 EAServer

Packages are the units of deployment for your application; you can use
EAServer Manager to import and export archives of a package, its installed
components, and related application files. For example, you can deploy a tested
configuration by exporting packages from your test server and importing them
into the production server. For more information, see “Deploying
components” on page 11.

Packages are also one level in the EAServer authorization hierarchy. You can
edit the package’s required Role Memberships to restrict which users can
access components in the package. (Access can also be configured on the
individual component level within the package.) Chapter 2, “Securing
Component Access,” in the EAServer Security Administration and
Programming Guide describes options for configuring user authorization for
package and component access.

Define components For each component, you must choose the component model, design the
component interface, determine transactional semantics, and define the
component in EAServer Manager.

Choose the Component Models Choose the component model based on
your development team’s expertise. See Chapter 3, “EAServer Components,”
in the EAServer Feature Guide if you are not familiar with the supported
component models.

Design the Component Interface and Transactional Semantics Chapter
5, “Defining Component Interfaces” describes how to define interfaces. The
component interface defines the methods that the component will implement.
EAServer stores component interfaces as CORBA IDL; however, you can
define and edit interfaces using your choice of EAServer Manager’s method
editor, Java, or IDL. For ActiveX components, you can also import method
definitions from a DLL or type library file that you create using your ActiveX
development tool.

While designing the interface, you must decide what transactional semantics
the component will follow and how the component lifecycle will be managed.
Chapter 2, “Understanding Transactions and Component Lifecycles” explains
the design concepts for transaction and lifecycle control in EAServer
components.

The following design decisions determine how EAServer manages your
component’s transactions:

• Which transaction attribute the component uses

• Whether transaction boundaries are managed explicitly in the component
implementation or implicitly by EAServer.

CHAPTER 1 Creating Component-Based Applications

Programmer’s Guide 7

If your component interacts with remote databases, you must specify a
transactional attribute that determines how the component’s database work is
grouped within EAServer transactions. If another component invokes your
component, the transaction attribute determines whether your component’s
database work is done independently or as part of the existing EAServer
transaction.

You must also decide whether or not you will code your component to manage
transaction boundaries explicitly. To manage transaction boundaries explicitly,
each method must call one of EAServer’s transaction state primitives to
indicate the status of the component’s transactional work. “Using transaction
state primitives” on page 25 describes this topic in detail.

Instead of writing code to manage transaction boundaries explicitly, you can
set the component’s Automatic demarcation/deactivation property in
EAServer Manager. This setting is appropriate if every method in your
component executes a complete unit of transactional work (in other words, the
transactional outcome is never pending when a method returns). When this
option is enabled, EAServer deactivates the component instance after every
method invocation. Upon deactivation, the transaction is always committed
unless the component aborts the transaction by calling the rollbackWork
transaction primitive or throwing the CORBA TRANSACTION_ROLLEDBACK
exception. In EAServer Manager, the Automatic demarcation/deactivation
property is set in the Component Properties window, beneath the Transactions
tab. “Configuring component properties” on page 52 describes how to view
and modify component properties in EAServer Manager.

For any component, transactional or not, you must decide how your
component’s instance lifecycle will be managed. “Component lifecycles” on
page 13 describes the general instance lifecycle model and your options for
instance lifecycle management.

Define the Component in EAServer Manager Use EAServer Manager to
define the components. If you have already created Java or ActiveX
components, you can import the component interfaces into EAServer
Manager—you do not need to define method prototypes again in EAServer
Manager.

“Defining components” on page 49 describes how to define components in
EAServer Manager.

Define connection
caches

Connection caching increases the scalability of your application, since it
eliminates repetitive login/logoff operations for connections to remote
databases. Connection caching is also required for EAServer transactions to
function as intended.

Implementing components and clients

8 EAServer

You must define a connection cache for each remote database that your
components interact with, and then implement your components to use cached
connections. See the following sections for more information:

• Chapter 4, “Database Access,” in the EAServer System Administration
Guide describes how to define connection caches in EAServer Manager.

• Chapter 26, “Using Connection Management” in this book describes how
to access cached connections from your component implementation.

Implementing components and clients
With the design in place, your component developers and client developers can
begin implementing the clients and components that form the application.

Implementing
components

To create a Java-CORBA or EJB component, use a Java development tool to
create the Java component. You can perform deployment tasks with EAServer
Manager, jagtool, or jagant.

To create a C or C++ component, generate skeletons using EAServer Manager,
code the method bodies in the method implementation templates, and compile
and install the C DLL in your EAServer installation.

To create an ActiveX component, use an ActiveX-enabled IDE to create the
ActiveX component DLL, import the ActiveX definitions for the component
into EAServer, and install the ActiveX component.

To create a PowerBuilder component, use the EAServer Component wizard in
PowerBuilder to define the interface, code the component in PowerScript, and
deploy to EAServer.

To learn how to develop components, see these references:

Type of component Chapter

EJB Chapter 7, “Creating Enterprise JavaBeans Components”

Java-CORBA Chapter 11, “Creating CORBA Java Components”

CORBA C++ Chapter 14, “Creating CORBA C++ Components”

PowerBuilder The Application Techniques manual included in the
PowerBuilder documentation.

ActiveX Chapter 19, “Creating ActiveX Components”

C Appendix C, “Creating C Components”

CHAPTER 1 Creating Component-Based Applications

Programmer’s Guide 9

Design and implement
the clients

Client developers can work concurrently with component developers. To allow
prototyping and testing of client programs, you may want to create a client test
server that hosts stubbed versions of the application components (that is,
components with minimal method implementations).

Choose Client Types Before creating client programs, decide which of the
following EAServer client models best suits your needs, based on your
preferred implementation languages and administrative requirements:

• Web applications You can invoke components from Java servlets and
JavaServer Pages (JSPs) in a Web application. This approach allows the
user interface to run anywhere a Web browser is installed. However,
complex user interfaces with a high degree of interaction are difficult to
implement.

• Java Java applets do not require customer installation and simplify the
task of providing upgrades. The customer always downloads the most
recent applet. Applets require that the customer’s browser support JDK 1.2
or later.

If the client application is large and requires many Java classes, download
time might be unacceptable. In this case, use a Java application that is
installed locally on the client machine. This approach is ideal for intranet
customers or even regular Internet customers. Although not as simple as
providing upgrades with an applet, Java applications are no more difficult
to upgrade than conventional software.

For Java development, you can use an IDE such as Borland JBuilder with
the EAServer plugin. You can also use Jakarta Ant with jagtool tasks, as
described in Chapter 12, “Using jagtool and jagant,” in the EAServer
System Administration Guide.

• PowerBuilder PowerBuilder is a Rapid Application Development
(RAD) environment that supports drag-and-drop user interface
generation. You can implement PowerBuilder clients that execute
EAServer component methods using NVO proxies generated within
PowerBuilder. As with C++ clients, the PowerBuilder runtime files must
be distributed to each client workstation.

• C++ C++ clients offer the proven performance of a native compiled
executable. Some developers may prefer C++ user-interface generators
such as Microsoft Visual C++. Finally, your company may have a large
investment in existing C++ user-interface classes. C++ clients do require
installation by the customer, however.

Implementing components and clients

10 EAServer

• ActiveX If you are more familiar developing applications with an
ActiveX-enabled IDE rather than Java, you can create an ActiveX client.
An ActiveX client requires the same runtime installation as a C++ client,
plus an additional step to register EAServer’s client proxy ActiveX
interfaces.

• Methods As Stored Procedures (MASP) EAServer’s MASP interface
allows component methods to be executed as if they were database stored
procedures. Any front-end tool that can execute Adaptive Server
Enterprise stored procedures can execute EAServer methods using the
MASP interface.

In some situations, you might want to implement different versions of a client
for different users. For example, you may implement a Web client version to
allow new customers to connect over the Internet without installing a client
program. For established customers who use the application heavily, you can
implement a standalone client program that offers improved performance and
a richer user interface.

To learn how to create clients, see these references:

Client Design Issues In designing your client, plan to optimize network
performance by keeping traffic between the client and components on the
server to a minimum. To optimize network performance, plan to:

• Cache property changes in client data structures.

• Validate field values on the client.

• Update only the rows and columns that have changed. For example, do not
implement a Java client to update an entire table when only a few rows
have changed.

• Group data changes into larger sets with fewer method calls.

Type of client Chapter

Java Chapter 8, “Creating Enterprise JavaBeans Clients”

Chapter 12, “Creating CORBA Java Clients”

C++ Chapter 15, “Creating CORBA C++ Clients”

PowerBuilder The Application Techniques manual included in the
PowerBuilder documentation.

ActiveX Chapter 20, “Creating ActiveX Clients”

MASP Appendix A, “Executing Methods As Stored Procedures”

CHAPTER 1 Creating Component-Based Applications

Programmer’s Guide 11

Deploying the application
After you have tested and debugged the application on your test server, it is
time to deploy the component files to a production server and make the client
application files available to the application users. Follow these steps to deploy
the application:

1 “Deploying components” on page 11.

2 “Deploying clients” on page 12.

Deploying components
For production deployment, you must copy component definitions and
implementation files from your test server to the production server, or deploy
directly from your IDE another project-based tool. There are several ways to
deploy:

• Using PowerBuilder

• Using jagtool and jagant

• Using the Synchronize feature

Using PowerBuilder PowerBuilder NVO components can be deployed directly to EAServer from
the PowerBuilder IDE, using the Project Painter. See the PowerBuilder
Application Techniques manual or online help for more information.

Using jagtool and
jagant

jagtool is a command line interface that allows you to automate EAServer
development and deployment tasks. jagant allows you to run the same tasks
from Jakarta Ant build scripts. For more information, see Chapter 12, “Using
jagtool and jagant,” in the EAServer System Administration Guide.

Using the Synchronize
feature

EAServer Manager’s Synchronize feature allows you to replicate packages,
components, connection cache definitions, and other configuration
information from one server to another. Though this feature is intended
primarily for synchronizing servers within a cluster, it is a convenient and
quick way to replicate the server-side of your application from one server to
another. Chapter 6, “Clusters and Synchronization,” in the EAServer System
Administration Guide describes this feature in detail.

Deploying the application

12 EAServer

Deploying clients
The client deployment process varies depending on what type of clients your
application uses.

Java clients To deploy a Java applet, you must create an HTML page that loads the applet.
To deploy a Java application, you must supply all classes required by your
application to end users for installation on their machines. See “Deploying and
running Java clients” on page 234 for complete instructions.

ActiveX clients To deploy ActiveX clients, you must install the EAServer ActiveX proxy on
client workstations and register the proxy interfaces in the COM Automation
Server Registry. See “Deploy the ActiveX client” on page 369 for more
information.

C++ clients To deploy C++ clients, you must copy the EAServer C++ client runtime
libraries to the client machine and configure a few environment variables. See
“Deploying C++ clients” on page 298 for more information.

PowerBuilder clients PowerBuilder provides a variety of options for deploying applications. You can
build an executable file and use the PowerBuilder Runtime Packager to
package it with the PowerBuilder VM and other required files. You can also
deploy a Web site that uses 4GL Web pages to access EAServer components.
See the PowerBuilder Application Techniques and Working with Web and JSP
Targets manuals for more information.

Programmer’s Guide 13

C H A P T E R 2 Understanding Transactions and
Component Lifecycles

This chapter explains the EAServer component lifecycle and transaction
processing models. Transactions allow you to group database updates
performed by multiple components into a single atomic unit of work,
which greatly simplifies error recovery in component-based applications.

The component lifecycle determines how instances of a component are
allocated, bound to a client, and destroyed. EAServer’s component
lifecycle is designed to maximize reuse of resources and minimize the
possibility that a client application can monopolize a server resource.

The component lifecycle and the transaction model are tightly integrated.
You must understand both to use transactions effectively in your
application.

Component lifecycles
The EAServer component lifecycle is designed to:

• Maximize sharing and reuse of server resources

• Minimize the possibility that a client application can monopolize
server resources

To achieve these goals, EAServer supports the concepts of component
instance pooling and early deactivation.

Topic Page
Component lifecycles 13

EAServer’s transaction processing model 19

EAServer Transaction Manager 31

Component lifecycles

14 EAServer

Instance pooling allows a single component instance to service multiple
clients. The component lifecycle contains activation and deactivation steps:
Activation binds an instance to an individual client; deactivation indicates that
the instance is unbound. Instance pooling eliminates resource drain from
repeated allocation of component instances.

Early deactivation allows a component’s methods to specify when
deactivation occurs. Early deactivation prevents a client application from tying
up the resources that are associated with a component instance and allows the
instance to serve more clients in a given time frame. To achieve early
deactivation, you can code or configure your component as described in
“Supporting early deactivation in your component” on page 16.

A component that is deactivated after each method call and supports instance
pooling is said to be a stateless component because the component’s state is
reset across the boundary of a transaction and activation. Early deactivation
and instance pooling promotes greater scalability by enabling an increasing
number of clients to use a static number of instances. An application design
based on stateless components offers the greatest scalability.

States in the
component lifecycle

Generic component lifecycle EAServer components in any component
model follow the state diagram illustrated in this figure:

Figure 2-1: States in the EAServer component lifecycle

The state transitions are as follows:

Idle

Active

In Method

Destroyed

New instance

DeactivationActivation

Destruction

Invocation completeInvoke method

CHAPTER 2 Understanding Transactions and Component Lifecycles

Programmer’s Guide 15

• New instance The EAServer runtime allocates a new instance of the
component. The instance remains idle in the instance pool waiting for the
first method invocation.

• Activation Activation prepares a component instance for use by a client.
Once an instance is activated, it is bound to one client and can service no
other client until it has been deactivated. If a component is transactional,
activation also indicates the beginning of the instance’s participation in a
transaction.

• In method In response to a method invocation request from the client,
the EAServer runtime calls the corresponding method in the component.
The next state depends on which of the transaction state primitives the
method calls before returning. (For Java components, the state transition
also depends on whether the method returns with an uncaught exception.)
See “Using transaction state primitives” on page 25 for more information.

• Deactivation Deactivation indicates that the component is no longer
bound to the client. Methods can call either the completeWork or
rollbackWork transaction state primitives to cause explicit deactivation of
the instance. As discussed in “Using transaction state primitives” on page
25, these primitives also affect the transaction’s outcome. Deactivation
can also occur automatically, under any of the following circumstances:

• If the instance is participating in a transaction, the instance is
deactivated when the transaction commits, rolls back, or times out.

• If you have configured the component’s Instance Timeout property to
a finite setting, an instance is deactivated if the time between
consecutive method calls exceeds the timeout value. “Component
properties: Resources” on page 65 describes how to configure this
property.

If an exception occurs in a user transaction, you must call rollbackWork
after catching the exception; otherwise, a transaction deadlock may occur
in the database, which can cause client applications to fail.

• Destruction Destruction occurs if the component instance cannot be
recycled. “Supporting instance pooling in your component” on page 16
describes how to ensure instance reuse. If the component cannot be reused,
deactivation is followed by destruction of the instance.

Component lifecycles

16 EAServer

The EAServer component lifecycle allows component instances to be
recycled; idle component instances can be cached when idle and bound to the
service of individual clients only as needed. If your component has been coded
to support early deactivation, a client holding a reference to the component’s
stub or proxy object may be serviced by several different instances of the
component. After each deactivation, the next method invocation causes an
instance to be activated and bound to the client. Overall server scalability is
increased because a new instance does not have to be instantiated each time a
client invokes a method.

Supporting early
deactivation in your
component

Early deactivation prevents a client application from tying up the resources
(such as connections) that are associated with a component instance.

EJB stateless session beans and entity beans support early deactivation by
design. If you have coded the component according to the EJB specification,
no additional code or configuration is required to run in EAServer.

For components of other types, there are several ways to support early
deactivation:

• Configure the component to implement a control interface as described
“Configuring a control interface” on page 73. If using the
CtsComponents::ObjectControl interface, you can enable the Stateless
option on the Instances tab in the EAServer Manager Component
Properties dialog box. If using another control interface, enable the Auto
demarcation/deactivation option on the Transactions tab of Component
Properties window (see “Component properties: Transactions” on page
58 for more information). With the appropriate option enabled, the
component is automatically deactivated after every method invocation.

• Code your component to call one of the completeWork or rollbackWork
transaction state primitives to cause explicit deactivation of the instance.
This technique is useful when your design requires deactivation to occur
after some, but not all, method invocations. If the component is
transactional, the completeWork and rollbackWork primitives also affect the
outcome of the transaction in which the component is participating. See
“Using transaction state primitives” on page 25 for more information.

Supporting instance
pooling in your
component

Instance pooling eliminates resource drain caused by repeated allocation of
new component instances.

For Java and ActiveX components, you can implement a lifecycle-control
interface to control whether the component instances are pooled. These
interfaces also provide activate and deactivate methods that are called to
indicate state transitions in a component instance’s lifetime. For more
information on these interfaces, see the following sections:

CHAPTER 2 Understanding Transactions and Component Lifecycles

Programmer’s Guide 17

• C++ or Java CORBA components can implement a control interface as
described “Configuring a control interface” on page 73.

• EJB components must implement EntityBean or SessionBean interface for
lifecycle control. For more information, see Chapter 6, “Enterprise
JavaBeans Overview.”

• ActiveX components can implement the IObjectControl interface and the
GetObjectContext method. See Chapter 2, “ActiveX C++ Interface
Reference,” of the EAServer API Reference for details.

For PowerBuilder components, you can enable the Pooling option on the
PowerBuilder wizard that you use to create your component. You can then
write event scripts that respond to changes in an instance’s lifecycle. See the
Application Techniques manual in the PowerBuilder documentation for more
information.

For C and C++ components, you can enable instance pooling using EAServer
Manager. Display the Instances tab in the Component Properties window, then
select the Pooling option. This option also allows you to configure pooling for
Java and ActiveX components that do not implement the ServerBean or
IObjectControl interfaces, respectively.

To support instance pooling, code that responds to activation events must
restore the component to its initial state (that is, as if it were newly created).
Both the Java and ActiveX interfaces have methods that allow an instance to
selectively refuse pooling: canReuse in Java, canBePooled in ActiveX. For
PowerBuilder components, you can script the canBePooled event to selectively
refuse pooling.

When the component Pooling option is set in EAServer Manager, the Java
canReuse or ActiveX canBePooled method is not called, even if the component
implements the ServerBean Java interface or IObjectControl ActiveX interface.

You can configure the component pooling properties to control how many
instances are pooled, and to assign different components to a shared pool. For
information on tuning these settings, see “Instance pooling” in Chapter 3,
“Component Tuning,” in the EAServer Performance and Tuning Guide.

Stateful versus
stateless components

A component that can remain active between consecutive method invocations
is called a stateful component. A component that is deactivated after each
method call and that supports instance pooling is said to be a stateless
component. Typically, an application built with stateless components offers
the greatest scalability.

Stateful components A stateful component remains active across method
calls.

Component lifecycles

18 EAServer

Since deactivation happens at the mercy of client applications, you may wish
to configure the Instance Timeout property for stateful components so that a
client cannot monopolize a component instance indefinitely. See “Component
properties: Resources” on page 65 for more information.

Stateless components In order for a component to be stateless, both of the
following must be true:

• You have configured or implemented the component to be deactivated
after every method invocation. In EAServer Manager, you can enable the
Automatic deactivation / demarcation property for the component (located
on the Transactions tab in the Component Properties window).
Alternatively, you can implement the component so that it calls either
completeWork or rollbackWork in every method.

• You have enabled the Pooling option in the Component Properties window
(this option is located on the Instances tab).

Stateless components cannot use instance-specific data to accumulate data
between method invocations.

Some situations require that you accumulate data across method invocations.
For example, a PurchaseOrder component might have an addItem() method that
is called repeatedly to specify the contents of an order. In lieu of instance-
specific data, you can use one of these alternatives to accumulate data:

• Accumulate data in a remote database Use connection caching and
database commands to accumulate data in a remote database. This is the
preferred technique. If you deploy your component to a cluster, it may run
on multiple servers and the database provides a central location available
from all servers.

• Accumulate data in the client Create a data structure that is passed to
each method invocation and contains all accumulated data. This technique
is only practical if the amount of data is small. Sending large amounts of
data over the network will degrade performance.

• Accumulate data in a file If the accumulated data is small and
represented by simple data structures, you can store the data in a local file.

• Use the EAServer shared objects feature EAServer provides a shared
objects interface that allows components to store references to shared data.
For more information, see the following sections:

• Chapter 19, “Creating ActiveX Components”, describes the shared
objects interface for ActiveX components.

CHAPTER 2 Understanding Transactions and Component Lifecycles

Programmer’s Guide 19

• “Share data between C or C++ components” on page 686 describes
the shared objects interface for C components.

EAServer’s transaction processing model
An EAServer transaction is a transaction whose boundaries and outcome are
determined by EAServer. Components can be marked as transactional in
EAServer Manager. If a component is transactional, the EAServer transaction
manager ensures that the component’s third-tier database queries execute as
part of a transaction. Multiple components can participate in an EAServer
transaction; the EAServer transaction manager ensures that all database
changes performed by the participating transactions are all committed or rolled
back.

Transactions All transactions are defined by the ACID test:

• Atomic If a transaction is interrupted, all changes that the transaction
has made are cancelled or rolled back.

• Consistent A transaction produces results that preserve invariant
properties.

• Isolated A transaction’s intermediate states cannot be monitored or
changed by other transactions; transactions execute their results one after
another.

• Durable The changes that a transaction completes are permanent.

How EAServer transactions work
In EAServer Manager, you can declare EAServer components to be
transactional. When a component is transactional and uses the EAServer
connection management feature, commands sent on a third-tier database
connection are automatically performed as part of a transaction. Component
methods can call EAServer’s transaction state primitives to influence whether
EAServer commits or aborts the current transaction.

EAServer’s transaction processing model

20 EAServer

The component lifecycle is tightly integrated with EAServer’s transaction
model. Component instances that participate in a transaction are not
deactivated until the transaction ends or until the component indicates that its
contribution to the transaction is over (that is, its work is done and ready for
commit or that its work must be rolled back). An instance’s time in the active
state corresponds to the beginning and end of its participation in a transaction.

Benefits of using EAServer transactions
The benefits of using transactions to group database updates are clear. You can
easily code methods in a single component to implement transactions that run
against a single data source. However, those methods may in turn be executed
by another component, which itself is defining a transaction. In this situation,
error recovery becomes difficult. For example, consider the following scenario
in which an Enrollment component calls both Registrar and Billing components:

A transaction involving
multiple components

In the following figure, the Enrollment.enroll() method calls methods in the
Registrar and StudentBilling components:

• Registar.reserveSeat() checks that a seat is available. If so, it decrements
the count of available seats and adds the student to the course’s enrollment
list. If no seats are available, reserveSeat() fails.

• StudentBilling.addToBill() checks that the student has a billable credit
record. If so, addToBill() adds the course cost to the student’s bill for that
semester. If the student has a credit problem (if, for example, she owes
money for an overdue book), addToBill() fails.

Figure 2-2: An example EAServer transaction

Enrollment

reserveSeat(student, course)

Registrar

StudentBilling

addToBill(student, course)

enroll(student, course)

CHAPTER 2 Understanding Transactions and Component Lifecycles

Programmer’s Guide 21

To be correct, both the database update made by the Registrar and the update
made by the StudentBilling components must occur, or neither must occur. In
other words, if the student cannot be billed, the course’s available seats must
not be changed. To handle this case, you could add logic to the enroll() method
to undo changes (requiring an unreserveSeat() method in Registrar). However,
as more components are added to the scenario, the logic needed to undo
previous changes quickly becomes unmanageable. It is much easier to define
all the participating components to use EAServer transactions. Then an error in
any component can induce a rollback of all changes made by the other
participating components before the error occurred.

By defining the participating components to use EAServer transactions, you
can be sure that the work performed by the components that participate in a
transaction occurs as intended.

Defining transactional semantics

❖ Defining how a component participates in transactions

1 Choose a transaction coordinator. The transaction coordinator manages
the flow of transactions that involve more than one connection.
“Transaction coordinators” on page 21 describes the available options.

2 Specify the component’s transaction attribute. Each component has a
transaction attribute that determines whether instances of the component
participate in transactions. “Transactional component attribute” on page
22 describes the attribute settings and their meanings.

3 Code methods to call EAServer’s transaction state primitives. Each
method should call the appropriate transaction state primitive to reflect the
state of the work that the component has contributed to the transaction.
“Using transaction state primitives” on page 25 describes the state
primitives in detail.

4 Specify a transaction timeout period if needed. By default, transactions are
never timed out. You can configure a finite timeout period in EAServer
Manager. See “Transaction Timeout property” on page 27 for more
information.

Transaction
coordinators

All components installed in one server share the same transaction coordinator.

Choices for transaction coordinator include:

EAServer’s transaction processing model

22 EAServer

• Java Transaction Service (JTS) This option complies with the JTS and
the Object Transaction Service (OTS) and X/Open Architecture (XA)
standards. The JTS transaction coordinator integrates the functionality of
the shared connection, OTS/XA, and JTS/JTA transaction modes, and uses
two-phase commit to coordinate transactions among multiple databases.

• Microsoft Distributed Transaction Coordinator (DTC) DTC uses two-
phase commit to coordinate transactions among multiple databases. DTC
is available on Windows 2000 and Windows NT platforms as part of
Microsoft SQL Server 6.5 or later versions.

DTC transaction support in EAServer requires the following:

• Microsoft DTC must be installed and running on the server host.

• Any database servers used by your application must be DTC-
compliant.

• Your components must connect to the DTC-compliant databases
using an ODBC connection cache or a JDBC connection cache that
uses the JDBC-ODBC driver.

Note To verify that your EAServer edition supports two-phase commit, check
the server console or the $JAGUAR/bin/<server_name>.log file.

The default coordinator is the JTS coordinator. To view or change the
coordinator, use the Server Properties dialog box in EAServer Manager.

More transaction coordinators may be added in the future. The components
you create now will not have to be changed to take advantage of the new
transaction coordinators as they become available.

Transactional
component attribute

Components in EAServer have a transaction attribute that indicates how a
component participates in transactions. You can view and change a
component’s transaction attribute using EAServer Manager; the attribute is
displayed on the Transactions tab in the Component Properties window. For
PowerBuilder components, you can specify the attribute in the PowerBuilder
wizards (doing so ensures that it is saved with the PowerBuilder project and not
overwritten by redeployment). The attribute has the following values:

• Not Supported The Default. The component’s methods never execute
as part of a transaction. If the component is activated by another
component that is executing within a transaction, the new instance’s work
is performed outside of the existing transaction.

CHAPTER 2 Understanding Transactions and Component Lifecycles

Programmer’s Guide 23

• Supports Transaction The component can execute in the context of an
EAServer transaction, but a connection is not required in order to execute
the component’s methods. If the component is instantiated directly by a
base client, EAServer does not begin a transaction. If component A is
instantiated by component B, and component B is executing within a
transaction, component A executes in the same transaction.

• Requires Transaction The component always executes in a transaction.
When the component is instantiated directly by a base client, a new
transaction begins. If component A is activated by component B, and B is
executing within a transaction, then A executes within the same
transaction; if B is not executing in a transaction, then A executes in a new
transaction.

• Requires New Transaction Whenever the component is instantiated, a
new transaction begins. If component A is activated by component B, and
B is executing within a transaction, then A begins a new transaction that is
unaffected by the outcome of B’s transaction; if B is not executing in a
transaction, then A executes in a new transaction.

• Mandatory Methods may only be invoked by a client that has an
outstanding transaction.

• Bean Managed Uses EJB 1.1 transactional behavior. The component
cannot inherit a client or other component’s transaction. The component
can execute without a transaction or explicitly begin, commit, and roll
back transactions by using the javax.transaction.UserTransaction interface
(for EJB components) or the Current interface (for C++ components).

• OTS Style Uses OTS transactional behavior. The component can inherit
a client or other component’s transaction. If called without a transaction,
the component can explicitly begin, commit, and roll back transactions by
using the CORBA Current interface.

Current interface and OTS-style are incompatible Although you can
set a Java-CORBA component's transaction attribute to OTS Style, you
will not have access to the Current interface. Since an OTS-style
component can inherit a transaction from a parent component, the
component behaves as in the Supports Transactions attribute case.

Table 2-1 lists design scenarios and the transaction attributes that apply to each.

EAServer’s transaction processing model

24 EAServer

Table 2-1: Deciding on a transaction attribute

For example, in the scenario illustrated in “A transaction involving multiple
components” on page 20, the Enrollment component must be marked Requires
Transaction or Requires New Transaction, since it calls methods in the
Registrar and StudentBilling components, and the work performed by the called
components must be grouped in a single transaction. Both Registrar and
StudentBilling must be marked Supports Transaction or Requires Transaction
so that their database updates can be grouped in the transaction begun by the
Enrollment component.

Transaction Not Supported is useful when your component performs updates
to a noncritical database. For example, consider a component whose sole
function is to log usage statistics to a remote database. Since usage statistics are
not mission-critical data, you can choose Not Supported as the component’s
transaction attribute to ensure that the logging updates do not incur the
overhead of using two-phase commit.

Design scenario
Applicable transaction
attributes

Your component interacts with remote databases, and
its methods may be called by another component as part
of a larger transaction. Multiple updates are issued
before calling completeWork, or an update depends on
the results of queries that were issued since the last call
to completeWork.

Requires Transaction
or
Requires New Transaction

Updates from your component are performed by a
single database update, the update logic is independent
of any other query issued by the method, and you call
completeWork in each method that issues an update. In
other words, your component’s updates are already
atomic.

Supports Transaction

Your component’s methods make intercomponent
method calls, and the work done by called components
must be included in one transaction.

Requires Transaction
or
Requires New Transaction

Methods in the component interact with more than one
remote database, and updates to different databases
must be grouped in the same transaction (this also
requires a transaction coordinator that supports two-
phase commit to those databases).

Requires Transaction
or
Requires New Transaction

Transactions begun by your component must not be
affected by the outcome of transactions begun by other
components that call your component.

Requires New Transaction

Work done by your component must never be done as
part of a transaction.

Not Supported

CHAPTER 2 Understanding Transactions and Component Lifecycles

Programmer’s Guide 25

Determining when
transactions begin

After a base client instantiates a transactional component, the first method
invocation begins an EAServer transaction. This instance is said to be the root
instance of the transaction. If the root instance invokes methods in other
transactional components, those components join the existing transaction.

The outcome of the transaction is determined by how the participating
components call the transaction state primitives discussed in “Using
transaction state primitives” on page 25.

Use a stub or proxy object for the called component For transactions to
occur with the intended semantics, you must perform intercomponent calls
using a stub or proxy object for the called component. Do not invoke another
component’s methods directly.

Using transaction
state primitives

EAServer provides transaction state primitives that methods can call to direct
the outcome of the current transaction. Each component model provides an
interface containing methods for these primitives. Table 2-2 on page 26 lists
the API mappings for each component type.

These methods end a component’s participation in a transaction (both cause the
current instance to be deactivated):

• completeWork The component finished its work for the current
transaction and should be deactivated when the method returns.

• rollbackWork The component cannot complete its work. Doom the
current transaction and deactivate the instance when the method returns.

These methods are used to maintain state after the method returns (they delay
deactivation of the component instance):

• continueWork Continue this component’s participation in the current
transaction after the method returns, and allow the transaction to be
committed if the component is deactivated. If a method calls no
transaction primitive, this is the default behavior.

• disallowCommit Continue this component’s participation in the current
transaction after the method returns, but roll back the transaction if the
component is deactivated before calling another primitive besides
disallowCommit.

These primitives can be used to query the state of the transaction (if any) in
which the method is executing:

• isInTransaction Query whether the current method is executing in the
context of a transaction.

EAServer’s transaction processing model

26 EAServer

• isRollbackOnly Query whether the current transaction is doomed to be
rolled back or is still viable.

The following table describes how the transaction primitives are invoked in
Java and PowerBuilder components. For information on the Java methods, see
Chapter 1, “Java Classes and Interfaces,” in the EAServer API Reference. For
information on the PowerBuilder TransactionServer object, see the Application
Techiques manual in the PowerBuilder documentation and the PowerBuilder
online help.

Table 2-2: Java and PowerBuilder transaction primitives

ActiveX, C, and C++ components call the methods and routines in the
following table to invoke transaction primitives. See the EAServer API
Reference for documentation of these methods and routines:

Transaction
primitive

Java InstanceContext
method

PowerBuilder
TransactionServer
function

completeWork completeWork SetComplete

rollbackWork rollbackWork SetAbort

continueWork continueWork EnableCommit

disallowCommit None. You can achieve the same effect
by calling, and then raising an
exception if deactivate is called before
the next method invocation.

DisableCommit

isInTransaction inTransaction IsInTransaction

isRollbackOnly isRollbackOnly IsTransactionAborted

CHAPTER 2 Understanding Transactions and Component Lifecycles

Programmer’s Guide 27

Table 2-3: ActiveX, C, and C++ transaction primitives

Any participating component can roll back the transaction by calling the
rollbackWork primitive; Java components can also cause a rollback by returning
an unhandled exception. Only the action of the root component determines
when EAServer commits the transaction. The transaction is committed when
the root component returns with a state of completeWork and no participating
component has set a state of disallowCommit.

You can use the transaction state primitives in any component; the component
does not have to be declared transactional. Calling completeWork or
rollbackWork from methods causes early deactivation. “Supporting early
deactivation in your component” on page 16 discusses how this feature can
improve application performance.

Transaction Timeout
property

The root instance’s Transaction Timeout property specifies the maximum
duration of an EAServer transaction. The default timeout period is infinite. You
can configure finite timeouts in EAServer Manager, as described in
“Component properties: Resources” on page 65.

A transaction begins when a base client activates a transactional component;
this component is the root component of the transaction. The root component’s
Transaction Timeout property determines the maximum duration of the
transaction.

If the transaction is not committed or rolled back within the allotted time, it is
automatically rolled back. In this case, the client receives the CORBA
TRANSACTION_ROLLEDBACK exception when it tries another method
invocation. The client’s object reference remains valid, and the transaction can
be retried.

Transactions are never rolled back in the middle of a method invocation. If the
timeout occurs during a method invocation, and the method does not commit
the transaction, the transaction is rolled back when the invocation completes.

Transaction primitive
ActiveX
IObjectContext method C/C++ routine

completeWork SetComplete JagCompleteWork

rollbackWork SetAbort JagRollbackWork

continueWork EnableCommit JagContinueWork

disallowCommit DisableCommit JagDisallowCommit

isInTransaction IsInTransaction JagInTransaction

isRollbackOnly Not supported JagIsRollbackOnly

EAServer’s transaction processing model

28 EAServer

When using the UserTransaction interface, the default timeout for transactions
is 300 seconds (five minutes). To change this value, edit the
UserTxnManager.props file, located in the EAServer
Repository/Component/CosTransactions subdirectory, and set the value of the
com.sybase.jaguar.component.tx_timeout property. A value of “0”
means no timeout exists. You can also set the timeout value from a client
(within a transaction it initiated) or in a bean-managed server component with
the UserTransactions method setTransactionTimeout(secs).

Example
As discussed in “Benefits of using EAServer transactions” on page 20,
EAServer transactions are most useful when your application uses
intercomponent calls.

As an example, consider the scenario illustrated in “A transaction involving
multiple components” on page 20. The pseudocode below shows the logic
used to ensure that the work performed by the Registrar.reserveSeat() and
StudentBilling.addToBill() occurs within the same transaction.

In the Registrar component, the reserveSeat() method must check the number
of seats. If there is space for the new student, then the method adds the student,
decrements the count of available seats, and sets a state of completeWork. If a
seat is not an available, the method calls rollbackWork to roll back the current
transaction.

Here is the pseudocode for Registrar.reserveSeat():

check number of seats
if enough seats

decrement number of seats
add student to enrollment list
completeWork

else
rollbackWork

end if

The transaction attribute for Registrar must be Requires Transaction so that the
query for available seats and the update of available seats always occur in the
same transaction.

CHAPTER 2 Understanding Transactions and Component Lifecycles

Programmer’s Guide 29

In the StudentBilling component, the addToBill() method must verify the
student’s credit. If the student does not already owe money, the method adds
the cost to the semester bill and sets a state of completeWork. If the student owes
money, the method calls rollbackWork to roll back the current transaction. Here
is the pseudocode for StudentBilling.addToBill():

check student’s balance
if balance > 0

add cost to bill
debit balance
completeWork

else
rollbackWork

end if

The transaction attribute for StudentBilling must be Requires Transaction so that
the balance query, the billing calculation, and the debit of the student’s balance
always occur in the same transaction.

In the Enrollment component, the enroll() method first calls
Registrar.reserveSeat(). After Registrar.reserveSeat() returns, the method
checks whether the transaction is still viable using the isRollbackOnly primitive.
If the transaction is viable, the method calls StudentBilling.addToBill(). Here is
the pseudocode for Enrollment.enroll():

invoke Registrar.reserveSeat()
if isRollbackOnly returns true

return
else

invoke StudentBilling
completeWork

endif

The transaction attribute for Enrollment must be Requires Transaction so that
the work done by StudentBilling and Registrar occurs as a single transaction.

Dynamic enlistment in bean-managed transactions
EAServer supports dynamic enlistment for bean-managed transactions, which
allows you to create a connection in one method of a stateful bean, use the
connection in another method, and close the connection in a third method.

For a JDBC 2.0 shared connection (PooledConnection), the container manages
the single connection’s enlistment and deenlistment in transactions.

EAServer’s transaction processing model

30 EAServer

For XA connections, the Object Transaction Service libraries need to know all
the resources that will participate in a transaction when it starts. If you get an
XAConnection before you start a transaction, EAServer enlists the
XAConnection in the transaction. If you start a transaction before you create
an XAConnection, EAServer creates the connection and enlists it in the
transaction.

Dynamic enlistment allows you to do this:

conn1 = ds1.getConnection();
// A
user_transaction.begin();
//
conn2 = ds2.getConnection();
conn3 = ds3.getConnection();
// B
conn2.close();
//
user_transaction.commit();
// C
conn3.close();
conn1.close();

Where at these points, the following are true:

A – conn1 is not part of any transaction.
B – conn1, conn2, and conn3 are part of the user_transaction.
C – conn1 and conn3 are not part of any transaction.

Earlier versions of EAServer required you to get and release connections
within a single component method. In bean-managed transactions, you had to
get and release a connection within the scope of a transaction.

You can get only one connection per resource. Each getConnection call for the
same database returns the same connection.

Note XA performance diminishes when connections span across methods.

Entity bean local diamonds

An entity object accessed from more than one path in the same transaction, as
shown in Figure 2-3, is called a diamond. A local diamond exists when the
access paths originate from, and the entity object resides on, the same server.

CHAPTER 2 Understanding Transactions and Component Lifecycles

Programmer’s Guide 31

Typically, EAServer uploads data from the database at the beginning of a
transaction and downloads data to the database at the end of a transaction.
When more than one program accesses a session bean within the same
transaction, this can lead to inconsistent views of the data. For instance, if
Program B updates the entity’s data and then Program C reads the data,
Program C does not see the changes made by Program B. To solve this
problem, when EAServer detects a diamond, it uploads data at method
invocation and downloads data when the method completes.

Figure 2-3: Entity object diamond

EAServer Transaction Manager
The EAServer Transaction Manager supports the specifications for the Java
Transaction API (JTA) 1.0 and the OTS/XA standards. The Transaction
Manager supports the integrated functionality of these transaction
coordinators: shared connections, OTS/XA, and JTS/JTA, and includes:

• Resource recovery and transaction logging

• Transaction interoperability

• Resource manager

The EAServer Transaction Manager enables EAServer to control the scope and
duration of transactions across multiple resource managers. It also provides the
ability to synchronize transactions and to communicate with other transaction
managers using CORBA OTS. Connections and resources are dynamically
enlisted into a transaction when they are requested.

EJB Container

Client A

Program C

Program B

Entity Object

Tx1

Tx1 Tx1

Tx1

EAServer Transaction Manager

32 EAServer

Two-phase commit ensures that all changes to recoverable resources (for
example, multiple database servers) occur automically, and the failure of any
resource to complete causes all other resources to undo changes. Two-phase
commit consists of a prepare phase and an execution phase. In the prepare
phase, the transaction coordinator validates that all resources are available. In
the execution phase, the transaction coordinator executes all updates to the
resources.

You can define components and component methods so that the transaction
coordinator automatically handles transactions (implicit control). You can also
write component and client code to manage transactions (explicit control).

EAServer implements the javax.transaction.TransactionManager interface,
which allows it to control transaction boundaries, and to manage the interaction
between Java and Encina transaction objects.

EAServer’s implementation of the javax.transaction.Transaction interface
enables it to manage a set of javax.transaction.xa.XAResource resources that
participate in a transaction. To determine the boundaries and outcome for these
transactions, EAServer uses the CosTransaction::Resource interface.

❖ Configuring EAServer to use JTS/JTA transactions

1 In EAServer Manager, highlight the server you want to configure.

2 Choose File | Server Properties.

3 In the Properties dialog box, select the Transactions tab.

4 Select JTS/JTA Transactions.

A component with the JTS transaction attribute enabled follows the standard
component lifecycle as described in “Component lifecycles” on page 13.

CHAPTER 2 Understanding Transactions and Component Lifecycles

Programmer’s Guide 33

Resource recovery and transaction logging
Resource recovery is a configurable option that provides object persistence and
recovery operations. Basic persistence is achieved by writing transactions to a
transaction log that contains all the information necessary to re-create the
transaction. Persistence is supported for the CosTransactions::Resource and
CosTransactions::Synchronization objects. Recovery is supported for JDBC
connectors and native type resources that are registered with EAServer. When
EAServer starts, the recovery manager is called, which reads the transaction
log and starts transaction recovery.

Note Recovery operations can be performed only for transaction logs that
were created for EAServer version 5.0 or later.

A transaction log provides enhanced debugging and integrates with the
standard EAServer logging functionality. Monitoring functionality is also
provided, which allows you to use EAServer Manager to view statistics, such
as the total number of transactions, currently active transactions, average
duration of transactions, failed transactions, and remotely started transactions.

When EAServer starts, the TransactionLogManager verifies the transaction
log’s integrity, automatically does necessary repairs, then runs the transaction
log defragmenter. This helps to allocate space for new transactions. The
recovery manager passes transaction information to the
TransactionLogManager, which is responsible for storing and deleting the
transaction record from the transaction log.

Recovering XA resources registered by user components

In this version of EAServer, you cannot directly recover XA resources that are
registered by user components. However, you can enable EAServer to
accomplish this task by using the following technique:

1 Create a wrapper DataSource class; for example, WrapperDataSource.

2 WrapperDataSource.getXAConnection() returns an XAConnection class that
corresponds to the XA connection with the resource.

3 Create an XA-type connection cache, and set its class name to the
WrapperDataSource class that you created.

Once these steps are implemented, EAServer takes care of the recovery
process. This is useful when using a third-party JMS service with XA
resources.

EAServer Transaction Manager

34 EAServer

Transaction interoperability
EAServer Transaction Manager provides transaction interoperability in
accordance with the OTS specifications.

When EAServer runs in JTS mode, it can share the transaction coordinator
across multiple servers. If a transactional component on one server invokes a
component method on another server, both components can participate in the
same transaction. Also, a client can invoke components on multiple servers that
all participate in the same transaction. This feature is useful for load balancing.

Figure 2-4 illustrates a scenario in which a client calls a component method on
Server A, which calls a component method on Server B. Server A and Server
B use different databases. To ensure that all the database updates occur within
the scope of a single transaction, EAServer passes the transaction context
between servers.

Figure 2-4: Transaction interoperability

Figure 2-5 illustrates an example where a client calls components on multiple
servers, which all participate in the same transaction. The client manages the
transaction by calling component methods on each server and passing the
transaction context.

Server A

Server B

Client

Database A Database B

CHAPTER 2 Understanding Transactions and Component Lifecycles

Programmer’s Guide 35

Figure 2-5: Server to server

Resource manager
The EAServer Transaction Manager includes an integrated resource manager
that supports JDBC 1.0, JDBC 2.0, connectors, and XA resources for both Java
and C++. The resource manager allows you to dynamically register resources
and synchronize coordinators in accordance with OTS specification for
CosTransactions. The resource manager is based on the functionality of both
the Java Connection Manager and the Jaguar Connection Manager, which
allows you to easily integrate new and existing resources. In future EAServer
versions, customers will be able to use the resource manager to create and
configure resources that EAServer can use.

Enlisting XA resources with Transaction Manager
When EAServer is running in two-phase commit mode, which is the default for
version 5.0 or later, you can enlist XA resources with EAServer Transaction
Manager.

❖ Enlisting XA resources

To enlist an XA resource into a current EAServer transaction:

1 Get the instance of Transaction Manager:

javax.transaction.TransactionManager tm =
com.sun.jts.jta.TransactionManager.getTransactionManagerImpl();

2 Get the instance of the transaction:

javax.transaction.Transaction trans = tm.getTransaction();

Server A

Server B

Client

Database A

Database B

EAServer Transaction Manager

36 EAServer

3 Register the XA resource with the transaction:

trans.enlistResource(xaresource);

EAServer manages this XA resource with respect to its transaction boundaries.

Programmer’s Guide 37

C H A P T E R 3 Managing Applications and
Packages in EAServer Manager

 In EAServer Manager, packages allow you to group related components
as a logical unit, and applications allow you to group related packages and
Web Applications.

Defining applications
In EAServer Manager, Applications allow you to group related packages
and Web applications into a single entity. In this way, you can deploy
related business logic components, Web application components, and
Web pages as a single unit between servers. For information on packages
and Web applications, see:

• “Defining packages” on page 41

• Chapter 21, “Creating Web Applications”

You can import and export applications that have been archived in the
standard J2EE Enterprise Archive (EAR) file format or the EAServer
Jaguar JAR format. For details, see Chapter 9, “Importing and Exporting
Application Components,” in the EAServer System Administration Guide.

Creating and installing applications
You can create applications manually or by importing an EAR file as
described in Chapter 9, “Importing and Exporting Application
Components,” in the EAServer System Administration Guide. An
application must be installed into a server before the application’s EJBs,
servlets, or JSPs can run on that server.

Topic Page
Defining applications 37

Defining packages 41

Defining applications

38 EAServer

❖ Creating an application manually

1 Highlight the top level Applications folder and choose File | New
Application.

2 Enter a unique name for the application and click Ok.

❖ Installing a package

You can only install a package in one application. Once a package is installed
in an application, it cannot be installed directly in a server. Install a package in
your application as follows:

1 If necessary, expand the top level Applications folder.

2 If necessary, expand the icon for your application.

3 Highlight the Installed Packages folder beneath the application and choose
File | Install Package.

4 Select the name of the package to install and click OK.

❖ Installing a Web application

You can only install a Web application in one application. Once a Web
application is installed an application, it cannot be installed directly in a server.
Install a Web application in your application as follows:

1 If necessary, expand the top level Applications folder.

2 If necessary, expand the icon for your application.

3 Highlight the Installed Web Applications folder beneath the application
and choose File | Install Web Application.

4 Select the name of the Web application to install and click OK.

❖ Installing an application in a server

You must install your application in a server before the server’s clients can call
the application’s components, servlets, and JSPs. Install your application as
follows:

1 If necessary, expand the server’s icon by double clicking on it.

2 Highlight the Installed Applications folder beneath the server icon and
choose File | Install Application.

3 Choose the application to be installed from the list and click Ok.

CHAPTER 3 Managing Applications and Packages in EAServer Manager

Programmer’s Guide 39

Deleting and removing applications
To delete an application, highlight the application icon in EAServer Manager
and choose File | Delete. You can choose between simple and full deletion.
Simple deleletion removes only the application properties file and the
properties files for components and Web applications installed in the
application. Full deletion removes all files that have been generated by the
deployment of the application, including component stubs and skeletons and
IDL interface and datatype definitions. By default, EAServer performs a full
deletion.

If you have installed an application in a server, you can remove it by
highlighting the application icon in the server’s Installed Applications folder
and choosing File | Remove. This operation does not delete any files associated
with the application.

Configuring application properties
To display an application’s properties, highlight the application’s icon, then
choose File | Application Properties. You can configure the settings described
below in the Application Properties dialog box that displays.

Application properties: General

You can enter optional text in the Description field to document your
application.

Application properties: Role Mapping

These settings map role names used in the application’s packages and Web
applications to role names that exist in EAServer Manager.

❖ Mapping a J2EE role to an EAServer role

1 Select the Role Mapping tab from the Web application properties window.

2 Click Add. Double-click the J2EE role and enter a name. You can also
enter a description for the role in the provided field.

3 Select an EAServer role from the drop-down list. This is the role from
which the J2EE role inherits its permissions and members.

Defining applications

40 EAServer

Refer to “Configuring EAServer roles” in the EAServer Security
Administration and Programming Guide for more information about
EAServer roles.

Application properties: Java Classes

This tab allows you to define a custom class list shared by all components and
Web applications that are installed in the J2EE Application. See “Custom class
lists for packages, applications, or servers” on page 558 for more information.

Application properties: Additional Files

Configures the com.sybase.jaguar.application.files property, which
specifies additional files that are to be archived when the application is
exported or replicated to another server with the synchronize feature. By
default, the file set includes the files associated with Web applications,
application clients, and packages installed in the application.

The rules for setting this property are the same as for the
com.sybase.jaguar.component.files component property. See “Component
properties: Additional Files” on page 70 for more information.

Application properties: JAXP Support

Configures the default JAXP, DOM, and XSLT parser implementations used by
EJB components and Web applications in the application. See Chapter 36,
“Configuring Java XML Parser Support,” for more information on these
properties.

Application properties: Security

Security properties include:

Property Description

Trusted Identities Trusted identities must be configured for EJB 2.0 caller propagation from another server to the
server where this application is deployed.Trusted identities can “vouch” for the client identity
specified in the intercomponent call. For outgoing calls from this application to another server,
configure the Security Identity property..

Security Identity Specifies the identity used for outgoing component invocations when propagating client
credentials to another server.

Run-as Identity Specifies the identity used for intercomponent calls issued from EJBs or servlets. The identity
specified here can be overridden in the package, Web application, or component properties.

CHAPTER 3 Managing Applications and Packages in EAServer Manager

Programmer’s Guide 41

For more information on these settings, see “Intercomponent authentication
for EJBs and servlets” in the EAServer Security Administration and
Programming Guide.

Application properties: Advanced

For advanced users only. The Advanced tab allows you to hand edit property
settings in the EAServer configuration repository.

For information on repository properties, see Appendix B, “Repository
Properties Reference,” in the EAServer System Administration Guide

Defining packages
In EAServer Manager, a package contains a group of related components.
Typically, components in a package work together to provide a coherent
service or function.

Refresh when you modify a package, component, or method
When you modify an existing package, component, or method, you must
refresh the server, package, or component for the changes to take effect. To
refresh, highlight the icon for the server, package, or component and select File
| Refresh. If you modify a component’s supported interfaces, you must
regenerate stubs and skeletons for the component and clients that access the
component.

You must install your components in packages before applications can access
the components. Packages serve the following purposes:

• They are a unit of deployment Using EAServer Manager, you can
import and export archived copies of the components in a package and
related application files.

Defining packages

42 EAServer

• They allow you to control which users can access components
Packages form one level in the EAServer authorization hierarchy. A
package is not available on a server unless it is installed in the server’s
Installed Packages folder. To further restrict access for non-EJB
components, you can edit the package’s required Role Memberships to
restrict which users can access components in the package. You can also
control access on the individual component level. Chapter 2, “Securing
Component Access,” in the EAServer Security Administration and
Programming Guide describes options for configuring user authorization
for package and component access. EJB components use a different
security mechanism described in “Configuring role references and
method permissions” on page 137.

• In a cluster, they allow you to partition the load By installing
different subsets of packages to the servers in a cluster, you can control
which components execute on which servers within the cluster. See
Chapter 7, “Load Balancing, Failover, and Component Availability,” in
the EAServer System Administration Guide for more information.

Use EAServer Manager to create, modify, and delete packages, as described in
the sections below:

• “Creating a new package” on page 42

• “Installing packages to a server” on page 44

• “Modifying packages” on page 45

• “Configuring package properties” on page 45

You can also export and import package archives in the standard EJB-JAR
format or in the Jaguar JAR format. For details, see Chapter 9, “Importing and
Exporting Application Components,” in the EAServer System Administration
Guide.

Creating a new package

❖ Creating a new package

1 Start EAServer Manager if it is not running, and connect to your server.

2 Expand the EAServer Manager icon.

3 Highlight the Packages icon.

4 Select File | New Package.

CHAPTER 3 Managing Applications and Packages in EAServer Manager

Programmer’s Guide 43

5 Enter the name of the new package. The name must not match any existing
package defined in the EAServer repository. To avoid name collisions, you
can use the Java reverse domain naming style; for example,
“com.foo.finance.”

6 Supply the package information. The properties are described in
“Configuring package properties” on page 45.

The new package appears on the right side of the screen when you highlight the
package icon.

Package names must begin with a letter, are not case sensitive, and
must be unique
Package names must be unique among other packages in the same EAServer
installation, and begin with a letter.

Names are not case sensitive. Your packages must have unique names that
differ in ways other than letter case. For example, you cannot define two
packages named MyPack and mypack in the same EAServer installation. You
cannot have two packages with the same name, even if one is installed in an
application and the other is not.

❖ Copying package definitions

Use the Copy item in the package Edit menu to create a copy of a package.
EAServer Manager creates a copy of the package definition and the definitions
of the components it contains. You can modify the new package and
component properties without affecting the original. However, the copied and
original definitions refer to the same IDL interfaces and implementation files.

You cannot copy packages that are installed in an application. Packages that
appear in the top-level Packages folder can be copied as follows:

1 In the top-level Packages folder, highlight the icon for the package to be
copied.

2 Choose File | Copy.

3 Enter a unique name for the new package and click Ok.

4 EAServer Manager creates a copy with the specified name.

Note The Paste command in the package Edit menu pastes copied component
definitions. See “Copying and pasting components” on page 52.

Defining packages

44 EAServer

Installing packages to a server
Except for packages used internally by EAServer, packages to be run on a
server must be installed in that server, using one of two methods:

• Add the package to the server’s Installed Packages folder.

• Add the package to an application’s Installed Packages folder, then install
the application to the server. See Chapter 3, “Managing Applications and
Packages in EAServer Manager” describes this method.

Packages that you create must be installed in a server before that server’s
clients can access components in the package.

You can only install a package in one application. Once a package is installed
in an application, it cannot be installed directly in a server.

Default packages EAServer includes a set of default packages that include
components used internally by EAServer. These packages are available
whether or not they are installed to a server’s Packages folder. These include
the packages: CosConcurrencyControl, CosNaming, CosTransactions,
CtsComponents, CtsSecurity, DataWindow, EncinaInternal, EncinaOTS, JTS,
Jaguar, JaguarOTS, JaguarProxy, JaguarServlet, OtsAdmin, PBDebugger,
Proxy, TranLog. The list of default packages is subject to change without
notice.

❖ Installing packages

1 Double-click the Servers folder to expand it.

2 Double-click the server (listed on the left side of the screen) to which you
want to install a package.

3 Highlight the Installed Packages icon. A list of installed packages appears
on the right.

4 Select File |Install Package. Then select one of the following options from
the Package Wizard:

• Install an existing package A list of uninstalled packages appears
in the dialog box. Highlight the package you want to install, and click
Ok.

• Create and install a new package Enter the name of the new
package you want to install. Supply the package information, and
click Ok. The properties are described in “Configuring package
properties” on page 45.

CHAPTER 3 Managing Applications and Packages in EAServer Manager

Programmer’s Guide 45

Modifying packages

❖ Modifying an existing package

1 Highlight the package you want to modify. You can highlight the package
icon displayed in a server’s package folder or in the main Packages folder
(both icons represent the same package as long as the package names are
identical).

2 From the File menu, select one of the following options:

• Package Properties Displays the Package Properties window
described in “Configuring package properties” on page 45. Make any
modifications required, and click Ok.

• Remove Package If you have selected a package that is installed in
a server or application, this option removes the package from the
server.

• Delete Package Deletes the package from the system. You can
choose between simple and full deletion. Simple deleletion removes
only the package properties file. Full deletion removes all files that
have been generated by the deployment of the package, including
component stubs and skeletons and IDL interface and datatype
definitions. By default, EAServer performs a full deletion.

Default packages cannot be modified or deleted
EAServer’s default packages cannot be modified or deleted, and you cannot
modify or delete components installed in default packages. These components
are run internally by EAServer. See “Default packages” on page 44 for more
information.

Configuring package properties
The Package Properties window has two tabs, General and Advanced.

Package properties: General

The following table describes the properties on the General tab.

Defining packages

46 EAServer

Table 3-1: Package properties: General tab

Package properties: Java Classes

This tab allows you to define a custom class list shared by all components that
are installed in the package. See “Custom class lists for packages, applications,
or servers” on page 558 for more information.

Package properties: Additional Files

Configures the com.sybase.jaguar.package.files property, which
specifies additional files that are to be archived when the package is exported
or replicated to another server with the synchronize feature. By default, the file
set includes the files associated with components in the package.

The rules for setting this property are the same as for the
com.sybase.jaguar.component.files component property. See “Component
properties: Additional Files” on page 70 for more information.

Package properties: Role Mapping

These settings map role names used in EJB components to role names that exist
in EAServer Manager.

❖ Mapping a J2EE role to an EAServer role

1 If necessary, define a new EAServer role as described in “Configuring
EAServer roles” in the EAServer Security Administration and
Programming Guide for instructions.

2 Select the Role Mapping tab from the Web application properties window.

3 Click Add. Double-click the J2EE role and enter a name. You can also
enter a description for the role in the provided field.

4 Select an EAServer role from the drop-down list. This is the role from
which the J2EE role inherits its permissions and members.

Property Description Comments/example

Description A description of the package.
The description can be up to
255 characters.

View or change the description of
an existing component or set the
description of a new one.

CHAPTER 3 Managing Applications and Packages in EAServer Manager

Programmer’s Guide 47

Package properties: JAXP Support

Configures the default JAXP, DOM, and XSLT parser implementations used by
EJB components in the package. See Chapter 36, “Configuring Java XML
Parser Support,”for more information on these properties.

Package Properties: Advanced

The Advanced tab allows you to edit package property settings as they are
stored in the EAServer configuration repository. You can only delete properties
that you have added—you cannot delete default properties, such as the
com.sybase.jaguar.package.name property.

For information on repository properties, see Appendix B, “Repository
Properties Reference,” in the EAServer System Administration Guide.

❖ Setting properties

1 Look for the property name in the list of properties. If it is displayed,
highlight the property and click Modify. Otherwise, click Add.

2 If adding the property, fill in the Add Property fields as follows:

• Enter the property name in the Name field

• Enter the value in the Value field.

3 If modifying a property, edit the displayed value in the Modify Property
window.

When to use the Advanced tab
Though you can use the Advanced tab to set any property prefixed with
com.sybase.jaguar.package, Sybase recommends that you use this tab to set
properties only as specified by the EAServer documentation or by Sybase
Technical Support. Most properties can be configured graphically elsewhere in
the EAServer Manager user interface.

Defining packages

48 EAServer

Programmer’s Guide 49

C H A P T E R 4 Defining Components

EAServer supports Java, PowerBuilder, C++, ActiveX, and C
components. If you are developing components with PowerBuilder, you
can create and deploy components directly from your development
environment. See the PowerBuilder Application Techniques manual for
more information.

When developing with other tools, you must define packages and
components in EAServer Manager.

Defining components
You can define components in EAServer Manager, Sybase PowerBuilder,
or an EJB-compatible Java development tool such as Borland JBuilder.

PowerBuilder components are installed into EAServer using the
PowerBuilder user interface. After a PowerBuilder component is installed
in EAServer, you can view the settings in EAServer Manager. Sybase
recommends that you edit all PowerBuilder component settings from
PowerBuilder so that the EAServer component definition remains in sync
with the PowerBuilder object definition and project settings. See the
Application Techniques manual in the PowerBuilder documentation for
more information.

Topic Page
Defining components 49

Installing components 51

Configuring component properties 52

Running components externally 52

Defining components

50 EAServer

If you are developing EJB components using Jakarta Ant or a Java IDE, you
can deploy them to EAServer in an EJB-JAR file. The EJB-JAR format is
specified by the EJB specification and allows portability between different
J2EE-based application servers. EJB-JAR files can be deployed using
EAServer Manager, jagtool or jagant, or the EAServer plug-in for Borland
JBuilder. Chapter 9, “Importing and Exporting Application Components,” in
the EAServer System Administration Guide describes how to import EJB-JAR
files. If you follow this process, most all component properties are configured
properly to match the deployment descriptor provided with the EJB-JAR file.
The exceptions are properties that depend on the server environment, such as
resource, environment, or EJB reference properties.

❖ Defining components in EAServer Manager

1 Decide how you will define the component interface. Your options are:

If you import from an ActiveX or Java file, skip to step 3. (The import
process installs the component and sets the properties on the General tab
in the Component Properties window.)

2 Install the component in an EAServer package. See “Installing
components” on page 51 for more information.

3 Configure the settings in the Component Properties window, as described
in “Configuring component properties” on page 52.

Option Description

Importing a
compiled Java file

EAServer Manager reads method definitions from a
compiled Java class or interface. “Importing interfaces
from compiled Java files” on page 85 describes this
feature in detail.

Importing an
ActiveX file

EAServer Manager reads the interface definition from
your ActiveX DLL or a separate ActiveX type library file.
“Importing ActiveX components” on page 332 describes
this feature in detail.

Defining the
interface manually

You can define methods manually using EAServer
Manager graphical controls or by creating the interface in
an IDL file.

CHAPTER 4 Defining Components

Programmer’s Guide 51

Component name limitations
Components in a package must have unique names that differ in ways other
than letter case. For example, you cannot install two components named
MyComp and mycomp in the same package. The maximum number of
characters you can use to define the component’s name is 227. You can use any
characters in the name except these:

 \ / : ; , * ? " < > |

Installing components
Your component must be installed in a package before it can be run by
applications. Components that have the same name but are installed in different
packages are different components; modifying or deleting one does not effect
the other.

❖ Creating a new component and installing it to a package

1 Double-click the Packages folder to expand it, or if the package is installed
in a server, expand the server’s Installed Packages folder.

2 Highlight the package to which the component will be added.

3 Select File | Install Component from the menu.

4 In the Component Wizard dialog box, select Define New Component, and
click Next.

5 Enter the component name in the Enter New Component Name dialog
box, and click Finish.

The Component Properties window displays.

6 Configure the settings as described in “Configuring component
properties” on page 52.

The new component appears in the package’s list of installed components, and
the Component Properties window displays.

❖ Renaming a component

• Highlight the component and choose Rename, then enter the new name.

Configuring component properties

52 EAServer

❖ Copying and pasting components

Use copy/paste to copy a component’s definition to another package.

1 Highlight the icon for the component to be copied.

2 Choose File | Copy Component.

3 Highlight the icon for the package to which you want to copy the
component.

4 Choose File | Paste Component.

EAServer Manager installs a copy of the component’s definition into the
specified package. You can modify the new component’s properties without
affecting the original. However, the copied and original definitions refer to the
same IDL interfaces and implementation files.

❖ Deleting a component

1 Expand the EAServer package that contains the component.

2 Highlight the component you want to delete.

3 Select File | Remove Component from the menu.

When you delete a component, EAServer Manager does not delete the IDL
interfaces and types that were used by the component. If you are sure that the
component’s interface and types are not used by any other component, you can
delete unused types as described in “Editing IDL types, exceptions, and
interfaces” on page 92. Alternatively, you can delete the package in which the
component is installed and specify full deletion as described in “Modifying
packages” on page 45.

Configuring component properties
The Component Properties window configures the settings that EAServer uses
to load the component and invoke its methods. Component properties are
organized on the following tabs:

Tab Description

Component properties:
General

Defines basic information about the component, including the
component type and implementation details such as the Java class
name or the C++ library name.

CHAPTER 4 Defining Components

Programmer’s Guide 53

Component properties:
Transactions

Defines the components transactional properties, such as how the
component participates in transactions and whether the component
explicitly commits its work.

Component properties:
Instances

Defines how instances of the component are managed, including
instance creation, thread binding, and client/component bindings.

Component properties:
Environment

For EJB 2.0 or 1.1 components, allows you to specify read-
only site specific data for use by the component.

Component properties:
EJB Local Refs

For EJB 2.0 components, allows you to configure aliases for EJB
components that this component calls using EJB local references.

Component properties:
EJB Refs

For EJB 2.0 or 1.1 components, allows you to configure aliases for
components called by this component.

Component properties:
Resource Refs

For EJB 2.0 or 1.1 components, allows you to configure aliases for
resources used by the component such as JavaMail sessions or
JDBC connections.

Component properties:
Resource Environment
Refs

For EJB 2.0 components, configures logical names for objects
administered by EAServer.

Component properties:
Role Refs

For EJB 2.0 or 1.1 components, allows you to map role names used
in method permissions to role names defined in the EAServer
repository.

Component properties:
Resources

Configures properties that govern the component’s use of server
and database resources.

Component properties:
Persistence

Specifies the primary key type for EJB entity Beans, and
configures properties used to save state information for stateful
components that can fail over between servers in a cluster.

Component properties:
Run-As Identity

For EJB 2.0 components, specifies the authentication
credentials that are used when methods call other
components..

Component properties:
Run-As Mode

For EJB 1.0 components, specifies the user name and password that
are used for intercomponent calls to components installed in the
same server or cluster.

Component properties:
MDB Type

Applies to Message-Driven Bean (MDB) components only. See
“Message-driven beans” on page 575 for more information.

Component properties:
Mirror Cache

Configures properties required to support in-memory failover for
stateful components running in a cluster. See “Mirror Cache tab
component properties” on page 547 for more information.

Component properties:
Java Classes

Configures the custom class list for Java and EJB components.

Component properties:
Additional Files

Configures the file set to be included when the component is
exported in Jaguar JAR format or replicated to another installation
using the synchronize feature.

Tab Description

Configuring component properties

54 EAServer

Component properties: General
The General tab defines basic information about the component, including the
supported IDL interfaces, the component type, and implementation details. If
you imported a Java or ActiveX component, these properties have already been
configured correctly by the import process. Table 4-1describes the window
controls.

Table 4-1: General tab component properties

Component properties:
JAXP Support

For EJB 2.0 components, configures the XML parser
implementations used by the component.

Component properties:
Advanced

Allows you to manually edit component property settings in the
EAServer configuration repository. For advanced users.

Tab Description

Property Description Notes

Description Specifies description of the component. The
description can be up to 255 characters.

Enter a comment that describes the purpose of
the component.

Codeset

(PowerBuilder,
C, and C++
components
only)

Specifies the name of the coded character set
used by a C or C++ component. By default, the
component uses the server’s coded character
set (specified on the General tab in the Server
Properties window).

This field does not display for Java and
ActiveX components. These components
always use 16-bit Unicode.

For the list of supported values, list the
subdirectories of the charsets directory.
Each subdirectory matches the name of a
supported character set.

Input values for string parameters (and string
fields within complex datatype values) are
converted to this code set before each method
invocation. Upon return, output values are
converted from the component’s code set to the
client’s code set.

Note If your C or C++ component uses Client-
Library connection caches, you cannot specify
a code set that is different than the server code
set. Character data read over a cached Client-
Library connection is always in the server’s
code set.

CHAPTER 4 Defining Components

Programmer’s Guide 55

Component
Type

Specifies the type of the component, which can
be:

EJB - Stateless Session Bean A stateless
session bean EJB component.

EJB - Stateful Session Bean A stateful
session Bean EJB component.

EJB - Entity Bean An entity bean EJB
component.

EJB - Message Driven Bean An EJB
component that responds solely to JMS
messages and lacks a client interface.

Java - CORBA A Java component that uses
the Java/IDL datatypes as defined by the
CORBA specification for IDL-to-Java type
mappings.

Java - JDBC A Java component that uses the
JDBC column types for parameter and return
types.These type mappings are deprecated. See
“Choose implementation datatypes” on page
189.

PowerBuilder NVO A PowerBuilder
nonvisual object adapted to run as an EAServer
component.

COM/ActiveX An ActiveX component
adapted to run as an EAServer component.

C++ A C++ class adapted to run as an
EAServer component.

C A collection of C routines adapted to run as
an EAServer component.

EJB components must be implemented in
accord with version 1.0, 1.1, or 2.0 of the
Enterprise JavaBeans specification. Version 2.0
is recommended for new development.

ActiveX components are supported only in the
Windows version of EAServer. All other
component types can run on any platform that
is supported by EAServer.

PowerBuilder components should be
configured and deployed using the
PowerBuilder IDE. Otherwise, EAServer
Manager settings may be overwritten when you
redeploy from your PowerBuilder project. See
the PowerBuilder Application Techniques
manual for more information.

EJB Version

only for EJB
components

Choose to match the EJB specification version
number. EAServer’s interaction with the
component is governed by the specification
version.

Version 2.0 is recommended for new
development.

CMP Version

only for EJB
2.0 entity beans

For EJB 2.0 entity beans that use container-
managed persistence (CMP), sets the CMP
version number. If you do not specify a value,
the default is 1.1.

In EJB 2.0 entity beans, you can use the CMP
models from the EJB 2.0 or EJB 1.1
specifications. Version 2.0 is recommended for
new development. Version 1.1 allows you to
use existing implementation code that requires
the EJB 1.1 CMP model.

Bean Class

only for EJB
components

The name of the class that implements the bean,
in Java dot notation.

Property Description Notes

Configuring component properties

56 EAServer

MDB Class

only for EJB
MDB
components

The name of the class that implements the
message-driven bean, in Java dot notation.

JNDI Name

only for EJB
components

The unqualified name used by client
applications to look up the bean’s home
interface in the naming service. For example:

finance/account

The fully qualified name is obtained by
appending the JNDI name to the server’s initial
naming context, for example:

/finserver/finance/account

If you do not specify a name, the default is
package/component, where package is the
EAServer package name, and component is the
component name.

Home Interface
Class

only for EJB
components

The Java class that defines the bean’s home
interface, in Java dot notation.

This field is read only. The class name is
determined from the IDL home interface. You
can add, view, or edit the IDL home interface
using the component’s interfaces folder.

Remote
Interface Class

only for EJB
components

The Java class that defines the bean’s remote
interface, in Java dot notation.

This field is read only. The class name is
determined from the IDL remote interface. You
can add, view, or edit the IDL remote interface
using the component’s interfaces folder.

Local Home
Interface Class

only for EJB
components

The Java class that defines the bean’s local
home interface, in Java dot notation.

Blank if the bean does not have local interfaces.

This field is read only. The class name is
determined from the IDL home interface. You
can add, view, or edit the IDL home interface
using the component’s interfaces folder.

Local Interface
Class

only for EJB
components

The Java class that defines the bean’s local
interface, in Java dot notation.

Blank if the bean does not have local interfaces.

This field is read only. The class name is
determined from the IDL remote interface. You
can add, view, or edit the IDL remote interface
using the component’s interfaces folder.

Primary Key
Class

only for EJB
entity Beans

The Java class that defines the entity bean’s
primary key type, in Java dot notation.

This field is read only. The class name is
determined from the IDL struct type that
defines the bean’s primary key. You can add a
primary key type to a module listed in
EAServer Manager IDL folder. Typically the
bean’s primary key structure, home interface,
and remote interface are defined in the same
IDL module.

To set the bean’s IDL primary key type, enter
the type name in the Primary Key field on the
Persistence tab.

Property Description Notes

CHAPTER 4 Defining Components

Programmer’s Guide 57

Fully Qualified
Java Class

only for non-
EJB Java
components

The fully qualified name of the Java class file
that implements the component’s methods,
specified in Java dot notation, as in:

com.yourcorp.YourCompImpl

DLL Name

only for C and
C++
components

The name of the Windows DLL or UNIX
shared library that contains the component
methods. You can omit platform standard file
extensions if desired (such as .dll on Windows
or .so on Solaris).

Before running the component, the library files
must be copied to cpplib subdirectory in the
EAServer installation directory.

C++ Class

(only for C++
components)

The name of the C++ class that implements the
component.

C++
Executable

(only for C++
components)

The name of an external process in which the
C++ component runs.

Run the component externally if you do not
completely trust the implemenation not to
crash. See “Running C++ components
externally” on page 273 for details.

Use Platform
Independent
Library
Naming

(only for C++
components)

If selected, the platform name is included in the
component library and executable name, to
allow deployment to mixed architecture
clusters.

See “Creating C++ components for
multiplatform clusters” on page 275 for details
on this feature.

Prog ID

(only for
ActiveX
components)

The progid that the component uses in the
COM Automation Server Registry.

EAServer Manager does not register the
ActiveX component DLL. Before running the
component, you must register the DLL with the
Windows regsvr32 command or by using the
registration feature in your ActiveX
development tool.

PowerBuilder
Class Name

only for
PowerBuilder
components

Matches the name of the nonvisual object that
implements the component’s methods.

Set by PowerBuilder, defined in the EAServer
Component Wizard.

PowerBuilder
Library List

only for
PowerBuilder
components

A list of the PowerBuilder library files that are
required to run the object, separated by
semicolons. For example:

mylib.pbl;anotherlib.pbl

Set by PowerBuilder, defined in the EAServer
Component Wizard.

Property Description Notes

Configuring component properties

58 EAServer

Component properties: Transactions
The Transactions tab configures the component’s transactional properties.
Chapter 2, “Understanding Transactions and Component Lifecycles” provides
useful background for the transactional properties.

Transaction attribute
values

The transaction attribute determines how methods in your component
participate in transactions; at the component level, the setting affects all
methods. You can also set a transaction attribute for methods within a
component (see “Method properties” on page 81). Values set at the method
level override the component setting.

Transaction attribute in imported EJB components
EJB 2.0 or 1.1 components imported from an EJB JAR file have the transaction
attribute set for each method. To use the component level setting, set the
transaction attribute to Default to Component for each method.

The transaction attribute can have the following values:

• Not Supported (The component-level default) The component’s
methods never execute as part of a transaction. If the component is
activated by another component that is executing within a transaction, the
new instance’s work is performed outside of the existing transaction.

• Supports The component can execute in the context of an EAServer
transaction, but a connection is not required in order to execute the
component’s methods. If the component is instantiated directly by a base
client, EAServer does not begin a transaction. If component A is
instantiated by component B, and component B is executing within a
transaction, component A executes in the same transaction.

• Required The component always executes in a transaction. When the
component is instantiated directly by a base client, a new transaction
begins. If component A is activated by component B, and B is executing
within a transaction, then A executes within the same transaction; if B is
not executing in a transaction, then A executes in a new transaction.

PowerBuilder
Application

only for
PowerBuilder
components

The name of the PowerBuilder application that
contains the NVO that implements the
component.

Set by PowerBuilder, defined in the EAServer
Component Wizard.

Property Description Notes

CHAPTER 4 Defining Components

Programmer’s Guide 59

• Requires New Whenever the component is instantiated, a new
transaction begins. If component A is activated by component B, and B is
executing within a transaction, then A begins a new transaction that is
unaffected by the outcome of B’s transaction; if B is not executing in a
transaction, then A executes in a new transaction.

• Mandatory Methods may only be invoked by a client that has an
outstanding transaction.

• Never The component’s methods never execute as part of a transaction,
and the component may cannot be called in the context of a transaction. If
a client or another component calls the component with an outstanding
transaction, EAServer throws an exception.

• Bean Managed For EJB session bean components only. The component
can explicitly begin, commit, and rollback new, independent transactions
by using the javax.transaction.UserTransaction interface. Transactions
begun by the component execute independently of the client’s transaction.
If the component has not begun a transaction, the component’s database
work is performed independently of any EAServer transaction.

Stateless session Beans can use this attribute, but transactions begun in a
method must be committed or rolled back before that method returns.
Otherwise, EAServer logs an error and returns an exception to the client.
Stateful session Beans can create transactions that remain open across
several method calls.

• OTS Style For non-EJB components only. The component can inherit a
client’s transaction. If called without a transaction, the component can
explicitly begin, commit, and rollback transactions by using the CORBA
CosTransactions::Current interface. See Chapter 2, “Understanding
Transactions and Component Lifecycles,” for more information.

• Default to component (Method-level default) In the Transactions tab of
the Method properties window, choose this option if the method should
inherit the transaction attribute set in the component properties.

EAServer allows only one transaction per component instance
A component instance may not execute in two transaction contexts. You cannot
set a transaction attribute at the method level that conflicts with the component
level setting. For example, you cannot set the component transaction attribute
to Mandatory and a method transaction attribute to Requires New. If a method
invocation would cause this rule to be violated, the server returns an exception
to the client and logs the error in the server log file.

Configuring component properties

60 EAServer

Transaction isolation
level

Specifies the isolation level for transactions begun by the component’s
methods. This setting can be configured for the component and for individual
methods (see “Method properties” on page 81). The choices are:

• Read Committed

• Read Uncommitted

• Repeatable Read

• Serialized

• None (for component only)

• Default to component (for methods only)

Note The transaction isolation level is supported for EJB 1.0 components only.

Automatic
demarcation/
deactivation

Applies to components that use a control interface in which the instance
activation and deactivation correspond to transaction boundaries. In other
words, the option does not apply to EJB components or any omponent that uses
the control interface CtsComponents::ObjectControl (the control interface
property is “Configuring a control interface” on page 73).

For EJB components and components that use the
CtsComponents::ObjectControl control interface, this option is ignored; for
these compnents, the Stateless option on the Instances tab determines whether
the component is deactivated after every method invocation.

When Automatic demarcation/deactivation is enabled, EAServer deactivates
the component instance after every method invocation. Your component need
not call the completeWork or rollbackWork transaction primitives when this
property is enabled. If your component is transactional, calling rollbackWork or
throwing the CORBA TRANSACTION_ROLLEDBACK exception aborts the
transaction. Setting any other transaction state commits the transaction.

By default, this option is enabled for new components.

If component is stateful disable Automatic demarcation/deactivation
If your component maintains state across method invocations, you must disable
the automatic transaction demarcation property. For example, if you read and
modify class member fields in response to method invocations, you must
disable this option.

CHAPTER 4 Defining Components

Programmer’s Guide 61

Automatic failover When this option is enabled, client proxies for the component can transparently
failover to alternate servers when a server becomes unavailable. This option
cannot be enabled unless you have enabled the Automatic
demarcation/deactivation option.

Automatic failover requires that your application use a cluster of servers, so
that redundant servers are available to run the application’s components. The
cluster must include at least one name server and clients must resolve proxy
references using naming services. See Chapter 7, “Load Balancing, Failover,
and Component Availability,” in the EAServer System Administration Guide
for more information.

Component properties: Instances
Properties on the Instances tab configure how instances of the component are
created and bound to server-side threads and client-side object references.
Table 4-2 describes the settings:

Table 4-2: Instances tab component properties

Property Description

Concurrency Enabling this option allows multiple method invocations to occur simultaneously.
Concurrent access can decrease the response time of client method invocations. Enable this
option for any component that is thread safe.

If this option is disabled, EAServer serializes all method calls to the component.

Concurrency applies to execution of all instances. With concurrency disabled, a call to one
instance cannot overlap the execution of another instance.

If a PowerBuilder component is Shared, disable Concurrency. PowerBuilder is thread safe
at the session level only.

Concurrency option disabled
If the Sharing and Bind Thread options are selected, the Concurrency option is implicitly
disabled.

Configuring component properties

62 EAServer

Bind Object Applies to stateful components only (Automatic Demarcation/Deactivation must be
disabled on the Transactions tab or the component must be a stateful session EJB). When
this property is enabled, an instance is bound to a client's proxy reference until the client
destroys or releases the reference.

If you enable this option, your component must be thread-safe; that is, one instance must
be able to execute on multiple threads concurrently. A client may call the proxy from
multiple threads, or pass the proxy to another process or component; consequently, there
is no guarantee that calls are serialized with Bind Object enabled.

Component instances are destroyed when the client instance reference times out (the time
out period is configured on the Instances tab–see “Component properties: Instances” on
page 61). Instances are not pooled.

Bind Object is most commonly used for storage components, which are used to store a
component’s state information in a database. See “Component properties: Persistence” on
page 68 for more information on storage components.

Bind Thread When this option is enabled, component instances are bound to the creating thread. Enable
this option if the component uses thread-local storage. For ActiveX components, this
option must be enabled. For other component types, enable the option only if you are sure
that your component uses thread-local storage.

If the Bind Thread option is selected, multiple instances may still run concurrently on
separate threads. To ensure that only one instance is active at a time, make sure that the
Concurrency option is not selected.

When Bind Thread is enabled, instances are pooled if the Pooling option is enabled. The
thread is pooled with the instance in this case.

Pooling When this option is enabled, component instances are always pooled after deactivation.
For Java and ActiveX components, you can also configure pooling by implementing
interfaces with a canReuse (Java) or canBePooled (ActiveX) method. If you enable the
Pooling option in EAServer Manager, your component is always pooled, and these
methods are not called. See “Supporting instance pooling in your component” on page 16
for more information on instance pooling.

Sharing When this option is enabled, a single, shared instance of the component services all client
requests.

A shared component can store data in instance variables. However, if the component’s
Concurrency option is also selected, you must add code to synchronize access to instance
variables.

If a PowerBuilder component is Shared, disable Concurrency. PowerBuilder is thread safe
at the session level only.

Sharing setting overrides Pooling setting
If you select both Sharing and Pooling, Sharing takes precendence.

Property Description

CHAPTER 4 Defining Components

Programmer’s Guide 63

Stateless This option applies only to EJB session Beans and non-EJB components that use the
control interface CtsComponents::ObjectControl. For EJB session Beans, the Stateless
option is set correctly when the component type is set, and must not be changed. For other
component types, the option must be set manually.

External Server If selected, the component executes externally in the specified server. See “Running
components externally” on page 74.

External
Server/Name

When running the component externally, the name of the external server that hosts the
component. The external server must run on the same machine as the server that your
application’s clients connect to.

External Server/
Request
Timeout

When running the component externally, specifies how long, in seconds, to wait for a
response from the external server before returning an error to the client. The default value
is set in the server properties for the server where the component is installed.

External Server/
Server Start
Timeout

When running the component externally, specifies how long, in seconds, to wait for the
external server to start if it is not already running. EAServer returns an error to the client
if the external server does not start in the specified time. The default value is set in the
server properties for the server where the component is installed.

Transient Applies to stateful components only. Specifies whether instances can be run on multiple
servers in a cluster or survive a server restart. If this option is enabled, the server guarantees
that proxy references can only be used within the same server process. For EJB stateful
session Beans, this property must be enabled for the standard EJB passivation and
activation to occur. It must be disabled if you want to configure a stateful session bean to
support failover using the Persistence tab properties (see “Component properties:
Persistence” on page 68).

Reentrant Applies to entity components only (including EJB entity Beans). When this option is
enabled, an instance is allowed to participate in loopback call sequences, which are call
sequences where one of the bean’s methods calls another component which in turn calls a
method in the calling bean instance. Most Beans are not implemented to support
reentrancy, and you must not enable this option unless the bean developer has verified that
the implementation allows it.

LWC Applies to EJB components only. Enables the EAServer lightweight container (LWC) for
intercomponent EJB invocations or calls to EJBs from servlets and JSPs hosted in the same
server. For more information, see “Lightweight container” in the EAServer Performance
and Tuning Guide.

LWC/
Skeleton
Support

If LWC is enabled, the Skeleton Support option enables calls to the component from
servlets and JSPs hosted in the same server. Such calls are not supported unless this option
is set.

Property Description

Configuring component properties

64 EAServer

Component properties: Environment
Applies to EJB 2.0 or 1.1 components only. Environment properties allow you
to specify read-only site specific data for use by the component. For example,
you may have environment properties to specify the name of a logging file, or
to tune cache usage, or to specify an email address for the site administrator.
See “Configuring environment properties” on page 137 for more information.

Component properties: EJB Local Refs
Applies to EJB 2.0 components only. EJB local references provide an alias
mechanism for the JNDI names used to call other EJB components using local
interfaces. The JNDI names used in your compoent must be cataloged on this
tab. When deploying the component, a site administrator can map site-specific
EJB JNDI names to the references used by your component. To add or edit
local references, follow the instructions in “Adding an EJB local reference” on
page 387, or “Editing an EJB local reference” on page 388, respectively.

Component properties: EJB Refs
Applies to EJB 2.0 or 1.1 components only. EJB references provide an alias
mechanism for the JNDI names used to create proxies for intercomponent calls
to non-EJB components or to EJB components using the EJB remote interface.
The JNDI names used in your compoent must be cataloged on this tab. When
deploying the component, a site administrator can map site-specific EJB JNDI
names to the references used by your component. To add or edit references,
follow the instructions in “Adding an EJB reference” on page 387, or “Editing
an EJB reference” on page 387, respectively.

Component properties: Resource Refs
Applies to EJB 2.0 or 1.1 components only. Resource references are used to
obtain database connections and JavaMail sessions. The reference allows you
to obtain resource factories using JNDI, rather than hard-coding connection
parameters in your application. See “Configuring resource references” on
page 137 for more information.

CHAPTER 4 Defining Components

Programmer’s Guide 65

Component properties: Resource Environment Refs
For EJB 2.0 components, resource environment references are logical names
applied to objects administered by EAServer.

❖ Adding or editing a resource environment reference

1 Open the Component Properties dialog box.

2 “Resource environment references” on page 390 describes how to add and
edit a resource environment reference.

Component properties: Role Refs
Applies to EJB 2.0 or 1.1 components only. Role references are required if you
call the isCallerInRole Java method to restrict access. Each reference maps a
string used in isCallerInRole calls to a J2EE role that is configured in the
package Role Mappings. See “Configuring role references and method
permissions” on page 137 for more information.

Component properties: Resources
Properties on this tab govern the allocation and deallocation of resources
required by the component.

• Transaction timeout A component’s Transaction Timeout property
specifies the maximum duration of an EAServer transaction. See Chapter
2, “Understanding Transactions and Component Lifecycles” for more
information on EAServer transactions.

You can set the timeout for components and at the server level, with server
property com.sybase.jaguar.server.tx_timeout (set on the Advanced tab in
the Server Properties dialog box). EAServer determines the transaction
timeout period as follows:

• If the component Transaction Timeout property is set to a non-zero
value, this is the timeout period.

• Otherwise, the server transaction timeout property is checked (the
server transaction timeout is specified by the
com.sybase.jaguar.server.tx_timeout property). If the server
transaction timeout is non-zero, this specifies the timeout period.

Configuring component properties

66 EAServer

• Otherwise, the component Instance Timeout value is checked. If this
value is non-zero, this specifies the transaction timeout period as well
as the instance timeout period.

• Otherwise, the transaction timeout is infinite.

For both the component and server setting, the timeout period is
configured in seconds, with 0 indicating infinity (that is, no timeout). The
default for a new server is 0. When specifying timeouts, a resolution of 5
seconds is recommended. Network transport time is included in the
measured timeout period. You may need to configure a larger timeout
period if clients connect over slow networks.

EAServer checks for timeouts after each method returns. Your component
will not be deactivated in the middle of an invocation because of a timeout.
When a transaction times out, the next method invocation in the client-side
ORB throws the CORBA::TRANSACTION_ROLLEDBACK system
exception.

• Instance timeout Specifies how long, in seconds, an active component
instance can remain idle between method calls before the client’s proxy
becomes invalid. If the timeout expires, the instance is automatically
deactivated. Instance Timeout is useful for ensuring timely deactivation of
stateful components. (“Stateful versus stateless components” on page 17
explains this term.) The setting has no effect for stateless components.

When the timeout period is exceeded, EAServer deactivates the
component and invalidates the client’s object reference. If the client
attempts another method invocation, the client-side ORB throws the
CORBA::OBJECT_NOT_EXIST exception. At this point, the client must
create a new proxy instance for the component.

This property is not set for new components; the component inherits a
default value from the server properties. At the server level, configure the
instance timeout by displaying the Advanced tab in the Server Properties
window. Then set the com.sybase.jaguar.server.timeout property.

The timeout period is configured in seconds, with 0 indicating infinity
(that is, no timeout). If the component’s Instance Timeout property is not
set, the default is inherited from the server properties. The default for a
new server is 0. When specifying timeouts, a resolution of 5 seconds is
recommended.

Network transport time is not included in the measured timeout period.
You may need to configure a larger timeout period if clients connect over
slow networks.

CHAPTER 4 Defining Components

Programmer’s Guide 67

• Maximum Active Instances Specifies the maximum number of
instances that can exist at the same time. For a C++ component that runs
as an external process, specifies the maximum number of simultaneously
running external processes. If a request arrives when the maximum
number of instances exist and are all busy, the request blocks, with
blocking time constrained by the Maximum Wait setting.

• Maximum Pooled Instances When instance pooling is enabled with the
Pooling checkbox on the Instances tab, specifies the maximum pool size.
If the maximum pool size is reached, EAServer destroys excess instances
after deactivation. The default is 0, which means no maximum pool size is
in effect.

• Minimum Pooled Instances When pooling is enabled, specifies the
minimum pool size. The default is 0.

• Maximum Wait This setting applies only when the Maximum Active
Instances property is set to specify a limit on the number of simultaneous
active instances. If a request arrives when the maximum number of
instances exist and are all busy, the request blocks, with blocking time
constrained by the Maximum Wait property. If the blocking time expires,
the caller receives a CORBA::NO_RESOURCE_EXCEPTION.

• Maximum Response Time The maximum allowable average response
time for the component, in seconds. If the average method completion
time rises above this limit, EAServer blocks creation of additional
instances of this component until the average drops below the specified
limit. The default is -1, which indicates no time limit.

• Minimum Number of Instances When the Maximum Response Time is
set to a non-default value, specifies the minimum numer of instances that
must be allowed to execute regardless of observed response times. The
default is -1, which means no new instances are blocked by the
Performance Monitor. For more information on this feature, see Chapter 9,
“Using the Performance Monitor,” in the EAServer Performance and
Tuning Guide.

• Named Instance Pool Constrains the component to run in the specified
instance pool.

For information on tuning the instance pool size properties, see “Instance
pooling” in Chapter 3, “Component Tuning,” in the EAServer Performance
and Tuning Guide.

Configuring component properties

68 EAServer

Component properties: Persistence
The Persistence tab allows you to specify an EJB entity bean’s primary key and
configure settings that allow EAServer to save component state to a database
server or using inter-server in-memory replication to support failover in
clustered deployments. For more information, see these chapters:

• Chapter 27, “Creating Entity Components”

• Chapter 28, “Configuring Persistence for Stateful Session Components”

Component properties: Run-As Identity
This tab applies to EJB 2.0 components only. These properties specify the
authentication credentials that are used when methods call other components.
By default, the client credentials are used. You can specify an alternate
credential with these settings:

• Run as Choose specified to specify an alternate identity. The default,
client, means the component calls made from this component inherit the
client identity.

• Role Specify a role name. The identity specified in the Mapped to Jaguar
identity field should be in this role. This name is used if the component is
exported to an EJB-JAR file.

• Run as identity Specify a logical identity name.

• Mapped to Jaguar identity Choose an EAServer identity from the pull
down menu. This is the identity with which the component executes.

• Description Enter an optional text comment. This field can be used to
provide identity mapping instructions for the deployer when the
component is deployed to another server.

The Existing Mappings on the Package table displays logical identity names
that are mapped to EAServer identities by components in the same package.

To enable use of the run-as identity for EJB component calls to remote servers,
you must specify corbaname URLs in the EJB Reference properties for the
EJB component that issues the call. For more information, see “Interoperable
naming URLs” on page 161 and “Configuring EJB references” on page 136.

CHAPTER 4 Defining Components

Programmer’s Guide 69

Component properties: Run-As Mode
This tab applies to EJB 1.0 components only. These properties specify the user
name and password that are used when methods call other EAServer
components installed in the same server or server cluster. The setting in the
Component Properties dialog box is the default for all methods in the
component. You can override the component level setting for individual
methods (see “Method properties” on page 81).

The choices for Run As Mode are:

When Run-As Mode is set to Specified, you must enter a logical entity name,
then map the logical identity name to an identity that is defined in the EAServer
Manager identities folder. If there are no identities defined, you must close the
Component Properties dialog, go to the Identities folder, and create at least one
identity to map logical identities to. For more information, see “Configuring
identities” in the EAServer Security Programming and Administration Guide.

Mappings specified in the Component Properties dialog are stored as package
properties and apply to all other components in the package.

Component properties: Java Classes
For CORBA/Java and EJB components, allows you to define the list of classes
that must be custom loaded in addition to the component implementation class.
Custom loading allows you to refresh the component installation without
restarting the server, and to deploy classes in JAR files without changing the
server CLASSPATH environment variable and restarting the server. For more
information, see Chapter 30, “Configuring Custom Java Class Lists.”

Value Description

Client Use the client’s user name and password. This is the default setting.

System Use the system user name and password. The system account effectively
belongs to any role, and can execute any method on any component that
is installed in the same server or cluster.

Specified Use the user name and password associated with the identity name
specified in the Run-as Identity column.

Configuring component properties

70 EAServer

Component properties: Additional Files
Configures the com.sybase.jaguar.component.files property, which specifies
additional files that are included when the component is archived in Jaguar
JAR format or replicated with the synchronize feature.

By default, the following files are included when you export packages or
synchronize between servers:

• The IDL files that define interfaces and types used by the component.

• For C or C++ components, the DLL or shared library that is specified on
the General tab of the Component Properties window. If your component
requires additional DLLs or shared libraries, you must specify them in the
list.

• For Java components, the implementation class, any classes listed in the
Java Classes tab, and stub classes listed in the
com.sybase.jaguar.component.files.corbastubs, and
com.sybase.jaguar.component.files.ejbstubs properties.

• For PowerBuilder components, the libraries starting with $ (dollar sign)
that are referenced by the property
com.sybase.jaguar.component.pb.librarylist

Note Java and C++ stubs are not included by default in the component’s file
set. These can be regenerated on the target server after synchronization or
installing the archive. If you do not want to regenerate, add the stub files to the
list on the Additional Files tab.

Any additional files that are required to run the component must be listed on
the Additional Files tab. Use the Additional Files wizard to enter a list of file
names, separated by commas. Files may be specified as follows:

• Specify Java classes and packages using the Java dot notation. For
example, com.sybase.CORBA adds all files in the com.sybase.CORBA
package. These classes must be deployed under the EAServer java/classes
subdirectory.

• If a DLL or shared library is deployed in the EAServer cpplib subdirectory,
you can enter the filename itself. For example myutils.dll.

CHAPTER 4 Defining Components

Programmer’s Guide 71

• Other files must be specified using full paths or paths that are relative to
the EAServer Repository subdirectory. For example,
../dll/debug/MyDebugLibrary.dll or d:\mydir\myfile.ext. If you use full
paths, you will only be able to synchronize or import package archives on
machines which share the same directory structure as your development
machine.

Configuring the
Additional Files list

When you include additional files, you can either enter the file names
individually, or you can use the Additional Files wizard to add multiple files,
packages, classes, and directories.

❖ Entering file names individually

1 Click Add. This opens the Add a File Name to the List dialog box.

2 Enter the file name and click Ok.

❖ Adding multiple items

1 Click Additional Files Wizard. This open the Additional Files dialog box.
Each item that you add is appended to the list.

2 To add Java packages or classes:

a Click Browse

b Choose a *.class file and click Select.

The class files must be deployed under EAServer’s java/classes directory.

3 To add files or directories:

a Optionally, specify a file filter, such as *.txt.

b Optionally, select to use the JAGUAR environment variable.

c Click Browse.

d Choose a file or directory and click Select.

4 To add property files from other entities:

a Click Browse.

b Choose a *.props file from under the Repository directory and click
Select.

5 To add file lists from other entities:

a Click Browse.

b Choose an entity’s *.files file and click Select.

Configuring component properties

72 EAServer

6 Click Add Files to Additional Files List.

Component properties: JAXP Support
For EJB 2.0 components, configures the JAXP, DOM, and XSLT parser
implementations used in the component. See Chapter 36, “Configuring Java
XML Parser Support,” for more information on these properties.

Component properties: Advanced
The Advanced tab allows you to edit component property settings as they are
stored in the EAServer configuration repository. You can only delete properties
that you have added—you cannot delete default properties, such as the Instance
Timeout property.

For information on repository properties, see Appendix B, “Repository
Properties Reference,” in the EAServer System Administration Guide.

❖ Setting properties

1 Look for the property name in the list of properties. If it is displayed,
highlight the property and click Modify. Otherwise, click Add.

2 If adding the property, fill in the Add Property fields as follows:

a Enter the property name in the Name field

b Enter the value in the Value field.

3 If modifying a property, edit the displayed value in the Modify Property
window.

When to use the Advanced tab
Though you can use the Advanced tab to set any property prefixed with
“com.sybase.jaguar.component”, Sybase recommends that you use this tab to
set properties only as specified by the EAServer documentation or by Sybase
Technical Support. Most properties can be configured graphically elsewhere in
the EAServer Manager user interface.

The following component properties can be configured only from the
Advanced tab:

CHAPTER 4 Defining Components

Programmer’s Guide 73

Configuring a control
interface

The com.sybase.jaguar.component.control property pecifies the name
of the component’s IDL control interface. EAServer calls each control
interface method in response to changes in the instance lifecycle. The choices
are summarized in this table:

These interfaces are documented in the generated IDL documentation, which
is available in HTML format in the html/ir subdirectory of your EAServer
installation. If you use a control interface other than JaguarEJB::ServerBean,
EAServer generates the control interface methods in the implementation
template when you generate a C++ or Java skeleton.

Control Interface Description

JaguarEJB::EntityBean For EJB entity Beans.

JaguarEJB::StatefulSessionBean For EJB stateful session Beans.

JaguarEJB::StatelessSessionBean For EJB stateless session Beans.

JaguarEJB::ServerBean A lifecycle model based on the EJB 0.4
specification. This is the default for
Java/CORBA components that do not
have persistent state (that is, when the
Persistence field is None).

CtsComponents::ObjectControl A CORBA lifecycle model based on the
EJB entity bean model. The default for
Java/CORBA and C++/CORBA
components with persistent state (that is,
when the Persistence field is Component
Managed).

JaguarCOM::ObjectControl For ActiveX components.

Running components externally

74 EAServer

Running components externally
Running a component externally protects the server process from application
problems such as memory leaks or segmentation violations. Stateless
components of any type can run externally, with full access to server-side
features such as cached connections. When you mark a component to run
externally, EAServer runs it in a separate server process. You can identify
which external server runs the component, and assign groups of related
components to run in the same external server. EAServer starts the external
server when required, and restarts the server if it stops responding.

Note EAServer 4.x provides a different model to run C++ components
externally, with limited support for use of server-side APIs. “Running C++
components externally” on page 273 describes this model. The previous C++
external execution model is supported for backward compatibility.

Configuring components to run externally
Components must be stateless to execute externally. That is, the Stateless
option must be selected on the Instances tab in the Component Properties
dialog box; if using jagtool or an external configuration file, the property
com.sybase.jaguar.component.stateless must be true.

To configure a component for external execution, configure the settings listed
in Table 4-3, on the Instances tab in the EAServer Manager Component
Properties dialog box.

Table 4-3: Instances tab component properties for external execution

Setting Specifies

External Server If selected, the component executes externally in the specified server; the default external
server name is DefaultExternal.

External Server/Name The name of the external server that hosts the component—see “Configuring servers to
host external components”.

If using jagtool or an external configuration file, set the property
com.sybase.jaguar.component.external.servername.

CHAPTER 4 Defining Components

Programmer’s Guide 75

Configuring servers to host external components
The server that runs external components can be configured like any other
server using EAServer Manager or jagtool. The external server must run on the
same machine as the server that your application clients connect to. Do not
manually start the external server; the primary server starts the external server
automatically if it is not running when a request arrives.

When you specify an external server name for the component in EAServer
Manager, EAServer Manager automatically installs the package that contains
the component to the specified server if the server exists and the package is not
already installed.

You can configure the properties in Table 4-4 on Components tab of the Server
Properties dialog box for the server where the component is installed. These
properties set the default timeouts for communication with servers that host
external components. These properties can be overridden for individual
components.

Request Timeout How long, in seconds, to wait for a response from the external server before returning an
error to the client and restarting the external server. A value of 0 indicates infinity (no
timeout). The default value is set in the server properties for the server where the
component is installed—see “Configuring servers to host external components” on page
75.

If using jagtool or an external configuration file, set the Request Timeout property
com.sybase.jaguar.component.external.request.timeout.

If the Automatic Failover option is selected on the Transactions tab
(com.sybase.jaguar.component.auto.failover is true), EAServer retries requests that
fail due to timeout, one retry only.

Server Start Timeout How long, in seconds, to wait for the external server to start if it is not already running.
EAServer returns an error to the client if the external server does not start in the specified
time. The default value is set in the server properties for the server where the component
is installed—see “Configuring servers to host external components” on page 75.

If using jagtool or an external configuration file, set the property
com.sybase.jaguar.component.external.serverstart.timeout.

Setting Specifies

Running components externally

76 EAServer

Table 4-4: Server properties for external component execution

Setting Specifies

External Server Request
Timeout

How long, in seconds, to wait for a response from the external server before returning an
error to the client. If not set, the default is 60 seconds. If you specify the component
External Request Timeout setting, it overrides this setting.

If using jagtool or an external configuration file, set the property
com.sybase.jaguar.server.external.request.timeout.

External Server Start
Timeout

How long, in seconds, to wait for the external server to start if it is not already running.
EAServer returns an error to the client if the external server does not start in the specified
time. If not set, the default is 60 seconds. If you specify the component External Server
Start Timeout setting, it overrides this setting.

If using jagtool or an external configuration file, set the property
com.sybase.jaguar.server.external.serverstart.timeout.

Programmer’s Guide 77

C H A P T E R 5 Defining Component Interfaces

A component’s interfaces define the methods that clients can invoke.
Though EAServer stores interface information in CORBA IDL, you do
not need to know IDL in order to define interfaces in EAServer Manager.
You can define interfaces using several techniques, as described in the
sections of this chapter.

Related documents If you are developing components with PowerBuilder, you can visually
define component interfaces within the PowerBuilder development
environment. See the Application Techniques manual in the PowerBuilder
documentation for more information.

Defining interfaces graphically
A component’s Interfaces folder contains icons for the IDL interfaces
implemented by the component. These interfaces define the methods that
can be called by client applications.

When you define a new component, EAServer Manager creates an
interface for the component. If you defined the component by importing a
Java or ActiveX class, the interface contains IDL definitions matching the
Java or ActiveX methods. If you are defining a component from scratch,
EAServer Manager creates a new IDL interface with no methods. If you
have imported an EJB component, the importer has also created an IDL
home interface for the component.

Topic Page
Defining interfaces graphically 77

Importing interfaces from compiled Java files 85

Importing interfaces from registered ActiveX components 89

Defining modules, interfaces, and types in IDL 89

Defining interfaces graphically

78 EAServer

❖ Adding interfaces

Use these steps to configure which interfaces a non-EJB component
implements, or to add interfaces to an EJB component in addition to the home
and remote interfaces:

1 Highlight the Interfaces folder beneath the component icon and choose
File | Add Interfaces. The Install Interfaces dialog displays.

2 You can perform the following operations in the dialog:

• Add an existing interface Choose from available interfaces as
follows:

a Select the module that defines the interface in the dropdown
menu.

b Highlight the interface name from the list of interfaces on the
right side of the dialog box.

c Click Add.

• Add and define a new interface Use these steps if the interface
you want to implement in the component does not exist. You can add
methods to the interface after exiting the dialog:

a Enter a name for the new interface, in the format
module::interface.

b Click Add New.

3 When you are done, click Install to close the dialog.

4 If you defined new interfaces, add methods to the interfaces as described
below.

❖ Removing interfaces

These steps remove an interface from the list of interfaces supported by a
component, but do not affect the IDL definition:

1 Expand the Interfaces folder beneath the component icon. The list of
interfaces supported by the component displays.

2 Highlight the interface to remove, and choose File | Remove.

CHAPTER 5 Defining Component Interfaces

Programmer’s Guide 79

Rules for removing interfaces:

• An EJB component must have a home and remote interface; you cannot
remove them. You can change them as described in “Changing the EJB
remote or home interface” on page 79.

• A non-EJB component must support at least one interface to serve as its
remote interface. You cannot remove the last interface supported by a
component; instead, change the remote interface as described in
“Changing the EJB remote or home interface” on page 79.

❖ Changing the EJB remote or home interface

Home and remote interfaces are used by EJB clients and components. To
change a component’s home or remote interface:

1 Expand the Interfaces folder below the component icon.

2 Highlight the Interfaces folder and choose File | Set Home interface if
changing the home interface, or choose File | Set Remote Interface if
changing the remote interface.

3 Enter an IDL name for the interface, specifying an IDL module hierarchy
and interface name to match the intended Java package hierarchy and
interface name. For example, if the Java class will be
foo.bar.MyBeanHome, enter foo::bar::MyBeanHome. EAServer Manager
creates specified modules and interfaces if they do not already exist.

Editing interfaces
You can edit method signatures graphically in the Method Properties dialog, or
by editing CORBA IDL directly. Some method properties such as the
transactional attribute and run-as mode properties are not defined in IDL. To
configure these settings, you must display the Method Properties window.

Interface and method name conventions
Sybase recommends that you begin interface names with a capital letter, and
method names with a lowercase letter.

Defining interfaces graphically

80 EAServer

❖ Editing methods in IDL

You define or edit method signatures by editing the CORBA IDL interface
definition directly. Use this procedure if you are comfortable with CORBA
IDL and prefer it to point-and-click interface editing.

1 Highlight the icon for the interface of interest.

2 Choose File | Edit IDL

3 The IDL interface definition displays in the IDL Editor window.

4 Make any changes, then choose File | Save. If the changes have introduced
syntax errors, EAServer Manager displays the error text in a dialog box.
Fix the errors, then try to save again.

5 When you have made all changes and saved them, choose File | Exit.

❖ Adding methods graphically

1 Highlight the icon for the interface of interest.

2 Choose File | New Method.

3 Enter a name for the method and click Create New Method.

4 The Method Properties dialog box displays. Use the controls on the
General tab to define the method parameters, return type, and exceptions
raised. See “Method properties” on page 81 for more information.

❖ Editing method properties

Use this procedure to display the method properties window, which provides a
point-and-click controls to edit the method’s IDL signature and also configures
settings that are not represented in IDL.

1 Highlight the icon for the interface of interest.

2 Highlight the icon for the method to be edited.

3 Choose File | Method Properties.

4 The Method Properties dialog box displays. See “Method properties” on
page 81 for more information.

❖ Removing methods graphically

1 Expand the icon for the interface of interest.

2 Highlight the icon for the method to be deleted.

3 Choose File | Delete Method.

CHAPTER 5 Defining Component Interfaces

Programmer’s Guide 81

Method properties
Method properties are organized on the following tabs:

• General Shows the method’s return type, parameters, and the exceptions
that can be thrown. Table 5-1 describes the fields.

Table 5-1: General method properties

Property Description Notes

Description Specifies a description of
what the method does. The
description can be up to 255
characters.

You can enter comments about the
method here.

Exceptions
Raised

Specifies the user-level
exceptions raised by this
method.

Enter exceptions in the form:

Module::ExceptionName
You can enter multiple
exceptions, separated by
commas.

User-level exceptions must be
defined in IDL before you can
specify that a method raises the
exception. See “User-defined
exceptions” on page 102 for more
information.

Read only Applies to entity components
that use component-managed
persistence (also called bean-
managed persistence).
Specifies whether the method
can change the instance state.

For best performance, set this
property for all entity component
business methods that do not modify
the instance state.

When this property is enabled, the
entity components ejbStore or
ctsStore method is not invoked after
the business method returns.

This property has no effect on entity
components that use automatic
persistence. The ejbStore or ctsStore
method is always called, but never
performs data storage.

Returns Specifies the return type of
the method. Select the return
type from the drop-down list
or enter the name of an IDL
or Java datatype into the
input field. See “Parameter
and return value datatypes”
on page 83 for more
information.

Method implementations cannot
return null values. If there are cases
where the method must return no
value, specify an IDL sequence type
as the return value, and implement
the method to return an empty
sequence to indicate the no-value
case.

Defining interfaces graphically

82 EAServer

• Transactions Allows you to configure transaction properties for the
method. The Transaction Attribute and Transaction Isolation Level
settings have the same meaning as the like-named settings for
components. See “Component properties: Transactions” on page 58.

• Permissions Applies to EJB 2.0 and 1.1 components only. The settings
allow you to restrict which users can invoke the method. See “Configuring
role references and method permissions” on page 137 for more
information.

• Run-As Mode Applies to EJB 1.0 components only. Allows you to
configure the user name and password for to be used for intercomponent
calls. These settings have the same meanings as the Run-As Mode
component settings. See “Component properties: Run-As Mode” on page
69.

• Advanced Allows you to manually edit method property settings in the
EAServer configuration repository. For advanced users.

Parameter properties
The New Parameter and Modify Parameter dialog boxes allow you to
configure the type and modality of each method parameter using the controls
described in Table 5-2.

Parameters Displays the name, type, and
mode of each parameter.

To add a parameter, click Add, and
complete the information described
in “Parameter properties” on page
82.

To modify a parameter, highlight the
parameter you want to modify, click
Modify, and complete the
information described in
“Parameter properties” on page 82.

To delete a parameter, highlight the
parameter you want to delete, and
click Delete.

Property Description Notes

CHAPTER 5 Defining Component Interfaces

Programmer’s Guide 83

Table 5-2: Parameter properties

Parameter and return value datatypes
For method parameters and return values, you can choose predefined types
from the drop-down list or enter a Java or IDL datatype name by typing it in
the input field.

Predefined datatypes The following table lists the predefined EAServer Manager datatypes and their
IDL equivalents. These types display when you change the datatype of a
parameter or change the method’s return type.

Property Description Notes

Parameter
Number

Displays the parameter number No input is required.

Name Specifies the name of the
parameter

A name is required.

Mode Specifies how values are
passed for the parameter.

Supported modes are as follows:

• in – Input only. No new value
is returned when the method
completes.

• inout – Input and output.
Input values are not ignored,
and output values are
returned to caller.

• out – Output only. Input
values will be ignored; output
values are returned to caller.

Type Specifies the datatype of the
parameter.

Select a datatype from the drop-
down list or type the name of an
IDL or Java datatype in the input
field. See “Parameter and return
value datatypes” on page 83 for
more information.

Description Describes how the parameter is
to be used.

Optional. You can use this field
to describe how the parameter is
to be used.

Defining interfaces graphically

84 EAServer

Table 5-3: Predefined EAServer IDL datatypes

Using IDL and Java
datatypes

In addition to the predefined types listed in “Predefined datatypes” on page 83,
you can also apply IDL and Java datatypes to parameters and return values by
typing the name of an IDL or Java datatype.

IDL datatypes You can define your own datatypes and use them when
defining method signatures. “Defining modules, interfaces, and types in IDL”
on page 89 discusses IDL in more detail.

EAServer
Manager
display
datatype CORBA IDL type Description

boolean boolean One bit of binary data; a value that
is either true or false

integer<16> short A 16-bit integer

integer<32> long A 32-bit integer

integer<64> long long A 64-bit integer

float float Single-precision IEEE floating
point numbers

double double Double-precision IEEE floating
point numbers

string string A sequence of characters of any
length

binary BCD::Binary Sequence of bytes

decimal BCD::Decimal Fixed-point decimal

money BCD::Money Same as decimal

date MJD::Date A date including year, month, day,
hour, minute, second, and
millisecond values

time MJD::Time Holds the time of day, including
hours, minutes, seconds,
milliseconds

timestamp MJD::Timestamp Holds the same data as date, plus
a nanoseconds value

ResultSet TabularResults::ResultSet A single table of relational
database rows

ResultSets TabularResults::ResultSets A sequence of 0 or more
ResultSet objects

CHAPTER 5 Defining Component Interfaces

Programmer’s Guide 85

To specify an IDL type name in the Method Properties dialog box, simply enter
the type name in the Returns or Parameter Datatype field—for example,
MyModule::MyType. The IDL module must be present in the EAServer IDL
repository, and the module must contain a declaration for that type name.

Java datatypes You can specify Java datatypes as input parameters or return
types. You cannot specify Java datatypes for parameters that use the inout or
output modes. “Java class names used as IDL datatypes” on page 101 describes
which interfaces and classes can be used.

To specify a Java datatype, simply type the full class or interface name in the
Returns or Parameter Datatype field—for example, java.util.Properties.

Java datatypes and interoperability
If a method is defined using a Java datatype, only Java components can
implement the method and only Java clients can invoke the method.

Importing interfaces from compiled Java files
EAServer Manager provides a Java import feature that creates a component
definition by reading method definitions from a compiled Java class or
interface file (to import a JavaBeans component, you must specify the class
that implements the JavaBeans component). The import process creates a
corresponding IDL interface in the EAServer interface repository. This feature
is primarily used to adapt existing Java classes to be run as Java components
within EAServer. However, you can import a Java interface to define a
component of any type.

Coding classes, interfaces, and JavaBeans for import
Before using the importer for the first time, you should read this section to
understand how Java methods are mapped to EAServer component methods.

Determining eligible
methods

Each method in a class or interface (including those inherited from a base class
or interface) is inspected to see if they use allowable parameter and return
types. Suitable methods are added to the component’s IDL interface. EAServer
Manager displays warning dialog boxes describing any methods that are not
imported. The importer accepts methods that use the following datatypes:

Importing interfaces from compiled Java files

86 EAServer

• Java equivalents for the predefined EAServer datatypes “Choose
implementation datatypes” on page 189 describes the Java equivalents for
the predefined EAServer datatypes. If your component uses the IDL/Java
datatype mappings, the importer sets the Component Type field to
Java/IDL. Otherwise, the Component Type field is set to Java/JDBC. If
you import a class that ran as an EAServer version 1.1 component, it will
be assigned the Java/JDBC component type.

An inout parameter must use the holder classes as described in “Choose
implementation datatypes” on page 189.

• User-defined classes With restrictions, user-defined classes are
allowed as parameters or return types. The importer creates an IDL
definition to match the class. User-defined classes must contain only fields
(no methods). Fields may use the Java equivalents for predefined
EAServer datatypes, as described above.

For an inout parameter, the Java method definition must use a holder class
that you have created, as described in “Holders for user-defined classes
and arrays” on page 86.

• Single-dimension arrays Single-dimension arrays are allowed as
parameters or return types. The base type can be any Java equivalent for
the predefined EAServer types or a user-defined class. (User-defined
classes are subject to the restrictions noted above.)

For an inout parameter, the Java method definition must use a holder class
that you have created as described in “Holders for user-defined classes
and arrays” on page 86.

The method can throw any exception, but only exceptions that extend
org.omg.CORBA.UserException are added to the IDL method’s raises clause.

Holders for user-defined classes and arrays For an inout parameter
declared as a user-defined class or a single-dimension array, the Java method
definition must use a holder class that you have created. For a user-defined
class, the template for the holder class is as follows:

package comp-package;

class TypeHolder {
Type value;
// Default constructor:
TypeHolder();
// Initial-value constructor:
TypeHolder(Type value);

}

CHAPTER 5 Defining Component Interfaces

Programmer’s Guide 87

where

• comp-package is the same package that contains the class or interface that
you are importing.

• Type is the user-defined class name.

For an array, the template for the holder class is as follows:

package comp-package;

class TypenameHolder {
BaseType value;
// Default constructor:
TypenameHolder();
// Initial-value constructor:
TypnameHolder(BaseType[] value);

}

where:

• comp-package is the same package that contains the class or interface that
you are importing.

• Typename is a legal Java identifier. The importer will create an IDL
typedef statement for the array type using this declaration.

• BaseType is the base type for the array.

Importing Java
interfaces

Methods to be imported from a Java interface must adhere to the restrictions
described in “Determining eligible methods” on page 85. In addition, the
interface cannot contain any fields.

You must specify a class that implements the interface before you can run the
component. Specify the implementation class name in the Component
Properties window (see “Component properties: General” on page 54). Make
sure that the class has a default constructor (that is, a constructor with no
arguments). EAServer calls the default constructor to create new component
instances.

Importing Java
classes

Methods to be imported from a Java class must adhere to the restrictions
described in “Determining eligible methods” on page 85. In addition, the class
must have a constructor method with zero parameters. Other constructors are
not called by EAServer.

Note Classes that implement the ServerBean interface can be imported. The
ServerBean methods are not added to the component’s IDL interface.

Importing interfaces from compiled Java files

88 EAServer

Importing JavaBeans
components

To import method definitions from a JavaBeans component, you choose the
Java Class option on the import screen, then specify the name of the class that
implements the component.

Methods to be imported from a JavaBeans component must adhere to the
restrictions described in “Determining eligible methods” on page 85. In
addition, the class must have a constructor method with zero parameters. Other
constructors are not imported.

The add and remove methods for the JavaBeans event listeners are not
imported.

Importing a Java class or interface in EAServer Manager

❖ Importing a Java class or interface in EAServer Manager

1 If necessary, create the EAServer package that will contain the component.
See “Creating a new package” on page 42 for details.

2 Specify the package to install the component in as follows:

a Double-click the Packages folder to expand it.

b Highlight the package to which the component will be added.

3 Choose File | New Component from the menu.

4 In the Component Wizard dialog box, select Import from Java File, and
click Next.

5 Verify that the displayed importer CLASSPATH contains the JAR files
and directories required to instantiate the bean’s classes, specifically:

• Verify that the code base under which the class files are deployed is
included.

• If the classes are in a JAR file, verify that the full path to the JAR file
is included.

• If the class definitions require other JAR files or directories not listed,
list them as well.

If necessary, use the Add, Modify, Delete, Move Up, and Move Down
buttons in the Component Wizard to modify the CLASSPATH. The
displayed CLASSPATH affects only this importer session, not the
EAServer process.

6 Enter the component name in the Import Java Class File dialog box.

CHAPTER 5 Defining Component Interfaces

Programmer’s Guide 89

7 Choose the type of file to be imported:

• Java Class See “Importing Java classes” on page 87.

• Java Interface See “Importing Java interfaces” on page 87.

8 If importing a Java interface, choose the type of component to be defined
in the drop-down list.

9 Browse for the Java class file that contains the class or interface that is
being imported.

The importer will read the specified file, define an IDL interface as described
below, and define a component that implements the IDL interface.

Importing interfaces from registered ActiveX
components

EAServer Manager can import method signatures from ActiveX DLLs or type
library files. This feature allows you to adapt a nonvisual ActiveX automation
server as an EAServer component.

For more information on this feature, see “Importing ActiveX components” on
page 332.

Defining modules, interfaces, and types in IDL
EAServer stores all component interfaces in Interface Definition Language
(IDL) modules. In EAServer Manager, the IDL folder displays all modules
available in EAServer’s interface repository.

Learning IDL
IDL is defined by the Object Management Group as a standard language for
defining component interfaces.

Defining modules, interfaces, and types in IDL

90 EAServer

Chapter 3, “OMG IDL Syntax and Semantics,” in the CORBA V2.3
Specification defines IDL. Printable versions of this document can be
downloaded from the following URL:

http://www.omg.org/corba/index.html

Creating and editing IDL modules, interfaces, and types
EAServer Manager displays IDL modules as folders beneath the top-level IDL
folder. Modules can be nested, that is, a module may be defined within another
module.

❖ Navigating nested IDL modules

Follow this procedure to view the IDL entities defined within a module.

1 Expand the top-level IDL folder.

2 Each icon in the IDL folder represents a top-level IDL module. To
navigate to a nested module, click the + sign next to the parent module’s
icon, or double-click the parent module’s icon.

3 In the left pane, highlight the module of interest. EAServer Manager
display the types and modules defined within the highlighted module in
the right pane.

❖ Defining new IDL modules

1 If defining a new top-level module, highlight the IDL folder.

If defining a nested module, follow the steps in “Navigating nested IDL
modules” on page 90 to highlight the parent module.

2 Choose File | New IDL Module. Enter the module name and click Create
New Nested Module IDL. Module names must begin with a letter.

3 EAServer Manager displays the empty module definition in the IDL
Editor window. Optionally make the following changes:

a Edit the HTML documentation comment and add a description of the
module.

b If the module will contain datatypes and interfaces (and not just
nested modules), optionally specify the Java package for stubs as
described by “Specifying Java package mappings for IDL modules”
on page 91.

CHAPTER 5 Defining Component Interfaces

Programmer’s Guide 91

4 When done, choose File | Save, then File | Exit to close the IDL Editor
window.

❖ Specifying Java package mappings for IDL modules

• If an IDL module contains datatypes and interfaces (and not just nested
modules), you can specify the Java package to be used for generated Java
stubs. Stubs for each type of Java client must be in different packages, or
deployed under different code bases.

If you do not specify a Java package mapping, stubs are generated to a
package that matches the IDL module name. For example, stubs for
module foo::bar are generated in Java package foo.bar.

Change the Java package mapping for a module by editing one of the
following files:

• Repository/IDL/ejb.props specifies the Java packages for EJB stubs.

• Repository/IDL/java.props specifies the Java packages for
Java/CORBA stubs.

• Repository/IDL/jdbc.props specifies the Java packages for EAServer
1.1 stubs.

To change the default Java package, create or edit an entry in the
appropriate file with this format:

idl-module=dotty-package

Where:

• idl-module is the IDL module name, for example,
com::sybase::test::MyModule

• dotty-package is the dot-format Java package name, for example,
com.sybase.test.corba.

For compatibility with IDL created in previous releases, EAServer also
allows you to specify the Java package in a doc comment directives above
the module declaration. These directives are translated to entries in the
java.props, ejb.props, or jdbc.props files. You can enter multiple directives
to specify packages for stubs of different types. Each package directive has
the form:

/*
** <!-- typePackage: dotty-package -->
*/

Defining modules, interfaces, and types in IDL

92 EAServer

Where dotty-package is the dot-format Java package name and type is one
of:

• java, if specifying the package for CORBA stubs.

• ejb, if specifying the package for EJB stubs.

• jdbc, if specifying the package for Jaguar 1.1 client stubs.

You can also create or change Java package mappings when generating
stubs for the IDL module in EAServer Manager. Highlight the IDL module
and choose File | Generate Stubs. Choose the stub type and enter a
different Java package name in the Java Package field.

❖ Creating IDL types, exceptions, and interfaces

Follow this procedure to define new datatypes and exceptions in a module. You
can also define new component interfaces with this procedure, but it is easier
to define interfaces using the component’s Interfaces folder (see “Defining
interfaces graphically” on page 77).

1 Navigate to and highlight the module where the entity is being created, as
described in “Navigating nested IDL modules” on page 90.

2 Choose File | New IDL Entity.

3 In the New IDL Entity dialog box, enter a name for the type or interface,
then choose the type of entity being created. Click Create New IDL Entity.

EAServer Manager displays a template for the new IDL definition in the
IDL Editor window.

4 Finish the definition, then choose File | Save and File | Exit to close the
IDL Editor window.

EAServer allows forward IDL references
You can create new IDL types that refer to other IDL types that do not yet exist;
among other benefits, this feature allows you to create mutually recursive
interface definitions. However, you must be sure that all references are
resolved before you can generate stubs and skeletons. When generating stubs
and skeletons, EAServer Manager will report errors for any unresolved type
references.

❖ Editing IDL types, exceptions, and interfaces

To edit or delete a type, exception, or interface:

CHAPTER 5 Defining Component Interfaces

Programmer’s Guide 93

1 Navigate to and highlight the module where the entity is being created, as
described in “Navigating nested IDL modules” on page 90.

2 The module’s types, exceptions, and interfaces display in the right pane of
the EAServer Manager window.

3 To edit an item, highlight it and choose File | Edit Entity IDL. Make your
changes in the IDL editor window, save them, and close the window.

4 To delete an item, highlight its icon and choose File | Delete.

Unreferenced IDL definitions
The interfaces, types and exceptions associated with a component are not
deleted when you delete the component from EAServer Manager unless you
delete the package or application where it is installed and specify full deletion.
Unused definitions cause no harm. When generating Java stubs, stub classes
are generated for all types in a module, regardless of whether the component
references them. You can delete unreferenced IDL types to prevent the
generation of unnecessary Java stub classes. Verify that no other component
references an IDL definition before deleting it.

