
Programmer’s Guide

DataWindow .NET™

2.0



DOCUMENT ID: DC00044-01-0200-01

LAST REVISED: March 2006

Copyright © 2004-2006 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes. 
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement, 
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other 
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled 
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, 
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server, 
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication, 
Adaptive Server Everywhere, Adaptive Warehouse, Afaria, Answers Anywhere, Anywhere Studio, Application Manager, AppModeler, 
APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Translator, APT-Library, AvantGo Mobile Delivery, AvantGo Mobile 
Inspection, AvantGo Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon 
Application Server, AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BizTracker, 
ClearConnect, Client-Library, Client Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench, DataArchitect, Database 
Analyzer, DataExpress, DataServer, DataWindow, DataWindow .NET, DB-Library, dbQueue, Developers Workbench, DirectConnect, 
DirectConnect Anywhere, Distribution Director, e-ADK, E-Anywhere, e-Biz Impact, e-Biz Integrator, E-Whatever, EC Gateway, 
ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise 
Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work 
Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA, Financial Fusion, Financial Fusion Server, Gateway Manager, 
GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information 
Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, M2M Anywhere, Mach Desktop, Mail 
Anywhere Studio, Mainframe Connect, Maintenance Express, Manage Anywhere Studio, M-Business Anywhere, M-Business Channel, 
M-Business Network, M-Business Suite, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, mFolio, Mirror 
Activator, MySupport, Net-Gateway, Net-Library, New Era of Networks, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL 
Access Module, OmniSQL Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, 
Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, 
Pharma Anywhere, PocketBuilder, Pocket PowerBuilder, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation 
Class Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerScript, PowerSite, PowerSocket, Powersoft, PowerStage, 
PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst, 
QAnywhere, Rapport, RemoteWare, RepConnector, Replication Agent, Replication Driver, Replication Server, Replication Server 
Manager, Replication Toolkit, Report-Execute, Report Workbench, Resource Manager, RFID Anywhere, RW-DisplayLib, RW-Library,  
Sales Anywhere, SDF, Search Anywhere, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, 
smart.parts, smart.script, SOA Anywhere, SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, 
SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL 
Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, S.W.I.F.T. 
Message Format Libraries, Sybase Central, Sybase Client/Server Interfaces, Sybase Financial Server, Sybase Gateways, Sybase IQ, 
Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber 
Financial, SyberAssist, SybFlex, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, TradeForce, 
Transact-SQL, Translation Toolkit, UltraLite, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for 
UniCode, VisualWriter, VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, Watcom, 
Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-
Library, XA-Server, XcelleNet, and XP Server are trademarks of Sybase, Inc. 10/05

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013 
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.



Contents

Programmer’s Guide iii

About This Book ...........................................................................................................................  ix

CHAPTER 1 Introduction to DataWindow .NET .................................................  1
About DataWindow objects, DataWindowControls, 

WebDataWindowControls, and DataStores .......................  1
DataWindow .NET components .......................................................  4
DataWindow .NET class hierarchy...................................................  5
Classes, structures, delegates, and enumerations in the 

Sybase.DataWindow namespace.......................................  7
Classes, structures, delegates, and enumerations in the 

Sybase.DataWindow.Web namespace ..............................  9
Installing DataWindow .NET...........................................................  10
Getting context-sensitive help ........................................................  12

CHAPTER 2 Tutorial ...........................................................................................  13
About this tutorial ...........................................................................  14
Creating a project and library .........................................................  15
Connecting to the EAS Demo database ........................................  15
Creating and saving a DataWindow object ....................................  16
Modifying the appearance of the DataWindow object ....................  20
Copying a DataWindow object into a library...................................  22
Creating a second DataWindow object ..........................................  24

Using SQL Select to build a DataWindow object ....................  24
Modifying the appearance of the second DataWindow object .......  29
Adding DataWindows to a form......................................................  32
Adding a DataWindowControl to a Windows form .........................  33
Associating a DataWindow object with the control.........................  34
Adding a second DataWindowControl to the form .........................  35
Adding a Transaction object to the form ........................................  36
Connecting to the database ...........................................................  37
Retrieving data ...............................................................................  38
Updating data .................................................................................  42
Building a deployment library .........................................................  44



Contents

iv DataWindow .NET

Adding a WebDataWindowControl to a Web form .........................  45
Associating a DataWindow object with the control.........................  46
Adding a second DataWindowControl to the form .........................  47
Adding a Transaction object to the form ........................................  48
Connecting to the database ...........................................................  50
Retrieving data into the detail DataWindow ...................................  53

CHAPTER 3 Working with DataWindow Controls............................................ 57
About DataWindow controls ...........................................................  57

Using drag-and-drop ...............................................................  58
Creating a control in code .......................................................  59
Editing the DataWindow object in the control..........................  60
Specifying the DataWindow object at runtime.........................  60

Accessing a database ....................................................................  62
Retrieving and updating data ..................................................  62

Using a DataSet as the data source ..............................................  66
The binding model...................................................................  68
The retrieve and update model ...............................................  72

Importing data from an external source .........................................  74
Exporting data from a DataWindow object.....................................  74
Manipulating data in a DataWindow control ...................................  74

How a DataWindowControl manages data .............................  75
Accessing and manipulating the text in the edit control ..........  76
Coding the ItemChanged event...............................................  77
Coding the ItemError event .....................................................  77

Accessing the items in a DataWindow ...........................................  78
Accessing data values using methods ....................................  78
Accessing data values using DataWindow data 

expressions ......................................................................  80
Using other DataWindow methods.................................................  84
Accessing the properties of a DataWindow object .........................  85
Updating the database ...................................................................  86

How the DataWindow control updates the database ..............  86
Changing row or column status programmatically ..................  88

Handling events .............................................................................  90
Handling DataWindow exceptions .................................................  91

The DbErrorException class....................................................  93
Creating reports .............................................................................  94

Planning and building the DataWindow object ........................  94
Printing the report....................................................................  95

Using composite reports ................................................................  95
Using crosstabs..............................................................................  97

Viewing the underlying data ....................................................  97
Letting users redefine the crosstab .........................................  97



Contents

Programmer’s Guide v

Using graphs ..................................................................................  98
Types of graphs.......................................................................  98
For more information ...............................................................  99

CHAPTER 4 Working with DataStores ...........................................................  101
About DataStores.........................................................................  101
Working with a DataStore ............................................................  103
Accessing and manipulating data in a DataStore ........................  104
Event handling .............................................................................  106
Sharing information ......................................................................  106
.NET remoting ..............................................................................  107

Typical usage scenario..........................................................  110

CHAPTER 5 Working with Transaction and AdoTransaction Objects ........  111
About the Transaction and AdoTransaction classes....................  111
Using a Transaction object...........................................................  112

Creating a Transaction object using drag and drop ..............  113
Creating a Transaction object in code...................................  113
Setting Transaction object properties....................................  114
Connecting to the database ..................................................  117
Associating the Transaction object with a DataWindow 

control or DataStore .......................................................  117
Disconnecting from the database..........................................  118
Exception handling ................................................................  118

Using an AdoTransaction object ..................................................  120
Creating an ADO.NET Connection object .............................  122
Opening a connection ...........................................................  123
Creating an AdoTransaction object .......................................  123
Associating the AdoTransaction object with a DataWindow 

control or DataStore .......................................................  124
Starting a transaction and manipulating data ........................  125

CHAPTER 6 Accessing DataWindow Object Properties in Code ................  127
About properties of the DataWindow object and its controls........  127

What you can do with DataWindow object properties ...........  127
How to specify property values in the DataWindow painter ..  129

Accessing DataWindow object property values in code...............  130
Late binding...........................................................................  130
Early binding..........................................................................  131

Accessing properties directly .......................................................  131
GraphicObject classes ..........................................................  131
Using DataWindow expressions as property values .............  134



Contents

vi DataWindow .NET

PrintProperties class .............................................................  136
Edit style properties...............................................................  137

Using Modify and SetProperty .....................................................  139
Advantages and drawbacks of the Modify method................  141
Handling errors......................................................................  143
Nested strings and special characters for DataWindow 

object properties .............................................................  144

CHAPTER 7 Dynamically Changing DataWindow Objects ........................... 147
About dynamic DataWindow processing......................................  147
Modifying a DataWindow object ...................................................  148
Creating a DataWindow object.....................................................  149

Create and SetTransaction ...................................................  149
Specifying the DataWindow object syntax ............................  150

Providing query ability to users ....................................................  152
How query mode works.........................................................  153
Using query mode .................................................................  154

Providing Help buttons .................................................................  157

CHAPTER 8 Manipulating Graphs ................................................................... 159
Using graphs ................................................................................  159
Modifying graph properties...........................................................  160

How parts of a graph are represented...................................  160
Referencing parts of a graph.................................................  161

Accessing data properties............................................................  162
Getting and setting information about the data and its 

display ............................................................................  162
Saving graph data .................................................................  166
Modifying colors, fill patterns, and other data........................  167

CHAPTER 9 Using Web DataWindows............................................................ 171
What the Web DataWindow is .....................................................  171
About ASP.NET ...........................................................................  172

ASP.NET application files .....................................................  173
Web server controls ..............................................................  173
Web page processing............................................................  174

The Web DataWindow server control and client control ..............  175
Using the Web DataWindow ........................................................  176

About XML, XSLT, CSS, and XHTML...................................  177
How to use the Web DataWindow.........................................  178
How the Web DataWindow works .........................................  179
How the XML Web DataWindow works.................................  181



Contents

Programmer’s Guide vii

XML, XHTML, and HTML formats .........................................  184
WebDataWindowControl properties.............................................  185

Controlling the size of generated code..................................  189
Generating JavaScript for common management tasks .......  189
Configuring XML....................................................................  190
Maintaining state ...................................................................  192
Postbacks and callbacks .......................................................  197
Paging methods ....................................................................  198
RowsPerPage and scroll bars ...............................................  200
Page navigation bars.............................................................  200
Rendering graphs..................................................................  203
Creating hyperlinks................................................................  205

Printing Web DataWindows .........................................................  207
Server-side printing ...............................................................  207
Saving as PDF ......................................................................  210

Setting up database connections .................................................  212

CHAPTER 10 Designing Web DataWindows....................................................  213
Working in DataWindow Designer ...............................................  213
Designing DataWindow objects for the Web DataWindow ..........  214
Web DataWindow properties .......................................................  216

Setting Web generation properties for the Web 
DataWindow ...................................................................  219

Using JavaScript caching in DataWindow Designer ....................  223
Using expressions........................................................................  226
Using Button and Picture controls................................................  226
Using a drop-down calendar ........................................................  228
Using a drop-down DataWindow..................................................  229
Previewing the DataWindow ........................................................  230
Rendering HTML for controls in an HTML Web DataWindow......  231

CHAPTER 11 Working with XHTML Templates ...............................................  233
The Export Template view for XHTML .........................................  233
What you can customize ..............................................................  234
The default XHTML export template ............................................  235
Managing templates.....................................................................  236

Creating and saving templates..............................................  237
Selecting the template to use ................................................  238

Template structure .......................................................................  240
Header section ......................................................................  240
Detail section.........................................................................  242



Contents

viii DataWindow .NET

Editing XHTML export templates .................................................  242
Element Context Menus ........................................................  243
Root element .........................................................................  245
DataWindow controls ............................................................  246
DataWindow painter expressions..........................................  246
Element attributes .................................................................  247
Style declarations ..................................................................  248
JavaScript event handlers .....................................................  249
CDATA sections ....................................................................  249

Selecting XHTML export templates at runtime.............................  250
Exporting DataWindow data in XML or in XHTML .......................  250

CHAPTER 12 Writing Scripts for the Web DataWindow Client Control ......... 253
About client-side programming ....................................................  253
Implementing an event.................................................................  254
Calling client methods ..................................................................  256
Alphabetical list of events for the Web DataWindow client 

control.............................................................................  259
Alphabetical list of methods for the Web DataWindow client 

control.............................................................................  266

CHAPTER 13 Deploying DataWindow .NET Applications ............................... 291
Deploying applications .................................................................  291
Deploying Windows form applications .........................................  292

Deployment techniques for Windows applications ................  293
Deploying ASP.NET applications.................................................  293

Deployment techniques for Web applications .......................  294
About deployment libraries...........................................................  296
DataWindow .NET runtime files ...................................................  296
Deploying .NET assemblies .........................................................  297
Using the Runtime Packager .......................................................  298
Using deployment dialog boxes ...................................................  300
Saving data in PDF format ...........................................................  300

Index ...........................................................................................................................................  303



About This Book

Subject This book provides information about using Sybase® DataWindow® 
technology in development environments that conform to the Microsoft 
.NET Framework version 2.0, such as Visual Studio .NET 2005.

Audience This book is for anyone developing applications that use DataWindow 
.NET™ in the .NET Framework. It assumes that:

• You are familiar with the DataWindow painter. If not, see the 
DataWindow Designer User’s Guide.

• You are an experienced user of Visual Basic or C# and your 
development environment. If not, see the documentation for your 
development environment and your language of choice. 

Related books The DataWindow .NET documentation set includes the following books 
that are available as printed books and in compiled HTML Help:

• This book, which provides information about creating and deploying 
applications that use DataWindow .NET and programming with 
DataWindow objects. It includes a brief tutorial.

• The DataWindow Designer User’s Guide tells you how to build the 
DataWindow objects that you use in DataWindow .NET.

• Connecting to Your Database describes the database interfaces you 
can use in DataWindow Designer and in your .NET application.

The documentation set also includes: 

• The Connection Reference, which describes database parameters and 
preferences. This book is available in the online Help for 
DataWindow Designer.

• The DataWindow Object Reference, which describes DataWindow 
expressions and the functions you use with them, and properties of 
DataWindow objects. This book is available in compiled HTML Help 
and in the online Help for DataWindow Designer.
Programmer’s Guide ix



• The DataWindow Reference, which describes all the interfaces, classes, 
methods, and other members of the DataWindow .NET assembly. This 
book can be installed into Visual Studio .NET. It is also available as a 
compiled HTML Help file (dwref20.chm). It is not currently available on 
the Sybase Technical Library CD or the Product Manuals Web site.

• An Installation Guide and release bulletin.

Code samples You can find sample code on the Sybase CodeXchange Web site at 
http://datawindownet.codeXchange.sybase.com and in the Sybase\DataWindow 
.NET 2.0\Code Examples directory.

Other sources of 
information

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase Product 
Manuals Web site to learn more about your product: 

• The Getting Started CD contains release bulletins and installation guides 
in PDF format, and may also contain other documents or updated 
information not included on the SyBooks CD. It is included with your 
software. To read or print documents on the Getting Started CD, you need 
Adobe Acrobat Reader, which you can download at no charge from the 
Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your 
software. The Eclipse-based SyBooks browser allows you to access the 
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can 
access through the PDF directory on the SyBooks CD. To read or print the 
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the 
README.txt file on the SyBooks CD for instructions on installing and 
starting SyBooks.

• The Sybase Product Manuals Web site is an online version of the SyBooks 
CD that you can access using a standard Web browser. In addition to 
product manuals, you will find links to EBFs/Maintenance, Technical 
Documents, Case Management, Solved Cases, newsgroups, and the 
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at 
http://www.sybase.com/support/manuals/.
x  DataWindow .NET

http://datawindownet.codeXchange.sybase.com
http://www.sybase.com/support/manuals/.


About This Book
If you need help Each Sybase installation that has purchased a support contract has one or more 
designated people who are authorized to contact Sybase Technical Support. If 
you cannot resolve a problem using the manuals or online help, please have the 
designated person contact Sybase Technical Support or the Sybase subsidiary 
in your area.
Programmer’s Guide  xi



xii  DataWindow .NET



Programmer’s Guide 1

C H A P T E R  1 Introduction to DataWindow .NET 

About this chapter This chapter provides an overview of DataWindow technology, the 
DataWindow .NET architecture, and the DataWindow .NET class 
hierarchy.

Contents

About DataWindow objects, DataWindowControls, 
WebDataWindowControls, and DataStores

The patented Sybase DataWindow technology provides powerful data 
retrieval, manipulation, presentation, and update capabilities for 
client/server, multitier, and thin-client Web-based applications. 
DataWindow .NET lets you take advantage of the rich interface and 
ease-of-use of the DataWindow in the .NET environment. 

DataWindow objects A DataWindow object is an object you use to retrieve, present, and 
manipulate data from a relational database or other data source (such as an 
Excel worksheet or a text file). A DataWindow object defines the source 
of the data and its display characteristics. 

Topic Page

About DataWindow objects, DataWindowControls, 
WebDataWindowControls, and DataStores

1

DataWindow .NET components 4

DataWindow .NET class hierarchy 5

Classes, structures, delegates, and enumerations in the 
Sybase.DataWindow namespace

7

Classes, structures, delegates, and enumerations in the 
Sybase.DataWindow.Web namespace

9

Installing DataWindow .NET 10

Getting context-sensitive help 12



About DataWindow objects, DataWindowControls, WebDataWindowControls, and DataStores

2  DataWindow .NET

You design the DataWindow object in DataWindow Designer (or in the Sybase 
PowerBuilder or InfoMaker products), where you specify display formats, 
presentation styles, validation rules, and other data properties. You can also add 
nested reports, computed columns, pictures, buttons, and other enhancements 
to the DataWindow object.

The DataWindow Designer User’s Guide describes the predefined presentation 
styles you can use to create a DataWindow object, as well as all the ways you 
can enhance it so the data can be viewed and used in the most meaningful way. 

The following illustration shows a .NET Windows form with a grid-style 
DataWindow object at the top, sharing data with three graph-style 
DataWindow objects at the bottom:

DataWindow controls 
and DataStores

DataWindowControls and WebDataWindowControls are visual containers for 
the DataWindow object, and a DataStore object is a nonvisual container. 
DataWindowControls are used in .NET Windows applications, and 
WebDataWindowControls are used in Web applications. You use 
drag-and-drop or write code to add a control or DataStore to your forms, then 
associate a DataWindow object with the container and code the methods and 
events of the container to manipulate the DataWindow object. 



Chapter 1    Introduction to DataWindow .NET

Programmer’s Guide 3

Basic process Using a DataWindowControl, WebDataWindowControl, or DataStore in 
Visual Studio .NET 2005 involves these main steps:

1 In DataWindow Designer, create a project to hold your DataWindow 
objects, then use the DataWindow wizard to create a DataWindow object.

In the wizard, you define the data source, presentation style, and some 
display properties of the object.

2 Use the DataWindow painter to design the DataWindow object.

In the painter, you define other properties of the object, such as display 
formats, validation rules, and sorting and filtering criteria.

3 Save the DataWindow object in a library (PBL) file.

4 In a Visual Basic or C# Windows application project, drag the 
DataWindowControl or DataStore icon from the Toolbox to the form. In 
an ASP.NET Web Site project, drag the WebDataWindowControl or 
DataStore icon from the Toolbox to the form.The following illustration 
shows a DataWindowControl.

5 In the Properties window for the control or DataStore, specify the name of 
the DataWindow object and the library where it resides.

6 Add code to retrieve, modify, and update the data in the DataWindow 
object.

These steps are described in more detail in Chapter 2, “Tutorial.” The process 
is similar in other .NET development environments, where you need to use the 
appropriate mechanism for the environment to create an instance of the control 
or DataStore on a form.

The rest of this chapter provides an overview of DataWindow .NET.



DataWindow .NET components

4  DataWindow .NET

DataWindow .NET components
There are two major components in DataWindow .NET:

• The DataWindow .NET front end provides the interface between your 
.NET client application and the DataWindow server. It maps the methods, 
events, and properties of the DataWindowControl, 
WebDataWindowControl, DataStore, and other DataWindow .NET 
classes to the application. The front end also ensures that .NET 
applications interact directly only with pure .NET code. The front end is 
delivered in three .NET assemblies, DataWindow.dll, 
WebDataWindow.dll, and DataWindowInterop.dll. 

• Behind the scenes, the DataWindow server (pbdwn105.dll) handles the 
loading and presentation of DataWindow objects, manages 
communication with databases, maintains data buffers, and handles 
functions such as sorting, filtering, and exporting data.

Figure 1-1: DataWindow .NET architecture

DataWindow .NET also includes native database interfaces that provide a 
direct connection to your data through vendor-specific database APIs, as well 
as standard ADO.NET, ODBC, and OLE DB interfaces. 



Chapter 1    Introduction to DataWindow .NET

Programmer’s Guide 5

You use these database interfaces when you design your DataWindow objects 
in DataWindow Designer and in your application development tool. In your 
development tool, you can provide database connectivity using a Transaction 
class that is used only by the DataWindow, or an AdoTransaction class that lets 
you share an ADO.NET connection with other database constructs such as 
DataSets or Command objects.

For information about database connectivity in DataWindow Designer, see 
Connecting to Your Database. For information about connecting to a database 
using the DataWindow .NET Transaction or AdoTransaction classes, see 
Chapter 5, “Working with Transaction and AdoTransaction Objects.”

DataWindow .NET class hierarchy
Figure 1-2 shows the relationships among the three main classes used in 
Windows form applications and the three main interfaces that make up 
DataWindow .NET. (The WebDataWindowControl class hierarchy is shown in 
Figure 1-3 on page 6.)

Figure 1-2: DataWindow .NET object model major components

DataWindowChild 
implements 
IDataWindowBase

The base interface, IDataWindowBase, defines methods such as Retrieve and 
UpdateData. The DataWindowChild class implements IDataWindowBase and 
extends the .NET System.Object class. A DataWindowChild object can be a 
DataWindow object that is nested inside another DataWindowControl or 
DataStore object. It can also be used as a drop-down DataWindow object in a 
column in another DataWindow object. A common use of a drop-down 
DataWindow object is a list of states, provinces, or countries.



DataWindow .NET class hierarchy

6  DataWindow .NET

DataStore implements 
IDataStore

The IDataStore interface extends IDataWindowBase and adds two properties, 
LibraryList and DataWindowObject, that let you associate a DataWindow 
object with a DataStore. It also adds methods, such as methods for getting and 
setting columns, and events that fire at various stages of retrieving, printing, 
and updating data.

The DataStore class implements IDataStore and extends the .NET 
System.ComponentModel.Component class. 

DataWindowControl 
implements 
IDataWindow

The IDataWindow interface extends IDataStore and adds methods and events 
that relate to the visual display of data. 

The DataWindowControl class implements IDataWindow and extends the 
.NET System.Windows.Form.Control class, from which it inherits properties, 
methods, and events.

WebDataWindow
Control class 
hierarchy

The WebDataWindowControl class is defined in the Sybase.DataWindow.Web 
namespace and is delivered in the WebDataWindow.dll assembly. 

The class extends the .NET System.Web.UI.WebControls.WebControl class. It 
implements the IPostBackEventHandler and IPostBackDataHandler interfaces 
to handle client-side postbacks, and the IDataStore interface to enable 
ShareData, RowsCopy, and RowsMove methods to be called between the 
WebDataWindowControl and DataStore. 

Internally, the WebDataWindowControl uses an instance of the DataStore class 
to expose methods and properties and render the DataWindow in the selected 
rendering format.

Figure 1-3: WebDataWindowControl class hierarchy



Chapter 1    Introduction to DataWindow .NET

Programmer’s Guide 7

Classes, structures, delegates, and enumerations in 
the Sybase.DataWindow namespace
Classes In addition to the main classes and interfaces illustrated in Figure 1-2, there are 

numerous other classes, including: 

• Two classes, Transaction and AdoTransaction, that can be used for 
database connections. For more information, see Chapter 5, “Working 
with Transaction and AdoTransaction Objects.”

• Classes that inherit from the System.EventArgs class and are used to pass 
state information to event handlers. For more information, see “Handling 
events” on page 90. 

• Classes that inherit from various System.Exception classes and are used in 
exception handling. See “Handling DataWindow exceptions” on page 91.

• A GraphicObject class that inherits from System.Object and is the 
ancestor of graphic object classes for objects that can display in a 
DataWindow, such as columns, buttons, and graphs. For more 
information, see “Accessing DataWindow object property values in code” 
on page 130.

• An EditControl class that represents editable controls on a DataWindow. 
For more information, see “Manipulating data in a DataWindow control” 
on page 74.

• An ExpressionBasedProperty class and descendent classes that allow you 
to set DataWindow object properties that are backed by expressions. For 
more information, see “Using DataWindow expressions as property 
values” on page 134.

• Classes that inherit from an EditStyleBase class and allow you to set edit 
style properties for columns, and a SpinProperties class that allows you to 
set an EditMask spin control’s increment and maximum and minimum 
values.

• A DataWindowSyntaxGenerator class that provides a method called 
DataWindowSyntaxFromSql that generates a DataWindow source 
definition from a valid SQL SELECT statement. You can use the 
DataWindow syntax with the Create method to create a new DataWindow 
object dynamically. 

For more information, see “Using DataWindowSyntaxFromSql” on page 
150.



Classes, structures, delegates, and enumerations in the Sybase.DataWindow namespace

8  DataWindow .NET

• A Utility class that holds methods that allow you to convert units of 
measurement in a DataWindow to and from pixels, and to get a list of the 
DataWindow objects in a library. See “Getting a list of DataWindow 
objects in a library” on page 61.

Structures There are four structures:

• CodeTableValue describes the data-display value pair for a column’s code 
table.

• DataWindowBand describes the band or layer in a DataWindow object. 
For more information about bands and layers, see the DataWindow 
Designer User’s Guide.

• GraphObjectAtPointer provides information about graph items under the 
mouse pointer.

• ObjectAtPointer defines the structure returned for the ObjectUnderMouse 
property.

Delegates Delegates handle each of the events that can occur in a DataWindow 
application, such as the BeginRetrieve event and the ButtonClicked event. For 
example, the delegate for the ButtonClicked event is 
ButtonClickedEventHandler.

Enumerations Enumerations are used to specify values such as the actions to be taken in 
specific events, the style to be used for borders, symbols, and lines, and the 
status of a row or a data item.

Quick reference To view or print a quick reference to all the classes, interfaces, structures, 
delegates, and enumerations in the Sybase.DataWindow namespace, go to the 
Sybase.DataWindow Namespace page in the DataWindow Reference help. For 
how to install this help, see “Getting context-sensitive help” on page 12.



Chapter 1    Introduction to DataWindow .NET

Programmer’s Guide 9

Classes, structures, delegates, and enumerations in 
the Sybase.DataWindow.Web namespace

The Sybase.DataWindow.Web namespace has additional specialized classes.

Classes In addition to the WebDataWindowControl class, there are several other 
classes, including: 

• The DataObject class, which holds the DataWindow object’s data cache; 
the AutoDataCacheErrorEventArgs class, used when an error occurs in 
automatic data caching; and the AutoContextRestoreErrorEventArgs 
class, used when an error occurs in automatic context restoration. For 
more information, see “Maintaining state” on page 192.

• Two classes that inherit from the System.EventArgs class and are used to 
pass state information to event handlers that handle the 
AfterPerformAction and BeforePerformAction events. For more 
information, see “Handling events” on page 90. 

• Classes that inherit from the System.UnauthorizedAccessException class 
and are used when the ASP.NET worker process does not have write 
access on the server. See “Handling DataWindow exceptions” on page 91 
and “Configuring the .NET Framework” on page 207.

• A StreamImageContainer class used to display a Graph DataWindow as an 
image stream. For more information, see “Rendering graphs” on page 
203.

• A GraphConfigurations class that wraps the deployment behavior for 
graph rendering. For more information, see “Rendering graphs” on page 
203.

• A JavaScriptConfigurations class that wraps the deployment behavior for 
static JavaScript files. For more information, see “Generating JavaScript 
for common management tasks” on page 189.

• An XmlConfigurations class that wraps the deployment behavior for 
XHTML and XML Web DataWindow rendering. For more information, 
see “Configuring XML” on page 190.

• ObjectLink, ObjectLinkCollection, ObjectLinkConverter, LinkArgument, 
LinkArgumentCollection, and LinkArgumentConverter classes that are 
used to handle hyperlinks. For more information, see “Creating 
hyperlinks” on page 205.



Installing DataWindow .NET

10  DataWindow .NET

• PageNavigationBarSettings and related classes that are used to specify the 
style and properties of a page navigation bar. See “Paging methods” on 
page 198.

• A StateObject class that keeps track of changes to properties and saves 
changes to a control’s view state.

Delegates Delegates handle the AfterPerformAction, BeforePerformAction, 
AutoContextRestoreError, and AutoDataCacheError events.

Enumerations Enumerations are used to specify values such as the type of a link argument or 
postback action, how DataWindows and graphs are rendered, and how 
JavaScript functions are deployed.

Quick reference To view or print a quick reference to all the classes, delegates, and 
enumerations in the Sybase.DataWindow.Web namespace, go to the 
Sybase.DataWindow.Web Namespace page in the DataWindow Reference 
help. For how to install this help, see “Getting context-sensitive help” on page 
12.

Installing DataWindow .NET
The DataWindow .NET common setup program also installs Adaptive Server 
Anywhere, DataWindow Designer, and context-sensitive help for the 
DataWindow assembly. For complete installation instructions, see the 
Installation Guide.

Adding controls to the 
Toolbox

When you install DataWindow .NET on a computer on which Visual Studio 
.NET 2005 has already been installed, the installer registers the DataWindow 
.NET controls so that they display in the Visual Studio toolbox.

In a Windows application, the DataWindowControl, DataStore, and 
Transaction icons display in the toolbox. In a Web application, the 
WebDataWindowControl and StreamImageContainer icons display when you 
select View>Designer from the Visual Studio menu. The DataStore and 
Transaction icons display when you select View>Component Designer from 
the menu.

If Visual Studio .NET 2005 is installed after DataWindow .NET, you can 
register the DataWindow .NET controls manually using the DWToolBoxReg 
utility. The utility is installed in the DataWindow .NET directory. 



Chapter 1    Introduction to DataWindow .NET

Programmer’s Guide 11

To register the controls, change directory to the DataWindow .NET directory 
and type the following commands, where full_path is the full path to your 
DataWindow .NET 2.0 installation directory:

DWToolBoxReg -a "full_path\DataWindow.dll"
DWToolBoxReg -a "full_path\WebDataWindow.dll"

These commands add a new tab to the Visual Studio .NET toolbox with the 
name Sybase DataWindow 2.0. You can use a different name for the tab by 
adding the -tab option to the command line. For example:

DWToolBoxReg -a "full_path\DataWindow.dll" -tab 
"DataWindow .NET 2.0"

Use the -r option to remove the tab from the toolbox.

Alternatively, you can create a new tab, right-click on the tab, select Choose 
Items, browse to your DataWindow .NET 2.0 installation directory, and select 
DataWindow.dll, and then WebDataWindow.dll.

The DWToolboxReg utility works only in Visual Studio .NET 2005. If you are 
using another development tool that has a toolbox or tool palette, use the 
mechanism described in the product’s documentation to add DataWindow 
.NET controls.

Adding DataWindow 
references to the 
solution

When you have created a new application in Visual Studio .NET, open the 
Solution Explorer, right-click References, and select Add References. In the 
Add Reference dialog box, click Browse and navigate to the DataWindow 
.NET 2.0 directory, select DataWindow.dll, DataWindowInterop.dll, and, for 
an ASP.NET application, WebDataWindow.dll, and click OK. 

If you use drag-and-drop to add the controls to a form, the references are 
created automatically.



Getting context-sensitive help

12  DataWindow .NET

Getting context-sensitive help 
In Visual Studio .NET, the prototype of a method or property displays when 
you place the edit cursor on it in the code editor. In Visual C#, a brief summary 
also displays. 

To get more detailed information when you press F1 with the edit cursor on a 
DataWindow member, you need to select the DataWindow Reference 
component in the DataWindow .NET setup program. This component adds a 
Help component in Microsoft Help 2 format to the Visual Studio .NET 2005 
Help namespace. The Help component displays in the Help contents and filter 
list as Sybase DataWindow.

If you install the Sybase DataWindow help, you can also see help in the Visual 
Studio .NET Object Browser.

If you are not using Visual Studio, you can install the same help in Microsoft 
Help 1.2 format (compiled HTML Help). For more information, see the 
Installation Guide.



Programmer’s Guide 13

C H A P T E R  2 Tutorial

About this chapter This chapter walks you through the creation of simple Windows and 
ASP.NET Web applications in DataWindow Designer and Visual Studio 
.NET 2005. 

Contents Topic Page

About this tutorial 14

Creating a project and library 15

Connecting to the EAS Demo database 15

Creating and saving a DataWindow object 16

Modifying the appearance of the DataWindow object 20

Copying a DataWindow object into a library 22

Creating a second DataWindow object 24

Modifying the appearance of the second DataWindow object 29

Adding DataWindows to a form 32

Adding a DataWindowControl to a Windows form 33

Associating a DataWindow object with the control 34

Adding a second DataWindowControl to the form 35

Adding a Transaction object to the form 36

Connecting to the database 37

Retrieving data 38

Updating data 42

Building a deployment library 44

Adding a WebDataWindowControl to a Web form 45

Associating a DataWindow object with the control 46

Adding a second DataWindowControl to the form 47

Adding a Transaction object to the form 48

Connecting to the database 50

Retrieving data into the detail DataWindow 53



About this tutorial

14  DataWindow .NET

Before you begin This chapter assumes that you have some basic experience with DataWindow 
Designer and with using Visual Basic or C# in Visual Studio .NET. For more 
information about the DataWindow Designer user interface, see the 
DataWindow Designer User’s Guide. For more information about using Visual 
Basic or C#, see the documentation for your development environment.

About this tutorial
In this tutorial, you start by setting up a project in DataWindow Designer and 
building two DataWindow objects. 

The first object uses the Tabular presentation style and displays a list of 
customers. The data comes from the Customers table in the EAS Demo 
database, which is an Adaptive Server® Anywhere database supplied with 
DataWindow Designer. You must have ASA and the database installed on your 
system to complete the tutorial.

The second object uses the FreeForm presentation style and shows details for 
a single customer.

In Visual Studio .NET, you can create a new Windows Application or 
ASP.NET Web Application in the New Project dialog box.

In the Windows Application project, you use drag-and-drop to add two 
DataWindowControls and a Transaction object to a Windows form. Then you 
write code to set up a master-detail relationship between the two 
DataWindows, and add buttons to retrieve and update data.

In the ASP.NET Web Application project, you use drag-and-drop to add two 
WebDataWindowControls and a Transaction object to a Web form. Then you 
write code to set up a master-detail relationship between the two DataWindows 
and retrieve data.

The code in this tutorial is provided in Visual Basic and C#.



Chapter 2    Tutorial

Programmer’s Guide 15

Creating a project and library
In DataWindow Designer, you store your DataWindow objects in libraries, and 
you use a project to organize your libraries.

❖ To create a project and library in DataWindow Designer:

1 Click the New button in the DataWindow Designer tool bar (the 
PowerBar), select Project from the Project tab page, and click OK.

2 In the wizard, navigate to the Sybase\DataWindow Designer 2.0 folder, 
specify the name start for the project, and click Finish.

DataWindow Designer creates a project (a .DWP file) and a library (a .PBL 
file), both with the name start in the directory you specified.

Connecting to the EAS Demo database
Before you create your first DataWindow object, make sure that DataWindow 
Designer is connected to the EAS Demo database. This database contains 
tables that are used as examples in the DataWindow Designer User’s Guide. An 
ODBC data source and database profile, both named EAS Demo DB V105 
DWD, are installed when you install DataWindow Designer.

If you do not have an ODBC data source or a DataWindow Designer database 
profile for this database, use the following procedures to create them. If you 
already have the data source and profile, look at step 2 in the second procedure 
to see a quick way to code the connection syntax in your .NET application.

❖ To create a data source for the EAS Demo database:

1 Click the Database Profile button on the PowerBar, expand the ODBC 
folder, expand Utilities, and double-click Create ODBC Data Source.

2 Select User Data Source and click Next.

3 Select Adaptive Server Anywhere 9.0 and click Next and then Finish.

4 On the ODBC page of the Connect to Adaptive Server Anywhere dialog 
box, type EAS Demo DB V105 DWD as the name of the data source.

5 On the Login page, enter dba as the User ID and sql as the Password.

6 On the Database page, click Browse and navigate to the DataWindow 
Designer 2.0 directory.



Creating and saving a DataWindow object

16  DataWindow .NET

7 Select easdemodb105.db, click Open, and then click OK.

This creates the EAS Demo DB V105 DWD DSN.

❖ To create a database profile for the EAS Demo database:

1 In the Database Profile dialog box, select ODBC ODB and click New.

2 In the Database Profile Setup dialog box, type EAS Demo DB V105 DWD 
as the name of the profile, select the EAS Demo DB DSN you just created, 
and click Apply.

That is all you need to do to create a profile, but while you have the dialog 
box open, click the Preview tab. The Database Connection Syntax box 
contains code you can copy and paste into your .NET application. You can 
change the name of the transaction object you use to connect to the 
database and your programming language.

3 Click OK.

❖ To connect to the EAS Demo database:

• In the Database Profile dialog box, expand the ODBC folder, select the 
EAS Demo DB V105 DWD database profile, click Connect, and then 
click OK.

Creating and saving a DataWindow object
Creating a 
DataWindow object

You create DataWindow objects using a wizard, and then enhance them in the 
DataWindow painter.

❖ To create a DataWindow object in DataWindow Designer:

1 In the New dialog box, click the DataWindow tab, select Tabular from the 
list of presentation styles, and click OK.

The Choose Data Source for Tabular DataWindow page of the 
DataWindow wizard displays.

2 Select Quick Select as the data source, select the Retrieve On Preview 
check box if it is not already selected, and click Next.

DataWindow Designer connects to the EAS Demo DB V105 DWD 
database, and the Quick Select dialog box displays.

3 Click the customer table in the Tables list box.



Chapter 2    Tutorial

Programmer’s Guide 17

This opens the table and lists its columns as shown in the illustration 
below. For this DataWindow, you will select four columns.

4 Click id, fname, and lname in the Columns list box in the order listed.
Scroll down the list and click company_name.

DataWindow Designer displays the selected columns in a grid at the 
bottom of the Quick Select dialog box.

Selection order determines default display order
The order in which you select the columns determines their default 
left-to-right display order in the DataWindow object. If you clicked a 
column by mistake, you can click it again to clear the selection. You can 
also rearrange columns later in the DataWindow painter.

You can use the grid area at the bottom of the dialog box to specify sort 
criteria (for the SQL ORDER BY clause) and selection criteria (for the SQL 
WHERE clause).

5 In the grid area of the Quick Select dialog box, click in the cell next to Sort 
and below Id.

A drop-down list box displays.



Creating and saving a DataWindow object

18  DataWindow .NET

6 Select Ascending from the drop-down list box.

This specifies that the id column is to be sorted in ascending order. 

7 Click OK.

The DataWindow wizard asks you to select the colors and borders for the 
new DataWindow object. By default, there are no borders for text or for 
columns. 

8 Click Next.

This accepts the border and color defaults. The DataWindow wizard 
summarizes your selections.

9 Click Finish.

DataWindow Designer creates the new DataWindow object and opens the 
DataWindow painter. 

Understanding the 
DataWindow painter

The Design view in the DataWindow painter is divided into four areas called 
bands: header, detail, summary, and footer. You can modify the contents of 
these bands. For example, you can change their sizes, add objects (controls, 
text, lines, boxes, or ovals), and change colors and fonts. 

In the Design view, DataWindow Designer displays a Heading band with 
default headings and a Detail band with the columns you selected:



Chapter 2    Tutorial

Programmer’s Guide 19

The Preview view displays the DataWindow as it appears at runtime. 
DataWindow Designer displays data for all customers. The data is sorted in 
ascending order by customer ID, as you specified in the wizard.

Displaying the Preview view
If the Preview view is not displayed, select View>Preview from the menu bar. 
If Preview is grayed, it is already displayed and you cannot select it. You can 
open only one Preview view at a time. 

Save the DataWindow 
object

Now you name the DataWindow object and save it in the start.pbl library.

❖ To save a DataWindow object:

1 Select File>Save from the menu bar.

The Save DataWindow dialog box displays with the insertion point in the 
DataWindows box.

2 Type d_custlist in the DataWindows box.

3 (Optional) Type the following comments in the Comments box:

This DataWindow object retrieves customer names and 
company associations.

4 Click OK.

DataWindow Designer saves the DataWindow object and closes the Save 
DataWindow dialog box.



Modifying the appearance of the DataWindow object

20  DataWindow .NET

Modifying the appearance of the DataWindow object
In DataWindow Designer, you can make many different customizations to the 
DataWindow object’s appearance. This exercise demonstrates some of the 
techniques you can use to make cosmetic changes to the DataWindow. You can 
skip this exercise if you want to.

In the exercise you reposition the columns and column headings to make room 
for the hand pointer, which displays to the left of the currently selected row. 
You also move some of the columns to make them line up with their headings. 

You make these changes in the Design view. You can keep the Preview view 
open at the same time to see how the changes you make affect the appearance 
of the DataWindow at runtime.

❖ To change the appearance of the DataWindow object:

1 Select Edit>Select>Select All from the menu bar or press Ctrl+A.

All of the controls in the DataWindow object are selected in the Design 
view. 

2 Position the mouse pointer over one of the selected objects and drag the 
object to the right about one inch.

All of the selected objects move together.

3 Click in a blank area in the Design view to clear the selection.

4 Click the Customer ID header above the Header band, hold down the Ctrl 
key and click the id column above the Detail band, release the Ctrl key, and 
drag the id column to the left about one-half inch.

The column and its header move together.

5 Click the Center button in the StyleBar and click in a blank area in the 
Design view.

This centers the Customer ID column header text and the column data, and 
clears the object selection.

6 Click the First Name header, hold down the Ctrl key and click the Last 
Name and Company Name headers, then click the Left button in the 
StyleBar.



Chapter 2    Tutorial

Programmer’s Guide 21

This left-justifies the text in those three headers. When you have finished, 
the Design and Preview views should look something like this:

7 Select File>Close from the menu bar.

A message box asks if you want to save your changes.

8 Click Yes.

DataWindow Designer saves the DataWindow object and closes the 
DataWindow painter.

Previewing the 
DataWindow in HTML

You can use DataWindows in Windows and Web applications. To see what a 
DataWindow looks like in an HTML DataWindow in a Web browser, you can 
use HTML Preview. For more information, see “Previewing the DataWindow” 
on page 230. Make sure you set the recommended properties before 
previewing the DataWindow in a browser.

Property descriptions
To access property descriptions for the DataWindow, select the DataWindow 
object by deselecting all controls, then right click in the Properties view and 
select Help from the pop-up menu. Most of the properties related to Web 
generation are described in the HTMLGen.property topic. There are also 
CSSGen.property, XHTMLGen.Browser, XMLGen.property, and 
XSLTGen.property topics.

DataWindow property descriptions are also available in the DataWindow 
Object Reference in the compiled HTML Help.



Copying a DataWindow object into a library

22  DataWindow .NET

Copying a DataWindow object into a library
The next DataWindow object you create will include the State column in the 
Customer table. This column uses a pre-defined DropDownDataWindow edit 
style called StateCode. A DropDownDataWindow edit style allows you to use 
another DataWindow object as the data source for a column. In this case, the 
DataWindow object has a list of states and their two-letter postal codes.

StateCode is an extended attribute associated with the State column in the EAS 
Demo database. Extended attributes are stored in system tables in the database 
and supply information about display formats, validation rules, edit styles, and 
fonts. 

• For more information about edit styles and extended attributes, see the 
DataWindow Designer User’s Guide.

You can see the definition of StateCode in the Database painter.

❖ To view an edit style in the Database painter:

1 Click the Database icon in the PowerBar to open the Database painter.

2 In the Objects view, expand ODB ODBC>EAS Demo DB V105 DWD>
Tables>customer>Columns, right-click the state column, and select 
Properties from the pop-up menu.

3 Select the Edit Style tab in the Column Properties view and note that the 
Style Name is StateCode.

4 In the Extended Attributes view, scroll down to StateCode and select 
Properties from its pop-up menu.



Chapter 2    Tutorial

Programmer’s Guide 23

The DataWindow option in the Edit Style dialog box shows that this edit 
style uses a DataWindow object called d_dddw_states.

5 Close the dialog box and the Database painter.

The d_dddw_states DataWindow object is available in the sample library 
installed with DataWindow Designer. To use it in your application, you need to 
copy it into your application’s library.

❖ To copy a DataWindow object from one library to another:

1 Click the Library icon in the PowerBar to open the Library painter.

2 In the Tree view, navigate to the Sybase\DataWindow Designer 2.0\Code 
Examples directory and expand dwdexample.pbl.

3 Right-click d_dddw_states and select Copy from its pop-up menu.

4 In the Select Library dialog box, navigate to the start.pbl you created for 
this tutorial and click Open.

The d_dddw_states DataWindow object displays in your library in the 
System Tree.



Creating a second DataWindow object

24  DataWindow .NET

Creating a second DataWindow object
When you built the first DataWindow object, you used Quick Select to specify 
the table and columns. This let you retrieve all the customers without having to 
use the Select painter.

To build the second DataWindow object, you use the Select painter. You need 
to define a retrieval argument and WHERE criteria so you can pass an argument 
to the DataWindow object at runtime to select a specific customer. In this case, 
you will pass the customer ID.

Using SQL Select to build a DataWindow object
In this section, you:

• Select a data source and style

• Select the table and columns

• Define a retrieval argument

• Specify a WHERE clause

• View the DataWindow in the DataWindow painter

• Save the DataWindow object

Select a data source 
and style

First you select a data source and define how the data is to be presented.

❖ To select the data source and style:

1 Click the New button in the PowerBar, select FreeForm from the list of 
presentation styles, and click OK.

2 Select SQL Select as the data source and select Retrieve On Preview if it 
is not already selected.

Since the data source is SQL Select, you go to the Select painter, and the 
Select Tables dialog box displays.

Selecting the Retrieve On Preview check box allows you to view the data 
returned by a query in the development environment, but you need to 
provide initial values for any retrieval arguments that you specify.

3 Click Next.



Chapter 2    Tutorial

Programmer’s Guide 25

Select the table and 
columns

Now you select the table and the columns from that table to use in the 
DataWindow object.

❖ To select the table and columns:

1 Select customer in the list of tables and click Open.

The Select painter displays the customer table and its columns.

Alternative method
If you double-click the customer table instead of selecting it and clicking 
Open, the Select Tables dialog box remains open so that you can select 
another table. In this case, you click Cancel to continue.

2 Right-click the header area of the Customer table in the Table Layout view 
and choose Select All from the pop-up menu.

The column names appear in the Selection List area above the table in the 
Table Layout view. 

The column order in the Selection List reflects the order in which columns 
are selected. Since you selected all the columns at once, the order 
displayed is the original order of the columns in the database. You will 
change the column presentation order later.

You can also see the order of selection in the Syntax view. Click the Syntax 
tab to display the Syntax view, which displays the generated Select 
statement. 



Creating a second DataWindow object

26  DataWindow .NET

Define a retrieval 
argument

Now define a retrieval argument.

❖ To define a retrieval argument:

1 Select Design>Retrieval Arguments from the menu bar.

The Specify Retrieval Arguments dialog box displays. 

2 Type cust_id in the Name box.

The default data type is Number, which is what this exercise requires.

About retrieval argument names
You can choose any name you want for the retrieval argument; it is just a 
placeholder for the value you pass at runtime. 

3 Click OK.

The retrieval argument is defined.

Specify a WHERE 
clause

You need to specify a WHERE clause using the retrieval argument to retrieve a 
specific customer.

❖ To specify a WHERE clause:

1 Click the Where tab at the bottom of the Select painter.

2 Click in the box below Column in the Where tab page.

A down arrow displays, and the box becomes a drop-down list box.

3 Click the down arrow and select "customer"."id".

Your selection displays immediately below the Column heading. An equal 
sign (=) appears in the Operator box. This is what you need for this 
tutorial, so do not change it.

4 Right-click in the box below the Value column header on the Where tab 
page.



Chapter 2    Tutorial

Programmer’s Guide 27

Select Arguments from the pop-up menu, select :cust_id, and click 
Paste.

5 Click the Syntax tab.

The Syntax tab page displays the modified SELECT statement.

6 Scroll down until you see the generated WHERE clause.

You have now created a complete SQL SELECT statement that retrieves 
data from several columns in the customer table where the id column is 
equal to an argument that will be supplied at runtime.

View the DataWindow 
in the DataWindow 
painter

You can view the DataWindow in the DataWindow painter using the Design 
and Preview views.

❖ To view the DataWindow in the DataWindow painter:

1 Click the Return button in the PainterBar or select File>Return To 
DataWindow Painter from the menu bar.

The DataWindow wizard asks you to select the borders and colors for the 
new DataWindow object.

2 Select Raised from the Border drop-down list box for columns.
Click Next.

You have added raised borders to the columns, but not to the labels in the 
DataWindow object. The DataWindow wizard summarizes your 
selections.

3 Click Finish.

Because you selected the Retrieve On Preview check box and because the 
Preview view is part of the default layout scheme for the DataWindow 
painter, the Specify Retrieval Arguments dialog box appears.



Creating a second DataWindow object

28  DataWindow .NET

This dialog box prompts you for an argument value. When you put this 
DataWindow object into the tutorial application, you write code that 
passes the required argument to the DataWindow object automatically.

4 Type a customer ID (such as 101, 102, or 103) in the Value field.
Click OK.

The DataWindow painter opens. The Design view displays the new 
DataWindow object, and the Preview view retrieves the requested 
customer data.

Retrieving other records
If you want to preview the record for another customer, you can right-click 
inside the DataWindow Preview view, select Retrieve from the pop-up 
menu, then specify a different customer ID in the Specify Retrieval 
Arguments dialog box.

Save the DataWindow 
object

Now name the DataWindow object and save it. 

❖ To save the DataWindow object:

1 Select File>Save from the menu bar.

The Save DataWindow dialog box displays. 



Chapter 2    Tutorial

Programmer’s Guide 29

2 Type d_customer in the DataWindows box.

Earlier you saved a DataWindow object as d_custlist.

3 (Optional) Type the following comments in the Comments box.

This DataWindow retrieves all columns for the 
Customer table. It is useful as a detail DataWindow.

4 Click OK.

You return to the DataWindow painter.

Modifying the appearance of the second DataWindow 
object

This exercise shows how you can modify the appearance of a free-form 
DataWindow object. You:

• Rearrange columns and labels

• Align columns and labels

• Display the arrow for a drop-down DataWindow edit style

Columns on freeform DataWindows
Data fields on freeform DataWindow objects are still called columns, even 
though they are shown in a nontabular display.

Rearrange columns 
and labels

Rearrange the columns and labels in the new DataWindow object to customize 
its appearance. You can maximize the Design view for greater ease in 
manipulating the columns and their labels.

❖ To rearrange the columns and labels:

1 Click the Address: label in the Design view, press the Ctrl key, and click 
the address column.

The Address label and column are selected.



Modifying the appearance of the second DataWindow object

30  DataWindow .NET

2 Keep the Ctrl key pressed and click the following column labels and 
columns:

If necessary, scroll down until you can see all the columns in the 
DataWindow.

3 Release the Ctrl key, position the cursor on one of the selected objects, and 
drag it to the top right corner of the DataWindow object.

The objects move together.

4 Use the Ctrl+click technique to move the following label and column 
controls to the location indicated:

5 Drag the Detail band up below the last column label.

This removes any extra space in the detail area. Some of the fields might 
overlap others. You fix this in the next exercise. 

Align columns and 
labels

Now align the columns and labels on the new DataWindow.

❖ To align the columns and labels:

1 Select the Zip Code: label in the Design view and move it as close as 
possible to the company_name column.

A narrow space should separate the left edge of the label box from the right 
edge of the column box.

2 While the Zip Code: label is still selected, use the Ctrl+click technique to 
select the Address:, City:, and State: labels.

3 Select Format>Align from the menu bar.

A cascading menu of align options displays.

4 Select the first option (Align left edges).

Label Column

City: city

State: state

Zip Code: zip

Label Move with column Move under

Company Name: company_name Last Name:

Phone Number: phone Company Name:



Chapter 2    Tutorial

Programmer’s Guide 31

DataWindow Designer aligns the left edges of the selected objects with the 
left edge of the first item you selected (the Zip Code: label).

Selecting an alignment tool from the PainterBar
You can access a drop-down list of alignment tools by clicking the Align 
button on PainterBar2.

5 Move the zip column so that it is next to the Zip Code: label, and align the 
address, city, and state columns with the zip column just as you aligned the 
column labels.

Display the arrow for a 
drop-down 
DataWindow edit style

In the previous screenshot, the column for the customer state of residence has 
a DropDownDataWindow edit style that uses the d_dddw_states drop-down 
DataWindow object you copied into your library in “Copying a DataWindow 
object into a library” on page 22. 

You can make the state selection list visible at all times in your application, or 
you can display an arrow at all times to indicate that a selection list is available. 
Now you change the property for the state column to show the arrow at all 
times.

❖ To display the arrow for a DropDownDataWindow edit style:

1 Click the state column in the Design view and make sure the Properties 
view displays.

The Properties view displays properties of the column.

2 Click the Edit tab in the Properties view.

You may need to click the arrow keys near the top of the Properties view 
to display the Edit tab before you can click it. Notice that the Style Type 
selection is DropDownDW.

3 Select the Always Show Arrow check box.



Adding DataWindows to a form

32  DataWindow .NET

Make sure the state column in the Design view is wide enough to display 
two characters plus the arrow symbol. An arrow appears next to the state 
column in the Design and Preview views. While the column is selected in 
Design view, you can make the column wider by holding the cursor over 
the right edge of the column until the cursor symbol changes to a 
double-headed arrow, then dragging the edge toward the rightmost frame 
of the view.

The Preview view should look like this:

4 Click the Save button in PainterBar1 and click the Close button in 
PainterBar1.

Adding DataWindows to a form
To use the DataWindow object in a .NET application, you add a 
DataWindowControl or WebDataWindowControl to a form, then associate that 
control with the DataWindow object.

Names for 
DataWindow controls 
and DataWindow 
objects

There are two names to be aware of when you are working with a 
DataWindow:

• The name of the DataWindowControl or WebDataWindowControl

• The name of the DataWindow object associated with the control

When you place a control in a form, it gets the default name 
DataWindowControl1 or WebDataWindowControl1. You can change the name 
to be something meaningful for your application. In this case, you will add two 
controls and rename them dwCustList and dwCustomer. These controls will be 
associated with the DataWindow objects d_custlist and d_customer.



Chapter 2    Tutorial

Programmer’s Guide 33

To add DataWindow objects to a Windows application, go to “Adding a 
DataWindowControl to a Windows form” next. To add DataWindow objects 
to a Web application, go to “Adding a WebDataWindowControl to a Web 
form” on page 45.

Adding a DataWindowControl to a Windows form
❖ To place a DataWindowControl on a form:

1 In Visual Studio .NET, create a new Visual Basic or C# Windows 
Application project named Start and open the form.

2 Select View>Toolbox if the Visual Studio Toolbox is not visible. 

3 In the Toolbox, select Sybase DataWindow 2.0, click the down arrow to 
locate the DataWindowControl icon, and select it.

4 Click on the form where you want the top left corner of the DataWindow 
to display.

The control displays on the form.

5 Resize the DataWindowControl by selecting it and dragging one of its 
corners or sides.

Troubleshooting If the Sybase DataWindow 2.0 tab is not visible in the Toolbox or it does not 
contain the controls, see “Installing DataWindow .NET” on page 10 for how 
to add them manually. 

If you encounter the DataWindowServerNotLoaded exception, make sure that 
the location of the PBDWN105.DLL file, which is in the DataWindow .NET 
2.0 directory, is in your PATH environment variable, and that the PATH is not 
corrupted or too long. You should also make sure that the References Path in 
the project’s property pages includes the DataWindow .NET 2.0 directory. 

You should always check the latest version of the release bulletinon on the 
Sybase Product Manuals Web site at http://sybooks.sybase.com for additional 
troubleshooting information. 

http://sybooks.sybase.com


Associating a DataWindow object with the control

34  DataWindow .NET

Associating a DataWindow object with the control
After placing the control, you associate a DataWindow object with the control.

❖ To associate a DataWindow object with the control:

1 Right-click the DataWindowControl and select Properties.

2 In the Properties window, locate the LibraryList property in the left panel, 
and click the Browse (...) button in the right panel to open the Library List 
dialog box.

3 Click the Add Library to Library List icon (circled in the following 
illustration), browse to select the start.pbl file, and click Open.

You can add multiple libraries to the list. When you specify a DataWindow 
object, the server searches the libraries for it in the order in which the 
libraries display in the list.



Chapter 2    Tutorial

Programmer’s Guide 35

4 Select DataWindowObject in the Properties window, click the browse 
button in the right pane to open the Select DataWindow dialog box, select 
the d_custlist DataWindow object, and click OK.

5 Change the Name property of the control to dwCustList.

6 Set the ScrollBars property to Vertical.

The Customers table in the database has more than 100 rows, so the 
control needs a scroll bar so that users can see them all.

7 Close the Properties window.

The column headers display in the control on the form.

Adding a second DataWindowControl to the form
You are building a master-detail form. You have already added the master 
DataWindowControl. Now repeat the same steps to add a second control to the 
form and associate it with a DataWindow object. This time rename the control 
dwCustomer and associate it with the d_customer DataWindow object. This 
control does not need a scroll bar.

After you resize the controls and the form to display all the fields in the 
DataWindow objects, the form should look something like this:



Adding a Transaction object to the form

36  DataWindow .NET

Adding a Transaction object to the form
You can use either a Transaction object or an AdoTransaction object to connect 
to a database. An AdoTransaction object lets you share a connection with other 
database constructs in an application. For this simple application, you will use 
a Transaction object, which is used exclusively for DataWindow .NET 
controls.

Drag-and-drop not available for AdoTransaction
You can add a Transaction object to a form using drag-and-drop, but an 
AdoTransaction object can only be added in code. For more information, see 
“Using an AdoTransaction object” on page 120.

❖ To add a Transaction object to a form:

1 Drag the Transaction item from the Sybase DataWindow tab of the 
Toolbox to the form.

Since the Transaction object is nonvisual, it displays below the form.

2 Right-click the Transaction object to display its Properties window.

3 Change the Name property to myTrans.

4 Type the following in the DbParameter field:

 ConnectString='DSN=EAS Demo DB V105 DWD;UID=;PWD='

5 Make sure the EAS Demo database is running, then click the Test 
Connection link in the properties window.

You should see a message box indicating that the connection was 
successful. 

Troubleshooting tip
If the connection was not successful, go back to DataWindow Designer 
and look at the Preview page of the Database Profile dialog box. Change 
the language to whatever language you are using, change the name of the 
Transaction object to myTrans, and make sure that the generated code in 
Visual Studio .NET matches the generated code in the Database 
Connection Syntax pane.



Chapter 2    Tutorial

Programmer’s Guide 37

Connecting to the database
Now you add code so that the connection to the database is made when the 
form is loaded. You also want to establish the relationship between each 
DataWindowControl and the Transaction object at the same time, because the 
association only needs to be made once per session.

❖ To connect to the database and set up the transaction:

1 Double-click in an empty area of the form.

This creates an event handler for the form’s Load event and opens the code 
editor:

[Visual Basic]
Private Sub Form1_Load(ByVal sender As 
System.Object, ByVal e As System.EventArgs) Handles 
MyBase.Load

End Sub

[C#]
private void Form1_Load(object sender, 
System.EventArgs e)

{

}

2 Type the following in the Form1_Load event handler (add semicolons to 
the end of each line for C#):

myTrans.Connect()
dwCustList.SetTransaction(myTrans)
dwCustomer.SetTransaction(myTrans)

This code connects to the database and associates the connected 
Transaction object with each of the DataWindowControls.

Disconnecting from 
the database

When you drag a Transaction object to a form, it is added to the form’s 
components list, and is automatically disconnected and disposed of when the 
form is closed. If you do not use drag-and-drop, you need to disconnect from 
the database when the form is closed.

❖ To disconnect from the database in Visual Basic:

1 In the code editor, select Closing from the list of events in the drop-down 
list at the top right.

The Form1_Closing event handler displays.



Retrieving data

38  DataWindow .NET

2 Enter the following code to disconnect from the database and exit the 
application when the form is closed:

Private Sub Form1_Closing(ByVal sender As Object, 
ByVal e As System.ComponentModel.CancelEventArgs) 
Handles MyBase.Closing

myTrans.Disconnect()
Application.Exit()

End Sub

❖ To disconnect from the database in C#:

• Enter the following code to disconnect from the database and exit the 
application when the form is closed:

private void Form1_Closing(object sender, 
System.ComponentModel.CancelEventArgs e)
{

myTrans.Disconnect();
Application.Exit();

}

Retrieving data
You need to retrieve data into both DataWindow objects. You will add a button 
to the form to populate the master DataWindow, then code its 
RowFocusChanged event handler to populate the detail DataWindow.

Retrieving data into 
the master 
DataWindow

First add a button to the form that will retrieve data into the master 
DataWindow.

❖ To retrieve data into the master DataWindow:

1 Make sure there is enough room at the bottom of the form to add buttons, 
then expand the All Windows Forms tab in the Visual Studio .NET 
Toolbox and drag the Button item to the form.

2 Right-click the button and select Properties, change the Name property to 
btnRetrieve and the Text property to Retrieve, and close the Properties 
window.

3 Double-click the button.

This creates an event handler for the button’s clicked event and opens the 
code editor.



Chapter 2    Tutorial

Programmer’s Guide 39

4 Type the following in the btnRetrieve_Click event handler (add a 
semicolon to the end of the line for C#):

dwCustList.Retrieve()

This line retrieves data into the master DataWindow, dwCustList. Select 
Debug>Start Debugging to run the program. When you click the Retrieve 
button, the first DataWindow displays a list of customers. 

5 Close the application.

Retrieving data into 
the detail DataWindow

Since these DataWindow objects have a master-detail relationship, you want 
the details for the row that has focus in dwCustList to display in dwCustomer. 
To do that, you need to write code in the RowFocusChanged event handler for 
dwCustList.

The second DataWindow object, d_customer, has a WHERE clause that you set 
up in the SQL painter (see “Specify a WHERE clause” on page 26): 

WHERE "customer"."id" = :cust_id

The Retrieve method can take a list of retrieval arguments as a parameter. In 
this case, you use the GetItemDouble method to return the value of the customer 
id column in dwCustList that has focus. That value is then passed to the 
Retrieve method for dwCustomer to be used within the WHERE clause.

In Visual Studio .NET, the techniques for adding an event handler are different 
in Visual Basic and C#.

❖ To retrieve data into the detail DataWindow in Visual Basic:

1 Right-click on dwCustList and select View Code.

2 From the drop-down list on the right in the Code Editor, select 
RowFocusChanged.

This generates the event handler method and places the edit cursor in the 
body of the method.



Retrieving data

40  DataWindow .NET

3 Now code the event handler. The following code is wrapped in a try-catch 
statement that catches database errors and other exceptions:

Private Sub dwCustList_RowFocusChanged(ByVal _
sender As System.Object, ByVal e As _
Sybase.DataWindow.RowFocusChangedEventArgs) _
Handles dwCustList.RowFocusChanged

Try
' deselect all rows, then select current row
dwCustList.SelectRow(0, False)
dwCustList.SelectRow(e.RowNumber, True)

dwCustomer.Retrieve(dwCustList.GetItemDouble _
(e.RowNumber, "id"))

Catch ex As Sybase.DataWindow.DbErrorException
dwCustomer.Reset()
MessageBox.Show(ex.SqlErrorText, _
"DataWindow Operation Failed", _
MessageBoxButtons.OK, MessageBoxIcon.Stop)

Catch ex As Exception
dwCustomer.Reset()
MessageBox.Show(ex.ToString(), _
"Unexpected Exception", _
MessageBoxButtons.OK, MessageBoxIcon.Stop)

End Try
End Sub

❖ To retrieve data into the detail DataWindow in C#:

1 Right-click on dwCustList and select Properties.

2 In the Properties window, click the Events button and double-click 
RowFocusChanged in the list of events.

This adds a declaration of the event handler for dwCustList to the setup 
code in the InitializeComponent method:

this.dwCustList.RowFocusChanged += new 
Sybase.DataWindow.RowFocusChangedEventHandler(this.
dwCustList_RowFocusChanged);

It also generates the event handler method and places the edit cursor in the 
body of the method.

3 Now code the event handler. The following code is wrapped in a try-catch 
statement that catches database errors and other exceptions:

private void dwCustList_RowFocusChanged
(object sender,



Chapter 2    Tutorial

Programmer’s Guide 41

Sybase.DataWindow.RowFocusChangedEventArgs e)
{
try 
{
// deselect all rows, then select current row
dwCustList.SelectRow(0, false);
dwCustList.SelectRow(e.RowNumber,
true);

dwCustomer.Retrieve(dwCustList.GetItemDouble
((int) e.RowNumber, "id"));

} 

// catch database error and reset dwCustList
catch (Sybase.DataWindow.DbErrorException ex) 
{
dwCustomer.Reset();
MessageBox.Show(ex.SqlErrorText, 
"DataWindow Operation Failed",
MessageBoxButtons.OK, MessageBoxIcon.Stop);

}
catch (Exception ex)
{
dwCustomer.Reset();
MessageBox.Show(ex.ToString(), "Unexpected
Exception", MessageBoxButtons.OK,
MessageBoxIcon.Stop);

}
}

Testing retrieve Now you can test whether selecting a different row in the master DataWindow 
changes the detail DataWindow.

❖ To test the interaction between the master and detail DataWindows:

1 Select Debug>Start Debugging to run the program, and click the Retrieve 
button.

The first DataWindow displays a list of customers and the second displays 
the data for the first customer in the list (because the first row has focus).

2 Select a different row in the master DataWindow.

The detail DataWindow displays the data for the new row.

3 Close the application.



Updating data

42  DataWindow .NET

Updating data
Now you will add another button to the form that updates any changes the user 
makes in the detail DataWindow to the database. You use the UpdateData 
method to update data in the database. 

Use UpdateData, not Update
The DataWindowControl has both Update and UpdateData methods. Update is 
inherited from System.Windows.Forms.Control and causes the control to 
redraw invalidated regions in its client area. Use UpdateData to update data to 
the database.

UpdateData can be called with two boolean arguments. If the first argument is 
true, the data that the user last entered is automatically validated and stored in 
the control’s buffer. If the second argument is true, retained information about 
what data has been modified is automatically reset. In this case, you call 
UpdateData with the second argument set to false, and then use 
ResetUpdateStatus to clear the status flags manually.

The manual approach is preferred if you expect there might be data validation 
errors triggered at the DBMS level. If the update fails in that case, you might 
want to retain the status of the DataWindow before the update to allow the user 
to amend the data and retry.

If UpdateData throws an exception, the code that commits the transaction and 
clears the delete buffer is never reached.

❖ To update data in the database:

1 Add a button to the form as you did in “Retrieving data into the master 
DataWindow” on page 38. 

2 In the button’s Properties window, change the Name property of the button 
to btnUpdate and the Text property to Update.

3 Double-click the button to add an event handler for its Click event.

4 In the code editor, complete the code for the event handler as follows:

[Visual Basic]
Private Sub btnUpdate_Click(ByVal sender As _
System.Object, ByVal e As System.EventArgs) _
Handles btnUpdate.Click

Try
dwCustomer.UpdateData(True, False)
myTrans.Commit()



Chapter 2    Tutorial

Programmer’s Guide 43

dwCustomer.ResetUpdateStatus()
Catch ex As Sybase.DataWindow.DbErrorException
MessageBox.Show(ex.SqlErrorText + vbcrlf _
+ "No changes made to the database.", _
"Database Error", MessageBoxButtons.OK, _
MessageBoxIcon.Warning)

Catch ex As Exception
MessageBox.Show(ex.ToString() + vbcrlf + _
"No changes made to the database.", _
"Unexpected Exception", _
MessageBoxButtons.OK, MessageBoxIcon.Warning)

End Try
End Sub

[C#]
private void btnUpdate_Click(object sender,

System.EventArgs e)
{
try 
{
dwCustomer.UpdateData(true, false);
myTrans.Commit();
dwCustomer.ResetUpdateStatus();
}
catch (Sybase.DataWindow.DbErrorException ex)
{
MessageBox.Show(ex.SqlErrorText + 
"\n\nNo changes made to the database.",
"Database Error", MessageBoxButtons.OK, 
MessageBoxIcon.Warning);

}
catch (Exception ex)
{
MessageBox.Show(ex.ToString() + 
"\n\nNo changes made to the database.", 
"Unexpected Exception", MessageBoxButtons.OK, 
MessageBoxIcon.Warning);

}
}

5 Select Debug>Start Debugging to run the program, and click the Retrieve 
button.



Building a deployment library

44  DataWindow .NET

6 Change the first name of the customer displayed in the detail DataWindow, 
and click the Update button.

The name does not change in the master DataWindow.

7 Now click the Retrieve button again.

The data in the master DataWindow is refreshed, and your name change 
displays.

8 Close the application.

Building a deployment library
In a DataWindow .NET application, you can use a library (PBL) or deployment 
library (PBD) as the source of your DataWindow objects. If your users have 
DataWindow Designer, PowerBuilder, or InfoMaker, they can open PBL files 
and copy or modify the objects in them. They cannot copy or modify the 
objects in a PBD file. A PBD file is also smaller than a PBL file.

When you are ready to deploy your application, build a deployment library and 
change the LibraryList property of each DataWindowControl or DataStore to 
reference the PBD file instead of the PBL. Along with the executable file for 
your application, you need to deploy some additional files. 

For a list of the files you need to deploy and some techniques for deploying 
applications, see Chapter 13, “Deploying DataWindow .NET Applications.”

For where to deploy files, see “Deploying Windows form applications” on 
page 292.

❖ To build a deployment library:

• Right-click on the project file in the System Tree and select Build 
Deployment from the pop-up menu.

The Windows form 
tutorial is complete

This is the last section in the Windows form tutorial. The next section tells you 
how to build an ASP.NET Web application.

You can continue to modify and enhance the Windows solution. For example, 
you could add code to make sure that all changes have been made correctly 
when you close the application, add a button that inserts a new row into the 
database, or modify the form to use an AdoTransaction object instead of a 
Transaction object. 



Chapter 2    Tutorial

Programmer’s Guide 45

For more complete sample applications in Visual Basic and C#, see the Sybase 
CodeXchange Web site at http://datawindownet.codeXchange.sybase.com/ and 
the Code Examples subdirectory in your DataWindow .NET 2.0 directory. 

Adding a WebDataWindowControl to a Web form
To use the DataWindow object in an ASP.NET application, you add a 
WebDataWindowControl to a Web form, then associate that control with the 
DataWindow object.

❖ To place a WebDataWindowControl on a form:

1 In Visual Studio .NET, create a new Visual Basic or C# ASP.NET Web 
Site, name it WebStart, and accept the default location.

Default.aspx opens in the Source editor.

2 Click Design to display the Web form.

3 Select View>Toolbox if the Visual Studio Toolbox is not visible. 

4 In the Toolbox, expand Sybase DataWindow 2.0 and select the 
WebDataWindowControl icon.

If the WebDataWindowControl icon is not visible in the Toolbox, see 
“Installing DataWindow .NET” on page 10 for how to add it.

5 Click on the form where you want the top left corner of the Web 
DataWindow to display.

http://datawindownet.codeXchange.sybase.com/


Associating a DataWindow object with the control

46  DataWindow .NET

Associating a DataWindow object with the control
After placing the control, you associate a DataWindow object with the control.

First you need to add the PBL that contains the DataWindow object to the 
solution.

❖ To associate a DataWindow object with the control:

1 In the Solution Explorer, right-click the name of the application and select 
Add>Add Existing Item.

2 In the Add Existing Item dialog box, select All Files in the Files of Type 
drop-down list, browse to the location of start.pbl and select it, then click 
Add.

3 Right-click the WebDataWindowControl on the form and select 
Properties.

4 In the Properties window, locate the LibraryList property in the left panel, 
and click the Browse (...) button in the right panel to open the Specify 
Library List dialog box.

5 Click the Add Library to Library List icon and click the browse button.

6 In the Select Library dialog box, select start.pbl in the Contents pane and 
click OK.

You can add multiple libraries to the list. When you specify a DataWindow 
object, the server searches the libraries for it in the order in which the 
libraries display in the list.



Chapter 2    Tutorial

Programmer’s Guide 47

7 Click OK to close the Specify Library List dialog box.

8 Select DataWindowObject in the Properties window, click the browse 
button in the right pane to open the Select DataWindow dialog box, select 
the d_custlist DataWindow object, and click OK.

The column headers display in the control on the form.

9 Change the (ID) property of the control to dwCustList.

10 Set the AutoSaveDataCacheAfterRetrieve and AutoRestoreDataCache 
properties to true.

The data will be saved to a cache after a retrieve and the data cache will be 
restored after a postback.

11 Set the Height property to 240 and make sure that the VerticalScrollBar 
property is set to Auto.

The Customers table in the database has more than 100 rows. By default, 
all of the rows display. Setting the Height property restricts the number of 
rows that display. Setting the VerticalScrollBar property to Auto adds a 
scroll bar if one is needed.

Adding a second DataWindowControl to the form
You are building a master-detail form. You have already added the master 
WebDataWindowControl. Now repeat the same steps to add a second control 
to the form and associate it with a DataWindow object. This time rename the 
control dwCustomer and associate it with the d_customer DataWindow object. 
Set the AutoRestoreDataCache and AutoRestoreDataCacheAfterRetrieve 
properties to true..



Adding a Transaction object to the form

48  DataWindow .NET

Instead of setting the Height property, drag the handles of the control to display 
all the fields. After you resize the controls and the form to display all the fields 
in the DataWindow objects, the form should look something like this:

Adding a Transaction object to the form
You can use either a Transaction object or an AdoTransaction object to connect 
to a database. An AdoTransaction object lets you share a connection with other 
database constructs in an application. For this simple application, you will use 
a Transaction object, which is used exclusively for DataWindow .NET 
controls.

Drag-and-drop not available for AdoTransaction
You can add a Transaction object to a form using drag-and-drop, but an 
AdoTransaction object can only be added in code. For more information, see 
“Using an AdoTransaction object” on page 120.



Chapter 2    Tutorial

Programmer’s Guide 49

❖ To add a Transaction object to a form:

1 Select View>Component Designer to view the Transaction item on the 
Sybase DataWindow 2.0 tab of the Toolbox. 

2 Drag the Transaction item from the Toolbox to the Component Designer.

3 Right-click the Transaction object to display its Properties window.

4 Change the Name property to myTrans.

5 Type the following in the DbParameter field:

ConnectString='DSN=EAS Demo DB V105 DWD;UID=dba;
PWD=sql',ConnectOption='SQL_DRIVER_CONNECT,
SQL_DRIVER_NOPROMPT'

By default, if an ODBC database connection receives an error in a client-
server application, a message box prompts the user for information. In an 
ASP.NET application, the message box cannot be displayed and the Web 
application appears to hang. Setting SQL_DRIVER_NOPROMPT as a 
value of the ConnectOption database parameter stops the server from 
attempting to display a message. 

6 Make sure the EAS Demo database is running, then click the Test 
Connection link in the properties window.

You should see a message box indicating that the connection was 
successful. 

Troubleshooting tip
If the connection was not successful, go back to DataWindow Designer, 
select SQL_DRIVER_NOPROMPT as the value for Connect Type on the 
Options page of the Database Profile dialog box, and look at the Preview 
page. Change the language to whatever language you are using, change the 
name of the Transaction object to myTrans, and make sure that the code in 
Visual Studio .NET matches the generated code in the Database 
Connection Syntax pane.



Connecting to the database

50  DataWindow .NET

Connecting to the database
Now you add code so that the connection to the database is made and data is 
retrieved into the master DataWindow when the form is loaded. You need to 
establish the relationship between the WebDataWindowControl and the 
Transaction object at the same time. If any errors occur, they display in a text 
box.

❖ To connect to the database and set up the transaction:

1 Select View>Designer to open the default.aspx form.

2 Expand the Standard tab in the Visual Studio .NET Toolbox, drag a 
TextBox control onto the form below the dwCustomer DataWindow.

3 In the properties window, set its ID to errMsg, its TextMode to Multiline, 
and its Visible property to false.

The text box will only display if an error occurs.

4 Double-click in an empty area of the form.

This creates an event handler for the page’s Load event and opens the code 
editor:

[Visual Basic]
Private Sub Page_Load(ByVal sender As System.Object, 
ByVal e As System.EventArgs) Handles MyBase.Load

End Sub

[C#]
private void Page_Load(object sender, 
System.EventArgs e)
{
}

5 Type the following in the Page_Load event handler:

[Visual Basic]
If Not Me.IsPostBack Then

Try
InitializeComponent()
myTrans.Connect()
dwCustList.SetTransaction(myTrans)
dwCustList.Retrieve()

Catch Ex As Exception
errMsg.Text = ex.ToString()
errMsg.Visible = true



Chapter 2    Tutorial

Programmer’s Guide 51

dwCustomer.Visible = false
End Try

End If

[C#]
if (!this.IsPostBack)
{

try
{

InitializeComponent();
myTrans.Connect();
dwCustList.SetTransaction(myTrans);
dwCustList.Retrieve();

}
catch(System.Exception ex)
{

errMsg.Text = ex.ToString();
errMsg.Visible = true;
dwCustomer.Visible = false;

}
}

This code connects to the database, associates the connected Transaction 
object with the master DataWindow, and retrieves data into the master 
DataWindow. If any exception is thrown, the errMsg textbox displays with 
the text of the exception.

Disconnecting from 
the database

When you drag a Transaction object to a form, it is added to the form’s 
components list, and is automatically disconnected and disposed of when the 
form is closed. If you do not use drag-and-drop, you need to disconnect from 
the database when the form is unloaded.

❖ To disconnect from the database in Visual Basic:

1 In the code editor, select Unload from the list of events in the drop-down 
list at the top right.

The Page_Unload event handler displays.

2 Type myTrans.Disconnect()to disconnect from the database when the 
page is unloaded:

Private Sub Page_Unload(ByVal sender As Object, 
ByVal e As System.EventArgs) Handles MyBase.Unload

myTrans.Disconnect()
End Sub



Connecting to the database

52  DataWindow .NET

❖ To disconnect from the database in C#:

1 Select View>Component Designer from the menu.

2 In the Properties window, select _Default from the drop-down list at the 
top of the window to display properties for the Web page.

3 Click the Events button to display a list of events for the control, type 
Page_Unload in the event name box for the Unload event, and press the 
Tab key:

This associates the Page_Unload event handler with the form’s Unload 
event. The code editor opens with the cursor in the body of the event 
handler.

4 To disconnect from the database when the page is unloaded, type 
myTrans.Disconnect(); in the event handler:

private void Page_Unload(object sender, 
System.EventArgs e)
{

myTrans.Disconnect();
}

You can run the application at this point to check that the master DataWindow 
displays. Make sure the EAS Demo database is running before you start the 
application. The first time you run the application using Run>Start Debugging, 
Visual Studio displays a Debugging Not Enabled message box. Select OK to 
enable debugging.



Chapter 2    Tutorial

Programmer’s Guide 53

Retrieving data into the detail DataWindow
Since these DataWindow objects have a master-detail relationship, you want 
the details for the row that is selected in dwCustList to display in dwCustomer.

Coding a client-side 
event

To do that, first you code a client-side Clicked event in the form’s .aspx file and 
store the selected row number in a hidden HTML input field, then submit the 
form. For more information about client events, see Chapter 12, “Writing 
Scripts for the Web DataWindow Client Control.”

❖ To code a client-side clicked event:

1 Open the Default.aspx Design page and drag an Input (Hidden) control 
from the HTML tab in the Toolbox onto the page.

This adds an INPUT tag to the page that will not display in the Browser.

2 In the Properties window for the Hidden control, type rownum in the id and 
name fields.

3 Right-click on dwCustList, select Properties, and make sure that both 
ClientEvents and ClientScriptable are set to true.

4 In the Properties window, click in the ClientEventClicked field and select 
Add New Event Handler from the drop-down list.

This generates a JavaScript function in the page’s .aspx file:

function objdwCustList_Clicked(sender, rowNumber, 
objectName) {

}

5 Now add code to the objdwCustList_Clicked function. The following 
code sets the value of the rownum INPUT tag to the number of the clicked 
row and submits the form:

document.Form1.rownum.value = rowNumber;
document.Form1.submit();

Coding the Retrieve 
method for the detail 
DataWindow

The second DataWindow object, d_customer, has a WHERE clause that you set 
up in the SQL painter (see “Specify a WHERE clause” on page 26): 

WHERE "customer"."id" = :cust_id

The id is the value assigned to the rownum hidden INPUT tag. The value is 
passed to the page in the Request property and then used as the argument in the 
SetRow method on the master DataWindow.



Retrieving data into the detail DataWindow

54  DataWindow .NET

The Retrieve method can take a list of retrieval arguments as a parameter. In 
this case, you use the GetItemDouble method to return the value of the customer 
id column in dwCustList that has focus. That value is then passed to the 
Retrieve method for dwCustomer to be used within the WHERE clause.

The code is added to an Else clause in the page’s Load event handler.

❖ To retrieve data into the detail DataWindow:

1 Open the code file for Default.aspx and locate the last line in the Load 
event handler.

2 Add code before the End If statement in Visual Basic or before the 
closing brace of the event handler in C#. The following code examples 
show the complete code for the Load event handler with the new code in 
italics:

[Visual Basic]
If Not Me.IsPostBack Then

Try
InitializeComponent()
myTrans.Connect()
dwCustList.SetTransaction(myTrans)
dwCustList.Retrieve()

Catch Ex As Exception
errMsg.Text = ex.ToString()
errMsg.Visible = true
dwCustomer.Visible = false

End Try

’ Add the following code
Else

Dim selectedRow As Int32
selectedRow = _
System.Int32.Parse(Request.Params("rownum"))
dwCustList.SetRow(selectedRow)

Try
InitializeComponent()
myTrans.Connect()
dwCustomer.SetTransaction(myTrans)
dwCustomer.Retrieve(System.Convert.ToInt32 _

(dwCustList.GetItemDouble(selectedRow, _
"id")))

errMsg.Visible = False
dwCustomer.Visible = True



Chapter 2    Tutorial

Programmer’s Guide 55

Catch ex As Exception
errMsg.Text = ex.ToString()
errMsg.Visible = True
dwCustomer.Visible = False

End Try
’End of new code

End If

[C#]
if (!this.IsPostBack)
{

try
{

InitializeComponent();
myTrans.Connect();
dwCustList.SetTransaction(myTrans);
dwCustList.Retrieve();

}
catch(System.Exception ex)
{

errMsg.Text = ex.ToString();
errMsg.Visible = true;
dwCustomer.Visible = false;

}
}

// Add the following code
else 
{

Int32 selectedRow = System.Int32.Parse
(this.Request.Params["rownum"]);

dwCustList.SetRow(selectedRow);

try
{

InitializeComponent();
myTrans.Connect();
dwCustomer.SetTransaction(myTrans);
dwCustomer.Retrieve(System.Convert.ToInt32

(dwCustomers.GetItemDouble(selectedRow,
"id")));

}
catch(System.Exception ex)
{

errMsg.Text = ex.ToString();
errMsg.Visible = true;



Retrieving data into the detail DataWindow

56  DataWindow .NET

dwCustomer.Visible = false;
}

}
// End of new code

Testing retrieve Now you can test whether selecting a different row in the master DataWindow 
changes the detail DataWindow.

❖ To test the interaction between the master and detail DataWindows:

1 Select Debug>Start Debugging to run the program, and click a row in the 
master DataWindow.

The detail DataWindow displays the data for the selected row.

2 Select a different row in the master DataWindow.

The detail DataWindow displays the data for the new row.

3 Close the browser.

Learning more about 
Web DataWindows

You have now completed the exercises in this brief tutorial. 

For more complete sample applications in Visual Basic and C#, see the Sybase 
CodeXchange Web site at http://datawindownet.codeXchange.sybase.com/ and 
the Code Examples subdirectory in your DataWindow .NET 2.0 directory. For 
more information about programming with the Web DataWindow, see Chapter 
9, “Using Web DataWindows.” For more information about deploying Web 
DataWindows, see “Deployment techniques for Web applications” on page 
294.

http://datawindownet.codeXchange.sybase.com/


Programmer’s Guide 57

C H A P T E R  3 Working with DataWindow 
Controls

About this chapter This chapter describes how to use DataWindow controls.

Contents

About DataWindow controls
The DataWindowControl is a visual container for DataWindow objects in 
a Windows application. It provides properties, methods, and events for 
manipulating the data and appearance of the DataWindow object. The 
control is part of the user interface of your application.

Topic Page

About DataWindow controls 57

Accessing a database 62

Using a DataSet as the data source 66

Importing data from an external source 74

Exporting data from a DataWindow object 74

Manipulating data in a DataWindow control 74

Accessing the items in a DataWindow 78

Using other DataWindow methods 84

Accessing the properties of a DataWindow object 85

Updating the database 86

Handling events 90

Handling DataWindow exceptions 91

Creating reports 94

Using composite reports 95

Using crosstabs 97

Using graphs 98



About DataWindow controls

58  DataWindow .NET

You also use DataWindow objects in WebDataWindowControls, which are 
used in ASP.NET applications; in the nonvisual DataStore; and in child 
DataWindows, which are used in drop-down DataWindows and with the 
composite presentation style. Much of the information in this chapter applies 
to all of these object types.

 For more information about DataStores, see Chapter 4, “Working with 
DataStores.” For more information about the WebDataWindowControl, see 
Chapter 9, “Using Web DataWindows.” For more information about 
drop-down DataWindows and composite DataWindows, see the DataWindow 
Designer User’s Guide.

The simplest way to use a DataWindow object in an application is to use 
drag-and-drop to add a DataWindow control to a form, then associate that 
control with the DataWindow object. You can also create a DataWindow 
control in your code using its constructor, either statically or dynamically. For 
more about dynamic DataWindows, see Chapter 7, “Dynamically Changing 
DataWindow Objects.”

Using drag-and-drop
When you install DataWindow .NET in Visual Studio .NET 2005, a Sybase 
DataWindow 2.0 tab is added to the Visual Studio Toolbox. If the tab is not 
visible, see “Installing DataWindow .NET” on page 10 for how to add it 
manually.

To add a DataWindow control to a form, expand the Sybase DataWindow 2.0 
tab and drag the icon for the control you need onto your form.

You create and design DataWindow objects in DataWindow Designer and save 
them in a library (.PBL) or deployment library (.PBD). You need to set two 
properties of the DataWindow control to associate it with a DataWindow 
object. The LibraryList property is set to the name of the PBL or PBD that 
contains the DataWindow object, and the DataWindowObject property is set to 
the name of the DataWindow. 

Right-click the form to open its Properties window to set these properties, or 
set them directly in code. You can set all the properties for the control in the 
form’s Constructor event. The DataWindowControl is not fully created until 
the form’s Load event is fired,so you should not attempt to call any methods on 
the control in the Constructor event.

“Adding DataWindows to a form” on page 32 shows these steps in more detail.



Chapter 3    Working with DataWindow Controls

Programmer’s Guide 59

Creating a control in code
When you use drag-and-drop to add a DataWindow control to a form, the 
control is added to the form’s control collection and a handle is created for it 
automatically. When you create a DataWindow programmatically, you need to 
force a handle to be created for the control and any child controls before you 
can access the control. Calling the control’s constructor does not create the 
handle. You can use the CreateControl method to create a handle for the 
DataWindow control.

The following code creates an instance of a DataWindowControl called dwC, 
sets its library list and DataWindow object, creates a handle for dwC, sets the 
loction and size of the control, and add it to the form’s controls collection:

[Visual Basic]
Dim dwC As Sybase.DataWindow.DataWindowControl
' ...
dwC = New Sybase.DataWindow.DataWindowControl
dwC.LibraryList = "C:\mypbls\employee.pbl"
dwC.DataWindowObject = "d_emp"
dwC.Location = New System.Drawing.Point(32, 24)
dwC.Size = New System.Drawing.Size(272, 152)

dwC.CreateControl()
me.Controls.Add(dwC)

[C#]
private Sybase.DataWindow.DataWindowControl dwC;
// ...
dwC = New Sybase.DataWindow.DataWindowControl();
dwC.LibraryList = "C:\\mypbls\\employee.pbl";
dwC.DataWindowObject = "d_emp";
dwC.Location = new System.Drawing.Point(32, 24);
dwC.Size = new System.Drawing.Size(272, 152);

dwC.CreateControl()
this.Controls.Add(dwC);;

DataWindow controls on tab pages
In a TabControl, if a DataWindow control is on one of the tab pages that is 
hidden when the TabControl first displays, you need to set its Transaction 
object and retrieve data when the tab page displays. For more information, see 
“Retrieving data into DataWindow controls on tab pages” on page 63.



About DataWindow controls

60  DataWindow .NET

Editing the DataWindow object in the control
Once you have associated a DataWindow object with a DataWindowControl or 
WebDataWindowControl on a form, you can go directly to DataWindow 
Designer to edit the associated DataWindow object. (You cannot do this with a 
DataStore.)

❖ To edit an associated DataWindow object:

• Select Edit DataWindowObject from the control's pop-up menu.

DataWindow .NET opens the associated DataWindow object in 
DataWindow Designer. 

DataWindow Designer requires a project. If DataWindow Designer is not 
open when you select Edit DataWindowObject, it opens with a temporary 
project that is deleted when you close DataWindow Designer. 

For more information about using DataWindow Designer, see the 
DataWindow Designer User’s Guide.

Specifying the DataWindow object at runtime
When you associate a DataWindow object with a control on a form, you are 
setting the initial value of the DataWindow control's DataWindowObject 
property. At runtime, this tells your application to create an instance of the 
DataWindow object specified in the control's DataWindowObject property and 
use it in the control.

Setting the 
DataWindowObject 
property in code

In addition to specifying the DataWindow object in the Properties window, you 
can switch the object that displays in the control at runtime by changing the 
value of the DataWindowObject property in code.

When you change the DataWindow object at runtime, you might need to call 
SetTransaction again. For more information about using these methods, see 
“Associating the Transaction object with a DataWindow control or DataStore” 
on page 117 and “Associating the AdoTransaction object with a DataWindow 
control or DataStore” on page 124.

For example: to display the DataWindow object d_EmpHist from the library 
C:\emp.pbl in the DataWindow control dwEmp, you can code:

dwEmp.LibraryList = "c:\emp.pbl"
dwEmp.DataWindowObject = "d_EmpHist"



Chapter 3    Working with DataWindow Controls

Programmer’s Guide 61

Code examples
Simple code examples, where the only difference between Visual Basic and C# 
statements is the addition of a semicolon for C#, are shown in Visual Basic.

The DataWindow object d_EmpHist was created in DataWindow Designer and 
is stored in a library that is on the control’s library list so that you can see it in 
the control at design time. 

How the DataWindow object is found at runtime
At runtime, the DataWindow server strips the full path from each library and 
looks for the library in the system path. If you have more than one copy of a 
library, one in the path specified in the library list and one in the system path, 
you might see unexpected results when you run or debug the application if the 
DataWindow exists in only one version of the library or has been modified in 
only one version.

The control dwEmp is contained on the form and is saved as part of the form.

Getting a list of 
DataWindow objects 
in a library

The GetDataWindowObjectEntries method in the Utility class lists the 
DataWindow objects present in a given PBL or PBD. The method takes a 
library name as an argument and returns an array of DataWindowObjectEntry 
objects, each of which holds the name of a DataWindow object as well as its 
last-modified date and comments. 

This C# code in the Page_Load event populates the dwList drop-down list box 
with a list of the DataWindow objects in the library list:

if (!IsPostBack)
{

Sybase.DataWindow.DataWindowObjectEntry[] dws;
dws = Sybase.DataWindow.Utility.

GetDataWindowObjectEntries(Page.MapPath
(wdw.LibraryList));

for (int i=0; i<dws.Length; i++)
dwList.Items.Add(new ListItem(dws[i].Name,

dws[i].Name));
}



Accessing a database

62  DataWindow .NET

Accessing a database
Before you can display data in a DataWindow control, you must get the data 
that is stored in the data source into that control. The most common way to get 
the data is to access a database.

You can use either a Transaction object or an AdoTransaction object to access 
a database. For more information, see Chapter 5, “Working with Transaction 
and AdoTransaction Objects.”

Retrieving and updating data
You call the following two methods to access a database through a 
DataWindow control:

Retrieve
UpdateData

Basic data retrieval

After you have set the transaction object for your DataWindow control, you can 
use the Retrieve method to retrieve data from the database and insert it into that 
control:

dwEmp.Retrieve( )

Using retrieval arguments
About retrieval 
arguments

Retrieval arguments qualify the SELECT statement associated with the 
DataWindow object, reducing the rows retrieved according to some criteria. 
For example, in the following SELECT statement, Salary is a retrieval argument 
defined in DataWindow Designer:

SELECT Name, emp.sal FROM Employee 
WHERE emp.sal > :Salary

When you call the Retrieve method, you supply a value for Salary. The code to 
retrieve the names and salaries of employees whose salary exceeds 50,000 
looks like this in Visual Basic:

dwEmp.Retrieve(50000)



Chapter 3    Working with DataWindow Controls

Programmer’s Guide 63

When coding Retrieve with arguments, specify them in the order in which they 
are defined in the DataWindow object. Your Retrieve method can provide more 
arguments than a particular DataWindow object expects. Any extra arguments 
are ignored. This allows you to write a generic Retrieve that works with several 
different DataWindow objects. You can specify any number of retrieval 
arguments.

Omitting retrieval 
arguments

If your DataWindow object takes retrieval arguments but you do not pass them 
in the Retrieve method, the DataWindowControl prompts the user for them 
when Retrieve is called. In a Web application, you must provide your own 
mechanism for user-entered retrieval arguments.

Retrieving data into DataWindow controls on tab pages

Controls on a tab page are not created until the tab page displays, so you cannot 
set the Transaction object and retrieve data into a DataWindow control on a 
hidden tab page until the tab page displays. There are two ways to retrieve data 
into DataWindowControls on hidden tab pages:

• Using the SelectedIndexChanged event of the TabControl

• Using the DataWindowCreated event of the DataWindowControl

Using the SelectedIndexChanged event of the TabControl

The SelectedIndexChanged event of the TabControl is fired when the 0-based 
index of the currently-selected tab page changes. In the handler for this event, 
you can check whether the second and subsequent tab pages have been 
displayed, and, if they have not, set the Transacation object for the 
DataWindow control on that tab page and retrieve data.

The following C# example has three tab pages. Setting the value of the boolean 
variables _tab2FirstShown and _tab3FirstShown to true allows you to check 
whether the tab page is being displayed for the first time. No special handling 
is needed for the first tab page, because the controls are instantiated when the 
tab control first displays.

bool _tab2FirstShown = true;
bool _tab3FirstShown = true; 
private void tabControl1_SelectedIndexChanged(object 
sender, EventArgs e)

{
if (this.tabControl1.SelectedIndex == 1 &&

_tab2FirstShown)
{



Accessing a database

64  DataWindow .NET

_tab2FirstShown = false;
dataWindowControl2.SetTransaction(transaction1);
dataWindowControl2.Retrieve();

}

else if (this.tabControl1.SelectedIndex == 2 &&
_tab3FirstShown)

{
_tab3FirstShown = false;
dataWindowControl3.SetTransaction(transaction1);
dataWindowControl3.Retrieve();

}
}

Using the DataWindowCreated event of the DataWindowControl

You can also set the Transactation object for the DataWindow control and 
retrieve data in the DataWindowCreated event for each DataWindowControl 
on a tab page that is hidden when the TabControl first displays:

private void dw_2Created(object sender, 
Sybase.DataWindow.DataWindowCreatedEventArgs e)

{
dataWindowControl2.SetTransaction(transaction1);
dataWindowControl2.Retrieve();

}

private void dw_3Created(object sender, 
Sybase.DataWindow.DataWindowCreatedEventArgs e)

{
dataWindowControl3.SetTransaction(transaction1);
dataWindowControl3.Retrieve();

}

Updating data

After users have made changes to data in a DataWindow control, you can use 
the UpdateData method to save those changes in the database. 