When deleting packages, you can delete everything associated with the
package, including IDL definitions, by choosing full deletion as described in
“Modifying packages” on page 45.

Using the IDL editor window
The IDL editor window is displayed when you create a new module or
interface. You can also display the source code for datatypes, exceptions, and
interfaces by right-clicking on their icons and choosing Edit IDL from the
popup menu.

The File menu contains the following options:

Option Description

Open Allows you to replace the editor’s current contents with the
contents of an operating system file.

Save Saves your changes in the EAServer IDL repository. When you
save to the repository, EAServer Manager checks the syntax of the
module or declaration and displays any syntax errors.

Defining modules, interfaces, and types in IDL

94 EAServer

The current IDL editor does not have menu commands for copying, cutting,
and pasting text. However, you can use the standard keyboard commands for
your platform as described below:

Creating and editing interfaces
Interfaces can be added in EAServer Manager, creating a blank interface
declaration, or you can declare the interface yourself by editing the module’s
IDL definition.

Choosing an interface name
Interface names are restricted as follows:

• Interfaces within a module must have unique names, irrespective of case.
That is, you cannot define MyInterface and Myinterface in the same module.

• The interface cannot have the same name as the module that contains it.

Sybase recommends that you begin interface names with a capital letter, and
operation names with a lowercase letter.

Supported preprocessor directives
No IDL preprocessor directives other than #include are supported.

Save As Allows you to save the contents of the editor window into a
specified file. This option can be used to export IDL definitions of
EAServer interfaces for use with other vendor’s CORBA ORB
implementations.

Exit Closes the editor window without saving.

Platform What you do

Windows Use the mouse to select text. Use Control+C to copy,
Control+V to paste, and Control+X to cut.

UNIX (all) Use the mouse to select text. Key mappings are defined by
your X-Windows display configuration. Most workstation
keyboards have Copy, Cut, and Paste keys that work as
labeled with the manufacturer’s default X-display
configuration. See your X-Windows system documentation
for more information.

Option Description

CHAPTER 5 Defining Component Interfaces

Programmer’s Guide 95

❖ Creating new interfaces in EAServer Manager

1 Highlight the module’s icon and choose File | New IDL Entity.

2 Type the name of the new interface, choose Interface in the dropdown list
of IDL entity types, and click Ok.

3 Click Ok.

4 EAServer Manager displays a new, blank interface in the IDL Editor
window. Edit the declaration if needed.

5 When done, choose File | Save, then File | Exit to close the IDL Editor
window.

❖ Editing an existing interface

1 Select the interface’s icon and choose File | Edit IDL.

2 EAServer Manager extracts the interface definition from the module and
displays it in the IDL editor window.

3 Edit the declaration as needed.

4 When done, choose File | Save, then File | Exit to close the IDL Editor
window.

IDL interface
declarations

Interfaces are declared as shown below:

interface InterfaceName [: BaseInterface1,
BaseInterface2, ...] {

operations
};

where:

• InterfaceName is the name of the interface.

• operations is a zero or more of IDL operation declarations. You can enter
operations directly as IDL, or use EAServer Manager to define them
graphically (see “Operation declarations” on page 97).

• BaseInterface, BaseInterface2, and so forth form an optional list of
existing interfaces from which the new interface inherits definitions. If a
new interface inherits from other existing interfaces, the existing
interfaces that are inherited from are referred to as base interfaces, and the
new interface is referred to as a derived interface.

For example, this interface, StockComponent, inherits from no other interface:

interface StockComponent {
};

Defining modules, interfaces, and types in IDL

96 EAServer

This interface, C, inherits from interfaces A and B:

interface C : A, B {
}

Interfaces that inherit definitions from other interfaces are subject to the
following constraints:

• Operations and attributes cannot be redefined in the new interface.

• Operation and attribute names defined in base interfaces must be unique.
For example, if a method is defined in both interface A and interface B, you
cannot define a new interface that inherits from both B and A.

• Exceptions, constants, and types from a base interface can be redefined in
the derived interface.

• References to type names, exception names, and constant names that are
used in multiple derived interfaces must be made unambiguous by
prefixing references with the name of the interface that contains the
definition of interest. For example, if the constant MAX is defined in both
A and B, then A::MAX refers to the definition in A, and B::MAX refers to the
definition in B.

The sections below describe how to define operations and attributes for the
interface.

Interface stub
generation directives

You can embed specially formatted comments in IDL to control the generation
of Java stubs for IDL interfaces and structures. Directives must appear in a
block comment located immediately before the IDL interface or struct
declaration.

Imported class name This directive specifies that a structure or interface
was imported from a Java class, and that a new version of the imported class
must not be generated when stubs are generated. This directive is most
commonly used for EJB home and remote interfaces and EJB primary keys that
were defined by importing EJB classes or EJB-JAR files.

The format is:

** <!-- imported classname -->

Where classname is the Java class name, in dot notation. For example,
foo.bar.MyBeanHome or foo.bar.MyBeanPrimaryKey.

Is home interface This directive identifies an interface as a home interface
used by EJB clients and components. If you specify a home interface for a
component as described in “Changing the EJB remote or home interface” on
page 79, EAServer Manager adds this directive. The format is:

CHAPTER 5 Defining Component Interfaces

Programmer’s Guide 97

** <!-- home -->

Finder method return type Applies to multi-object finder methods in an
EJB entity bean’s home interface. If a finder method’s Java form must return
java.util.Enumeration, add a doc comment of this form above the IDL finder
method declaration:

/*
** <!-- java.util.Enumeration -->
*/
::MyModule::MyRemoteList findByName(in string name);

See “Defining home interface methods” on page 131 for more information on
EJB finder methods.

Operation
declarations

Operations in an IDL interface become component methods when the interface
is assigned to a component. You can define operations directly in IDL, or
graphically as described in “Defining interfaces graphically” on page 77. If
you define operations in IDL, follow the structure described here.

Operations are declared as follows:

returnType opName
(
[... parameterList ...]
)
[raises (... exceptionList ...)] ;

where:

• returnType is either a valid IDL datatype or void to indicate that the
operation does not return a value. “Datatypes for parameters and return
values” on page 99 discusses datatypes in detail.

• opName is the name of the operation. Sybase recommends operation
names begin with a lowercase letter. Names in the same interface must be
unique with respect to case, and capitalization of a name must be
consistent wherever it is used.

IDL operation names cannot be overloaded (that is, redeclared with the
same return type and different parameter lists). However, you can define
IDL operations that map to overloaded C++ or Java methods. To do so,
create operation names by appending two underscores and a unique suffix
to the method name that will be overloaded. EAServer strips the suffix
when generating C++ or Java interface definitions. For example, consider
the following IDL:

void ov1__double(in double d);
void ov1__string(in long l);

Defining modules, interfaces, and types in IDL

98 EAServer

When mapped to C++ or Java, these operations translate to the following
overloaded methods:

void ov1(double d);
void ov1(long l);

• parameterList is an optional parameter list enclosed in parentheses. The
list (but not the parentheses) can be omitted to indicate that the operation
takes no parameters. Otherwise, add datatypes and parameter names as
shown below:

void myMethod
(
qual1 type1 param1,
qual2 type2 param2,
...
);

where:

• qual1, qual2, and so forth are one of the argument modes in, inout, or
out. Use in for parameters that are input-only; no new value is returned
when the operation completes. Use inout or out if the operation returns
new values for the parameter. An inout parameter’s input value is
meaningful; an out parameter’s input value is not.

• type1, type2, and so forth are valid IDL type names (other than the
CORBA::Any type). “Datatypes for parameters and return values” on
page 99 discusses datatypes in detail.

• param1, param2, and so forth are parameter names.

• exceptionList is an optional list of user-defined exceptions. If the operation
can throw user-defined exceptions, add a raises clause with a list of the
IDL user-defined exception names that the operation can throw, as shown
below:

void myMethod (in int n)
raises (Exception1, Exception2, ...);

If the operation can throw only CORBA standard exceptions, omit the
raises clause. For more information, see “User-defined exceptions” on
page 102.

CHAPTER 5 Defining Component Interfaces

Programmer’s Guide 99

Attribute declarations Attributes allow you to associate a value with an interface. IDL attributes are
similar in concept to structure fields in languages such as C. However, when
mapped to a programming language, attribute values can typically be accessed
only by generated functions that allow you to set and retrieve the attribute’s
value.

Note Attributes are not supported by ActiveX components and clients.

Attributes are declared as shown below:

[readonly] attribute TypeSpec name;

where

• readonly is an optional keyword specifying that the attribute can be
retrieved but cannot be set.

• TypeSpec is the name of a standard or user-defined type. “Datatypes for
parameters and return values” on page 99 describes datatypes in detail.

• name is the attribute name.

In C++ and Java, a read-only attribute maps to a method with the same name
that returns the attribute type. A writable attribute maps to a pair of overloaded
methods with the same name as the attribute. For example, consider the
following IDL declarations:

readonly attribute long days; // readonly
attribute long months; // writable

In a C++ or Java implementation of the interface, these methods must be
declared:

long days();
long months();
void months(long new_months);

Note Currently, attributes do not do not display with a component’s methods
in EAServer Manager. Use the IDL editor to view attribute definitions.

Datatypes for
parameters and return
values

To define parameter and return value datatypes, you can use EAServer’s
predefined IDL datatypes or your own user-defined IDL types. In addition,
EAServer extends IDL to allow the use of Java class names. The sections
below describe each option in detail.

• Predefined IDL datatypes

Defining modules, interfaces, and types in IDL

100 EAServer

• User-defined IDL datatypes

• Java class names used as IDL datatypes

Predefined IDL datatypes EAServer ships with predefined datatypes for use
in declaring parameter and return value datatypes. Predefined datatypes
include all CORBA base types (except for the CORBA::Any type) and
equivalents for database result sets and other commonly used database column
types such as date, time, and timestamp.

EAServer Manager’s Method Properties dialog box displays the predefined
datatypes in the drop-down lists for Parameter and Return types. “Predefined
datatypes” on page 83 lists EAServer’s predefined IDL datatypes, the
equivalent display names, and a description of each.

For descriptions of the datatypes defined in the BCD, MJD, or TabularResults
modules, see the documentation in the html/ir subdirectory of your EAServer
installation. (Or, load the main EAServer HTML page in your Web browser,
and click the Interface Repository link). If you use types from these modules,
add an include directive for the appropriate module at the top of the module that
defines your interface. For example:

#include <TabularResults.idl>

Internally, TabularResults.idl includes both BCD.idl and MJD.idl. You need
not include BCD.idl and MJD.idl explicitly if you have already included
TabularResults.idl.

User-defined IDL datatypes In addition to EAServer’s predefined
datatypes, you can define your own datatypes in IDL and use them to declare
return types and parameters.

All IDL type definitions are allowed, with these exceptions:

• Arrays are not yet supported. You can use sequences instead.

• The CORBA::Any type is not supported.

• constant declarations are supported.

User-defined types must exist in the EAServer IDL repository before you can
use them in interface declarations. For information on defining datatypes, see
Chapter 3, “OMG IDL Syntax and Semantics,” in the CORBA 2.3
specification.

In some cases, you must use the full scope name. In a parameter list, use a
type’s full scope name if any of the following is true:

• The type is declared in another interface.

CHAPTER 5 Defining Component Interfaces

Programmer’s Guide 101

• The type is declared in another module.

• The type has the same local-scope name as a type declared in the interface
or module that contains the operation.

For example, consider the IDL:

module MyMod {
typedef string MyType;
interface MyIntf {

typedef double MyOtherType;
....

};
};

With these declarations, MyMod::MyType is the full scope name for MyType and
MyMod::MyIntf::MyOtherType is the full scope name for MyOtherType.

Java class names used as IDL datatypes EAServer’s IDL compiler
extends IDL to allow Java class names as parameter and return types for
methods. This feature provides functionality that is similar to the proposed
Objects by Value CORBA extension (OMG TC Document orbos/98-01-18,
Objects By Value). Specifically, you can pass a copy of an object rather than
passing an interface pointer that refers back to the original object.

You can specify any Java class name for a method input parameter or return
type as long as:

• The class containing the type name is in the CLASSPATH environment
variable both when the interface is defined and when the server is run.

• At run time, you specify a class instance that is serializable. That is, a class
must implement the java.io.Serializable interface or inherit from another
class that does so, and an interface must extend the java.io.Serializable
interface. If the instance is not serializable, the call fails with a
CORBA::MARSHALL exception.

Note the following restrictions for methods that are defined using Java
datatypes rather than IDL or predefined EAServer Manager types:

• Only Java components can implement the method and only Java clients
can invoke the method.

• Only in parameters and return values can be declared with Java class
names.

Defining modules, interfaces, and types in IDL

102 EAServer

• Java datatypes are not marshaled as efficiently as an equivalent IDL
datatype. Marshaling is the process of reading and writing parameters and
return values from the network. More bytes are required to marshal values
defined with a Java datatype than to marshal an equivalent IDL type.
Consequently, invocations of a method defined with Java datatypes are
slower than invocations of an equivalent method defined with IDL
datatypes.

• IDL that contains Java class names may not be portable to other CORBA
client ORB implementations unless they offer this extension to standard
CORBA IDL.

User-defined
exceptions

Exceptions can be declared in a module or interface. Exceptions are declared
as follows:

exception name {
... memberList ...

};

where name is the name of the exception and memberList is an optional list of
member field declarations. This list has the form:

exception MyException {
type1 member1;
type2 member2;
...

};

Where type1, type2, and so forth are IDL type names (other than CORBA::Any)
and member1, member2, and so forth are the names of the member fields.

Once you have defined an exception, you can use it in the raises clause when
defining operations for an interface, as described in “Operation declarations”
on page 97.

Note User-defined exceptions are not supported by ActiveX components and
clients.

Adding IDL documentation comments
EAServer Manager creates HTML documentation files for each IDL module
in the html/ir subdirectory.

CHAPTER 5 Defining Component Interfaces

Programmer’s Guide 103

At a minimum, the HTML file lists the datatypes and interfaces defined in the
module. You can embed additional documentation text for a datatype,
interface, or method in a C-style comment placed immediately above the
declaration. EAServer ignores C++-style line-end comments when generating
HTML documentation. That is, text within comments that use double slashes,
//, to delineate the comment text is ignored.

Within the C-style comment, add text describing the item to the comment, as
in the example below. If desired, you can use HTML codes to format the text.
But do not use heading tags such as <H1>, <H2>, and so forth, because they
conflict with tags that are already used to structure the sections of the generated
output.

The IDL fragment below contains an example of a documentation comment:

/**
** Example method to demonstrate user-defined
** exceptions.
** <P>Pass <I>yes_no</I> as <code>true</code>
** if you want an exception thrown.
** <P>Returns input value of <I>yes_no</I>
** parameter.
*/
boolean throwException
(
in boolean yes_no
)
raises
(
myException
);

You need not use the spacing conventions illustrated in this example. EAServer
Manager treats any C-style comment as an IDL documentation comment.
However, when you save in the IDL Editor window, EAServer Manager
reformats all C-style comments to match this example’s spacing convention.

Stub generation directives in IDL comments
You can embed directives in IDL comments to affect the Java stubs generated
for a module or interface. See “Interface stub generation directives” on page
96 for more information.

Defining modules, interfaces, and types in IDL

104 EAServer

Refreshing the HTML documentation
HTML documentation is not generated automatically. You must use EAServer
Manager to create or update documentation for new or changed IDL modules.
In EAServer Manager, highlight a component, package, server, or module, then
select File | Generate HTML. The top level index.html file is updated only
when you generate HTML for a server.

To update documentation for all IDL modules in the EAServer interface
repository, generate HTML for any server. To selectively update
documentation for interfaces used by components, generate HTML for a
component or package; EAServer Manager will generate documentation for all
IDL modules used in the component or components within the package. To
update only the documentation for a single module, highlight that module then
select File | Generate HTML.

Viewing HTML documentation for IDL modules
EAServer creates HTML documentation for all imported IDL modules in the
style of Sun’s javadoc tool. At a minimum, this documentation lists the
datatypes and interfaces defined in the module, including structure fields, array
lengths, parameter names and datatypes, exceptions thrown by methods, and so
forth. When editing IDL, you can also create specially-formatted comments
that provide descriptions of entities declared in the IDL file, as described in
“Adding IDL documentation comments” on page 102.

Module documentation can be viewed in a Web browser by connecting to your
server with this URL:

http://yourhost:yourport/ir/

where yourhost is the host name and yourport is the HTTP port number.

Importing existing IDL modules
You can import interfaces defined in CORBA IDL into the EAServer interface
repository. There are two ways to import a module:

• Organize the modules so that one module is declared per file, and each file
has the same name as the module it declares.

CHAPTER 5 Defining Component Interfaces

Programmer’s Guide 105

For example, module MyModule should be declared in the file
MyModule.idl. Copy the files to the EAServer Repository subdirectory
and restart the server. If the file contains no syntax errors, its declarations
will be added to the EAServer Manager IDL folder. If the file does contain
syntax errors, the server will log the errors during start-up and the
module’s declarations will not be added to the IDL repository.

• Create a new module in EAServer Manager, as described in “Creating and
editing IDL modules, interfaces, and types” on page 90.

While the new module declaration is displayed in EAServer’s IDL editor,
open the module to be imported in another text editor. Copy and paste the
text of the module to be imported into the EAServer IDL editor.

To deploy IDL types and interfaces that are not declared within a module, place
the IDL file that defines them in the EAServer Repository subdirectory and
restart EAServer if it is running.

You can repeat the procedures above to redefine existing IDL definitions.

Defining modules, interfaces, and types in IDL

106 EAServer

P A R T 2 Enterprise JavaBeans

This part explains how to create and/or deploy Enterprise
JavaBeans components and clients in EAServer.

Programmer’s Guide 109

C H A P T E R 6 Enterprise JavaBeans Overview

EJB 2.0 support is new in EAServer version 4.0. EJB 1.1 and 1.0
components are supported for backward compatibility with earlier
EAServer versions and other EJB servers.

For more details on the EJB architecture, see the EJB specifications from
Sun Microsystems at http://java.sun.com/products/ejb/.

About Enterprise JavaBeans components
The Enterprise JavaBeans (EJB) technology defines a model for the
development and deployment of reusable Java server components, called
EJB components.

An EJB component is a nonvisual server component with methods that
typically provide business logic in distributed applications. A remote
client, called an EJB client, can invoke these methods, which typically
results in the updating of a database. Since EAServer uses CORBA as the
basis for the EJB component support, EJB components running in
EAServer can be called by any other type of EAServer client or
component, and even CORBA clients using ORBs from other vendors that
are compatible with CORBA 2.3.

Topic Page
About Enterprise JavaBeans components 109

EAServer EJB support 115

EJB 2.0 differences from 1.1 117

EJB 1.1 differences from EJB 1.0 119

About Enterprise JavaBeans components

110 EAServer

The EJB architecture looks like this:

EJB server The EJB server contains the EJB container, which provides the
services required by the EJB component. EAServer is an EJB server.

EJB client An EJB client usually provides the user-interface logic on a client
machine. The EJB client makes calls to remote EJB components on a server
and needs to know how to find the EJB server and how to interact with the EJB
components. An EJB component can act as a EJB client by calling methods in
another EJB component.

An EJB client does not communicate directly with an EJB component. The
container provides proxy objects that implement the components home and
remote interfaces. The component’s remote interface defines the business
methods that can be called by the client. The client calls the home interface
methods to create and destroy proxies for the remote interface.

Beginning in EJB version 2.0, clients can also execute EJB components using
local interfaces if the client and component execute in the same virtual
machine. Using the local interface can improve performance.

EJB container The EJB specification defines a container as the environment
in which one or more EJB components execute. The container provides the
infrastructure required to run distributed components, allowing client and
component developers to focus on programming business logic, and not
system-level code. In EAServer, the container encapsulates:

• The client runtime and generated stub classes, which allow clients to
execute components on a remote server as if they were local objects.

CHAPTER 6 Enterprise JavaBeans Overview

Programmer’s Guide 111

• The naming service, which allows clients to instantiate components by
name, and components to obtain resources such as database connections
by name.

• The EAServer component dispatcher, which executes the component’s
implementation class and provides services such as transaction
management, database connection pooling, and instance lifecycle
management.

EJB component implementation The Java class that runs in the server
implements the bean’s business logic. The class must implement the remote
interface methods and additional methods for lifecycle management.

EJB component types
You can implement three types of EJB component, each for a different purpose:

• Stateful session beans

• Stateless session beans

• Entity beans

Stateful session beans

A stateful session bean manages complex processes or tasks that require the
accumulation of data, such as adding items to a Web catalog’s shopping cart.
Stateful session beans have the following characteristics:

• They manage tasks that require more than one method call to complete,
but are relatively short-lived. For example, a session bean might manage
the process of making an airline reservation.

• They typically store session state information in class instance data, and
do not survive server crashes unless they are run in a cluster that has
persistent storage enabled for the component.

• There is an affinity between each instance and one client from the time the
client creates the instance until it is destroyed by the client or by the server
in response to an expired instance timeout limit.

For example, if you create a session bean on a Web server that tracks a user’s
path through the site, the session bean is destroyed when the user leaves the site
or idles beyond a specified time

About Enterprise JavaBeans components

112 EAServer

Stateless session beans

A stateless session bean manages tasks that do not require the keeping of client
session data between method calls. Stateless session beans have the following
characteristics:

• Method invocations do not depend on data stored by previous method
invocations.

• There is no affinity between a component instance and a particular client.
Each call to a client’s proxy may invoke a different instance.

• From the client’s perspective, different instances of the same component
are identical.

Unlike stateful session beans, stateless session beans can be pooled by the
server, improving overall application performance.

Entity beans

An entity bean models a business concept that is a real-world object. For
example, an entity bean might represent a scheduled airplane flight, a seat on
the airplane, or a passenger’s frequent-flyer account. Entity beans have the
following characteristics:

• Each instance represents a row in a persistent database relation, such as a
table, view, or the results of a complex query.

• The bean has a primary key that corresponds to the database relation’s key,
and is represented by a Java datatype or class.

EJB transaction attribute values
Each EJB component has a transaction attribute that determines how instances
of the component participate in transactions. In EAServer, you set the
transaction attribute in the Transaction tab of the Component Properties dialog
box.

When you design an EJB component, you must decide how the bean will
manage transaction demarcation: either programmatically in the business
methods, or whether the transaction demarcation will be managed by the
container based on the value of the transaction attribute in the deployment
descriptor.

CHAPTER 6 Enterprise JavaBeans Overview

Programmer’s Guide 113

A session bean can use either bean-managed transaction demarcation or with
container-managed transaction demarcation; you cannot create a session bean
where some methods use container-managed demarcation and others use bean-
managed demarcation. An entity bean must use container-managed transaction
demarcation.

Table 6-1 lists the transaction attribute values. Requires, Supports, Requires
New, or Mandatory are the values that specify container-managed transaction
demarcation. You can set the Transaction Attribute for the component and for
individual methods in the home and remote interfaces. Values set at the method
level override the component setting.

Table 6-1: Transaction attribute values

Attribute Description

Not Supported (The component-level default.) The EJB component's methods
never execute as part of a transaction. If the EJB component is
activated by a client that has a pending transaction, the EJB
component’s work is performed outside the existing
transaction.

Since entity beans are almost always involved in transactions,
this value is not usually used for an entity bean.

Supports The EJB component can execute in the context of an EAServer
transaction, but a transaction is not required to execute the
component’s methods. If a method is called by a base client
that has a pending transaction, the method’s database work
occurs in the scope of the client’s transaction. Otherwise, the
EJB component’s database work is done outside of any
transaction.

Required The EJB component always executes in a transaction. Use this
option when your EJB component’s database activity needs to
be coordinated with other components, so that all components
participate in the same transaction.

Requires New Whenever the EJB component is instantiated, a new
transaction begins.

Mandatory EJB component methods must be called in the context of a
pending transaction. If a client calls a method without an open
transaction, the EAServer ORB throws an exception.

Never The component’s methods never execute as part of a
transaction, and the component may cannot be called in the
context of a transaction. If a client or another component calls
the component with an outstanding transaction, EAServer
throws an exception.

About Enterprise JavaBeans components

114 EAServer

EJB container services
The EJB container provides services to EJB components. The services include
transaction, naming, and persistence support.

Transaction support An EJB container must support transactions. EJB
specifications provide an approach to transaction management called
declarative transaction management. In declarative transaction management,
you specify the type of transaction support required by your EJB component.
When the bean is deployed, the container provides the necessary transaction
support.

Persistence support An EJB container can provide support for persistence
of EJB components. An EJB component is persistent if it is capable of saving
and retrieving its state. A persistent EJB component saves its state to some type
of persistent storage (usually a file or a database). With persistence, an EJB
component does not have to be re-created with each use.

An EJB component can manage its own persistence (by means of the logic you
provide in the bean) or delegate persistence services to the EJB container.
Container-managed persistence means that the data appears as member data
and the container performs all data retrieval and storage operations for the EJB
component. See Chapter 27, “Creating Entity Components,” for more
information.

Naming support An EJB container must provide an implementation of Java
Naming and Directory Interface (JNDI) API to provide naming services for
EJB clients and components. Naming services provide:

Bean
Managed

(For EJB session beans only.) The EJB component can
explicitly begin, commit, and roll back new, independent
transactions by using the javax.transaction.UserTransaction
interface. Transactions begun by the component execute
independently of the client’s transaction. If the component has
not begun a transaction, the component’s database work is
performed independently of any EAServer transaction.

Default to
component

(Method-level default) In the Transactions tab of the Method
properties window, choose this option if the method should
inherit the transaction attribute set in the component
properties.

Attribute Description

CHAPTER 6 Enterprise JavaBeans Overview

Programmer’s Guide 115

• Location transparency Clients can instantiate components by name,
and do not need to know the details about the server hosting the
component.

• Deployment flexibility Beginning in EJB version 1.1, EJB components
can be configured with naming aliases for components and resources such
as databases, JavaMail sessions, and JMS message queues. Using aliases
simplifies the procedure to deploy the component on a server where the
accessed components and resources use different JNDI names.

See Chapter 5, “Naming Services,” in the EAServer System Administration
Guide for more information on JNDI.

EAServer EJB support
EAServer can host Enterprise JavaBeans (EJB) components developed
according to version 2.0, 1.1, or 1.0 of the Enterprise JavaBeans specification.
EAServer supports session beans and entity beans with bean-managed
persistence or container-managed persistence. EAServer uses CORBA 2.3 as
the basis for the EJB component support, allowing interoperability with other
client and component models and with CORBA-2.3-compliant ORBs from
other vendors.

Running EJB components in EAServer
EAServer can host Enterprise JavaBeans (EJB) components developed
according to version 2.0, 1.1, or 1.0 of the Enterprise JavaBeans specification.
EAServer supports session beans and entity beans with bean-managed
persistence or container-managed persistence. EAServer uses CORBA 2.3 as
the basis for the EJB component support, allowing interoperability with other
client and component models and with ORBs from other vendors that are
compliant with CORBA 2.3.

You can run Enterprise JavaBeans as EAServer components using any of these
techniques:

• Use Jakarta Ant to develop an EJB-JAR file and deploy it to EAServer
with jagant. For more information on using jagant, see Chapter 12, “Using
jagtool and jagant,” in the EAServer System Administration Guide.

EAServer EJB support

116 EAServer

• If using the Borland JBuilder IDE, use the EAServer plugin to deploy the
components to EAServer.

• If using another IDE, create an EJB-JAR file and use EAServer Manager
or jagtool to import an EJB-JAR file that contains the classes and
deployment descriptors for one or more EJB components. EAServer
Manager defines components with properties matching the deployment
descriptor settings.

• Import compiled versions of a home interface, remote interface,
implementation class, and (for entity beans) the primary key class.
EAServer Manager defines IDL interfaces for the interfaces and the
primary key, and defines an EJB component with default settings. You can
configure additional settings such as transaction attributes and database
resource references using the EAServer Manager Component Properties
dialog box.

• Define an EJB component from scratch in EAServer Manager, using
EAServer Manager’s IDL generation tools to define the home interface,
remote interface, and primary key type. EAServer Manager generates Java
classes for the home and remote interfaces and primary key class, as well
as a template for the implementation class.

EAServer also supports the Enterprise JavaBeans client model. You can
generate EJB-style proxies for any IDL interface, and use the proxies to call
methods on components that implement that interface.

EJB clients connecting to EAServer
EAServer also supports the Enterprise JavaBeans client model by generating
EJB proxies and providing an EJB-compliant implementation of the JNDI
NamingContext class. You can generate EJB-style proxies for any IDL interface
(not just those associated with EJB components), and use the proxies to call
methods on components that implement that interface. The NamingContext
class can also be used in EJB components to instantiate home interfaces for
intercomponent calls.

CHAPTER 6 Enterprise JavaBeans Overview

Programmer’s Guide 117

For more information

EJB 2.0 differences from 1.1
EJB 2.0 introduces support for message driven beans, new home interface
method syntax, local interfaces, and inter-vendor interoperability. EJB 2.0 also
enhances the container managed persistence model defined in EJB 1.1.

Message-driven beans
EJB 2.0 integrates the EJB component architecture with the Java Message
Service (JMS) asynchronous messaging API. EJB 2.0 allows you to define
message-driven bean (MDB) components to respond to JMS messages. An
MDB component is similar to an EJB stateless session bean, but the MDB
component responds only to JMS messages and has no direct client interface.

For information on JMS, see Chapter 31, “Using the Message Service.” For
information on creating MDB components, see “Message-driven beans” on
page 575.

For information about See this chapter or section

Creating, importing, and exporting EJB
components.

Chapter 7, “Creating Enterprise
JavaBeans Components”

Creating EJB clients, generating EJB
stubs, instantiating home and remote
interface proxies, managing transactions,
and serializing and deserializing bean
proxies.

Chapter 8, “Creating Enterprise
JavaBeans Clients”

Configuring container-managed
persistence for entity beans and
passivation of stateful session beans

“Configuring automatic or EJB
CMP persistence” on page 503

Invoking non-EJB components from EJB
clients and invoking EJB components
from non-EJB clients, and using
EAServer with EJB 2.0 containers from
other vendors.

Chapter 9, “EAServer EJB
Interoperability”

EJB 2.0 differences from 1.1

118 EAServer

Home interface methods
EJB 2.0 allows you to define business methods in the home interface for an
entity bean and changes the syntax of create methods.

Create method syntax Previously, create methods were restricted to methods named create. In EJB
2.0, you can use any name that begins with create, such as createNewAccount.

Home interface
business methods

You can add business methods to the home interface for an entity bean to
perform operations that are not specific to a single instance. For example, a
home business method might return the average employee salary. For each
home business method, the entity bean’s implementation class must have a
method with the same name, except for the prefix ejbHome, and the same
signature. For example, if the home interface declares:

public double averageSalary();

Then the implementation class must contain:

public double ejbHomeAverageSalary();

Local interfaces
The EJB 2.0 architecture introduces local interfaces for calls to an EJB
component from within the same Java Virtual Machine. In EAServer, you can
use local interfaces for intercomponent calls, and for component invocations
made from servlets and JSPs hosted by the same server as the component. To
use local interfaces, you must configure a local EJB reference for the JSP or
EJB component that issues the call.

Using local interfaces can improve performance for calls to components hosted
in the same server, but in coding you must be aware of the restrictions listed in
“Calling local interface methods” on page 154.

CMP enhancements
EJB 2.0 enhances the Container Managed Persistence (CMP) model for entity
beans as follows:

• The deployment descriptor more fully describes the persistent fields in the
bean and the required database queries, making for less work after
deploying an EJB JAR file that contains CMP entity beans.

CHAPTER 6 Enterprise JavaBeans Overview

Programmer’s Guide 119

• CMP entity beans in the same EJB JAR (which maps to an EAServer
package) can have container-managed relationships. For example, an
Order bean may have an items field that consists of a collection of
Inventory bean instances representing the items being purchased. Or, an
Employee bean may be related to itself, with manager and employees
fields that contain Employee instances.

For more information on EAServer CMP support, see Chapter 27, “Creating
Entity Components.”

EJB 2.0 interoperability
EAServer 4.0 complies with the interoperability requirements in the EJB 2.0
specification to allow interoperability with other EJB 2.0 servers. EAServer
continues to support CORBA-2.2 based interoperability, for interacting with
other CORBA-based application servers and to allow interoperability between
EJB components hosted by EAServer and EAServer components of other
types. For more information, see Chapter 9, “EAServer EJB Interoperability.”

EJB 1.1 differences from EJB 1.0
The main change in EJB 1.1 involves the packaging of components. EJB 1.1
uses an XML deployment descriptor, and allows abstraction of container-
specific resource references used within the source code. In addition, there are
minor changes to the Java interfaces and classes.

For more details, see the EJB 1.1 and 1.0 specifications from Sun Microsystems
at http://java.sun.com/products/ejb/.

EJB 1.1 differences from EJB 1.0

120 EAServer

Component differences

JNDI names in deployment descriptors

The EJB 1.1 JAR file format does not specify JNDI names for deployed EJB
components. Consequently, EJB 1.1 components imported into EAServer use
the default JNDI name of package/component, where package is the EAServer
package name and matches the display-name attribute of the EJB deployment
descriptor, and component is the EAServer component name and matches the
bean’s ejb-name element in the deployment descriptor.

If you have an existing client application that invoke the component, you may
have to change the component’s JNDI name or the name used in client
application.

For intercomponent calls from EJB 1.1 components, you can use the EJB
References property to alias the JNDI name used in the bean to an installed
component with a different JNDI name.

Environment properties

EJB 1.1 allows environment properties to be accessed using JNDI, and the
EJBContext.getEnvironment method is now deprecated. Environment
properties can also contain values of types other than String.

Environment properties used within a bean must be cataloged in the bean’s
deployment descriptor. For EJB 1.1 components installed in EAServer, you
configure environment properties on the Environment tab in the Component
Properties dialog box. See “Configuring environment properties” on page 137

You must call the JNDI Context.lookup method to access environment
properties. To locate the naming context, create a javax.naming.InitialContext
object for java:comp/env. In this example, the application retrieves the value
of the environment property maxExemptions and uses that value to determine
an outcome:

Context initContext = new InitialCopntext();
Context myEnv =

(Context)initContext.lookup(“java:comp/env”);

// Get the maximum number of tax exemptions
Integer max=(Integer)myEnv.lookup(“maxExemptions”);

// Get the minimum number of tax exemptions
Integer min = (Integer)myEnv.lookup(“minExemptions”);

CHAPTER 6 Enterprise JavaBeans Overview

Programmer’s Guide 121

// Use these properties to customize the business logic
if (numberOfExemptions > max.intValue() ||

(numberOfExemptions < min.intValue())
throw new InvalidNumberOfExemptionsException();

.

EJB and resource references

EJB 1.1 allows components to use logical names to access database
connections, JavaMail sessions, and the home interfaces of other components.
These names must be catalogued in the bean’s deployment descriptor. For
components installed in EAServer, you configure references on the Resource
References tab in the Component Properties dialog box. See these sections for
more information:

• “Configuring resource references” on page 137

• “Configuring EJB references” on page 136

Security access-control changes

The getCallerIdentity and isCallerInRole(java.security.Identity) methods in the
EJBContext interface are deprecated in EJB 1.1. Instead of getCallerIdentity, call
getCallerPrincipal. Instead of isCallerInRole(java.security.Identity), call
isCallerInRole(java.lang.String).

In EAServer Manager, you can configure role references for your component
in the Component Properties dialog box. Role references allow you to map
names used in isCallerInRole(java.lang.String) calls to role names that exist on
the server. Role references allow your component to be deployed on servers
that do not have the same security configuration.

Declarative access control for EJB 1.1 components uses method-level settings.

EJB 1.1 differences from EJB 1.0

122 EAServer

Role Membership folder does not apply to EJB 1.1 or 2.0 components
The Role Membership folder for packages and components in EAServer
Manager does not apply to EJB 1.1 or 2.0 components. There are two ways to
control which clients can call EJB component methods:

• You can use the Permissions tab in the Method Properties dialog box to
configure access declaratively for each method. To limit access to all of a
component’s remote interface methods, configure the permissions for the
home-interface create and finder methods.

• You can configure additional access control programmatically by calling
the getCallerPrincipal and isCallerInRole methods in the component
implementation. Programmatic access control enhances declarative access
control, but does not replace it.

❖ Configuring method permissions

Method permissions allow you to restrict access without writing code.
Configure method permissions as follows:

1 If necessary, define new EAServer roles to be used by callers of the
component.

2 Verify that J2EE roles are mapped to EAServer roles in the properties of
the package where the component is installed; check the Role Mappings
tab in the Package Properties window. You must map a J2EE role name for
each role to be used in method permissions.

3 For each method that requires limited access, display the Method
Properties dialog and highlight the Permissions tab. A check box displays
for each mapped J2EE role in the package that contains the component.
Select the check box by each role that can call the method.

❖ Configuring role references

Role references are required if you call the isCallerInRole Java method to
restrict access. Each reference maps a string used in isCallerInRole calls to a
J2EE role that is configured in the package Role Mappings. To configure role
references:

1 If necessary, define new EAServer roles to be used by callers of the
component.

CHAPTER 6 Enterprise JavaBeans Overview

Programmer’s Guide 123

2 Verify that J2EE roles are mapped to EAServer roles in the properties of
the package where the component is installed; check the Role Mappings
tab in the Package Properties window. You must map a J2EE role name for
each role to be used in role references.

3 For each component that calls the isCallerInRole method, display the
Component Properties dialog and highlight the Role Refs tab. Add or
modify roles as follows:

• To add a role, click Add and edit the new entry as described below.

• To modify a role, edit the Reference Name (used in isCallerInRole
calls), and choose the mapped J2EE role (configured in the properties
of the package where the component is installed).

Transaction isolation level

In accordance with the EJB 1.1 specification, you cannot set the transaction
isolation level declaratively for EJB 1.1 components. The simplest way to
configure the transaction isolation level is to configure the defaults on the
databases that you access from your EJB components. If this is not possible,
you must set the isolation level programmatically in the component
implementation.

Client model differences
Except for the differences below, the EJB 1.1 client model is identical to the
EJB 1.0 model:

• Finder method return types Finder methods in EJB 1.1 clients can
return java.util.Collection or java.util.Enumeration. Finder methods in EJB
1.0 must return java.util.Enumeration. The use of java.util.Collection is
recommended for new development.

Configuring Java finder method return types
You can specify the return type for finder methods that return multiple
keys with an IDL directive, as described in “Specifying Java package
mappings for IDL modules” on page 91. If you import interfaces from an
EJB-JAR file or EJB class files, these directives are created automatically.

When generating EJB stubs, choose the Java version to specify the default
return type for IDL finder methods that lack an EJB package directive. See
“Generating EJB stubs” on page 142 for more information.

EJB 1.1 differences from EJB 1.0

124 EAServer

• Home interface serialization You can call the Home.getHandle method
to serialize a home interface proxy in an EJB 1.1 client.

• EJBMetaData enhancements The EJBMetaData interface, used by
development tools to dynamically inspect EJB components, provides an
isStatelessSession method that returns true if the component is a stateless
session bean.

Programmer’s Guide 125

C H A P T E R 7 Creating Enterprise JavaBeans
Components

This chapter describes how to install Enterprise JavaBeans as components
in EAServer Manager. You can use any development tool to develop EJB
components, including EAServer Manager and any JDK 1.2 or later Java
compiler. EAServer also supports the standard EJB-JAR import and
export format for deployment of packages containing related EJB
components.

Defining an EJB component
There are three ways to define EJB components in EAServer:

• Importing an EJB-JAR file An EJB-JAR file contains the
implementation classes, interface classes, and deployment descriptor
for one or more beans archived in a standard format. Chapter 9,
“Importing and Exporting Application Components,” in the
EAServer System Administration Guide describes how to import EJB-
JAR files.

• Importing class files EAServer Manager can import the method
information for the home, remote, and local interfaces from Java class
files. Use this method if:

• You have created a bean’s interfaces and implementation class,
but have not created the deployment descriptor that is required to
create an EJB-JAR file. You will need to manually configure
properties that would otherwise be read from the deployment
descriptor.

Topic Page
Defining an EJB component 125

Configuring the component properties 135

Deploying the component classes 138

Defining an EJB component

126 EAServer

• You have created nothing, but prefer editing Java in your code editor
to editing IDL in EAServer Manager.

• Defining the component from scratch You can define the component
and it’s interfaces in EAServer Manager, using the IDL editing facilities in
EAServer Manager to define the home, remote, and (optional) remote
interfaces.

❖ Importing EJB class files

1 If necessary, create class files for the home, remote, and (optionally) local
interfaces, following the EJB standards for these interfaces.

2 Specify the package to install the component in as follows:

a Double-click the Packages folder to expand it.

b Highlight the package to which the component will be added.

3 Choose File | New Component from the menu.

4 In the Component Wizard, select Import from EJB Class File, and click
Next.

5 Verify that the displayed importer CLASSPATH contains the JAR files
and directories required to instantiate the bean’s classes, specifically:

• Verify that the code base under which the class files are deployed is
included.

• If the classes are in a JAR file, verify that the full path to the JAR file
is included.

• If the class definitions require other JAR files or directories not listed,
list them as well.

If necessary, use the Add, Modify, Delete, Move Up, and Move Down
buttons in the Component Wizard to modify the CLASSPATH. The
displayed CLASSPATH affects only this importer session, not the
EAServer process.

6 Enter the component name and EJB class and interface names as follows:

• Component name The name of the component to be created in
EAServer Manager, for example, FinanceBean.

• Component type Choose one of the following to match your
implementation:

Type Description

JaguarEJB::StatelessSessionBean A stateless session bean

CHAPTER 7 Creating Enterprise JavaBeans Components

Programmer’s Guide 127

• Bean class name The full path to the Java class file that contains
the bean’s implementation class.

• Primary key class If defining an entity bean, enter the full path to
the Java class file that contains the bean’s remote interface. If defining
a session bean, leave blank.

• Specify remote interface If the Bean has remote interfaces, select
this option and configure the following:

• Home interface class – The full path to the Java class file that
contains the Bean’s home interface.

• Remote interface class – The full path to the Java class file that
contains the Bean’s remote interface.

• Specify local interface If the Bean has local interfaces, select this
option and configure the following:

• Local home interface class – The full path to the Java class file
that contains the Bean’s local home interface.

• Local interface class – The full path to the Java class file that
contains the Bean’s local interface.

7 EAServer Manager displays the Component Properties dialog box. The
Component’s type and Java classes have been filled in by the importer.
Specify values for the remaining properties before generating skeletons
and running the bean.

8 Generate stubs and skeletons for the component as follows:

a Highlight the component icon.

b Choose File | Generate Stub/Skeleton.

c Follow the wizard pages to generate skeletons.

d Click Generate.

Stubs generated automatically
When you generate skeletons, EAServer Manager generates stubs under
the same code base. You do not need to enable the Generate Stubs options.

JaguarEJB::StatefulSessionBean A stateful session bean

JaguarEJB::EntityBean An entity bean with bean-managed
persistence.

Type Description

Defining an EJB component

128 EAServer

❖ Creating a new EJB component from scratch

Follow this procedure to create a new EJB component and define the home and
remote interface.

1 Select the EAServer Manager package that will contain the component.

2 Select File | New Component.

3 In the Component Wizard dialog box, select the Define New Component
check box and click Next.

4 Enter a name for the component and click Finish.

5 The Component Properties dialog box displays. Make the following
changes on the General tab:

a Set the Type to correspond to one of the following values:

b In the EJB Version field, select 2.0. (You can select 1.1. or 1.0, but
EJB 2.0 is recommended for new development.)

c In the Bean Class field, enter the name of the Java class that will
implement your bean, for example, foo.bar.MyBeanImpl.

Note The Home Interface Class, Remote Interface Class, and
Primary Key Class fields cannot be edited. These fields are set
automatically after the bean’s IDL interfaces and datatypes have been
defined. You can change them by changing the component’s IDL
interfaces and types in subsequent steps.

d Enter a value for the JNDI name field. This field specifies the name
by which client applications look up the home interface. The full
name consists of the server’s initial naming context followed by a
slash (/) and the bean’s JNDI name.

6 If you are creating an entity bean, specify the primary key as follows:

a Define the primary key type as one of the “Defining the primary key
type” on page 130.

Component type To indicate

EJB - Entity Bean An entity bean

EJB - Stateful Session Bean A stateful session bean

EJB - Stateless Session Bean A stateless session bean

EJB - Message Driven Bean A message-driven bean

CHAPTER 7 Creating Enterprise JavaBeans Components

Programmer’s Guide 129

b Display the Component Properties dialog box for the component,
click on the Persistence tab, and type the name of the IDL primary key
type into the Primary Key field. If using mean managed persistence,
the Persistence must be set to Component Class (the default). If using
container managed persistence (CMP), configure the additional
settings described in “Configuring automatic or EJB CMP
persistence” on page 503.

7 Click OK to close the Component Properties dialog box.

8 If methods in your Java remote interface throw exceptions other than
java.rmi.RemoteException, define equivalent IDL exceptions now. See
Chapter 5, “Defining Component Interfaces,” for more information.

9 Define home and remote interfaces. EAServer Manager has created
default home and remote interfaces named package::componentHome and
package::component, respectively, where package is the EAServer
Manager package name, and component is the component name.

a To change the home or remote interface, follow the steps in
“Changing the EJB remote or home interface” on page 79.

b Edit the home interface methods, following the design patterns
described in “Defining home interface methods” on page 131.

c Edit the remote interface methods. See “Defining remote interface
methods” on page 133. If portability to other EJB servers is required,
use only in parameters in remote interface methods.

An EJB 2.0 component may have local interfaces, but no remote
interfaces. To remove the remote interfaces generated by EAServer
Manager, highlight the Interfaces folder under the component icon, then
choose File | Remove Remote Interfaces.

10 Define local interfaces. EAServer Manager has created default local home
and local interfaces named package::componentLocalHome and
package::componentLocal, respectively, where package is the EAServer
Manager package name, and component is the component name.

a If you wish to keep the local interfaces, define methods for them as
described in “Defining local interfaces” on page 134.

b If you do not need local interfaces, highlight the Interfaces folder
under the component icon, then choose File | Remove Local
Interfaces.

11 Generate stubs and skeletons for the component as follows:

Defining an EJB component

130 EAServer

a Highlight the component icon.

b Choose File | Generate Stub/Skeleton.

c Follow the wizard pages to generate skeletons.

d Click Generate.

Stubs generated automatically
When you generate skeletons for your component, stub source is also
generated under the same code base. You do not need to select the
Generate Stubs option.

12 EAServer Manager generates a template for the bean implementation class
suffixed with .new, for example MyBeanImpl.java.new. Use this template
as the basis for your Java implementation. EAServer Manager also
generates Java equivalents for the home and remote interfaces, and for an
entity bean, the primary key type.

If you are creating a stateful session bean with synchronization methods,
add implements SessionSynchronization to the class declaration in the
implementation template, and add code to implement the methods in the
javax.ejb.SessionSynchronization interface.

13 Compile the component source files, and make sure they are correctly
deployed. See “Deploying the component classes” on page 138.

14 If you are testing the component with a Java applet, generate and compile
stubs using the html/classes subdirectory as the Java code base.

Defining the primary key type
Define an entity bean’s primary key as one of the following:

An IDL structure The structure should reflect the primary key for the
database relation that the entity bean represents. In other words, add a field for
each column in the primary key. Define the structure to match the intended Java
package and class name. For example, if the Java class is to be foo.bar.PK1,
define a new structure PK1 in module foo::bar. See “Creating IDL types,
exceptions, and interfaces” on page 92 for more information.

The name of a serializable Java class Enter the name of a serializable
Java class, for example: foo.bar.MyPK.

The IDL string type Use string if the key relation has only a string column.
In Java, the mapped primary key is java.lang.String.

CHAPTER 7 Creating Enterprise JavaBeans Components

Programmer’s Guide 131

Interoperability and key types
Define your entity bean’s primary key as an IDL structure or string if other
types of clients besides Java will use the bean.

Defining home interface methods
You can add methods to a home interface using the techniques described in
Chapter 5, “Defining Component Interfaces.” However, the method signatures
in a home interface must follow the design patterns described here to ensure
that the generated code works as intended.

Patterns for create methods All beans can have create methods, which
clients call to instantiate proxies for session beans and insert new data for entity
beans. In Java, create methods must have names that begin with create, as in
createAccount. (If defining an EJB 1.1 or 1.0 bean, create is the only valid
name.)

Create methods must return the bean’s IDL remote interface type and raise
CtsComponents::CreateException. Create methods can take any number of in
parameters. To distinguish multiple overloaded create methods in IDL, append
two underscores and a unique suffix. (This is the standard Java to IDL mapping
for overloaded method names. When generating stubs for C++ and Java,
EAServer removes the underscores and suffix from the stub method name).
The pattern is as shown below:

remote-interface create
(

in-parameters
) raises (CtsComponents::CreateException);

remote-interface create__overload-suffix
(

in-parameters
) raises (CtsComponents::CreateException);

Patterns for finder methods Only entity beans can have finder methods.
Clients call finder methods to look up entity instances for existing database
rows. Names of finder methods typically have names beginning with find.

Every entity bean must have a findByPrimaryKey method that matches the
following pattern:

remote-interface findByPrimaryKey
(

Defining an EJB component

132 EAServer

in pk-type primaryKey
) raises (CtsComponents::FinderException)

where remote-interface is the IDL remote interface, and pk-type is the IDL type
of the primary key.

Entity beans can have additional finder methods of two types:

• Single-object finder methods Those that return a single remote
interface instance and raise CtsComponents::FinderException, as shown in
the pattern below:

remote-interface findSuffix
(

in-parameters
) raises (CtsComponents::FinderException)

where remote-interface is the IDL remote interface, Suffix is a name suffix
other than ByPrimaryKey, and in-parameters is a valid parameter list
composed solely of in parameters.

• Multi-object finder methods Those that return a sequence of instances
whose primary keys match a specified search criteria. The pattern is:

componentList findSuffix
(

in-parameters
) raises (CtsComponents::FinderException)

where component is the component name, Suffix is a name suffix other
than ByPrimaryKey, and in-parameters is a valid parameter list composed
solely of in parameters.

By default, the Java form of multi-object finder methods returns
java.util.Collection. For compatibility with older EJB code, you can specify
that generated stub methods should return java.util.Enumeration. To do so,
add an IDL doc comment before the IDL method definition with this form:

/**
** <!-- java.util.Enumeration -->
**/
::MyModule::MyRemoteList findByName(in string name);

CHAPTER 7 Creating Enterprise JavaBeans Components

Programmer’s Guide 133

Sequence types are automatically generated
EAServer Manager creates IDL typedefs defining a sequence of remote
interface methods and a sequence of primary keys when you set the
Primary Key field on the Persistence tab of the Component Properties
dialog box. The type for a sequence of remote interface instances is
componentList and a sequence of primary keys is componentKeys, where
component is the component name.

Home interface business methods You can add business methods to the
home interface for an entity bean to perform operations that are not specific to
a single instance. For example, a home business method might return the
average employee salary. For each home business method, the entity bean’s
implementation class must have a method with the same name, except for the
prefix ejbHome, and the same signature. For example, if the home interface
declares:

public double averageSalary();

Then the implementation class must contain:

public double ejbHomeAverageSalary();

Home interface business methods cannot be used in EJB 1.1 or 1.0 beans.

Defining remote interface methods
The IDL for your bean’s remote interface must define a remove method and the
business methods implemented by the bean.

remove methods are called by clients to delete the database row associated with
an entity bean, and to release a reference to a session bean instance. remove
methods have the following signature:

void remove
(
)
raises (::CtsComponents::RemoveException);

Defining an EJB component

134 EAServer

You can define business methods graphically or using the IDL editor window.
The procedure is the same as for any other IDL interface. See Chapter 5,
“Defining Component Interfaces,” for more information.

Note If portability to other EJB servers is required, use only in parameters in
remote interface methods.

Defining local interfaces
The EJB 2.0 architecture introduces local interfaces for calls to an EJB
component from within the same Java Virtual Machine. In EAServer, you can
use local interfaces for intercomponent calls, and for component invocations
made from servlets and JSPs hosted in the same server as the component.

Using local interfaces can improve performance, but in coding you must be
aware that:

• Parameters are passed by reference rather than by copy, so object instances
passed through a local invocation can be shared by the client and
component. If the component modifies the object, the client sees the
changes.

• Local interfaces are not location transparent. The called component must
be hosted in the same server process as the calling component, and both
components must be configured to use the same custom class loader. See
“Calling local interface methods” on page 154 for more information.

Defining local interfaces in Java The Java local home interface must
extend javax.ejb.EJBLocalHome. Other than the base interface, the
requirements are the same as for defining the home interface.

The Java local interface must extend javax.ejb.EJBLocalObject. Other than the
base interface, the requirements are the same as for defining the local interface.

Defining local interfaces in IDL In IDL, local home interfaces can contain
create and finder methods. The local home for an entity bean can also contain
business methods. The IDL syntax is the same as for remote home interfaces,
namely:

• IDL create methods must return the local interface type and raise
CtsComponents::CreateException.

CHAPTER 7 Creating Enterprise JavaBeans Components

Programmer’s Guide 135

• The IDL findByPrimary key method must return the local interface type,
accept the primary key type as the sole parameter, and raise
CtsComponents::FinderException.

• Any additional IDL finder methods must return a sequence of the primary
key type and raise CtsComponents::FinderException.

The local interface can be defined in IDL with the same restrictions as for the
IDL remote interface.

Configuring the component properties
After you have defined the component and its methods, you may need to
configure the properties described here.

❖ Configuring EJB component properties

1 If you are defining a stateful session bean, optionally switch to the
Resources tab and enter a time limit in the Instance Timeout field. This
value specifies how long, in seconds, that a client can hold an instance
reference without making any calls. If you do not enter a value, or you
specify 0, client references do not expire.

2 If creating an entity bean with container-managed persistence, configure
the persistence settings as described in “Configuring automatic or EJB
CMP persistence” on page 503.

3 Optionally configure the transaction properties for each method in the
home and remote interfaces, or if all are the same, configure the
component’s transaction properties. See “Component properties:
Transactions” on page 58 for more information.

4 If defining a version 2.0 or 1.1 EJB that calls other components, configure
the properties described in “Configuring EJB references” on page 136.

5 If defining a version 2.0 or 1.1 EJB that uses database connections or
JavaMail sessions, configure the properties described in “Configuring
resource references” on page 137.

6 If defining a version 2.0 or 1.1 EJB, configure method security constraints
as described in “Configuring role references and method permissions” on
page 137.

Configuring the component properties

136 EAServer

7 If defining a version 2.0 EJB that calls other components, optionally
configure the Run-As Identity properties to specify the identity used in
intercomponent calls. See “Component properties: Run-As Identity” on
page 68 for more information.

8 If defining a version 2.0 EJB that uses JMS, configure the properties
described in “Component properties: Resource Environment Refs” on
page 65.

9 If defining a version 1.0 EJB that calls other components, configure the
properties described in “Component properties: Run-As Mode” on page
69.

10 Optionally configure environment properties as described in “Configuring
environment properties” on page 137.

Configuring EJB references
Your EJB can use EJB references to instantiate proxies for other EJBs. You do
not need to create references in order to invoke other EJBs from your code.
However, doing so ensures that EJB references will be cataloged in the
deployment descriptor if you export the EJB. There are two types of references:

• Local references, for calls to EJB components hosted in the same server
using the local home and local interfaces. To add or edit local references,
follow the instructions in “Adding an EJB local reference” on page 387,
or “Editing an EJB local reference” on page 388, respectively.

• Remote references, for calls to components of any type using the
component’s home and remote interfaces. To add or edit remote
references, follow the instructions in “Adding an EJB reference” on page
387, or “Editing an EJB reference” on page 387, respectively.

Stubs used for EJB references must be in the custom class list
You must list stubs used for intercomponent calls in the custom class list for
your component, as described in “Custom class lists for Java and EJB
components” on page 554.

CHAPTER 7 Creating Enterprise JavaBeans Components

Programmer’s Guide 137

Configuring resource references
Resource references are used to obtain connector and database connections,
and to access JMS connection factories, JavaMail sessions, and URL links.

❖ Adding or editing a resource reference

1 Open the Component Properties dialog box.

2 Follow the instructions in “Adding a resource reference” on page 388, or
“Editing a resource reference” on page 389.

Configuring role references and method permissions
To configure authorized access to an EJB 2.0 or 1.1 component, you must
configure method permissions settings or call the isCallerInRole Java method to
restrict access. See Chapter 2, “Securing Component Access,” in the EAServer
Security Administration and Programming guide for more information.

Configuring environment properties
Environment properties allow you to specify read-only data for use by an EJB.
For example, you might use environment properties to tune the size of a data
cache used in your implementation, or to specify the name of a log file. Use
environment properties for any constant value that might change when the EJB
is deployed to another server.

When coding your EJB, use JNDI to retrieve environment properties, using the
prefix java:comp/env in JNDI lookups.

When you export your EJB, the deployment descriptor catalogs the
environment properties used by your servlets and JSPs, as well as each
property’s Java datatype and default value. When the EJB is imported to
another server, the deployer can override the default value for each
environment property.

Deploying the component classes

138 EAServer

Environment properties for EJB 1.0 components
An EJB 1.0 component can only have environment properties with datatype
String, and these properties must be configured in the Advanced window. Any
property name that does not begin with com.sybase.jaguar.component is
considered an environment property. In source code, use the
EJBContext.getEnvironment method to retrieve property values. You cannot use
the JNDI InitialContext.lookup method to retrieve these values.

❖ Adding or editing an EJB environment property

1 Open the Component Properties dialog box.

2 Follow the instructions in “Adding an environment property” on page
391, or “Editing an environment property” on page 392.

Deploying the component classes
If you are creating components from scratch in EAServer Manager, you must
follow the steps in this section to deploy the component class and other classes
that it depends on. If you deploy from JBuilder with the EAServer plugin, the
plugin performs these steps for you. If you are using another EJB development
tool that can export EJB JAR files, import the EJB JAR file as described in
Chapter 9, “Importing and Exporting Application Components,” in the
EAServer System Administration Guide. If you import an EJB-JAR file that
calls EAServer components that are not implemented in the same JAR file, you
must list the stub classes for the called components in the custom class list as
described below.

EAServer supports hot refresh of components by using a Java class loader. This
feature speeds the development process by allowing you to deploy new class
versions without restarting the server. Repeat the steps below to deploy new
versions of your implementation.

In a production environment, you may wish to disable refresh to improve
performance. See “Disabling refresh” on page 140 for details.

CHAPTER 7 Creating Enterprise JavaBeans Components

Programmer’s Guide 139

❖ Deploying EJB component classes

1 Deploy the component class files, stub and skeleton files, and other classes
required by the implementation to EAServer. For example, you may need
to copy stubs for user defined types and utility classes that are in your
component’s package.

If deploying class files, place each class in their respective java/classes
package subdirectories. If deploying a JAR file, place it in the java/classes
subdirectory.

The preferred code base is java/classes
For security reasons, it is preferable to deploy Java components to the
java/classes subdirectory or some other directory that is not accessible to
HTTP downloads. Deploying to this directory also allows your component
to be refreshed, and allows you to deploy classes in JAR files without
reconfiguring the server’s CLASSPATH environment variable. If you
deploy to another location, make sure it is listed in the server’s
CLASSPATH environment variable.

2 Use EAServer Manager to configure the component’s custom class list,
specifying the classes that must be loaded when your component is loaded
or reloaded, as described in “Custom class lists for Java and EJB
components” on page 554.

3 Use EAServer Manager to refresh the component by highlighting its icon
and choosing File | Refresh. You can also refresh the component by
refreshing the package, application, or server where it is installed.

Troubleshooting ClassCastException errors
When calling javax.naming.InitialContext.lookup, if you see NamingContext
exceptions with root-cause exception ClassCastException, check for the
following errors:

• You are casting to an incorrect type (check the class name of the object
returned by lookup).

• Your component has refresh enabled, and the custom class list does not
contain some required classes.

• Your component has refresh enabled, and calls a component that has
refresh disabled or vice-versa.

For more information, see “Troubleshooting class loader configuration issues”
on page 560.

Deploying the component classes

140 EAServer

❖ Disabling refresh

In a production server, you may wish to disable refresh for Java components to
decrease memory use and increase performance. When refresh is enabled,
duplicate copies of common Java classes can be loaded for components. When
refresh is disabled, you must restart the server in order for it to load a new
version of your component class. You can also reduce duplicate in-memory
classes by configuring the custom class list at the package, server, or
application level as described in Chapter , “Custom class lists for packages,
applications, or servers.”

If your component calls another Java or EJB component, both must have
refresh enabled or both must have refresh disabled.

To disable refresh:

1 Make sure the code bases for all classes used by your component are in the
server’s CLASSPATH environment variable. JAR files referenced in the
custom class list must be added to the server CLASSPATH setting, or
expanded into the java/classes EAServer subdirectory.

2 Display the Component Properties dialog box, and click on the Advanced
tab.

3 Set the com.sybase.jaguar.component.refresh to false (the default is
true).

4 Restart the server for the changes to take effect.

Programmer’s Guide 141

C H A P T E R 8 Creating Enterprise JavaBeans
Clients

This chapter describes how to implement EJB clients using the Sybase
EJB client runtime. For general information on implementing Enterprise
JavaBeans and EJB clients, please see the EJB Specification, available for
download from Sun Microsystems Web site at
http://java.sun.com/products/ejb/docs.html.

Developing an EJB client
Follow the steps in the table below to create an EJB client:

Topic Page
Developing an EJB client 141

Generating EJB stubs 142

Instantiating home interface proxies 144

Instantiating remote or local interface proxies 152

Calling remote interface methods 154

Calling local interface methods 154

Managing transactions 155

Serializing and deserializing bean proxies 156

Runtime requirements 157

Step Action For more information

1 Generate EJB stubs. See “Generating EJB stubs” on page
142.

2 Add code to create the initial
naming context and instantiate the
home interface proxies.

See “Instantiating home interface
proxies” on page 144.

3 Add code to instantiate remote or
local interface proxies.

See “Instantiating remote or local
interface proxies” on page 152.

Generating EJB stubs

142 EAServer

Generating EJB stubs
Stub classes act as proxies for an instance of the EAServer component. You can
generate EJB stubs for components that are implemented in any of EAServer’s
supported component models. One stub interface is generated for each IDL
interface that the component implements.

Before generating stubs
If you are generating stubs for a component that is not an EJB component,
make sure the component has a home interface defined. See “Invoking non-
EJB components from EJB clients” on page 164 for more information.

If you are generating stubs for multiple client models, stubs for each model
must be generated to a different code base or Java package.

❖ Generating EJB stubs

1 Highlight a component, package, or module as follows:

• Highlight a component to generate stubs for all interfaces and types
required by a component,

• Highlight a package to generate all stubs needed by components in the
package, or

• Highlight a module in the IDL folder to generate stubs for IDL
interfaces and types defined within that module.

4 Add code to call remote or local
interface methods.

See “Calling remote interface
methods” on page 154 or “Calling local
interface methods” on page 154.

5 Optionally add code to control
transactions and serialize and
deserialize instances.

See:

• “Managing transactions” on page
155

• “Serializing and deserializing bean
proxies” on page 156

6 Deploy the client application or
applet.

See “Runtime requirements” on page
157.

Step Action For more information

CHAPTER 8 Creating Enterprise JavaBeans Clients

Programmer’s Guide 143

Specifying a different Java package
If stub classes must be generated using a Java package other than the
default, generate stubs by highlighting the IDL module that contains the
interfaces and datatypes of interest. When generating stubs for a module,
you can override the default package name.

2 Select File | Generate Stub/Skeleton. The Generate Stubs & Skeletons
Wizard displays. Follow the instructions on each page to generate EJB
stubs. See the online help for descriptions of any input fields that you do
not understand.

For each IDL interface that is assigned to a component, EAServer Manager
generates a Java interface with the same name as the IDL interface, a stub class
that implements that interface, a helper class, and a holder class. For example,
for an IDL interface named Calculator::Calc, EAServer Manager creates the
source files listed in the following table:

Table 8-1: Java stub source files for example interface calc

EAServer Manager creates stubs for each interface and datatype defined in a
module. If your component references a module that contains multiple
interfaces, you will find that additional stub files are generated besides the
stubs for the interfaces that are directly implemented by your component.

If you did not elect to compile the stubs in EAServer Manager, compile the stub
classes. Make sure that the CLASSPATH setting contains the code base
directory and the following JAR files in the EAServer installation directory:

• java/lib/easserver.jar

• java/lib/easclient.jar

• java/lib/easj2ee.jar

File Name Purpose

Calc.java Defines an interface with methods equivalent to the
component’s methods.

Calc_Stub.java Class that implements the interface.

CalcHolder.java Used when interface references are passed as an inout or
output parameter.

Instantiating home interface proxies

144 EAServer

Instantiating home interface proxies
EJB clients use the Java Naming and Directory Interface (JNDI) to resolve
logical bean JNDI names to proxy instances for a bean’s home interface. Each
EJB container vendor provides an implementation of this interface that works
with the vendor’s server and network protocol.

Obtaining an initial naming context
The core JNDI interface used by client applications is javax.naming.Context,
which represents the initial naming context used to resolve names to bean
proxies. To obtain an initial naming context, initialize a java.util.Properties
instance and set the properties listed in Table 8-2. Pass the properties instance
to the javax.naming.InitialContext constructor. The code fragment below shows
a typical call sequence:

import javax.naming.*;

static public Context getInitialContext() throws Exception {
java.util.Properties p = new java.util.Properties();

// Sybase implementation of InitialContextFactory
p.put(Context.INITIAL_CONTEXT_FACTORY,

"com.sybase.ejb.InitialContextFactory");

// URL for the Server’s IIOP port
p.put(Context.PROVIDER_URL, "iiop://myhost:9000");

// Username "pooh", password is "tigger2"
p.put(Context.SECURITY_PRINCIPAL, "pooh");
p.put(Context.SECURITY_CREDENTIALS, "tigger2");

// Now create an InitialContext that uses the properties
return new InitialContext(p);

}

EJB servers from different vendors require different InitialContext property
settings. If you are creating a client application that must be portable to other
EJB servers, use an external mechanism to specify properties rather than hard-
coding values in the source code. For example, in a Java application use
command-line arguments or a serialized Java properties file. To specify
properties used by a Java applet, use parameters in the HTML Applet tag that
loads the applet.

CHAPTER 8 Creating Enterprise JavaBeans Clients

Programmer’s Guide 145

Sybase InitialContext
properties

The Sybase InitialContext implementation recognizes the properties in the
following table. You can create multiple contexts with different properties. For
example, you might create one context for proxies that connect with plain IIOP
and another for proxies that connect using SSL.

Table 8-2: Sybase EJB InitialContext Properties

Property name Description

java.naming.factory.
initial

Specifies the fully qualified Java class name of the class that returns
javax.naming.InitialContext instances that interact with the naming provider. Use
com.sybase.ejb.InitialContextFactory for EAServer EJB clients.

When using corbaname URLs
The EJB client runtime supports corbaname URLs to support EJB 2.0
interoperability features, as described in “Interoperable naming URLs for EJB
clients” on page 161. When using corbaname URLs, you must specify the username
and password using the JAAS API as described in Chapter 11, “Using the JAAS
API,” in the EAServer Security Administration and Programming Guide. The
context principal and username properties do not apply to contexts that use a
corbaname URL.

java.naming.provider.
url

Specifies the URL to connect to the EAServer name server. Set the value to a URL
with the following format:

iiop://hostname:iiop-port/initial-context

where:

• hostname is the host machine name for the server that serves as the name server
for your application. If omitted, the default is localhost.

• iiop-port is the IIOP port number for the server.

• initial-context is the initial naming context. This can be used to set a default
prefix for name resolution. For example, if you specify USA/Sybase/, all names
that you resolve with the context are assumed to be relative to this location in the
name hierarchy. When specifying the initial context, the trailing slash is optional;
it is added automatically if you do not specify an initial context that ends with a
slash.

If you do not set this property, the default is iiop://localhost:9000/.

Instantiating home interface proxies

146 EAServer

java.naming.security.
principal

Specifies the user name for the EAServer session. Required if user name/password
authentication is enabled for your server.

When using corbaname URLs
The EJB client runtime supports corbaname URLs to support EJB 2.0
interoperability features, as described in “Interoperable naming URLs for EJB
clients” on page 161. When using corbaname URLs, you must specify the username
and password using the JAAS API as described in Chapter 11, “Using the JAAS
API,” in the EAServer Security Administration and Programming Guide. The
context principal and username properties do not apply to contexts that use a
corbaname URL.

java.naming.security.
credentials

Specifies the password for the EAServer session. Required if user name/password
authentication is enabled for your server.

com.sybase.ejb.
ConnectionTimeout

For applications that run in a cluster, sets a time limit to receive a server response
before the connection fails over to try another server in the cluster. Setting this
property ensures that failover happens without an unreasonable delay. Specify the
timeout period in seconds. The default of 0 indicates no time limit.

com.sybase.ejb.
forceSSL

If set to true when using a a reverse proxy server, forces use of SSL for the
connection to the reverse proxy. Set this property to true if the connection to the
reverse proxy must use SSL (HTTPS) tunnelling, but the connection from the proxy
to the server does not use SSL tunnelling. For more information, see Chapter 12,
“Deploying Applications Around Proxies and Firewalls,” in the EAServer Security
Administration and Programming Guide.

com.sybase.ejb.
GCInterval

Specifies how often the ORB forces deallocation (Java garbage collection) of
unused class references. Though this property is set on an individual ORB instance,
it affects all ORB instances. The default is 30 seconds. The default is appropriate
unless you have set an idle connection timeout of less than 30 seconds. In that case,
you should specify a lower value for the garbage collection interval, since
connections are only closed while performing garbage collection. In other words,
the effective idle connection timeout ranges from the idle connection timeout setting
to the smallest integral multiple of the garbage collection interval.

com.sybase.ejb.
http

Specify whether proxies should use HTTP tunnelling without trying to use plain
IIOP first. The default is false. With the default setting, the proxy tries to open a
connection using plain IIOP, and switches to HTTP tunnelling if the plain IIOP
connection is refused. The default is appropriate when some users connect through
firewalls that require tunnelling and others do not; the same application can serve
both types. If you know tunnelling is required, set this property to true. This setting
eliminates a slight bit of overhead that is incurred by trying plain IIOP connections
before tunnelling is used.

Property name Description

CHAPTER 8 Creating Enterprise JavaBeans Clients

Programmer’s Guide 147

com.sybase.ejb.http.
jaguar35Compatible

When set to true, specifies that HTTP tunnelling must be compatible with version
3.5 or older Jaguar servers. The default is false.

Compatibility with version 3.5 or older servers
The default tunnelling model is incompatible with servers older than version 3.6. If
you do not set the com.sybase.ejb.jaguar35Compatible property to true,
clients using the EAServer 3.6 or later Java client runtime cannot connect to older-
version servers using HTTP tunnelling. Note that HTTP tunnelling may happen
automatically when clients connect to the server through firewalls.

com.sybase.ejb.
HttpUsePost

When using HTTP tunnelling, specifies the HTTP request type used. A value of true
indicates that POST requests are to be used. A value of false (the default) specifies
that GET requests are to be used.

Some Web browsers cannot handle the long URLs generated when using HTTP
tunnelling with GET requests. Setting this property to true can work around the
issue.

com.sybase.ejb.
IdleConnectionTimeout

Specifies the time, in seconds, that a connection is allowed to sit idle. When the
timeout expires, the ORB closes the connection. The default is 0, which specifies
that connections can never timeout. The connection timeout does not affect the life
of proxy instance references; the ORB may close and reopen connections
transparently between proxy method calls. Specifying a finite timeout for your
client applications can improve server performance. If many instances of the client
run simultaneously, a finite client connection timeout limits the number of server
connections that are devoted to idle clients. A finite timeout also allows rebalancing
of server load in an application that uses a cluster of servers.

com.sybase.ejb.
isApplet

Applicable only to Java
applets.

Specifies whether the client application is a Java applet. The default is false. You
must set this property to true in Java applets if the applet connects to EAServer
using SSL (https).

com.sybase.ejb.
local

Deprecated.

For server-side component use only. Specifies whether the proxy references can be
used to issue intercomponent calls in user-spawned threads. The default is true,
which means that intercomponent calls are made in memory and must be issued
from a thread spawned by EAServer. Set this property to false if your component
makes intercomponent calls from user-spawned threads.

This property is deprecated
This property is not needed when calling components from threads spawned by the
Thread Manager. The Thread Manager is the recommended way to spawn threads
in Java components. See Chapter 32, “Using the Thread Manager” for more
information.

com.sybase.ejb.
RetryCount

Specify the number of times to retry when the initial attempt to connect to the server
fails. The default is 5.

Property name Description

Instantiating home interface proxies

148 EAServer

com.sybase.ejb.
RetryDelay

Specify the delay, in milliseconds, between retry attempts when the initial attempt
to connect to the server fails. The default is 2000.

com.sybase.ejb.
socketReuseLimit

Specify the number of times that a network connection may be reused to call
methods from one server. The default is 0, which indicates no limit. The default is
ideal for short-lived clients. The default may not be appropriate for a long-running
client program that calls many methods from servers in a cluster. If sockets are
reused indefinitely, the client may build an affinity for servers that it has already
connected to rather than randomly distributing its server-side processing load
among all the servers in the cluster. In these cases, the property should be tuned to
best balance client performance against cluster load distribution. In Sybase testing,
settings between 10 and 30 proved to be a good starting point. If the reuse limit is
too low, client performance degrades.

com.sybase.ejb.
ProxyHost

Specifies the machine name or the IP address of a reverse proxy server. See Chapter
12, “Deploying Applications Around Proxies and Firewalls,” in the EAServer
Security Administration and Programming Guide for more information.

com.sybase.ejb.
ProxyPort

Specifies the port number of a reverse proxy server. See Chapter 12, “Deploying
Applications Around Proxies and Firewalls,” in the EAServer Security
Administration and Programming Guide for more information.

com.sybase.ejb.
SSLCallback

Applicable only to Java
application clients.

Required if you are using SSL and you wish to provide a callback class to set
required SSL settings on an as-needed basis. Specify the name of a Java class that
implements the CtsSecurity.SSLCallbackIntf interface. For example:

com.acme.AcmeSSLCallback

Chapter 5, “Using SSL in Java Clients,” in the EAServer Security Administration
and Programming Guide describes how to code a callback class.

com.sybase.ejb.
pin

Applicable only to Java
application clients.

Always required when using SSL.

Specifies the PKCS #11 token PIN. This is required for logging in to a PKCS #11
token for client authentication and for retrieving trust information.

This property cannot be retrieved.

If not set, set to any, or set incorrectly, the ORB invokes the getPin callback method.

com.sybase.ejb.
certificateLabel

Applicable only to Java
application clients.

Required when using SSL mutual authentication.

Specifies the client certificate to use if the connection requires mutual
authentication. The label is a simple name that identifies an X.509 certificate/private
key in a PKCS #11 token. If the property is not set and the connection requires
mutual authentication, the ORB invokes the getCertificateLabel callback method,
passing an array of available certificate names as an input parameter.

com.sybase.ejb.
qop

Applicable only to Java
application clients.

Always required when using SSL.

Specifies the name of a security characteristic to use. See “Choosing a security
characteristic” on page 150 for more information.

Property name Description

CHAPTER 8 Creating Enterprise JavaBeans Clients

Programmer’s Guide 149

com.sybase.ejb.
useEntrustID

Applicable only to Java
application clients.

Specifies whether to use the Entrust ID or the Sybase PKCS #11 token for
authentication. This is a Boolean (true or false) property. If this property is set to
false, Sybase PKCS #11 token properties are valid and Entrust-specific properties
are ignored. If this property is set to true, Entrust-specific properties are valid and
Sybase PKCS #11 token properties are ignored.

com.sybase.ejb.
entrustUserProfile

Applicable only to Java
application clients.

Specifies the full path to the file containing an Entrust user profile. This property is
optional when the Entrust single-login feature is available and required when this
feature is not available. If not set, the ORB invokes the getCredentialAttribute
callback method.

com.sybase.ejb.
entrustPassword

Applicable only to Java
application clients.

Specifies the password for logging in to Entrust with the specified user profile. This
property is optional when the Entrust single-login feature is available and required
when this feature is not available. If the password is required but not set or set
incorrectly, the ORB invokes the getPin callback method.

This property cannot be retrieved.

com.sybase.ejb.
entrustIniFile

Applicable only to Java
application clients.

Specifies the path name for the Entrust INI file that provides information on how to
access Entrust. This is required when the useEntrustid property is set to true.

If not set, the ORB invokes the getCredentialAttribute callback method.

com.sybase.ejb.
userData

Applicable only to Java
application clients.

Specifies user data (String datatype). This is an optional property. Client code can
set user data during NamingContext initialization and access it using
SSLSessionInfo::getProperty method in the SSL callback implementation. This may
be useful as a mechanism to store context information that is otherwise not available
through the SSLSessionInfo interface.

com.sybase.ejb.
useJSSE

Use the Java Secure Sockets Extension (JSSE) classes for secure HTTP tunnelled
(HTTPS protocol) connections. JSSE provides an alternative to the built-in SSL
implementations when secure connections are needed from an applet running in a
Web browser. Additional configuration may be required to use this option. See
Chapter 5, “Using SSL in Java Clients,” in the EAServer Security Administration
and Programming Guide for more information.

com.sybase.ejb.
WebProxyHost

Applicable only to Java
application clients.

Specifies the host name or IP address of a Web proxy server. Applies to Java
applications only. Java applets running in a Web browser will use the proxy address
specified by the browser’s proxy configuration. In Java applications, there is no
default for this property, and you must specify both the host name and port number
properties. See Chapter 12, “Deploying Applications Around Proxies and
Firewalls,” in the EAServer Security Administration and Programming Guide for
more information.

Property name Description

Instantiating home interface proxies

150 EAServer

Choosing a security characteristic To use SSL, you must specify the name
of an available security characteristic as the value for the com.sybase.ejb.qop
property. The characteristic describes the CipherSuites the client uses when
negotiating an SSL connection. When connecting, the client sends the list of
CipherSuites that it uses to the server, and the server selects a CipherSuite from
that list. The server chooses the first CipherSuite in the list that it can use. If the
server cannot use any of the available CipherSuites, the connection fails.

“Configuring security profiles” in the EAServer Security Administration and
Programming Guide describes the security characteristics that are provided
with EAServer.

Set the qop property to sybpks_none to prevent any use of SSL on a
connection.

Secure server addresses Client proxies will only connect to a server
listener that uses an equivalent or greater level of security as requested in the
com.sybase.ejb.qop setting. The URL specified with
java.naming.provider.url cannot specify a server address that uses a
higher level of security than specified by the qop property. For example, if your
server uses the typical port configuration, you can specify port 9000 (no SSL)
in the name service URL if the qop property specifies mutual authentication.
However, you cannot specify port 9002 (mutual authentication) in the name
service URL and set the qop property to request server-only authentication.

Configuring error
output

The client runtime writes errors to the console by default. In Java applications,
you can modify this behavior by creating a logging profile and specifying the
profile name in the Java system properties. For more information, see “Using
log profiles in Java client applications” in the EAServer System Administration
Guide.

com.sybase.ejb.
WebProxyPort

Applicable only to Java
application clients.

Specifies the port number at which the Web proxy server accepts connections.
Applies to Java applications only. Java applets running in a Web browser will use
the proxy address specified by the browser’s proxy configuration. In Java
applications, there is no default for this property, and you must specify both the host
name and port properties. See Chapter 12, “Deploying Applications Around
Proxies and Firewalls,” in the EAServer Security Administration and Programming
Guide for more information.

com.sybase.ejb.
HttpExtraHeader

Applicable only to Java
application clients.

An optional setting to specify what extra information is appended to the header of
each HTTP packet when connecting through a Web proxy. See Chapter 12,
“Deploying Applications Around Proxies and Firewalls,” in the EAServer Security
Administration and Programming Guide for more information.

Property name Description

CHAPTER 8 Creating Enterprise JavaBeans Clients

Programmer’s Guide 151

Running in Java
applets

EJB clients that run as applets can set the APPLET parameter for the
javax.naming.InitialContext instance used to connect to EAServer. For example:

java.util.Hashtable p = new java.util.Hashtable();
p.put(Context.APPLET, this);

// Sybase implementation of InitialContextFactory
p.put(Context.INITIAL_CONTEXT_FACTORY,

"com.sybase.ejb.InitialContextFactory");

// URL for the Server's IIOP port. Host defaults to
// the applet download host.
p.put(Context.PROVIDER_URL, "iiop://:9000");

// Username "Guest", password is "GuestPassword"
p.put(Context.SECURITY_PRINCIPAL, "Guest");
p.put(Context.SECURITY_CREDENTIALS, "GuestPassword");

// Now create an InitialContext that uses the
// properties.
InitialContext ic = new InitialContext(p);

Setting the APPLET parameter activates the following convenient features:

• The host name can be omitted in the initial context URL that is specified
as the PROVIDER_URL context parameter. The default host is the applet
download host.

• You can set the com.sybase.ejb.autoProxy property and it will work as
documented in Chapter 12, “Deploying Applications Around Proxies and
Firewalls,” in the EAServer Security Administration and Programming
Guide.

Resolving JNDI names
Call the Context.lookup method to resolve a bean’s JNDI name to a proxy for
the bean’s home interface. If the server or cluster where the bean is installed
has a name context configured, pass the server’s name context as part of the
bean JNDI name, in the format:

Server-name-context/Bean-home

Where Server-name-context is the server’s initial naming context, and Bean-
home is the component’s JNDI name, or, for server-side code executing in EJB
or Web components, the aliased JNDI name in the calling component’s EJB
reference properties.

Instantiating remote or local interface proxies

152 EAServer

Call javax.rmi.PortableRemoteObject.narrow to narrow the returned object to
the bean’s home (or local home) interface class. narrow requires as parameters
the object to be narrowed and a java.lang.Class reference that specifies the
interface type to returned. To obtain the java.lang.Class reference, use
Home.class, where Home is the bean’s home interface type. Cast the object
returned by the narrow method to the bean’s Java home interface.

The lookup method throws javax.naming.NamingException if the bean JNDI
name cannot be resolved or the home interface proxy cannot be created. This
can happen for any of the following reasons:

• The server address specified with the Context.PROVIDER_URL property is
incorrect or the server is not running.

• Authentication with the specified credentials failed.

• The bean is incorrectly configured on the server. For example, a skeleton
has not been generated, or the bean’s properties specify the wrong
implementation class.

Check the server’s log file if the cause of the error is not clear from the
exception’s detail message.

The call below instantiates a proxy for a bean with Java home interface
test.p1.Stateless1Home and bean JNDI name of test/p1/Stateless1:

import test.p1.*;
import javax.naming.*;
import javax.rmi.PortableRemoteObject;

try {
Object o = ctx.lookup("test/p1/Stateless1");
Stateless1Home home = (Stateless1Home)
PortableRemoteObject.narrow(o, Stateless1Home.class);

} catch (NamingException ne) {
System.out.println("Error: Naming exception: "
+ ne.getExplanation());

}

Instantiating remote or local interface proxies
Use the home interface create and finder methods to create proxies for session
beans and entity beans.

CHAPTER 8 Creating Enterprise JavaBeans Clients

Programmer’s Guide 153

Instantiating proxies
for a session bean

A session bean’s home interface can have several create methods. Each creates
an instance with different initial-value criteria. The fragment below shows a
typical call:

try {
Inventory inv = invHome.create();

} catch (CreateException ce)
{

System.out.println("Create Exception:"
+ ce.getMessage());

}

Instantiating proxies
for an entity bean

Each instance of an entity bean represents a row in an underlying database
table. An entity bean’s home interface may contain both finder methods and
create methods.

Finder methods Finder methods return instances that match an existing row
in the underlying database.

A home interface may contain several finder methods, each of which accepts
parameters that constrain the search for matching database rows. Every entity
bean home interface has a findByPrimaryKey method that accepts a structure
that represents the primary key for a row to look up.

Finder methods throw javax.ejb.FinderException if no rows match the specified
search criteria.

Create methods Create methods insert a row into the underlying database.

When instantiating an entity bean proxy, call a finder method first if you are
not sure whether an entity bean’s data is already in the database. Create
methods throw a javax.ejb.CreateException exception if you attempt to insert a
duplicate database row.

Example: instantiating an entity bean This example instantiates an entity
bean that represents a customer credit account. The primary key class has two
fields: custName is a string and creditType is also a string. The example looks
for a customer named Morry using the findByPrimaryKey method. If
FinderException is thrown, the example calls a create method to create a new
entity for customer Morry:

String _custName = "Morry";
String _creditType = "VISA";

custCreditKey custKey = new custCreditKey();
custKey.custName = _custName;
custKey.creditType = _creditType;
custMaintenance cust;

Calling remote interface methods

154 EAServer

try {
System.out.println(

"Looking for customer " + _custName);
cust = custHome.findByPrimaryKey(custKey);

} catch (FinderException fe) {
System.out.println(

"Not found. Creating customer " + _custName);
try {

cust = custHome.create(_custName, 2000);
} catch (CreateException ce)

System.out.println(
"Error: could not create customer "
+ _custName);

}
}

Calling remote interface methods
After instantiating a proxy for the bean, call the remote interface methods to
invoke the bean’s business logic. You can call the proxy methods as you would
invoke methods on any other object.

Calling local interface methods
You can use EJB local invocations in servlet, JSP, or EJB component code to
call EJB components hosted on the same server. Proxies for a local bean can be
instantiated with almost the same code that would be used to instantiate remote
proxies. The differences are:

• You must create a local EJB reference for the called EJB component, and
use the aliased JNDI name defined in the EJB local reference.

• Parameters that are not primitive types are passed by reference, not by
value. Changes to a parameter in the component implementation affect the
variable passed from the caller.

• You must narrow to the local home interface type, not the home interface
type.

CHAPTER 8 Creating Enterprise JavaBeans Clients

Programmer’s Guide 155

• Local interfaces are available only to EJB components, Java servlets, and
JSPs hosted on the same server as the target component. You must
configure a local EJB reference for the call, as described in “Adding an
EJB local reference” on page 387 and “Editing an EJB local reference”
on page 388.

• If local interfaces are used, both the caller and the called component must
be loaded by the same custom class loader.

When an EJB 2.0 component provides local interfaces, any other component
or Web application that calls the local interface must use the same class loader.
ClassCastException errors occur when local interface calls are made from
entities that use a different class loader. Configure the custom class lists for the
calling and called components and parent entries to allow sharing of the class
instances as described in “Custom class lists for packages, applications, or
servers” on page 558.

Managing transactions
EJB clients can begin transactions using the javax.transaction.UserTransaction
interface. Obtain an instance from the initial naming context by resolving the
name javax.transaction.UserTransaction. For example:

import javax.transaction.*;
import javax.naming.*;

Context ctx;

... ctx has been initialized ...
UserTransaction uTrans =

(UserTransaction) ctx.lookup(
"javax.transaction.UserTransaction");

You can call the begin(), commit(), and rollback() methods to begin and end
transactions. You can enlist multiple component methods in a transaction, with
these restrictions:

• Each method must allow inheritance of an existing transaction context.
That is, the method’s transaction attribute must be Supports, Requires, or
Mandatory. Methods with other transaction attributes run outside the
scope of your transaction. See “Component properties: Transactions” on
page 58 for more information on transaction attributes.

Serializing and deserializing bean proxies

156 EAServer

• All components must be on the same server, and all must use the same
transaction coordinator.

• All methods must be invoked by the thread that began the transaction.

Serializing and deserializing bean proxies
Serialization allows you to save a bean proxy as a file. Deserialization allows
you to extract the proxy from the file in another process or on another machine,
and, if the component instance is still active, reestablish your session with the
component.

To serialize a proxy Call the getHandle method on the remote interface, which returns a
javax.ejb.Handle instance. You can serialize the Handle instance using the
standard Java serialization protocol, as shown in the example below:

String _serializeTo; // Name of file to save to
Stateful1 proxy; // Active proxy instance

try {
System.out.println("Serializing to " + _serializeTo);
Handle handle = proxy.getHandle();
FileOutputStream ostream = new
FileOutputStream(_serializeTo);
ObjectOutputStream p = new
ObjectOutputStream(ostream);
p.writeObject(handle);
p.flush();
ostream.close();

} catch (Exception e)
{

System.out.println("Serialization failed. Exception "
+ e.toString());

e.printStackTrace();
return;
}

To deserialize the
proxy

Use the standard Java deserialization protocol to extract the Handle instance,
then call getEJBObject to restore the proxy, as shown in the example below:

String _serializeFrom; // Name of file to read from
Stateful1 proxy;

try {

CHAPTER 8 Creating Enterprise JavaBeans Clients

Programmer’s Guide 157

System.out.println("Deserializing proxy from "
+ _serializeFrom);

FileInputStream istream = new
FileInputStream(_serializeFrom);
ObjectInputStream p = new ObjectInputStream(istream);
Handle handle = (Handle)p.readObject();
proxy = (Stateful1) handle.getEJBObject();
istream.close();

} catch (Exception e)
{

System.out.println(
"Deserialization failed. Exception "
+ e.toString());

e.printStackTrace();
return;

}

Runtime requirements
EJB clients require JDK 1.2 or later. If running applets, make sure your
browser supports JDK 1.2. Most browsers require Sun’s Java Plug-in to
support JDK 1.2.

At run time, the following EAServer JAR files must be in the CLASSPATH for
Java applications and included with the class files for applets:

• java/lib/easclient.jar

• java/lib/easj2ee.jar

Unlike earlier versions, EAServer 4.0 does not provide runtime class files in
the html/classes directory. To run applets, you must include the JAR files in the
applet’s ARCHIVE tag, or expand these JAR files to the html/classes directory.

Chapter 4, “Creating Enterprise JavaBeans Components and Clients,” in the
EAServer Cookbook provides tutorial that describes how to deploy EJB clients
and components.

Runtime requirements

158 EAServer

Programmer’s Guide 159

C H A P T E R 9 EAServer EJB Interoperability

EAServer not only hosts EJB components, it provides interoperability
between EJB clients and components and other technologies. There are
two areas of interest for EJB interoperability:

• Intervendor EJB interoperability, or how you can use EAServer with
other EJB application servers.

• Intercomponent interoperability, or how you combine EJB
components hosted in EAServer with components of other types in
the same application.

This chapter describes:

Intervendor EJB interoperability
EAServer complies with the interoperability requirements in the EJB 2.0
specification, allowing you to interoperate with EJB 2.0 compliant servers
from other vendors. There are two approaches to inter-vendor
interoperability:

• Using CORBA 2.2 client interfaces This option allows
interoperability between EAServer and other vendors that support
CORBA 2.2.

Topic Page
Intervendor EJB interoperability 159

Invoking non-EJB components from EJB clients 164

Invoking EJB components from CORBA C++ clients 166

Invoking EJB components from PowerBuilder clients 169

Invoking EJB components from ActiveX clients 170

Invoking EJB components from CORBA Java clients 174

Invoking EJB components using the MASP interface 178

Intervendor EJB interoperability

160 EAServer

Using the EAServer Java or C++ CORBA client model, you can call
another vendor’s CORBA 2.2 compliant application server (the server
must support IIOP 1.0 or 1.1). Similarly, you can use another vendor’s
CORBA 2.2 compliant client ORB to call any component hosted by
EAServer (the client ORB must support IIOP 1.0 or 1.1).

This option is simpler than the EJB 2.0 RMI/IIOP option, but does not
support some EJB 2.0 interoperability features such as transaction and
security context propagation.

• Using EJB 2.0 RMI/IIOP interoperability This option allows
interoperability between EJB 2.0 compliant application servers, but can be
more complex to program, particularly in languages other than Java.

RMI/IIOP interoperability depends on CORBA 2.3 IDL Valuetypes,
which has the following implications:

• Valuetypes and other IIOP 1.3 features cannot be used by pre-
CORBA-2.3 client ORBs.

• At the time of this writing, standard support for RMI/IIOP clients
(specifically Valuetypes) in languages other than Java is lacking.

RMI/IIOP interoperability supports some features not supported by
CORBA 2.2 interoperability, such as:

• Interoperable naming, when using the interoperable name formats
described in “Interoperable naming URLs” on page 161.

• Transaction propagation, when using the OTS transaction model as
described in “Transaction interoperability” on page 34

• Security context propagation in accordance with the CSIv2
requirements outlined in the EJB 2.0 specification. For more
information on this feature, see “Intercomponent authentication for
EJB 2.0 components” in the EAServer Security Administration and
Programming Guide.

• Parameter and exception type inheritance and null value propagation
in method invocations.

EAServer supports RMI/IIOP interoperability for EJB clients and components,
without using CORBA 2.3 Valuetypes in the IDL interface definitions. The
generated stub and skeleton code can marshall parameters in accord with the
RMI/IIOP requirements, even though the IDL does not use Valuetypes. Since
the IDL does not use Valuetypes, EAServer EJB components remain
compatible with components of other types and with CORBA 2.2 clients.

CHAPTER 9 EAServer EJB Interoperability

Programmer’s Guide 161

EAServer can simultaneously support RMI/IIOP and CORBA 2.2 clients. The
client’s interoperability requirements are automatically detected at run time. To
use RMI/IIOP from another vendor’s EJB 2.0 container, you must use the
EAServer classes described in “Classes for RMI/IIOP connections from third-
party containers” on page 163.

Interoperable naming URLs
You can use interoperable naming URLs for EJB 2.0 components and clients.
Using an interoperable naming URL causes the EAServer runtime to use the
RMI/IIOP protocol, which is required for EJB 2.0 interoperability features
such as caller credential propagation. For more information on interoperable
naming services, see Chapter 5, “Naming Services,” in the EAServer System
Administration Guide.

Interoperable naming URLs for EJB clients

To use RMI/IIOP as the network protocol, an EJB client must specify a
corbaname interoperable naming URL as the value of the JNDI context’s
PROVIDER_URL property. When using corbaname URLs, you must specify
the user name and password using the JAAS API, as described in “JAAS on
the client” in Chapter 11, “Using the JAAS API,” in the EAServer Security
Administration and Programming Guide.

When using the EAServer EJB client runtime, the URL syntax is:

corbaname:iiop:ver@host:port/NameService[rmi]

Or to use the default IIOP version number:

corbaname:iiop:host:port/NameService[rmi]

Where:

ver Is an optional version number. Supported versions are 1.1
and 1.2. The default version is 1.1, unless you append the
#rmi:/ suffix, which forces the IIOP version to 1.2.

host Is the server host name.

port Is the server’s IIOP port number.

[rmi] Is the optional naming prefix #rmi:/, which specifies RMI
Valuetype semantics. Valuetype semantics are
required to propagate null parameter values in method
calls.

Using this option forces the IIOP version to 1.2.

Intervendor EJB interoperability

162 EAServer

For example, this URL specifies a connection to the host moxy at port 9000,
using IIOP 1.2 with Valuetype semantics:

corbaname:iiop:1.2@moxy:9000/NameService#rmi:/

As another example, this URL specifies a connection to the host moxy at port
9000, using IIOP 1.2 without Valuetype semantics:

corbaname:iiop:1.2@moxy:9000/NameService

This URL identifies a connection to the host moxy at port 9000, using IIOP 1.1:

corbaname:iiop:moxy:9000/NameService

The string /NameService is optional in all corbaname URLs. For example:

corbaname:iiop:1.2@moxy:9000#rmi:/

Or:

corbaname:iiop:1.2@moxy:9000

Interoperable naming URLs for EJB references

Servlets, JSPs, application clients, and EJB 2.0 components can use EJB
references to alias names used to resolve EJB home interfaces in the
implementation code. To use RMI/IIOP for invocations of the called
component, you must specify a corbaname URL in the Link Value setting for
the EJB reference.

To specify a name server address and IIOP version number, use a URL of the
form:

corbaname:iiop:ver@host:port/NameService#[rmi]comp-name

To specify a name server address and use the default IIOP version of 1.1:

corbaname:iiop:host:port/NameService#comp-name

To specify a component that is installed in the same server or cluster:

corbaname:rir:/NameService#[rmi]comp-name

Where:

ver Is an optional version number. The default version is 1.1.
Supported versions are 1.1 and 1.2.

host Is the server host name.

port Is the server’s IIOP port number.

CHAPTER 9 EAServer EJB Interoperability

Programmer’s Guide 163

For example, this URL references a component named Finance/Accounting,
using the local name service and IIOP 1.2 with Valuetype semantics:

corbaname:rir:/NameService#rmi:/Finance/Accounting

This URL references the same component name, running on moxy at port
9000, using IIOP 1.2 and RMI Valuetype semantics:

corbaname:iiop:1.2@moxy:9000/NameService#rmi:/Finance/Accounting

The string /NameService is optional in all corbaname URLs. For example:

corbaname:rir:#rmi:/Finance/Accounting

Classes for RMI/IIOP connections from third-party containers
To connect to EAServer using another vendor’s EJB 2.0 client, application
client, EJB, or servlet or JSP within a Web container, add easportable.jar to the
CLASSPATH. easportable.jar is located in the EAServer java\lib subdirectory
and contains the classes in the com.sybase.ejb.portable package. These classes
are:

• EJBMetaData

• Handle

• HomeHandle

Adding easportable.jar to the CLASSPATH enables you to call these methods
on a javax.ejb.EJBHome or javax.ejb.EJBObject instance residing on
EAServer:

• getEJBMetadata

[rmi] Is the optional naming prefix rmi:/, which specifies RMI
Valuetype semantics. Valuetype semantics are
required to propagate null parameter values in method
calls. This option requires IIOP 1.2.

When connecting to another vendor’s name service, the
service may require a different naming prefix to specify
RMI Valuetype semantics.

comp-name Is the name with which the component is bound to the name
service. For EAServer components, this is the value of the
com.sybase.jaguar.component.bind.naming
property, which defaults to package-name/component-name
if not set.

Invoking non-EJB components from EJB clients

164 EAServer

• getHandle

• getHomeHandle

To call EJB components in EAServer from a third-party container, the EJBs
must have been deployed from an EJB-JAR file or EAR file with the Use
Interoperable Naming option checked.

Invoking non-EJB components from EJB clients
To invoke a non-EJB component from an EJB client, you must first create a
home interface for the component, then generate EJB stubs for the
component’s interfaces. Then you can instantiate proxies for the non-EJB
component using the standard EJB client design pattern.

Create a home
interface

Non-EJB components can implement several remote interfaces. To instantiate
proxies for any remote interface from EJB clients, you must use a
corresponding home interface. Use EAServer Manager to create a home
interface for each IDL interface that the component implements. The home
interface must have a single create method that takes no parameters and returns
the remote interface.

Even with a home interface defined, EAServer creates component instances
using the standard method for the component’s lifecycle model. A non-EJB
component does not need to implement any additional methods to support the
home interface.

❖ Creating the home interface

1 Expand the component’s icon, then highlight the Interfaces folder beneath
the component. Choose File | Set Home Interface.

2 In the Home Interface dialog box, enter the home interface name as:

module::component_interfaceHome

where module is the IDL module where the remote interface is defined,
and component_interface is the base (non-nested) name of the remote
interface. For example, MyPackage::MyComponentHome.

3 Click Add New. EAServer creates the interface and an icon for the
interface appears in the component’s Interfaces folder.

4 Highlight the home interface icon, and choose File | New Method.

5 Enter “create” as the method name and click Create New Method.

CHAPTER 9 EAServer EJB Interoperability

Programmer’s Guide 165

6 Change the following in the Method Properties dialog, leaving other fields
at their default settings:

• Returns Enter the name of the corresponding remote interface, for
example, MyPackage::MyComponent.

• Exceptions raised Enter CtsComponents::CreateException.

7 Click OK to close the Method Properties dialog box.

Generate EJB stubs Use EAServer Manager to generate EJB stubs for the component, specifying a
different package or code base for the EJB stubs than used by the existing
CORBA stubs.

CORBA and EJB stubs share class names but do not share the same
implementation. Therefore, each type must be in a different Java package or
use a different code base.

“Generating EJB stubs” on page 142 describes how to generate the stub files.

Instantiating the home
interface

After defining a home interface and generating EJB stubs, you can instantiate
a home interface for the component using the standard EJB technique, as
described in Chapter 8, “Creating Enterprise JavaBeans Clients”.

The component’s home interface name matches the value of the
com.sybase.jaguar.component.bind.naming property. For non-EJB components,
you must view the value of this property using the Advanced tab in the
Component Properties dialog box. If the property is not set, the default is
initial-context/package/component, where initial-context is the server’s initial
naming context, package is the EAServer Manager package where the
component is installed, and component is the component name as displayed in
EAServer Manager.

Calling methods in the
remote interface

The methods in the Java remote interface follow the standard CORBA IDL-to-
Java datatype mappings. To allow increased interoperability between EJB
clients and non-EJB components, EAServer allows use of out and inout
parameters in the remote interface. In the Java remote interface, these are
represented by the same holder classes as used in CORBA stubs. See “Holder
classes” on page 229 for more information on using holder classes.

Invoking non-EJB
components from EJB
components

In EJB component code, you can make intercomponent calls using EJB stubs
and the EJB client interface as described above. You can also use the CORBA
client interface as described in “Issue intercomponent calls” on page 201.

Invoking EJB components from CORBA C++ clients

166 EAServer

Invoking EJB components from CORBA C++ clients
CORBA C++ clients can instantiate an EJB component using a proxy for the
EJB component’s home interface, then call business methods using a proxy for
the EJB component’s remote interface.

Chapter 15, “Creating CORBA C++ Clients,” describes how to use
EAServer’s C++ client ORB. This chapter provides new information on
implementing clients that call EJB component methods.

Supported datatypes C ++ clients can call methods that are defined using only IDL datatypes.
EAServer allows serializable Java classes to be used as parameters and return
values. Methods that use Java classes as a parameter or return value cannot be
called from C++ clients.

Generating C++
header files

❖ Generating C++ stubs for the EJB component’s interfaces

1 Highlight the component icon, or, to generate stubs for all components in
a package, highlight the package in which the EJB component is installed.

2 Choose File | Generate Stub/Skeleton.

3 In the Generate Stubs and Skeletons wizard, check Generate Stubs and
check Generate C++ stubs. Unselect Generate Java Stubs and Generate
Skeletons. Specify a location for the generated files. The default is the
EAServer include subdirectory.

EAServer Manager generates a header file for each IDL module that defines an
interface or type used by the component. All class and type definitions are
generated as inline code, so you need not compile the header files separately.

In the case of nested IDL modules, EAServer Manager generates a separate file
for each nested module, following this naming pattern:

OuterModule::Module1::Module2::InnerModule

In this case, OuterModule includes Module1 which includes Module2 which
includes InnerModule.

For example, for the IDL interfaces com::foo::interfaces::MyInterface and
com::foo::interfaces::MyHomeInterface, these files are generated:

• com.hpp includes com_foo.hpp and headers for other modules nested
within module com.

• com_foo.hpp includes com_foo_interfaces.hpp and headers for any other
nested modules.

CHAPTER 9 EAServer EJB Interoperability

Programmer’s Guide 167

• com_foo_interfaces.hpp declares the C++ classes for
com::foo::interfaces::MyInterface and
com::foo::interfaces::MyHomeInterface, as well as any other types declared
in module com::foo::interfaces.

In your client program, you must include only those header file that define
types or interfaces used by your program. For example, if you use the
com::foo::interfaces::MyInterface and com::foo::interfaces::MyHomeInterface
types, you must include com_foo_interfaces.hpp.

Using the home
interface

The C++ representation of the home interface follows the standard IDL-to-
C++ language mappings. In EAServer’s interface repository, the EJB
FinderException and CreateException exceptions are represented by the IDL
exceptions CtsComponents::FinderException and
CtsComponents::CreateException, respectively.

Instantiating a proxy for the home interface To instantiate a home
interface, use a SessionManager::Manager instance to create a
SessionManager::Session instance, then call the
SessionManager::Session::lookup method, passing the EJB component’s home
interface name. Narrow the returned object to the C++ class for the EJB
component’s home interface.

In this example, the IDL home interface is bookStore::custMaintenanceHome
and the EJB component’s home interface name is bookStore/custMaintenance:

 // Initialize the ORB
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv, 0);

// Obtain a SessionManager::Manager instance using the URL:
CORBA::Object_var obj =

orb->string_to_object(url);
SessionManager::Manager_var manager =
 SessionManager::Manager::_narrow(obj);

// Create an authenticated session for user Guest
// using password GuestPassword
SessionManager::Session_var session =

manager->createSession("Guest", "GuestPassword");

// Look up the EJB component's home interface
obj = session->lookup(component_name);
bookStore::custMaintenanceHome_var home

= bookStore::custMaintenanceHome::_narrow(obj);

Invoking EJB components from CORBA C++ clients

168 EAServer

Instantiating a session bean To instantiate a session bean, call one of the
home interface create methods as shown in the example below. All create
methods can raise CtsComponents::CreateException. The example below
instantiates the home of a bean with home interface name bookStore/inventory.
The IDL remote interface is bookStore::inventory:

try {
bookStore::inventory_var inventory = home->create();

}
catch (CtsComponents::CreateException &ce)
{

cout << "CreateException for component " << component_name << "\n"
<< "Message:" << ce.message << "\n";

}

Instantiating an entity bean An entity bean represents a row in a database
relation. In the home interface, create methods create a row in the database, and
finder methods return one or more instances that represent existing rows. All
create methods can raise CtsComponents::CreateException, and finder methods
can raise CtsComponents::FinderException. The example below first tries to
find an existing row using findByPrimaryKey, and creates a row if
CtsComponents::FinderException is thrown. The entity bean in this example
represents customer credit data. The primary key, bookStore::custCreditKey, has
two string fields, custName and creditType. The IDL remote interface is
bookStore::custMaintenance:

// Initialize a primary key for the bean
bookStore::custCreditKey custPk;
custPk.custName = CORBA::string_dup(customer_name);
custPk.creditType = CORBA::string_dup(credit_type);

bookStore::custMaintenance_var customer;
long balance = 2000;

// Look for an existing instance.
try {

cout << "Looking for customer named " << customer_name << "\n";
customer = home->findByPrimaryKey(custPk);

} catch (CtsComponents::FinderException &fe)
{

// Instance does not exist. Create it.
cout << "Customer " << customer_name << " does not exist. "

<< "Creating " << customer_name << " with initial balance of "
<< balance << ".\n";

customer = home->create(customer_name, balance);
}catch (CtsComponents::FinderException &fe)

CHAPTER 9 EAServer EJB Interoperability

Programmer’s Guide 169

{
cout << "Error creating account for customer " << customer_name ;

}

Serializing and
deserializing instance
references

An EJB client is allowed to obtain a handle for a remote interface instance. The
handle is a binary encoding of the session state between the client and the bean.
The client can obtain a handle, save it to disk or mail it to another location, then
reestablish the session at a later time.

In a CORBA client, you can obtain the same functionality using the
Orb.object_to_string and Orb.string_to_object methods. The same restrictions
apply when deserializing bean proxies that apply to any other remote object.
See Chapter 15, “Creating CORBA C++ Clients” for details.

Invoking EJB components from PowerBuilder clients
There are two ways to call EJB components from PowerBuilder:

• If using PowerBuilder, you can call EJB components hosted in EAServer
by generating proxies for the home, local, and remote interfaces then
calling the lookup method on the PowerBuilder Connection object to
instantiate the home interface proxy. Call the appropriate home interface
create method to instantiate a proxy for the remote interface, then call the
business methods as you would for any other EAServer component.

• If using PowerBuilder 9.0 or later, you can use the PowerBuilder EJB
client interfaces. These interfaces use Java and Sybase-provided
PowerBuilder extensions to invoke EJBs on any J2EE compatible
application server. While this approach allows interoperability with
servers from multiple vendors, the deployed client files are larger due to
the need for a Java Runtime Environment and additional PowerBuilder
libraries.

For more information, see the Application Techniques manual in the
PowerBuilder documentation.

Invoking EJB components from ActiveX clients

170 EAServer

Invoking EJB components from ActiveX clients
ActiveX clients can instantiate an EJB component using a proxy for the
component’s home interface, then call business methods using a proxy for the
component’s remote interface.

For a description of EAServer’s ActiveX client proxy, see Chapter 20,
“Creating ActiveX Clients.”

Supported datatypes
ActiveX clients can call methods that are defined using only IDL datatypes.
EAServer allows serializable Java classes to be used as parameters and return
values. Methods that use Java classes as a parameter or return value cannot be
called from ActiveX clients.

About overloaded methods and nested IDL
Most EJB home interfaces have overloaded methods, and many imported Java
components use nested IDL modules.

Overloaded methods The Java interfaces for an EJB component may have overloaded methods; that
is, several methods with the same name that differ in the number and type of
parameters. For example, a home interface may contain several create
methods. EAServer maps such methods to uniquely named IDL methods by
appending two underscores and a suffix to the Java method name. ActiveX
does not support overloaded methods, so you must use the full IDL method
names for methods that are overloaded in the Java interface.

For example, if a Java home interface has these methods:

mypackage.MyBeanRemote Create()

mypackage.MyBeanRemote Create(String p1, long p2)

mypackage.MyBeanRemote Create(
String p1, String p2, long p3)

The IDL equivalent might be:

mypackage::MyBean Create()

mypackage::MyBean Create__String(string p1, long p2)

CHAPTER 9 EAServer EJB Interoperability

Programmer’s Guide 171

mypackage::MyBean Create__StringString(
string p1, string p2, long p3)

To determine the full IDL method names, view the IDL interface in EAServer
Manager.

Nested IDL modules EAServer supports nested IDL modules. IDL modules that define the
interfaces for an EJB component typically follow the Java package structure of
the component’s Java interfaces. For example, if the Java interfaces are in the
Java package com.sybase.foo, IDL interfaces are in module com::sybase::foo.
When implementing ActiveX clients, you must understand how nested IDL
modules are mapped to ActiveX interface PROGIDs and the type names used
in Object.Narrow_ calls.

The ActiveX PROGID for an IDL type defined in a nested IDL module follows
this naming pattern:

module1_module2_module3.typeName

Each nested module name is preceded by an underscore, and the IDL type
name is preceded by a period (.). For example, the PROGID for IDL type
com::sybase::foo::MyBeanRemote is com_sybase_foo.MyBeanRemote.

When specifying type names in Object.Narrow_ calls, substitute a forward slash
(/) for every double-colon (::) in the IDL type name. For example, if the IDL
type is com::sybase::foo::MyBeanRemote, use
com/sybase/foo/MyBeanRemote in the call to Object.Narrow_.

Using the home interface
An EJB home interface contains methods that return proxies for the
component’s remote interface.

The home interface for an entity bean contains finder methods that can be used
to obtain instances that represent rows already in the underlying database.

Instantiating the home
interface

To instantiate a home interface, use a SessionManager::Manager instance to
create a SessionManager::Session instance, then call the
SessionManager::Session::lookup method, passing the bean’s home interface
name. Narrow the returned object to the bean’s home interface.

The example below instantiates the home interface named
bookStore/customerMaintenance. In IDL, the home interface is
bookStore::custMaintenanceHome:

' Initialize the ORB
Dim orbRef As JaguarTypeLibrary.ORB

Invoking EJB components from ActiveX clients

172 EAServer

Set orbRef = New JaguarTypeLibrary.ORB
orbRef.Init ("")

' Get a SessionManager::Manager proxy
Dim manager_ior As String
Dim CORBAObj As Object
Dim sessManager As SessionManager.Manager
manager_ior = Format("iiop://" & host & ":" & port)
Set CORBAObj = _

orbRef.string_to_object(manager_ior)
Set sessManager = CORBAObj.Narrow_("SessionManager/Manager")

' Get a Session proxy, passing username and password
Dim session As SessionManager.session
Set CORBAObj = sessManager.createSession(_

userName, password)
Set session = CORBAObj.Narrow_("SessionManager/Session")

' Get a proxy for the home interface
Dim home As bookStore.custMaintenanceHome
Set CORBAObj = session.lookup("bookStore/custMaintenance")
Set home = CORBAObj.Narrow_("bookStore/custMaintenanceHome")

Instantiating proxies
for entity beans

Each instance of an entity bean represents a row in an underlying database
table. An entity bean’s home interface may contain both finder methods and
create methods.

Finder methods Finder methods look return instances that match an existing
row in the underlying database.

A home interface may contain several finder methods, each of which accepts
parameters to constrain the search for matching database rows. Every entity
bean home interface has a findByPrimaryKey method that accepts a structure
that represents the primary key for a row to look up.

Finder methods throw CtsComponents::FinderException if no rows match the
specified search criteria.

Create methods Create methods insert a row into the underlying database.

When instantiating an entity bean proxy, call a finder method first if you are
not sure whether an entity bean’s data is already in the database. Create
methods throw a CtsComponents::CreateException exception if you attempt to
insert a duplicate database row.

CHAPTER 9 EAServer EJB Interoperability

Programmer’s Guide 173

Example: instantiating an entity bean This example instantiates an entity
bean that represents a customer credit account. The primary key structure has
two members: custName is a string and creditType is also a string. The example
looks for a customer named "Morry" using the findByPrimaryKey method. If a
user exception is raised, the code assumes that
CtsComponents::FinderException was thrown to indicate that the requested
entity does not exist. In this case, the example calls a create method to create a
new entity.

Dim pKey As bookStore.custCreditKey
Dim customerName as String
customerName = "Morry"

Set pKey = New bookStore.custCreditKey
pKey.creditType = "VISA"
pKey.custName = customerName

Dim balance As Long

' First try to look up the customer as an existing entity
' This fails with CtsComponents::FinderException if the
' entity does not exist.
On Error GoTo FinderError
Set customer = home.findByPrimaryKey(pKey)
GoTo Instantiated

FinderError:
' An error 9000 means a user-defined exception was thrown.
' In this case, it must be CtsComponents::FinderException,
' which indicates the requested entity does not exist. Any
’ other error number is unexpected.
If Err.Number <> 9000 Then

' This is an unexpected error
inError = True
Call MsgBox("Error calling findByPrimaryKey", "Error")
GoTo CleanupAfterFailure

End If

' Create a new entity. Create methods are not overloaded in the
’ IDL home interface, and we must use the full IDL method name.
On Error GoTo CleanupAfterFailure
balance = 3000
Set customer = home.create__string(customerName, balance)

Instantiated:
' Successful instantiation. Code to call business methods goes here.

Invoking EJB components from CORBA Java clients

174 EAServer

CleanupAfterFailure:
' Unexpected error. Code to clean up forms, display errors,
’ and so forth.

Instantiating proxies
for session beans

The home interface for a session bean contains only create methods.

The example below instantiates a home interface named
HelloWorldHome/HelloWorldHome, then calls the create method that takes no
parameters. The IDL home interface type is mde::helloworld::HelloWorldHome
and the remote interface is mde::helloworld::HelloWorld.

Dim session as SessionManager.Session
... deleted code that instantiated a valid session ...

Dim compHome As mde_helloworld.HelloWorldHome
Set CORBAObj = session.lookup("HelloWorldHome/HelloWorldHome")

Set compHome = CORBAObj.Narrow_("mde/helloworld/HelloWorldHome")
Set comp = compHome.Create().Narrow_("mde/helloworld/HelloWorld")

Serializing and deserializing instance references
An EJB client can obtain a handle for a remote interface instance. The handle
is a binary encoding of the session state between the client and the component.
The client can obtain a handle, save it to disk or mail it to another location, then
reestablish the session at a later time.

In a CORBA client, you can obtain the same functionality using the
Orb.object_to_string and Orb.string_to_object methods. The same restrictions
apply when deserializing component proxies that apply to any other remote
object.

Invoking EJB components from CORBA Java clients
CORBA Java clients can instantiate an EJB component using a proxy for the
EJB component’s home interface, then call business methods using a proxy for
the EJB component’s remote interface.

Chapter 12, “Creating CORBA Java Clients,” describes how to use
EAServer’s Java client ORB. This chapter provides new information on
implementing clients that call EJB component methods.

CHAPTER 9 EAServer EJB Interoperability

Programmer’s Guide 175

Deciding whether to
use EJB or CORBA
interfaces

When using the EAServer client runtime, the EJB and CORBA interfaces offer
identical functionality unless EJB 2.0 intervendor interoperability features are
required (see “Intervendor EJB interoperability” on page 159). In this case,
you must use the EJB client interace. If intervendor EJB interoperability is not
required, choose the interfaces that you are most comfortable with.

Generating CORBA
stubs

You cannot generate CORBA stubs to the same Java package as EJB stubs.
Therefore, you must generate CORBA stubs using either a different code base
or a different Java package than used by the existing EJB stubs. For example:

• If all clients will access an EJB component using the CORBA interfaces,
you can generate CORBA stubs using EAServer’s html/classes
subdirectory as a code base. The EJB component uses the EJB stubs
deployed under the java/classes subdirectory to marshall parameters and
return values.

• If both CORBA and EJB clients will access an EJB component, you can
generate CORBA stubs to a different Java package than that used by the
existing EJB stubs. See “Specifying Java package mappings for IDL
modules” on page 91.

❖ Generating stubs in EAServer Manager

1 Make sure the CORBA stubs will be generated to a different package or
code base than existing EJB stubs. To change the Java package for
CORBA stubs, follow the steps under “Specifying Java package
mappings for IDL modules” on page 91.

2 Highlight the component icon, or to generate stubs for all components in
a Package, highlight the package where the EJB component is installed.

3 Choose File | Generate Stub/Skeleton.

4 In the Generate Stubs and Skeletons wizard, select both Generate Stubs
and Generate Java Stubs, and choose CORBA from the drop-down list of
stub types. Uncheck Generate C++ Stubs and Generate Skeletons.

5 Specify a code base for the generated files. The default is EAServer’s
html/classes subdirectory.

Using the home
interface

The Java representation of the home interface follows the standard IDL-to-Java
language mappings. In EAServer’s interface repository, the EJB
FinderException and CreateException exceptions are represented by the IDL
exceptions CtsComponents::FinderException and
CtsComponents::CreateException, respectively.

Invoking EJB components from CORBA Java clients

176 EAServer

Instantiating the home interface To instantiate a home interface, use a
SessionManager::Manager instance to create a SessionManager::Session
instance, then call the SessionManager::Session::lookup method, passing the
EJB component’s home interface name. Call the narrow method in the helper
class for the EJB component’s home interface to narrow the returned object to
the home interface.

In this example, the IDL home interface is bookStore::custMaintenanceHome
and the EJB component’s home interface name is bookStore/custMaintenance:

org.omg.CORBA.Orb orb;

... deleted standard Orb initialization ...

org.omg.CORBA.Object obj = orb.string_to_object(_url);
Manager manager = ManagerHelper.narrow(obj);

Session session = manager.createSession("Guest", "GuestPassword");

// Create an instance of the home interface.

custMaintenanceHome custHome = custMaintenanceHomeHelper.narrow (
session.lookup("bookStore/custMaintenance"));

Instantiating a session bean The example below instantiates a home
interface named bookStore/inventory, then calls the create method that takes no
parameters. The IDL home interface type is bookStore::inventoryHome and the
remote interface is bookStore::inventory.

SessionManager.Session session;

... deleted code that instantiated session ...

inventoryHome home = inventoryHomeHelper.narrow (
 session.lookup(_compName));

if (home == null)
{

 System.out.println("Error: home interface is null.");
 return;

}

inventory inv = home.create();

CHAPTER 9 EAServer EJB Interoperability

Programmer’s Guide 177

Instantiating an entity bean This example instantiates an entity bean that
represents a customer credit account. The primary key structure has two
members: custName is a string and creditType is also a string. The example
looks for a customer named Morry using the findByPrimaryKey method.
CtsComponents::FinderException can be thrown to indicate that the requested
entity does not exist. In this case, the example calls a create method to create a
new entity.

// Obtain an instance of the remote interface. First check
// to see if the requested customer exists. If not, create
// a new entity.
String _custName = "Morry";
custCreditKey custKey = new custCreditKey();
custKey.custName = _custName;
custKey.creditType = _creditType;
custMaintenance cust;

try
{

System.out.println("Looking for customer " + _custName + " ...");
cust = custHome.findByPrimaryKey(custKey);

}
catch (CtsComponents.FinderException fe)
{

System.out.println("Not found. Creating customer " + _custName + ".");
try
{

cust = custHome.create(_custName, 2000);
}
catch (FinderException fe)
{

System.out.println("Error: could not create customer " + _custName);
}

}

Serializing and
deserializing instance
references

An EJB client can obtain a handle for a remote interface instance. The handle
is a binary encoding of the session state between the client and the EJB
component. The client can obtain a handle, save it to disk or mail it to another
location, then reestablish the session at a later time.

In a CORBA client, you can obtain the same functionality using the
Orb.object_to_string and Orb.string_to_object methods. The same restrictions
apply when deserializing EJB component proxies as apply to any other remote
object. See Chapter 12, “Creating CORBA Java Clients” for details.

Invoking EJB components using the MASP interface

178 EAServer

Invoking EJB components using the MASP interface
An EJB component can be invoked from MASP as long as:

• The home interface has a create method that takes no parameters. This
method is called to create an instance for the MASP invocation.

• The EJB component is not stateful.

MASP only supports primitive types, that is, those types listed in the drop-
down list in EAServer Manager’s Method Properties dialog box. From MASP,
you can only call methods in the remote interface that meet these
qualifications:

• All parameters are primitive Java types.

• The method returns a primitive Java type or void.

Programmer’s Guide 179

C H A P T E R 1 0 Creating Application Clients

EAServer supports the J2EE application client model. An application
client is a standalone Java application that uses the EJB client interface to
invoke components on EAServer and is run by the EAServer application
client container. This model simplifies the deployment of standalone EJB
client applications by allowing you to configure the application’s
component references, database connection references, and environment
properties in EAServer Manager.

Creating an application client
An application client uses JNDI to look up and gain access to EJB
components, resources, and environment properties defined in an XML
deployment descriptor.

An application client connects to an EAServer component using a JNDI
environment naming context. Here is a simple implementation of an
application client:

InitialContext initCntxt = new InitialContext();

Object acctRef =
initCntxt.lookup(“java:comp/env/ejb/acctBean”);

acctBeanHome home = (acctBeanHome)
PortableRemoteObject.narrow(acctRef,
acctBeanHome.class);

Account acct = home.findByPrimaryKey(new
AcctPK(1));

String name = acct.getName();
System.out.println(name);

Topic Page
Creating an application client 179

Configuring application client properties 180

Running application clients 182

Configuring application client properties

180 EAServer

The application client JAR file includes a deployment descriptor that defines
the JNDI environment naming context entries. This example defines the EJB
reference for an acctBean:

<application-client>
<display-name>MyClient</display-name>
<ejb-ref>

<ejb-ref-name>ejb/AcctBean</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.sybase.acct.acctBeanHome</home>
<remote>com.sybase.acct.Account</remote>

</ejb-ref>
</application-clinet>

❖ Creating an application client in EAServer Manager

1 Expand the top-level Applications folder, then expand the icon that
represents your application, and highlight Clients.

2 Choose File | New Application Client and enter a name for the application
client.

3 If necessary, create the EJB client. See Chapter 8, “Creating Enterprise
JavaBeans Clients.”

4 Configure the application client properties. See “Configuring application
client properties” on page 180.

Configuring application client properties
You can configure an application client’s properties in EAServer Manager. If
you have created an Enterprise archive (EAR) file using another tool and
imported it into EAServer, most properties are automatically set during the
import process.

❖ Displaying the Application Client Properties dialog

To set the properties described in this section, first open the Application Client
Properties dialog.

1 Expand the Clients folder, then highlight the icon that represents your
application client.

2 Choose File | Application Client Properties.

CHAPTER 10 Creating Application Clients

Programmer’s Guide 181

General properties
Enter the application client’s general properties:

• Description An optional text description of the application client.

• Main Class The main Java class of the application client in dot notation;
for example, com.sybase.appclient.Myclient.