The code looks like this in Visual Basic:

dwEmp.UpdateData()



Chapter 3    Working with DataWindow Controls

Programmer’s Guide 65

UpdateData sends to the database all inserts, changes, and deletions made in the 
DataWindow control since the last UpdateData method call. You can then 
commit (or roll back) those database updates with the Commit and Rollback 
methods of the Transaction object or of the AdoTransaction object’s 
Transaction property. 

For more specifics on how a DataWindow control updates the database (that is, 
which SQL statements are sent in which situations), see “Updating the 
database” on page 86.

Examples The following example shows code that connects, retrieves, updates, commits 
or rolls back, and disconnects from the database. 

Although the example shows all database operations in a single module, most 
applications separate these operations. For example, an application could 
connect to the database in the form’s Load event and retrieve and update data 
in one or more button clicked events.

The following C# statements retrieve and update data using the transaction 
object EmpSQL and the DataWindowControl dwEmp:

// Create an instance of the Transaction object
// and set its parameters
Transaction EmpSQL = new Transaction();
EmpSQL.Dbms = DbmsType.Odbc;

EmpSQL.DbParameter = "ConnectString=
'DSN=EAS Demo DB V105;UID=dba;PWD=sql',
DisableBind=1";
EmpSQL.AutoCommit = false;

// Connect to the database specified in the
// transaction object EmpSQL
EmpSQL.Connect();

// Set EmpSQL as the transaction object for dwEmp
dwEmp.SetTransaction(EmpSQL);

// Retrieve data from the database specified in
// EmpSQL into dwcEmp
dwEmp.Retrieve();

// Make changes to the data
......

// Update the database
try {



Using a DataSet as the data source

66  DataWindow .NET

dwEmp.UpdateData();
EmpSQL.Commit();

}
catch (Exception ex) {

EmpSQL.Rollback();
}

finally {
// Disconnect from the database
EmpSQL.Disconnect();

}

Handling retrieval or 
update errors

A production application should include more robust error tests after each 
database operation. For more about checking for errors, see “Handling 
DataWindow exceptions” on page 91.

Using a DataSet as the data source
In DataWindow Designer, you can specify ADO DataSet as the data source for 
a DataWindow object. The DataWindow wizard prompts you to specify the 
name of the XSD file that contains the DataSet, then you can select the 
DataTable you want to use and design the presentation of the DataWindow in 
the DataWindow painter.

For more information and a list of datatype mappings from the DataSet to the 
DataWindow, see the chapter on defining DataWindow objects in the 
DataWindow Designer User’s Guide.

At runtime, there are two ways to use a DataWindow with a DataSet:

• The binding model is designed for .NET programmers who are used to 
binding data sources to controls like a DataGrid and using other 
mechanisms to manipulate data. The DataWindow is used as a 
presentation tool and its retrieve and update capabilities are disabled.

• The retrieve and update model uses the ability of the DataWindow to 
retrieve and update data as well as manage its presentation. You might 
want to use this model if you have a DataSet that you want to use as a 
DataWindow data source but you still want to use DataWindow methods 
to retrieve and update. 



Chapter 3    Working with DataWindow Controls

Programmer’s Guide 67

The examples in this section use an XSD file that contains two DataAdapters: 
one for each of the department and employee tables from the EAS Demo DB 
(which are joined on the dept_id column). The columns used are the dept_id and 
dept_name columns from the department table, and the emp_id, emp_fname, 
emp_lname, salary, and dept_id columns from the employee table.

The following XSD file shows the typed DataSet generated from the 
DataAdapters for the department and employee tables:

<?xml version="1.0" standalone="yes"?>
<xs:schema id="DeptEmployee" 
targetNamespace="http://www.tempuri.org/DeptEmployee.xsd" 
xmlns:mstns="http://www.tempuri.org/DeptEmployee.xsd" 
xmlns="http://www.tempuri.org/DeptEmployee.xsd" 
xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:msdata="urn:schemas-
microsoft-com:xml-msdata" attributeFormDefault="qualified" 
elementFormDefault="qualified">
  <xs:element name="DeptEmployee" msdata:IsDataSet="true">
    <xs:complexType>
      <xs:choice maxOccurs="unbounded">
        <xs:element name="department">
          <xs:complexType>
            <xs:sequence>
              <xs:element name="dept_id" type="xs:int" />
              <xs:element name="dept_name" type="xs:string" />
            </xs:sequence>
          </xs:complexType>
        </xs:element>
        <xs:element name="employee">
          <xs:complexType>
            <xs:sequence>
              <xs:element name="emp_id" type="xs:int" />
              <xs:element name="emp_fname" type="xs:string" />
              <xs:element name="emp_lname" type="xs:string" />
              <xs:element name="dept_id" type="xs:int" />
              <xs:element name="salary" type="xs:decimal" />
            </xs:sequence>
          </xs:complexType>
        </xs:element>
      </xs:choice>
    </xs:complexType>
    <xs:unique name="Constraint1" msdata:PrimaryKey="true">
      <xs:selector xpath=".//mstns:department" />
      <xs:field xpath="mstns:dept_id" />
    </xs:unique>
    <xs:unique name="employee_Constraint1" msdata:ConstraintName="Constraint1" 
msdata:PrimaryKey="true">

http://www.tempuri.org/DeptEmployee.xsd
http://www.tempuri.org/DeptEmployee.xsd
http://www.tempuri.org/DeptEmployee.xsd
http://www.w3.org/2001/XMLSchema


Using a DataSet as the data source

68  DataWindow .NET

      <xs:selector xpath=".//mstns:employee" />
      <xs:field xpath="mstns:emp_id" />
    </xs:unique>
  </xs:element>
</xs:schema>

The binding model
The binding model allows you to bind the data in a DataTable to a DataWindow 
in the same way you would bind the data to a DataGrid. When a DataWindow 
is bound to a DataTable or to a DataView, modifications to the data are applied 
immediately to the underlying object. Modifications to the underlying object 
(from other bound controls for example) are reflected immediately in the 
DataWindow. When a DataWindow is bound to a DataTable, it binds to the 
“default view” of the DataTable.

You cannot use DataWindow methods such as Retrieve and Update because 
they duplicate features of the underlying object. For example, the DataWindow 
does not populate the DataSet with data. To populate the DataSet, use the Fill 
method of a DataAdapter. 

The following C# statements populate the DataSet described in “Using a 
DataSet as the data source” on page 66, creating two DataTables:

DepartmentAdapter.Fill ( DeptEmployee );
EmployeeAdapter.Fill ( DeptEmployee );

These statements populate the DataWindow and a DataWindowChild, in this 
case a drop-down DataWindow, from the DataTables:

DataWindowChild DDDW = dw_1.GetChild( "dept_head_id" );
DDDW.BindAdoDataTable ( DeptEmployee.employee );
dw_1.BindAdoDataTable ( DeptEmployee.department );

DataView methods These statements delete a row from a DataView:

DataRowView DRV = DepartmentView[1];
DRV.Delete ( );
DRV.EndEdit( );

This statement inserts a blank row into the DataView:

newRow = DepartmentView.AddNew ( );

The row will not appear in the DataWindow until the EndEdit method has been 
called and has completed.



Chapter 3    Working with DataWindow Controls

Programmer’s Guide 69

These statements change a specific column's data value. You use them instead 
of the SetItem methods of the DataWindow control:

DataRowView DRV = DepartmentView [ 0 ];
DRV [ 0 ] = "800";
DRV.EndEdit();

In the preceding examples, the EndEdit method is required because we use the 
DataView ListChanged event to signal changes to the DataView. In most cases 
the data is not available for copy to the DataWindow until the EndEdit method 
is complete. For example, in the following example, three ListChanged events 
occur. These statements insert a row with values into a DataView:

newRow = DepartmentView.AddNew();
newRow [ "dept_id" ] = "900";
newRow [ "dept_name" ] = "AppleWare";
newRow [ "dept_head_id" ] = "102";
newRow.EndEdit( );

First an ItemAdded event occurs when the AddNew method is called. The row 
has null values and is added to the end of the DataView in a detached state.

When the EndEdit method is processed, another ItemAdded event occurs. The 
row now has values and is added to the DataView.

Finally an ItemMoved event occurs when the inserted row is moved to the 
correct ordinal position in the DataView.

DataWindow methods If the user needs to specify column values for a row, you need to insert an 
empty row. You can use a version of the DataWindow InsertRow method 
without a row number specification:

dw_1.InsertRow ( );

When the row is added to the DataWindow, it is added at the end of the 
DataWindow and the DataWindow scrolls to its location.

When you insert a row into a DataWindow, it is not propagated to the 
underlying DataTable or DataView immediately. Most DataTables and 
DataViews specify a unique key, and if that key is null, an exception is thrown. 
Since a row inserted into a DataWindow has no values at the time of insertion, 
it is not added to the DataTable until the RowFocusChanged event is fired.

When focus changes from the new row, the Binding Manager intercepts the 
RowFocusChanged event from the DataWindow, creates a new DataView row 
(DataRowView), populates it with the values from the DataWindow row, and 
performs an EndEdit. At this time the new row is accepted by the DataView (its 
RowStatus is “Added”) and it moves to the correct location in the DataView.



Using a DataSet as the data source

70  DataWindow .NET

Row number ignored
If a row number is specified in the InsertRow method, it is ignored. The row is 
added to the end of the DataWindow.

Deleting a row from the DataWindow is typically done to remove a row added 
by InsertRow with incomplete data. This abandons the new row and its values 
before adding it to the DataView.

dw_1.DeleteRow ( Int32 rowNumber );

If the row being deleted is not new, DeleteRow deletes the corresponding 
DataRowView in the DataView. The Binding Manager is notified of the 
deletion by the ListChanged event of type ItemDeleted and the corresponding 
DataWindow row is deleted.

Restricted 
DataWindow methods

To conform to the data binding model, many built-in DataWindow features are 
restricted. Although the normal data buffers are in place and used internally, 
they cannot be accessed in code so that the principles of the “data access 
separate from data presentation” mode are preserved. Restricted methods 
include:

• Sort—this is done by the DataView

• Filter—also done by the DataView

• RowsMove, RowsCopy, and RowsDiscard

Updating values When a data value is changed in the user interface, the change is communicated 
to the DataView immediately. If the DataColumn values have changed since 
the BindAdoDataTable method was executed, an error is posted. If the change is 
to a sort key value in the DataView, the row moves to its correct position in the 
DataView and in the DataWindow.

You need to use a DataAdapter or another technique to propagate the changed 
DataSet, DataTables, and/or DataView back to their data sources using the 
built-in methods of those objects.

Example: Binding 
model

This example creates two OLE DB data adapters using SQL queries that are the 
same as the SQL statements for a DataWindow object and a drop-down 
DataWindow and uses them to fill two DataSets. Then it binds the DataTables 
from each of the DataSets to a DataWindowControl and a DataWindowChild.

[Visual Basic]
Dim daDept as OleDbDataAdapter
Dim dsDept as New DataSet
Dim daDDDW as OleDbDataAdapter
Dim dsDDDW as New DataSet



Chapter 3    Working with DataWindow Controls

Programmer’s Guide 71

Dim sqlStmt as String
Dim sqlDDDW as String
Dim dwc as Sybase.DataWindow.DataWindowChild

'Specify a SQL query that is the same as the DataWindow 
object's SQL statement
SqlStmt = "select dept_id, dept_name, dept_head_id from 
department"

'Specify a SQL query that is the same as the drop-down 
DataWindow's SQL statement
SqlDDDW = "select emp_id from employee"

'Create two OLE DB data adapters using the SQL query 
strings
daDept = New OleDbDataAdapter(sqlStmt,OleDbConn)
daDDDW = New OleDbDataAdapter(sqlDDDW, OleDbConn)

'Fill two DataSets
daDept.Fill(dsDept, "department")
daDDDW.Fill(dsDDDW, "employee")

'Get the DDDW 
dwc = dw_1.GetChild("dept_head_id")

'Bind a DataTable to the DDDW
dwc.BindAdoDataTable(dsDDDW.Tables("employee"))

'Bind a DataTable to the DataWindowControl
dw_1.BindAdoDataTable(dsDept.Tables("department"))

[C#]
OleDbDataAdapter daDept;
DataSet dsDept = new DataSet;
OleDbDataAdapter daDDDW;
DataSet dsDDDW = new DataSet;
String sqlStmt,sqlDDDW;
Sybase.DataWindow.DataWindowChild dwc;

// Specify a SQL query that is the same as the 
// DataWindow object's SQL statement
SqlStmt = "select dept_id, dept_name, dept_head_id from 



Using a DataSet as the data source

72  DataWindow .NET

department";

// Specify a SQL query that is the same as the 
// drop-down DataWindow's SQL statement
SqlDDDW = "select emp_id from employee";

// Create the data adapters
daDept = new OleDbDataAdapter(sqlStmt,OleDbConn);
daDDDW = new OleDbDataAdapter(sqlDDDW, OleDbConn);

// Fill the DataSets
daDept.Fill(dsDept, "department");
daDDDW.Fill(dsDDDW, "employee");

// Get the DDDW 
dwc = dw_1.GetChild("dept_head_id");

// Bind a DataTable to the DDDW
dwc.BindAdoDataTable(dsDDDW.Tables("employee"));

// Bind a DataTable to the DataWindowControl
dw_1.BindAdoDataTable(dsDept.Tables("department"));

The retrieve and update model
The retrieve and update model allows the DataWindow to work in the 
traditional manner. Data is retrieved from the underlying DataTable and can be 
manipulated (sorted, filtered, updated) as is done with a SQL data source. 

The DataSet and DataTable must still be populated outside the DataWindow 
using a DataAdapter and the Fill method. The Retrieve method has a new 
overloaded version that copies data into the DataWindow.

After the data is retrieved from the DataTable, the DataWindow is 
“disconnected” from the DataTable and modifications are not applied to the 
table until the DataWindow UpdateData method is called. The same type of 
optimistic concurrency as is used with SQL data sources is used when 
modifications are applied to the DataTable.

Inserting, deleting, sorting, filtering, copying, moving, and the use of 
ShareData are all supported.



Chapter 3    Working with DataWindow Controls

Programmer’s Guide 73

Example: 
Retrieve/Update 
model

This example creates two OLE DB data adapters using SQL queries that are the 
same as the SQL statements for a DataWindow object and a drop-down 
DataWindow and uses them to fill two DataSets. Then it retrieves data from the 
DataTables into a DataWindowControl and a DataWindowChild.

[C#]
OleDbDataAdapter daDept;
DataSet dsDept = new DataSet;
OleDbDataAdapter daDDDW;
DataSet dsDDDW = new DataSet;
String sqlStmt,sqlDDDW;
Sybase.DataWindow.DataWindowChild dwc;

// Specify a SQL query that is the same as the 
// DataWindow object's SQL statement
SqlStmt = "select dept_id, dept_name, dept_head_id from 
department";

// Specify a SQL query that is the same as the 
// drop-down DataWindow's SQL statement
SqlDDDW = "select emp_id from employee";

// Create the data adapters
daDept = new OleDbDataAdapter(sqlStmt,OleDbConn);
daDDDW = new OleDbDataAdapter(sqlDDDW, OleDbConn);

// Fill the DataSets
daDept.Fill(dsDept, "department");
daDDDW.Fill(dsDDDW, "employee");

// Get the DDDW 
dwc = dw_1.GetChild("dept_head_id");

// Retrieve data into the DDDW
dwc.Retrieve(dsDDDW.Tables("employee"));

// Retrieve data into the DataWindowControl
dw_1.Retrieve(dsDept.Tables("department"));



Importing data from an external source

74  DataWindow .NET

Importing data from an external source
If the data for a DataWindow does not come from a database (for example, the 
data source was defined as External in the DataWindow wizard), you can use 
these methods to import data into the DataWindow control:

ImportClipboard (not supported for the WebDataWindowControl)
ImportFile
ImportString

The data format can be XML, comma-separated values, or text. You can also 
get data into the DataWindow by using one of the SetItem methods or by using 
a DataWindow expression.

For more information on the SetItem methods and DataWindow expressions, 
see “Accessing data values using methods” on page 78.

Exporting data from a DataWindow object
You can use the following methods to export data from a DataWindow object:

SaveAs
SaveAsFormattedText

SaveAs lets you save data in several different formats, including PDF, HTML, 
XML, and text. For more information about exporting data, see the 
DataWindow Designer User’s Guide.

SaveAsFormattedText saves the DataWindow’s content, including headers and 
computed fields, into a text file with customized formatting.

Manipulating data in a DataWindow control
To handle user requests to add, modify, and delete data in a DataWindow, you 
can write code to process that data, but first you need to understand how a 
DataWindow control manages data. This section describes the way the 
DataWindowControl used in Windows applications manages data. The 
DataStore and the WebDataWindowControl, which uses a DataStore internally, 
also use buffers to store data, but the event processing described in this section 
does not apply to them.



Chapter 3    Working with DataWindow Controls

Programmer’s Guide 75

How a DataWindowControl manages data
As users add or change data, the data is first handled as text in an edit control. 
If the data is accepted, it is then stored as an item in a buffer.

About the 
DataWindow buffers

A DataWindow uses three buffers to store data:

Table 3-1: DataWindow buffers

About the edit control As the user moves around the DataWindowControl, the DataWindow places a 
temporary edit control over the current cell (row and column). The edit control 
displays as a dotted rectangle. 

The edit control is treated by Windows as a separate control that floats on the 
DataWindowControl. As a result, MouseEnter and MouseLeave events are 
fired as the cursor moves over each cell. The contents of the edit control are 
text data that has not yet been accepted by the DataWindowControl. Data 
entered in the edit control is not in a DataWindow buffer yet; it is simply text 
in the edit control.

About items When the user changes the contents of the edit control and presses Enter or 
leaves the cell (by tabbing or pressing Up arrow or Down arrow from the 
keyboard), the DataWindow processes the data and either accepts or rejects it, 
depending on whether it meets the requirements specified for the column. 

If the data is accepted, the text is moved to the current row and column in the 
DataWindow Primary buffer. The data in the Primary buffer for a particular 
column is referred to as an item.

Events for changing 
text and items

When data is changed in the edit control, several events occur. 

Table 3-2: Events triggered by changing text and items

Buffer Contents

Primary Data that has not been deleted or filtered out (that is, the rows that are 
viewable)

Filter Data that was filtered out

Delete Data that was deleted by the user or through code

Event Description

DataWindowKeyDown Occurs when a key is pressed in the edit control

EditChanged Occurs for each keystroke the user types in the edit 
control

ItemChanged Occurs when a cell has been modified and loses focus



Manipulating data in a DataWindow control

76  DataWindow .NET

How text is processed 
in the edit control

When the data in a column in a DataWindow has been changed and the column 
loses focus (for example, because the user tabs to the next column), the 
following sequence of events occurs:

1 The DataWindowControl converts the text into the correct datatype for the 
column. For example, if the cursor is in a numeric column, the 
DataWindowControl converts the string that was entered into a number. If 
the data cannot be converted, the ItemError event is triggered.

2 If the data converts successfully to the correct datatype, the 
DataWindowControl applies any validation rule used by the column. If the 
data fails validation, the ItemError event is triggered.

3 If the data passes validation, the ItemChanged event is triggered.

4 If the ItemChanged event accepts the data, the ItemFocusChanged event 
is triggered and the data is stored as an item in the Primary buffer.

Accessing and manipulating the text in the edit control
Using methods The following methods allow you to access the text in the edit control:

• GetText – obtains the text in the edit control.

• SetText – sets the text in the edit control.

In event code In addition to these methods, the following events provide access to the text in 
the edit control:

EditChanged
ItemChanged
ItemError

Use the Data parameter, which is passed into the event, to access the text of the 
edit control. In your code for these events, you can test the text value and 
perform special processing depending on that value.

For an example, see “Coding the ItemChanged event” next.

ItemError Occurs when new data fails the validation rules for the 
column

ItemFocusChanged Occurs when the current item in the DataWindowControl 
changes

Event Description



Chapter 3    Working with DataWindow Controls

Programmer’s Guide 77

Manipulating the text When you want to further manipulate the contents of the edit control within 
your DataWindowControl, you can use any of these methods that are defined 
for the EditControl class: 

Clear
Copy
Cut
Replace
SelectText

The edit control that is current for a given DataWindowControl is accessible 
using the CurrentEdit property. Note that you should check the Empty property 
first, because a DataWindowControl does not always have an edit control on it. 
For example, read-only DataWindows do not have edit controls.

For more information about these methods, see the online Help.

Coding the ItemChanged event
If data passes conversion and validation, the ItemChanged event is triggered. 
By default, the ItemChanged event accepts the data value and allows focus to 
change. You can write code for the ItemChanged event to do some additional 
processing. For example, you could perform some tests, reject the data, and 
have the column regain focus. The action after ItemChanged is determined by 
the value assigned to the Action property of the ItemChangedEventArgs class 
passed into the event-handling code.

Coding the ItemError event
The ItemError event is triggered if there is a problem with the data. By default, 
it rejects the data value and displays a message box. You can write code for the 
ItemError event to do some other processing. For example, you can accept the 
data value, or reject the data value but allow focus to change:

e.Action = ItemErrorAction.RejectAndAllowFocusChange

For more information about coding events, see “Handling events” on page 90.



Accessing the items in a DataWindow

78  DataWindow .NET

Accessing the items in a DataWindow
You can access data values in a DataWindow by using methods or 
DataWindow data expressions. Both methods allow you to access data in any 
buffer and to get original or current values.

The method you use depends on how much data you are accessing and whether 
you know the names of the DataWindow columns when the code is compiled.

Accessing data values using methods
You can access data values in a DataWindow using GetItem and SetItem 
methods. 

You call GetItem methods to obtain the data that has been accepted into a 
specific row and column. You can also use them to check the data in a specific 
buffer before you update the database. You call SetItem methods to set the 
value of a specific row or column. You must use the method appropriate for the 
column’s datatype.

GetItem methods that 
return primitive types

These methods obtain the data in a specified row and column in a specified 
buffer and return a primitive datatype: GetItemDate, GetItemDateTime, 
GetItemDecimal, GetItemDouble, GetItemString, GetItemTime. All these 
methods are overloaded. You can specify either the number or the name of the 
column, and you can optionally specify whether to obtain the original data in 
the column or the current data, and which DataWindow buffer to get the data 
from.

For example, the following statement assigns the value from the empname 
column of the first row to the variable strName in the Primary buffer:

strName = dw1.GetItemString (1, "empname")

GetItem methods that 
return SqlTypes 
datatypes

GetItemSqlDateTime, GetItemSqlDecimal, GetItemSqlDouble, and 
GetItemSqlString work in the same way, but return a SqlTypes datatype.

The methods that return primitive types have the advantage that you do not 
need to cast the return value to another type, as you do if you use both SqlTypes 
and primitive types in your code. 

However, some primitive datatypes cannot handle null values, so your code 
must either test whether a value is null before processing it, or include a 
try-catch block to handle the exception that is thrown if the value is null. You 
can call a method that returns a SqlTypes datatype and then test whether the 
return value is null. 



Chapter 3    Working with DataWindow Controls

Programmer’s Guide 79

Testing for null Two methods, IsItemNull and SetItemNull, test whether an item is null and set an 
item to null. This example uses IsItemNull to test whether a column’s value is 
null before processing it using GetItemDouble:

If dw.IsItemNull(1,1) then
// handle null value

Else
Dim val as Integer
val = CInt(dw.GetItemDouble(1,1))
// do non-null processing

End If

This example catches the exception that is thrown if the column’s value is null:

Dim val as Integer
Try

val = CInt(dw.GetItemDouble(1,1))
// do non-null processing

Catch ex As Exception
// handle null data

End try

This example uses a method that returns a SqlTypes datatype, so the test for 
null can be performed after the method call:

Dim val as new System.Data.SqlTypes.SqlDouble
val = dw.GetItemSqlDouble(1,1)
If val.IsNull Then

// handle null value
Else

// do non-null processing
Dim valInteger as Integer
valInteger = CInt(val.Value)

End if

SetItem methods These methods set the data in a specified row and column using primitive 
datatypes: SetItemDate, SetItemDateTime, SetItemDecimal, SetItemDouble, 
SetItemString, SetItemTime.

These methods use SqlTypes datatypes: SetItemSqlDateTime, 
SetItemSqlDecimal, SetItemSqlDouble, SetItemSqlString.

For example, the following statement sets the value of the empname column in 
the first row to the string “Waters”:

dw1.SetItemString(1, "empname", "Waters")



Accessing the items in a DataWindow

80  DataWindow .NET

Accessing data values using DataWindow data expressions
DataWindow data expressions use the Data, SelectedData, and 
DataWindowRow classes. 

The Data class represents the data rows and columns in a DataWindow data 
buffer and allows you to access data using C# indexers. There is a Data object 
for each of the DataWindow buffers: PrimaryData, FilteredData, and 
DeletedData. The SelectedData class represents the highlighted rows in a 
DataWindowControl. The DataWindowRow class represents a row in a data 
buffer.

Not available for Web DataWindows
The PrimaryData, FilteredData, and DeletedData fields are not available on the 
WebDataWindowControl.

Data values for single items are returned as a System.Object. Data values for 
multiple items are returned as an array of objects. Data values for multiple rows 
are returned as an array of Object arrays.

To set data values, use an Object for a single value, an array of objects for 
multiple values, or an array of Object arrays for multiple values in multiple 
rows. The Data class has a Rows property to access all current data values in 
all rows and an OriginalValues property to access all original data values in all 
rows.

The Data.Item 
property

You use the Item property of the data buffer objects to access data values. The 
basic syntax for indexer access to DataWindow data in data buffers is:

Object Obj = dwcontrol.Buffername [args...]

For a complete list of syntaxes, see the Data.Item property in the online Help 
in Visual Studio .NET. Here are some Visual Basic samples:

• To access a single row and column current data value in the PrimaryData 
buffer:

Dim Obj as Object
Obj = dw1.PrimaryData [ 1, 2 ]

• To access current data values in a single row in the Filter buffer:

Obj = dw_1.FilteredData [ 1 ]

• To access a block of current data values using startrow, startcol, endrow, 
and endcol arguments:

Obj = dw_1.FilteredData [ 1, 2, 4, 3 ]



Chapter 3    Working with DataWindow Controls

Programmer’s Guide 81

• To set a block of data values using startrow, startcol, endrow, and endcol 
arguments:

dw_2.PrimaryData [ 1, 2, 4, 3 ] = Obj

• To access the original data value for a single row and column:

Obj = dw_1.PrimaryData [ 1, 2, true ]

• To set a range of rows data values using startRow and endRow, where rows 
is an array of Object arrays:

dw_2.PrimaryData [ 1, rows.Length ] = rows

Rows property The Data and SelectedData classes both have a Rows property. The Rows 
property for Data allows you to access and set the current data values of all 
rows in a buffer. The Rows property for SelectedData lets you access the 
current data values in selected rows. For example, this statement gets the data 
in selected rows:

Dim rows as Object 
rows = dw_1.SelectedData.Rows

OriginalValues 
property

The Data and SelectedData classes both have an OriginalValues property. The 
OriginalValues property for Data allows you to access the original data values 
of all rows in a buffer. The OriginalValues property for SelectedData lets you 
access the original data values in selected rows. For example, this statement 
gets the primary buffer's original data values:

Dim O as Object 
O = dw_1.PrimaryData.OriginalValues

Accessing data: examples

You can use the PrimaryData, FilteredData, and DeletedData objects to access 
and set data values for a single column, an entire row, or a range of rows. Most 
of the examples in this section use the primary buffer, but could also be used 
for the filtered and delete buffers. If an invalid datatype is submitted to the 
DataWindow by an indexer an exception is thrown.

Single column To set a value for a single column, the value must be cast to Object. A returned 
value can be cast to its actual datatype. You must know the column datatype in 
advance.

// get a column value
Object O = dw_1.PrimaryData [ 1, (short) 3 ];

// get original data value with third argument "true"
Object O = dw_1.PrimaryData [ 1, (short) 3, true ];



Accessing the items in a DataWindow

82  DataWindow .NET

// use a column name 
Object O = dw_1.PrimaryData [ 1, "emp_lname" ];

// get original data value
Object O = dw_1.PrimaryData [ 1, "emp_lname", true];

// set a column value
dw_1.PrimaryData [ 1, (short) 3 ] = (Object) O;

// use the column name
dw_1.PrimaryData [ 1, "emp_lname" ] = (Object) O; 

Entire row To set data values for an entire row, you need to provide an array of objects and 
each object in the array must be of the correct datatype. Objects in a returned 
array can be cast to their real datatype. Again, you must know the column 
datatypes in advance.

// return an array of objects for row 5
Object [ ] O = dw_1.PrimaryData[ 5 ]; 

// get original data values in row 5
Object [ ] O = dw_1.PrimaryData[ 5, true ];

// set data values in row 5 from an array of objects
dw_1.PrimaryData [ 5 ] = O; 

Range of rows When you access data values for a range of rows, an array of object arrays is 
returned. Each object array is the same as the single row described in “Entire 
row,” and accessing and setting values follow the same rules for datatypes.

// get data values in rows 1 to 5
Object [ ] O = dw_1.PrimaryData [ 1, 5 ];

// get original data in rows 1 to 5
Object [ ] O = dw_1.PrimaryData [ 1, 5, true ];

// set data values in rows 1 to 5
dw_1.PrimaryData [ 1, 5 ] = O;

Subset of columns in 
a range of rows

You can access or set a subset of column values in a range of rows using 
startrow, startcol, endrow, and endcol arguments:

// get data values in columns 3 to 6 in rows 1 to 5
Object [ ] O = dw_1.PrimaryData [ 1, 3, 5, 6 ]; 

// get original data values
Object [ ] O = dw_1.PrimaryData [ 1, 3, 5, 6, true ]; 



Chapter 3    Working with DataWindow Controls

Programmer’s Guide 83

// set data values in columns 3 to 6 in rows 1 to 5
dw_1.PrimaryData [ 1, 3, 5, 6 ] = O;

Entire data buffer You can access an entire data buffer using the Rows and OriginalValues 
properties:

Object [ ] O = dw_1.PrimaryData.Rows;
Object [ ] O = dw_1.PrimaryData.OriginalValues;
dw_1.PrimaryData.Rows = O;

C# example This C# example is for a DataWindow based on the department table in the 
EAS Demo database. The DataWindow contains three columns (dept_id, 
dept_name, and dept_head_id).

// Get a single row 
Object[] obj = dw_1.PrimaryData[1];
MessageBox.Show("dept id :"+obj[0].ToString());
MessageBox.Show("dept name :"+obj[1].ToString());
MessageBox.Show("dept head id :"+obj[2].ToString());

// Get a range of rows from row 1 to 
// row 3 for all columns
Object[] obj = dw_1.PrimaryData[1,3];
For (int i=0;i<3;i++){

Object[] rowobj = (Object[])obj[i];
MessageBox.Show("dept id:"+rowobj[0].ToString());
MessageBox.Show("dept name:"+rowobj[1].ToString());
MessageBox.Show("dept head id:"

+rowobj[2].ToString());
}

// Set data values in a single row
int deptid = 600;
String deptname = "Human Resources";
int managerid = 102;
int li_row;
Object[] obj = new Object[3];
obj[0] = deptid;
obj[1] = deptname;
obj[2] = managerid;
li_row = dw_1.InsertRow(0);
dw_1.PrimaryData[li_row] = obj;



Using other DataWindow methods

84  DataWindow .NET

Visual Basic example The following Visual Basic examples use the department and employee tables 
in the EAS Demo database and are included in the samples available in the 
Code Examples directory. These statements set the data value of the start_date 
column in row 1 to December 25, 2005:

Dim D As System.DateTime
D = New DateTime(2005, 12, 25, 1, 25, 0, 0)
dwPrimary.PrimaryData(1, "start_date") = D

These statements filter data from a primary DataWindow and display it in a 
secondary DataWindow:

'Clear any data from the secondary DataWindow
dwSecondary.Reset()
'Apply a filter to the primary DataWindow
dwPrimary.SetFilter("dept_id = 100")
dwPrimary.Filter()

'Take the filtered rows and set them into 
'the Secondary DataWindow
Dim dwData As Object
dwData = dwPrimary.FilteredData.Rows
dwSecondary.PrimaryData.Rows = dwData

Using other DataWindow methods
There are many more methods you can use to perform activities in 
DataWindow controls. The more common ones are listed in Table 3-3. These 
methods are all available on the DataWindowControl. The Client and Server 
columns indicate whether each method is available on the Web DataWindow 
client or the WebDataWindowControl server control.

Table 3-3: Common methods in DataWindow controls

Method Purpose Client Server

AcceptText Applies the contents of the edit control to the current item in the 
DataWindow control

Yes No

DeleteRow Removes the specified row from the DataWindow control, 
placing it in the Delete buffer; does not delete the row from the 
database

Yes Yes

Filter Displays rows in the DataWindow control based on the current 
filter

No Yes



Chapter 3    Working with DataWindow Controls

Programmer’s Guide 85

The Web DataWindow client and server controls both support ScrollFirstPage, 
ScrollLastPage, ScrollPriorPage, and ScrollNextPage methods. You can see a 
complete list of DataWindowControl and WebDataWindowControl methods in 
the Object Browser or the online Help in Visual Studio .NET. For a list of Web 
DataWindow client methods, see “Calling client methods” on page 256.

Accessing the properties of a DataWindow object
DataWindow object properties store the information that controls the behavior 
of a DataWindow object. They are not properties of the DataWindowControl, 
WebDataWindowControl, or DataStore, but of the DataWindow object 
displayed in the control. The DataWindow object is itself made up of 
individual controls—column, text, graph, and drawing controls—that have 
DataWindow object properties.

You establish initial values for DataWindow object properties in DataWindow 
Designer. You can also get and set property values at runtime in your code. You 
can access the properties of a DataWindow object using the Describe and 
Modify methods or GetProperty and SetProperty methods, GraphicObject 
classes containing properties and methods specific to a given control on the 
DataWindow, or dot notation. 

GetRowFromRowId, 
GetRowIdFromRow

Returns a row number from its identifier, or a row’s identifier 
from its row number

No Yes

InsertRow Inserts a new row Yes Yes

Reset Clears all rows in the DataWindow control No Yes

Retrieve Retrieves rows from the database Yes Yes

RowsCopy, RowsMove Copies or moves rows from one DataWindow control to 
another or from one buffer to another within a DataWindow 
control

No Yes

RowsDiscard Discards a range of rows in a DataWindow control No Yes

Scroll Scrolls according to a specified scroll type or to a specified row No No

SelectRow Highlights a specified row Yes Yes

ShareData Shares data among different DataWindow controls No Yes

Sort Sorts the rows in a DataWindow control using the 
DataWindow's current sort criteria

Yes Yes

UpdateData (Update on 
client control)

Sends to the database all inserts, changes, and deletions that 
have been made in the DataWindow control

Yes Yes

Method Purpose Client Server



Updating the database

86  DataWindow .NET

For more information, see Chapter 6, “Accessing DataWindow Object 
Properties in Code.” For lists and descriptions of DataWindow object 
properties, see the DataWindow Object Reference. 

Updating the database
After users have made changes to data in a DataWindow control, you can use 
the UpdateData method to save the changes in the database. UpdateData sends 
to the database all inserts, changes, and deletions made in the DataWindow 
since the last UpdateData or Retrieve method was executed.

How the DataWindow control updates the database
For database updates, the DataWindow control determines what type of SQL 
statements to generate by looking at the status of each of the rows and columns 
in the DataWindow buffers.

For rows, the RowStatus enumeration has four values. For columns, the 
ItemStatus enumeration has two values.

Table 3-4: RowStatus enumeration

Table 3-5: ItemStatus enumeration

Value Meaning

New The row is new but no values have been specified for its 
columns.

NewAndModified The row is new, and values have been assigned to its 
columns. In addition to changes caused by user entry or one 
of the SetItem methods, a new row gets the status 
NewModified when one of its columns has a default value.

NotModified The information in the row has not changed.

Modified The information in one or more of the columns in the row has 
changed.

Value Meaning

NotModified The information in the column has not changed.

Modified The information in the column has changed.



Chapter 3    Working with DataWindow Controls

Programmer’s Guide 87

How statuses are set When data is retrieved When data is retrieved into a DataWindow, all rows 
and columns initially have a status of NotModified.

After data has changed in a column in a particular row, either because the user 
changed the data or the data was changed programmatically, such as through 
one of the SetItem methods, the ItemStatus for that column changes to 
Modified. Once the status for any column in a retrieved row changes to 
Modified, the RowStatus also changes to Modified.

When rows are inserted When a row is inserted into a DataWindow, it 
initially has a RowStatus of New, and all columns in that row initially have an 
ItemStatus of NotModified. After data has changed in a column in the row, 
either because the user changed the data or the data was changed 
programmatically, the ItemStatus changes to Modified. Once the ItemStatus 
for any column in the inserted row changes to Modified, the RowStatus 
changes to NewAndModified.

When a DataWindow column has a default value, the column’s status does not 
change to Modified until the user makes at least one actual change to a column 
in that row.

When UpdateData is 
called

For rows in the Primary and Filter buffers When the UpdateData method 
is called, the DataWindow control generates SQL INSERT and UPDATE 
statements for rows in the Primary and/or Filter buffers based upon the row 
statuses in Table 3-6.

Table 3-6: RowStatus and SQL statement generated

A column is included in an UPDATE statement only if the following two 
conditions are met:

• The column is on the updatable column list maintained by the 
DataWindow object

For more information about setting the update characteristics of the 
DataWindow object, see the DataWindow Designer User's Guide.

• The column has an ItemStatus of Modified

Row status SQL statement generated

NewAndModified INSERT

Modified UPDATE (or DELETE/INSERT if a primary key is changed and 
the update properties of the DataWindow object are set to 
generate that sequence)



Updating the database

88  DataWindow .NET

The DataWindow control includes all columns in INSERT statements it 
generates. If a column has no value, the DataWindow attempts to insert a null. 
This causes a database error if the database does not allow null values in that 
column.

For rows in the Delete buffer The DataWindow control generates SQL 
DELETE statements for any rows that were moved into the Delete buffer using 
the DeleteRow method. However, if a row has a RowStatus of New or 
NewAndModified before DeleteRow is called, no DELETE statement is issued 
for that row.

Changing row or column status programmatically
You might need to change the status of a row or column programmatically. 
Typically, you do this to prevent the default behavior from taking place. For 
example, you might copy a row from one DataWindow to another; and after the 
user modifies the row, you might want to issue an UPDATE statement instead 
of an INSERT statement.

You use the SetRowStatus method to programmatically change a 
DataWindow's row status information. Use the GetRowStatus method to 
determine the status of a specific row.

You use the SetItemStatus method to programmatically change a 
DataWindow's column status information. Use the GetItemStatus method to 
determine the status of a specific column.

Changing column 
status

You use SetItemStatus to change the column status from Modified to 
NotModified, or vice versa.

Change column status when you change row status
Changing the row status changes the status of all columns in that row to 
NotModified, so if the UpdateData method is called, no SQL update is 
produced. You must change the status of columns to be updated after you 
change the row status.



Chapter 3    Working with DataWindow Controls

Programmer’s Guide 89

Changing row status Changing row status is a little more complicated. The following table 
illustrates the effect of changing from one row status to another.

Table 3-7: Effects of changing from one row status to another

In the preceding table, the word Expected in the Result column means that the 
row status is changed to the specified status. For example, issuing 
SetRowStatus to change the status to Modified or NewAndModified always 
succeeds.

No change means that the change is not valid and the status is not changed. For 
example, issuing SetRowStatus on a row that has the status New to change the 
status to NotModified does not change the status.

Different means that the resulting status is different from both the original and 
the specified status. For example, issuing SetRowStatus on a row that has the 
status Modified to change the status to New changes the status to 
NewAndModified.

Changing a row's status to NotModified or New causes all columns in that row 
to be assigned an ItemStatus of NotModified. Change the column’s status to 
Modified to ensure that an update results in a SQL Update.

Changing status indirectly
When you cannot change to the desired status directly, you can usually do it 
indirectly. For example, change New to Modified to NotModified.

Specified Status Original Status Resulting Status Result

Modified New Modified Expected

Modified NewAndModified Modified Expected

Modified NotModified Modified Expected

NewAndModified New NewAndModified Expected

NewAndModified Modified NewAndModified Expected

NewAndModified NotModified NewAndModified Expected

New NewAndModified NewAndModified No change

New Modified NewAndModified Different

New NotModified New Expected

NotModified Modified NotModified Expected

NotModified New New No change

NotModified NewAndModified New Different



Handling events

90  DataWindow .NET

Handling events
DataWindow .NET follows the delegate event-handling model used in the 
.NET Framework. 

Senders and 
delegates

An event can be triggered when a user clicks a button or moves a mouse, or 
when your code triggers the event explicitly. The object that triggers the event 
is called the event sender. The event sender has no knowledge of the object that 
captures the event (the event receiver), and the role of the delegate is to act as 
an intermediary between the sender and receiver. 

The delegate is a special class that takes information about the sender of the 
event and the data associated with the event and communicates it to the method 
that actually handles the event. 

An “On” method 
triggers an event

An event is triggered by a protected method that has the name of the event with 
the prefix On. For example, the RowFocusChanging event for the 
DataWindowControl is triggered by the OnRowFocusChanging method. 

The method that triggers the event has one argument that inherits from the 
System.EventArgs class and contains data associated with the event. The 
argument for OnRowFocusChanging is RowFocusChangingEventArgs. 

Delegate naming and 
arguments

The delegate for an event has the same name as the event with the suffix 
EventHandler. For example, the delegate for RowFocusChanging is 
RowFocusChangingEventHandler. A delegate has two arguments: a reference 
to the System.Object that triggered the event (the sender) and the descendant 
of the System.EventArgs class specifically associated with the event. The 
second argument can also be a specialized descendant of System.EventArgs 
called CancelEventArgs—this argument can be used when the event can be 
cancelled. 

EventArgs argument The descendant of EventArgs associated with an event has properties specific 
to the event. For example, RowFocusChangingEventArgs has three properties:

• Cancel can be set to true to disallow the focus change to the new row 
number

• CurrentRowNumber is the number of the row that currently has focus

• NewRowNumber is the number of the row that will get focus

For an example of coding an event handler, see “Retrieving data” on page 38.



Chapter 3    Working with DataWindow Controls

Programmer’s Guide 91

Event scripts for 
user-defined buttons

In DataWindow Designer, you can add buttons to a DataWindow with either a 
predefined action, such as Update or Retrieve, or a user-defined action. If you 
use a predefined action, the code to perform the action is provided for you. If 
you select User-Defined (the default) from the Action list in the DataWindow 
painter, you need to code a ButtonClicked event for the button. 

Suppose you add two buttons named b_button1 and b_button2 to a 
DataWindow object in the DataWindow painter. You can add a ButtonClicked 
event to the DataWindow control in .NET to perform a different action 
depending on which button was clicked:

Private Sub dwGrid_ButtonClicked(ByVal sender As 
Object, ByVal e As 
Sybase.DataWindow.ButtonClickedEventArgs) Handles 
dwGrid.ButtonClicked

Dim buttonClicked As String
buttonClicked = _

dwGrid.ObjectUnderMouse.Gob.Name.ToString()
If buttonClicked = "b_button1" Then

MsgBox("Button 1 was Clicked!")
ElseIf buttonClicked = "b_button2" Then

MsgBox("Button 2 was clicked!")
End If

End Sub

Events in Web 
applications

Events that take place in the client browser in an ASP.NET Web application can 
be handled in client events. Client-side methods or built-in buttons that cause 
a page round trip trigger the BeforePerformAction and AfterPerformAction 
server-side events. For more information, see “About client-side 
programming” on page 253.

Handling DataWindow exceptions
There are several types of errors that can occur during DataWindow 
processing. For example:

• Data items that are invalid (discussed in “Manipulating data in a 
DataWindow control” on page 74)

• Failures when retrieving or updating data

• Attempts to access invalid or nonexistent properties or data



Handling DataWindow exceptions

92  DataWindow .NET

The DataWindow server throws the exceptions listed in Table 3-8. Your code 
should use try-catch blocks to trap these exceptions. See the online Help for 
each method to see which exceptions it can throw.

Table 3-8: DataWindow .NET exceptions

Exception When thrown

ChildNotFoundException If the requested child DataWindow was 
not found

DataWindowLoadFailedException If the specified DataWindow object 
cannot be loaded

DataWindowNotCreatedException If a method is called before creation of 
the DataWindow is completed

DataWindowServerLoadFailedException If the DataWindow server cannot be 
loaded

DbErrorException When a database error occurs

InvalidColumnException When a method specifies an invalid 
column number or name

InvalidExpressionException When an invalid expression is detected

InvalidRowNumberException When a method specifies an invalid 
row number

MethodFailureException Thrown for an otherwise 
undocumented failure of a method

NoPermissionCreateFileException Thrown in a Web application when the 
ASP.NET process does not have 
permission to create a file

NoPermissionCreateFolderException Thrown in a Web application when the 
ASP.NET process does not have 
permission to create a folder

System.ArgumentException When a method specifies an invalid 
parameter

System.ArgumentNullException When an argument is null

System.ArgumentOutOfRangeException If an argument is not in range (not 
applicable to rows and columns – see 
IndexOutOfRangeException)

System.IndexOutOfRangeException If an index is not in range (applies to 
code table methods)

System.InvalidOperationException When an operation that is usually legal 
cannot be carried out because of the 
current state of the object



Chapter 3    Working with DataWindow Controls

Programmer’s Guide 93

The DbErrorException class
When using methods such as UpdateData and Retrieve, a database error can 
cause a DbErrorException to be thrown. For example, this can occur if you try 
to insert a row that does not have values for all columns that have been defined 
as not allowing null. Your exception-handling code can get the values of the 
parameters listed in Table 3-9.

Table 3-9: DbErrorException parameters

Example This Visual Basic code catches a DbErrorException and displays the 
SqlErrorText is a message box:

Try
dwGrid.UpdateData()

Catch ex As Sybase.DataWindow.DbErrorException
Dim sError As String
sError = ex.SqlErrorText
SQLCA.RollBack()
MsgBox(sError)
Return

End Try

System.NotSupportedException When a method is not supported for the 
DataWindow style

TransactionException When there is an exception in a 
transaction operation

Exception When thrown

Parameter Meaning

Buffer The buffer containing the row involved in the database activity that 
caused the error.

RowNumber The number of the row involved in the database activity that 
caused the error (the row being updated, selected, inserted, or 
deleted). 

SqlDbCode A database-specific error code. See your DBMS documentation 
for information on the meaning of the code.

SqlErrorText A database-specific error message.

SqlSyntax The full text of the SQL statement being sent to the DBMS when 
the error occurred.



Creating reports

94  DataWindow .NET

This C# code displays a message box that uses the value of SqlDbCode:

// Database error -195 means that some of the
// required values are missing
If Ex.SqlDbCode = -195 {

string message = "You have not supplied values for
all the required fields.";

string caption = "Missing Information";
MessageBox.Show(message, caption);

}

Creating reports
You can use DataWindow objects to create standard business reports such as 
financial statements, sales order reports, employee lists, or inventory reports.

To create a production report, you:

• Determine the type of report you want to produce

• Build a DataWindow object to display data for the report

• Place the DataWindow object in a DataWindow control on a form

• Write code to perform the processing required to populate the 
DataWindow control and print the contents as a report

Planning and building the DataWindow object
To design the report, you create a DataWindow object. You select the data 
source and presentation style and then:

• Sort the data

• Create groups in the DataWindow object to organize the data in the report 
and force page breaks when the group values change

• Enhance the DataWindow object to look like a report (for example, you 
might want to add a title, column headers, and a computed field to number 
the pages)

For information about designing DataWindow objects for use in Web 
applications, see “Designing DataWindow objects for the Web DataWindow” 
on page 214.



Chapter 3    Working with DataWindow Controls

Programmer’s Guide 95

Using fonts
Printer fonts are usually shorter and fatter than screen fonts, so text might not 
print in the report exactly as it displays in DataWindow Designer. You can pad 
the text fields to compensate for this discrepancy.

You should test the report format with a small amount of data before you print 
a large report.

Printing the report
After you build the DataWindow object and fill in print specifications, you can 
place it in a DataWindowControl on a form, as described in “Using drag-and-
drop” on page 58.

To allow users to print the report, your application needs code that performs the 
printing logic. For example, you can place a button on the form, then write code 
that is run when the user clicks the button. 