EJB references
Add references for the EJBs that the application client accesses in its code. For
example, add the EJB reference ejb/acctBean in EAServer Manager and use
java:comp/env/ejb/acctBean in your application client code.

“EJB references” on page 386 describes how to add or configure EJB
references.

Resource references
Resource references are used to obtain connector and database connections,
and to access JMS connection factories, JavaMail sessions, and URL links.

“Resource references” on page 388 describes how to add and configure
resource references.

Resource environment references
Resource environment references are logical names applied to objects
administered by EAServer, such as JMS message queues and topics.

“Resource environment references” on page 390 describes how to add and
configure resource environment references.

Environment properties
Environment properties allow you to specify global read-only data for use by
the application client.

Application clients must use JNDI to retrieve environment properties, using the
prefix java:comp/env in JNDI lookups.

Running application clients

182 EAServer

The deployment descriptor catalogs the environment properties used by the
application client, as well as each property’s Java datatype and default value.

“Environment properties” on page 391 describes how to add and configure
environment properties.

Java classes
The Java Classes tab allows you to specify classes that must be included in the
Application Client’s run-time JAR file. “Configuring an entity’s custom class
list” on page 559 describes how to configure this setting.

JAXP properties
The settings on the JAXP tab configure the JAXP, DOM, and XSLT parser
implementations used in the application client. See Chapter 36, “Configuring
Java XML Parser Support,”for more information on these properties.

Application client files
The Files tab lists all the files in the application client, which are copied to
%JAGUAR%\Repository\<Application_Name>\<Client_Name> when you
deploy the application EAR file. When you export the client application, the
files listed on this tab, plus the EJB stubs for the application are added to the
export JAR file, which you deploy on a client machine to run the application.

Running application clients
To run an application client on a client machine:

• Copy the application client JAR file to the client’s machine and import the
JAR file, as described in Chapter 9, “Importing and Exporting
Application Components,” in the EAServer System Administration Guide.

• Set up the environment – see “Setting up a client’s workstation” on page
183.

CHAPTER 10 Creating Application Clients

Programmer’s Guide 183

• Start the application client’s runtime container – see “Starting the runtime
container” on page 183.

Setting up a client’s workstation
To set up a client’s workstation, install the EAServer client runtime files, as
described in the EAServer Installation Guide for your platform. UNIX scripts
and Windows batch files are provided to configure and launch the container
runtime, as described below.

Starting the runtime container
The runtime container enables the application client to look up EJB and
resource references. The container also provides security and authenticates the
client when the application is started.

Run application clients using the script runclient.bat (on Windows) or
runclient.sh (on UNIX). Application clients require JDK 1.3 or later.

Use these options to define the runtime parameters:

This example illustrates the command-line syntax to start an application
client’s runtime container, where my_appclient.jar is the name of the
application client JAR file and my_client is the name of the client. On
Windows, the command is:

%JAGUAR%\bin\runclient -client my_appclient.jar -name my_client -login

On UNIX, the command is:

$JAGUAR/bin/runclient.sh -client my_appclient.jar -name my_client -login

Option Description

- client Application client JAR file

- name Client’s name

- login Displays a login dialog to authenticate the client

Running application clients

184 EAServer

P A R T 3 CORBA-Java Components
and Clients

This part explains how to build Java components and clients
that use standard CORBA type mappings and run-time
services.

Programmer’s Guide 187

C H A P T E R 1 1 Creating CORBA Java
Components

This chapter describes how to create and install Java components using
EAServer Manager and a separate development environment.

Requirements
The following list describes the software requirements for developing
Java components and the hardware requirements for running Java
components. All software that is required to run Java components in
EAServer is supplied with the EAServer product.

• Development To create Java components, you need a development
tool that supports JDK 1.2 or later and access to an EAServer
installation. You must have Administrator Role access to define or
modify components.

For development, you can use any compatible Java compiler in
combination with EAServer Manager, or you can use a Java
Integrated Develelopment Environment (IDE) such as Borland
JBuilder. If using JBuilder, the Sybase EAServer plugin allows direct
deployment to EAServer from the IDE.

Topic Page
Requirements 187

Procedure for creating Java components 188

Define the component interface and properties 188

Choose implementation datatypes 189

Write the Java source file 194

Advanced techniques 201

Deploy Java components 206

Debug Java components 208

Procedure for creating Java components

188 EAServer

• Runtime Java components require that JDK 1.2 or later be installed on
the server host machine. For detailed system requirements, see the
EAServer Release Bulletin for your platform.

Procedure for creating Java components
A Java component is composed of Java class bytecode files. To create a Java
component, you:

1 Define the component interface and properties

2 Choose implementation datatypes

3 Write the Java source file

4 Deploy Java components

Define the component interface and properties
The definition of a Java component specifies the interfaces that the component
implements as well as its other properties.

Defining the client
interfaces

All component interfaces for EAServer components are defined in CORBA
IDL modules that are stored in EAServer’s IDL repository. Chapter 5,
“Defining Component Interfaces” describes how to define IDL interfaces.

Java component developers typically use one of the following to define the
interface or interfaces that their component implements:

• Implement a Java source file and import the methods from it As an
alternative to IDL, you can define a Java class or interface, then use
EAServer Manager to import the method definitions from the compiled
Java bytecode file. EAServer creates a new component definition and an
IDL interface that matches the methods defined in the Java file. For more
information on this feature, see “Importing interfaces from compiled Java
files” on page 85.

CHAPTER 11 Creating CORBA Java Components

Programmer’s Guide 189

• Use existing interfaces from EAServer’s IDL repository In some
cases, client and server component developers may have agreed upon an
existing interface or several interfaces that your component must
implement. In this case, it is up to you, the component developer, to
implement the specified interface. EAServer stores HTML documentation
for all interfaces in the IDL repository in the html/ir subdirectory of your
EAServer installation.

• Define a new IDL interface or interfaces If you are defining the
interface yourself, you can use EAServer Manager’s IDL editor to create
a new interface for the component. “Defining modules, interfaces, and
types in IDL” on page 89 describes how.

If you have an IDL interface
If you are starting with an IDL interface rather than an existing class file, you
can use EAServer Manager to create a class that contains the necessary method
declarations. See “Generate stub, skeleton, and implementation files” on page
195 for more information.

Choose a control
interface

Optionally configure a control interface for the component. Using a control
interface allows you to implement methods to respond to changes in the
instance lifecycle. See “Configuring a control interface” on page 73 for more
information.

Specify component
properties

In EAServer Manager, the Component Properties window configures the
settings that EAServer uses to load the component and invoke its methods. See
“Configuring component properties” on page 52 for more information.

Choose implementation datatypes
EAServer provides two component types for Java components. These
component types are functionally equivalent, except that they use different
mappings between IDL datatypes and the Java datatypes that are required in
your implementation class. The choices are:

• Java with IDL datatypes The component’s method declarations use the
type mappings that are specified by the CORBA document, IDL to Java
Language Mapping Specification (formal/99-07-53). To use these type
mappings, specify Java - CORBA as the component type in the EAServer
Manager Component Properties dialog box.

Choose implementation datatypes

190 EAServer

• Java with JDBC datatypes Predefined EAServer datatypes and IDL
base types are mapped to types in the java.lang and java.sql packages.
User-defined exceptions are not supported. User-defined IDL parameter
and return types are mapped to Java datatypes using the standard CORBA
IDL-to-Java mappings. Components that were developed for some earlier
EAServer versions may use these type mappings. Components that throw
com.sybase.jaguar.util.JException must use these mappings. To use these
type mappings, specify Java - JDBC as the component type in the
EAServer Manager Component Properties dialog box.

Use IDL types for new development
Java-JDBC type mappings are supported to provide backward
compatibility with earlier EAServer versions. For new development, use
the Java-CORBA types. Components using Java-JDBC type mappings
cannot raise user-defined IDL exceptions; all exceptions must be thrown
as the generic jaguar.util.JException class. If you import a Java class that
uses jaguar.util.JException, the importer generates a Java-JDBC
component.

The sections below describe the mappings in detail.

Java - CORBA
component datatype
mappings

The following table lists the datatypes displayed in EAServer Manager, the
equivalent CORBA IDL types, and the Java datatypes used in Java/IDL
component methods.

Table 11-1: EAServer Manager, CORBA IDL, and Java datatype
equivalence

EAServer
Manager
display
datatype

CORBA IDL
type

Java type (input
parameter or return
value) Java type (inout or out parameter)

integer<16> short short org.omg.CORBA.ShortHolder

integer<32> long int org.omg.CORBA.IntHolder

integer<64> long long long org.omg.CORBA.LongHolder

float float float org.omg.CORBA.FloatHolder

double double double org.omg.CORBA.DoubleHolder

boolean boolean boolean org.omg.CORBA.BooleanHolder

char char char org.omg.CORBA.CharHolder

byte octet byte org.omg.CORBA.ByteHolder

string string java.lang.String org.omg.CORBA.StringHolder

binary BCD::Binary byte[] BCD.Binary

decimal BCD::Decimal BCD.Decimal BCD.DecimalHolder

CHAPTER 11 Creating CORBA Java Components

Programmer’s Guide 191

Binary, Fixed-Point, and Date/Time types The BCD and MJD IDL modules
define types to represent common database column types such as binary data,
fixed-point numeric data, dates, times. The BCD::Binary CORBA type maps to
a Java byte array. The other BCD and MJD types map to data representations
that are optimized for network transport.

To convert between the IDL-mapped datatypes and from core java.* classes,
use these classes from the com.sybase.CORBA.jdbc11 package:

Chapter 1, “Java Classes and Interfaces,” in the EAServer API Reference
provides reference pages for these classes.

Result set types The TabularResults IDL module defines types used to
represent tabular data. Result sets are typically used only as return types,
though you can pass them as parameters.

“Return result sets” on page 203 describes how to create and return result sets.

User-defined IDL types A user-defined type is any type that is:

• Not in the set of datatypes that is not predefined by EAServer’s read-only
repository modules and

• Not one of the CORBA IDL base types.

If a method definition includes user-defined types, the Java component method
will use the equivalent Java datatype as specified by the CORBA Java
language mappings specification. See “Overview” on page 211 for more
information on this document.

money BCD::Money BCD.Money BCD.MoneyHolder

date MJD::Date MJD.Date MJD.DateHolder

time MJD::Time MJD.Time MJD.TimeHolder

timestamp MJD::Timestamp MJD.Timestamp MJD.TimestampHolder

ResultSet TabularResults::
ResultSet

TabularResults.ResultSet TabularResults.ResultSetHolder

ResultSets TabularResults::
ResultSets

TabularResults.ResultSet[] TabularResults.ResultSetsHolder

EAServer
Manager
display
datatype

CORBA IDL
type

Java type (input
parameter or return
value) Java type (inout or out parameter)

Class Description

SQL Contains methods to convert from BCD.* and MJD.* types to java.* types

IDL Contains methods to convert from java.* types to BCD.* and MJD.* types

Choose implementation datatypes

192 EAServer

CORBA Any and TypeCode support
EAServer’s Java ORB supports the CORBA Any and TypeCode datatypes.
Refer to the OMG CORBA 2.3 specification and IDL to Java Language
Mapping Specification (formal/99-07-53) for information on using these
types.

Holder classes for IDL types All IDL-mapped Java types have an
accompanying holder class that is used for passing parameters by reference.
Each holder class has the following structure:

public class <Type>Holder {
// Current value
public <type> value;
// Default constructor
public <Type>Holder() {}
// Constructor that sets initial value
public <Type>Holder(<type> v) {
this.value = v;

}
}

This structure is defined by the CORBA Java-language bindings specification.

Java - JDBC
component datatype
mappings

Java-JDBC type mappings are supported to provide backward compatibility
with earlier EAServer versions. For new development, use the Java-CORBA
types. Components using Java-JDBC type mappings cannot raise user-defined
IDL exceptions; all exceptions must be thrown as the generic
jaguar.util.JException class.

The table below shows the datatypes displayed in the EAServer Manager, the
datatypes used by Java components, and the argument modes (in, inout, out for
parameter passing modes and return to indicate the type is used for method
return values).

inout and out parameters for these datatypes are passed in holder classes from
the com.sybase.jaguar.util and com.sybase.CORBA.jdbc11 packages. For more
information on these packages, see the reference pages in Chapter 1, “Java
Classes and Interfaces,” in the EAServer API Reference.

CHAPTER 11 Creating CORBA Java Components

Programmer’s Guide 193

Table 11-2: Java - JDBC component datatype mappings

EAServer
Manager
datatype IDL type Mode Java type

boolean boolean input,
return
inout, out

boolean
BooleanHolder

binary BCD::Binary input,
return
inout, out

byte[]
BytesHolder

byte octet input
inout, out

byte
ByteHolder

date MJD::Date input,
return
inout, out

java.sql.Date
com.sybase.jaguar.util.jdbc11.DateHolder

decimal BCD::Decimal input,
return
inout, out

java.math.BigDecimal
com.sybase.jaguar.util.jdbc11.BigDecimalHolder

double double input,
return
inout, out

double
DoubleHolder

float float input,
return
inout, out

float
FloatHolder

integer<16> short input,
return
inout, out

short
ShortHolder

integer<32> long input,
return
inout, out

int
IntegerHolder

integer<64> long long input,
return
inout, out

long
LongHolder

money BCD::Money input,
return
inout, out

java.math.BigDecimal
com.sybase.jaguar.util.jdbc11.BigDecimalHolder

string string input,
return
inout, out

java.lang.String
StringHolder

time MJD::Time input,
return
inout, out

java.sql.Time
com.sybase.jaguar.util.jdbc11.TimeHolder

Write the Java source file

194 EAServer

User-defined IDL types in a method declaration are mapped to the same Java
classes as for a Java/IDL component. See “User-defined IDL types” on page
191 for more information.

Methods in a Java-JDBC component do not return result sets explicitly. If the
IDL method definition indicates a result set or result sets are returned, the Java
method must be declared to return void, and the implementation must use the
EAServer JServerResultSet and JServerResultSetMetaData interfaces to send
result sets back to the client.

Write the Java source file
When you code the parameters for each method, make sure you use the Java
datatype that corresponds to the datatype you defined in the EAServer
Manager.

If you have an IDL interface
If you are starting with an IDL interface rather than an existing class file, you
can use EAServer Manager to create a class that contains the necessary method
declarations. See “Generate stub, skeleton, and implementation files” on page
195 for more information.

❖ Implementing the component

1 Generate stub, skeleton, and implementation files – Generate the files
required to run the component. If you are starting development with an
IDL interface, and not an existing Java class or interface, EAServer
Manager will generate a sample implementation with all the required
method signatures.

2 Add package import statements – Import the packages that contain the
classes that you need to use in your Java class.

timestamp MJD::
Timestamp

input,
return
inout, out

java.sql.Timestamp
com.sybase.jaguar.util.jdbc11.TimestampHolder

EAServer
Manager
datatype IDL type Mode Java type

CHAPTER 11 Creating CORBA Java Components

Programmer’s Guide 195

3 Code the constructor – Provide a default constructor to be called when
EAServer loads the implementation class.

4 Implement control interface methods – Implement the control interface
methods to respond to changes in the instance lifecycle.

5 Add error handling code – Add code that gracefully handles errors by
logging status messages and sending meaningful messages to the client.

6 To finish up, you can use these advanced technique to polish your
component implementation:

a Manage database connections – Connect to databases through
connection caches using the Connection Management API.

b Return result sets – Return result sets using the EAServer Result Sets
API.

c Issue intercomponent calls – Instantiate a Java stub to make
intercomponent calls.

Generate stub, skeleton, and implementation files
Use EAServer Manager to generates stubs and skeletons for the component.
EAServer Manager will also create a sample implementation template for the
class that implements the component methods.

Note Internally, EAServer’s IDL-to-Java compiler is invoked by EAServer
Manager to generate Java stubs and skeletons. The direct compiler interface is
not intended for customer use.

What the skeleton does The skeleton class interprets component invocation
requests and calls the corresponding method in your component with the
parameter values supplied by the client. When a client sends an invocation
request, the skeleton reads the parameter data and calls the Java method. When
the method returns, the skeleton sends output parameter values, return values,
and exception status to the client.

You must generate a new skeleton class if:

• You install the component in a different EAServer package,

• You change the name of the implementation class or move it to a different
Java package,

Write the Java source file

196 EAServer

• You add a method to the component interface,

• You delete a method from the component interface, or

• You change the signature of an existing method in the component
interface.

Using the sample implementation EAServer Manager creates a sample
source for the implementation class that is specified in the Component
Properties window. The generated template file name is:

componentImpl.java.new

where component is the name of the component. The .new extension avoids
conflicts with existing source files.

The sample implementation provides a starting point for your own
implementation, as it contains all the required method definitions to match the
IDL interfaces that the component implements. Each method has the same
name as the IDL operation it implements, and uses return and parameter
datatypes that are mapped according to the type mappings that you have chosen
(see “Choose implementation datatypes” on page 189).

In the Java component, component interface methods must be public and
cannot be declared static. If the IDL definition of the method has a non-empty
raises clause, the Java method must throw equivalent Java exceptions for the
IDL exceptions listed in the raises clause.

All methods in the implementation throw the exception
org.omg.CORBA.NO_IMPLEMENT. Replace this code with your own method
implementation.

If you’ve added methods to an existing component, you can copy the additional
method signatures from the .new file to your original source file.

Stubs may be required to compile the component If the component’s
definition uses user-defined types for parameters, return values, or exceptions,
Java stubs are required for these types. These stubs are generated when you
generate stubs for your component, as described in “Generating Java stubs” on
page 213.

Compiled Java stubs for user-defined IDL types must be available when you
compile your component’s implementation file.

❖ Generating skeletons

1 Select the component or, if you want to generate skeletons for all
components in a package, select the package.

CHAPTER 11 Creating CORBA Java Components

Programmer’s Guide 197

2 Select File | Generate Stub/Skeleton. The Generate Stubs & Skeletons
Wizard displays. Follow the instructions on each page to generate
skeletons. See the online help for descriptions of any input fields that you
do not understand.

EAServer Manager generates the skeleton source file into the same Java
package as the component’s implementation class. Skeletons are named as
_sk_Package_Comp.java, where Package represents the EAServer package
name and Comp represents the component name.

You must compile the Java class that implements the component before you
compile the skeleton class. If the class file is available when you generate
skeletons, you can select the Compile Skeletons option in the wizard to
compile from EAServer Manager.

When you compile the skeleton class, make sure that the CLASSPATH setting
contains the code base directory, as well as the following JAR files in the
EAServer installation directory:

• java/lib/easserver.jar

• java/lib/easclient.jar

• java/lib/easj2ee.jar

Add package import statements
In addition to any Java packages that you might need, you might also need to
import several Java packages. Classes coded with IDL datatypes and classes
coded with SQL datatypes require different import statements.

Chapter 1, “Java Classes and Interfaces,” in the EAServer API Reference
provides reference pages for these packages.

Imports for classes
implemented with
SQL datatypes

The packages below are useful if your component is implemented using SQL
datatypes:

Package(s) Description

com.sybase.jaguar.server Contains utility classes for use in server-side
Java code.

com.sybase.jaguar.sql Defines interfaces for defining and sending
result sets. See “Sending result sets with Java”
on page 460 for details on using these classes.

Write the Java source file

198 EAServer

The fragment below shows the import statements for all of these classes:

import com.sybase.jaguar.server.*;
import com.sybase.jaguar.util.*;
import com.sybase.jaguar.util.jdbc11.*;
import com.sybase.jaguar.sql.*;
import com.sybase.jaguar.jcm.*;
import com.sybase.jaguar.beans.enterprise.*;

You can also import com.sybase.jaguar.*, but you must remember to include the
rest of the package name when you specify methods.

Imports for classes
implemented with IDL
datatypes

The packages below are useful if your component is implemented using the
standard CORBA IDL-to-Java datatype mappings:

com.sybase.jaguar.jcm Provides the Java Connection Management
(JCM) classes. See Chapter 26, “Using
Connection Management” for a description of
this feature.

com.sybase.jaguar.util

com.sybase.jaguar.util.jdbc11

Contain the JException class and the holder
classes that are used to pass inout and out
parameter values.

Package(s) Description

Package(s) Description

org.omg.CORBA Contains Java holder and helper classes for each
of the core CORBA datatypes. Also defines the
interfaces for a standard Java client-side Object
Request Broker.

com.sybase.CORBA.jdbc11.* Contains utility classes for converting between
EAServer IDL datatypes and core Java
datatypes.

com.sybase.jaguar.server Contains utility classes for use in server-side
Java code.

com.sybase.jaguar.sql Defines interfaces for defining and sending
result sets. See “Sending result sets with Java”
on page 460 for details on using these classes.

com.sybase.jaguar.jcm Provides the Java Connection Management
(JCM) classes. See Chapter 26, “Using
Connection Management” for a description of
this feature.

CHAPTER 11 Creating CORBA Java Components

Programmer’s Guide 199

The fragment below shows the import statements for all of these classes:

import org.omg.CORBA.*;
import com.sybase.CORBA.jdbc11.*;
import com.sybase.jaguar.util.JException;
import com.sybase.jaguar.server.*;
import com.sybase.jaguar.sql.*;
import com.sybase.jaguar.jcm.*;

Code the constructor
A class constructor is normally used to initialize instance-specific data.
However, if your component implements a control interface, then you should
use the control interface methods to manage instance-specific data. Otherwise,
instance-specific initialization must be done in the constructor.

Any uncaught exception that is thrown within the constructor aborts the
creation of the new component instance.

Implement control interface methods
You can specify a control interface to be implemented by your component as
described in “Configuring a control interface” on page 73. At runtime,
EAServer calls the control interface methods to indicate changes in the
instance lifecycle. For example, if you use CtsComponents::ObjectControl:

• The setObjectContext method provides an ObjectContext instance. Among
other features, the object context allows you to:

• Control transactions.

• Obtain the component’s EAServer Manager properties, allowing you
to read user-defined properties in EAServer Manager.

com.sybase.jaguar.util.JException Many of the methods in the EAServer Java
classes throw JException. Note that the
packages com.sybase.jaguar.util and
org.omg.CORBA contain identically named
classes, so you can not import all classes from
both packages. To avoid compilation problems,
import JException explicitly or always refer to
this class by its full name.

Package(s) Description

Write the Java source file

200 EAServer

• The ctsActivate method indicates that the instance has been bound to a
client session.

• The ctsDeactivate method indicates that the instance has been unbound
from a client session.

You can also implement CORBA components that use the EJB session or entity
design pattern using the CtsComponents::ObjectControl control interface. For
more information on these methods, see the generated
CtsComponents::ObjectControl HTML documentation in the html/ir directory
of your EAServer installation.

Add error handling code
Errors occurring during component execution should be handled gracefully as
follows:

1 Write detailed descriptions of the error to the log. This will help you debug
the problem later. You can call any of the System.out.print methods to write
to the log (the output is redirected).

2 If the error prevents completion of the current transaction, roll it back as
described in “Set transactional state” on page 204.

3 Throw an exception with a brief, descriptive message that is appropriate
for display to an end user of the client application.

Java components can record errors or status messages to the server’s log file.
Writing to the log creates a permanent record of the error, and log messages can
be automatically stamped with the date and time that the message was written.
Call any of the System.out.print methods to write to the log.

You can also throw an uncaught exception. Ideally, any exception thrown by
your component should be a standard CORBA IDL exception or a user-defined
IDL exception (the latter must be listed in the raises clause of the IDL method
definition and the throws clause of the equivalent Java method declaration). All
exceptions are forwarded to the client, but only exceptions that are defined in
IDL can be rethrown by the client stub as a duplicate of the server-side
exception. CORBA ORB and EAServer EJB clients receive forwarded
exceptions differently:

• CORBA ORB clients rethrow any exception that is defined in IDL as a
duplicate of the original exception. Other exceptions are rethrown as the
standard CORBA exception UNKNOWN.

CHAPTER 11 Creating CORBA Java Components

Programmer’s Guide 201

• EAServer EJB clients rethrow any server exception as a JException
instance with the message text returned by calling toString() on the original
exception.

Advanced techniques
After the basic component implementation is in place, you can add code to
perform the following advanced tasks:

• “Issue intercomponent calls” on page 201

• “Manage database connections” on page 202

• “Return result sets” on page 203

• “Access SSL client certificates” on page 203

• “Set transactional state” on page 204

• “Retrieve user-defined component properties” on page 205

Issue intercomponent calls
You must use a proxy to issue intercomponent calls. If you call methods in
another Java component directly, no server features are available to the called
component, such as transaction control, instance lifecycle management, and
security.

Using the CORBA
ORB to instantiate
proxies

To invoke other components, instantiate a proxy (stub) object for the second
component, then use the stub to invoke methods on the component.

To invoke methods in other components, create an ORB instance to obtain
proxy objects for other components, then invoke methods on the object
references. You obtain object references for other components on the same
server by invoking string_to_object with the IOR string specified as
Package/Component. For example, the fragment below obtains a proxy object
for a component SessionInfo that is installed in the CtsSecurity package.

java.util.Properties props = new java.util.Propert
ies();

props.put("org.omg.CORBA.ORBClass",
"com.sybase.CORBA.ORB");

ORB orb = ORB.init((java.lang.String[])null, props

Advanced techniques

202 EAServer

);
SessionInfo sessInfo =

SessionInfoHelper.narrow
(orb.string_to_object(

"CtsSecurity/SessionInfo"));

When making intercomponent calls using string_to_object, the user name of the
client that executed the component is automatically used for authorization
checking. The exception is when instantiating the system components in the
Jaguar package: the ORB automatically switches to the system user priveleges
when you specify a component in the Jaguar package. To specify a user name,
use this syntax:

orb.string_to_object("iiop://0:0:user_name:password/Package/Component"));

You can retrieve the system user name and password with these methods in
class com.sybase.CORBA.ORB, which both return strings:

• getSystemUser() returns the system user name.

• getSystemPassword() returns the system password.

When called from components, string_to_object returns an instance running on
the same server if the component is locally installed; otherwise, it attempts to
resolve a remote instance using the naming server.

Connecting to third-
party CORBA servers

Your component may need to invoke methods on a component hosted by
another vendor’s CORBA server-side ORB. Sybase recommends that Java
components use the EAServer client-side ORB for all IIOP connections made
from EAServer components. See “Connecting to third-party ORBs using the
EAServer client ORB” on page 244 for more information.

Manage database connections
If your Java methods connect to remote data servers, you should use
EAServer’s connection caching feature to improve performance. See Chapter
26, “Using Connection Management” for more information.

Note EAServer’s transactional model works only with connections obtained
from the EAServer Connection Manager. Connections that you open yourself
will not be able to participate in EAServer transactions.

CHAPTER 11 Creating CORBA Java Components

Programmer’s Guide 203

Return result sets
Using the JDBC API, a Java component can retrieve result sets from a
database. Using classes in the com.sybase.jaguar.sql package, Java
components can also send these result sets to the caller. A Java component can
combine the data from several result sets retrieved from databases and send
that data as a single result set to a Java client. A Java component can also
forward the original result set retrieved from a database.

To learn how to return result sets, see “Sending result sets with Java” on page
460.

Access SSL client certificates
Clients can connect to a secure IIOP port using an SSL client certificate. You
can issue intercomponent calls to the built-in CtsSecurity/SessionInfo
component to retrieve the client certificate data, including:

• The distinguished SSL user name

• The client certificate fingerprint (MD5 message digest)

• The client certificate data

• The chain of issuing certificates

This component implements CtsSecurity::SessionInfo IDL interface. HTML
documentation is available for the interface in the html/ir subdirectory of your
EAServer installation. You can view it by loading the main EAServer HTML
page, then clicking the “Interface Repository” link.

The CtsSecurity::UserCredentials interface is deprecated
The CtsSecurity::UserCredentials interface, which is implemented by the
CtsSecurity/UserCredentials component, has been replaced by the
CtsSecurity::SessionInfo interface, which provides additional functionality such
as certificate parsing. EAServer supports the CtsSecurity::UserCredentials
interface for backwards compatibility. Please use the interface
CtsSecurity::SessionInfo if developing new components.

Advanced techniques

204 EAServer

Set transactional state
The transactional state of a component instance determines whether a
transactional component’s database updates are committed or rolled back.

In components that use the CtsComponents::ObjectControl control interface,
each instance receives a CtsComponents::ObjectContext object each time that
EAServer calls the setObjectContext method. The object reference is valid until
unsetObjectContext is called. For more information on these methods, see the
generated HTML documentation in the html/ir directory of your EAServer
installation.

In classes that do not implement a control interface, call
Jaguar.getInstanceContext() in each method that sets transactional state (do not
save the object across method invocations, because it will not be valid if the
component instance has been deactivated and reactivated). See the EAServer
API Reference Manual for information on this method.

To set transaction state, choose the method that reflects the state of the work
that the component is contributing to the transaction, as follows:

• If the work is complete and without error, call setComplete.

• Call setRollbackOnly if the work cannot be completed. Alternatively, throw
the exception org.omg.CORBA.TRANSACTION_ROLLEDBACK. If the
error indicates an internal inconsistency in the application, log a
description of the error to help debug the problem as described in “Add
error handling code” on page 200.

Transaction control with the ServerBean control interface
If you use the deprecated control interface JaguarEJB::ServerBean and Auto
demarcation/deactivation option is disabled in the Transactions tab in the
Transactions properties for your component, the transaction state specified in
the method determines whether the instance is deactivated or remains bound to
the client.

CHAPTER 11 Creating CORBA Java Components

Programmer’s Guide 205

Retrieve user-defined component properties
You can add user defined properties for your components using the Advanced
tab in the EAServer Manager Component Properties Dialog box. To access
these properties at run time, use the Jaguar::Repository API as shown in the
example below. For details on this API, see the generated reference
documentation in the html/ir subdirectory of your installation. The function
below returns an array of Jaguar::Property instances that contain the properties
defined for the currently executing component:

public static Property[] getMyComponentProps() {
Repository theRep;
Property[] myProps;
try {

java.util.Properties orbProps = new java.util.Properties();
orbProps.put("org.omg.CORBA.ORBClass",

"com.sybase.CORBA.ORB");
ORB theOrb = ORB.init((java.lang.String[])null, orbProps);
theRep = RepositoryHelper.narrow

(theOrb.string_to_object("Jaguar/Repository"));
} catch (Exception e) {

System.out.println("Exception instantiating Repository component:"
+ "\n" + e);

return null;
}
try {

String myPackage = JContext.getPackageName();
String myComponent = myPackage + "/" + JContext.getComponentName();
myProps = theRep.lookup("Component", myComponent);

} catch (Exception e) {
System.out.println("Exception getting component properties:"

+ "\n" + e);
return null;

}
return myProps;

}

You can also retrieve user-defined properties with the
CtsComponents::ObjectContext interface. To obtain a class instance, call the
Orb.string_to_object method, passing the string
“CtsComponents/ObjectContext”. For details on the interface methods, see the
generated reference documentation in the html/ir subdirectory of your
installation.

Deploy Java components

206 EAServer

Deploy Java components
This section describes how to deploy a Java component to a server for the first
time for development testing. Deployment to production servers is typically
performed by exporting and importing EAServer packages, as described in
“Deploying components” on page 11.

❖ Deploying Java components to EAServer

1 Determine the Java code base directory from which EAServer will load
your component’s classes. To allow refresh of the component, use the
EAServer java/classes subdirectory, and add necessary classes and JAR
files to the Java Classes tab in the Component Properties dialog box. See
“Custom class lists for Java and EJB components” on page 554 for more
information.

Note For security reasons, it is preferable to deploy Java components to
the java/classes subdirectory or some other directory that is not accessible
to HTTP downloads. See “Security considerations for deployment” on
page 206 for more information. Deploying to this directory also allows
your component to be refreshed, and allows you to deploy classes in JAR
files without mofifying the server’s CLASSPATH environment variable.

2 Under the code base directory, copy the Java component and skeleton class
files. When copying class files, preserve the package subdirectory
structure.

3 Copy other class files and JAR files that your component depends on to
the same codebase. For example, you may need to copy utility classes that
are in your component’s package.

Security
considerations for
deployment

Your application may have a potential security hole if Java component
implementation classes are deployed under the EAServer html directory. An
unauthorized user can implement a program that connects to EAServer’s
HTTP port and downloads the component’s implementation classes. The user
can then decompile the classes and gain access to potentially sensitive
information such as database passwords. To close this security hole, Sybase
recommends one of the following approaches:

• Deploy Java component implementation classes under the EAServer
java/classes subdirectory.

CHAPTER 11 Creating CORBA Java Components

Programmer’s Guide 207

• Code components that retrieve connection caches to use the
getCacheByName API rather than the APIs that require a database
password. This approach removes database passwords from your Java
class file. However, other sensitive information may still be present in the
Java class file.

• Implement your Java components to retrieve potentially sensitive
information from a properties file that is not located beneath the EAServer
HTML directory.

Refreshing Java
components

You can refresh a component’s implementation classes while the server is
running. You do not need to shut down and restart the server. All classes that
can be refreshed must be deployed under the EAServer java/classes
subdirectory. Classes loaded from a different code base directory will not be
reloaded. EAServer only reloads the component’s implementation class, the
skeleton class, and any classes on the Java Classes tab in the Component
Properties Dialog box. “Custom class lists for Java and EJB components” on
page 554 describes how to configure the custom class list.

❖ Refreshing a component

1 Copy new versions of the changed class or JAR files to the EAServer
java/classes subdirectory. If you are adding new classes or JAR files, you
may need to add them to the custom class list as described in Chapter 30,
“Configuring Custom Java Class Lists.”

2 In EAServer Manager, select the component, or to refresh all components
in a package, select the package.

3 Choose File | Refresh from the menu.

If the com.sybase.jaguar.component.refresh property is set to false (the default
is true), the component cannot be refreshed. This property must be set on the
Advanced tab in the Component Properties window. See “Component
properties: Advanced” on page 72 for more information.

Disabling component
refresh

In some cases, you may want to disable refresh for Java components. You can
do so by setting the com.sybase.jaguar.component.refresh component
property to false.

When refresh is disabled, all Java classes that your component depends on
must be deployed under a Java code base that is specified in the server’s
CLASSPATH environment variable. If the component uses classes in a JAR
file, you must add the JAR file to the server CLASSPATH variable.

Debug Java components

208 EAServer

If you deploy your component files to the class tree that starts in the EAServer
java/classes or html/classes subdirectory, they will be in the server
CLASSPATH by default. If you deploy to another location, add this location to
the CLASSPATH setting for the server process.

Debug Java components
You can debug Java components that are executing in EAServer.

Before you start Debugging Java components requires the following:

• If using the default server configuration, the debug version of the server
must be running. “Starting the server” in the EAServer System
Administration Guide describes how to start the debug server. If running
JDK 1.3 or later, you must specify a port for debugger socket connections
on the JDPA tab in the EAServer Manager Server Properties dialog box.
Restart the server in debug mode for the change to take affect.

To enable debugging in the production server, configure the EAServer
Manager server properties. Display the Advanced tab, and modify the
property com.sybase.jaguar.server.jvm.options. Append the following to
the existing value, all on one line. Change port to and unused port number
on your server machine, to specify the port number for JDPA debugger
connections:

,-Xdebug,
'-Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=port',
'-DJaguarServletDebugging=true','-Djava.compiler=NONE','-Xnoagent'

• You need a Java debugger that supports remote debugging and is
compatible with the JDK version used by the host server, such as JBuilder
or the JDK jdb tool.

• Component class files must include symbol information for fields and
local variables. If you are compiling with javac, components must be
compiled with the -g option. If you use a Java IDE, set the equivalent
option to build debuggable class files.

• Source files must be available to the debugger. The required location for
source files depends on your debugging tool:

• For jdb, source files must be on the server host, in the directory from
which the corresponding class file is loaded.

CHAPTER 11 Creating CORBA Java Components

Programmer’s Guide 209

• JBuilder uses local source files from the project directory.

• For other IDE debuggers, consult the IDE documentation for source
file requirements when you are debugging remotely.

Steps to debug an
executing component

❖ Debugging Java components

1 Make sure that you have followed the requirements in “Before you start”
on page 208.

2 Make sure no one else is debugging components using the same server.
The server-side debugger supports only one remote-debugger connection
at a time.

3 Run your debugger. The debugger JDK version must match the server’s
JDK version. You must specify the server’s host name and JPDA port, the
JDPA port is specified on the JDPA tab in the server properties window.
For example, using jdb to connect to a server running on machine
“myhost,” using port 11000 for JPDA connections:

jdb -connect com.sun.jdi.SocketAttach:hostname=myhost,port=11000

4 Once connected, you can specify breakpoints for the debugger to stop at
in your component implementation. Set the breakpoint before running any
client applications that will exercise the target line of code. For example
(the following must be entered on one line):

stop at Sample.SVU.javaComp.
Enrollment_Java.Enrollment_JavaImpl:74

5 Run a client application that will invoke the target component code. For
example, to debug the CreateStudentRecord method in the
Java_Enrollment component, run the SVU Java example client in your
Web browser and create a new student record on the login screen. In the
debugger, you should see some indication that the breakpoint has been
reached.

Note You may need to change the debugger’s active thread before the
component breakpoint is indicated. EAServer runs each Java component
instance in a separate Java thread. The component thread must be the
active debugger thread in order to step through the component’s code. In
jdb, use the threads command to list the executing threads. You can then
use the thread command to switch to the thread that is running the
component.

Debug Java components

210 EAServer

6 Once the breakpoint is tripped, you can step through the code, inspect
fields and variables, and so forth. For example, in jdb:

Thread-21[1] where 6

 [1]
Sample.SVU.javaComp.Enrollment_Java.Enrollment_Java
Impl.
createStudentRecord (Enrollment_JavaImpl:74)

Thread-21[1] print student_id

student_id = 333-33-3333

Thread-21[1] cont

Debugging class
loading and unloading
problems

EAServer Manager provides the following server properties to log information
about Java class loading and unloading. You can set these properties on the
Advanced tab in the Server Properties dialog box:

The default for all of these properties is false.

Property Description

com.sybase.jaguar.server.jvm.verbose When this property is set to true, the
server logs all Java classes that are
loaded and the location where each class
file was read.

com.sybase.jaguar.server.jvm.verboseGC When this property is set to true, the
server logs information when memory is
freed by the Java garbage collector.

com.sybase.jaguar.server.classloader.debug When this property is set to true, the
server logs information about loading
classes from custom class lists defined
for the component, package,
application, or server.

Programmer’s Guide 211

C H A P T E R 1 2 Creating CORBA Java Clients

EAServer includes a Java implementation of a standard CORBA Object
Request Broker (ORB). EAServer’s Java ORB brings the portability of
CORBA and Java to EAServer applications. This chapter describes how
to code a CORBA-compatible Java client application that calls EAServer
component methods.

Overview
CORBA is a distributed component architecture defined by the Object
Management Group. EAServer supports the CORBA Internet Inter-ORB
Protocol (IIOP). EAServer also provides a CORBA-compatible client-
side interface that is implemented according to the CORBA specification
for IDL-to-Java language mappings. These two items allow you to create
CORBA-compliant Java applications and applets that interact with
EAServer components.

About CORBA Java
language bindings

For information on the CORBA architecture, see the specifications
available at the Object Management Group (OMG) Web site at
http://www.omg.org.

Topic Page
Overview 211

Procedure for creating CORBA-compatible Java clients 212

Generating Java stubs 213

Instantiating proxy instances 216

Executing component methods 227

Cleaning up client resources 231

Serializing component instance references 231

Handling exceptions 232

Deploying and running Java clients 234

Instantiating proxies with the CosNaming API 235

Using other CORBA ORB implementations 242

Procedure for creating CORBA-compatible Java clients

212 EAServer

The EAServer Java ORB runtime is implemented according to the CORBA 2.3
specification (specifically, the document IDL to Java Language Mapping
Specification, formal/99-07-53). You can download this document from the
OMG Web site at http://www.omg.org.

EAServer Java ORB
runtime

The Java ORB programming interface is defined by the CORBA Java-
language bindings specification. The top-level class, org.omg.CORBA.ORB, is
an abstract Java class. Each Java ORB vendor must provide an implementation
of this class. For example, the EAServer ORB implementation class is
com.sybase.CORBA.ORB. You can use the EAServer ORB or any CORBA-
compatible ORB to invoke EAServer components.

In this version, EAServer’s ORB implementation does not support:

• Method invocation via the Dynamic Invocation Interface (DII)

• The CORBA::Any type

Procedure for creating CORBA-compatible Java clients
A Java client establishes a session with the application server, instantiates stub
(or proxy) instances for EAServer components, and executes component
methods by calling like-named methods on the stub instance.

1 Generate stub classes.

These classes act as a proxy object for a component instance that is
executing on the server; there is one stub for each IDL interface that the
component implements. “Generating Java stubs” on page 213 describes
how to generate stubs with EAServer Manager.

2 Implement code to instantiate proxy objects.

Your program must obtain proxy objects for the EAServer component and
narrow them to the stub interface that you intend to use. EAServer
supports three techniques for proxy instantiation, using different interfaces
for resolving component names to server objects. “Instantiating proxy
instances” on page 216 describes each technique in detail.

3 Implement code that invokes the component methods.

CHAPTER 12 Creating CORBA Java Clients

Programmer’s Guide 213

You execute the component’s methods by calling like-named methods on
the stub class and passing the necessary input data. Each stub method has
a return value and parameter list that is mapped from the corresponding
EAServer Manager method definition. “Executing component methods”
on page 227 describes return type and parameter type mappings in detail.

4 If desired, you can serialize the component instance reference as an IOR
string, then deserialize the reference later.

See “Serializing component instance references” on page 231 for details.

5 Clean up client-side resources.

When proxy objects are no longer required, set the references to null to
expedite cleanup by the Java garbage collection mechanism. See
“Cleaning up client resources” on page 231 for details.

Each of these steps requires appropriate exception handling. “Handling
exceptions” on page 232 summarizes CORBA exceptions.

Generating Java stubs
Stub classes allow you to instantiate local Java objects that act as proxies for
an instance of the EAServer component. You can generate Java stubs for
components that are implemented in any of EAServer’s supported component
models. One stub interface is generated for each IDL interface that the
component implements.

When using the EAServer ORB runtime, you must generate stubs with
EAServer Manager and compile them with a Java compiler. If you are using
another ORB implementation class to connect to EAServer, you must export
the IDL interface definitions, then use the vendor’s IDL compiler to generate
stubs. See “Connecting to EAServer with a third-party client ORB” on page
242 for more information.

Stubs for different client models
If you are generating stubs for multiple client models, such as EJB and
CORBA, stubs for each model must be generated to a different codebase or
Java package. “Specifying Java package mappings for IDL modules” on page
91 describes how to change the Java package for stubs associated with each
IDL module.

Generating Java stubs

214 EAServer

You can generate stubs in EAServer Manager or by using the command line
IDL compiler (see Appendix D, “Using the Command Line IDL Compiler”).

❖ Generating Java stubs in EAServer Manager

1 Highlight a component, package, or module as follows:

a Highlight a component to generate stubs for all interfaces and types
required by a component,

b Highlight a package to generate all stubs needed by components in the
package, or

c Highlight a module to generate stubs for IDL interfaces and types
defined within that module.

2 Select File | Generate Stub/Skeleton. The Generate Stubs & Skeletons
wizard displays. Follow the instructions on each page to generate
Java/CORBA stubs. See the online help for descriptions of any input fields
that you do not understand.

Avoiding name
collisions with existing
Java files

When you are generating Java stubs for a Java component, you must ensure
that the generated stubs will not overwrite existing Java classes or interfaces.
Name collision occurs if an unscoped IDL interface name matches the name of
an existing class in the package to which you are generating stubs. For
example, collision would occur if you generate stubs into the com.yourco
package when the class com.yourco.Stock exists and the component
implements the IDL interface YourCo::Stock. You can avoid name collisions
using either of the following strategies:

• When defining components, specify an IDL interface name that is different
from existing Java class names in the package where you will generate
stubs.

• When generating stubs, specify a stub package that is different than that
which contains the duplicate class.

Compiling stubs For each IDL interface that is assigned to a component, EAServer Manager
generates a Java interface with the same name as the IDL interface, a stub class
that implements that interface, a helper class, and a holder class. For example,
for an IDL interface named Calculator::Calc, EAServer Manager creates the
source files listed in the following table:

CHAPTER 12 Creating CORBA Java Clients

Programmer’s Guide 215

Table 12-1: IIOP Java stub source files for example component calc

EAServer Manager creates stubs for each interface and datatype defined in a
module. If your component references a module that contains multiple
interfaces, you will find that additional stub files are generated besides the
stubs for the interfaces that are directly implemented by your component.

EAServer Manager creates stubs in a package subdirectory below the directory
specified as the code base in the Generate Stubs & Skeletons dialog. By
default, the Java package directory has the same name as the IDL module in
which the interface is defined. For example, if the interface is Calculator::Calc,
and you specify a code base of c:\classes, the stubs will be created in
c:\classes\Calculator.

If a component implements interfaces from more than one module, EAServer
Manager creates stubs for each module in separate packages that match each
module name. You can specify a single Java package for all stubs as described
in “Generating Java stubs in EAServer Manager” on page 214.

If you did not elect to compile the stubs in EAServer Manager, compile the stub
classes with a compiler that is compatible with the desired Java version for the
stubs. Make sure that the CLASSPATH setting contains the code base directory
and the following:

• %JAGUAR%\java\lib\easserver.jar

• %JAGUAR%\java\lib\easclient.jar

• %JAGUAR%\java\lib\easj2ee.jar

File Name Purpose

Calc.java Defines an interface with methods equivalent to the
component’s methods.

_st_Calc.java Class that implements the interface.

CalcHelper.java Contains methods that are required by the ORB and by the
application; for example, the ORB calls helper-class
methods to read and write object instances to the network.

CalcHolder.java Used when interface references are passed as an inout or
output parameter.

Instantiating proxy instances

216 EAServer

Instantiating proxy instances
After you have compiled stub classes, you can implement code that uses the
stubs to interact with EAServer components.

Your program must obtain proxy objects for the EAServer component and
narrow them to the stub interface that you intend to use by following the steps
below:

Java exceptions can occur at any step. “Handling exceptions” on page 232
describes common exceptions and their cause.

You can also instantiate proxies using the CosNaming API, however, the
technique described in this section is recommended. See “Instantiating proxies
with the CosNaming API” on page 235.

Configuring and
initializing the ORB
runtime

ORB properties define the class name of the ORB driver that will be used, and
configure settings required by the driver. Properties can be set externally in
HTML parameters for a Java applet or in command-line arguments for a Java
application. You can also set them directly in your source code in both applets
and applications. Table 12-2 describes the EAServer ORB properties.

Table 12-2: EAServer Java ORB properties

Step What it does Detailed explanation

1 Initialize the CORBA ORB classes. “Configuring and initializing the
ORB runtime” on page 216

2 Use an IOR string and the
ORB.string_to_object method to obtain
the Manager instance for the server.

“Creating a Manager instance”
on page 221

3 Use the Manager instance to create a
Session.

“Creating sessions” on page 224

4 Call the Session’s lookup method to
create proxy objects, then narrow them
to an interface that the component
supports. The lookup method uses the
EAServer name service to resolve the
requested name to an installed
component.

“Creating stub instances” on
page 225

5 Call the stub methods to remotely
invoke component methods.

“Executing component
methods” on page 227

Property Specifies

org.omg.CORBA.ORBClass The class that implements interface org.omg.ORB. Specify
com.sybase.CORBA.ORB to indicate the EAServer ORB driver class. There
is no default for this property.

CHAPTER 12 Creating CORBA Java Clients

Programmer’s Guide 217

com.sybase.CORBA.
ConnectionTimeout

For applications that run in a cluster, sets a time limit to receive a server
response before the connection fails over to try another server in the cluster.
Setting this property ensures that failover happens without an unreasonable
delay. Specify the timeout period in seconds. The default of 0 indicates no
time limit.

com.sybase.CORBA.forceSSL If set to true when using a a reverse proxy server, forces use of SSL for the
connection to the reverse proxy. Set this property to true if the connection to
the reverse proxy must use SSL (HTTPS) tunnelling, but the connection
from the proxy to the server does not use SSL tunnelling. See Chapter 12,
“Deploying Applications Around Proxies and Firewalls,” in the EAServer
Security Administration and Programming Guide for more information on
connecting to EAServer through proxy servers.

com.sybase.CORBA.GCInterval Specifies how often the ORB forces deallocation (Java garbage collection)
of unused class references. Though this property is set on an individual ORB
instance, it affects all ORB instances. The default is 30 seconds. The default
is appropriate unless you have set an idle connection timeout of less than 30
seconds. In that case, you should specify a lower value for the garbage
collection interval, since connections are only closed while performing
garbage collection. In other words, the effective idle connection timeout
ranges from the idle connection timeout setting to the smallest integral
multiple of the garbage collection interval.

com.sybase.CORBA.http Specify whether the ORB should use HTTP tunnelling without trying to use
plain IIOP first. The default is false. With the default setting, the ORB tries
to open a connection using plain IIOP, and switches to HTTP tunnelling if
the plain IIOP connection is refused. The default is appropriate when some
users connect through firewalls that require tunnelling and others do not; the
same application can serve both types. If you know tunnelling is required,
set this property to true. This setting eliminates a slight bit of overhead that
is incurred by trying plain IIOP connections before tunnelling is used.

com.sybase.CORBA.
HttpExtraHeader

An optional setting to specify what extra information is appended to the
header of each HTTP packet when connecting through a Web proxy. See
Chapter 12, “Deploying Applications Around Proxies and Firewalls,” in
the EAServer Security Administration and Programming Guide for more
information.

Property Specifies

Instantiating proxy instances

218 EAServer

com.sybase.CORBA.http.
jaguar35Compatible

When set to true, specifies that HTTP tunnelling must be compatible with
servers running EAServer version 3.5 or older installations. The default is
false.

Compatibility with version 3.5 or older servers
The default tunnelling model is incompatible with servers older than version
3.6. If you do not set the com.sybase.CORBA.http.jaguar35Compatible
property to true, clients using the EAServer 3.6 or later Java client ORB
cannot connect to older-version servers using HTTP tunnelling. Note that
HTTP tunnelling may happen automatically when clients connect to the
server through firewalls.

com.sybase.CORBA.
HttpUsePost

When using HTTP tunnelling, specifies the HTTP request type used. A
value of true indicates that POST requests are to be used. A value of false
(the default) specifies that GET requests are to be used.

Some Web browsers cannot handle the long URLs generated when using
HTTP tunnelling with GET requests. Setting this property to true can work
around the issue.

com.sybase.CORBA.
IdleConnectionTimeout

 Specifies the time, in seconds, that a connection is allowed to sit idle. When
the timeout expires, the ORB closes the connection. The default is 0, which
specifies that connections can never timeout. The connection timeout does
not affect the life of proxy instance references; the ORB may close and
reopen connections transparently between proxy method calls. Specifying a
finite timeout for your client applications can improve server performance.
If many instances of the client run simultaneously, a finite client connection
timeout limits the number of server connections that are devoted to idle
clients. A finite timeout also allows rebalancing of server load in an
application that uses a cluster of servers.

If you specify an idle connection timeout, make sure the garbage collection
interval (com.sybase.CORBA.GCInterval) is set to an equal or lesser value.

com.sybase.CORBA.isApplet Specifies whether the client is a Java applet. The default is false unless the
ORB is initialized by calling the Orb.init method that takes a
java.applet.Applet instance as a parameter. If you call another version of init
from a Java applet, you must set this property to true in order to connect
to EAServer using SSL.

Property Specifies

CHAPTER 12 Creating CORBA Java Clients

Programmer’s Guide 219

com.sybase.CORBA.local For server-side component use only. Specifies whether the ORB reference
can be used to issue intercomponent calls in user-spawned threads. The
default is true, which means that intercomponent calls are made in
memory and must be issued from a thread spawned by EAServer. Set this
property to false if your component makes intercomponent calls from
user-spawned threads.

com.sybase.CORBA.local property is deprecated
This property is not needed when calling components from threads spawned
by the the Thread Manager. The Thread Manager is the recommended way
to spawn threads in Java components. See Chapter 32, “Using the Thread
Manager” for more information.

com.sybase.CORBA.ProxyHost Specifies the machine name or the IP address of a reverse-proxy server. See
Chapter 12, “Deploying Applications Around Proxies and Firewalls,” in
the EAServer Security Administration and Programming Guide for more
information.

com.sybase.CORBA.ProxyPort Specifies the port number of a reverse-proxy server. See Chapter 12,
“Deploying Applications Around Proxies and Firewalls,” in the EAServer
Security Administration and Programming Guide for more information.

com.sybase.CORBA.RetryCount Specify the number of times to retry when the initial attempt to connect to
the server fails. The default is 5.

com.sybase.CORBA.RetryDelay Specify the delay, in milliseconds, between retry attempts when the initial
attempt to connect to the server fails. The default is 2000.

com.sybase.CORBA.
socketReuseLimit

Specify the number of times that a network connection may be reused to call
methods from one server. The default is 0, which indicates no limit. The
default is ideal for short-lived clients. The default may not be appropriate for
a long-running client program that calls many methods from servers in a
cluster. If sockets are reused indefinitely, the client may build an affinity for
servers that it has already connected to rather than randomly distributing its
server-side processing load among all the servers in the cluster. In these
cases, the property should be tuned to best balance client performance
against cluster load distribution. In Sybase testing, settings between 10 and
30 proved to be a good starting point. If the reuse limit is too low, client
performance degrades.

com.sybase.CORBA.
WebProxyHost

The host name or IP address of an HTTP proxy server that supports generic
Web tunnelling, sometimes called connect-based tunnelling. See Chapter
12, “Deploying Applications Around Proxies and Firewalls,” in the
EAServer Security Administration and Programming Guide for more
information. There is no default for this property, and you must specify both
the host name and port number properties.

Property Specifies

Instantiating proxy instances

220 EAServer

Example: ORB Initialization in an Applet ORB initialization for a Java
applet is demonstrated in the example below. This code constructs a
java.util.Properties object and sets the required properties. The applet reference
and the Properties object are passed to the org.omg.CORBA.ORB.init method.

import java.applet.*;
import org.omg.CORBA.*;
public class myApp extends Applet {

public void init() {
...
java.util.Properties props

= new java.utils.Properties();
props.put("org.omg.CORBA.ORBClass",

"com.sybase.CORBA.ORB");
ORB orb = ORB.init(this, props);
...

Rather than property values, you can pass properties to the ORB as parameters
in the HTML APPLET tag that loads the applet, as in the example below:

<APPLET
codebase=....
<param name="org.omg.CORBA.ORBClass"

value="com.sybase.CORBA.ORB">
...
</APPLET>

com.sybase.CORBA.
WebProxyPort

When generic Web tunnelling is enabled by setting
com.sybase.CORBA.WebProxyHost, this property specifies the port number
at which the HTTP proxy server accepts connections. See Chapter 12,
“Deploying Applications Around Proxies and Firewalls,” in the EAServer
Security Administration and Programming Guide for more information.
There is no default for this property, and you must specify both the host
name and port properties.

com.sybase.CORBA.
useJSSE

Use the Java Secure Sockets Extension (JSSE) classes for secure HTTP
tunnelled (HTTPS protocol) connections. JSSE provides an alternative to
the built-in SSL implementations when secure connections are needed from
an applet running in a Web browser. Additional configuration may be
required to use this option. See Chapter 5, “Using SSL in Java Clients,” in
the EAServer Security Administration and Programming Guide for more
information.

Property Specifies

CHAPTER 12 Creating CORBA Java Clients

Programmer’s Guide 221

A property setting that is passed as an applet parameter supersedes any setting
that is specified in the java.utils.Properties parameter to the ORB.init method. If
you want to ensure that hard-coded property values are used, pass the Applet
parameter as null.

Example: ORB Initialization in an Application ORB initialization for a
Java application is demonstrated in the example below. This code constructs a
java.util.Properties object and sets the required properties. The command-line
parameters are passed to the org.omg.CORBA.ORB.init method.

import java.util.*;

public class myApp extends Object {

public static void main(String[] args)
throws Exception

{
...
Properties props = new Properties();
props.put("org.omg.CORBA.ORBClass",

"com.sybase.CORBA.ORB");
ORB orb = ORB.init(args, props);
...

Rather than hard-coding the property values, you can pass them to the ORB as
command-line parameters, as in the example below:

java yourclass -org.omg.CORBA.ORBClass com.sybase.CORBA.ORB

Properties that are specified as command-line parameters supersede values
specified in the java.utils.Properties parameter to the ORB.init method. If you
want to ensure that hard-coded property values are used, pass the String[]
parameter to init as null.

Configuring error output The client runtime writes errors to the console by
default. In Java applications, you can modify this behavior by creating a
logging profile and specifying the profile name in the Java system properties.
For more information, see “Using log profiles in Java client applications” in
the EAServer System Administration Guide.

Creating a Manager
instance

The EAServer authentication service implements the
SessionManager::Manager interface. When using CORBA naming services,
you can resolve this object by using the special name AuthenticationService.
Without using naming services, you must supply a CORBA Interoperable
Object Reference (IOR), which is a text string that describes how to connect to
the server hosting the object.

Instantiating proxy instances

222 EAServer

Standard CORBA IOR strings are hex-encoded and not human-readable.
EAServer supports both standard format IORs and a URL form that is human-
readable. For information on standard-format IORs, see “Instantiating
components using a third-party ORB” on page 243.

URL format IORs The URL string format offers the benefits of being human-
readable. Also, for Java applets, you can create URL strings that connect to the
applet’s download host by default; this feature simplifies deployment since you
do not need to change hard-coded IORs when you move your application to
another server. IOR strings in URL format must have the form:

protocol://host:iiop_port

where

• protocol is iiops if connecting to a secure port and iiop otherwise.

• host is the EAServer host address or machine name. In an applet, you can
omit the host name to specify that the connection must go to the host from
which the applet was downloaded.

• iiop_port is the port number for IIOP requests. Your server may accept
IIOP connections at several different ports, each of which uses a diffferent
security profile. For example, the default server configuration provides
listeners at these ports:

• 9000 accepts unsecure IIOP connections.

• 9001 accepts IIOPS connections with encryption and server-side
authentication.

• 9002 accepts IIOPS connections with encryption and mutual (client
and server) authentication. Mutual authentication requires that your
end users have valid digital certificates, and that those certificates are
issued by a certificate authority that is trusted by the server.

The EAServer Security Administration and Programming Guide describes
how to configure listeners and security profiles.

An example URL-format IOR is iiop://machina:9000, which specifies that
the server runs on the machine named “machina” and listens for IIOP requests
on port 9000. In an applet, you can omit the host name to specify that the
connection must go to the host from which the applet was downloaded. For
example, iiop://:9000specifies a connection to port 9000 on the applet’s
host.

CHAPTER 12 Creating CORBA Java Clients

Programmer’s Guide 223

Standard format IORs Use the standard IOR format if you must have
portability to other standard Java ORB implementations. Your server generates
IOR strings embedded within text files each time it starts. Several files are
generated for each IIOP listener. There are files formatted as an HTML param
tag; these can be used to compose HTML applet sections. There are also files
that contain the IOR by itself. Additionally, there are different files generated
for compatibility with different IIOP protocol versions.

For each listener, the server prints a hex-encoded IOR string with standard
encoding to the following files in the EAServer html subdirectory:

• <listener><iiop-version>.ior – Contains the IOR string by itself,
followed by a newline.

• <listener>_<iiop-version>_param.ior – Contains the IOR as part of an
HTML param definition that can be inserted into an applet section.

where

<listener> is the name of the listener.

<iiop-version> is the version of IIOP and can be either 10 (which represents
IIOP version 1.0) or 11 (which represents IIOP version 1.1). Use the file that
matches the IIOP version that is supported by your client ORB.

For example, a server will generate the following files for a listener named
iiops2. All files are created in the html subdirectory:

• iiops2_10.ior

• iiops2_11.ior

• iiops2_10_param.ior

• iiops2_11_param.ior

Your applet can retrieve the IOR if you supply it in applet parameters. In this
case, you can copy the contents of one of the param format files to the HTML
file. Alternatively, you can add code that connects to EAServer via HTTP and
downloads one of the generated .ior files.

Note If you change a server’s host name or port number, you must edit or
replace IOR values that contain the host name, including hex-format IORs
copied from the server-generated .ior files. When using the EAServer ORB,
use the URL string format and omit the host name. When using another
vendor’s ORB, you can download the contents of a generated .ior file, or you
can store server IORs in the ORB vendor’s name server.

Instantiating proxy instances

224 EAServer

Creating the Manager instance Once the applet or application has obtained
the server’s IOR string or an equivalent IIOP URL string, it calls the
ORB.string_to_object method to convert the IOR string into a
SessionManager::Manager instance, as shown in the following example:

import org.omg.CORBA.*;
import java.awt.*;
import SessionManager.*;

public class myApplet extends Applet {
String ior;
ORB orb;
... deleted ORB.init() code and code that

retrieves IOR from applet parameters ...
Manager manager = ManagerHelper.narrow(

orb.string_to_object(ior));

Creating sessions The SessionManager.Session interface represents an authenticated session
between the client application and EAServer. The Manager.createSession
method accepts a user name and password and returns a Session object, as
shown in the example below:

import org.omg.CORBA.*;
import SessionManager.*;
import java.awt.*;

public class myApplet extends Applet {
Manager manager;

... deleted code that created Manager instance
...

try {
Session session = manager.createSession(user,

password);
}
catch (org.omg.CORBA.COMM_FAILURE cf)
{

// The server is likely down or has run
// out of connections. You can retry the
// connection if desired.
... report the error ...

}
catch (org.omg.CORBA.NO_PERMISSION np)
{

// Tell the user they are not authorized
...

CHAPTER 12 Creating CORBA Java Clients

Programmer’s Guide 225

}
catch (org.omg.CORBA.SystemException se)
{

// Catch-all clause for any CORBA system
// exception that was not explicitly caught
// above. Report the error but don’t bother
// retrying.
...

}

Creating stub
instances

A Java stub implements the Java version for one of the EAServer component’s
IDL interfaces. Call the Session.lookup method to obtain a factory for stub
instances. The signature of Session.lookup is:

SessionManager.Factory lookup(String name)

Session.lookup takes a string that specifies the name of the component to
instantiate. A component’s default name is the EAServer package name and the
component name, separated by a slash as in calculator/calc. However, a
different name can be specified with the component’s
com.sybase.jaguar.component.naming property. For example, you can specify a
logical name, such as USA/MyCompany/FinanceServer/Payroll. For more
information on configuring the naming service, see Chapter 5, “Naming
Services,” in the EAServer System Administration Guide.

Session.lookup returns a factory for component proxies. Call the Factory.create
method to obtain proxies for the component. This method returns a
org.omg.CORBA.Object reference. You must call the narrow method in the IDL
interface’s generated helper class to convert this to an instance of the stub class
for the component’s IDL interface. If the component instance does not
implement the requested interface, the narrow method returns a null object
reference.

Session.lookup can throw these CORBA standard exceptions:

• NO_PERMISSION The user is not authorized to instantiate the
requested component.

• OBJECT_NOT_EXIST The server component cannot be instantiated.
Verify that:

• The specified component is installed in the specified EAServer
Manager package.

• The specified EAServer Manager package is installed in the server.

• The Java class, Windows DLL, or UNIX shared library that
implements the component is available.

Instantiating proxy instances

226 EAServer

• If you are instantiating a Java component, the component’s skeleton
class is available.

The code to call Session.lookup and Factory.create looks like this:

import org.omg.CORBA.*;
import SessionManager.*;
import java.awt.*;
import Calculator.*; // Package for Java stubs

// for this example, matches
// IDL module name for the
// component’s interface.

public class myApplet extends Applet {

Session session;

... deleted code that created Session instance
...

//
// In this example, the component is named calc
// and is installed in the EAServer package
// calculator. calcHelper.narrow() verifies that
// the returned object is of the appropriate
// type, then returns a Calculator.Calc instance
//
try {

Factory fact =
FactoryHelper.narrow(
session.lookup("calculator/calc"));

Calc c =
CalcHelper.narrow(fact.create());

}
catch (org.omg.CORBA.OBJECT_NOT_EXIST one)
{

// Tell the user to contact the server
// administrator
... report the error ...

}
catch (org.omg.CORBA.NO_PERMISSION np)
{

// Tell the user they are not authorized
... report the error ...

}
catch (org.omg.CORBA.SystemException se)
{

CHAPTER 12 Creating CORBA Java Clients

Programmer’s Guide 227

// Catch-all clause for any CORBA system
// exception that was not explicitly caught
// above.
... report the error ...

}

Calling Session.lookup in server code
When called from server code, Session.lookup resolves the component name
by calling the name service, which gives preference to a local component
instance if the component is installed on the same server. However, the use of
a locally installed component is not guaranteed. To ensure that a local
implementation is used, specify the name as local:package/component,
where package is the package name and component is the component name, for
example, local:CtsSecurity/SessionInfo. When you specify the local:
prefix, the lookup call bypasses the name service and returns a local instance if
the component is installed in the same server. The call fails if the specified
component is not installed in the same server..

Executing component methods
After instantiating the stub class, use the stub class instance to invoke the
component’s methods. Each method in the stub interface corresponds to a
method in the component interface that you have narrowed the proxy object to.

Parameter and return
datatypes

The following table lists the datatypes displayed in EAServer Manager, the
equivalent CORBA IDL types, and the Java datatypes used in stub methods.

Table 12-3: EAServer Manager, CORBA IDL, and Java datatype
equivalence

EAServer
Manager
display
datatype CORBA IDL type

IDL Java type
(input parameter
or return value) IDL Java type (inout or out parameter)

integer<16> short short org.omg.CORBA.ShortHolder

integer<32> long int org.omg.CORBA.IntHolder

integer<64> long long long org.omg.CORBA.LongHolder

float float float org.omg.CORBA.FloatHolder

double double double org.omg.CORBA.DoubleHolder

boolean boolean boolean org.omg.CORBA.BooleanHolder

Executing component methods

228 EAServer

Note Null parameter values are not supported for input or inout parameters. Use
an output parameter instead. For input parameters that extend java.lang.Object,
you must pass an initialized object of the indicated type. When using holder
objects to pass inout parameters, you must set the holder object’s value field to
a valid object reference or use the holder constructor that takes an initial value.

Binary, fixed-point, date/time, and ResultSet types The BCD and MJD
IDL modules define types to represent common database column types such as
binary data, fixed-point numeric data, dates, and times. The BCD::Binary
CORBA type maps to a Java byte array. The other BCD and MJD types map to
data representations that are optimized for network transport.

To convert between the IDL-mapped datatypes and from core java.* classes,
use these classes from the com.sybase.CORBA.jdbc11 package:

Chapter 1, “Java Classes and Interfaces,” in the EAServer API Reference
provides reference pages for these classes.

ResultSet types The TabularResults IDL module defines types used to
represent tabular data. Result sets are typically used only as return types,
though you can pass them as parameters. “Methods that return tabular results”
on page 229 describes how to process result sets returned by method calls.

string string java.lang.String org.omg.CORBA.StringHolder

binary BCD::Binary byte[] BCD.BinaryHolder

decimal BCD::Decimal BCD.Decimal BCD.DecimalHolder

money BCD::Money BCD.Money BCD.MoneyHolder

date MJD::Date MJD.Date MJD.DateHolder

time MJD::Time MJD.Time MJD.TimeHolder

timestamp MJD::Timestamp MJD.Timestamp MJD.TimestampHolder

ResultSet TabularResults::
ResultSet

TabularResults.
ResultSet

TabularResults.ResultSetHolder

ResultSets TabularResults::
ResultSets

TabularResults.
ResultSet[]

TabularResults.ResultSetsHolder

EAServer
Manager
display
datatype CORBA IDL type

IDL Java type
(input parameter
or return value) IDL Java type (inout or out parameter)

Class Description

SQL Contains methods to convert from BCD.* and MJD.* types to java.* types

IDL Contains methods to convert from java.* types to BCD.* and MJD.* types

CHAPTER 12 Creating CORBA Java Clients

Programmer’s Guide 229

User-defined IDL types A user-defined type is any type that is not in the set
of predefined datatypes and is not one of the CORBA IDL base types. You can
define methods with user-defined types in EAServer Manager, as described in
“User-defined IDL datatypes” on page 100.

If a method definition includes user-defined types, the stub method will use the
equivalent Java datatype as specified by the CORBA Java language mappings
specification. See “Overview” on page 211 for more information on this
document.

CORBA Any and TypeCode support
EAServer’s Java ORB supports the CORBA Any and TypeCode datatypes.
Refer to the OMG CORBA 2.3 specification and IDL to Java Language
Mapping Specification (formal/99-07-53) for information on using these
types.

Holder classes All Java types have an accompanying holder class that is
used for passing parameters by reference. Each holder class has the following
structure:

public class <Type>Holder {
// Current value
public <type> value;
// Default constructor
public <Type>Holder() {}
// Constructor that sets initial value
public <Type>Holder(<type> v) {

this.value = v;
}

}

This structure is defined by the CORBA Java-language bindings specification.

Note For inout parameters, you must pass a non-null value for the parameter
input value. Otherwise, method calls fail and throw an exception
(NullPointerException). Use out parameters in the method definition if you do
not care about the parameter’s input value.

Methods that return
tabular results

In EAServer Manager, a method’s property sheet indicates whether the method
returns zero, one, or multiple result sets. This setting determines the return code
of the stub method as follows:

• A method that returns 0 result sets returns void.

• A method that returns a single result set returns TabularResults.ResultSet.

Executing component methods

230 EAServer

• A method that returns multiple result sets returns an array of
TabularResults.ResultSet.

The TabularResults IDL module defines the TabularResults::ResultSet CORBA
IDL datatype, which maps to TabularResults.ResultSet in Java. Most
applications will convert objects of this type to a java.sql.ResultSet by calling
one of the following methods:

• com.sybase.CORBA.jdbc11.SQL.getResultSet
(TabularResults.ResultSet) Accepts a TabularResults.ResultSet
parameter and returns a java.sql.ResultSet object.

• com.sybase.CORBA.jdbc102.SQL.getResultSet
(TabularResults.ResultSet) Accepts a TabularResults.ResultSet
parameter and returns a jdbc.sql.ResultSet object. If your client application
will run in a JDK 1.0.2 virtual machine, this method must be used instead
of the previous method.

After converting the result set to java.sql.ResultSet, use standard JDBC calls to
retrieve the rows and columns. Alternatively, pass the result set to a data-aware
control that displays the data to the end user.

The example below calls a stub method returnsRows() that returns a single
result set:

import com.sybase.CORBA.jdbc11.SQL;
...

java.sql.ResultSet rs =
SQL.getResultSet(myStub.returnsRows());

... code to process rows or pass result set
to a data-aware control ...

The example below calls a stub method returnsResults() which returns multiple
result sets:

import com.sybase.CORBA.jdbc11.SQL;
...

java.sql.ResultSet rs;
TabularResults.ResultSet[] trs_array =

myStub.returnsResults();

for (int i = 0; i < trs_array.length; i++)
{

rs = SQL.getResultSet(trs_array[i]);
... code to process rows or pass result set

to a data-aware control ...
}

CHAPTER 12 Creating CORBA Java Clients

Programmer’s Guide 231

Example method calls See the EAServer tutorials and the examples provided with your EAServer
software for example method calls. Chapter 2, “Creating CORBA Java
Components and Clients,” in the EAServer Cookbook contains tutorials with
sample Java clients.

An introductory sample Java client is provided in the
html/classes/Sample/Intro subdirectory. The file readme.html in that directory
describes how to compile the classes, install the required component, and run
the sample client.

Cleaning up client resources
The garbage collector thread of the Java virtual machine will clean up
resources allocated in your client applet or application. No action is required
on your part. However, when proxy object references are no longer needed, you
can set them to null to expedite cleanup by the garbage collector.

The action of the client program has no direct effect on the cleanup of server-
side resources. Server-side cleanup happens when the component is
deactivated or destroyed. See “Component lifecycles” on page 13 for more
information.

Serializing component instance references
You can call the ORB.object_to_string() and ORB.string_to_object() methods to
serialize and deserialize proxy object references. Assuming that the proxy
interface is Payroll, this call serializes a proxy component reference:

Payroll payroll;
... deleted code that instantiates payroll ...

String payroll_ior = orb.object_to_string(payroll);

This call deserializes the reference:

Payroll payroll = PayrollHelper.narrow(
orb.string_to_object(payroll_ior));

Handling exceptions

232 EAServer

The following restrictions apply when serializing and deserializing component
proxy references:

• Unless the proxy is for an Enterprise Java EntityBean, the serialized
reference remains valid only as long as the server has not been restarted
since the time when proxy was first instantiated. When deserializing, the
proxy instance will connect back to the same host and port as was used to
create the original instance. An EntityBean proxy can be deserialized at
any time, as long as the EntityBean is still installed on the original server.

• If the original proxy instance was created by connecting to a secure port
with a client-side SSL certificate, the proxy must be deserialized in a
session that connects using the same client certificate and equal or greater
security constraints. For example, if you create an object with session that
uses 128-bit SSL encryption, serialize the object, then later try to
deserialize the object using during a session that uses 40-bit SSL
encryption, the ORB will throw the CORBA::NO_PERMISSION exception.
Access will be allowed when objects created using less secure session are
later accessed using a more secure session.

Handling exceptions
The client-side ORB throws two kinds of exceptions:

• CORBA system exceptions – these exceptions are defined in the CORBA
specification.

• User-defined exceptions – these exceptions are defined in the
component’s IDL definition.

CORBA system
exceptions

The CORBA specification defines the list of standard system exceptions. In
Java, all CORBA system exceptions extend org.omg.CORBA.SystemException.
System exceptions are unchecked exceptions (they extend
java.lang.RuntimeException). The Java compiler does not require that you catch
CORBA system exceptions. However, some exceptions can occur in a well-
behaved program. For example, the Session.loookup call throws a
NO_PERMISSION exception when you request a component instance and the
user lacks permission to instantiate that component. You may want to trap the
exceptions shown in the code fragment below:

try
{

// invoke method(s)

CHAPTER 12 Creating CORBA Java Clients

Programmer’s Guide 233

...
}
catch (org.omg.CORBA.COMM_FAILURE cf)
{

// If this occurs when instantiating a Manager
// instance, the server is likely down or has run
// out of connections. You can retry the connection
// if desired.
//
// If this occurs after a method call, you
// can retry the call (or the transaction call
// sequence for a stateful component).
...

}
catch (org.omg.CORBA.TRANSACTION_ROLLEDBACK tr)
{

// A component on the server aborted the EAServer
// transaction, or the transaction timed out.
// Retry the method call(s) if desired.
...

}
catch (org.omg.CORBA.OBJECT_NOT_EXIST one)
{

// Possibly try to create another instance. Check
// that the package and component are installed
// on the server.
// Received when trying to instantiate a component
// that does not exist. Also received when invoking
// a method if the object reference has expired
// (this can happen if the component is stateful
// and is configured with a finite Instance Timeout
// property). Create another instance if desired.
...

}
catch (org.omg.CORBA.NO_PERMISSSION np)
{

// Tell the user they are not authorized
...

}}
catch (org.omg.CORBA.SystemException se)
{

// Catch-all clause for any CORBA system exception
// that was not explicitly caught above.
// Report the error but don’t bother retrying.
...

Deploying and running Java clients

234 EAServer

Note Not all of the possible system exceptions are shown in the example. See
CORBA/IIOP 2.3 Specification for a list of all the possible exceptions.

User-defined
exceptions

User-defined exceptions are defined in the component’s IDL definition. For
example, you might define OverdrawnException to be thrown by methods that
withdraw money from a bank account. In Java, all user-defined exceptions
extend org.omg.CORBA.UserException.

In Java, IDL user-defined exceptions are checked exceptions; if the IDL
definition of a method contains a raises clause, the equivalent Java stub method
will have a throws clause that lists the equivalent Java exceptions. For example,
consider the IDL definition below:

module MyModule {
exception MyException
{

string reason;
};

interface MyIntf {
boolean throwException
(in boolean yes_no)
raises (MyException);

};
};

The equivalent Java throwException method is:

boolean throwException (boolean yes_no)
throws MyModule.MyException;

Deploying and running Java clients
Run the Java client in a JDK 1.2 or later Java interpreter. If running applets,
make sure your browser supports JDK 1.2. Most browsers require Sun’s Java
Plug-in to support JDK 1.2.

At run time, the following EAServer JAR files must be in the CLASSPATH for
Java applications and included with the class files for applets:

CHAPTER 12 Creating CORBA Java Clients

Programmer’s Guide 235

• java/lib/easclient.jar

• java/lib/easj2ee.jar

Unlike earlier versions, EAServer 4.0 does not provide runtime class files in
the html/classes directory. To run applets, you must include the JAR files in the
applet’s ARCHIVE tag, or expand these JAR files to the html/classes directory.

 Chapter 2, “Creating CORBA Java Components and Clients,” in the
EAServer Cookbook provides a Java-CORBA tutorial that describes how to
deploy Java client applications and applets.

Instantiating proxies with the CosNaming API
EAServer allows you to use the CosNaming API to instantiate proxies in your
client applications. This technique is not recommended, because:

• It requires use of deprecated SessionManager::Factory methods.

• When run in standalone clients, the CosNaming classes are incompatible
with 1.2 or later JDK classes. You can use the CosNaming API in server
components running in a server that uses JDK 1.2 or a later JDK version.

You do not need to use the CosNaming API in clients to realize the benefits
incurred by using logical component names. When you use the technique
described in “Instantiating proxy instances” on page 216, EAServer uses the
CosNaming API to resolve component names in the implementation of the
Session.lookup and Session.create methods.

The steps for resolving objects with CosNaming are as follows:

Step What it does Detailed explanation

1 Configure ORB properties, including
the ORB runtime driver class and the
EAServer naming server URL, then
initialize the ORB runtime.

“Configuring and initializing the
ORB runtime” on page 216

2 Instantiate the CORBA CosNaming
naming service and obtain the initial
naming context.

“Obtaining an initial naming
context” on page 237

3 Resolve component names to proxy
objects and narrow them to the stub
interface.

“Instantiating proxy objects for
EAServer components” on page
240

Instantiating proxies with the CosNaming API

236 EAServer

Initializing the ORB Before you can call any other ORB methods, you must configure ORB
properties and call the org.omg.CORBA.ORB.init method. “Configuring and
initializing the ORB runtime” on page 216 describes how to do this. In
addtion, you must set the the com.sybase.CORBA.NameServiceURL property.

com.sybase.CORBA.NameServiceURL specifies the list of URLs with the host
and port number for IIOP connectivity to the EAServer name servers for your
application. Each URL takes the the form:

protocol://hostname:iiop-port/initial-context

where

• protocol is iiop or iiops. Use iiops if connecting to a secure IIOP port,
and iiop otherwise.

• hostname is the host machine name for the server that serves as the name
server for your application. If omitted, the ORB uses a default host name.
In Java applets, the default host name is the applet’s download host. In
Java applications, the default is localhost.

• iiop-port is the IIOP port number for the server.

• initial-context is the initial naming context. This can be used to set a
default prefix for name resolution. For example, if you specify
USA/Sybase/, all names that you resolve with the context are assumed to
be relative to this location in the name hierarchy. When specifying the
initial context, the trailing slash is optional; it is added automatically if you
do not specify an initial context that ends with a slash.

If your application uses a cluster of servers, the cluster may use multiple name
servers. In this case, specify the URLs for each name server in a list separated
by semicolons and no white space. Include the cluster’s initial naming context
only with the last URL. For example:

iiop://host1:9000;iiop://host2:9000/USA/Sybase/

If you do not set the com.sybase.CORBA.NameServiceURL, property, the
default is assumed. Different defaults are used depending whether your client
is a Java application or a Java applet. The applet default is:

iiop://download-host:9000/

which indicates that the EAServer ORB expects the name server to be available
at port 9000 on the host from which the applet was downloaded, and that the
initial naming context is the root context (/).

The default for applications is:

iiop://localhost:9000/

CHAPTER 12 Creating CORBA Java Clients

Programmer’s Guide 237

Obtaining an initial
naming context

After initializing the ORB, call the ORB.resolve_initial_references method to
obtain the initial naming context. The naming context is an object that
implements the CosNaming::NamingContext IDL interface; it is used to resolve
EAServer component and service names to server-side objects.

Obtaining the initial context The example below shows how the initial
naming context is retrieved:

import org.omg.CORBA.*;
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
public class myApplet extends Applet {

... deleted ORB initialization code ...
NamingContext nc = null;
org.omg.CORBA.Object objRef = null;
try {

objRef = orb.resolve_initial_references(
"NameService");

nc = NamingContextHelper.narrow(objRef);
} catch (org.omg.CORBA.ORBPackage.InvalidName ine) {

nc = null;
}
if (nc == null) {

System.out.println("Error: Could not "
+ "instantiate CORBA naming context.");

return;
}

Introduction to CosNaming name resolution The initial NamingContext
will have the name context that was specified in the
com.sybase.CORBA.NameServiceURL ORB initialization property. Your client
program invokes the NamingContext::resolve operation to obtain an instance of
the EAServer authentication service as well as component instances.

Note EAServer’s CosNaming implementation currently lacks support for the
BindingIterator interface, which is used to browse the name hierarchy.

The NamingContext::resolve operation takes a CosNaming::Name parameter,
which is a sequence of CosNaming::NameComponent structures. The Java
definitions of these types and the NamingContext::resolve operation follow:

package org.omg.CosNaming;

class NameComponent {

Instantiating proxies with the CosNaming API

238 EAServer

public String id; // Represents a node in a name
public String kind; // Unused, can contain comment

info

// Construct a NameComponent instance with the
// specified initial values for id and kind fields
public NameComponent(String id, String kind);

}

interface NamingContext {
... other methods not shown ...
public org.omg.CORBA.Object resolve
(NameComponent[] n)
throws
org.omg.CosNaming.NamingContextPackage.NotFound,
org.omg.CosNaming.NamingContextPackage.CannotProcee

d,
org.omg.CosNaming.NamingContextPackage.InvalidName;

}

In Java, a name is represented by an array of NameComponent instances, with
the id field of each instance set to a node of the name. For example, the name

USA/Sybase/Jaguar/TestPackage/TestComponent

can be represented by the array theName which is created in this code
fragment:

import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
public class myApplet extends Applet {

NamingContext nc;
... deleted code that retrieves initial NamingContext

...

NameComponent theName[] = {
new NameComponent("USA", ""),
new NameComponent("Sybase", ""),
new NameComponent("Jaguar", ""),
new NameComponent("TestPackage", ""),
new NameComponent("TestComponent", "")

} ;

CHAPTER 12 Creating CORBA Java Clients

Programmer’s Guide 239

To simplify your source code, the EAServer naming service allows you to
specify multiple nodes of a name in one NameComponent instance, using a
forward slash (/) to separate nodes. The name from the example above can be
represented in a one-element array as shown below:

NameComponent theName[] = {
new NameComponent(
"USA/Sybase/Jaguar/TestPackage/TestComponent",

"")
};

NamingContext::resolve resolves a name to an object; this method either returns
an org.omg.CORBA.Object instance or throws one of the exceptions described
below:

• NotFound indicates that the name is not bound to an object, the name does
not exist, or some node in the indicated hierarchy does not exist; the why
field contains an enumeration that encodes the reason why the name was
not found.

• InvalidName indicates that the name is malformed.

• CannotProceed or a CORBA SystemException indicates that an error has
occurred. “Handling exceptions” on page 232 describes CORBA system
exceptions.

The code fragment below illustrates a typical call with exception handling:

import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
public class myApplet extends Applet {

try {
NamingContext nc;
... deleted code that retrieves initial

NamingContext ...

NameComponent theName[] = {
new NameComponent(
"USA/Sybase/Jaguar/TestPackage/TestComponent",

""));

org.omg.CORBA.Object obj = nc.resolve(theName);

... deleted code that narrows the object to a
supported interface ...

} catch (NotFoundException nfe) {

Instantiating proxies with the CosNaming API

240 EAServer

... report the error ...
} catch (InvalidName ine) {

... report the error ...
} catch (CannotProceed cpe) {

... report the error ...
}

Instantiating proxy
objects for EAServer
components

Proxy objects are instantiated as follows:

1 Create a NameComponent array that names the component. Component
names are composed as follows:

server-context/package/component

where

• server-context is the root naming context for the server where the
component is installed. You can view and edit this setting in the
Naming Services tab of the Server Properties window. The default for
a new server is “/”. If you specified an initial name context when
initializing the ORB properties, then resolved names are assumed to
be relative to the initial name context. For example, if your client
program specifies an initial context of /USA/Sybase, and your server’s
root context is USA/Sybase/Engineering, then you can resolve
component names as Engineering/package/component.

• package is the EAServer package name in which the component is
installed, as displayed in EAServer Manager.

• component is the component name, as displayed in EAServer
Manager.

2 Call the NamingContext.resolve method. It returns a factory object for the
component. You can use the factory to create proxy objects.

3 Narrow the CORBA Object reference to a SessionManager::Factory
instance.

4 Call the factory’s create method and narrow the return value by calling the
narrow method in the generated helper class for the interface. The create
method requires a username and password to authenticate the end user.

The example below instantiates a component MyComponent, installed in
package MyPackage, hosted on a server with initial context
USA/Sybase/Jaguar. The username and password are Guest and
GuestPassword, respectively. The component implements the IDL interface
MyPackage::MyInterface, and the code narrows the proxy object to that
interface.

CHAPTER 12 Creating CORBA Java Clients

Programmer’s Guide 241

import org.omg.CORBA.*;
import org.omg.CosNaming.*;
import org.omg.CosNaming.CosNamingPackage.*;
import SessionManager.*;

public class myApplet extends Applet {

NamingContext nc;

... deleted code that created initial naming context
 ...

// Create a NameComponent array for
// USA/Sybase/Jaguar/MyPackage/MyComponent
//
NameComponent compName[] = {

new NameComponent("USA", ""),
new NameComponent("Sybase", ""),
new NameComponent("Jaguar", ""),
new NameComponent("MyPackage", ""),
new NameComponent("MyComponent", "")

try {
// Resolve the name to obtain the proxy object
org.omg.CORBA.Object obj = nc.resolve(compName);

// Narrow to a factory instance
Factory compFactory = FactoryHelper.narrow(obj);

// Get the proxy object and narrow it to
MyInterface.

obj = compFactory.create(“Guest”, “GuestPassword”);
MyPackage.MyInterface comp =

MyPackage.MyInterfaceHelper.narrow(obj);
}
catch (NotFoundException nfe) {

 ... report the error ...
}
catch (CannotProceed cpe) {

 ... report the error ...
}
catch (InvalidName ine) {

 ... report the error ...
}

}

Using other CORBA ORB implementations

242 EAServer

Using other CORBA ORB implementations
EAServer’s IIOP implementation allows you to use any CORBA-compliant
client ORB to invoke EAServer components. You can also use the EAServer
client ORB to execute components that are hosted by another vendor’s server
ORB.

Connecting to EAServer with a third-party client ORB
In some cases, you may wish to use another vendor’s ORB in your client
applications. For example, you may have an existing installation of the ORB
on client workstations.

Clients that use another ORB can use the same code as for the EAServer ORB,
except for the following differences:

• You must use stub classes generated by the vendor’s IDL-to-Java compiler
rather than stubs generated by EAServer Manager.

• Your code to connect to EAServer and instantiate components may differ.

When executing methods, you may wish to use the EAServer conversion
classes to create and interpret the predefined EAServer datatypes (see “Binary,
fixed-point, date/time, and ResultSet types” on page 228). These conversion
classes, in packages com.sybase.CORBA.jdbc102 and
com.sybase.CORBA.jdbc11, are documented in Chapter 1, “Java Classes and
Interfaces,” in the EAServer API Reference. The classes are compatible with
any Java ORB.

Generating
compatible Java stubs

You should generate stubs for your third-party ORB using the IDL-to-Java or
IDL-to-C++ compiler provided by the vendor. Stubs created by EAServer
Manager are not guaranteed to work with another ORB.

Each component’s IDL interfaces are specified in the Component Properties
window, under the General tab. See “Configuring component properties” on
page 52 for more information. All interfaces are defined in IDL modules that
are stored as plain text files in the EAServer Repository subdirectory. For
example, if the component implements the Module1::I1 and Module2::I2
interfaces, you will need to copy the files Module1.idl and Module2.idl into a
working directory for generating stubs for your third-party ORB software. You
must also copy any files that are included by these modules, including those
listed in Table 12-4: Predefined EAServer IDL files.

CHAPTER 12 Creating CORBA Java Clients

Programmer’s Guide 243

As an alternative to copying files, you can open modules in the EAServer IDL
editor and use File | Save As to save them to your working directory. See
“Creating and editing IDL modules, interfaces, and types” on page 90 for
more information.

Table 12-4 lists the names of the predefined EAServer IDL modules that are
needed by all client applications.

Table 12-4: Predefined EAServer IDL files

 Warning! When creating stubs for another ORB, do not overwrite the
EAServer Java stubs in the EAServer html/classes subdirectory. Use different
package names when creating stubs for third-party ORBs or create the third-
party ORB stubs under a different code base.

Instantiating
components using a
third-party ORB

EAServer’s naming service cannot be used with other client ORBs, so you
must use the EAServer SessionManager::Manager interface to instantiate
components from another ORB, as described in “Instantiating proxy
instances” on page 216. Set the org.omg.CORBA.ORBClass property to the
name of the class provided by your ORB vendor.

Also, you must use standard format IORs, not the URL format, as described in
“Standard format IORs” on page 223.

To simplify applet deployment, you can use one of the following techniques to
avoid coding IORs into deployed HTML or Java class files:

• Code your applets to open an HTTP connection to the server, then retrieve
the contents of the server-generated .ior file that contains the IOR. (See
“Standard format IORs” on page 223 for more information on the
generated .ior files.)

• If your third-party ORB provides a name service, store the IOR for
EAServer in the third-party name service.

Filename Description

SessionManager.idl Defines interfaces for session-based creation of EAServer
component instances.

BCD.idl Defines the CORBA datatypes for EAServer’s binary and
fixed-point numeric datatypes.

MJD.idl Defines the CORBA datatypes for EAServer’s date and time
datatypes.

TabularResults.idl Defines the CORBA datatypes that represent result sets
returned by a method invocation.

Using other CORBA ORB implementations

244 EAServer

Connecting to third-party ORBs using the EAServer client ORB
You can use the EAServer client-side ORB to execute components hosted by
another vendor’s server-side ORB, as long as the server-side ORB accepts
IIOP connections and the required interfaces are defined in standard CORBA
IDL.

❖ Implement your client as follows:

1 Import all the required IDL modules into EAServer Manager, as described
in “Importing existing IDL modules” on page 104.

2 Generate stubs for each imported module using EAServer Manager, as
described in “Generating Java stubs in EAServer Manager” on page 214.
You must generate stubs for each module individually.

3 Implement code to connect to the third-party server and instantiate
components, following the vendor’ s documentation.

P A R T 4 CORBA-C++ Components
and Clients

This part explains how to build C++ components and clients
that use standard CORBA type mappings and run-time
services.

Programmer’s Guide 247

C H A P T E R 1 3 CORBA C++ Overview

This chapter provides an overview of things to consider when developing
CORBA C++ clients and components for EAServer.

Overview
CORBA is a distributed component architecture defined by the Object
Management Group (OMG). EAServer supports the CORBA Internet
Inter-ORB Protocol (IIOP). EAServer also provides a CORBA-
compatible C++ client-side interface. These two items allow you to create
CORBA EAServer C++ applications. C++ components and clients are
also interoperable with clients and components using other technologies.

The dynamic invocation interface (DII) is not supported.

For information on the CORBA architecture, see the specifications
available at the OMG Web site at http://www.omg.org.

Requirements
To develop C++ components, you need a C++ development tool. All
software that is required to run C++ components in EAServer is supplied
with the EAServer product.

To develop C++ clients, you need a C++ development tool. To deploy and
run C++ clients on end-user workstations, you must install the EAServer
C++ client runtime on each workstation.

Topic Page
Overview 247
Requirements 247
Supported datatypes 248

Supported datatypes

248 EAServer

For detailed system requirements, see the EAServer Installation Guide for your
platform.

Supported datatypes
EAServer follows the OMG standard for translating CORBA IDL to C++,
more specifically, refer to C++ Language Mapping Specification
(formal/99-07-41). You can download this document from the OMG Web site
at http://www.omg.org.

The standard supports all the C++ features in the Annotated C++ Reference
Manual by Ellis and Stroustrup as implemented by the ANSI/ISO C++
standardization committees. In addition, the namespace construct is supported.
Templates are not required but can be used.

IDL modules are mapped to C++ namespaces and IDL interfaces are mapped
to C++ classes. All OMG IDL constructs scoped to an interface are accessed
through C++-scoped-names. For example, the IDL interface
CtsComponents::ThreadManager maps to the C++ class
CtsComponents::ThreadManager. If your C++ compiler supports namespaces,
you can use the namespace directive and refer to the interface name by itself,
as in:

using namespace CtsComponents;
...

ThreadManager threadMan;

Mapping for predefined EAServer Manager datatypes
Table 13-1 lists the datatypes in EAServer Manager, the equivalent CORBA
IDL types, and the C++ datatypes used in stub methods. You can also define
additional types in IDL; when you generate stubs and skeletons, these are
translated to C++ types using the standard CORBA IDL to C++ type mappings.
For example, The BCD and MJD CORBA IDL modules define types to
represent binary data, fixed-point numeric data, dates, and times. For details,
see the generated Interface Repository documentation for these IDL modules.

CHAPTER 13 CORBA C++ Overview

Programmer’s Guide 249

Table 13-1: EAServer Manager, CORBA IDL, and C++ datatype
mappings

EAServer
Manager

CORBA IDL
type

Argument
mode IDL C++ type

integer<16> short in
inout
out
return

CORBA::Short
CORBA::Short&
CORBA::Short_out
CORBA::Short

integer<32> long in
inout
out
return

CORBA::Long
CORBA::Long&
CORBA::Long_out
CORBA::Long

integer<64> long long in
inout
out
return

CORBA::LongLong
CORBA::LongLong&
CORBA::LongLong_out
CORBA::LongLong

Define JAG_LONGLONG
Because there is no standard
C++ type for an signed 64-bit
integer, you must define the
JAG_LONGLONG macro as
your compiler’s type for a
signed 64-bit integer.

float float in
inout
out
return

CORBA::Float
CORBA::Float&
CORBA::Float_out
CORBA::Float

double double in
inout
out
return

CORBA::Double
CORBA::Double&
CORBA::Double_out
CORBA::Double

boolean boolean in
inout
out
return

CORBA::Boolean
CORBA::Boolean&
CORBA::Boolean_out
CORBA::Boolean

string string in
inout
out
return

char*
char*&
CORBA::String_out
char*

Supported datatypes

250 EAServer

Using mapped IDL types
All EAServer component interfaces are defined in standard CORBA IDL, and
C++ stubs and skeletons use the standard CORBA IDL-to-C++ type mappings.

binary BCD::Binary in
inout
out
return

BCD::Binary&
BCD::Binary&
BCD::Binary_out
BCD::Binary*

decimal BCD::Decimal in
inout
out
return

BCD::Decimal&
BCD::Decimal&
BCD::Decimal_out
BCD::Decimal*

money BCD::Money in
inout
out
return

BCD::Money&
BCD::Money&
BCD::Money_out
BCD::Money*

date MJD::Date in
inout
out
return

MJD::Date&
MJD::Date&
MJD::Date_out
MJD::Date

time MJD::Time in
inout
out
return

MJD::Time&
MJD::Time&
MJD::Time_out
MJD::Time

timestamp MJD::Timestamp in
inout
out
return

MJD::Timestamp&
MJD::Timestamp&
MJD::Timestamp_out
MJD::Timestamp

ResultSet TabularResults::
ResultSet

return TabularResults::ResultSet*

ResultSets TabularResults::
ResultSets

return TabularResults::ResultSets*

EAServer
Manager

CORBA IDL
type

Argument
mode IDL C++ type

CHAPTER 13 CORBA C++ Overview

Programmer’s Guide 251

For local variables that map to constructed C++ types and do not represent an
IDL interface, use the C++ datatype that is appended with _var. _var variables
are automatically freed when they are out of scope. If you do not use the _var
type, references must be freed with the C++ delete operator. In Table 13-1,
string, binary, decimal, money, date, time, timestamp, ResultSet, and ResultSets
have _var types. Other types listed in Table 13-1 map to fixed-length C++
types. For fixed-length types, use the base C++ type.

IDL interfaces map to C++ classes that extend the CORBA::Object class. These
object reference types have a _var form for references with automatic memory
management, and a _ptr form for references that must remain valid after the
reference variable goes out of scope. _ptr references must be freed by calling
CORBA::release.

You must pass values in a _var type as follows:

MyType_var v;
....
v.in() // Passes v as an in

// parameter.
v.inout() // Passes v as an inout

// parameter.
v.out() // Passes v as an out

// parameter.
return v._retn() // Passes v as a return value.

Note Do not use the C++ _out types for local variables; these types are
reserved for method signatures.

For out and inout parameters of IDL type string, use CORBA::string_alloc or
CORBA::string_dup to allocate memory for them. For example:

ItemName = CORBA::string_dup("Dummy Item Name");
ItemData = CORBA::string_dup("Dummy Item Data");

In C++, if you declare string variables as type CORBA::String_var, memory
allocated by CORBA::string_dup or CORBA::string_alloc is freed automatically.
Otherwise, declare as char * and free the memory explicitly by calling
CORBA::string_free.

You can pass a null value as a parameter type only with the object reference
type Module::Interface::_nil().

Supported datatypes

252 EAServer

Overloaded methods
Overloading methods is supported for C++ components. When you overload a
method, you use the same name for several methods that specify different
parameters. When you call an overloaded method, the method with the
corresponding parameters is executed. See “Operation declarations” on page
97 for more information.

Programmer’s Guide 253

C H A P T E R 1 4 Creating CORBA C++
Components

This chapter describes how to code CORBA EAServer C++ components.

Procedure for creating C++ components
This section contains an overview of the steps involved in creating C++
components; the remainder of this chapter includes detailed information
for each step. You use EAServer Manager to define basic information
(such as the component name and methods) about a C++ component, and
generate files that are required to write the component’s class
implementation and to compile the class into a dynamic link library (on
Windows) or shared library (on UNIX).

You write your component as a C++ class; the generated files include a
class implementation template in which you can write your method logic.
In addition, EAServer supplies an application programming interface that
contains classes and methods that you can use to perform EAServer-
specific tasks. You can use the EAServer API to write code to handle
errors, cache connections to third-tier database servers, return result sets,
manage transactions, share data between instances of the same
component, retrieve a client’s SSL certificate information, and make
intercomponent calls.

Topic Page
Procedure for creating C++ components 253

Defining C++ components 254

Generating required C++ files 256

Writing the class implementation 259

Compiling source files 268

Debugging C++ components 271

Running C++ components externally 273

Creating C++ components for multiplatform clusters 275

Defining C++ components

254 EAServer

After writing the method logic in the class implementation template, you
compile the component to build a dynamic link library (DLL) or shared library,
then deploy the librar to your EAServer installation.

Detailed information for creating components is in these sections:

1 Defining C++ components – use EAServer Manager to specify the
component’s name, DLL name, C++ class, method prototypes, and how
transactions and instances are managed. This information is used to
automatically generate the files necessary to compile the C++ component
(including source files, makefiles and a Microsoft Visual C++ module
definition file) into a DLL or shared library.

2 Generating required C++ files – use EAServer Manager to generated the
source files and the makefiles for UNIX and Windows.

3 Writing the class implementation – in the class implementation template,
write the logic for each method.

4 Compiling source files – Compile and link source files to create a DLL or
shared library.

5 Installing the Component DLL or Shared Library – copy the DLL or
shared library to the cpplib directory of the EAServer installation.

Defining C++ components
To define a C++ component, use EAServer Manager to create an Interface
Definition Language (IDL) module and interface, assign the interface to the
component, define the properties for the component, and then define the
methods in the component. Define each method’s return type and parameters.
For each parameter, define its datatype and argument mode.

Chapter 4, “Defining Components” describes how to define and configure new
components in EAServer Manager.

Transaction property The component’s transaction property determines how it participates in
transactions. You can view and change this property using the Transactions tab
of the component’s property sheet. For a description of each option on the
Transactions tab, see “Component properties: Transactions” on page 58. A
transaction consists of a number of database updates (which can be performed
by multiple components) that are grouped into a single atomic unit of work.

CHAPTER 14 Creating CORBA C++ Components

Programmer’s Guide 255

For a full description of how EAServer handles transactions, see Chapter 2,
“Understanding Transactions and Component Lifecycles.”

Instance properties The threading property imposes constraints on the concurrent execution of the
component in different threads. You can view and change these properties
using the Threading tab of the component’s property sheet.

In single threading, multiple instances can exist simultaneously, but only one
can be active at any one time. EAServer synchronizes instantiations, method
invocations, and the destruction of all instances. Use single threading if your
component shares volatile global data or stateful resources between instances.

This setting determines the constraints that are placed on the concurrent
execution of different instances of the component. The following settings
specify the constraints that are placed on concurrent execution of different
instances of the component. The choices are:

• Concurrency – Multiple invocations can be processed concurrently; that
is, multiple instances can be simultaneously active on different threads.
The component must be thread-safe. Use this setting if the component
code uses no volatile global data and does not maintain data in resources
(such as files) that are shared among instances. For example, you could not
use this setting if every component instance opened the same file and
wrote text to it. An example of volatile global data could be a counter that
is stored in a global variable. This threading model offers the highest
performance.

You can use the EAServer shared properties feature in your component
code to share data safely among instances of a multiple-threaded
component. See “Share data between C or C++ components” on page 686
for more information.

• Bind Thread – Instances are bound to the creating thread. The component
uses thread-local storage.

This setting determines whether a component instance is always invoked
in the same thread or can be invoked on any thread. By default, this check
box is not selected, which indicates that EAServer can invoke the
component’s methods with any thread.

Generating required C++ files

256 EAServer

Use the default setting unless your component uses thread-local storage.
EAServer provides no APIs for thread-local storage, but you can issue
thread system calls from the C++ component code. Do not use thread-local
storage if you are implementing new components. Instead, use instance
variables to associate data with a specific component. If you incorporate
existing code that uses thread-local storage into a C++ component, select
this setting.

• Pooling – Instances are pooled after a commit or rollback.

• Sharing – A single shared instance services all client requests. This model
offers the worst performance. Use this model only if the logic in your code
requires that only one component instance exist at one time. Attempts to
create new instances when one already exists will fail.

Client interfaces You define methods by specifying each method’s return type and parameters.
For each parameter, you define its datatype and argument mode. You use a
method’s property sheet to define its return type and parameters.

Chapter 5, “Defining Component Interfaces” describes how to define IDL
methods in the component interface. “Supported datatypes” on page 248
describes the IDL to C++ type mappings.

Instead of defining methods using EAServer Manager, you can code a Java
interface that defines your component’s methods and import it into EAServer
Manager. See “Importing interfaces from compiled Java files” on page 85 for
more information.

Control interface Optionally configure a control interface for the component. Using a control
interface allows you to implement methods to respond to changes in the
instance lifecycle. See “Configuring a control interface” on page 73 for more
information.

Generating required C++ files
You use EAServer Manager to generate the C++ files that you need to compile
into a DLL or UNIX shared library as well as a class implementation template
in which to write method logic. These C++ files include:

• Method skeletons file – Contains method routines that read the parameters
from the network and call the method. The method skeletons also send the
return status and output parameter data back to the client.

CHAPTER 14 Creating CORBA C++ Components

Programmer’s Guide 257

• Class header file – Contains the method declarations only. This file is an
included file in the method skeletons file and the class implementation
template.

• Class implementation template – Contains the class, method, and
parameter declarations, as well as empty method definitions. You enter
any business logic into the empty method definitions.

• Stub interface files – Contain the interface definition for all components in
a package, as well as definitions for user-defined types and exceptions
used in your component’s interface. EAServer Manager creates these files
when you generate C++ stubs for your component.

• UNIX makefile – You use a makefile to compile the C++ source files into
a UNIX shared library.

• Windows makefile and Microsoft Visual C++ module definition file – You
use the makefile and a module definition file to compile the C++ source
files into a DLL.

“Method call to a C++ component DLL or UNIX shared library” on page 257
shows the flow of a client method call to a C++ component DLL or UNIX
shared library.

1 The client invokes a method using the proxy or stub appropriate to the type
of client. The stub or proxy sends the invocation information over the
network to the server.

2 The method skeleton in the method skeletons file unmarshals the call and
makes a call to the method implementation in the class implementation
template.

3 After the method executes, the method implementation returns the call to
the method skeleton.

4 The method skeleton marshals the call and sends the call to the client.

Method call to a C++
component DLL or
UNIX shared library

The following figure shows the flow of a client method call to a C++
component DLL or UNIX shared library.

Generating required C++ files

258 EAServer

Figure 14-1: How C++ component methods are called

❖ Generating required C++ files in EAServer Manager

To generate the required C++ files from a package or component, start
EAServer Manager and:

1 Select the component or, if you want to generate files for all components
in a package, select the package.

2 Select File | Generate Stub/Skeleton. The Generate Stubs & Skeletons
Wizard displays. Follow the instructions on each page to generates C++
stubs and skeletons. See the online help for descriptions of any input fields
that you do not understand.

File naming
conventions

EAServer Manager generates the following files:

where:

component-name is the name of the component that you defined in EAServer
Manager.

DLL or UNIX shared library
Method Skeleton File

Class Implementation

Class Header File

Template

Method Call
from Client

Method Returns
to Client

File type File name

method skeletons file package-name_component-name.cpp

class header file class-name.hpp.new

class implementation template class-name.cpp.new

stub interface file package-name.hpp

CHAPTER 14 Creating CORBA C++ Components

Programmer’s Guide 259

class-name is the class name that you specified when you created the
component.

EAServer Manager creates the directory structure based on the code base that
you specify and the component name, as follows:

code_base/package_name/component_name

where:

code_base is the directory name in the Code Base field in EAServer Manager.
If the Code Base field does not contain a full path name, the directory will be
located under the EAServer installation directory, relative to the html/classes
subdirectory.

package-name is the name of the package that contains the component.

component_name is the component name as displayed in EAServer Manager.

Regenerating
changed C++
component methods

When you add or delete methods or modify component method prototypes, you
must regenerate the method skeletons and class header files. You must
manually add, delete, or modify the methods in the class implementation
template. Before you regenerate the method skeletons and class header files,
make sure that you have moved your modified class implementation template
to another directory or renamed it so the generated class implementation
template does not overwrite your existing class implementation template.

Writing the class implementation
After you generate the method skeleton file, class header file, and class
implementation template, write the code for each method in the class
implementation template (you can also write your class implementation from
scratch and replace the generated class implementation template).

You must use scoped names to specify the CORBA IDL module, the EAServer
SessionManager IDL module, and any component IDL modules that you want
to execute methods on. To make using scoped names easier, you can use the
C++ using statement for the IDL module namespaces as in the following
example:

using namespace CORBA;
using namespace SessionManager;

If your C++ compiler does not support namespaces, define a compiler macro
JAG_NO_NAMESPACE when compiling your source files.

Writing the class implementation

260 EAServer

CORBA::is_nil(Object) can be used to verify that a specific interface is
implemented by a component.

As with any C++ class, you use the constructor and destructor to initialize and
perform any cleanup of objects.

Constructors of class variables in file scope not called
If you declare a class variable in file scope and compile it into a shared object,
such as a component, the Solaris C++ compiler doesn’t call the constructor of
the class variable. If the variables need to be in scope only for a particular
function, procedure or module, then declare these variables in the appropriate
function, procedure, module; otherwise declare these variables in the class
definition.

You can also include EAServer C routines to:

• Cache connections to third-tier database servers

• Return result sets

• Set transaction states

• Share data between C++ components

Coding these C routines is described in “Write methods” on page 260.

Write methods
This section describes how to write methods for EAServer-specific APIs,
including C routines, accessing SSL client certificates, and issuing
intercomponent calls. A C++ method signature must use the return types and
parameter datatypes described in “Supported datatypes” on page 248. To
implement any of the features that require EAServer C routines, you must
include jagpublic.h and implement the methods for each feature as follows:

• Handling Errors

Use user-defined or CORBA system exceptions to handle errors. See
“Error handling” on page 261 for more information about system and
user-defined exceptions.

• Caching Connections to Third-Tier Database Servers

You can use a connection cache to improve performance when connecting
to database servers. See “Using Connection Manager routines in C, C++,
and ActiveX components” on page 486 for more information.

CHAPTER 14 Creating CORBA C++ Components

Programmer’s Guide 261

• Returning Result Sets

A component method can return row results to the client. See “Returning
result sets” on page 261 for more information.

• Managing explicit OTS transactions

You can explicitly to manage OTS transactions from your component.

• Setting Transaction State

Methods in a transactional component should call one of the transaction
primitive routines to set the transaction state before returning. See
“Methods that set transactional state” on page 693 for more information.

• Sharing Data Between C++ Components

EAServer provides C routines that allow components within the same
package to share data with each other. See “Share data between C or C++
components” on page 686 for more information.

Returning result sets

You can return result sets by:

• Using the C API as described in “Sending result sets from a C or C++
component” on page 471. The component method that returns a result set
or result sets must return a null pointer in place of the
TabularResults::ResultSet or TabularResults::ResultSets pointer. For
example:

return NULL;

See “Sending result sets from a C or C++ component” on page 471 for
more information.

• Returning a pointer to an initialized TabularResults::ResultSet or
TabularResults::ResultSets object.

Error handling

Handle errors by:

1 Writing detailed error descriptions to the server log file using JagLog.

2 Coding one of these tasks:

Writing the class implementation

262 EAServer

a If the component is transactional, call JagDisallowCommit or
JagRollbackWork (or you can throw the
CORBA::TRANSACTION_ROLLEDBACK exception instead of calling
JagRollbackWork).

b Throw a CORBA system or user-defined IDL exception to be raised
by the client stub. See “Handling exceptions” on page 296 for more
information.

For more information about these methods, see Chapter 5, “C Routines
Reference,” in the EAServer API Reference.

Managing explicit OTS transactions

You can code components (and clients) to initiate and complete transactions
using the OTS (Object Transaction Service) CosTransactions::Current or
CosTransactions::TransactionFactory interfaces.

Note In order to use OTS, you must enable EAServer to use the OTS/XA
transaction coordinator. See Chapter 3, “Creating and Configuring Servers,”
in the EAServer System Administration Guide for more information.

To use the functionality of these interfaces, include CosTransactions.hpp in
your source file.

To explicitly use transactions in a component or client, use the
CosTransactions::Current interface to perform these tasks.

Task Call this method Catch these exceptions

Start a transaction. begin SubtransactionsUnavailable

Temporarily stop a transaction. suspend None

Resume a suspended transaction. resume InvalidControl

Commit a transaction. commit NoTransaction, HeuristicMixed,
HeuristicHazard

Roll back a transaction. rollback NoTransaction

Make the only possible outcome of the
transaction a rollback.

rollback_only NoTransaction

Roll back a transaction after a specified
amount of time has elapsed without any
response.

set_timeout None

Retrieve a transaction’s status. get_status None

CHAPTER 14 Creating CORBA C++ Components

Programmer’s Guide 263

Using factories The TransactionFactory interface is included in EAServer only to maintain
compatibility with the CORBA OTS specification—Sybase recommends that
you use the CosTransactions::Current interface to create explicit transactions.

Note Sybase recommends that you use suspend with caution so as not to
conflict with the EAServer component model. For example, do not use
suspend to take control of a transaction that it does not control.

Initializing the ORB

To initialize the ORB and retrieve a reference to the CosTransactions::Current
interface, specify the TransactionCurrent ObjectId, which identifies the
CosTransactions::Current interface, to the resolve_initial_references method,
and narrow it (using the _narrow method) to the CosTransactions::Current
interface. Use the is_nil method to verify that the reference to the
CosTransactions::Current interface is valid.

For clients The following code fragment shows how to initialize the ORB from a client.
ORB_init must take the argumentList array that specifies the
ORBNameServiceURL parameter. You can also set the ORBNameServiceURL
using the JAG_NAMESERVICEURL environment variable.

int argumentCnt = 1;
char *argumentList[] = {

{ "-ORBNameServiceURL iiop://<hostnamehere>:9000" },
{ "" }
};

try {

CORBA::ORB_var orb = CORBA::ORB_init(argumentCnt,
argumentList, 0);

cerr << "Orb init" << endl;

CORBA::Object_var crntObj =
orb->resolve_initial_references

("TransactionCurrent");
CosTransactions::Current_var CurrentIntf =

Retrieve a transaction’s name. Use this
method when you need to debug
transactions.

get_transaction_name None

Task Call this method Catch these exceptions

Writing the class implementation

264 EAServer

CosTransactions::Current::_narrow(crntObj);
if(CORBA::is_nil(CurrentIntf))
{

cerr << "Error getting Current" << endl;
exit(-1);

}
cerr << "Got Current" << endl;

For components The following code fragment shows how to initialize the ORB from a
component. ORB_init does not need to take any parameters.

orb = CORBA::ORB_init(argumentCnt, NULL, 0);
cerr << "Orb init" << endl;

CORBA::Object_var crntObj =
orb->resolve_initial_references

("TransactionCurrent");
CurrentIntf =

CosTransactions::Current::_narrow(crntObj);
if(CORBA::is_nil(CurrentIntf))
{

cerr << "Error getting Current" << endl;
/* could be due to:
** 1. Component not BeanManaged/OTS Style
** 2. Already in a Txn
** 3. not running under OTS
*/
return CS_FAIL;

}
cerr << "Got Current" << endl;

Calling CosTransactions::Current interface methods

After retrieving a reference to the CosTransactions::Current interface, you can
call any of the CosTransactions::Current methods on the
CosTransactions::Current reference. After executing the begin method, execute
the database operations you want to include in the transaction. Depending on
whether the database operations succeed or fail, you can execute other
appropriate methods, such as commit, rollback, or rollback_only. This code
fragment shows how to begin a transaction and commit or roll it back
depending on the return codes received from the databases.

CurrentIntf->begin();
ret = JagCmGetConnection(&cache,

(SQLCHAR *) USERID, (SQLCHAR *) PASSWD,
(SQLCHAR *) xaresource, (SQLCHAR *) "CTLIB_110",
(void*) &conn, JAG_CM_UNUSED);

CHAPTER 14 Creating CORBA C++ Components

Programmer’s Guide 265

if (ret != CS_SUCCEED) {
cerr << "Error getting connection" << endl;
CurrentInt->rollback();

}

CurrentIntf->commit(CS_FALSE);

Executing tasks outside of a transaction

To execute a method outside of a transaction, you can write the code to perform
either:

• Execute the method before beginning a transaction, or

• Temporarily stop and start execution of the transaction.

❖ Execute tasks outside of a transaction using the suspend and resume
methods

1 Execute suspend to temporarily stop execution of the transaction.

2 Execute the tasks.

3 Execute resume to restart the execution of the transaction from where it
stopped.

This code fragment shows how to execute tasks outside of a transaction. The
suspend method returns the control context. You specify the control context
when you use the resume method to restart the transaction. Catch the
InvalidControl exception, which may be raised when a control context is out of
scope (and not null).

sus_ctrl = CurrentIntf->suspend();

/* The following method is not in the transaction */
component1->method2();

CurrentIntf->resume(sus_ctrl);
/* The following methods are invoked
in the transaction */

component2->method1();

CurrentIntf->commit(CS_FALSE);

}
catch(CosTransactions::SubtransactionsUnavailable

&ex)
{

Writing the class implementation

266 EAServer

cerr << "Exception: SubTxnUnavailable " <<
ex._jagExceptionCode << endl;

}
catch(CosTransactions::NoTransaction &ex)
{

cerr << "Exception: NoTransaction " <<
ex._jagExceptionCode << endl;

}
catch(CosTransactions::InvalidControl &ex)
{

cerr << "Exception: InvalidCtrol " <<
ex._jagExceptionCode << endl;

}
catch(...)
{

cerr << "Caught Unexpected exception" << endl;
exit(-1);

}

Exceptions

The CosTransactions module includes these exceptions:

• SubtransactionsUnavailable – raised when the client thread already has an
associated transaction and the transaction coordinator does not support
nested transactions.

• NoTransaction – raised when there is no transaction associated with the
client thread.

• InvalidControl – raised when the specified control is not null and not within
the scope of the client thread.

• Inactive – raised when a method such as rollback_only is executed on a
transaction has already been prepared.

• InvalidTransaction – raised when a request carries an invalid transaction
context, such as if an error occurred when registering a resource.

• TransactionRequired – raised when a request carries a null transaction
context but required an active transaction. For example, this could occur
when a component specifies the Mandatory attribute.

• Unavailable – raised when the requested object cannot be returned because
OTS/XA transaction coordinator restricts the availability of the object.

• TransactionRolledBack – raised when a transaction is marked to roll back
or has already been rolled back.

CHAPTER 14 Creating CORBA C++ Components

Programmer’s Guide 267

Heuristic exceptions A heuristic decision is a decision to commit or roll back updates that one or
more participants in a transaction make without waiting for the consensus
decision from the transaction coordinator. These types of commits and
rollbacks are also called heuristic commits and heuristic rollbacks. When a
heuristic commit or rollback is made, the transaction can become inconsistent.
Therefore, a heuristic commit or rollback is made only in unusual
circumstances such as communication failures. When the System
Administrator issues a heuristic commit or rollback from EAServer Manager,
a heuristic exception is raised.

• HeuristicMixed – Raised when a heuristic decision is made and some
relevant updates are committed and others are rolled back.

• HeuristicHazard – Raised when a heuristic decision may have been made,
when not all of the conditions of all relevant updates is known, and for
those updates whose condition is known, either all of them were
committed or rolled back.

• HeuristicRollback – Raised when a heuristic decision to roll back all of a
transaction’s relevant updates has been made.

• HeuristicCommit – Raised when a heuristic decision to commit all of a
transaction’s relevant updates has been made.

Accessing SSL client certificates

Clients can connect to a secure IIOP port using an SSL client certificate. You
can issue intercomponent calls to the built-in CtsSecurity/SessionInfo
component to retrieve the client certificate data. See Chapter 6, “Using SSL in
C++ Clients,” in the EAServer Security Administration and Programming
guide for more information about retrieving SSL information and issuing
intercomponent calls using SSL.

Issuing intercomponent calls

To invoke other components, instantiate a stub for the second component, then
use the stub to invoke methods on the component.

You must use a stub to issue intercomponent calls. If you call methods in
another C++ component directly, EAServer features such as transactions and
security will not work.

Compiling source files

268 EAServer

To invoke methods in other components, create an ORB instance to obtain
object references to other components and invoke methods on the object
references. You obtain object references for other components on the same
server by invoking string_to_object with the IOR string specified as
Package/Component. For example:

CORBA::Object_var obj =
orb->string_to_object("MyPackage/MyComponent");

MyModule::MyInterface_var i =
MyModule::MyInterface::_narrow(obj);

When making intercomponent calls using string_to_object, the user name of the
client that executed the component is automatically used for authorization
checking. string_to_object returns an instance running on the same server if the
component is locally installed; otherwise, it attempts to resolve a remote
instance using the naming server.

To components on a non-EAServer ORB

Your component may need to invoke methods on a component hosted by
another vendor’s CORBA server-side ORB. Sybase recommends that C++
components use the EAServer client-side ORB for all IIOP connections made
from EAServer components. See “Connecting to third-party ORBs using the
EAServer client ORB” on page 305 for more information.

Compiling source files
This section describes how to compile and link a component DLL or UNIX
shared library that contains EAServer methods. Your code must be built as a
DLL or UNIX shared library in order to be installed into the EAServer runtime
environment. When you generate source files for your component, EAServer
Manager creates an example makefile that builds the component library. You
may have to edit this file to match your environment, as described in the
following sections:

• “Compiling on UNIX platforms” on page 269

• “Compiling on Windows” on page 270

CHAPTER 14 Creating CORBA C++ Components

Programmer’s Guide 269

Compiling on UNIX platforms
EAServer Manager generates a make.unix file when you generate the
component skeleton as described in “Generating required C++ files” on page
256. To build your shared library, run the following command:

make -f make.unix

On Solaris, when linking component shared libraries or client binaries, you
must link with the EAServer libraries that match your compiler version.
Choose the appropriate directory from those listed below:

• lib contains libraries that are compatible with the 6.x compiler, stripped of
symbol information for production use.

• devlib contains libraries that are compatible with the 6.x compiler, for
debugging use.

• lib_sol4x contains libraries that are compatible with the 4.x compiler, for
production use.

• devlib_sol4x contains libraries that are compatible with the 4.x compiler,
for debugging use.

The generated Solaris make files link with 6.x libraries by default. To use 4.x
libraries, edit the definition of the LIB macro in the make file, and change the
paths to the library directories. The library and binary format is different
between version 6.x and version 4.x compilers. Use the compiler version that
the server is running with. By default, the server runs with version 6.x
compatibility, but you can override this when starting the server. For more
information, see “Starting the server” in the EAServer System Administration
Guide.

The generated UNIX make file for C++ components works on other platforms
without changes. Platform-specific information is defined in the file
make.include.platform, where platform is the name returned by the command:

uname -s

The make.include.platform includes the necessary settigngs to run the compiler
and linker in the component make file. You may need to edit these settings if
your compiler and linker are not installed in the standard location, or you use
different software.

Compiling source files

270 EAServer

If you generate stub and skeleton files at the same time, EAServer Manager
automatically adds the location of the component stub files to the makefile. If
you move the component source files to another machine, make sure that you
copy the stub files as well and specify their location in the makefile. You
specify the component stub files location by adding /Istub_location to the
.ccp.obj rule in the makefile. stub_location is the directory in which the
component stub files reside.

After building the shared library, copy it to the cpplib directory of your
EAServer installation.

Note If you do not place the component shared library in the EAServer cpplib
subdirectory, the directory containing the shared library must be specified in
the shared library search path environment variable for your platform (for
example, LD_LIBRARY_PATH for Solaris).

Compiling on Windows
For components that run on Windows, you must build a DLL that contains your
C++ component methods. After building the DLL, copy it to the cpplib
directory of your EAServer installation.

Note If you do not place the component DLL in the EAServer cpplib
subdirectory, the directory containing the DLL must be specified in the PATH
environment variable.

You can use EAServer Manager to generate a makefile and module definition
(.def) file. See “Generating required C++ files” on page 256 for instructions on
generating a makefile and .def file with EAServer Manager.

Before compiling your C++ component using nmake with the generated
makefile, verify that the makefile can find the directory containing the ODBC
header files and libraries. You must set the ODBCHOME environment variable
to the directory containing the ODBC header files and libraries. If you have
Microsoft Visual C++ and ODBCHOME is not set, the makefile looks in
C:\msdev (which is the default installation directory for Microsoft Visual C++)
for these files.

CHAPTER 14 Creating CORBA C++ Components

Programmer’s Guide 271

If you generate stub and skeleton files at the same time, EAServer Manager
automatically adds the location of the component stub files to the makefile. If
you move the component source files to another machine, make sure that you
copy the stub files as well and specify their location in the makefile. You
specify the component stub files location by adding /Istub_location to the
.ccp.obj rule in the makefile. stub_location is the directory in which the
component stub files reside.

To build your DLL, run this command from a command window in your
component’s source directory:

nmake -f make.nt

If you make changes to the makefile, rename it so it won’t be overwritten when
you regenerate the required files.

Visual C++

Visual C++ requires a module definition file that specifies which functions are
exported from a DLL and some options that control how the DLL is loaded into
memory. Module definition files end with the extension .def.

For most projects, you can use the generated module definition file as is. In
some cases, you may want to edit settings other than those in the EXPORTS
section. For example, your component may perform better with a smaller or
larger HEAPSIZE setting.

Note Do not edit the generated function names in the EXPORTS section of the
.def file for a C++ component. If you do, the EAServer dispatcher will not be
able to call your methods.