To print the contents of a single DataWindow control or DataStore, call the 
Print method. For example, this Visual Basic statement prints the report in the 
DataWindowControl dwSales:

dwSales.Print()

For information about the Print method, see the online Help. For information 
about using composite reports to print multiple DataWindows, see “Using 
composite reports” next. For information about printing Web DataWindows, 
see “Printing Web DataWindows” on page 207.

Using composite reports
When designing a DataWindow object for a report, you can choose to combine 
other reports (which are also DataWindow objects) within it. The basic steps 
for using composite reports in an application are the same ones you follow for 
the other report types. There are, however, some additional topics concerning 
these reports that you should know about.

To learn about designing composite reports, see the DataWindow Designer 
User's Guide.



Using composite reports

96  DataWindow .NET

Printing multiple 
updatable 
DataWindows on a 
page

An advantage of composite reports is that you can print multiple reports on a 
page. A limitation of composite reports is that they are not updatable, so you 
cannot directly print several updatable DataWindows on one page. However, 
there is an indirect way to do that, as follows.

You can use the GetChild method on a report embedded in a composite report 
to get a reference to that report. After getting the reference to the nested report, 
you can address it at runtime like other DataWindows.

Using this technique, you can call the ShareData method to share data between 
multiple updatable DataWindow controls and the nested reports in your 
composite report. This allows you to print multiple updatable DataWindows on 
a page through the composite report.

❖ To print multiple DataWindows on a page using a composite 
DataWindow:

1 Build a form that contains DataWindowControls with the updatable 
DataWindow objects.

2 Define a composite report that has reports corresponding to each of the 
DataWindows in the window or form that you want to print. Be sure to 
name each of the nested reports in the composite report.

3 Add the composite report to the form (it can be hidden).

4 In your application, do the following:

a Retrieve data into the updatable DataWindow controls.

b Use GetChild to get a reference to the nested reports in the composite 
report.

c Use ShareData to share data between the updatable DataWindow 
objects and the nested reports.

d When appropriate, print the composite report.

The report contains the information from the updatable DataWindow 
objects.

Re-retrieving data
Each time you retrieve data into the composite report, all references (handles) 
to nested reports become invalid, and data sharing with the nested reports is 
terminated. Therefore, be sure to call GetChild and ShareData each time after 
retrieving data.

For a list of properties of nested reports, see the DataWindow Object Reference.



Chapter 3    Working with DataWindow Controls

Programmer’s Guide 97

Using crosstabs
To perform certain kinds of data analysis, you might want to design 
DataWindow objects in the Crosstab presentation style. The basic steps for 
using crosstabs in an application are the same ones you follow for the other 
DataWindow types, but there are some additional topics concerning crosstabs 
that you should know about.

To learn about designing crosstabs, see the DataWindow Designer User's 
Guide.

Viewing the underlying data
If you want users to be able to see the raw data as well as the cross-tabulated 
data, you can do one of two things:

• Place two DataWindow controls on the form: one that is associated with 
the crosstab and one that is associated with a DataWindow object that 
displays the retrieved rows.

• Create a composite DataWindow object that contains two reports: one that 
shows the raw data and one that shows the crosstab.

Do not share data between the two DataWindow objects or reports
They have the same SQL SELECT data definition, but they have different result 
sets.

For more about composite DataWindows, see the DataWindow Designer 
User's Guide.

Letting users redefine the crosstab
With the CrosstabDialog method for the DataWindowControl, you can allow 
users to redefine which columns in the retrieved data are associated with the 
crosstab's columns, rows, and values at runtime. This method is not available 
on DataStores or WebDataWindowControls.



Using graphs

98  DataWindow .NET

The CrosstabDialog method displays the Crosstab Definition dialog box to 
allow the user to define the data for the crosstab's columns, rows, and values 
(using the same techniques as in DataWindow Designer). When the user clicks 
OK in the dialog box, the DataWindowControl rebuilds the crosstab with the 
new specifications.

As with other DataWindow objects, you can modify the properties of a crosstab 
at runtime using the Modify or SetProperty methods. For more information, see 
“Modifying a crosstab's properties at runtime” on page 151.

Using graphs
Graphs in DataWindow objects are tied directly to the data that is in the 
DataWindow object. As the data changes, the graph is automatically updated 
to reflect the new values.

You can use graphs in DataWindow objects in two ways:

• By including a graph as a control in a DataWindow object to enhance the 
display of information. 

• By using the Graph presentation style—the entire DataWindow object is a 
graph. In this case the underlying data is not visible. 

Types of graphs
DataWindow Designer provides many types of graphs for you to choose from. 
You choose the type on the Define Graph Style page in the DataWindow wizard 
or in the General page in the Properties view for the graph.

Area, bar, column, 
and line graphs

Area, bar, column, and line graphs are conceptually very similar. They differ 
only in how they physically represent the data values—whether they use areas, 
bars, columns, or lines to represent the values. All other properties are the 
same. Typically you use area and line graphs to display continuous data and use 
bar and column graphs to display noncontinuous data.

Pie graphs Pie graphs typically show one series of data points with each data point shown 
as a percentage of a whole. You can have pie graphs with more than one series 
if you want; the series are shown in concentric circles. Multi series pie graphs 
can be useful in comparing series of data.



Chapter 3    Working with DataWindow Controls

Programmer’s Guide 99

Scatter graphs Scatter graphs show xy data points. Typically you use scatter graphs to show 
the relationship between two sets of numeric values. Non-numeric values, such 
as string and DateTime datatypes, do not display correctly. Scatter graphs do 
not use categories. Instead, numeric values are plotted along both axes—as 
opposed to other graphs, which have values along one axis and categories 
along the other axis. You can have multiple series of data in a scatter graph. For 
example, you might want to plot mileage versus speed for several makes of 
cars in the same graph.

Three-dimensional 
graphs

You can also create 3-dimensional (3D) graphs of area, bar, column, line, and 
pie graphs. In 3D graphs (except for 3D pie graphs), series are plotted along a 
third axis (the Series axis) instead of along the Category axis. You can specify 
the perspective to use to show the third dimension.

Stacked graphs In bar and column graphs, you can choose to stack the bars and columns. In 
stacked graphs, each category is represented as one bar or column instead of as 
separate bars or columns for each series.

For more information
For more information about working with graphs in DataWindow Designer, 
see the DataWindow Designer User’s Guide. 

For information about using graphs in a Web DataWindow, see “Rendering 
graphs” on page 203. 

For information about working with graphs at runtime, see Chapter 8, 
“Manipulating Graphs.”



Using graphs

100  DataWindow .NET



Programmer’s Guide 101

C H A P T E R  4 Working with DataStores 

About this chapter This chapter describes how to use DataStore objects in an application.

Contents

Before you begin This chapter assumes you know how to build DataWindow objects in the 
DataWindow painter, as described in the DataWindow Designer User’s 
Guide.

About DataStores
A DataStore is a nonvisual DataWindow control. DataStores act just like 
DataWindow controls except that they do not have many of the visual 
characteristics associated with DataWindow controls. Like a DataWindow 
control, a DataStore has a DataWindow object associated with it. 
DataStores can be used in Windows and Web applications.

When to use a DataStore DataStores are useful when you need to access data but do not need the 
visual presentation of a DataWindow control. DataStores allow you to:

• Perform background processing against the database without having 
to hide DataWindow controls in a window

Topic Page

About DataStores 101

Working with a DataStore 103

Accessing and manipulating data in a DataStore 104

Event handling 106

Sharing information 106

.NET remoting 107



About DataStores

102  DataWindow .NET

Suppose that the DataWindow object displayed in a DataWindow control 
is suitable for online display but not for printing. In this case, you could 
define a second DataWindow object for printing that has the same result 
set description and assign this object to a DataStore. You could then share 
data between the DataStore and the DataWindow control. Whenever the 
user asked to print the data on a form, you could print the contents of the 
DataStore.

• Hold data used to show multiple views of the same information. When a 
window shows multiple views of the same information, you can use a 
DataStore to hold the result set. By sharing data between a DataStore and 
one or more DataWindow controls, you can provide different views of the 
same information without retrieving the data more than once.

DataStore methods Many of the methods and events available for DataWindowControls are also 
available for DataStores. However, some of the methods that handle online 
interaction with the user are not available for either DataStores or 
WebDataWindowControls, which use a DataStore internally. For example, 
DataStores support the Retrieve, UpdateData, InsertRow, and DeleteRow 
methods, but not FindNextSelectedRow and SetRowFocusIndicator.

Prompting for 
information

When you are working with DataStores, you cannot use functionality that 
causes a dialog box to display to prompt the user for more information. Here 
are some examples of when this can occur:

Prompt for Criteria You can define your DataWindow objects so that the 
user is prompted for retrieval criteria before the DataWindow retrieves data. 
This feature works with DataWindowControls only. It is not supported with 
DataStores.

Prompt for Printing For DataWindowControls, you can specify that a print 
setup dialog box display at runtime, either by checking the Prompt Before 
Printing check box on the DataWindow object’s Print Specifications property 
page, or by setting the DataWindow object’s Print.Prompt property in code. 
This is not supported with DataStores.

Retrieval arguments If you call the Retrieve method for a 
DataWindowControl that has a DataWindow object that expects an argument, 
but do not specify the argument in the method call, the DataWindow prompts 
the user for a retrieval argument. This behavior is not supported with 
DataStores.

DataStores require no 
visual overhead

Unlike DataWindowControls, DataStores do not require any visual overhead 
in a form. Using a DataStore is therefore more efficient than hiding a 
DataWindowControl in a form.



Chapter 4    Working with DataStores

Programmer’s Guide 103

Working with a DataStore 
To use a DataStore, you first need to create an instance of the DataStore object 
and assign the DataWindow object to the DataStore. You can do this using 
drag-and-drop, as described for DataWindowControls in “Adding 
DataWindows to a form” on page 32, or in code.

Because it is a nonvisual object, when you drag a DataStore onto a form, its 
icon displays below the form. Also because it is nonvisual, it has only a few 
properties you need to set, including the LibraryList and DataWindowObject.

Then, if the DataStore is intended to retrieve data, you need to set the 
transaction object for the DataStore and connect to the database, if there is no 
existing connection. Once these setup steps have been performed, you can 
retrieve data into the DataStore, share data with another DataStore or 
DataWindow control, or perform other processing.

Examples The following code shows the code generated when you drag a DataStore onto 
a Windows form in a C# project and set its LibraryList and DataWindowObject 
properties.

Notice that a BeginInit method was generated. The Visual Studio .NET design 
environment uses this method to start the initialization of a component that is 
used on a form or used by another component. The EndInit method ends the 
initialization. Using the BeginInit and EndInit methods prevents the control from 
being used before it is fully initialized:

[C#]
// In the declaration block for Form1
private Sybase.DataWindow.DataStore dsDept;
...
// In private void InitializeComponent()
this.dsDept = new

Sybase.DataWindow.DataStore(this.components);
((System.ComponentModel.ISupportInitialize)

(this.dsDept)).BeginInit();
...
//
this.dsDept.LibraryList = "C:\\dwbexam.pbl";
this.dsDept.DataWindowObject = "printer_sales";



Accessing and manipulating data in a DataStore

104  DataWindow .NET

Accessing and manipulating data in a DataStore 
To access data using a DataStore, you need to read the data from the data source 
into the DataStore.

If the data source is a 
database

If the data for the DataStore is coming from a database (that is, the data source 
was defined as anything but External in the DataWindow painter), you need to 
communicate with the database to get the data. The steps you perform to 
communicate with the database are the same steps you use for a DataWindow 
control.

For more information about communicating with the database, see “Accessing 
a database” on page 62.

If the data source is 
not a database

If the data for the DataWindow object is not coming from a database (that is, 
the data source was defined as External in the DataWindow painter), you can 
use the following methods to import data into the DataStore:

ImportClipboard (in Windows applications only)
ImportFile
ImportString

You can also get data into the DataStore by using a DataWindow data 
expression or by using one of the SetItem methods.

For more information about the SetItem methods, see “Accessing data values 
using methods” on page 78.

About the DataStore 
buffers

Like a DataWindow control, a DataStore uses three buffers to manage data:

Table 4-1: DataStore buffers

Programming with 
DataStores

There are many methods for manipulating DataStore objects. These are some 
of the more commonly used:

Table 4-2: Common methods in DataStore objects

Buffer Contents

Primary Data that has not been deleted or filtered out (that is, the rows would 
be visible in a visual presentation)

Filter Data that was filtered out

Delete Data that was deleted by the user or in a script

Method Purpose

DeleteRow Deletes the specified row from the DataStore.

Filter Filters rows in the DataStore based on the current filter criteria.

InsertRow Inserts a new row.

Print Sends the contents of the DataStore to the current printer.



Chapter 4    Working with DataStores

Programmer’s Guide 105

For information about DataStore methods, see the online Help in Visual Studio 
.NET.

Dynamic DataWindow objects The methods in the table above manipulate 
data in the DataStore but do not change the definition of the underlying 
DataWindow object. In addition, you can use the Describe and Modify (or 
GetProperty and SetProperty) methods to access and manipulate the definition 
of a DataWindow object. Using these methods, you can change the 
DataWindow object at runtime. For example, you can change the appearance 
of a DataWindow or allow your user to create ad hoc reports.

For more information, see Chapter 7, “Dynamically Changing DataWindow 
Objects.”

Using DataStore properties and events This chapter mentions only a few 
of the properties and events that you can use to manipulate DataStores. For 
more information about DataStore properties and events, see the online Help.

Reset Clears all rows in the DataStore.

Retrieve Retrieves rows from the database.

RowsCopy Copies rows from one DataStore to another DataStore or 
DataWindow control.

RowsMove Moves rows from one DataStore to another DataStore or 
DataWindow control.

ShareData Shares data among different DataStores or DataWindow controls. 
See “Sharing information” on page 106.

Sort Sorts the rows of the DataStore based on the current sort criteria.

UpdateData Sends to the database all inserts, changes, and deletions that have 
been made since the last UpdateData.

Method Purpose



Event handling

106  DataWindow .NET

Event handling
For an overview of event handling in DataWindow .NET, see “Handling 
events” on page 90. 

Most events are passed data in an argument structure specialized for a set of 
events. For example, the BeginRetrieve, RowRetrieved, and EndRetrieve 
events are passed row count and row number data in argument classes that 
extend the RowEventArgs class, and BeginPrint, PagePrinting, and EndPrint 
events are passed page count information in argument structures that extend the 
PrintEventArgs class.

Sharing information 
The ShareData method allows you to share a result set between two different 
DataStores or DataWindow controls. When you share information, you remove 
the need to retrieve the same data multiple times.

The ShareData method shares data retrieved by one DataWindow control or 
DataStore (called the primary DataWindow) with another DataWindow control 
or DataStore (the secondary DataWindow).

Result set 
descriptions must 
match

When you share data, the result set descriptions for the DataWindow objects 
must be the same. However, the SELECT statements can be different. For 
example, you could use the ShareData method to share data between 
DataWindow objects that have the following SELECT statements (because the 
result set descriptions are the same):

SELECT dept_id from dept
SELECT dept_id from dept where dept_id = 200
SELECT dept_id from employee

You can also share data between two DataWindow objects where the source of 
one is a database and the source of the other is external. As long as the lists of 
columns and their datatypes match, you can share the data.

What is shared? When you use the ShareData method, the following information is shared:

Primary buffer
Delete buffer
Filter buffer
Sort order



Chapter 4    Working with DataStores

Programmer’s Guide 107

ShareData does not share the formatting characteristics of the DataWindow 
objects. That means you can use ShareData to apply different presentations to 
the same result set.

When you alter the 
result set

If you perform an operation that affects the result set on either the primary or 
the secondary DataWindow, the change affects both of the objects sharing the 
data because the result set is shared. For example, if you call the UpdateData 
method for the secondary DataWindow, the update operation is applied to the 
primary DataWindow also.

Turning off sharing 
data

To turn off the sharing of data, you use the ShareDataOff method. When you 
call ShareDataOff for a primary DataWindow, any secondary DataWindows are 
disassociated and no longer contain data. When you call ShareDataOff for a 
secondary DataWindow, that DataWindow no longer contains data, but the 
primary DataWindow and other secondary DataWindows are not affected.

In most cases you do not need to turn off sharing, because the sharing of data 
is turned off automatically when a window is closed and any DataWindow 
controls (or DataStores) associated with the window are destroyed.

Crosstabs You cannot share data with a DataWindow object that has the Crosstab 
presentation style.

.NET remoting
DataWindow 
synchronization

In a conventional client/server application, where database updates are 
initiated by a single application running on a client machine, the DataWindow 
server can manage DataWindow state information for you automatically. In an 
application that uses .NET remoting, the situation is somewhat different. 
Because application components are partitioned between the client and the 
server, you need to write logic to ensure that the data buffers and status flags 
for the DataWindow control on the client are synchronized with those for the 
DataStore on the server.

DataWindow .NET provides four methods that support .NET remoting for 
DataWindow controls and DataStores:

GetFullState
SetFullState
GetChanges
SetChanges



.NET remoting

108  DataWindow .NET

Although these methods are most useful in distributed applications, they can 
also be used in nondistributed applications where multiple DataWindow 
controls or DataStores must be synchronized.

Moving DataWindow 
buffers and status 
flags

To synchronize a DataWindow control on the client with a DataStore on the 
server, move the DataWindow data buffers and status flags back and forth 
between the client and the server whenever changes occur. The procedures for 
doing this are essentially the same whether the source of the changes resides on 
the client or the server.

To apply complete state information from one DataWindow control or 
DataStore to another, you need to:

1 Invoke the GetFullState method to capture the current state of the source 
DataWindow or DataStore.

2 Invoke the SetFullState method to apply the state of the source 
DataWindow or DataStore to the target.

To apply changes from one DataWindow control or DataStore to another, you 
need to:

1 Invoke the GetChanges method to capture changes from the source 
DataWindow or DataStore.

2 Invoke the SetChanges method to apply changes from the source 
DataWindow or DataStore to the target.

SetChanges can be applied to an empty DataWindow control or 
DataStore
You can call SetChanges to apply changes to an empty DataWindow control or 
DataStore. The target DataWindow control does not need to contain a result set 
from a previous retrieval operation. However, the DataWindow control must 
have access to the DataWindow definition. This means that you need to assign 
the DataWindow object to the target DataWindow control before calling 
SetChanges. 

DataWindow state is 
stored in blobs 

When you call GetFullState, the DataWindow server returns DataWindow state 
information in a DataWindowFullState object that inherits from the 
DataWindow Blob class. When you call GetChanges, state information is 
returned in a DataWindowChanges object that inherits from Blob. These 
objects support the ISerializable interface for use in .NET remoting 
applications.



Chapter 4    Working with DataStores

Programmer’s Guide 109

This function in a client console application calls GetFullState, stores the state 
of the DataWindow object in a DataWindowFullState object, and writes 
progress to the console:

public DataWindowFullState GetDwData()
{

Console.WriteLine("GetDwData() called");
ds_1.DataWindowObject = "d_dept_grid";
ds_1.SetTransaction(sqlca);

DataWindowFullState FullState = null;
try
{

ds_1.Retrieve();
FullState = ds_1.GetFullState();

Console.WriteLine("Retrieve Succeeded ");
}
catch (Sybase.DataWindow.DbErrorException ex)
{

Console.WriteLine("DbErrorException on Retrieve"
+ ex.SqlErrorText );

}
return FullState;

}

The DataWindowFullState object returned from GetFullState provides 
everything required to recreate the DataWindow, including the data buffers, 
status flags, and complete DataWindow specification. The 
DataWindowChanges object returned from GetChanges provides data buffers 
and status flags for changed and deleted rows only. 

DataWindowFullState and DataWindowChanges do not support Web 
services
DataWindowFullState and DataWindowChanges cannot be used in a Web 
service because some of their members are internal or protected and therefore 
cannot be serialized using XML serialization. 

Synchronizing after 
UpdateData

When called without arguments, the UpdateData method resets the update flags 
after a successful update. Therefore, when you call the UpdateData method on 
the server, the status flags are automatically reset for the server DataStore. 
However, the update flags for the corresponding client DataWindow control 
are not reset. Therefore, if the UpdateData method on the server DataStore 
succeeds, call ResetUpdateStatus on the client DataWindow to reset the flags.



.NET remoting

110  DataWindow .NET

One source, one 
target

You can synchronize a single source DataWindow control or DataStore with a 
single target DataWindow control or DataStore. Do not try to synchronize a 
single source with multiple targets, or vice versa.

Typical usage scenario
Suppose the server application uses a DataStore called ds_1. This DataStore is 
the source of data for a target DataWindow control called dw_1 on the client. 
The server application connects to the database, creates a DataStore, and 
assigns the DataWindow object to the DataStore.

In one of its functions, the server application issues a Retrieve method for ds_1, 
calls GetFullState on ds_1, and then passes the resulting DataWindowFullState 
object to the client. 

Once the client has the FullState object, it calls SetFullState to apply the state 
information from FullState to dw_1. 

At this point, the user can insert new rows in dw_1 and change or delete some 
of the existing rows. When the user makes an update request, the client calls 
GetChanges and invokes another function that passes the resulting 
DataWindowChanges object back to the server. The server application function 
then calls SetChanges to apply the changes from dw_1 to ds_1. 

After synchronizing ds_1 with dw_1, the server application updates the 
database. If the update was successful, the client calls ResetUpdateStatus to 
reset the status flags on the client DataWindow.



Programmer’s Guide 111

C H A P T E R  5 Working with Transaction and 
AdoTransaction Objects

About this chapter This chapter describes the Transaction and AdoTransaction classes.

Contents

About the Transaction and AdoTransaction classes
DataWindow .NET provides two classes that support the connection 
between a DataWindow object and a database.

Transaction class The Transaction class provides control of the transaction using Connect, 
Disconnect, Commit, and Rollback methods, and properties for specific 
parameters including the DBMS, database, user ID, and password.

AdoTransaction class The Transaction class does not export a public interface and can be used 
only with DataWindow objects. If you want to share a connection with 
other database constructs in your application, such as DataSet or 
Command objects, you can use an instance of the AdoTransaction class.

Like classes that inherit from the System.Data.IDbCommand interface, 
such as OdbcCommand and OleDbCommand, the AdoTransaction class 
has public properties that hold an ADO.NET connection and transaction. 
The Connection class represents a unique session with a data source.

Figure 5-1 shows the public properties and methods defined for the 
Transaction and AdoTransaction classes. The Transaction class inherits 
additional properties and methods from the 
System.ComponentModel.Component class, and it uses the DbmsType 
enumeration to provide the value for the DBMS used.

Topic Page

About the Transaction and AdoTransaction classes 111

Using a Transaction object 112

Using an AdoTransaction object 120



Using a Transaction object

112  DataWindow .NET

Figure 5-1: Transaction and AdoTransaction classes

Using a Transaction object
In a DataWindow database connection, a Transaction object is a nonvisual 
object that functions as the communications area between the DataWindow and 
the database. The Transaction object specifies the parameters that the 
DataWindow server uses to connect to a database. You must establish the 
Transaction object before you can access the database from your application. 

Communicating with 
the database

If you are using a Transaction object, you take the following general steps:

1 Create a Transaction object.

2 Set its properties.



Chapter 5    Working with Transaction and AdoTransaction Objects

Programmer’s Guide 113

3 Connect to the database.

4 Assign the Transaction object to a DataWindowControl, 
WebDataWindowControl, or DataStore and perform database processing.

5 Disconnect from the database.

Exception handling
The sample code in the following sections is simplified for brevity. You would 
usually wrap your code with try-catch statements to ensure that attempts to 
modify the database succeeded before committing the transaction. For more 
information, see “Exception handling” on page 118.

Creating a Transaction object using drag and drop
In Visual Studio .NET, you can create a Transaction object by dragging the 
Transaction item from the Sybase DataWindow 2.0 tab in the Toolbox to a 
form. Because it is a nonvisual object, its icon displays in the area below the 
form in a Windows application. In a Web site application, you need to open the 
Code Designer view to see the Transaction icon in the Toolbox and drag it to 
the view. You can right-click on the icon and display the Properties window to 
set properties, or you can set them in code.

If you use drag-and-drop to add the Transaction object to a form, the 
Transaction object is added to the form's components list. Objects on the 
components list are disposed automatically when the form is disposed, so you 
do not need to explicitly disconnect the transaction. However, if you declare 
the Transaction object in code, as described next, you must call the Disconnect 
method explicitly. The connection that the Transaction object represents is not 
closed automatically when the Transaction object goes out of scope.

Creating a Transaction object in code
To create a Transaction object in code, declare it in the form, then create a new 
instance of it. To simplify the code, the examples in this chapter assume that 
the Sybase.DataWindow namespace has been referenced in the code:

[Visual Basic]
Imports Sybase.DataWindow
...
Friend WithEvents TR1 As Transaction



Using a Transaction object

114  DataWindow .NET

...
Me.TR1 = New Transaction()

[C#]
using Sybase.DataWindow;
...
private Transaction TR1;
...
this.TR1 = new Transaction();

Setting Transaction object properties
Table 5-1 describes the properties of the Transaction object. You can set most 
of these properties in code or in the Properties window for a Transaction object 
in your .NET development environment. When you are designing a 
DataWindow object, you can set these properties in the Database profile dialog 
box in DataWindow Designer. The table lists the equivalent field in the 
Database Profile Setup dialog box that you complete to create a database 
profile in DataWindow Designer. A few of the properties cannot be set—you 
use them to get information about the transaction.

Properties for DataWindow .NET database interfaces
For information about the values you should supply for each connection 
property, see the section for the database interface you are using in the 
Connection Reference in the online Help for DataWindow Designer.

Table 5-1: Transaction object properties 

Property Datatype Description
In a database 
profile

Dbms Enumeration The DBMS identifier for your connection. For a complete 
list of the identifiers for the supported database interfaces, 
see the online Help.

DBMS

Database String The name of the database to which you are connecting. Database Name

UserID String The name or ID of the user who will log in to the database 
server.

User ID

Password String The password used to log in to the database server. Password



Chapter 5    Working with Transaction and AdoTransaction Objects

Programmer’s Guide 115

Using the Preview tab 
to connect in 
DataWindow Designer

The Preview tab page in the Database Profile Setup dialog box makes it easy 
to generate accurate connection syntax in DataWindow Designer for use in 
your .NET code. 

As you complete the Database Profile Setup dialog box, the correct connection 
syntax for each selected option is generated on the Preview tab. DataWindow 
Designer assigns the corresponding database parameter or property name to 
each option and inserts quotation marks, commas, semicolons, and other 
characters where needed. You can copy the syntax you want from the Preview 
tab directly into your script.

Lock String For those DBMSs that support the use of lock values and 
isolation levels, the isolation level to use when you 
connect to the database. For information about the lock 
values you can set for your DBMS, see the descriptions of 
the Isolation and Lock database parameters in the online 
Help for DataWindow Designer.

Isolation or 
Isolation Level

ServerName String The name of the server on which the database resides. Server Name

AutoCommit Boolean For those DBMSs that support it, specifies whether 
database operations are issued outside of the scope of a 
transaction, and therefore take immediate and permanent 
effect.

AutoCommit 
Mode

DbParameter String Contains DBMS-specific connection parameters that 
support particular DBMS features. For a description of 
each parameter that the DataWindow server supports, see 
the chapter on setting additional connection parameters in 
Connecting to Your Database.

Various fields

SqlReturnData String Contains DBMS-specific information. Cannot be set

RowsAffected Int32 The number of rows affected by the most recent SQL 
operation. The database vendor supplies this number, so 
the meaning may be different for each DBMS.

Cannot be set

DbHandle String The handle for your DBMS, which can be used to directly 
involve native methods in the database client API.

Cannot be set

IsConnected Boolean Whether the transaction object is connected to the 
database. Values are true (connected) and false (not 
connected).

Cannot be set

Property Datatype Description
In a database 
profile



Using a Transaction object

116  DataWindow .NET

❖ To use the Preview tab to connect in a .NET application:

1 In the Database Profile Setup dialog box for your connection, supply 
values for basic options on the Connection page and additional parameters 
and properties on the other tabbed pages as required by your database 
interface.

For information about connection parameters for your interface and the 
values you should supply, click the Help button in the dialog box.

2 Click Apply to save your settings without closing the Database Profile 
Setup dialog box.

3 Click the Preview tab.

The correct connection syntax for each selected option displays in the 
Database Connection Syntax box using SQLCA as the name of the 
Transaction object and VB.NET as the language.

4 If necessary, change the name in the Transaction Object box and select a 
different language from the Language Option list.

5 Select one or more lines of text in the Database Connection Syntax box 
and click Copy.

DataWindow Designer copies the selected text to the clipboard. You can 
then paste this syntax into your code.

6 Click OK.

Example The following statements assign values to the properties of a Transaction 
object named TR1 so that it can connect to the EAS Demo database using an 
ODBC connection: 

[Visual Basic]
TR1.Dbms = DbmsType.Odbc
TR1.AutoCommit = True
TR1.DbParameter = "ConnectString='DSN=EAS Demo DB V105 
DWD;UID=dba;PWD=sql',RPCReBind=1,DisableBind=1,
PBUseProcOwner='Yes'"

[C#]
TR1.Dbms = DbmsType.Odbc;
TR1.AutoCommit = true;
TR1.DbParameter = "ConnectString='DSN=EAS Demo DB V105 
DWD;UID=dba;PWD=sql',RPCReBind=1,DisableBind=1,
PBUseProcOwner='Yes'";



Chapter 5    Working with Transaction and AdoTransaction Objects

Programmer’s Guide 117

Connecting to the database
Once you establish the connection parameters by assigning values to the 
Transaction object properties, you can connect to the database using the 
Transaction object’s Connect method:

[Visual Basic]
InitializeComponent()
TR1.Connect()

[C#]
InitializeComponent();
TR1.Connect();

Associating the Transaction object with a DataWindow control or 
DataStore

You use the SetTransaction method to associate the Transaction object with a 
DataWindowControl, WebDataWindowControl, or DataStore. After calling 
SetTransaction, you can perform database activities:

[Visual Basic]
// In form’s load method
dwCustomer.SetTransaction(TR1)
dwCustomer.Retrieve()
...
// In an Update button
dwCustomer.UpdateData()
TR1.Commit()
dwCustomer.ResetUpdateStatus()

[C#]
// In form’s load method
dwCustomer.SetTransaction(TR1);
dwCustomer.Retrieve();
...
// In an Update button
dwCustomer.UpdateData();
TR1.Commit();
dwCustomer.ResetUpdateStatus();



Using a Transaction object

118  DataWindow .NET

Disconnecting from the database
When your database processing is completed, you disconnect from the 
database using the Disconnect method (you do not need to disconnect explicitly 
if you used drag-and-drop from the Toolbox to add the Transaction object to 
the form):

[Visual Basic]
TR1.Disconnect()

[C#]
TR1.Disconnect();

Exception handling
Most methods of the Transaction object throw 
System.InvalidOperationException if the Transaction is already connected, or 
Sybase.DataWindow.TransactionException for other failures. You can wrap 
the Connect, Commit, and Rollback methods in try-catch statements that catch 
these exceptions.

The TransactionException object has two properties that you can use to help 
determine the cause of the failure, SqlDbCode and SqlErrorText.

Table 5-2: TransactionException object properties 

Using SqlErrorText 
and SqlDbCode

The string SqlErrorText in the Transaction object contains the database 
vendor-supplied error message. The integer named SqlDbCode in the 
Transaction object contains the database vendor-supplied status code. You can 
reference these variables in your code. 

Example The following try-catch clause handles the exceptions that might be 
thrown when a Windows application connects to a database, associates a 
transaction with a DataWindowControl, and retrieves data from the database. 
Notice that DataWindow operations such as Retrieve might throw a 
DbErrorException, which also has SqlErrorText and SqlDbCode properties:

[Visual Basic]
Try

sqlca.Connect()
dwDept.SetTransaction(sqlca)

Property Datatype Description

SqlDbCode Int32 Database error code

SqlErrorText String The text of the database vendor’s error message 
corresponding to the error code



Chapter 5    Working with Transaction and AdoTransaction Objects

Programmer’s Guide 119

dwDept.Retrieve()
Dim msg As String

Catch Ex As System.InvalidOperationException
msg = "The transaction is already connected" _
+ "The application cannot continue"
MsgBox(msg)
Application.Exit()

Catch Ex As TransactionException
msg = Ex.SqlErrorText + _
"\n\nThe application cannot continue." + _
"Database Connection Failed"
Application.Exit()

Catch Ex As DbErrorException
msg = Ex.SqlErrorText + _
"\n\nThe application cannot continue." + _
"DataWindow Operation Failed"
Application.Exit()

Catch Ex As System.Exception
msg = Ex.ToString() + _
"\n\nThe application cannot continue." + _
"Unexpected Exception"
Application.Exit()

End Try

[C#]
try 

{
sqlca.Connect();
dwDept.SetTransaction(sqlca);
dwDept.Retrieve(); 

} 
catch (System.InvalidOperationException ex) 
{

MessageBox.Show("The application cannot
continue.", "The transaction is already
connected", MessageBoxButtons.OK,
MessageBoxIcon.Stop);
Application.Exit();

}
catch (TransactionException ex) 
{

MessageBox.Show(ex.SqlErrorText + 
"\n\nThe application cannot continue.", 
"Database Connection Failed",
MessageBoxButtons.OK, MessageBoxIcon.Stop);
Application.Exit();

}



Using an AdoTransaction object

120  DataWindow .NET

catch (DbErrorException ex) 
{

MessageBox.Show(ex.SqlErrorText + 
"\n\nThe application cannot continue.",
"DataWindow Operation Failed",
MessageBoxButtons.OK, MessageBoxIcon.Stop);
Application.Exit();

}
catch (System.Exception ex)
{

MessageBox.Show(ex.ToString() + 
"\n\nThe application cannot continue.",
"Unexpected Exception", MessageBoxButtons.OK,
MessageBoxIcon.Stop);
Application.Exit();

}

Using an AdoTransaction object
You can use an AdoTransaction object to share an ADO.NET connection with 
other database constructs in your application, such as Command objects, 
DataSets, DataTables, and DataViews.

Drag-and-drop not available
In Visual Studio .NET, you can create a Transaction object by dragging the 
Transaction item from the Sybase DataWindow tab in the Toolbox to a form. 
You cannot create an AdoTransaction object using drag-and-drop—you must 
create it in code.

The ADO.NET database interface provided with DataWindow .NET 
comprises a server in a private .NET assembly (Sybase.PowerBuilder.Db.dll or 
Sybase.PowerBuilder.DbExt.dll for Oracle 10g or Adaptive Server® 
Enterprise 15 or later) and an unmanaged driver library (PBADO105.DLL). 
When you deploy an application that uses an AdoTransaction object, you must 
deploy these DLLs as well as PBSHR105.DLL. For more information about 
deploying applications, see Chapter 13, “Deploying DataWindow .NET 
Applications.”



Chapter 5    Working with Transaction and AdoTransaction Objects

Programmer’s Guide 121

PBSHR105.DLL contains utility routines that constitute a database interface 
layer between the DataWindow server and DataWindow .NET database 
interfaces for OLEDB, ODBC, and specific DBMSs, as well as ADO.NET. 
You must deploy this file with all DataWindow .NET applications, whatever 
database connectivity options they use.

For more information about the ADO.NET database interface, see Connecting 
to Your Database.

When you connect to a database in ADO.NET, you use one of the data 
providers supplied with the .NET Framework. Each data provider has four 
primary objects:

• The Connection object establishes a connection to a data source

• The Command object executes a command against the data source

• The DataReader reads a stream of data from the data source

• The DataAdapter populates a DataSet object with the data

In DataWindow .NET, you interact with the Connection object to open a 
connection to a database. In this release, you do not work directly with the other 
objects—the DataWindow handles database operations.

The AdoTransaction object has some similarities to the data provider’s 
Command object. Both have properties that get and set the connection and 
transaction that they use to perform database operations, and the 
AdoTransaction object creates a Command object internally and passes 
connection and transaction information to it.

Data provider support
In this release, the .NET Framework data providers for OLE DB and SQL 
Server are supported.

Overview of steps If you are using an AdoTransaction object to connect to a database, you take 
the following general steps:

1 Create a new instance of an ADO.NET Connection object and set its 
properties.

2 Open an existing connection or create a new one.

3 Create an AdoTransaction object that uses the Connection object and bind 
it to the internal database interaction layer.



Using an AdoTransaction object

122  DataWindow .NET

4 Assign the AdoTransaction object to a DataWindowControl, 
WebDataWindowControl, or DataStore.

5 Start a transaction and perform database processing.

6 Disconnect from the database.

Generating code in the Database Profile dialog box
You can use the Database Profile dialog box for ADO.NET in DataWindow 
Designer to generate the code you need to perform the first three of these steps. 
See “Using the Preview tab to connect in DataWindow Designer” on page 
115.

Creating an ADO.NET Connection object
Before you establish a connection, create an instance of a .NET data provider’s 
Connection object and set its properties. The example shown here uses the 
.NET Framework Data Provider for OLE DB:

[Visual Basic]
Dim connString As New String _
("User ID=dba;Password=sql;Data Source=EAS Demo DB V105 
DWD;Provider=ASAProv.90")
Dim oleDbConn As New OleDbConnection(connString)

[C#]
OleDb.OleDbConnection oleDbConn = new 
OleDb.OleDbConnection();
oleDbConn.ConnectionString = "User ID=dba;
Password=sql;Data Source=EAS Demo DB V105 DWD;
Provider=ASAProv.90";

When an instance of a connection has been created, it can be used again. Note 
that the ConnectionString property cannot be updated after the connection has 
been opened.



Chapter 5    Working with Transaction and AdoTransaction Objects

Programmer’s Guide 123

Opening a connection
The Open method on a Connection object takes an open connection from a pool 
if a connection is available or opens a new connection:

[Visual Basic]
oleDbConn.Open()

[C#]
oleDbConn.Open();

Creating an AdoTransaction object
An AdoTransaction object has four properties: Connection, DbParameter, 
IsBound, and Transaction. They are described in Table 5-3.

Table 5-3: AdoTransaction object properties 

When you create a new AdoTransaction object, you can pass the name of the 
Connection object as a parameter of the constructor or call the constructor with 
no parameters and specify the Connection object using the Connection 
property. 

You can also optionally supply database parameters to be passed on to the 
database interface layer. An easy way to determine the correct syntax for 
setting these parameters is to set them in the DataBase Profile dialog box for 
ADO.NET and copy them from the Preview page. See “Using the Preview tab 
to connect in DataWindow Designer” on page 115.

Property Datatype Description

Connection System.Data.IDbConnection The ADO.NET connection that the AdoTransaction object binds 
to the database interface layer. DataWindows that use the 
AdoTransaction object use this connection to perform database 
operations such as retrieve and update.

DbParameter String Database parameters to be passed to the database interface layer 
for processing. For a description of each parameter that the 
database interface supports, see the chapter on setting additional 
connection parameters in Connecting to Your Database.

IsBound Boolean Read-only property that indicates whether the ADO.NET 
connection associated with this AdoTransaction object has been 
bound to the database interface layer.

Transaction System.Data.IDbTransaction The ADO.NET transaction that is started within the 
AdoTransaction's Connection property.



Using an AdoTransaction object

124  DataWindow .NET

In the following example, an OleDbConnection object is passed in the 
constructor (no database parameters are passed), then the connection is bound 
to the database interface layer:

[Visual Basic]
Imports Sybase.DataWindow
...
Friend WithEvents adoTrans As AdoTransaction
...
Me.adoTrans = New AdoTransaction(oleDbConn)
adoTrans.BindConnection()

[C#]
using Sybase.DataWindow;
...
private AdoTransaction adoTrans;
...
this.adoTrans = new AdoTransaction(oleDbConn);
adoTrans.BindConnection();

The BindConnection method binds the connection object passed in the 
constructor to the database interface layer and sets the IsBound property to true. 
If you need to change the Connection object associated with the 
AdoTransaction, or change or add any database parameters, you must call the 
UnbindConnection method first.

Associating the AdoTransaction object with a DataWindow control 
or DataStore

You use the SetTransaction method to associate the AdoTransaction object with 
a DataWindowControl, WebDataWindowControl, or DataStore. The following 
code creates a DataStore, supplying the name of the DataWindow object and 
the library where it is stored as arguments in the constructor, and uses the 
SetTransaction method to associate the DataStore and the AdoTransaction:

[Visual Basic]
Dim ds As New DataStore("mylib.pbd", "d_dept")
ds.SetTransaction(adoTrans)

[C#]
DataStore ds = new DataStore("mylib.pbd", "d_dept");
ds.SetTransaction(adoTrans);



Chapter 5    Working with Transaction and AdoTransaction Objects

Programmer’s Guide 125

Starting a transaction and manipulating data
You use the BeginTransaction method of the AdoTransaction object’s 
Connection property to start a transaction. The Connection property inherits its 
methods from the IDbConnection interface. Similarly, you use the Commit and 
Rollback methods of the AdoTransaction object’s Transaction property. The 
Transaction property inherits its methods from the IDbTransaction interface.

In the following example, data is retrieved into the DataStore before the 
transaction is started within a try-catch statement. Within the same try clause, 
changes in the data are updated to the database and committed and the status 
flags are reset. If the update fails, a DbErrorException is caught and the 
transaction is rolled back.

[Visual Basic]
// In form's load method
ds.Retrieve()
...
// In an Update button
Try

adoTrans.Transaction = _
adoTrans.Connection.BeginTransaction()

ds.UpdateData(true, false)
adoTrans.Transaction.Commit()
ds.ResetUpdateStatus()

Catch ex As DbErrorException
MessageBox.Show(ex.SqlErrorText + _
"\n\nNo changes have been made to the database.", _
"Database error", MessageBoxButtons.OK, _
MessageBoxIcon.Stop);
adoTrans.Transaction.Rollback();

Catch ex As Exception
MessageBox.Show(ex.ToString() + _
"\n\nNo changes have been made to the database.", _
"Unexpected Exception", MessageBoxButtons.OK, _
MessageBoxIcon.Stop);

End Try

[C#]
// In form’s load method
ds.Retrieve();
...
// In an Update button
try



Using an AdoTransaction object

126  DataWindow .NET

{
adoTrans.Transaction =

adoTrans.Connection.BeginTransaction();
ds.UpdateData(true, false);
adoTrans.Transaction.Commit();
ds.ResetUpdateStatus();

}
catch (DbErrorException ex) 
{

MessageBox.Show(ex.SqlErrorText + 
"\n\nNo changes have been made to the database.",
"Database error", MessageBoxButtons.OK,
MessageBoxIcon.Stop);
adoTrans.Transaction.Rollback();

}
catch (Exception ex)
{

MessageBox.Show(ex.ToString() + 
"\n\nNo changes have been made to the database.",
"Unexpected Exception", MessageBoxButtons.OK,
MessageBoxIcon.Stop);

}



Programmer’s Guide 127

C H A P T E R  6 Accessing DataWindow Object 
Properties in Code 

About this chapter This chapter explains methods for accessing properties of controls within 
a DataWindow.

Contents

About properties of the DataWindow object and its 
controls

This section describes:

• What you can do with DataWindow object properties

• How to specify property values in the DataWindow painter

What you can do with DataWindow object properties
The DataWindow object defines the way data is displayed in a 
DataWindow control. (Here DataWindow control is used to mean a 
DataWindowControl, WebDataWindowControl, or DataStore). It 
contains controls that represent the columns, text labels, computed fields, 
and images. 

The properties of the DataWindow object and its controls store the 
information that specifies the behavior of the DataWindow object. They 
are not properties of the DataWindow control, but of the DataWindow 
object displayed in the control.

Topic Page

About properties of the DataWindow object and its controls 127

Accessing DataWindow object property values in code 130

Accessing properties directly 131

Using Modify and SetProperty 139



About properties of the DataWindow object and its controls

128  DataWindow .NET

Terminology
When you are programming for DataWindows, there are several types of 
expressions involved.

A DataWindow expression is an expression assigned as a value to a 
DataWindow property and is evaluated by the DataWindow engine. The 
expression can refer to column data and can have a different value for each row 
in the DataWindow object.

A DataWindow property expression is an expression in your code that gets 
or sets the value of a DataWindow object property. Its effects are equivalent to 
what the Describe and Modify methods do.

Types of values Property values can be constants or they can be DataWindow expressions. 
DataWindow expressions allow the property value to be based on other 
conditions in the DataWindow, including data values. Conditional expressions 
based on data can give the property a different value for each row.

Getting and setting 
values

You establish initial values for properties in the DataWindow painter. You can 
also get and set property values at runtime in code in both an early-binding and 
a late-binding fashion. For more information, see “Accessing DataWindow 
object property values in code” on page 130.

There are several techniques for accessing property values. A particular 
property might be accessible by a subset of those techniques. For example, 
some properties are read-only at runtime, some can be set only at runtime, and 
some accept only constants (not DataWindow expressions) as values.

For a complete list of properties and the ways you can access each one, see the 
DataWindow Object Reference.

Examples: ways of 
setting the Border 
property

This table lists the ways you can access a property, using the Border property 
as an example:

Table 6-1: Ways to access and change DataWindow object properties

What you can do with 
properties

How to do it, using the Border 
property as an example What happens

Set the initial value of the 
property in the workspace

Property page, General tab, Border 
box

The Border property takes on the value you set 
unconditionally. In the Preview view and at 
runtime, the control has the border you 
indicated in the workspace unless you set the 
Border property again in some way.



Chapter 6    Accessing DataWindow Object Properties in Code

Programmer’s Guide 129

You can also set the initial value of the property at runtime in code for a 
DataWindow being created using the DataWindowSyntaxFromSql method. 
When DataWindowSyntaxFromSql executes, the border value of all columns is 
set in the generated syntax. 

How to specify property values in the DataWindow painter 
When you specify values in the Properties view of the DataWindow painter, 
you are setting properties of the DataWindow object and its controls.

Properties for each 
control

Each control in the DataWindow (columns, text, drawing controls) has its own 
property pages, because there are different sets of properties for each control. 
To access individual property pages, display the Properties view and then 
select a control. 

If several controls have the same property and you want them all to have the 
same value, you can select all the controls so that the property page shows the 
properties that they have in common. When you change the property value, it 
is applied to all selected controls.

Specify the value of the 
property at runtime based 
on an expression defined 
for the control in the 
workspace

Property page, General tab, Border 
box, Expression button

In Preview and at runtime, the border changes 
as specified in the expression, which overrides 
the setting on the property page.

For example, an expression can give the 
Salary column value a ShadowBox border 
when the salary exceeds $70,000.

To see the effect in the Preview view, you 
might need to close Preview and reopen it.

Get the value of the 
property at runtime in code

Describe or GetProperty method, or 
GraphicObjectColumn 
BorderStyle.Value and 
BorderStyle.Expression properties

Returns the value of the Border property for 
the specified control.

Change the value of the 
property at runtime in code

Modify or SetProperty method, or 
GraphicObjectColumn 
BorderStyle.Value and 
BorderStyle.Expression properties

At runtime, the value of the property changes 
when the code executes. For example, you 
could code Modify in the Clicked event and 
change the border of the control the user 
clicked.

What you can do with 
properties

How to do it, using the Border 
property as an example What happens



Accessing DataWindow object property values in code

130  DataWindow .NET

DataWindow 
expressions for 
properties

For many properties, you can specify a DataWindow expression in the 
Properties view by clicking the Expression button beside the property. At 
runtime, the expression is evaluated for each row. When the expression 
includes row-dependent information in the calculation (such as data), each row 
can have a different value for the property. In the painter, you can see the results 
in the Preview view. You might need to close Preview and reopen it if you are 
not seeing the settings you have made.

For information about the components of expressions, see the DataWindow 
Designer User’s Guide. For examples of expressions, see “Using DataWindow 
expressions as property values” on page 134. For information about setting 
values for properties that use expressions, see “Using DataWindow 
expressions as property values” on page 134.

Accessing DataWindow object property values in code
When an object is assigned to an object variable, the object is bound to the 
variable. Late binding occurs when the type of the variable to which the object 
is bound is not specified at compile time. Early binding occurs when the 
variable to which the object is bound is of a specific type. It lets the compiler 
allocate memory and perform other optimizations at compile time. 