Debugging C++ components
To debug a component you must run the debug version of the server, and use a
debugger running on the same host as EAServer. Chapter 3, “Creating and
Configuring Servers,” in the EAServer System Administration Guide describes
how to start the debug server.

To debug a component from Microsoft Visual C++, you must set the
component’s com.sybase.jaguar.component.cpp.debug property under the
Advanced tab to true.

Debugging C++ components

272 EAServer

Follow these steps to attach to the server and step into your component code:

1 Change to the bin subdirectory in your EAServer installation, and start the
debugger with the executable.

On Solaris:

a Edit the user_setenv.sh file, and set the WORKSHOP_DIR
environment variable to the location of the Workshop debugger; for
example:

WORKSHOP_DIR=/OPT/SUNWspro6.2/
export WORKSHOP_DIR

b On a command line, enter:

serverstart.sh -servername ServerName -workshop

On Windows:

a Edit user_setenv.bat, and set the VC variable to the Visual C++
installation, where vcvars32.bat is located in vc_path\bin; for
example:

set vc=c:\vc_path

b On a command line, for Visual C++ version 5 or 6 compilers, enter:

serverstart.bat -servername ServerName -msdev

For Visual C++ version 7 compilers, enter:

serverstart.bat -servername ServerName -devenv

ServerName is the name of the server. If you are using the preconfigured
server rather than one that you created yourself, use “Jaguar”.

2 Set a breakpoint on the function jag_dbg_stop. This function executes
every time the server loads a component DLL. The jag_dbg_stop prototype
is:

void jag_dbg_stop(char *compName)

CHAPTER 14 Creating CORBA C++ Components

Programmer’s Guide 273

The compName parameter specifies the name of the library or shared
library that was just started. Several components may be started before
yours. In the debugger, display the compName value when the
jag_dbg_stop breakpoint is tripped, and monitor the value to determine
when your component is started. Breakpoints on jag_dbg_stop are
triggered before the server calls the component’s create method.

Note Make sure the jag_dbg_stop breakpoint is set before running your
client application.

3 When your component’s DLL is started, you can specify the component’s
C++ function names as breakpoints and step into the method’s code when
it is invoked.

Running C++ components externally
EAServer’s C++ component model allows you incorporate legacy C and C++
business logic code into a component. However, if legacy code is unstable, it
can cause the server to crash.

Beginning in version 4.0, you can configure C++ components to execute
within a dedicated external process. EAServer spawns a subprocess to execute
the component, and issues component invocations using interprocess
communication.

Note Beginning in EAServer 5.1, you can use the more general external model
described in “Running components externally” on page 74. The C++
executable model described here is supported for backward compatibility.

Limitations
Because external components execute in a different process than the host
server, they cannot use the following features:

Running C++ components externally

274 EAServer

• Sharing, Concurrency, or Bind Thread properties The Sharing,
Concurrency, and Bind Thread component properties have no effect when
components execute externally, because each component instance runs in
a separate process. You can get a form of instance reuse by enabling the
Pooling property. With Pooling enabled, the server reuses component
processes for multiple invocations.

• Transactions or connection caches Server managed transactions and
connection caching are not supported in components that execute
externally.

• C and C++ API routines None of the Jag* C routines or server-side
C++ classes documented in Chapter 5, “C Routines Reference,” in the
EAServer API Reference are available to components that execute
externally. These routines and classes can only be called by code that
executes within the host server process.

Input, output, and logging
You cannot read from standard input in C++ components (whether they
execute in-process or in an external process). C++ components that
execute externally cannot call the JagLog C routine, but any text written to
standard output is recorded in the server log file.

• Stateful components Components that execute externally must be
stateless, and no control interface methods are called on the component
implementation class. The Auto Demarcation/Deactivation property must
be enabled for components that execute externally.

Configuring a component to run externally
To run your C++ component externally, configure the following component
properties:

• General / C++ Executable Specifies the name of the executable that the
server launches as a subprocess. Specify a plain filename, with no path
information or platform extensions such as .exe for Windows. The
executable must exist in the EAServer cpplib subdirectory. When you
generate a component skeleton, EAServer Manager generates a makefile
to build the executable.

CHAPTER 14 Creating CORBA C++ Components

Programmer’s Guide 275

• Resources / Maximum Wait Specifies the maximum time, in seconds,
that the server waits for method execution to complete. A value of 0
indicates infinity, which is the default. If the method does not complete in
time, the server returns a CORBA::NO_RESOURCE_EXCEPTION to the
caller.

• Resources / Maximum Active Instances Specifies the maximum
number of external component processes that run simultaneously. A value
of 0 indicates no limit, which is the default. There is one process per
component instance, and one component instance per client session. When
the limit has been reached, client requests for new instances block until an
existing instance is destroyed. The maximum blocking time is limited by
the Maximum Wait setting.

Building and deploying the external component executable
Before you can build an external component executable, you must generate a
skeleton. The skeleton for an external component is different than for a
component that runs in-process, so regenerate skeletons if you have changed
the component properties to run externally. “Generating required C++ files”
on page 256 describes how to generate the C++ code.

The executable indicated by the component properties General / C++
Executable must be deployed in the EAServer cpplib directory, as well as the
library specified by the DLL Name field. The generated Makefile builds the
library and executable and copies both to the cpplib directory when you run the
“all” make target.

Creating C++ components for multiplatform clusters
If you run C++ components in multiplatform clusters, you must configure the
additional settings described here.

To deploy C++ components in a multiplatform cluster, specify
${JAGUAR_PLATFORM} in the component library name, and do not include the
platform-specific file extension such as .dll or .so. EAServer replaces this
macro with the platform identifier when loading the component. This feature
allows you to deploy libraries for multiple platforms in the same directory.

Creating C++ components for multiplatform clusters

276 EAServer

If running the component externally, specify ${JAGUAR_PLATFORM} in the
C++ Executable name.

In EAServer Manager, the Use Platform Independent Library Naming option
on the General Tab in the Component Properties dialog box strips the library
extension from the library name and appends ${JAGUAR_PLATFORM} to the
existing name.

Programmer’s Guide 277

C H A P T E R 1 5 Creating CORBA C++ Clients

This chapter describes how to code a CORBA-compatible EAServer C++
client application.

For information about establishing secure C++ client sessions, see
Chapter 6, “Using SSL in C++ Clients,” in the EAServer Security
Administration and Programming guide.

Procedure for creating CORBA C++ clients
To create a CORBA C++ client, you write and compile a C++ program
that establishes a connection and session with the EAServer ORB, that
instantiates a proxy object for the component, and that calls methods in the
proxy object. You use EAServer Manager to define the component
methods and generate stubs for the components. When the client calls the
methods in the proxy objects, the proxy object methods communicate
across the network and execute the corresponding methods in the
components.

To create CORBA EAServer C++ clients:

1 Use EAServer Manager to generate stubs (C++ header files). See
“Generating stubs” on page 278.

2 Write the C++ source files and include the stubs you created with
EAServer Manager. See “Writing CORBA C++ clients” on page 279.

Topic Page
Procedure for creating CORBA C++ clients 277

Generating stubs 278

Writing CORBA C++ clients 279

Compiling C++ clients 297

Deploying C++ clients 298

Using the CosNaming interface 298

Using CORBA ORB implementations other than EAServer 303

Generating stubs

278 EAServer

3 Compile the C++ source files. See “Compiling C++ clients” on page 297
for EAServer-specific requirements for compiling EAServer C++ clients.
To learn how to compile your C++ client into an executable in your
development environment, see the development environment’s
documentation.

Generating stubs
The EAServer ORB implementation class requires stub header files in order to
invoke component methods. You generate the stub header files with EAServer
Manager and include them in your client source files. The stub header files
contain as inline all the component functions, which make calls to the C
functions in libjcc.dll. Inline functions allow EAServer to support multiple
C++ compilers without having to include separate link libraries for each
compiler.

If you are using another ORB implementation class to connect to EAServer,
you must export IDL and use the vendor’s IDL compiler to generate stubs that
are compatible with that ORB implementation. “Using CORBA ORB
implementations other than EAServer” on page 303 describes how to export
IDL files for EAServer components.

❖ Generating stubs in EAServer Manager

You can generate stub header files from EAServer Manager as follows:

1 Highlight a component, package, or module as follows:

• Highlight a component to generate stubs for all interfaces and types
required by a component,

• Highlight a package to generate all stubs needed by components in the
package, or

• Highlight a module to generate stubs for IDL interfaces and types
defined within that module.

2 Select File | Generate Stub/Skeleton. The Generate Stubs & Skeletons
wizard displays. Follow the instructions on each page to generate C++
stubs. See the online help for descriptions of any input fields that you do
not understand.

CHAPTER 15 Creating CORBA C++ Clients

Programmer’s Guide 279

Writing CORBA C++ clients
These section describes how to code a CORBA C++ client that invokes
component methods:

• “Adding required include and namespace declarations” on page 279

• “Instantiating stub instances” on page 280

• “Invoking methods” on page 287

• “Handling exceptions” on page 296

Adding required include and namespace declarations
Stub header files are generated for all IDL modules that include interfaces that
the component implements—you must include all these stub header files. In
addition to the stub header files, you must also include SessionManager.hpp
(which contains the classes and functions that allow a C++ client to create and
destroy sessions) in the client source file.

You can also include these optional header files:

• TabularResults.hpp – contains the classes and functions that allow C++
clients to receive result sets from components.

• CosNaming.hpp – contains the classes and functions that allow C++
clients to use the EAServer’s name service feature to bind a component to
a name that must be unique within a naming context.

• BCD.hpp – contains the mappings for binary and arbitrary precision
floating point-decimal datatypes.

• MJD.hpp – contains the datatype mappings from CORBA to C++ for
Modified Astronomical Julian Date (M.J.D.) dates and times.

Note TabularResults.hpp already includes BCD.hpp and MJD.hpp; if you
include TabularResults.hpp, you do not have to include BCD.hpp and
MJD.hpp.

You must use scoped names to the CORBA IDL module, the EAServer
SessionManager IDL module, and any component IDL modules that you want
to execute methods on. To make using scoped names easier, you can use the
C++ using statement for the IDL module namespaces as in the following
example:

Writing CORBA C++ clients

280 EAServer

using namespace CORBA;
using namespace SessionManager;

If your C++ compiler does not support namespaces, define the compiler macro
JAG_NO_NAMESPACE when compiling your source files.

When you create an object, identify the object reference by appending _var to
the object name. The ObjectName_var reference will be automatically released
when it is deallocated or assigned a new object reference.

CORBA::is_nil(Object) can be used to verify that a specific interface is
implemented by a component. For an example, see “Creating a Manager
instance” on page 284.

If you are returning result sets from components, you should also specify the
TabularResults EAServer IDL module with the using statement.

Instantiating stub instances
Before invoking methods on component instances, the client must connect to a
server and instantiate the components. Your code must perform these steps to
create proxy instances:

Note Except for the example in “Processing result sets” on page 288, the same
client source code is used as an example throughout this section. Only the parts
relevant to each step are used.

Step What it does Detailed explanation

1 Initialize the CORBA ORB and
create an ORB reference.

“Configure and initialize the
ORB runtime” on page 281

2 Use the ORB reference to create a
Manager instance.

“Creating a Manager instance”
on page 284

3 Use the Manager instance to create
a Session.

“Creating sessions” on page 286

4 Use the Session instance to create
stub component instances.

“Creating stub instances” on
page 286

5 Call the stub methods to remotely
invoke component methods.

“Invoking methods” on page 287

CHAPTER 15 Creating CORBA C++ Clients

Programmer’s Guide 281

Configure and initialize the ORB runtime

Before you can use any ORB classes, you must call the ORB_init method,
which:

• Returns an object reference to the ORB.

• Allows you to pass initialization parameters to the driver class in the form
of a string array. You can also set an environment variable (in the System
Properties for your machine) for each initialization parameter. If the
environment variable and initialization parameter are set, the value of the
initialization parameter is used. You can set any initialization parameter to
a value of none, which overrides the value of the environment variable and
sets the value to the default, if any.

You can pass the following initialization parameters to the driver class:

• ORBHttp – this specifies whether the ORB should use HTTP-tunnelling to
connect to the server. A setting of of "true" specifies HTTP tunnelling. The
default is "false". This parameter can also be set in an environment
variable, JAG_HTTP. Some firewalls may not allow IIOP packets
through, but most all allow HTTP packets through. When connecting
through such firewalls, set this property to "true".

• ORBHttpExtraHeader – An optional setting to specify what extra information is
appended to the header of each HTTP packet when connecting through a Web
proxy. See Chapter 12, “Deploying Applications Around Proxies and Firewalls,”
in the EAServer Security Administration and Programming Guide for more
information.

• ORBHttpUsePost – when using HTTP tunnelling, specifies the HTTP
request type used. A value of true indicates that POST requests are to be
used. A value of false (the default) specifies that GET requests are to be
used. This parameter can also be set in an environment variable,
JAG_HTTPUSEPOST.

• ORBLogIIOP – this specifies whether the ORB should log IIOP protocol
trace information. A setting of "true" enables logging. The default is
"false". This parameter can also be set in an environment variable,
JAG_LOGIIOP. When this parameter is enabled, you must set the
ORBLogFile option (or the corresponding environment variable) to specify
the file where protocol log information is written.

• ORBLogFile – this sets the path and name of the file to which to log client
execution status and error messages. This parameter can also be set in an
environment variable, JAG_LOGFILE. The default setting is no log.

Writing CORBA C++ clients

282 EAServer

• ORBCodeSet – this sets the code set that the client uses. This parameter
can also be set in an environment variable, JAG_CODESET. The default
setting is iso_1.

• ORBRetryCount – specify the number of times to retry when the initial
attempt to connect to the server fails. This parameter can also be set in an
environment variable, JAG_RETRYCOUNT. The default is 5.

• ORBRetryDelay – specify the delay, in milliseconds, between retry
attempts when the initial attempt to connect to the server fails.This
parameter can also be set in an environment variable,
JAG_RETRYDELAY. The default is 2000.

• ORBProxyHost – specifies the machine name or the IP address of an
reverse proxy server. See Chapter 12, “Deploying Applications Around Proxies
and Firewalls,” in the EAServer Security Administration and Programming
Guide for more information.

• ORBProxyPort – specifies the port number of a reverse proxy server.

• ORBforceSSL – force an SSL connection to a reverse proxy server
(indicated by the ORBProxyHost and ORBProxyPort properties). Set this
property to true if the connection to the reverse proxy must use SSL
(HTTPS) tunnelling, but the connection from the proxy to the server does
not use SSL tunnelling.

• ORBsocketReuseLimit – specifies the number of times that a network
connection may be reused to call methods from one server. The default is
0, which indicates no limit. The default is ideal for short-lived clients. The
default may not be appropriate for a long-running client program that calls
many methods from servers in a cluster. If sockets are reused indefinitely,
the client may build an affinity for servers that it has already connected to
rather than randomly distributing its server-side processing load among all
the servers in the cluster. In these cases, the property should be tuned to
best balance client performance against cluster load distribution. In Sybase
testing, a setting of 10 to 30 proved to be a good starting point. If the reuse
limit is too low, client performance degrades.

CHAPTER 15 Creating CORBA C++ Clients

Programmer’s Guide 283

• ORBIdleConnectionTimeout – specifies the time, in seconds, that a
connection is allowed to sit idle. When the timeout expires, the ORB
closes the connection. The default is 0, which specifies that connections
can never timeout. The connection timeout does not affect the life of proxy
instance references; the ORB may close and reopen connections
transparently between proxy method calls. Specifying a finite timeout for
your client applications can improve server performance. If many
instances of the client run simultaneously, a finite client connection
timeout limits the number of server connections that are devoted to idle
clients. A finite timeout also allows rebalancing of server load in an
application that uses a cluster of servers.

• ORBWebProxyHost – the host name or IP address of an HTTP proxy server
that supports generic Web tunnelling, sometimes called connect-based
tunnelling. There is no default for this property, and you must specify both
the host name and port number properties. See Chapter 12, “Deploying
Applications Around Proxies and Firewalls,” in the EAServer Security
Administration and Programming Guide for more information. You can also
specify the property by setting the environment variable
JAG_WEBPROXYHOST.

• ORBWebProxyPort – when generic Web tunnelling is enabled by setting
ORBWebProxyHost, this property specifies the port number at which the
HTTP proxy server accepts connections. There is no default for this
property, and you must specify both a host name and port. See Chapter 12,
“Deploying Applications Around Proxies and Firewalls,” in the EAServer
Security Administration and Programming Guide for more information. You
can also specify the property by setting the environment variable
JAG_WEBPROXYPORT.

• ORBHttpExtraHeader – an optional setting to specify what extra
information is appended to the header of each HTTP packet sent to a proxy
server (specified with the ORBWebProxyHost parameter). You can also
specify the property by setting the property
JAG_HTTPEXTRAHEADER. See Chapter 12, “Deploying Applications
Around Proxies and Firewalls,” in the EAServer Security Administration and
Programming Guide for more information.

You can pass additional properties to configure secure (IIOPS) connections.
See Chapter 6, “Using SSL in C++ Clients,” in the EAServer Security
Administration and Programming guide for more information.

Writing CORBA C++ clients

284 EAServer

Example: ORB initialization

ORB initialization is demonstrated in this example. You can specify the ORB
options as a command line parameters to be passed to the ORB_init method.

#include <stdio.h>
#include <iostream.h>
#include <string.h>
#include <SessionManager.hpp>
#include <CosNaming.hpp>
#include <Jaguar.hpp>
#include <Tutorial.hpp> // Stubs for interfaces in
Tutorial IDL

// module.

int main(int argc, char** argv)
{
const char *usage =

"Usage:\n\tarith -ORBNameServiceURL iiop://
<host>:<iiop-port>/<initial-context>\n";

const char *tutorial_help =
"Check EAServer Manager and verify that the"
"Tutorial/CPPArithmetic component exists "
"and that it implements the "
"Tutorial::CPPArithmetic IDL interface.";

const char *ior_prefix = "iiop://";
const char *component_name = "Tutorial/CPPArithmetic";
char *ior = NULL;

try {

cout << "Creating Jaguar session\n\n";

// Initialize the ORB
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv, 0);

Creating a Manager instance

The SessionManager::Manager interface is used for client authentication for
EAServer connections. To create a Manager instance, you must identify the
server by using:

• The Interoperable Object Reference (IOR) for the server, or

• The URL for the server.

CHAPTER 15 Creating CORBA C++ Clients

Programmer’s Guide 285

The IOR string encodes the server’s host address and the port at which the
server accepts IIOP requests. Each time EAServer is started, for each listener
the server prints a hex-encoded IOR string with standard encoding to the
following files in the EAServer html subdirectory:

• <listener><iiop-version>.ior – Contains the IOR string by itself.

• <listener>_<iiop-version>_param.ior – Contains the IOR as part of an
HTML PARAM definition that can be inserted into an APPLET tag.

<listener> is the name of the listener.

<iiop-version> is the version of IIOP and can be either 10, which represents
IIOP version 1.0, or 11, which represents IIOP version 1.1.

For example, a server will generate the following files for a listener, iiops2:

• iiops2_10.ior

• iiops2_11.ior

• iiops2_10_param.ior

• iiops2_11_param.ior

You can code your C++ client to retrieve the IOR string from one of the
<listener><iiop-version>.ior files.

The server’s IIOP port is configured in EAServer Manager using listeners. In
the default configuration, the IIOP port number is 9000.

Once the client has obtained the server’s IOR or URL string, it calls the
ORB::string_to_object method to convert the IOR or URL string into a Manager
instance, as shown in the following example. You use the Manager::_narrow
method to return a new object reference for the existing object, which is the
IOR object.

...
Object_var object = orb->string_to_object

("iiop://myhost:9000");
Manager_var manager = Manager::_narrow (object);
if (is_nil(manager)) {

cout << "Error: Null SessionManager::Manager
instance. Exiting.";

return -1;
}...

Writing CORBA C++ clients

286 EAServer

string_to_object returns an object reference to the URL,
iiop://jagpc3:9000, as object. For each reference, the _var form is used
because the object will be automatically released when it is deallocated or
assigned a new object reference. _narrow converts object into object reference
for Manager.

_narrow returns a nil object reference if the component does not implement the
interface. is_nil(manager) verifies that the SessionManager::Manager interface
is implemented and returns an error if the interface is not implemented.

Creating sessions

The SessionManager::Session interface represents an authenticated session
between the client application and a server. The Manager::createSession
method accepts a user name and password and returns a Session_var object,
session, as shown in the example below:

...
Session_var session =

manager.createSession("jagadmin", "");
...

Creating stub instances

You call the Session::lookup method to return a factory for proxy object
references. The signature of Session::lookup is:

SessionManager::Factory_var lookup("name")

Session::lookup takes a string that specifies the name of the component to
instantiate. A component’s default name is the EAServer package name and the
component name, separated by a slash as in calculator/calc. However, a
different name can be specified with the component’s
com.sybase.jaguar.component.naming property. For example, you can
specify a logical name, such as USA/MyCompany/FinanceServer/Payroll. For
more information on configuring the naming service, see Chapter 5, “Naming
Services,” in the EAServer System Administration Guide.

Session::lookup returns a factory for component proxies. Call the
Factory::create method to obtain proxies for the component. This method
returns a org.omg.CORBA.Object reference. Call _narrow to convert the object
reference into an instance of the stub class for the component.

The code to call Session::factory and Factory::create looks like this:

...

CHAPTER 15 Creating CORBA C++ Clients

Programmer’s Guide 287

// In this example, the component is named
// Repository and is installed in
// the EAServer package.

Object_var obj = session->lookup("Jaguar/Repository");
SessionManager::Factory_var repoFactory =
SessionManager::Factory::_narrow(obj);

obj = repoFactory->create();
Jaguar::Repository_var repository =

Jaguar::Repository::_narrow(obj);

// Verify that we really have an instance.
if (CORBA::is_nil(repository))
{

cout << "ERROR: Null instance for component.";
}

Calling Session.lookup in server code
When called from server code, Session::lookup resolves the component name
by calling the name service, which gives preference to a local component
instance if the component is installed on the same server. However, the use of
a locally installed component is not guaranteed. To ensure that a local
implementation is used, specify the name as local:package/component,
where package is the package name and component is the component name, for
example, local:CtsSecurity/SessionInfo. When you specify the local:
prefix, the lookup call bypasses the name service and returns a local instance if
the component is installed in the same server. The call fails if the specified
component is not installed in the same server..

Invoking methods
After instantiating the stub class, use the stub class instance to invoke the
component’s methods. The stub class has methods that correspond to each
method in the component. Parameter datatypes are mapped as described in
Table 13-1 on page 249. Any parameter datatype can be used as a return type;
in addition, user-defined IDL datatypes can be used as return, in, inout, or out
parameters.

You can overload methods in C++ and Java, but not in ActiveX components.
See “Operation declarations” on page 97 and “Supported datatypes” on page
248.

Writing CORBA C++ clients

288 EAServer

In addition to the tasks described in this section, you can also explicitly manage
OTS transactions from your client. See “Managing explicit OTS transactions”
on page 262 for more information.

Processing result sets
To retrieve and process a single result set from a component:

1 Call the component method on the stub instance that returns a result set.

2 Iterate through each row and then each column in a row by using nested
for loops.

3 Use the discriminator method (_d) to retrieve the datatype of the column
in a row and switch/case syntax to process the column values (such as
printing the column values).

To retrieve and process multiple result sets returned from a component method
as a TabularResults::ResultSets object:

1 Call the component method on the component reference that returns the
result sets.

2 Retrieve the length or number of result sets.

3 Iterate through the result sets using a for loop.

For each result set, iterate through each row and then each column in a row
by using nested for loops.

You can treat a ResultSets object as an array of ResultSet objects. On each
iteration, retrieve a reference to each ResultSet object by using the
subscript [] operator.

4 Use the discriminator method (_d) to retrieve the datatype of the column
in a row and switch/case syntax to process the column values (such as
printing the column values).

Example of processing result sets

This example retrieves a single result set. The following code shows the C++
client in its entirety. For detailed explanations, see the sections that explain
each result-set processing step.

CHAPTER 15 Creating CORBA C++ Clients

Programmer’s Guide 289

All of the required header files are included. The IDL module namespaces are
specified with the C++ using statement. The printResultSet() method contains
the logic for processing a result set. main() contains the logic to initialize and
connect to the EAServer ORB, instantiate the stub, call the component method
to retrieve the result set object, and call printResultSet() to process the result set.

After the result set has been processed, execution of printResultSet() ends and
control is returned to main(). In main(), the screen is kept open with the fprintf
statement. Once you press Return, execution ends.

#include <stdio.h>
#include <time.h>
#include <iostream.h>
#include <SessionManager.hpp>
#include <TabularResults.hpp>
#include <Test.hpp>
using namespace CORBA;
using namespace SessionManager;
using namespace TabularResults;
using namespace Test;
void printResultSet(const ResultSet& rs)
{

ULong nc = rs.columns.length();
cout << rs.rows << " rows, " << nc << " columns" << endl;
for (ULong row = 0; row < rs.rows; row++)
{

cout << "row " << row << ": ";
for (ULong column = 0; column < nc; column++)
{
if (column > 0)
{

cout << ", ";
}
BooleanSeq& nulls = ((ColumnSeq&)rs.columns)[column].nulls;
if (row + 1 <= nulls.length() && nulls[row])
{

cout << "null";
continue;

}
Data& values = ((ColumnSeq&)rs.columns)[column].values;
switch (values._d())
{

case TYPE_BIT:
{

BooleanSeq& booleanValues = values.booleanValues();
 cout << (booleanValues[row] ? "true" : "false");

break;

Writing CORBA C++ clients

290 EAServer

}
 case TYPE_TINYINT:

{
OctetSeq octetValues = values.octetValues();
cout << octetValues[row];
break;

}
case TYPE_SMALLINT:

 {
ShortSeq& shortValues = values.shortValues();
cout << shortValues[row];
break;

}
case TYPE_INTEGER:

 {
LongSeq& longValues = values.longValues();
cout << longValues[row];
break;

}
case TYPE_REAL:
{

FloatSeq& floatValues = values.floatValues();
cout << floatValues[row];
break;

}
case TYPE_DOUBLE:
case TYPE_FLOAT:
{

DoubleSeq& doubleValues = values.doubleValues();
cout << doubleValues[row];
break;

}
case TYPE_CHAR:
case TYPE_LONGVARCHAR:
case TYPE_VARCHAR:
{

StringSeq& stringValues = values.stringValues();
cout << stringValues[row];
break;

}
case TYPE_BINARY:
case TYPE_LONGVARBINARY:
case TYPE_VARBINARY:
{

BinarySeq& binaryValues = values.binaryValues();
cout << "(binary)";

CHAPTER 15 Creating CORBA C++ Clients

Programmer’s Guide 291

break;
}
case TYPE_BIGINT:
case TYPE_DECIMAL:
case TYPE_NUMERIC:
{

DecimalSeq& decimalValues = values.decimalValues();
cout << "(decimal)";
break;

}
case TYPE_DATE:
{

DateSeq& dateValues = values.dateValues();
// Assumption: time_t is seconds from Jan 1, 1970
time_t t = (time_t)((dateValues[row].dateValue - 40222.0) *

86400);
cout << ctime(&t);
break;

}
case TYPE_TIME:
{

TimeSeq& timeValues = values.timeValues();
cout << "time: " << timeValues[row].timeValue;
break;

}
case TYPE_TIMESTAMP:
{

TimestampSeq& timestampValues = values.timestampValues();
time_t t = (time_t)((timestampValues[row].dateValue +
timestampValues[row].timeValue - 40222.0) * 86400);
cout << ctime(&t);
break;

}
}

}
cout << endl;

}
}
int main(int argc, char** argv)
{

ORB_var orb = ORB_init(argc, argv, "");
Manager_var manager = Manager::

_narrow(Object_var(orb->string_to_object("iiop://myhost:9000")));
Session_var session = manager->createSession("jagadmin", "");
Ping_var p = Ping::_narrow(Object_var(session->create("Test/Java")));
ResultSet_var rs = p->results();

Writing CORBA C++ clients

292 EAServer

printResultSet(rs.in());
 {

char c;
fprintf(stderr, "Press Return to continue...");
c = getchar();

}
return 0;

}

Retrieving the result set

To retrieve the result set, you must instantiate the stub and call the component
method that returns a result set to the client. This example instantiates the stub
from the Java component in the Test package in a session as an object p of type
Ping_var using the _narrow method. The component method, results() is called
on p which returns the result set rs.

Ping_var p = Ping::_narrow(Object_var(session-
>create("Test/Java")));

ResultSet_var rs = p->results();

Iterating through the rows and columns

You must process each column value of each row one at a time. In this example,
the processing is contained in a method (which you can reuse in other
applications) called printResultSet(). printResultSet() takes the result set rs as an
input parameter.

printResultSet(rs.in());

The method uses the length() method to determine how many columns, nc, are
in the result set, rs, and displays the number of columns and rows; the number
of rows is represented by the variable rows. The method uses a for loop to
iterate through each row, row, in the result set; and a nested for loop to iterate
through each column, column, in the current row. The method must check for
null values before it can process and print the values in each of the columns of
the current row. After checking for and printing out null values, the method
continues to the next column in the current row.

void printResultSet(const ResultSet& rs)
{

ULong nc = rs.columns.length();
cout << rs.rows << " rows, " << nc << " columns" <<

endl;
for (ULong row = 0; row < rs.rows; row++)
{

CHAPTER 15 Creating CORBA C++ Clients

Programmer’s Guide 293

cout << "row " << row << ": ";
for (ULong column = 0; column < nc; column++)
{
if (column > 0)
{
cout << ", ";

}
BooleanSeq& nulls =

((ColumnSeq&)rs.columns)[column].nulls;

if (row + 1 <= nulls.length() && nulls[row])
{
cout << "null";
continue;

}

Retrieving the column datatype and processing values

In the body of printResultSet(), the _d() method (the discriminator method) is
used to retrieve the datatype of the column and switch/case processing is used
to process the column value in the current row. values is a reference to a Data
object that represents the column value. _d() returns the datatype of the
referenced value to the switch statement and the body of the case statement that
matches the datatype is executed. In each case, the current row’s column value
that corresponds to the case’s datatype is printed.

For the Date, Time, Timestamp datatypes, some conversion is required to print
a value in a standard format (such as “January 5, 1998”).

Data& values =
((ColumnSeq&)rs.columns)[column].values;

switch (values._d())
{

case TYPE_BIT:
{

BooleanSeq& booleanValues =
values.booleanValues();

 cout << (booleanValues[row] ? "true" :
"false");

break;
}

 case TYPE_TINYINT:
{

OctetSeq octetValues =
values.octetValues();

cout << octetValues[row];

Writing CORBA C++ clients

294 EAServer

break;
}
case TYPE_SMALLINT:

 {
ShortSeq& shortValues =

values.shortValues();
cout << shortValues[row];
break;

}
case TYPE_INTEGER:

 {
LongSeq& longValues = values.longValues();
cout << longValues[row];
break;

}
case TYPE_REAL:
{

FloatSeq& floatValues =
values.floatValues();

cout << floatValues[row];
break;

}
case TYPE_DOUBLE:
case TYPE_FLOAT:
{

DoubleSeq& doubleValues =
values.doubleValues();

cout << doubleValues[row];
break;

}
case TYPE_CHAR:
case TYPE_LONGVARCHAR:
case TYPE_VARCHAR:
{

StringSeq& stringValues =
values.stringValues();

cout << stringValues[row];
break;

}
case TYPE_BINARY:
case TYPE_LONGVARBINARY:
case TYPE_VARBINARY:
{

BinarySeq& binaryValues =
values.binaryValues();

cout << "(binary)";

CHAPTER 15 Creating CORBA C++ Clients

Programmer’s Guide 295

break;
}
case TYPE_BIGINT:
case TYPE_DECIMAL:
case TYPE_NUMERIC:
{

DecimalSeq& decimalValues =
values.decimalValues();

cout << "(decimal)";
break;

}
case TYPE_DATE:
{

DateSeq& dateValues = values.dateValues();
// Assumption: time_t is seconds from Jan

1, 1970
time_t t =

(time_t)((dateValues[row].dateValue - 40222.0) *
86400);

cout << ctime(&t);
break;

}
case TYPE_TIME:
{

TimeSeq& timeValues = values.timeValues();
cout << "time: " <<

timeValues[row].timeValue;
break;

}
case TYPE_TIMESTAMP:
{

TimestampSeq& timestampValues =
values.timestampValues();

time_t t =
(time_t)((timestampValues[row].dateValue +

timestampValues[row].timeValue - 40222.0) *
86400);

cout << ctime(&t);
break;

}
}

}
cout << endl;

}
}

Writing CORBA C++ clients

296 EAServer

Handling exceptions
The client-side ORB throws two kinds of exceptions:

• CORBA system exceptions – These exceptions are defined in the CORBA
specification.

• User-defined exceptions – These exceptions must be defined in the
component’s IDL definition.

CORBA system exceptions

The CORBA specification defines the list of standard system exceptions. In
C++, all CORBA system exceptions are mapped to a C++ class that is derived
from the standard SystemException class defined in the CORBA module. You
may want to trap the exceptions shown in this code fragment:

try
{
... // invoke methods
}
catch (CORBA::COMM_FAILURE& cf)
{
... // A component aborted the EAServer transaction,

// or the transaction timed out. Retry the
// transaction if desired.

}
catch (CORBA::TRANSACTION_ROLLEDBACK& tr)
{
... // possibly retry the transaction
}
catch (CORBA::OBJECT_NOT_EXIST& one)
{
... // Received when trying to instantiate

// a component that does not exist. Also
// received when invoking a method if the
// object reference has expired
// (this can happen if the component
// is stateful and is configured with
// a finite Instance Timeout property).
// Create a new proxy instance if desired.}

}
catch (CORBA::NO_PERMISSSION& np)
{
... // tell the user they are not authorized
}
catch (CORBA::SystemException& se)

CHAPTER 15 Creating CORBA C++ Clients

Programmer’s Guide 297

{
... // report the error but don’t bother retrying
}

Note Not all of the possible system exceptions are shown in the example. See
the CORBA/IIOP 2.2 Specification (formal/98-02-01) for a list of all the
possible exceptions.

User-defined exceptions

In C++, all CORBA user-defined exceptions are mapped to a C++ class that is
derived from the standard UserException class defined in the CORBA module.
For more information, see “User-defined IDL datatypes” on page 100 and
“User-defined exceptions” on page 102.

Note User-defined types must exist in the EAServer IDL repository before you
can use them in interface declarations.

Compiling C++ clients
For example C++ client compilation commands, see the C++ tutorial in
Chapter 3, “Creating C++ Components and Clients,” in the EAServer
Cookbook.

If the client uses SSL, the following files must also reside on the client machine
in a directory specified in the libary search environment variable. In the UNIX
column, replace ext with the platform extension for shared library files:

If your C++ compiler does not support namespaces, add this in your makefile’s
compile line:

Windows UNIX

libjctssec.dll libjctssec.ext

libjsybscl.dll libjsybscl.ext

libjspks.dll libjspks.ext

libjsentpks.dll libjsentpks.ext

libjintl.dll libjintl.ext

Deploying C++ clients

298 EAServer

-DJAG_NO_NAMESPACE

On Solaris, the installation includes libraries in two formats for compatibility
with different versions of the Solaris CC compiler. Choose the appropriate
directory from those listed below:

• lib contains libraries that are compatible with the 6.x compiler, stripped of
symbol information for production use.

• devlib contains libraries that are compatible with the 6.x compiler, for
debugging use.

• lib_sol4x contains libraries that are compatible with the 4.x compiler, for
production use.

• devlib_sol4x contains libraries that are compatible with the 4.x compiler,
for debugging use.

Deploying C++ clients
To deploy a C++ client on another machine:

1 Install the EAServer client runtime if not done already, including C++
libraries. If the client uses SSL, make sure the SSL client runtime support
is installed.

2 Copy the client’s executable to the machine.

3 Configure the environment as described in “Verify your environment” in
Chapter 3, “Creating C++ Components and Clients,” in the EAServer
Cookbook.

Using the CosNaming interface
EAServer allows you to use the CORBA CosNaming interface to instantiate
proxies in your client applications. This technique of instantiating proxies is
not recommended, because it requires use of deprecated
SessionManager::Factory methods. “Instantiating stub instances” on page 280
describes the recommended technique for stub instantiation.

CHAPTER 15 Creating CORBA C++ Clients

Programmer’s Guide 299

You do not need to use the CosNaming API in clients to realize the benefits
incurred by using logical component names. EAServer uses the CosNaming
API to resolve component names in the implementation of the Session::lookup
and Session::create methods.

To use CosNaming, follow these steps:

Note All examples in this section are taken from the arith.cpp file for the C++
client tutorial, describe in Chapter 3, “Creating C++ Components and
Clients,” in the EAServer Cookbook.

Configure and initialize the ORB for CosNaming use
“Configure and initialize the ORB runtime” on page 281 describes how to
initialize the ORB and configure run-time properties. One additional property
is required in applications that use the CosNaming API.

You must set ORBNameServiceURL property to specify the IIOP URL to the
EAServer name service. This parameter can also be set in an environment
variable, JAG_NAMESERVICEURL. Use the following syntax for values:

iiop://hostname:iiop-port/initial-context

where:

hostname is the host machine name for the server that serves as the name server
for your client. If omitted, the default host name applies.

iiop-port is the IIOP port number for the server.

Step What it does Detailed explanation

1 Configure ORB properties,
including the ORB runtime driver
class and the EAServer naming
server URL, then initialize the ORB
runtime.

“Configure and initialize the
ORB for CosNaming use” on
page 299

2 Instantiate the CORBA CosNaming
name service and obtain the initial
naming context.

“Obtain an initial naming
context” on page 300

3 Instantiate proxy objects and
narrow them to the stub interface.

“Resolving component proxies”
on page 301

4 Call the proxy objects to remotely
invoke component methods.

“Invoking methods” on page 287

Using the CosNaming interface

300 EAServer

initial-context is the initial naming context, which you set in the server property
Initial Context. This can be used to set a default prefix for name resolution. For
example, if you specify USA/Sybase/, all names that you resolve with the
context are assumed to be relative to this location in the name hierarchy. When
specifying the initial context, a trailing slash is optional; it is added
automatically if you do not specify an initial context that ends with a slash.

If your application uses a cluster of servers, the cluster may use multiple name
servers. In this case, specify the URL (host machine name and IIOP port
number) for each name server in a list separated by semicolons and no white
space. Include the cluster’s initial naming context only with the last URL. For
example:

iiop://host1:9000;iiop://host2:9000/USA/Sybase/

Obtain an initial naming context
After initializing the ORB, call the resolve_initial_references method to obtain
the initial naming context. The naming context is an object that implements the
CosNaming::NamingContext IDL interface; it is used to resolve EAServer
component and service names to server-side objects.

Obtaining the initial context

The example below shows how the initial naming context is retrieved:

// Obtain the CORBA CosNaming initial naming context
that
// we will use to resolve objects by name. The ORB
retrieves
// the naming server address from command line arguments
or
// the environment.

CORBA::Object_var obj =
orb->resolve_initial_references("NameService");

CosNaming::NamingContext_var nc =
CosNaming::NamingContext::_narrow(obj);

if (CORBA::is_nil(nc)) {
cout << "Error: Null NamingContext instance.

Exiting.";
return -1;
}

CHAPTER 15 Creating CORBA C++ Clients

Programmer’s Guide 301

Introduction to CosNaming name resolution

The initial NamingContext will have the name context that was specified in the
NameServiceURL ORB initialization property. The client invokes the
NamingContext::resolve operation to obtain an instance of the EAServer
authentication service as well as component instances.

The NamingContext::resolve operation takes a CosNaming::Name parameter,
which is a sequence of CosNaming::NameComponent structures.

A name is represented by a sequence of NameComponent instances, with the id
field of each instance set to a node of the name.

As a convenience, the EAServer name service allows you to specify multiple
nodes of a name in one NameComponent instance, using a forward slash (/) to
separate nodes.

NamingContext::resolve resolves a name to an object; this method either returns
a CORBA::Object instance or throws one of the exceptions described below:

• NotFound indicates that the name is not bound to an object, the name does
not exist, or some node in the indicated hierarchy does not exist; the why
field contains an enumeration that encodes the reason why the name was
not found.

• InvalidName indicates that the name is malformed.

• CannotProceed or a CORBA SystemException indicates that an error has
occurred. “Handling exceptions” on page 296 describes CORBA system
exceptions.

Resolving component proxies
Proxy objects are instantiated as follows:

1 Create a NameComponent array that names the component. Component
names are composed as follows:

server-context/package/component

where

Using the CosNaming interface

302 EAServer

• server-context is the root naming context for the server where the
component is installed. You can view and edit this setting in the
Naming Services tab of the Server Properties window. The default for
a new server is “/”. If you specify an initial name context when
initializing the ORB properties, then resolved names are assumed to
be relative to the initial name context.

• package is the EAServer package name in which the component is
installed, as displayed in EAServer Manager.

• component is the component name, as displayed in EAServer
Manager.

2 Call the NamingContext::resolve method to instantiate a factory object for
the component.

3 Narrow the CORBA Object reference to a SessionManager::Factory
instance.

4 Call the factory’s create method and narrow the return value by calling the
_narrow method in the class for the interface. The create method requires
a username and password to authenticate the end user.

The example below instantiates a component “CPPArithmetic,” installed in
package “Tutorial,” hosted on a server with a null root context. The username
and password are Guest and GuestPassword, respectively. The component
implements the IDL interface Tutorial::CPPArithmetic, and the code narrows the
proxy object to that interface.

// Build a CosNaming::Name object that contains the
// name of the tutorial component,
Tutorial/CPPArithmetic

name[0].id = CORBA::string_dup(component_name);
name[0].kind = CORBA::string_dup("");

// Obtain a factory for component instances by
// resolving the component name
cout << "Creating component instance for "

<< component_name << "\n\n";
obj = nc->resolve(name);
SessionManager::Factory_var arithFactory =

SessionManager::Factory::_narrow(obj);

if (CORBA::is_nil(arithFactory)) {
cout << "ERROR: Null component factory. " <<

tutorial_help ;
return -1;

CHAPTER 15 Creating CORBA C++ Clients

Programmer’s Guide 303

}

// Use the factory to create an instance, passing the
// username and password for authorization
Tutorial::CPPArithmetic_var arith =

Tutorial::CPPArithmetic::_narrow
(arithFactory->create("Guest", "GuestPassword"));

// Verify that we really have an instance.
if (CORBA::is_nil(arith)) {

cout << "ERROR: Null component instance. " <<
tutorial_help ;

return -1;
}

Using CORBA ORB implementations other than
EAServer

EAServer’s IIOP implementation allows you to use any CORBA client ORB
to invoke EAServer components. You can also use the EAServer client ORB
to execute components that are hosted by another vendor’s server ORB.

Connecting to EAServer with a third-party client ORB
In some cases, you may wish to use another vendor’s ORB in your client
applications. For example, you may have an existing installation of the ORB
on client workstations.

Clients that use another ORB can use the same code as the EAServer ORB,
except for the following differences:

• You must use stub classes generated by the vendor’s IDL-to-C++ compiler
rather than stubs generated by EAServer Manager.

• Your code to connect to EAServer and instantiate components may differ.

Using CORBA ORB implementations other than EAServer

304 EAServer

Generating compatible C++ stubs

CORBA Interface Definition Language (IDL) files are required in order to use
another vendor’s ORB implementation class. EAServer Manager generates
IDL files for components when you create or import them using EAServer
Manager. Use the IDL-to-C++ compiler that comes with your ORB software to
generate compatible stubs.

For information about which component IDL files and EAServer IDL files you
need to use to generate stubs for other ORBs, see “Generating compatible Java
stubs” on page 242 (although this section refers to Java clients, it also applies
to C++ clients).

EAServer IDL modules

Use the ORB vendor’s IDL-to-C++ compiler to generate stubs for the files in
the table, “EAServer IDL files” on page 304. All IDL files are installed in the
EAServer include subdirectory. “Writing CORBA C++ clients” on page 279
describes how these interfaces are used to instantiate EAServer components
and call component methods. For additional information, see the comments in
each IDL file.

EAServer IDL files

Performing datatype conversion

EAServer provides C++ header files to convert from the EAServer CORBA
datatypes to those commonly used in C++. “Supported datatypes” on page 248
lists the datatypes displayed in EAServer Manager, the equivalent CORBA
IDL types, and the C++ datatypes used in stub methods. If you are using
another vendor’s ORB, use the EAServer header files in your application. For
languages other than C++, see the comments in the IDL files for details on how
the data is interpreted.

File name Description

SessionManager.idl Defines interfaces for session-based creation of
EAServer component instances.

BCD.idl Defines the CORBA datatypes for EAServer’s
binary and fixed-point numeric datatypes.

MJD.idl Defines the CORBA datatypes for EAServer’s
date and time datatypes.

TabularResults.idl Defines the CORBA datatypes that represent
result sets returned by a method invocation.

CHAPTER 15 Creating CORBA C++ Clients

Programmer’s Guide 305

Instantiating components using a third-party ORB

EAServer’s naming service cannot be used with other client ORBs, so you
must use the EAServer SessionManager::Manager interface to instantiate
components from another ORB, as described in “Instantiating stub instances”
on page 280.

Also, you must use standard format IORs, not the URL format, as described in
“Creating a Manager instance” on page 284.

Connecting to third-party ORBs using the EAServer client ORB
You can use the EAServer client-side ORB to execute components hosted by
another vendor’s server-side ORB, as long as the server-side ORB accepts
IIOP connections and the required interfaces are defined in standard CORBA
IDL. Implement your client as follows:

1 Import all the required IDL modules into EAServer Manager, as described
in “Importing existing IDL modules” on page 104.

2 Generate stubs for each imported module using EAServer Manager, as
described in “Generating stubs” on page 278. You must generate stubs for
each module individually.

Using CORBA ORB implementations other than EAServer

306 EAServer

P A R T 5 PowerBuilder Components
and Clients

While PowerBuilder is not included with EAServer, the
products are fully integrated and work well together. A
PowerBuilder application can act as a client to any
EAServer component. In addition, EAServer can contain
PowerBuilder custom class (nonvisual) user objects that
execute as middle-tier components.

You can create PowerBuilder nonvisual objects (NVOs) that
run natively in EAServer as EAServer components. You can
also create NVO proxies for EAServer components, then
use the proxies in PowerBuilder client applications.

Programmer’s Guide 309

C H A P T E R 1 6 Creating PowerBuilder
Components

While PowerBuilder is not included with EAServer, the products are fully
integrated and work well together. EAServer hosts the PowerBuilder
virtual machine natively. This means that EAServer can communicate
directly with PowerBuilder nonvisual user objects, and vice versa.
EAServer components developed in PowerBuilder can take full advantage
of the ease of use and flexibility of PowerScript® and the richness of
PowerBuilder’s system objects.

The PowerBuilder IDE runs on Windows platforms, but you can deploy
PowerBuilder components to EAServer on any platform for which a
compatible PBVM is available, including most UNIX platforms. For more
information, see the EAServer Release Bulletin for your platform.

The PowerBuilder IDE includes wizards to create EAServer components
and deployment projects. While you can edit PowerBuilder component
properties in EAServer Manager, you should use the PowerBuilder IDE
instead. Changes you make outside of the IDE can be overwritten when
you redeploy your project to EAServer from the IDE. For information on
using the wizards, see the Application Techniques manual in the
PowerBuilder documentation. If you must set additional component
properties that cannot be set from the PowerBuilder IDE, consider
creating a script or batch file that uses the jagtool set_props command to
configure these additional settings. This allows you to maintain an
automated deployment mechanism. For more information, see Chapter
12, “Using jagtool and jagant,” in the EAServer System Administration
Guide.

PowerBuilder provides full-fledged support for EAServer component
technologies, including:

• Instance pooling, by configuring the Pooling setting in the wizards
and optionally implementing lifecycle methods to control whether
specific instances are pooled.

• Server-managed transactions, by configuring the Transactions
settings in the wizards and by calling the methods in the
TransactionServer context object.

310 EAServer

• Connection caching, by using PowerScript DataStore objects in your
implementation code.

• Result sets, by using the PowerScript DataStore, ResultSet, and ResultSets
objects. You can use the DataStore object to return result sets that are
presented in the client using DataWindow controls. You can also use the
ResultSet and ResultSets objects to return tabular results to clients of other
types.

• Intercomponent calls, using the CreateInstance method in the
TransactionServer object to obtain proxies for components.

Note By default, the TransactionServer CreateInstance method invokes
the EAServer name service to create proxies. Proxies for remote
components may be returned by the name service rather than an instance
that is running locally. To guarantee that a locally installed instance is
used, specify the component as local:package/component, where
package is the package name and component is the component name, for
example, local:CtsSecurity/SessionInfo. The call fails if the
component is not installed in the same server.

• Logging, using the ErrorLogging object to write error or status messages to
the server log file.

• Running independent of client interaction, using the EAServer thread
manager or service component model.

For details on implementing components that use these features, see the
Application Techniques manual in the PowerBuilder documentation.

Programmer’s Guide 311

C H A P T E R 1 7 Creating PowerBuilder Clients

While PowerBuilder is not included with EAServer, the products are fully
integrated and work well together. PowerBuilder allows you to generate
NVOs that act as proxies for EAServer components. Using a proxy, you
can call component methods as if they were implemented as local NVO
methods. You can call any type of component from a PowerBuilder client,
not just PowerBuilder NVO components.

To create a PowerBuilder client, use the PowerBuilder IDE wizards to
generate proxies for the EAServer components that the client calls. Use
the PowerScript Connection or JaguarORB object to connect to the server
and instantiate proxies for the components. You can invoke the proxy
methods to call the component’s business methods.

To create clients that call EJB components, you can use the same proxy
wizard that you use for any other component. You can also use the EJB
Client Proxy wizard to create EJB proxies. The proxies generated by this
wizard use the EJB client PowerBuilder extension. This extension is a
wrapper for Java, and therefore provides more flexibility in
communicating with EJBs. For example, an EJB client can manipulate a
Java class returned from an EJB method call through its proxy. The
PowerBuilder Connection object has a smaller footprint (and thus is easier
to deploy) because it does not require a JRE to be installed on the
computer where the client resides. Connectivity to the server is also faster
with the connection object, because there is no delay while a JRE loads.

For more information, see the Application Techniques manual in the
PowerBuilder documentation.

312 EAServer

P A R T 6 ActiveX Components and
Clients

This part explains how to build ActiveX components and
clients.

Programmer’s Guide 315

C H A P T E R 1 8 ActiveX Overview

Overview
ActiveX/COM is a Microsoft component technology. Many IDE tools
such as Visual Basic allow you to create ActiveX components and write
code to call methods in registered ActiveX components.

Any nonvisual ActiveX component can be installed as an EAServer
component (though you may need to define an “adaptor,” or wrapper class
to handle methods that use unsupported parameter datatypes). EAServer
uses COM and ActiveX automation support to execute ActiveX
component methods. Consequently, all EAServer ActiveX components
must support COM’s automation interface (the IDispatch interface). Many
application development tools, such as Microsoft Visual Basic, can be
used to create ActiveX components that are compatible with EAServer.
Once installed in EAServer, ActiveX components can be called by clients
of any type.

To support ActiveX clients, EAServer provides an ActiveX automation
server that interacts with the server using the C++ CORBA ORB and
standard CORBA IIOP. Because ActiveX clients use IIOP rather than the
DCOM network protocol, they can call EAServer components of any type
and interact with servers running on platforms that do not support
ActiveX.

Topic Page
Overview 315

Requirements 316

ActiveX datatype support 318

Requirements

316 EAServer

No client managed transactions
This release does not provide an ActiveX client interface to manage
transactions. Consequently, ActiveX clients cannot call component methods
that have the Mandatory transaction attribute.

Requirements

ActiveX component requirements
The following list describes software and hardware requirements for
developing ActiveX components.

All software that is required to run ActiveX components in EAServer is
supplied with the EAServer product.

• Operating system ActiveX components require Windows NT 4.0 or
Windows 2000.

• Development tools To create ActiveX components, you need an
ActiveX-enabled IDE. The following list shows some of the many IDEs
you can use:

• Visual C++ 4.0 or later

• Visual Basic 5.0 or later

Note EAServer provides native, built-in support for PowerBuilder
libraries. Though PowerBuilder supports ActiveX development, Sybase
recommends that you use EAServer’s native PowerBuilder support to run
PowerBuilder objects in EAServer.

ActiveX client requirements
EAServer’s ActiveX client model allows you to invoke EAServer components
from ActiveX enabled IDEs such as Visual Basic.

To develop and run ActiveX clients, you need:

CHAPTER 18 ActiveX Overview

Programmer’s Guide 317

• A supported client operating system such as Windows NT 4.0 or Windows
2000. The ActiveX client can call server components executing on any any
platform. See the EAServer Installation Guide for Windows for more
information on operating system requirements.

• C++ client and ActiveX runtime files, which includes jagproxy.dll, the
required .tlb and .reg files, and the C++ DLLs required for use with an
ActiveX CORBA client. See the EAServer Installation Guide for
Windows for instructions on installing the client runtime.

• An ActiveX-enabled IDE. The following list includes some of the
ActiveX-enabled IDEs you can use:

• Visual Basic 4.0 or later

• Visual C++ 4.0 or later

• Type libraries (you generate these files using EAServer Manager).

• Registry files (you generate these files using EAServer Manager).

• The Microsoft tool uuidgen.exe, which is provided with EAServer on
Windows, must be installed on the server. The Microsoft tool midl.exe
must be installed on your client machine and specified in the path. midl.exe
must support the /tlb command-line option. You can issue this command to
see the options that your midl.exe version supports:

midl /?

midl.exe is distributed by Microsoft as part of their development tools and
as part of the Win32 SDK. Many tools from other vendors include a
redistribution of the Win32 SDK. Visual C++ 4.2 or higher contain the
correct version of midl.exe. You can also download midl.exe from the
Microsoft Developer Network web site at http://msdn.microsoft.com.

Note Make sure that an older version of midl.exe is not located in a
directory that is specified prior to the current midl.exe directory in the
PATH environment variable.

ActiveX datatype support

318 EAServer

• EAServer Manager on Windows NT or Windows 2000.

Note See the EAServer Installation Guide for Windows for additional
system requirements.

ActiveX datatype support
Table 18-1 on page 319 the datatypes and argument modes supported by
EAServer Manager, and their corresponding CORBA IDL and ActiveX types.
Each IDE script language uses a different syntax to represent these types. See
your tool’s documentation for more information.

For client development, most IDEs provide some way to view the interfaces
exposed by registered automation servers. If your IDE provides an object
browser, you can look up the interface for the proxy object and see it displayed
in the IDE’s specific syntax. For example, in Visual Basic, you can browse
registered ActiveX interfaces using the Object Browser window.

For component development, you can code your component methods to use
supported ActiveX datatypes, then import the DLL or type library into
EAServer Manager to define the component’s IDL interface.

Argument modes specify how an argument is passed:

• in – read-only; arguments are passed by value

• inout – read/write; arguments are passed by reference

• out – write only

• return – the method returns a value of this datatype

Use in when the parameter is used to pass a value without changing the value.
All parameters specified as in arguments are passed by value except for the
string datatype (BSTR*). Use inout when the parameter is used to pass a value
and change it. In the inout and out argument modes, the datatype of the
parameter being passed must be identical to the datatype used for the same
parameter in the server component method. Otherwise, no coercion is
performed and an exception is thrown.

CHAPTER 18 ActiveX Overview

Programmer’s Guide 319

Table 18-1 on page 319 the datatypes and argument modes supported by
EAServer Manager, and their corresponding CORBA IDL and ActiveX types.
The ActiveX column contains ActiveX datatype specification as it is defined
at runtime in the ActiveX VARIANTARG structure. The ActiveX datatypes
are used by OLE automation to pass data. For information on how your IDE’s
datatypes correspond to these types, see your IDE’s documentation.

Table 18-1: ActiveX datatypes

EAServer
Manager

CORBA IDL
type

Argument
mode ActiveX (automation) type

boolean boolean in
inout
out
return

VT_BOOL
VT_BOOL | VT_BYREF
VT_BOOL | VT_BYREF
VT_BOOL

integer<16> short in
inout
out
return

VT_I2
VT_I2 | VT_BYREF
VT_I2 | VT_BYREF
VT_I2

integer<32> long in
inout
out
return

VT_I4
VT_I4 | VT_BYREF
VT_I4 | VT_BYREF
VT_I4

float float in
inout
out
return

VT_R4
VT_R4 | VT_BYREF
VT_R4 | VT_BYREF
VT_R4

double double in
inout
out
return

VT_R8
VT_R8 | VT_BYREF
VT_R8 | VT_BYREF
VT_R8

string string in
inout
out
return

VT_BSTR
VT_BSTR | VT_BYREF

octet octet in
inout
out
return

VT_UI1
VT_UI1 | VT_BYREF
VT_UI1 | VT_BYREF
VT_UI1

binary BCD::Binary in
inout
out
return

VT_ARRAY | VT_UI1 (safe array)
VT_ARRAY | VT_UI1 |
VT_BYREF
VT_ARRAY | VT_UI1 |
VT_BYREF
VT_ARRAY | VT_UI1 (safe array)

ActiveX datatype support

320 EAServer

decimal BCD::Decimal in
inout
out
return

VT_R8
VT_R8 | VT_BYREF
VT_R8 | VT_BYREF
VT_R8

money BCD::Money in
inout
out
return

VT_CY
VT_CY | VT_BYREF
VT_CY | VT_BYREF
VT_CY

date MJD::Date in
inout
out
return

VT_DATE
VT_DATE | VT_BYREF
VT_DATE | VT_BYREF
VT_DATE

time MJD::Time in
inout
out
return

VT_DATE
VT_DATE | VT_BYREF
VT_DATE | VT_BYREF
VT_DATE

timestamp MJD::Timestamp in
inout
out
return

VT_DATE
VT_DATE | VT_BYREF
VT_DATE | VT_BYREF
VT_DATE

ResultSet TabularResults::
ResultSet

out
return

VT_DISPATCH
VT_DISPATCH | VT_BYREF

ResultSets TabularResults::
ResultSets

out
return

VT_DISPATCH
VT_DISPATCH | VT_BYREF

interface
(any IDL
interface)

interface in
inout
out
return

VT_DISPATCH
VT_DISPATCH | VT_BYREF
VT_DISPATCH | VT_BYREF
VT_DISPATCH

structure
(any IDL
structure)

See “Structure
support” on page
321.

in
inout
out
return

VT_DISPATCH
VT_DISPATCH | VT_BYREF
VT_DISPATCH | VT_BYREF
VT_DISPATCH

enum
(any IDL
enum)

See “IDL
enumeration
support” on page
326.

in
inout
out
return

VT_DISPATCH
VT_DISPATCH | VT_BYREF
VT_DISPATCH | VT_BYREF
VT_DISPATCH

typedef
(any IDL
type alias)

See “IDL typedef
support” on page
325.

in
inout
out
return

VT_DISPATCH
VT_DISPATCH | VT_BYREF
VT_DISPATCH | VT_BYREF
VT_DISPATCH

EAServer
Manager

CORBA IDL
type

Argument
mode ActiveX (automation) type

CHAPTER 18 ActiveX Overview

Programmer’s Guide 321

IDL attributes are not supported by ActiveX clients.

Because the Timestamp datatype maps to the OLE date datatype, which does
not represent thousandths of a second, you could lose precision when accessing
a timestamp parameter from a Java component.

ResultSet or ResultSets datatypes can only be specified as a return type.

Only byte arrays are supported—no other type of array is supported. You can
also use IDL sequences in lieu of arrays. The EAServer JCollection interface is
used by both clients and components to represent IDL sequences. See
“Sequence support” on page 325 for more information.

If you develop your component using Visual C++ and the parameter type is
BSTR *, then the IDL signature for the parameter argument mode must be
inout. In the IDL file, change the parameter mode to inout, regenerate and
reregister the .tlb and .reg files, and modify the ActiveX client to pass the string
argument by reference.

You can define get and set methods that control runtime properties for your
component. However, using get and set methods to access properties over a
network decreases performance.

Structure support
EAServer component interfaces can use IDL structures as parameter types in
method definitions. For example, in the home interface for an EJB entity bean
component, findByPrimaryKey method typically accepts a structure that
represents the primary key for a database row.

union
(any IDL
union)

See “Union
support” on page
322.

in
inout
out
return

VT_DISPATCH
VT_DISPATCH | VT_BYREF
VT_DISPATCH | VT_BYREF
VT_DISPATCH

sequence
(any IDL
sequence)

JCollection
(See “Sequence
support” on page
325.)

in
inout
out
return

VT_DISPATCH
VT_DISPATCH | VT_BYREF
VT_DISPATCH | VT_BYREF
VT_DISPATCH

EAServer
Manager

CORBA IDL
type

Argument
mode ActiveX (automation) type

ActiveX datatype support

322 EAServer

ActiveX mapping for
IDL structures

An IDL structure is mapped to an IDispatch interface, with every data member
in the structure being mapped to a property in the corresponding IDispatch
interface. All types supported by the ActiveX proxy are supported as members
inside a structure, including structures and sequences.

If an EAServer component interface uses IDL structures, EAServer Manager
generates IDispatch interfaces for each IDL structure when generating type
libraries for the component interface definitions.

Example: using a
structure in Visual
Basic

bookStore::custCreditKey is an IDL structure defined in the IDL fragment
below:

module bookStore
{

struct custCreditKey
{

string custName;
string creditType;

};
};

To use this type in Visual Basic, you must first create a reference to the type
library generated by EAServer Manager to represent the bookStore IDL
module. In Visual Basic code, you can create an instance of the structure and
set the fields like this:

Set pKey = New bookStore.custCreditKey
pKey.creditType = "VISA"
pKey.custName = "Morry"

Explicit version implicit field initialization
Structure fields that use complex types such as struct, union, object, date,
time, or timestamp must be initialized explicitly. If you do not initialize
these fields before passing the union as an EAServer method
parameter or return value, the ActiveX dispatcher throws a marshalling
exception. Fields of other types are implicitly set to a default value.

Union support
EAServer maps IDL unions to an interface with properties to set and retrieve
union member values.

CHAPTER 18 ActiveX Overview

Programmer’s Guide 323

About IDL unions

An IDL union is similar to an IDL structure, except that an instance of a union
can contain a value for one field only. IDL union declarations look like this:

module TMod
{

union TUn switch (long)
{

case 5: long lVal;
case 9, 7: short sVal;
default: double dVal;

};

};

The declaration has a discriminator of the datatype specified by
switch (typename). Each field declaration must have a case specifier that
describes the matching discriminator value. There can be one default field that
applies when the discriminator matches no other value. At runtime, the union’s
discriminator tells which field contains the current value. In the example
above, a discriminator value of seven indicates that the sVal field contains the
current value.

Supported discriminator and field types

The following discriminator types are supported by the ActiveX proxy:

• signed or unsigned 2, 4 byte integers (including enumerations)

• boolean

• a typedef that aliases one of the above types

• An enumeration that switches on the IDL char type.

All IDL types presently supported by the ActiveX proxy can be used as union
fields, including other unions.

IDL unions cannot have a field named discriminator, as it will conflict with the
name of the discriminator variable in the generated ActiveX type.

ActiveX mapping for unions

An IDL union maps to an ActiveX interface named with the following
properties and methods:

• One get/set property for each field, with the same name.

ActiveX datatype support

324 EAServer

• A get/set discriminator property that represents the discriminator value.
The discriminator has the ActiveX datatype that corresponds to the IDL
discriminator type.

Setting and getting member values

To set a union member, simply set the property for that member. The
discriminator value changes automatically to match the member you set.

To access the value of a member, first verify that the discriminator value is in
the set of allowable cases for that member, then reference the matching
property. The ActiveX proxy throws an exception if you attempt to access a
member while the discriminator value is not in the set of case values for that
member.

Explicit version implicit field initialization
Union fields that use complex types such as struct, union, object, date,
time, or timestamp must be initialized explicitly. If you do not initialize
these fields before passing the union as an EAServer method
parameter or return value, the ActiveX dispatcher throws a marshalling
exception. Fields of other types are implicitly set to a default value.

Example

As an example, consider the following IDL union:

module TMod
{

union TUnion switch (long)
{
case 5: long lVal;
case 9, 7: short sVal;
default: double dVal;

};

};

The following Visual Basic code sets each member:

dim myUnion as TUnion
set myUnion = new TUnion
myUnion.lVal = 43000
myUnion.sVal = 43
myUnion.dVal = 43.43

CHAPTER 18 ActiveX Overview

Programmer’s Guide 325

The following code checks the discriminator and accesses the value if the lVal
member is set:

if (myUnion.discriminator = 5) then
print "Current value is " & myUnion.lVal

endif

Sequence support
EAServer component interfaces can use IDL sequences as parameter or return
types in method definitions. For example, in the home interface for an EJB
entity bean component, finder methods may return a sequence of remote
interface proxies for the entity bean.

In ActiveX clients and components, sequences are represented by the
JCollection IDispatch interface. This interface is implemented by the EAServer
ActiveX proxy.

The JCollection interface is documented in Chapter 4, “ActiveX Client
Interfaces,” in the EAServer API Reference.

IDL typedef support
In IDL, the typedef construct defines an alias for an existing type. For example:

typedef short TShort;

short is the existing type and TShort is an alias for the same. Aliases to any type
that is supported by the ActiveX proxy are supported. Nested IDL typedef
declarations are supported, such as:

typedef short TShort;
typedef TShort MyKeyType;

Because ActiveX does not support type aliases, EAServer translates each use
of an IDL typedef with the equivalent ActiveX base type declaration. Alias
names are not preserved in the ActiveX representation, but you can use IDL
interfaces that use type aliasing.

ActiveX datatype support

326 EAServer

IDL enumeration support
Enumerations represent a set of symbolic values. In IDL, an enumeration
defines a set of constants that are represented by symbolic names, for example:

enum ShirtSize { xl, l, m, s }

The ActiveX proxy maps this IDL enumeration to an Microsoft IDL (MIDL)
enumeration as:

typedef enum {
xl = 0,
1 = 1,
m = 2,
s = 3

} ShirtSize;

You can declare IDL enumerations globally, within a module, or within an
interface. The ActiveX proxy supports only enumerations that are declared in
a module or interface. Enumerations map to MIDL enumerations as follows:

• The IDL enumeration e declared in module m translates to MIDL
enumeration e in type library m.

• Enumeration e declared in interface i in module m translates to MIDL
enumeration i_e in type library m. MIDL does not allow enumerations to
be declared inside an interface, so the interface is declared at the type-
library level, and the interface and enumerations names are concatenated
to avoid name collisions between like-named IDL enumerations declared
in different interfaces.

In Visual Basic, you can refer to an enumeration’s members as:

enum.member

Where enum is the enumeration name and member is the member name.

If your ActiveX development tool supports MIDL enumerations, you should
use the symbolic member names rather than the hard coded constants. Doing
so isolates your code from changes to the IDL enumeration definition.

In tools that do not support enumerations, you must use the enumeration’s
integer constants rather than the symbolic names. However, the constants
associated with an enumeration are subject to change if the IDL definition
changes. To minimize the effect of changes to your source code, declare
variables and assign the constant value to them. For example:

dim shirtsize_xl as integer
shirtsize_l = 0

CHAPTER 18 ActiveX Overview

Programmer’s Guide 327

Result-set support
A ResultSet or ResultSets datatype can be specified only as a return type or a
parameter type with an out argument mode. You cannot define a method as
having both a ResultSet or ResultSets return type and a ResultSet or ResultSets
parameter type.

A result set is returned as a RecordSet object. After retrieving the result set, you
can process it using the methods in the interfaces below. These interfaces are
documented in Chapter 4, “ActiveX Client Interfaces,” in the EAServer API
Reference:

• RecordSet Interface – provides methods to iterate through the rows in each
result set.

• Fields Collection – contains the Field objects that represent the columns in
a row.

• Field Interface – represents one column in a row.

Note For compatibility with previous releases, you can still use
GetRecordSet method to retrieve an ActiveX RecordSet interface pointer
that can be used to retrieve the row results.

Algorithm to retrieve result sets

The pseudocode below illustrates a typical algorithm for retrieving result sets
using a RecordSet object. getEmployeeDetails() is a method in the component
that returns a single result set as a RecordSet object. The algorithm executes
three nested loops, as follows:

• The outermost loop iterates through RecordSet objects. Each object
contains rows from one result set. After rows have been retrieved, the
example calls the RecordSet.NextRecordSet method. This method returns
the next RecordSet object. The outermost loop terminates when
RecordSet.NextRecordSet has set the RecordSet.EOF property to true.

• The middle loop iterates through the rows in a result set, calling the
RecordSet.MoveNext method until the RecordSet.EOF property tests as
true. Inside the loop, the RecordSet.Fields property provides a Fields object
that allows access to the row’s columns.

• The innermost loop iterates through the columns in a row, using the
Fields.Item property to retrieve the Field object that represents each
column.

ActiveX datatype support

328 EAServer

Here is the algorithm:

Integer employee_id
RecordSet =
proxycomponent.getEmployeeDetails(employee_id)

DO
// Position the row pointer before the first row.
RecordSet.MoveFirst()

// Iterate through all the rows.
WHILE RecordSet.EOF = FALSE

// Fields object represents the current row.
Fields = RecordSet.Fields

// Iterate through columns.
FOR i = 0 TO i = (Fields.Count - 1)

Field = Fields.Item(i)

... retrieve Field properties to process
column

 data as desired ...

END FOR

// Move to the next row.
RecordSet.MoveNext()

END WHILE

// Move to the next result set, if any.
RecordSet = RecordSet.NextRecordSet()

WHILE RecordSet.EOF = FALSE

The logic in this example executes correctly if a method has not returned result
sets. In this case, the RecordSet.EOF property is always false.

Some scripting languages may allow or require variations on this algorithm, for
example:

• You can replace the WHILE loop logic that iterates through rows with a
FOR loop that indexes from 1 to RecordSet.Count.

CHAPTER 18 ActiveX Overview

Programmer’s Guide 329

• Some scripting languages provide a FOR EACH loop syntax that allows
iterations over an ActiveX collection. You can use this construct to iterate
through the Field objects in a Fields collection. For example, in Microsoft
Visual Basic, you can use code similar to this:

’Get the collection of fields from record set

Set flds = recset.Fields
For Each fld in flds

’Process each Field as desired
Next fld

ActiveX datatype support

330 EAServer

Programmer’s Guide 331

C H A P T E R 1 9 Creating ActiveX Components

EAServer can load and execute a nonvisual ActiveX programmable object
(also called an automation server) as a component. Hereafter, an ActiveX
programmable object will be called an ActiveX component.

Procedure for creating ActiveX components
Begin by writing an ActiveX component in an ActiveX-enabled IDE.
After you have defined the method prototypes (ActiveX type definitions),
use EAServer Manager to import the component, which includes method
prototypes and basic component information (such as the component’s
name); specify additional component properties in EAServer Manager.
This allows another developer to create a client that calls the component’s
methods. You can also use EAServer Manager to define a component, but
you will still have to use an ActiveX-enabled IDE to create the
component—you cannot use EAServer Manager to export the component
to an ActiveX-enabled IDE.

In the ActiveX-enabled IDE, write the method logic for the ActiveX
component. The ActiveX component must support the IDispatch interface
and cannot contain a user interface. In addition to writing code for
standard ActiveX features, you can also write code to implement
EAServer-specific features such as error handling, database connection
caches, result sets, transactions, intercomponent calls, and data sharing.

After you finish writing the ActiveX component, compile the component
into a dynamic link library (DLL) and install (copy and register) it onto
the server. See your ActiveX IDE documentation for compilation
instructions.

Topic Page
Procedure for creating ActiveX components 331

Defining ActiveX components 332

Writing ActiveX components 336

Deploying ActiveX components 341

Defining ActiveX components

332 EAServer

Defining ActiveX components
Defining an ActiveX component means defining the interfaces, transaction
properties, and instance properties. If you define an ActiveX component in
EAServer before implementing the ActiveX component, the client developer
can build the client at the same time you are building the ActiveX component.
You can write the entire component in your IDE first and then import it into
EAServer, where you set the properties, but in this case, the client cannot be
developed concurrently with the component.

You can also individually define each method and parameter using EAServer
Manager. After defining the interfaces, you can use EAServer Manager to
define the transaction and instance properties.

Chapter 4, “Defining Components” describes how to define and configure new
components in EAServer Manager. Chapter 5, “Defining Component
Interfaces” describes how to define methods in the component interface.

 Warning! When you define an ActiveX component, you must enter the
ProgID. Do not use underscores in the ProgID for the component—use a period
instead.

Importing ActiveX components
EAServer Manager can import ActiveX components from the component’s
type library (.tlb file) file or DLL. When you import the ActiveX component,
it is automatically added to the EAServer IDL repository. All CoClass classes
(component object model classes) in the ActiveX component are imported.

Imported interfaces must conform to all EAServer requirements for ActiveX
components. (The requirements are listed in “Defining methods” on page
333.)

Importing components does not import TabularResults::ResultSet and
TabularResults::ResultSets return types. If a method in the imported component
returns a result set, then you must use EAServer Manager to change the return
value to TabularResults::ResultSet or TabularResults::ResultSets in EAServer
Manager.

CHAPTER 19 Creating ActiveX Components

Programmer’s Guide 333

Procedure

Before you can use the ActiveX import feature, make sure that you register the
.dll file using the Windows utility, regsvr32.exe:

regsvr32 <fully qualified path name to dll>

If you change the location of the .dll file after registration, you must reregister
the file with the new location.

To import an ActiveX file:

1 Double-click the Packages folder to expand it.

2 Highlight the package to which the component will be added.

If installing to the Components folder, highlight the Components folder.

3 Select File | Install Component from the menu.

4 In the Component wizard dialog, select Import from ActiveX File, then
click OK.

Note If the Import from ActiveX File option is not displayed, you are
running EAServer Manager or the server on UNIX. You cannot create
ActiveX components when either EAServer Manager or the server is
running on UNIX.

5 Enter the fully qualified path name of the .tlb or .dll file from which you
are importing. Some development environments do not automatically
generate .tlb files. Enter the name of the .dll file if this is the case. You can
use the browse feature to locate either file.

6 Click OK. The component is imported; the component name is the ProgID
without the version number and with periods replaced by underscores. You
can view the new component along with its methods and parameters from
the EAServer Manager.

Defining methods
To define methods, you must specify each method’s return type and the
number, datatypes, and modes of the method’s parameters. See “ActiveX
datatype support” on page 318 for more information.

Defining ActiveX components

334 EAServer

Do not use two consecutive underscores in method names—the underscores
and the text following the underscores are deleted when stubs and skeletons are
generated. This issue is related to function overloading, which is allowed in
Java and C++ but not in ActiveX components. See “Operation declarations”
on page 97 for more information.

 Warning! You cannot define methods with names that differ only in case—
IDL does not support this.

Defining return and parameter datatypes
ActiveX component methods can return any valid datatype. Methods can take
zero or more parameters. For each parameter you add, you must specify a
name, a datatype, and the argument mode. Datatypes are limited to those
supported by EAServer Manager. “ActiveX datatype support” on page 318
describes the supported types.

Defining the transaction property
The transaction property specifies how a component participates in
transactions. You can view and change the transaction property using the
Transactions tab of the component’s property sheet. For a description of each
option on the Transactions tab, see “Transactional component attribute” on
page 22. A transaction consists of a number of database updates (which can be
performed by multiple components) that are grouped into a single atomic unit
of work.

This information is not stored in the EAServer repository, so if you import a
component, you must configure this property manually after importing it.

For a full description of how EAServer handles transactions, Chapter 2,
“Understanding Transactions and Component Lifecycles”

CHAPTER 19 Creating ActiveX Components

Programmer’s Guide 335

Defining instance properties
Instance properties impose constraints on concurrent execution of the different
component instances. You can view and change instance properties using the
Instances tab of the component’s property sheet.

Note If you import a component interface, you must configure this property
manually after importing the component. This information is not stored in the
EAServer repository.

EAServer supports only the ActiveX single-threaded apartment model. In the
single-threaded apartment model, each component instance is bound to the
same thread for the lifetime of the instance. A thread is serviced by the same
connection. Multiple instances may be simultaneously active on different
threads. Shared stateful resources and global data should not be used.

To implement the single-threaded apartment model for an ActiveX component,
enable only the Bind Thread option in the component properties Instances tab.
Although most ActiveX-enabled IDEs use the single-threaded apartment
model, if a component uses the ActiveX free-threaded model (in which a single
method invocation can run on different threads), the component defaults to
using the ActiveX single-threaded apartment model. ActiveX components
developed with Power++ support the single-threaded apartment model.

Because Visual C++ 4.2 ActiveX components use nonapartment single-
threading (in which multiple instances cannot be simultaneously active) by
default, you must change them to use the single-threaded apartment model by:

• Not using global data, and

• Marking the component’s Registry entry to indicate that the component
supports the single-threaded apartment model.

The following settings specify the constraints that are placed on concurrent
execution of different instances of the component. The choices are:

• Concurrency – Multiple invocations can be processed concurrently; that
is, multiple instances can be simultaneously active on different threads.
The component must be thread-safe. Use this setting if the component
code uses no volatile global data and does not share stateful resources
(such as a file) among instances. This threading model offers the highest
performance.

• Bind Thread – Instances are bound to the creating thread. The component
uses thread-local storage.

Writing ActiveX components

336 EAServer

• Pooling – Instances are pooled after a commit or rollback. Instance
pooling allows EAServer to recycle component instances, avoiding the
overhead incurred when a new instance is created each time a component
is activated.

When deciding whether to support instance pooling, consider the
following factors:

• Instance pooling increases the efficiency of your component the most
when more resources are used to initialize an instance than to clean it
up. Complex structures that incur a large overhead to create are prime
candidates for instance pooling. If the component does not perform a
lot of initialization, it may not be more efficient for a component to
use instance pooling.

• Transactional components can benefit from instance pooling. Each
time an EAServer transaction is committed or rolled back, EAServer
deactivates the component instances that are involved. If your
component does not support instance pooling, a new instance is
required for each EAServer transaction that the component
participates in.

You might also want to implement the IObjectControl interface in place of
or in conjunction with the pooling option. Implement the IObjectControl
interface if you:

• Want to determine, at runtime, whether a specific instance should be
pooled (do not select the pooling option—otherwise, the
CanBePooled method in the IObjectControl interface will not be
called), or

• Need to reset the component’s state after deactivation.

Only if you are coding the component in C++ can you directly implement
IObjectControl.

• Sharing – A single shared instance services all client requests. Only one
instance of the component can exist at any time. Attempts to create new
instances when one already exists will fail.

Writing ActiveX components
This section describes how to write the code for ActiveX components that run
in EAServer.

CHAPTER 19 Creating ActiveX Components

Programmer’s Guide 337

When you code the parameters for each method, make sure you use the
ActiveX datatypes that are supported by EAServer (see “ActiveX datatype
support” on page 318).

Note IDL attributes are not supported by ActiveX components.

To write code for ActiveX components:

1 Implement the IDispatch interface – ActiveX components running on a
server are nonvisual, that is, they do not display text or graphics.
Consequently, many commonly used ActiveX interfaces are not required
for creating ActiveX components in EAServer. ActiveX components
running on EAServer need to support only the IDispatch interface. If you
develop your component with an automation controller such as Visual
Basic, the IDispatch interface is implemented transparently.

2 Implement the constructor and destructor. See “Implementing a
constructor and destructor” on page 338.

3 Optionally, implement the IObjectControl interface – You can use this
interface to determine, at runtime, whether to pool instances.

4 Implement methods to perform the following optional tasks:

• Sharing data between components – Enable components to share
properties between the same class’s instances.

• Issuing intercomponent calls – Execute methods in other
components.

• Managing database connections – Connect to databases through
connection caches by using the Connection Management API.

• Sending result sets from an ActiveX component – Return result sets
using the EAServer Result Sets API.

• Setting transactional state – If your component is transactional, call
IObjectContext methods to set the transaction state before returning.

• Accessing SSL client certificates – If the client connected using SSL
with mutual (client and server) authentication, you can retrieve the
client certificate information in your component. See Chapter 8,
“Using SSL in ActiveX Clients,” in the EAServer Security
Administration and Programming Guide for more information.

Writing ActiveX components

338 EAServer

• Adding error-handling code – If errors occur in a method, raise an
ActiveX automation exception. Add code that responds to errors by
recording error details to the server log file and sending an exception
to the client.

Implementing a constructor and destructor
A constructor is called when a new instance is created. A destructor is called
when the instance is destroyed.

Normally, a constructor sets the object’s fields to their initial value and
allocates any other objects that are used by the component, and a destructor
frees any objects that were allocated in the constructor.

However, if the component implements the IObjectControl interface, instance-
specific initialization must be performed in the Activate method. See the
IObjectControl interface reference page in the EAServer API Reference for more
information.

Sharing data between components
EAServer allows components in the same package to share data. Shared data is
organized within groups. Properties within a group can be referred to by either
a string name or a numeric index. Property values are represented by an
ActiveX VARIANT structure.

Note You cannot use shared variables in components that are configured for
automatic failover, because these components cannot use local shared
resources. See “Component properties: Transactions” on page 58 for more
information. If you need to share data, you can store shared data in a remote
database.

Using shared data in C++

For components implemented in C++, EAServer provides the interfaces below
for sharing data between components. See Chapter 2, “ActiveX C++ Interface
Reference,” in the EAServer API Reference for descriptions of these interfaces:

• ISharedPropertyGroupManager Interface – Contains methods to create
shared property groups or retrieve a handle for access to an existing group.

CHAPTER 19 Creating ActiveX Components

Programmer’s Guide 339

• ISharedPropertyGroup Interface – Represents a shared property group.
Contains methods to create new properties and access existing properties.

• ISharedProperty Interface – Represents a shared property. Contains
methods to get and set the property value.

Using shared data IDispatch interfaces

For components implemented using automation controllers such as Visual
Basic, EAServer provides the IDispatch interfaces below. See Chapter 3,
“ActiveX IDispatch Interface Reference,” in the EAServer API Reference for
descriptions of these interfaces:

• SharedPropertyGroupManager Interface – Contains methods to create
shared property groups or retrieve a handle for access to an existing group.

• JagSharedPropertyGroup Interface – Represents a shared property group.
Contains methods to create new properties and access existing properties.

• JagSharedProperty Interface – Represents a shared property. Contains a
Value property that allows the shared property value to be retrieved and
updated.

Issuing intercomponent calls
To invoke another component, use the ActiveX proxy automation server to
create a proxy for the second component. See Chapter 20, “Creating ActiveX
Clients” for instructions.

You must use a proxy to issue intercomponent calls. If you instantiate another
component directly, EAServer transactions will not work. Also, many
EAServer features such as shared objects will not work correctly in the called
component. In addition, you must define the Host property as “localhost.”

Writing ActiveX components

340 EAServer

Managing database connections
If your ActiveX methods connect to remote data servers, you should use
EAServer’s connection caching feature to realize improved performance. See
Chapter 26, “Using Connection Management” for more information.

Note EAServer’s transactional model works only with connections obtained
from the EAServer Connection Manager. Connections that you open yourself
will not be affected by EAServer transactions.

Sending result sets from an ActiveX component
ActiveX methods use the IJagServerResults interface to return rows to the
client. For details, see “Sending result sets from an ActiveX component” on
page 466.

Setting transactional state
Transaction state is set using an IObjectContext interface pointer. The
IObjectContext interface can be directly accessed only if you are coding the
component in C++.

In C++, call GetObjectContext to obtain a reference to an IObjectContext object.
Call the appropriate IObjectContext method to set transactional state before
returning from the method:

• Call SetComplete, if the instance has completed its work without error.

• Call EnableCommit, if the work is not necessarily finished but not in error.

• Call DisableCommit, if the work is still in progress and has errors.

• Call SetAbort if the work cannot be completed.

For nontransactional components, either SetComplete or SetAbort deactivates
the component instance. To keep the instance active, call DisableCommit or
EnableCommit.

If a method does not explicitly set transaction state before returning, the default
behavior is EnableCommit.

CHAPTER 19 Creating ActiveX Components

Programmer’s Guide 341

Adding error-handling code
Errors occurring during a method call should be handled as follows:

1 Call the IJagServer::WriteLog method to write a description of the error to
the log file.

Note JagAxWrap.dll must be registered on your machine. If you are
developing on a machine that already has EAServer installed on it,
JagAxWrap.dll is already registered.

2 You can also generate an ActiveX automation exception with text that
describes the error. EAServer returns the text of the exception to the client.
Java clients receive the message as a Java exception (class
com.sybase.jaguar.util.JException) and ActiveX clients receive the
message as an ActiveX automation exception.

In general, if an error prevents completion of a desired task (such as database
updates that represent a new sales order), you should generate an ActiveX
automation exception to send a concise description of the problem to the client.
Messages sent to the client should be concise and contain language suitable for
display to the end user. You can record more detailed messages in the log file.

Note IDL user-defined exceptions are not supported.

Note Never write your component to send error messages to the console to
display dialog boxes. Servers run unattended; showing a dialog box will do
nothing but hang the thread that executes your component.

Deploying ActiveX components
To deploy an ActiveX component to EAServer:

1 Copy the ActiveX component and any other required DLLs to any
directory on the EAServer machine.

2 Register the ActiveX component into the Windows Registry by entering
this command from the MS-DOS Command Prompt window:

regsvr32 path\MyActiveXComponent

Deploying ActiveX components

342 EAServer

where:

path is the full path name to the directory where the ActiveX component
resides.

MyActiveXComponent is the file name of the ActiveX component.

3 If the component interface has not been defined in EAServer Manager,
import the DLL or type library into EAServer Manager. See “Importing
ActiveX components” on page 332 for more information.

Most ActiveX development environments register component DLLs when
they are built. If your server runs on the machine where you developed the
component, you can skip steps 1 and 2.

Programmer’s Guide 343

C H A P T E R 2 0 Creating ActiveX Clients

This chapter describes how to create ActiveX clients that execute methods
on components deployed on EAServer.

Procedure for creating ActiveX clients
To create a new ActiveX client:

• Generate .tlb and .reg files for components – use EAServer Manager
to generate .tlb and .reg files to use with your ActiveX-enabled IDE.

• Develop and test the ActiveX client – import the type libraries into
your ActiveX-enabled IDE and use the drag-and-drop technique to
add component methods into your ActiveX client code.

• Deploy the ActiveX client – install the ActiveX client, EAServer
client runtime files, and component type libraries and registry files on
every machine where you want to run the ActiveX client.

Generate .tlb and .reg files for components
To generate .tlb and .reg files from components in a package on a remote
server, connect EAServer Manager to the remote server. EAServer
Manager must be running on Windows.

Topic Page
Procedure for creating ActiveX clients 343

Generate .tlb and .reg files for components 343

Develop and test the ActiveX client 347

Deploy the ActiveX client 369

Generate .tlb and .reg files for components

344 EAServer

Type libraries contain proxy interface metadata, which can be used to perform
drag-and-drop development of the ActiveX client. Also, the APAS uses a type
library to perform type checking prior to invoking methods at runtime.

Registry files contain entries for proxy objects so that they can be instantiated
using the standard mechanisms in ActiveX-enabled IDEs for creating an OLE
automation object. These registry entries also specify the location of the APAS,
which is responsible for processing all operations invoked by an ActiveX client
on the proxy object. When generating type libraries and registry files for a
package, EAServer Manager can automatically register the type libraries in the
local registry.

An ActiveX client can be deployed on many machines. If you deploy an
ActiveX client on another machine, make sure that the .tlb and .reg files also
deployed on that machine. Because the location of these files and the APAS
might be different from their location on the original machine, you must use
the jagreg tool to automatically update and register the .reg files. (See “Deploy
the ActiveX client” on page 369 for details on jagreg.)

Before you start
You must have the Microsoft uuidgen.exe (which is provided with EAServer)
and midl.exe tools to generate type libraries and registry import files for an
ActiveX proxy. Make sure that the directory or directories containing these
tools are in your path before you run EAServer Manager. See “ActiveX client
requirements” on page 316 for more information about how to get midl.exe.

A type library cannot be updated while in use
EAServer Manager will fail to generate .tlb/.reg information if you attempt to
overwrite a type library file that is in use. Exit or shut down any ActiveX client
applications that use the type library before you attempt to generate an updated
version. Alternatively, generate the type library to a different directory than the
one that is in use, and reregister the library in the new location.

Check the ProgID for each interface
If you do not want to use the default ProgID, then you can specify your own
ProgID by setting com.sybase.jaguar.interface.com.progid
property in the Advanced tab for the interface before generating .tlb and .reg
files.

CHAPTER 20 Creating ActiveX Clients

Programmer’s Guide 345

The default ProgID for the proxy object follows this pattern:

module1_module2_module3.innerModule.

Each nested module name is preceded by an underscore, and the IDL type
name is preceded by a period (.). For example, the ProgID for IDL type
com::sybase::foo::MyBeanRemote is "com_sybase_foo.MyBeanRemote", and
the ProgID for the IDL type CtsSecurity::SSLSessionInfo is
"CtsSecurity.SSLSessionInfo".

If a component implements multiple interfaces, you must change the ProgID
for each interface individually.

Generating TLB/REG files
To generate .tlb and .reg files:

1 Select the package from which the .tlb and .reg files will be generated.

2 Select File | Generate TLB/REG.

3 Enter the name of the output directory to store the generated .tlb and .reg
files. The default is the root directory of the drive on which EAServer is
installed.

4 In the Proxy Server Location, you must enter the path to the InProcServer
corresponding to the Generic ActiveX Proxy DLL (jagproxy.dll).

 Warning! Do not leave this field blank. If you do, an empty string will be
inserted into the InProcServer32 entry in the Windows Registry and the
ActiveX proxy will not run.

5 Click the Register box if you plan to run ActiveX EAServer clients on the
same machine where EAServer Manager is running. This will register the
ActiveX proxy interfaces. The ActiveX proxy interfaces must be
registered before applications can use them.

If you do not click the Register box, the .reg file can be manually
registered by using the system regedit tool to load it into the machine’s
registry. To run ActiveX clients on another machine, copy the generated
.reg file to that machine, then use the jagreg tool to load it into the
machine’s registry.

Generate .tlb and .reg files for components

346 EAServer

After the registry file is registered, do not move the type libraries or the
APAS. The registry file maintains absolute paths to these files. If you
move any of these files, use the jagreg tool to register the new locations of
these files.

Note The directory containing jagproxy.dll does not need to be in the path.
The directory containing EAServer’s C++ client DLLs does need to be in
the path.

6 Click the Save MIDL File box if you want to retain the generated
Microsoft interface definition language (MIDL) file. If .tlb/.reg generation
fails, the MIDL file may be used to turn the MIDL compiler from the
command line to determine the cause of the failure.

7 Click Generate.

Note If unsupported constructs or datatypes are present in your file, they
are ignored. The generation succeeds and a dialog is displayed. The
constructs or datatypes that were not generated to the .tlb/.reg files are
displayed in srv.log in the EAServer installation bin directory. For more
information about unsupported constructs and datatypes, see Chapter 19,
“Creating ActiveX Components”.

Files generated
Clicking Generate creates the files PACK.TLB, PACK.REG, and PACK.IDL (if
Save MIDL File is checked), where PACK is the name of the selected package.
Every component in the package is processed and its information stored in
these files.

CHAPTER 20 Creating ActiveX Clients

Programmer’s Guide 347

Develop and test the ActiveX client
To write and test code for your ActiveX client, you must be connected to a
server (or have the server running on your machine) and have the ActiveX
runtime files installed on your machine. To install the ActiveX runtime files,
see “Deploy the ActiveX client” on page 369; if you install EAServer on your
machine, you have the option to install the ActiveX runtime files as well. For
more information, see the EAServer Installation Guide.

Before invoking methods on component instances, the client must connect to a
server and instantiate the components. There are two techniques for proxy
instantiation:

• Instantiating proxies using CORBA-style interfaces – This technique
follows the CORBA client model. This technique is recommended for new
development.

• Instantiating stub instances using the EAServer 1.1 interface – This
technique uses interfaces that introduced in EAServer version 1.1. These
interfaces are provided for backward compatibility with existing clients.

If you currently have ActiveX proxy automation server clients, Sybase
recommends that you migrate you current ActiveX clients to use the CORBA-
style so that you can take advantage of the new benefits. The following features
are available to CORBA style clients and not to EAServer 1.1 style clients:

• Use the ORB, Session, Factory, and Manager objects and methods.

• Configure ORB level properties.

• Use high availability/load balancing features.

• Use most SSL features.

• Invoke Enterprise JavaBean components.

The ORB, SessionManager, and other CORBA-style interfaces are documented
in Chapter 4, “ActiveX Client Interfaces,” in the EAServer API Reference.

Instantiating proxies using CORBA-style interfaces
Proxies are local objects that allow you to call EAServer component methods
as if the component were a local object in your program. Instantiate proxies
using the EAServer ORB and SessionManager::Manager interfaces, as follows:

Develop and test the ActiveX client

348 EAServer

Note If you are using Visual Basic, before using the ORB, Session, Factory,
and Manager objects in your client, create references to JaguarORB.tlb,
SessionManager.tlb and CtsSecurity.tlb in your Visual Basic project using the
standard Visual Basic mechanism.

Initializing the ORB

Before any ORB classes can be used, you must call the init method, which:

• Returns an object reference to the ORB.

• Allows you to pass initialization parameters to control the operation of the
ORB. For example, you can specify the password for access to the Sybase
SSL certificate database.

Initialization parameters

The ORB.init() method acceps a formatted string that can contain settings for
multiple initialization parameters. Pass initialization parameters as shown in
this example, which configures the -ORBlogFile property and the -ORBpin
property, to specify a file name for logging errors and the Sybase SSL-
certificate-database password, respectively:

orb.init("-ORBlogFile=d:\jagorb.log,-ORBpin=sybase")

As shown in the example, parameter names and values must be separated by an
equals sign, ‘=’, and each name/value pair must be separated from the next with
a comma and no white space.

Step What it does Detailed explanation

1 Initialize the CORBA ORB and
create an ORB reference.

“Initializing the ORB” on page
348

2 Use the ORB reference to create a
Manager instance for the server.

“Creating a Manager instance”
on page 351

3 Use the Manager instance to create
a Session.

“Creating sessions” on page 352

4 Use the Session instance to create
stub component instances.

“Creating stub instances” on
page 352

5 Call the stub methods to remotely
invoke component methods.

“Invoke component methods” on
page 356

CHAPTER 20 Creating ActiveX Clients

Programmer’s Guide 349

For each initialization parameter, there is an equivalent environment variable.
If the environment variable and initialization parameter are set, the value of the
initialization parameter is used. Parameter and environment variable names are
the same as for the C++ client ORB (see Chapter 15, “Creating CORBA C++
Clients”).

You can set any initialization parameter to a value of none, which overrides the
value of the environment variable and sets the value to the default, if any.

You can pass the following initialization parameters to the driver class:

• ORBNameServiceURL – This parameter sets the IIOP URL to the
EAServer name service. This parameter can also be set in an environment
variable, JAG_NAMESERVICEURL. This parameter is used in
conjunction with the EAServer name service and is specified according to
the following syntax:

iiop://hostname:iiop-port/initial-context

where:

hostname is the host machine name for the server that serves as the name
server for your client. If omitted, the default host name applies.

iiop-port is the IIOP port number for the server.

initial-context is the initial naming context, which you set in the server
property Initial Context. This can be used to set a default prefix for name
resolution. For example, if you specify USA/Sybase/, all names that you
resolve with the context are assumed to be relative to this location in the
name hierarchy. When specifying the initial context, a trailing slash is
optional; it is added automatically if you do not specify an initial context
that ends with a slash.

If your application uses a cluster of servers, the cluster may use multiple
name servers. In this case, specify the URL (host machine name and IIOP
port number) for each name server in a list separated by semicolons and
no white space. Include the cluster’s initial naming context only with the
last URL. For example:

iiop://host1:9000;iiop://host2:9000/USA/Sybase/

• ORBHttp – This specifies whether the ORB should use HTTP-tunnelling
to connect to the server. A setting of "true" specifies HTTP tunnelling. The
default is "false". This parameter can also be set in an environment
variable, JAG_HTTP. Some firewalls may not allow IIOP packets
through, but most all allow HTTP packets through. When connecting
through such firewalls, set this property to "true".

Develop and test the ActiveX client

350 EAServer

• ORBLogIIOP – This specifies whether the ORB should log IIOP protocol
trace information. A setting of "true" enables logging. The default is
"false". This parameter can also be set in an environment variable,
JAG_LOGIIOP. When this parameter is enabled, you must set the
ORBLogFile option (or the corresponding environment variable) to specify
the file where protocol log information is written.

• ORBLogFile – This sets the path and name of the file to which to log client
execution status and error messages. This parameter can also be set in an
environment variable, JAG_LOGFILE. The default setting is no log.

• ORBCodeSet – This sets the code set that the client uses. This parameter
can also be set in an environment variable, JAG_CODESET. The default
setting is iso_1.

• ORBRetryCount – Specify the number of times to retry when the initial
attempt to connect to the server fails. This parameter can also be set in an
environment variable, JAG_RETRYCOUNT. The default is 5.

• ORBRetryDelay – Specify the delay, in milliseconds, between retry
attempts when the initial attempt to connect to the server fails.This
parameter can also be set in an environment variable,
JAG_RETRYDELAY. The default is 2000.

• ORBProxyHost – Specifies the machine name or the IP address of an SSL
proxy. See Chapter 12, “Deploying Applications Around Proxies and Firewalls,”
in the EAServer Security Administration and Programming Guide for more
information.

• ORBProxyPort – Specifies the port number of the SSL proxy.

• ORBsocketReuseLimit – Specifies the number of times that a network
connection may be reused to call methods from one server. The default is
0, which indicates no limit. The default is ideal for short-lived clients. The
default may not be appropriate for a long-running client program that calls
many methods from servers in a cluster. If sockets are reused indefinitely,
the client may build an affinity for servers that it has already connected to
rather than randomly distributing its server-side processing load among all
the servers in the cluster. In these cases, the property should be tuned to
best balance client performance against cluster load distribution. In Sybase
testing, a setting of 10 to 30 proved to be a good starting point. If the reuse
limit is too low, client performance degrades.

CHAPTER 20 Creating ActiveX Clients

Programmer’s Guide 351

• ORBIdleConnectionTimeout – Specifies the time, in seconds, that a
connection is allowed to sit idle. When the timeout expires, the ORB
closes the connection. The default is 0, which specifies that connections
can never timeout. The connection timeout does not affect the life of proxy
instance references; the ORB may close and reopen connections
transparently between proxy method calls. Specifying a finite timeout for
your client applications can improve server performance. If many
instances of the client run simultaneously, a finite client connection
timeout limits the number of server connections that are devoted to idle
clients. A finite timeout also allows rebalancing of server load in an
application that uses a cluster of servers.

Example: ORB initialization

ORB initialization is demonstrated in the following example.

Dim orb As ORB
Dim Manager As Manager
Dim Session As Session
Dim Factory As Factory

' Create a new ORB object
Set orb = New ORB

' Initialize the ORB instance
orb.init ("")

init returns an object reference to the EAServer ORB. When orb is deallocated
or assigned a new object reference, it will be automatically released.

Creating a Manager instance

The SessionManager::Manager interface is used for interacting with a server.
To create a Manager instance, you must identify a server listener using a URL
of the format:

protocol://host:port

where:

• protocol is iiop or iiops. Use iiops for connections to secure iiop
listeners.

• host is the server’s host machine name or IP address.

• port is the listener’s port number.

Develop and test the ActiveX client

352 EAServer

Pass the URL to the string_to_object method to convert the URL string into a
Manager instance, as shown in the following example. The object returned by
string_to_object must be narrowed to the SessionManager/Manager interface.

Dim orb As ORB
Dim Manager As Manager
Dim obj as Object
... deleted orb initialization ...
Set obj = orb.string_to_object(

"iiop://puddle:9000")
Set Manager = obj.Narrow_("SessionManager/Manager")
...

Creating sessions

The SessionManager::Session interface represents an authenticated session
between the client application and a server. The createSession method accepts
a user name and password and returns a session object, as shown in the
example below:

Dim orb As ORB
Dim Manager As Manager
Dim Session as Session
Dim obj as Object
...deleted manager initialization
Set obj = Manager.createSession("jagadmin","")
Set Session = obj.Narrow_("SessionManager/Session")
...

Creating stub instances

You call the Session.lookup method to return an object reference factory. You
then use the factory to create one or more proxies for the component.

lookup takes a string that specifies the EAServer component name. By default,
the name is package/component, where package is the EAServer Manager
package name and component is the component name. Package and component
names are not case sensitive. Component developers can override the default
name by setting the JNDI Name property for EJB components, or the
com.sybase.jaguar.component.bind.naming property for other types of
components.

lookup returns a CORBA::Object reference. You use Narrow_ to convert the
object reference into an instance of the factory for the component.

CHAPTER 20 Creating ActiveX Clients

Programmer’s Guide 353

After instantiating the factory, the factory Create method returns an instance of
the component proxy.

The code to instantiate a proxy for a component named Foo/Bar looks like this:

Dim Session as Session
Dim fact as Factory
Dim barComp as Bar // Component proxy
Dim obj as Object
...deleted session initialization ...
Set obj = Session.lookup("Foo/Bar")
Set fact = obj.Narrow_("SessionManager/Factory")
Set barComp = fact.Create()

Instantiating stub instances using the EAServer 1.1 interface
Sybase recommends that you use the CORBA style interfaces for new
development. The EAServer 1.1 interface is provided for backward
compatibility with existing applications.

To invoke EAServer components, your ActiveX client should:

1 Declare proxy objects – The application creates an ActiveX interface
pointer for the proxy object.

2 Set connection properties – The application sets connection properties for
the component instance. These properties describe the server that contains
the component and the user name to be used for a connection.

3 Instantiate server components – The application calls the proxy object’s
Initialize method. Initialize connects to the server and creates an instance of
the server component. After Initialize succeeds, the server component
methods can be called through the proxy object.

4 Invoke component methods – The application invokes methods on the
server, passing the appropriate ActiveX datatype for each parameter.

Declare proxy objects

Proxy objects are instantiated and invoked via ActiveX dispatch interfaces.
EAServer proxy objects can be identified by their program identifier (ProgID).
See “Check the ProgID for each interface” on page 344 for more information.

Develop and test the ActiveX client

354 EAServer

Different ActiveX-enabled IDEs have different mechanisms for declaring an
ActiveX object. In Visual Basic, you can simply declare the proxy object and
instantiate it. For example, you can write either one of the following to
instantiate a proxy object:

Dim bar as Bar
Set bar = New Bar

or

Dim bar as Object
Set bar = CreateObject(“Foo.Bar”)

Although the ActiveX proxy object exists once you have declared it, you
cannot invoke methods until after you have set connection properties and
called the Initialize method.

Set connection properties

Before calling the Initialize method, set the connection properties, such as
UserName, Password, Host, and Name. The ActiveX client uses connection
properties to connect to the server. This example sets the connection
information for the employeeproxy object.

employeeproxy.UserName = "Guest"
employeeproxy.Password = "Guest"
employeeproxy.Host = "Jaguar"
employeeproxy.Name = "Company/Employee"

The user name and password, which must be specified, are required for login
authentication and access control. The defaults for user name and password are
empty strings. If the server administrator has enabled authentication, you must
use a valid user name and password. If user access to the package or component
is limited, the user name must be in a group that has access to the component.
For more information on security, see Chapter 2, “Securing Component
Access,” in the EAServer Security Administration and Programming Guide.

The Host property, which is optional, is the machine name and IIOP port
number or the environment variable that specifies the machine name and IIOP
port number. If the machine name and IIOP port number are specified for the
Host property, the environment variable is ignored. See “Deploy the ActiveX
client” on page 369 for more information about defining the environment
variable.

The syntax for specifying the machine name and IIOP port number is:

"machine:port"

CHAPTER 20 Creating ActiveX Clients

Programmer’s Guide 355

where:

machine is the machine name.

port is the IIOP port number.

Note If the Host property or environment variable is not specified, or defined
incorrectly, the default, which is “localhost:9000”, is used.

The Name property, which is optional, specifies the package and component
names. By default, the package name is the same as the module name, and the
component name is the same as the interface name. Specify the Name property
when a component’s package or component name is different from its module
or interface name. The package and component are automatically located
relative to the server’s Initial Context property. The syntax for the Name
property is:

"package/component"

where:

• package is the name of the package.

• component is the name of the component.

Note If the Name property is not specified, or defined incorrectly, the
default is used.

Instantiate server components

To instantiate the components on the server, use the Initialize() method.
Initialize() establishes a connection to the server, using the connection
properties you set in the previous step. If the server host name is not valid, or
if another error occurs, the APAS displays an error message. This example
executes the Initialize() method on the employeeproxy object, and instantiates
on the server an instance of the Employee component belonging to the
Company package.

employeeproxy.Initialize()

Develop and test the ActiveX client

356 EAServer

Invoke component methods
“ActiveX datatype support” on page 318 lists the ActiveX types supported by
EAServer, as well as the equivalent EAServer Manager and CORBA IDL
types.

EAServer components appear as automation objects in the ActiveX-enabled
IDE. If your IDE supports it, you can simply drag and drop the component
method into your ActiveX client code and use the IDE’s object browser to see
the component’s method syntax. You must call the proxy methods using the
syntax required by your development tool.

To execute a component method, execute the method on the proxy object. In
this example, the GetEmployeeInfo() and the SetEmployeeInfo() methods are
executed on employeeproxy. The parameters in the SetEmployeeInfo()
method are in parameters. The parameters in the GetEmployeeInfo() method are
inout parameters.

String name
Long age
String sex

name = "John"
age = 32
sex = "male"

// Example for parameters using the in argument mode
employeeproxy.SetEmployeeInfo (name, age, sex)

// Example for parameters using the inout argument mode
employeeproxy.GetEmployeeInfo (REF name, REF age, REF
sex)

Methods may return result sets. After a method invocation, you can retrieve
result sets as described in “Result-set support” on page 327.

Note If a component that the ActiveX client accesses is an ActiveX component
and a C++ IDE such as Visual C++ was used to develop it, string parameter
types are always passed by reference (as BSTR *). Make sure that you defined
these parameters as inout in EAServer Manager.

When you invoke component methods, these restrictions apply:

CHAPTER 20 Creating ActiveX Clients

Programmer’s Guide 357

• You must pass parameters in a datatype that is equivalent to the
corresponding parameter’s datatype in the EAServer method definition.
See “ActiveX datatype support” on page 318 for more information.

• You must pass parameters by position; named arguments to method calls
are not supported.

• You cannot use methods with names that differ only in case.

• The result-set parameter type is not allowed in either in or inout modes.

Code exception handling
Always make sure that your application handles exceptions gracefully. At
minimum, you should display the exception text, which will aid debugging.

Errors in ActiveX proxy execution can be handled as ActiveX exceptions, or
inline using a try/catch model similar to the structured exception handling
model in the C++ and Java languages.

Using an ActiveX error handler

By default, the ActiveX proxy raises an ActiveX exception when an EAServer
component method raises an exception or an internal error occurs. Visual Basic
and most other ActiveX scripting tools do not allow you to handle these errors
inline. Instead, control transfers to an error handler (specified by on error goto
in Visual Basic) or to a system-wide error dialog box. To handle proxy errors
inline, you must enable inline exception handling as described in “Handling
exceptions inline” on page 362.

Structure of an
ActiveX exception

In C++, the OLE EXCEPINFO structure describes an ActiveX exception.
Different ActiveX-enabled IDEs provide different mechanisms for
applications to obtain the EXCEPINFO structure contents.

In Visual Basic, exceptions are mapped to the built-in Err object. The exception
number maps to Err.Number and the description is available as Err.Description.
You can handle exceptions by activating error handling code with On Error
Goto statement or by checking whether Err.Number is > 0.

Develop and test the ActiveX client

358 EAServer

The proxy type library defines error numbers for client-side errors in the
JagORBClientErrNum enumeration and server-side error numbers in the
JagORBServerErrNum enumeration.

Note IDL user-defined exceptions are not supported and are mapped to error
number 9000.

Client error numbers Table 20-1 lists the codes for client-side error numbers defined in the
JagORBClientErrNum enumeration:

Table 20-1: JagORBClientErrNum error codes

Symbolic error code Number Description

jagClNonByteArrayErr 8000 Method arguments of type array can only
have a base element type of byte.

jagClMultiDimArrayErr 8001 Multi-dimensional arrays not supported
as an argument to a method.

jagClArrayRedimErr 8002 A Fatal Internal Error was encountered
while attempting to resize a method
argument of type array.

jagClArrayProcErr 8003 A Fatal Internal Error was encountered
while processing a method argument of
type array.

jagClArrayEmptyErr 8004 An array of size 0 was passed as
parameter to a method.

jagClArrayBoundsErr 8005 A Fatal Internal Error was encounterd
while attempting to determine the upper
bound on a method argument of type
array.

jagClNotJagComponentErr 8006 The component being instantiated is not a
valid EAServer component or was not
registered in the Windows Registry.

jagClOutOfMem 8007 The Application failed to acquire
memory from the Operating System.

jagClCreateFactErr 8008 The EAServer Proxy Server could not
instantiate a Factory Object. Please
contact Sybase Technical Support.

jagClTypeLibErr 8009 The type library for the Component could
not read from the Windows Registry.
Please check if a valid directory location
was specified for the Type Library while
registering the component.

CHAPTER 20 Creating ActiveX Clients

Programmer’s Guide 359

jagClTypeInfoErr 8010 The type information for the Component
could not read from the Type Library.
Please regenerate TLB and REG files for
the component using EAServer Manager.

jagClMethInfoErr 8011 The metadata for the method or
component could not be read from the
Windows Registry or the method is
using parameter types that are not
presently supported in the EAServer
ActiveX Proxy.

jagClMethNameErr 8012 The metadata for the method invoked on
component could not be read from the
Windows Registry. Please regenerate
TLB and REG files for the component
using EAServer Manager.

jagClCompNameErr 8013 The component name for the component
being instantiated could not read from the
Windows Registry.

jagClPkgNameErr 8014 The package name for the Component
being instantiated could not read from the
Windows Registry.

jagClPxyCreateErr 8015 Component creation failed.

jagClPxyDestroyErr 8016 Component deletion failed.

jagClPxyFuncDescErr 8017 The metadata information for the method
could not read from the type library.

jagClArgCountErr 8018 There was a mismatch between the
number of parameters passed to method
and the number of parameters as
described by the information in the type
library.

jagClInternalErr 8019 An error was encountered while invoking
an EAServer method.

jagClParamInfoErr 8020 The type information for a method
parameter could not be read from the
Type Library.

jagClTypeMismatchErr 8021 There is a mismatch between type of the
value passed as an argument with its
specified type in the Type Library.

jagClConversionErr 8022 The data conversion attempted is
presently not supported.

Symbolic error code Number Description

Develop and test the ActiveX client

360 EAServer

Server error numbers Table 20-2 lists the codes for server-side error numbers defined in the
JagORBServerErrNum enumeration:

jagClArgUpdateErr 8023 An error was encountered while updating
an input-output or output parameter for a
method.

jagClRetValSetErr 8024 An error was encountered while updating
the return value for a method.

jagClRecsetArgErr 8025 The ResultSet type cannot be passed as a
parameter in either the input or input-
output modes by an EAServer ActiveX
application.

jagClUnsuppTypeErr 8026 An unsupported OLE Automation type
was used as a parameter in a method.

jagClAxConvertErr 8027 An error was encountered while
converting a input-output method
parameter received from the server.

jagClJagConvertErr 8028 An error was encountered while
converting a input parameter prior to
method invocation.

jagClNoInitErr 8029 an EAServer component instance must
be created prior to invoking a method.

jagClRecordsetCreateErr 8030 An internal error was encountered while
creating the Recordset object.

jagClRecordsetMoveErr 8031 Attempt to call MoveNext on a RecordSet
which has its EOF property as TRUE.

jagClIteratorPosErr 8032 An invalid position was specified while
attempting to retrieve an element from a
collection.

jagClInvalidMethodErr 8033 The only method supported on the
generic Object type is Narrow_.

jagClNarrowFailErr 8034 The object reference cannot be narrowed
to the interface name specified.

jagClInvalidIntfErr 8035 The fully scoped interface name passed
as an argument to the Narrow_ method is
invalid.

jagClOrbInitErr 8036 An internal error was encountered while
initializing client-side ORB.

jagClOrbStrToObjErr 8037 An internal error was encountered while
invoking the ORB.string_to_object
method.

Symbolic error code Number Description

CHAPTER 20 Creating ActiveX Clients

Programmer’s Guide 361

Table 20-2: JagORBServerErrNum error codes

Symbolic error code Number Description

jagSrvMethExcepErr 9000 The method implementation threw an
user-defined exception while executing
on the server.

jagSrvMethInvalidErr 9001 The method name is either invalid or is
presently not defined in the component's
interface.

jagSrvMethInvalidArgErr 9002 The invocation of the method on the
server failed because an invalid number
of parameters was passed or a parameter
type mismatch occurred.

jagSrvMethNotImplErr 9003 The invocation of the method on the
server failed because the component does
not implement the method.

jagSrvCompPermErr 9004 The invocation of the method on the
server failed because user does not have
the permissions to instantiate the
component.

jagSrvCompDeployErr 9005 The invocation of the method on the
server failed because component
implementation was not deployed on the
server.

jagSrvInternalErr 9006 The invocation of the method on the
server failed due a fatal internal error.

jagSrvArgCountErr 9007 The invocation of the method on the
server failed because an invalid
parameter type was used by the method.

jagSrvSrvConnectErr 9008 The requested operation failed since the
client could not to acquire connection to
the server.

jagSrvConversionErr 9009 The invocation of the method on the
server failed due to a data conversion
error.

jagSrvFreeMemErr 9010 The invocation of the method on the
server failed while releasing memory
resources.

jagSrvIntfReposErr 9011 The invocation of the method on the
server failed while trying to access the
interface repository.

jagSrvOutOfMemErr 9012 The invocation of the method on the
server failed while trying to acquire
memory from the Operating System.

Develop and test the ActiveX client

362 EAServer

Handling exceptions inline

By default, the ActiveX proxy raises an ActiveX exception when an EAServer
component method raises an exception or an internal error occurs. Visual Basic
and most other ActiveX scripting tools do not allow you to handle these errors
inline. Instead, control transfers to an error handler (specified by on error goto
in Visual Basic) or to a system-wide error dialog box.

Inline exception handling can simplify the code that handles recoverable
errors. For example, you can keep program logic that allows a user to retry a
failed login in one place, rather than split into mainline code and the separate
error handling code. Inline exception handling also allows you to handle errors
explicitly in scripting tools that do not allow you to install user-coded error
handlers.

The ActiveX proxy supports inline exception handling with Try, Catch, and
End methods and an internal exception store. When an exception occurs with
inline handling active, the proxy stores the error information rather than raising
an ActiveX exception. Each component proxy object supports these methods
and contains an exception store that is specific to that object. To handle
exceptions inline, call the Try_, Catch_, and End_ methods as follows:

• Try_ Activates inline exception handling. Errors or exceptions that occur
after calling Try and before End do not raise ActiveX exceptions. Instead,
the error is stored in an internal exception store that can be accessed with
the Catch method.

• Catch_ Check whether an exception of a specified type has occurred.
Catch has this syntax:

boolean Catch_(in string exceptionType, out Object exception)

jagSrvOutOfResErr 9013 The invocation of the method on the
server failed since it could not acquire the
necessary resources.

jagSrvSrvRespErr 9014 The invocation of the method on the
server failed because there was no valid
response from the server.

jagSrvInvObjrefErr 9015 The invocation of the method on the
server failed because the object reference
is invalid.

Symbolic error code Number Description

CHAPTER 20 Creating ActiveX Clients

Programmer’s Guide 363

Where exceptionType is the exception type to check for or “...” to check
for the occurrence of any exception, and exception is an output variable. If
the exception store contains an exception of the specified type, Catch_
copies the exception store to the exception variable, clears the exception
store, and returns true.

You can call Catch_ multiple times to check for exceptions of different
types.

• End_ Deactivates inline exception handling and reverts to the standard
ActiveX error handling mechanism. If the exception store contains an
exception instance, End_ throws the stored exception as an ActiveX
exception.

Special considerations The Try_ and Catch_ methods do not have the same semantics of structured
exception handling in Java or C++. In particular:

• Since the exception store holds only one exception instance, you must call
Try_ after every proxy method invocation that can raise an exception.
Otherwise, an exception in the store can be overwritten by the most
recently thrown exception.

• If you return from a subroutine with inline exception handling active for
an object, it remains active for that object.

• Inline exception handling in multithreaded programs requires that you use
a separate copy of a proxy object in each thread. See “Using Try_ and
Catch_ in multithreaded programs” on page 368 for more information.

Example: using "catch
all" exception handling

When you call the Catch_ method, you can check for exceptions of a specific
type, or for exceptions of any type. To check for any exception, pass “...” as the
exception type parameter.

The following example illustrates this style of exception handling:

barcomp.Try_
barcomp.methodThatRaisesException(1007)
Dim anyExcep As Object
If (barcomp.Catch_("...", anyExcep) = True) Then

Dim excepType as String
excepType = anyExcep.GetExceptionType
if (StrComp(excepType, "Foo/NotValidIdException")

== 0) then
Dim invalidIdExcep as NotValidIdException
set invalidIdExcep = anyExcep
Dim id as integer
Dim msg as String
id = invalidIdExcep.id

Develop and test the ActiveX client

364 EAServer

msg = invalidIdExcep.message
Else if (StrComp(excepType, "Foo/NoAuthorizationEx

ception") == 0) then
Dim noAuthorizationExcep as NoAuthorizationExc

eption
set noAuthorizationExcep = anyExcep
Dim user as String
Dim cert as String
user = noAuthorizationExcep.username
cert = noAuthorizationExcep.certificate

Else if (StrComp(excepType, "Jaguar/ClientExceptio
n") == 0) then

Dim systemExcep as SystemException
set systemExcep = excep
Dim code as integer
Dim msg as String
code = systemExcep.code
msg = systemExcep.message

End if
Else

' No Exception has occurred. Proceed
End If

Exception datatypes Exception datatypes are used with the Try_ method when handling exceptions
inline. The ActiveX proxy includes predefined system exceptions that
correspond to the standard CORBA system exceptions. User-defined
exceptions that are declared in an IDL module are also mapped to ActiveX
types.

System exceptions In IDL, system exceptions extend the CORBA
SystemException IDL type:

interface SystemException
{

long code; // numeric error code
string message; // text error message

};

Unlike user-defined exceptions, a component method can throw system
exceptions that are not listed in the raises clause of the IDL method signature.
The C++ and ActiveX client runtime engines may also raise system exceptions
when errors occur in the processing of a method invocation.

In the ActiveX proxy, system exceptions are mapped to the interface
SystemException with the following properties and methods:

• The Code property specifies the numeric error code.

CHAPTER 20 Creating ActiveX Clients

Programmer’s Guide 365

• The Message property specifies the text error description, if available.

• The GetExceptionType method returns the string exception identifier (see
“Exception identifiers” on page 365 for more information).

The ActiveX proxy uses SystemException to represent the standard CORBA
system exception types that can be returned by components, as well as errors
that occur in the ActiveX proxy. “Exception identifiers” on page 365 lists the
system exception types.

User-defined exceptions In IDL, user-defined exceptions are defined using
syntax similar to an IDL structure. For example:

exception InvalidValueException
{

string message;
string value;

};

User-defined exceptions can be defined within an IDL module or interface. The
IDL method signature for a component method must list user-defined
exceptions thrown by the method in the raises clause. A method cannot throw
user-defined exceptions that are not listed in the raises clause.

In ActiveX, the IDL exception maps to an interface with the following
properties and methods:

• One get/set property for each member field in the exception, following the
datatype mappings for IDL to ActiveX types.

• A GetExceptionType method that returns the string exception identifier
(see “Exception identifiers” on page 365 for more information).

Exception identifiers Both system and user-defined exceptions support a
GetExceptionType method that returns a string identifier for the exception. The
exception identifier for a user-defined exception defined in a module is:

module/exception

Where module is the IDL module name and exception is the IDL exception
type. For example, “CtsSecurity/No Certificate Exception”. The exception
identifier for an exception defined in an interface is:

module/interface/exception

Where interface is the IDL interface name.

Exception identifiers for system exceptions are predefined, as listed in Table
20-3.

Develop and test the ActiveX client

366 EAServer

Table 20-3: System exception identifiers

Identifier Notes

Jaguar/ClientException An error occurred internally to the ActiveX proxy.
For example, you may have called a method that
uses an unsupported parameter type.

CORBA/BAD_CONTEXT

CORBA/BAD_INV_ORDER

CORBA/BAD_PARAM

CORBA/BAD_OPERATION

CORBA/BAD_TYPECODE

CORBA/COMM_FAILURE A network error occurred. When creating a
connection, this usually indicates that the server is
down or you have specified the wrong listener
address. When calling a method, the error may
indicate a transient network fault; you can retry
the method.

CORBA/DATA_CONVERSION

CORBA/FREE_MEM

CORBA/IMP_LIMIT

CORBA/INTERNAL

CORBA/INTF_REPOS

CORBA/INV_FLAG

CORBA/INV_IDENT

CORBA/INV_OBJREF

CORBA/INVALID_TRANSACTION

CORBA/INITIALIZE

CORBA/MARSHAL

CORBA/NO_IMPLEMENT The component does not implement the method
that you called.

CORBA/NO_MEMORY

CORBA/NO_RESOURCES

CORBA/NO_RESPONSE

CORBA/NO_PERMISSION The user cannot access the server or a specified
component.

CORBA/OBJ_ADAPTER

CHAPTER 20 Creating ActiveX Clients

Programmer’s Guide 367

Example This example calls a method
CtsSecurity.SSLServiceProvider.setGlobalProperty. This method can be called
to specify SSL settings for a connection to a server. For more information, see
Chapter 8, “Using SSL in ActiveX Clients,” in the EAServer Security
Administration and Programming Guide.

The method signature and the exceptions raised are detailed in the following
IDL:

module CtsSecurity
{

interface SSLServiceProvider
{

string setGlobalProperty
(

in string property,
in string value

)
raises (CtsSecurity::InvalidPropertyException,

CtsSecurity::InvalidValueException);
};

exception InvalidPropertyException
{

string message;

CORBA/OBJECT_NOT_EXIST The object does not exist. This can happen if:

• The component is not installed correctly on the
server. For example, the component class or
skeleton class cannot be loaded.

• The object represents a stateful component and
your reference to it has expired. Check the
value of the component’s Instance Timeout
property, and, if needed, code your client to
create another instance in response to this error.

CORBA/PERSIST_STORE

CORBA/TRANSACTION_REQUIRED The method you attempted to call must be called
in the context of an open transaction.

CORBA/TRANSACTION_ROLLEDBACK The method you called rolled back its transaction,
or if you have started a client-managed
transaction, the transaction timed out.

CORBA/TRANSIENT

CORBA/UNKNOWN

Identifier Notes

Develop and test the ActiveX client

368 EAServer

string property;
};

exception InvalidValueException
{

string message;
string value;

};
};

setGlobalProperty raises InvalidValueException if you attempt to set a property
to an invalid value, and raises InvalidPropertyException if you specify a property
that does not exist.

The following Visual Basic code calls setGlobalProperty and calls the Catch
method to handle InvalidValueException inline. Since there is no Catch_ call for
InvalidPropertyException, if this exception is thrown, it will be thrown as an
ActiveX exception when End_ is called:

Dim ssp as CtsSecurity.SSLServiceProvider

// Assume ssp has been properly initialized

Dim ivException as CtsSecurity.InvalidValueException
// Activate inline exception handling
call ssp.Try
ssp.setGlobalProperty("qop", "An invalid value")
if (ssp.Catch_("CtsSecurity/InvalidValueException", ivException) then

call MessageBox ("Invalid value: " & ivException.value & ". " & _
ivException.message, , "Error");

endif
call ssp.End_

Using Try_ and
Catch_ in
multithreaded
programs

If your program uses a proxy object in multiple threads and handles exceptions
inline, you must call the Duplicate_ method to obtain a copy of the proxy object
for use in each thread. Duplicate_ has the following syntax:

Object Duplicate_

Duplicate_ returns a proxy instance of the same type as the original.