DataWindow .NET supports both late and early binding.

Late binding
DataWindow .NET provides two sets of methods that let you access property 
values in a DataWindow object using late binding. 

Describe and Modify The Describe and Modify methods use strings to specify the property names. 
This is a simple example:

DW1.Describe("empname.Border")
DW1.Modify("empname.Border=1")

Both methods can get and set the values of multiple properties. Describe can 
take a string that contains the name of multiple properties separated by spaces. 
Modify can take a string that contains the names and values of multiple 
properties. 



Chapter 6    Accessing DataWindow Object Properties in Code

Programmer’s Guide 131

GetProperty and 
SetProperty

The GetProperty and SetProperty methods use strings as well. GetProperty is 
identical to Describe. SetProperty can set only one value at a time. Unlike 
Modify, which combines property names and values in a single string argument, 
SetProperty has two arguments, one for the property name, and one for the 
value to be set:

DW1.GetProperty("empname.Border")
DW1.SetProperty("empname.Border", "1")

Early binding
Although all available DataWindow object properties can be accessed with the 
four methods described in “Late binding,” the fact that properties and values 
are provided as string arguments at runtime requires defensive programming 
techniques to handle the exceptions that are thrown when invalid property 
names or values with invalid datatypes are supplied. 

DataWindow .NET provides an object-oriented presentation of the properties 
of a DataWindow object through which many of the controls on the 
DataWindow object can be treated as class instances with their own sets of 
properties and methods. Using these classes allows the .NET programmer to 
access some properties in an early-binding fashion, resulting in more 
maintainable code. 

The classes that support this “dot notation” approach are the GraphicObject 
classes, ExpressionBasedProperty classes, EditStyle classes, and the 
PrintProperties class. 

Accessing properties directly
You can access properties of many classes directly using dot notation.

GraphicObject classes
Figure 6-1 shows the hierarchy of the GraphicObject classes.



Accessing properties directly

132  DataWindow .NET

Figure 6-1: GraphicObject class hierarchy

Table 6-2 describes each of the GraphicObject classes.

Table 6-2: GraphicObject classes

Class Description

GraphicObject The ancestor of all classes representing DataWindow controls. This class 
includes property expressions for the sizing, positioning, and visibility of the 
control on the DataWindow. The three methods defined for this class 
(SendToBack, BringToFront, SetBand) allow controls to be moved 
dynamically between bands on the DataWindow and to be positioned in front 
of or behind other objects (z-ordering).

GraphicObjectText Represents a text object on a DataWindow control and includes properties for 
setting the foreground and background colors as well as the text itself.

GraphicObjectButton Represents a button on a DataWindow control and includes properties for 
setting the foreground and background colors as well as the text itself.

GraphicObjectReport Used with a composite DataWindow or a DataWindow containing a nested 
report. The only property currently exposed is DataWindowObject, which 
specifies the name of the DataWindow displayed in that nested report.



Chapter 6    Accessing DataWindow Object Properties in Code

Programmer’s Guide 133

Obtaining a class 
instance

There are several ways to obtain the class instance that is associated with a 
given control on a DataWindow: 

• Each control on a DataWindow has a name that is provided by (and can be 
modified in) DataWindow Designer when the control is placed on the 
DataWindow object. You can provide that name to the GetObjectByName 
method to return a value of type GraphicObject. 

GraphicObjectPicture Represents a picture control placed on the DataWindow and provides a 
FileName property pointing to the GIF, JPEG, or BitMap file that is displayed 
in the control.

GraphicObjectGraph Represents a graph control within a DataWindow, including graph-style 
DataWindows and graphs inserted into other DataWindows. This is the most 
complex of the GraphicObject classes. It offers several properties relating to 
categories and series within the graph and many methods allowing displays 
and values in the graph to be manipulated. A GraphObjectUnderMouse 
property grants access to the specific graph element that an end user has 
clicked on or is hovering over.

GraphicObjectColumn An abstract class that is an ancestor of DataWindow columns that contain 
OLE data, simple columns mapping to a back-end database, and computed 
columns. Each of these types of columns has a BorderStyle and a DataType 
property, both of which are defined on this class.

GraphicObjectBlobColumn Represents OLE Blob columns on the DataWindow, which contain data to be 
interpreted by an OLE server application, such as Microsoft Word or 
RealPlayer. This class is the ancestor of GraphicObjectInkPicture and 
provides a read-only ColumnNumber property.

GraphicObjectInkPicture Represents an InkPicture control on the DataWindow and provides properties 
that set or get ink collection modes and attributes of the ink collected.

GraphicObjectSimpleColumn An abstract class that defines properties common to columns representing 
database data of standard types such as string, integer, and decimal, as well 
as to columns whose values are computed at runtime based on other columns 
or DataWindow expressions. You can set format expressions as well as 
background and foreground colors for these types of objects.

GraphicObjectEditableColumn Represents column objects on a DataWindow that map to DataWindow 
buffers and, with the exception of external DataWindows, to data in the back-
end data source. Each column includes a column number and a tab order 
property. For columns with an edit style that uses a code table, this class 
provides three methods to manipulate a code table. 

GraphicObjectComputedColumn Exposes the expression that defines the value displayed in a computed 
column as a property. A computed column displays values of standard 
datatypes, but its value is based on a potentially complex expression that can 
include other column and computed column objects as well as many 
DataWindow expressions.

Class Description



Accessing properties directly

134  DataWindow .NET

• For column objects, which are numbered, you can invoke the 
GetColumnObjectByNumber method to obtain a value of type 
GraphicObjectColumn. 

• The Gob property of the DataWindowControl's ObjectUnderMouse 
property contains the GraphicObject class associated with the control 
currently under the mouse pointer. The Gob property always contains a 
valid instance. If there is no control under the mouse, its Empty property 
is set to true.

When you use any of these three techniques, you will probably need to cast the 
GraphicObject (or GraphicObjectColumn) instance to one of the final classes 
that precisely represents the specific DataWindow control of interest. 

In a Visual Basic program, for example, you might use the following code to 
determine the actual text displayed in a label on the DataWindow control:

Dim label As Sybase.DataWindow.GraphicObjectText
label = CType(dw1.GetObjectByName("t2"),

Sybase.DataWindow.GraphicObjectText)
MsgBox("The label selected is: " + label.Text)

Some DataWindow controls are not supported in this hierarchy, specifically 
drawing controls and the group box, nor are all properties directly available. In 
future releases of DataWindow .NET, more of the DataWindow control 
properties will be exposed in the GraphicObject hierarchy.

Using DataWindow expressions as property values
Many DataWindow object properties are backed by a DataWindow expression. 
When a DataWindow object property’s value can be an expression, you can 
make the control’s appearance or other properties depend on other information 
in the DataWindow. For example, the text color property of a 
GraphicObjectEditableColumn can be controlled by an expression such as:

if ( salary>50000, RGB(255,0,0), RGB(0,0,0) )

This expression changes the text color to red if the salary is greater than 50,000. 

A DataWindow expression can include: 

• Operators

• The names of controls within the DataWindow, especially column and 
computed field names



Chapter 6    Accessing DataWindow Object Properties in Code

Programmer’s Guide 135

• DataWindow expression functions. Some functions, such as IsRowNew, 
refer to characteristics of an individual row

Assigning an 
expression

To assign an expression in the painter, click the icon next to the property you 
want to set and specify the expression in the Modify Expression dialog box.

To assign an expression in code, you can use the Modify and SetProperty 
methods, or you can use a descendant of the ExpressionBasedProperty class.

The ExpressionBasedProperty class has descendants for each of the datatypes 
used in expressions, including AlignmentProperty, BooleanProperty, 
BorderStyleProperty, ColorProperty, Int16Property, Int32Property, 
FileNameProperty, and StringProperty. 

The following figure shows the hierarchy of the ExpressionBasedProperty 
classes.

Figure 6-2: ExpressionBasedProperty class hierarchy

Each of these property classes has two properties: Expression and Value. The 
Expression property is a String. The Value property is of the datatype required 
in the expression. For example, this is a ColorProperty expression property: 

if ( salary>50000, RGB(255,0,0), RGB(0,0,0) )

The ColorProperty object’s Value property is a System.Drawing.Color datatype. 



Accessing properties directly

136  DataWindow .NET

The following Visual Basic code sets the BackgroundColor.Value property of 
the last name column to Silver. It also sets the TextColor.Expression property 
to a string that sets the text color to red if the state is New York and green 
otherwise:

Dim colLName As _
Sybase.DataWindow.GraphicObjectEditableColumn

colLName = CType(dwSort.GetObjectByName("lname"), _
Sybase.DataWindow.GraphicObjectEditableColumn

colLName.BackgroundColor.Value = _
System.Drawing.Color.Silver

colLName.TextColor.Expression = _
"If(state ='NY', rgb(255, 0, 0), rgb(0, 255, 0) )"

Obtaining property 
values

You can use the Describe and GetProperty methods to get the value of 
expressions, or you can use dot notation with the ExpressionBasedProperty 
classes. The ValueInRow method for most of the descendent classes returns the 
value of a property for a column in a particular row. 

The following C# code accesses the TextColor property and uses the 
ValueInRow method to return the color value in a specific row:

GraphicObjectEditableColumn gobColumn;
Int32 someRow;
System.Drawing.Color C1, C2;
String expr;

C1 = gobColumn.TextColor.Value;
expr = gobColumn.TextColor.Expression;
C2 = gobColumn.TextColor.ValueInRow ( someRow );

Properties with 
subproperties

For properties that use multiple “dots,” new property objects are instantiated 
when they are needed. 

PrintProperties class
The PrintProperties class encapsulates DataWindow and DataStore print 
properties, and the corresponding PrintProperties property returns the 
properties. For example, the following code sets the Collate print property to 
true:

dwEmp.PrintProperties.Collate = true;



Chapter 6    Accessing DataWindow Object Properties in Code

Programmer’s Guide 137

Edit style properties
The EditStyle property of a GraphicObjectEditableColumn returns an instance 
of an EditStyle class. These classes derive from the EditStyleBase class, which 
holds common methods. The following figure shows the hierarchy of the 
EditStyle classes.

Figure 6-3: EditStyle class hierarchy

The ScrollableEdit class holds common properties for EditStyle types that 
contain text and can have scroll bars. The classes in Table 6-3 encapsulate the 
edit style properties of the GraphicObjectEditableColumnObject. 

Table 6-3: Properties for edit styles

Class name Edit style

CheckBox CheckBox

DDDW DropDownDW

DDLB DropDownListBox

EditMask EditMask

InkEdit InkEdit

RadioButton RadioButtons

SimpleEdit Edit



Accessing properties directly

138  DataWindow .NET

For example, the following C# code sets the value of the InkMode and Factoid 
properties for the column phone, whose edit style is InkEdit: 

GraphicObjectEditableColumn phoneCol =
(GraphicObjectEditableColumn)dwCust.
GetObjectByName("phone");

if (phoneCol.EditStyle is InkEdit)
{

((InkEdit)phoneCol.EditStyle).InkMode =
InkMode.CollectInk;

((InkEdit)phoneCol.EditStyle).Factoid = "TELEPHONE";
}

SpinProperties class The EditMask edit style can use a spin control. Spin properties are defined in 
the SpinProperties class. The following example sets and gets an EditMask 
column’s Minimum, Maximum, and Increment spin properties:

[Visual Basic]
Dim col As GraphicObjectEditableColumn
Dim Min, Max As String
Dim Inc As Short

col = dw1.GetObjectByName("quantity")
CType(col.EditStyle, EditMask).Spin.Minimum = "2"
CType(col.EditStyle, EditMask).Spin.Maximum = "20"
CType(col.EditStyle, EditMask).Spin.Increment = 2
Min = CType(col.EditStyle, EditMask).Spin.Minimum
Max = CType(col.EditStyle, EditMask).Spin.Maximum
Inc = CType(col.EditStyle, EditMask).Spin.Increment
[C#]
GraphicObjectEditableColumn col =

(GraphicObjectEditableColumn)dw1.
GetObjectByName("quantity");

String Min, Max;
short Inc;
((EditMask)col.EditStyle).Spin.Minimum = "2";
((EditMask)col.EditStyle).Spin.Maximum = "20";
((EditMask)col.EditStyle).Spin.Increment = 2;
Min=((EditMask)col.EditStyle).Spin.Minimum;
Max=((EditMask)col.EditStyle).Spin.Maximum;
Inc=((EditMask)col.EditStyle).Spin.Increment;



Chapter 6    Accessing DataWindow Object Properties in Code

Programmer’s Guide 139

Using Modify and SetProperty
Properties can also be modified using the Modify or SetProperty methods, but 
the syntax is more difficult to construct and prone to error.

The expression assigned to the TextColor property includes a default value. 
Nested quotes complicate the syntax, as in this C# example for Modify:

DW1.Modify("lname.TextColor = \"16777215 ~t 
If(bene_day_care = 'Y', 15790320, 16777215)\"");

This call to SetProperty achieves the same result:

DW1.SetProperty("emp_lname.Background.Color", 
"16777215 ~t If(bene_day_care = 'Y', 15790320, 
16777215)");

This Visual Basic code achieves the same result using GraphicObject classes:

Dim colLastName As _
Sybase.DataWindow.GraphicObjectEditableColumn

colLastName = _
CType(DW1.GetObjectByName("emp_lname"), _
GraphicObjectEditableColumn)

colLastName.BackgroundColor.Expression = _
"if(bene_day_care = 'Y', 15790320, 16777215)"

You can use both single and double quotes, but when you need to nest 
additional pairs of quotes, you use an escape character to identify inner nested 
pairs. For more information, see “Nested strings and special characters for 
DataWindow object properties” on page 144.

More examples in the 
DataWindow painter 
and in code

These examples illustrate the difference between the format for a DataWindow 
expression specified in the DataWindow painter as opposed to Visual Basic 
code. The examples use a combination of Modify, SetProperty, and explicit 
access to GraphicObject properties.

Border property The expression applied to the Border property of the salary 
column displays a border around salaries over $60,000:

If(salary > 60000, 1, 0)

This statement changes the expression in code using Modify:

DW1.Modify("salary.Border='0 ~t If(salary > 60000, 1, 
0)'")



Using Modify and SetProperty

140  DataWindow .NET

In this statement, salaryColumn is defined as a GraphicObjectColumn variable 
(or one of its descendants). You can get salaryColumn using a call to 
GetObjectByName or GetColumnObjectByNumber, or from the Gob element of 
the DataWindowControl’s ObjectUnderMouse structure: 

salaryColumn.BorderStyle.Expression = "If (salary > 
60000, 1, 0)"

Font.Weight property for a column To make out-of-state (not in 
Massachusetts) names and numbers bold in a phone list, apply this expression 
to the name and phone_number columns. The state column must be part of the 
data source, but it does not have to be displayed:

If(state = 'MA', 400, 700)

This statement changes the appearance of the name column in code:

DW1.SetProperty("name.Font.Weight", "700 ~t If(state = 
'MA', 400, 700)")

Brush.Color property for a rectangle This expression, applied to a 
rectangle drawn around all the columns in a tabular report, causes alternate 
rows to be shaded (a graybar effect). Make sure the columns and computed 
fields have a transparent background. The expression Mod(GetRow( ), 2) = 
1 distinguishes odd rows from even rows:

If(Mod(GetRow(), 2) = 1, 16777215, 15790320)

This statement changes the expression in code:

DW1.SetProperty("rectangle_1.Brush.Color", "0 ~t 
If(Mod(GetRow(), 2) = 1, 16777215, 15790320)")

Brush.Color and Brush.Hatch properties for a rectangle To highlight 
employees whose review date is approaching, draw a rectangle behind the row. 
This expression for the rectangle’s Brush.Color property makes the rectangle 
light gray for employees for whom the month of the start date matches the 
current month or the next month:

If(month(start_date) = month(today())
or month(start_date) = month(today()) + 1
or (month(today()) = 12 
and month(start_date) = 1),12632256, 16777215)

A similar expression for the Brush.Hatch property makes the fill pattern of the 
rectangle Bdiagonal (1) for review dates that are approaching. Otherwise, the 
rectangle is transparent (7) so that it does not show:

If(month(start_date) = month(today())
or month(start_date) = month(today()) + 1



Chapter 6    Accessing DataWindow Object Properties in Code

Programmer’s Guide 141

or (month(today()) = 12 
and month(start_date) = 1),1, 7)

You can also set the Pen.Color and Pen.Style properties to affect the outline of 
the rectangle.

To set the Brush.Color property in code:

DW1.SetProperty("rect1.Brush.Color", 
"'16777215 \t " +
"If(month(start_date) = month(today()) " +
"or month(start_date) = month(today()) + 1 " +
"or (month(today()) = 12 " + 
"and month(start_date) = 1), 12632256, 16777215)'")

Font.Height property for a rectangle This expression applied to the 
Font.Height property of a text control makes the text control in the first row of 
a DataWindow larger than in other rows. Make sure the borders of the text 
control are large enough to accommodate the increased size:

If(GetRow() = 1, 500, 200)

This statement changes the expression for the text control t_desc in code:

DW1.Modify("t_desc.Font.Height = '200 ~t If(GetRow() = 
1, 500, 200)'")

For more information about DataWindow expressions, see the DataWindow 
Object Reference in the online help for DataWindow Designer.

Advantages and drawbacks of the Modify method
Using the Modify method to access property values of a DataWindow object has 
advantages and drawbacks. 

Advantages You can set several properties in a single call to Modify, resulting in less code 
than multiple invocations of SetProperty or multiple assignments to a 
GraphicObject class instance. 



Using Modify and SetProperty

142  DataWindow .NET

For example, this code, which sets three properties to constant values, is not too 
complex:

rtn = DW1.Modify("emp_id.Font.Italic=0
oval_1.Background.Mode=0
oval_1.Background.Color=255");

In some cases, setting multiple properties at once is desirable from a 
performance standpoint. Dynamic crosstab manipulation is a specific case of 
this, since the crosstab might be destroyed and recreated when certain 
properties are adjusted. Supplying all properties in one Modify call ensures that 
the reconstruction of the crosstab occurs only once. 

In comparison with setting GraphicObject properties, a Modify (or SetProperty) 
call might be the only recourse if the specific DataWindow control property has 
not been exposed as a property on a GraphicObject class.

Drawbacks Modify can require complex quoted strings. When you specify an expression for 
a property value, it is difficult to specify nested quotes correctly—the code is 
hard to understand and prone to error. 

For example, this string assigns a DataWindow expression to the Color 
property:

DW1.Modify("emp_id.Color=\"16777215 \t
If(emp_status=~\"A~\",255,16777215)\"");

Compare that to the following code, which uses an explicit property of the 
GraphicObjectColumn class:

Dim colEmpID As 
Sybase.DataWindow.GraphicObjectEditableColumn

colEmpID = CType(DW1.GetObjectByName("emp_id"), 
GraphicObjectEditableColumn)

colEmpID.TextColor.Expression = "if(emp_status = 'A', 
255, 16777215)"

If you want to use the Modify method to change multiple properties, one 
technique you can use is to test your code using separate calls to SetProperty, 
change them from SetProperty to Modify calls when each property is being set 
correctly, then concatenate the strings in the Modify calls to make a single 
Modify call. 

For more information about quoted strings, see “Nested strings and special 
characters for DataWindow object properties” on page 144.



Chapter 6    Accessing DataWindow Object Properties in Code

Programmer’s Guide 143

Handling errors
Describe, Modify, GetProperty, and SetProperty each throw exceptions if an 
invalid property value is supplied as an argument. Describe and GetProperty 
throw a System.ArgumentException if the string does not represent a valid 
property.   Modify and SetProperty throw a MethodFailureException whose 
Message property contains the location of the error in the property value string. 
For example, consider the following code, where you want to change the color 
of the id column:

Try
Dim ModString As String
ModString = "id.color='255~tif (getrow() < 10,"
ModString += "RGB(255,0,0, RGB(0, 255,0))'"
dw1.Modify(ModString)

Catch ex As Sybase.DataWindow.MethodFailureException
MsgBox("Syntax Error: " + ex.Message)

End Try

The closing parenthesis of the first RGB expression is missing. This generates 
an exception and displays a message box with the following text:

Syntax error: Modify did not complete successfully; the 
error message is: Line 1 Column 63: incorrect syntax

Column 63 is actually the end of the supplied string value, which is where the 
omission of the parenthesis is first detected. If the id column specified in the 
string is not valid, the incorrect syntax message shows column 9, because the 
incorrect syntax is detected after the equals sign: id.color=. 

When you set an expression using the property values of the GraphicObject 
classes and assign an invalid property value, the DataWindow server throws a 
Sybase.DataWindow.InvalidExpressionException, not a 
MethodFailureException. For example, this code contains the same error as the 
previous example:

Try
label = CType(dw1.GetObjectByName("id"),

Sybase.DataWindow.GraphicObjectText)
label.TextColorExpression = "if (getrow() < 10,

RGB(255,0,0, RGB(0, 255,0))"
Catch ex As 

Sybase.DataWindow.InvalidExpressionException
MsgBox("Syntax Error: " + ex.Message,

MsgBoxStyle.Critical, "Property Assignment Error")
End Try



Using Modify and SetProperty

144  DataWindow .NET

This produces a message box with the following error text:

Syntax Error: COLOR had an invalid expression. 
Expression is: if (getrow() < 10, RGB(255,0,0, 
RGB(0,255,0))

Since the default properties on GraphicObject classes are strongly typed—for 
instance, the TextColor property is a System.Drawing.Color value—most, if 
not all, errors in setting these values are detected by the compiler at build time.

Nested strings and special characters for DataWindow object 
properties

DataWindow property values often involve specifying strings within strings. 
Embedded quotation marks need special treatment so that the strings are parsed 
correctly. 

Different processing 
by language and 
DataWindow

Most languages use different characters from those used within the 
DataWindow to delimit strings and identify special characters. Strings are 
delimited by double quotes and the escape character in strings is the backslash 
(\). The escape character allows you to include double quotes and special 
characters within a string. The DataWindow can use either double or single 
quotes to delimit strings and uses tilde (~) as an escape character.

Because some parts of the string are parsed by the language and some by the 
DataWindow, strings passed to the DataWindow often use both types of escape 
characters. The one to use depends on whether the DataWindow or the external 
language will evaluate the character. The external language deals with the outer 
string and converts escape sequences to the corresponding special characters. 
Nested strings are dealt with by the DataWindow parser.

Guidelines Observe these guidelines for each type of character:

• Special characters use the language escape character. Tabs, newlines, and 
carriage returns are \t, \n, \r.

• Nested double quotes require the language escape character (\) so they are 
not interpreted as the closure of the opening double quote. Depending on 
the level of nesting, they might also require the DataWindow escape 
character (~).

• Single quotes for nested strings do not need the language escape character, 
but depending on the level of nesting, they might need the DataWindow 
escape character.



Chapter 6    Accessing DataWindow Object Properties in Code

Programmer’s Guide 145

• Tildes are specified in odd-numbered groups. They do not interact with the 
language escape character in counting the number of escape characters 
used.

Examples Both of these C# examples are valid ways of nesting a string:

DW1.Modify("DataWindow.Crosstab.Values=\"empname\"");

DW1.Modify("DataWindow.Crosstab.Values='empname'");

The following three statements specify the same string. They show a string 
with three levels of nesting using different combinations of escape characters 
and quote types. In the first example, note the escaping of the inner quote with 
a tilde for the DataWindow and a backslash for the language:

DW1.Modify("emp_id.Color=\"16777215 \t If 
(emp_status=~\"A~\",255,16777215)\"");

DW1.Modify("emp_id.Color=\"16777215 \t If 
(emp_status='A',255,16777215)\"");

DW1.Modify("emp_id.Color='16777215 \t If 
(emp_status=\"A\",255,16777215)'");

Special use of tilde A special case of specifying tildes involves the EditMask.SpinRange property, 
whose value is two numbers separated by a tilde (not an escape character, 
simply a tilde). In code, the value is in a nested string and needs a tilde escape 
character. The two tildes are interpreted as a single tilde when parsed by the 
DataWindow:

DW1.Modify("benefits.EditMask.SpinRange='0~~10'");



Using Modify and SetProperty

146  DataWindow .NET



Programmer’s Guide 147

C H A P T E R  7 Dynamically Changing 
DataWindow Objects 

About this chapter This chapter describes how to modify and create DataWindow objects at 
runtime. 

Contents

About dynamic DataWindow processing 
Basics DataWindow objects and all entities in them (such as columns, text, 

graphs, and pictures) each have a set of properties. You can look at and 
change the values of these properties at runtime using DataWindow 
methods and property expressions. You can also create DataWindow 
objects at runtime.

A DataWindow object that is modified or created at runtime is called a 
dynamic DataWindow object.

What you can do Using this dynamic capability, you can allow users to change the 
appearance of the DataWindow object (for example, change the color and 
font of the text) or create ad hoc queries by redefining the data source. 
After you create a dynamic DataWindow object and the user is satisfied 
with the way it looks and the data that is displayed, the user can print the 
contents as a report.

See Chapter 8, “Manipulating Graphs,” for information about changing 
graphs in DataWindow controls at runtime.

Topic Page

About dynamic DataWindow processing 147

Modifying a DataWindow object 148

Creating a DataWindow object 149

Providing query ability to users 152

Providing Help buttons 157



Modifying a DataWindow object

148  DataWindow .NET

Modifying a DataWindow object 
At runtime, you can modify the appearance and behavior of a DataWindow 
object in a DataWindowControl by doing one of the following:

• Changing the values of its properties

• Adding or deleting controls from the DataWindow object

Changing property 
values

You can use the Modify or SetProperty methods to set property values. This lets 
you change settings that you ordinarily specify during development in the 
DataWindow painter. 

Before changing a property, you might want to get the current value and save 
it in a variable, so you can restore the original value later. To obtain information 
about the current properties of a DataWindow object or a control in a 
DataWindow object, use the Describe or GetProperty method.

Some properties are available using GraphicObject classes. For example, you 
can use the GraphicObjectButton’s Text property to get or set the text on a 
button control in a DataWindow object.

Using expressions in 
property values

With some DataWindow properties, you can assign a value through an 
expression that the DataWindow evaluates at runtime, instead of having to 
assign a value directly. For example, the following statement displays a salary 
in red if it is less than $12,000, and in black otherwise:

dw1.Modify("salary.Color = '0 ~t if(salary 
<12000,255,0)' ")

For more information The syntax is different for expressions in code versus expressions specified in 
the DataWindow painter. For the correct syntax and information about which 
properties can be assigned expressions, see Chapter 6, “Accessing 
DataWindow Object Properties in Code.”

Adding and deleting 
controls within the 
DataWindow object

You can also use the Modify method to:

• Create new objects in a DataWindow object

This lets you add DataWindowControls (such as text, bitmaps, and graphic 
controls) dynamically to the DataWindow object.

To get a good idea of the correct Create syntax, see “Specifying the 
DataWindow object syntax” on page 150.

• Destroy controls in a DataWindow object

This lets you dynamically remove controls you no longer need.



Chapter 7    Dynamically Changing DataWindow Objects

Programmer’s Guide 149

Tool for easier coding 
of DataWindow syntax

From the Tool page in the New dialog box in DataWindow Designer, you can 
launch DWSyntax, a tool that makes it easy to build the correct syntax for 
Describe, Modify, and DataWindowSyntaxFromSql statements. You click buttons 
to specify which properties of a DataWindow you want to use, and DWSyntax 
automatically builds the appropriate syntax, which you can copy and paste into 
your application code.

Creating a DataWindow object 
This section describes how to create a DataWindow object by calling the 
Create method of a DataWindowControl or DataStore in an application.

You should use the techniques described here for creating a DataWindow from 
syntax only if you cannot accomplish what you need to in the DataWindow 
painter. The usual way of creating DataWindow objects is to use the 
DataWindow painter.

To learn about creating DataWindow objects in the DataWindow painter, see 
the DataWindow Designer User's Guide.

Create and SetTransaction
You use the Create method to create a DataWindow object dynamically at 
runtime. Create generates a DataWindow object using source code that you 
specify. It replaces the DataWindow object currently in the specified 
DataWindowControl or DataStore with the new DataWindow object.

The Create method destroys the association between the DataWindowControl 
or DataStore and the transaction object. As a result, you need to reset the 
control's transaction object by calling the SetTransaction method after you call 
Create.

To learn how to associate a DataWindowControl with a transaction object, see 
Chapter 5, “Working with Transaction and AdoTransaction Objects.”



Creating a DataWindow object

150  DataWindow .NET

Specifying the DataWindow object syntax
There are two ways to specify or generate the syntax required for the Create 
method: 

• Use the DataWindowSyntaxFromSql method 

• Create the syntax yourself

Using DataWindowSyntaxFromSql

You are likely to use DataWindowSyntaxFromSql to create the syntax for most 
dynamic DataWindow objects. If you use DataWindowSyntaxFromSql, all you 
have to do is provide the SELECT statement and the presentation style.

DataWindowSyntaxFromSql is a method of the DataWindowSyntaxGenerator 
object and takes a Transaction or AdoTransaction object as a parameter. The 
transaction object must be connected when you call the method. 

DatWindowSyntaxFromSql is overloaded. It has two required arguments:

• A connected Transaction or AdoTransaction object

• A string containing the SELECT statement for the DataWindow object

If you do not specify a third argument or the third argument is null, 
DataWindowSyntaxFromSql creates a DataWindow object with the Tabular 
presentation style. You can specify one of two third arguments:

• A string identifying the presentation style and other settings. You can use 
the DWSyntax tool to generate this string—see “Tool for easier coding of 
DataWindow syntax” on page 149.

• A value of the DataWindowStyle enumeration.

DataWindowSyntaxFromSql returns the complete syntax for a DataWindow 
object that is built using the specified SELECT statement.

If your DBMS is Adaptive Server and you call DataWindowSyntaxFromSql, the 
DataWindow server must determine whether the tables are updatable through 
a unique index. This is possible only if you set AutoCommit to true before 
calling DataWindowSyntaxFromSql, as shown here for a Transaction object 
called myTrans:

myTrans.AutoCommit=true
DWSyntaxGenerator.DataWindowSyntaxFromSql (myTrans,

sqlstmt, stylestr)
myTrans.AutoCommit=false



Chapter 7    Dynamically Changing DataWindow Objects

Programmer’s Guide 151

Creating the syntax yourself

You need to create the syntax yourself to use some of the advanced dynamic 
DataWindow features, such as creating a group break.

The DataWindow source code syntax that you need to supply to the Create 
method can be very complex. To see examples of DataWindow object syntax, 
go to the Library painter in DataWindow Designer, select a DataWindow 
object, and use the Entry>Export menu item to export the DataWindow object 
syntax to a text file. You can then view the file in a text editor.

Creating and destroying composite reports at runtime

You can create and destroy composite reports in a DataWindow object 
dynamically at runtime using the same technique you use to create and destroy 
other controls in a DataWindow object.

Creating composite reports To create a composite report, use the New 
keyword with the Modify method. Supply the appropriate values for the 
composite report's properties.

When creating a composite report, you need to re-retrieve data to see the report. 
In a composite report, you can either retrieve data for the whole report or use 
GetChild to get a reference to the new nested report and retrieve its data directly. 
For reports nested in other reports, you need to retrieve data for the base report.

Modifying a crosstab's properties at runtime

As with other DataWindow objects, you can modify the properties of a crosstab 
at runtime using the Modify or SetProperty methods. Some changes require the 
DataWindowControl to dynamically rebuild the crosstab; others do not. (If the 
original crosstab was static, it becomes a dynamic crosstab when it is rebuilt.)

Changes that do not 
force a rebuild

You can change the following properties without forcing the 
DataWindowControl to rebuild the crosstab:

Table 7-1: Properties you can change on a crosstab DataWindow 
without forcing a rebuild

Properties Objects

Alignment Column, Compute, Text

Background Column, Compute, Line, Oval, Rectangle, 
RoundRectangle, Text

Border Column, Compute, Text

Brush Line, Oval, Rectangle, RoundRectangle

Color Column, Compute, Text



Providing query ability to users

152  DataWindow .NET

Changes that force a 
rebuild

If you change any other properties, the DataWindowControl rebuilds the 
structure of the crosstab when Modify is called. You should combine all needed 
expressions into one Modify call so that the DataWindowControl has to rebuild 
the crosstab only once.

Default values for 
properties

For computations derived from existing columns, the DataWindowControl by 
default uses the properties from the existing columns. For completely new 
columns, properties (such as font, color, and so on) default to the first column 
of the preexisting crosstab. Properties for text in headers default to the 
properties of the first text control in the preexisting crosstab's first header line.

 For details on the DataWindow object properties, see the DataWindow Object 
Reference in the online help.

Providing query ability to users 
When you call the Retrieve method for a DataWindowControl, the rows 
specified in the DataWindow object's SELECT statement are retrieved. You can 
give users the ability to further specify which rows are retrieved at runtime by 
putting the DataWindow into query mode. To do that, you use the Modify 
method with a property expression. 

Limitations
You cannot use query mode in a DataStore or WebDataWindowControl, or in 
a DataWindow object that contains the UNION keyword or nested SELECT 
statements.

Edit styles (dddw, ddlb, checkbox, 
edit, editmask, radiobutton)

Column

Font Column, Compute, Text

Format Column, Compute

Pen Line, Oval, Rectangle, RoundRectangle

Pointer Column, Compute, Line, Oval, Rectangle, 
RoundRectangle, Text

Properties Objects



Chapter 7    Dynamically Changing DataWindow Objects

Programmer’s Guide 153

How query mode works
Once the DataWindow is in query mode, users can specify selection criteria 
using query by example—just as you do when you use Quick Select to define 
a data source. When criteria have been defined, they are added to the WHERE 
clause of the SELECT statement the next time data is retrieved.

The following three figures show what happens when query mode is used. 

First, data is retrieved into the DataWindow. There are 36 rows:

Next, query mode is turned on. The retrieved data disappears and users are 
presented with empty rows where they can specify selection criteria. Here the 
user wants to retrieve rows where Quarter = Q2 and Units > 10:



Providing query ability to users

154  DataWindow .NET

Next, query mode is turned off and Retrieve is called. The DataWindowControl 
adds the criteria to the SELECT statement, retrieves the seven rows that meet 
the criteria, and displays them to the user:

You can turn query mode back on, allow the user to revise the selection criteria, 
and retrieve again.

Using query mode

❖ To provide query mode to users at runtime:

1 Turn query mode on by coding.

[Visual Basic]
dwc1.Modify("datawindow.querymode=yes")

[C#]
dwc1.Modify("datawindow.querymode=yes");

All data displayed in the DataWindow is blanked out, though it is still in 
the DataWindowControl's Primary buffer, and the user can enter selection 
criteria where the data had been.

2 The user specifies selection criteria in the DataWindow, just as you do 
when using Quick Select to define a DataWindow object's data source. 

Criteria entered in one row are ANDed together; criteria in different rows 
are ORed. Valid operators are =, <>, <, >, <=, >=, LIKE, IN, AND, and 
OR.

For more information about Quick Select, see the User's Guide.



Chapter 7    Dynamically Changing DataWindow Objects

Programmer’s Guide 155

3 Call AcceptText and Retrieve, then turn off query mode to display the 
newly retrieved rows.

[Visual Basic]
dwc1.AcceptText()
dwc1.Modify("datawindow.querymode=no")
dwc1.Retrieve()

[C#]
dwc1.AcceptText();
dwc1.Modify("datawindow.querymode=no");
dwc1.Retrieve();

The DataWindowControl adds the newly defined selection criteria to the 
WHERE clause of the SELECT statement, then retrieves and displays the 
specified rows.

Revised SELECT statement
You can look at the revised SELECT statement that is sent to the DBMS when 
data is retrieved with criteria. To do so, look at the SqlSyntax argument in the 
SqlPreview event of the DataWindowControl.

How the criteria affect 
the SELECT 
statement

Criteria specified by the user are added to the SELECT statement that originally 
defined the DataWindow object. 

For example, if the original SELECT statement was:

SELECT printer.rep, printer.quarter, printer.product, 
printer.units
FROM printer
WHERE printer.units < 70

and the following criteria are specified:



Providing query ability to users

156  DataWindow .NET

the new SELECT statement is:

SELECT printer.rep, printer.quarter, printer.product, 
printer.units
FROM printer
WHERE printer.units < 70
AND (printer.quarter = 'Q1'
AND printer.product = 'Stellar'
OR printer.quarter = 'Q2')

Clearing selection 
criteria

To clear the selection criteria, Use the QueryClear property.

[Visual Basic]
dwc1.Modify("datawindow.queryclear=yes")

[C#]
dwc1.Modify("datawindow.queryclear=yes");

Sorting in query mode You can allow users to sort rows in a DataWindow while specifying criteria in 
query mode using the QuerySort property. The following statement dedicates 
the first row in the DataWindow to sort criteria (just as in Quick Select in the 
DataWindow wizard).

[Visual Basic]
dwc1.Modify("datawindow.querysort=yes")

[C#]
dwc1.Modify("datawindow.querysort=yes");

Overriding column 
properties during 
query mode

By default, query mode uses edit styles and other definitions of the column 
(such as the number of allowable characters). If you want to override these 
properties during query mode and provide a standard edit control for the 
column, use the Criteria.Override_Edit property for each column.

[Visual Basic]
dwc1.Modify("mycolumn.criteria.override_edit=yes")

[C#]
dwc1.Modify("mycolumn.criteria.override_edit=yes");

You can also specify this in the DataWindow painter by checking Override Edit 
on the General property page for the column. With properties overridden for 
criteria, users can specify any number of characters in a cell. They are not 
constrained by the number of characters allowed in the column in the database.



Chapter 7    Dynamically Changing DataWindow Objects

Programmer’s Guide 157

Forcing users to 
specify criteria for a 
column

You can force users to specify criteria for a column during query mode by 
coding the following:

[Visual Basic]
dwc1.Modify("mycolumn.criteria.required=yes")

[C#]
dwc1.Modify("mycolumn.criteria.required=yes");

You can also specify this in the DataWindow painter by checking Equality 
Required on the General property page for the column. Doing this ensures that 
the user specifies criteria for the column and that the criteria for the column use 
= rather than other operators, such as < or >=.

Providing Help buttons 
A DataWindow object has properties related to online Help. By initializing the 
DataWindow.Help.File property to the name of a Help file, you can display 
Help command buttons on dialog boxes that display for a DataWindowControl 
at runtime.

For complete information on the Help-related DataWindow object properties, 
see the DataWindow Object Reference in the online help.



Providing Help buttons

158  DataWindow .NET



Programmer’s Guide 159

C H A P T E R  8 Manipulating Graphs

About this chapter This chapter describes how to write code that allows you to access and 
change a graph in a Windows form application at runtime.

Contents

Using graphs
It is common for developers to design DataWindow objects that include 
one or more graphs. When users need to quickly understand and analyze 
data, a bar, line, or pie graph can often be the most effective format to 
display.

To learn about designing graphs, see the DataWindow Designer User’s 
Guide.

This chapter applies to graphs in DataWindowControls. In a 
WebDataWindowControl, graphs can be displayed in a stand-alone image 
file or in an image stream embedded into the Web page. For more 
information, see “Rendering graphs” on page 203. 

Working with graphs in 
your code

The following sections describe how you can access (and optionally 
modify) a graph in a DataWindowControl by addressing its properties in 
code at runtime. There are two kinds of graph properties:

• Properties of the graph definition itself These properties are 
initially set in the DataWindow painter when you create a graph. They 
include a graph’s type, title, axis labels, whether axes have major 
divisions, and so on.

Topic Page

Using graphs 159

Modifying graph properties 160

Accessing data properties 162



Modifying graph properties

160  DataWindow .NET

• Properties of the data These properties are relevant only at runtime, 
when data has been loaded into the graph. They include the number of 
series in a graph (series are created at runtime), colors of bars or columns 
for a series, whether the series is an overlay, text that identifies the 
categories (categories are created at runtime), and so on.

Modifying graph properties
When you define a graph in the DataWindow painter, you specify its behavior 
and appearance. For example, you might define a graph as a column graph with 
a certain title, divide its Value axis into four major divisions, and so on. Each 
of these entries corresponds to a property of a graph. For example, all graphs 
have a property GraphType, which specifies the type of graph.

When dynamically changing the graph type
If you change the graph type, be sure also to change the other properties as 
needed to properly define the new graph.

You can change these graph properties at runtime by assigning values to the 
graph’s properties in code using the Modify or SetProperty methods.

For example, to change the title of graph gr_emp in DataWindowControl 
dwEmpInfo, you could write this code in Visual Basic:

dwEmpInfo.Modify("gr_emp.Title='New Title'")

How parts of a graph are represented
Graphs consist of parts: a title, a legend, and axes. Each of these parts has a set 
of display properties. These display properties are themselves stored as 
properties in a subobject (structure) of Graph called grDispAttr.

For example, graphs have a Title property, which specifies the text for the title. 
Graphs also have a property TitleDispAttr, of type grDispAttr, which itself 
contains properties that specify all the characteristics of the title text, such as 
the font, size, whether the text is italicized, and so on.



Chapter 8    Manipulating Graphs

Programmer’s Guide 161

Similarly, graphs have axes, each of which also has a set of properties. These 
properties are stored in a subobject (structure) of Graph called grAxis. For 
example, graphs have a property Value, of type grAxis, which specifies the 
properties of the Value axis, such as whether to use auto scaling of values, the 
number of major and minor divisions, the axis label, and so on.

Here is a representation of the properties of a graph:

Graph
int Height
int Depth
boolean Border
string Title
...

grDispAttr TitleDispAttr, LegendDispAttr, PieDispAttr
string FaceName
int TextSize
boolean Italic
...

grAxis Values, Category, Series
boolean AutoScale
int MajorDivisions
int MinorDivisions
string Label
...

Referencing parts of a graph
You use the Describe and Modify methods to reference the display properties of 
the various parts of a graph. For example, one of the properties of a graph’s title 
is whether the text is italicized or not. That information is stored in the boolean 
Italic property in the TitleDispAttr property of the graph.

This example changes the label text for the Value axis of graph gr_emp in the 
DataWindowControl dwEmpinfo:

dwEmpinfo.Modify("gr_emp.Values.Label='New label'")

For a complete list of graph properties, see the DataWindow Object Reference 
in the online help.

Some properties can also be referenced using the GraphObjectUnderMouse 
property. For more information, see “Using point and click” on page 163.



Accessing data properties

162  DataWindow .NET

Accessing data properties
To access properties related to a graph’s data at runtime, you use methods of 
the GraphicObjectGraph object. There are two categories of methods related to 
graph data:

• Methods that provide and set information about a graph’s data

• Methods that change the color, fill patterns, and other visual properties of 
data

You call the data-access methods after a graph has been created and populated 
with data. Some graphs, such as graphs that display data for a page or group of 
data, are destroyed and re-created internally as the user pages through the data. 
Any changes you made to the display of a graph, such as changing the color of 
a series, are lost when the graph is re-created.

Property for graph 
creation

To be assured that data-access methods are called after a graph has been created 
and populated with data, you can test the value of the GraphicObjectGraph 
Created property, or call the methods in the GraphCreated event.

The GraphCreated event occurs after the graph has been created and populated 
with data, but before the graph displays. By accessing the data in the graph in 
this event, you are assured that you are accessing the current data and that the 
data displays the way you want it to.

Getting and setting information about the data and its display
There are several methods for getting and setting information about data in a 
graph in a DataWindowControl at runtime.

The methods listed in Table 8-1 get and set information about the data. 

Table 8-1: Get and set methods for data in graphs

Method Information provided or set

GetCategoryName The name of a category, given its number

GetCategoryNumber The number of a category, given its name

GetDataDateTime The value of a data point, given its series and position 

GetDataDouble The value of a data point, given its series and position 

GetDataStyle The color, fill pattern, and other visual properties of a 
specified data point

GetSeriesDataCount The number of data points in a series

GetSeriesName The name of a series, given its number

GetSeriesNumber The number of a series, given its name



Chapter 8    Manipulating Graphs

Programmer’s Guide 163

You can also use properties to get information about the graph.

Table 8-2: Common properties for graphs in DataWindows

Using point and click The GraphObjectUnderMouse property uses the GraphObjectAtPointer 
structure to hold information about the part of the graph under the mouse. 
GraphObjectAtPointer has three fields:

• The ObjectType field holds the type of object under the mouse pointer

The object is identified as a GraphObjectType enumerated value. For 
example, if the user hovers over or clicks on a data point, 
GraphObjectUnderMouse.objectType returns Data. If the user clicks on 
the graph’s title, GraphObjectUnderMouse.objectjType returns Title.

For a list of GraphObjectType values, see the DataWindow Reference 
Help.

• The SeriesName field holds the name of the series under the mouse pointer 

• The DataPoint field holds the index number of the data point under the 
mouse pointer, or 0 if there is no datapoint under the pointer

Example This example uses the GraphObjectUnderMouse property to display a tooltip 
showing the part of the graph that is under the mouse as it hovers over the 
graph. 

When you create a DataWindow object using the Graph presentation style, the 
graph is given the name gr_1. If you insert a graph into a DataWindow of a 
different style, the default name for the graph is also gr_1. 

GetSeriesStyle The color, fill pattern, and other visual properties of a 
specified series

SetDataStyle The color, fill pattern, and other visual properties for a 
specific data point

SetSeriesStyle The color, fill pattern, and other visual properties for a 
series

Property Information provided

CategoryCount The number of categories in a graph

Created Whether the graph has been created (drawn)

GraphObjectUnderMouse The part of the graph that is under the mouse pointer

SeriesCount The number of series in a graph

Type The type of graph, using the GraphType enumeration

Method Information provided or set



Accessing data properties

164  DataWindow .NET

The example declares an instance of the GraphicObjectGraph object named 
gobGraph. Then it uses the DataWindowControl’s GetObjectByName method 
to get the type of gr_1 and convert it to a GraphicObjectGraph object assigned 
to gobGraph.

If the type of the graph object under the mouse is Category, the string displayed 
by the tooltip is “Category: ” followed by the category name for the current 
datapoint. If the type is a Series, the string displayed by the tooltip is “Series” 
followed by a colon and the name of the series. All graphs have at least one 
implicit series. When you create a graph with no explicit series, a series is 
created with an empty string as the series name.

If the type is Data, scatter graphs need to be handled differently, because they 
have no Category, and the X and Y coordinates are specified as X and Y values 
of the GraphAxis enumerated type. Other graph types always have a category.

The code is in the MouseMove event for a DataWindowControl.