CHAPTER 20 Creating ActiveX Clients

Programmer’s Guide 369

Deploy the ActiveX client
You can deploy the ActiveX client on any number of machines. To install the
ActiveX client on a client machine:

1 Install the EAServer client runtime files, including the C++ and ActiveX
client options, by following the instructions in the EAServer Installation
Guide for Windows.

2 For an ActiveX proxy automation server client, if you do not plan to
specify the machine name and IIOP port number of the machine on which
the server resides directly in the Connection Host property, you must
define (in the System Properties from the Control Panel) a user
environment variable for each server that the ActiveX client will invoke
components on. By default, the client installer creates an environment
variable JS_JAGUAR and sets its value to localhost:9000. The syntax
for environment variable is:

JS_JaguarServerName

where:

JaguarServerName is the host name used in the ActiveX client code.

The syntax for the value of the environment value is:

machine_name:iiop_port#

where:

machine_name is the name of the machine that the server resides on.

iiop_port# is the IIOP port number for the server.

For the default server, jaguar, on a machine, puddle, with the default IIOP
port number, 9000, you specify this user environment variable:

JS_JAGUAR

where the value for this environment variable is puddle:9000.

3 For an ActiveX proxy automation server client, set the JAG_LOGFILE
environment variable, which specifies the log file in which initialization
errors are recorded. Error messages that occur during the initialization
stage are logged into a client log file. If the environment variable is not set,
then the error messages in the startup phase will not be seen by the client
application. For example:

set JAG_LOGFILE=%JAGUAR%\bin\client.log

Deploy the ActiveX client

370 EAServer

If the ActiveX proxy is running on the server, then the messages will be
logged to the server log file.

4 Copy the component and package type libraries and registry files from
your development machine to the client machine. The directory in which
you place the files does not matter because registering the registry files
specifies the type libraries location to the machine. The type library file
name is the package or component name with a .tlb extension. The registry
file name is the package or component name with a .reg extension.

5 Use the jagreg utility to register the APAS, component type libraries, and
registry files. jagreg will also create a new file that reflects the type library
and APAS DLL locations that you specify on the command line. You can
use the new registry file to reregister the APAS if you change the location
of the APAS DLL or type library files.

Running jagreg To run jagreg, open an MS-DOS Command Prompt window and enter:

jagreg /d jagproxy_dir /f registry_file [/t tlb_dir] [/o output] [/nr]

or

jagreg /t tlb_dir /f registry_file [/d jagproxy_dir] [/o output] [/nr]

where:

jagproxy_dir is the directory in which the APAS DLL resides. By default, the
APAS installer places jagproxy.dll in the APAS dll subdirectory. Specify this
parameter if jagproxy.dll is in a location different from when you generated the
registry file. If you are not sure what location is stored in a registry file, specify
the current location of jagproxy.dll when you run jagreg.

tlb_dir is the directory where the type library files reside.

output is an optional path to the directory in which updated registry file(s) are
written. If you don’t specify an output directory, the new registry file replaces
the previous file; the previous file is saved with a .KEEP extension.

/nr is the option that prevents the new registry files from being registered. Use
this option to update the .reg files without immediately applying them to the
Windows Registry.

registry_file is the name of the registry file that you want to change. Use
wildcards to specify multiple files, for example *.reg.

The following example updates all .reg files in the current directory, changing
the type library location to d:\jag_axp and the APAS DLL location to
d:\jag_axp\dll. .reg files in the current directory are updated and previous
versions are saved with a .KEEP extension:

CHAPTER 20 Creating ActiveX Clients

Programmer’s Guide 371

jagreg /t %JAGUAR%\dll /f *.reg /d %JAGUAR%\dll

Note If jagreg does not run, make sure the JAGUAR environment variable is
set to the location of your EAServer installation and the PATH environment
variable contains the location of the Windows regedit.exe tool as well as the
EAServer bin and dll subdirectories.

You can use a hyphen (-) or forward slash (/) to delimit jagreg options. For
example, both -t and /t are valid.

jagreg creates a new registry file from the existing registry file and:

• Replaces the InProcServer32 entry under the CLSID key with the path
to the APAS directory.

• Replaces the DIR entry under the TypeLib key with the path to the type
library files directory.

In the registry file, the InProcServer entry under the CLSID key contains the
absolute path to the jagproxy.dll. The DIR entry under the TypeLib key
contains the absolute path to the type libraries directory.

If you move the APAS or type libraries, you must run jagreg again with the new
settings.

You can run jagreg from a batch file to automate deployment of ActiveX
clients. If running jagreg from a batch file, you can check for success by
checking the JAGREG_STATUS environment variable. A value of 0 indicates
success, and a value of 1 indicates failure.

Normally, jagreg runs silently. You can activate status tracing by setting the
JAGREG_TRACE environment variable to “true” before running jagreg. With
tracing enabled, jagreg prints status information to the screen as it runs.

Deploy the ActiveX client

372 EAServer

P A R T 7 Web Applications

This part explains how to create Web applications with Java
servlets and JavaServer Pages.

Programmer’s Guide 375

C H A P T E R 2 1 Creating Web Applications

A Web application allows you to deploy interrelated Web content,
JavaServer Pages (JSPs), and Java servlets as a cohesive unit, and
configure the Web server properties required by the servlets and JSPs.
EAServer’s Web application model follows the J2EE and Java Servlet 2.3
specifications.

Note For information on configuring clustered Web applications, see
Chapter 7, “Load Balancing, Failover, and Component Availability,” in
the EAServer System Administration Guide.

What is a Web application?
A Web application is a unit of deployment for interrelated Web content,
JavaServer Pages (JSPs), and Java servlets. The Web application contains
static files, servlet and JSP implementation classes, and a deployment
descriptor that describes how the files, servlets, and JSPs are configured
on the host server. The deployment descriptor also allows you to configure
application-specific HTTP properties, such as MIME types and per-file
security constraints. To tie it all together, a Web application provides an
abstract naming convention for the JNDI names of database connections
and EJBs.

Topic Page
What is a Web application? 375

Contents of a Web application 376

Creating Web applications 379

Configuring Web application properties 380

The EASDefault Web application 397

Using Java extensions 398

Localizing Web applications 401

Contents of a Web application

376 EAServer

A Web application represents a subset of the files available on a Web server.
Each Web application has a root request path that forms a prefix for URLs
that access the JSPs, servlets, and static pages. For example,
http://myhost/Finance. Each Web application also has a context root, which is
a directory in the server’s file system where the Web application’s files are
deployed. In EAServer, the context root for Web application wapp is this
directory in your EAServer installation:

$JAGUAR/Repository/WebApplication/wapp

Contents of a Web application
Web applications contain the following components.

Servlet files
Servlets are Java classes that create HTML pages with dynamic content and
respond to requests from client applications that are implemented as HTML
forms. Servlets also allow you to execute business logic from a Web browser
or any other client application that connects using the Hypertext Transfer
Protocol (HTTP). For more information on creating servlets, see Chapter 22,
“Creating Java Servlets.”

Web clients invoke your Web application’s servlets by prepending the Web
application’s root request path to an alias that is mapped to the servlet. For
example, the following URL invokes a servlet mapped to the alias “Account”
in the application with root request path “Finance”:

http://myhost/Finance/Account?type=add

JSP files and tag libraries
JavaServer Pages (JSP) allow you to embed snippets of Java code into HTML
pages to create dynamic content. JSP tag libraries allow you to extend the
standard HTML markup tags with custom tags backed by Java classes. See
Chapter 24, “Creating JavaServer Pages,” for more information on creating
JSPs.

CHAPTER 21 Creating Web Applications

Programmer’s Guide 377

Static files
Files that provide static content for the site can be included in the Web site,
including HTML, images, sounds, and so forth. You can also include Java
applet files. You can configure the application’s deployment descriptor to
specify security constraints for static files and any unique MIME types
required by your content.

Static files must be deployed to the following subdirectory in your EAServer
installation directory:

Repository/WebApplication/web-app

Where web-app is the name of the Web application. You can include
subdirectories, which are reflected in your application’s URL namespace.

If you import a Web archive (WAR) file, the importer expands the application’s
static files to this location.

Java classes
A Web application’s Java classes include the implementation class for each
servlet and JSP, and any server-side utility classes used by the servlets and
JSPs.

EAServer uses a custom class loader to run a Web application’s servlets and
classes referenced by servlet and JSP code. This feature allows hot refresh of
servlets and JSPs. The custom class loader also allows each Web application to
run with its own effective Java class path. To work with the custom loader and
support hot refresh, you must deploy your Web application classes as described
below.

Class and JAR file locations

You can deploy class files in the following locations, where app_name is the
name of the Web application:

• Repository/WebApplication/app_name/WEB-INF/classes – for class files
used by servlets and JSPs in the Web application.

• Repository/WebApplication/app_name/WEB-INF/lib – for classes
contained in JAR files. All JAR files in this directory are automatically
part of the Web application’s effective class path.

Contents of a Web application

378 EAServer

Your Web application may use classes or JAR files that are used by Java or EJB
clients and components. These files can be deployed in the EAServer
java/classes or html/classes subdirectories. Classes and JAR files loaded from
these locations cannot be refreshed unless added to the custom class list for the
servlet or Web application. “Custom class lists for Web applications” on page
555 describes how to extend the custom class list for servlets and Web
applications. You can also load JAR files from the EAServer extensions
directory, as described in “Using Java extensions” on page 398.

Which classes are loaded by the custom loader?

In order to allow hot refresh, class references in your servlet and JSP code must
be resolved by EAServer’s custom class loader. Class instances loaded by the
system class loader cannot be refreshed. Class instances loaded by the custom
class loader cannot be assigned to references loaded by the system class loader,
or vice-versa.

Most all references will be resolved by the custom loader. The exceptions are
references made with class loader calls with an explicit reference to the system
class loader or another custom class loader. The following class references are
all resolved by the custom class loader when they occur in servlet code:

• Classes referenced by import statements and declarations.

• Classes loaded dynamically using Class.forName(String). For example:

obj = Class.forName("com.foo.MyClass");

• Classes loaded by explicitly calling the java.lang.ClassLoader associated
with the servlet instance, which can be retrieved with this code (this refers
to the servlet instance):

ClassLoader loader = this.getClassLoader();

Code that uses the system class loader should be rewritten to use the servlet
class loader when possible. The system class loader cannot load classes from
the Web application WEB-INF/classes or WEB-INF/lib directories unless you
add these locations to the server BOOTCLASSPATH and CLASSPATH
environment variables. Classes loaded by the system class loader cannot be
refreshed while the server is running.

CHAPTER 21 Creating Web Applications

Programmer’s Guide 379

Deployment descriptor
The application’s deployment descriptor catalogs the servlets, JSPs, and files
contained in the application, as well as the properties of each. The descriptor
must be formatted in XML, using the DTD specified in the Java Servlet
Specification Version 2.3. You can create a descriptor using EAServer Manager
or another J2EE-compliant development tool.

EAServer maintains the deployment descriptor in two formats, the EAServer
repository format, using property files, and in XML, using the standard DTD
required for compatibility with the Java Servlet Specification. When you
import a Web application from a WAR file, the XML descriptor is converted to
repository format. Changes made in EAServer Manager are saved in the
Repository format, and the XML descriptor is updated when the server is next
refreshed or restarted.

Creating Web applications
You can create Web applications in EAServer Manager or any J2EE-compliant
development tool that produces standard Web archive (WAR) files.

Using EAServer Manager, you can create a Web application that contains
existing static files, servlets, and JSPs, and specifies the properties necessary
for them to work together. If you are using another development tool, you can
import the WAR file into EAServer Manager as described in Chapter 9,
“Importing and Exporting Application Components,” in the EAServer System
Administration Guide.

If you use PowerBuilder, you can create JSPs and deploy them to EAServer in
a WAR file. See the PowerBuilder Working with Web and JSP Targets manual
for more information.

❖ Creating a Web application in EAServer Manager

1 Highlight the Web Applications folder and choose File | New Web
Application. Enter a name for the application.

2 If necessary, create the servlets and JSPs that your application requires.
For more information, see:

• Chapter 22, “Creating Java Servlets”

• Chapter 24, “Creating JavaServer Pages”

Configuring Web application properties

380 EAServer

3 Configure the deployment descriptor. See “Configuring Web application
properties” on page 380.

Configuring Web application properties
You can configure a Web application’s properties in EAServer Manager. If you
have created a Web archive (WAR) file using another tool and imported it into
EAServer, most properties are automatically set during the import process.

❖ Displaying the Web Application Properties dialog box

The procedures in this section require you to start with the Web Application
Properties dialog box open. Display it as follows:

1 Expand the Web Applications folder, then highlight the icon that
represents your application.

2 Choose File | Web Application Properties.

General properties
General properties are as follows:

• Description An optional text description of the Web application.

• Distributable Specifies whether multiple instances of the Web
application can run in a distributed server environment on different
servers. If you do not select this option and run the Web application in an
EAServer cluster, all requests for the Web application must go to one
server in the cluster. Further configuration is required for distributed Web
applications, as described in “Deploying Web applications to a cluster” in
the EAServer System Administration Guide.

• Timeout This option specifies how long the server should wait for each
servlet’s init method to return. For any value, no client requests are
serviced while the init method is running. Service requests that arrive while
init is running are blocked until init returns. Clients receive browser timeout
errors when attempting to execute the servlet while init is running. You can
set the Timeout value to control how the server treats servlets if the init
method is still running when you shut down the server or refresh the
servlet. Table 21-1 describes the possible values.

CHAPTER 21 Creating Web Applications

Programmer’s Guide 381

Table 21-1: Initialization timeout values

You can override the application-wide default for individual servlets.
Display the Advanced tab in the Servlet Properties window, then set the
com.sybase.jaguar.servlet.init.timeout property using the syntax in Table
21-1.

• Destroy Timeout EAServer calls each servlet’s destroy method before
shutting down or after you have refreshed or stopped the servlet using
EAServer Manager. If service calls are still active, the Destroy Timeout
setting specifies the number of seconds that the server should wait for the
service calls to return before calling the destroy method. The default is 0,
which specifies that EAServer calls destroy immediately.

You can override the application-wide default for individual servlets.
Display the Advanced tab in the Servlet Properties window, then set the
com.sybase.jaguar.servlet.destroy.wait-time property to the desired
number of seconds.

• Session Timeout This option specifies an application-wide default for
the servlet Session Timeout property. Session timeouts are specified in
minutes; the default is 30. A value of -1 indicates that sessions never
expire. You cannot override the session timeout for individual servlets.

• Context Path The request-path prefix that clients use in URLs to access
your Web application’s static content, servlets, and JSPs. For example, if
you enter “estore,” users access your Web application with the prefix:

http://host:port/estore/

The default context path is the name of your Web application.

Value To indicate

-1 (The default.) init can run indefinitely, unless the server is
shutdown or refreshed. If the init method is still running
when the server is shutdown or refreshed, the server does
not wait for init to complete before shutting down or
refreshing the servlet.

0 init can run indefinitely. Sybase does not recommend this
setting, because deadlocks or other hangs in the init method
can cause the server to hang when shutting down or
refreshing the servlet.

A positive
integer.

The number of seconds to wait for init to return. If the init
method is still running when the server is shutdown or
refreshed, the server waits the specified time for init to
return.

Configuring Web application properties

382 EAServer

• Client Session Persistent This property determines whether the
cookies used to store servlet and JSP session data is stored in persistent or
temporary cookies. By default, session data is stored in temporary cookies
that expire when the browser is shut down. When you select this option,
EAServer sends a persistent cookie that expires when the Web application
session-timeout setting expires. This property affects only the cookies that
EAServer creates to store session data for the Web application (available
to servlets and JSPs via request.getSession). It does not affect cookies
created explicitly by servlets and JSPs.

Context initialization properties
All servlets and JSPs in a Web application share a common set of context
initialization properties specified by the deployment descriptor. Servlet code
can retrieve the values by calling the getInitParamers() and
getInitParameterNames() methods in interface javax.Servlet.ServletContext.

Environment properties can be used for the same purpose as context-
initialization properties, and allow additional datatypes besides
java.lang.String. See “Environment properties” on page 391 for more
information.

❖ Configuring context initialization properties

1 Display the Context Params tab in the Web Application Properties dialog
box.

2 A list of properties and values appears. You can create, modify, and delete
properties as follows:

• To define a new property, click Add. Edit the Name and Value fields
in the new row. You can optionally enter text in the Description field
to describe the intended use.

• To modify a property, put the cursor in the Name or Value fields, then
edit the text.

• To delete a property, put the cursor in the Name or Value fields and
click Delete.

CHAPTER 21 Creating Web Applications

Programmer’s Guide 383

Welcome and error page specifications
You can customize the list of welcome files and error-response files in your
application. These settings take effect when Web clients are browsing in your
Web application’s subset of the server’s URL namespace.

Welcome files

Welcome files are used to satisfy HTTP requests that end in a directory name,
rather than specifying the full path to a file or a path that is mapped to a servlet
invocation. For each request that maps to a directory, the server searches the
directory for files that occur in the Web application’s list of welcome files, in
the listed order. For example, if the welcome-file list is “index.html, index.htm,
welcome.jsp”, the server looks for index.html, then index.htm, then
welcome.jsp. If the server finds a static file on the welcome-file list, the server
returns its content. If a JSP on the welcome-file list exists, the server invokes
the JSP. If no match exists in the directory, the server returns an HTTP 404 (file
not found) error, because EAServer does not support directory listings.

❖ Adding a welcome file

1 Display the File Refs tab in the Web Application Properties dialog box.

2 Click Add. A new row appears in the list of welcome files.

3 Place the cursor in the new row, and enter the name of the welcome file.
Welcome files are plain files, without path information. You can prepend
a directory separator (/), which will be ignored. For example, /index.html
is the same as index.html.

❖ Deleting a welcome file

1 Display the File Refs tab in the Web Application Properties dialog box.
The welcome-file list displays.

2 Place the cursor in the row to be deleted, then click Delete.

Error pages

Error pages allow you to customize the response that the server sends to Web
clients when an error occurs. You can specify HTML files to send in response
to HTTP error codes and to Java exceptions thrown in JSPs or servlets. You can
also define error pages at the server level. If your Web application does not
specify an error page, EAServer invokes the corresponding server-level error
page.

Configuring Web application properties

384 EAServer

When an exception is thrown, the servlet engine will search the error page
mappings for the exception and its super classes. For example, assume
AException extends BException and BException extends CException and
CException extends java.lang.Exception. When AException is thrown, EAServer
checks if AException is mapped. If not, EAServer checks if BException is
mapped, and so forth.

❖ Adding an error page

1 Display the File Refs tab in the Web Application Properties dialog box.

2 Under Error Mapping, click Add. A new row is added to the mapping table
with default settings.

3 Place the cursor in the Error/Exception cell, and type the HTTP error
number or Java exception class name.

4 Place the cursor in the URL cell, and type the path to the file relative to the
Web application’s context root. For example, /etc/error404.html.

5 Verify that the file exists in your EAServer installation directory and can
be read by the server process. For example, the path
/etc/error404.html corresponds to this file in your EAServer
installation directory, where web_app is the name of the Web application:

Repository/WebApplication/web_app/etc/error404.html

To set up server-level error pages, see com.sybase.jaguar.server.servlet.error-
page on page 553, in the EAServer System Administration Guide.

Tag library descriptor references
JSPs can use tag libraries to serve content formatted with custom tags. The tag
library is a Java class with methods to parse content that is tagged with custom
tags and output formatted content to be returned in the response stream. Each
tag library must have a Type Library Descriptor (TLD) file that describes the
available tags and specifies the corresponding Java classes and methods.

JSPs use a type library by specifying the location of the TLD file as a URL. In
your Web application, you can specify a mapping so that TLD URLs in JSPs
map to a local URL. For example, you may refer to a tag library as follows in
a JSP:

<%@ taglib uri="/example.tld" prefix="ex" %>

This path can be mapped to another location, such as:

CHAPTER 21 Creating Web Applications

Programmer’s Guide 385

/WEB-INF/tlds/PRlibrary_1_4.tld

You do not have to map TLD URLs in the Web application. If there is no
mapping that matches a TLD URL, EAServer loads the file at the URL
specified in the JSP and raises an error if the file does not exist.

Mapping TLD URLs provides several benefits such as:

• You can keep TLD files together in a common location.

• You can avoid multiple copies of a TLD when JSPs use different paths to
refer to the same type library.

• You can code JSPs with simple paths, such as tlds/example.tld, while the
actual TLD is stored in a versioned directory tree. For example, you can
alias tlds/example.tld to WEB-INF/tlds/example/v1.6/example.tld. This
mapping allows you to easily test new versions and roll back to previous
versions if a problem occurs.

In an XML deployment descriptor, TLD URL mappings are specified by taglib
elements.

Tag library classes A Web application’s tag library classes must be
deployed in the WEB-INF/lib or WEB-INF/classes directories, with the other
Java classes required by your Web application. See “Java classes” on page 377
for more information.

❖ Configuring TLD mappings in EAServer Manager

1 Display the Advanced tab in the Web Application Properties dialog box.

2 If necessary, add an entry for the property
com.sybase.jaguar.webapplication.taglib. Otherwise, modify the
existing value for this property.

3 In the property value, specify each mapping as follows:

(taglib-uri=alias, taglib-location=real-path)

Where alias is the path used in JSP source code, and real-path is the TLD
file’s location relative to the Web application’s context root.

If multiple mappings are required, separate each by a comma. For example
(the following must be entered without line breaks or carriage returns):

(taglib-uri=taglib.tld, taglib-location=TLD/abctaglib.tld),
(taglib-uri=lib2.tld,taglib-location=TLD/lib2v2.tld)

Configuring Web application properties

386 EAServer

Naming references
Web applications allow you to use logical names for JNDI lookups in your
servlet and JSP code. Logical names allow your application to run in
environments where the JNDI name space does not match the names hard
coded in your application. When deploying an application, you can map the
logical names to actual names that match the server’s configuration.

When developing an application, you must use JNDI to obtain database
connections, mail sessions, and EJB proxies. You must catalog the JNDI names
used by your code in the application’s deployment descriptor.

All logical JNDI names used in your application must be prefixed with
java:comp/env. The J2EE specification requires the following hierarchy, based
on resource type:

• java:comp/env/ejb for EJB references

• java:comp/env/jdbc for JDBC javax.sql.DataSource references

• java:comp/env/mail for JavaMail session references

• java:com/env/url for java.net.URL references

• java:com/env/jms for javax.jms references

EJB references

Servlets and JSPs use EJB references to instantiate proxies for EJB home
interfaces. See Chapter 8, “Creating Enterprise JavaBeans Clients,” for more
information. EJB references must be cataloged in the deployment descriptor so
that the Web application can run independent of a specific naming
configuration. When deploying the Web application, a site administrator can
specify site-specific EJB JNDI names.

Servlets and JSPs can look up an EJB by specifying the reference name
prefixed with java:comp/env/. For example, if you enter ejb/catalog in
EAServer Manager, use java:comp/env/ejb/catalog in your JSP or servlet
source code.

To add or configure an EJB reference, open the Web Application Properties
dialog box.

Note The EJB References tab configuration is the same for Web applications,
application clients, and EJB components.

CHAPTER 21 Creating Web Applications

Programmer’s Guide 387

❖ Adding an EJB reference

1 Display the EJB References tab.

2 Click Add. A reference with default settings is created. Edit the settings as
described below.

❖ Editing an EJB reference

1 If necessary, display the EJB References tab. Existing references are
displayed as a list with one row for each reference.

2 Edit the reference fields of interest as follows:

• Name Specifies the JNDI name used in your code to refer to the
called EJB. The aliased name is displayed in the Link Value field.
Enter the part of the JNDI name that begins with ejb/. For example,
if your code refers to java:comp/env/ejb/MyBean, enter ejb/MyBean.

• Type Choose Session for session Beans or Entity for entity Beans.

• Home The Java class name of the EJB home interface, specified in
dot notation. For example, com.sybase.MyBeanHome.

• Remote The Java class name of the EJB remote interface, specified
in dot notation. For example, com.sybase.MyBeanRemote.

• Link Value The actual JNDI name EJB component that is installed
in the server where your component, Web application, or application
client is to be deployed. This must match the JNDI name property in
the Component Properties of the called EJB component.

For invocations of components on remote servers, you can also
specify a corbaname interoperable naming URL, as described in
“Interoperable naming URLs” on page 161.

3 To delete a reference, click anywhere in the fields for the reference of
interest and click Delete.

EJB local references

To access an EJB’s local interface, define an EJB local reference. Local
interfaces are available only to EJB components, Java servlets, and JSPs hosted
on the same server as the target component.

❖ Adding an EJB local reference

1 Display the EJB Local References tab.

Configuring Web application properties

388 EAServer

2 Click Add. A reference with default settings is created. Edit the settings as
described below.

❖ Editing an EJB local reference

1 If necessary, display the EJB Local References tab. Existing references are
displayed as a list with one row for each reference.

2 Edit the reference fields of interest as follows:

• Name Specifies the JNDI name used in your code to refer to the
called EJB. The aliased name is displayed in the Link Value field.
Enter the part of the JNDI name that begins with ejb/. For example,
if your code refers to java:comp/env/ejb/MyBean, enter
ejb/MyBeanLocal.

• Type Choose Session for session Beans or Entity for entity Beans.

• Home The Java class name of the EJB local home interface,
specified in dot notation. For example,
com.sybase.MyBeanLocalHome.

• Local The Java class name of the EJB local interface, specified in
dot notation. For example, com.sybase.MyBeanLocal.

• Link Value The actual JNDI name of the EJB component that is
installed in the server where your component or Web application is to
be deployed. This is specified by the JNDI Name property in the
Component Properties of the called EJB component.

3 To delete a reference, click anywhere in the fields for the reference of
interest and click Delete.

Resource references

Resource references are used to obtain connector and database connections,
and to access JMS connection factories, JavaMail sessions, and URL links.

To add or configure a resource reference, open the Web Application Properties
dialog box.

Note The Resource References tab configuration is the same for Web
applications, application clients, and EJB components.

❖ Adding a resource reference

1 Display the Resource References tab.

CHAPTER 21 Creating Web Applications

Programmer’s Guide 389

2 Click Add. A reference with default settings is created. Edit the settings as
described below.

❖ Editing a resource reference

1 If necessary, display the Resource References tab. Existing references are
displayed as a list with one row for each reference.

2 Edit the reference fields of interest as follows:

• Name The partial JNDI name used in servlet and JSP code. Use the
prefix mail/ for JavaMail references, jdbc/ for data source references,
url/ for java.net.URL references, and jms/ for javax.jms references.
For example, if your code refers to java:comp/env/jdbc/MyDatabase,
enter jdbc/MyDatabase.

• Type Choose the type of resource:

• javax.sql.DataSource for JDBC connections. See “JDBC
DataSource lookup” on page 481 for more information.

• java.mail.Session for JavaMail sessions. See Chapter 35,
“Creating JavaMail,” for more information.

• java.net.url for aliased URLs.

• javax.jms.QueueConnectionFactory for JMS queue connection
factories. See “Looking up a ConnectionFactory object” on page
568 for more information.

• javax.jms.TopicConnectionFactory for JMS topic connection
factories. See “Looking up a ConnectionFactory object” on page
568 for more information.

• Sharing Scope Choose Sharable or Unsharable. By default,
connections to a resource manager are sharable across EJBs in an
application that use the same resource in the same transaction context.

Note This is available only to Web applications and EJB components.

• Authentication Select the source of the authentication credentials:

• Application – use the credentials configured for the connection
cache.

• Container – use the credentials of the caller who logged in to
EAServer and created the component instance.

• Resource Link Specify the resource link for the resource type:

Configuring Web application properties

390 EAServer

• javax.sql.DataSource – select the name of the EAServer
connection cache or connector to be used for this resource.

• java.mail.Session – specify the SMTP mail server for outgoing
mail.

• java.net.url – enter the URL string, as it would be used to
construct a java.net.URL instance by calling the
URL(java.lang.String) constructor. URLs must contain a protocol
and host address, for example: http://www.sybase.com or
ftp://pub.sybase.com.

• javax.jms.QueueConnectionFactory – select the name of the queue
connection factory.

• javax.jms.TopicConnectionFactory – select the name of the topic
connection factory.

3 To delete a resource reference, click anywhere in the fields for the resource
reference of interest and click Delete.

Resource environment references

Resource environment references are logical names applied to objects
administered by EAServer, which can be accessed by Web applications,
application clients, and EJB components.

To add or configure a resource environment reference, open the Web
Application Properties dialog box.

Note The Resource Environment References tab configuration is the same for
Web applications, application clients, and EJB components.

❖ Adding a resource environment reference

1 Display the Resource Environment References tab.

2 Click Add. A reference with default settings is created. Edit the settings as
described below.

❖ Editing a resource environment reference

1 If necessary, display the Resource Environment References tab. Existing
references are displayed as a list with one row for each reference.

2 Edit the reference fields of interest as follows:

CHAPTER 21 Creating Web Applications

Programmer’s Guide 391

• Name The partial JNDI name used in servlet and JSP code. Use the
prefix jms/ for JMS reference. For example, if your code refers to
java:comp/env/jms/MyQueue, enter jms/MyQueue.

• Type Choose the type of resource:

• javax.jms.Queue for JMS message queues.

• java.jms.Topic for JMS message topics.

• Link Value If the resource type is javax.jms.Queue, enter the name
of a configured queue; if the resource type is javax.jms.Topic, enter the
name of a configured topic.

3 To delete a resource environment reference, click anywhere in the fields
for the reference of interest and click Delete.

Environment properties

Environment properties allow you to specify global read-only data for use by
servlets and JSPs in the Web application.

Servlets and JSPs must use JNDI to retrieve environment properties, using the
prefix java:comp/env in JNDI lookups. Unlike context initialization
properties, environment properties can have datatypes other than
java.lang.String.

The deployment descriptor catalogs the environment properties used by your
servlets and JSPs, as well as each property’s Java datatype and default value.
Deployers can tailor the values to match a server’s configuration. For example,
you may have environment properties to specify the name of a logging file, or
to tune cache usage.

To add or configure an environment property, open the Web Application
Properties dialog box.

Note The Environment tab configuration is the same for Web applications,
application clients, and EJB components.

❖ Adding an environment property

1 Display the Environment tab.

2 Click Add. EAServer Manager creates a new entry with default settings.
Edit the settings as described below:

Configuring Web application properties

392 EAServer

❖ Editing an environment property

1 If necessary, display the Environment tab. A list of environment properties
appears.

2 Edit the fields for the property of interest:

• Entry The environment property’s JNDI name, relative to the
java:comp/env prefix.

• Type Choose the Java datatype that matches the property value from
the dropdown list.

• Value The initial or post-deployment value of the property,
specified as text in a format that is valid for the specified datatype.

• Description Optionally enter a comment to explain how the
property is used.

Request path mappings
Your application’s deployment descriptor must specify the request path
mappings for the application’s servlets and JSPs. You can map full paths,
partial paths, or file extensions to servlets. Path mappings are specified relative
to the application’s root request path.

To map request paths to a JSP, the JSP must be defined in EAServer Manager
as a Web component. See Chapter 24, “Creating JavaServer Pages,” for more
information.

EAServer uses the precedence rules defined in the Servlet 2.3 specification to
evaluate each URL:

1 EAServer checks whether a mapping uses the exact path.

2 EAServer checks whether a directory in the path is mapped to a servlet,
starting at the most deeply nested directory in the path, and working back
using the forward-slash character (/) as a separator. For example, if the
application’s root request path is MyApp and the URL path is
MyApp/Accounts/Manage/add.jsp, EAServer checks for servlets mapped
to /Accounts/Manage, then /Accounts.

3 If the last node in the path contains an extension, EAServer checks for a
servlet mapped to that file extension. A file extension is defined as the part
of the URL that follows a ‘.’ occurring after the last ‘/’ in the URL. For
example, in the path MyApp/Accounts/Manage/add.calc, the extension is
calc.

CHAPTER 21 Creating Web Applications

Programmer’s Guide 393

4 If neither of the previous two rules results in a match, EAServer invokes
the application’s default servlet if defined. The default servlet is mapped
to the path /. If no default servlet is defined, EAServer looks for a static
file matching the path.

Implicit JSP mapping The jsp extension is implicitly mapped to invoke
EAServer’s JSP engine. You can override this mapping in the explicit
mappings for your Web application by mapping *.jsp to a servlet or JSP.
However, if you do so, there is no way to invoke the EAServer JSP engine to
compile and run arbitrary JSP files. Explicit *.jsp mappings are not
recommended.

❖ Adding a request path mapping

1 Display the Servlet Mapping tab in the Web Application Properties dialog
box.

2 Click Add. A new mapping appears with default settings. Edit the settings
as described below.

❖ Editing a request path mapping

1 If necessary, display the Servlet Name tab in the Web Application
Properties dialog box. A list of mappings appears, formatted as a table.
You can edit any mapping by editing the text directly within the table cells.

2 Edit the servlet name and mapped path, using the following rules to format
the path specification:

• All mappings are relative to the Web application’s root request
directory.

• To map a directory, enter a path that ends in a ‘*’, for example /foo/*
or /foo/stuff/*.

• To map an extension, enter *.ext, where ext is the extension.

• To specify a default servlet for the application, enter the path as a
single forward slash (/).

• To specify an exact match, enter the full path relative to the Web
application’s root request directory.

Configuring Web application properties

394 EAServer

MIME mappings
A file’s MIME type specifies how a server or browser should interpret the file.
For example, whether the file contains plain text, formatted HTML, an image,
or a sound recording. In a Web server, MIME mappings specify how a static
file should be interpreted by mapping file extensions to MIME types. MIME
mappings affect only static files. Servlets and JSPs must be coded to specify a
MIME type for their response.

For more information on MIME types, visit:

http://www.oac.uci.edu/indiv/ehood/MIME/MIME.html

EAServer includes preconfigured MIME mappings that you can customize
using your Web application’s properties. Web application MIME mappings
override EAServer’s preconfigured mappings.

❖ Adding a MIME mapping

1 Display the MIME Mapping tab in the Web Application Properties dialog
box.

2 Click Add.

❖ Editing a MIME mapping

1 If necessary, display the MIME Mapping tab in the Web Application
Properties dialog box. The configured mappings display.

2 Edit the fields as appropriate:

• Extension The file extension for files of this type.

• MIME Type The MIME specification, for example, text/plain or
text/sgml.

JAXP properties
Configures the default JAXP, DOM, and XSLT parser implementations used
by the Web application. See Chapter 36, “Configuring Java XML Parser
Support,” for more information on these properties.

CHAPTER 21 Creating Web Applications

Programmer’s Guide 395

Java Classes properties
The Java Classes tab allows you to add classes and JAR files to the Web
application’s custom class list. The custom class list specifies which Java
classes must be reloaded when the Web application is refreshed. Chapter 30,
“Configuring Custom Java Class Lists,” describes how to configure this
setting.

Extensions properties
The Extensions tab in the Web Application properties dialog box configures
dependencies on Java extensions. These settings provide a mechanism to
formally declare the Java extensions required by the Web application, and to
verify that required extensions are available in EAServer. “Using Java
extensions” on page 398 describes these settings in detail.

Additional files
The Additional Files tab in the Web Application properties dialog box
configures the com.sybase.jaguar.webapplication.files property,
which specifies additional files that are to be archived when the Web
application is exported or replicated to another server with the synchronize
feature. By default, the file set includes the Web application’s context root
directory and its contents.

The rules for setting this property are the same as for the
com.sybase.jaguar.component.files component property. See “Component
properties: Additional Files” on page 70 for more information.

Security properties
Configures user authentication for the Web application and allows you to
configure authorized access to URLs served by the Web application. Chapter
3, “Using Web Application Security,” in the EAServer Security Administration
and Programming Guide describes how to configure these properties.

Configuring Web application properties

396 EAServer

Page Caching properties
You can use dynamic page caching to improve the response time for servlets
and JSPs in your Web application. The properties on this tab allow you to
configure default caching options for Web components that have caching
enabled. For more information, see “Dynamic page caching” in Chapter 5,
“Web Application Tuning,” in the EAServer Performance and Tuning Guide.

Listener properties
EAServer’s implementation of application lifecycle events enables you to
register event listeners that can respond to state changes in a Web application’s
ServletContext and HttpSession objects. See “Application lifecycle event
listeners” on page 431 for more information.

❖ Adding a listener

1 Display the Listeners tab in the Web Application Properties dialog box.

2 Click Add. This adds a new row to the list of Listeners.

3 Enter the listener class name.

4 To modify the order in which EAServer notifies the listeners, highlight a
listener name and click Move Up or Move Down until it is positioned
correctly.

Filter Mapping properties
A filter is a Java class that is called to process client requests or the server’s
response. Filters can be used to modify the request header or the content of a
servlet request or response. Chapter 23, “Using Filters and Event Listeners,”
describes how to create filters.

Filters can be mapped to a URL or a servlet name. When a filter is mapped to
a URL (path-mapped), the filter applies to every servlet and JSP in the Web
application. When a filter is mapped to a servlet name (servlet-mapped), it
applies to a single servlet or JSP. The path-mapped filters are executed first,
followed by the servlet-mapped filters.

❖ Mapping a filter

1 Display the Filter Mapping tab in the Web Application Properties dialog
box.

CHAPTER 21 Creating Web Applications

Programmer’s Guide 397

2 Click Add. This adds a new row to the Filter Mapping list.

3 Enter the filter properties:

• Filter – logical name for the filter.

• Target – servlet class name or the URL string.

• Target Type – choose either Servlet Name or URL Pattern.

• Description – brief description of the filter’s purpose.

The EASDefault Web application
Beginning with EAServer 5.1, all Web pages that are not part of a Web
application are implicitly assigned to the EASDefault Web application. You
can configure the properties for EASDefault the same as you do for other Web
applications—see “Configuring Web application properties” on page 380.

Initially, the context path for EASDefault is “/”, and the WEB-INF directory is
created under $JAGUAR/html. You can change the context path by setting the
com.sybase.jaguar.webapplication.context-path property on the Advanced tab of
the Server Properties dialog box. For more information, see
com.sybase.jaguar.webapplication.context-path in Appendix B, “Repository
Properties Reference,” in the EAServer System Administration Guide.

Note You can change the context path of any Web application to “/”, but if
another Web application uses “/” as its context path, you must change the
EASDefault context path to something else.

When users access http://host:port/, EAServer invokes the welcome page of
the Web application whose context path is “/”. Because the EASDefault
welcome page is index.html and the context path is “/”, EAServer invokes
$JAGUAR/html/index.html. To change this behavior, you can either:

• Change the EASDefault welcome page, or

• Change another Web application’s context path to “/” to display its
welcome page.

Using Java extensions

398 EAServer

If a Web application is specified by the
com.sybase.jaguar.server.http.defaultwebapp property when you upgrade to
EAServer 5.1, EAServer sets this Web application’s context path to “/” and
changes the EASDefault context path to “/EASDefault.” The
com.sybase.jaguar.server.http.defaultwebapp property is supported for
backward compatibility, but it is read only once, the first time you log in to
EAServer 5.1. If you change the value of this property after you log in to
EAServer 5.1, the change has no effect.

Standalone servlets are part of the EASDefault context, but must be specified
by the com.sybase.jaguar.server.servlets property to be accessible in this
context. The value of com.sybase.jaguar.server.servlets must be a comma-
separated list of servlet names that are defined in the repository.

Using Java extensions
In Java, an extension is a formally described set of related classes that extends
the functionality offered by the base Java platform or by a J2EE application
server. Extensions are packaged as Java JAR files, and include additional
information in the JAR file’s manifest.mf file to describe the extensions
characteristics, such as:

• The vendor, name, and version for the specification that is implemented by
the package (for example, Sun Microsystems JavaHelp 1.3)

• The vendor, name, and version for the implementation of the specification.

For more information on Java extensions, see the the Java documentation at
http://java.sun.com/j2se/1.3/docs/guide/extensions/index.html.

In accord with the Servlet 2.3 specification, EAServer allows you to install
extensions and define the extensions required by a Web application. If you
import a Web application (in WAR format) that requires extensions that are not
installed, EAServer Manager warns you of the unfulfilled dependencies.

CHAPTER 21 Creating Web Applications

Programmer’s Guide 399

Installing extensions in EAServer
In your EAServer installation, installed Java extensions are stored in the
extensions subdirectory. All Web applications in one EAServer installation
have access to the same set of installed Java extensions. In EAServer Manager,
you can manage Java extensions from the top-level Web Applications or from
the Installed Web Applications folders for any application or server.

❖ Viewing installed extensions in EAServer Manager

1 Highlight the top-level Web Applications folder, or the Installed Web
Applications folder in your application or server.

2 Choose File | View Installed Extensions

3 EAServer Manager displays the list of installed extensions. “EAServer
Java extension properties” on page 400 describes the fields.

❖ Installing a new extension using EAServer Manager

1 Make sure the extension JAR file is accessible on the machine where you
are running EAServer Manager

2 Follow the steps in “Viewing installed extensions in EAServer Manager”
on page 399 to display the Installed Extensions dialog box.

3 Click Add, then specify the full path to the extension JAR file.

4 EAServer Manager verifies that the extension’s manifest.mf file is
formatted correctly, and if so, copies the extension JAR file to the
EAServer extensions subdirectory.

Defining required extensions for Web applications
You can define the extensions required by your Web applications in EAServer
Manager or in the manifest.mf file bundled within a Web application archive
(WAR) file. Doing so increases the portability of the Web application among
J2EE servers from different vendors. When a server imports a WAR file that
specifies required extensions, it checks that the required extensions are
available.

Defining required extensions in EAServer Manager

Follow this procedure if you are defining or modifying a Web application in
EAServer Manager. When you export the Web application in WAR format,
EAServer Manager includes the dependency information.

Using Java extensions

400 EAServer

❖ Defining required extensions in EAServer Manager

1 Display the Web Application properties dialog box.

2 Display the Extensions tab.

3 Click Add to create a new extension in the list, then edit the fields
described in Table 21-2 on page 400.

EAServer Java extension properties

Table 21-2 describes the fields in EAServer Manager’s Installed Extensions
dialog box and the corresponding entries in the manifest.mf file within an
extension JAR file.

Table 21-2: Java Extension Properties

Defining required extensions in the WAR manifest file

If you are creating Web applications outside of EAServer Manager, you must
specify required Java extensions by adding entries to the manifest file within
the WAR (path META-INF/MANIFEST.mf). If you are using a Java
development tool that supports the Servlet 2.3 specification, your tool most
likely provides graphical support for specifying dependencies. See your tool’s
documentation for details.

EAServer Manager field Manifest entry Description

Extension Name Extension-Name The extension name.

Specification Version Specification-

Version

The version number of the specification
that the extension conforms to.

Specification Vendor Specification-Vendor The company or organization responsible
for the specification that the extension
conforms to.

Implementation Version Implementation-

Version

The implementation version number.

Implementation Vendor Implementation-

Vendor

The company or organization responsible
for the implementation.

Implementation Vendor ID Implementation-

Vendor-ID

A unique identifier for the company or
organization responsible for the
implementation. Usually follows the
reverse-domain naming convention used
in Java packages, for example,
“com.sybase.”

Implementation URL Implementation-URL A Web URL to obtain information on the
implementation.

CHAPTER 21 Creating Web Applications

Programmer’s Guide 401

WAR manifest format

The Extension-List manifest entry lists the names of required extensions.
This entry has the form:

Extension-List: ext1 ext2 ext3 ...

Where ext1, ext2, ext3, and so forth are the names of the required extensions.
For each name, you must specify additional entries from the Manifest entry
column of Table 21-2 on page 400, prefixed with the name and a hyphen. For
example, if the name is javahelp, you must specify a
javahelp-Extension-Name entry as well as the other manifest entries from
Table 21-2. You may specify additional entries not in Table 21-2, but these are
ignored by EAServer.

Example

The following example shows a section of a WAR manifest that requires two
extensions, javahelp and java3d:

Extension-List: javahelp java3d
javahelp-Extension-Name: javax.help
javahelp-Specification-Version: 1.0
javahelp-Implementation-Version: 1.0.3
javahelp-Implementation-Vendor-Id: com.sun
java3d-Extension-Name: javax.3d
java3d-Specification-Version: 1.0
java3d-Implementation-Version: 1.2.1
java3d-Implementation-Vendor-Id: com.sun

Localizing Web applications
EAServer supports the HTTP 1.1 internationalization features defined in the
Java Servlet 2.3 specification. Using these features, you can develop servlets
that respond in the language specified by the request header, or configure
localized versions of Web site’s static pages.

For complete information about HTTP 1.1 internationalization, refer to the
Java Servlet 2.3 specification and the HTTP 1.1 specification.

Localizing Web applications

402 EAServer

Enabling accept-language header parsing
HTTP 1.1 supports internationalization via an accept-language header that can
be included in requests. The accept-language headers describe the languages
the client accepts. For example, if documents are stored on the server in
Japanese and English, clients that use Japanese as the accept-language header
receive the Japanese version of the page. When clients use English as the
accept-language header, they receive the English version. Accept-language
headers can be sent only by Web browsers that use the HTTP 1.1 protocol.

The com.sybase.jaguar.server.http.acceptlang property determines whether
EAServer parses accept-language headers to respond to requests for localized
content. To enable accept-language header parsing, set this property to true
using the Advanced tab in the Server Properties window in EAServer Manager.

Internationalization for servlets
For servlet development, EAServer supports internationalization compliant
methods that are described in the Java Servlet 2.3 specification. These
methods, getLocale and getLocales on the ServletRequest interface and
setLocale on the ServletResponse interface:

• getLocale and getLocales - parse the accept-language header, extract the
language and quality value information, and return the specified locale
names. If the request specifies no locale, return the server’s default locale.

• setLocale - sets the language attributes in the Content-Language header.
The default is the server’s default locale.

Deploying localized static files
A separate directory is required for each supported language along with a
default directory. EAServer refers to these directories to locate different
language versions of a document. For example, if the client requests the URL:

http://www.someplace.com/somepage.html

and EAServer supports English and French. There will be two versions of the
page on the server plus the default:

• The English version –
http://www.someplace.com/en/somepage.html

CHAPTER 21 Creating Web Applications

Programmer’s Guide 403

• The French version –
http://www.someplace.com/fr/somepage.html

• A default version – http://www.someplace.com/somepage.html

Language selection algorithm
A Language selection algorithm selects the appropriate language after
evaluating the override criteria and the quality values specified. If multiple
languages are specified, then the algorithm checks the various options in
descending order of priority. For example, if the client requests this URL with
en, fr specified in the accept-language header:

http://www.someplace.com/somepage.html

EAServer first looks for:

http://www.someplace.com/en/somepage.html

If not found, the server looks for:

http://www.someplace.com/fr/somepage.html

If this is not found, the server tries to load the default page:

http://www.someplace.com/somepage.html

Similarly, for static Web resources in a Web applications, the language name
tag is prefixed to the static web resource URL to construct the URL for the
resource. EAServer provides multiple language support to the following Web
application resources:

• Servlets

• Web application with static Web resources

• Static Web pages

Localizing JSP content
JSPs that use a character set other than the server default require additional
changes in source code and deployment properties.

In your JSP source code, specify the encoding in the page declaration, for
example:

<%@ page contentType="text/html;charset=BIG5" %>

Localizing Web applications

404 EAServer

When initializing strings, pass the encoding name to the String constructor, for
example:

byte[] b = { (byte)'\u00A4', (byte)'\u00A4',
(byte)'\u00A4', (byte)'\u00E5' };

String s = new String(b, "big5");

If you do not specify the encoding name, the byte array may be converted
incorrectly.

When deploying localized JSPs, group JSPs for each language in their own
directory tree under your Web application’s context root. For example, all files
under /en are English, 8859_1 encoded and all files under /ko are Korean,
KSC5601 encoded. Additionally, configure the following Web application
properties:

The property values must contain a list of URL-pattern and Java character set
name pairs. Use this syntax, where URL_pattern is the url-pattern to which the
character set applies, and character_set is the name of the Java character set:

(url-pattern=URL_pattern,charset=character_set),
(url-pattern=URL_pattern,charset=character_set)

For example, for a Web application with two directories, /en and /ko, in its
document root where all files under /en are 8859_1 encoded and all files under
/ko are KSC5601 encoded, specify the character sets like this:

(url-pattern=/en/*,charset=8859_1),
(url-pattern=/ko/*,charset=KSC5601)

If a URL pattern is not listed, the server’s default character set is used. If you
specify a character set that is not supported, it is not added to the mapping and
the server’s default character set is used.

Note These character set properties are not supported for the default Web
application.

Property name Used to specify

com.sybase.jaguar.webapplication.charset.inputparam Character set for request parameters.

com.sybase.jaguar.webapplication.charset.inputdata Character set for request body data (retrieved with
ServletRequest.getReader or
ServletRequest.getInputStream).

com.sybase.jaguar.webapplication.charset.jspcompile Character set for JSP compilation.

Programmer’s Guide 405

C H A P T E R 2 2 Creating Java Servlets

EAServer supports version 2.3 of the Java Servlet API. Running in
EAServer, servlets can create HTML pages with dynamic content and
respond to requests from client applications that are implemented as
HTML forms. Servlets also allow you to execute business logic from any
Web browser or any other client application that connects using the
Hypertext Transfer Protocol (HTTP).

Introduction to Java servlets
The Java Servlet API is a Java Standard Extension Java classes that extend
the functionality of a Web server.

Use of servlets in
EAServer

Java servlets respond to HTTP requests from Web browser clients (or any
other client that connects to EAServer using the HTTP protocol). You can
associate an HTTP URL with a servlet that you have installed in
EAServer. The servlet can dynamically create HTML documents, or act
as a gateway between HTML-forms based applications and EAServer
components. For example, you might create servlets to:

• Create dynamic HTML page content Your servlet creates pages
for an online catalog by selecting part descriptions from a database.

Topic Page
Introduction to Java servlets 405

Writing servlets for EAServer 406

Installing and configuring servlets 413

Web application support 422

Server properties for servlets 424

Writing servlets for EAServer

406 EAServer

• Act as a gateway between HTML forms and EAServer components
Your client application consists of an HTML page with embedded HTML
forms that submits the data to the servlet. When invoked, the servlet calls
EAServer components, supplying the form data as parameters. For simple
user interfaces, HTML forms can offer better performance than Java
applet clients, since the browser does not download applet code.

EAServer provides an extended version of the Servlet API so that servlets may
use EAServer services such as inter-server component invocations and
database connection caching.

Java servlets versus
Java components

Java servlets enhance the functionality offered by Java components, but do not
replace Java components. Servlets in EAServer can be invoked only by HTTP
clients, and must return all output by writing to a ServletOutputStream instance.
Typically, servlets are invoked from HTML pages loaded in a Web browser and
return formatted HTML as their output.

Java components can be executed by any EAServer client model, and can
return complex objects in their natural format. To invoke Java components
from a Web browser, you must create a Java applet that connects to EAServer
and instantiates proxy objects for the component.

Servlets can make use of some, but not all, server-side services; for example,
servlets can use cached database connections and can issue in-memory calls to
components installed on the same server. Servlets cannot, however, participate
in EAServer transactions, except as a base client. Servlets cannot use other
server-side APIs besides connection caching and the Java ORB.

Java components have access to all Java server-side APIs and can participate
in EAServer transactions.

For more information The JavaSoft Servlet Web pages at http://java.sun.com/products/servlet/ describe
how to code servlet classes.

Writing servlets for EAServer
You can implement servlets for EAServer as you would for any other server
that follows the Java servlet specification. Servlets for EAServer can be coded
to the standard Java servlet API and use classes in the javax.servlet and
javax.servlet.http packages. This section lists coding information specific to
EAServer and describes EAServer’s extensions to the standard servlet API.

CHAPTER 22 Creating Java Servlets

Programmer’s Guide 407

Connection caching
Servlets can use these classes to retrieve cached connections:

• com.sybase.jaguar.jcm.JCMCache, which represents a configured
connection cache and provides methods to manage connections in the
cache.

• com.sybase.jaguar.jcm.JCM, which provides access to JDBC connection
caches defined in EAServer Manager. JCM is a factory for JCMCache
instances.

For more information, see “Using Java Connection Manager classes” on page
482.

Component invocations
Servlets in EAServer can instantiate component instances using the same
technique used within EJB or Java/CORBA components. Use the EJB
technique when portability to other J2EE servers is required.

Using the EJB
technique

To invoke component methods, use the lookup method in class
javax.naming.InitialContext to resolve the Bean’s home interface, then create a
reference to the remote interface. For example:

import javax.ejb.*;
import javax.naming.*;

QueryBean _queryBean;
String _queryBeanName =

"java:comp/env/ejb/querybean" ;
Context ctx = getInitialContext();
try {

Object h = ctx.lookup(_queryBeanName);
QueryBeanHome qbHome = (QueryBeanHome)
javax.rmi.PortableRemoteObject.narrow(h,

QueryBeanHome.class);
_queryBean = qbHome.create();

}
catch (NamingException ne)
{

System.out.println("Error: Naming exception: "
+ ne.getExplanation() + ne.toString());

throw new Exception(
"Lookup failed for EJB " + _queryBeanName);

}

Writing servlets for EAServer

408 EAServer

For more information on the EJB client interfaces, see Chapter 8, “Creating
Enterprise JavaBeans Clients.” You can define an EJB reference in the Web
application properties to alias the servlet name used in your source code. The
EJB reference allows the Web application to be deployed on another J2EE
server without changing your servlet code. See “EJB references” on page 386
for more information.

Using the
Java/CORBA
technique

To invoke component methods, create an ORB instance to obtain a proxy for
the components, then invoke methods on the proxy object reference. For
components on the same server, call the string_to_object method with the IOR
string specified as Package/Component. For example, the fragment below
obtains a proxy object for a component called Payroll that is installed in the
Finance package:

java.util.Properties props = new
java.util.Properties();
props.put("org.omg.CORBA.ORBClass",

"com.sybase.CORBA.ORB");
ORB orb = ORB.init((java.lang.String[])null, props);
Payroll payroll =
PayrollHelper.narrow(orb.string_to_object(

"Finance/Payroll"));

By default, servlets run without a user name and password. A servlet client,
authenticated by EAServer, runs with the client’s user name and password. If
an unauthenticated servlet client invokes a component method, the component
is instantiated without a user name and password. If roles limit access to a
component or method and the servlet has no user name, a method invocation
attempt fails. To specify a user name, use this syntax:

orb.string_to_object("iiop://0:0:user_name:password/Package/Component"));

You can retrieve the system user name and password with these methods in
class com.sybase.CORBA.ORB, which both return strings:

• getSystemUser() returns the system user name.

• getSystemPassword() returns the system password.

When called from components, string_to_object returns an instance running on
the same server if the component is locally installed; otherwise, it attempts to
resolve a remote instance using the naming server.

CHAPTER 22 Creating Java Servlets

Programmer’s Guide 409

Threading
If possible, servlets should be coded to be thread-safe, such that the service
method can be called concurrently from multiple threads. This threading model
is the default for servlets running in EAServer. In most cases, it offers the best
performance. If your servlet cannot support this threading model, you must do
one of the following to ensure that the servlet executes safely in EAServer:

• Code the servlet to implement the SingleThreadModel marker interface.
This interface has no methods; the server recognizes that instances of any
class that implements the interface must be single-threaded.

• Configure the servlet’s threading properties as described in “Threading
settings” on page 416.

Logging
Servlets can log error messages or other text to the EAServer servlet log file,
using the standard servlet log methods in the ServletContext class (or the
equivalent methods in the GenericServlet class). EAServer records servlet log
messages in the httpservlet.log file, located in EAServer’s bin subdirectory. If
you define additional servers, the name of the servlet log file is prepended with
the server name. For example, if you create a server named Test_server, then
servlet messages for that server are directed to the Test_serverhttpservlet.log
file.

To enable trace logging in the EAServer servlet execution engine, add the
com.sybase.jaguar.server.servlet.trace property in the Server Properties dialog
box on the Advanced tab, and set it to true.

Error pages

You can customize error and exception reports that are sent to clients by
creating error pages. When the servlet engine detects an error or catches an
exception thrown by a servlet, it searches for a corresponding error page to
handle the response. You can declare error pages for a Web application, or at
the server level.

This example illustrates how to declare an error page for a Web application in
the deployment descriptor:

<error-page>
<error-code>404</error-code>
<location>/etc/404.html</location>

Writing servlets for EAServer

410 EAServer

</error-page>

The location is the path relative to the Web application’s context root. For
example, /etc/404.html corresponds to this file in your EAServer installation
directory, where web-app is the name of the Web application:

Repository/WebApplication/web-app/etc/404.html

For information about how to use EAServer Manager to set up an error page
for a Web application, see “Error pages” on page 383.

To set up server-level error pages, see com.sybase.jaguar.server.servlet.error-
page on page 553, in the EAServer System Administration Guide.

Request dispatching
A RequestDispatcher instance allows one servlet to invoke another and either
forward a request, or include the target servlet’s response with its own. The
RequestDispatcher interface provides methods to accomplish both. To obtain
an object that implements the RequestDispatcher interface, use one of these
ServletContext methods:

• getRequestDispatcher(<URL map to resource>)

• getNamedDispatcher(<servlet name>)

To forward a request, the initial servlet calls the forward method of the
RequestDispatcher interface. The target servlet returns the response. This
method can be called only if no output has been committed to the client. Before
the forward method returns, the response must be committed and closed by the
servlet container.

To include a target servlet’s response with its own, the initial servlet calls the
include method of the RequestDispatcher interface. The target servlet has full
access to the request object but can write only to the ServletOutputStream or
Writer of the response object and it cannot modify the response headers. The
target servlet can commit a response by either writing past the end of the
response buffer, or explicitly calling the flush method of the ServletResponse
interface.

CHAPTER 22 Creating Java Servlets

Programmer’s Guide 411

URL interpretation

The ServletContext and ServletRequest objects both contain methods to retrieve
a RequestDispatcher instance. ServletContext methods require an absolute
URL. ServletRequest methods can interpret a relative URL. Both URL types
must follow these guidelines:

• The path cannot include the context.

• Mappings must agree with the servlet mappings defined for the Web
application—if a mapping does not exist, use the static page in the Web
applications’s context root directory
$JAGUAR/Repository/WebApplication/<web-app-name>.

• You must resolve dots in the path before mapping the URL.

• There can be no static content access at WEB-INF/META-INF.

A ServletContext.getRequestDispatcher URL must begin with a forward slash
(‘/’). If a ServletRequest.getRequestDispatcher URL begins with a forward
slash, the servlet engine interprets it as an absolute URL. Otherwise, the servlet
engine appends the relative URL to the current request’s URI path. For
example, if the current request is /catalog/garden.html and the relative URL is
sports.html, then the new URL is /catalog/sports.html.

Implementation

EAServer’s servlet engine passes all servlet invocation requests through a
RequestDispatcherobject instance. When the servlet engine receives a request
from a client, it calls the RequestDispatcher.service method. This method loads,
initializes, and handles instance pooling of single-threaded servlets. It also
invokes the servlet and handles errors.

Static content

A RequestDispatcher instance would typically be used for servlets and JSPs,
but it can also be used for static content. If the servlet engine forwards a request
to a static content RequestDispatcher, the RequestDispatcher must set the
response status, the response headers, and the response data. If a static content
RequestDispatcher is called to set the data for the current request, it only needs
to return the content of the static page.

Writing servlets for EAServer

412 EAServer

Response buffering
The Java servlet API supports response buffering that allows the servlet to
control how the servlet container buffers responses, and when to send a
response to a client. The ServletResponse interface provides these methods that
allow a servlet to access buffering information:

• getBufferSize – returns the size of the response buffer; if buffering is not
used, returns integer value of zero.

• setBufferSize – sets buffer size greater than or equal to the servlet’s request.

• isCommitted – returns a boolean value to indicate whether any part of the
response has been returned to the client.

• reset – clears the buffer of an uncommitted response.

• flushBuffer – writes buffer contents to a client.

See the Java Servlet Specification, v2.3 for detailed information about using
response buffering.

Encoding responses and double-byte characters
When you compile a Java servlet, the characters are encoded according to the
locale of your machine unless you specify encoding in the javac compile
command. When a client sends a request from a browser, the parameters are
always ISO 8859-1 encoded.

To provide a client’s browser with the encoding information it needs to
translate the content of a response correctly, declare the encoding in the
response header. If you specify the content type without the encoding
information, for instance:

response.setContentType("text.html");

the client’s browser assumes that the content is ISO 8859-1 encoded. If the
content has been encoded using some other standard, the client’s browser does
not translate the data correctly. This example specifies the double-byte
character set big5, the encoding name of traditional Chinese characters:

response.setContentType("text/html;charset=big5");

To encode the response content, compile the servlet with this encoding option:

javac -encode iso-8859-1 <java source file>

or convert static strings within the servlet code, for instance:

CHAPTER 22 Creating Java Servlets

Programmer’s Guide 413

String origMsg = "<double-byte character string>";
String newMsg = new String(origMsg.getBytes(),

"iso-8859-1");

Installing and configuring servlets
After you have created or obtained the Java class that implements your
servlet’s functionality, you must define a new servlet in EAServer Manager,
associate it with your class, then configure the properties that control how the
servlet’s class is loaded and executed.

Installing servlets
In EAServer Manager, servlets that are installed in EAServer display in the
Installed Servlets folder under the server’s icon. All servlets that have been
defined are displayed in the top-level Servlets folder. You must install a servlet
in a server before that server’s clients can execute the servlet.

Defining a new servlet

When defining a new servlet, you can install it in a server at the same time, or
you can define the servlet in the top-level Servlets folder, then install it in one
or more servers later.

1 To create a servlet and install it in a server:

• Expand the server’s icon, then highlight the Installed Servlets folder
within it.

• Choose File | Install Servlet.

• In the Servlet Wizard, click Create and Install a New Servlet.

To define a servlet that is not installed in a server:

• Highlight the icon for the top level Servlets folder.

• Choose File | New Servlet.

2 Enter a name for the servlet. This name will be used in HTTP URLs that
invoke the servlet.

Installing and configuring servlets

414 EAServer

3 Configure the servlet properties as described in “Configuring servlet
properties” on page 415.

Installing existing servlets into a server

You must install servlets in a server before that server’s clients can invoke the
servlet. You can install a servlet into multiple servers. To install a servlet into
a server:

1 Expand the server’s icon, then highlight the Installed Servlets folder
within it.

2 Choose File | Install Servlet.

3 In the Servlet Wizard, click Install an Existing Servlet.

4 In the Install Servlet dialog box, highlight the servlet to be installed, then
click Ok.

Uninstalling servlets from a server

Uninstalling a servlet from a server makes that servlet unavailable to clients of
that server. The server definition persists in EAServer Manager, under the top
level Servlets folder. To uninstall a servlet:

1 Expand the server’s icon, then highlight the Installed Servlets folder
within it.

2 Highlight the servlet to uninstall.

3 Choose File | Remove Servlet.

Deleting servlet definitions

Deleting a servlet from the top-level Servlets folder removes it entirely from
EAServer Manager. To delete a servlet definition:

1 Expand the top-level Servlets folder.

2 Highlight the servlet to delete.

3 Choose File | Delete Servlet.

CHAPTER 22 Creating Java Servlets

Programmer’s Guide 415

Configuring servlet properties
The settings in the Servlet Properties dialog box specify the Java class for the
servlet and control how EAServer loads and runs instances of the class. The
dialog contains the tabs described below.

General settings Properties on the general tab define the basic information required to load and
run the servlet.

Table 22-1: General Tab Settings

Init-Args settings Servlets may require initialization parameters that are specified outside of the
source code. For example, you might specify the name of an EAServer
connection cache as an initialization parameter. You can use the Init-args
properties to define optional initialization parameters for the server.

Control Name Specifies

Description An optional comment describing the servlet.

Servlet’s fully qualified class name The name of the Java class that implements
the servlet functionality, in Java dot notation;
for example,
com.sybase.jaguar.DemoServlet.

In a Web application, you can map a
servlet name to either a servlet class or a
JSP file.

Load during startup Choose Yes if the servlet must be loaded and
initialized when the server starts. If you
choose No, the class is loaded when the first
client requests to run the servlet. Classes that
perform lengthy processing in the init method
can be loaded at start-up so that the first client
to invoke the servlet does not experience
increased response time.

If you choose Yes, servlets are reloaded when
you refresh the Web application.

Startup load sequence position EAServer loads servlets serially. If you
choose Yes, to load the servlet during startup,
define the order, relative to other servlets in
the application. To load the servlet first, enter
1.

Web component type Choose Servlet or JSP

Installing and configuring servlets

416 EAServer

The Init-Params tab lists the initialization parameters that have been defined
for the servlet. Click Add to define a new initialization parameter. Enter the
parameter name and the text of the value. The servlet can retrieve the value as
a Java String, as explained below. To change a parameter’s value, highlight the
parameter in the list, then click Modify. To remove a parameter, highlight it,
then click Delete.

Your servlet’s init method can retrieve the specified settings using the
ServletConfig.getInitParameter(String) and
ServletConfig.getInitParameterNames() methods. The following code fragment
shows how:

void init(ServletConfig config) throws ServletException
{

....
Enumeration paramNames =

config.getInitParameterNames();
while (paramNames.hasMoreElements())
{

String name = (String) paramNames.nextElement();
String value = config.getInitParameter(name);

}

Threading settings By default, EAServer loads one instance of a servlet class and calls methods
from multiple threads—to service multiple clients, multiple threads may call
the service method simultaneously. If an instance of your servlet cannot safely
execute in multiple threads, you must configure the Threading tab to specify
that the servlet class is single threaded. You can also specify how EAServer
should serialize invocations of the service method for a single-threaded servlet.

Check the Single Threaded option if calls to your servlet’s service method must
be serialized. When this option is selected, you can specify the number of
instances that EAServer creates to serve client requests. Calls to the service
method within a given instance are serialized. EAServer creates multiple
instances to minimize the time that clients have to wait for a blocked service
request. EAServer calls the service method in an instance that is not already
busy serving a previous request. If all available instances are busy, the request
is delayed until a service call returns.

If multiple instances are created, calls to the service method are not necessarily
serialized; service calls may occur simultaneously in different instances. If
your service method changes static variables, you must add code to
synchronize these changes or configure the servlet properties so that only one
instance is created.

CHAPTER 22 Creating Java Servlets

Programmer’s Guide 417

Implementing the SingleThreadModel interface Your servlet class can
implement the SingleThreadModel interface to indicate that calls to an
instance’s service method must be serialized. Instances of these classes are
always single-threaded by EAServer, regardless of whether the Single
Threaded option is enabled.

Sessions settings The Java Servlet API provides classes to create a session between a given
HTTP client and servlets running on EAServer. You can use the session to
record data related to the end-users session. If your servlet uses sessions,
configure the following properties on the Sessions tab:

• Time-out The duration, in seconds, that a session can remain inactive.

In Web applications, servlets share a common timeout value. To set the
session timeout property for a servlet:

a Expand these icons: Servers, server-name, Installed Applications,
application-name, and Web Applications. Highlight the Web
application, right-click and select Web Application Properties.

b On the General tab, set Session Timeout to the number of minutes that
a session can remain inactive before it times out. The default is 0,
which indicates that the session never times out.

• Enable Session Tracking Beginning with EAServer 5.1, session
tracking is always enabled.

Java Classes settings On the Java Classes tab, specify a list of additional Java classes that must be
reloaded when you refresh the servlet. By default, EAServer reloads only the
servlet implementation class. You can configure the classes to be custom
loaded at the servlet, Web application, J2EE application, or server level. For
more information, see Chapter 30, “Configuring Custom Java Class Lists.”

Additional Files
settings

The Additional Files tab enables you to associate additional files with the
servlet definition. If you synchronize the server where the servlet is installed,
and elect to synchronize servlet files, these files will be transferred to the target
servers. See Chapter 6, “Clusters and Synchronization,” in the EAServer
System Administration Guide for more information on this feature.

You can specify the name of a Java class or package to be added to the archive,
using the Java dot notation. For example, “com.sybase.CORBA” adds all files
in the com.sybase.CORBA package.

Any other files must be separated by commas and specified relative to
EAServer’s Repository subdirectory or with a full path. Full paths require that
any server to which you synchronize share the same directory structure.

Installing and configuring servlets

418 EAServer

When you include additional files, you can either enter the file names
individually, or you can use the Additional Files wizard to add multiple files,
packages, classes, and directories.

To enter file names individually:

1 Click Add. This opens the Add a File Name to the List dialog box.

2 Enter the file name and click Ok.

To add multiple items:

1 Click Additional Files Wizard. This open the Additional Files dialog box.
Each item that you add is appended to the list.

2 To add Java packages or classes:

a Click Browse

b Choose a *.class file and click Select.

The class files must be deployed under EAServer’s java/classes directory.

3 To add files or directories:

a Optionally, specify a file filter, such as *.txt.

b Optionally, select to use the JAGUAR environment variable.

c Click Browse.

d Choose a file or directory and click Select.

4 To add property files from other entities:

a Click Browse.

b Choose a *.props file from under the Repository directory and click
Select.

5 To add file lists from other entities:

a Click Browse.

b Choose an entity’s *.files file and click Select.

6 Click Add Files to Additional Files List.

Run As Identity Configures an alternate identity used for authentication of component
invocations from the servlet or JSP. By default, component invocations use the
Web client’s identity. The settings are:

• Run as – Choose “specified” to configure an alternate identity. The
default, “client,” specifies that the Web client identity is used.

CHAPTER 22 Creating Java Servlets

Programmer’s Guide 419

• Role – Specify a role name. The identity specified in the Mapped to Jaguar
identity field should be in this role.

• Run as identity – Specify a logical identity name. This name is used if the
component is exported to an EJB-JAR file.

• Mapped to Jaguar identity – Choose an EAServer identity from the pull
down menu. This is the identity with which the component executes.

• Description – Enter an optional text comment. This field can be used to
provide identity mapping instructions for the deployer when the
component is deployed to another server.

To enable use of the run-as identity for EJB component calls to remote servers,
you must specify corbaname URLs in the EJB Reference properties for the
Web application where the servlet is installed. For more information, see
“Interoperable naming URLs” on page 161 and “EJB references” on page 386.

Advanced settings The Advanced tab allows you to edit property settings as they are stored in the
EAServer configuration repository. You can only delete properties that you
have added—you cannot delete default properties, such as the
com.sybase.jaguar.servlet.name property. Repository property names are
documented in Appendix B, “Repository Properties Reference,” in the
EAServer System Administration Guide.

You can set properties as follows:

1 Look for the property name in the list of properties. If it is displayed,
highlight the property and click Modify. Otherwise, click Add.

2 If adding the property, fill in the Add Property fields as follows:

• Enter the property name in the Name field

• Enter the value in the Value field.

3 If modifying a property, edit the displayed value in the Modify Property
window.

Installing and configuring servlets

420 EAServer

When to use the Advanced tab Although you can use the Advanced tab to
set any property prefixed with “com.sybase.jaguar.servlet,” Sybase
recommends that you use this tab to set properties only as specified by the
EAServer documentation or by Sybase Technical Support. Most properties can
be configured graphically elsewhere in the EAServer Manager user interface.

Deploying and refreshing servlet classes

Deploying servlet classes

Although you can deploy servlet classes under any codebase that is specified
in the CODEBASE environment variable, servlet classes should be deployed
under EAServer’s java/classes subdirectory to simplify debugging. Only
classes deployed under this codebase can be refreshed.

Refreshing servlets

The refresh feature is useful for debugging, since it allows you to load a
changed version of the implementation class without restarting the server. If
your implementation relies on other classes that must also be reloaded when
the implementation is refreshed, specify them on the Java Classes tab in the
Servlet Properties window. See “Java Classes settings” on page 417.

All servlets that are not installed in a Web application are considered to be part
of the default Web application (EASDefault), and all servlets within the same
Web application are refreshed at the same time.

To refresh all servlets in the Installed Servlets folder:

1 Highlight the Servlets folder under the server icon where the servlet is
installed.

2 Choose File | Refresh.

3 EAServer Manager will ask if you want to terminate any active requests.
Choose Yes to refresh. If one of the servlets is servicing a request at this
time, the client may receive partial data or an error. Choose No to cancel
the refresh operation.

To refresh all the servlets in a Web application:

CHAPTER 22 Creating Java Servlets

Programmer’s Guide 421

1 Expand the server icon where the servlet is installed and highlight the Web
application name under one of these folders:

• Installed Web Applications

• Installed Applications | <application name> | Web Applications

2 Choose File | Refresh.

3 EAServer Manager will ask if you want to terminate any active requests.
Choose Yes to refresh. If one of the servlets is servicing a request at this
time, the client may receive partial data or an error. Choose No to cancel
the refresh operation.

When you refresh a servlet, EAServer calls the servlet’s Servlet.destroy()
method, reloads the implementation class and any classes specified on the Java
Classes tab, and then calls the Servlet.init() method in the new instance.

Starting and stopping servlets

At times you may wish to stop and restart the servlet without reloading the
class. Also, starting a servlet causes EAServer to load the implementation class
if it has not already been loaded at startup or in response to a client request.

When you stop the servlet, EAServer calls the Servlet.destroy() method. When
you start the servlet, EAServer calls the Servlet.init() method, unless it has
already been called on the current instance of the implementation class.

To start a servlet:

1 Expand the Servlets folder under the server icon where the servlet is
installed. Highlight the servlet’s icon.

2 Choose File | Start.

To stop a servlet:

1 Expand the Servlets folder under the server icon where the servlet is
installed. Highlight the servlet’s icon.

2 Choose File | Stop.

3 EAServer Manager will ask if you want to terminate any active requests.
Choose Yes to stop the servlet. If the servlet is servicing a request when
you stop the servlet, the client may receive partial data or an error.

Web application support

422 EAServer

Web application support
Java servlets support packaging and deploying Web applications. A Web
application archive (WAR) file contains all the components of a Web
application including servlets, HTML files, JavaServer Pages (JSPs), classes,
and other resources. See Chapter 21, “Creating Web Applications,” for more
information.

Note Beginning with EAServer version 5.1, all servlets are contained in a Web
application.Any servlet that you do not explicitly add to a Web application is
added automatically to the EASDefault Web application—see “The
EASDefault Web application” on page 397.

EAServer includes a servlet container that provides network services for
requests and responses, decodes MIME-based requests, formats MIME-based
responses, and manages servlets.

Adding servlets to a Web application
To add servlets to a Web application, copy the servlet class files under
%JAGUAR%\Repository\WebApplication\<web-app>\WEB-INF\classes, and
use EAServer Manager to add the servlet to your Web application.

❖ Adding a servlet to a Web application

1 In EAServer Manager, select either Web Applications | <Web
application> or Applications | <application> | Web Applications | <Web
application>.

2 Right-click, select New Web Component, and enter the name of the
servlet.

3 Select the servlet, right-click, and select Web Application Component
Properties.

4 Enter values for the servlet properties described in “Configuring servlet
properties” on page 415.

❖ Mapping a Web application’s servlet to a URL

1 In EAServer Manager, select either Web Applications | <Web
application> or Applications | <Application> | Web Applications | <Web
application>.

CHAPTER 22 Creating Java Servlets

Programmer’s Guide 423

2 Right-click and select Web Application Properties.

3 Select the Servlet Mapping tab and click Add. A new row is added to the
mapping table.

4 Place the cursor in the Servlet cell and enter the servlet name that displays
in EAServer Manager.

5 Place the cursor in the URL Pattern cell and enter a string to invoke the
servlet from an HTTP URL. For example, if the Web application name is
WebApp1 and the URL Pattern string for the servlet is /MyServlet, this
URL invokes the servlet:

http://host:port/WebApp1/MyServlet

6 Place the cursor in the Description field and enter a description of the
servlet.

7 Click OK.

Note Web application servlets have no default URL mappings. To invoke a
servlet, clients must use the path mapped to the servlet in the Web application
properties.

In the normal configuration, you cannot run servlets without using an alias or
Web application name in the request URL. You can configure servlets to run
with no alias as follows:

1 Install the servlets of interest in your server’s Installed Servlets folder, as
described in “Installing existing servlets into a server” on page 414.

2 Display the Server Properties dialog for your server, then display the
Advanced tab.

3 Search for com.sybase.jaguar.server.servlet.servlet-mapping in the list. If
the property is present, highlight it and click Modify. Otherwise, click Add
and enter the property name.

4 For the property value, enter a comma-separated list of entries with this
format:

(url-pattern=/pattern,servlet-name=servlet)

Where:

• pattern is the alias to invoke the servlet, for example, MyServlet.

• servlet is the servlet name, as defined in EAServer Manager.

Server properties for servlets

424 EAServer

For example, to map MyServlet to the path /myservlet, and HelloServlet to
the path /hello, enter this value (on one line):

(url-pattern=/myservlet,servlet-name=MyServlet),(url-
pattern=/hello,servlet-name=HelloServlet)

With these settings, HelloServlet can be invoked with this URL:

http://host:port/hello

Server properties for servlets
On the Servlet tab in the Server Properties dialog box, you can disable servlet
execution in a server and configure server aliases.

Note All servlets are part of a Web application, and most servlet properties are
configured using the Web Application Properties dialog box—see
“Configuring Web application properties” on page 380. The properties that
you can configure on the Servlet tab are described below.

❖ Displaying the servlet execution properties

1 Highlight the icon for the server of interest.

2 Choose File | Server Properties.

3 Select the Servlet tab, and configure the following properties:

• Servlet Execution Enable/Disable This option determines
whether servlets can execute on a server. If the option is disabled, no
installed servlets can be invoked. By default, servlet execution is
enabled.

• Servlet Aliases Specifies the list of path prefixes that you can use
to invoke servlets from HTTP URLs. For example, if /servlet/ is a
path prefix, this URL invokes a servlet named MyServlet:

http://yourhost:8080/servlet/MyServlet

The default setting specifies /servlet/ as the only path prefix. To
override the default, enter one or more prefixes, each on a line by
itself. For example:

/servlet/
/servlets/

Programmer’s Guide 425

C H A P T E R 2 3 Using Filters and Event Listeners

This chapter discusses how to use servlet filters and listeners that can
respond to application lifecycle events.

For complete information on servlets, see Chapter 22, “Creating Java
Servlets.”

Servlet filters
You can use filters to modify the header or the content of a servlet request
or response. Within a Web application, you can define many filters, and a
single filter can act on one or more servlets or JavaServer Pages (JSPs).
Filters can help you accomplish a number of tasks, including data
authentication, logging, and encryption.

You can map filters to a URL or a servlet name. When a filter is mapped
to a URL (path-mapped), the filter applies to every servlet and JSP in the
Web application. When a filter is mapped to a servlet name (servlet-
mapped), it applies to a single servlet or JSP. EAServer constructs a list of
the filters declared in a Web application’s deployment descriptor; this list
is called a filter chain. The order of the filters in the filter chain determines
the order in which the filters are executed. EAServer constructs the filter
chain by first adding the path-mapped filters, in the order that they are
declared in the deployment descriptor, then it adds the servlet-mapped
filters in the order in which they appear in the deployment descriptor. As
a result, the path-mapped filters are executed first, followed by the
servlet-mapped filters.

This sample declares the path-mapped filter, MyFilter:

<filter>
<filter-name>

MyFilter

Topic Page
Servlet filters 425

Application lifecycle event listeners 431

Servlet filters

426 EAServer

</filter-name>

<filter-class>
MyFilter

</filter-class>

</filter>

<filter-mapping>
<filter-name>MyFilter</filter-name>
<url-pattern>/*</url-pattern>

<filter-mapping>

Use EAServer Manager to add a new filter to a Web application and map it to
either a servlet name or a URL pattern.

❖ Adding a new filter to a Web application

1 Expand the Web Applications folder, then highlight the icon that
represents your application.

2 Choose File | New Web Component.

3 Select Filter and enter a name for the filter.

4 Click OK. This displays the Filter Component Properties dialog box.

5 On the General tab, enter:

• A description of the filter.

• The filter’s fully-qualified class name.

6 On the Init-Params tab, enter the initialization parameters as name/value
pairs. When the filter is initialized, it receives a FilterConfig object that
contains these parameters.

a Click Add to display the New Property dialog box.

b Enter a property name and property value, and optionally, a
description, then click OK.

To edit an initialization parameter, highlight the property and click
Modify. Edit the property name or value, and click OK.

To delete an initialization parameter, highlight the property and click
Delete.

7 Click OK.

CHAPTER 23 Using Filters and Event Listeners

Programmer’s Guide 427

“Filter Mapping properties” on page 396 describes how to map a Web
application filter.

You can also define filters at the server level—see “HTTP Custom Response
Header” on page 41 in Chapter 3, “Creating and Configuring Servers,” in the
EAServer System Administration Guide.

Servlet filters must implement the javax.servlet.Filter interface and define these
methods:

Note The setFilterConfig method is no longer supported (as of version 4.1); it
has been replaced by init and destroy.

To initialize each filter, EAServer calls the init method and passes in a
FilterConfig object, which provides the filter with access to the Web
application’s ServletContext, the initialization parameters, and the filter name.
After all the filters in a chain have been initialized, EAServer calls
FilterChain::doFilter for the first filter in the chain and passes it a reference to
the filter chain. Subsequently, each filter passes control to the next filter in the
chain by calling the doFilter method. The requested resource, servlet or JSP, is
served after all the filters in the chain have been served. To halt further filter
and servlet processing from within a filter, do not call doFilter. To notify a filter
that it is being removed from service, EAServer calls the destroy method.
Within this mthod, the filter should clean up any resources that it holds:
memory, file handles, threads, and so on. destroy is called only once after all
the threads within the filter’s doFilter method have exited.

Here is a sample implementation of a servlet filter, which records either the
amount of time it takes to process the request, or the time the request finishes
processing. The time is recorded using the ServletContext::log method. The
filter uses the value of the initialization parameter type to determine whether to
record the absolute time the filter finished, or the amount of time it took to
process the request. If the value of type is “absolute”, the filter logs the time the
request completes; otherwise, it logs the processing time, in milliseconds.

package filters;

Interface method Description

init Calls a filter into service and sets the filter’s
configuration object.

doFilter Performs the filtering work.

getFilterConfig Returns the filter’s configuration object.

destroy Removes a filter from service.

Servlet filters

428 EAServer

import javax.servlet.*;
import javax.servlet.http.HttpServletRequest;
import java.util.Date;

public class TimerFilter implements Filter
{

private FilterConfig _filterConfig = null;

/**
* The server calls this method to initialize the Filter and
* passes in a FilterConfig object.
*/
public void init (FilterConfig filterConfig)

throws javax.servlet.ServletException
{

_filterConfig = filterConfig;
}

/**
* Return the FilterConfig object
*/
public FilterConfig getFilterConfig()
{

return _filterConfig;
}

/**
* EAServer calls this method each time a servlet, JSP or static Web
* resource is invoked.
*/
public void doFilter (ServletRequest request,

ServletResponse response,
FilterChain chain)

throws java.io.IOException, javax.servlet.ServletException
{

// This is executed before the servlet/jsp/static resource is served.
long startTime = System.currentTimeMillis();

// Pass control to the next filter in the chain.
chain.doFilter(request, response);

// This is executed after the servlet/jsp/static resource has been served.
long endTime = System.currentTimeMillis();

// Get the ServletContext from the FilterConfig
ServletContext context = _filterConfig.getServletContext();

CHAPTER 23 Using Filters and Event Listeners

Programmer’s Guide 429

// Get the type parameter from the filter's initialization
// paramters. Return null if the parameter was not set
String type = (String)_filterConfig.getInitParameter("type");

// Get the filter’s name to include in the log
String filterName = _filterConfig.getFilterName();

HttpServletRequest httprequest = (HttpServletRequest)request;
String path = httprequest.getRequestURI();

// By default, record the absolute time
if ((type == null) || (type.equals("absolute")))
{

Date date = new Date(endTime);
context.log(filterName + " - " + path + " finished: " +

date.toString());
}
else
{

context.log(filterName + " - time to process " + path + ": " +
(endTime - startTime) + "ms");

}
}
/**
* Notifies the filter that it is being taken out of service.
*/
public void destroy()
{

// free resources
}

}

Note To use page caching for servlets whose responses are modified by a filter,
see “Using page caching with filters that modify a response” in Chapter 5,
“Web Application Tuning,” in the EAServer Performance and Tuning Guide.

Servlet filters

430 EAServer

Custom headers
To add custom response headers for static resources, EAServer provides the
filter class com.sybase.jaguar.servlet.AddHeadersFilter. The filter is designed to
add cache-related and simple name/string header information to a response.
The initialization parameters that you pass to the filter must be in this format:

(name=header_name, value=type:value_type&val:value)

where header_name is the title of the header, and value_type and value can be:

This example creates an instance of AddHeadersFilter and passes the header
name, value type, and value:

com.sybase.jaguar.servlet.filter.init-param=
(name=Expires, value=type:date&val:+365D),
(name=Cache-Control, type:string&val:max-age=3600)

which adds these two lines to the response:

Expires: Wed, 15 May 2002 15:31:22 GMT
Cache-Control: max-age=3600

For more information For more information on filters and programming customized responses, see
the Java Web page at http://java.sun.com/products/servlet/Filters.html.

Value type Description Sample value

String A text string. “Add this to the header.”

Date GMT date specified as,
[+|-] ddDhhHmmMssS.

To indicate the current date, set value to +0.
To indicate the current date plus 20 days, 10 hours,
30 minutes, and 20 seconds, set value to
+20D10H30M20S.

Etag EAServer generates an entity tag (etag)
based on the file’s length, last modified
time, and the sum of the file.

value can be either “E” or “WE”. “WE” specifies
a weak etag. If you set value to “E”, EAServer
writes something like this in the header:
b222308-205-e28daea590.

CHAPTER 23 Using Filters and Event Listeners

Programmer’s Guide 431

Application lifecycle event listeners
EAServer’s implementation of application lifecycle events enables you to
register event listeners that can respond to state changes in a Web application’s
ServletContext and HttpSession objects. When a Web application starts up,
EAServer instantiates the listeners that are declared in the deployment
descriptor. The servlet API provides four listener interfaces, which EAServer
calls when each event occurs.

Note The interfaces javax.servlet.ServletContextAttributeListener and
javax.servlet.http.HttpSessionAttributeListener are both new for EAServer
version 4.1. The corresponding interfaces from EAServer version 4.0, where
“Attributes” was plural, are not supported in EAServer 4.1.

If you need your code to remain compatible with EAServer 4.0 or other servers
that require the older interface names, implement both the old and new
interfaces.

“Listener properties” on page 396 describes how to add a listener to a Web
application.

Sample listener Here is an example of how a ServletContextListener could be used to maintain
a database connection for each servlet context. The database connection that
gets created is stored in the ServletContext object as an attribute, so it is
available to all the servlets in the Web application.

package listeners;

import javax.servlet.*;
import java.sql.*;

public final class ContextListener implements ServletContextListener

Event type Listener interface Description

Servlet context:
lifecycle event

javax.servlet.ServletContextListener The servlet context was just created and
is available to service its first request, or
the servlet context is about to be shut
down.

Servlet context:
attribute changes

javax.servlet.ServletContextAttributeListener Servlet context attributes have been
added, removed, or replaced.

HTTP session:
lifecycle event

javax.servlet.http.HttpSessionListener An HttpSession has just been created,
invalidated, or timed out.

HTTP session:
attribute changes

javax.servlet.http.HttpSessionAttributeListener HttpSession attributes have been added,
removed, or replaced.

Application lifecycle event listeners

432 EAServer

{
ServletContext _context = null;
Connection _connection = null;

/**
* This method gets invoked when the ServletContext has
* been destroyed. It cleans up the database connection.
*/
public void contextDestroyed(ServletContextEvent event)
{

// Destroy the database connection for this context.
_context.setAttribute("DBConnection", null);
_context = null;

try {
_connection.close();

} catch (SQLException e) {
// ignore the exception
}

}

/**
* This method is invoked after the ServletContext has
* been created. It creates a database connection.
*/
public void contextInitialized(ServletContextEvent event)
{

_context = event.getServletContext();
String jdbcDriver="com.sybase.jdbc2.jdbc.SybDriver";
String dbURL="jdbc:sybase:Tds:localhost:2638";
String user="dba";
String password="";

try {
// Create a connection and store it in the ServletContext
// as an attribute of type Connection.

Class.forName(jdbcDriver).newInstance();
Connection conn =

DriverManager.getConnection(dbURL,user,password);
_connection = conn;
_context.setAttribute("DBConnection", conn);

} catch (Exception e) {
// Unable to create the connection, set it to null.
_connection = null;

CHAPTER 23 Using Filters and Event Listeners

Programmer’s Guide 433

_context.setAttribute("DBConnection", null);
}

}
}

Application lifecycle event listeners

434 EAServer

Programmer’s Guide 435

C H A P T E R 2 4 Creating JavaServer Pages

This chapter provides an overview of JavaServer Pages (JSP) and their
place in distributed application development, as well as configuration
instructions for running your JSPs in EAServer.

For detailed information about JavaServer Pages technology, see the
JavaServer Pages specification, available at
http://java.sun.com/products/jsp/download.html.

About JavaServer Pages
JavaServer Pages (JSP) technology provides a quick, easy way to create
Web pages with both static and dynamic content. JSPs are text-based
documents that contain static markup, usually in HTML or XML, as well
as Java content in the form of scripts and/or calls to Java components.
JSPs extend the Java Servlet API and have access to all Java APIs and
components.

You can use JSPs in many ways in Web-based applications. As part of the
J2EE application model, JSPs typically run on a Web server in the middle
tier, responding to HTTP requests from clients, and invoking the business
methods of Enterprise JavaBeans (EJB) components on a transaction
server.

Topic Page
About JavaServer Pages 435

Why use JSPs? 438

Syntax summary 439

Objects and scopes 442

Application logic in JSPs 443

Error handling 446

Using JSPs in EAServer 447

About JavaServer Pages

436 EAServer

How JavaServer Pages work
JSPs are executed in a JSP engine (also called a JSP container) that is installed
on a Web or application server. The JSP engine receives a request from a client
and delivers it to the JSP. The JSP can create or use other objects to create a
response. For example, it can forward the request to a servlet or an EJB
component, which processes the request and returns a response to the JSP. The
response is formatted according to the template in the JSP and returned to the
client.

Translating into a
servlet class

You can deploy JSPs to the server in either source or compiled form. If a JSP
is in source form, the JSP engine typically translates the page into a class that
implements the servlet interface and stores it in the server’s memory.
Depending on the implementation of the JSP engine, translation can occur at
any time between initial deployment and the receipt of the first request. As long
as the JSP remains unchanged, subsequent requests reuse the servlet class,
reducing the time required for those requests.

Deploying the JSP as a compiled servlet class eliminates the time required to
compile the JSP when the first request is received. It also eliminates the need
to have the Java compiler on the server.

Requests and
responses

Some JSP engines can handle requests and responses that use several different
protocols, but all JSP engines can handle HTTP requests and responses. The
JspPage and HttpJspPage classes in the javax.servlet.jsp package define the
interface for the compiled JSP, which has three methods:

• jspInit()

• jspDestroy()

• _jspService(HttpServletRequest request,
HttpServletResponse response)

For more information about the EAServer implementation of the JSP engine,
see “Using JSPs in EAServer” on page 447.

What a JSP contains
A JSP contains static template text that is written to the output stream. It also
contains dynamic content that can take several forms:

• Directives provide global information for the page, or include a file of text
or code.

CHAPTER 24 Creating JavaServer Pages

Programmer’s Guide 437

• Scripting elements (declarations, scriptlets, and expressions) manipulate
objects and perform computations.

• Standard tags perform common actions such as instantiating or getting or
setting the properties of a JavaBeans component, downloading a plug-in,
or forwarding a request.

• Custom tags perform additional actions defined in a custom tag library.

For more detailed information about using these content types, see
“Application logic in JSPs” on page 443.

A simple example This sample JSP contains a directive, a scripting element (in this case an
expression), and a standard tag. The dynamic content is shown in bold:

<HTML>
<HEAD><TITLE>Simple JSP</TITLE>
</HEAD>
<BODY>
<P>This page uses three kinds of dynamic content: </P>
A page directive that imports the java util
package.
<%@ page import = "java.util.*" %>
An expression to get the current date using
java.util.Date. Today's date is <%= new Date() %>.
An include tag to include data from another file
without parsing the content.
<jsp:include page="includedpage.txt" flush="true"/>

</BODY>
</HTML>

The page referenced is a text file that contains one sentence and is in the same
directory as the JSP file. The included page might also be another resource,
such as a JSP file, and its location can be specified using a URI path.

You can call the JSP from an HTML page with a hypertext reference:

<html><body>
<p>Click here to send a
request to the simple JSP.</p>
</body></html>

This HTML is returned to the browser:

<HTML>
<HEAD><TITLE>Simple JSP</TITLE>
</HEAD>
<BODY>
<P>This page uses three kinds of dynamic content: </P>

Why use JSPs?

438 EAServer

A page directive that imports the java util
package.
An expression to get the current date using
java.util.Date. Today's date is Mon Feb 14 17:03:51 EST
2000.
An include tag to include data from another file
without parsing the content.
In this case the included file is a static file
containing this sentence.

</BODY>
</HTML>

Why use JSPs?
JavaServer Pages inherit the concepts of Applications, ServletContexts,
Sessions, Requests, and Responses from the Java Servlets API and offer the
same portability, performance, and scalability as servlets.

About Java servlets Java servlets overcome many of the deficiencies of CGI, ISAPI, and NSAPI.
Although the CGI-BIN interface itself is not platform-specific, code has to be
recompiled for different platforms, and performance is poor for large-scale
applications because each new CGI request requires a new server process.
Similar platform-specific interfaces such as ISAPI and NSAPI improve
performance, but at the cost of even less portability.

Because Java servlets are written in Java, they are completely platform- and
server-independent. They provide superior performance and scalability
because they can be compiled, loaded into memory, and reused by multiple
clients while running in a single thread, and they can take advantage of
connection caching or pooling.

Java servlets are described in more detail in Chapter 22, “Creating Java
Servlets”.

Java servlets and
JSPs

Java servlets and JSPs are based on the same API, and either can be used to fill
some roles in a Web application. But while Java servlets are Java code with
embedded HTML, JSPs are HTML (or XML) pages with embedded Java code.
This difference provides additional advantages.

CHAPTER 24 Creating JavaServer Pages

Programmer’s Guide 439

Servlets need to be recompiled and deployed whenever there is a change to the
page presentation, so they are best used where such changes are not required.
Use servlets to generate binary data—such as image files—dynamically, and to
perform complex processing with no presentation component.

Separating logic and
presentation

The JavaServer Pages API provides tags that make it easy for a Web-page
developer to add dynamic content to a Web page without writing Java code.
The application logic in the page can be separated from page format and
design. This separation supports multitiered development. An application
developer can build EJBs, JavaBeans, and custom tag libraries. The page
author needs only know how to call these components and what arguments to
pass.

Application
partitioning

In a typical architecture for multitier applications, a Web server communicates
with a client via HTTP, with a transaction server hosting components that
handle database transactions. JSPs make it easier to partition and maintain an
application on multiple servers. The JSP runs on the Web server and can be
updated whenever the page designer needs to change elements of the
presentation. The components called by the JSP run on the transaction server,
or on a cluster of transaction servers, and can be updated whenever the business
logic needs to change.

You can also separate request handling from presentation using JSPs as front
components and presentation components. A front component receives a
request from the client, creates, updates, or accesses server components, then
forwards the request to a presentation component. A presentation component
incorporates fixed template data and returns the response to the client. Both
types of JSP typically use custom actions to access the server-side data.

Syntax summary
This section lists the most useful syntax elements available in the JavaServer
Pages API with simple usage examples. For complete details, see the
JavaServer Pages 1.2 specification, available at
http://java.sun.com/products/jsp/download.html. For a reference card that
includes all the attributes of tags and directives, see the JavaServer Pages
Syntax Card at http://java.sun.com/products/jsp/syntax.pdf.

Syntax summary

440 EAServer

Directives
Directives are messages to the JSP engine that provide global information for
the page or include a file of text or code. Directives begin with the character
sequence <%@ followed by the name of the directive and one or more attribute
definitions. They end with the character sequence %>.

There are three directives: page, include, and taglib.

Page directive The page directive defines attributes that apply to an entire JSP, including
language, the class being extended, packages imported for the entire page, the
size of the buffer, and the name of an error page. For example:

<%@ page language="java" import="mypkg.*"
session="true" errorPage="ErrorPage.jsp" %>

For more information about error pages, see “Error handling” on page 446.

Include directive The include directive includes a static file, parsing the file’s JSP elements:

<%@ include file="header.htm" %>

Include directive and include standard tag Note that the include directive
parses the file’s contents, while the include tag does not.

Taglib directive The taglib directive defines the name of a tag library and its prefix for any
custom tags used in a JSP:

<%@ taglib uri="http://www.mycorp/printtags"
prefix="print" %>

If the tag library includes an element called doPrintPreview, this is the syntax
for using that element later in the page:

<print:doPrintPreview>
...
</print>

For more information, see “Customized tag libraries” on page 445.

Scripting elements
Scripting elements manipulate objects and perform computations. The
character sequence that precedes a scripting element depends on the element’s
type: <% for a scriptlet, <%= for an expression, and <%! for a declaration.
Scriptlets, expressions, and declarations are all closed with the sequence %>.

Scriptlets Scriptlets contain a code fragment valid in the scripting language:

CHAPTER 24 Creating JavaServer Pages

Programmer’s Guide 441

<% cart.processRequest(request); %>

Expressions Expressions contain an expression valid in the page scripting language:

Value="<%= request.getParameter("amount") %>"

Declarations A declaration declares variables or methods valid in the page scripting
language (usually Java, but other languages can be defined in the page
directive):

<%! Connection myconnection; String mystring; %>

Comments
There are two kinds of comments:

• HTML comments optionally contain an expression, and are sent to the
client and can be viewed in the page source:

<!-- Copyright (C) 2001 Acme Software -->

• Hidden comments document the source file and are not sent to the client:

<%-- Add new module here --%>

Standard tags
Standard tags perform common actions. The useBean, getProperty, and
setProperty tags are all used with JavaBeans components. The useBean id
attribute is the name of the bean and corresponds to the name attribute for
getProperty and setProperty.

<jsp:useBean> The useBean tag locates or instantiates a JavaBeans component:

<jsp:useBean id="labelLink" scope="session"
class="LinkBean.labelLink" />

The bean class and classes required by the bean class must be deployed under
a JavaCode base that is available to the Web Application where the JSP is
installed. See “Java classes” on page 377 for more information.

<jsp:getProperty> The getProperty tag gets the value of a JavaBeans component property so that
you can display it in a result page:

<jsp:getProperty name="labelLink" property="url" />

<jsp:setProperty> The setProperty tag sets a property value or values in a JavaBeans component:

Objects and scopes

442 EAServer

<jsp:setProperty name="labelLink" property="url"
value="<%= labelLink.getURL() %>"/>

<jsp:include> The include tag includes a static file or sends a request to a dynamic file:

<jsp:include page="/jsp/datafiles/ListSort.jsp" />

<jsp:forward> The forward tag forwards a client request to an HTML file, JSP file, or servlet
for processing:

<jsp:forward page="/jsp/datafiles/ListSort.jsp" />

<jsp:plugin> The plugin tag downloads plug-in software to the Web browser to execute an
applet or JavaBeans component:

<jsp:plugin type="applet" code="Calc.class"
codebase="/utils/applets" >

Objects and scopes
When a JSP processes a request, it has access to a set of implicit objects, each
of which is associated with a given scope. Other objects can be created in
scripts. These created objects have a scope attribute that defines where the
reference to that object is created and removed.

Scopes
There are four scopes:

• Page – accessible only in the page in which the object is created. Released
when the response is returned or the request forwarded.

• Request – accessible from pages processing the request in which the object
is created. Released when the request has been processed.

• Session – accessible from pages processing requests in the same session in
which the object is created. Released when the session ends.

• Application – accessible from pages processing requests in the same
application in which the object is created. Released when the runtime
environment reclaims the ServletContext.

References to the object are stored in the PageContext, Request, Session, or
Application object, according to the object’s scope.

CHAPTER 24 Creating JavaServer Pages

Programmer’s Guide 443

Implicit objects
The following implicit objects are always available within scriptlets and
expressions:

• request – the request triggering the service invocation.

• response – the response to the request.

• pageContext – the page context for this JSP.

• session – the session object created for the requesting client (if any).

• application – the servlet context obtained from the servlet configuration,
as in the call getservletConfig().getContext().

• out – an object that writes to the output stream.

• config – the ServletConfig for this JSP.

• page – the instance of this page’s implementation class that is processing
the current request. A synonym for this when the programming language
is Java.

For information about the scope and type of each implicit object, see the
JavaServer Pages Syntax Card at http://java.sun.com/products/jsp/syntax.pdf.

The exception implicit
object

If the JSP is an error page (the page directive’s isErrorPage attribute is set to
true), the following implicit object is also available:

• exception – the uncaught Throwable that resulted in the error page being
invoked.

For more information, see “Error handling” on page 446.

Application logic in JSPs
The application logic in JSPs can be provided by components such as servlets,
JavaBeans, and EJBs, customized tag libraries, scriptlets and expressions.
Scriptlets and expressions hold the components and tags together in the page.

JavaBeans You can easily use JavaBeans components in a JSP with the useBean directive.
For more information, see “<jsp:useBean>” on page 441.

Application logic in JSPs

444 EAServer

Enterprise JavaBeans To use an EJB component, write a scriptlet that uses JNDI to establish an initial
naming context for the EJB’s home interface. For more information about
establishing the naming context and calling remote methods on the EJB’s home
interface, see Chapter 8, “Creating Enterprise JavaBeans Clients.” This
example, HotSpots.jsp, uses an EJB called HotSpots to return a list of places to
go that fit a category and date requirement passed in the HTTP request:

<HTML>
<HEAD></HEAD><BODY>
<%@ page language="java" import="hotspots.*"

session="true" errorPage="ErrorPage.jsp" %>
<%@ include file="header.htm" %>
<h1>HotSpots</h1>
<%-- GET SEARCH PARAMETERS FROM REQUEST OBJECT --%>
<%

String category =
request.getParameter("category");

String date = request.getParameter("date");
%>
<%-- CREATE FORM WITH SEARCH PARAMETERS --%>
<form action="HotSpots.jsp">

<table border=0>
<tr><td>Category:</td><td>
<input name="category" value="<%= category %>">
</td></tr>
<tr><td>Date:</td><td><input name="date"

value="<%= date %>"></td>
</tr>
</table>

<input type="submit" value="Search">

</form>
<%-- INSERT TABLE TO SHOW RESULTS AND USE SCRIPTLET TO
GET A REFERENCE TO THE HOTSPOTS HOME INTERFACE AND GET
A RESULT SET--%>
<p><table border=1 cellpadding=4>
<tr><th>Book</th><th>Place</th><th>Date</th>

<th>Price</th></tr>
<%
if (category !=null && date!=null) {
 try {
 java.util.Properties

p = new java.util.Properties();
p.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,

"com.sybase.ejb.InitialContextFactory");
p.put(javax.naming.Context.PROVIDER_URL,

"iiop://localhost:9000");

CHAPTER 24 Creating JavaServer Pages

Programmer’s Guide 445

p.put(javax.naming.Context.SECURITY_PRINCIPAL,
"jagadmin");

p.put(javax.naming.Context.SECURITY_CREDENTIALS,
 "");

javax.naming.InitialContext ctx =
new javax.naming.InitialContext(p);

HotSpotsHome home = (HotSpotsHome)
ctx.lookup("HotSpots");

HotSpots hotSpots = home.create();
java.sql.ResultSet rs =

com.sybase.helper.IDL.getResultSet(
hotSpots.getList(category, date));

while (rs.next()) {
%>
<%-- POPULATE TABLE WITH RESULT SET --%>
<tr><td><a href=Payment.jsp?trip=

<%= rs.getInt("trip_id") %>
&amount=<%= rs.getDouble("price") %> >
</td>

<td><%= rs.getString("place") %></td>
<td><%= rs.getDate("date") %></td>
<td><%= rs.getDouble("price") %></td>
</tr>

<%-- CLOSE WHILE LOOP AND TRY CATCH BLOCK --%>
<%

}
 } catch (Exception e) {

out.println(e);
 }
}
%>
</table>
</BODY></HTML>

Customized tag
libraries

Customized tag libraries, also called tag extensions, extend the capabilities of
JSPs. Tag libraries define a set of actions to be used within a JSP for a specific
purpose, such as handling SQL requests.

JSP authors can use tag libraries whether they are editing a page manually or
using an authoring tool. To associate a tag library with the page, the page author
uses a taglib directive that identifies the tag library’s URI (see “Taglib
directive” on page 440). The URI identifying the tag library is associated with
a Tag Library Descriptor (TLD) file and with tag handler classes. Tag libraries
are usually packaged as JAR files with a tag library descriptor file named
META-INF/taglib.tld.

Error handling

446 EAServer

A tag handler is a Java class that defines the semantics of an action. The
implementation class for the JSP instantiates a tag handler object for each
action in the page. Tag handler objects implement the
javax.servlet.jsp.tagext.Tag interface which defines basic methods required by
all tag handlers, including doStartTag and doEndTag. The BodyTag interface
extends the Tag interface by adding methods that enable the handler to
manipulate its body.

You can use the same tag library in multiple Web applications by placing the
JAR file containing the tag library in the EAServer extensions subdirectory.

Error handling
When a client request is processed, runtime errors can occur in the body of the
implementation class for the JSP or in Java code that is called by the page.
These exceptions can be handled in the code in the JSP using the Java
language’s exception mechanism.

Uncaught exceptions Any exceptions that are thrown from the body of the implementation class and
are not caught can be handled using an error page that you specify using a page
directive. Both the client request and the uncaught exception are forwarded to
the error page. The java.lang.Throwable exception is stored in the
javax.ServletRequest instance for the client request using the putAttribute
method, using the name javax.servlet.jsp.jspException.

Using an error page
JSP

If you specify a JSP as the error page, you can use its implicit exception
variable to obtain information about the exception. The exception variable is of
type java.lang.Throwable and is initialized to the Throwable reference when the
uncaught exception is thrown.

To specify an error page for a JSP, set its errorPage attribute to the URL of the
error page in a page directive:

<%@ page errorPage="ErrorPage.jsp" %>

To define a JSP as an error page, set its isErrorPage attribute to true in a page
directive:

<%@ page isErrorPage="true" %>

This sample error page JSP uses the exception variable’s toString method to
return the name of the actual class of this object and the result of the
getMessage method for the object. If no message string was provided, toString
returns only the name of the class.

CHAPTER 24 Creating JavaServer Pages

Programmer’s Guide 447

The example also uses the getParameterNames and getAttributeNames methods
of the request object to obtain information about the request.

<%@ page language="java" import="java.util.*"
isErrorPage="true" %>

<H1 align="Center">Exceptions</H1>

<%= exception.toString() %>
<%! Enumeration parmNames; %>
<%! Enumeration attrNames; %>

Parameters:
<% parmNames = request.getParameterNames();

while (parmNames.hasMoreElements()) {
%>

<%= parmNames.nextElement().toString() %>
<%

}
%>

Attributes:
<% attrNames = request.getAttributeNames();

while (attrNames.hasMoreElements()) {
%>

<%= attrNames.nextElement().toString() %>
<%

}
%>

Using JSPs in EAServer
For JSPs to run in EAServer, they must belong to a Web application. In
addition, you can map servlets to JSPs. When the servlet is called, the
corresponding JSP is invoked. This section discusses:

• “JSP and EAServer overview” on page 448

• “JSP 1.2 highlights” on page 449

• “JSP file locations” on page 451

• “Creating and configuring JSPs in EAServer” on page 452

• “Mapping JSPs” on page 454

• “Page caching” on page 455

• “Filters” on page 455

Using JSPs in EAServer

448 EAServer

JSP and EAServer overview
EAServer fully supports the features described in the JavaServer Pages 1.2
specification as well as mapping requests to JSPs as described in the Java
Servlet 2.3 specification. In EAServer the JSP Engine is implemented as a
generic servlet, which is referred to as the JSP servlet. The JSP servlet handles
runtime translation and compilation of JSPs, if required, as well as invoking the
generated servlet for a given JSP.

The JSP servlet supports translation of JSPs containing JSP standard
directives, standard actions, custom tags and scripting elements such as
declarations, scriptlets and expressions. For JSPs that include custom JSP tags,
a tag handler is loaded every time it is needed. Tag handlers are not pooled. The
JSP servlet also supports all the semantics associated with the “extends”
attribute.

A Web application is a collection of resources that is mapped to a specific
Uniform Resource Identifier (URI) prefix. These resources may include JSPs,
servlets, HTML files, and images. The URI that is stored in the request data
structure is used to retrieve a JSP. The JSP Servlet creates a unique name for a
generated servlet. Generated servlet names are stored in a hash table. For a
given request URI, the JSP Servlet determines which generated servlet name it
corresponds to. It then looks up the generated servlet name in the hash table;
an entry in the hash table indicates that the JSP has been precompiled.

If a JSP is not precompiled, the JSP servlet invokes the compiler and saves the
generated files in the appropriate directory. It then executes the page by
invoking the _jspService method on the generated servlet.

If a JSP is precompiled, the JSP servlet compares the timestamp of the JSP and
all its nested include files, if any, with the timestamp of the generated servlet.
If any time stamp of the JSP is more recent than that of the generated servlet,
the JSP is recompiled. If the generated servlet is current, the JSP Servlet creates
a new instance of the precompiled servlet class and calls _jspService method
on it.

The JSP Servlet uses CLASSPATH from ServletConfig for compiling the
generated servlet. To change the directory where servlets are generated, set the
“scratchdir” parameter as one of the parameters in ServletConfig. “scratchdir”
is passed to the “init” method on the JSP Servlet; you can set it by using one of
the init-args on the Servlet Properties tab.

CHAPTER 24 Creating JavaServer Pages

Programmer’s Guide 449

JSP 1.2 highlights
The JSP 1.2 specification extends JSP 1.1 in a number of ways:

• Uses Servlet 2.3 as the foundation for its semantics.

• Defines the XML syntax for JSPs.

• Provides for translation-time validation of JSPs.

A new compilation phase has been added that gives custom tag libraries
the opportunity to examine an XML view of the parsed page, and throw a
translation time exception if problems are detected.

• The ability for tag libraries to include event listener classes. The listeners
are listed in the tag library descriptor and the JSP container automatically
instantiates the listener classes and registers them in a similar way to
web.xml. Essentially, the mechanism locates the TLDs in the Web
Application (either in WEB-INF/classes or WEB-INF/lib), reads their
<listener> elements, and regards them as an extension of those listed in
web.xml.

• Better specification of the tag handler contract – tag handlers are Java
classes that implement specific servlet interfaces. JSP 1.2 introduces some
new interfaces and changes some existing interfaces to provide better
support.

• Improvements on authoring support – extends tag library functionality.

• Better I18N support – implements the
javax.servlet.ServletResponse.setContentType() method to
provide support for dynamic content-type.

• Fixes the “flush before you include” limitation in JSP 1.1.

For detailed information about JavaServer Pages technology, see the Java
software Web site at http://java.sun.com/products/jsp.

Compiling JSPs
When you create a JSP using EAServer Manager, the load during startup option
determines if your JSPs are compiled at server start-up or when the JSP is first
called. You can also use a command-line utility to compile your JSPs manually.
This allows you to debug and test your JSPs without running the server. This
section describes the JSP compiler supplied with your EAServer installation.

Using JSPs in EAServer

450 EAServer

jspc compiler The %JAGUAR%\bin\jspc.bat (Windows) and $JAGUAR/bin/jspc.sh (UNIX)
compiler provides you with several options for compiling your JSPs. This
section uses jspc.sh for demonstration purposes. All options are valid for both
systems.

You can also compile JSPs with the jagtool or jagant compilejsp command. For
details, see Chapter 12, “Using jagtool and jagant,” in the EAServer System
Administration Guide.

Usage

 jspc.sh <options> <jsp files>|<jsp dirs>

options include:

• -webapp <dir> The name of the Web application directory, relative to
the $JAGUAR/Repository/WebApplication directory. For example,
MyWebApp identifies the
$JAGUAR/Repository/WebApplicationMyWebApp directory.

• -uriroot <dir> Complete path name of the Web application directory. For
example, $JAGUAR/Repository/WebApplication/MyWebApp.

• -d <dir> The name of the output directory to which the compilation
results are stored.

• -keep Keep the generated Java source files.

jsp files include any number of:

• <file> A file to be parsed as a JSP.

• -jspdir <dir> A directory containing a Web-app, all JSPs are recursively
parsed.

Examples This section provides examples of the various jspc compiler options:

jspc.sh -webapp MyWebApp /pets/cat.jsp /pets/dog.jsp

The compiler identifies the $JAGUAR/Repository/WebApplication/MyWebApp
directory as the Web application directory and compiles the cat.jsp and dog.jsp
files located in the $JAGUAR/Repository/WebApplication/MyWebApp/pets
directory.

jspc.sh -uriroot
$JAGUAR/Repository/WebApplicaton/MyWebApp -d
$JAGUAR/work /pets/cat.jsp /pets/dog.jsp

CHAPTER 24 Creating JavaServer Pages

Programmer’s Guide 451

The compiler identifies the $JAGUAR/Repository/WebApplication/MyWebApp
directory as the Web application directory and compiles the cat.jsp and dog.jsp
files, which are located in the pets subdirectory, and outputs the results to the
$JAGUAR/work directory.

jspc.sh -uriroot
$JAGUAR/Repository/WebApplicaton/MyWebApp -d
$JAGUAR/work -jspdir
$JAGUAR/Repository/WebApplicaton/MyWebApp

The compiler identifies the $JAGUAR/Repository/WebApplication/MyWebApp
directory as the Web application directory and compiles all JSP files contained
in it and any subdirectories, and outputs the results to the $JAGUAR/work
directory.

jspc.sh -uriroot
$JAGUAR/Repository/WebApplicaton/MyWebApp -d
$JAGUAR/work -keep /pets/dog.jsp /pets/cat.jsp

the -keep option notifies the compiler to keep all generated Java files in the
output directory, along with the compiled JSP files.

JSP file locations
JSPs are contained within Web applications. JSP source code and class files are
stored relative to the Web application to which it belongs.

Saving Java source code

Normally, EAServer deletes the Java source code after compiling a JSP. To
keep the generated source code to view or use in a debugger:

1 Display the properties for the Web application in which the JSP is
installed.

2 On the Advanced tab, set the property
com.sybase.jaguar.webapplication.keepgenerated to true.

Source and class file locations

When the source code is preserved, you can find it in the same directory as the
JSP class files. In the default configuration, EAServer maintains a separate JSP
class directory for each server in your EAServer installation:

work\server\Servlet\WebApp-WAName

Using JSPs in EAServer

452 EAServer

Where server is the name of your server, and WAName is the name of your
Web application.

You can enable sharing of class files by setting the Web application property
com.sybase.jaguar.webapplication.sharecompiledjspclasses to true. If sharing
is enabled, EAServer compiles and loads JSP classes from the directory:

Repository/WebApplication/WebAppName/WEB-INF/classes

Where WebAppName is the Web application name.

Creating and configuring JSPs in EAServer
JSPs in EAServer must be created in a Web application. If necessary, create the
Web application to contain the JSPs as described in Chapter 21, “Creating Web
Applications.” You can create new JSPs in EAServer Manager or import them
from existing JSP source files.

❖ Creating or importing JSPs

1 In EAServer Manager, select the Web Application folder.

2 Select an existing Web application to which you are adding a JSP, then
import the JSP or create a new one as follows:

• Creating new JSP files Select File | New Web Component. Enter
the name of the Web component (JSP) and click OK.

EAServer creates the JSP under the Web applications folder. For
example, if you name your JSP testjsp and it belongs to the
MyWebApp application, then the location is
EAServer_home/Repository/WebApplication/MyWebApp/testjsp.

• Importing JSP files If you have existing JSPs that you want to add
to your Web application or if you create JSPs with another editing
tool, you can copy them to this location, making sure the JSP you
copy and the name you enter for the JSP match.

❖ Configuring the JSP properties

To configure your JSP, double-click the JSP or highlight the JSP and select File
| Web Application Component Properties. Complete the information described
below:

1 General properties – select this tab to enter general parameters for your
JSP:

• Description – a brief description of the JSP file.

CHAPTER 24 Creating JavaServer Pages

Programmer’s Guide 453

• Web Component Type – select JSP.

• JSP File Name – the name and path of the JSP file. The path is relative
to the Web application context. For example, if you enter
/work/test.jsp, the JSP will be placed in
EAServer/Repository/WebApplication/appname/work/test.jsp, where
EAServer is the EAServer installation directory and appname is the
Web application name. The JSP file must include the .jsp extension.

• Startup Load Sequence Position – enter a number that indicates when
the JSP loads in relation to other JSP files when the Web application
starts. This option applies only if Load During Startup is true. The
lower the number the earlier it loads; 1 indicates that this JSP loads
first. If a JSP is dependent on another JSP that requires time to
initialize, specify the JSP that requires additional initialization time to
load first. JSPs with a startup load sequence position of 0 loads last.

• Load During Startup – this option compiles and translates the JSP into
a servlet at start-up. If you do not select this option, the JSP is
compiled when it is first called.

2 Init-Args – select this tab to enter the initialization parameters associated
with the JSP. If your JSP uses externally configured parameters, add or
modify the values with the controls on this tab:

• Add – enter the Initialization Property Name. Add a default value for
your parameter in the Property Value window.

• Modify – highlight the argument you want to modify and click
Modify. Make your modifications and click OK.

• Delete – highlight the argument you want to delete and click Delete.

3 Advanced – to improve JSP performance, set the value of the
com.sybase.jaguar.webapplicaton.jspc-interval property, which determines
if and when the JSP runtime checks whether a JSP is current. Set the
property value to an integer.

• If set to a negative number, the JSP runtime never checks.

• If set to 0, the JSP runtime always checks.

• To specify the number of seconds before the next check, set the value
to a number greater than 0. If a request comes in before the time
expires, the JSP is not checked.

Complete the rest of the properties as you would for a servlet.

Using JSPs in EAServer

454 EAServer

To configure security for your JSP, see Chapter 3, “Using Web Application
Security,” the EAServer Security Administration and Programming Guide.

❖ Editing the JSP source

EAServer supplies an editor for creating and modifying your JSP files;
however, you can use any text editor to perform the same tasks. To edit the JSP
in EAServer Manager:

1 Open the Web Application folder and select the Web application to which
the JSP belongs.

2 Highlight the JSP.

3 Select File | Edit JSP. An editor displays where you can view and modify
your JSP. Locate other files for editing by selecting File | Open. When you
are finished, select File | Save.

❖ Deleting a JSP

1 Open the Web Application folder and select the Web application to which
the JSP file belongs.

2 Highlight the JSP.

3 Select File | Delete Web Application Component.

Internationalization
EAServer supports international versions of your Web application resources:
Servlets, static Web pages, and so on. For more information, see “Localizing
Web applications” on page 401.

Mapping JSPs
EAServer supports path mappings as described in the Java Servlet 2.3
specification. Mappings are defined at the Web application level. Refer to
Chapter 21, “Creating Web Applications” for information about Request path
mappings.

CHAPTER 24 Creating JavaServer Pages

Programmer’s Guide 455

Page caching
EAServer supports page caching, which improves the performance of servlet
and JSP requests. When page caching is enabled for a servlet or JSP Web
component, the cache is checked before invoking the Web component. For
more information, see “Dynamic page caching” in Chapter 5, “Web
Application Tuning,” in the EAServer Performance and Tuning Guide.

Filters
EAServer supports servlet filters as described in the Java Servlet 2.3
specification. Filters are defined at the Web application-level. For information
on creating filters, see Chapter 23, “Using Filters and Event Listeners.”

Using JSPs in EAServer

456 EAServer

P A R T 8 Advanced Features

This part explains how to use advanced features such as
connection caching, result sets, messaging, threads, or
pseudocomponents.

Programmer’s Guide 459

C H A P T E R 2 5 Sending Result Sets

This chapter describes how component methods can return results to the
client that called them.

Overview
Component methods use either Java classes or Server-Library C routines
to send rows, as follows:

• Java components send results sets with the classes in the
com.sybase.jaguar.sql package, as discussed in “Sending result sets
with Java” on page 460.

• PowerBuilder components send result sets with the DataStore,
ResultSet, and ResultSets interfaces, as described in “Sending result
sets from a PowerBuilder component” on page 465.

• ActiveX components send result sets with the IJagServerResults
interface, as described in “Sending result sets from an ActiveX
component” on page 466.

• C components call EAServer C-language routines to send rows, as
described in “Sending result sets from a C or C++ component” on
page 471.

Topic Page
Overview 459

Sending result sets with Java 460

Sending result sets from a PowerBuilder component 465

Sending result sets from an ActiveX component 466

Sending result sets from a C or C++ component 471

Sending result sets with Java

460 EAServer

Components that interact with third-tier servers should use EAServer’s
Connection Management feature to realize improved performance. See
Chapter 26, “Using Connection Management” for more information.

Note When you are defining a method in EAServer Manager, be sure to
indicate whether the method returns row results.

Sending result sets with Java
Java components send results sets with the interfaces in the
com.sybase.jaguar.sql package:

• Methods in the JServerResultSetMetaData interface define the format of
rows in a result set.

• Methods in the JServerResultSet interface define column values for rows
in a result set and send the rows to the client.

The JContext class contains static factory methods to return objects that
implement these interfaces.

Chapter 1, “Java Classes and Interfaces,” in the EAServer API Reference
contains reference pages for all classes and interfaces.

Note You cannot send a result set unless the IDL definition of the component
method returns TabularResults::ResultSet or TabularResults::ResultSets.

Methods in Java components that use Java/IDL datatypes must be declared to
return TabularResults.ResultSet or TabularResults.ResultSet if the method
returns result sets. However, you can still use the JServerResultSetMetaData
and JServerResultSet interfaces to implicitly return results. Just return null as
the method’s return value. Alternatively, you can construct the equivalent Java
datatypes for the IDL TabularResults::ResultSet and TabularResults::ResultSets
types. Call the getResultSet method in the class com.sybase.CORBA.jdbc11.IDL
to convert a java.sql.ResultSet instance into a TabularResults.ResultSet instance
that can be returned by the method.

CHAPTER 25 Sending Result Sets

Programmer’s Guide 461

Forwarding a ResultSet object
You can use the steps below to forward results from a JDBC query directly to
the client:

1 Query the remote server. Use java.sql.Statement or one of its extensions;
the appropriate method depends on the query being sent.

2 Handle the results of the query. For each ResultSet returned by the query,
call JContext.forwardResultSet(ResultSet) to forward the rows to the client.

3 If your component uses IDL/Java datatypes, return null as the method’s
return value.

For an example that calls JContext.forwardResultSet(ResultSet), see “Java
Connection Manager example” on page 483. You can find more examples in
the source for the EAServer sample Java components, available in your
EAServer installation directory.

Instead of calling JContext.forwardResultSet(ResultSet), Java components that
use IDL/Java datatypes can call the IDL.getResultSet(java.sql.ResultSet)
method to convert ResultSet object to TabularResults.ResultSet object, then
return the converted object as the method’s return value.

Sending results row-by-row
Use the sequence of calls below to define and send a result set row-by-row. Use
these calls when building a result set from a non-JDBC source, or when the
java.sql.ResultSet returned by a database query cannot be sent as-is to the
client.

JServerResultSet sequence of calls

Here are the calls to construct a result set and send it row-by-row:

1 Create a JServerResultSetMetaData object by calling
JContext.createServerResultSetMetaData().

2 Call the JServerResultSetMetaData methods to define the format of the
result rows, as follows:

a JServerResultSetMetaData.setColumnCount(int) to specify the number
of columns in each row.

b For each column, call JServerResultSetMetaData.setColumnType(int,
int) to specify the datatype.