[Visual Basic]
Private Sub dw1_MouseMove(ByVal sender As Object, ByVal 
e As System.Windows.Forms.MouseEventArgs) Handles 
dw1.MouseMove

Dim gobGraph As Sybase.DataWindow.GraphicObjectGraph
Dim s As String
Dim xData As String
Dim yData As String
Dim seriesName As String
Dim dataPoint As Integer

Try
gobGraph = CType(dw1.GetObjectByName("gr_1"), _

Sybase.DataWindow.GraphicObjectGraph)
seriesName = _

gobGraph.GraphObjectUnderMouse.SeriesName
dataPoint = gobGraph.GraphObjectUnderMouse.DataPoint

s = _
gobGraph.GraphObjectUnderMouse.ObjectType.ToString

Select Case s
Case "Category"
s = s + ": " + gobGraph.GetCategoryName(dataPoint)

Case "Series"
' Check for explicit series
If Trim(seriesName).Length > 0 Then



Chapter 8    Manipulating Graphs

Programmer’s Guide 165

s = s + ": " + seriesName
End If

Case "Data"
' scatter graphs have x, y and no category
If gobGraph.Type = _

Sybase.DataWindow.GraphType.Scatter Then
Try
xData = gobGraph.GetDataDouble(seriesName, _
dataPoint, Sybase.DataWindow.GraphAxis.X)
yData = gobGraph.GetDataDouble(seriesName, _
dataPoint, Sybase.DataWindow.GraphAxis.Y)
If Trim(seriesName).Length > 0 Then
s = "Series: " + seriesName

End If
s = s + "   Value: (" + xData.ToString + "," _
+ yData.ToString + ")"

Catch
s = s + "   Value: <unavailable>"

End Try
Else

' every other graph type has a category at least
s = "Category: " + _
gobGraph.GetCategoryName(dataPoint)

' Check for explicit series
If Trim(seriesName).Length > 0 Then
s = " Series: " + seriesName

End If

' Axis values are either DateTime or Double.
' No method to determine datatype, so test for
' DateTime first. If not DateTime, throw an
' exception and handle as Double.
Try
s = s + "   Value: " + _
CStr(gobGraph.GetDataDateTime(seriesName, _
dataPoint, Sybase.DataWindow.GraphAxis.Y))

Catch ex As Exception
Try
s = s + "   Value: " + _
CStr(gobGraph.GetDataDouble(seriesName, &
dataPoint, Sybase.DataWindow.GraphAxis.Y))

Catch ex2 As Exception
s = s + "   Value: <unavailable>"

End Try



Accessing data properties

166  DataWindow .NET

End Try
End If

End Select

' turn off tool tip if not on interesting part of graph
If s = "Graph" Then
tipGraph.Active = False

Else
tipGraph.Active = True
tipGraph.SetToolTip(dw1, s)

End If
Catch ex As Exception
' ignore tooltip if there is an exception 
' (like no DataWindow object)
End Try

End Sub

Saving graph data
You can copy a bitmap image of the graph to the system clipboard and paste it 
into an application such as Microsoft Paint, Visio, or Jasc Paint Shop Pro, using 
the GraphicObjectGraph Copy method:

Private Sub btncopy_Click(ByVal sender As 
System.Object, ByVal e As System.EventArgs) Handles 
btnCopy.Click

Dim gobGraph As Sybase.DataWindow.GraphicObjectGraph

gobGraph = CType(dw1.GetObjectByName("gr_1"), _
Sybase.DataWindow.GraphicObjectGraph)

gobGraph.Copy()
End Sub



Chapter 8    Manipulating Graphs

Programmer’s Guide 167

Modifying colors, fill patterns, and other data
The following methods allow you to modify the appearance of data in a graph 
and get information about current settings:

Table 8-3: Get and set methods for the display of data in graphs

These Get methods return an instance of either the GraphDataStyle or 
GraphSeriesStyle class. The Set methods take a GraphDataStyle or 
GraphSeriesStyle object as an argument. Typically you use the Get method to 
obtain an instance of the class, specify new values for the properties you want 
to change, and then use the Set method to set the display properties.

Turn redrawing off
To eliminate flicker that can occur because of interrelationships among 
properties, call SetRedrawOff before calling the SetDataStyle and 
SetSeriesStyle methods, then call SetRedrawOn to turn redrawing back on and 
Refresh to display any pending visual changes. For example:

dw1.SetRedrawOff()
gobGraph.SetDataStyle(pointStyle)
dw1.SetRedrawOn()
dw1.Refresh()

The GraphSeriesStyle class has properties for background and foreground 
color, fill style and shade color, line color, style, and width, symbol style, and 
whether the data is an overlay. The GraphDataStyle class inherits from the 
GraphSeriesStyle class and adds a property, PieExplosionPercentage, that 
reports or sets the percentage that an exploded pie slice in a pie graph is moved 
away from the center of the pie in order to draw attention to the data.

Method Information provided or set

GetDataStyle The color, fill pattern, and other visual properties of a 
specified data point

GetSeriesStyle The color, fill pattern, and other visual properties of a 
specified series

SetDataStyle The color, fill pattern, and other visual properties for a 
specific data point

SetSeriesStyle The color, fill pattern, and other visual properties for a 
series



Accessing data properties

168  DataWindow .NET

Example The following example lets a user change a display property of a graph by 
double-clicking the property in a list view, which opens a dialog box in which 
the user can set properties.

Private Sub lvDataPoint_DoubleClick(ByVal sender As 
Object, ByVal e As System.EventArgs) Handles 
lvDataPoint.DoubleClick

Dim lvi As ListViewItem
Dim dialog As frmChooseStyle
Dim pointStyle As Sybase.DataWindow.GraphDataStyle
Dim gobGraph As Sybase.DataWindow.GraphicObjectGraph

 
' data point values are not editable
If lvDataPoint.FocusedItem.Text.IndexOf("Value") _

=-1 Then
 

' clone the item with focus and send it off
' to dialog for processing
lvi = lvDataPoint.FocusedItem.Clone()
dialog = New frmChooseStyle(lvi)

 
' upon return update the real ListViewItem 
' with the change
 If dialog.ShowDialog() = DialogResult.OK Then

lvDataPoint.FocusedItem.SubItems.Item(1) = _
lvi.SubItems.Item(1)

 
' get the current data point style
gobGraph = _

CType(dw1.GetObjectByName("gr_1"), _
Sybase.DataWindow.GraphicObjectGraph)

pointStyle = _
gobGraph.GetDataStyle(cbSeries.Text, _
nupDataPoint.Value)

 
' update data style depending on option 
' that changed
Select Case lvDataPoint.FocusedItem.Text
Case "Foreground Color"
 pointStyle.ForegroundColor = _
System.Drawing.Color.FromArgb(Val("&H" + _
lvi.SubItems.Item(1).Text))

Case "Background Color"
pointStyle.BackgroundColor = _
System.Drawing.Color.FromArgb(Val("&H" + _
lvi.SubItems.Item(1).Text))



Chapter 8    Manipulating Graphs

Programmer’s Guide 169

Case "Shade Color"
 pointStyle.ShadeColor = _
System.Drawing.Color.FromArgb(Val("&H" + _
lvi.SubItems.Item(1).Text))

Case "Line Color"
pointStyle.LineColor = _
System.Drawing.Color.FromArgb(Val("&H" + _
lvi.SubItems.Item(1).Text))

Case "Symbol Style"
 pointStyle.SymbolStyle = _
System.Enum.Parse(GetType _
(Sybase.DataWindow.SymbolStyle), _
lvi.SubItems.Item(1).Text, False)

Case "Line Style"
pointStyle.LineStyle = _
System.Enum.Parse(GetType _
(Sybase.DataWindow.LineStyle), _
lvi.SubItems.Item(1).Text, False)

Case "Fill Pattern"
 pointStyle.FillStyle = _
System.Enum.Parse(GetType _
(Sybase.DataWindow.FillStyle), _
lvi.SubItems.Item(1).Text, False)

Case "Line Width"
 pointStyle.LineWidth = _
Convert.ToInt32(lvi.SubItems.Item(1).Text)

End Select
 

' apply the data style change
gobGraph.SetDataStyle(pointStyle)

End If
End If

End Sub



Accessing data properties

170  DataWindow .NET



Programmer’s Guide 171

C H A P T E R  9 Using Web DataWindows

About this chapter This chapter describes how to use Web DataWindows in data-based 
ASP.NET applications. 

Contents

What the Web DataWindow is
The Sybase Web DataWindow is a DataWindow that is generated 
dynamically for use in Web applications. The Web DataWindow offers a 
thin-client solution that provides most of the data manipulation, 
presentation, and coding capabilities of the DataWindow without 
requiring any DLLs on the Web client. The DataWindow that displays in 
the Web browser looks very much like the DataWindow you designed in 
DataWindow Designer.

Using a Web DataWindow In DataWindow .NET, you work with the Web DataWindow using a 
custom server component called a WebDataWindowControl. You use a 
WebDataWindowControl in a Web forms page in an ASP.NET Web 
application in much the same way that you use a DataWindowControl in 
a form in a .NET Windows application. The WebDataWindowControl 
renders a DataWindow object and its data as a Web DataWindow and 
displays it in an ASP.NET (.aspx) page in a browser.

For more information about using the WebDataWindowControl, see 
“How to use the Web DataWindow” on page 178.

Topic Page

What the Web DataWindow is 171

About ASP.NET 172

The Web DataWindow server control and client control 175

Using the Web DataWindow 176

WebDataWindowControl properties 185

Printing Web DataWindows 207

Setting up database connections 212



About ASP.NET

172  DataWindow .NET

Web DataWindow 
rendering formats

The Web DataWindow can be rendered in three formats:

• XML Separate XML (content), XSLT (layout), and CSS (style) with a 
subsequent transformation to XHTML

• XHTML XHTML content only

• HTML HTML content only

You select the format you want to use by setting the WebDataWindowControl’s 
RenderFormat property. The XML RenderFormat provides the greatest control 
of the presentation of the DataWindow. For more information about the files 
generated when you use the XML RenderFormat, see “About XML, XSLT, 
CSS, and XHTML” on page 177. For what to consider when choosing a 
RenderFormat, see “XML, XHTML, and HTML formats” on page 184.

This chapter describes the Web DataWindow and how you use it in ASP.NET 
Web forms applications. For an overview of ASP.NET Web forms applications, 
see “About ASP.NET” next. 

About ASP.NET
ASP.NET is a server-based programming framework that runs on Microsoft 
Internet Information Services (IIS) and dynamically generates and manages 
Web forms pages. 

To use the Web DataWindow in an ASP.NET application, you must have 
ASP.NET 2.0 installed on your computer, and you must be familiar with the 
principles, architecture, and coding techniques used in ASP.NET. To get 
started, go to the Microsoft ASP.NET Developer Center at 
http://msdn.microsoft.com/asp.net/default.aspx. The rest of this section provides 
a brief orientation.

http://msdn.microsoft.com/asp.net/default.aspx


Chapter 9    Using Web DataWindows

Programmer’s Guide 173

ASP.NET application files
An ASP.NET Web forms application uses a virtual directory in IIS to hold the 
files that make up the application and control access to those files. This 
directory is called the application root. You must have access to a computer 
running IIS to build and test ASP.NET applications. Each ASP.NET Web form 
application includes: 

• One or more Web forms pages (.aspx files) that contain static text and 
controls you want to display

• A code file (an .aspx.cs or .aspx.vb file) for each page that contains the 
programming logic

• A Web.config file that holds configuration settings

When you create a new Web application project using Visual Studio .NET, 
these files are created for you in a physical directory under the 
<Driveletter>:\Inetpub\wwwroot directory. 

When you build a project, the code files are compiled into a single project .dll 
file. The .aspx file is generated into a .NET class file that inherits from the code 
class and is compiled into a second .dll file when the page is first used.

To access a Web forms page, a user opens the .aspx page on the server where 
it is running. For example, if your application is called MyWebApp, the default 
page is called MyWebForm.aspx, and the server is called dover, use this URL:

http://dover/MyWebApp/MyWebForm.aspx

Web server controls
You can use several types of server controls in an ASP.NET Web form: 

• HTML server controls are HTML elements that expose an object model to 
the server so that they can be programmed.

• Web server controls might be buttons, labels, text boxes, or specialized 
controls such as calendars. They expose an object model that might not 
reflect HTML syntax.

• Validation controls can be attached to input controls to test the validity of 
user-entered data.

http://dover/MyWebApp/MyWebForm.aspx


About ASP.NET

174  DataWindow .NET

• Web user controls are like Web Forms pages in that they have a 
user-interface page (with the extension .ascx) and a code file, but they do 
not have <html>, <body>, or <form> elements. They are embedded in a 
Web forms page to provide reusable elements such as custom toolbars. 

Custom Web server 
controls

You can also use or build custom Web server controls. These are compiled, 
reusable components that can be a combination of two or more existing 
components, custom versions of existing components, or new components 
derived from a base control class. 

The System.Web.UI.Control class defines properties, methods, and events 
common to all server controls, including ViewState management and the 
control’s execution lifecycle. The System.Web.UI.WebControls.WebControl 
class derives from System.Web.UI.Control and adds user interface properties 
and methods. The WebDataWindowControl is a custom server control that 
inherits from System.Web.UI.WebControls.WebControl.

Web page processing
When you design a Web page, you need to code specific processing in events 
that are fired when the page is processed.

Page initialization When a page is rendered, its Page_Init event is triggered. The ASP.NET 
framework restores the ViewState of the page and its controls and restores data 
that has been posted back.

Page loading In the Page_Load event, you can perform initial data binding if the 
Page.IsPostBack property is false, or, if it is true, you can read and restore 
values and update control properties.

Validation and event 
handling

After these events have fired, the Validate method of validator Web server 
controls, if any are associated with the page, is invoked before 
application-specific events are handled. If any control events have been 
cached, as specified by the AutoPostBack property, they are processed before 
the event that caused the page to be posted. Your application-specific events 
should check the IsValid property for page and validation controls, save the 
state of page variables that you are maintaining, and save the state of controls 
that have been added to the page dynamically.

Page unloading When the page has finished rendering and is ready to be discarded, the 
Page_Unload event fires. You should perform final cleanup work in this event, 
such as closing database connections and discarding objects.



Chapter 9    Using Web DataWindows

Programmer’s Guide 175

The Web DataWindow server control and client control
The Web DataWindow has two main components: the server control and the 
client control.

Web DataWindow 
server control

The WebDataWindowControl is a custom Web server control that inherits from 
the System.Web.UI.WebControls.WebControl class, which in turn derives 
from the System.Web.UI.Control class. It also implements the System.Web.UI 
IPostBackEventHandler and IPostBackDataHandler classes.

Internally, the WebDataWindowControl uses an instance of the DataStore class 
to expose methods and properties and render the DataWindow in the selected 
rendering format.

Figure 9-1: WebDataWindowControl class hierarchy

The Web DataWindow server control retrieves data from a database and returns 
JavaScript and XSLT, XHTML, or HTML that represent the data and the 
DataWindow object definition to the page server. The server control uses a 
DataStore internally to handle retrieval and updates. 

The control provides most of the methods available on the 
DataWindowControl, as well as additional methods used to manage context 
and data caching. 

Web DataWindow 
client control

The Web DataWindow client control is the JavaScript plus XML, XSLT, and 
CSS (for the XML RenderFormat), the JavaScript plus XHTML (for the 
XHTML RenderFormat), or the JavaScript plus HTML (for the HTML 
RenderFormat), that is generated by the server control and embedded in the 
page or in associated internal files returned to the Web client. Client-side 
scripts that you add to your Web page and wrap in SCRIPT tags are embedded 
as JavaScript in the client control. 



Using the Web DataWindow

176  DataWindow .NET

JavaScript caching Some features available on the client control are 
optional: events, methods, data update and validation, and display formatting 
for newly entered data. The size of the generated JavaScript increases as you 
add more client-side functionality. You can cache client-side methods in 
JavaScript files on your Web server to reduce the size of the markup generated 
for Web DataWindow pages and, if the browser is configured to use cached 
files, improve the performance on the client machine. 

For information about enabling JavaScript caching, which you can set up in 
either the Properties window in Visual Studio .NET or DataWindow Designer, 
see “Generating JavaScript for common management tasks” on page 189 and 
“Using JavaScript caching in DataWindow Designer” on page 223. You can 
find additional information about client-side caching and other generation 
properties in the DataWindow Object Reference.

Using client-side events and methods Events that are triggered on the 
client control do not require the server control to reload the page, so processing 
on the client is typically much faster than processing on the server. 

For more information about enabling features on the client, see 
“WebDataWindowControl properties” on page 185 and “Web DataWindow 
properties” on page 216. For more about writing scripts and lists of client-side 
events and methods, see Chapter 12, “Writing Scripts for the Web 
DataWindow Client Control.”

For more information about the events and methods available on the server 
control and the properties used to implement the events available on the client 
control, see the online Sybase DataWindow Help in Visual Studio .NET or the 
dwref20.chm compiled HTML Help file.

Using the Web DataWindow
This section first provides you with a brief introduction to XML, XSLT, CSS, 
and XHTML and then describes how to use the Web DataWindow in Web 
forms applications. 

Before a Web DataWindow can be generated for use in a Web application, you 
must create the DataWindow object you want to use in DataWindow Designer. 
For information about designing DataWindow objects for any type of Web 
DataWindow, see “Designing DataWindow objects for the Web DataWindow” 
on page 214.



Chapter 9    Using Web DataWindows

Programmer’s Guide 177

About XML, XSLT, CSS, and XHTML
HTML is the most popular markup language in the world. The focus, though, 
of most HTML markup is appearance; the HTML tags do not provide you with 
any information. For example, if you see an HTML document with an element 
that has content as simple as <td>12345</td>, you do not know what the 
content represents. The content could be the zip code of a particular town, or it 
might be the population of the town.

XML documents An XML document:

• Contains information marked up with tags that describe all the pieces of 
information

• Models the relationships between all the pieces of information

• Is contained in a single element called the root element which becomes the 
root of a tree structure that contains other elements that represent the 
information

An XML document might include the element <zipcode>12345</zipcode>, 
and you know from the zipcode tag that 12345 is a zip code.

XSLT transformations XML documents separate the content from the presentation, and they can be 
transformed (using XSLT, the Extensible Stylesheet Language for 
Transformations) into a variety of presentation types such as:

• An HTML page that includes <td>12345</td>

• A PDF file that includes zip code information

• A display of zip code information in wireless phones or pagers

With XSLT, you can transform XML documents into other documents, which 
are often XML documents themselves. For example, Web pages created in 
XHTML (an XML-compliant version of HTML) are XML documents, and you 
can use XSLT to transform any XML document into a styled XHTML Web 
page for display in a browser. 

CSS style sheets A cascading style sheet (CSS) allows you to add style rules to the elements of 
a document that define how the content of the elements should be rendered. 
Using a CSS enables you to separate the contents of an HTML, XHTML, or 
XML document from its visual presentation. However, XSLT moves you 
beyond CSS because XSLT offers you complete flexibility to change the layout 
of content. XSLT also allows you to define rules that not only alter the design, 
but also add, change, or remove elements of the content if appropriate.



Using the Web DataWindow

178  DataWindow .NET

• For an overview of XML, see the first section of the chapter on exporting 
and importing XML in the DataWindow Designer User’s Guide. For 
detailed information about XML and XSLT, see the O’Reilly and 
Associates, Inc. Learning XML and Learning XSLT books.

How to use the Web DataWindow
The easiest way to use the Web DataWindow in your Web applications is to do 
the following:

1 Create a new DataWindow object or select an existing DataWindow object 
that you want to display in a Web browser.

For information, see “Designing DataWindow objects for the Web 
DataWindow” on page 214.

2 Create a new ASP.NET application in Visual Studio .NET (or another 
development tool that uses the .NET Framework version 2.0 and supports 
Web forms applications).

3 Drag a WebDataWindowControl from the Toolbox to a Web form page.

Using drag-and-drop adds references to the .NET components required by 
the WebDataWindowControl automatically. If you do not use 
drag-and-drop, open the Visual Studio Solution Explorer and add 
references to the DataWindow.dll, DataWindowInterop.dll, and 
WebDataWindow.dll files in the DataWindow .NET 2.0 directory to your 
project.

4 In the Properties window for the WebDataWindowControl, specify the 
LibraryList, DataWindowObject, and RenderFormat properties.

See “XML, XHTML, and HTML formats” on page 184 for features 
supported with each rendering format.

5 (Optional) Specify additional properties for the WebDataWindowControl.

See “WebDataWindowControl properties” next for a list of properties.

6 Add a transaction object to the form, specify connection properties, and 
connect to a database.

7 Associate the transaction with the WebDataWindowControl and use the 
Retrieve method to retrieve data into the control.

For a simple example, see “Adding a WebDataWindowControl to a Web form” 
on page 45.



Chapter 9    Using Web DataWindows

Programmer’s Guide 179

How the Web DataWindow works
The first time a page that contains a WebDataWindowControl is requested, the 
following sequence of steps occurs:

1 The page sends an HTTP Get request to the server.

2 The DataWindow engine creates an internal instance of a DataStore and 
performs the following tasks:

a Sets the working DataWindow object based on LibraryList and 
DataWindowObject properties.

b Populates the Web DataWindow’s properties from the properties 
defined on the object in DataWindow Designer or the properties 
defined for the WebDataWindowControl in the Properties window 
(see “WebDataWindowControl properties” on page 185).

c Registers client JavaScript, including hidden context and action fields 
and postback script, using the Page class method.

d Sets the database transaction and calls the DataStore's Retrieve 
method to retrieve data.

e If requested, saves data to a cache.

f Renders the XML/HTML/XHTML in the control’s Render method.

g Outputs the resulting XHTML or HTML into the Page.

3 The HTTP response returns the Page to the client-side browser.

4 The user interacts with the page, usually triggering a postback to the 
server.

Figure 9-2 illustrates the sequence of events after a first request.



Using the Web DataWindow

180  DataWindow .NET

Figure 9-2: WebDataWindowControl first request

When user interaction triggers a postback, the following sequence of steps 
occurs:

1 The page sends an HTTP Post request to the server.

2 The DataWindow engine creates an internal instance of a DataStore and 
performs the following tasks:

a Sets the working DataWindow object based on LibraryList and 
DataWindowObject properties.

b Populates the Web DataWindow’s properties from the properties 
defined on the object in DataWindow Designer or the properties 
defined for the WebDataWindowControl in the Properties window 
(see “WebDataWindowControl properties” on page 185).

c Registers client JavaScript, including hidden context and action fields 
and postback script, using the Page class method.

d Sets the database transaction and calls the DataStore's Retrieve 
method to retrieve data, or restores cached data.

e Retrieves postback data stored in the context and action hidden field 
and applies the context and action to the DataStore. 

f If the action is a client method or integrated button, triggers the 
BeforePerformAction and AfterPerformAction server-side events, 
enabling you to trap errors.



Chapter 9    Using Web DataWindows

Programmer’s Guide 181

g Renders the XML/HTML/XHTML in the control’s Render method.

h Outputs the resulting XHTML or HTML into the Page.

3 The HTTP response returns the Page to the client-side browser.

4 The user interacts with the page, usually triggering a postback to the 
server.

Figure 9-3 illustrates the sequence of events after a postback.

Figure 9-3: WebDataWindowControl postback

How the XML Web DataWindow works
The overall sequence of steps described in “How the Web DataWindow 
works” on page 179 applies to all Web DataWindows. There are additional 
steps for the XML Web DataWindow, which generates DataWindow content, 
layout, and style separately at runtime and renders a fully functional 
DataWindow in XHTML.



Using the Web DataWindow

182  DataWindow .NET

Figure 9-4: XML Web DataWindow rendering

You can customize each of these XML Web DataWindow components at 
design time using a custom XHTML export template in the Export Template 
view for XHTML. For information, see Chapter 11, “Working with XHTML 
Templates.” You can also use these templates with the XHTML RenderFormat.

Server-side and client-side activity

When you have configured the pieces the XML Web DataWindow needs, here 
is what happens when a user requests the URL for a page containing the 
DataWindow.

Server-side activity Server-side code is used to invoke the Web DataWindow generator. During the 
generation process:

1 Using the default XHTML export template or a custom template you 
created, an XHTML rendering of the DataWindow is generated in a DOM 
tree.

2 A CSS style sheet is generated in a DOM tree with the style information 
for the DataWindow elements.

Generating as many of the style rules in CSS as possible (including all 
absolute positions) increases page download speed because the stylesheet 
is downloaded only once and cached. 

3 Client-side JavaScript files are generated for instantiating the control 
object and the array of row elements.

You can improve performance by generating most of this client-side 
JavaScript in static files. For information about how you create and deploy 
the static JavaScript files, see “Generating JavaScript for common 
management tasks” on page 189.



Chapter 9    Using Web DataWindows

Programmer’s Guide 183

4 A reverse transformation of the XHTML DOM tree to XML 
(DataWindow content) and XSLT (DataWindow layout) occurs.

XSLT also creates the structural layout of the page, saving bandwidth. 
Server processing is also reduced by offloading work to the client.

5 A small amount of JavaScript is generated to perform explicit 
transformation on the client side to render in the browser a fully functional 
DataWindow in XHTML. 

XHTML and HTML DataWindows
The XHTML Web DataWindow generates separate CSS and JavaScript files, 
but it does not generate the XML content and XSLT structure in separate files. 
It renders an XHTML page in the browser. The HTML Web DataWindow 
renders an HTML page.

Client-side activity When a user accesses a Web page containing the XML Web DataWindow, the 
client browser:

1 Downloads the source XML file (DataWindow content for the page) and 
the XSLT stylesheet, which is cached locally.

2 Performs the transformation using the XSLT processor built in to the client 
browser.

3 Outputs the XHTML result into a <div> section on the page.

4 Downloads, caches, and applies the CSS stylesheet for display in the 
browser.

5 Downloads and caches JavaScript files. 

6 When there is a subsequent action by the user (HTTP Post/HTTP 
response), regenerates and downloads the XML file and JavaScript row 
objects file for the updated DataWindow page.

Browser requirements 
for the XML Web 
DataWindow

The XML Web DataWindow requires browsers that support the latest 
client-side technologies—XML, XSLT, XHTML, CSS, and JavaScript. You 
can select the browser to use for the XML Web DataWindow (XHTML format) 
in the Web Generation page in the DataWindow object property view:

Browser XML parser/XSLT processor XSLT version

Internet Explorer 5, 5.5 MSXML 2.0, 2.5 (update required) XSL-WD

Internet Explorer 6.0 MSXML 3.0 XSLT 1.0

Netscape 6+ TransforMiiX XSLT 1.0

Mozilla 1.0 TransforMiiX XSLT 1.0



Using the Web DataWindow

184  DataWindow .NET

MSXML 2.6 or higher is required with Internet Explorer
The XML Web DataWindow requires MSXML 2.6 or higher with Internet 
Explorer. Internet Explorer 5 or 5.5 includes MSXML 2.0 or 2.5, so you must 
either update MSXML to 2.6 or higher or use Internet Explorer 6.0. For 
information about MSXML versions, refer to “Version list for the Microsoft 
XML parser” on the Microsoft Help and Support Web site at 
http://support.microsoft.com/default.aspx?scid=kb;en-us;269238.

XML, XHTML, and HTML formats
There are many Web sites that provide information about the advantages of 
different markup languages, such as HTML and XHTML Frequently Answered 
Questions at http://www.w3.org/MarkUp/2004/xhtml-faq#advantages. Both XML 
and XHTML Web DataWindow rendering formats render the page in XHTML. 
XHTML Web pages are processed and rendered more quickly in the browser 
than HTML pages because extensive browser code is not needed to handle the 
more complex rules and variations that would be required with HTML. 

Web users benefit from faster download of XHTML DataWindow pages 
because the XSLT (for the XML render format) and CSS stylesheets are 
downloaded only once and cached, resulting in bandwidth savings. Enterprises 
also benefit from the greater efficiency, scalability, extensibility, and 
accessibility gained by using standard W3C technologies.

Use only one format for a DataWindow in a session
Because the XHTML and XML formats were designed to exploit the automatic 
services of the browser cache for better bandwidth efficiency, you cannot use 
both of these formats for the same DataWindow in a single session. If you do, 
you might see formatting anomalies in the second DataWindow.

Which format to use Table 9-1 compares features supported in each rendering format. 

Table 9-1: Features of Web DataWindow rendering formats

Feature XML XHTML HTML

Web pages conform to industry 
standards

Yes Yes No

Pages can be customized using 
an XHTML export template

Yes Yes No

XSLT stylesheets are cached Yes No No

CSS stylesheets are cached Yes Yes No

http://support.microsoft.com/default.aspx?scid=kb;en-us;269238
http://www.w3.org/MarkUp/2004/xhtml-faq#advantages


Chapter 9    Using Web DataWindows

Programmer’s Guide 185

The XML RenderFormat does not support accessibility software. Some aspects 
of the HTML generated using the HTML RenderFormat do not support 
accessibility software.

WebDataWindowControl properties
This section lists the properties for the WebDataWindowControl that are 
specific to the control (some properties are inherited from the 
System.Web.UI.WebControls.WebControl class). Table 9-2 lists the properties 
you can set in the Properties view. Table 9-3 lists the properties you can use in 
code to get information about the DataWindow object or control.

For more detailed information about each property, see the Sybase 
DataWindow online Help in the development environment or the DataWindow 
Reference compiled Help file (dwref20.chm).

Server permissions must be 
configured (see “Configuring 
XML” on page 190)

Yes Yes No

Common JavaScript files can be 
cached

Yes Yes Yes

Most efficient handling of large 
amounts of paged data

Yes No No

Postback and callback 
mechanisms for paging and 
other client actions

Yes Yes Yes

Client-side mechanism for 
paging and other client actions

Yes No No

A Grid DataWindow page can 
be sorted on the client without a 
postback

Yes No No

Composite and nested 
DataWindows are supported

No Yes No

Absolute positioning is 
supported in Grid DataWindows

Yes Yes No

Greatest compatibility with 
accessibility software (Section 
508)

No Yes No

Feature XML XHTML HTML



WebDataWindowControl properties

186  DataWindow .NET

Understanding how 
properties interact

Some properties that you can set in the Properties window in Visual Studio 
.NET can also be set for the DataWindow object in DataWindow Designer. If 
a property is set in DataWindow Designer, it is respected in DataWindow 
.NET. However, the properties you set in the painter are not reflected in the 
Properties view, which displays default values for most properties.

See Table 10-5 on page 221 for a comparison of properties set in the two 
environments.

If you have set a property in DataWindow Designer, change the default for its 
equivalent in the Properties window only if you want to override the value set 
in the painter. If default values are changed in the Properties view, they 
override the values set in the painter. If default values are not changed, 
properties set in DataWindow Designer are used. For example:

• ClientEvents is true by default in both the painter and the 
WebDataWindowControl. If you set it to false in the painter, client events 
will be disabled even though the control property is set to true.

• If you set the XmlConfigurations.UrlPath property in the 
WebDataWindowControl, any ResourceBase and PublishPath properties 
set in the painter are not used.

Table 9-2: Properties that can be set for the WebDataWindowControl

Property Description

AutoRestoreContext, 
AutoRestoreDataCache, 
AutoSaveDataCacheAfterRetrieve, 
EnableDataState

Properties used to customize context 
management and data caching. See 
“Maintaining state” on page 192.

ClientEventButtonClicked, 
ClientEventButtonClicking, 
ClientEventClicked, 
ClientEventItemChanged, 
ClientEventItemError, 
ClientEventItemFocusChanged, 
ClientEventRowFocusChanged, 
ClientEventRowFocusChanging

Properties used to specify event handlers for 
events on the Web DataWindow client control. 
See Chapter 12, “Writing Scripts for the Web 
DataWindow Client Control.”

ClientEvents Specifies whether client events can be fired. 
You can reduce the size of the generated Web 
DataWindow control by setting the 
ClientEvents, ClientFormatting, 
ClientScriptable, and ClientValidation 
properties to false. See “Controlling the size of 
generated code” on page 189.

ClientFormatting Specifies whether display formatting should be 
performed on the client in the browser.



Chapter 9    Using Web DataWindows

Programmer’s Guide 187

ClientScriptable Specifies whether client-side JavaScript can 
interact with the control.

ClientValidation Specifies whether validation is performed on 
the client in the browser.

DataWindowObject Specifies the name of the DataWindow object 
to load in the control (set the LibraryList 
property before setting DataWindowObject).

DisplayOnly Specifies that the DataWindow object cannot 
be used for data entry.

GenerateDDDWFrames Specifies whether drop-down DataWindows 
are generated using IFrames or HTML 
SELECT elements. See “Using a drop-down 
DataWindow” on page 229.

GraphConfigurations Specifies how graphs are rendered in a 
WebDataWindowControl. See “Rendering 
graphs” on page 203.

HorizontalScrollBar, 
VerticalScrollBar

Specifies whether scroll bars display on the 
WebDataWindowControl. For more 
information, see “RowsPerPage and scroll 
bars” on page 200.

JavaScriptConfigurations Specifies whether JavaScript for common 
tasks is embedded in the rendered 
DataWindow or associated internal files, or 
deployed in separate static files. See 
“Generating JavaScript for common 
management tasks” on page 189.

LibraryList Specifies the list of libraries in which the 
control searches for DataWindow objects.

ObjectLinks Specifies generated hyperlinks for objects in 
the DataWindow object. See “Creating 
hyperlinks” on page 205.

PageNavigationBarSettings Specifies the type of navigation bar to display 
(with next and previous buttons, numbered 
pages, or an edit box or drop-down list) and 
other properties of the page navigation bar. See 
“Page navigation bars” on page 200.

PagingMethod Specifies how paging is handled. See “Paging 
methods” on page 198.

RenderFormat Specifies the format—XML, XHTML, or 
HTML—in which the DataWindow object is 
rendered. For which format to use, see “XML, 
XHTML, and HTML formats” on page 184.

Property Description



WebDataWindowControl properties

188  DataWindow .NET

Table 9-3: Properties that return information about the 
WebDataWindowControl

RowsPerPage Specifies how many rows display on each 
page. For more information, see 
“RowsPerPage and scroll bars” on page 200.

XmlConfigurations Specifies the XHTML template to use for 
XML and XHTML Web DataWindows, the 
path where automatically generated files are 
saved, and optional SessionSpecific and 
SecurelyInline properties. For more 
information, see “Configuring XML” on page 
190.

Property Description

ClientObjectName Read-only property that specifies the name of the 
client-side Web DataWindow control.

ColumnCount Returns the number of columns in the DataWindow object, 
excluding computed columns.

CurrentPage Returns the number of the current page in the DataWindow 
object.

CurrentRow Returns the number of the current row in the DataWindow 
object.

DataSourceType Returns the type of the data source of the DataWindow 
object (SQL SELECT, stored procedure, external, or 
unbound).

DataWindowStyle Returns the presentation style of the DataWindow object.

DeletedCount Returns the number of rows that have been marked for 
deletion in the DataWindow object.

FilteredCount Returns the number of rows not included in the primary 
buffer because of the application of filter criteria.

ModifiedCount Returns the number of rows that have been modified in the 
DataWindow object.

PageCount Returns the total number of pages in the DataWindow 
object.

PrintProperties Returns an instance of the PrintProperties class that 
describes properties associated with printing the 
DataWindow object.

RowCount Returns the number of rows in the DataWindow object.

Syntax Returns the syntax that describes the DataWindow object.

Property Description



Chapter 9    Using Web DataWindows

Programmer’s Guide 189

Controlling the size of generated code
Some supported features increase the size of the generated code. If you do not 
use a feature such as display formatting, validation rules, or client-side 
scripting, you can enhance performance by preventing the server control from 
generating code for the unused feature. You can turn these features on or off in 
the Properties window for the WebDataWindowControl in your development 
environment, or on the Web Generation property page for the DataWindow 
object in DataWindow Designer.

You can also cache client-side methods in JavaScript files to reduce the size of 
the generated code and increase performance on both the server and the client. 
Without JavaScript caching, each time a Web DataWindow is rendered in a 
client browser, JavaScript code for DataWindow methods is generated on the 
server and downloaded to the client. 

When you set DataWindow object or WebDataWindowControl properties to 
reference cached JavaScript files, the methods defined in the files are not 
generated with the HTML or XHTML in any Web DataWindow pages that are 
sent to the client browser. 

For more information, see “Generating JavaScript for common management 
tasks” next and “Using JavaScript caching in DataWindow Designer” on page 
223.

Generating JavaScript for common management tasks
You can generate JavaScript files that contain the JavaScript required to 
manage common DataWindow operations, and operations with DateTime, 
number, and string datatypes. You can distribute these files in one of three ways 
by selecting one of the following values for JavaScriptOption in the 
JavaScriptConfigurations section in the Properties window for the 
WebDataWindowControl:

• EmbeddedinPageAtRendering The JavaScript is embedded in each 
Web page when it is rendered (for the HTML rendering format) or in 
internal JavaScript files that are generated when the page is rendered (for 
the XML and XHTML rendering formats). This simplifies deployment, 
because you do not need to specify the names and locations of external 
files, but it reduces performance because the JavaScript needs to be 
regenerated for each DataWindow.



WebDataWindowControl properties

190  DataWindow .NET

• External The JavaScript functions are deployed to the browser once per 
session in standalone files that are cached in the browser, improving 
performance and reducing network bandwidth. If you select this option, 
you need to generate the JavaScript files, add them to your application as 
resouce content, and specify the names of the files and their URL path. 
You must regenerate the files every time you update to a new version of 
DataWindow .NET to ensure that any enhancements added in the new 
version are incorporated in the generated JavaScript files.

• WebResourceFile The JavaScript functions are deployed in files that 
are embedded in the WebDataWindow.dll assembly as a Web resource. 
With this option, JavaScript functions are deployed to the browser once 
per session, as with the External option, gaining the same performance 
advantages and the additional advantage that you do not need to generate 
and deploy the files.

If you select External, you need to generate the JavaScript files. To generate the 
JavaScript files in Visual Studio .NET, select Generate Client Management 
JavaScript from the pop-up menu for the WebDataWindowControl or from its 
Properties window and complete the dialog box. The files are saved to the URL 
path you specify or to the root directory for your application if no URL path is 
specified.

You can also generate JavaScript files for the HTML Web DataWindow in 
DataWindow Designer. For more information, see “Using JavaScript caching 
in DataWindow Designer” on page 223. 

Configuring XML
If you use the XML or XHTML Web DataWindow, you can use the properties 
of the XmlConfigurations class to fine-tune the way the XML and XHTML are 
generated. 

XHTML export 
templates

The XSLT stylesheet that transforms the DataWindow content to XHTML can 
be customized by applying a custom XHTML export template to the default 
generation. The CSS stylesheet can be customized by applying custom style 
attributes in a custom XHTML export template. Using stylesheets to target the 
presentation enables the DataWindow to be rendered on virtually every device. 
The TemplateName property specifies this template. If any templates have 
been defined, they display in a drop-down list in the Properties window. For 
more information, see Chapter 11, “Working with XHTML Templates.”



Chapter 9    Using Web DataWindows

Programmer’s Guide 191

URL for dynamically 
created files

The XmlConfigurations.UrlPath property specifies the physical directory 
where dynamically created files are saved. This includes .css, .js, .xml, and .xslt 
files. If you specify a value for XmlConfigurations.UrlPath, it overrides the 
values for PublishPath and ResourceBase set in DataWindow Designer.

If you want to specify different paths for each of the different file types or if 
you want to specify a full path, set the properties in DataWindow Designer and 
leave the XmlConfigurations.UrlPath property empty in Visual Studio .NET. 
For more information about the properties you can set in DataWindow 
Designer, see “XML Web DataWindow generation properties” on page 217.

Write permission for directories for generated files
When you specify a path for dynamically generated files, make sure that the 
ASP.NET account (or, for Windows 2003 server, the IIS_WPG user group) has 
write permission to the directories. For more information, see the Microsoft 
documentation.

You must delete files manually
If you do not set these properties in DataWindow Designer or in DataWindow 
.NET, the files are saved in the current Web application’s root directory.

You must set up a mechanism for deleting dynamically generated files, whether 
or not they are saved to a specified path. Saving them in a directory makes it 
easier to delete them.

Generating files for 
specific clients

If you use dynamic DataWindow objects customized for specific clients, you 
can force the generation of the names of these files to be specific to each client. 
You do this by setting the SessionSpecific property to true. This eliminates the 
possibility of server-side contention for presentation formats when the 
DataWindow generation is specific to the client. The default value is false.

Generating XML inline 
for security

The XML published on the Internet in your XML Web DataWindow could 
contain sensitive data, and this data might be exposed to Internet users when 
published to a separate document. For increased security, if the SecurelyInline 
property to set to true, the XML is generated “inline” to the XSLT 
transformation script in the page that renders the control. If only authenticated 
users have access to this script, the security of the XML is ensured. Setting this 
property should have no adverse side effects on the caching efficiency of the 
control. The default value is false.



WebDataWindowControl properties

192  DataWindow .NET

Maintaining state
ASP.NET pages are inherently stateless—they are executed, rendered, and 
destroyed on every round trip to the server. You can use several techniques to 
maintain state, such as posting a page back to itself or storing state on the server 
in Session state. DataWindow .NET provides two different techniques to 
manage data:

• A context management system to maintain and manage a DataWindow’s 
client- and server-side data changes and state during a page round trip.

• Integrated data cache management as an easy way to cache retrieved data 
into Session or Application state and restore it into the DataWindow 
during a postback.

The context management system is similar to ASP.NET ViewState 
management.

About ASP.NET 
ViewState 
management

ASP.NET automatically restores values into form fields on postback using the 
HTTP header. It uses a concept called ViewState to keep track of server control 
state values that are not posted back as part of the form, such as the text of a 
Label control or settings for scroll bar properties. The 
WebDataWindowControl uses ViewState to maintain the state of various 
properties, such as the LibraryList and DataWindowObject, but it does not use 
ViewState to maintain the data.

ViewState is a hidden form field managed by the .NET page framework. When 
an ASP.NET page is executed, all the values that make up the page’s ViewState 
are encoded into a single string and assigned to the value of the hidden form 
field. This value is stored on the client’s browser in the page sent to the client, 
and posted back to the server if the page is posted back to the server.

When the page is posted back, ASP.NET parses the encoded string and uses the 
individual values to repopulate property values of the page and its controls.

ViewState is available on all pages with the server-side form tag, <form 
runat="server">.

ViewState is enabled by default. To reduce page size, you can turn it off for a 
control or a page when it is not needed, such as when the control has no 
dynamic values or when the page does not post back to itself. Otherwise, 
EnableViewState should always be set to true.



Chapter 9    Using Web DataWindows

Programmer’s Guide 193

DataWindow .NET context management

The context management system used by DataWindow .NET is similar to 
ASP.NET’s ViewState management; however, it uses a context model to 
maintain and manage changes in data on both the client and server and to 
manage the state of its data on a page round trip. The context includes changes 
in data on the server, including data modification, rows inserted, and rows 
deleted, as well as changes in data on the client and additional state 
information. It does not contain all the data in the DataWindow—only the 
changes made to data.

To use the Web DataWindow context management system, you must set 
EnableDataState to true.

Context management 
process

Context is managed as follows:

1 When the initial page request is made, the DataWindow retrieves data. A 
user can then perform any operation on the DataWindow.

2 When the control is rendered, the DataWindow engine generates an 
encoded context string that contains changes to data, such as the 
modification of existing data and rows inserted and deleted. This context 
string is stored in a hidden field and sent to the client with the rendered 
DataWindow.

3 When the DataWindow displays in the browser, the user can make changes 
in the form on the page and then submit the page. Before the page is posted 
back to the server, the Web DataWindow client control collects the 
changes made in the browser and appends them to the original context 
string. The context string is passed back to the server.

4 When the page is posted back, the server control gets the context from the 
hidden field as a server variable. After the DataWindow retrieves data, the 
context is restored to the DataWindow, either manually or automatically 
depending on the AutoRestoreContext property setting. 

5 When the user performs another operation on the DataWindow, the 
process is repeated.

Update resets the context
Changes in data on the server are cleared when the data is updated to the 
database, and the context string is reset.



WebDataWindowControl properties

194  DataWindow .NET

Restoring context You can set the AutoRestoreContext property to true (the default) to have the 
context restored to the DataWindow in the browser automatically before the 
user can make any changes to the DataWindow. Setting AutoRestoreContext 
to true calls the RestoreContext method implicitly.

Context should not be restored until the DataWindow has data
Context should only be restored after the DataWindow has obtained its data. 
This can be done using a retrieve, an import, a data cache restore, or another 
method.

If AutoRestoreContext is true and AutoRestoreDataCache is false, you should 
populate the DataWindow's data before the WebDataWindowControl's 
OnLoad event. In this case, the best place to populate the DataWindow with 
data is in the OnLoad event for the page. For example, you can call Retrieve in 
the page's OnLoad event and set AutoRestoreContext to true to let the 
DataWindow automatically restore its context. If you do not want to conform 
to this limitation, you can set AutoRestoreContext to false and then call the 
RestoreContext method manually after your data retrieve is done. 

If you need to restore context manually, use the RestoreContext method 
explicitly. If context is not restored correctly when the AutoRestoreContext 
property is set, an AutoRestoreContextError event is triggered. A failure in the 
RestoreContext method throws an exception.

Data state There are times when it is appropriate to disable the data state, particularly to 
improve application performance. For example, if you import a large amount 
of data into a WebDataWindowControl, the state of data changes becomes 
large because all the rows imported are treated as newly inserted rows. (In a 
retrieve, only new rows are added to the data state of changes.) 

If the EnableDataState property is set to true, importing a large amount of data 
sends a large context to the client. When the page is posted back, there is no 
need to import the data again since the context containing the state of data 
changes is restored to the WebDataWindowControl. If you want to improve 
performance, you can avoid sending a large context to the client by setting 
EnableDataState to false. However, since with this setting the imported data is 
not included in the context, you must import the data again when the page is 
posted back. 



Chapter 9    Using Web DataWindows

Programmer’s Guide 195

Integrated data cache management

Integrated data cache management lets you cache retrieved data into session 
state and then restore it to the DataWindow during a postback so that you do 
not need to connect to the database and retrieve the data again. 

The saved data cache contains all the data in the DataWindow, including the 
contents of the primary, filter, and delete buffers and any child DataWindows, 
and the status flags. The data cache does not contain the presentation (the 
LibraryList, DataWindowObject, and other display characteristics) of the 
DataWindow object. The presentation is saved in ViewState.

Session-based 
caching

Integrated cache management is based on the session, not the application. It 
uses the ASP.NET Page.Session property to save the data, which is in turn 
based on the SessionState property. To fully understand the implications of 
this, see your Microsoft ASP.NET documentation. For example, session data 
might be released if the browser does not revisit the application within a 
specified timeout period. If you expect this to affect your application, you can 
use the GetDataObject and SetDataObject methods to save the data cache into 
an application-level state object. (See “Managing the data cache without 
integrated management” on page 196).

Automatic or explicit 
save and restore

You can use the SaveDataCache method to explicitly save the data cache into 
session state after retrieving data, or you can set the 
AutoSaveDataCacheAfterRetrieve property to true to specify that the 
DataWindow will automatically save the data as a data cache after a retrieve 
completes successfully.

If the DataWindow uses an external data source, you must use SaveDataCache 
to save the data cache explicitly:

dwExt.SaveDataCache()

During page postback, you can use the RestoreDataCache method to explicitly 
restore the data from session state into the DataWindow, or set the 
AutoRestoreDataCache property to true to restore the data cache if it exists in 
session state. You do not need to call RestoreDataCache explicitly for external 
DataWindows if the AutoRestoreDataCache property is set to true.

Use AutoSaveDataCacheAfterRetrieve together with AutoRestoreDataCache 
and AutoRestoreContext to simplify your coding tasks. 

If saving or restoring the data cache fails when the automatic caching 
properties are set to true, the AutoDataCacheError event is triggered. 
SaveDataCache and RestoreDataCache throw an exception on failure. 



WebDataWindowControl properties

196  DataWindow .NET

Data cache and 
dynamic 
DataWindows

When the data cache of a static DataWindow is restored, the DataWindow can 
be recreated because the data cache restores the data and ViewState restores the 
DataWindow object’s design. The data cache is not saved for dynamically 
created DataWindow objects because ViewState does not contain the 
information about the DataWindow’s design required to recreate the 
DataWindow. 

Because the DataWindow object was created dynamically, there is no 
LibraryList or DataWindowObject associated with it. For a DataWindow 
dynamically constructed using DataWindowSyntaxFromSql, the DataWindow’s 
syntax is not saved when SaveViewState is called and therefore not restored 
when LoadViewState is called because saving the syntax would make the 
ViewState too large.

Setting AutoRestoreDataCache to true when you are using a dynamically 
created DataWindow results in an exception instead of triggering the 
AutoDataCacheError event, because there is no DataWindow object associated 
with the control. 

If you are using a DataWindow created from syntax, you need to call the Create 
method to recreate the dynamic DataWindow in every request. Calling Create 
clears the DataWindowObject property setting.

Modifying 
DataWindow syntax 
on the server

If you use the Modify method on the server to modify the syntax of a 
DataWindow object at runtime, your changes are not restored when the 
DataWindow is recreated. To save these changes, use a mechanism such as 
saving them to Session state. 

Managing the data 
cache without 
integrated 
management

The GetDataObject and SetDataObject methods allow you to manage the 
DataWindow’s data cache object yourself. You can get the data cache object 
with GetDataObject and save it into the application-level Page.Cache. When 
the page is posted back, you can retrieve the data cache object from the page 
cache and set it back into the DataWindow using SetDataObject.

The ClearDataCache, RestoreDataCache, and SaveDataCache methods also 
allow you to manage the data in session state manually.

Avoiding property conflicts

SaveDataCache and GetDataObject should be used to save only unmodified 
data if EnableDataState is set to true to enable data change context management 
during a page round trip. The WebDataWindowControl’s context management 
keeps track of data changes and restores the context (by setting 
AutoRestoreContext to true or calling RestoreContext directly) during the page 
round trip. 