Sending result sets with Java

462 EAServer

c For columns that have a variable length datatype, call
JServerResultSetMetaData.setColumnDisplaySize(int, int) to specify
the maximum length for column values.

d Call other JServerResultSetMetaData methods to specify other
column attributes as needed.

3 Create a JServerResultSet object by calling
JContext.createServerResultSet().

4 Call JServerResultSet.next() to position the result set’s cursor at the first
row.

5 For each row to be sent:

• For each column, call the appropriate
JServerResultSet.set<Object>(int, <Object>) method to set the column
value.

• Call JServerResultSet.next() to send the row.

6 If sending a single result set or if using JDBC types, call
JServerResultSet.done() to indicate that all rows have been sent in the
current result set.

7 If your component uses IDL/Java datatypes, use the
com.sybase.CORBA.IdlResultSet class to convert the result set to a
TabularResults.ResultSet instance. See Chapter 1, “Java Classes and
Interfaces,” in the EAServer API Reference for details.

You can repeat steps 4 to 6 to send or create another result set that has the same
metadata using the same JServerResultSet object. Repeat steps 1 to 6 to send
or create another result set that requires different metadata.

You cannot return multiple result sets unless the method’s IDL definition
returns TabularResults::ResultSets.

JServerResultSet example

The example method below sends three rows with three columns each. Note
that exceptions are not caught in the example; the server logs any uncaught
exceptions that are thrown in a method call:

public void send_rows (IntegerHolder ih) throws
JException, SQLException

{

// Declare the constant ’pi’

CHAPTER 25 Sending Result Sets

Programmer’s Guide 463

final double pi = 3.1414; // Create the metadata object.
JServerResultSetMetaData

jsrsmd = JContext.createServerResultSetMetaData();

// There will be 3 columns in the result set.
jsrsmd.setColumnCount(3);

// The first column has datatype INTEGER and name ’one’.
jsrsmd.setColumnType(1, Types.INTEGER);
jsrsmd.setColumnName(1, "one");

// The second column has datatype VARCHAR and name ’two’.
jsrsmd.setColumnType(2, Types.VARCHAR);
jsrsmd.setColumnName(2, "two");

// The third column has datatype DOUBLE and name ’three’.
jsrsmd.setColumnType(3, Types.DOUBLE);
jsrsmd.setColumnName(3, "three");

// Create the result set object.
JServerResultSet jsrs = JContext.createServerResultSet(jsrsmd);

// Position the cursor.
jsrs.next();

// First row values: 1, "first", pi
jsrs.setInt(1, 1);
jsrs.setString(2, "first");
jsrs.setDouble(3, pi);

// Send the row.
jsrs.next();

// Second row values: 2, "second", pi * 2
jsrs.setInt(1, 2);
jsrs.setString(2, "second");
jsrs.setDouble(3, pi * 2.0);

// Send the row.
jsrs.next();

// Third row values: 3, "third", pi * 3
jsrs.setInt(1, 3);
jsrs.setString(2, "third");
jsrs.setDouble(3, pi * 3.0);

Sending result sets with Java

464 EAServer

// Send the row.
jsrs.next();

// Demarcate the end of the result set by calling done().
jsrs.done();

}

The fragment below shows client-side code to call the stub and print the rows
to the console. For more information about coding the client to retrieve result
sets from components, see “Return result sets” on page 203.

try {
ih = new IntegerHolder();
comp.send_rows(ih);

ResultSet rs = comp.getResultSet();
ResultSetMetaData rsmd = rs.getMetaData();

StringBuffer row = new StringBuffer("");
for (int i = 1; i <= rsmd.getColumnCount(); i++)
{

row.append(rsmd.getColumnName(i));
if (i < rsmd.getColumnCount())
row.append("\t");

}

System.out.println(row);

while(rs.next())
{

row = new StringBuffer("");
for (int i = 1; i <= rsmd.getColumnCount(); i++)
{
row.append(rs.getString(i));
if (i < rsmd.getColumnCount())
row.append("\t");

}
System.out.println(row);

}

// Discard any remaining results.
while(comp.getMoreResults())
{

rs = comp.getResultSet();
}

}

CHAPTER 25 Sending Result Sets

Programmer’s Guide 465

catch (Exception e) {
System.out.println("Exception: " + e.getMessage());
e.printStackTrace();

}

Sending result sets from a PowerBuilder component
This section briefly summarizes how PowerBuilder components return result
sets. For detailed instructions, see the Application Techniques manual in the
PowerBuilder documentation.

ResultSet objects PowerBuilder components use DataStore objects to store and manipulate result
sets. The DataStore works like a DataWindow object, except that it has no visual
attributes.

Result sets are returned and retrieved using these PowerBuilder objects:

• ResultSet Represents a single result set to be returned to the client. You
cannot directly manipulate the contents. Instead, call the DataStore
functions discussed below to populate a ResultSet from the contents of a
DataStore or vice-versa. Methods in the component interface that return
the TabularResults::ResultSet IDL type are represented by PowerBuilder
functions that return ResultSet.

• ResultSets Holds a list of 0 or more ResultSet instances; the list is stored
as the ResultSetList property. Methods in the component interface that
return the TabularResults::ResultSets IDL type are represented by
PowerBuilder functions that return ResultSets.

Forwarding result sets You can retrieve result sets from a remote database and forward them to a client
as follows:

1 When results are ready to be retrieved, associate the transaction object
with a DataStore instance by calling the DataStore.SetTransObject
function.

2 Populate the DataStore by calling the Retrieve function.

3 Call the DataStore.GenerateResultSet function and assign the returned
object to a ResultSet instance.

4 If the method returns ResultSets, add the result set to the list in the
ResultSets.ResultSetList property. Otherwise, return the result set directly.

Sending result sets from an ActiveX component

466 EAServer

Sending result sets from an ActiveX component
ActiveX methods return row results using the IJagServerResults interface.
Both a custom (native C++) and IDispatch version of the interface are available,
as documented in these chapters of the the EAServer API Reference:

• Chapter 2, “ActiveX C++ Interface Reference”

• Chapter 3, “ActiveX IDispatch Interface Reference”

To use these methods in your component, you must first register the
jagaxwrap.dll programmable object on your machine. If you are developing on
a machine that has EAServer installed on it, jagaxwrap.dll is already
registered.

The following sections describe the two methods for returning result sets:

• “Forwarding a result set with ResultsPassthrough” on page 466 describes
how to forward an ODBC or Client-Library result set to the client. Use this
method when you want to send query results as-is.

• “Sending results row-by-row” on page 466 describes the sequence of calls
to define a result set’s columns and send the result set row-by-row. Use this
method when you must manufacture a result set from scratch. You can also
use this method to filter rows or columns from the results of a remote-
database query.

Note You cannot send a result set unless the IDL definition of the
component method returns TabularResults::ResultSet or
TabularResults::ResultSets.

Forwarding a result set with ResultsPassthrough
You can call the ResultsPassthrough method after you have sent a remote-
database query with ODBC or Client-Library calls. This method passes either
the current result set or all the result sets on the connection (or command). See
the ResultsPassthrough reference page for examples.

Sending results row-by-row
The steps below describe the call sequence for sending a result set from
scratch.

CHAPTER 25 Sending Result Sets

Programmer’s Guide 467

1 Instantiate an IJagServerResults interface pointer.

2 Call BeginResults, specifying the number of columns in the result set.

3 For each column, call DescribeCol to describe the column number, column
name, length of the column name, datatype, precision, and size of the
column. If a column represents a cash value, call ColAttributes to set the
“COLUMN_MONEY” attribute.

This step and the next step may be combined; you can describe columns
and bind them in the same loop.

4 For each column, call BindCol, specifying the size and location of the
variable where the column’s data value and length can be read.

5 For each row, update the variables containing the column’s data value and
length, then call SendData to send the row to the client.

6 Call EndResults after all rows have been sent.

Result sets row-by-row: C++ example

The C++ fragment below shows an ActiveX method implementation that
returns a result set:

// EAServer includes
#include <stdio.h>
#include <sql.h>
#include <jagctx.h>
#include <JagAxWrap.h>
#include <JagAxWrap_i.c>
#include <jagpublic.h>

STDMETHODIMP CAXRSDemo::SendRows()
{

HRESULT hr;
IJagServerResults *p_ijsrs;
CLSID clsid_jsrs;
BSTR colName;
BSTR SQLType;
VARIANTARG bindVar;
long rowCount;
LONG intCol;
short intColInd = 0;
BSTR strCol;
short strColInd = 0;
DOUBLE doubleCol;
short doubleColInd = 0;

Sending result sets from an ActiveX component

468 EAServer

// Create an IJagServerResults interface pointer
hr = CLSIDFromProgID(

L"Jaguar.JagServerResults.1",
&clsid_jsrs);

// ... Deleted error checking ...
hr = CoCreateInstance(clsid_jsrs, NULL,

CLSCTX_INPROC_SERVER,
IID_IJagServerResults,
(void**)&p_ijsrs);

// ... Deleted error checking ...

// Result set has three columns.
hr = p_ijsrs->BeginResults(3);
// ... Deleted error checking ...

//
// First column has datatype SQL_INTEGER,
// has name "one", and can be NULL.
//
colName = SysAllocString(L"one");
SQLType = SysAllocString(L"SQL_INTEGER");
hr = p_ijsrs->DescribeCol(1, colName, SQLType,

sizeof(intCol), 0, 0,
VARIANT_TRUE);

// ... Deleted error checking ...

//
// Bind first column to intCol
//
VariantInit(&bindVar);
bindVar.vt = VT_I4 | VT_BYREF;
bindVar.plVal = &intCol;

hr = p_ijsrs->BindCol(1, bindVar, sizeof(intCol),
&intColInd);

// ... Deleted error checking ...

//
// Second column has datatype SQL_VARCHAR,
// maximum length 32, name "two", and can
// be null.
//
hr = SysReAllocString(&colName, L"two");
// ... Deleted error checking ...

hr = SysReAllocString(&SQLType, L"SQL_VARCHAR");

CHAPTER 25 Sending Result Sets

Programmer’s Guide 469

// ... Deleted error checking ...

hr = p_ijsrs->DescribeCol(2, colName, SQLType,
32, 0, 0,
VARIANT_TRUE);

// ... Deleted error checking ...

//
// Allocate a BSTR and bind the second column
// to it. Later,

we’ll use SysReAllocString() to set
// values for transfer.
//
strCol = SysAllocString(L"");
VariantInit(&bindVar);
bindVar.vt = VT_BSTR | VT_BYREF;
bindVar.pbstrVal = &strCol;
// ... Deleted error checking ...

//
// Third column has datatype SQL_DECIMAL with
// precision of 5 and scale of 3
// Column name is "three", and the column can be n

ull.
//
hr = SysReAllocString(&colName, L"three");
// ... Deleted error checking ...

hr = SysReAllocString(&SQLType, L"SQL_DECIMAL");
// ... Deleted error checking ...

hr = p_ijsrs->DescribeCol(3, colName, SQLType,
0, 5, 3,
VARIANT_TRUE);

// ... Deleted error checking ...

//
// Bind the third column to doubleCol.
//
VariantInit(&bindVar);
bindVar.vt = VT_R8 | VT_BYREF;
bindVar.pdblVal = &doubleCol;
// ... Deleted error checking ...

//

Sending result sets from an ActiveX component

470 EAServer

// Now send the rows.
//
rowCount = 0;
// First row: 1, "uno", 3.141
intCol = 1;
hr = SysReAllocString(&strCol, L"uno");
// ... Deleted error checking ...

doubleCol = 3.141;
hr = p_ijsrs->SendData();
// ... Deleted error checking ...

++rowCount;
// Second row: 2, "dos", 6.282
intCol = 2;
hr = SysReAllocString(&strCol, L"dos");
// ... Deleted error checking ...

doubleCol = 6.282;
hr = p_ijsrs->SendData();
// ... Deleted error checking ...

++rowCount;
// Third row: 3, "tres", 9.423
intCol = 3;
hr = SysReAllocString(&strCol, L"tres");
// ... Deleted error checking ...

doubleCol = 9.423;IJagServerResults
hr = p_ijsrs->SendData();
// ... Deleted error checking ...

++rowCount;
//
// Done sending rows.
//
hr = p_ijsrs->EndResults(rowCount);
// ... Deleted error checking ...

return S_OK;

}

CHAPTER 25 Sending Result Sets

Programmer’s Guide 471

Sending result sets from a C or C++ component
C component methods return row results using the routines listed in Chapter 5,
“C Routines Reference,” in the EAServer API Reference.

This section describes the two different algorithms for returning results sets
from C components:

• “Forwarding a result set with JagResultsPassthrough” on page 471
describes how to forward an ODBC or Client-Library result set to the
client. Use this method when you want to send query results as-is.

• “Sending results row-by-row” on page 472 describes the sequence of calls
to define a result set’s columns and send the result set row-by-row. Use this
method when you must manufacture a result set from scratch. You can also
use this method to filter rows or columns from the results of a remote-
database query.

Note You cannot call C routines to send a result set unless the IDL definition
of the component method returns TabularResults::ResultSet or
TabularResults::ResultSets.

To return result sets from C++ components:

• C++ component methods that return a single result set are defined to return
a pointer to a TabularResults::ResultSet structure; use the C routines to
return a single result set, as described in “Sending results row-by-row” on
page 461, then return NULL in place of the structure pointer.

• C++ component methods that return multiple result sets must populate an
array of TabularResults::ResultSet structures. For more information, see
the generated IDL documentation for TabularResults::ResultSet under
html/ir/index.html in your EAServer installation.

Forwarding a result set with JagResultsPassthrough
In your C or C++ component, you can call JagResultsPassthrough after you
have sent a remote-database query with ODBC or Client-Library calls.
JagResultsPassthrough extracts the results from a Client-Library or ODBC
control structure and forwards them to the client. For details, see Chapter 5, “C
Routines Reference” in the EAServer API Reference.

Sending result sets from a C or C++ component

472 EAServer

Sending results row-by-row
The steps below describe the call sequence for sending a result set from
scratch.

1 Call JagBeginResults, specifying the number of columns in the result set.

2 For each column, call JagDescribeCol to describe the name, datatype, and
size of the column.

JagDescribeCol accepts either ODBC or Client-Library datatypes. If you
use ODBC datatypes, and the column represents money, call
JagColAttributes to set the column’s SQL_COLUMN_MONEY attribute.

This step and the next step may be combined; you can describe columns
and bind them in the same loop.

3 For each column, call JagBindCol, specifying the locations of variables
where the column’s data values and lengths can be read.

4 For each row, update the variables containing the column’s data value and
length, then call JagSendData to send the row to the client.

5 Call JagEndResults to indicate that all rows have been sent.

Sending a result set
using ODBC types

The example code below defines a method that returns a result set, using
ODBC datatypes to describe the columns:

#define LOG_ERROR(errtext) (CS_VOID)JagLog(JAG_TRUE,\
"sendrows_C: rows1(): " errtext “\n”)

#define MAX_STRCOL 64

/*
** Component - sendrows_C
** Method - rows1
**
** Return a small result set to the client.
**
*/
CS_RETCODE rows1(
)
{

JagStatus jsret;

SQLINTEGER intcol;
SQLINTEGER intcol_len = sizeof(SQLINTEGER);
SQLSMALLINT intcol_ind = 0;

CHAPTER 25 Sending Result Sets

Programmer’s Guide 473

SQLCHAR strcol[MAX_STRCOL + 1];
SQLINTEGER strcol_len;
SQLSMALLINT strcol_ind = 0;

SDOUBLE doublecol;
SQLINTEGER doublecol_len = sizeof(SDOUBLE);
SQLSMALLINT doublecol_ind = 0;

SQLINTEGER rowcount = 0;

/*
** Step 1: JagBeginResults() to begin sending
** a new result set. Number of columns is 3.
*/
jsret = JagBeginResults(3);
if (jsret != JAG_SUCCEED)
{

LOG_ERROR("JagBeginResults() failed.");
return CS_FAIL;

}

/*
** Steps 2 and 3: For each column, describe the
** column’s metadata and bind the column to a
** variable from which values will be
** read.
*/

/*
** First column is integer, bound to int_col.
*/
jsret = JagDescribeCol(1, JAG_ODBC_TYPE,

"First", SQL_INTEGER,
sizeof(SDWORD), 0, 0, SQL_NULLABLE);

if (jsret != JAG_SUCCEED)
{

LOG_ERROR("JagDescribeCol(1) failed.");
return CS_FAIL;

}

intcol_len = sizeof(SDWORD);
jsret = JagBindCol(1, JAG_ODBC_TYPE,

SQL_C_SLONG, &intcol,
intcol_len, &intcol_len, &intcol_ind);

if (jsret != JAG_SUCCEED)
{

Sending result sets from a C or C++ component

474 EAServer

LOG_ERROR("JagBindCol(1) failed.");
return CS_FAIL;

}

/*
** Second column is a string, bound to string_col.
*/
jsret = JagDescribeCol(2, SQL_VARCHAR, "Second",

MAX_STRCOL, 0, 0, SQL_NULLABLE);
if (jsret != JAG_SUCCEED)
{

LOG_ERROR("JagDescribeCol(2) failed.");
return CS_FAIL;

}

/*
** Length specified as MAX_STRCOL + 1 to
** allow space for null-terminator.
*/
jsret = JagBindCol(2, SQL_C_CHAR, &strcol,

MAX_STRCOL + 1, &strcol_len, &strcol_ind);
if (jsret != JAG_SUCCEED)
{

LOG_ERROR("JagBindCol(2) failed.");
return CS_FAIL;

}

/*
** Third column is a SQL_DOUBLE, bound to double_col.
** It does not allow nulls.
*/
jsret = JagDescribeCol(3, SQL_DOUBLE, "Third",

sizeof(SDOUBLE), 0, 0, SQL_NO_NULLS);
if (jsret != JAG_SUCCEED)
{

LOG_ERROR("JagDescribeCol(3) failed.");
return CS_FAIL;

}

doublecol_ind = sizeof(SDOUBLE);
jsret = JagBindCol(3, SQL_C_DOUBLE, &doublecol,

doublecol_ind, &doublecol_len, &doublecol_ind);
if (jsret != JAG_SUCCEED)
{

LOG_ERROR("JagBindCol(3) failed.");
return CS_FAIL;

CHAPTER 25 Sending Result Sets

Programmer’s Guide 475

}

/*
** Step 4: send the rows.
*/

/*
** Values for row 1:
** 1, "Uno", 1.001
*/
++rowcount;
intcol = 1;

strcpy(strcol, "Uno");
strcol_ind = strlen(strcol);

doublecol = 1.001;

jsret = JagSendData();

/*
** Values for row 2:
** 2, "Dos", 2.002
*/
++rowcount;
intcol = 2;

strcpy(strcol, "Dos");
strcol_ind = strlen(strcol);

doublecol = 2.002;

jsret = JagSendData();

/*
** Values for row 2:
** 3, "Tres", 3.003
*/
++rowcount;
intcol = 3;

strcpy(strcol, "Tres");
strcol_ind = strlen(strcol);

doublecol = 3.003;

Sending result sets from a C or C++ component

476 EAServer

jsret = JagSendData();
if (jsret != JAG_SUCCEED)
{

LOG_ERROR("JagSendData(1) failed.");
return CS_FAIL;

}

/*
** Step 5: Call JagEndResults() to say that we’re done.
*/
jsret = JagEndResults(rowcount);
if (jsret != JAG_SUCCEED)
{

LOG_ERROR("JagEndResults() failed.");
return CS_FAIL;

}

return(CS_SUCCEED);
}

Sending a result set
using Client-Library
types

The example code below defines a method that returns a result set, using
Client-Library datatypes to describe the columns:

#include <jagpublic.h>
#include <ctpublic.h>

CS_RETCODE JAG_PUBLIC getResultSet (void
{

JagStatus jsret;

CS_SMALLINT intcol_ind = 0;
CS_INT intcol_len = sizeof (CS_INT) ;
CS_INT intcol = 0 ;

CS_CHAR strcol[MAX_STRCOL + 1];
CS_INT strcol_len = 0;
CS_INT strcol_ind = 0;

char *data[] = {"one", "two", "three", "for", "five",
"six", "seven", "eight", "nine", "ten"} ;

/*
** Step 1: JagBeginResults() to begin sending
** a new result set. Number of columns is 2

CHAPTER 25 Sending Result Sets

Programmer’s Guide 477

*/
jsret = JagBeginResults(2);
if (jsret != JAG_SUCCEED)
{

LOG_ERROR("JagBeginResults() failed.");
return CS_FAIL;

}

/* type int column*/
jsret = JagDescribeCol(1, JAG_CS_TYPE, "Int Column", CS_INT_TYPE,

sizeof (CS_INT) , 0, 0, CS_CANBENULL);
if (jsret != JAG_SUCCEED)
{

LOG_ERROR("JagDescribeCol(2) failed.");
return CS_FAIL;

}

/*A columm of type string*/

jsret = JagDescribeCol(2, JAG_CS_TYPE, "StringColumn", CS_CHAR_TYPE,
MAX_STRCOL, 0, 0, CS_CANBENULL);

if (jsret != JAG_SUCCEED)
{

LOG_ERROR("JagDescribeCol(2) failed.");
return CS_FAIL;

}

jsret = JagBindCol(1, JAG_CS_TYPE , CS_INT_TYPE , &intcol ,
intcol_len, &intcol_len, &intcol_ind);

if (jsret != JAG_SUCCEED)
{

LOG_ERROR("JagBindCol(2) failed.");
return CS_FAIL ;

}

jsret = JagBindCol(2, JAG_CS_TYPE , CS_CHAR_TYPE , strcol ,
MAX_STRCOL, &strcol_ind , (CS_SMALLINT*)NULL);

if (jsret != JAG_SUCCEED)
{

LOG_ERROR("JagBindCol(2) failed.");
return CS_FAIL ;

}

/*

Sending result sets from a C or C++ component

478 EAServer

** Step 4: send the rows.
*/

/*
** Values to send
*/

for (int jj = 0 ; jj < MAXDATA ; jj++)
{
intcol = jj + 1 ;
 strcpy((char*)strcol, data[jj]);
 strcol_ind = strlen((char*)strcol) ;
 jsret = JagSendData();
 if (jsret != JAG_SUCCEED)
 {

LOG_ERROR("JagSendData(1) failed.");
return CS_FAIL;

}
}

/*
** Step 5: Call JagEndResults() to say that we're done.
*/
jsret = JagEndResults(MAXDATA);
if (jsret != JAG_SUCCEED)
{

LOG_ERROR("JagEndResults() failed.");
return CS_FAIL;

}

return CS_SUCCEED;
}

Programmer’s Guide 479

C H A P T E R 2 6 Using Connection Management

This chapter provides an overview of EAServer’s built-in connection
management features.

Overview of connection management
Connection Manager controls caches of connections that EAServer
components use to interact with third-tier servers. Connection
management allows EAServer to service hundreds of clients using only a
few third-tier database server connections.

Connection Manager provides Java classes, PowerBuilder objects, and C
routines for obtaining and releasing connections, as well as utility routines
for monitoring cache use.

When to use Connection Manager
Components that use EAServer transactions must use cached connections
to interact with remote databases. Otherwise, work done on the connection
is not affected by the outcome of the transaction.

Topic Page
Overview of connection management 479

When to use Connection Manager 479

Connection caches and security 480

Defining connection caches 481

Using Java Connection Manager classes 482

Using Connection Manager routines in C, C++, and ActiveX
components

486

Using cached connections in PowerBuilder components 495

Connection Manager guidelines 496

Connection caches and security

480 EAServer

Components that use cached connections can realize improved performance
and scalability for the following reasons:

• Improved performance – Connection Manager allows client sessions to
share previously opened third-tier connections so that server CPU time
and memory are not consumed by opening more connections than
necessary.

• Improved scalability – since connection caching allows the same number
of clients to be serviced using fewer third-tier connections, less memory
and other resources are required to maintain third-tier connections.

To realize these benefits, a component must be coded to use a cached
connection only when necessary and to release the connection back to the
cache at other times. Do not let your components hold connections while
waiting for more input from the client application. As a general rule, each
method call that requires a third-tier connection should take a connection
handle when invoked and release it before returning.

Connection caches and security
Your application may have a potential security hole if Java component
implementation classes are deployed under EAServer’s html directory. An
unauthorized user can implement a program that connects to EAServer’s
HTTP port and downloads the component’s implementation classes. The user
can then decompile the classes and gain access to potentially sensitive
information such as database passwords. To close this security hole, Sybase
recommends one of the following approaches:

• Deploy Java component implementation classes under the EAServer
java/classes subdirectory.

• Code components that retrieve connection caches to use the
getCacheByName API rather than the APIs that require a database
password.

• Implement your Java components to retrieve potentially sensitive
information from a properties file that is not located beneath the EAServer
html directory.

CHAPTER 26 Using Connection Management

Programmer’s Guide 481

Defining connection caches
A connection cache is an internal EAServer structure that maintains a pool of
available connections to a third-tier server. All connections in the cache must
share a common user name and password, all must connect to the same third-
tier server, and all must use the same connectivity library.

Use EAServer Manager to define connection caches used by your application,
as described in Chapter 4, “Database Access,” in the EAServer System
Administration Guide.

JDBC DataSource lookup
EAServer supports JNDI lookup of JDBC 2.0 DataSources to access
ConnectionPoolDataSources and XADataSources, as illustrated in the
following example. Only EJB components, Web applications, and application
clients can use this feature, and you must define a resource reference to alias
the connection cache to a JNDI name. For more information, see:

• “Configuring resource references” on page 137 – for EJB components

• “Resource references” on page 388 – for Web applications

• “Resource references” on page 181 – for application clients

JNDI access to connection caches requires JDBC 2.0 drivers Only
connection caches that use a JDBC 2.0 driver can be aliased to JNDI resources.
Specifically, the driver must implement the javax.sql.DataSource interface.

The JNDI lookup returns a DataSource interface, regardless of the cache
configuration.

_cntxtProps = New Properties();
_cntxtProps.put(Context.INITIAL_CONTEXT_FACTORY,

“com.sybase.ejb.InitialContextFactory”);
_cntxtProps.put(javax.naming.Context.PROVIDER_URL,

“iiop://<host_name>:<port>”);

nameContext = new InitalContext(_cntxtProps);

_ds =
(javax.sql.DataSource) nameContext.lookup(“java:comp/env/jdbc/myAlias2DB”);

_conn = ds.getConnection();

Using Java Connection Manager classes

482 EAServer

// use the connection

_conn.close();

Application authentication

EAServer provides application authentication by allowing you to get a JDBC
connection for a user name and password that you specify in the source code.
This feature is supported for JDBC 2.0 ConnectionPoolDataSources only. This
example gets a connection:

_ds = (javax.sql.DataSource)
nameCntxt.lookup(“java:comp/env/jdbc/myAlias2DB”);

_conn = ds.getConnection(user_name, password);

// use the connection

_conn.close();

An application authenticated connection acts as a shared connection. Since
only a single connection can be enlisted in a transaction, you cannot get two
application authenticated connections, with different user name/password
combinations in the same transaction. Attempts to do so can lead to unexpected
results.

Using Java Connection Manager classes
Java components can use the Java Connection Manager (JCM) classes to take
advantage of connection caching. The JCM classes manage JDBC
connections.

Classes
The JCM classes are:

• com.sybase.jaguar.jcm.JCMCache, which represents a configured
connection cache and provides methods to manage connections in the
cache.

CHAPTER 26 Using Connection Management

Programmer’s Guide 483

• com.sybase.jaguar.jcm.JCM, which provides access to JDBC connection
caches defined in EAServer Manager. JCM is a factory for JCMCache
instances.

These classes are documented in Chapter 1, “Java Classes and Interfaces,” in
the EAServer API Reference.

Java Connection Manager example
The example below implements a Java component that calls these JCM class
methods:

• JCM.getCache(String, String, String) – called in the constructor to obtain a
cache reference.

• JCMCache.getConnection(0) – called in the method passthru_query(String)
to obtain a connection.

• JCMCache.releaseConnection(Connection) – called by
passthru_query(String) to release the connection before the method returns.

Many JDBC programs do not explicitly clean up java.sql.Statement objects.
Instead, they rely on the JDBC driver to clean up Statement objects when the
connection is closed. This strategy does not work with cached connections; you
must explicitly clean up Statement objects before releasing a connection back
into the cache. To clean up Statement objects, call Statement.close() and set the
Statement reference to null.

 Warning! To prevent memory leaks, you must explicitly clean up a
connection’s Statement objects before releasing the connection back into the
cache. Do not release the same connection more than once.

This code also calls JContext.forwardResultSet(ResultSet) to forward result sets
from a remote server to the client:

import com.sybase.jaguar.sql.*;
import com.sybase.jaguar.server.*;
import com.sybase.jaguar.jcm.*;
import com.sybase.jaguar.util.*;

import java.io.*;
import java.sql.*;
import java.util.*;

Using Java Connection Manager classes

484 EAServer

/**
* Java class to implement rs_passthru EAServer component.
*/

class rs_passthruImpl {

JCMCache _cache = null;
private static final String _user = "dba";
private static final String _password = "sql";
private static final String _server_url =

"jdbc:odbc:Jaguar SVU Sample";

/**
* Default constructor that is called by EAServer
* when a component instance is created.
*/

public rs_passthruImpl() throws JException {

// Get a JDBC connection cache handle.
try {

_cache = JCM.getCache(_user, _password,
_server_url);

} catch (Exception e) {
Jaguar.writeLog(true, “rs_passthru(): getCache() exception”

+ e.getMessage());
_cache = null;

}
// If we can’t get a cache handle here, log an
// error message then throw an exception.
if (_cache == null)
{

Jaguar.writeLog(true,
"rs_passthru(): Could not access connection cache.”);

Jaguar.writeLog(false, "rs_passthru(): Cache may not be configured prop
erly in Jaguar Manager.");

throw new JException(
"rstest(): Could not create connection cache.");

}
} // rs_passthruImpl()
/**
* Forward the client’s query to the remote server, forward
* the results back to the client.
*/

public void passthru_query (String query)
throws JException, SQLException

{
Connection conn = null;

CHAPTER 26 Using Connection Management

Programmer’s Guide 485

Statement stmt = null;
ResultSet rs = null;
// Note that this code does not catch exceptions;
// if an exception is thrown will be caught by EAServer
// and the method invocation will fail.

// Call getConnection() to get a connection from the cache.
while (conn == null)
{
conn = _cache.getConnection(0);

}
// Create a Statement instance and use it to
// forward the query.
stmt = conn.createStatement();
boolean results = stmt.execute(query);
int update_count = -1;
// Process all the results, forwarding each result set
// to the client.
do {

if (results)
{

rs = stmt.getResultSet();
if (rs != null)

JContext.forwardResultSet(rs);
}
else
{

update_count = stmt.getUpdateCount();
}
results = stmt.getMoreResults();

} while (results || (update_count != -1));
//
// Explicitly release the Statement object.
// Otherwise, it will linger attached to the cached
// connection.
//
stmt.close()
stmt = NULL;
_cache.releaseConnection(conn);

} // passthru_query (String)

} // class rs_passthruImpl

For more Java connection management examples, see the source for the
EAServer sample Java components in your installation directory.

Using Connection Manager routines in C, C++, and ActiveX components

486 EAServer

Using Connection Manager routines in C, C++, and
ActiveX components

ActiveX, C, and C++ components can call the Connection Manager routines to
take advantage of connection caching. These routines manage caches of
ODBC, Client-Library, or Oracle Call Interface (OCI) connections.

EAServer C routines are documented in Chapter 5, “C Routines Reference,”
in the EAServer API Reference. The Connection Manager routines have names
that begin with JagCm.

ODBC connection caches

Header files

The header file jagpublic.h declares the Connection Manager routines and data
structures; the file is located in the include subdirectory of your EAServer
installation.

Include required ODBC header files before including jagpublic.h, for example:

#include <sql.h>
#include <sqlext.h>
#include <jagpublic.h>

Data structures

Most Connection Manager routines require the address of a CM_CACHE
handle as a parameter. The cache handle allows your code to refer to a specific
cache that is defined in EAServer Manager. The routines
JagCmGetCachebyName or JagCmGetCachebyUser retrieve cache handles.

ODBC uses a HDBC structure to represent a database connection. The
JagCmGetConnection routine returns the address of an HDBC structure.

CHAPTER 26 Using Connection Management

Programmer’s Guide 487

ODBC example

The following example demonstrates program logic that offers improved
performance when a matching cache is available and that still functions when
no matching cache has been configured. The example first calls
JagCmGetCachebyUser to obtain a cache handle for a cache that has matching
values for the user name (“myrtle”), password (“secret”), and server name
(“tsingtao”) and that uses ODBC. If such a cache exists, the call sets the cache
variable to the cache handle.

The example then calls JagCmGetConnection, passing the cache value as set by
JagCmGetCachebyUser, and passing explicit values for the user name, server
name, password, and connectivity library. If the cache variable contains a valid
cache reference, JagCmGetConnection looks directly in the cache for an
available connection. If cache was set to NULL or the indicated cache has no
available connections, JagCmGetConnection creates and opens a new,
uncached connection.

Code that follows the implementation strategy illustrated here can achieve
better performance when there are many configured caches. Passing the cache
handle explicitly in JagCmGetConnection eliminates repeated internal table
searches.

/* ODBC includes */
#include <sql.h>
#include <sqlext.h>
/* Connection Manager includes */
#include <jagpublic.h>

SQLRETURN ret; /* Return code catcher */
SQLHDBC *hdbc; /* ODBC connection handle */
JagCmCache cache; /* Cache handle */

/*
** Retrieve a cache handle if a matching cache is
configured.
** If not, our cache variable will be set to NULL.
*/
cache = NULL;
ret = JagCmGetCachebyUser (“myrtle”, “secret”,

“tsingtao”, “ODBC”, &cache);
/*
** Ignore the return code. If the call failed, cache
will be
** NULL and we can keep going.
*/

Using Connection Manager routines in C, C++, and ActiveX components

488 EAServer

/*
** Obtain a connection. If we have a cache handle, the
connection
** will be taken from the cache (if one is available).
Otherwise,
** the call creates a new connection.
*/
ret = JagCmGetConnection (&cache, “myrtle”, “secret”,

“tsingtao”, “ODBC”,(SQLPOINTER *)&hdbc,
JAG_CM_FORCE);

if (ret != SQL_SUCCESS)
{

... log the error ...
}

... code that uses the connection goes here ...

ret = JagCmReleaseConnection (&cache, “myrtle”,
“secret”,“tsingtao”, “ODBC”,
hdbc, JAG_CM_UNUSED);

if (ret != SQL_SUCCESS)
{

... log the error ...
}

You can call JagCmGetCachebyName rather than JagCmGetCachebyUser. For
an example, see the reference page for JagCmGetCachebyName in Chapter 5
of the EAServer API Reference.

Single-threading ODBC calls on UNIX

On UNIX platforms, ODBC calls must be single-threaded. Connection
Manager provides a cache property JAG_CM_MUTEX to be used for this
purpose. The JAG_CM_MUTEX property provides access to an Open Server
SRV_OBJID mutex structure. The structure should be obtained with
JagCmCacheProps(JAG_CM_MUTEX) and locked with the Server-Library
srv_lockmutex routine before performing any of the following calls:

• JagCmGetConnection and JagCmReleaseConnection calls on ODBC
caches.

• All ODBC calls.

The lock should be released as soon as the operation is complete.

CHAPTER 26 Using Connection Management

Programmer’s Guide 489

The sample C components contain code that demonstrates how to single-thread
ODBC calls.

This requirement should be temporary. A solution that eliminates the need for
single-threading is planned for a future release.

Client-Library connection caches
To support Client-Library connection caches, EAServer includes a native
threaded version of Open Client Client-Library using the shared library
libjct_r.sl. This version supports all features in Open Client 11.1, plus the high
availability and failover and wide table features from Open Client 12.5
(varchar/varbinary columns more than 255 bytes long and tables with more than
255 columns). You can use these Opent Client 12.5 features only when
connected to Adaptive Server® Enterprise version 12.5 or later.

Header files

Before including jagpublic.h, you must include the Client-Library ctpublic.c
header file, as in the example below:

#include <ctpublic.h>
#include <jagpublic.h>

Data structures

Most Connection Manager routines require the address of a CM_CACHE
handle as a parameter. The cache handle allows your code to refer to a specific
cache that is defined in EAServer Manager. The routines
JagCmGetCachebyName or JagCmGetCachebyUser retrieve cache handles.

Client-Library uses a CS_CONNECTION structure to represent a database
connection. The JagCmGetConnection routine returns the address of a
CS_CONNECTION structure.

Client-Library example

The following example calls JagCmGetConnection to obtain a connection that
has a user name of “myrtle,” has a password of “secret,” connects to the server
“tsingtao,” and uses Client-Library:

#include <ctpublic.h>
#include <jagpublic.h>

Using Connection Manager routines in C, C++, and ActiveX components

490 EAServer

CS_RETCODE ret;
CS_CONNECTION *connection;
JagCmCache cache;

/*
** Obtain a connection.
*/
cache = NULL;
ret = JagCmGetConnection (&cache, “myrtle”, “secret”,

“tsingtao”, “CTLIB_110”,(SQLPOINTER *)&connection,
JAG_CM_FORCE);

if (ret != CS_SUCCEED)
{

... log the error ...
}

... code that uses the connection goes here ...

ret = JagCmReleaseConnection (&cache,
“myrtle”,“secret”,“tsingtao”,
“CTLIB_110”,
(SQLPOINTER)connection,
JAG_CM_UNUSED);

if (ret != CS_SUCCEED)
{

... log the error ...
}

In the example, the call to JagCmGetConnection looks for a cache that includes
matching values for the user name (“myrtle”), password (“secret”), and server
name (“tsingtao”) and that uses Client-Library. The last parameter, opt, is
passed as JAG_CM_FORCE to indicate that the call should open a new,
uncached connection if no cached connection is available.
JagCmReleaseConnection releases control of the connection: a connection that
was taken from a cache is returned to that cache; an uncached connection is
closed and deallocated.

Note that JagCmGetConnection attempts to open a connection even when no
matching cache is configured. In this case, JagCmGetConnection attempts to
create a new, uncached connection using the specified values.

In this example, JagCmGetConnection and JagCmReleaseConnection return
Client-Library return codes since both calls use “CTLIB_110” for the con_lib
parameter.

CHAPTER 26 Using Connection Management

Programmer’s Guide 491

You can call JagCmGetCachebyName rather than JagCmGetCachebyUser. To
see an example, see the reference page for JagCmGetCachebyName in the
EAServer API Reference.

Client-Library error and message callbacks

EAServer installs default server message and client message callbacks into
cached Client-Library connections. The default callbacks write error and
message information to the server’s log file.

When using Client-Library connections, you can install your own server
message and client message callbacks into connections retrieved from
JagCmGetConnection. JagCmReleaseConnection reinstalls the default
callbacks before placing connections back into the cache.

Oracle connection caches
You can define caches of connections to an Oracle database using OCI 7.x, OCI
8.x, or OCI 9.x.

Oracle autocommit setting

EAServer creates Oracle connections with the default autocommit setting,
autocommit off. In non-transactional components, you must explicitly issue a
commit command to commit update and insert queries. In transactional
components, the EAServer transaction manager issues commit and rollback
commands for connections used by the components that participate in an
EAServer transaction.

Note In a non-transactional component, if you do not explicitly issue commit
or rollback after sending Oracle commands, the commands may be committed
when a transactional component uses the same connection. EAServer issues a
commit to clear the connection status before passing Oracle connections to a
transactional component.

Using Connection Manager routines in C, C++, and ActiveX components

492 EAServer

Using OCI 7.x connection caches

Header files

Include Oracle header files after jagpublic.h, as in the example below:

#include <jagpublic.h>
#include "oratypes.h"
#include "ocidfn.h"
#ifdef __STDC__

#include "ociapr.h"
#else

#include "ocikpr.h"
#endif
#include "ocidem.h"

Data structures

Most Connection Manager routines require the address of a CM_CACHE
handle as a parameter. The cache handle allows your code to refer to a specific
cache that is defined in EAServer Manager. The routines
JagCmGetCachebyName or JagCmGetCachebyUser retrieve cache handles.

OCI 7.x uses an Lda_Def structure to represent a database connection. The
JagCmGetConnection routine returns the address of an Lda_Def structure.

OCI 7.x example

The example below retrieves an Lda_Def structure, executes a statement using
the connection, then returns the connection to the cache.

#include <jagpublic.h>
#include "oratypes.h"
#include "ocidfn.h"
#ifdef __STDC__

#include "ociapr.h"
#else

#include "ocikpr.h"
#endif
#include "ocidem.h"

Cda_Def cda;
Lda_Def *lda;

#define USERID "system"
#define PASSWD "manager"
#define DATASOURCE "OCITEST"

CHAPTER 26 Using Connection Management

Programmer’s Guide 493

/* Connect to ORACLE. */
cache = NULL;
ret = JagCmGetConnection(&cache,

USERID, PASSWD, DATASOURCE,
"OCI_7",
(void*)&lda,
JAG_CM_FORCE);

/* Open a cursor, parse stmt, execute, close cursor */
oopen(&cda, lda, (text *) 0, -1, -1, (text *) 0, -1);
oparse(&cda, sql_statement, -1, FALSE, 2);
...

if (oexec(&cda))
oci_error(&cda);

...

if (oclose(&cda))
oci_error(&cda);

/* release connection */
ret = JagCmReleaseConnection(&cache,

USERID, PASSWD, DATASOURCE,
"OCI_7",
(Lda_Def *)lda,
JAG_CM_UNUSED);

Using OCI 8.x connection caches

Header files

Include oci.h before jagpublic.h, as in the example below:

#include <oci.h>
#include <jagpublic.h>

Data structures

Most Connection Manager routines require the address of a CM_CACHE
handle as a parameter. The cache handle allows your code to refer to a specific
cache that is defined in EAServer Manager. The routines
JagCmGetCachebyName or JagCmGetCachebyUser retrieve cache handles.

OCI 8.x uses a OCISvcCtx structure to represent a database connection. The
JagCmGetConnection routine returns the address of a OCISvcCtx structure.

Using Connection Manager routines in C, C++, and ActiveX components

494 EAServer

OCI 8.x example

The example below retrieves an OCI 8.x connection, executes a statement
using the connection, then returns the connection to the cache.

#include <jagpublic.h>
#include <oci.h>

#define USERID "system"
#define PASSWD "manager"
#define DATASOURCE "OCITEST"

JagCmCache cache;
 OCIEnv *envhp;
 OCISvcCtx **svcpp, *svchp;
 OCIError *errhp;
 OCIStmt *stmthp;
 sword ociret;

 /* Connect to ORACLE. */
cache = NULL;
ociret = JagCmGetConnection(&cache,

USERID, PASSWD, DATASOURCE,
"OCI_8",
(void*)&svchp,
JAG_CM_FORCE);

 ...
 /* Initialize an Env, to allocate stmt and error handles */
OCIEnvInit(&envhp, OCI_DEFAULT, (size_t) 0, (dvoid **)0);
OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp,

OCI_HTYPE_ERROR, (size_t) 0, (dvoid **) 0);
OCIHandleAlloc((dvoid *) envhp, (dvoid **) &stmthp,

OCI_HTYPE_STMT, (size_t) 0, (dvoid **) 0));
checkerr(errhp, OCIStmtPrepare(stmthp, errhp, sql_statement,

 (ub4) strlen((char *) sql_statement),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 /* execute using the service context */
checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,

(CONST OCISnapshot *) NULL,
(OCISnapshot *) NULL, OCI_DEFAULT));

 /* free handles */
OCIHandleFree(stmthp, OCI_HTYPE_STMT);
OCIHandleFree(errhp, OCI_HTYPE_ERROR);

 /* release connection */

CHAPTER 26 Using Connection Management

Programmer’s Guide 495

 ret = JagCmReleaseConnection(&cache,
 USERID, PASSWD, DATASOURCE,
"OCI_8",
svchp,
JAG_CM_UNUSED);

Using OCI 9.x connection caches

Using an OCI 9.x connection cache requires the same header files and data
structures, as described in “Using OCI 8.x connection caches” on page 493.

OCI 9.x example

This code sample illustrates the changes you need to make to the “OCI 8.x
example” on page 494 for an OCI 9.x connection. The only differences are the
third arguments that you pass to the JagCmGetConnection and
JagCmReleaseConnection methods. Other than these changes, the OCI 8.x
example works for OCI 9.x connections.

 /* Connect to ORACLE */
cache = NULL;
ociret = JagCmGetConnection(&cache,

USERID, PASSWD, DATASOURCE,
"OCI_9",
(void*)&svchp,
JAG_CM_FORCE);

 /* Release connection */
 ret = JagCmReleaseConnection(&cache,

 USERID, PASSWD, DATASOURCE,
"OCI_9",
svchp,
JAG_CM_UNUSED);

Using cached connections in PowerBuilder
components

This section briefly summarizes how to create PowerBuilder components that
interact with the EAServer Connection Manager. For detailed instructions on
using cached connections in PowerBuilder, see the Application Techniques
manual in the PowerBuilder documentation.

Connection Manager guidelines

496 EAServer

To make sure that your PowerBuilder components use a cached connection,
first use EAServer Manager to verify that a matching cache is defined.

In your component, you can obtain cached database connections using standard
PowerBuilder techniques for opening a connection. When you open a
connection, EAServer’s PowerBuilder dispatcher checks whether a cache
exists with matching values for user name, password, and connectivity library.
If a matching cache exists, your component receives a connection from the
cache. Likewise, when you use standard PowerBuilder techniques to close the
connection, EAServer places it back in the cache for reuse.

For finer control over the use of connection caches, you can set the following
DBParm settings before opening a connection:

• Set the CacheName DBParm if you wish to identify a cache by name. This
setting causes EAServer to retrieve connections from the cache with that
name rather than looking for matching values for user name, password,
and connectivity library. You cannot use this option if the “Enable cache
by Name Access” option is not set for the cache in EAServer Manager.

• Set the GetConnectionOption DBParm to control what happens if all
connections in the cache are in use.

• Set the ReleaseConnectionOption to control whether the released
connection is closed and deallocated or placed back in the cache for reuse.

For information on these options, see the DBParm documentation in the
PowerBuilder online help.

Connection Manager guidelines
This section explains Connection Manager guidelines.

Avoiding results-pending errors
You must be careful not to release a connection that has unprocessed command
results associated with it. Any time you send a command using a cached
connection, you must completely process the results of the command before
releasing the connection for reuse. Failure to process all results will cause
errors in the next component that uses the connection.

CHAPTER 26 Using Connection Management

Programmer’s Guide 497

Connections and cache handles
Never release a connection into a cache other than the one in which it was
created. If you follow the coding conventions illustrated in the examples, this
issue should not be a problem.

Do not release a connection twice—this can cause unexpected problems.

Maintaining connection state
The connection’s server name, user name, and password are fixed when the
cache is established. However, other connection properties can be changed
dynamically when the connection is opened. For example:

• Server-side connection options – database options, Client-Library
ct_options calls, or equivalent ODBC JDBC calls all affect the server’s
response to commands sent on the connection.

• Database context – different users of a cached connection may use
different databases. You can avoid problems by explicitly changing the
database each time a cached connection is used.

• Connection properties – connection properties affect client-side
connection behavior.

Follow these guidelines to avoid problems with inconsistent connection state:

• Set any options and properties that your code requires when you obtain a
connection.

• If your code may share a cache with other components, set changed
properties and options back to the original values before releasing the
connection. Or change your application configuration so that components
that require different database and connection properties use different
connection caches.

• If your code is the only user of a cache, and no other components use the
named cache, then you do not need to set options and properties back to
the original values; however, you will have to reset the properties to the
original values when you get the connection again.

Connection Manager guidelines

498 EAServer

Programmer’s Guide 499

C H A P T E R 2 7 Creating Entity Components

An entity component is an EJB entity bean or a component of another type
that implements the CtsComponents::ObjectControl interface,
implemented to represent a database row. EAServer supports the standard
EJB entity bean model, and provides a similar model for components of
other types.

Implementing entity components
An entity component is an EJB entity bean or a component of another type
that implements the CtsComponents::ObjectControl interface. Entity
components present an object view of relational data to clients; each
instance of an entity component maps to a row in a database relation.

Entity components can be EJB entity Beans implemented according to the
EJB 2.0, 1.1, or 1.0 standard (see Chapter 7, “Creating Enterprise
JavaBeans Components”). You can also implement CORBA entity
components by following these requirements:

Topic Page
Implementing entity components 499

Coding to support manual persistence 500

Understanding the automatic persistence architecture 501

Configuring automatic or EJB CMP persistence 503

Specifying the CMP version for EJB 2.0 entity beans 505

Setting Persistence/General subtab properties 505

Enabling automatic key generation 509

Creating database tables 512

Configuring concurrency control 513

Setting field-mapping properties 517

Specifying finder- and ejbSelect-method queries 519

Configuring table-mapping properties 522

Using relationship components 526

Coding to support manual persistence

500 EAServer

• Use CtsComponents::ObjectControl as the component’s control interface.
See “Configuring a control interface” on page 73.

• Define a primary key type for the component. See “Defining the primary
key type” on page 130 for more information.

• Create a home interface for the component with a findByPrimaryKey
method and, optionally, additional finder and create methods. See
“Patterns for finder methods” on page 131 for more information.

For an entity component, you can manage persistence using these techniques:

• Manual persistence You implement the code that reads and writes
persistent data and maps the relational column values to fields in the
implementation class. This model corresponds to the Bean Managed
Persistence (BMP) model defined by the EJB 2.0 and 1.1 specifications,
but has been extended to support other component types.

• Automatic persistence EAServer generates skeleton code to manage
the storage and retrieval of persistent data. This model can be used by
entity components that are not EJBs.

• Generated class (EJB CMP) For EJB CMP entity beans, EAServer
generates a class that manages the interaction with the remote database to
load and store the values of container-managed fields.

Coding to support manual persistence
To use component-managed persistence, you must configure the component’s
persistence properties and implement the required methods from the EntityBean
or CtsComponents::ObjectControl interfaces. Display the Component Properties
window in EAServer Manager and configure the following fields on the
Persistence tab:

• Persistence Choose Component Class.

• Primary Key Enter the name of the primary key type (see “Defining the
primary key type” on page 130).

CHAPTER 27 Creating Entity Components

Programmer’s Guide 501

In most cases, no other persistence settings are required. You can delegate to
EAServer’s built-in storage components rather than implementing your own
database access code. If you do so, configure the Storage Component,
Connection Cache, and Table fields (see “Storage components” on page 541).
Delegation requires that you use the CtsComponents::DataStream and
CtsComponents::Storage interfaces. See the generated Interface Repository
documentation in your EAServer installation (in the html/ir subdirectory) for
descriptions of these interfaces.

Improve performance: identify read-only methods
For best performance when using component-managed persistence, mark all
remote interface methods that do not modify data as read-only. To do so, select
the Read Only check box in the Method Properties dialog box. When this
property is enabled, the components ejbStore or ctsStore method is not invoked
after the business method returns.

Understanding the automatic persistence architecture
When using automatic or EJB CMP persistence, EAServer manages all
interaction with the remote database. There are two options for database
storage when using automatic persistence:

• Using mapped fields In the mapped field model, you define a mapping
from a database table to fields in your component implementation class.
When a write to the database is required, the server reads the field values;
after reading new data from the database, the server assigns new field
values for each mapped database column. This model corresponds to the
container-managed Persistence (CMP) model required by the EJB 2.0 and
1.1 specifications, but has been extended to support other component
types.

• Using binary storage In this model, you define state-accessor methods
and an IDL state type. The server calls your state-accessor methods before
writing data to the database and after reading from the database. The state
data is stored in an encoded binary form. Because the relational data is
encoded, this model does not support finder methods other than
findByPrimaryKey.

Understanding the automatic persistence architecture

502 EAServer

Identifying the storage technique
The component uses mapped field storage if the value of the Table field on the
Persistence tab begins with map:, for example, map:MyTable.

The automatic persistence architecture includes:

• As for any component, the component’s implementation class and
skeleton. The skeleton acts as the interface between EAServer and the
implementation class.

For EJB 2.0 entity beans, your implementation class must be an abstract
Java class, with abstract accessor methods for the bean’s container-
managed fields and abstract declarations of the bean’s ejbSelect methods.
For example, if firstName is a container-managed field of type String, you
must declare these abstract accessor methods:

public abstract String getFirstName();
public abstract void setFirstName(String value);

EAServer generates the implementation class that executes at runtime.
This class extends your abstract EntityBean class and implements the
accessor methods for container-managed fields.

• A storage component, which stores instance field data to a remote
database. The storage component manages all data storage and retrieval,
including concurrency control to prevent overlapping updates of the same
rows.

• The component’s state datatype, which is an IDL structure that contains
the data that is to be stored in the database. The state datatype is required
to exchange data between the component’s skeleton and the storage
component.

• The component’s state accessor methods, which the component or
skeleton implements to interact with the storage component. When the
client calls a business method, the instance fields must be loaded with up-
to-date data, so the storage component calls the set method to provide the
data. When the business method completes, the storage component calls
the get method to obtain and save the changed data.

For EJB entity beans, EAServer generates a skeleton with state accessor
methods. For entity components of other types, you must implement
accessor methods and specify their names in component properties as
described below.

CHAPTER 27 Creating Entity Components

Programmer’s Guide 503

• The object cache, which allows in-memory caching of entity instance data
to avoid unnecessary database reads to load instance state.

• The query cache, which allows in-memory caching of finder and ejbSelect
query results to avoid unnecessary database reads to execute finder and
ejbSelect methods.

• The component’s abstract persistence schema, which defines the names
and types of container-managed fields, and (for EJB 2.0 entity beans)
container-managed relationships between entity beans. In EAServer, the
abstract persistence schema is configured by the component properties,
specifically:

• The primary key and state datatypes.

• Field-mapping properties, to bind component fields to database
columns.

• Query-mapping properties, to specify the queries required to run
finder methods and ejbSelect methods. For EJB 2.0 entity beans,
EAServer supports query mappings defined in standard EJB Query
Language (EJB-QL).

• Table-mapping properties, to further fine tune the database access.
For example, table-mapping properties can be defined to allow the use
of stored procedures for all database access.

• Relationship components, which manage EJB 2.0 entity bean
relationships to allow one bean to contain instances of another in a
container-managed field. Relationship components are themselves
EJB 2.0 entity beans generated entirely by EAServer.

When you import an EJB CMP entity bean from an EJB-JAR file, the
importer configures almost all EAServer Manager properties based on the
abstract persistence schema defined in the deployment descriptor.

Configuring automatic or EJB CMP persistence
If you are developing EJB entity beans, use an EJB development tool to create
an EJB-JAR file that defines the components’ CMP fields and container-
managed relationships. You can define CMP entity beans in EAServer
Manager, but it may be easier with a dedicated EJB development tool.

Configuring automatic or EJB CMP persistence

504 EAServer

EAServer includes a sample EJB 2.0 CMP entity bean, in the installation
subdirectory html/classes/Sample/cmp20sample. See the readme.txt file in this
directory for instructions on deploying and running the sample.

When you have CMP entity beans defined in an EJB-JAR file, import the EJB-
JAR file into EAServer as described in Chapter 9, “Importing and Exporting
Application Components,” in the EAServer System Administration Guide. The
JAR importer configures appropriate defaults for almost all settings. After
importing, review the persistence settings described below and verify that they
are correct.

To use automatic persistence for non-EJB entity components, you must
configure the persistence properties in EAServer Manager.

Component properties for automatic persistence are configured on the
Persistence tab in the Component Properties dialog box. This tab has subtabs
to display the categorized properties.

❖ Configuring automatic persistence

1 Specifying the CMP version for EJB 2.0 entity beans.

2 Setting Persistence/General subtab properties.

3 Enabling automatic key generation if your entity component uses a table
with an automatically generated key or your EJB entity bean uses
java.lang.Object as the primary key class.

4 Creating database tables.

5 Configuring concurrency control.

6 Setting field-mapping properties.

7 Specifying finder- and ejbSelect-method queries.

8 Configuring table-mapping properties.

9 Using relationship components if using EJB 2.0 container-managed
relationships.

After you have verified the deployment is working, you can optimize your
component’s performance by configuring in-memory caching of instance data
and query results. For more information, see “Entity instance and query
caching” in the EAServer Performance and Tuning Guide.

CHAPTER 27 Creating Entity Components

Programmer’s Guide 505

Specifying the CMP version for EJB 2.0 entity beans
For EJB 2.0 entity beans, choose a CMP version on the General tab in the
Component Properties dialog box. Choose 2.0 to match the EJB 2.0 specified
behavior. Choose 1.1 to match the EJB 1.1 persistence model. Use 2.0 CMP for
new development, and 1.1 for existing beans that have code that requires the
1.1 model.

For EJB 1.1 entity beans, you can not set the CMP version.

Setting Persistence/General subtab properties
Display the Component Properties window in EAServer Manager and
configure the following fields on the Persistence/General subtab:

• Persistence For an EJB CMP entity bean, choose Generated Class. For
components of other types, choose Automatic Persistent State.

• Generated Class Name For an EJB CMP entity bean, optionally enter a
class name for the generated subclass. If you do not specify a class name,
the default is:

java-package._ps_package_component

Where java-package is the Java package of the implementation class,
package is the EAServer package name, and component is the component
name.

• Primary Key Enter the name of the primary key type (see “Defining the
primary key type” on page 130). If you have imported an EJB entity bean,
the primary key has been defined already.

An EJB 2.0 entity bean that uses CMP and specifies java.lang.Object as the
primary key class requires automatic key generation when deployed to
EAServer. Components of other types can use this feature as well. See
“Enabling automatic key generation” on page 509.

• State If you have imported an EJB CMP entity bean from an EJB-JAR
file, the state has been defined already. Otherwise, define the state type as
described in “Defining the state datatype” on page 507.

Setting Persistence/General subtab properties

506 EAServer

• State Methods If you are creating an EJB entity bean, enter “default”. If
you are creating an entity component of another type, specify the names of
the state accessor methods implemented by your component. See
“Defining the state methods” on page 508.

• Storage Component Specify the name of the storage component, as
described in “Storage components” on page 541.

• Connection Cache Enter the name of a JDBC connection cache that
connects to the database. The default for new components is JavaCache.
For components that are imported from an EJB-JAR file, the default is the
value of the com.sybase.jaguar.server.defaultStorageCache server
property. The cache must:

• Allow by-name access (configured on the Cache tab in the
Connection Cache Properties dialog box).

• Specify a database type. This property defines database-specific
information required by the storage component, for example, the
commands to verify a table exists and create new tables. Several
predefined configurations are provided for popular databases, and you
can create your own. For more information, see “Configuring
connection caches” in the EAServer System Administration Guide.

• Have a user name specified for the property
com.sybase.jaguar.conncache.ssa.systemid if Set-Proxy support is
enabled (com.sybase.jaguar.conncache.ssa is set to true). In an EJB
CMP entity bean, the client user name is not available to set proxy to
since the persistence engine runs as the system user.

For EJB CMP entity beans, EAServer supplys JDBC wrapper drivers that
can improve performance through the use of deferred updates and stored
procedures. For more information, see “Using CMP JDBC wrapper
drivers” in the EAServer Performance and Tuning Guide.

• Table If using mapped table fields, enter:

map:table

Where table is the database table name. “Creating database tables” on
page 512 describes how tables are created and made accessible to the
storage component.

• Timestamp Optionally specify a database timestamp column that
EAServer uses for concurrency control. Using timestamps for
concurrency control yields the best performance in most cases. See
“Configuring concurrency control” on page 513 for more information.

CHAPTER 27 Creating Entity Components

Programmer’s Guide 507

• Create Database Triggers Applies if you have configured instance or
query caching as described in “Entity instance and query caching” in the
EAServer Performance and Tuning Guide, and you have enabled database
change notification as described in that section. This option enables
automatic creation of database triggers to notify the EAServer cache
manager when the table data changes.

• Select With Lock Configures data locking to enable pessimistic
concurrency control. See “Configuring concurrency control” on page 513
for more information.

 Warning! Carefully evaluate your concurrency control model before
deploying your application. Concurrency control greatly affects
performance as well as the integrity of your back-end database. See
“Configuring concurrency control” on page 513 for more information.

Defining the state
datatype

For automatic persistence, you must define a state datatype to be used for
exchange of data between the component’s skeleton and the storage
component.

State types for mapped fields If using the mapped-fields storage model, the
state datatype must be an IDL structure. Enter the structure name in the in the
State field on the Persistence/General subtab in the Component Properties
Dialog box. For example:

MyPackage::CustomerState

You can enter the name of an IDL structure that does not exist; EAServer
Manager creates it when you click Ok in the Component Properties dialog box.
Afterwards, navigate to the IDL definition and edit the structure as described
in “Editing IDL types, exceptions, and interfaces” on page 92.

Define the structure field names and types as follows:

• For EJB 2.0 entity beans, specify one field for each container-managed
field that is not part of the primary key and not a container-managed
relationship field. Use the same name as the container-managed field.
Choose the IDL type that matches the Java datatype, as listed in Table 29-
2 on page 543.

• For EJB 1.1 entity beans, specify one field for each container-managed
field that is not part of the primary key. Use the same name as the
container-managed field. Choose the IDL type that matches the Java
datatype, as listed in Table 29-2 on page 543.

Setting Persistence/General subtab properties

508 EAServer

• For non-EJB entity components, specify one field for each component
field that is to be stored in the database table, excluding fields that are part
of the primary key. Choose the IDL type that matches the field’s datatype
in the implementation class, as listed in Table 29-2 on page 543. If using
timestamps for concurrency control, do not include an IDL field for the
timestamp column. Your implementation class must contain state accessor
methods to apply the field values to implementation fields, and populate
the state type from instance field data. Specify the state accessor method
names on the State Methods field on the Persistence/General subtab, as
described in “Defining the state methods” on page 508.

State types for binary storage If you are using the binary storage model,
enter the name of an IDL structure or serializable Java class. Your state
accessor methods must contain code to get and set this data to and from the
current instance, as described in “Defining the state methods” on page 508.

Defining the state
methods

For automatic persistence in non-EJB components or in EJB components using
the binary-storage persistence model, your component implementation must
contain state accessor methods to read state data from the current instance and
apply state data to the current instance. Specify the names of these methods on
the State Methods field in the Persistence/General subtab. If you specify no
value, the default is getState,setState.

Your component implementation must contain these methods, but they should
not be listed in the component’s client interfaces. The getState method returns
an instance of the type specified by the State field, and the setState method
accepts a parameter of this type. For example, if the State type is
ShoppingCartState, the getState and setState methods might be defined as
follows in Java:

private ShoppingCartState data;

ShoppingCartState getState()
{

return data;
}

void setState(ShoppingCartState state)
{

data = state;
}

CHAPTER 27 Creating Entity Components

Programmer’s Guide 509

Enabling automatic key generation
If automatic key generation is enabled, keys are created automatically for every
row inserted in the table. If you are mapping container-managed fields to
multiple tables, automatic key generation applies only to the main table,
specified on the Persistence/General subtab.

❖ Specifying the key type for EJB CMP entity beans

There are two options for the primary key type when using automatic key
generation in EJB and Java components:

• java.lang.Object The EJB 2.0 specification requires this type for entity
beans that have automatically generated keys. However, using
java.lang.Object makes client coding difficult, particularly if the home
interface has finder methods that take key values as input. In this case, you
do not know what the actual Java key type is until after deploying the
component.

• java.lang.Integer or other integer types EAServer allows you to use
an integer type with automatic key generation configured. You can also
use other integer types, as long as you specify the wrapper class name,
such as java.lang.Long.

Specify the key type in the EAServer Manager Component Properties dialog
box as follows:

1 On the Persistence/General subtab, set the Primary Key field to the Java
class name used in your code. EAServer Manager saves the setting as the
IDL type, and you will see the IDL type after you close and reopen the
Component Properties dialog box.

2 Regenerate stubs and skeletons for the component if you have changed the
primary key type.

❖ Choosing the key generation mechanism

• EAServer supports three mechanisms for key generation:

Java key type IDL key type

java.lang.Object XDT::Integer

java.lang.Integer CtsComponents::LongValue

Other integral types The corresponding CtsComponents value
structure

Enabling automatic key generation

510 EAServer

• Using the Sybase identity datatype If you are using Sybase
Adaptive Server Enterprise or Adaptive Server Anywhere, the main
table uses the identity datatype for the primary key. The database
manages the creation of new keys. To configure this mechanism,
follow the procedure “Configuring key generation to use the Sybase
identity datatype” on page 510. Alternatively, use a key table as
described in “Overriding the use of native identity types” on page
512.

• Using the Oracle sequence datatype If you are using an Oracle
database, the main table uses an Oracle sequence for the primary key.
The database manages the creation of new keys. To configure this
mechanism, follow the procedure “Configuring key generation using
the Oracle sequence datatype” on page 510. Alternatively, use a key
table as described in “Overriding the use of native identity types” on
page 512.

• Using a key lookup table For any SQL database, you can use a
single-row, single-integer-column table to generate key values.
EAServer increments the key lookup value to generate new keys. If
other processes or applications insert to the table, they must also use
the key lookup table. To configure this mechanism, follow the
procedure “Configuring key generation to use a key lookup table” on
page 511.

❖ Configuring key generation to use the Sybase identity datatype

1 Use the Advanced tab to set the property
com.sybase.jaguar.component.generateKey to true. The default is false.

2 In the Persistence/Field Mappings tab, verify that the key field is mapped
to the Sybase identity type or a compatible type.

3 Use the Advanced tab to verify that the property
com.sybase.jaguar.component.db.sequence is not set, or set to no value.

❖ Configuring key generation using the Oracle sequence datatype

1 Use the Advanced tab to set the property
com.sybase.jaguar.component.generateKey to true. The default is false.

2 In the Persistence/Field Mappings tab, verify that the key field is mapped
to the Oracle sequence type or a compatible type.

CHAPTER 27 Creating Entity Components

Programmer’s Guide 511

3 If using an existing table or a table that you create yourself (rather than
relying on autocreation by EAServer), use the Advanced tab to set the
component property com.sybase.jaguar.component.db.sequence. This
property specifies the name of the Oracle sequence to use. The default is:

table_keys

Where table is the main table name specified on the Persistence/General
subtab.

❖ Configuring key generation to use a key lookup table

1 Use the Advanced tab to set the property
com.sybase.jaguar.component.generateKey to true. The default is false.

2 In the Persistence/Field Mappings tab, verify that the key field is mapped
to an integer type that is compatible with the type used in the lookup table–
see “Setting field-mapping properties” on page 517.

3 Use the Advanced tab to set the component property
com.sybase.jaguar.component.db.sequence to a value:

table.column += key_use_rate

or

table += key_use_rate

Where:

• table is the name of the key lookup table. The table must contain a
single row with a single integer column. The column datatype cannot
have precision greater than 64 bits. The default key lookup table name
is the main table name appended with _keys; for example, if the main
table is phone, the key lookup table is phone_keys.

• column is the column name, which must be an integer column or
another integral datatype. If you specify only a table name, the table
must contain a column named next_key.

• key_use_rate is the number of keys that are reserved at once. To
prevent different threads from creating duplicate keys, EAServer uses
a semaphore to synchronize the key increment operation. Each thread
reserves key_use_rate key values per increment. The key use rate can
be tuned to reduce inter-thread contention for locks on the key table.
The default of 100 results in good performance for most applications.
Very large values can result in large gaps between key values. Gaps in
the key sequence are possible if the key use rate is greater than 1.

4 Create the key lookup table if it does not exist in the database.

Creating database tables

512 EAServer

❖ Overriding the use of native identity types

• If you are using Sybase or Oracle, you can force the use of a key lookup
table rather than the Sybase identity or Oracle sequence datatypes. To do
so, set the com.sybase.jaguar.component.db.sequence. property and
specify a key use rate as described in “Configuring key generation to use
a key lookup table” on page 511. If the value of this property contains
“+=”, EAServer uses a key lookup table regardless of the database type.

Creating database tables
The entity component’s database table must be specified on the Table Name
setting in the Persistence/General subtab.

Tables for binary
storage

If you are using binary storage, simply enter the table name. If you have
specified a valid database type in the connection cache properties, EAServer
creates the table if it does not exist. “Table schema for binary storage” on page
545 describes the required table schema.

Tables for mapped-
fields storage

If you are using mapped-field storage, you can use actual database table names,
or logical table names that do not necessarily exist in the database. You can
map fields to several tables, in which case the table named on the
Persistence/General tab becomes the “main” table.

Table access is configured by the component’s table mapping properties. The
default mappings require that the tables exist and are accessed by standard SQL
commands.

Use logical names if you must use stored procedures for data access, or are
using a non-SQL database. You must configure the data access operations for
logical tables, as described in “Configuring table-mapping properties” on page
522.

If you have specified a valid database type in the connection cache properties,
EAServer creates database tables if they do not exist. Otherwise, you or your
database administrator (DBA) must create tables manually.

Automatic table creation is for testing only
For deployment to production servers, you or your DBA should create the
tables, using an optimized index model and any other necessary optimizations,
such as enabling row-level locking.

CHAPTER 27 Creating Entity Components

Programmer’s Guide 513

The table column types must agree with the mapped fields (see “Setting field-
mapping properties” on page 517), and contain a timestamp column if
timestamps are used for concurrency control. “Supported Java, IDL, and
JDBC/SQL types” on page 543 lists the supported JDBC/SQL types and the
corresponding Java and IDL field types.

Configuring concurrency control
When using mapped fields, you must also choose a concurrency control model.
Concurrency control prevents overlapping updates from entity instances
running in different threads or different servers, or from applications running
outside of EAServer. There are two approaches for concurrency control:

• In the Pessimistic concurrency control (PCC) model, data rows are locked
when read, for the duration of the EAServer transaction. This method can
introduce database deadlocks and usually reduces the scalability of the
application.

• In the Optimistic concurrency control (OCC) model, data rows are not
locked when read. Timestamps are used for concurrency control; the
timestamp can be a timestamp column in the database that is updated every
time the row is modified, or it can be the row data itself. At the end of the
transaction, the in-memory timestamp value is compared to the timestamp
value in the database, and the transaction rolls back if the values do not
match.

OCC allows greater scalability than PCC, however, when using OCC, client
applications must be coded to retry rejected updates, or you must enable
automatic transaction retry for the application components as described below.

When using OCC, each update statement contains SQL logic that determines
if the last-read timestamp matches the stored value, and rolls back the
transaction if the timestamp does not match. In other words, updates based on
stale data are rejected. There are several options for using timestamps:

• Use a timestamp column: each table contains a timestamp column, which
can be a database timestamp type (if supported) or an integer column that
is incremented for every update. This option provides good performance
if your database and table schema can support it.

Configuring concurrency control

514 EAServer

• Use all-values comparison: on update, all row values are compared to the
last-read values to detect update collisions. OCC with all-values
comparison is the default concurrency control model. Performance with
this option is worse than when using a single timestamp column,
particularly if the table contains many columns or wide columns (such as
Sybase text or image columns). Whenever possible, the use of a timestamp
column is recommended in these cases.

• Use a table-level timestamp: the timestamp is a single integer counter that
is incremented for every update, insert, or delete in the main table. This
option provides the best performance for CMP entity beans that are
mapped to read-mostly (or read-only) tables when verified results are
required to meet transaction isolation requirements. For best results, use
table-level timestamps with a Sybase CMP wrapper driver to allow
verification queries to be batched with other deferred operations. For more
information, see “Using CMP JDBC wrapper drivers” in the EAServer
Performance and Tuning Guide.

❖ Enabling optimistic concurrency control

1 Configure the Timestamp field on the Persistence/General subtab. Table
27-1 describes the allowable values. For best performance when using
tables with many columns or large column values (such as Sybase text or
image columns), specify a timestamp column as described in Table 27-1.

If multiple tables are used and you specify a timestamp column, all tables
must contain a column with the same name and datatype.

Table 27-1: Timestamp field values

To configure Set the timestamp value to

A timestamp column The name of a single column in each table that serves as the timestamp to detect update
collisions. If the component uses multiple tables, each must contain a timestamp column
with this name. The column type can be:

• A 4-byte integer – this is the default timestamp column type. All processes that update
the table(s) must increment the timestamp with each update, or your DBA can create an
update trigger to increment the timestamp automatically.

• The database timestamp type – you can use the timestamp datatype if using Sybase
Adaptive Server Enterprise or Adaptive Server Anywhere version 7.0 or later. You must
also define a field mapping property to specify the timestamp datatype as described in
“Setting field-mapping properties” on page 517. For example, if the column name is ts,
specify the mapping as:

ts[dbts not null]
dbts is a logical type name mapped to the timestamp type in the Sybase_ASE and
Sybase_ASA database types. If the database does not support timestamps, a 4-byte
integer counter is used instead.

CHAPTER 27 Creating Entity Components

Programmer’s Guide 515

2 Optionally enable auto-retry for the application components so that
EAServer replays EJB CMP transactions that fail due to conflicting
updates. Auto-retry must be configured for the component that initiates the
transaction, which is typically a session bean in EJB applications. Auto-
retry works only for intercomponent calls, not for direct invocations of
entity beans from the Web tier or base clients. Configure auto-retry as
follows:

• In the properties of the components that initiate the transactions to be
retried, use the Advanced tab to set the property
com.sybase.jaguar.component.tx_retry. A value of true enables auto
retry. A value of false disables auto-retry. If this property is not set, the
value of the server property com.sybase.jaguar.server.tx_retry is used.
If neither the component property or server property is set, the default
is false.

• In server properties, use the Advanced tab to set the property
com.sybase.jaguar.server.tx_retry. The default of false disables auto-
retry for all components for which auto-retry is not explicitly enabled.
Specify true to enable auto-retry for components for which auto-retry
is not explicitly set to false.

A table level timestamp A table and column name, in the form ts_table.ts_column, where ts_table specifies the
timestamp table and ts_column specifies the name of the timestamp column in the
timestamp table. The specified timestamp table must be separate from the main table. The
timestamp tables can contain multiple columns, to allow use of one timestamp table by
multiple entity beans. Timestamp tables are automatically created if they do not exist.

A timestamp table can be shared among multiple components even when only one column
is present in the timestamp table. In other words, a single timestamp value can be shared
by multiple tables. This helps further improve performance for a group of read-mostly
tables. However, any insert, delete, or update on any of the tables results in all cache entries
being discarded.

When using a timestamp table, database triggers are required to increment the timestamp
for each update, delete, or insert to tables that are mapped to the component or components
that require the timestamp. You can set the component property
com.sybase.jaguar.component.ts.triggers property so EAServer creates triggers, create
triggers yourself, or add code to existing triggers.

All values comparison Leave blank.

To configure Set the timestamp value to

Configuring concurrency control

516 EAServer

Auto-retry is not appropriate for all applications. For example, an end user
may want to cancel a purchase if the item price has risen. If auto-retry is
disabled, clients must be coded to retry or abort transactions that fail
because of stale data. The exception thrown is CORBA::TRANSIENT (for
EJB clients, this exception is the root cause of the java.rmi.RemoteException
thrown by the EJB stub).

3 For EJB CMP entity beans, configure an effective transaction isolation
level, as described in “Configuring CMP isolation level” in the EAServer
Performance and Tuning Guide.

4 Verify that the Select With Lock option on the Persistence/General subtab
in the Component Properties dialog box is disabled. On the Advanced tab,
verify that com.sybase.jaguar.component.selectForUpdate is not set or set
to false.

❖ Enabling pessimistic concurrency control

1 Configure a locking mechanism. You can do one of the following:

• Enable the Select With Lock option on the Persistence/General
subtab. When using jagtool or XML configuration files, set
com.sybase.jaguar.component.selectWithLock to true.

• Enable the Select for Update option by setting the
com.sybase.jaguar.component.selectForUpdate property to true on the
Advanced tab in the Component Properties dialog box or by using
jagtool or an XML configuration file. This setting requests an
exclusive database lock be obtained at select time to avoid deadlocks
during lock promotion. Also consider configuring the database table
for row-level locking.

• Configure the table-mapping select queries and add “holdlock” or the
appropriate lock syntax for your database. See “Configuring table-
mapping properties” on page 522 for more information.

2 Make sure that OCC is disabled by setting the Timestamp field to “none”
on the Persistence/General subtab in the Component Properties dialog box.

CHAPTER 27 Creating Entity Components

Programmer’s Guide 517

Setting field-mapping properties
Field-mapping properties specify which table columns correspond to the
component’s container-managed fields, the primary key (which may map to
one or several columns), and the timestamp (if used for concurrency control).
Before configuring field mappings, make sure that:

• You have specified the primary key type, and defined the IDL structure
fields if using a multi-column key (or this has been done by the EJB-JAR
import process).

• You have defined the state type, or it has been defined by the EJB-JAR
import process. See “Defining the state datatype” on page 507.

• If using timestamp columns for concurrency control, you have specified
the timestamp column name on the Persistence/General subtab.

Configure field-mapping properties in the Component Properties dialog box,
on the Persistence/Field Mapping subtab. This subtab displays a mapping for
each container-managed field (based on the state datatype structure fields), the
key fields, and the timestamp column (if specified). The initial mappings use
default values which you may need to adjust.

Refreshing the field-mapping properties
If you do not see mappings for all fields:

1 Verify that the state type, primary key, and timestamp have been
configured.

2 Click Ok in the Component Properties dialog box to save the properties.

3 Reopen the Component Properties dialog box.

Field mapping format The mapping for each field has the form:

column[typespec]

Where:

• column is the database column name. You can use a table prefix, which is
required if the table is not the main table (named in the Table field on the
Persistence/General tab). For example, custinfo.address specifies the
address column in the custinfo table.

All fields that are in the primary key must be mapped to the main table. If
you use the default queries in your table mappings, other tables must have
key columns with the same name and type as the main table key.

Setting field-mapping properties

518 EAServer

The table name can be a logical table name that does not exist in the
database. For example, your database may allow only stored procedure
access. In this case, you must define table mappings that describe how to
access the data represented by the logical table name. “Configuring table-
mapping properties” on page 522 describes how.

• type-spec is the column’s database type, for example:

string(255) not null

or:

binary(255) null

The specified datatype is not necessarily the type used in the table schema.
It can be redefined in the database properties. For example, binary(255)
maps to varbinary(255) for the database type Sybase_ASE, and to
raw(255) for Oracle8i. Similarly, string(length) maps to the
appropriate type to define variable or fixed-length character columns of
the specified length. Using the logical type names rather than actual
database types allows you to more easily run the same configuration
against databases of different types. For more information on these
definitions, see Logical column type definitions in Appendix B, “Repository
Properties Reference,” in the EAServer System Administration Guide.

If the column is fixed-length binary or character, use one of these types,
where length is the field length:

binary(length) fixed length null
binary(length) fixed length not null
string(length) fixed length
string(length) fixed length not null

Overriding the default database column names
For entity beans imported from an EJB-JAR file, the default field mappings use
quoted database column names to avoid conflicts with database reserved
words. In some cases, you may find that the quoted names exceed the
maximum allowed for column names in the database. In this case, you can
modify the column names after deploying, or add a sybase-easerver-config.xml
file to your EJB-JAR file to set the field mapping properties before deploying.
If you use quoted column names in the XML file, be sure to use the quote entity
(") in place of quotes in property value strings.

For information on creating an sybase-easerver-config.xml file, see “Using
EAServer configuration files in J2EE archives” in Chapter 9, “Importing and
Exporting Application Components,” in the EAServer System Administration
Guide.

CHAPTER 27 Creating Entity Components

Programmer’s Guide 519

Specifying finder- and ejbSelect-method queries
Each finder method in the component’s home interface requires a database
query to select a set of primary keys. For example, the findByPrimaryKey
method selects the key that matches the input parameter. A findAll method
might return all keys in the table. ejbSelect methods in an EJB 2.0 entity bean
also require query mappings.

There are two ways to specify query mappings:

• Using EJB-QL EJB 2.0 entity beans can use EJB Query Language (EJB-
QL) in the EJB-JAR deployment descriptor. EJB-QL allows portability
among EJB 2.0-compliant servers. EAServer translates EJB-QL to SQL at
runtime. You can configure additional EAServer query mapping
properties to enable caching of the query results for improved
performance.

• Using extended SQL If you cannot use EJB-QL, you must specify the
query mappings using the EAServer extended SQL mapping language.
This language is based on standard SQL, with extensions to allow
substitution of method parameters and invocation of stored procedures. In
some cases, no mapping is required: EAServer can correctly infer the
query required to execute the findByPrimaryKey method. EAServer can
also infer some queries based on finder-method naming patterns, for
example:

• findAll to return keys for all rows.

• findByField where field is the name of a container-managed field in the
component, to return the rows that match the specified field value.

• findLikeField where field is the name of a container-managed field in
the component, to return rows where the column mapped to field
contains the specified field value

If you have deployed EJB CMP entity beans from an EJB-JAR file
If you have deployed EJB CMP entity beans from an EJB-JAR file, the special
query mapping value [unknown] indicates that you must specify a query. The
special value [default] means that EAServer can infer the query based on the
method’s name pattern. The special value ejbQuery: indicates the query uses
EJB-QL that was specified in the deployment descriptor.

Specifying finder- and ejbSelect-method queries

520 EAServer

❖ Configuring queries for methods

1 Display the Persistence/Query Mapping subtab in the Component
Properties dialog box. One mapping displays for each finder method in the
component’s home interface and for each ejbSelect method.

2 To change the query mapping, highlight the method name or query, then
click Modify. Edit the value as follows:

Using EJB-QL: The special EAServer query ejbQuery: indicates that an
EJB-QL query is defined for the finder or ejbSelect method. You can add
additional parameters to configure caching of the query results, as
described in “Entity instance and query caching” in the EAServer
Performance and Tuning Guide, for example:

ejbQuery:[cache]

If the special mapping ejbQuery: is specified for the method, the EJB-QL
query can be specified using a second query mapping for the method. The
EJB-QL query must follow the syntax described by the EJB 2.0
specification.

In EJB-QL, each entity bean is represented by a schema name. EAServer
defines the EJB-QL schema names in the properties of the package that
contains the component. To map schema names to components in the
package, specify a package property of the form:

schema:name=package/component

Where name is the schema name, package is the EAServer package name
and component is the component name. If the package properties do not
specify a schema name for the component, the default is the component
name. Schemas used in queries for a component can only refer to
components in the same EAServer package.

Using EAServer extended SQL: Enter one of the following for the
query:

• [default] if EJB-QL is not used and EAServer can correctly infer
the query.

• A SQL query appropriate for the semantics of the finder method,
which can be a query filter or the syntax to call a stored procedure. For
ordinary select queries that select only from the main table, you can
omit the select keyword and column list, and specify only a where
clause. Use the placeholders described in Table 27-2 to represent
column and table names and parameter values.

CHAPTER 27 Creating Entity Components

Programmer’s Guide 521

Table 27-2: Finder query placeholders

Note select queries for ejbSelect methods can return one column only.

Extended SQL
examples

Use the syntax of these examples if you are using database tables that can be
accessed directly with standard SQL select statements.

For simple queries that select only from the main table, you can omit the select
keyword and column list as in this example. This query uses the value of the
expiryDate parameter to filter a range of closingDate column values. Note the
select keyword, column list, and from clause are omitted:

where closingDate < @expiryDate

When you omit the select keyword for a finder query, all columns are selected.
If you are using query caching, selecting all columns allows EAServer to
preload the query cache when the finder method executes.

If you include the select keyword and a column list in the query, you must use
binding syntax (pseudoassignments) to bind the selected columns to the
container-managed fields unless you are using the [key] placeholder for the
table’s primary key, as in:

select @field1 = col1, @field2 = (select col2 from t2
where t2.a = t1.a) from table1 t1, table2 t2

Placeholder To indicate

[key] The table’s primary key (which can consist of
multiple columns).

[table] The name of the main table, specified in the Table
field on the Persistence/General subtab.

@param Reference the value of parameter param in the
finder method’s IDL signature.

Note If the component was imported from an EJB-
JAR file, the IDL parameter names do not match the
original Java implementation. The IDL parameters
are named p0, p1, and so forth.

@param.fieldName If method parameter param is not a simple type,
reference the value of field fieldName.

[cache cache-props] When appended to the query, configures query
caching. See “Entity instance and query caching” in
the EAServer Performance and Tuning Guide.

Configuring table-mapping properties

522 EAServer

In this example, field1 and field2 are the names of the container-managed
fields that are bound to the columns returned in the result set.

If you specify a column list and you are using entity object caching, specify a
select list that returns all columns so that the object cache can be populated
from the query results. Omit the select keyword, the column list, and the from
clause to avoid this complication.

The query must be a complete select statement or omit the select keyword,
column list, and from clause.

Calling stored
procedures in
extended SQL

You can call stored procedures to return the results required to execute a finder
or ejbSelect query. To specify a stored procedure call, use the syntax:

select column-list from {call proc param-list}

Where:

• column-list contains placeholders for the field values and specifies their
positions in the row returned by the procedure. Use the following syntax
to indicate fields:

• @fieldName to specify the value of field fieldName.

• @fieldName.subfield to specify the value of subfield subField
where fieldName is a container-managed field that takes structured
types.

If you are using entity object caching, the stored procedure should return
values for all columns, so that the object cache can be populated when the
procedure is called.

• proc is the stored procedure name.

• param-list is a parameter list that contains the parameters required by the
stored procedure. Use the placeholder syntax described in Table 27-2.

For example, you might use this query for a findByPrimaryKey method:

select @firstName, @lastName, @ts from {call
sp_select_CustomerProcs @primaryKey}

Configuring table-mapping properties
Table mapping allows you to customize the DBMS queries and DML
statements used to support ejbCreate/ctsCreate, ejbLoad/ctsLoad,
ejbStore/ctsStore and ejbRemove/ctsRemove.

CHAPTER 27 Creating Entity Components

Programmer’s Guide 523

The default table mappings suffice for direct access to tables in standard SQL
databases. You can customize the default SQL commands. For example, you
might optimize the select query to force the use of an index by adding
proprietary DBMS keywords.

You must configure explicit table access commands if you use stored
procedures for data access or a non-SQL database.

To configure table mapping for an entity component, display the
Persistence/Table Mapping subtab in the Component Properties window.
Mapping properties display for the main table, specified on the
Persistence/General tab, and any other table referenced in field mapping
properties. Each table has mapping properties for the operations listed in Table
27-3.

Table 27-3: Table mapping operation names

For select, update, insert, and delete operations, the mapping can be
[default], to specify that standard SQL commands be used, a stored
procedure call, or alternate query text.

Configuring stored
procedure invocations

For update operations Specify the stored procedure call in the form:

{call update-proc param-list}

Where:

• update-proc is the stored procedure name. The procedure must perform
the update given the supplied input parameters, and return no data.
EAServer checks the JDBC row count to determine whether the update
succeeded.

Operation Specifies

select The database command for ejbLoad/ctsLoad operations.

update The database command for ejbStore/ctsStore operations.

insert The database command for ejbCreate/ctsCreate operations.

delete The database command for ejbRemove/ctsRemove
operations.

notify When you are using object caching and have enabled
database change notification, this property specifies the
message service topic name used to notify the object cache
of table changes. The default is the unqualified table name.

See “Entity instance and query caching” in the EAServer
Performance and Tuning Guide for more information.

Configuring table-mapping properties

524 EAServer

• param-list is the parameter list, which must include all container-managed
fields. If a timestamp or version counter is used for concurrency control, it
must also be in the parameter list. You can format parameters as:

• @fieldName to specify the value of field fieldName.

• @fieldName.subfield to specify the value of subfield subField
where fieldName is a container-managed field that takes structured
types.

• @old.fieldName or @new.fieldName to specify the old (last read)
or new (updated) value for field fieldName. If no old or new prefix is
used, the new value is assumed. The old and new prefixes cannot be
applied to primary key fields, because an instance is not allowed to
change the primary key.

For example:

{call sp_update_CustomerProcs @primaryKey, @firstName,
@lastName, @old.ts}

The update procedure must contain logic to perform concurrency control. If
using a timestamp column, make sure the timestamp value is passed to the
procedure and used in the update statement. If using OCC with value
comparisons, make sure the procedure accepts all old values as well as new
values, and contains the value comparison logic.

For delete operations Specify the stored procedure call in the form:

{call delete-proc param-list}

Where:

• delete-proc is the stored procedure name.

• param-list is the parameter list, which must contain parameter values for
the primary key columns, using placeholders as described for update
procedure.

For example:

{call sp_delete_CustomerProcs @primaryKey}

For insert operations Specify the stored procedure call in the form:

{call insert-proc param-list}

Where:

• insert-proc is the stored procedure name. If the component uses generated
primary keys, the procedure must return a result set containing the new
key. Otherwise, the procedure must not return any data.

CHAPTER 27 Creating Entity Components

Programmer’s Guide 525

• param-list is the parameter list, which must contain all values for the new
row, unless using automatic key generation. If keys are generated, omit the
key from the parameter list. The parameter format is the same as for the
update procedure, except that the old and new prefixes are not supported.

For example:

{call sp_insert_CustomerProcs @primaryKey, @firstName, @lastName}

For select operations Specify the stored procedure call in the form:

select read-param-list from {call select-proc key-param-list}

Where:

• read-param-list contains placeholders for the field values and specifies
their positions in the row returned by the procedure. The parameter format
is the same as for the update procedure, except that the old and new
prefixes are not supported. The stored procedure does not need to return
the key value.

• select-proc is the stored procedure name.

• key-param-list is a parameter list that specifies all the primary key
columns. The parameter format is the same as for the update procedure,
except that the old and new prefixes are not supported.

For example:

select @firstName, @lastName, @ts from {call
sp_select_CustomerProcs @primaryKey}

Specifying alternate
query text

You can enter query text for the insert, delete, update, and select operations,
using the same parameter placeholder format as used for stored procedures.

Special syntax is required also for ordinary SQL select statements to specify
the mapping of fields to expected result set columns. For example, if storing
customer names in a separate table and not using stored procedures, you might
specify the select operation as:

select=select @firstName = firstName, @lastName = lastName from
TestCMP_Customer where primaryKey = @primaryKey

When this query is issued to the JDBC driver, it will be in the form of a JDBC
prepared statement, such as:

select firstName, lastName from TestCMP_Customer where primaryKey
= ?

Using relationship components

526 EAServer

The persistence engine removes the “@field” references from the query,
allowing the proprietary syntax of the target DBMS to be used effectively. For
example, the query could be modified to force the use of an index by using
proprietary DBMS keywords.

Using relationship components
EAServer uses relationship components to manage relationships between EJB
2.0 CMP entity beans.

EBJ 2.0 CMP entity beans can have container-managed relationships. A
relationship allows an entity component to have a container-managed field that
contains instances of another (or the same) entity component. For example, an
Order component may have an items field that consists of a collection of
Inventory objects representing the items being purchased. Or, an Employee
component may be related to itself, with manager and employees fields that
contain Employee instances.

A relationship can be unidirectional or bidirectional. For example, the
Employee-Manager relationship is typically bidirectional: it’s convenient to
know who works for a particular employee as well as who reports to that
employee. An Order-Inventory relationship is typically unidirectional: it would
not be practical to track every order that a line item is added to.

The relationship component name contains one or more hyphens. Only
relationship components may have names that contain hyphens. Relationship
components created by deploying EJB-JAR files have names of the form:

component1-component2

Or:

component-field

Where component1 and component2 are names of two related components.
The component-field form is used when a component is related to itself
(such as the employee-manager relationship). In this case,. field is the field
name used for maintaining one side of the relationship. For example, an
Employee component may have a Manager field, resulting in the relationship
component Employee-Manager.

CHAPTER 27 Creating Entity Components

Programmer’s Guide 527

Relationship components are supported only for EJB 2.0 CMP entity beans.
Relationship components are themselves CMP entity beans, and must have the
relationship properties described below. Related components must be in the
same EAServer package. The implementation of a relationship component is
generated when you generate skeletons for the components in the relationship.

Maintaining the
relationship

The tables represented by related components must be related in the database.
There are two techniques to maintain the table relationship:

• Using foreign keys The source table stores the key of the related table
as a column.

• Using a join table A separate table relates keys between the two tables.

Foreign keys offer the best performance, but can be used only when one
destination instance relates to a given source instance. For example, you can
use foreign keys to manage the Employee-to-Manager relationship (an
employee has one manager), but must use a join table for the Manager-to-
Employee relationship (a manager has many employees). In bidirectional
relationships, you must configure the technique for each direction of the
relationship.

The Table field in the Persistence/General properties specifies the name of the
join table. When configuring components to work with existing database
tables, the join table must exist and contain the key pairs to describe the
relationship.

Cascading deletes In some cases, you may want an ejbRemove operation to delete “through” a
relation. For example, an Order instance represents an online purchase, and is
related to LineItem instances that represent items included in the order. In this
case, removal of an Order instance should remove LineItem instances
contained in the order.

You can configure the Cascade Delete properties for each side of a one-to-one
relationship, and on the “one” side of many-to-one and one-to-many
relationships.

Configuring
relationship
component properties

To configure relationship properties, display the Component Properties for the
relationship component, then display the Persistence/Relationship subtab and
configure the Relationship Type settings and Relationship Name settings,
described in Table 27-4 and Table 27-5, respectively.

Regenerating the relationship component
After editing relationship component properties, regenerate the skeletons for
the package and refresh the package to ensure the changes take effect.

Using relationship components

528 EAServer

Table 27-4: Relationship Type properties

Table 27-5: Relationship Name properties

Property Specifies

Type The cardinality of the relationship. Allowable values are:

• One to One – one from component instance is related to one to
instance.

• One to Many – one from instance is related to many to instances.

• Many to One – many from instances are related to one to instance.

• Many to Many – many from instances are related to many to
instances.

From Component The name of the from component in the relationship, in the form:

package/component
The from component contains a container-managed field that contains
instances of the to component specified by the To Component property.

From Field The name of the container-managed field in the from component that
contains related to component instance references.

From Field Type For one-to-many and many-to-many relationships, specifies the Java
type used in the getter and setter methods of the from component.
Allowable values are Collection and Set.

For single-valued fields, no value is required. You can set this property
by setting the from-field-type property on the Advanced tab.

From Query When a join table is used, the name of a query used to select the to
component’s primary keys that are required to populate the from
component field indicated by the From Field setting. This query must
be defined by a query mapping property, as described in “Specifying
finder- and ejbSelect-method queries” on page 519.

From Role Matches the name of the corresponding ejb-relationship-role
element in the EJB-JAR deployment descriptor.

Use Foreign Key Whether to use a join table or foreign keys to maintain the to-from
relationship. A value of true indicates that foreign keys must be used.

You can use foreign keys only on the “one” side of a relationship, as
described in “Maintaining the relationship” on page 527.

Cascade Delete Applies only when the relationship-type is one-to-one or one-to-many.

Specifies whether deletion of a an instance on the singleton side of the
relation causes deletion of the related instance.

Property Specifies

Name The name of the relationship. Matches the corresponding ejb-
relation-name element in the EJB-JAR deployment descriptor.

CHAPTER 27 Creating Entity Components

Programmer’s Guide 529

Example properties
for a many-to-many
bidirectional
relationship

The components here are TestCMP/Customer and TestCMP/Account:

relationship-type=many-to-many
relationship-name=Customer-Account
relationship-from=TestCMP/Customer
relationship-to=TestCMP/Account
from-field=accounts
from-field-type=Collection
from-foreign-key=true
from-query=findByCustomer
from-role=customer-has-accounts
to-field-type=Collection
to-field=customers
to-foreign-key=true
to-query=findByAccount
to-role=account-has-customers
cascade-delete=false

To Component The name of the to component in the relationship, in the form:

package/component
For bidirectional relationships, you must also specify values for the To
Field, To Field Type, and To Query properties.

To Field The name of the container-managed field in the to component that
contains related from component instance references.

To Field Type If a to instance can be related to multiple from instances, specifies the
Java type used in the getter and setter methods of the from component.
Allowable values are Collection and Set.

For single-valued fields, no value is required. You can set this property
by setting the to-field-type property on the Advanced tab.

To Query When a join table is used, the name of a query used to select the from
component’s primary keys that are required to populate the to
component field indicated by the To Field setting. This query must be
defined by a query mapping property, as described in “Specifying
finder- and ejbSelect-method queries” on page 519.

To Role Matches the name of the corresponding ejb-relationship-role
element in the EJB-JAR deployment descriptor.

Use Foreign Key Whether to use a join table or foreign keys to maintain the from-to
relationship. Enable the option if foreign keys must be used.

You can use foreign keys only on the “one” side of a relationship, as
described in “Maintaining the relationship” on page 527.

Cascade Delete Applies only when the relationship-type is one-to-one or many-to-one.

Specifies whether deletion of a an instance on the singleton side of the
relation causes deletion of the related instance.

Property Specifies

Using relationship components

530 EAServer

Example properties
for a recursive,
bidirectional, many-to-
one relationship

The component here, TestCMP/Employee, is related to itself:

relationship-type=many-to-one
relationship-name=Employee-Manager
relationship-from=TestCMP/Employee
relationship-to=TestCMP/Employee
from-field=managerField
from-foreign-key=true
from-query=findByEmployees
from-role=employees-has-manager
to-field=employeesField
to-field-type=Collection
to-foreign-key=true
to-query=findByManager
to-role=manager-has-employees
cascade-delete=false

Programmer’s Guide 531

C H A P T E R 2 8 Configuring Persistence for
Stateful Session Components

Stateful components collect client session data over successive client
method invocations. Normally, state data is stored in memory using fields
in the implementation class. However, instances of a component coded
this way can run on one server only, and cannot support load balancing or
failover. Using persistent state storage allows your component to
participate in failover and load balancing. EAServer also uses database
storage to support the EJB session bean passivation and activation
mechanism.

How it works
State data can be stored either in memory or to a persistent data store:

• In-memory storage uses a mirror-pair model where data is replicated
between pairs of servers running in the cluster. In-memory storage
offers better performance than persistent storage, but each client
session has two points of failure (the originating server, and its
mirror-pair twin). In-memory storage uses the EAServer message
service to replicate data between servers in a mirror pair. See
“Requirements for in-memory stateful failover” on page 545 for
more information.

Topic Page
How it works 531

Supported component implementations 533

Using EJB activation and passivation 533

Using automatic persistence 536

How it works

532 EAServer

• Persistent storage uses a remote database to store component state. A
component instance can failover to any other server in the cluster where
the component is installed. Persistent storage requires a highly available
database, otherwise the database itself can become a single point of
failure.

The stateful failover architecture includes:

• A storage component, which stores state data to a remote database or, for
in-memory storage, calls the message service to replicate the data to the
other server in the mirror pair. EAServer provides several storage
components for database storage and for in-memory replication. You can
also provide your own, custom implementation.

• The component’s state datatype, which is an IDL structure or serializable
class that allows transfer of state data from the stateful component instance
to the storage component. For EJB stateful session beans, the state type is
the implementation class (which is serialized to save the state).

• The component’s state accessor methods, which the component or
skeleton implements to interact with the storage component. When the
client calls a business method, new state may be created in the component.
After the business method returns, the storage component calls the get
method to obtain the state data, passed as an instance of the state datatype.
If the component fails over to another server, a new instance is created and
the storage component calls the new instance’s set method, providing
saved state data to initialize the new instance with the client’s session data.

For EJB stateful session beans, EAServer generates a skeleton with state
accessor methods that get and set instance state using the standard EJB
passivation and reactivation protocol. For components of other types, you
must implement accessor methods and specify their names in component
properties as described below

The server takes care of converting the specified state data type to and from a
form suitable for persistent storage or in-memory replication. This feature is
very powerful because any IDL datatype (or serializable Java class) can be
used as the state type. In many cases, the most suitable state type is an IDL
struct type, which can be created in the IDL editor (required when using C++
or COM components), or generated automatically from a PowerBuilder
structure type by the PowerBuilder deployment process.

CHAPTER 28 Configuring Persistence for Stateful Session Components

Programmer’s Guide 533

Supported component implementations
To use persistent state management, a stateful component must be an EJB
stateful session bean or a component of another type that uses the control
interface CtsComponents::ObjectControl. (See “Configuring a control
interface” on page 73.)

You can manage persistence using these techniques:

• Using EJB activation and passivation

This model can be used only in EJB stateful session Beans. To save
persistent state, the state accessor methods in the component skeleton
serialize the component class instance and saves the binary data to the
database. To restore state, the saved data is deserialized.

• Using automatic persistence

Use this model for non-EJB components. In this model, you define a state
datatype in IDL or Java and implement component methods to receive
state data and return state data. The server calls your state access methods,
and manages interaction with the database.

Using EJB activation and passivation
This stateful persistence model is how EAServer implements the standard EJB
passivation and activation protocol. This model can be used only by EJB
stateful session beans. In EJB terminology, passivation is the process of
removing an instance’s data from memory and saving it to a database.
Activation is the process of restoring the state and applying it to an instance of
the component. You can configure passivization for single-server and
clustered-server deployments as described in Table 28-1.

Table 28-1: EJB stateful session bean passivation options

Option Description

No passivation This is the default configuration for EJB stateful session beans. EAServer never
performs passivation. If you configure an instance timeout property for the
component, instances that time out are destroyed and removed from memory.
Subsequent use of the instance handle by a client results in an error.

Using EJB activation and passivation

534 EAServer

Configuring stateful session beans to support failover
These settings configure EAServer to save in a remote database a copy of the
the session bean’s serialized data after every method invocation. When running
in a cluster, the instance data can be restored on any server in which the
component is installed, permitting load balancing and failover of the
component. Configure the settings in Table 28-2, using the Persistence Tab in
the Component Properties dialog box:

Table 28-2: EJB stateful session failover options

Serialization with support
for load balancing and
failover

For clustered (multiserver) deployments. EAServer serializes instance state and saves
it to a remote database after every remote interface method invocation. This option
can be used to support failover and load balancing in an EAServer cluster and also
supports passivation as required by the EJB specification. “Configuring stateful
session beans to support failover” on page 534 describes how to configure this
option.

Serialization after timeout For single-server deployments. EAServer serializes instance data when the instance
times out, saving the data to a remote database. This option allows you to support EJB
passivation without incurring the overhead of a database write after every method
invocation. You can also tune the timeout setting to balance memory use versus
response time. “Configuring passivation after timeout” on page 535 describes how
to configure this option.

Option Description

Field Value

Persistence Automatic Persistent State.

State The name of the component’s Java class.

Primary Key None (leave blank).

State Methods Enter default.

Storage components The name of the storage component. See “Storage components” on page 541 for more
information.

Connection cache If you are using database storage, enter the name of a JDBC connection cache that
connects to the database. The cache must have by-name access enabled.

Table If you are using database storage, enter the name of a database table where the
serialized data is to be stored. If you use Adaptive Server Enterprise or Adaptive
Server Anywhere, EAServer creates the table if it does not exist. When you are using
another data server, you or your database administrator (DBA) must create the table
manually. The table must have the schema described in “Table schema for binary
storage” on page 545.

CHAPTER 28 Configuring Persistence for Stateful Session Components

Programmer’s Guide 535

Configuring passivation after timeout
For single-server deployments, these settings configure EAServer to passivate
instances when the instance has been idle for the period specified by the
Instance Timeout property. EAServer serializes the instance, saves the data in
a remote database, and removes the instance from memory. When using this
option, you can tune the timeout setting to balance your application’s memory
use against the average response time.

The following component properties that must be set in addition to the default
EJB stateful session bean component settings:

• com.sybase.jaguar.component.timeout – Enter the instance time out
period, in seconds.

• com.sybase.jaguar.component.ps – Set to serialize.

• com.sybase.jaguar.component.state.gs – Set to default.

• com.sybase.jaguar.component.transient – Set to false

• com.sybase.jaguar.component.storage – Set to:

CtsComponents/JdbcStorage(cache=c_name,table=t_name,transient)

Where c_name is the name of a JDBC connection cache that connects to
the target database and t_name is the name of the table used. If you use
Adaptive Server Enterprise or Adaptive Server Anywhere, EAServer
creates the table if it does not exist. When you are using another data
server, you or your database administrator (DBA) must create the table
manually. The table must have the schema described in “Table schema for
binary storage” on page 545.

In EAServer Manager, use the Advanced tab in the Component Properties
dialog box to configure these properties. You can also use jagtool or jagant to
configure components that use this option, or add an EAServer configuration
file to your EJB-JAR file that configures the component properties. See the
following references in the EAServer System Administration Guide for more
information:

• Chapter 12, “Using jagtool and jagant”

• “Using EAServer configuration files in J2EE archives” in Chapter 9,
“Importing and Exporting Application Components”

Using automatic persistence

536 EAServer

Using automatic persistence
To use automatic persistence, you must define a state datatype to hold your
component’s instance state, implement accessor methods, and choose a storage
component.

❖ Configuring a stateful component to use automatic persistence

1 Display the component’s properties, then click the Persistence tab.
Configure the Persistence/General tab settings as follows:

2 Define the IDL state type as described below.

3 Add code to retrieve, apply, and modify the state data as described below.

Setting Value

Persistence Choose Automatic Persistent State.
State Enter the name of an IDL structure that contains your

component’s state data, for example:

TheCart::CartState

“Defining the IDL state type” on page 537 describes
how to create this structure.

State methods Enter the names of the component methods that
retrieve and apply an instance’s state data. If you
specify no value, the default is
getState,setState. Your component
implementation must contain these methods, but
they should not be listed in the component’s
client interfaces. “Accessing the state data in the
implementation” on page 538 describes how to
implement these methods.

Storage component Specify the name of the storage component, as
described in “Storage components” on page 541.

Connection cache If using database storage, enter the name of a JDBC
connection cache that connects to the database.
The cache must have by-name access enabled.

Table If using database storage, enter the name of a database
table where the serialized data is to be stored. If you
use Sybase Adaptive Server Enterprise or Adaptive
Server Anywhere, EAServer creates the table if it does
not exist. When using another data server, you or your
database administrator (DBA) must create the table
manually. The table must have the schema described in
“Table schema for binary storage” on page 545.

CHAPTER 28 Configuring Persistence for Stateful Session Components

Programmer’s Guide 537

4 Regenerate stubs and skeletons for the component—this step will generate
the Java classes for the IDL state types.

5 If using in-memory storage, configure the component’s Mirror Cache
properties and cluster to support in-memory failover, as described in
“Requirements for in-memory stateful failover” on page 545.

Defining the IDL state type
The IDL state type is a structure that must hold all the session data for the bean.
The following IDL module shows example types used for a shopping cart
component:

module TheCart
{

// This is the state type, an IDL structure that holds customer data
// and the collection (sequence) of items in the cart.
struct CartState
{
 string name;
 string address;
 string phone;
 ::TheCart::ShoppingCartItems items;

 };

// "ShoppingCartItems" is the sequence to hold items in the cart:
 typedef sequence < ::TestInMemoryFailvoer::ShoppingCartItem >

ShoppingCartItems;

// "ShoppingCartItem" holds the data for one item in the cart:
struct ShoppingCartItem
{
 string item;
 long quantity;

}
}

In the State field on the Persistence/General tab, you can enter the name of an
IDL structure that does not exist. EAServer Manager creates the structure when
you close the Component Properties dialog box. Afterwards, navigate to the
module definition under the top-level IDL folder and edit the structure
definition. For information on editing IDL in EAServer Manager, see Chapter
5, “Defining Component Interfaces.”

Using automatic persistence

538 EAServer

Accessing the state data in the implementation
Make the following changes to the component implementation:

• Add the state accessor methods Add methods with the names
specified in the State Methods field in the Persistence/General tab in the
Component Properties dialog box. Also add an instance variable of the
generated state type. For example:

import TheCart.CartState;
private CartState data = new CartState();
private int lastItem = 0;

TheCart.CartState getState()
{

return data;
}

void setState(TheCart.CartState state)
{

data = state;
}

• Add code to initialize the state type Add code to your comonents’
ctsCreate method to initialize the state type. For example:

public void ctsCreate(
name, address, phone, capacity)

{
data.name = name;
data.address = address;
data.phone = phone;
data.items = new ShoppingCartItem[capacity];

}

These assignments correspond to the IDL structure fields in the example
above. The items IDL sequence is represented by an array in Java.

• Add code to access the state data from business methods Where
appropriate, the bean’s business methods should read and write from the
state type. For example, these methods add an item to the shopping cart
and return the customer’s name, respectively:

public void addItem(String item, int quantity)
{

....
lastItem++;
data.items[lastItem]

= new ShoppingCartItem(item, quantity);

CHAPTER 28 Configuring Persistence for Stateful Session Components

Programmer’s Guide 539

....
}

public String getCartName()
{

return data.name;
}

Using automatic persistence

540 EAServer

Programmer’s Guide 541

C H A P T E R 2 9 Configuring Persistence
Mechanisms

You can code components to store state information in a remote database
rather than in memory. Doing so offers several advantages, such as
enabling failover and load balancing for stateful components, or allowing
you to map relational data to a component interface using the EJB entity
bean model. The EAServer persistent state model is based on standard
EJB interfaces, but you can use it in components of other types. For more
information, see these chapters:

• Chapter 27, “Creating Entity Components”

• Chapter 28, “Configuring Persistence for Stateful Session
Components”

The remainder of this chapter contains reference material that is useful in
configuring stateful session components and entity components.

Storage components
A storage component read and writes component state information from a
remote database server or replicates state information to other servers for
in-memory stateful failover. If your component uses automatic
persistence, Java serialization, or component-managed persistence with
an implementation that delegates to EAServer’s built-in storage
component, you must specify the storage component used to interact with
the persistent data store.

Topic Page
Storage components 541

Supported Java, IDL, and JDBC/SQL types 543

Table schema for binary storage 545

Requirements for in-memory stateful failover 545

Storage components

542 EAServer

When using persistent (database) storage, the storage component uses the
connection cache and database table identified on the Persistence/General
subtab in the Component Properties dialog box.

For EJB stateful session beans, HeapStorageReqNew or JdbcStorageReqNew
are the recommended storage components. For EJB CMP entity beans,
JdbcStorage or JdbcStorageReqNew are recommended, and you cannot use in-
memory storage. Table 29-1 describes the storage components available in
EAServer.

Table 29-1: EAServer storage components

Storage component Characteristics

CtsComponents/
JdbcStorage

Uses a JDBC connection cache to provide persistent
storage of component state applied in the context of the
current EAServer transaction. This component has the
Requires transaction attribute. The component’s state is
saved in the context of any existing transaction
associated with the component. Consequently, a
transaction rollback rolls back changes to the state data.

CtsComponents/
JdbcStorageReqNew

Database storage using a JDBC connection cache,
applied in the context of a new transaction. A transaction
rollback does not affect the storage of state data.

CtsComponents/
HeapStorage

For stateful components only, not for entity components.
Supports in-memory failover using a mirror-pair model
to replicate state between pairs of servers.

Changes are applied in the context of the current
EAServer transaction. A transaction rollback rolls back
changes to the state data.

Additional configuration is required to use in-memory
storage, as described in “Requirements for in-memory
stateful failover” on page 545.

CtsComponents/
HeapStorageReqNew

For stateful components only, not for entity components.
Supports in-memory failover using a mirror-pair model
to replicate state between pairs of servers.

In-memory storage applied in the context of a new
transaction. A transaction rollback does not affect the
storage of state data.

Additional configuration is required to use in-memory
storage, as described in “Requirements for in-memory
stateful failover” on page 545.

CHAPTER 29 Configuring Persistence Mechanisms

Programmer’s Guide 543

Supported Java, IDL, and JDBC/SQL types
Table 29-2 lists the Java, IDL, and JDBC/SQL types that EAServer supports
for persistent storage using mapped fields. Types on one row are equivalent.
The JDBC/SQL column lists the java.sql.Types constants that the storage
component uses to bind to the database column. When creating tables, ensure
that each column’s type is compatible with the JDBC/SQL type that
corresponds to the mapped Java field.

Table 29-2: Supported Java, IDL, and JDBC datatypes

A custom storage
component.

You can specify the name of your custom storage
implementation, entered as package/component, where
package and component are the package and component
names, respectively, as displayed in EAServer Manager.
The package must be installed on all servers where your
component is installed.

Customers and partners can implement custom storage
components. The component must implement the
CtsComponents::Storage interface and must have the
Bind Object option enabled on the Instances tab. Due to
the thread-safe instance requirement for the Bind Object
option, only C++ and Java are suitable for coding storage
components.

Storage component Characteristics

Java field type CORBA IDL field type
JDBC/SQL column
type

boolean boolean TINYINT

char char CHAR

byte octet TINYINT

short short SMALLINT

(N/A) unsigned short SMALLINT

int long INTEGER

(N/A) unsigned long INTEGER

long long long BIGINT

(N/A) unsigned long long BIGINT

float float REAL

double double FLOAT

(N/A) string VARCHAR

Supported Java, IDL, and JDBC/SQL types

544 EAServer

Values that can be null
If a field can contain nulls, do not use a primitive type. Instead, use the
CtsComponents::TypeValue IDL type and the equivalent Java object type. For
example, rather than float, use CtsComponents::FloatValue and java.lang.Float.

(N/A) BCD::Binary VARBINARY

(N/A) BCD::Decimal DECIMAL

(N/A) BCD::Money DECIMAL

(N/A) MJD::Date DATE

(N/A) MJD::Time TIME

(N/A) MJD::Timestamp TIMESTAMP

java.lang.String CtsComponents::StringValue VARCHAR

byte[] CtsComponents::BinaryValue VARBINARY

java.lang.Boolean CtsComponents::BooleanValue TINYINT

java.lang.Character CtsComponents::CharValue CHAR

java.lang.Byte CtsComponents::OctetValue TINYINT

java.lang.Short CtsComponents::ShortValue SMALLINT

(N/A) CtsComponents::UShortValue SMALLINT

java.lang.Integer CtsComponents::LongValue INTEGER

(N/A) CtsComponents::ULongValue INTEGER

java.lang.Long CtsComponents::LongLongValue BIGINT

java.lang.Float CtsComponents::FloatValue REAL

java.lang.Double CtsComponents::DoubleValue FLOAT

java.lang.BigDecimal CtsComponents::DecimalValue DECIMAL

(N/A) CtsComponents::MoneyValue DECIMAL

java.sql.Date CtsComponents::DateValue DATE

java.sql.Time CtsComponents::TimeValue TIME

java.sql.Timestamp CtsComponents::TimestampValue TIMESTAMP

java.lang.Object (as
primary key)

Xdt::IntegerValue IDENTITY

Serializable Java
object

(N/A) VARBINARY

Java field type CORBA IDL field type
JDBC/SQL column
type

CHAPTER 29 Configuring Persistence Mechanisms

Programmer’s Guide 545

Table schema for binary storage
When using the binary storage technique, the table used by the JdbcStorage and
JdbcStorageRegNew components has the schema described in Table 29-3.

Table 29-3: Table schema for binary storage

Requirements for in-memory stateful failover
You can use in-memory storage to support failover for stateful components by
choosing CtsComponents/HeapStorage as the storage component. This feature
allows component state to be maintained on a pair of servers, without incurring
the overhead of using a remote database to store component state.

Column Data format

ps_key (primary key) The table’s primary key. The column datatype is different for different
component primary key types (that is, the IDL or Java type specified in
the Primary Key field on the Persistence tab):

• If the component has no primary key, ps_key must be variable-length
binary, 16-byte maximum length.

• If the component’s key is the IDL string type, ps_key must be variable
length character, 255-character maximum length.

• If the component uses any other primary key type, including
java.lang.String, ps_key must be variable length binary, 255-byte
maximum length.

This column cannot be null.

ps_size Integer, cannot be null.

ps_bin1 Variable length binary, 255 bytes maximum length, can be null.

ps_bin2 Variable length binary, 255 bytes maximum length, can be null.

ps_bin3 Variable length binary, 255 bytes maximum length, can be null.

ps_bin4 Variable length binary, 255 bytes maximum length, can be null.

ps_data Binary large object. This type must be functionally equivalent to a Sybase
image type. The JDBC driver used by the specified connection cache
must allow access to the ps_data column using the JDBC setBytes and
getBytes methods.

Requirements for in-memory stateful failover

546 EAServer

The in-memory failover implementation is based on mirror pairs. A mirror pair
consists of two servers that are members of a cluster. The servers use the
EAServer message service to synchronize component session state held in
memory. If one server in a mirror pair goes offline, the other remains to serve
client sessions for the mirrored components. You can configure multiple mirror
pairs within a cluster, but each server can be a member of only one mirror pair.

In-memory failover requires the following:

• A cluster with mirror pairs configured as described in “Cluster
configuration for in-memory failover” on page 546.

• Component Mirror Cache configuration as described in “Mirror Cache tab
component properties” on page 547.

• A working message service on each server that is in a mirror pair. Chapter
8, “Setting up the Message Service,” in the EAServer System
Administration Guide describes how to configure the message service.

Cluster configuration for in-memory failover
Chapter 6, “Clusters and Synchronization,” in the EAServer System
Administration Guide describes how to configure a cluster. To support in-
memory failover, you must define mirror pairs within the cluster.

A mirror pair consists of two servers within the cluster that use the EAServer
message service to replicate state information for session components hosted
on those servers. Servers in a mirror pair should have the same set of stateful
components installed. One server cannot be a member of more than one mirror
pair.

❖ Configuring mirror pairs

1 Display the Mirror Groups tab in the Cluster Properties dialog box.

2 Click Add.

3 Enter the IIOP URLs for the two servers in the mirror pair, separated by a
comma. For example:

iiop://mypc:9000,iiop://yourpc:9100

4 Repeat to add as many mirror pairs as required.

CHAPTER 29 Configuring Persistence Mechanisms

Programmer’s Guide 547

❖ Configuring server session cache size

• For each logical server in a mirror pair, configure the server property
com.sybase.jaguar.server.ps.cache.size. This property specifies
the maximum size of the memory cache used to hold session data for
components running on the server. The value has the same syntax as the
Cache Size property described in “Mirror Cache tab component
properties” on page 547.

Mirror Cache tab component properties
On the Mirror Cache tab, configure the following:

• Cache Size Specifies the maximum size of the cache used to hold
session state for instances of this component. Specify the size in
megabytes, kilobytes, or bytes with the syntax shown in the following
table:

The component’s cache size cannot be greater than the size of the server’s
in-memory session cache (specified by the
com.sybase.jaguar.server.ps.cache.size server property). If the
cache is not large enough, clients may experience cache overflow errors.
When this happens, the least recently accessed instance is removed from
the cache. If a client attempts to invoke an instance, the client receives a
CORBA::OBJECT_NOT_EXIST exception.

• Synchronization Specify “mirror”.

• Timeout Specify a cache timeout value as a positive integer. This value
is the number of seconds that cached state data remains valid. The cache
timeout must be less than the Instance Timeout setting, and in most cases
should be the same. The default is 10000 seconds.

Cache size value syntax To indicate
nM

or

nm

n megabytes, for example:

512M

nK

or

nk

n kilobytes, for example:

1024K

n n bytes, for example:

536870912

Requirements for in-memory stateful failover

548 EAServer

Programmer’s Guide 549

C H A P T E R 3 0 Configuring Custom Java Class
Lists

Understanding how the class loader works
In Java, a class loader loads the Java classes used by an application. Most
applications use the Java system class loader, which loads classes from the
directories and JAR files specified by the CLASSPATH environment
variable. In the normal Java program configuration, you must restart a
program or server to begin using updated Java classes. EAServer uses
customized Java class loaders to allow hot refresh of Web application
classes and Java components without restarting the server. EAServer
provides custom class loaders for these entity types:

• Component For CORBA/Java and EJB components, allows you to
define the list of classes that must be custom loaded in addition to the
component implementation class.

• Package Allows you to define a custom class list shared by all Java
components that are installed in the package.

• Web application Allows you to specify classes and JAR files that
are not in the Web application’s WEB-INF/lib or WEB-INF/classes
directories, but must be custom loaded for the Web application.

• Application Allows you to define a custom class list shared by all
components and Web applications that are installed in the J2EE
Application.

Topic Page
Understanding how the class loader works 549

Deciding which classes to add to the custom list 554

Configuring an entity’s custom class list 559

Troubleshooting class loader configuration issues 560

Understanding how the class loader works

550 EAServer

• Server Allows you to define a custom class list shared by all
components, servlets, and Web applications running on the server.

• Servlet For servlets that are not installed in a Web application, but are
installed directly in a server, allows you define the list of classes that must
be custom loaded in addition to the servlet implementation class.

Class loader versions
EAServer supports two class loader versions. EAServer releases earlier than
5.1 use class loader version 1.0. Beginning in EAServer 5.1, you can configure
two versions

• Version 1, the default, guarantees compatibility with applications
configured to run in earlier EAServer releases.

• Version 2 offers improved diagnostics and allows you to configure the
delegation order for parent-child class loader relationships.

You can configure the class loader version in the EAServer Manager Server
Properties dialog box, on the Java VM tab; select Use Jaguar Class Loader
Version 2 to begin using the version 2 class loader. If using jagtool or an
EAServer configuration file, set the server property
com.sybase.jaguar.server.jvm.classloader.

The class loader hierarchy and delegation policy
Each server, component, Web application, application, and package has a
custom class loader associated with it. The EAServer class loaders have a a
parent-child hierarchy. Every class loader except the server class loader has a
parent. This relationship is shown in the following figure:

CHAPTER 30 Configuring Custom Java Class Lists

Programmer’s Guide 551

Figure 30-1: EAServer class loader hierarchy

When you specify the same class at multiple levels, the class loader delegation
policy determines how version conflicts are resolved. The version 2 class
loader supports these settings:

• Parent First When loading classes at levels below the server, the entity
class loader delegates to it’s parent before trying to load the class itself. For
example, if you specify Java package X in a component’s class list, the
class list of the package where X is installed, and the class list of the server
where the package is installed, the server class loader loads classes in
package X.

The Parent First policy is the default. This setting avoids the overhead
incurred by custom-loading multiple copies of the same class among
sibling entities. This policy allows sharing of common utility classes used
by components and Web applications. It also allows sharing class
instances that are passed as parameters to EJB local interface calls, which
is a required to avoid ClassCastException errors.

Server

Application A

Package 1

Component X

Web application A
(Servlets and JSPs)

Package 2

Component Y

Web application B
(Servlets and JSPs)

Understanding how the class loader works

552 EAServer

• Parent Last When loading classes at the levels below the server, the
entity class loader tries to load classes itself before delegating to the
parent. For example, if you specify Java package X in a component’s class
list and the class list of the package where X is installed, the component
class loader loads the class. If another component in the same package has
the same settings, two copies of the class are loaded.

Use the Parent Last policy when you must load different versions of a class
in different entities. For example, in a Web application you may require a
different version of a JAR file than that used by the server.

Note If you use the version 1 class loader, the delegation policy is always
Parent First, regardless of the entity configuration.

You can configure the delegation policy for each component, package, Web
application, application. In EAServer Manager, use the Class Loader Policy
control on the Java Classes tab in the properties dialog for the entity. If using
jagtool or an EAServer configuration file, set the property listed in the Table 30-
1.

Table 30-1: Class loader delegation properties

The system class loader
Classes not loaded by the custom class loader must be loaded by the system
class loader, based on the search order specified by the server class path setting.
These classes cannot be refreshed without restarting the server. It can be more
efficient configure system class loaders for classes that are used server wide,
as long as all components that use them require the same class versions, and
you do not need to refresh the classes without restarting the server. (For classes
used server-wide that may be updated, you can configure sharing of the classes
at the server class loader level, as described in “Custom class lists for
packages, applications, or servers” on page 558.)

By default, the server class path includes these entries:

Entity Property name

Component com.sybase.jaguar.component.classloaderpolicy

Package com.sybase.jaguar.package.classloaderpolicy

Web application com.sybase.jaguar.webapplication.classloaderpolicy

Application com.sybase.jaguar.application.classloaderpolicy

CHAPTER 30 Configuring Custom Java Class Lists

Programmer’s Guide 553

• Class files deployed in the class trees rooted in the EAServer java/classes
and html/classes subdirectories.

• All JAR files in the java/lib directory that exist when the server starts,
exclusive of jagtool.jar, jdmkrt.jar, and jdkmktk.jar.

You can add classes or JAR files to the server’s class path using any of these
techniques:

• By placing a JAR file that contains the classes in the EAServer java/lib
subdirectory. At startup, EAServer automatically configures the
CLASSPATH and BOOTCLASSPATH environment variables to include
JAR files that you have placed in this location.

• By modifying the CLASSPATH and BOOTCLASSPATH environment
variables in the shell where you start the server. You can do this by adding
settings to the bin/user_setenv.bat (Windows) or bin/user_setenv.sh
(UNIX) scripts. EAServer applies these settings automatically when you
start the server. However, they are also applied in the environment for
other tools, such as EAServer Manager and jagtool.

• By modifying the following server properties, using the advanced tab in
the EAServer Manager server properties dialog box:

• com.sybase.jaguar.server.jvm.classpath to configure the
CLASSPATH setting.

• com.sybase.jaguar.server.jvm.classpath.jars to specify JAR files in
the java/lib directory to add to the CLASSPATH setting.

• com.sybase.jaguar.server.jvm.bootclasspath to configure the
BOOTCLASSPATH setting.

• com.sybase.jaguar.server.jvm.bootclasspath.jars to specify JAR files
in the java/lib directory to add to the BOOTCLASSPATH setting.

For syntax information, see the reference pages in Appendix B,
“Repository Properties Reference,” in the EAServer System
Administration Guide.

Deciding which classes to add to the custom list

554 EAServer

Deciding which classes to add to the custom list
Since system loaded classes require a server restart to update, use system
loading only for classes that never change. For classes that might be refreshed
with a component or Web application, add the classes to the custom list. The
following sections give more specific guidelines for each entity type.

Custom class lists for Java and EJB components
The standard locations for deploying Java and EJB component class files is the
java/classes directory. EAServer also generates the component’s stubs and
skeleton classes under this directory.

A Java component’s implementation class and stub classes are automatically
part of the custom class list for the component. Add the following additional
classes to the custom list:

• Stub classes used for intercomponent calls. For EJB local interface calls,
you must also configure sharing of the class instances as specified in
“Calling local interface methods” on page 154.

• Other classes that your component loads and passes as parameters or
return values for intercomponent calls, or passes to clients as method
return values and output parameter values.

• For EJB components, classes that extend javax.naming.InitialContext or
other javax.naming classes and that are called by your component.

• Additional classes that must be reloaded when the component is refreshed.
For example, if you are debugging utility classes used by the component,
add these classes to the custom list.

Component-specific JAR files should be deployed in the EAServer
java/classes subdirectory and added to the custom class list.

To configure the custom list, follow the instructions in “Configuring an entity’s
custom class list” on page 559.

CHAPTER 30 Configuring Custom Java Class Lists

Programmer’s Guide 555

JNDI classes EAServer never custom loads the standard Java Naming and
Directory (JNDI) packages. In EAServer versions prior to 4.0, an EJB
component required the following in the custom class list:

com.sybase.ejb.*;javax.naming.*;javax.naming.spi.*

In EAServer 4.0 and later, these classes and interfaces are ignored when listed
in the custom class list.

Class loading order for components

When loading classes listed in a Java or EJB component custom list, the
component class loader searches for classes in this order:

1 Any JAR file that is listed in the component’s custom class list property
and deployed in the EAServer java/classes subdirectory.

2 Classes listed in the component’s custom class list and deployed under the
EAServer java/classes subdirectory.

3 Classes listed in the component’s custom class list and deployed under the
EAServer html/classes subdirectory.

4 Any JAR file that is listed in the component’s custom class list property
and deployed in the EAServer java/lib subdirectory.

5 If the class is not loaded at this point, it is loaded by the system loader
using the search order specified in the server class path—see “The system
class loader” on page 552.

Custom class lists for Web applications
A Web application’s custom class list must include any classes that must be
reloaded when the Web application is refreshed. For example, servlet
implementation classes, utility classes called by servlets and JSPs, and stub
classes for component invocations should be in the custom class list.

If you deploy classes and JAR files that the standard Web application
deployment locations, you do not need to explicitly list them in the custom
class list. The standard Web application deployment locations are under your
Web application’s context root, the EAServer subdirectory:

Repository/WebApplication/WebApp

Deciding which classes to add to the custom list

556 EAServer

Where WebApp is the Web application name. Deploy classes and JAR files to
these subdirectories of the context root:

• WEB-INF/classes for class files.

• WEB-INF/lib for JAR files that contain archived class files.

EAServer automatically adds classes and JAR files that are deployed in the
standard locations to the custom class list. Use these locations to deploy classes
and JAR files that are specific to your Web application. These directories are
equivalent to the like-named directories in a J2EE WAR file.

For classes that are also used in EJB or Java components or other Web
applications, you can deploy classes or JAR files in one of the locations below.
For example, if your servlet calls an EJB component, you may want the servlet
and component to use the same copies of the component stub classes. You must
explicitly list these classes or JAR files in your Web application’s custom class
list:

• The EAServer java/classes or html/classes directory, for class files that are
also used by components.

• The EAServer java/classes or java/lib directory, for JAR files that are also
used by components.

• The EAServer extensions subdirectory for JAR files used by multiple Web
applications, as described in “Using Java extensions” on page 398. These
JAR files can be used by any Web application that lists the JAR file name
in the custom class list.

Though a component and Web application may custom load the same classes,
to enable sharing of one copy of each class, you must configure the same
custom class list entries in parent entities up to a common ancestor entity, as
described in “Custom class lists for packages, applications, or servers” on
page 558.

Class loading order for Web applications

EAServer loads classes listed in the Web application custom class list by
searching the following code bases, in the order specified. All of these
locations are subdirectories of your EAServer installation directory, app_name
represents the name of your Web application, and server is the server where the
Web application is installed. If the custom class loader cannot locate a class
file, the server attempts to load it using the system class loader.

1 Class files in work/server/Servlet/WebApp-app_name

CHAPTER 30 Configuring Custom Java Class Lists

Programmer’s Guide 557

This directory contains generated servlet classes for compiled JSPs.

2 Class files in Repository/WebApplication/app_name/WEB-INF/classes

This is the standard directory for servlet, filter, tag-library, and utility
classes used by the Web application. If utility classes are shared with Java
components running on the same server, you may wish to move them to
the EAServer java/classes subdirectory and add them to the custom class
list for your application or server.

3 JAR files in Repository/WebApplication/app_name/WEB-INF/lib

This is the standard location for JAR files that contain classes to be used
only by this Web application. EAServer searches the JAR files in the order
specified by the com.sybase.jaguar.webapplication.jarlist property. If you
do not JAR files in this property, EAServer searches in directory order;
that is, the order that would be returned in a directory listing.

4 JAR files in extensions

This directory contains JAR files that have been installed as Web
application extensions—see “Using Java extensions” on page 398.
EAServer places these JAR files in the Web application’s default custom
class list, in directory order.

5 JAR files in the java/classes directory that are listed in the custom class
list for the servlet, JSP, or Web application.

6 Class files in the java/classes and html/classes directory that are specified
in the custom class list for the servlet, JSP, or Web application.

7 JAR files in the java/lib directory that are listed in the custom class list for
the servlet, JSP, or Web application.

8 If the class has not been found, the server attempts to load the class using
the system class loader, using the search order in the server class path—
see “The system class loader” on page 552.

Custom class lists for servlets installed directly in the server
For servlets that are installed directly in a server, and not in a Web application,
you must define the custom class list in the servlet properties or the properties
of the host server. Classes and JAR files for these servlets should be deployed
in the EAServer java/classes subdirectory.

Deciding which classes to add to the custom list

558 EAServer

Custom class lists for packages, applications, or servers
You can configure the package, application, or server level class lists to
configure sharing of class instances between child entities installed in the
package, application, or server. Doing so can decrease server memory use by
eliminating copies of custom loaded classes. However, you must also refresh
the classes at the level where they are loaded. For example, classes loaded at
the server level require a refresh of the entire server.

To configure sharing of custom-loaded classes, first configure the class lists for
the Web applications and components that use the class directly, then configure
the same entries in the parent entries up to a common ancestor. Make sure the
class loader delegation policy is Parent First for entities below this common
ancestor. For example, Figure 30-2 shows the entries required to share classes
in the JAR file widget.jar and the Java package com.sybase.widgets, loading
one copy of the classes at the application level.

Figure 30-2: Example of sharing custom loaded classes

Deploy classes that are shared by multiple entities in one of these common
locations:

widget.jar,com.sybase.widgets.*

Application

widget.jar,com.sybase.widgets.*

Package

widget.jar,com.sybase.widgets.*

Web application

EJB 1

widget.jar,com.sybase.widgets.*

EJB 2

widget.jar,com.sybase.widgets.*

CHAPTER 30 Configuring Custom Java Class Lists

Programmer’s Guide 559

• The java/classes subdirectory, for JAR files that are always custom-loaded
(unless you have added the JAR file to the server CLASSPATH setting by
listing it in the com.sybase.jaguar.server.jvm.classpath or
com.sybase.jaguar.server.jvm.bootclasspath server property).

• The java/lib subdirectory, for JAR files that may be system loaded or
custom loaded. If an entity’s custom class list contains the JAR file name,
the classes are custom loaded. Otherwise, the classes are system loaded,
because EAServer adds JAR files in this location to the default server class
path at server start-up time.

• The class tree rooted in the java/classes or html/classes subdirectory, for
class files such as generated EJB stub classes. Use java/classes for server-
side code. Use html/classes if the classes are shared with applet clients that
load class files directly rather than using a JAR file.

To configure the server, application, or package class list, follow the
instructions in “Configuring an entity’s custom class list” on page 559.

Configuring an entity’s custom class list
You can configure custom class lists for your servers, applications, Web
applications, packages, and components, and so forth using the Java Classes
tab in the EAServer Manager properties for the entity. If using jagtool or an
EAServer XML configuration file, configure the class list by setting the entity
property that ends in .java.classes, for example the application property name
is com.sybase.jaguar.application.java.classes.

Custom class lists for entities that are deployed in J2EE archives
When you import entities from J2EE archives such as EJB-JAR, EAR, or WAR
files, EAServer configures the custom class list to include the classes included
in the archive. You do not need to configure the class list in most cases.
EAServer ignores java.classes properties set in the archive’s sybase-easerver-
config.xml file (if present). If you must customize these properties, do so after
deploying the J2EE archive.

❖ Configuring the custom class list for a server, application, Web
application, component, or Web component in EAServer Manager

1 Display the properties dialog for the server, application, Web application,
component, package, or servlet.

Troubleshooting class loader configuration issues

560 EAServer

2 Display the Java Classes tab.

3 If necessary, configure the delegation order as described in “The class
loader hierarchy and delegation policy” on page 550.

4 Edit the class list as follows:

• To add a class, click Add and edit the name of the class, package, or
JAR file, following the value syntax rules described below.

• To rearrange the order of listed items, highlight the item to be moved
in the list and click Move Up or Move Down.

• To remove an item, click Remove.

Value syntax for Java class lists Enter a comma-separated list of Java
classes, packages, and JAR files. You can specify all classes in a package using
wildcards, as in this example:

com.xyz.MyPackage.*

You can specify all classes in a JAR file by specifying the JAR file name, as in
this example:

MyEntityBean.jar

JAR files must be deployed in the EAServer java/classes subdirectory.

Troubleshooting class loader configuration issues
This section presents additional information that can be useful when
diagnosing class loader configuration problems.

Commonly encountered problems
Common problems encountered in the custom class list configuration include:

• Class cast exceptions In Java, classes loaded by different class loaders
are considered different types. You cannot assign a class loaded by one
class loader to a reference loaded by another class loader. This restriction
must be accounted for when specifying the custom class list, or when
deciding at what level a class should be loaded at. Otherwise, the
invocation may fail and you see one these Java exceptions in the server log
file:

CHAPTER 30 Configuring Custom Java Class Lists

Programmer’s Guide 561

• java.lang.ClassCastException

• java.lang.LinkageError

• java.lang.NoClassDefFoundError

• java.lang.IncompatibleClassChangeError

There are two variations of this issue:

• When using EJB local interfaces, the calling entity and the caller must
share the same instance of classes that are passed as method
parameters or return values. In this case, fix the problem by copying
the relevant custom class list entries to parent entities, up to a common
ancestor. See “Custom class lists for packages, applications, or
servers” on page 558 for details.

• For other Java or EJB component calls, the entity that calls the
component uses stubs that are system loaded. This call fails because
stubs in the component are custom loaded, and Java considers classes
that are loaded by different class loaders to be different types, even
when the classes have the same name and deployment location. To fix
this problem, add the called component’s stub classes to the custom
class list for the component or Web application that makes the call.

• Refreshing classes Classes must be refreshed at the level they were
loaded at. For example, if you configure an application class loader to
share some class instances between components and Web applications,
you must refresh the application to reload new versions of these classes. It
will not do to refresh the components, package, or Web application
directly.

Custom class loader tracing
To troubleshoot class loader problems, you can enable custom class loader
tracing by setting the server property
com.sybase.jaguar.server.classloader.debug to true using the Advanced tab in
the Server Properties dialog box.

Troubleshooting class loader configuration issues

562 EAServer

JAR file locking and copying
JAR files that are in the server’s CLASSPATH setting are locked while in use
by the system class loader. Consequently, on some platforms such as Windows,
you cannot update or overwrite the JAR file while the server is running. To
verify the server’s CLASSPATH setting, connect to the server with EAServer
Manager and check the value in the General tab of the Server Properties dialog
box, or connect to the server with jagtool and check the value of the server
property com.sybase.jaguar.server.jvm.classpath.

To allow refresh of JAR files that are custom loaded, each class loader instance
works with a copy of the JAR files that it has loaded. Copies are created in
subdirectories of the EAServer work/server-name/tempjars subdirectory,
where server-name is the name of your server. EAServer deletes these
directories and files when you restart the server.

Programmer’s Guide 563

C H A P T E R 3 1 Using the Message Service

This chapter describes the messaging service feature for EAServer version
4.1, which supports the Java Messaging Service (JMS) 1.0.2 specification.
You can use the message service to send messages to specific destinations
and publish messages to be delivered to interested consumers. You can
receive scheduled messages and message topic notifications, as well as
asynchronously receive messages using message listeners.

To develop messaging service applications, you can use either the JMS
API or the EAServer CORBA API. To ensure that your code is portable,
Sybase recommends that you use the JMS API when performing
nonadministrative tasks from Java clients and components. Use the
EAServer CORBA API for your clients and components:

• For programming languages other than Java

• To automate administrative tasks

• To assign a single message listener to multiple message queues

For information on configuring and administering the message service,
see Chapter 8, “Setting up the Message Service,” in the EAServer System
Administration Guide.

Topic Page
Overview 564

Developing JMS applications 566

Developing EAServer messaging service applications 586

Overview

564 EAServer

Overview
The message service allows you to send or publish messages to a queue or
topic, where they are stored until they can be delivered to either a client or a
component. The message service supports two messaging models, point-to-
point and publish/subscribe. Use point-to-point messaging to send a message
to one consumer. Use the publish/subscribe model to publish messages that are
available to all consumers who subscribe to the message topic. The message
service provides transient and persistent message storage for message
consumers.

A messaging service provides a highly flexible solution for many business
needs. As a practical example, consider a business-to-business (B2B) scenario
in which a supplier needs to communicate prices to a number of retailers, and
the retailers may want to place orders for items at updated prices.

You would create a listener to respond to all incoming orders, and you would
manage the list of retailers, as well as add new ones. You would ensure that
each party received and processed all the transactions that are sent its way. If
one of the retailers is offline, or network routing to its server fails, your
application design must continue trying to establish communications until the
transaction can be successfully sent. You would provide persistence for critical
transactions until all recipients acknowledge them. You would also want to
ensure that all parties are granted access and are who they say they are, and that
transactions are secure during transmission.

Many B2B transactions take place in an environment such as this, where
connectivity cannot be guaranteed and transactions require security. Inserting
a messaging service between business nodes in a B2B network insulates your
application code from these issues.

The key features of the EAServer message service include:

• High availability and load balancing

• Message security

• Reliable delivery

• Scalable notification

• Transaction management

CHAPTER 31 Using the Message Service

Programmer’s Guide 565

High availability and load balancing
The message service uses server clustering to provide high availability and
load balancing. For complete information about using server clustering, see
Chapter 6, “Clusters and Synchronization,” in the EAServer System
Administration Guide.

Message security
The message service provides role-based security for message queues and
message topics. The message service operations and the access categories
required to use them are:

You need to assign permission for each access category separately.

Reliable delivery
To ensure reliable message delivery, the message service provides:

• IIOP/IIOPS connections for client notification.

• HTTP tunneling of IIOP connections. Messages can be delivered through
client-side firewalls that accept only HTTP/HTTPS.

• Component notification that is usually performed in-process, which
reduces the risk of partial failure.

• Persistent messages that guarantee message delivery, subject to the
reliability of the persistent store.

Access category Message service operations

Consumer Adding, removing, or acquiring access to listeners and
message selectors, retrieving message queue and topic
statistics

Producer Sending and publishing messages

Security Adding, configuring, and removing access roles

Developing JMS applications

566 EAServer

Scalable notification
When a thread pool is used for client notification, the message queue object is
implemented with a specialized server IIOP handler that uses only a few
waiting threads to handle blocking receive calls, so it avoids waking large
numbers of threads for client notification.

Transaction management
A transactional operation runs in the caller’s transaction, or if the caller is not
enlisted in a transaction, in a new transaction. These operations can be
transactional:

• publish A message producer can publish a message within a transaction.

• send A message producer can send a message within a transaction.

• acknowledge A client can acknowledge and process a message in the
same transaction.

• onMessage A listener component can process a message within the
same transaction as the automatic acknowledgment, which occurs when
onMessage returns.

• move A message can be moved from one queue to another only within
a transaction.

Developing JMS applications
You can create a JMS application using either the point-to-point or the
publish/subscribe messaging model. Both models support applications that are
capable of:

• Creating a JMS InitialContext object

• Looking up a ConnectionFactory object

• Creating permanent destinations

• Creating connections

• Creating sessions

• Creating message producers

CHAPTER 31 Using the Message Service

Programmer’s Guide 567

• Creating message consumers

• Implementing and installing message listeners

• Creating messages

• Sending messages

• Publishing messages

• Receiving messages

• Browsing messages

• Enabling JMS tracing

• Closing connections, sessions, consumers, and producers

You can download a copy of the JMS 1.0.2 API documentation from the Java
Web site at http://java.sun.com/products/jms/index.html.

Creating a JMS InitialContext object
A JMS client application must instantiate a JMS InitialContext object and set
these properties:

• InitialContext factory – set java.naming.factory.initial to
“com.sybase.jms.InitialContextFactory”.

• URL – set java.naming.provider.url to the location where the client
can connect to EAServer.

• User name – valid for a connection with EAServer.

• Password – valid for the user name.

When instantiating a JMS InitialContext from a base client, specify the user
name with the SECURITY_PRINCIPAL property, and specify the password
with the SECURITY_CREDENTIALS property. The default for both
properties is an empty string.

This example runs the JMS client application JMSClientClass and sets the
InitialContext factory, URL, user name, and password properties at runtime:

java -D java.naming.factory.initial=com.sybase.jms.InitialContextFactory
-Djava.naming.provider.url=iiop://stack:9000
-DSECURITY_PRINCIPAL=”jagadmin” -DSECURITY_CREDENTIALS=”sybase”
JMSClientClass

Developing JMS applications

568 EAServer

Looking up a ConnectionFactory object
A connection factory allows you to create JMS connections and specify a set
of configuration properties that define the connections. EAServer provides two
types of connection factories, one to create queue connections and one to create
topic connections. Queue connections allow you to send and receive messages
using the PTP messaging model. Topic connections allow you to publish and
receive messages using the Pub/Sub messaging model. EAServer provides two
preconfigured connection factories that you can use
javax.jms.QueueConnectionFactory and javax.jms.TopicConnectionFactory. To
create connection factories, use EAServer Manager—see Chapter 8, “Setting
up the Message Service,” in the EAServer System Administration Guide for
details. Once you have created a connection factory, client applications must
look up a ConnectionFactory object using JNDI, as in this example:

// Look up a queue connection factory

QueueConnectionFactory queueCF =
(QueueConnectionFactory) ctx.lookup(“MyTestQueueCF”);

// Look up a topic connection factory

TopicConnectionFactory topicCF =
(TopicConnectionFactory) ctx.lookup(“MyTestTopicCF”);

If the connection factory cannot be found, EAServer throws a
javax.naming.NamingException.

Creating permanent destinations
Permanent destinations are message queues or topics whose configuration
properties are stored in a database. You can create permanent destinations two
ways. The recommended way is to use EAServer Manager to create and
configure message queues and topics. See Chapter 8, “Setting up the Message
Service,” in the EAServer System Administration Guide for information on
how to do this. You can also create permanent destinations using the JMS APIs
createQueue and createTopic. Sybase suggests that you use this option only
when client applications need the ability to dynamically change the provider-
specific destination name; applications using this technique are not portable.

When you create message queues and topics using EAServer Manager, client
applications can use their InitialContext object to look up the destinations; for
example:

CHAPTER 31 Using the Message Service

Programmer’s Guide 569

// Look up a message queue

javax.jms.Queue queue =
(javax.jms.Queue) ctx.lookup(“MyQueue”);

// Look up a topic

javax.jms.Topic topic =
(javax.jms.Topic) ctx.lookup(“MyTopic”);

To create permanent destinations using the JMS APIs, you must first create a
session; see “Creating sessions” on page 571 for details. Once you have access
to a session object, use this syntax to create a destination:

javax.jms.Queue queue =
queueSession.createQueue(“MyQueue”);

javax.jms.Topic topic =
topicSession.createTopic(“MyTopic”);

Temporary
destinations

You can also create temporary destination objects that are active only during
the lifetime of a session. When the session is closed, temporary destination
objects and their associated messages are discarded. These two lines illustrate
how to create temporary message queue and topic destinations:

// Create a temporary queue

javax.jms.Queue queue =
queueSession.createTemporaryQueue();

// Create a temporary topic

javax.jms.Topic topic =
topicSession.createTemporaryTopic();

By default, temporary message queues time out after 60 seconds of inactivity.
To increase this value, you can do one of two things:

• Set the connection factory’s CONFIG_QUEUE property to the name of a
message queue with a reasonably high timeout value. Subsequently, each
temporary message queue you create that uses this connection factory
inherits the properties of the queue assigned to CONFIG_QUEUE.

• Set the value at the global level so all temporary message queues use the
same timeout value. To do this, edit the MessageServiceConfig.props file,
located in the EAServer /Repository/Component/CtsComponents
directory, and set the session.timeout property to the appropriate
number of seconds.

Developing JMS applications

570 EAServer

Chapter 8, “Setting up the Message Service,” in the EAServer System
Administration Guide describes these settings in detail.

Creating connections
JMS provides two types of connections, one for message queues and one for
topics. To create a connection from a JMS client application to EAServer, you
must have access to a ConnectionFactory object. See “Looking up a
ConnectionFactory object” on page 568. Once you have created a connection,
you must explicitly start it before EAServer can deliver messages on the
connection. To avoid message delivery before a client has finished setting up,
you may want to delay starting the connection. This code fragment creates a
QueueConnection object and starts the connection:

QueueConnection queueConn =
queueCF.createQueueConnection();

// other setup procedures

queueConn.start();

This sample creates a connection object for a topic and starts the connection:

TopicConnection topicConn =
topicCF.createTopicConnection();

// other setup procedures

topicConn.start();

You can also stop delivery of messages using the QueueConnection.stop
method, then use start to resume delivery. While a connection is stopped,
receive calls do not return with a message, and messages are not delivered to
message listeners. Any calls to receive or message listeners that are in progress
when stop is called, complete before the stop method returns.

With a single connection to EAServer, the message service can send and
receive multiple messages. Therefore, a JMS client usually only needs one
connection.

CHAPTER 31 Using the Message Service

Programmer’s Guide 571

Setting the client ID A connection for a durable topic subscriber must have a client ID associated
with it so that EAServer can uniquely identify a client if it disconnects and later
reconnects. You can use EAServer Manager to set the client ID when you
create the topic connection factory; see Chapter 8, “Setting up the Message
Service,” in the EAServer System Administration Guide. If you do not set the
client ID in the connection factory, you must set it immediately after creating
the connection and before performing any other action on the connection. After
this point, attempting to set the client ID throws an IllegalStateException. This
code fragment illustrates how to set a topic connection’s client ID:

topicConn.setClientID(“Client ID String”);

For more information about topic subscribers, see “Creating message
consumers” on page 573.

ExceptionListener To enable EAServer to asynchronously notify clients of serious connection
problems, create and register an ExceptionListener. The
javax.jms.ExceptionListener must implement this method:

void onException(JMSException exception);

To register a listener, call the Connection::setExceptionListener method, for
example:

queueConn.setExceptionListener(MyExceptionListener);

If an exception occurs and a listener has been registered, EAServer calls the
onException method and passes the JMSException, which describes the
problem.

Creating sessions
Once a client has established a connection with EAServer, it needs to create
one or more sessions. A session serves as a factory for creating message
producers, message consumers, and temporary destinations. JMS provides two
types of session objects, one for queue connections and one for topic
connections. To create a QueueSession object, use a previously created
QueueConnection object as follows:

QueueSession queueSession =
queueConn.createQueueSession(true,

Session.AUTO_ACKNOWLEDGE);

To create a TopicSession object, use a previously created TopicConnection
object as follows:

TopicSession topicSession =

Developing JMS applications

572 EAServer

topicConn.createTopicSession(true,
Session.AUTO_ACKNOWLEDGE);

When you create a session, set the first parameter to true if you want a
transacted session. When you publish or send a message in a transacted
session, the transaction begins automatically. Once a transacted session starts,
all messages published or sent in the session become part of the transaction
until the transaction is committed or rolled back. When a transaction is
committed, all published or sent messages are delivered. If a transaction is
rolled back, any messages produced in the session are destroyed, and any
consumed messages are recovered. When a transacted session is committed or
rolled back, the current transaction ends and the next transaction begins. See
Chapter 2, “Understanding Transactions and Component Lifecycles” for more
information about transactions.

Set the first parameter to false when you do not want a transacted session. If a
client has an active transaction context, it can still determine transactional
behavior, even if it does not create a transacted session.

The second parameter indicates whether the message producer or the consumer
will acknowledge messages. This parameter is valid only for nontransacted
sessions. In transacted sessions, acknowledgment is determined by the
outcome of the transaction.

Session::recover To stop message delivery within a session and redeliver all the
unacknowledged messages, you can use the Session.recover method. When
you call recover for a session, the message service:

• Stops message delivery within the session.

• Marks all unacknowledged messages “redelivered”, including those that
have been delivered.

• Restarts sending all unacknowledged messages, beginning with the oldest
message.

The method can be called only by a non-transacted session; it throws an
IllegalStateException if it is called by a transacted session.

Acknowledgment mode Description

AUTO_ACKNOWLEDGE The session automatically acknowledges
messages.

CLIENT_ACKNOWLEDGE The client explicitly acknowledges a message,
which automatically acknowledges all messages
delivered in the session.

DUPS_OK_ACKNOWLEDGE EAServer implements this the same as
AUTO_ACKNOWLEDGE.

CHAPTER 31 Using the Message Service

Programmer’s Guide 573

Creating message producers
Create message producers for sending and publishing messages. JMS defines
two message producer objects, a QueueSender, used to send messages, and a
TopicPublisher, used to publish messages. To create a QueueSender object, use
a previously created QueueSession object and this syntax:

javax.jms.QueueSender sender = queueSession.createSender(queue);

To create a TopicPublisher object, use a previously created TopicSession object
and this syntax:

javax.jms.TopicPublisher publisher = topicSession.createPublisher(topic)

Creating message consumers
Message consumers can be either QueueReceiver or TopicSubscriber objects.
Create a QueueReceiver to retrieve messages that are sent using the PTP
messaging model. Use previously created Queue and QueueSession objects, as
follows:

javax.jms.QueueReceiver receiver =
queueSession.createReceiver(queue);

A TopicSubscriber object receives published messages and can be either
durable or nondurable. A nondurable subscriber can only receive published
messages while it is connected to EAServer. If you want guaranteed message
delivery, make the subscriber durable. For example, if you create a durable
subscription on a topic, EAServer saves all published messages for the topic in
a database. If a durable subscriber is temporarily disconnected from EAServer,
its messages will be delivered when the subscriber is reconnected. The
messages are deleted from the database only after they are delivered to the
durable subscriber.

This example illustrates how to create both durable and nondurable topic
subscribers. In both cases, you need to reference previously created Topic and
TopicSession objects:

// Create a durable subscriber

javax.jms.TopicSubscriber subscriber =
topicSession.createDurableSubscriber(topic,

“subscriptionName”)

// Create a non-durable subscriber

javax.jms.TopicScuscriber subscriber =

Developing JMS applications

574 EAServer

topicSession.createSubscriber(topic);

To remove a durable topic subscription, call the TopicSession.unsubscribe
method, and pass in the subscription name; for example:

topicSession.unsubscribe(“subscriptionName”);

Filtering messages using selectors

You can use selectors to specify which messages you want delivered to a
message queue. Once you add a selector to a queue, the message service
delivers only those messages whose message topic matches the selector. You
can create message selectors using EAServer Manager—see Chapter 8,
“Setting up the Message Service,” in the EAServer System Administration
Guide. You can also create message selectors programmatically. This example
illustrates how to create a message selector and use it when you are creating a
new QueueReceiver:

// Create a selector to receive only Text messages
// whose value property equals 100.

String selector = “value = 100 and Type = TextMessage”;

// Create a queue receiver using the selector.

QueueReceiver receiver =
queueSession.createReceiver(queue, selector);

This code sample sends two messages to the message queue we just created.
The properties of the first message match those of the message queue’s
selector. The properties of the second message do not.

// Create and send a message whose properties match
// the message queue selector.

TextMessage textMsg =
queueSession.createTextMessage(“Text Message”);

textMsg.setIntProperty(“Value”, 100);
textMsg.setStringProperty(“Type”, “TextMessage”);
sender.send(textMsg);

// Create and send a Bytes message, whose value
// property equals 200.

BytesMessage bytesMsg =
queueSession.createBytesMessage();

bytesMsg.setIntProperty(“Value”, 200);

CHAPTER 31 Using the Message Service

Programmer’s Guide 575

bytesMsg.setStringProperty(“Type”, “BytesMessage”);
sender.send(bytesMsg);

When we retrieve messages from the message queue, the Text message will be
returned but the Bytes message will not.

Implementing and installing message listeners
Message listeners allow you to receive messages asynchronously. Once you
have implemented a listener, install it on a message consumer. When a message
is delivered to the message consumer, the listener can send the message to other
consumers or notify one or more components.

JMS message listeners implement the javax.jms.MessageLintener interface and
can be either client-side listener objects or EJB 2.0 message-driven beans
(MDB). The MessageListener interface contains only the onMessage method.
This example illustrates the skeleton code for a message listener:

class QueueMessageListener implements MessageListener
{

public void onMessage(javax.jms.Message msg)
{

// process message, notify component
}

}

You can use EAServer Manager to install a message listener on a message
queue or topic—see “Installing and configuring an MDB” on page 576. You
can also install a message listener within your application. First create a
message consumer, see “Creating message consumers” on page 573, then
install the listener, using this syntax:

receiver.setMessageListener(new QueueMessageListener());

Message-driven beans

An MDB is a type of Enterprise JavaBean (EJB) specifically designed as a JMS
message consumer. You can install an MDB as a message listener on a message
queue or topic.

When an MDB is installed as a listener on a message consumer and a JMS
message arrives, EAServer instantiates the MDB to process the message. An
MDB must implement the MessageDrivenBean interface, which consists of
these methods:

Developing JMS applications

576 EAServer

An MDB instance with container-managed transactions can call these
MessageDrivenContext interface methods:

Unlike other EJBs, message-driven Beans do not have a home or remote
interface, and clients cannot directly access an MDB. EAServer calls the
onMessage method of the javax.jms.MessageListener interface to notify an
MDB that a message has been delivered to the queue or topic on which it is
installed. To prevent client access to the onMessage method, this component
property is set automatically when you install and configure an MDB:

com.sybase.jaguar.component.roles = onMessage(security-roles=ServiceControl)

❖ Installing and configuring an MDB

1 Create a new EJB component, as described in Chapter 7, “Creating
Enterprise JavaBeans Components.”

Note You do not need to define remote or local interfaces.

2 On the General tab, supply these values:

• Description – summarize the bean’s purpose.

• Component Type – select EJB - Message Driven Bean from the
drop-down list.

• EJB Version – choose 2.0.

• MDB Class – enter the name of the Java class that implements the
MDB; for example com.sybase.jaguar.myPkg.MyBeanImpl.

Method name Description

ejbCreate Creates an instance of an MDB.

setMessageDrivenContext Associates an MDB instance with its context, which
EAServer maintains. This provides the MDB instance
access to the MessageDrivenContext interface.

ejbRemove Notifies the MDB instance that it is being removed and
should release its resources.

Method name Description

setRollbackOnly To specify that the current transaction must be rolled back.

getRollbackOnly To test whether the current transaction has been marked to roll
back.

getUserTransaction Returns the javax.transaction.UserTransaction interface, with
which the MDB can set and obtain transaction status.

CHAPTER 31 Using the Message Service

Programmer’s Guide 577

3 On the MDB Type tab, enter:

• Destination Type – choose either Queue or Topic.

• Name – enter the name of the destination queue or topic.

• Listener – enter the package and component name for the MDB
listener; for example, MyPkg/MyBeanImpl. To specify a thread pool,
append the thread pool name in square brackets, for example,
MyPkg/MyBeanImpl[MyThreadPool].

You can create thread pools in EAServer Manager as described in
Chapter 8, “Setting up the Message Service,” in the EAServer System
Administration Guide. The thread pool must have one or more worker
threads. A thread pool with multiple worker threads enables the
message listener to process multiple messages at the same time. If you
do not specify the name of a thread pool, the message listener uses the
<system> default thread pool, which has a single worker thread.

• Acknowledge Mode – choose either Auto or Dups-ok. For an
explanation of the acknowledgment modes, see “Creating sessions”
on page 571.

• Message Selector – if the destination type is a queue, enter a message
selector to filter incoming messages; for example, to receive all
published messages with the topic “StockPrice.SY”, enter:

topic = ‘StockPrice.SY’

• Subscription/Durability – if the destination type is a topic, select
either Durable or Non-durable. For a description of these options, see
“Creating message consumers” on page 573.

4 On the Transactions tab:

• Select one of Not Supported, Required, or Bean Managed.

• Optionally, select Automatic Failover.

“Component properties: Transactions” on page 58 describes the options
on this tab.

5 On the Run-As Mode tab, define the identity properties used for
intercomponent calls. “Component properties: Run-As Mode” on page 69
describes this tab in detail. If you do not specify a Run As Mode, the
default value for an MDB is “System.”

Developing JMS applications

578 EAServer

6 Optionally specify a retry timeout. If your MDB throws an exception
while processing a message, EAServer can retry delivery for the time
period you specify. By default, EAServer does not retry delivery. To
configure this setting:

a Enable the Automatic Failover option on the Transactions tab.

b On the Advanced tab, set the property
com.sybase.jaguar.component.retry.timeout to the number of seconds
that EAServer should retry delivery. EAServer retries at intervals that
increase by about one second after each failure; that is, after one
second, again after 3 seconds, again after 6 seconds, and so forth.

7 Similar to other EJBs, you can enter information on these tabs, but it is not
required. For more information, see:

Running the sample
JMS client and MDB

EAServer includes a sample JMS client and MDB listener. For more
information, see “Using message-driven beans and JMS” in Chapter
5, “Using the EAServer Samples,” in the EAServer Cookbook.

Related chapters For information about Enterprise JavaBeans, see these chapters:

• Chapter 6, “Enterprise JavaBeans Overview”

• Chapter 7, “Creating Enterprise JavaBeans Components”

Tab Description link

Instances “Component properties: Instances” on
page 61

Resources “Component properties: Resources” on
page 65

EJB References “EJB references” on page 386

EJB Local References “EJB local references” on page 387

Environment “Environment properties” on page 391

Resource References “Resource references” on page 388

Resource Environment References “Resource environment references” on
page 390

Role References “Configuring role references and
method permissions” on page 137

Java Classes Chapter 30, “Configuring Custom Java
Class Lists”

Additional Files “Component properties: Additional
Files” on page 70

CHAPTER 31 Using the Message Service

Programmer’s Guide 579

Creating messages
To create a message, you must first create an instance of either a queue or topic
session. See “Creating sessions” on page 571 for details. To create a text
message, use this syntax:

// Create a text message using a QueueSession

javax.jms.TextMessage queueTextMsg =
queueSession.createTextMessage(“Text message”);

// Create a text message using a TopicSession

javax.jms.TextMessage topicTextMsg =
topicSession.createTextMessage(“Text message”);

EAServer supports six message types that a message producer can send or
publish. Table 31-1 describes the message types and the javax.jms.Session
interface APIs used to create instances of each.

Table 31-1: JMS message types

Message type Create message API Comments

Plain Session.createMessage Creates a message without a message
body.

Text Session.createTextMessage Creates a message that can contain a
string in the message body.

Object Session.createObjectMessage Creates a message that can contain a
serializable Java object in the message
body.

Stream Session.createStreamMessage Creates a message that can contain a
stream of Java primitives in the message
body. Fill and read the message
sequentially.

Map Session.createMapMessage Creates a message whose body can
contain a set of name-value pairs where
names are Strings and values are Java
primitive types.

Bytes Session.createBytesMessage Creates a message that can contain a
stream of uninterpreted bytes in the
message body.

Developing JMS applications

580 EAServer

To improve interoperability with non-Java clients or components and to
improve message receivers’ ability to filter messages, Sybase recommends that
you use either plain messages or text messages. Selectors allow you to filter
messages based on the text in the message properties. You cannot filter
messages based on the text in the message body. Therefore, message text in the
message properties, instead of the message body, enables the message
receivers to filter messages more efficiently.

For more information about the message types, see the JMS API documentation
at http://java.sun.com/products/jms/javadoc-102a/index.html.

Sending messages
To send a message, you must specify the destination message queue. The
message service notifies listeners that are registered for the queue and the
message remains in the queue until it is received and acknowledged.

Figure 31-1: Send message flow

Figure 31-1illustrates the message flow that occurs when a client or component
sends a message.

This example notifies a client of a completed order; it creates a new message,
constructs the message text, and sends the message to the client’s queue:

public void notifyOrder(QueueSession qSession,
Queue queue,
int orderNo,
String product)

Message producer
client or component

Message consumer
client or component

MessageService
ObjectRef

EAServer

QueueReceiver
object

MessageService
object

send

notify

replicate

persist in
RDBMS

(optional)

(optional)

CHAPTER 31 Using the Message Service

Programmer’s Guide 581

{
String time = new java.util.Date().toString();
String text = "Order " + orderNo + " for product " + product +

" was completed at " + time;

javax.jms.QueueSender sender = qSession.createSender(queue);
javax.jms.TextMessage textMsg = qSession.createTextMessage(text);

textMsg.setStringProperty(“ProductDescription”, product);
textMsg.setIntProperty(“OrderNumber”, orderNo);

sender.send(textMsg);
}

Publishing messages
When you publish a message, a copy is sent to all topic subscribers that have a
message selector registered with the specified topic. Figure 31-2 illustrates the
message flow when a client or component publishes a message.

Figure 31-2: Publish message flow

Message producer
client or component

Message consumer
client or component

MessageService
ObjectRef

EAServer

MessageService
objectpublish

notify

filter using

persist in
RDBMS

selectors,

(optional)

copy to
selected
topic subscribers

TopicSubscriber
object

replicate
(optional)

Message selector

Developing JMS applications

582 EAServer

This example publishes a message that notifies clients of changes in a stock
value; it creates the message text, creates a TopicPublisher and the message
using the TopicSession object, and publishes the message:

public void notifyStockValue(TopicSession tSession,
Topic topic,
String stock,
double value)

{
String time = new java.util.Date().toString();
String text = time + ": The stock " + stock + " has value " + value;

// Create the publisher and message objects.

javax.jms.TopicPublisher publisher = tSession.createPublisher(topic);
javax.jms.TextMessage textMsg = tSession.createTextMessage(text);

// Publish a non-persistent message with a priority of 9 and a
// lifetime of 5000 milliseconds (5 seconds)

publisher.publish(textMsg, DeliveryMode.NON_PERSISTENT, 9, 5000);
}

To publish a persistent message using the default priority (4) and timeout
(never expires) values, use this syntax:

publisher.publish(textMsg);

Receiving messages
You can receive messages either synchronously or asynchronously. To receive
messages synchronously (get all the messages at one time), call the receive
method for the message consumer. The following code samples illustrate how
to receive all the messages from a queue, using three different timeout options:

// Get all the messages from the queue. If none exists,
// wait until a message arrives.

javax.jms.TextMessage queueTextMsg =
(javax.jms.TextMessage) receiver.receive();

// Get all the messages from the queue. If none exists,
// wait 5000 milliseconds (5 seconds) or until a message
// arrives, whichever comes first.

CHAPTER 31 Using the Message Service

Programmer’s Guide 583

javax.jms.TextMessage queueTextMsg =
(javax.jms.TextMessage) receiver.receive(5000);

// Get all the messages from the queue. If none exists,
// return NULL.

javax.jms.TextMessage queueTextMsg =
(javax.jms.TextMessage) receiver.receiveNoWait();

To receive messages asynchronously, implement a message listener and install
it on the message consumer, either a topic or a queue. See “Implementing and
installing message listeners” on page 575.

For information about creating message queues and topics, see “Creating
message consumers” on page 573.

Browsing messages
You can look at messages in a queue without removing them using the
QueueBrowser interface. You can browse through all the messages in a queue,
or through a subset of the messages. To browse through a queue’s messages,
create an instance of a QueueBrowser object using a previously created
QueueSession object. To create a browser for viewing all the messages in a
queue, call createBrowser and pass the message queue:

javax.jms.QueueBrowser qbrowser =
queueSession.createBrowser(queue);

To create a browser for viewing a subset of the messages in a queue, call
createBrowser and pass the message queue and a message selector string:

javax.jms.QueueBrowser qbrowser =
queueSession.createBrowser(queue, selector);

For information about message selectors, see “Filtering messages using
selectors” on page 574.

Once you have access to the QueueBrowser object, call getEnumeration, which
returns an Enumeration that allows you to view the messages in the order that
they would be received:

java.util.Enumeration enum = qbrowser.getEnumeration();

Developing JMS applications

584 EAServer

Enabling JMS tracing
To help debug your JMS client application, you can enable tracing by setting
the com.sybase.jms.debug property to true in the InitialContext object. When
you enable tracing, diagnostic messages are printed in the console window. By
default, tracing is disabled. This code sample illustrates how to set the tracing
property:

Properties prop = new Properties();

prop.put(“com.sybase.jms.debug”, “true”);
javax.naming.Context ctx =

new javax.naming.InitialContext(prop);

Closing connections, sessions, consumers, and producers
The JMS server allocates resources for each of these objects: connections,
sessions, message consumers, and message producers. When you no longer
need one of these objects, you should close it to release its resources and help
the application run more efficiently. To release each object’s resources,
EAServer provides these methods:

• QueueConnection.close

• TopicConnection.close

• QueueSession.close

• TopicSession.close

• QueueReceiver.close

• TopicSubscriber.close

• QueueSender.close

• TopicPublisher.close

JMS interfaces not supported
EAServer does not support these JMS interface methods:

CHAPTER 31 Using the Message Service

Programmer’s Guide 585

In addition, EAServer does not support these JMS interfaces:

• javax.jms.XAQueueConnection

• javax.jms.XATopicConnection

• javax.jms.XAQueueConnectionFactory

• javax.jms.XATopicConnectionFactory

• javax.jms.XASession

• javax.jms.XAQueueSession

• javax.jms.XATopicSession

• javax.jms.XAConnection

• javax.jms.XAConnectionFactory

• javax.jms.ServerSession

• javax.jms.ServerSessionPool

• javax.jms.ConnectionConsumer

Note EAServer supports the XA interfaces that are required to support
two-phase commit and the XA transaction coordinator for JMS clients and
components.

JMS interface Method

javax.jms.Session • run

• setMessageListener

• getMessageListener
javax.jms.QueueConnection • createConnectionConsumer
javax.jms.TopicConnection • createConnectionConsumer

• createDurableConnectionConsumer

Developing EAServer messaging service applications

586 EAServer

Developing EAServer messaging service applications
To develop an EAServer messaging service application, use the EAServer
CORBA APIs, which enable you to configure and use the message service
within a client application or EAServer component. See “EAServer message
service CORBA API” on page 593 for more information. Creating message
service applications can involve these steps:

• Obtaining CtsComponents::MessageService object references

• Creating message consumers

• Creating message selectors

• Creating thread pools programmatically

• Implementing and installing message listeners

• Sending messages

• Publishing messages

• Receiving messages

• Subscribing to scheduled messages

Obtaining CtsComponents::MessageService object references
Before a CORBA client can send, publish, or receive messages, it must obtain
a MessageService object reference. This code sample performs the setup
required for a message service client application:

org.omg.CORBA.*;
import java.util.*;
import SessionManager.*;
import CtsComponents.*;
import java.lang.Object;

public class ReceiveTest
{

public static void main(String[] args)
{

new ReceiveTest().test(args);
}

public void test(String[] args)
{

Properties props = new Properties();

CHAPTER 31 Using the Message Service

Programmer’s Guide 587

props.put("org.omg.CORBA.ORBClass",
"com.sybase.CORBA.ORB");

ORB orb = ORB.init((String[])null, props);

Manager manager =
ManagerHelper.narrow(orb.string_to_object(

"iiop://localhost:9000"));

Session session =
manager.createSession("jagadmin", "");

MessageService cms =
MessageServiceHelper.narrow(session1.create(

"CtsComponents/MessageService"));

MessageQueue mq =
cms.getMessageQueue("test", "",

REQUIRES_ACKNOWLEDGE.value);
...

Creating message consumers
Message consumers can be either a message queue or topic. You can create
message consumers two ways. The recommended way is to use EAServer
Manager to create and configure message queues and topics, so their
configuration properties are stored in a database. See Chapter 8, “Setting up
the Message Service,” in the EAServer System Administration Guide for
information on how to do this. You can also create message queues and topics
programmatically; for example:

void create(MESSAGE_QUEUE, “QueueName”);
void create(MESSAGE_TOPIC, “TopicName”);

See $JAGUAR/html/ir/CtsComponents__MessageService.html for more
information on configuring queues and topics within your application.

Developing EAServer messaging service applications

588 EAServer

Creating message selectors
You can use selectors to specify which messages you want delivered to a
message queue. Once you add a selector to a queue, the message service
delivers only those messages whose message topic matches the selector. You
can create message selectors using EAServer Manager—see Chapter 8,
“Setting up the Message Service,” in the EAServer System Administration
Guide. You can also create message selectors programmatically. This example
illustrates how to add a message selector to MyQueue to request notification of
a new stock value:

MessageService cms = getMessageService();
cms.addSelector("MyQueue",

"topic = 'stock.SY' AND value > 50");

Creating thread pools programmatically
The threads in a thread pool provide asynchronous client and component
notification. You can create thread pools using EAServer Manager—see
Chapter 8, “Setting up the Message Service,” in the EAServer System
Administration Guide. You can also create a thread pool within your
application. This example creates a thread pool and sets the thread values of
readers, writers, and workers to “0”. If the thread pool already exists, its
configuration is unchanged.

void create (THREAD_POOL, “Thread_Pool_Name”);

To use a thread pool for client notification, set the thread values of readers to
“3”, writers to “2”, and workers to “0”. To use a thread pool for component
notification, set the thread values of both readers and writers to “0”, and set the
value of workers to “1”. If you want to enable parallel message processing for
component notification, set workers to a value greater than “1”.

This code fragment sets the value of workers in the system.tp1 thread pool to
“1”:

props = _cms.getProperties(THREAD_POOL.value,
“system.tp1”);

for (int i = 0; i < props.length; i++)
{

Property p = props[i];
if (p.name.equals("workers"))
{

if (p.value.longValue() != 1)

CHAPTER 31 Using the Message Service

Programmer’s Guide 589

{
p.value.longValue(1);
_cms.setProperties(THREAD_POOL.value,

“system.tp1”, props);
break;

}
}

}

Implementing and installing message listeners
Message listeners allow you to receive messages asynchronously. Once you
have implemented a listener, install it on a message consumer. When a message
is delivered to the message consumer, the listener can send the message to other
consumers or notify one or more components.

Message listeners are EAServer components that implement the
CtsComponents::MessageListener interface, which contains only this
onMessage method:

void onMessage(in CtsComponents::Message msg);

You can install message listeners two ways. The recommended way is to use
EAServer Manager to install a message listener on a message queue or topic—
see Chapter 8, “Setting up the Message Service,” in the EAServer System
Administration Guide. You can also install a message listener within your
application.

This example installs a message listener implemented by the EAServer
component “MyPackage/MailService” on the message queue
“MyClient:email”:

MessageService cms = getMessageService();
cms.addListener("MyClient:email",

"MyPackage/MailService");

When you create a message listener, you can optionally provide the name of a
thread pool. The thread pool must have one or more worker threads. A thread
pool with multiple worker threads enables the message listener to process
multiple messages at the same time. If you do not specify the name of a thread
pool, the message listener uses the system default thread pool, which has a
single worker thread.

This code sample adds a message listener and specifies “MailPool” as the name
of the thread pool:

Developing EAServer messaging service applications

590 EAServer

cms.addListener("MyClient:email",
"MyPackage/MailService[MailPool]");

Sending messages
To send a message, you must specify the destination message queue. The
message service notifies listeners that are registered for the queue and the
message remains in the queue until it is received and acknowledged.

Figure 31-1 on page 580 illustrates the message flow that occurs when a client
or component sends a message.

In this example, we notify a client of a completed order by creating a new
message, constructing the message text, and sending the message to the client’s
queue:

public void notifyOrder(MessageService cms,
String queue,
int orderNo,
String product)

{
String time = new java.util.Date().toString();
String text = "Order " + orderNo + " for product "

+ product + " was completed at " + time;

Message msg = new Message();
msg.key = cms.getMessageKey();
msg.props = new Property[2];
msg.props[0] = new Property("orderNo",

new PropertyValue());
msg.props[0].value.longValue(orderNo);
msg.props[1] = new Property("product",

new PropertyValue());
msg.props[1].value.stringValue(product);
msg.replyTo = "";
msg.text = text;
cms.send(queue, msg, PERSISTENT.value);

}

CHAPTER 31 Using the Message Service

Programmer’s Guide 591

Publishing messages
When you publish a message, a copy is sent to all topic subscribers that have a
message selector registered with the specified topic. Figure 31-2 on page 581
illustrates the message flow when a client or component publishes a message.

This example illustrates how to publish a message that notifies clients of
changes in a stock value. Set the message topic, define the message text, set the
message key, define and set message properties, and call publish:

public void notifyStockValue(MessageService cms,
String stock,
double value)

{
String topic = "StockValue." + stock;
String time = new java.util.Date().toString();
String text = time + ": The stock " + stock +

" has value " + value;

Message msg = new Message();
msg.key = cms.getMessageKey();
msg.props = new Property[2];
msg.props[0] = new Property("stock",

new PropertyValue());
msg.props[0].value.stringValue(stock);
msg.props[1] = new Property("value",

new PropertyValue());
msg.props[1].value.doubleValue(value);
msg.replyTo = "";
msg.text = text;
cms.publish(topic, msg, 0);

}

To publish a persistent message using the default priority (4) and timeout
(never expires) values, use this syntax:

publisher.publish(textMsg);

Receiving messages
You can receive messages either synchronously or asynchronously. To receive
messages synchronously (get all the messages at one time), call the receive
method for the message consumer. This code sample gets all the messages from
the queue, then, for each message, it prints a message receipt and
acknowledges the message:

Developing EAServer messaging service applications

592 EAServer

Message[] seq = mq.receive(0, DEFAULT_TIMEOUT.value);

for (int m = 0; m < seq.lengeth; m++;)
{

Message msg = seq[m];
System.out.println(“Received message: “ + msg.text);
mq.acknowledge(msg.key);

}

To receive messages asynchronously, implement a message listener and install
it on the message consumer, either a topic or a queue. See “Implementing and
installing message listeners” on page 589.

Subscribing to scheduled messages
The message service can generate and send regularly scheduled messages to
message queues. You can subscribe to scheduled messages by installing a
listener on a queue and subscribing to a topic that defines the times you want
to be notified. In this example, we add a listener to “MyQueue” and subscribe
to the topic “second:30”, which causes the message service to send a message
to MyQueue at 30 seconds past each minute:

cms.addListener(“MyQueue”, “MyPackage/MyComp”);
cms.addSelector(“MyQueue”, “topic = ‘<second:30>’”);

To request a message be sent to MyQueue at 15 and 45 minutes past each hour,
use this syntax:

cms.addSelector("MyQueue", "topic = '<minute:15>'");
cms.addSelector("MyQueue", "topic = '<minute:45>'");

For information on how to add selectors using EAServer Manager, see Chapter
8, “Setting up the Message Service,” in the EAServer System Administration
Guide.

Scheduled messages are delivered to queues with the appropriate selectors
within milliseconds of the specified time. The time at which a component
receives a message from the queue, however, depends on the number of
unprocessed messages in the queue.

Scheduling variables Scheduled message topic names can be either ‘<minute:NN>’ or
‘<second:NN>’. Additional constraints must include a variable name and
value. You can use these variables to define the message topic subscriptions:

Variable Definition

MINUTE Number of minutes past the hour

CHAPTER 31 Using the Message Service

Programmer’s Guide 593

The variable names are not case sensitive; minute and MINUTE are equivalent.
You can find documentation for the variables, whose names correspond to the
constants in the Java class java.util.Calendar, in the Java API Specification at
http://java.sun.com/products//jdk/1.2/docs/api/java/util/Calendar.html.

Scheduled messages are not saved to persistent storage and they are not
replicated.

A scheduled message includes two properties that indicate the message
creation time, which can be accessed by the component:

You can find the message structure definition in
$JAGUAR/html/ir/CtsComponents.html.

EAServer message service CORBA API
The EAServer CORBA API includes:

SECOND Number of seconds past the minute

HOUR_OF_DAY To specify 5 PM, “HOUR_OF_DAY = 17”

HOUR Twice a day, at 6 AM and 6 PM, “HOUR = 6”

YEAR Four-digit year, for example, 2000

MONTH The name of the month, for example, January,
February, and so forth

DATE Date of the month, 1-31

DAY_OF_MONTH Same as DATE

DAY_OF_WEEK The name of the day of the week, for example,
Monday, Tuesday, and so forth.

DAY_OF_WEEK_IN_MONTH To specify the first Sunday in October,
MONTH = October
and DAY_OF_WEEK = Sunday
and DAY_OF_WEEK_IN_MONTH = 1

DAY_OF_YEAR To specify February 1, “DAY_OF_YEAR = 32”

WEEK_OF_MONTH The week number within the current month

WEEK_OF_YEAR The week number within the current year

Property name Datatype Format

@t double Number of milliseconds since 1 January 1970

ts string YYYY-MM-DD HH:MM:SS

Variable Definition

Developing EAServer messaging service applications

594 EAServer

• MessageService The CtsComponents::MessageService interface allows
EAServer clients and components to send and publish messages, register
for message topic notification, and manage message queue and message
topic properties. See
$JAGUAR/html/ir/CtsComponents__MessageService.html for the API
definitions and examples of how to use the MessageService interface.

• MessageQueue The CtsComponents::MessageQueue interface allows
clients to receive messages from a queue, get a list of messages in a queue,
acknowledge the receipt of messages, close a message queue object, and
recover messages that have been received but not acknowledged. See
$JAGUAR/html/ir/CtsComponents__MessageQueue.html for the API
definitions and examples of how to use the MessageQueue interface.

• MessageListener The CtsComponents::MessageListener interface
allows an application component to be notified when new messages are
sent or published to its message queue or topic. See
$JAGUAR/html/ir/CtsComponents__MessageListener.html for the API
definition and an example of how to use the MessageListener interface.

Programmer’s Guide 595

C H A P T E R 3 2 Using the Thread Manager

The Thread Manager allows you to start threads from EAServer
components to perform asynchronous processing.

About the Thread Manager
The Thread Manager allows you to run EAServer component instances in
threads that execute independently of client method invocations. You can
use threads spawned by the Thread Manager to perform any processing
that must occur asynchronously with respect to user interaction. For
example, you might have a component method that begins a lengthy file
indexing operation. The method could call the Thread Manager to start the
processing in a new thread, then return immediately.

The Thread Manager and service components
You can use the Thread Manager as an alternative to creating a service
component to handle repetitive processing. You may find the Thread
Manager interface allows more design flexibility. For example, you can
suspend processing in services run by the Thread Manager, and you can
start threads at any time rather than only at server start-up.

The Thread Manager is the recommended way to spawn threads in Java or
C++ components. In C++, using the Thread Manager avoids system-level
thread calls that may affect portability. In Java and C++, components
running in the Thread Manager can make in-memory intercomponent
calls, whereas components running in user-spawned threads must make
intercomponent calls through the network.

Topic Page
About the Thread Manager 595

Using the Thread Manager 597

About the Thread Manager

596 EAServer

You can use the Thread Manager and service components together. For
example, you might code a simple service component that spawns threads in
the start or run method, and stops them in the stop method.

PowerBuilder developers can use the Thread Manager to develop more robust
services. Since PowerBuilder components cannot support sharing and
concurrency, you cannot develop a service that can be stopped or refreshed
without using the Thread Manager. In the services start or run method, spawn
threads that do the service's processing. In the service's stop method, call the
Thread Manager stop method to halt the threads. For more information, see the
Application Techniques manual in the PowerBuilder documentation.

The Thread Manager and the message service
If you are using threads to implement a provider/consumer algorithm, or an
asynchronous notification system, consider using the EAServer message
service implementation described in Chapter 31, “Using the Message
Service.” The message service provides a ready-made infrastructure for
solving these classes of problems. The message service uses the Thread
Manager in its own implementation.

Using the scheduling facilities provided by the message service, you can
restrict background processing to a server’s off-peak hours. For example, you
may have threads running that index the text content of a Web site. Using a
scheduled component and the Thread Manager, you can suspend processing at
the beginning of the server’s peak use period, then resume processing at the
end. “Subscribing to scheduled messages” on page 592 describes how to
subscribe to scheduled topics in the message service.

Thread Manager interface documentation
This chapter briefly discusses how to use the Thread Manager methods. For
reference documentation, see the generated HTML documentation for the
CtsComponents::ThreadManager IDL interface. You can view this
documentation in the html/ir subdirectory of your EAServer installation. Using
a Web browser, load the URL:

http://host:port/ir/index.html

Where host is your server’s host name, and port is the HTTP port number.

CHAPTER 32 Using the Thread Manager

Programmer’s Guide 597

Using the Thread Manager
The Thread Manager is a built-in EAServer component. You can create a proxy
and execute methods the same way that you would call any other component.
Each thread executes a run method in an EAServer component that you specify.

The thread manager is designed primarily for use in server-side code. However,
it is possible to call thread manager methods from base clients or Web
applications. For example, you can create an administrative client that stops
threads created by your application.

Before you start
Before running components in the Thread Manager, make sure you understand
how the component must be prepared, how threads are run in thread groups,
and the effect of a thread group’s run interval.

Adapting components to be run by the Thread Manager

Each thread runs an EAServer component instance. To be run by the Thread
Manager, the component must have a run method with this IDL signature:

void run ();

The Thread Manager calls the run method one or more times, depending on
how you configure the run interval (described below).

For EJB components, the run method must be in a remote interface or an
additional interface that is neither an EJB remote or local interface. To add such
an interface, follow the procedure “Adding interfaces” on page 78. You can use
the predefined CtsComponents::ThreadBase. Regenerate the component
skeleton after adding interfaces.

The Thread Manager is itself an EAServer component, and runs your
component using intercomponent calls. All component properties, including
transaction attributes, are in effect when your component is run by the Thread
Manager. The Thread Manager executes with the system identity, as does your
component’s run method.

Using the Thread Manager

598 EAServer

Understanding thread groups

Threads are associated with a thread group. To start, stop, suspend, or manage
the run interval of threads, you must specify the group name. These operations
affect all threads in the specified group. The group name is simply a string.
Group names have a scope limited to one server; that is, you cannot have two
like-named groups in the same server. If two applications use the same group
name, their Thread Manager calls affect threads in both applications. You can
run different components in one thread group.

Naming conventions for thread groups
To avoid collisions between thread groups used by different applications, use
the reverse-domain naming convention for group names, as used in Java
package names. For example, “com.foo.mythreadgroup”.

Understanding the run interval

Each thread group has a run interval, which determines how often the Thread
Manager calls the run method. The run interval can be:

To allow threads to be stopped or suspended, you must configure a positive or
0-length run interval and code each component’s run method to perform a
repetitive task, then return. The run interval has no effect if your run method
never returns.

If the run interval is positive or 0, you can change the run interval after threads
have been started in the group, the change takes for each thread when it returns
from the run method. You cannot change the interval to -1, and changing the
interval does not affect threads started with the interval set to -1. In these cases,
calling setRunInterval has no effect.

Run interval Meaning

A positive integer n The Thread Manager calls run repeatedly, waiting
approximately n seconds after each time the run
method returns. The actual time can vary depending
on scheduling of calls to other methods and the
server’s processing load.

0 The Thread Manager calls run repeatedly, with no
waiting between invocations.

-1 (the default) The Thread Manager calls run only once.

CHAPTER 32 Using the Thread Manager

Programmer’s Guide 599

You can use a run interval to schedule periodic tasks, such as refreshing a
cached copy of a database query result. You can also tune how much CPU time
your component consumes if it performs CPU-intensive tasks such as lengthy
calculations; such tuning also requires that you adjust the amount of work done
in each invocation of the run method.

You can also use the Message Service to schedule periodic background
processing. For example, you can configure a run interval of -1 (so Thread
Manager calls run once only) and schedule another component to start threads
at the desired interval. See “Subscribing to scheduled messages” on page 592
for more information.

Understanding the thread count

Each thread group has a thread count, which determines how many threads can
run simultaneously. The count can be:

To change the thread count, call the ThreadManager::setThreadCount method.
The change takes effect after threads return from the run method. Thread counts
are useful if threads run repeatedly (run interval is positive or 0). For example,
if 6 threads are running, and you change the count to 5, the next thread that
returns from its run method will not be restarted. The thread count provides a
means to throttle the number of running threads, without stopping or
suspending all threads.

Instantiating the Thread Manager
Other than restricted access, the Thread Manager can be instantiated as you
would instantiate any other component.

Obtaining authorized access

To instantiate the Thread Manager, your client or component must execute with
with the system identity or an identity that is in the ThreadManager role. These
are the recommended ways to satisfy this constraint:

Run interval Meaning

-1 (the default) There is no limit.

A positive integer n n threads can execute.

0 No threads can execute..

Using the Thread Manager

600 EAServer

• Start threads from a service component and create the Thread Manager
proxy in the service’s start or run method. These methods execute with the
system identity.

• For a component that is pooled or shared, create the Thread Manager
proxy in the component’s class constructor, the setSessionContext or
setEntityContext method (for EJB components), or the setObjectContext
method (for CORBA components). All of these methods execute with the
system identity.

• For a component that is not a service and not pooled or shared:

• Delegate Thread Manager operations to another component that is
pooled or shared, or

• Run the component with an identity that is in the ThreadManager role.

• For a base client, connect to EAServer with a user name that is a member
of the ThreadManager role.

ThreadManager privileges can be dangerous
User accounts with ThreadManager role membership can use the Thread
Manager to implement denial of service attacks or to stop thread groups.
Treat ThreadManager role accounts with the same care as you would
Admin role accounts.

Instantiating a proxy

Use the standard technique for your component model to instantiate the Thread
Manager proxy.

CORBA (C++ and Java), ActiveX, and PowerBuilder components must
declare a stub for the CtsComponents::ThreadManager IDL interface, then
instantiate the component named CtsComponents/ThreadManager.

EJB components must use the home interface
com.sybase.ejb.cts.ThreadManagerHome to create a stub for the remote
interface com.sybase.ejb.cts.ThreadManager. Look up the name
CtsComponents/ThreadManager to obtain the home interface.

Starting threads
To start threads:

CHAPTER 32 Using the Thread Manager

Programmer’s Guide 601

1 Optionally, configure a run interval by calling the setRunInterval method,
specifying the group name.

2 If necessary, create proxies for the components that will run in the thread
group. For stateless or shared-instance components, you can use one proxy
instance to run the component on multiple threads. For stateful
components, create a proxy for each component instance and initialize the
instance state as necessary.

3 Start the desired number of threads by calling the start method once per
thread. In each call, specify the group name and pass a proxy for the
component that is to run in the thread.

If you have set a thread count, and try to start more threads than the thread
count, the behavior depends on the run interval. If the run interval is -1, all
threads are started and run once. If the run interval is 0 or positive, the start
method does not create additional threads after the count is reached.

Suspending and resuming execution
To suspend the threads in a group, call the ThreadManager::suspend method,
specifying the group name. Each thread is suspended when it next returns from
its run method.

To resume execution, call the ThreadManager:resume method.

Stopping threads
You can only stop threads that return from their run method. The Thread
Manager stops each thread the next time it returns from its run method.

You can stop threads in two ways:

• By decreasing the thread count Call the
ThreadManager::setThreadCount method to reduce the number of threads
executing in the thread group. This technique is useful when you want to
throttle the execution of the task. For example, during a Web site’s peak
usage hours, you can reduce the thread count for background processing
to give user threads more CPU time. During off hours, you can reset the
thread count and start new threads to raise the thread count again.

Using the Thread Manager

602 EAServer

• By stopping all threads in the group Call the ThreadManager::stop
method to stop all threads in the group. This method is equivalent to
calling ThreadManager::setThreadCount to reduce the thread count to zero.

If you stop all threads by calling ThreadManager::stop or setting the thread
count to 0, you must reset the thread count to a positive value or -1 (meaning
infinity) before starting more threads.

Programmer’s Guide 603

C H A P T E R 3 3 Creating Service Components

This chapter describes how to create service components. Service
components are loaded and initialized when EAServer starts and have a
run method that executes perpetually, independent of any client
interaction.

You can use service components to perform background processing or to
provide common services for EAServer clients and other EAServer
components.

Introduction
Service components perform background processing or provide common
services for EAServer clients and other EAServer components. For
example, you might create service components to perform the following
tasks:

• Maintain cached copies of commonly used database tables

• Move or replicate data between data sources during server idle time

• Manage application-specific log files

What are service
components?

Service components are like any other EAServer component, except that:

• They must implement the methods in the CtsServices::GenericService
interface.

• Instances are loaded and initialized when the host server starts.

• They can run independently of client interaction.

Topic Page
Introduction 603

Creating service components 606

Determining service state 613

Refreshing service components 616

Introduction

604 EAServer

The Thread Manager and service components
You can use the Thread Manager as an alternative to creating a service
component to handle repetitive processing. You may find the Thread Manager
interface allows more design flexibility. For example, you can suspend
processing in services run by the Thread Manager, and you can start threads at
any time rather than only at server start-up. Chapter 32, “Using the Thread
Manager” describes how to use the thread manager.

PowerBuilder developers can use the Thread Manager to develop more robust
services. Since PowerBuilder components cannot support sharing and
concurrency, you cannot develop a service that can be stopped or refreshed
without using the Thread Manager. For more information, see the Application
Techniques manual in the PowerBuilder documentation.

The GenericService
interface

Your component implementation must implement all the methods in the
CtsServices::GenericService interface. Your implementation does not need to
explicitly implement the interface (that is, list it in the implements clause of the
class declaration), and you do not need to list the interface in the component’s
Interfaces folder in EAServer Manager.

EAServer calls the CtsServices::GenericService methods to indicate transitions
in the service’s state:

• start() Called to initialize the component when the server starts or when
the component has been refreshed from EAServer Manager. This method
typically initializes data structures and resources that the service requires.
For example:

• A service that writes to log files would open each file and cache each
file handle as a class instance variable.

• A service that caches tabular data from a remote database would open
a connection to the database and create the data structures required to
store tabular data in memory.

Service components that make intercomponent calls
If your start method makes intercomponent calls, check the
com.sybase.jaguar.server.bindrefresh property for the servers
where your component is installed. Use the Advanced tab in the Server
Properties dialog box to view and change this property. This property must
be set to “start” to allow name service lookups in the start method of
service components. The default setting is “run”.

CHAPTER 33 Creating Service Components

Programmer’s Guide 605

• run() Called after the first invocation of start() returns. run() can loop and
perform repetitive tasks as an EAServer background process. If the
component does not perform background processing, run() can return
immediately.

For services that perform background processing, run() should loop
continuously while performing the service task. run() must periodically
suspend its own execution by calling the Java java.lang.Thread.sleep()
method, one of the Java Object.wait() methods, or the EAServer JagSleep
C routine. These APIs suspend the current thread for a specified duration
so that other threads may execute. run() should return after the server
invokes the stop() method.

If you configure your service to run in multiple threads, EAServer calls
run() concurrently in the specified number of threads.

 Warning! Your run() method must either return immediately or call one of
the Object.wait() Java methods, the EAServer JagSleep C routine, or some
other thread-aware implementation of sleep. Do not call the sleep system
routine or any other routine that suspends process (and not thread)
execution. If coding service components in PowerBuilder, code your
component to call the JagSleep C routine; do not use the PowerBuilder
timer event, which may suspend the EAServer process.

• stop() Called when the server is shutting down or when the component
has been refreshed from EAServer Manager (refresh stops the service and
reloads it). EAServer calls the stop() method on a different thread than the
run() method. Code in the stop() method should set a flag that indicates the
the run() method should return.

stop() should also wake up sleeping run() threads if the language allows
this. For example, in Java, call the Object.notifyAll() method to wake
threads that called Object.wait() on the same monitor object. In languages
that do not allow you to wake up sleeping threads, keep your sleep interval
reasonably short. The service cannot be refreshed until all running threads
return from the run() method; that is, if your sleep interval is one hour, it
can take that long to refresh the service unless you add code to wake up
sleeping threads.

Creating service components

606 EAServer

Implementing other
interfaces

Your component can implement additional interfaces. EAServer clients,
servlets, and other components can execute a service component’s methods
like those of any other component, with one exception: Clients cannot invoke
methods on the service component until the start() method has returned. This
restriction allows you to perform required initialization in start() without
worrying about thread synchronization issues.

After start() returns, EAServer calls the run() method in its own thread. Client
method invocations may arrive at this time as well. There is no guarantee that
run() will have been called when a client method invocation occurs; the first
client invocations may arrive before EAServer calls the run() method.

Creating service components
Follow the steps below to create a service component:

1 “Define the component interface and properties” on page 606

2 “Implement GenericService interface methods” on page 608

3 “Implement other required methods” on page 612

4 “Install the component as an EAServer service” on page 612

Define the component interface and properties
Except for a few special requirements described here, you define a service
component’s interface and properties in EAServer Manager as you would do
for any component. Chapter 4, “Defining Components” describes how to
define components in EAServer Manager.

Service component properties

Service components require these EAServer Manager settings in the
Component Properties window:

• IDL Interface Your service component must implement the
CtsServices::GenericService interface. You can define additional methods
in one or more additional IDL interfaces if necessary.

CHAPTER 33 Creating Service Components

Programmer’s Guide 607

• Concurrency and Bind Thread Options For best performance, you
must enable the Concurrency option on the Instances tab, and disable the
Bind Thread option.

Selecting the Concurrency option allows multiple method invocations to
occur simultaneously. Concurrent access can decrease client response
time. Also, if your component has a run() method that executes
indefinitely, you must enable the Concurrency option or no clients will be
able to invoke methods. To support concurrency, you must ensure that
access to read/write instance variables is synchronized in your component.

Disabling the Bind Thread option allows EAServer to run the component
on any available thread. This option is only required by ActiveX
components (where it is on implicitly) and by components that use thread-
local storage. It should be disabled in any other case.

• Sharing Option For simplified implementation, select the Sharing
option on the instances tab. This option ensures that only a single instance
of your component is created. One instance serves all client requests. With
Sharing enabled, the component can store data in class instance variables.
If Sharing is disabled, you must coordinate access to shared data among
multiple instances of the component (typically, data shared by multiple
instances is stored in static class variables, in a database, or in EAServer
shared properties).

• Transaction Attribute Do not create service components that are
transactional. On the Transactions tab, choose Not Supported. If you
require EAServer’s transaction semantics, implement a component to
perform the transaction-created work and call this component from your
service component

Service components cannot be transactional
EAServer-managed transactions require a component lifecycle that allows
component deactivation, and a service component is never deactivated.

• Automatic Demarcation/Deactivation If a service component is
installed to run in multiple service threads, the component must be
stateless.You must enable this option if the multiple instances will run as
service components. See “Install the component as an EAServer service”
on page 612 for information on configuring the component so multiple
instances run as services.

Creating service components

608 EAServer

Required client roles

You can assign the role ServiceControl to service components so that base
clients and other components cannot create instances of the component and call
the start and stop methods. No users can be added to this role. To assign this
role to a component, display the Advanced tab in the Component Properties
dialog and modify the com.sybase.jaguar.component.roles property.
Add "ServiceControl" to the list of comma-separated role names.

Implement GenericService interface methods
Each service component must implement the CtsServices::GenericService
interface. Your component can implement additional interfaces if necessary.
This section describes how to implement the CtsServices::GenericService in
C++ and Java.

Be careful of consuming CPU cycles
If your service will perform background processing, your implementation must
have access to a thread-aware sleep mechanism. In Java, call the
java.lang.Thread.sleep() method, or use a monitor object and call the
Object.wait() method. In C, C++, ActiveX, or PowerBuilder, EAServer
provides the JagSleep routine. The run method in your service must call one of
these APIs periodically to suspend execution of the current thread. Otherwise,
your service will dominate the server’s CPU time and prevent other
components from executing.

If coding service components in PowerBuilder, code your component’s run
method to call the JagSleep C routine; do not use the PowerBuilder timer
event, which may suspend the EAServer process.

CHAPTER 33 Creating Service Components

Programmer’s Guide 609

Services with a client interface
If your component runs as a service and also provides a client interface for
remote invocations, beware that the run method may not have executed when
the first client request arrives. run is called on a different thread after start
returns; client invocations may arrive between the return from start and the
invocation of run, and initialization performed in run may not have completed
when the remote method executes on a different thread. To avoid problems, use
one of these approaches:

• Do not code remote methods that rely on initialization performed in the run
method. Initialization can be performed in the start method, which is
guaranteed to complete before client invocations arrive.

• Use a synchronized boolean variable that is set when run has performed
necessary initialization, and code remote methods to check this variable
and wait for it to be set before executing code that relies on initialization
performed in run.

Java example of GenericService methods

The example uses a static Boolean instance variable, _run, to indicate when the
service should cease running. There is also a java.lang.Object that is used as a
semaphore to allow synchronization among multiple threads. The start()
method sets the _run variable to true; start() must also perform any other
necessary initialization that are needed by your service, such as opening files,
database connections, and so forth. run() executes a while loop as long as the
_run variable is true. In each loop iteration, run() performs some of the work
that the service is responsible for, such as refreshing a copy of a remote
database table, then calls the Object.wait() method to relinquish the CPU. The
stop() method sets the _run variable to false and calls the Object.notifyAll()
method on the semaphore, causing the run() method to return. Before returning,
run() cleans up resources that were allocated in the start() method.

public class MyService
{
public static boolean _run;
public static Object _lock = new Object();

public void start()
{

_run = true;
... perform necessary initializations ...

}

Creating service components

610 EAServer

public void run()
{

while (_run)
{

try
{

... do whatever this service does
 on each iteration, then go back
to sleep for a while ...

synchronized(_lock)
{

_lock.wait(100000);
}

}
catch (InterruptedException ie)
{

_run = false;
}

}
... perform necessary cleanup and deallocations ...

}

public void stop()
{

_run = false;
// Wake up any instances that are waiting on the mutex
synchronized (_lock)
{

_lock.notifyAll();
}

}
}

CHAPTER 33 Creating Service Components

Programmer’s Guide 611

C++ example of GenericService methods

The code fragment below shows how the GenericService methods can be
implemented in a C++ component. This example uses a static Boolean instance
variable, _stop, to indicate when the service should cease running. The start()
method sets the _stop variable to false; start() must also perform any other
necessary initialization that are needed by your service, such as opening files,
database connections, and so forth. run() executes a while loop as long as the
_stop variable is false. In each loop iteration, run() performs some of the work
that the service is responsible for, such as refreshing a copy of a remote
database table, then calls the JagSleep C routine to relinquish the CPU. The
stop() method sets the _stop variable to true. stop() must also clean up any
resources that were allocated in the start() method.

#include <jagpublic.c> // For JagSleep API

class MyService
{
private:

static boolean _stop; // Declared static in case multiple
// instances are run.

public:
void start()
{

_stop = false;
... perform necessary initializations ...

}

void stop()
{

_stop = true;
}

void run()
{

while (! _stop)
{

... do whatever this service does
 on each iteration ...

JagSleep(1000);
}
... perform necessary cleanup and deallocations ...

}

};

Creating service components

612 EAServer

Implement other required methods
Your component may implement additional interfaces besides
CtsServices::GenericService. For example, in a component that manages
application-specific log files, you need a method that other components can
call to write to the application log. Follow the implementation rules for the
component model that you are using. See the following chapters for more
information:

• Chapter 11, “Creating CORBA Java Components”

• Chapter 14, “Creating CORBA C++ Components”

• Chapter 19, “Creating ActiveX Components”

Install the component as an EAServer service
In order to run as a service, your service component must be added to the host
server’s list of services, as follows:

❖ Installing services

1 Start EAServer Manager if it is not already running.

2 Expand the Servers folder.

3 Expand the icon for the server.

4 Highlight the Installed Services folder under the server icon, then choose
File | Install Services from the menu.

5 Components that implement the CtsComponents::GenericService
interface are listed. Pick the component to install, then click OK.

6 The service will run the next time you refresh or restart the server.

❖ Configuring a service to run in multiple threads

By default, one thread runs per service. You can specify a larger number of
threads as follows:

1 Display the server properties.

2 In the list of properties, select “com.sybase.jaguar.server.services”, then
click Modify.

CHAPTER 33 Creating Service Components

Programmer’s Guide 613

3 The value of this property is the list of services, using the form
Package/Component, with entries separated by commas. To specify
multiple threads for a service, enter the number of threads in brackets after
the component name. For example:

YourPackage/YourService[10]

4 Click Ok to close the Modify Property window.

5 Click Ok to close the Server Properties window.

6 The change takes affect the next time you refresh or restart the server.

When multiple threads
are requested

The host server calls the component’s run method from the specified number
of threads. If the Sharing option is enabled, all threads call run on the same
component instance as start was called in. Otherwise, each thread will create a
new instance of the component and call run on that instance. Each thread
terminates when run returns.

This feature is useful when your service component performs a background
task that lends itself to parallel processing. For example, if the run
implementation extracts work requests from a queue and performs the
requested operation, you can configure the server so multiple threads read
requests from the queue and process them simultaneously. The component
must be coded to ensure that access to the queue is thread-safe, for example, in
Java, you might create synchronized methods to queue and dequeue.

The component must be stateless in order to run in multiple threads. Make sure
the Automatic Demarcation/Deactivation is option is checked on the
Transactions tab in the Component Properties window.

Note The start method and stop methods are only called on one instance of a
service component. If Sharing is not set for the component, start must store any
data required by the run method or other methods. For access by multiple
instances, data must be stored in static fields or a persistent data store.

Determining service state
The jagtool getservicestate command returns the state of service components
executing in the server. You must code your service component to implement
the methods of the CtsServices::ExtendedService interface to allow users to
query the component state with jagtool.

Determining service state

614 EAServer

This interface extends CtsServices::GenericServices, and adds one method:

long getServiceState()

This method must return one of the constants listed in Table 33-1 to describe
the state of the service. These constants are defined in module CtsServices.

Table 33-1: Service states

The following Java example shows service component code that determines
and returns state:

import CtsServices.*;

...

public class MyService
{

private static boolean _starting = false;
private static boolean _running = false;
private static boolean _stopping = false;
private static boolean _stop = false;
private static boolean _runHasBeenCalled = false;
private static Object _lock = new Object();
public void start()
{

_starting = true;
// Perform initialization
_starting = false;

}
public void stop()
{

State Description

UNKNOWN The state is unknown.

STARTING The service is starting. The start method has been called, but has
not returned.

STARTED The service is started, but not yet running. The start method has
returned, but run has not been called.

RUNNING The service is running, that is, executing the run method.

FINISHED The service is finished processing. The run method has returned.
This state applies only to services that do not run continuously
until stopped.

STOPPING The service is stopping. The stop method has been called, and is
still running.

STOPPED The service is stopped. The stop method has been called and has
returned.

CHAPTER 33 Creating Service Components

Programmer’s Guide 615

_stopping = true;
_running = false;
_stop = true;
synchronized (_lock)
{

_lock.notifyAll();
}
// Perform cleanup
_stopping = false;

}
public void run()
{

_runHasBeenCalled = true;
// Perform per-thread initialization here.
_running = true;
while (! _stop)
{

try
{

// do whatever this service does on
// each iteration
synchronized(_lock)
{

 _lock.wait(100000);
}

}
catch (InterruptedException ie)
{

_stop = true;
}

}
// Perform per-thread cleanup here.
_running = false;

}
public int getServiceState()
{

if (_starting)
{

return SERVICE_STATE_STARTING.value;
}
else if (! _runHasBeenCalled)
{

return SERVICE_STATE_STARTED.value;
}
else if (_stopping)
{

Refreshing service components

616 EAServer

return SERVICE_STATE_STOPPING.value;
}
else if (_stop)
{

return SERVICE_STATE_STOPPED.value;
}
else if (_running)
{

return SERVICE_STATE_RUNNING.value;
}
else
{

return SERVICE_STATE_FINISHED.value;
}

}
}

Refreshing service components
To refresh the component implementation after it has been loaded, select the
component icon, and choose File | Refresh.

Note Components that are installed as EAServer services are not refreshed
when you refresh the package or server in which they are installed. To refresh
a service component, you must select the component icon and choose File |
Refresh.

For refresh, EAServer reloads component instances as follows:

1 The server calls the stop() method.

2 The server waits for the run() method to return in all instances that are
running as services.

3 The server creates a new instance and calls the start() and run() methods, in
that order. If the multiple instances are specified for the service, the server
loads the additional instances that are required and calls run() on each
instance.

CHAPTER 33 Creating Service Components

Programmer’s Guide 617

After refresh, a new instance is guaranteed not to start before previous
instances have ceased running. Consequently, a service component can not be
refreshed unless the run() method returns. See “Implement GenericService
interface methods” on page 608 for code examples that show how to
coordinate the logic in the stop() and run() methods.

Refreshing service components

618 EAServer

Programmer’s Guide 619

C H A P T E R 3 4 Creating and Using EAServer
Pseudocomponents

A pseudocomponent is instantiated and called without using the EAServer
component dispatcher. Pseudocomponents can be instantiated by client
programs or by components executing in EAServer.

Benefits of pseudocomponents
For cross-language development, pseudocomponents offer the benefit of
a component-based architecture without incurring network overhead. For
example, you can call methods in a C++ pseudocomponent from Java
programs without the use of Java Native Interface (JNI) calls.

Since pseudocomponents are executed locally, in the same process, they
do not incur the network overhead of client/server communication. When
used in EAServer, pseudocomponents avoid the small thread- and
context-management overhead incurred when the EAServer component
dispatcher executes intercomponent calls.

However, pseudocomponents are not suitable for applications that require
the transaction control, threading control, security constraints, instance
lifecycle management, or other services provided by the EAServer
component dispatcher.

Topic Page
Benefits of pseudocomponents 619

Creating pseudocomponents 620

Instantiating pseudocomponents 622

Debugging C++ pseudocomponents 626

Creating pseudocomponents

620 EAServer

Creating pseudocomponents
For the most part, pseudocomponents can be created and implemented like any
EAServer CORBA/Java or C++ component. However, since they are not
executed by the component dispatcher, there are additional restrictions on their
implementation and use. This section explains the implementation restrictions
and required property settings for pseudocomponents. For additional
information on creating components, see “Defining components” on page 49.

Implementation restrictions
Pseudocomponents must be implemented in C++ or Java. If using Java, the
component type must be Java/CORBA; you cannot instantiate an Enterprise
JavaBean as a pseudocomponent.

Since pseudocomponents execute outside of the EAServer dispatcher, their
execution is not governed by component properties defined in EAServer
Manager. Thus, components that run as pseudocomponents are subject to these
restrictions:

• They cannot participate in server-managed transactions.

• Lifecycle interface methods, such as those in
CtsComponents::ObjectControl, are not called and instances are never
pooled or reused. Each time a client program instantiates a proxy instance
of a pseudocomponent, a new instance of the implementation class is
constructed.

• They are not affected by component threading properties. A
pseudocomponent’s methods run in the same process of the calling
program, on the same thread from which they are called.

• Pseudocomponents executed in standalone programs cannot use server-
side classes and methods such as connection management, client
credential access, and so forth. These classes and methods are available
only to components executed by the EAServer component dispatcher. A
pseudocomponent that is executed by a server-dispatched component can
use server-side features, but does so in the context of the server-dispatched
component that instantiated the pseudocomponent.

• They are not affected by access control restraints. Any client with local
access to a component’s implementation library or class can instantiate the
component as a pseudocomponent.

CHAPTER 34 Creating and Using EAServer Pseudocomponents

Programmer’s Guide 621

Defining a pseudocomponent
A pseudocomponent must be defined in EAServer Manager in order to
generate stubs and skeletons. Stubs and skeletons are required to execute the
pseudocomponent. You can use any of the techniques described in “Defining
components” on page 49 to define the component in EAServer Manager. You
must configure the properties described in this section.

Using existing components
You can also instantiate existing C++ or CORBA/Java components as
pseudocomponents, provided the implementation abides by the restrictions
listed in this document.

Properties for a Java pseudocomponent

For a Java pseudocomponent, set the following properties and leave other
properties at their default settings. Properties other than these have no affect on
the behavior of the pseudocomponent:

• Component Type – choose Java - CORBA.

• Java Class – enter the dot-notation Java class name, for example
com.sybase.sample.PseudoJavaImpl.

Java pseudocomponents must have a public constructor
If the implementation class declares a default (no arguments) constructor,
the default constructor must be declared public.

Properties for a C++ pseudocomponent

The Component Properties dialog box appears. Set the following fields for a
C++ pseudocomponent, leaving other fields at their default settings. Properties
other than these have no affect on the behavior of the pseudocomponent:

• Component Type – choose C++.

• DLL Name – enter the base name for the shared library or DLL that will
contain the component implementation. For example, the setting
mypseudo indicates the Windows file mypseudo.dll on Windows.

• C++ Class – leave at the default setting (the name of the component,
appended with “Impl”, as in PseudoCPPImpl).

Instantiating pseudocomponents

622 EAServer

Direct-access pseudocomponent stubs and skeletons
You can generate special stubs and skeletons that improve the performance of
pseudocomponent method calls issued from Java or C++. In a process called
marshalling, regular CORBA stubs convert parameter and return values to the
format required for IIOP network transport. Direct-access pseudocomponent
stubs and skeletons improve performance by eliminating the marshalling step.

To generate direct-access pseudocomponent stubs and skeletons in EAServer
Manager, select the normal EAServer Manager settings for Java/CORBA or
C++ Stubs, except in the Advanced Options wizard page, select the option
Generate Pseudo Component Access in C++ and Java Stubs and Skeletons.

Instantiating pseudocomponents
To instantiate a pseudocomponent, call the ORB.object_to_string method,
passing a URL that specifies the information required to load the component.
Java, C++, PowerBuilder, and ActiveX all use a variation of this method.

Pseudocomponent object URLs
The object URL for a pseudocomponent specifies the shared library file or Java
class that contains the implementation, the EAServer package name, and the
EAServer component name.

Identifying a C++ pseudocomponent

To identify a C++ pseudocomponent, format a URL as follows:

pseudo://cpp/library/package/component

Where:

• library is the base name of the shared library or DLL that contains the
component implementation, without the platform-specific file extension.
For example, mypseudo to indicate a file named mypseudo.dll on
Windows or mypseudo.so on Solaris or Linux. The location of the library
must be specified in the system’s library search path.

• package is the EAServer Manager package name.

CHAPTER 34 Creating and Using EAServer Pseudocomponents

Programmer’s Guide 623

• component is the EAServer Manager component name.

Identifying a Java pseudocomponent

To identify a Java pseudocomponent, format a URL as follows:

pseudo://java/java-package/jaguar-package/component

Where:

• java-package is the is the dot-notation name of the Java package that
contains the component skeleton. This package is the same as the package
used by the implementation class. For example, if the implementation
class is com.sybase.sample.MyJavaPseudo, specify com.sybase.sample
as the Java package name. The code base under which the class is
deployed must be specified in the CLASSPATH.

• jaguar-package is the EAServer Manager package name.

• component is the EAServer Manager component name.

Instantiating pseudocomponents from Java
Java applications or EAServer Java components can instantiate
pseudocomponents implemented in Java or C++. Java applets cannot
instantiate pseudocomponents. In order to instantiate a C++ pseudocomponent,
the environment for a Java application must include all the settings required by
the EAServer C++ client runtime, and the location of the library must be
specified in the system’s library search path. Java stub classes for the
pseudocomponent must be available.

You can instantiate a pseudocomponent any time after initializing and
instantiating an ORB instance. Call the ORB.string_to_object method, passing a
URL formatted as described in “Pseudocomponent object URLs” on page 622.
Narrow the returned object to an interface supported by the component. See
Chapter 12, “Creating CORBA Java Clients” for more information on the
ORB interface and narrowing objects to an interface.

Example: instantiating
a C++
pseudocomponent

The following fragment instantiates a pseudocomponent proxy for a C++
component in the DLL CppPseudo.dll that is installed in the package Demo
and has component name PseudoCpp. The returned object is narrowed to
Arithmetic interface. On UNIX platforms, this syntax also works for a shared
library with base name "CppPseudo", as in CppPseudo.so.

String url = "pseudo://cpp/CppPseudo/Demo/PseudoCPP";

Instantiating pseudocomponents

624 EAServer

org.omg.CORBA.Object obj = orb.string_to_object(url);
_comp = ArithmeticHelper.narrow(obj);

Example: instantiating
a Java
pseudocomponent

The following fragment instantiates a pseudocomponent proxy for a Java
component. The implementation class and skeleton class are in the Java
package Sample.PseudoComponents. The component is installed in the
EAServer package Demo and has component name PseudoJava. The returned
object is narrowed to Arithmetic interface.

String url = "pseudo://java/Sample.PseudoComponents/Demo/PseudoJava";
org.omg.CORBA.Object obj = orb.string_to_object(url);
_comp = ArithmeticHelper.narrow(obj);

Instantiating pseudocomponents from C++
C++ standalone programs or EAServer components can instantiate
pseudocomponents implemented in C++. Pseudocomponents implemented in
Java can be instantiated only by C++ components that are executing in
EAServer.

In order to instantiate a C++ pseudocomponent in a standalone program, the
environment must include all the settings required by the EAServer C++ client
runtime, and the location of the library must be specified in the system’s library
search path.

You can instantiate a pseudocomponent any time after initializing and
instantiating an ORB instance. Call the ORB.string_to_object method, passing a
URL formatted as described in “Pseudocomponent object URLs” on page 622.
Narrow the returned object to an interface supported by the component. See
Chapter 15, “Creating CORBA C++ Clients” for more information on the
ORB interface and narrowing objects to an interface.

Example: instantiating
a C++
pseudocomponent

The following fragment instantiates a pseudocomponent proxy for a C++
component in the DLL CppPseudo.dll that is installed in the package Demo
and has component name PseudoCpp. The returned object is narrowed to
PseudocomponentDemo::Arithmetic interface. On UNIX platforms, this syntax
also works for a shared library with base name "CppPseudo", as in
CppPseudo.so.

String url = "pseudo://cpp/CppPseudo/Demo/PseudoCPP";
CORBA::Object_var obj = orb->string_to_object(url);
PseudocomponentDemo::Arithmetic_var arith =

PseudocomponentDemo::Arithmetic::_narrow(obj);

CHAPTER 34 Creating and Using EAServer Pseudocomponents

Programmer’s Guide 625

Example: instantiating
a Java
pseudocomponent

The following fragment instantiates a pseudocomponent proxy for a Java
component. The implementation class and skeleton class are in the Java
package Sample.PseudoComponents. The component is installed in the
EAServer package Demo and has component name PseudoJava. The returned
object is narrowed to PseudocomponentDemo::Arithmetic interface.

String url = "pseudo://java/Sample.PseudoComponents/Demo/PseudoJava";
CORBA::Object_var obj = orb->string_to_object(url);
PseudocomponentDemo::Arithmetic_var arith =
PseudocomponentDemo::Arithmetic::_narrow(obj);

Instantiating pseudocomponents from PowerBuilder
To instantiate pseudocomponents in PowerScript, use the String_To_Object
method in the JaguarORB object, specifying the pseudocomponent URL as the
string to resolve. For example, the following code can be called in a
PowerBuilder component to retrieve a proxy for the CtsSecurity/SessionInfo
built-in pseudocomponent:

// PowerBuilder objects
JaguarORB my_JaguarORB
CORBAObject my_corbaobj

// Proxy object for CtsSecurity::SessionInfo built in
// pseudocomponent
SessionInfo my_sessioninfo

long ll_return
my_JaguarORB = CREATE JaguarORB

// Initialize the ORB
ll_return = my_JaguarORB.init("")

// Convert a URL string to an object reference
ll_return = my_JaguarORB.String_To_Object &

("pseudo://cpp/libjdispatch/CtsSecurity/SessionInfo", &
my_corbaobj)

// Narrow the object reference to the Manager interface
ll_return = my_corbaobj._narrow(my_sessioninfo, "CtsSecurity/SessionInfo")

For more information on using the JaguarORB object, see the Application
Techniques manual in the PowerBuilder documentation. For information on the
CtsSecurity/SessionInfo API, see the generated HTML documentation,
available in the html/ir subdirectory of your EAServer installation.

Debugging C++ pseudocomponents

626 EAServer

Debugging C++ pseudocomponents
Once loaded in your debugger, a C++ pseudocomponent can be debugged like
any other shared library or DLL. However, since the library is not loaded until
a client program instantiates the pseudocomponent, setting breakpoints is
tricky. The procedure below allows you to set breakpoints and step into your
method code.

❖ Debugging a C++ pseudocomponent

1 Verify that the process is using the debug versions of the EAServer
libraries. For pseudocomponents executing in EAServer, start the debug
version of the server executable. For standalone programs, verify that the
debug DLLs or libraries are ahead of the non-debug libraries in your
system’s library search path. (On UNIX platforms, the debug libraries are
in the lib/debug directory of your client installation. On Windows, they are
in the dll/debug directory.)

2 Attach the program that is instantiating the pseudocomponent with your
debugger. This can be a standalone client executable, or EAServer
process.

Alternatively, start the debugger to load the executable. For example, on
UNIX, this command starts the dbx debugger and loads the debug server
executable:

dbx $JAGUAR/devbin/jagsrv ServerName

As another example, on Windows this command starts the Microsoft
Visual C++ debugger and loads the debug server executable:

msdev %JAGUAR%\devbin\jagsrv ServerName

In these examples, ServerName is the name of the server. If you are using
the preconfigured server rather than one that you created yourself, use
“Jaguar”.

3 Set a breakpoint on the function jag_client_dbg_stop. This function
executes every time the client runtime constructs a pseudocomponent
instance. The jag_client_dbg_stop prototype is:

void jag_client_dbg_stop(char *compName)

CHAPTER 34 Creating and Using EAServer Pseudocomponents

Programmer’s Guide 627

The compName parameter specifies the name of the library or shared
library that was just started. Several pseudocomponents may be loaded
before yours. In the debugger, display the compName value when the
jag_client_dbg_stop breakpoint is tripped, and monitor the value to
determine when your component is loaded.

Note Make sure the jag_client_dbg_stop breakpoint is set before your
client application instantiates any pseudocomponents.

4 When your pseudocomponent’s DLL is loaded, you can specify the
method names as breakpoints and step into the method’s code when it is
invoked.

Debugging C++ pseudocomponents

628 EAServer

Programmer’s Guide 629

C H A P T E R 3 5 Creating JavaMail

EAServer supports version 1.1 of the JavaMail API. JavaMail allows you
to send electronic mail from Java servlets, Java components, or standalone
Java applications. The JavaMail API provides a standard Java interface to
the most widely-used Internet mail protocols.

JavaMail requires JDK 1.2 or later
You must run EAServer with JDK 1.2 or later to use JavaMail in
components, servlets, or JSPs. Java applications using JavaMail must be
run with JDK (or JRE) 1.2 or later.

Introduction to JavaMail
JavaMail is a Java standard extension that provides a set of abstract classes
that define the common objects and their interfaces for any general mail
system. JavaMail providers implement the API to provide the concrete
functionality needed to communicate using specific protocols such as the
Simple Mail Transfer Protocol (SMTP) and the Internet Message Access
Protocol (IMAP).

Using JavaMail in EAServer, you can send e-mail messages from Java
components, servlets, or JSPs. For example, a Web-based bookstore could
send e-mail to a customer acknowledging an order, or to a System
Administrator warning that a database is full.

Note EAServer supports only the ability to build and send mail.

Topic Page
Introduction to JavaMail 629

Writing JavaMail for EAServer 630

Deploying JavaMail-enabled applications 633

Writing JavaMail for EAServer

630 EAServer

For information on how to design a JavaMail program, see the JavaMail Web
site at http://java.sun.com/products/javamail. For information on many of the
standards relating to Internet mail, see the Internet Mail Consortium Web site at
http://www.imc.org.

Writing JavaMail for EAServer
You can implement JavaMail for EAServer as you would for any other server
that follows the JavaMail specification. JavaMail for EAServer can be coded
to the standard JavaMail API and uses classes in the javax.mail and
javax.mail.internet packages.

Creating a JavaMail session
The javax.mail.Session object is responsible for managing a user’s mail
configuration settings and handling authentication for the individual transports
used during the session.

To create platform-independent applications, a JavaMail program can use a
resource factory reference to obtain a JavaMail session. A resource factory is
an object that provides access to specific resources within a program’s
deployed environment using the specific naming conventions defined by JNDI.
All resource factory references are organized by resource type in the
application’s component environment. For example, JavaMail resource factory
references are found in java:comp/env/mail. For more information on using
resource factory references, see:

• “Configuring resource references” on page 137, which describes resource
references used in EJB components.

• “Resource references” on page 388, which describes resource references
used in Web applications.

To obtain an initial JNDI naming context for your JavaMail session, create an
instance of the javax.naming.InitialContext object. Then call the lookup method
to invoke the javax.mail.Session factory reference to obtain a JavaMail session.
This session will map to the local mail server as defined for the environment in
which your JavaMail program is deployed. See “Deploying JavaMail-enabled
applications” on page 633 for information on specifying your local resources.

CHAPTER 35 Creating JavaMail

Programmer’s Guide 631

Constructing a message
Message is an abstract class in the JavaMail API. Subclasses of Message
implement the concrete functionality needed for specific messaging systems.
The JavaMail reference implementation includes a MimeMessage class that
implements the standard for basic Internet messages and the Multipurpose
Internet Mail Extensions.

To construct a message, instantiate a MimeMessage object, set the required
attributes (headers), and provide the appropriate header values and body
content. At a minimum, you should specify the From, To, and Date headers.

Use the setFrom method to set the From header field using the value of
InternetAddress. Use the setRecipients method to set the specified recipient
type to a given address. Use the setSentDate method to set the date.

Sending a message
You use the Transport class to send a message. If you create a JavaMail session
that uses the SMTP provider included with EAServer, you can simply use the
Transport.send method to send your completed message to all the recipient
addresses specified.

Sample EAServer JavaMail program
In this example, an e-mail message is sent to the user of a Web-based travel
reservation system confirming the user’s reservation.

public String mailIt
(java.lang.String from,
java.lang.String to,
java.lang.String subject,
java.lang.String textmessage)

{
String status = “Your message was sent”;
try {

//Obtain the initial JNDI context
InitialContext ctx = new InitialContext();

//Perform a JNDI lookup to obtain the resource
//reference object
Session session = (Session) ctx.lookup

Writing JavaMail for EAServer

632 EAServer

(“java:comp/env/mail/mymailserver”);

//Construct the message
MimeMessage message = new MimeMessage(session);

//Set the from address
Address[] fromAddress =

InternetAddress.parse(from);
message.addFrom(fromAddress);

//Set the to address
Address[] toAddress = InternetAddress.parse(to);
message.setRecipients(Message.RecipientType.TO,

toAddress);

//Set the subject and text
message.setSubject(subject);
message.setText(textmessage);

//Send the message
Transport.send(message);

} catch(AddressException e) {
status = “There was an error parsing theaddresses”+e;
} catch(SendFailedException e) {
status = “There was an error sending the message”+e;
} catch (MessagingException e) {
status = “There was an unexpected error”+e;
} catch (NamingException e) {
status = “The mail session could not be created.”;
}
System.out.println(“The status is:”+ status);
return status;
}

JavaMail providers
JavaMail is extensible which means that when new protocols are developed,
providers for those protocols can be added to a system and used by preexisting
JavaMail enabled applications. Applications can detect which providers are
available to them via the Provider Registry.

CHAPTER 35 Creating JavaMail

Programmer’s Guide 633

The providers that come with the JavaMail reference implementation are listed
in javamail.default.providers. If you add a package containing a new provider,
it should include a javamail.providers file in its META-INF directory.

To list the available providers on your system:

import javax.mail.*;
class ListProviders
{

public static void main(String[] args)
{

java.util.Properties properties =
System.getProperties();

Session session = Session.getInstance(properties,
null);

Provider[] providers = session.getProviders();
for (int i = 0; i < providers.length; ++i)

{
System.out.println(providers[i]);
}

}

Deploying JavaMail-enabled applications
If you use JavaMail in Web applications or EJB components, you can configure
resource references to alias a JavaMail session to a JNDI name. The resource
reference allows you to use JNDI to obtain mail sessions, as described in
“Creating a JavaMail session” on page 630. The use of logical names allows
your application to run in environments where the JNDI namespace does not
match the names hard-coded in your application. When you deploy the
application, you map the logical names to actual names that match the server’s
configuration. You must catalog the JNDI names used by your code in the
application’s deployment descriptor. Once your JavaMail-enabled Web
application is deployed to a host server, you must configure the
javax.mail.Session resource factory reference to the name of the local mail
server for that server.

❖ Defining the local mail server for a JavaMail program:

1 In EAServer Manager, open the Properties dialog for the Web application
that includes the servlet, EJB, or application that contains the JavaMail
program.

Deploying JavaMail-enabled applications

634 EAServer

2 Select the Resource Refs tab.

3 Click Add to add a row to the table.

4 Select javax.mail.Session from the dropdown list in the Type column.

5 The resource reference name in the Name column should be the logical
name that refers to the JavaMail resource object and is hard-coded in the
JavaMail code. For example, Mail.

6 In the Deployment Settings field, type in the name of your local SMTP
mail server for outgoing mail.

7 Provide a description of your JavaMail resource in the Description field.

8 Click OK.

Programmer’s Guide 635

C H A P T E R 3 6 Configuring Java XML Parser
Support

About JAXP
EAServer 4.0 includes support for JAXP (Java API for XML Parsing) 1.1.
The package includes the industry-standard DOM and SAX APIs,
Crimson SAX and DOM parsers, and the Xalan XSLT transformer from
Apache.

• JAXP is an API that provides basic functionality for reading,
manipulating, and generating XML documents and, depending on the
needs of the application, gives developers the flexibility to swap
between parsers without making code changes.

• SAX (Simple API for XML) is an event-driven parser that invokes
one of several methods supplied by the caller when a ‘parsing event’
occurs. “Events” include recognizing an XML tag, finding an error,
encountering a reference to an external entity, or processing a DTD
specification. It is used by many servlets and network-oriented
programs because it is the fastest and least memory-intrusive
mechanism currently available for dealing with XML documents.

• DOM (Document Object Model) parser is a tree-like structure, where
each node contains one of the elements from an XML structure. The
tree is traversed to dynamically access and update the content,
structure, and style of a document, which can then be incorporated
back into the presented document page.

• XSLT is a language for transforming one XML document into
another XML document through the use of a formatting vocabulary.

Topic Page
About JAXP 635

Configuring JAXP properties in EAServer Manager 636

Exporting and importing application clients 637

Configuring JAXP properties in EAServer Manager

636 EAServer

You can find programming examples for each of these APIs in Sun’s The
Java/XML Tutorial, available at http://java.sun.com/xml/tutorial_intro.html.

Configuring JAXP properties in EAServer Manager
JAXP provides a plugin model for XML parser classes. You can configure the
parser implementation used by your application code. A JAXP 1.1 properties
window will appear in each of the following EAServer Manager configuration
modules:

• Server Properties

• Application Properties

• Web Application Properties

• Package Properties

• Component Properties

• Application Client Properties

The JAXP properties window allows you to choose which JAXP factory
implementation to use for the SAXParserFactory, DocumentBuilderFactory,
and TransformerFactory. For each of these factories, you can choose from the
following options:

• Platform Default The default parsers are used and the entities custom
class list is configured to load them. EAServer Manager adds the
following JAR files to the entity’s custom Java class list (displayed on the
Java Classes tab in the Properties dialog for the entity):

• jaxp.jar

• crimson.jar (for SAXParserFactory or DocumentBuilderFactory)

• xalan.jar (for TransformerFactory)

• Not Configured When this setting is in effect, the parsers configured in
the server’s CLASSPATH and BOOTCLASSPATH setting are used. The
parser classes are the same as for the Platform Default setting, but the
classes are loaded by the Java system class loader.

CHAPTER 36 Configuring Java XML Parser Support

Programmer’s Guide 637

You must use the Not Configured option to prevent overriding JAXP
settings in child entities. For example, to use the Custom option in a
component, the server, application, and package that contain the
component must use the Not Configured option. If all entities in the
hierarchy use the Not Configured option, JAXP classes are loaded by the
system class loader.

• Custom Allows you to specify a class name in the JAR file containing
the specified class. The JAR file must be in the WEB-INF/lib directory for
Web applications, or in the EAServer java/classes directory for all other
entity types.

EAServer Manager sets the entity’s Factory property to the class name,
and adds jaxp.jar and the JAR file you specified to the entity’s custom
class list.

Precedence of JAXP properties
The parser configuration at the highest level has precedence. For example, if
you configure a parser at the server level, the server setting specifies the parser
used in all components and Web applications running on that server. To prevent
overriding the settings of child entities, specify the Not Configured setting in
parent entities.

Exporting and importing application clients
When exporting an application client, the exporter examines the three Factory
properties for that application client and creates the following entries in the
exported JAR file:

• META-INF/services/javax.xml.parsers.SAXParserFactory

The content of this file is the value of the entity’s SAXFactory property if
it is not empty.

• META-INF/services/javax.xml.parsers.DocumentBuilderFactory

The content of this file is the value of the entity’s DOMFactory property if
it is not empty.

• META-INF/services/javax.xml.transform.TransformerFactory

The content of this file is the value of the entity’s XSLTFactory property
if it is not empty.

Exporting and importing application clients

638 EAServer

When importing an application client, the importer looks at these same three
entries. If these entries are not empty, the importer sets up the corresponding
properties for the application client.

APPENDIXES

Programmer’s Guide 641

A P P E N D I X A Executing Methods As Stored
Procedures

The EAServer Methods As Stored Procedures (MASP) interface allows
component methods to be executed as if they were database stored
procedures.

The MASP interface allows you to invoke EAServer component methods
from any front-end tool that can execute Sybase Adaptive Server
Enterprise stored procedures. Server component developers can also use
isql and the MASP interface to quickly test methods.

Creating invocation commands
Each method call requires a Transact-SQL® exec command that specifies
the component name, the method name, and parameter values, as in:

exec MyPackage.MyComponent.MyMethod param1, param2,
...

You can also include the EAServer name in the invocation, as in:

exec MyServer.MyPackage.MyComponent.MyMethod
param1, param2, ...

Topic Page
Creating invocation commands 641

Limitations 642

Using MASP from isql 643

Using MASP from application builder tools 644

Configuring the return status 645

Limitations

642 EAServer

The method call can return return values (including multiple result sets) and
inout and out parameter values just like a stored procedure. MASP only
supports primitive types, that is, the types listed in the pulldown menu when
adding or modifying method parameters in EAServer Manager.

If the component method returns a value and not void,
TabularResults::ResultSet, or TabularResults::ResultSets, the method’s return
value is returned as the first output parameter in the stored procedure results.
In this case, you must define a dummy output parameter to receive the
method’s return value. Use this variable in place of the first stored procedure
parameter in the request. For example, in a Client-Library client application,
you would need to implement a ct_param() call for the return value.

In tools that allow exec commands to be batched, you can send several
invocations in the same batch, as in:

exec Pkg1.Comp1.Meth1
exec Pkg1.Comp2.Meth2
exec Pkg1.Comp2.Meth3

Some tools may require the parts of the stored procedure name to be entered
separately. In this case, the mappings are as follows:

Limitations
Components that save state between method calls using the continueWork and
disallowCommit primitives will not work as expected. (See Chapter 2,
“Understanding Transactions and Component Lifecycles” for more
information on state primitives).

Each MASP method invocation creates a component instance, invokes the
method, and then destroys the component instance. Since every MASP
invocation creates a new instance to invoke a method on, you cannot set an
instance’s state with consecutive MASP invocations. For these reasons, there
is no practical support for calling stateful components or EJB entity Beans
from MASP.

Stored procedure name part MASP equivalent

Remote server name The server name

Database Package name

Owner Component name

Procedure name Method name

APPENDIX A Executing Methods As Stored Procedures

Programmer’s Guide 643

MASP clients can call EJB stateless session Beans, as long as the Bean’s home
interface has a create method with no parameters.

MASP clients cannot call component methods named invoke.

Due to ODBC driver limitations, string or binary values sent to a client that
connects through ODBC cannot be greater than 255 bytes in length. This
applies to both inout parameters and to columns in a result set.

Using MASP from isql
Using the MASP interface, you can use isql to quickly test methods. For
example, the following command invokes the getMajors method in the
SVUEnrollment component in the SVU package:

1> exec SVU.SVUEnrollment.getMajors
2> go

 --- ----------------
 Eng English
 Phy Physics
 Ant Anthropology

 0

To call a method that returns a value, specify an empty first parameter (this
creates a placeholder for EAServer to send the return value back to isql). For
example, to call the Jaguar::Management::getenv method, which takes an
environment variable name as its only parameter and returns the value of the
specified environment variable:

1> exec Jaguar.Management.getenv "" , "JAGUAR"
2> go
(return status = 1)

Return parameters:

C:\EAServer_51\EAServer

If you are using isql with a multi-byte character set, you should specify that
character set using the isql -J option. For example, the following command sets
the isql codeset to the sjis codeset.

isql -Usa -P -Sjaguar -Jsjis

Using MASP from application builder tools

644 EAServer

Because EAServer does not support languages, the isql -z option is not valid nor
can you set the client machine’s LANG environment variable to a language
other than US English.

Note This section applies to any client that sends a MASP request as a
Transact-SQL command.

Using MASP from application builder tools
Using MASP, you can invoke EAServer component methods that can execute
Sybase stored procedures.

Note Some application builder tools might not be able to use MASP if they
issue metadata queries against EAServer.

PowerBuilder
You can connect to EAServer, create a stored procedure DataWindow, and get
a list of available methods. You can pick one of these, create a DataWindow
with it, and then when you execute the DataWindow, results from the method
are displayed in the window.

Note that you must manually specify the format of the result sets and the
expected parameters. As with all stored procedure DataWindows, these are
read-only.

PowerDynamo
You can execute methods on an EAServer component as if they were stored
procedures, and use the script’s capabilities of dynamic table generation to
display the results in an HTML table.

APPENDIX A Executing Methods As Stored Procedures

Programmer’s Guide 645

Other tools
You should be able to use MASP in other tool environments as well. Any tool
that uses one of the following communication drivers and allows stored
procedure execution should be able to use MASP:

• Sybase jConnect (any version)

• Sybase Adaptive Server Enterprise ODBC driver

• Sybase Open Client

Configuring the return status
The stored procedure return status of the MASP call reflects the status of the
call. By default, the following status values are returned:

• A value of 1 indicates the method was invoked

• A value of 0 indicates that EAServer was not able to invoke the method.
This error can occur for a variety of reasons, such as:

• The syntax was incorrect

• The specified method, component, or package that did not exist

• The specified package was not installed on the server, or the user
lacked permission to invoke the method

When a MASP call fails, see the server’s log file for more information on
the cause.

You can configure your server to reverse the meanings of the status value by
setting the server property com.sybase.jaguar.server.masp.zero-
success. A value of false, the default, indicates the status values have the
meanings described above. A value of true indicates that the meanings of 0
and 1 are reversed.

Set the property in EAServer Manager as follows:

1 Display the properties for the server by right-clicking on the icon and
selecting Server Properties from the popup menu.

2 Click on the Advanced tab

3 If com.sybase.jaguar.server.masp.zero-success is displayed,
highlight it and click Modify. Edit the displayed value and click Ok.

Configuring the return status

646 EAServer

4 If com.sybase.jaguar.server.masp.zero-success is not displayed,
click Add. Enter the property name and the value, then click Ok.

Programmer’s Guide 647

A P P E N D I X B Migrating Open Server
Applications to EAServer

The current Open Server is based on proprietary light-weight thread
architecture and does not scale to symmetric multiprocessor (SMP)
platforms. EAServer is based on native or kernel threads supporting SMP
architecture. Migrating to EAServer requires minimal work on the server
side, no changes to the client, and allows your Open Server applications
to take advantage of many EAServer features.

Related documentation Refer to the Sybase Open Server documentation for information on the
Open Server API. This documentation is available on the Sybase Web site
at http://www.sybase.com.

Migration overview
Migrating your Open Server applications allows you to take advantage of
EAServer features such as:

• High scalability and high performance engine – EAServer is based on
kernel threads and supports symmetric multiprocessors (SMP)

• Built in worker thread and thread pooling facilities supports large
concurrent client loads

• Ability for applications to make blocking or synchronous calls that do
not block the entire process

• Operating system based authentication services

Topic Page
Migration overview 647

Coding changes and examples 648

Modified APIs and new event handlers 657

EAServer configuration 660

Additional event handler information 662

Coding changes and examples

648 EAServer

• EAServer Manager, an easy-to-use graphical user interface for:

• Installing and configuring event handlers

• Managing the server

• Monitoring the server

• Accessing Open Client and ODBC connection cache facilities

To migrate an Open Server application to EAServer, the application must be
built as a shared object or a DLL (on Windows) instead of a binary. The shared
object contains all of the Open Server event handler code currently residing in
the application code.

To migrate your Open Server applications to EAServer:

1 Modify your Open Server code to run in EAServer by:

• Removing your existing code from the main function and placing it in
an event handler and removing the srv_run and other routines. Refer
to “Modifying main” on page 649 for more information.

• Modifying your application so that it runs in a preemptive scheduling
environment. Refer to “Coding changes and examples” on page 648
for coding examples and guidelines.

2 Once you have modified your code, create and build one or more DLLs or
shared objects consisting of your event handlers. Refer to “DLLs, shared
objects, and makefiles” on page 655 for more information.

3 Using EAServer Manager:

• Install your event handlers. Refer to “Installing event handlers” on
page 661.

• Configure an EAServer listener to accept client requests. Refer to
“Configuring an Open Server listener” on page 662.

Limitations EAServer does not support DCE or Kerberos.

Coding changes and examples
The code changes required for your Open Server applications include:

• Moving the main code to an event handler and removing some routines.

• Modifying your code so that it is thread-safe.

APPENDIX B Migrating Open Server Applications to EAServer

Programmer’s Guide 649

Modifying main
You must move Open Server application code currently running in the main
routine to one or more event handlers. Other routines, such as the srv_run
routine are also removed. You must also remove routines that EAServer
automatically initiates, and remove properties and handlers that are configured
through EAServer Manager.

Traditional Open
Server application

The following file is a traditional Open Server application that contains a main
routine:

#include <ospublic.h>
#include <server.h>

/*
** File server.c containing a typical Open Server main()
function. For
** simplicity, there is no error handling here.
**
** This builds into an executable, with the supporting
code, such as
** event handlers, ending up as either static libraries
that become part
** of the executable, or as dynamic libraries loaded at
run time.
*/
main(int argc, char *argv[])
{

/*
** Variables.
*/
CS_INT conns;
CS_INT threads;
CS_CHAR *name;
CS_CONTEXT *context;

/*
** Process command line. Function get_params() is

in file appl.c.
*/
get_params(argc, argv, &conns, &threads, &name);
if (name == (CS_CHAR *) NULL)
{
 printf("Usage: %s [-os_conns=<conns>] [-

os_threads=<threads>] "
 "-os_name=<name>\n", argv[0]);
 exit(1);

Coding changes and examples

650 EAServer

}
/*
** Initialize server.
*/
cs_ctx_alloc(CS_VERSION_100, &context);
srv_version(context, CS_VERSION_100);
if (conns > 0)
 srv_props(context, CS_SET,

SRV_S_NUMCONNECTIONS,
 (CS_VOID *) &conns, sizeof(conns),

(CS_INT *) NULL);
if (threads > 0)
 srv_props(context, CS_SET, SRV_S_NUMTHREADS,
 (CS_VOID *) &threads, sizeof(threads),

(CS_INT *) NULL)
srv_init((SRV_CONFIG *) NULL, name,

CS_NULLTERM);

/*
** Register handlers. Files handler1.c and

handler2.c contain these
** functions.
*/
srv_handle((SRV_SERVER *) NULL, SRV_START,

start_handler);
srv_handle((SRV_SERVER *) NULL, SRV_ATTENTION,

attn_handler);
srv_handle((SRV_SERVER *) NULL, SRV_BULK,

bulk_handler);
srv_handle((SRV_SERVER *) NULL, SRV_CONNECT,

conn_handler);
srv_handle((SRV_SERVER *) NULL, SRV_CURSOR,

cur_handler);
srv_handle((SRV_SERVER *) NULL, SRV_DISCONNECT,

disc_handler);
srv_handle((SRV_SERVER *) NULL, SRV_DYNAMIC,

dyn_handler);
srv_handle((SRV_SERVER *) NULL, SRV_LANGUAGE,

lang_handler);
srv_handle((SRV_SERVER *) NULL, SRV_RPC,

rpc_handler);
srv_handle((SRV_SERVER *) NULL, SRV_OPTION,

opt_handler);

/*
** Start server.

APPENDIX B Migrating Open Server Applications to EAServer

Programmer’s Guide 651

*/
srv_run((SRV_SERVER *) NULL);
exit(0);

}

Moving main() to an
event handler

The main code has been placed in an event handler, other routines and
properties have been removed:

#include <ospublic.h>
#include <server.h>

/*
** File server.c. The original main() function becomes
init_handler().
**
** Build this into a dynamic library, and register the
** init_handler() function in EAServer Manager.
EAServer
** will call the function at runtime.
**
** You may build the supporting code into the same
dynamic library, or into
** one or more different dynamic libraries. In either
case, you'll need to
** register each handler separately with EAServer, using
** EAServer Manager.
*/

CS_RETCODE CS_PUBLIC init_handler(CS_CONTEXT *context,
int argc, char *argv[])

{
/*
** Variables.
**
** EAServer initializes context and passes it to

this function.
*/
CS_INT conns;
CS_INT threads;
CS_CHAR *name;

/*
** Process command line. Function get_params() is

in file appl.c.
**
** Do not exit on error.
*/
get_params(argc, argv, &conns, &threads, &name);

Coding changes and examples

652 EAServer

/*
** Initialize server.
**
** Get rid of cs_ctx_alloc(), srv_version(), etc.

Do not call srv_init().
** Certain properties previously set using

srv_props() are now set
** in EAServer Manager.
*/
if (conns > 0)
 srv_props(context, CS_SET,

SRV_S_NUMCONNECTIONS,
 (CS_VOID *) &conns, sizeof(conns),

(CS_INT *) NULL);
if (threads > 0)
 srv_props(context, CS_SET, SRV_S_NUMTHREADS,
 (CS_VOID *) &threads, sizeof(threads),

(CS_INT *) NULL);

/*
** Register handlers. Files handler1.c and

handler2.c contain handler
** functions.
**
** Register all the handlers using EAServer

Manager.
*/

/*
** Start server.
**
** EAServer calls srv_run(); Do not call it

yourself.
*/

/*
** Return rather than exit.
*/
return CS_SUCCEED;

}

Open Server properties
Do not attempt to set or reset the SRV_S_PREEMPT property.

APPENDIX B Migrating Open Server Applications to EAServer

Programmer’s Guide 653

Do not set the SRV_S_STACKSIZE property.

You must set the following properties using EAServer Manager:

• SRV_S_NUMCONNECTIONS

• SRV_S_NETBUFSIZE

• SRV_S_MSGPOOL

• SRV_S_NUMMSGQUEUES

Do not set these properties using srv_props() calls.

To set these properties from EAServer Manager:

1 Highlight the server whose properties you want to set.

2 Select File | Server properties.

3 Select the Resources tab and set the properties.

Refer to Chapter 3, “Creating and Configuring Servers,” in the EAServer
System Administration Guide for more information.

Making your code thread-safe
Open Server uses it’s own implementation of threads with non-preemptive
scheduling. EAServer uses native operating system threads with preemptive
scheduling. Context switches were predictable in Open Server’s non-
preemptive environment. EAServer does not support non-preemptive
scheduling. As a result, context switches are unpredictable and managed by the
operating system’s thread management facility. You must modify your Open
Server application so that when a context switch does occur, your resources
(variables, data, and so on) are maintained and not overwritten by another
thread.

Protecting data In a multi-threaded program, it is possible for multiple “threads” of control to
be active concurrently. These threads can overwrite each other's data, resulting
in unpredictable behavior such as race conditions.

Any data shared across threads is vulnerable to race conditions:

• Global variables – such as “errno” in C programs or user-defined global
variables. Since any thread can access these global variables, one thread
may inadvertently overwrite the value of a variable accessed by a different
thread.

Coding changes and examples

654 EAServer

• Static variables – a C function containing a static variable can be executed
concurrently by multiple threads, resulting in unpredictable changes to the
variable’s contents.

Automatic variables are created on the stack. Since each thread typically
has its own stack, these variables are generally immune to context
switches.

Consider the following code segment running in a traditional Open Server
application:

static int x = 0;
x += 100;

if (x > 1000)

x = 0;

A race condition cannot occur when this code runs because a context switch
cannot occur with non-preemptive scheduling. However, when you move to
EAServer, the result of the execution of this code is unpredictable.

You can protect the previous code with an Open Server mutex:

static int x = 0;
srv_lockmutex(mutex);
x += 100;

if (x > 1000)

x = 0;
srv_unlockmutex(mutex);

Identify sections of code that need explicit protection and protect them with
any applicable synchronization mechanism such as Open Server mutexes, and
test your software (for deadlocks, etc.).

Tools for protecting
data

Solaris users may find tools in the SPARCworks/iMPact multithreaded
development kit from SunSoft useful in analyzing your code to identify critical
sections that need protection, and help test the software after protecting these
sections. This kit contains tools such as LockLint, LoopTool, SPARCworks
Debugger, and Thread Analyzer.

APPENDIX B Migrating Open Server Applications to EAServer

Programmer’s Guide 655

DLLs, shared objects, and makefiles
This section contains two sample makefiles. The first is an example of a
traditional Open Server makefile for Solaris, which contains routines, such as
main and srv_run, used to build an executable. The second makefile is used to
build dynamic libraries for use with EAServer. The main() logic has been
moved to an init handler.