Chapter 9    Using Web DataWindows

Programmer’s Guide 197

If SaveDataCache and GetDataObject save the data with changes, then 
RestoreContext might reapply the changes and cause anomalies.

Life cycle

Table 9-4 describes what action the WebDataWindowControl takes at each 
stage of its life cycle. 

Table 9-4: WebDataWindowControl life cycle

Postbacks and callbacks
The life cycle of a Web forms page begins when the browser presents a form 
to the user and the user interacts with the form. In previous versions of 
ASP.NET, any action that required processing that interacted with server 
components had to post the form back to the server, where the processing 
occured before the form was returned to the browser. This is called a round trip. 

Phase What happens Event or method

Initialize Initializes settings for the incoming Web request. Init event (OnInit method)

Load view state Populates the ViewState property, including 
settings for LibraryList, DataWindowObject, and 
other WebDataWindowControl properties.

LoadViewState method

Process postback data Restores the data cache if AutoRestoreDataCache 
is true. 

Restores the context if AutoRestoreContext is true 
and the control is already loaded.

LoadPostData method

Load Restores the context if AutoRestoreContext is true 
and context was not restored in the LoadPostData 
method.

Load event (OnLoad method}

Handle postback events Performs client actions. RaisePostBackEvent method

Prerender Registers client scripts and button context and 
actions.

PreRender event 
(OnPreRender method)

Save state Saves settings for LibraryList, DataWindowObject, 
and other WebDataWindowControl properties and 
saves the client context if necessary.

SaveViewState method

Render Renders the Web DataWindow. Render method

Dispose Disposes of internal DataStore and other objects. Dispose event



WebDataWindowControl properties

198  DataWindow .NET

To improve performance, round trips to the server should be avoided when 
possible. Performing tasks such as user input validation or sorting in 
JavaScript, VBScript, or another scripting language on the client can help 
minimize round trips, as can restricting the use of code that causes a round trip 
to events that require a definite user action, such as a mouse click. 

A major feature introduced in ASP.NET 2.0 is the script callback mechanism.  
This provides a way to execute server-side code without posting and refreshing 
the current page.  A rendered page can make a background callback to the 
server, send input data to the relevant page, and receive a response.  The 
response string can then be processed by the client appropriately, often 
manipulating the rendered page content through the Dynamic HTML 
(DHTML) object model and a callback JavaScript function embedded in the 
page.

Paging methods
The PagingMethod property enables you to specify how paging requests are 
handled. The default setting is PostBack, which posts each page request back 
to the server.

Callback paging CallBack paging uses the ASP.NET script callback feature to provide page 
navigation without posting the whole page back to the server. The XML data 
for the next requested page is downloaded as an XML string returned to the 
callback. A JavaScript function on the client collects the data and invokes the 
client-side XSLT processor to transform the data using the XSLT stylesheet 
that was downloaded and cached on the first request. The next page of data is 
displayed on demand. If you set the PagingMethod property to CallBack, you 
do not need to write server-side code and client-side JavaScript to take 
advantage of the script callback feature.

The PagingMethod property affects all paging actions, including DataWindow 
button actions that cause paging, client paging script methods, and integrated 
page navigationbar paging actions, but also all other DataWindow button 
actions and client methods such as Sort and Retrieve. When PagingMethod is 
set to Callback, all these actions are executed using script callbacks.

For the XML RenderFormat, if the DataWindow layout is inconsistent from 
page to page, or it does not contain a complete first page of data, the generated 
XSLT stylesheet is not reusable, and therefore cannot be cached by the 
browser. When this occurs, the Callback PagingMethod defers to PostBack 
until a stylesheet that can be reused and therefore cached in the browser can be 
generated.



Chapter 9    Using Web DataWindows

Programmer’s Guide 199

Client-side paging Client-side paging uses an XML document stored in the browser’s memory as 
a client-side data cache of all the DataWindow’s rows. It retrieves the entire 
XML result set and uses XSLT re-transformation of the cached stylesheet to 
perform paging on the client. This allows other DataWindow actions to be 
performed entirely on the client. When PagingMethod is set to XmlClientSide, 
the InsertRow, AppendRow, and DeleteRow actions execute entirely on the 
client with no postback or callback to the server. 

Computed fields not refreshed
No computed fields dependent on the RowCount method get refreshed as the 
user is changing the current row count as a result of the InsertRow, AppendRow, 
and DeleteRow actions.  This is because the underlying expressions are 
evaluated and generated on the server as static values.  They are reevaluated 
only when an action is performed that does involve a postback, such as an 
update.  

An ASP.NET page hosting a WebDataWindowControl configured for postback 
paging (or even callback paging) places more load on the Web server and can 
only page as quickly as the connection between client and server allows.  A 
similar ASP.NET page hosting a WebDataWindowControl configured for 
client-side paging by contrast takes slightly longer to load on first request due 
to the fact that it is pulling down all of the XML records rather than just one 
page worth.  But once loaded, subsequent paging requests take place entirely 
on the client and paging is not dependent on the connection speed.

Crosstab, Group, and Label DataWindows cannot be rendered correctly using 
the client-side paging method because their data presentation is not consistent 
from page to page. The client-cached XSLT style sheet cannot be reused. For 
the same reason, client-side paging cannot handle a DataWindow with a 
summary band on the last page. 

Client-side paging is available only for the Xml RenderFormat and in button 
actions and client JavaScript paging methods of the Web DataWindow client 
control. It is not supported with the integrated page navigation bar.

Call SetTransaction if you change the DataWindowObject property
With the XmlClientSide PagingMethod, if you change the DataWindowObject 
property of the WebDataWindowControl from its original value during a server 
lifecycle, without calling Retrieve, you must at least call SetTransaction during 
that same server lifecycle.



WebDataWindowControl properties

200  DataWindow .NET

RowsPerPage and scroll bars
The default behavior for a Web DataWindow is to display all the rows retrieved 
in a single page. If you want to limit the number of rows that display, set the 
RowsPerPage property to the number of rows you want. Displaying a limited 
number of rows requires less time to refresh the display in the browser. When 
you set RowsPerPage to a non-zero value, the value of the Height property is 
ignored and the control is sized to fit the number of rows.

If you set the RowsPerPage property, you can add ScrollFirstPage, 
ScrollLastPage, ScrollPriorPage, and ScrollNextPage buttons to the 
DataWindow object, typically in the footer band, to navigate to the rest of the 
data. For more information, see “Using Button and Picture controls” on page 
226. You can also use an integrated navigation bar, as described in “Page 
navigation bars” next.

Note that the RowsPerPage option sets not only the number of rows visible in 
the browser, but also the number of rows currently loaded into the control. 
Typically you do not want to display a vertical scroll bar in a DataWindow 
when you have set the RowsPerPage property, because users will use the 
navigation buttons to move through the data. 

The default value for both HorizontalScrollBar and VerticalScrollBar is Auto, 
which means that the size of the control is respected and a scroll bar displays 
automatically if the number of columns or rows exceeds the size of the control. 
Specify None if you do not want scroll bars and you want the control to expand 
to accommodate the size of its contents. Specify NoneAndClip if you do not 
want scroll bars and you want the control to remain the same size and clip the 
data. Specify Fixed if you always want scroll bars even if the data does not 
exceed the size of the control.

Separate values for horizontal and vertical scroll bar display are not supported 
on Netscape browsers. If you expect your application to run on Internet 
Explorer and Netscape Browsers, the values for HorizontalScrollBar and 
VerticalScrollBar should be set to the same value to ensure consistent display. 

Page navigation bars
As an alternative to setting the RowsPerPage property and creating your own 
user interface for navigating between pages, you can use an integrated page 
navigation bar. The page navigation bar can be added to the top or bottom of 
the DataWindow and can use several different styles. 



Chapter 9    Using Web DataWindows

Programmer’s Guide 201

The PageNavigationBarSettings property, which is an instance of the 
PageNavigationBarSettings class, lets you control the visibility, style, page 
navigation mode, and other properties of the page navigation bar. You set these 
options in the PageNavigationBarSettings section in the Properties window for 
the WebDataWindowControl or in code. 

To display the page navigation bar, set its Visible property to true and the 
WebDataWindowControl’s RowsPerPage property to a number greater than 0.

The default page navigator is the NextPrev style. This sample uses the default 
text-based arrow keys. You can use images or text instead:

There are two other basic styles: Numeric and QuickGo. You can combine the 
QuickGo style with either the NextPrev or Numeric styles. This sample uses 
Numeric with QuickGo:

Table 9-5 lists the properties of PageNavigationBarSettings.

Table 9-5: PageNavigationBarSettings properties

Property Description

BarStyle Represents the style of the page navigation bar. 
PageNavigationBarStyle is a class inherited from the 
standard System.Web.UI.WebControls.Style, which has all 
the behaviors and properties of standard 
System.Web.UI.WebControls.Style.

Use the BarStyle property to control the appearance of the 
page navigation bar, such as the background color and border 
style. This property is read-only, however, you can set the 
properties of the PageNavigationBarStyle object it returns.

NavigatorType Specifies the navigator type:

• NextPrev – Previous, next, first, and last page images or 
text.

• Numeric – Numbered and first and last page links.

• QuickGo – A page number input edit box or page number 
selection drop-down list.

• NextPrevWithQuickGo – Combined type.

• NumericWithQuickGo – Combined type.

The default is NextPrev.



WebDataWindowControl properties

202  DataWindow .NET

For a description of the properties for the NavigatorTypes, BarStyle, and 
PageStatusInfo, see the online Help in Visual Studio .NET or the dwref20.chm 
compiled HTML Help file. Most of these properties are self-explanatory, but a 
few are described here.

URLs for images Each of the navigator types has at least one property you can use to specify an 
image for a button. For example, the following statement in a code-behind file 
specifies an image for the Next button in a NextPrev style navigator:

dw_1.PageNavigationBarSettings.NextPrevNavigator.NextPageImageUrl = 
"PageNext.gif"

PageCountPerGroup For the Numeric type, the PageCountPerGroup property is an integer that 
indicates the number of numeric buttons to display concurrently in the page 
navigator. If there are more pages in the WebDataWindowControl than 
specified in this property, Next or Previous Group Page buttons or both are 
displayed. For example, if there are 10 pages in the DataWindow and this 
property is set to three, when the page first displays, the numbers 1, 2, and 3 
and the NextGroup button displays. When you click the Next Group button, the 

NextPrevNavigator Sets properties of the NextPrev type, such as the URL 
for the image or the text to use for each of the links and 
tooltip text for each link. 

NumericNavigator Sets properties of the Numeric type, such as the URL 
for the image or the text to use for each of the links, 
tooltip text for each link, and the format for the page 
number. 

PageStatusInfo Sets the visibility and appearance of current page status 
information, such as Page 3 of 10, in the page 
navigation bar.

Position Indicates the position of the page navigation bar in the 
WebDataWindowControl: Top, Bottom, or TopAndBottom. 
The default is Bottom.

QuickGoNavigator Sets properties of the QuickGo type, such as the URL 
for the image or the text for the GoTo button, tooltip 
text, and the format for the page number. 

Visible A boolean value indicating whether the page navigation bar 
is displayed in the WebDataWindowControl. If the 
RowsPerPage property of WebDataWindowControl is less 
than or equal to 0, the page navigation bar does not display 
when Visible is set to true because there is no paging. The 
default value is false.

Property Description



Chapter 9    Using Web DataWindows

Programmer’s Guide 203

PageNumberDisplay
Format

The PageNumberDisplayFormat property for the Numeric and QuickGo types 
is a string value containing the format used to generate the numeric page 
number button text. For QuickGo, this property takes effect when the 
QuickGoPageNavigatorSettings.Type is set to DropDownList and the Mode 
property is set to PagerMode.NumericPages.

In the page number display format, {P} is the keyword for generating numeric 
page number button text. For example, if the PageNumberDisplayFormat is 
#{P}, then the numeric page number button text will be shown as #1, #2. 
When PageNumberDisplayFormat is an empty string, which is the default 
value, the format [{P}] is used. 

TextFormat The TextFormat property for PageStatus is a string value used to generate page 
status text information displayed in the page navigation bar. It uses the 
following keywords:

For example, if the TextFormat is Page {C} of {T} (the default), the 
WebDataWindowControl has 10 pages, and the current page number is 3, the 
page status information text is generated as Page 3 of 10. 

Rendering graphs
Graphs can be displayed in a DataWindow in a standalone image file or in an 
image stream embedded into the Web page. You specify how you want the 
graph to be rendered by setting the RenderOption property in the 
GraphConfigurations section in the WebDataWindowControl’s Properties 
window or in code. You can use the graph presentation style to display a graph 
in a Web DataWindow, or a supported presentation style such as tablular or 
freeform. Graphs do not display in Web DataWindows with the grid 
presentation style.

Keyword Generates

{C} Current page number
{T} Page count
{R} Row count
{F} First row of current page
{L} Last row of current page
{S} Starting page of current numeric group
{E} Ending page of current numeric group



WebDataWindowControl properties

204  DataWindow .NET

Using an image file If you set the RenderOption property to ImageFile, the rendering of the graph 
object is saved into a temporary file on the Web server and an image URL is 
generated to reference the temporary image file. The physical directory in 
which the temporary image file is stored and the URL path are specified in the 
GraphDynamicImageFileUrlPath property. This property must specify a URL 
path in your Web application virtual directory, and it must be a path that can be 
mapped to a writable physical directory in your Web application's physical 
directory.

Using an image 
stream

If you set the RenderOption property to ImageStream, the rendering of the 
graph object is saved into a memory stream in the session cache in a 
StreamImageContainer and the stream is output to a page whose content type 
is “image/imageformat”, where imageformat is gif, jpeg, or png. The URL 
reference to the image, set in the StreamImageContainerPage property, points 
to this page instead of to an image file.

Image file formats You can choose to render the graph in GIF, JPEG, or PNG formats. You select 
the image format you want by setting the ImageFormat property of the 
GraphConfigurations class to a value of the GraphImageFormat enumerated 
variable. The default image format is PNG. which provides superior rendering 
and a smaller footprint than JPEG.. Choose GIF is you want to reduce the 
footprint to a minimum at the cost of some loss of rendering quality.

Write permission for 
directories for 
generated files

When you specify a path for dynamically generated files, make sure that the 
ASP.NET account (or, for Windows 2003 server, the IIS_WPG user group) has 
write permission to the directories. For more information, see the Microsoft 
documentation.

Example This Visual Basic code sets the RenderOption and other properties based on a 
user’s choice in a radio button:

If rb_format.SelectedIndex = 0 Then
dw1.GraphConfigurations.RenderOption = _
Sybase.DataWindow.Web.GraphRenderOption.ImageStream

dw1.GraphConfigurations.StreamImageContainerPage = _
"StreamImageContainerPage.aspx"

Else
dw1.GraphConfigurations.RenderOption = _
Sybase.DataWindow.Web.GraphRenderOption.ImageFile
dw1.GraphConfigurations. _
GraphDynamicImageFileUrlPath = "image/"

End If

dw1.Retrieve()



Chapter 9    Using Web DataWindows

Programmer’s Guide 205

Creating hyperlinks
You can add a link to a column, computed field, bitmap, or text control in a 
WebDataWindowControl in the control's Properties window: 

1 In the Properties window for a WebDataWindowControl, click the ellipsis 
button in the ObjectLinks field. 

2 In the ObjectLink Collection Editor, click Add to add a new object link. 

3 Specify values for the ObjectName and LinkUrl properties, and optionally 
the LinkTarget and LinkArguments properties. 

4 To set the LinkArguments property, with the new object link selected, 
click the ellipsis button in the LinkArguments field to open the 
LinkArgument Collection editor. 

Click Add to add a new link argument and specify a name, type, and value. 
If you select DataWindowColumn as the type, clicking the ellipsis button 
in the Value field displays a list of columns in the DataWindow. If you 
select DataWindowExpression, the Edit DataWindow Expression dialog 
box displays.

5 Click OK to return to the ObjectLink Collection Editor.

The ObjectLink object generates an HTML hyperlink for the selected control. 
If the control is a column, the HTML is generated only if the column is 
readonly (its tab order in DataWindow Designer is 0).

The ObjectLink class encapsulates the HTML.Link, HTML.LinkArgs, and 
HTML.LinkTarget properties of the DataWindow object's column, computed 
field, bitmap, or text controls, using the ObjectName property to identify the 
control.

You can specify values for the DataWindow object properties on the HTML 
page in the Properties view for the control in DataWindow Designer. Values 
you specify in the ObjectLink Collection Editor override values set in the 
painter. 

If you set link values in the painter, you need to set them in the Properties 
window only if you want to override the properties set in the painter. For 
information about setting these properties in DataWindow Designer, see the 
description of the properties in the DataWindow Object Reference.



WebDataWindowControl properties

206  DataWindow .NET

This button Clicked event example shows some of the code needed to generate 
links using WebDataWindowControl properties. It sets up link arguments for 
customer id and company name columns, and object links that jump to a 
Customer Orders page and a Customer Details page:

Private Sub Button1_Click(ByVal sender As 
System.Object, ByVal e As System.EventArgs)

Dim objlink_col As New
Sybase.DataWindow.Web.ObjectLinkCollection

Dim linkarg_col As New
Sybase.DataWindow.Web.LinkArgumentCollection

Dim larg1 As New Sybase.DataWindow.Web.LinkArgument

larg1.Name = "custid"
larg1.Type = Sybase.DataWindow.

Web.LinkArgumentType.DataWindowColumn
larg1.Value = "id"
linkarg_col.Add(larg1)

Dim larg2 As New Sybase.DataWindow.Web.LinkArgument
larg2.Name = "company"
larg2.Type = Sybase.DataWindow.

Web.LinkArgumentType.DataWindowColumn
larg2.Value = "company_name"
linkarg_col.Add(larg2)

Dim objlink1 As New Sybase.DataWindow.Web.ObjectLink
objlink1.ObjectName = "id"
objlink1.LinkUrl = "CustomerOrder.aspx"
objlink1.LinkArguments.Add(linkarg_col.Item(0))
objlink1.LinkArguments.Add(linkarg_col.Item(1))

objlink_col.Add(objlink1)

Dim objlink2 As New Sybase.DataWindow.Web.ObjectLink
objlink2.ObjectName = "edit"
objlink2.LinkUrl = "CustomerDetails.aspx"
objlink2.LinkArguments.Add(linkarg_col.Item(0))
objlink_col.Add(objlink2)

dw_1.ObjectLinks.Add(objlink_col.Item(0))
dw_1.ObjectLinks.Add(objlink_col.Item(1))

End Sub



Chapter 9    Using Web DataWindows

Programmer’s Guide 207

Here is the ObjectLinks tag in the Customer Orders .aspx page:

<ObjectLinks>
<dw:ObjectLink ObjectName="sales_order_id"

LinkUrl="CustomerOrder.aspx">
<LinkArguments>

<dw:LinkArgument Type="DataWindowColumn"
Name="orderid"
Value="sales_order_id"></dw:LinkArgument>

</LinkArguments>
</dw:ObjectLink>

</ObjectLinks>

Printing Web DataWindows
You can use the browser’s Print button to print a Web DataWindow, but that 
prints only what you have in the window. This means that a scrolling 
DataWindow would not be completely printed.You can print a DataWindow 
displayed in a Web form to a printer on the Web server using the Print method. 
This might be a useful technique if the Web server is accessed over a local 
Intranet. You can also use the SaveAs method to export the DataWindow to a 
PDF file on the server and then stream the result to the browser. 

Before you can use either of these techniques, you must perform some 
configuration on the Web server. 

Server-side printing
When you call the Print method, the DataWindow is printed to a printer that is 
installed on the Web server. The DataWindow can reside in either a 
WebDataWindowControl or a DataStore.

The Web server must be configured so that the ASP.NET worker process has 
access to system settings and the SYSTEM account has access to printers. 
Implementing server-side printing requires changing the default permissions 
on the server. 

Configuring the .NET 
Framework 

By default, the .NET Framework runs with the permissions of the local 
“machine” account. In order to print using IIS, the .NET Framework must run 
with the permissions of the local “SYSTEM” account. The procedures for 
configuring the .NET Framework for IIS 5.x and 6.x are different. 



Printing Web DataWindows

208  DataWindow .NET

On Windows 2000 or Windows XP with IIS 5.x, you need to edit the 
machine.config file on the Web server to ensure that the process under which 
ASP.NET is running has sufficient permissions to access printers installed on 
the network. 

On Windows Server 2003 and on Windows 2000 or Windows XP with IIS 6.x, 
you use the IIS Manager (the inetmgr utility) to configure the application pool 
identity.

❖ To configure the .NET Framework to run with local SYSTEM settings with 
IIS 5.x:

1 In your C:\WINDOWS or C:\WINNT directory, navigate to the 
Microsoft.NET\Framework\VersionNum\CONFIG directory, where 
VersionNum is the version of the .NET Framework, for example 
v1.1.4322.

2 Open the machine.config file with a text or XML editor and locate the 
processModel element.

You need to change the value of the userName setting in this element. The 
default settings for userName and passWord are:

userName="machine" passWord="AutoGenerate"

3 Change the value of userName to “SYSTEM”:

userName="SYSTEM" passWord="AutoGenerate"

4 Save the machine.config file.

❖ To configure the .NET Framework to run with local SYSTEM settings with 
IIS 6.x:

1 In the Windows Start>Run box, type InetMgr.

2 In the IIS Manager, expand local computer and select Application Pools.

3 Right-click Application Pools and select Properties.

4 Click the Identity tab, select Local System from the Predefined list box, 
and click OK.

5 Click Yes in the pop-up warning message window that displays.

6 Right-click local computer and select All Tasks>Restart IIS to restart IIS.



Chapter 9    Using Web DataWindows

Programmer’s Guide 209

Exposing printer 
settings to the 
SYSTEM account

When a printer is installed on a computer, its settings are stored in the 
HKEY_CURRENT_USER registry key. IIS runs under the context of the local 
SYSTEM account. It has access to the HKEY_USERS registry key, but not to 
the HKEY_CURRENT_USERS subkey, which is only available to a user logged 
on to the computer.

By default, no printers are defined in the HKEY_USERS key. You can add them 
by exporting three keys from the HKEY_CURRENT_USERS key and 
importing them to the HKEY_USERS key. 

Caution
Incorrectly editing the registry might severely damage your system. Make sure 
you back up valued data before making changes to the registry.

❖ To make printer settings available to the SYSTEM account:

1 Check that the current user on the Web server has the required printer(s) 
installed.

2 To launch the Registry Editor, type regedit in the Start>Run dialog box 
and click OK.

3 Select the HKEY_USERS\.DEFAULT\Software\Microsoft\Windows 
NT\CurrentVersion key and export the registry key from the File or 
Registry menu.

4 Specify a name and location in the Export Registry File dialog box and 
click Save.

This file provides a backup if you need to restore the registry.

5 In the HKEY_CURRENT_USER\Software\Microsoft\Windows 
NT\CurrentVersion key, select the Devices subkey and export the registry 
key.

6 Specify the name devices.reg and a temporary location in the Export 
Registry File dialog box and click Save.

7 Repeat steps 5 and 6 for the PrinterPorts and Windows subkeys, naming 
the files printerports.reg and windows.reg.

8 Open devices.reg in Notepad (do not use TextPad or another editor), 
replace the string HKEY_CURRENT_USER with the string 
HKEY_USERS\.DEFAULT (note that there is a dot before DEFAULT), and 
save the file.

9 Repeat step 8 for printerports.reg and windows.reg.



Printing Web DataWindows

210  DataWindow .NET

10 Double-click each of the edited files to import them into the registry.

11 Restart IIS so that the configuration changes take effect.

❖ To restart IIS:

1 In the Windows Start>Run box, type InetMgr.

2 In the IIS Manager, right-click the local computer and select All 
Tasks>Restart IIS.

3 In the Start/Stop/Reboot dialog box, select Restart Internet Services on 
ComputerName, where ComputerName is the local computer.

After restarting IIS, you need to restart the Web site.

Where the 
DataWindow is printed

When you use the Print method, the DataWindow is printed to the printer 
specified in the DataWindow object’s PrinterName property, or to the default 
printer as specified in the Devices registry key.

This Visual Basic code gets the name of the printer and writes it to a log file 
before printing the DataWindow:

Dim printerName As String
printerName = dwGrid.PrintProperties.PrinterName
sMsg = "Printer name: " + printerName
writelog(sMsg)
dwGrid.Print()

Saving as PDF
If you want your application to save a DataWindow object in PDF format, the 
Web server (not the client) must satisfy the requirements for Ghostscript and 
PostScript drivers described in “Saving data in PDF format” on page 300.

You must also: 

• Configure the .NET Framework to run under the SYSTEM account and 
expose printer settings to the SYSTEM account as described in “Server-
side printing” on page 207.

• Make sure that the Sybase DataWindow PS profile is exposed to the 
SYSTEM account as described next.



Chapter 9    Using Web DataWindows

Programmer’s Guide 211

• On Windows 2003 Server, configure the server so that the PostScript 
printer driver can be installed. See “Installing a printer on Windows 2003 
Server” on page 211.

• Create a folder on the server in which to save the PDF files and set its 
permissions so that the ASP.NET application process has write access to it.

Exposing the Sybase 
DataWindow PS 
profile to the SYSTEM 
account

Saving as PDF requires a PostScript printer profile called Sybase DataWindow 
PS. This profile is added to your development computer automatically when 
you save a DataWindow’s rows to a PDF file in the DataWindow painter.

You can also add the profile manually using the Windows Add Printer wizard. 
In the wizard, click the Have Disk button and browse to the Adist5.inf file 
installed in the DataWindow .NET 2.0\drivers directory, or to another 
PostScript driver file. You can download PostScript driver files from several 
locations, including the Adobe Web site.

The Sybase DataWindow PS profile must be exposed to the SYSTEM account 
as described in “Exposing printer settings to the SYSTEM account” on page 
209. If this profile does not display in the Devices, PrinterPorts, and Windows 
subkeys in HKEY_USERS\.DEFAULT\Software\Microsoft\Windows 
NT\CurrentVersion, copy the string values from the 
HKEY_CURRENT_USER\Software\Microsoft\Windows NT\CurrentVersion 
key.

Installing a printer on 
Windows 2003 Server

On Windows 2003 Server, a default Group Policy disallows installation of 
printers that use kernel-mode drivers, and as a result the driver used by the 
Sybase DataWindow PS profile is not installed. Kernel-mode drivers have 
access to system-wide memory, and poorly written drivers can cause system 
failures. To allow installation of kernel-mode drivers, follow these steps:

1 Select Run from the Windows Start menu.

2 In the Open box, type gpedit.msc and click OK.

3 In the Group Policy console, expand Computer Configuration, 
Administrative Templates, and Printers.

4 Disable “Disallow Installation of Printers Using Kernel-Mode Drivers.”

Example If you have completed these configuration steps, you can use code like the 
following to generate the PDF from the current DataWindow on the page and 
open the PDF file on the client computer.



Setting up database connections

212  DataWindow .NET

Put the following C# code behind a LinkButton with a label such as 
“Printer-friendly version.” The code generates a unique file name in a 
subdirectory called pdfs of the Web application. The unique name is used as the 
filename argument of the SaveAs method.

String pdfFileName;
String pdfUrl;
String uniqueName;

uniqueName = System.Guid.NewGuid().ToString() + ".pdf";
pdfUrl = "pdfs/" +  uniqueName;
pdfFileName = Page.MapPath("") + "\\pdfs\\" + 
> uniqueName;

dw.SaveAs(pdfFileName,
Sybase.DataWindow.FileSaveAsType.Pdf);

HtmlGenericControl body;
body = FindControl("body") as HtmlGenericControl;
body.Attributes.Clear();

body.Attributes.Add("onLoad", "pdfWindow=window.open
('" + HttpUtility.UrlEncode(pdfUrl) + 
"', 'pdf', 'dependent');pdfWindow.focus();");

body.Attributes.AddAttributes(new
HtmlTextWriter(Response.Output));

You can find a sample application that uses a different technique on the Sybase 
CodeXchange Web site at http://datawindownet.codeXchange.sybase.com.

Setting up database connections
When you use the Web DataWindow, it is the Web DataWindow server control 
that interacts with the database, so you need to set up database connections on 
the server where the control is running. For information about connecting to a 
database, see Chapter 5, “Working with Transaction and AdoTransaction 
Objects.”

http://datawindownet.codeXchange.sybase.com


Programmer’s Guide 213

C H A P T E R  1 0 Designing Web DataWindows

About this chapter This chapter describes how to design DataWindow objects in 
DataWindow Designer for use in ASP.NET applications. 

Contents

Working in DataWindow Designer
If you have already designed the DataWindow objects you need in 
DataWindow Designer, then the .NET Framework development 
environment is where you will do most of the work required to build 
ASP.NET applications that use DataWindows. There are three areas that 
might require you to work in DataWindow Designer:

• Designing new DataWindow objects or tuning existing DataWindow 
objects to avoid the use of unsupported features

• Setting DataWindow object properties that control the XML, 
XHTML, or HTML that is generated for your DataWindow objects

• Designing XHTML templates to customize the XHTML generated 
by the XML and XHTML Web DataWindows

Topic Page

Working in DataWindow Designer 213

Designing DataWindow objects for the Web DataWindow 214

Web DataWindow properties 216

Using JavaScript caching in DataWindow Designer 223

Using expressions 226

Using Button and Picture controls 226

Using a drop-down calendar 228

Using a drop-down DataWindow 228

Previewing the DataWindow 230

Rendering HTML for controls in an HTML Web DataWindow 231



Designing DataWindow objects for the Web DataWindow

214  DataWindow .NET

This chapter covers the first two of these areas. For information about 
customizing export templates, see Chapter 11, “Working with XHTML 
Templates.”

Designing DataWindow objects for the Web 
DataWindow

The Web DataWindow supports most DataWindow functionality. This section 
describes what features to use to take full advantage of the Web DataWindow, 
and what features to avoid.

Using existing 
DataWindow objects

Many existing DataWindow objects work in the Web DataWindow. If a 
DataWindow object uses features that the Web DataWindow does not support, 
then the features are ignored. You can still use the DataWindow object if the 
remaining functionality is acceptable for your application. Table 10-1 lists 
supported and unsupported features.

Table 10-1: Web DataWindow supported and unsupported features

DataWindow feature Supported and unsupported features

Presentation styles All presentation styles except TreeView are supported. Unsupported presentation 
styles retrieve data but display nothing. The Grid presentation style is rendered as an 
HTML table if you use the HTML RenderFormat, and as a result absolute positioning 
is not supported and the display characteristics differ from those of XML and 
XHTML Web DataWindows.

Graphs Graphs can be displayed in a DataWindow in a standalone image file or in an image 
stream embedded into the Web page. Graph controls inserted into DataWindow 
objects that use the Grid presentation style do not display. See “Rendering graphs” 
on page 203.

Nested and composite 
reports

Supported for the XHTML rendering format only. 

Supported controls Supported controls: Column, Computed Field, Graph, Text, Picture, Button, 
GroupBox, Rectangle.

These controls are ignored: OLE Object, OLE Database Blob, RoundRectangle, 
Oval, InkPicture.

For information on:

• Expressions for computed fields, see “Using expressions” on page 226.

• Images for Picture controls, see “Using Picture controls” on page 228.

• Button controls and supported actions, see “Using Button controls” on page 226.

Report controls Report controls are supported in XHTML Web DataWindows only.



Chapter 10    Designing Web DataWindows

Programmer’s Guide 215

GroupBox controls GroupBoxes cannot be rendered in Crosstab and Grid style DataWindows.

The following GroupBox properties are not supported: moveable, pointer, resizeable, 
slideleft, slideup, font.charset, font.width.

Line controls Only horizontal Line controls are supported. The line’s color property is always 
rendered, and the width property is rendered if the line is solid. Other line styles are 
displayed as solid lines with the default width. Vertical and slanted lines are ignored.

Rectangle controls Rectangles cannot be rendered in a Label DataWindow with any rendering format 
when the layer of the Rectangle is foreground, unless the height of the DataWindow 
control is set to a fixed value.

The following Rectangle properties are not supported: moveable, pointer, resizeable, 
slideleft, slideup, brush.hatch, pen.style

Retrieving data Filtering and sorting are supported by setting properties or calling methods on the 
server control. Sorting can also be specified by using a client control method. See 
Chapter 12, “Writing Scripts for the Web DataWindow Client Control.”

User-specified queries using the QueryMode property are not supported.

Updating data Same as the DataWindowControl. The DataWindow object must contain editable 
columns.

Edit styles All edit styles are supported except InkEdit and EditMask, with the exception of the 
DDCalendar EditMask. If the DataWindow uses the EditMask edit style, the styles 
specified are treated as though they were specified as a display format.

DDCalendar EditMask 
property

The DDCalendar EditMask property option allows for separate selections of the 
calendar month, year, and date. This option can be set in a check box on the Edit tab 
of the DataWindow painter Properties view when a Date or DateTime column with 
the EditMask edit style is selected. It can also be set in code, as in this example for 
the birth_date column:

dwEmp.Modify("birth_date.EditMask.DDCalendar='Yes'")

For more information, see “Using a drop-down calendar” on page 228.

DropDownDataWindows A drop-down DataWindow must be in the same PBL as the DataWindow in which it 
is used. Data for drop-down DataWindows is retrieved on the server. See “Using a 
drop-down DataWindow” on page 229. The dddw.lines property is not supported in 
Web pages because the browser controls how the DropDownDataWindow displays.

Display formats Supported, including the use of color.

Validation rules The expression might be evaluated on the client or the server, depending on the 
expression.

For information, see “Using expressions” on page 226.

Property expressions Evaluated on the server.

Layout Properties that specify autosizing of height and width or allow the user to resize or 
move controls, such as SlideLeft and SlideRight, are ignored.

DataWindow feature Supported and unsupported features



Web DataWindow properties

216  DataWindow .NET

Web DataWindow properties
This section describes the XML, XHTML, and HTML DataWindow object 
properties for the Web DataWindow that you can set in DataWindow Designer 
or in code, using the Modify or SetProperty methods. 

Some properties that you can set for the DataWindow object in DataWindow 
Designer can also be set in the Properties window in Visual Studio .NET. If a 
property is set in DataWindow Designer, it is respected in DataWindow .NET. 
However, the properties you set in the painter are not reflected in the Properties 
view, which displays default values for most properties. For more information, 
see “Understanding how properties interact” on page 186.

For more detailed information about each property, see the DataWindow 
Object Reference or the online Help for the property name in DataWindow 
Designer. For information about how to set properties in DataWindow 
Designer, including shared HTML and XHTML properties, see “Setting Web 
generation properties for the Web DataWindow” on page 219.

XML and XHTML 
data properties

Table 10-2 shows row data properties for the XML and XHTML Web 
DataWindow.

Table 10-2: Row properties for the XML and XHTML Web DataWindow

Properties The following properties are not supported:

• EditMask.Spin DataWindow object property

• Sparse (Suppress Repeating Values) DataWindow object property

• RightToLeft DataWindow control property

The Limit property is not supported in multiline edit columns in a Web DataWindow. 
In JavaScript, the multiline edit column maps to a textarea object, and the limit 
property maps to a maxlength attribute, which the textarea object does not support.

Tab order Supported in HTML 4 and later browsers.

DataWindow feature Supported and unsupported features

Property User interface fields Description

Data.XHTML Read only, so no user interface field A string containing the row data content of 
the DataWindow object in XHTML format

Data.XMLWeb Read only, so no user interface field A string containing browser-specific 
JavaScript that performs the XSLT 
transformation on the browser



Chapter 10    Designing Web DataWindows

Programmer’s Guide 217

XML Web 
DataWindow 
generation properties

Table 10-3 lists properties supporting XML Web DataWindow generation. If 
you set the XmlConfigurations.UrlPath property in the properties window in 
Visual Studio .NET, the JSGen, XMLGen, and XSLTGen ResourceBase and 
PublishPath properties are ignored.

Table 10-3: Properties supporting XML Web DataWindow generation

Property User interface fields Allows you to

CSSGen.property Web Generation property page with 
CSS selected as the format to 
configure: resource base, publish 
path, and session-specific file names

Specify the physical path to which a 
generated CSS style sheet is published and 
the URL indicating the location of the style 
sheet where the property variable is 
PublishPath or ResourceBase, as well as 
whether generated CSS, XSLT, and 
JavaScript file names are specific to a session

JSGen.property JavaScript Generation property page 
with XHTML selected as the format 
to configure: resource base and 
publish path

Specify the physical path to which generated 
JavaScript (that is included in the final 
XHTML page) is published and the URL 
indicating the location of the generated 
JavaScript where the property variable is 
PublishPath or ResourceBase

XMLGen.property Web Generation property page with 
XML selected as the format to 
configure: resource base, publish 
path, and secure inline XML 
generation

Specify the physical path to which XML is 
published and the URL referenced by the 
JavaScript that transforms the XML to 
XHTML where the property variable is 
PublishPath or ResourceBase, as well as 
whether XML is generated in the XSLT 
transformation script for security

XSLTGen.property Web Generation property page with 
XSLT selected as the format to 
configure: resource base and publish 
path

Specify the physical path to which the 
generated XSLT style sheet is published and 
the URL referenced by the JavaScript that 
transforms the XML to XHTML (using the 
generated XSLT stylesheet) where the 
property variable is PublishPath or 
ResourceBase

XHTMLGen.Browser Web Generation property page with 
XHTML selected as the format to 
configure: browser

Identify the browser in which XHTML 
generated within an XSLT style sheet is 
displayed



Web DataWindow properties

218  DataWindow .NET

About PublishPath and ResourceBase
PublishPath is a string that specifies the physical path of the Web site folder to 
which DataWindow .NET publishes generated CSS, JavaScript, XML, or 
XSLT. ResourceBase is a string that specifies the URL of the generated file. 
For example, you might set CSSGen.ResourceBase to /MyWebApp/cssfiles and 
CSSGen.PublishPath to C:\Inetpub\wwwroot\MyWebApp\cssfiles, and set 
similar paths for the JSGen, XMLGen, and XSLTGen properties.

HTML properties There are four types of HTML properties you can set in DataWindow Designer. 
The first three apply to the DataWindow object itself. The last applies to 
bitmap, column, computed field, and text controls in the DataWindow object. 
Many of these properties can be overridden in the Properties window in the 
development environment.

Table 10-4: HTML properties you can set in DataWindow Designer

Property User interface fields Allows you to

HTMLDW
(shared by all Web 
DataWindow formats)

Web DataWindow check box on the 
General page of the DataWindow 
object Property view. Selecting this 
check box sets this property to Yes. 

View the HTML in a browser using 
Design>HTML Preview. 

HTMLTable.property
(HTML only)

All fields on the HTML Table page 
of the DataWindow object Property 
view.

Change the display characteristics of HTML 
tables, including border style and cell width 
and padding.

HTMLGen.property 
(shared by all Web 
DataWindow formats)

All fields on the Web Generation 
page and the JavaScript Generation 
page of the DataWindow object 
Property view. (You can also start 
the JavaScript Generation wizard 
using the Generate File button on 
the JavaScript Generation page).

Control the number of rows displayed on the 
page, generate HTML for a specific browser 
or HTML version, choose client-side features 
to incorporate into the page, select how to 
display drop-down DataWindows, select a 
paging method, and set up JavaScript caching 
to enhance performance.

HTML.property 
(shared by all Web 
DataWindow formats)

All fields on the HTML page of the 
Property view for a Column, 
Computed Field, Text, or Picture 
control in a DataWindow object.

Set up hyperlinks and retrieval arguments 
typically used to create master/detail Web 
pages, specify whether the content of a control 
should be rendered as HTML, and specify any 
HTML to be appended to a control.



Chapter 10    Designing Web DataWindows

Programmer’s Guide 219

Setting Web generation properties for the Web DataWindow
Each of the Web formats that contribute to the generation of a Web 
DataWindow require configuration:

HTML
XHTML
CSS
XML
XSLT
JavaScript

The rest of this section describes configuration of HTML, XHTML, CSS, 
XML, XSLT, and JavaScript in DataWindow Designer. For information about 
JavaScript caching, see “Using JavaScript caching in DataWindow Designer” 
on page 223. You need only configure the properties used by your 
RenderFormat choice in Visual Studio .NET.

To configure a particular Web format, you use the Web Generation page in the 
DataWindow object property view. The Web Generation page is controlled by 
the Format to configure drop-down list box at the top of the view that displays 
the Web formats for the Web DataWindow: 



Web DataWindow properties

220  DataWindow .NET

The properties that are shared by HTML and XHTML display in the view by 
default. When you set shared properties, both formats are configured at the 
same time:

Which properties you can set depends on the format you select. 

Table 10-5 shows which properties you can set with each selected format. The 
last column lists equivalent properties you can set in the .NET development 
environment. For more information about setting properties in the .NET 
development environment, see “WebDataWindowControl properties” on page 
185.

For descriptions of properties, see the DataWindow Object Reference in the 
online compiled HTML Help. Use Table 10-3 on page 217 and Table 10-4 on 
page 218 to find out which Help topic describes each property. 



Chapter 10    Designing Web DataWindows

Programmer’s Guide 221

Table 10-5: Web generation properties in DataWindow Designer and in 
the .NET development environment

Format to 
configure Applies to

Properties in DataWindow 
Designer

Properties in the .NET 
development environment

XHTML/HTML All Web 
DataWindow 
formats

Rows per page (sets the 
PageSize property

RowsPerPage

Generate JavaScript JavaScriptConfigurations.
JavaScriptOption

Client events ClientEvents

Client validation ClientValidation

Client computed fields No equivalent

Client formatting ClientFormatting

Client scriptable ClientScriptable

Generate DDDW Frames GenerateDDDWFrames

Object name ClientObjectName

TabIndex base TabIndex

Self link No equivalent

Self link arguments No equivalent

Encode self link arguments No equivalent

Paging Method PagingMethod

HTML HTML Web 
DataWindows

Browser Overridden by the browser handling 
the current request

HTML version Overridden by the browser handling 
the current request

XHTML XHTML and XML 
Web DataWindows

Browser Overridden by the browser handling 
the current request

CSS XML Web 
DataWindows (for 
generated CSS files)

Resource base XMLConfigurations.UrlPath

Publish path XMLConfigurations.UrlPath

Session-specific file names XMLConfigurations.SessionSpecific

XML XML Web 
DataWindows (for 
generated XML 
files)

Resource base XMLConfigurations.UrlPath

Publish path XMLConfigurations.UrlPath

Generate securely inline XMLConfigurations.SecurelyInline

XSLT XML Web 
DataWindows (for 
generated XSLT 
files)

Resource base XMLConfigurations.UrlPath

Publish path XMLConfigurations.UrlPath



Web DataWindow properties

222  DataWindow .NET

Typically you share style (CSS), layout (XSLT), and control definitions (JS) for 
use by all clients; however, if you use dynamic DataWindows customized for 
specific clients, you can force generation of the DataWindow 
presentation-related document names to be specific to each client. You do this 
by selecting the Session Specific CSS, XSLT, and JS Filenames check box or 
by setting the CSSGen.SessionSpecific property to “yes”. This eliminates the 
possibility of server-side contention for presentation formats when the 
DataWindow generation is specific to the client. 

You should avoid using the same name for different DataWindows (in different 
PBLs) in the same application. If you must use duplicate names, you can 
eliminate the possibility of server-side contention for presentation formats and 
data content by entering a fully qualified file name (rather than a path) for the 
publish path properties of those DataWindows. If you do use a file name for a 
publish path property, the file extension must correspond to the type of format 
you are configuring. For example, if you are adding a file name to the publish 
path of the XML format, the file extension must be XML.

Setting ResourceBase 
and PublishPath for 
JavaScript files

You configure JavaScript generation properties for the XML Web 
DataWindow and XHTML Web DataWindow on the JavaScript Configuration 
tab. Select XHTML in the Format to Configure box and provide paths for the 
resource base and the publish path. 

The other choice for format to configure on the JavaScript generation page is 
XHTML/HTML. The options that display are used for JavaScript caching. For 
more information, see “Using JavaScript caching in DataWindow Designer” 
next.



Chapter 10    Designing Web DataWindows

Programmer’s Guide 223

Using JavaScript caching in DataWindow Designer
In DataWindow Designer, you can use the Web DataWindow JavaScript 
Generator wizard to create JavaScript files (at design time) that contain the 
JavaScript client-side methods. You can start the Web DataWindow JavaScript 
Generator wizard by clicking the Generate File button in the JavaScript 
Generation property page of the DataWindow property view or from the Tool 
tab of the New dialog box. 

You can also generate JavaScript files for the WebDataWindowControl in the 
Properties window in your development environment. In Visual Studio .NET, 
you can also choose to use JavaScript files that are embedded in the 
WebDataWindow.dll assembly as a resource. See “Generating JavaScript for 
common management tasks” on page 189.

Shared JavaScript 
generation properties

These JavaScript files (HTML/XHTML) are shared by all Web formats of the 
Web DataWindow—XML, XHTML, and HTML.

Each pass of the wizard generates only one file, which allows you to combine 
or separate classes of functions. Once you have generated one or more 
JavaScript files, you can attach them to a DataWindow object using the 
Filename drop-down lists (for Common Class, Date Time Management, 
Number Format, String Format, and User Class) in the JavaScript Generation 
property page.

Generating and associating JavaScript files with a DataWindow object enables 
the JavaScript functions to be cached and then reused each time the page 
containing the DataWindow object displays in the browser.



Using JavaScript caching in DataWindow Designer

224  DataWindow .NET

Server-side and 
client-side 
performance

When you set DataWindow properties to reference included JavaScript files, 
the methods defined in the referenced files are not generated with the HTML 
in any Web DataWindow pages that are sent to the page server and client 
browser. Using JavaScript files also reduces the size of the HTML page 
rendered in the browser. 

With JavaScript caching, you improve performance on the client machine as 
long as the client browser is configured to use cached files. With caching 
enabled, the browser loads the JavaScript files from the Web server into its 
cache, and these become available for all the Web DataWindow pages in your 
application. There is no client-side performance gain if the browser does not 
find the JavaScript files in its cache since, in this case, it reloads the files from 
the Web server. 

Web DataWindow 
JavaScript Generator 
wizard

With the Web DataWindow JavaScript Generator wizard, you can generate 
only one JavaScript file at a time. The wizard gives you the option of including 
all Web DataWindow methods in a single file, but you can also restrict the 
types of methods to include in each JavaScript file it generates every time you 
use the wizard. The different method types correspond to the following 
DataWindow HTML properties:

Table 10-6: Methods generated by JavaScript Generator wizard in 
cached files

All of these properties are optional. You can set each of the properties from the 
JavaScript Generation page of the DataWindow property view, selecting the 
files you generate with the wizard as values. The wizard registers each file it 
generates, making it available for selection from the drop-down lists in the 
DataWindow property view.

When you update to a new version of DataWindow .NET, you must always 
regenerate the JavaScript files to ensure that any changes or enhancements in 
the new version are incorporated in the files.

HTMLGen.property Contents of cached file

CommonJSFile Methods used by all DataWindows.

DateJSFile Methods used by DataWindows with date and time 
formatting.

NumberJSFile Methods used by DataWindows with number formatting.

StringJSFile Methods used by DataWindows with string formatting.

UserJSFile User-defined client-side JavaScript methods—these 
cannot be generated by the Web DataWindow JavaScript 
Generator wizard. (See “User-defined JavaScript 
methods” on page 225.)



Chapter 10    Designing Web DataWindows

Programmer’s Guide 225

Using the 
ResourceBase 
property

You must deploy all cached files for your Web application to your Web server. 
You can use relative URLs or path names for cached JavaScript files if you 
specify their location in the HTMLGen.ResourceBase property.

You set these on the JavaScript Generation page of the DataWindow property 
view in DataWindow Designer. The ResourceBase property is also used to 
specify the location of image files.

If you do not set the HTMLGen.ResourceBase property, you must include the 
complete URL in the values of any of the HTMLGen properties that you set. 
In either case, the URLs are rendered as SRC attributes inside SCRIPT tags in 
the pages generated by the Web DataWindow component and sent to the client 
browser.