In addition to the sample makefiles there are instructions for building shared
objects for UNIX and DLLs for Windows.

Traditional Open
Server makefile for
Solaris

A makefile that builds the Open Server executable,
server
server.exe on Windows.

#

The main() function is in server.c.

#

The two files, handler1.c and handler2.c implement all
the handlers, and
compile into a static library, handler.a (handler.lib
on Windows).

#

All the remaining code is in files appl1.c and
appl2.c, and compiles into a
static library, appl.a (appl.lib on Windows).

#

CFLAGS= -I$(SYBASE)/include -I.

LIBS= -lsrv -lblk -lct -ltcl -lcs -lcomn -lintl
-lm -lnsl -ldl

LDFLAGS= -L$(SYBASE)/lib $(LIBS)

server: server.o handler.a appl.a

$(LINK.c) -o $@ server.o handler.a appl.a

handler.a: handler1.o handler2.o

$(AR) $(ARFLAGS) $@ handler1.o handler2.o

Coding changes and examples

656 EAServer

appl.a: appl.o

$(AR) $(ARFLAGS) $@ appl.o

.c.o:

$(COMPILE.c) $(OUTPUT_OPTION) $<

Makefile for EAServer

Build a dynamic library, server.so (server.dll on
Windows), instead of an
executable.
#There is no main() function anymore: the applicable
main() logic is in
the init handler function. The file is still server.c.
#
The two files, handler1.c and handler2.c, implement
all the handlers and
compile into a dynamic library, handler.so
(handler.dll on Windows).
Register each handler in EAServer Manager.
#
All the remaining code is in files appl.c, and
compiles into a
static library, appl.a (appl.lib on Windows). No
change here.
#No need to link with libraries.
CFLAGS= -I$(JAGUAR)/include -I.

server.so: server.o handler.so appl.a
$(LINK.c) -G -o $@ server.o handler.so

appl.a

handler.so: handler1.o handler2.o
$(LINK.c) -G -o $@ handler1.o

handler2.o

appl.a: appl.o
$(AR) $(ARFLAGS) $@ appl.o

.c.o:
$(COMPILE.c) $(OUTPUT_OPTION) $<

APPENDIX B Migrating Open Server Applications to EAServer

Programmer’s Guide 657

Building shared
objects on Solaris

When building shared objects on Solaris compile all the modules with the
compile switches -KPIC -mt

The following link line should be used when creating a shared object on
Solaris. Note that EAServer libraries have a “j” prefix in them, for example,
libjsrv_r.so:

 ld -g -o <shared object name> <object files> -ljsrv_r
-ljct_r -ljcs_r\
-ljtcl_r -ljcomn_r -ljintl_r -ljtml_r -Bdynamic -lnsl -
ldl -lthread -lm

Building DLLs on
Windows

When building DLLs on Windows use the compile flags:

CFLAGS = /W3 /MD /nologo /Z7 /Od /DWIN32 /Gz

You need to export all handler functions. Use a .def file for this purpose and
specify this .def file /def link option. For example:

Definition file dependencies
LIBRARY sample INITINSTANCE
DESCRIPTION 'EAServer event Handler'
HEAPSIZE 22000
PROTMODE
CODE LOADONCALL EXECUTEREAD NONCONFORMING
DATA PRELOAD READWRITE MULTIPLE NONSHARED
EXPORTS
connect_handler

Note To run a server using an event-handler DLL, the directory containing the
DLL must be specified in the PATH environment variable.

Modified APIs and new event handlers
This section discusses the modified Open Server APIs and two new event
handlers.

Modified APIs
The modified Open Server APIs are:

Modified APIs and new event handlers

658 EAServer

• srv_sleep

• srv_props

• srv_deletemutex

• srv_droppproc

srv_sleep srv_sleep is used to suspend the currently executing thread. srv_sleep now uses
its final two parameters which had been reserved for future use. If you do not
want to take advantage of the new functionality of srv_sleep no changes are
required and your code will work as before.

The first reserved parameter is now an Open Server mutex, and the second is a
time-out in milliseconds. Both of these parameters are optional, and should be
set to (CS_VOID*)0 when not being used.

When a mutex is passed to srv_sleep, it is released before the thread suspends,
but after it is marked suspended. The mutex is reacquired before srv_sleep
returns. The behavior is modeled on condition variables (posix threads).

This pseduo-code fragment demonstrates how a multithreaded application may
use the new sleep functionality to prevent race conditions where wakeups may
be missed:

Sleep side:

srv_lockmutex(mutex_id)
status = NOT_YET_DONE;
while (status != DONE)
{
srv_sleep(..., mutex_id, ...);
}
srv_unlockmutex(mutex_id)
Wakeup side:

srv_lockmutex(mutex_id)
status = DONE;
srv_wakeup(...)
srv_unlockmutex(mutex_id)

If a srv_sleep call returns because of a time-out, the location pointed to by the
infop parameter will be set to SRV_I_TIMEOUT. In this case, as in all others,
the mutex is reacquired before the srv_sleep call returns.

The normal usage of srv_sleep in the native threads version should be within a
loop checking the predicate. For example:

mutex_lock()
 while (work != DONE)

APPENDIX B Migrating Open Server Applications to EAServer

Programmer’s Guide 659

 {
 srv_sleep(...);
 }

mutex_unlock()

In this usage, the time-out is not useful because it is reset each time.

srv_props The property SRV_S_NATIVEMUTEX has been added to srv_props(). You can
set SRV_S_NATIVEMUTEX to CS_TRUE or CS_FALSE. The default is
CS_FALSE. If set to CS_TRUE, the srv_createmutex, srv_lockmutex,
srv_unlockmutex, and srv_deletemutex APIs use native (operating system)
mutexes. If set to CS_FALSE, these APIs use Open Server mutexes.

Mutex operations will be faster if you set the SRV_S_NATIVEMUTEX property
to CS_TRUE because mutex operations will map almost directly to operating
system mutex operations. Currently, Open Server allows mutexes to be
referred to by name. This requires that mutexes and their names be stored in
tables. When you set SRV_S_NATIVEMUTEX property to CS_FALSE, mutex
operations require table lookups; these table lookups must be synchronized
with other threads to ensure that the mutex table does not become corrupt.

Mutexes created when SRV_S_NATIVEMUTEX is set to CS_FALSE support
recursive locking.

Mutexes created when SRV_S_NATIVEMUTEX is set to CS_TRUE do not
support recursive locking. If a mutex is locked, any attempt to lock it a second
time, even by the same thread that originally locked it, will block the thread.

srv_deletemutex srv_deletemutex() has been modified so that only an unlocked mutex can be
deleted.

srv_dropproc srv_dropproc() has been modified so that asynchronous or involuntary thread
terminations are not allowed.

Event handler prototypes
EAServer supports two additional event handlers, “Initialization” and “Error”.
The initialization handler (or init handler) is used to perform any customization
the application requires. Ideally, all of your main() code goes into the init
handler. The prototype for all the existing open server event handler remains
the same.

Initialization handler
prototype

typedef CS_RETCODE (CS_PUBLIC * SRV_INITHANDLE_FUNC)
PROTOTYPE((

CS_CONTEXT *context,
CS_INT argc,

EAServer configuration

660 EAServer

CS_CHAR **argv
));

context – is pointer to the CS_CONTEXT structure.

Initialization handlers must return CS_SUCCEED unless an error occurs that
prevents the application from running successfully. Returning a value other
than CS_SUCCEED aborts the server startup sequence.

You can use the initialization handler or the run handler to initialize your
application’s global resources, or you can install handlers for both events. The
server log file is not open when the initialization handler is called. If you need
to write messages to the log (using JagLog), use a start handler rather than the
initialization handler.

Error handler
prototype

Install error handlers through EAServer Manager and not srv_props() or
srv_errhandle(). Refer to “Installing event handlers” on page 661 for more
information.

typedef CS_RETCODE (CS_PUBLIC * SRV_ERRORHANDLE_FUNC)
PROTOTYPE((

 CS_CONTEXT *context,
 CS_VOID *argp,
 CS_INT where,
 CS_SERVERMSG *msg
));

Refer to “Additional event handler information” on page 662 for information
about all event handlers.

EAServer configuration
After you have modified your Open Server application and have built your
DLLs or shared objects, you need to register your event handlers and configure
an Open Server port using EAServer Manager. This section discusses:

• “Installing event handlers” on page 661

• “Configuring an Open Server listener” on page 662

APPENDIX B Migrating Open Server Applications to EAServer

Programmer’s Guide 661

Installing event handlers
EAServer fully supports all Open Server event handlers. The only difference is
that instead of creating a binary file linking the DLL or shared object, you
create a DLL or shared object consisting of your event handlers and then
specify the location of this file using EAServer Manager (instead of specifying
them in the code).

Specifying event handlers

To specify an event handler from EAServer Manager:

1 Double-click the Servers folder.

2 Highlight the server for which you are specifying the event handler.

3 Select File | Server Properties.

4 Select the Handlers tab.

5 Enter the DLL or shared library name and the function name of the specific
event handler being called, separated by a colon.

The following examples illustrate an entry for a connect event handler for
Solaris and Windows:

• Solaris

libsamp.so:debug_connect

where libsamp.so is the shared library name and debug_connect is the
function called whenever a connect event handler is called.

• Windows

libsamp.dll:debug_connect

where libsamp.dll is the DLL name and debug_connect is the function
called whenever a connect event handler is called.

Table B-1 summarizes the types of event handlers that you can install. For
information on coding event handlers, refer to“Additional event handler
information” on page 662 and your Open Server documentation.

Additional event handler information

662 EAServer

Table B-1: Individual server event handlers

Configuring an Open Server listener
To support Open Server clients, you must install a listener in your server that
supports Open Server clients. The listener must use protocol TDS and the
“Enable Open Server Events” option must be enabled. If you are using the
preconfigured Jaguar server, the Jaguar_OpenServer listener supports Open
Server connections. Refer to Chapter 3, “Creating and Configuring Servers,”
in the EAServer System Administration Guide for more information about
listeners.

Additional event handler information
This section contains additional information relevant to coding event handlers.

 Event handler Called
Connect Each time a client connects to EAServer
Disconnect When the client disconnects from EAServer

Error When an Open Server processing error
occurs

Initialization Before starting EAServer

Start After initialization, but before accepting
client requests

Stop When a request to stop the server is made

Language When a client sends a language request, such
as a SQL statement

RPC When a client issues a remote procedure call

Attention When an attention had been received. An
attention is an immediate event; EAServer
services the attention as soon as it occurs,
rather than adding it to the client’s event
queue

Cursor When a client sends a cursor request
Dynamic When a client sends a dynamic SQL request
Message When the client sends a message
Option When a client sends an option command
Bulk When a client issues a bulk copy request

APPENDIX B Migrating Open Server Applications to EAServer

Programmer’s Guide 663

Calling convention for event handlers
All event handlers, error handlers, and any other function that is installed as a
callback in the EAServer runtime must be coded according to the following
rules:

• The function must use the C link-object naming convention. C++
programmers must declare EAServer callbacks in an extern C block. You
will get link errors otherwise.

• Callback prototypes must include the CS_PUBLIC macro as shown by the
examples in this chapter. On platforms such as Windows, the C compiler
supports a broad collection of calling conventions for C functions. On
these platforms, the CS_PUBLIC macro encapsulates the appropriate
compiler keywords to ensure that the same calling convention is used by
both EAServer and your callbacks. If the calling convention used by your
callback and the calling convention used by EAServer do not match, the
server will probably crash when the callback is called or soon after it
returns.

 Warning! Declare your callback functions with the CS_PUBLIC macro
to avoid server crashes.

Initialization, run, start and exit events
An application’s initialization handler and start handler are invoked when the
server starts up. The exit handler is invoked when the server shuts down.
Initialization and exit handlers are typically used to manage global resources
used by the application. The sequence is as follows:

1 Server initialization – Initialization handler (if installed) is called.

2 Server start-up – Initialization handler has returned. The Start handler is
called. The server is now ready to spawn new threads, but will not accept
client connections until after the Start handler returns. The Start handler
can spawn service (non-client) threads if necessary.

3 Normal operation – The server accepts client connections and associates
each with a thread, spawning new threads when necessary. Each time a
client connects, the server calls the application’s connect handler. Each
time a client disconnects, the server calls the application’s disconnect
handler.

Additional event handler information

664 EAServer

4 Server shutdown – The server terminates all threads, then calls the exit
handler.

Start handler template

The template for a start handler is:

#include <ospublic.h>

CS_RETCODE CS_PUBLIC start_handler (
CS_CONTEXT *ctx
)

where

context – is pointer to the CS_CONTEXT structure.

Start handlers must return CS_SUCCEED unless an error occurs that prevents
the application from running successfully. Returning a value other than
CS_SUCCEED aborts the server start-up sequence.

Your application does not require a start handler unless you want to use service
threads or create global mutexes. In this case, the service threads must be
created in the start handler.

Exit handler template

The template for an exit handler is:

#include <ospublic.h>

CS_RETCODE CS_PUBLIC exit_handler(
CS_CONTEXT *context
)

{
... your code goes here ...
return CS_SUCCEED;

}

where

context – is pointer to the CS_CONTEXT structure.

Exit handlers must return CS_SUCCEED.

APPENDIX B Migrating Open Server Applications to EAServer

Programmer’s Guide 665

Connect and disconnect handlers
Connect and disconnect handlers are invoked when client applications open
and close connections to EAServer.

The connect and disconnect handler examples in this chapter call Server-
Library routines. You can use these routines to perform user authentication.

You can find documentation for these routines in the Open Server Server-
Library/C Reference Manual. You can view it on the web from the Technical
Library page:

http://sybooks.sybase.com

Connect handler

The connect handler can be used to authenticate the connection’s user name.
Users must be validated based on user name/password, and you must supply
code for password maintenance and checking.

Note srv_thread_props(SRV_T_USERDATA) is off-limits to EAServer
programmers.

The following is an example of a connect handler that logs the user name,
password, and locale name when a connection is opened:

CS_RETCODE CS_PUBLIC
debug_connect(srvproc)
SRV_PROC *srvproc;
{

CS_INT spid;
CS_INT ulen;
CS_INT plen;
CS_INT llen;
CS_CHAR msg[CS_MAX_MSG];
CS_CHAR user[CS_MAX_NAME+1];
CS_CHAR password[CS_MAX_NAME+1];
/* Initialization */
spid = 0;
/* Get the spid */
if (srv_thread_props(srvproc, CS_GET, SRV_T_SPID,

(CS_VOID *)&spid,
CS_SIZEOF(spid), NIL(CS_INT *)) != CS_SUCCEED)

{
return (CS_FAIL);

}

Additional event handler information

666 EAServer

/*
** Get the username and password
*/
if (srv_thread_props(srvproc, CS_GET, SRV_T_USER,

(CS_VOID *)user,
CS_MAX_NAME, &ulen) != CS_SUCCEED)

{
return (CS_FAIL);

}
if (srv_thread_props(srvproc, CS_GET, SRV_T_PWD,

(CS_VOID *)password,
CS_MAX_NAME, &plen) != CS_SUCCEED)

{
return (CS_FAIL);

}
/* Null terminate the username and password *

/
user[ulen] = (CS_CHAR)’\0’;
password[plen] = (CS_CHAR)’\0’;
/* Log the username and password values. */
sprintf(msg,"SPID %d) user ’%s’, password ’%s’\n",

spid, user, password);
SRV_LOG(CS_TRUE, msg, CS_NULLTERM);
return (CS_SUCCEED);

}

Disconnect handler

The following is an example of a disconnect handler:

CS_RETCODE CS_PUBLIC
fullpass_disconnect(srvproc)
SRV_PROC *srvproc;
{

CS_INT spid;
CS_CHAR msg[CS_MAX_MSG];
/* Initialization */
spid = 0;
/* Get the spid */
if (srv_thread_props(srvproc, CS_GET, SRV_T_SPID,

(CS_VOID *)&spid,
CS_SIZEOF(spid), NIL(CS_INT *)) != CS_SUCCEED)

{
return (CS_FAIL);

}
sprintf(msg,"SPID %d disconnected.\n", spid);

APPENDIX B Migrating Open Server Applications to EAServer

Programmer’s Guide 667

SRV_LOG(CS_TRUE, msg, CS_NULLTERM);
return CS_SUCCEED;

}

Build with the Visual C++ IDE
On Windows Platoforms, if you use the Visual C++ IDE or another command
line compiler to build your DLL, make sure that you specify the correct options
so that the compiler generates C functions using the standard C calling
convention. After you build the DLL, copy it to the EAServer dll subdirectory.

A sample module definition (.def) file
EAServer Manager generates a .def file for your component. Visual C++
requires a module definition file that specifies which functions are exported
from a DLL and some options that control how the DLL is loaded into memory.
Module definition files end with the extension .def.

For most projects, you can use the generated file as-is. In some cases, you may
want to edit settings other than those in the EXPORTS section. For example,
your component may perform better with a smaller or larger HEAPSIZE
setting.

Note Never edit the generated function names in the EXPORTS section of the
.def file for a C component, otherwise, the EAServer dispatcher will not be able
to call your methods.

Below is the example module definition file for the sample Enrollment
component:

LIBRARY libEnrollment INITINSTANCE
Description ’EnrollmentComponent - EAServer’
HEAPSIZE 22000
PROTMODE
CODE LOADONCALL EXECUTEREAD NONCONFORMING
DATA PRELOAD READWRITE MULTIPLE NONSHARED
EXPORTS
__skl_Enrollment_v_1_0_getMajorList
__skl_Enrollment_v_1_0_getCourses
__skl_Enrollment_v_1_0_getStudentRecord
__skl_Enrollment_v_1_0_putCourseRecord

Additional event handler information

668 EAServer

__skl_Enrollment_v_1_0_destroy
__skl_Enrollment_v_1_0_createStudentRecord
__skl_Enrollment_v_1_0_create
__skl_Enrollment_v_1_0_getMajorEnrollmentRecord
__skl_Enrollment_v_1_0_removeCourseRecord
__skl_Enrollment_v_1_0_getCourseList
__skl_Enrollment_v_1_0_getAllEnrollmentRecord

For components, the .def file must use the mangled function names as shown
in the example. For each method in your component, the mangled name is:

__skl_Comp_v_1_0_method

where

Comp is the component name.

method is the method name.

Programmer’s Guide 669

A P P E N D I X C Creating C Components

C components provide a quasi-object model for the execution of a group
of related C functions. Unlike a C++ object, separate instances of a C
component lack a private data space. However, you can implement create
and destroy methods to associate data with an instance of a C component.

C component lifecycle
Figure C-1 illustrates the states in the lifetime of a C component instance:

Topic Page
C component lifecycle 669

Requirements 671

Procedure for creating C components 671

Define component interface and properties 672

Generate C component files 674

Write C components 678

Compile C components 695

Debug C components 697

C component lifecycle

670 EAServer

Figure C-1: C component lifecycle

The state transitions are:

• New instance – a new C component instance is created whenever a client
application instantiates a stub for the component. At this point, the
EAServer runtime calls the component’s create routine (see “Customize
the creation and destruction of components” on page 694).

• In Method – in response to a method invocation request from the client, the
EAServer runtime calls the C routine that implements the method. The
next state depends on which of the transaction state primitives is called.

• If JagCompleteWork or JagRollbackWork is called, the instance is
destroyed when the method invocation completes.

• If JagContinueWork or JagDisallowCommit is called, the instance
persists when the method invocation completes.

If the component is transactional, the routine that is called also influences
the outcome of the transaction that the component is participating in.

Chapter 5, “C Routines Reference,” in the EAServer API Reference
contains reference pages for the C routines. Chapter 2, “Understanding
Transactions and Component Lifecycles” describes EAServer’s
transaction model.

Active

In Method

Destroyed

New instance

Destruction

Invocation CompleteInvoke Method

APPENDIX C Creating C Components

Programmer’s Guide 671

• Destruction – if the method called JagCompleteWork or JagRollbackWork,
the instance is destroyed when the method completes. An instance is also
destroyed when the client destroys its stub instance or if the client
disconnects abruptly without explicitly destroying the stub.

Requirements
The following list describes the software requirements for developing C
components and the hardware requirements for running C components. All
software that is required to run C components in EAServer is supplied with the
EAServer product.

• Development

To create C components, you need a C or C++ development tool.

• Runtime

For detailed system requirements, see the EAServer Installation Guide for
your platform.

Procedure for creating C components
To create C components:

1 Define component interface and properties – using EAServer Manager,
specify the component’s name, DLL name, method prototypes,
transactional semantics, and threading model.

2 Generate C component files – C component files are the C source files that
are compiled into the C component. At this time, you generate UNIX and
Windows makefiles as well as Visual C++ module definition files. You use
UNIX and Windows makefiles to compile the C component files into C
components.

3 Write C components – write the method logic in the method definition for
the method implementation template files.

4 Compile C components – compile and link the method prototypes header
file, the method implementation template files, and method skeletons file
to create a dynamic link library (DLL) or UNIX shared library.

Define component interface and properties

672 EAServer

5 Install C Components – copy the DLL or shared library to the cpplib
directory of the EAServer installation.

Define component interface and properties
The definition of a C component specifies the interfaces that the component
implements as well as its other properties.

The component’s transaction property determines how it participates in
transactions. The threading property imposes constraints on concurrent
execution of the component.

Define the component’s interfaces
All component interfaces for EAServer components are defined in CORBA
IDL modules that are stored in EAServer’s IDL Repository. Chapter 5,
“Defining Component Interfaces” describes how to define IDL interfaces.

Component developers typically use one of the following to define the
interface or interfaces that their component implements:

• Use existing interfaces from EAServer’s IDL Repository

In some cases, client and server component developers may have agreed
upon an existing interface or several interfaces that your component must
implement. In this case, it is up to you, the component developer, to
implement the agreed-upon interface. EAServer stores HTML
documentation for all interfaces in the IDL repository in the html/ir
subdirectory of your EAServer installation.

• Define a new IDL interface or interfaces

APPENDIX C Creating C Components

Programmer’s Guide 673

If you are defining the interface yourself, you can use EAServer Manager
to create a new interface for the component. Chapter 5, “Defining
Component Interfaces” describes how.

Note IDL interfaces for C components cannot have create and destroy
methods. These conflict with the C create and destroy functions that are
called when your component is instantiated and destroyed, respectively.

Transaction property
The component’s transaction property determines how it participates in
transactions. You can view and change this property using the Transactions tab
of the component’s property sheet.

When you mark a component as “Requires Transaction,” commands that the
component sends to third-tier database servers are automatically performed
within a transaction. By default, components are not transactional.

Transactional component attribute describes the settings for this attribute.
Chapter 2, “Understanding Transactions and Component Lifecycles”
introduces the EAServer transaction processing model.

Instance properties
The Instances property imposes constraints on the concurrent execution of the
component in different threads. You can view and change these properties
using the Instances tab of the component’s property sheet.

For a single-threaded component, multiple instances may exist simultaneously,
but only one can be active at any one time. EAServer synchronizes
instantiations, method invocations, and destructions of all instances. Use the
single-threaded model if your component shares volatile global data or stateful
resources between instances. For example, volatile global data might be a
counter that is stored in a global variable. Sharing a stateful resource would
occur if, for example, every component instance opened the same file and
wrote text to it. Either example requires the single-threading model. To enable
single-threading, do not select any of the options in the Instance Properties tab.

The following settings specify the constraints that are placed on concurrent
execution of different instances of the component. The choices are:

Generate C component files

674 EAServer

• Concurrency – multiple invocations can be processed concurrently; that is,
multiple instances can be simultaneously active on different threads. The
component must be thread-safe. Use this setting if the component code
uses no volatile global data and does not share stateful resources (such as
a file) among instances. This threading model offers the highest
performance.

The EAServer shared properties feature provides a means to share data
safely among instances of a multiple-threaded component. See “Share
data between C or C++ components” on page 686 for more information.

• Bind Thread – instances are bound to the creating thread. The component
uses thread-local storage. The Bind Thread check box determines whether
a component instance is always invoked in the same thread or can be
invoked on any thread. If Bind Thread is not selected, then EAServer can
invoke the component’s methods with any thread.

Do not select this check box, unless your component uses thread-local
storage. EAServer provides no APIs for thread-local storage, but you can
issue thread system calls from the C component code. Do not use thread-
local storage if you are implementing new components. Instead, use the
JagGetInstanceData and JagSetInstanceData routines to associate data
with a specific component. If you incorporate existing code that uses
thread-local storage into a C component, select this check box.

• Pooling – instances are pooled after a commit or rollback.

• Sharing – a single shared instance services all client requests. Only one
instance of the component can exist at any one time. Attempts to create
new instances when one already exists will fail. In this model, only one
instance of the component may exist at any one time. Attempts to create
new instances when one already exists will fail. This option offers the
worst performance. Select this check box only if the logic in your code
requires that only one component instance exist at one time.

Generate C component files
To write a C component, you need these C component files. You compile these
C component files (or C source files) into a DLL.

• Method skeletons file – this file contains method routines that read the
parameters from the network and call the method. The method skeleton
also sends the return status and output parameter data back to the client.

APPENDIX C Creating C Components

Programmer’s Guide 675

• Method prototypes file – this file contains the method declarations only.
This file is an included file in the method skeletons file and the method
implementation template files.

• Method implementation template files – these files contain the method and
parameter declarations and an empty method definition. You enter any
business logic into the empty method definition.

How method calls are
made

The graphic below illustrates how EAServer calls the DLL’s functions in
response to a component methdod invocation:

Figure C-2: How a C component method is called

The sequence of events is:

1 The client invokes a method using the proxy or stub appropriate to the type
of client. The stub or proxy sends the invocation information over the
network to the server.

2 The method skeleton in the method skeletons file unmarshals the call and
makes another call to the method implementation in the method
implementation template file.

3 After the method executes, the method implementation returns the call to
the method skeleton.

4 The method skeleton marshals the call and sends the call to the client.

DLL
Method Skeletons

Method

Method Prototypes

Implementations

Method Call
from Client

Method Returns
to Client

Generate C component files

676 EAServer

Procedure for generating C component files
To generate C component files from a package or component, start EAServer
Manager and complete these tasks:

1 Select the component or, if you want to generate files for all components
in a package, select the package.

2 Select File | Generate Stub/Skeleton. The Generate Stubs and Skeletons
wizard is displayed.

3 Select the Generate Skeletons check box. Unless you wish to generate
stubs at the same time, deselect Generate Stubs. Enter values in the
Skeletons Generation Options area as follows:

• C/C++ Code Base

Enter the top-level directory path for the stub files. The path must be
a valid UNIX or Windows path. It can include a drive and as many
directories as you want.

If you clear the field, the default is the directory specified by $HOME
on UNIX and %HOMEPATH% for Windows.

Sybase recommends that you specify the full path to the C code base
directory. If you specify a relative path, it is created under the
EAServer installation directory, relative to the html/classes
subdirectory.

• Java Code Base

If you are generating skeletons for a package that contains both Java
and C components, specify the location where generated Java
skeletons are to be created. Otherwise, you can leave this field alone.

 Warning! Do not use the component name as the method file name.
The component name is already used for the method skeletons file.

4 Click Generate. EAServer Manager generates a method implementation
file name, and create and destroy routine templates appended with .new.

5 Rename the generated method implementation template files, deleting
.new.

APPENDIX C Creating C Components

Programmer’s Guide 677

File naming conventions
The component files are named according to this syntax:

where

component-name is the name of the component that you defined in EAServer
Manager.

method-name can be either of the following:

• If you did not specify a name in the Method file name field, files are
generated for each method that you defined in EAServer Manager.

• If you did specify a method file name, that name is used, and all methods
are defined in this file. When specifying a file name, leave off the .c
extension.

EAServer Manager creates the directory structure based on the code base that
you specify and the component name, as follows:

code_base/jcts_skel/component_name

where:

code_base is the directory name that you specify for the Code Base field in
EAServer Manager. If the specified value was not a full path, the directory will
be located under the EAServer installation directory, relative to the
html/classes subdirectory.

component_name is the component name as displayed in EAServer Manager.

file file name

component skeleton component-name.c

method prototypes component-name.h

method implementation method-name.c.new

create routine template create.c.new

destroy routine template destroy.c.new

Write C components

678 EAServer

Regenerate changed C component methods
When you add or delete methods or modify component method prototypes, you
must regenerate the method skeletons and prototypes. You must manually add,
delete, or modify the method in the implementation file. Before you regenerate
the method skeletons and prototypes, move your modified implementation
files to another directory or rename them so the new implementation template
files do not overwrite your modified implementation files.

Write C components
After you generate method skeletons, prototypes, and implementation
templates, write the code for each method in the method implementation file.
You can include C or C++ functions in C components. EAServer provides C
routines for common C component tasks (see Chapter 5, “C Routines
Reference,” in the EAServer API Reference).

To adapt a C++ class for use as a C component, you must write C wrappers. For
details, see “C components that are wrappers for C++ classes” on page 684.

EAServer Manager creates template files for each method when you define the
method signatures (or method prototypes) and generate skeleton routines. You
can modify the template files to implement the method bodies, or you can code
your methods from scratch according to the rules laid out here.

Note Function overloading is not supported for C components.

You can also include EAServer routines to:

• Customize the creation and destruction of components

• Manage instance data

• Share data between components

• Connect to third-tier database servers

• Call other components

• Send result sets

• Set transaction state

• Write to a log file

APPENDIX C Creating C Components

Programmer’s Guide 679

Define implementation functions
Each method in the EAServer component definition is implemented by a C
function with the same name as the method.

Implementation function return codes

Method implementation functions must return CS_RETCODE. Your
implementation function can return the following values:

• CS_SUCCEED – to indicate successful execution.

• CS_FAIL – to indicate failure. The client stub raises an exception when the
server method returns CS_FAIL. You can call the JagSendMsg routine
prior to returning CS_FAIL to specify the exception text to be sent to the
client.

In general, you should return CS_SUCCEED unless a fatal error occurs.
Returning CS_FAIL prevents the client stub from receiving output parameter
values. Use an inout or output parameter if you need to communicate method
status information to the client application.

Calling conventions

EAServer calls methods using a specific C calling convention. Follow these
rules to ensure compatibility with the EAServer method calling convention:

• Use extern C blocks – if using C++, make sure to declare your methods in
an extern C block.

• Always use CS_PUBLIC – on platforms such as Windows, the C compiler
supports a broad collection of calling conventions for C functions. On
these platforms, the CS_PUBLIC macro encapsulates the appropriate
compiler keywords to ensure that the same calling convention is used by
Jaguar and your methods. In the function prototype, insert CS_PUBLIC
between the return type and the function name.

Parameter datatypes

“Datatypes for C method implementation functions” on page 680 shows the
datatypes displayed in EAServer Manager, the datatypes used by C
components, and the argument modes. The left column contains the datatype
name as it displays in EAServer Manager. The second and third columns
contain the names of the corresponding C datatypes for input, inout, and output
parameters.

Write C components

680 EAServer

If the EAServer Manager method definition returns a value other than
ResultSet or ResultSets, an additional output parameter is added to the front of
the implementation function’s parameter list. This additional parameter
receives the “logical return code” for the method invocation, as described in
“Logical method return values” on page 682.

Datatypes for C
method
implementation
functions

Argument modes

Argument modes specify how an argument is passed. Arguments can have one
of these modes:

• Input - read-only; arguments are passed by value.

• Inout - read/write; arguments are passed by reference.

• Output – same as inout, except that input values are ignored.

EAServer
Manager Mode C Datatype

boolean input
inout, output, return

CS_BIT
CS_BIT *

byte
(a single byte)

input
inout, output. return

CS_BINARY
CS_BINARY *

char
(a single character)

input
inout, output. return

CS_CHAR
CS_CHAR *

float input
inout, output. return

CS_REAL
CS_REAL *

double input
inout, output. return

CS_FLOAT
CS_FLOAT *

integer<16> input
inout, output. return

CS_SMALLINT
CS_SMALLINT *

integer<32> input
inout, output. return

CS_INT
CS_INT *

integer<64> input
inout, output. return

CS_LONG
CS_LONG *

binary input
inout, output. return

CS_BINARY_HOLDER *
CS_BINARY_HOLDER *

string input
inout, output. return

CS_LONGCHAR_HOLDER *
CS_LONGCHAR_HOLDER *

string<255> input
inout, output. return

CS_CHAR *
CS_CHAR *

timestamp input
inout, output. return

CS_DATETIME
CS_DATETIME *

APPENDIX C Creating C Components

Programmer’s Guide 681

• Return – the method returns a value of this datatype. See “Logical method
return values” on page 682.

All parameters specified as input are passed by value except for those
parameters declared as string, string<255>, or binary in EAServer Manager.
Except for binary and string parameters, EAServer always preallocates
sufficient space for inout, output, or return parameters. binary and string
parameters are mapped to special datatypes, and you may need to reallocate
space for the output value as described below.

string<255> parameters

string<255> parameters are passed as a CS_CHAR *. On input, EAServer null-
terminates CS_CHAR parameter values using the length meta-information
associated with the datatype. On output, updated CS_CHAR parameter values
must be null-terminated.

Note string<255> parameter values cannot be longer than 255 bytes. Use string
parameters if your application requires larger values.

string and binary parameters

string parameters are passed in a CS_STRING_HOLDER structure. binary
parameters are passed in a CS_BINARY_HOLDER structure. These structures
are defined in jagpublic.h as follows:

typedef struct _cs_longchar_holder
{
 CS_LONGCHAR *value;
 CS_INT length;
} CS_STRING_HOLDER;

typedef struct _cs_longbinary_holder
{
 CS_LONGBINARY *value;
 CS_INT length;
} CS_BINARY_HOLDER;

#define CS_LONGCHAR_HOLDER CS_STRING_HOLDER
#define CS_LONGBINARY_HOLDER CS_BINARY_HOLDER

Write C components

682 EAServer

To allow backward compatibility with code that was written for EAServer
version 1.1, you can use CS_LONGCHAR_HOLDER in place of
CS_STRING_HOLDER, and CS_LONGBINARY_HOLDER in place of
CS_BINARY_HOLDER.

On input, the value field contains the input value and the length field specifies
the input length. For output, you can set a new value and length in the structure
as follows:

• If the output value is longer than the input length, you must reallocate
memory for the value and reset the value and length fields. Use the
JagFree and JagAlloc routines as shown in the example below.

• If the output value is not longer than the input length, you can copy the
output value directly into the buffer addressed by the input value pointer
and reset the length field.

The following example calls the JagFree and JagAlloc routines to reallocate a
larger value buffer:

JagFree(myholder->value);
myholder->value = JagAlloc(new_length);
if (myholder->value == NULL)
{

JagLog(JAG_TRUE, “Out of memory!\n”);
return CS_FAIL;

}
memcpy(myholder->value, new_value, new_length);
myholder->length = new_length;

NULLs

NULLs cannot be passed to or returned by method calls. Instead of using
NULL for string parameters, pass zero-length values.

Logical method return values

If the EAServer Manager method definition returns a value other than
ResultSet or ResultSets, the C function signature contains an additional
parameter in the first position. This parameter functions as a logical return
value for method invocations. When the C function returns, the output value of
this parameter is forwarded to the client, and the client receives it as the return
value for the stub method invocation. Datatype mappings for this added
parameter are the same as for an output parameter.

APPENDIX C Creating C Components

Programmer’s Guide 683

If the EAServer Manager method definition returns ResultSet or ResultSets,
you must use the C Result Set API calls to build the result set or sets to be sent
to the client, as described in “Methods that return row results” on page 686.

Implementing the method behavior
In most cases, the implementation of C component methods require no special
coding. Simply add code to the method body that contains the application logic
to respond to the input parameter values and assign the correct return values to
inout, output, and return parameters.

The exceptions to this rule are:

• Components that require instance specific data

C component instances do not have private data. If your design requires
the allocation of separate data for instances of the same component, see
“Components that require instance specific data” on page 684.

• C components that are wrappers for C++ classes

Since C component methods must be C functions, you must code a set of
C wrapper functions that instantiate and interact with an instance of the
C++ class. See “C components that are wrappers for C++ classes” on page
684 for more information.

• Methods that interact with remote database servers

You can use a connection cache to improve performance when connecting
to database servers. See “Methods that interact with remote database
servers” on page 686 for more information.

• Methods that return row results

an EAServer method can return row results to the client. Doing so requires
the use of Server-Library calls. See “Methods that return row results” on
page 686 for more information.

• Share data between C or C++ components

Components within the same package can share the same data. See “Share
data between C or C++ components” on page 686 for more information.

• Methods that set transactional state

Methods in a transactional component should call one of the transaction
primitive routines to set the transaction state before returning. See
“Methods that set transactional state” on page 693 for more information.

Write C components

684 EAServer

Components that require instance specific data
C components do not contain private data. To allocate separate data for
instances of the same component, use the JagSetInstanceData and
JagGetInstanceData routines.

EAServer provides two functions for managing instance-specific data:

• JagSetInstanceData – Associates a reference to instance data with the
current C component instance.

• JagGetInstanceData – Retrieves the address of component instance data.

Chapter 5, “C Routines Reference,” in the EAServer API Reference contains
reference pages for these routines.

C components that are wrappers for C++ classes
Since methods in a C component must be implemented as C functions, you
must code C wrappers for C++ classes.

Note EAServer provides direct support for running C++ classes as
components, as described in Chapter 14, “Creating CORBA C++
Components.” Sybase supports the technique described here, but recommends
that you create a C++ component to run your C++ classes directly.

The procedure for creating a wrapper for a C++ class is as follows:

1 Code a C create function that instantiates the C++ object and stores the
object reference as instance-specific data. For example, if the C++ object
is StockTrade, create could be implemented as follows:

CS_RETCODE CS_PUBLIC create() {
StockTrade *st_ref;
/*
** Create an instance of the C++
** StockTrade object.
*/
st_ref = new StockTrade();
/*
** Associate it with the EAServer component
** instance.
*/
if (JagSetInstanceData((CS_VOID *)st_ref)

!= CS_SUCCEED)

APPENDIX C Creating C Components

Programmer’s Guide 685

{
return CS_FAIL;

}
return CS_SUCCEED;

}

2 For each C++ method, code a C wrapper function that retrieves the C++
object reference and uses it to call the C++ method. For example, the
following shows a C wrapper to call a StockTrade::buyStock C++ method:

CS_RETCODE CS_PUBLIC buyStock (
CS_CHAR *ticker,
CS_INT n_desired,
CS_INT n_bought)

{
StockTrade *st_ref;
if (JagGetInstanceData((CS_VOID *)&st_ref)

!= CS_SUCCEED)
{
return CS_FAIL;

}
st_ref::buyStock(ticker, n_desired,

 n_bought);
return;

}

3 Code a destroy function that retrieves the C++ object reference and
destroys it. For example:

CS_RETCODE CS_PUBLIC destroy() {
StockTrade *st_ref;
if (JagGetInstanceData((CS_VOID *)&st_ref)

!= CS_SUCCEED)
{
return CS_FAIL;

}
delete st_ref;
return CS_SUCCEED;

}

4 Define the EAServer C component to include the C wrapper functions as
its methods.

Write C components

686 EAServer

Methods that interact with remote database servers
EAServer uses a connection cache to maintain a pool of connections to
database servers. A component can connect to a database server using an
existing connection in a connection cache without creating a new connection.

Note EAServer’s transactional model works only with connections obtained
from the EAServer Connection Manager. Connections that you open yourself
will not be affected by EAServer transactions.

For more information about coding connection management routines into
components, see Chapter 26, “Using Connection Management”.

Methods that return row results
To return row results, call the result-set routines listed in Chapter 5, “C
Routines Reference,” in the EAServer API Reference. “Sending result sets
from a C or C++ component” on page 471 explains the call sequence and
contains examples.

Share data between C or C++ components
Components in the same package can share data—that is, variable values. For
example, a counter that tracks how many objects have been created for a single
component could be used as a shared variable. Shared variables are organized
into collections. These variables are referred to as shared because components
in the same package can read and update the same data. A collection can
contain any number of shared variables. Shared variables can be identified by
name or by index number. Shared variables are initialized as null and are not
saved when the server is shut down.

APPENDIX C Creating C Components

Programmer’s Guide 687

Because it is important to maintain the integrity of the shared data in shared
variables, a single read or update operation on a shared variable is atomic.
Atomic means that an operation on data will complete before any other
operations can access that data. Multiple reads and updates on any number of
shared variables in a single collection can be synchronized by locking that
collection.

Note You cannot use shared variables in components that are configured for
automatic failover, because these components cannot use local shared
resources. See “Component properties: Transactions” on page 58 for more
information. If you need to share data, you can store shared data in a remote
database.

To share data between components, you must include the jagpublic.h file in the
C source file.

Procedure for sharing data

The general procedure for sharing data is:

1 Create or retrieve references to collections – the component must first
create a collection before creating a shared variable in that collection.
Creating a collection automatically retrieves a reference to the new
collection. If the collection already exists, the component must retrieve a
reference to the collection before creating a shared variable.

2 Lock collections – before creating a shared variable or reading and
updating shared variables, lock the collection. Locking a collection
ensures that the integrity of a shared variable will be maintained when the
shared variable is read and updated by the same method multiple times.
The component does not have to lock a collection if you are executing only
one read or update on a shared variable.

3 Create or retrieve references to shared variables – the component must
first create a shared variable before reading or updating the shared
variable. Creating a shared variable automatically retrieves a reference to
the new shared variable. If the shared variable already exists, the
component must retrieve a reference to the shared variable before reading
or updating a shared variable.

4 Read and update shared variables – after creating or retrieving a reference
to a shared variable, the component can read and update the shared
variable.

Write C components

688 EAServer

5 Unlock collections – after reading and updating all shared variables in a
collection, unlock the collection. Unlocking a collection immediately after
the component instance has completed all operations on a shared variable
allows other component instances to access the shared variable right away.

6 Release shared variable and collection references – after reading and
updating shared variables, release the reference to the shared variable.
After all operations on shared variables in a collection have been
completed, release the reference to the collection. Component objects use
memory efficiently by releasing references immediately after the
component object has completed operations on a shared variable or
collection.

You can also list all collection names on the server by calling the
JagGetCollectionList routine. For more information see “List all collections” on
page 692.

Create shared variables and collections

The component must create the collection before it can create shared variables.

1 Create a collection and return a reference to the collection using the
JagNewCollection routine. The component object must have a reference to
a collection before calling any other routines on the collection.

2 Create a shared variable in a collection and return a reference to the shared
variable using the JagNewSharedData or JagNewSharedDataByIndex
routine. The component instance must have a reference to a shared
variable to access the contents of that shared variable.

Create collections

To create a new collection, call the JagNewCollection routine. This routine:

• Creates a new collection with the specified lock level, returns a reference
to that collection, and sets *pExists to JAG_FALSE, or

• Returns a reference to the existing collection with the specified name and
sets *pExists to JAG_TRUE. The input lock level is ignored, and the
collection’s current lock level is returned in *pLockLevel.

Lock level must be set to one of the following:

JAG_LOCKCOLLECTION – allows locks to be set on collections

JAG_LOCKDATA – does not allow locks to be set on collections

APPENDIX C Creating C Components

Programmer’s Guide 689

Create shared variables in collections

To create a new shared variable, call the JagNewSharedData or
JagNewSharedDataByIndex routine. These routines create a shared variable
value initialized to NULL. JagNewSharedData creates a new shared variable or
returns a reference to an existing shared variable by name.
JagNewSharedDataByIndex creates a new shared variable or returns a reference
to an existing shared variable by index number. A shared variable created by
index can only be retrieved or updated by index. Similarly, a shared variable
created by name can only be retrieved or updated by name. Since a reference
is returned, you do not need to follow these routines with the
JagGetSharedData or JagGetSharedDataByIndex routine.

For both routines, *pExists is set to:

• JAG_TRUE if the shared variable does not exist

• JAG_FALSE if the shared variable exists

Lock and unlock collections

Locking a collection is strictly advisory. Use JagLockCollection and
JagLockNoWaitCollection routines to lock collections. Even though a collection
is locked, the JagGetSharedValue and JagSetSharedValue routines can still
read and update the shared variables in the collection. To ensure that multiple
read or update operations on any shared variable in a collection are atomic,
lock the collection before executing read or update operations on the shared
variables in the collection.

Call the JagGetLockLevel routine to determine a collection’s isolation mode. If
the collection’s isolation mode is JAG_LOCKCOLLECTION, then the
component object can lock the collection. Otherwise, the lock will be rejected.

If you call the JagLockCollection routine to lock a collection that is locked by
another component, JagLockCollection waits until the collection is unlocked by
the other component, then locks the collection. If the lock is successful,
JAG_SUCCEED is returned. If the collection has already been locked by the
calling object, this routine does not lock the collection again and
JAG_SUCCEED is returned.

Write C components

690 EAServer

The JagLockNoWaitCollection routine does not wait until a locked collection is
unlocked; the JagLockNoWaitCollection routine immediately returns execution
to the calling routine. This routine returns JAG_SUCCEED and sets *pLocked
to JAG_TRUE if the collection was not locked or if the collection is already
locked by the same calling object. If the collection was locked by another
component object, JAG_SUCCEED is still returned but *pLocked is set to
JAG_FALSE.

The JagLockCollection and JagLockNoWaitCollection routines return JAG_FAIL
if an error, such as the collection’s isolation mode is JAG_LOCKDATA,
occurs.

Call the JagUnlockCollection routine to release a lock on a collection. A locked
collection is automatically released when the component object’s method
execution is completed. However, to make your application more efficient and
prevent deadlocks, unlock a collection when the component object is finished
updating or reading the shared variable in the collection so that other
component objects can access the collection right away.

Read and update shared variables

Before reading or updating the shared variable, the component object must
retrieve references to the collection and shared variable.

1 Call the JagGetCollection routine to retrieve a reference for a collection. If
the component object has just created the collection, the component object
doesn’t need to call this routine.

2 Call the JagGetSharedData or JagGetSharedDataByIndex routine to
retrieve a reference to a shared variable. If the component object has just
created the shared variable, the component object doesn’t need to call
either of these routines.

3 Call the JagGetSharedValue routine to retrieve a shared variable value.

4 Call the JagSetSharedValue routine to assign a new value to the shared
variable.

Retrieve references for collections

The JagGetCollection routine returns a reference to the specified collection.
Once the component instance has retrieved a reference, the component object
can lock and unlock the collection, create a new shared variable in the
collection, or retrieve a reference to an existing shared variable.

APPENDIX C Creating C Components

Programmer’s Guide 691

If the collection exists, JAG_SUCCEED is returned and **ppCollection is set
to the collection reference. If the collection does not exist, JAG_FAIL is
returned and **ppCollection is set to NULL.

Retrieve references to shared variables

The JagGetSharedData and JagGetSharedDataByIndex routines return a
reference to the specified shared variable. The component object must have
already retrieved the collection reference before calling these routines. When
calling the JagGetSharedData routine, you specify the shared variable by
name. When calling the JagGetSharedDataByIndex routine, you specify the
shared variable by index number.

For both routines, if the shared variable exists, JAG_SUCCEED is returned
and **ppData is set to the shared variable reference. If the shared variable does
not exist, JAG_FAIL is returned and **ppData is set to NULL for both
routines.

Retrieve shared variable values

The JagGetSharedValue routine retrieves the value for a specified shared
variable and places the value in a buffer. The component object must have
retrieved the shared variable reference before executing this routine. The
component object must create a buffer in which to copy a value. The buffer
must be large enough to hold any value that can be stored in the shared variable.
You must specify the buffer (and its size) in which the value is to be copied.
The buffer must be large enough to contain the value. If the value is too large
for the buffer, JAG_FAIL and the size of the value are returned.

If the value is successfully copied into the buffer, JAG_SUCCEED and the
number of bytes copied to the buffer are returned. If *outlen is 0, then there was
no value to copy.

Update shared variables with new values

The JagSetSharedValue routine copies a value to a specified shared variable.
The component object must have retrieved the shared variable reference before
calling this routine. The component object must pass a pointer to the value you
want the component object to copy to the shared variable. This routine copies
the value to the shared variable. You must specify the size of the value. If the
value is a null-terminated string, you must include the length of the null
terminator in the length of the string.

Write C components

692 EAServer

EAServer maintains the values of shared data in its own memory space. When
JagSetSharedValue() copies the data, it does not copy the pointer to the data.
Similarly, JagGetSharedValue() copies the data into a buffer supplied by the
caller, it does not place a pointer to the data in the user’s buffer.

If the new value is copied to the shared value, JAG_SUCCEED is returned. If
an error occurs, JAG_FAIL is returned.

Release shared variable and collection references

After a method finishes all operations on a collection, release the reference and
all shared variable references. This helps to prevent memory leaks. Releasing
collection and shared variable references does not release the shared variable
values.

First, release shared variable references and then release the collection
reference. To release shared variable references, call the
JagFreeSharedDataHandle routine, passing the shared variable reference as
input. To release collection references, call the JagFreeCollectionHandle
routine on the collection reference.

If the shared variable or collection reference is released, JAG_SUCCEED is
returned. If an error occurs, JAG_FAIL is returned.

List all collections

Call the JagGetCollectionList routine to retrieve a list of all the collection names
on the server. The server returns a JagNameList structure. This routine can be
called in conjunction with administering EAServer. Call the
JagFreeCollectionList routine to free the memory allocated for the JagNameList
structure.

The JagGetCollectionList routine returns a reference to a JagNameList structure
that includes all the collection names defined in EAServer. The JagNameList
structure is:

typedef struct _jagnamelist
{
 SQLINT num_names;
 SQLPOINTER *names;
} JagNameList;

where:

num_names is the number of array elements.

APPENDIX C Creating C Components

Programmer’s Guide 693

*names is an array of num_names elements; each element points to a null-
terminated collection name.

Methods that set transactional state
Methods in a transactional component should call one of the transaction state
primitive routines listed in Chapter 5, “C Routines Reference,” of the
EAServer API Reference.

Even if your component is not transactional, you should call one of these
methods to explicitly specify whether the instance should be deactivated.

For transactional components, choose the routine that reflects the state of the
work that the component is contributing to the transaction, as follows:

• If the work is complete and without error, call JagCompleteWork.

• If the work is not necessarily finished, but not in error, call
JagContinueWork.

• If the work is not finished and not ready for commit, call
JagDisallowCommit.

• If the work cannot be completed, call JagRollbackWork (you should also
log a description of the error and send an error to the client, as described
in “Handle errors in your C component” on page 694).

For nontransactional components, call either JagCompleteWork or
JagRollbackWork to deactivate and destroy the component instance. To keep
the instance active, call JagContinueWork or JagDisallowCommit.

If a method does not explicitly set transaction state before returning, the default
behavior is JagContinueWork.

Write C components

694 EAServer

Customize the creation and destruction of components
To customize what happens when a component instance is created or
destroyed, write customized code into the create (create.c.new) and destroy
(destroy.c.new) routine templates that are generated by EAServer Manager.
create and destroy are typically used to manage instance-specific data that the
component requires. For example, some methods might need to be executed in
a certain sequence. You can customize the create and destroy routines to keep
track of which methods have been executed. For details on managing instance-
specific data, see “Components that require instance specific data” on page
684.

The create and destroy routines are optional. You can also implement create
and destroy in another source file and ignore the generated templates. The
create and destroy routines cannot have parameters and cannot return result
sets.

create routine

The Jaguar server calls create when creating a new instance of the component.
The signature for create is:

CS_RETCODE CS_PUBLIC create()

create must return CS_SUCCEED.

destroy routine

EAServer calls destroy when destroying an instance of the component. The
signature for destroy is:

CS_RETCODE CS_PUBLIC destroy()

destroy must return CS_SUCCEED.

Handle errors in your C component
As a general rule, code C component methods to handle unrecoverable errors
as follows:

1 Write detailed error descriptions to the server log file using JagLog.

2 Call JagSendMsg to send a descriptive message to the client.

APPENDIX C Creating C Components

Programmer’s Guide 695

3 If the component is transactional, call JagDisallowCommit or
JagRollbackWork as appropriate.

4 Return CS_FAIL to indicate failed execution.

Chapter 5, “C Routines Reference,” of the EAServer API Reference contains
reference pages for these routines.

Compile C components
This section describes how to compile and link a dynamic link library (DLL)
that contains EAServer methods. Your code must be built as a DLL in order to
be installed into the EAServer runtime environment.

When you generate source files for your component, EAServer Manager
creates an example makefile that builds the component library. You may have
to edit this file to match your environment, as described in the following
sections:

• “Build on UNIX” on page 695

• “Build on Windows” on page 696

Build on UNIX
For servers that run on UNIX, you must build shared library files that contain
your C component methods. After building the shared library, copy it to the
cpplib directory of your EAServer installation.

EAServer Manager generates a make.unix file when you generate the
component skeleton. (See “Generate C component files” on page 674 for
instructions on generating code with EAServer Manager.)

To build your component, run the following command:

make -f make.unix

This command builds a shared library named libComp.so, where Comp is the
EAServer Manager name of the component.

Note If you edit the generated make.unix file, rename the edited version so that
it is not overwritten if you regenerate the skeleton files.

Compile C components

696 EAServer

Build on Windows
For servers that run on Windows, you must build dynamic link library (.dll)
files that contain your C component methods.

Follow the instructions in the sections below to build a DLL. After building the
shared library, copy it to the cpplib directory of your EAServer installation.

DLLs for C components

For Windows, you must build a DLL so that C functions use the standard C
calling function.

EAServer Manager generates a make.nt file when you generate the component
skeleton. (See “Generate C component files” on page 674 for instructions on
generating code with EAServer Manager.)

The generated makefile assumes that the ODBC header files and libraries can
be found in one of the following locations:

• The directory specified by the ODBCHOME environment variable, or

• If ODBCHOME is not set, C:\msdev, which is the default installation
directory for Microsoft Visual C++.

The makefile links the following import libraries:

• libjaguar.lib – Contains import definitions for routines called by generated
skeleton routines.

• libjcm.lib – Contains import definitions for Connection Manager routines.

• libjdispatch.lib – Contains import definitions for EAServer C routines.

If your code calls routines defined in other import libraries, you will need to
rename and edit the generated makefile to use the additional import libraries.
If you edit the generated make.nt file, rename the edited version so that it is not
overwritten if you regenerate the skeleton files.

To use the generated makefile, run this command from a command window
while in your component’s source directory:

nmake -f make.nt

After building the DLL, copy it to the cpplib directory of your EAServer
installation.

APPENDIX C Creating C Components

Programmer’s Guide 697

Build with the Visual C++ IDE

If you use the Visual C++ IDE or another command line compiler to build your
DLL, make sure that you specify the right options so that the compiler
generates C functions using the standard C calling convention.

After building the DLL, copy it to the cpplib directory of your EAServer
installation.

The module definition (.def) file

EAServer Manager generates a .def file for your component. Visual C++
requires a module definition file that specifies which functions are exported
from a DLL and some options that control how the DLL is loaded into memory.
Module definition files end with the extension .def.

For most projects, you can use the generated file as is. In some cases, you may
want to edit settings other than those in the EXPORTS section. For example,
your component may perform better with a smaller or larger HEAPSIZE
setting.

Never edit the generated function names in the EXPORTS section of the .def
file for a C component–these names are required to execute the DLL in
EAServer. For each method in your component, the changed name is:

__skl_Comp_v_1_0_method

Debug C components
You can attach your debugger to the server executable and set breakpoints to
step into your component code.

In order to debug components, you must be running the debug version of the
server, and use a debugger running on the same host as the server. Chapter 3,
“Creating and Configuring Servers,” in the EAServer System Administration
Guide describes how to start the debug server.

❖ Debugging your C component

1 Attach to the EAServer process with your debugger.

Alternatively, start the debugger with the EAServer executable. For
example, on UNIX, enter:

Debug C components

698 EAServer

dbx $JAGUAR/devbin/jagsrv ServerName

On Windows, enter:

msdev %JAGUAR%\devbin\jagsrv ServerName

ServerName is the name of the server. If you are using the preconfigured
server rather than one that you created yourself, use “Jaguar.”

2 Set a breakpoint on the function jag_dbg_stop. This function executes
every time the server loads a component DLL. The jag_dbg_stop prototype
is:

void jag_dbg_stop(char *compName)

The compName parameter specifies the name of the library or shared
library that was just loaded. Several components may be loaded before
yours. In the debugger, display the compName value when the
jag_dbg_stop breakpoint is tripped, and monitor the value to determine
when your component is loaded. Breakpoints on jag_dbg_stop are
triggered before EAServer calls the component’s create method.

Note Make sure the jag_dbg_stop breakpoint is set before your client
application instantiates any stub objects.

3 When your component’s DLL is loaded, you can specify the component’s
C function names as breakpoints and step into the method’s code when it
is invoked. Note that the actual C function names exported by the DLL
will not match the method names that you see in your source code. The
next section describes how to determine the C function names for your
methods.

Determining actual
function names for
your methods

In many operating systems, all functions in a single executable must have
unique names. For this reason, the generated skeleton code contains macros
that rename each method with a longer name at compile time. The final name
is guaranteed to be unique among installed components. You must use these
longer names to set breakpoints when debugging.

To view the name mappings, look at the generated skeleton header file for your
component. There will be a macro that renames each method. The final method
is renamed according to this syntax:

package_component_method

APPENDIX C Creating C Components

Programmer’s Guide 699

where package is the package name, component is the component name and
method is the method name. For example, the component named “sendrows”
in a package named “jagdb,” is renamed as follows:

#define send_rows jagdb_sendrows_send_rows

Debug C components

700 EAServer

Programmer’s Guide 701

A P P E N D I X D Using the Command Line IDL
Compiler

You can use EAServer’s command-line IDL compiler to generate stubs,
skeletons, and ActiveX type library and registration files. You can also use
EAServer Manager to perform these tasks. The command-line compiler is
useful in environments where the generation of files must be automated.

Do you know about jagtool and jagant?
The jagtool utility, provided in EAServer 4.0 and later versions, also
supports stub and skeleton generation from the command line, as well as
common management tasks such as setting component properties. The
jagant utility provides the same functionality, but can be run from Jakarta
Ant build files. For more information, see Chapter 12, “Using jagtool and
jagant,” the EAServer System Administration Guide.

Requirements The IDL compiler must be run from EAServer installation that contains
the configuration repository for your components. The IDL compiler is a
Java application and must be run by a version 1.2 or later Java virtual
machine. These EAServer JAR files must be in the CLASSPATH:

• java/lib/easclient.jar

• java/lib/easserver.jar

• java/lib/easj2ee.jar

com.sybase.CORBA.idl.Compiler
Description Generates EAServer proxies or component skeletons for interfaces and

datatypes defined in CORBA IDL.

Syntax

com.sybase.CORBA.idl.Compiler prefix-opts idl-files format-opts suffix-opts

com.sybase.CORBA.idl.Compiler

702 EAServer

where:

• prefix-opts Is a list of one or more of these options:

• idl-files Is a list of one or more IDL module files, separated by spaces.
Nested IDL modules are organized in nested directories; you must specify
the path to a nested module relative to the EAServer Repository/idl
subdirectory. For example, the file name that defines module com::foo::bar
is com/foo/bar.idl.

• format-opts is a list of one or more of the following options:

Option Explanation

-v Run in verbose mode.

-i folder Add folder for IDL include files. The default is the
EAServer Repository/idl subdirectory.

-r folder Required. Specify the location of the EAServer
Repository subdirectory, for example,
d:\EAServer\Repository.

-lang language Specify a language for error messages. Possible values
are:

• us_english – The default.

• english

• japanese

• german

• french

• korean

• chinese

Option Explanation

-cr Use CR/LF in generated files.

-f folder Specify base folder for code generation.

-p folder Specify location of jagproxy.dll for generation of ActiveX
type library and Registry files.

-jp IM=JP Set Java package JP for IDL module IM, for example:

-jp com::foo::bar=com.foo.bar

The specified package overrides the default (see
“Specifying Java package mappings for IDL modules”
on page 91).

APPENDIX D Using the Command Line IDL Compiler

Programmer’s Guide 703

• target-opts is a list of one or more of the following options:

 -jv version Set Java version for code generation. The Java version
affects only EJB stubs, specifically it configures the
default for finder methods that return multiple keys and
lack an IDL directive to specify the Java return type. See
“Generating EJB stubs” on page 142 for more
information.

-nh Suppress generation of Java helper and holder classes.

-np Suppress module prefix for PowerBuilder stubs.

Option Explanation

Option Explanation

-cpp Generate C++ stubs following CORBA 2.3 C++.language
bindings specification.

-java Generate Java stubs following CORBA 2.3 Java.language
bindings specification.

-ejb Generate EJB stubs.

-pb Generate code for CORBA 2.3 / PowerBuilder.

-idl Generate pretty-printed IDL output.

-reg load Generate REG file and optionally load into registry. -reg
load generates loads the REG file. -reg load generates
and does not load.

-tlb save Generate TLB file and optionally save generated MIDL.
-tlb nosave generates TLB and deletes the
intermediate MIDL file. -tlb save generates TLB and
keeps the MIDL file.

-skeleton

Pack/Comp
Generate a skeleton for EAServer component
Pack/Comp, where Pack is the EAServer package, and
Comp is the component name as displayed in EAServer
Manager.

com.sybase.CORBA.idl.Compiler

704 EAServer

Programmer’s Guide 705

Symbols
.def files

See module definition files
.reg files

See ActiveX registry files
.tlb files

See type library files

A
Activate method in ActiveX interface IObjectControl

338
activation

for EJB components 531, 533
activation, component

definition of 15
ActiveX

supported datatypes 318
ActiveX automation server, importing 332
ActiveX clients

calling component methods from 356
connecting to server components 355
creating 343
creating registry files for 371
deploying 369
exception handling in 357
generating files for 343
instantiating proxies in 347
instantiating proxy components in 347
introduction to 316
invoking EJB components from 170
ORB initialization in 348
requirements for 316
setting connection properties for 354

ActiveX components
accessing database connections in 340, 486
configuring properties for 334, 335
creating 331

defining in EAServer Manager 332
defining method return types for 318
defining parameters for 318
deploying 341
handling errors in 341
implementing the constructor 338
implementing the destructor 338
issuing intercomponent calls 339
raising exceptions in 341
requirements for 316
sending result sets in 340, 466
setting transaction state in 340
sharing data between instances of 338
threading models for 335
writing 336

ActiveX registry files
generating in EAServer Manager 343

addresses, network
specifying in ActiveX clients 349, 351, 354, 369
specifying in C++ clients 284, 299
specifying in EJB clients 145
specifying in Java clients 221, 236

all-values comparison
concurrency control option 513

application builder tools, using MASP 644
application clients 179–183

adding EJB references 181
adding resource references 181
class files 182
configuring properties 180
creating 180
deploying 182
environment properties for 181
general properties 181
setting up client’s workstation 183
starting the runtime container 183

application lifecycle events 431
sample listener 431

application logic in JSPs 443
application object, JSP 443

Index

Index

706 EAServer

application partioning and JSPs 439
application scope, JSP 442
application, J2EE

associating application files with 40
applications

defining in EAServer Manager 37
deletion 39
EAServer Manager properties for 39
installing packages in 38
installing to a server 38
installing Web applications in 38
J2EE 37
properties of 39
removing 39

applications, EAServer
architecture of 3
creating 3
defining components for 7
deployment of 11
design of 4
introduction to 3

architecture
EJB component 109
for automatic persistence 501
for EJB CMP support 501
for stateful failover 531
of EAServer applications 3

attributes, IDL
defining 99

authentication
and secure ports 222
in ActiveX clients 352, 354
in C++ clients 286, 302
in Java clients 221, 240

authentication, mutual SSL
in Java clients 222

authorization
for EJB 2.0 components 137

automatic demarcation/deactivation
component property 60

automatic persistence
architecture of 501
concurrency control for 513
definition of 500
using non-SQL databases 522
using stored procedures 522

B
BCD IDL module

use in C++ clients 248
use in Java clients 228

BCD.hpp
C++ header file 279

BCD::Binary IDL datatype 84
BCD::Decimal IDL datatype 84
BCD::Money IDL datatype 84
BindingIterator IDL interface in module CosNaming

237
BMP, EJB

support for 500
building

C components 695
C++ clients 297
C++ components 268
components 8
DLLs on Visual C++ IDE 667
EAServer applications 3
Java components 197

C
C components

accessing database connections in 486
and NULL parameters 682
as wrappers for C++ classes 684
building 695
building DLLs for 696
compiling and linking 695
controlling creation and destruction of instances

694
create routine in 694
defining interfaces for 672
destroy routine in 694
error handling in 694
file naming conventions for 677
forwarding result sets in 471
generating source files for 674, 676
implementing methods in 679
introduction to 669
lifecycle of 669
method return types in 679
obtaining database connections in 486

Index

Programmer’s Guide 707

raising exceptions in 679, 694
reading shared variables in 690
regenerating changed methods for 678
releasing collection references 692
releasing shared variable references 692
retrieving references for shared data collections

690
retrieving references to shared variables 691
retrieving shared variable values 691
returning results from 686
sending result sets in 471
setting transaction state in 693
sharing data between 686
system requirements for 671
threading models for 673
updating shared variables in 690, 691
using instance data in 684
writing 678

C++
clients 277
components 253
using namespaces in 259, 279

C++ clients
authentication in 302
compiling and linking 297
configuring ORB properties for 281
deployment of 298
developing 277
generating stubs for 278
header files for 279
IDL datatype mappings for 248
implementing 279
instantiating proxies in 301
introduction to 247, 277
invoking EJB components in 166
invoking methods from 287
ORB initialization in 281
processing result sets in 288
requirements for 247
using naming services in 298
using third-party ORBs with 303

C++ components
accessing SSL certificates in 267
and threading behavior 255
compiling and linking 268
datatypes used in 248

debugging 271
defining in EAServer Manager 254
defining methods for 256
development procedure for 253
file naming conventions 258
generating source files for 256
handling errors in 261
implementing 259
issuing intercomponent calls from 267
obtaining database connections in 486
raising exceptions in 261
running externally 273
running in clusters 275
sending result sets in 261
system requirements for 247
threading behavior 255
threading models for 255
transaction property for 254
when to regenerate skeletons for 259

caches, connection
benefits of using 479
C code examples using 487, 489
defining 481
explanation of 479
security implications of 480
using in ActiveX components 486
using in C components 486
using in C++ components 486
using in Java components 482

calling convention
for event handler functions 663
for functions in C components 679

CanBePooled method in ActiveX interface
IObjectControl 336

CannotProceed exception in IDL module CosNaming
239, 301

certificates, SSL
accessing in C++ components 267
accessing in Java components 203

character sets
component properties for 54
conversions to and from 54
specifying for ActiveX clients 350
specifying for C++ clients 282

classes, Java
deploying 549

Index

708 EAServer

for EJB components 138
CLASSPATH

configuring 549
Client-Library

connection caches defined for 486
control structures 489
header files for 489

clients
deployment of 12
design considerations for 10
development process for 8
EJB 141

clusters
mixed architecture 275

CM_CACHE C control structure 486, 489, 492, 493
CMP, EJB

concurrency control for 513
EAServer architecture for 501
explanation of 501
for relationship fields 526
support for 500
using non-SQL databases 522
using stored procedures 522

CMR, EJB
EAServer support for 526

code set
component property 54

collections
releasing references in C 692

com.sybase.CORBA.local
Java ORB property name 219

com.sybase.CORBA.ProxyHost
Java ORB property name 219

com.sybase.CORBA.ProxyPort
Java ORB property name 219

com.sybase.ejb.local
InitialContext property name 147

com.sybase.ejb.ProxyHost
InitialContext property name 148

com.sybase.ejb.ProxyPort
InitialContext property name 148

com.sybase.jaguar.application.files
application property 40

com.sybase.jaguar.component.files
component property 70

com.sybase.jaguar.package.files

package property 46
com.sybase.jaguar.server.defaultwebapp Web

application property 398
com.sybase.jaguar.server.defaultwebappresource Web

application property 398
COMM_FAILURE CORBA system exception 233,

297
comments, JSPs 441
compiling

C components 695
C++ clients 297
C++ components 268
Java component files 197
Java components 197
Java stubs 143, 214
JSPs 449

completeWork method in Java interface InstanceContext
204

component managed persistence
definition of 500

components
ActiveX 331–342
associating application files with 70
building 8
C 669–699
C++ 253–272
configuring failover for 531
configuring in EAServer Manager 49
configuring properties for 52
creation and destruction of 14
deactivation of 16
defining 6, 50
deleting 52
deploying 138
design of 6
development process for 8
EJB 109, 125
importing from Java files 85
installing to a package 51
instantiating from ActiveX clients 355
interfaces for 77
Java 187–210
lifecycle of 13, 14
names with hyphens 526
persistent 499, 531, 541
properties to control instance allocation 61

Index

Programmer’s Guide 709

recycling of instances 16
refreshing after modifying 41
restrictions on names 51
serializing references in 231
service 603–617
stateful 17
stateful vs. stateless 17
stateless 14, 17, 18
storage 541
transactional properties 22, 58
using XML in 635

concurrency
component property 61, 607

concurrency control, database
definition of 513

config object, JSP 443
configuring

listeners 662
connect handler

template for 665
connection caches

See also connection management
C code examples using 487, 489
defining 481
Java classes for 482
security implications of 480

connection management
benefits of using 479
C language examples for 487, 489
explanation of 479
in ActiveX components 486
in C components 486
in C++ components 486
in Java components 482
Java language examples for 483
overview of 479

connection pooling.
See connection management

connection properties
for ActiveX clients 354

connection timeout
configuring for ActiveX clients 351
configuring for C++ clients 283
configuring for EJB clients 146, 147, 217
configuring for Java clients 218

ConnectionFactory, message service object 568

ConnectionTimeout
Java EJB initial context property 146, 217

constructor
for ActiveX components 338
for C++ components 260
for Java components 199

context initialization for Web applications 382
context path

changing to "/" 397
Web application property 381

control structures
Client-Library 489
for connection management 486, 489, 492, 493
OCI 7.x 492
OCI 8.x 493

conventions xxii
CORBA

See also IDL; ORB, C++; ORB, Java
and C++ clients 247, 277
and Java clients 211
Any datatype 192, 229
C++ components 253
interoperability with EJB 159
interoperable object references 201, 221, 243, 268,

284, 351
system exceptions 232, 296
Typecode datatype 192, 229
user-defined exceptions 234, 297

CORBA::TRANSACTION_ROLLEDBACK 66
CosNaming CORBA IDL module

use in C++ clients 298
use in Java clients 235

CosNaming.hpp
C++ header file 279

CosNaming::NamingContext CORBA IDL interface
use in C++ clients 300, 301
use in Java clients 237, 240

create method in IDL interface SessionManager::Factory
240, 302

create method in IDL interface SessionManager::Session
225, 286, 352

create methods
IDL design pattern for 131

create routine use in C components 694
createServerResultSet method in Java class JContext

462

Index

710 EAServer

createServerResultSetMetaData method in Java class
JContext 461

createSession method in IDL interface
SessionManager::Manager 224, 286, 352

creating
ActiveX clients 343
ActiveX components 331
C components 669
CTS message consumers 587
EAServer packages 42
invocation commands with MASP interface 641
Java components 188
JMS connections 570
JMS message consumers 573
JMS message listeners 575, 589
JMS message producers 573
JMS messages 579
JMS permanent destinations 568
JMS sessions 571
JSPs in Web applications 452

CS_BINARY C language datatype 680, 681
CS_BINARY_HOLDER C language datatype 680
CS_BINARY_HOLDER C language structure 680, 681
CS_BIT C language datatype 680
CS_CHAR C language datatype 680, 681
CS_DATETIME C language datatype 680
CS_FAIL C language macro 679, 695
CS_FLOAT C language datatype 680
CS_INT C language datatype 680
CS_LONG C language datatype 680
CS_LONGBINARY_HOLDER C language structure 682
CS_LONGCHAR_HOLDER C language datatype 680
CS_LONGCHAR_HOLDER C language structure 682
CS_PUBLIC C language macro 663, 679
CS_REAL C language datatype 680
CS_RETCODE C language macro 679
CS_SMALLINT C language datatype 680
CS_STRING_HOLDER C language structure 681
CS_SUCCEED C language macro 679
CtsSecurity IDL module 203
CtsSecurity::UserCredentials IDL interface 203
CtsServices::GenericService IDL interface 608
custom class list

configuring 69
custom tags and JSPs 436
customized tag libraries for JSP 445

D
data

sharing between ActiveX components 338
database connections

accessing in ActiveX components 340
accessing in C components 486
accessing in C++ components 486
accessing in Java components 202

databases
concurrency control 513
creating keys for 509

datatypes
ActiveX 318
as used in ActiveX components 318
as used in C components 679
as used in C++ clients 248
as used in Java clients 227
as used in Java components 189
defining in IDL 99
for parameters and return values 83
Java stubs for 196
predefined in EAServer 100
used in C++ components 248
user-defined 84, 86, 100, 229

deactivation
See also early deactivation
definition of 15
property to configure 60

debugging
C++ components 271
Java components 208

declarations in a JSP 441
declarations, IDL

for attributes 99
for interfaces 95
for operations 97

defining
ActiveX components 332
components 50
connection caches 481
EAServer packages 41
interfaces for components 77
Java components 188
method parameters 82

deleting
components 52

Index

Programmer’s Guide 711

EAServer packages 45
parameters from methods 82

deployment
of ActiveX clients 369
of ActiveX components 341
of C++ clients 298
of C++ components 254
of Java clients 234
of Java components 206
of JSPs 436
security considerations for 206

description
component property 54
EAServer package property 46
method property 81
parameter property 83

design, application 4
destroy routine use in C components 694
destructor

for ActiveX components 338
for C++ components 260

developing
ActiveX clients 347
ActiveX components 331
C components 669
C++ clients 277
C++ components 253
EAServer applications 3
Java clients 211
Java components 187
Java servlets 405

directives
and JSPs 436
JSPs 440

DisableCommit method in IObjectContext ActiveX
interface 340

distributable
Web application property 380

DLL name, component property 57
DLLs

building for C components 695, 696
building for C++ components 268

DOM
support for 635

done method in Java interface JServerResultSet 462
DTC, Microsoft

as an EAServer transaction coordinator 22
dynamic enlistment 29

E
early deactivation 16

definition of 14
EASDefault Web application 397
EAServer 431

component lifecycle model 13
creating applications for 3
EJB component support in 115
JSP support 447
transaction processing model 19

EAServer Manager
configuring components with 49
configuring packages with 41
editing IDL files with 89
generating ActiveX files with 343
generating C component source files with 676
generating C++ stubs with 278
generating EJB stubs with 142
generating Java component source files with 195
generating Java stubs with 214

EAServer Transaction Manager 31
recovery limitations 33
resource manager 35
resource recovery and transaction logging 33
transaction interoperability 34

EAServer transactions
benefits of 20
explanation of 19

editing JSPs 454
EJB

See also EJB clients, EJB components
BMP support 500
client model 141
clients 141
CMP support 500, 501
CMR support 526
EAServer support for 115
entity beans 499
generating stubs for 142
home interfaces 131, 164
interoperability 159

Index

712 EAServer

interoperability with PowerBuilder 169
overview of 109
remote interfaces 133

EJB clients
creating 141
generating stubs for 142
invoking non-EJB components from 164

EJB components
CMP support for 501
configuring security for 137
creating 125
creating home interfaces for 131
defining EJB references for 136
defining remote interfaces for 133
deploying classes for 138, 549
entity beans 499
environment properties for 137
introduction to 109
invoking from ActiveX 170
invoking from C++ clients 166
invoking from CORBA/Java clients 174
invoking from PowerBuilder clients 169
invoking with MASP 178
JNDI names for 120, 136, 386
local interfaces for 134
passivation of 531, 533
primary keys for 130
resource references in 137
role references in 137
security configuration for 121
types of 111
using transactions in 112
version levels and 119

EJB references
application client property 181
EJB component property 136
Web application property 386

EnableCommit method in IObjectContext ActiveX interface
340

Enterprise JavaBeans
See EJB

entity bean
EJB component type 111

entity bean local diamonds 30
entity beans

using in EAServer 499

entity components
automatic persistence of 501
definition of 499

environment properties
for application clients 181
for EJB components 137
for Web applications 391

error handling, JSP 446
error pages

for Web applications 383
JSP 446

errors
See also exceptions
handling in ActiveX components 341
handling in C components 694
handling in C++ components 261
handling in Java components 200
logging in ActiveX components 341
logging in C components 694
logging in C++ components 261
logging in Java components 200

event handlers
calling convention for 663
for client connection events 665
for connect events 665
for disconnect events 665
for server initialization 663
for server shutdown 663
Open Server 661

examples
application lifecycle event listener 431
intercomponent calls 201, 268
JMS client and MDB 578
JSP 437
retrieving connection caches in Java 483
servlet filter 427
using JagCmGetCachebyUser 487

exception object, JSP 443
exceptions

CORBA system 232, 296
defining in IDL 102
generating C++ stubs for 257
generating Java stubs for 196
handling in ActiveX clients 357
handling in Java clients 232
listing in IDL method declarations 97, 98

Index

Programmer’s Guide 713

listing in Method Properties window 81
raising in ActiveX components 341
raising in C components 679, 694
raising in C++ components 261
raising in Java components 200
user-defined 234, 297

exceptions raised
method property 81

exit event handler
purpose of 663
template 664

exit event, installing C handler for 663
expressions, JSP 441

F
Factory IDL interface in module SessionManager

240, 302
failover

enabling for stateful components 531
Field ActiveX interface 327
Fields ActiveX collection interface 327
file locations, JSP 451
filters

adding to a Web application 426
custom headers 430
for servlets and JSPs 425
sample 427

finder methods
IDL design pattern for 131

forward, JSP tag 442
forwarding

result sets from ActiveX components 466
result sets from C components 471
result sets from C++ components 471
result sets from Java components 461

forwardResultSet method in Java class JContext 461,
483

G
garbage collection, Java

configuring for EJB clients 146
configuring for Java clients 217

Generated Class
component persistence option 500

generating
ActiveX client files 343
C component source files 674
C++ component source files 256
C++ stubs 278
EJB stubs 142
Java component source files 195
Java stubs 213

getCache, method in Java class JCM 483
getConnection, method in Java class JCMCache 483
GetObjectContext method in IObjectContext ActiveX

interface 340
getProperty, JSP tag 441

H
handlers

for Open Server events 661
header files

for C connection manager routines 486
for C++ clients 279

holder classes, Java
for Java clients 229
for Java components 192

HTML files
in Web applications 377

HTTP requests and responses, JSPs 436
hyphens

in component names 526

I
IDispatch ActiveX interface

use in ActiveX components 337
IDL

and C++ clients 247, 277
and Java clients 211
command-line compiler for 701
defining attributes in 99
defining datatypes in 99
defining exceptions in 102
defining interfaces in 94

Index

714 EAServer

defining methods in 97
defining operations in 97
editing in EAServer Manager 93
generating documentation for 102, 104
learning 89
stub generation directives 91

IDL compiler
internal to EAServer Manager 213

IDL interfaces
implemented by a component 77

IIOPS
use in Java applets 222

IJagServer ActiveX interface 341
IJagServerResults ActiveX interface 466
importing

ActiveX automation server 332
Java classes 85
Java interfaces 85
Java packages required for Java components 197
JavaBeans 85

include directive, JSP 440
include, JSP tag 442
inheritance, interface 95
init ActiveX ORB method 348
init Java ORB method 220, 221
initialization event handler

purpose of 663
installing

components 51
connection caches 481
EAServer packages 44
filters in Web applications 426
JMS message listeners 575, 589

instance pooling
adding support for 16
configuring 62
definition of 14

Instance Timeout
component property 66

instance timeout
component property 65

InstanceContext Java interface 201
instances, component

properties to configure allocation of 61
intercomponent calls

and EAServer transactions 20

example 201, 268
issuing from ActiveX components 339
issuing from C++ components 267
issuing from Java components 201

Interface Definition Language.
See IDL

interfaces
EJB home 131, 164
EJB remote 133

interfaces, IDL
defining in EAServer Manager 94
structure of 95
suggested naming conventions for 79, 94

interoperable object reference, CORBA.
See IORs

InvalidName exception in IDL module CosNaming
239, 301

IObjectContext ActiveX interface 340
IObjectControl ActiveX interface 336, 338
IORs

for ActiveX client ORB 351
for C++ client ORB 284
for C++ intercomponent calls 268
for Java client ORB 221, 243
for Java intercomponent calls 201
serializing and deserializing 231

is_nil C++ ORB method 280
ISharedProperty ActiveX interface 339
ISharedPropertyGroup ActiveX interface 339
ISharedPropertyGroupManager ActiveX interface

338
isql

using MASP from 643

J
J2EE

application support 37
J2EE application model and JSPs 435
JAG_CODESET environment variable 282, 350
jag_dbg_stop C function 272, 626, 698
JAG_HTTP environment variable 281, 349
JAG_HTTPUSEPOST environment variable 281
JAG_LOGFILE environment variable 281, 350
JAG_NO_NAMESPACE C++ macro 280

Index

Programmer’s Guide 715

JAG_RETRYCOUNT environment variable 282,
350

JAG_RETRYDELAY environment variable 282,
350

JagAlloc C routine 682
jagaxwrap.dll 466
JagBeginResults C routine 472
JagBindCol C routine 472
JagCmCacheProps C routine 488
JagCmGetCachebyName C routine 488, 491
JagCmGetCachebyUser C routine 487, 488, 491
JagCmGetConnection C routine 487, 488, 489, 490
JagCmReleaseConnection C routine 488, 490
JagColAttributes C routine 472
JagCollectionList C routine 688
JagCompleteWork C routine 670, 693
JagContinueWork C routine 670, 693
JagDescribeCol C routine 472
JagDisallowCommit C routine 670, 693
JagEndResults C routine 472
JagFree C routine 682
JagFreeCollectionHandle C routine 692
JagFreeCollectionList C routine 692
JagFreeSharedDataHandle C routine 692
JagGetCollection C routine 690
JagGetCollectionList C routine 692
JagGetInstanceData C routine 674, 684
JagGetLockLevel C routine 689
JagGetSharedData C routine 690, 691
JagGetSharedDataByIndex C routine 690, 691
JagGetSharedValue C routine 690, 691
JagLockCollection C routine 689
JagLockNoWaitCollection C routine 689
JagLog C routine 261, 694
JagNameList C language structure 692
JagNewCollection C routine 688
JagNewSharedData C routine 689
JagNewSharedDataByIndex C routine 689
jagpublic.h C header file 486
jagreg utility 371
JagResultsPassthrough C routine 471
JagRollbackWork C routine 670, 693
JagSendData C routine 472
JagSendMsg C routine 679, 694
JagSetInstanceData C routine 674, 684
JagSetSharedValue C routine 690, 691

JagSharedProperty ActiveX interface 339
JagSharedPropertyGroup ActiveX interface 339
Jaguar Manager

See EAServer Manager
Jaguar.writeLog() Java method 200
JagUnlockCollection C routine 690
Java

class loading 549
class names as extended IDL datatypes 85, 101
CLASSPATH 549
clients 211
components 187–210
custom class lists 549
defining component interfaces in 85
holder classes 192, 229
servlets 403, 405

Java class, component property 57
Java classes

for EJB components 138
for JSPs 451
for Web applications 377
importing component definitions from 87

Java clients
See also EJB clients
compiling 143, 214
configuring ORB properties for 216
creating 212
deploying 234
generating stubs for 213
handling exceptions in 232
IDL datatype mappings for 227
instantiating proxies in 216
introduction to 211
invoking EJB components in 174
invoking methods from 227
ORB initialization in 216
passing null parameters in 228
processing result sets in 229
serializing component references in 231
using naming services in 216
using third-party ORBs with 242

Java components
See also EJB components
accessing SSL certificates in 203
compiling 197
compiling source files for 197

Index

716 EAServer

constructor for 199
creating 188
datatypes used in 189
debugging 208
defining 188
deploying 206
deploying classes for 549
developing 187
implementing methods for 196
issuing intercomponent calls from 201
logging errors in 200
managing database connections 202
refreshing after changes 207
security considerations for 206
setting transaction state in 204
system requirements for 187

Java interfaces
importing component definitions from 87

Java Messaging Service. See JMS
Java Serialization

component persistence option 533
Java servlets, developing 405
Java Transaction Service. See JTS
JavaBeans

See also EJB
importing component definitions from 88
use in JSPs 443

JavaMail
API usage 630
deployment properties for 633
explanation of 629
sample code 631
using in EAServer 629

javax.jms.MessageListener interface 576
JAXP

support for 635
JCM Java class 407, 482, 483
JCMCache Java class 407, 482
jConnect

using MASP from 645
JContext Java class 461, 462, 483
JMS

See also message service
browsing messages 583
closing connections and sessions 584
ConnectionFactory object, looking up 568

creating a message 579
creating a session 571
creating an InitialContext object 567
creating connections 570
creating message consumers 573
creating message producers 573
creating permanent destinations 568
deallocating resources 584
developing an application 566
enabling tracing 584
implementing and installing listeners 575
interfaces not supported 584
MDBs 575
message selectors 574
message types 579
MessageListener interface 576
publishing a message 581
receiving messages 582
sample client and MDB 578
sending messages 580

JNDI
and EJB reference properties 136
and environment properties 137, 391
and resource reference properties 137
and resources 390
names for EJB components 120, 386
using in Web applications 386

JServerResultSet Java interface 461, 462
JServerResultSetMetaData Java interface 461, 462
JSP

adding to a Web application 376
and application partioning 439
and servlets 438
and Web application development 435
application logic 443
application object 443
application scope 442
class file location 451
comments 441
compiling 449
config object 443
custom tags 436
customized tag libraries 445
declarations 441
deploying 436
directives 436, 440

Index

Programmer’s Guide 717

EAServer support for 447
editing 454
error handling 446
error pages 446
exception object 443
expressions 441
features 438
file locations 451
forward tag 442
generated source location 451
getProperty tag 441
handling requests and responses 436
in Web applications 452
include directive 440
include tag 442
mapping to servlets 454
out object 443
overview 436
page directive 440
page object 443
page scope 442
pageContext object 443
plugin tag 442
request object 443
request scope 442
response object 443
sample page 437
saving source code 451
scope 442
scripting elements 436, 440
scriptlets 440
session object 443
session scope 442
setProperty tag 441
standard tags 436, 441
syntax 439
taglib directive 440
translating to a servlet class 436
uncaught exceptions 446
useBean tag 441
using in Web applications 392
using JavaBeans in 443
using tag libraries in 384

JTS
transaction options 22

JTS/JTA transactions, configuring EAServer to use 32

K
keys

generated 509
keys, table

creating automatically 509

L
lifecycles

component states in 14
of C components 669
of components in general 13

linking
C components 695
C++ clients 297
C++ components 268

listeners
configuring 662
for application lifecycle events 431
for the message service 575, 589
implementing for the message service 574, 588
MDBs 575

local interfaces
defining in IDL 134

log file
writing to from ActiveX components 341
writing to from C components 694
writing to from C++ components 261
writing to from Java components 200

Log profiles
using in EJB clients 150
using in Java/CORBA clients 221

logging
errors from ActiveX components 341
errors from C components 694
errors from Java components 200

M
mail, electronic

Index

718 EAServer

using in EAServer applications 629
makefiles

for C components 695
for C++ components 268
for UNIX 269, 695
for Windows 270, 696
Open Server migration 655

Manager IDL interface in module SessionManager 221,
224, 284, 351

mapping JSPs to servlets 454
MASP interface 641

creating invocation commands 641
invoking EJB components from 178
limitations 642
using from application builder tools 644
using from isql 643

Maximum Active Instances
component property 67

Maximum Pooled Instances
component property 67

Maximum Wait
component property 67

MDB
installing and configuring 576
JMS message listeners 575
sample 578

memory
managing in C components 682

message queues 568
message service 563–594

See also JMS
browsing messages 583
closing connections and sessions 584
ConnectionFactory object, looking up 568
creating a JMS session 571
creating a message 579
creating an InitialContext object 567
creating CTS message consumers 587
creating JMS connections 570
creating message consumers 573
creating message producers 573
creating permanent destinations 568
creating thread pools 588
deallocating resources 584
developing applications with CORBA API 586
enabling JMS tracing 584

filtering messages with selectors 574, 588
high availability and load balancing 565
implementing and installing listeners 575, 589
MDBs 575
message security 565
publishing a message 581, 591
QueueReceiver 573
reader, writer, and worker threads 588
receiving a message 582, 591
reliable delivery 565
scalable notification 566
scheduling variables 592
sending a message 580, 590
subscribing to scheduled messages 592
TopicSubscriber 573
transaction management 566

MessageListener interface 594
MessageQueue interface 594
MessageService interface 594
method overloading

for C++ stubs and components 97
for Java stubs and components 97
in C++ components 252
in interface definitions 97

methods
See also method overloading
adding parameters to 82
defining in IDL 97
deleting parameters from 82
implementing in ActiveX components 333
implementing in C components 679
implementing in C++ components 256
implementing in Java components 196
invoking from ActiveX clients 356
invoking from C++ clients 287
invoking from Java clients 227
modifying parameters for 82
overloaded 97
properties defined for 81
read-only property of 81
specifying return type for 81
suggested naming conventions for 79, 94

Methods As Stored Procedures.
See MASP interface

MIME mappings
configuring in Web applications 394

Index

Programmer’s Guide 719

Minimum Pooled Instances
component property 67

MJD IDL module
use in Java clients 228, 248

MJD.hpp
C++ header file 279

MJD::Date IDL datatype 84
MJD::Time IDL datatype 84
MJD::Timestamp IDL datatype 84
mode

parameter property 83
module definition files

for C components 697
for C++ components 271
use of to build C component DLLs 697
use of to build C++ DLLs 271
use of to build event-handler DLLs 667

modules, IDL
defining in EAServer Manager 90
stub generation for 91

mutual SSL authentication
in Java clients 222

N
Name IDL sequence in module CosNaming 237, 301
name, parameter property 83
NameComponent IDL structure in module CosNaming

237, 238, 239, 240, 301
namespaces

for C++ 259, 279
naming conventions

for C component files 677
for C++ component files 258
for interfaces and methods 79, 94
for Java component files 197
for Java stub files 143, 214

naming services
about 425
use in C++ clients 298, 301
use in Java clients 216, 235

NamingContext IDL interface in module CosNaming
237, 300

next method in Java interface JServerResultSet 462
NO_IMPLEMENT CORBA system exception 197

NO_PERMISSION CORBA system exception 225,
232, 233, 297

NotFound exception in IDL module CosNaming 239,
301

NULL values
in C components 682
passing in Java clients 228

number, parameter property 83

O
object persistence 33
object references.

See IORs
OBJECT_NOT_EXIST CORBA system exception

65, 66, 225, 233, 297
object_to_string Java ORB method 231
objects, shared

creating in ActiveX components 338
creating in C or C++ components 688

OCI
control structures for 492, 493

ODBC
and MASP limitations 642
connection caches defined for 486
control structures for 486
header files for 486, 489

Open Client, using MASP from 645
Open Server migration

coding changes 648
compile switches for Solaris 657
event handlers 659
installing event handlers 661
limitations 648
link line 657
link line for Windows 657
listener configuration 662
makefiles 655
modified APIs 657
overview 647
properties 652
protecting your data 653
removing main 651

operations, IDL
defining 97

Index

720 EAServer

suggested naming conventions for 79, 94
optimistic concurrency control

definition of 513
ORB, ActiveX

initialization of 348
specifying IORs for 351

ORB, C++
See also C++ clients
configuring 281
connecting to third-party server-side ORBs 305
generating stubs for 278
initialization of 281
specifying IORs for 284
specifying properties for 281
third-party 303
use in C++ components 267

ORB, Java
See also Java clients
configuring 216
connecting to third-party server-side ORBs 244
generating stubs for 213
initialization of 216
specifying IORs for 221, 243
specifying properties for 216
support for 212
third-party 242
use in Java components 201, 202

ORB_init C++ ORB method 281
ORBCodeSet

ActiveX client property name 350
C++ ORB property name 282

ORBforceSSL
C++ ORB property name 282

ORBHttp
ActiveX client property name 349
C++ ORB property name 281

ORBHttpUsePost
C++ ORB property name 281

ORBidleConnectionTimeout
ActiveX client property name 351
C++ ORB property name 283

ORBLogFile
ActiveX client property name 350
C++ ORB property name 281

ORBNameServiceURL
ActiveX client property name 349

C++ ORB property name 299
ORBProxyHost

ActiveX client property name 350
C++ ORB property name 282

ORBProxyPort
ActiveX client property name 350
C++ ORB property name 282

ORBRetryCount
ActiveX client property name 350
C++ ORB property name 282

ORBRetryDelay
ActiveX client property name 350
C++ ORB property name 282

ORBsocketReuseLimit
ActiveX client property name 350

out object, JSP 443
overloaded methods

defining in IDL 97
for C++ stubs and components 97
for Java stubs and components 97

overview of JSPs 436

P
package, EAServer

associating application files with 46
configuring 41
creating 42
definition of 41
deleting components from 52
installing components in 51
installing in a server 44
installing in applications 38
modifying 45
properties of 45
refreshing after modifying 41

packages, Java
importing in Java components 197

page directive for a JSP 440
page object for a JSP 443
page scope for JSP 442
PageContext object for a JSP 443
parameters

adding 82
defining for ActiveX components 318

Index

Programmer’s Guide 721

defining in IDL 97
deleting 82
for Java component methods 189
modifying 82
naming 83
specifying datatypes for 83, 99

parameters
properties of 82

passivation
for EJB components 531, 533

passwords
specifying in ActiveX clients 352, 354
specifying in C++ clients 286, 302
specifying in Java clients 224, 240

persistence
automatic 500, 501
bean managed 500
component managed 500
concurrency control 513
container managed 500, 501
for entity components 499
for stateful components 531
generated class option 500
of component state 499, 531, 541
table mapping for 522
using generated classes 500

pessimistic concurrency control
definition of 513

plugin, JSP tag 442
pooling

component property 62
port numbers

specifying in ActiveX clients 349, 351, 354, 369
specifying in C++ clients 284, 299
specifying in EJB clients 145
specifying in Java clients 221, 236

ports, secure
connecting to 222, 236

PowerBuilder
component development with 49
invoking EJB components in 169

PowerBuilder, using MASP from 644
primary keys

specifying for EJB components 130
procedure

for creating ActiveX clients 343

for generating C component files 676
progid, COM

component property 57
properties

for C++ client ORB 281
for Java client ORB 216
of applications 39
of components 52
of EAServer packages 45
of Java servlets 415
of parameters 82
of Web applications 380
to configure component instance allocation 61
to configure threading behavior 61
to control transactional behavior 58

proxies
instantiation in ActiveX clients 347
instantiation in C++ clients 301
instantiation in Java clients 216

pseudocomponents
EAServer support for 619
instantiating 622
using 619

Q
QueueReceiver, message service object 573

R
read-only

method property 81
RecordSet ActiveX interface 327
reentrancy

configuring for an EJB entity bean 63
reentrant

component property 63
references for collections, C 690
refreshing

Java components 207
regenerating

changed C component methods 678
registering ActiveX components

using regserv32 333

Index

722 EAServer

registry files
for ActiveX clients 371

regserv32
Windows ActiveX registration utility 333

relationship component
configuring 526
definition of 526

releaseConnection, method in Java class JCMCache 483
releasing

collection references in C 692
shared variable references, C 692

request object, JSP 443
request scope, JSP 442
RequestDispatcher

flush 410
forward 410
include 410
service 411

requests and responses, JSPs 436
requirements

C components 671
for ActiveX clients 316
for ActiveX components 316
for C++ clients 247
for C++ components 247
for Java components 187

resolve method in IDL interface
CosNaming::NamingContext 237, 239, 301

resolve_initial_references C++ ORB method 300
resolve_initial_references Java ORB method 237
resource manager 35
resource recovery 33
resource references

application client property 181
EJB component property 137
Web application property 388, 390

response object, JSP 443
result sets

constructing with ActiveX calls 466
constructing with C calls 472
constructing with Java calls 462
forwarding from C or C++ components 471
forwarding from Java components 461, 483
forwarding in ActiveX components 466
overview of 459
processing in ActiveX clients 327

processing in C++ clients 288
processing in Java clients 229
returning from a C++ component 261
returning from Java components 203
sending from ActiveX components 340, 466
sending from C components 471, 686
sending from Java components 460

ResultSet IDL datatype in module TabularResults 84
ResultSet Java class, forwarding 461
ResultSets IDL datatype in module TabularResults 84
ResultsPassthrough method in ActiveX interface

IJagServerResults 466
retrieving

references for shared data collections, C 690
references to shared variables, C 691
shared variable values, C 691

return types
defining in IDL 97
for ActiveX component methods 318
for C component methods 679
for component method declarations 81, 97
for Java component methods 189

role references
EJB component property 137

roles
mapping of 39, 46

rollbackWork method in Java interface InstanceContext
204

run event
installing C handler for 663

run event handler
purpose of 663

Run-As Identity
component property 68

Run-As Mode
component property 69

S
SAX

support for 635
scope, JSP 442
scripting elements

and JSPs 436
JSPs 440

Index

Programmer’s Guide 723

scriptlets, JSP 440
secure ports

connecting to 222, 236
security

and connection caches 480
deployment considerations for 206
for EJB 2.0 components 137

selectors
CTS message service 588
JMS 574

server
naming service 425

server event handlers 662
server properties

event handlers 662
naming service 425

ServerBean Java interface
use in Java components 199

servers
installing additional services for 603, 612
installing applications in 38
installing packages in 44
removing applications from 39
use during development and testing 5

service components
C++ language example for 611
creating 606
installing in EAServer 612
introduction to 603
Java language example for 609

services
See also service components
installing additional 612

servlet class, translating JSPs 436
ServletContext

getNamedDispatcher 410
getRequestDispatcher 410

ServletResponse
flushBuffer 412
getBufferSize 412
isCommitted 412
reset 412
setBufferSize 412

servlets
and JSPs 438
creating 405

deploying Java classes for 549
filters 425
properties for 415
refreshing 417
running in Web applications 376
using in Web applications 392

session
JMS 571
JSP object 443
scope, JSP 442

session bean
EJB component type 111

Session IDL interface in module SessionManager 224,
286, 352

session timeout
Web application property 381

SessionManager CORBA IDL module
use in Java clients 224

SessionManager::Factory CORBA IDL interface
use in C++ clients 224, 301, 347

set<Object> method in Java interface JServerResultSet
462

SetAbort method in IObjectContext ActiveX interface
340

setColumnCount method in Java interface
JServerResultSetMetaData 461

setColumnDisplaySize method in Java interface
JServerResultSetMetaData 462

setColumnType method in Java interface
JServerResultSetMetaData 461

SetComplete method in IObjectContext ActiveX
interface 340

setProperty, JSP tag 441
shared data

between ActiveX components 338
between C components 686

shared libraries, UNIX
building for C components 695
building for C++ components 268

shared objects
creating in ActiveX components 338
creating in C or C++ components 688

shared variables
reading and updating, C 690
releasing references, C 692
retrieving references to, C 691

Index

724 EAServer

retrieving values, C 691
updating with new values, C 691

SharedObjects Java interface 201
SharedPropertyGroupManager ActiveX interface 339
sharing

component property 62, 607
single-threading

C components 673
C++ components 255
ODBC calls on Solaris 488

skeletons
explanation of 195, 257, 675
generating for C components 674
generating for C++ components 256, 258
generating for Java components 196
generating from the command line 701
when to regenerate 195, 259

socketReuseLimit
C++ ORB property name 282

software requirements
for ActiveX clients 316
for ActiveX components 316
for C components 671
for C++ components 247
for Java components 187

Solaris SPARC
single-threading ODBC calls 488

source code
generated for JSPs 451

SSL authentication, mutual
in Java clients 222

SSL certificates
accessing in C++ components 267
accessing in Java components 203

standard tags
and JSPs 436
JSP 441

start event handler
purpose of 663

start handler
template for 664

state primitives, for transactions 25
stateful components

definition of 17
stateful failover

explanation of 531

stateless components
creating 17
deactivation and instance pooling of 14
definition of 18

states
in component lifecycle 14

storage components
configuring 541
definition of 541

string_to_object ActiveX ORB method 352
string_to_object C++ ORB method 268, 285
string_to_object Java ORB method 201, 224, 231
stubs

generating C++ 278
generating for EJB clients 142
generating for Java clients 213
generating from the command line 701
instantiation in Java clients 216

stubs, C++
for third-party ORBS 303
generating 278
instantiation of 301

stubs, EJB
generating 142

stubs, Java
compiling 143, 214
for third-party ORBs 242
generating 213

syntax, JSP 439
System 10 ODBC driver, using MASP from 645
System 11 ODBC driver, using MASP from 645
system exceptions, CORBA 232, 296
system requirements

for ActiveX clients 316
for ActiveX components 316
for C components 671
for C++ clients 247
for C++ components 247
for Java components 187

T
table-mapping properties

for automatic persistence 522
TabularResults IDL module

Index

Programmer’s Guide 725

use in C++ clients 288
use in Java clients 228, 229

TabularResults.hpp
C++ header file 279

TabularResults::ResultSet IDL datatype 84
TabularResults::ResultSets IDL datatype 84
tag libraries

configuring in Web applications 384
taglib directive, JSP 440
templates

connect handler 665
exit event handler 664
start handler 664

Thread Manager
API usage 595
use with service components 595
using 597

thread pools, CTS message service 588
threading models

component properties to configure 61
for ActiveX components 335
for C components 673
for C++ components 255

threads
See also Thread Manager
for service components 605, 608
intercomponent calls from 147, 219

timeout
Web application property 380

timeouts
configuring properties for 65
transaction 27

timeouts, connection
for ActiveX clients 351
for C++ clients 283
for EJB clients 146, 147, 217
for Java clients 218

timestamps
definition of 513

topics, message service 568
TopicSubscriber, message service object 573
transaction interoperability 34
transaction logging 33
transaction options

JTS 22
Transaction Timeout

component property 65
transaction timeout

component property 65
transaction, EAServer

definition of 19
TRANSACTION_ROLLEDBACK CORBA system

exception 233, 297
TransactionLogManager 33
transactions

and intercomponent calls 20
benefits of using 20
component properties to configure 58
configuring timeout property for 27, 65
controlling outcome of 25
defining how components participate in 21
dynamic enlistment for bean-managed 29
examples of 20, 28
how to commit and roll back 25
multi-component 25
overview of 19
semantics of 21
server processing of 19
specifying coordinators for 21
specifying how a component participates in 22
state primitives for 25
use in EJB components 112

two-phase commit, verifying support for 22
type

parameter property 83
type library files

generating in EAServer Manager 343
types

ActiveX 318
typographical conventions xxii

U
uncaught exceptions, JSP 446
updating

shared variables with new values, C 691
useBean, JSP tag 441
user names

specifying in ActiveX clients 352, 354
specifying in C++ clients 286, 302
specifying in EJB clients 146

Index

726 EAServer

specifying in Java clients 224, 240
UserCredentials IDL interface in module CtsSecurity 203
using C++ keyword 259, 279

V
Visual C++ IDE

building DLLs on 667

W
Web applications

contents of 376
creating 375
creating filters in 426
creating in EAServer Manager 379
creating JSPs in 452
creating listeners for 431
definition of 375
deploying files in 377
deploying Java classes in 549
deployment descriptor for 379
EASDefault 397
environment properties for 391
initialization of 382
installing in applications 38
Java classes for 377
mapping request paths in 392
properties for 380
using EJB components in 386
using XML in 635

Web components
filters 425

welcome pages
for Web applications 383

WriteLog method in IJagServer ActiveX interface 341
writeLog method in Java class Jaguar 200

X
XML

support for 635

	Programmer’s Guide
	About This Book
	CHAPTER 1 Creating Component-Based Applications
	Application architecture
	Designing the EAServer application
	Implementing components and clients
	Deploying the application
	Deploying components
	Deploying clients

	CHAPTER 2 Understanding Transactions and Component Lifecycles
	Component lifecycles
	EAServer’s transaction processing model
	How EAServer transactions work
	Benefits of using EAServer transactions
	Defining transactional semantics
	Example
	Dynamic enlistment in bean-managed transactions
	Entity bean local diamonds

	EAServer Transaction Manager
	Resource recovery and transaction logging
	Recovering XA resources registered by user components

	Transaction interoperability
	Resource manager
	Enlisting XA resources with Transaction Manager

	CHAPTER 3 Managing Applications and Packages in EAServer Manager
	Defining applications
	Creating and installing applications
	Deleting and removing applications
	Configuring application properties
	Application properties: General
	Application properties: Role Mapping
	Application properties: Java Classes
	Application properties: Additional Files
	Application properties: JAXP Support
	Application properties: Security
	Application properties: Advanced

	Defining packages
	Creating a new package
	Installing packages to a server
	Modifying packages
	Configuring package properties
	Package properties: General
	Package properties: Java Classes
	Package properties: Additional Files
	Package properties: Role Mapping
	Package properties: JAXP Support
	Package Properties: Advanced

	CHAPTER 4 Defining Components
	Defining components
	Installing components
	Configuring component properties
	Component properties: General
	Component properties: Transactions
	Component properties: Instances
	Component properties: Environment
	Component properties: EJB Local Refs
	Component properties: EJB Refs
	Component properties: Resource Refs
	Component properties: Resource Environment Refs
	Component properties: Role Refs
	Component properties: Resources
	Component properties: Persistence
	Component properties: Run-As Identity
	Component properties: Run-As Mode
	Component properties: Java Classes
	Component properties: Additional Files
	Component properties: JAXP Support
	Component properties: Advanced

	Running components externally
	Configuring components to run externally
	Configuring servers to host external components

	CHAPTER 5 Defining Component Interfaces
	Defining interfaces graphically
	Editing interfaces
	Method properties
	Parameter properties
	Parameter and return value datatypes

	Importing interfaces from compiled Java files
	Coding classes, interfaces, and JavaBeans for import
	Importing a Java class or interface in EAServer Manager

	Importing interfaces from registered ActiveX components
	Defining modules, interfaces, and types in IDL
	Learning IDL
	Creating and editing IDL modules, interfaces, and types
	Using the IDL editor window
	Creating and editing interfaces
	Adding IDL documentation comments
	Refreshing the HTML documentation
	Viewing HTML documentation for IDL modules
	Importing existing IDL modules

	CHAPTER 6 Enterprise JavaBeans Overview
	About Enterprise JavaBeans components
	EJB component types
	Stateful session beans
	Stateless session beans
	Entity beans

	EJB transaction attribute values
	EJB container services

	EAServer EJB support
	Running EJB components in EAServer
	EJB clients connecting to EAServer
	For more information

	EJB 2.0 differences from 1.1
	Message-driven beans
	Home interface methods
	Local interfaces
	CMP enhancements
	EJB 2.0 interoperability

	EJB 1.1 differences from EJB 1.0
	Component differences
	JNDI names in deployment descriptors
	Environment properties
	EJB and resource references
	Security access-control changes
	Transaction isolation level

	Client model differences

	CHAPTER 7 Creating Enterprise JavaBeans Components
	Defining an EJB component
	Defining the primary key type
	Defining home interface methods
	Defining remote interface methods
	Defining local interfaces

	Configuring the component properties
	Configuring EJB references
	Configuring resource references
	Configuring role references and method permissions
	Configuring environment properties

	Deploying the component classes

	CHAPTER 8 Creating Enterprise JavaBeans Clients
	Developing an EJB client
	Generating EJB stubs
	Instantiating home interface proxies
	Obtaining an initial naming context
	Resolving JNDI names

	Instantiating remote or local interface proxies
	Calling remote interface methods
	Calling local interface methods
	Managing transactions
	Serializing and deserializing bean proxies
	Runtime requirements

	CHAPTER 9 EAServer EJB Interoperability
	Intervendor EJB interoperability
	Interoperable naming URLs
	Interoperable naming URLs for EJB clients
	Interoperable naming URLs for EJB references

	Classes for RMI/IIOP connections from third-party containers

	Invoking non-EJB components from EJB clients
	Invoking EJB components from CORBA C++ clients
	Invoking EJB components from PowerBuilder clients
	Invoking EJB components from ActiveX clients
	Supported datatypes
	About overloaded methods and nested IDL
	Using the home interface
	Serializing and deserializing instance references

	Invoking EJB components from CORBA Java clients
	Invoking EJB components using the MASP interface

	CHAPTER 10 Creating Application Clients
	Creating an application client
	Configuring application client properties
	General properties
	EJB references
	Resource references
	Resource environment references
	Environment properties
	Java classes
	JAXP properties
	Application client files

	Running application clients
	Setting up a client’s workstation
	Starting the runtime container

	CHAPTER 11 Creating CORBA Java Components
	Requirements
	Procedure for creating Java components
	Define the component interface and properties
	Choose implementation datatypes
	Write the Java source file
	Generate stub, skeleton, and implementation files
	Add package import statements
	Code the constructor
	Implement control interface methods
	Add error handling code

	Advanced techniques
	Issue intercomponent calls
	Manage database connections
	Return result sets
	Access SSL client certificates
	Set transactional state
	Retrieve user-defined component properties

	Deploy Java components
	Debug Java components

	CHAPTER 12 Creating CORBA Java Clients
	Overview
	Procedure for creating CORBA-compatible Java clients
	Generating Java stubs
	Instantiating proxy instances
	Executing component methods
	Cleaning up client resources
	Serializing component instance references
	Handling exceptions
	Deploying and running Java clients
	Instantiating proxies with the CosNaming API
	Using other CORBA ORB implementations
	Connecting to EAServer with a third-party client ORB
	Connecting to third-party ORBs using the EAServer client ORB

	CHAPTER 13 CORBA C++ Overview
	Overview
	Requirements
	Supported datatypes
	Mapping for predefined EAServer Manager datatypes
	Using mapped IDL types
	Overloaded methods

	CHAPTER 14 Creating CORBA C++ Components
	Procedure for creating C++ components
	Defining C++ components
	Generating required C++ files
	Writing the class implementation
	Write methods
	Returning result sets
	Error handling
	Managing explicit OTS transactions
	Initializing the ORB
	Calling CosTransactions::Current interface methods
	Executing tasks outside of a transaction
	Exceptions

	Accessing SSL client certificates
	Issuing intercomponent calls
	To components on a non-EAServer ORB

	Compiling source files
	Compiling on UNIX platforms
	Compiling on Windows
	Visual C++

	Debugging C++ components
	Running C++ components externally
	Limitations
	Configuring a component to run externally
	Building and deploying the external component executable

	Creating C++ components for multiplatform clusters

	CHAPTER 15 Creating CORBA C++ Clients
	Procedure for creating CORBA C++ clients
	Generating stubs
	Writing CORBA C++ clients
	Adding required include and namespace declarations
	Instantiating stub instances
	Configure and initialize the ORB runtime
	Example: ORB initialization

	Creating a Manager instance
	Creating sessions
	Creating stub instances

	Invoking methods
	Processing result sets
	Example of processing result sets
	Retrieving the result set
	Iterating through the rows and columns
	Retrieving the column datatype and processing values

	Handling exceptions
	CORBA system exceptions
	User-defined exceptions

	Compiling C++ clients
	Deploying C++ clients
	Using the CosNaming interface
	Configure and initialize the ORB for CosNaming use
	Obtain an initial naming context
	Obtaining the initial context
	Introduction to CosNaming name resolution

	Resolving component proxies

	Using CORBA ORB implementations other than EAServer
	Connecting to EAServer with a third-party client ORB
	Generating compatible C++ stubs
	EAServer IDL modules
	Performing datatype conversion

	Instantiating components using a third-party ORB

	Connecting to third-party ORBs using the EAServer client ORB

	CHAPTER 16 Creating PowerBuilder Components
	CHAPTER 17 Creating PowerBuilder Clients
	CHAPTER 18 ActiveX Overview
	Overview
	Requirements
	ActiveX component requirements
	ActiveX client requirements

	ActiveX datatype support
	Structure support
	Union support
	About IDL unions
	Supported discriminator and field types
	ActiveX mapping for unions
	Setting and getting member values
	Example

	Sequence support
	IDL typedef support
	IDL enumeration support
	Result-set support
	Algorithm to retrieve result sets

	CHAPTER 19 Creating ActiveX Components
	Procedure for creating ActiveX components
	Defining ActiveX components
	Importing ActiveX components
	Procedure

	Defining methods
	Defining return and parameter datatypes
	Defining the transaction property
	Defining instance properties

	Writing ActiveX components
	Implementing a constructor and destructor
	Sharing data between components
	Using shared data in C++
	Using shared data IDispatch interfaces

	Issuing intercomponent calls
	Managing database connections
	Sending result sets from an ActiveX component
	Setting transactional state
	Adding error-handling code

	Deploying ActiveX components

	CHAPTER 20 Creating ActiveX Clients
	Procedure for creating ActiveX clients
	Generate .tlb and .reg files for components
	Before you start
	Check the ProgID for each interface
	Generating TLB/REG files
	Files generated

	Develop and test the ActiveX client
	Instantiating proxies using CORBA-style interfaces
	Initializing the ORB
	Initialization parameters
	Example: ORB initialization

	Creating a Manager instance
	Creating sessions
	Creating stub instances

	Instantiating stub instances using the EAServer 1.1 interface
	Declare proxy objects
	Set connection properties
	Instantiate server components

	Invoke component methods
	Code exception handling
	Using an ActiveX error handler
	Handling exceptions inline

	Deploy the ActiveX client

	CHAPTER 21 Creating Web Applications
	What is a Web application?
	Contents of a Web application
	Servlet files
	JSP files and tag libraries
	Static files
	Java classes
	Class and JAR file locations
	Which classes are loaded by the custom loader?

	Deployment descriptor

	Creating Web applications
	Configuring Web application properties
	General properties
	Context initialization properties
	Welcome and error page specifications
	Welcome files
	Error pages

	Tag library descriptor references
	Naming references
	EJB references
	EJB local references
	Resource references
	Resource environment references
	Environment properties

	Request path mappings
	MIME mappings
	JAXP properties
	Java Classes properties
	Extensions properties
	Additional files
	Security properties
	Page Caching properties
	Listener properties
	Filter Mapping properties

	The EASDefault Web application
	Using Java extensions
	Installing extensions in EAServer
	Defining required extensions for Web applications
	Defining required extensions in EAServer Manager
	EAServer Java extension properties
	Defining required extensions in the WAR manifest file
	WAR manifest format
	Example

	Localizing Web applications
	Enabling accept-language header parsing
	Internationalization for servlets
	Deploying localized static files
	Language selection algorithm
	Localizing JSP content

	CHAPTER 22 Creating Java Servlets
	Introduction to Java servlets
	Writing servlets for EAServer
	Connection caching
	Component invocations
	Threading
	Logging
	Error pages

	Request dispatching
	URL interpretation
	Implementation
	Static content

	Response buffering
	Encoding responses and double-byte characters

	Installing and configuring servlets
	Installing servlets
	Defining a new servlet
	Installing existing servlets into a server
	Uninstalling servlets from a server
	Deleting servlet definitions

	Configuring servlet properties
	Deploying and refreshing servlet classes
	Deploying servlet classes
	Refreshing servlets
	Starting and stopping servlets

	Web application support
	Adding servlets to a Web application

	Server properties for servlets

	CHAPTER 23 Using Filters and Event Listeners
	Servlet filters
	Custom headers

	Application lifecycle event listeners

	CHAPTER 24 Creating JavaServer Pages
	About JavaServer Pages
	How JavaServer Pages work
	What a JSP contains

	Why use JSPs?
	Syntax summary
	Directives
	Scripting elements
	Comments
	Standard tags

	Objects and scopes
	Scopes
	Implicit objects

	Application logic in JSPs
	Error handling
	Using JSPs in EAServer
	JSP and EAServer overview
	JSP 1.2 highlights
	Compiling JSPs
	JSP file locations
	Saving Java source code
	Source and class file locations

	Creating and configuring JSPs in EAServer
	Internationalization
	Mapping JSPs
	Page caching
	Filters

	CHAPTER 25 Sending Result Sets
	Overview
	Sending result sets with Java
	Forwarding a ResultSet object
	Sending results row-by-row
	JServerResultSet sequence of calls
	JServerResultSet example

	Sending result sets from a PowerBuilder component
	Sending result sets from an ActiveX component
	Forwarding a result set with ResultsPassthrough
	Sending results row-by-row
	Result sets row-by-row: C++ example

	Sending result sets from a C or C++ component
	Forwarding a result set with JagResultsPassthrough
	Sending results row-by-row

	CHAPTER 26 Using Connection Management
	Overview of connection management
	When to use Connection Manager
	Connection caches and security
	Defining connection caches
	JDBC DataSource lookup
	Application authentication

	Using Java Connection Manager classes
	Classes
	Java Connection Manager example

	Using Connection Manager routines in C, C++, and ActiveX components
	ODBC connection caches
	Header files
	Data structures
	ODBC example
	Single-threading ODBC calls on UNIX

	Client-Library connection caches
	Header files
	Data structures
	Client-Library example
	Client-Library error and message callbacks

	Oracle connection caches
	Oracle autocommit setting
	Using OCI 7.x connection caches
	Header files
	Data structures
	OCI 7.x example

	Using OCI 8.x connection caches
	Header files
	Data structures
	OCI 8.x example

	Using OCI 9.x connection caches
	OCI 9.x example

	Using cached connections in PowerBuilder components
	Connection Manager guidelines
	Avoiding results-pending errors
	Connections and cache handles
	Maintaining connection state

	CHAPTER 27 Creating Entity Components
	Implementing entity components
	Coding to support manual persistence
	Understanding the automatic persistence architecture
	Configuring automatic or EJB CMP persistence
	Specifying the CMP version for EJB 2.0 entity beans
	Setting Persistence/General subtab properties
	Enabling automatic key generation
	Creating database tables
	Configuring concurrency control
	Setting field-mapping properties
	Specifying finder- and ejbSelect-method queries
	Configuring table-mapping properties
	Using relationship components

	CHAPTER 28 Configuring Persistence for Stateful Session Components
	How it works
	Supported component implementations
	Using EJB activation and passivation
	Configuring stateful session beans to support failover
	Configuring passivation after timeout

	Using automatic persistence
	Defining the IDL state type
	Accessing the state data in the implementation

	CHAPTER 29 Configuring Persistence Mechanisms
	Storage components
	Supported Java, IDL, and JDBC/SQL types
	Table schema for binary storage
	Requirements for in-memory stateful failover
	Cluster configuration for in-memory failover
	Mirror Cache tab component properties

	CHAPTER 30 Configuring Custom Java Class Lists
	Understanding how the class loader works
	Class loader versions
	The class loader hierarchy and delegation policy
	The system class loader

	Deciding which classes to add to the custom list
	Custom class lists for Java and EJB components
	Class loading order for components

	Custom class lists for Web applications
	Class loading order for Web applications

	Custom class lists for servlets installed directly in the server
	Custom class lists for packages, applications, or servers

	Configuring an entity’s custom class list
	Troubleshooting class loader configuration issues
	Commonly encountered problems
	Custom class loader tracing
	JAR file locking and copying

	CHAPTER 31 Using the Message Service
	Overview
	High availability and load balancing
	Message security
	Reliable delivery
	Scalable notification
	Transaction management

	Developing JMS applications
	Creating a JMS InitialContext object
	Looking up a ConnectionFactory object
	Creating permanent destinations
	Creating connections
	Creating sessions
	Creating message producers
	Creating message consumers
	Filtering messages using selectors

	Implementing and installing message listeners
	Message-driven beans

	Creating messages
	Sending messages
	Publishing messages
	Receiving messages
	Browsing messages
	Enabling JMS tracing
	Closing connections, sessions, consumers, and producers
	JMS interfaces not supported

	Developing EAServer messaging service applications
	Obtaining CtsComponents::MessageService object references
	Creating message consumers
	Creating message selectors
	Creating thread pools programmatically
	Implementing and installing message listeners
	Sending messages
	Publishing messages
	Receiving messages
	Subscribing to scheduled messages
	EAServer message service CORBA API

	CHAPTER 32 Using the Thread Manager
	About the Thread Manager
	The Thread Manager and service components
	The Thread Manager and the message service
	Thread Manager interface documentation

	Using the Thread Manager
	Before you start
	Adapting components to be run by the Thread Manager
	Understanding thread groups
	Understanding the run interval
	Understanding the thread count

	Instantiating the Thread Manager
	Obtaining authorized access
	Instantiating a proxy

	Starting threads
	Suspending and resuming execution
	Stopping threads

	CHAPTER 33 Creating Service Components
	Introduction
	Creating service components
	Define the component interface and properties
	Service component properties
	Required client roles

	Implement GenericService interface methods
	Java example of GenericService methods
	C++ example of GenericService methods

	Implement other required methods
	Install the component as an EAServer service

	Determining service state
	Refreshing service components

	CHAPTER 34 Creating and Using EAServer Pseudocomponents
	Benefits of pseudocomponents
	Creating pseudocomponents
	Implementation restrictions
	Defining a pseudocomponent
	Properties for a Java pseudocomponent
	Properties for a C++ pseudocomponent

	Direct-access pseudocomponent stubs and skeletons

	Instantiating pseudocomponents
	Pseudocomponent object URLs
	Identifying a C++ pseudocomponent
	Identifying a Java pseudocomponent

	Instantiating pseudocomponents from Java
	Instantiating pseudocomponents from C++
	Instantiating pseudocomponents from PowerBuilder

	Debugging C++ pseudocomponents

	CHAPTER 35 Creating JavaMail
	Introduction to JavaMail
	Writing JavaMail for EAServer
	Creating a JavaMail session
	Constructing a message
	Sending a message
	Sample EAServer JavaMail program
	JavaMail providers

	Deploying JavaMail-enabled applications

	CHAPTER 36 Configuring Java XML Parser Support
	About JAXP
	Configuring JAXP properties in EAServer Manager
	Exporting and importing application clients

	APPENDIX A Executing Methods As Stored Procedures
	Creating invocation commands
	Limitations
	Using MASP from isql
	Using MASP from application builder tools
	PowerBuilder
	PowerDynamo
	Other tools

	Configuring the return status

	APPENDIX B Migrating Open Server Applications to EAServer
	Migration overview
	Coding changes and examples
	Modifying main
	Open Server properties
	Making your code thread-safe
	DLLs, shared objects, and makefiles

	Modified APIs and new event handlers
	Modified APIs
	Event handler prototypes

	EAServer configuration
	Installing event handlers
	Specifying event handlers

	Configuring an Open Server listener

	Additional event handler information
	Calling convention for event handlers
	Initialization, run, start and exit events
	Start handler template
	Exit handler template

	Connect and disconnect handlers
	Connect handler
	Disconnect handler

	Build with the Visual C++ IDE
	A sample module definition (.def) file

	APPENDIX C Creating C Components
	C component lifecycle
	Requirements
	Procedure for creating C components
	Define component interface and properties
	Define the component’s interfaces
	Transaction property
	Instance properties

	Generate C component files
	Procedure for generating C component files
	File naming conventions
	Regenerate changed C component methods

	Write C components
	Define implementation functions
	Implementation function return codes
	Calling conventions
	Parameter datatypes
	Argument modes
	string<255> parameters
	string and binary parameters
	NULLs

	Logical method return values

	Implementing the method behavior
	Components that require instance specific data
	C components that are wrappers for C++ classes
	Methods that interact with remote database servers
	Methods that return row results
	Share data between C or C++ components
	Procedure for sharing data
	Create shared variables and collections
	Create collections
	Create shared variables in collections

	Lock and unlock collections
	Read and update shared variables
	Retrieve references for collections
	Retrieve references to shared variables
	Retrieve shared variable values
	Update shared variables with new values

	Release shared variable and collection references
	List all collections

	Methods that set transactional state
	Customize the creation and destruction of components
	create routine
	destroy routine

	Handle errors in your C component

	Compile C components
	Build on UNIX
	Build on Windows
	DLLs for C components
	Build with the Visual C++ IDE
	The module definition (.def) file

	Debug C components

	APPENDIX D Using the Command Line IDL Compiler
	com.sybase.CORBA.idl.Compiler
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