User-defined 
JavaScript methods

You can also reference a file where you store your own client-side JavaScript 
methods. To use this feature, you must assign the name of the file to the 
DataWindow HTMLGen.UserJSFile property and make sure the file is 
available to your Web server. As for the wizard-generated JavaScript files, you 
can use the HTMLGen.ResourceBase property to set the location for the file, 
or you can include the complete path to the file in the property value 
assignment.

You can make this assignment in DataWindow Designer or in code. The 
following code sets the user-defined JavaScript file to MyMethods.JS:

wdwEmp.Modify _
    ("DataWindow.HTMLGen.UserJSFile=" + _
     "'http://my_server.com/JavaScripts/MyMethods.JS'")    

This example will be rendered in the generated HTML page as:

<SCRIPT LANGUAGE="JavaScript" SRC=
"http://my_server.com/JavaScripts/MyMethods.JS">
</SCRIPT>

You can then call client-side methods stored in the MyMethods.JS file from the 
HTML syntax rendered for (or appended to) controls in a DataWindow object. 
For information on generating or appending HTML syntax to controls, see 
“Rendering HTML for controls in an HTML Web DataWindow” on page 231.

http://my_server.com/JavaScripts/MyMethods.JS'
http://my_server.com/JavaScripts/MyMethods.JS


Using expressions

226  DataWindow .NET

Using expressions
In general, expressions for validation rules and computed fields are translated 
into JavaScript and evaluated in the client browser. For validation of data entry, 
the user gets immediate feedback on the new data. 

Some expressions have to be evaluated on the server. This might be because 
the evaluation involves all the rows, rather than data on the current page only, 
or because the expression does not translate into JavaScript. 

If an expression includes these functions, it will be evaluated on the server:

• Aggregation functions, like Sum, Max, Average, First

• Case function

If you use an aggregation function in a computed field, the value is computed 
on the server and displayed on the client. If the user edits data, the value is not 
updated. If an action occurs that reloads the page, the value is computed again 
based on the changed data. 

ProfileInt and ProfileString return default values
The ProfileInt and ProfileString DataWindow expression functions do not 
examine a user’s INI files if you use them in an expression evaluated on the 
client. Doing so would be a security violation. They always return the default 
value.

Using Button and Picture controls
Using Button controls When a DataWindow object includes a Button control, the button becomes an 

HTML or XHTML button element in the Form element for the Web 
DataWindow client control. The button action becomes JavaScript code for the 
button's Clicked event. You do not need to write any code yourself unless you 
specify a user-defined action.

You can use Button controls for:

• Navigation Buttons with the PageFirst, PageLast, PageNext, and 
PagePrior actions let the user scroll to other rows in the result set when you 
have set the RowsPerPage property.



Chapter 10    Designing Web DataWindows

Programmer’s Guide 227

• Getting and editing data Buttons with Retrieve, Update, InsertRow, 
DeleteRow, and AppendRow actions let the user maintain data. There 
must be updatable columns in the DataWindow object.

These button actions are not supported and are ignored: 

All button actions that reload the page perform an AcceptText before sending 
data back to the server. If the AcceptText fails (the button action returns -1), this 
means that pending data changes were not accepted and nothing was sent back 
to the server. Put code in the server-side AfterPerformAction event to detect 
and handle the failure appropriately. For more information, see “Handling 
method failures” on page 258.

User-defined actions If you specify a user-defined action for the button in the DataWindow painter, 
the ButtonClicked event is triggered when a user clicks the button. You can add 
a ButtonClicked event handler to the Web DataWindow client control in .NET 
to perform a different action depending on which button was clicked. For an 
example, see ButtonClicked on page 259.

GIF and JPEG images 
for buttons

The picture on a button in a DataWindow object can be rendered in the Web 
browser as a JPEG, GIF, or BMP image. Use a JPEG or GIF image to ensure 
that the image will display on all browsers. 

DataWindow .NET provides GIF images for commonly used buttons such as 
Retrieve, Update, PageNext, and so on. These pictures are included in the 
DWACTION.JAR file in the DataWindow Designer 2.0 directory. 

To make the images available to the Web page in the Web browser, you must 
uncompress the JAR file, deploy the image files to the server, and set the 
HTMLGen.ResourceBase property to the directory where the files are located. 

Alternative to buttons: 
use methods of the 
client control

If you want to use an existing DataWindow object that does not have Button 
controls, you can edit the DataWindow object and save a new version with 
Button controls. However, if you are sharing DataWindow objects with an 
existing application and it is not practical to edit them, your Web page can 
include HTML or XHTML buttons that call methods of the Web DataWindow 
client control.

Cancel QueryClear

Filter QueryMode

Preview QuerySort

PreviewWithRulers SaveRowsAs

Print Sort



Using a drop-down calendar

228  DataWindow .NET

There are methods of the client control that correspond to each of the supported 
button actions. For information, see “About client-side programming” on page 
253.

Using Picture controls You can use any image types the browser supports, most commonly JPEG or 
GIF. Use relative paths for ease of deployment. 

To make sure the images are available to the Web page in the browser, place 
the image files in a directory on the Web server and then set the 
HTMLGen.ResourceBase property to that directory. You can do this in 
DataWindow Designer on the JavaScript Generation page of the DataWindow 
property view, or in code:

dwMine.Modify("DataWindow.HTMLGen.ResourceBase=
'C:\InetPub\wwwroot\Images'")

The ResourceBase property also specifies the location of JavaScript include 
files. See “Using JavaScript caching in DataWindow Designer” on page 223.

Using a drop-down calendar
The drop-down calendar DataWindow option is available for use on any 
DataWindow column with an EditMask, and a Date, DateTime, or TimeStamp 
datatype. The DDCalendar EditMask property option allows for separate 
selections of the calendar month, year, and date. This option can be set in a 
check box on the Edit tab of the DataWindow painter Properties view when a 
column with the EditMask edit style is selected. It can also be set in code, as in 
this example for the birth_date column:

dw_1.Modify("birth_date.EditMask.DDCalendar='Yes'")

To make sure that dates selected with the drop-down calendar option are 
displayed with the desired edit mask for Web DataWindows, you should 
specify that the Client Formatting option be included with the static JavaScript 
generated and deployed for the DataWindow. To conserve bandwidth, 
JavaScript for client formatting is not included by default. To include this 
script, you can select the Client Formatting check box on the Web Generation 
page of the DataWindow Properties view or the ClientFormatting property in 
the Properties window in Visual Studio .NET. If you do not include script for 
client formatting, the drop-down calendar will use a default edit mask to 
display the column data based on the client machine's default localization 
settings.



Chapter 10    Designing Web DataWindows

Programmer’s Guide 229

Using a drop-down DataWindow
In an HTML Web DataWindow in Internet Explorer, when you tab to a column 
that uses the drop-down DataWindow edit style, you can use the arrow keys on 
the keyboard to change its value. If you click the column, the drop-down 
DataWindow displays so that you can scroll to a different value and click to 
select it.

You set the display properties for the column on the Edit page in the Properties 
view in the DataWindow painter. The Width of DropDown property sets the 
width of the drop-down display to a size that is a percentage of the width of the 
column. For example, 300 sets the display width to three times the column 
width.

The default behavior uses inline frames (iFrames), which might increase the 
volume of markup generated. For DataWindow objects that make heavy use of 
drop-down DataWindows, you might save bandwidth by generating the 
drop-down DataWindows in HTML select elements. To do so, clear the 
Generate DDDW Frames check box on the Web Generation page with the 
Format to Configure option set to HTML/XHTML. You can view the 
generated source from each technique and save it to a file, then compare file 
sizes to determine which is best for your DataWindow objects.

You can also set the WebDataWindowControl’s generateDDDWFrames 
property in code.



Previewing the DataWindow

230  DataWindow .NET

Previewing the DataWindow 
To see what the DataWindow will look like in an HTML Web DataWindow 
application, you can use HTML Preview. 

❖ To get an HTML preview of a Web DataWindow:

1 On the General property page of the DataWindow property sheet, check 
Web DataWindow. 

If you do not check Web DataWindow, the preview displays the data as an 
HTML table without buttons, validation rules, or other scripts. At runtime, 
this property is always true.

2 On the Web Generation page, select HTML/XHTML from the Format to 
Configure list and specify a value for Rows per Page.

This sets the PageSize property for the DataWindow object. To display 
only one row of data, specify 1.

3 Select HTML from the Format to Configure list and specify a value for 
Browser and one for Version if you want to preview the DataWindow for 
a specific client configuration.

Typically you will want to set the Browser property to the value that is 
compatible with the latest version of Internet Explorer.

4 Select Design>HTML Preview from the menu bar.

If the menu item is disabled, open the Preview view to enable it.

5 Enter data and see whether validation rules behave as expected.

6 Use your buttons to navigate to other pages.



Chapter 10    Designing Web DataWindows

Programmer’s Guide 231

Rendering HTML for controls in an HTML Web 
DataWindow

This section applies to the HTML Web DataWindow only. You can use 
XHTML templates to customize the display of the XML Web DataWindow 
and XHTML Web DataWindow. For more information, see Chapter 11, 
“Working with XHTML Templates.”

No validation
The HTML Generator does not validate the HTML you include in controls in 
DataWindow objects. If the HTML is not valid, the DataWindow might not 
display correctly.

Including HTML in a 
control

You can include valid HTML in some controls in a DataWindow object, 
including a text control, column, or computed field. To render the contents of 
the control as HTML when the HTML for the DataWindow is generated, set 
the control’s ValueIsHTML property to true. For example, suppose a text 
control’s text property is <I>Name</I>. The following table shows how the 
text is rendered in the generated HTML and displayed in a browser.

Table 10-7: Effect of ValueIsHTML property on rendered text

When you embed HTML in a control, you can cause ASP to detect a security 
risk. To avoid this, add validateRequest='false' in the page directive of 
your ASP page.

Appending HTML to a 
control

The AppendedHTML property enables you to append your own HTML to the 
HTML generated by the HTML Generator component. You can use this feature 
to specify attributes and event actions. The HTML you specify for the 
AppendedHTML property value is appended to generated syntax for the 
rendering of a DataWindow control before the closing bracket of the HTML 
element for that control.

ValueIsHTML Generated HTML source Output in browser

TRUE <I>Name</I> Name

FALSE &lt;I&gt;Name&lt;/I&gt; <I>Name</I>



Rendering HTML for controls in an HTML Web DataWindow

232  DataWindow .NET

You must also make sure not to use an event handler name that is already 
generated for a DataWindow control as a client-side event handler. These 
include the names listed in Table 10-8.

Table 10-8: Generated event handler names

DataWindow control Generated event handler names

Edit, EditMask, DropDownListBox, or 
DropDownDataWindow

onFocus, onClick, onChange, and onBlur

CheckBox or RadioButton onFocus, onClick, and onBlur

TextBox, Picture with link, or Button onClick



Programmer’s Guide 233

C H A P T E R  1 1 Working with XHTML Templates

About this chapter This chapter describes how to customize the XHTML generated by the 
XML and XHTML Web DataWindows by defining export templates. 

Contents

The Export Template view for XHTML
You can customize the XHTML that is generated at runtime by the XML 
Web DataWindow and the XHTML Web DataWindow using an XHTML 
export template in the DataWindow painter’s Export Template view for 
XHTML.

Each DataWindow object that you create has a default XHTML export 
template associated with it. You can see the default template in the 
DataWindow painter’s Export Template view for XHTML.

Displaying the XHTML export template
The Export Template view for XHTML coexists with the Export Template 
view for XML, each on its own tab page with XML on the top by default. 
To display the view for XHTML, click the XHTML tab. If you have any 
problems displaying the view, select View>Export/Import 
Template>XHTML from the menu bar or select View>Layouts>Default 
and then click the XHTML tab.

Topic Page

The Export Template view for XHTML 233

What you can customize 234

The default XHTML export template 235

Managing templates 236

Template structure 240

Editing XHTML export templates 242

Selecting XHTML export templates at runtime 250

Exporting DataWindow data in XML or in XHTML 250



What you can customize

234  DataWindow .NET

The XHTML export template is a single-instance document of the <form> 
element. It stores only the structural layout and any changes that you make to 
the elements, attributes, and style declarations. When XHTML or XSLT is 
generated, these changes are incorporated into the <form> element and the 
CSS stylesheet used to render the DataWindow in the browser. More than one 
export template can be created for a DataWindow. 

Default style rules and most default attributes are not stored in the template. 
Any changes to style declarations are stored in the template, but at runtime they 
are removed and applied to the separately generated CSS stylesheet.

In the Export Template view for XHTML, you can reference DataWindow 
column, computed field, and text controls, and DataWindow expressions for 
each row in the XHTML, wherever character data is allowed. At runtime, these 
are replaced with text.

What you can customize
The XML Web DataWindow generates DataWindow content, layout, and style 
separately at runtime and renders in the browser a fully-functional 
DataWindow in XHTML.

At design time, you can customize each of these XML Web DataWindow 
components:

• Elements or contents of the <form> element

• CSS stylesheet declarations

• Other XHTML element-specific attributes (including style attributes) in 
the DataWindow form

• JavaScript event handlers



Chapter 11    Working with XHTML Templates

Programmer’s Guide 235

Examples of 
customization

Your customizations can include these types of modifications:

The default XHTML export template
In the default XHTML export template, export XHTML entities (markup and 
character data) are displayed as single tree view items that denote the type of 
entity. The default template has one element for each column in the 
DataWindow object.

You can create multiple templates and save them by name with the 
DataWindow object. Each template is uniquely associated with the 
DataWindow object open in the painter. For information, see “Managing 
templates” on page 236.

Customization Example

Structural layout Add or remove elements and content (input fields 
of the XHTML <form> element) from the header, 
detail, summary, and footer bands

Style rules of data input field 
elements in the <form> element

Modify the default CSS stylesheet property values 
and add or remove CSS stylesheet declarations

Other attributes of elements of 
the DataWindow

Override attribute values and remove or add 
attributes specific to these elements

JavaScript event handlers Override, redirect, add, or remove JavaScript 
event handlers



Managing templates

236  DataWindow .NET

How tree view items 
are represented

Each item in the XHTML export template displays as a single tree view item 
with an image and font color that denotes its type. Elements are represented by 
a yellow icon that resembles a luggage tag. The end tags of elements and the 
markup delimiters (angle brackets) used in an XHTML document do not 
display.

The following table shows the icons used in the Export Template view for 
XHTML.

Table 11-1: Icons used in the Export Template view for XHTML

Managing templates
From the pop-up menu for the default XHTML export template (with no items 
selected), you can create multiple templates and save them by name with the 
DataWindow object open in the painter. You can also open and edit existing 
templates that are associated with the current DataWindow object and, when 
more than one template is associated with the DataWindow, delete the current 
template.

Icon Description

Root or child element

Group header element

DataWindow column reference

Static text control reference

Computed field or DataWindow painter expression reference

Literal text

CDATA section

Nested report



Chapter 11    Working with XHTML Templates

Programmer’s Guide 237

The pop-up menu has these options for managing templates:

Creating and saving templates
Creating a new default 
template

To create a new default XHTML export template, select New Default from the 
pop-up menu in the Export Template view for XHTML. 

A new default XHTML export template has the following elements:

Menu item Description

New Default Define a new default XHTML export template based on the 
current DataWindow layout

Open Open a saved template

Save Save the current template; if the template has no name, name it

Save As Save the current template with a new name

Delete Delete the current template (enabled only if more than one 
template exists for the current DataWindow object)

Elements Name defaults to

Root <form> DataWindow name_dataForm

Header <div> DataWindow name_band_0

Detail <div> DataWindow name_detail_0

Summary <div> DataWindow name_band_n



Managing templates

238  DataWindow .NET

Saving the template To save a new default template, select Save from the pop-up menu in the 
Export Template view for XHTML, name the template, and provide a comment 
that identifies its use. 

The template is stored inside the DataWindow object in the PBL. After saving 
a template with a DataWindow object, you can see its definition in the Source 
editor for the DataWindow object. For example, this is part of the source for a 
DataWindow that has two templates. The templates have required elements 
only:

export.xhtml(usetemplate = "t_phone"
template = (name = "t_address" 

comment = "Employee Address Book" xhtml = "<…>")
template = (name = "t_phone" 

comment = "Employee Phone Book" xhtml = "<…>") )

Defining multiple templates
You can define multiple templates for a single DataWindow object. One reason 
you might do this is to vary the edit styles generated for the same DataWindow 
edit control.

Selecting the template to use
Using the 
Export.XHTML.
UseTemplate property

The Data Export page in the Properties view lets you set properties for 
exporting data in XHTML. The names of all templates that you create and save 
for the current DataWindow object display in the Use Template drop-down list. 

In addition to the properties that you can set on this page, you can use the 
Export.XHTML.TemplateCount and Export.XHTML.Template[ ].Name 
properties to let the user of an application select an export template at runtime. 
See “Selecting XHTML export templates at runtime” on page 250.

Footer <div> DataWindow name_band_n

Child elements of the 
Header, Detail, 
Summary, and Footer 
elements

Name of each DataWindow control.

Elements Name defaults to



Chapter 11    Working with XHTML Templates

Programmer’s Guide 239

You can specify the template you want to apply to the default XML Web 
DataWindow or XHTML Web DataWindow generation at runtime by setting 
the Export.XHTML.UseTemplate property. You set the property using the Data 
Export tab in the DataWindow painter’s Properties view by selecting XHTML 
as the format and then selecting the XHTML export template’s name from the 
Use Template drop-down list box.

You can also set the Export.XHTML.UseTemplate DataWindow property in 
code. For information, see “Selecting XHTML export templates at runtime” 
on page 250.

Incorrect setting of the UseTemplate property
If you set the Export.XHTML.UseTemplate property at runtime to the name of 
a template that does not exist, the built-in default Template is used on an export.

Properties related to 
XHTML export 
templates

Table 11-2 shows properties related to XHTML export templates.

Table 11-2: Properties for XHTML export templates

For detailed information about DataWindow properties, see the DataWindow 
Object Reference.

Property User interface fields Description

Export.XHTML.
TemplateCount

Read only, so no user 
interface field.

The number of XHTML export 
templates associated with a 
DataWindow object

Export.XHTML.
Template[num].
Name

Read only, so no user 
interface field.

The name of an XHTML export 
template associated with a 
DataWindow object returned by an 
index value that ranges from 1 to the 
value of the Export.XHTML. 
TemplateCount property

Export.XHTML.
UseTemplate

Select a template from 
the Use Template 
drop-down list box in 
the Data Export tab in 
the DataWindow 
painter’s Properties 
view.

The name of an XHTML export 
template (previously saved in the 
DataWindow painter) that optionally 
controls the logical structure of the 
XHTML generated by a DataWindow 
object



Template structure

240  DataWindow .NET

Template structure
An XHTML export template has a Header section and a Detail section 
separated graphically by a line across the tree view. Other DataWindow bands 
are incorporated into these sections.

The Detail Start 
element

A line across the Export/Import Template view separates the Header section 
from the Detail section. The first element after this line, d_dept_list_row in the 
previous screen shot, is called the Detail Start element. 

There can be only one Detail Start element, and it must be inside the 
document’s root element. Each band of the DataWindow is wrapped by a <div> 
element. When the DataWindow is exported to XHTML, this element and all 
children and/or siblings after it are generated iteratively for each row.

Header section
The Header section can contain the items listed in Table 11-3. Only the root 
XHTML <form> element is required.

Table 11-3: Items permitted in the Header section of an XHTML 
document

Item Details

Root <form> element 
(start tag)

The XHTML <form> element is the root element of the 
XHTML template. See “Root element” on page 245.

XHTML elements Additional elements below the root element.

DataWindow control 
references

Text. See “DataWindow controls” on page 246.



Chapter 11    Working with XHTML Templates

Programmer’s Guide 241

Detail section in root element
The root element displays in the Header section, but the entire content of the 
Detail section is contained in the root element.

The items in the Header section are generated only once at runtime (when the 
DataWindow is exported to XHTML), unless the DataWindow is a group 
DataWindow. For group DataWindows, the corresponding XHTML fragment 
in the Header section is repeated so that it iteratively heads each group 
detail—the group of XHTML rows corresponding to the group specified in the 
DataWindow.

The Header section contains the rendering of the DataWindow header band and 
any group header bands. Bands are generated within <div> elements. The 
controls rendered in the Header section (such as computed titles and text 
control column headings) are typically also generated within <div> elements, 
with referenced content.

These entities are generated only once and are not iterated for each row. 
However, for DataWindows with group headers, the corresponding XHTML 
fragment in the Header section is repeated, iteratively heading each group of 
XHTML rows corresponding to the group specified in the DataWindow.

DataWindow 
expressions

Text. See “DataWindow painter expressions” on page 
246.

Literal text Text that does not correspond to a DW control.

Attributes Can be assigned to all elements. See “Element attributes” 
on page 247.

CDATA sections See “CDATA sections” on page 249.

Child elements Child elements in the Header section cannot be iterative 
except in the case of group DataWindows.

Item Details



Editing XHTML export templates

242  DataWindow .NET

Detail section
The Detail section contains the rendering of the DataWindow Detail band, 
delimited by the first <div> element. The <div> element’s contents represent a 
single row instance to be generated iteratively. Any group trailers, the summary 
band, and the footer band are also appended and enclosed by <div> elements. 
The controls rendered in the Detail section (for example, column, computed 
field, DropDownDataWindow, DropDownListBox, checkbox, and button 
controls) are usually also generated within <div>, <input>, or <select> 
elements with referenced content.

The Detail section can contain the items listed in Table 11-4.

Table 11-4: Items permitted in the Detail section of an XHTML document

Editing XHTML export templates
Every item in the Export Template view for XHTML has a pop-up menu for 
modifying the structural layout of the XHTML document that will be generated 
at runtime. Using the pop-up menu, you can perform actions appropriate to that 
item, such as editing or deleting the item, adding or editing attributes, adding 
child elements or other items, and inserting elements, CDATA sections, and so 
forth, before the current item.

Item Details

First <div> element The contents of the <div> element represent a single row 
instance to be generated iteratively.

XHTML elements Additional elements below the root element.

DataWindow control 
references

Text. See “DataWindow controls” on page 246.

DataWindow 
expressions

Text. See “DataWindow painter expressions” on page 246.

Literal text Text that does not correspond to a DW control.

Attributes Can be assigned to all elements. See “Element attributes” 
on page 247.

CDATA sections See “CDATA sections” on page 249.

Child elements Child elements in the Header section cannot be iterative 
except in the case of group DataWindows.



Chapter 11    Working with XHTML Templates

Programmer’s Guide 243

If an element has no attributes, you can edit its tag in the Export Template view 
for XHTML by selecting it and left-clicking the tag or pressing F2. Literal text 
nodes can be edited in the same way. You can delete items (and their children) 
by pressing the Delete key. 

Element Context Menus
The tree view in the Export Template view for XHTML represents a real-time 
DOM tree. Each XHTML element of the tree in the Header and Detail sections 
has a pop-up menu. The pop-up menu items perform DOM-based actions for 
modifying the structural layout of the XHTML document that will be 
generated. The menu options include:

DOM-based actions The Edit menu item allows you to change the label of the tree view item 
representing the XHTML element name. All element items that display no 
attributes, as well as literal text nodes selected in the tree view, can also be 
edited with a single mouse-click or with the shortcut key F2. 

Add Child allows you to append an entity as a last child. 

Menu item DOM-based action

Edit DOMNode::SetNodeName

Add Child DOMNode::AppendChild

Insert Before DOMNode::InsertBefore

Delete DOMNode::RemoveChild



Editing XHTML export templates

244  DataWindow .NET

The submenu option DataWindow Control Reference invokes a dialog box in 
which you can select from a filtered list box of Column, Computed Field, and 
Text controls. You can also add control references to empty attribute values or 
element contents using drag-and-drop from the Control List View. 

The submenu option DataWindow Expression opens the Modify Expression 
dialog box so that you can compose an expression. DataWindow column 
references (in the form of expressions) can also be added using drag-and-drop 
from the Column Specification View. 

All tree view items except the <form> element can be deleted using the Delete 
menu item or the Delete key.

Presentation and 
function

The remaining context menu items invoke dialog boxes that allow you to 
override presentational and functional specifications of each element. These 
include:

• Element attributes

• Style declarations

• JavaScript event handlers

The dialog boxes first display these specifications as they would be generated 
at runtime by default. The painter gets these from the XML Web Generator in 
real time and displays them on the left side of the dialog box. You can use the 
input fields on the right side of the dialog box to override these specifications 
at the atomic declaration or attribute level. This applies to resetting included 
declarations and attributes, setting declarations and attributes that were not 
included, or removing declarations and attributes. These changes persist in the 
XHTML export template and they are applied to the default presentation 
generated by the XML Web Generator at runtime.



Chapter 11    Working with XHTML Templates

Programmer’s Guide 245

Root element
The root element of the XHTML export template is the XHTML <form> 
element. You can change the name of the root element and add attributes and 
children.

Changing the name of the root element changes the name of its start and end 
tags. You can change the name using the Edit Attributes menu item to display 
the Element Attributes dialog box. For information about editing attributes, see 
“Element attributes” on page 247.

You can add the following kinds of children to the root element:

• Elements

• Text

• DataWindow control references

• DataWindow painter expressions (including column references)

• CDATA sections



Editing XHTML export templates

246  DataWindow .NET

DataWindow controls
Adding a DataWindow control reference opens a dialog box containing a list 
of the columns, computed fields, report controls, and text controls in the 
document.

Control references can also be added to empty attribute values or element 
contents using drag-and-drop from the Control List view. Column references 
can also be added using drag-and-drop from the Column Specifications view.

Drag-and-drop cannot replace
You cannot drag-and-drop an item on top of another item to replace it. For 
example, if you want to replace one control reference with another control 
reference, or with a DataWindow painter expression, you first need to delete 
the control reference you want to replace.

DataWindow painter expressions
Adding a DataWindow painter expression using the Add Child>DataWindow 
Control Reference menu item opens the Modify Expression dialog box. This 
enables you to create references to columns from the data source of the 
DataWindow object. It also enables the calling of global functions. One use of 
this feature is to return a fragment of XHTML to embed, providing another 
level of dynamic XHTML generation.



Chapter 11    Working with XHTML Templates

Programmer’s Guide 247

Using Date and 
DateTime with strings

If you use a control reference or a DataWindow painter expression that does 
not include a string to represent Date and DateTime columns in a template, the 
XHTML output conforms to ISO 8601 date and time formats. For example, 
consider a date that displays as 12/27/2004 in the DataWindow, using the 
display format mm/dd/yyyy. If the export template does not use an expression 
that includes a string, the date is exported to XHTML as 2004-12-27.

However, if the export template uses an expression that combines a column 
with a Date or DateTime datatype with a string, the entire expression is 
exported as a string and the regional settings in the Windows registry are used 
to format the date and time. 

Using the previous example, if the short date format in the registry is 
mm/dd/yy, and the DataWindow painter expression is: "Start Date is " + 
start_date, the XHTML output is Start Date is 12/27/04.

Element attributes
Select Edit Attributes from the pop-up menu for elements to edit an existing 
attribute or add a new one. The attributes that display include all the default 
attributes for the elements with any template changes applied. The name 
attribute (and in some cases the class attribute) used to identify the element is 
omitted and cannot be changed.

You can change or delete the default attribute values or add new ones. Controls 
or expressions can also be referenced for element attribute values.

For each attribute specified, you can select a control reference from the 
drop-down list or enter a literal text value. A literal text value takes precedence 
over a control reference. You can also use the expression button to the right of 
the Text box to enter an expression.



Editing XHTML export templates

248  DataWindow .NET

The expression button and entry operates similarly to DataWindow object 
properties in the Properties view. The button shows a green equals sign if an 
expression has been entered, and a red not-equals sign if not. A control 
reference or text value specified in addition to the expression is treated as a 
default value. In the template, this combination is stored with the control 
reference or text value, followed by a tab, preceding the expression. For 
example:

attribute_name=~"text_val~~tdw_expression~"

When you finish modifying element attributes and you click OK, only changes 
are stored in the template. Default attributes that are deleted are added in the 
template and marked with an empty value.

Style declarations
If you right-click an element and select Edit Styles from the pop-up menu, the 
Style Declarations dialog box displays the read-only set of default style 
declarations for the element on the left: 

For clarity, style declarations are omitted from the XHTML export template. 
You can add new style declarations or override the existing ones by declaring 
them on the right side, or remove them by adding them with an empty value.



Chapter 11    Working with XHTML Templates

Programmer’s Guide 249

JavaScript event handlers
If you right-click an element and select Edit Events from the pop-up menu, the 
JavaScript Event Handlers dialog box displays a read-only set of event 
handlers for the element on the left: 

This dialog box displays the current JavaScript event handlers, if any. You can 
add new event handlers or override the existing ones by declaring them on the 
right side, or remove them by adding them with an empty value.

CDATA sections
Everything inside a CDATA section is ignored by the parser. If text contains 
characters such as less than or greater than signs (< or >) or ampersands (&) 
that are significant to the parser, it should be defined as a CDATA section. A 
CDATA section starts with <![CDATA[ and ends with ]]>. CDATA sections 
cannot be nested, and there can be no white space characters inside the ]]> 
delimiter; for example, you cannot put a space between the two square 
brackets.

Example <![CDATA[
do not parse me

]]>



Selecting XHTML export templates at runtime

250  DataWindow .NET

Selecting XHTML export templates at runtime
Two DataWindow properties, Export.XHTML.TemplateCount and 
Export.XHTML.Template[ ].Name, enable you to provide a list of templates 
from which the user of the application can select at runtime.

The TemplateCount property gets the number of templates associated with a 
DataWindow object. You can use this number as the upper limit in a FOR loop 
that populates a drop-down list with the template names. The FOR loop uses 
the Template[ ].Name property.

Dim count As String
Dim templateName As String
Dim i As Long

count=wdw.Describe
("DataWindow.Export.XHTML.TemplateCount")

for i=1 to CLng(count)
templateName = wdw.Describe _

("DataWindow.Export.XHTML.Template[" + Cstr(i) _
+ "].Name")

DDL1.Items.Add(New ListItem(templateName))
next

Before generating the XHTML, set the export template using the value in the 
drop-down list box:

wdw.SetProperty _
("DataWindow.Export.XHTML.UseTemplate", _
DDL1.SelectedValue())

Exporting DataWindow data in XML or in XHTML
You can export the data in a Web DataWindow in XML or XHTML to a string 
using the Describe or GetProperty method and the Data.XML or Data.XHTML 
properties:

xmlstring = wdw.Describe("DataWindow.Data.XML")
xmlstring = wdw.GetProperty("DataWindow.Data.XML")
xmlstring = wdw.Describe("DataWindow.Data.XHTML")
xmlstring = wdw.GetProperty("DataWindow.Data.XHTML")



Chapter 11    Working with XHTML Templates

Programmer’s Guide 251

The Data.XHTML property also contains a form element, XHTML input 
elements, state information, and XHTML and JavaScript for navigation. When 
you export data, DataWindow .NET uses an export template to specify the 
content of the generated XHTML and CSS style sheet. You can also export the 
JavaScript that performs the XSLT transformation on the browser using the 
Data.XMLWeb property. For more information see the property descriptions in 
the DataWindow Object Reference. 

Default export format
If you have not created or assigned an export template, DataWindow .NET uses 
the default export format. This is the same format used when you create a new 
default export template. See “Creating and saving templates” on page 237. 



Exporting DataWindow data in XML or in XHTML

252  DataWindow .NET



Programmer’s Guide 253

C H A P T E R  1 2 Writing Scripts for the Web 
DataWindow Client Control

About this chapter This chapter describes how to write client-side scripts for the Web 
DataWindow. 

Contents

About client-side programming
If you want to provide additional processing of newly entered data or have 
more control over user interactions with the data, you can choose to enable 
events and scripting in the Web DataWindow client control. The use of 
some client-side events and methods does not require a round trip to the 
server, so it can improve performance. However, since ASP.NET is 
designed to take full advantage of server-side programming and state 
management, the use of server-side DataWindow events and methods is 
recommended.

The name of the client control is the string obj followed by the name of 
the DataWindow object in the control. In the Properties window, this 
read-only property displays as the ClientObjectName property. You use 
this name when defining functions that handle client-side events and use 
client-side methods. 

Topic Page

About client-side programming 253

Implementing an event 254

Calling client methods 256

Alphabetical list of events for the Web DataWindow client control 259

Alphabetical list of methods for the Web DataWindow client control 266



Implementing an event

254  DataWindow .NET

Implementing an event
The ClientEvents property in the Properties window must be set to true (the 
default). The client control supports the events listed in Table 12-1. For a 
description of each event, see “Alphabetical list of events for the Web 
DataWindow client control” on page 259.

Table 12-1: Client-side events for the Web DataWindow

About return values 
for DataWindow 
events

In client events, you can use a return statement as the last statement in the event 
script. The datatype of the value is number.

Event Arguments Return Codes

ButtonClicked sender, rowNumber, 
buttonName

0 – Continue processing

ButtonClicking sender, rowNumber, 
buttonName

0 – Execute action assigned to button, 
then trigger ButtonClicked

1 – Do not execute action or trigger 
ButtonClicked

Clicked sender, rowNumber, 
objectName

0 – Continue processing

1 – Prevent focus change

ItemChanged sender, rowNumber, 
columnName, 
newValue

0 – Accept data value

1 – Reject data value and prevent 
focus change

2 – Reject data value but allow focus 
change

ItemError sender, rowNumber, 
columnName, 
newValue

0 – Reject data value and show error 
message

1 – Reject data value with no error 
message

2 – Accept data value

3 – Reject data value but allow focus 
change

ItemFocusChanged sender, rowNumber, 
columnName

0 – Continue processing

RowFocusChanged sender, 
newRowNumber

0 – Continue processing

RowFocusChanging sender, 
currentRowNumber, 
newRowNumber

0 – Continue processing

1 – Prevent focus change



Chapter 12    Writing Scripts for the Web DataWindow Client Control

Programmer’s Guide 255

For example, in the ItemChanged event, set the return code to 2 to reject an 
empty string as a data value:

if (newValue = "") {
return 2;

}

ClientEvent properties Events are implemented using ClientEvent properties that display in the 
Properties window for the WebDataWindowControl. To write a script for an 
event of the client control, find the property for the event in the left pane of the 
Properties window, for example ClientEventRowFocusChanging. Then select 
Add a New Event Handler from the drop-down list in the right pane. A 
JavaScript function prototype for the event handler is added to the HTML for 
the .aspx page.

The default name for the function is the ClientObjectName plus an underscore 
and then the event name:

objWDWName_eventname ( arguments )

The script is enclosed in SCRIPT tags, which are written to the HTML the first 
time you add an event handler. You can include client methods in the script if 
client scripting is enabled. 

Using VBScript with JavaScript
Client event scripts are inserted in JavaScript. If the page also contains some 
VBScript and the default page language is VBScript, you will get a Page error 
when you run or preview the page. You can have both JavaScript and VBScript 
on the page as long as the default page language is not set to VBScript.

Example This example prevents focus from changing if the user tries to go back to an 
earlier row. In this case the name of the DataWindow control is dwCustomer:

<SCRIPT Language="javascript">
function objdwCustomer_RowFocusChanging(sender,

currentRowNumber, newRowNumber)
{
if (newRowNumber < currentRowNumber) 

{ return 1; }
}

</SCRIPT>



Calling client methods

256  DataWindow .NET

This example displays a message box informing the user which column and 
row number was clicked:

function objdwCustomer_Clicked(sender, rowNumber, 
objectName)
{
alert ("You clicked the " + objectName + 

" column in row " + rowNumber)
}

For more information about when these events occur, look up the name of the 
associated WebDataWindowControl ClientEvent property in the Sybase 
DataWindow online Help in Visual Studio .NET.

Calling client methods

Set ClientScriptable to true
To write scripts that call methods of the client control, the ClientScriptable 
property in the Properties window or in DataWindow Designer must be set to 
true—the default is false. If this property is not set, you receive the error: 
Object doesn't support this property or method.

Several client methods accomplish the same tasks as actions of Button 
controls. If your DataWindow object uses Button controls to implement 
scrolling and updating, you might not need to do any client scripting.

You can use the methods in the first column in Table 12-2 on the client in 
client-side events or functions. Methods marked with an asterisk force the Web 
page to be reloaded. The second column lists the properties and methods that 
perform the same function in a DataWindowControl or the server 
WebDataWindowControl. 

For a description of each client method, see “Alphabetical list of methods for 
the Web DataWindow client control” on page 266. For a description of the 
properties and methods in the second column, see the Sybase DataWindow 
help in Visual Studio .NET.



Chapter 12    Writing Scripts for the Web DataWindow Client Control

Programmer’s Guide 257

Table 12-2: Methods for the Web DataWindow client control

GetNextModified
The GetNextModified method finds modified rows in the current page only.

Client control method DataWindow control equivalent

AcceptText AcceptText method

DeletedCount DeletedCount property

DeleteRow * DeleteRow method

GetClickedColumn ObjectUnderMouse.GOB property

GetClickedRow ObjectUnderMouse.RowNumber property

GetColumn GetColumn method

GetItem GetItem* methods

GetItemStatus GetItemStatus and GetRowStatus methods

GetNextModified FindNextModifiedRow method

GetRow CurrentRow property

InsertRow * InsertRow method

IsRowSelected IsSelected method

ModifiedCount ModifiedCount property

Retrieve * Retrieve method

RowCount RowCount property

ScrollFirstPage * ScrollFirstPage method (on WebDataWindowControl)

ScrollLastPage * ScrollLastPage method (on WebDataWindowControl)

ScrollNextPage * ScrollNextPage method (on WebDataWindowControl)

ScrollPriorPage * ScrollPriorPage method (on WebDataWindowControl)

SelectRow SelectRow method

SetColumn SetColumn method

SetItem SetItem methods

SetRow SetRow method

SetScroll ScrollNextPage and ScrollPriorPage methods (on 
WebDataWindowControl) and ScrollToRow method 
on DataWindowControl

SetSort SetSort method

Sort * Sort method

Update * UpdateData method



Calling client methods

258  DataWindow .NET

This function in the script area of a Web form’s .aspx page updates data:

function btnUpdate_onclick() {
objdwCustomer.Update();

}

The button is defined in the form: 

<form id = "Form1" method="post" runat="server">
<INPUT language="javascript" id="btnUpdate"

type="button" value="Update" 
onClick="return btnUpdate_onclick">

...
</form>

Note that you can get the same functionality with the Update action for a 
Button control in the DataWindow object. For more information, see “Using 
Button and Picture controls” on page 226.

Handling method 
failures

The methods marked with an asterisk in Table 12-2 cause an action to be posted 
back to the server. Whenever an action is posted back to the server, the 
server-side BeforePerformAction event is fired before the action is performed, 
enabling the user to cancel the action, and the AfterPerformAction event is 
fired after the action is performed. 

These methods always return 1 unless the AcceptText method that is called 
implicitly after each method is called fails. Use the AfterPerformAction event 
to test whether the action was performed successfully. The 
AfterPerformAction event handler has two arguments. The Action argument 
indicates the type of the postback action, for example ScrollNextPage, 
InsertRow, or Retrieve. These actions can be posted from buttons in the 
DataWindow object as well as from client script. The ActionResult argument 
indicates whether the action succeeded. 

The following example in the code file for a form writes the result of an action 
to a text box called txtMsg:

[Visual Basic]
Private Sub dw_1_AfterPerformAction(ByVal sender As _

Object, ByVal e As _
Sybase.DataWindow.Web.AfterPerformActionEventArgs)_
Handles dw_1.AfterPerformAction

txtMsg.Text = "AfterPerformAction: " + _
e.Action.ToString + " " + e.ActionResult.ToString

End Sub



Chapter 12    Writing Scripts for the Web DataWindow Client Control

Programmer’s Guide 259

[C#]
private void wdw_afteraction(object sender, 
Sybase.DataWindow.Web.AfterPerformActionEventArgs e)
{

this.txtMsg.Text = this.txtMsg.Text +
"AfterPerformAction: " + e.Action.ToString() + 
" " + e.ActionResult.ToString();

}

Note that client-side methods do not throw DbErrorExceptions, so you might 
choose to use server-side methods to obtain better information about database 
errors.

Alphabetical list of events for the Web DataWindow 
client control

The list of Web DataWindow client control events follows in alphabetical 
order.

ButtonClicked
Description Occurs when the user clicks a button inside a DataWindow object. 

Applies to Web DataWindow client control

Return codes There are no special outcomes for this event. The only code is:

0 Continue processing

Usage In DataWindow Designer, you can add buttons to a DataWindow with either a 
predefined action, such as Update or Retrieve, or a user-defined action. If you 
use a predefined action, the code to perform the action is provided for you. If 
you select User-Defined (the default) from the Action list in the DataWindow 
painter, you need to code a ButtonClicked event for the button. 

Argument Description

sender Object. The source of the event.

row Number. The number of the row the user clicked.

objectName String. The name of the control within the DataWindow 
under the pointer when the user clicked.



Alphabetical list of events for the Web DataWindow client control

260  DataWindow .NET

ButtonClicked fires only for buttons with the UserDefined action. Other 
buttons cause the page to be reloaded from the server.

The ButtonClicked event executes code after the action assigned to the button 
has occurred.

This event is fired only if you have not selected Suppress Event Processing for 
the button.

 If Suppress Event Processing is on, only the Clicked event and the action 
assigned to the button are executed when the button is clicked. 

If Suppress Event Processing is off, the Clicked event and the ButtonClicked 
event are fired. If the return code of the ButtonClicking event is 0, the action 
assigned to the button is executed and the ButtonClicked event is fired. If the 
return code of the ButtonClicking event is 1, neither the action nor the 
ButtonClicked event are executed.

Examples Suppose you add two buttons named b_button1 and b_button2 to a 
DataWindow object in the DataWindow painter. You can add a ButtonClicked 
event handler to the Web DataWindow client control in .NET to perform a 
different action depending on which button was clicked. In the Properties 
window for the WebDataWindow control, click on the 
ClientEventButtonClicked property, select Add a New Event Handler, and add 
some code:

if (buttonName=="b_button1"){
alert("Button 1 Clicked!");

}

if (buttonName=="b_button2"){
alert("Button 2 Clicked!");

}

See also ButtonClicking



Chapter 12    Writing Scripts for the Web DataWindow Client Control

Programmer’s Guide 261

ButtonClicking
Description Occurs when the user clicks a button. This event occurs before the 

ButtonClicked event. 

Applies to Web DataWindow client control

Return codes Set the return code to affect the outcome of the event:

0 Execute the action assigned to the button, then trigger the 
ButtonClicked event
1 Prevent the action assigned to the button from executing and the 
ButtonClicked event from firing

Usage Use the ButtonClicking event to execute code before the action assigned to the 
button occurs. If the return code is 0, the action assigned to the button is then 
executed and the ButtonClicked event is fired. If the return code is 1, the action 
and the ButtonClicked event are inhibited.

This event is fired only if you have not selected Suppress Event Processing for 
the button. 

The Clicked event is fired before the ButtonClicking event. 

See also ButtonClicked

Clicked
Description Occurs when the user clicks anywhere in a Web DataWindow client control.

Applies to Web DataWindow client control

Argument Description

sender Object. The source of the event.

row Number. The number of the row the user clicked. 

objectName String. The name of the control within the DataWindow 
under the pointer when the user clicked. 

Argument Description

sender Object. The source of the event.

row Number. The number of the row the user clicked. 

objectName String. The name of the control within the DataWindow 
under the pointer when the user clicked. 



ButtonClicking

262  DataWindow .NET

Return codes Set the return code to affect the outcome of the event:

0 Continue processing
1 Prevent the focus from changing

Usage When the user clicks on a DataWindow button, the Clicked event occurs before 
the ButtonClicking event. When the user clicks anywhere else, the Clicked 
event occurs when the mouse button is released.

Examples This script in a .aspx file submits the value of the selected row in the 
DataWindow to the server:

function objdwCustomers_Clicked(sender, rowNumber, 
objectName) {

document.Form1.rownum.value = rowNumber;
document.Form1.submit();

}

The clicked event is defined in the element for the Web DataWindow client 
control in the form:

<dw:webdatawindowcontrol id="dwCustomers" 
runat="server" DataWindowObject="d_customer" 
LibraryList="masterdetail.pbl" 
ClientEventClicked="objdwCustomers_Clicked" ...>
</dw:webdatawindowcontrol>

See also ButtonClicked
ButtonClicking
ItemFocusChanged
RowFocusChanged
RowFocusChanging

ItemChanged
Description Occurs when a field in a DataWindow control has been modified and loses 

focus (for example, the user presses Enter, the Tab key, or an arrow key or 
clicks the mouse on another field within the DataWindow). It occurs before the 
change is applied to the item. ItemChanged can also occur when the AcceptText 
or Update function is called.



Chapter 12    Writing Scripts for the Web DataWindow Client Control

Programmer’s Guide 263

Applies to Web DataWindow client control

Return codes Set the return code to affect the outcome of the event:

0 (Default) Accept the data value
1 Reject the data value and do not allow focus to change
2 Reject the data value but allow the focus to change

Usage The ItemChanged event does not occur when the Web DataWindow client 
control itself loses focus. If the user clicks on an Update button, you will need 
to write a script that calls AcceptText to see if a changed value should be 
accepted before the button’s action occurs. For information on the right way to 
do this, see the description of AcceptText in the online Sybase DataWindow 
Help in Visual Studio .NET.

See also ItemError

ItemError
Description Occurs when a field has been modified, the field loses focus (for example, the 

user presses Enter, Tab, or an arrow key or clicks the mouse on another field in 
the DataWindow), and the data in the field does not pass the validation rules 
for its column.

Applies to Web DataWindow client control

Argument Description

sender Object. The source of the event.

row Number. The number of the row containing the item whose 
value is being changed.

columnName String. The name of the column containing the item. 

newValue String. The new data the user has specified for the item.

Argument Description

sender Object. The source of the event.

row Number. The number of the row containing the item whose 
new value has failed validation.

columnName String. The name of the column containing the item. 

newValue String. The new data the user has specified for the item.



ItemFocusChanged

264  DataWindow .NET

Return codes Set the return code to affect the outcome of the event:

0 (Default) Reject the data value and show an error message box
1 Reject the data value with no message box
2 Accept the data value
3 Reject the data value but allow focus to change

Usage If the Return code is 0 or 1 (rejecting the data), the field with the incorrect data 
regains the focus.

The ItemError event occurs instead of the ItemChanged event when the new 
data value fails a validation rule. You can force the ItemError event to occur by 
rejecting the value in the ItemChanged event.

Examples This script in the .aspx file displays an alert message:

function objwdw_ItemError(sender, rowNumber, 
columnName, newValue) {

alert("ItemError: " + rowNumber + columnName + 
newValue);

}

See also ItemChanged

ItemFocusChanged
Description Occurs when the current item in the control changes.

Applies to Web DataWindow client control

Return codes There are no special outcomes for this event. The only code is:

0 Continue processing

Usage ItemFocusChanged occurs when focus is set to another column in the 
DataWindow, including when the DataWindow is first displayed.

The row and column together uniquely identify an item in the DataWindow.

See also RowFocusChanged
RowFocusChanging

Argument Description

sender Object. The source of the event.

row Number. The number of the row containing the item that has just 
gained focus.

columnName String. The name of the column containing the item. 



Chapter 12    Writing Scripts for the Web DataWindow Client Control

Programmer’s Guide 265

RowFocusChanged
Description Occurs when the current row changes in the DataWindow.

Applies to Web DataWindow client control

Return codes There are no special outcomes for this event. The only code is:

0 Continue processing

Usage The SetRow function, as well as user actions, can trigger the 
RowFocusChanged and ItemFocusChanged events.

Examples This script in the .aspx file displays an alert message when the row focus 
changes:

function objdw_RowFocusChanged(sender, newRowNumber) {
alert("Focus changed to row” " + newRowNumber);

}

See also ItemFocusChanged
RowFocusChanging

RowFocusChanging
Description Occurs when the current row is about to change in the DataWindow. (The 

current row of the DataWindow is not necessarily the same as the current row 
in the database.) 

The RowFocusChanging event occurs just before the RowFocusChanged 
event.

Argument Description

sender Object. The source of the event.

newRow Number. The number of the row that has just become 
current.

Argument Description

sender Object. The source of the event.

currentRow Number. The number of the row that is current (before the 
row is deleted or its number changes). If the DataWindow 
object is empty, currentrow is 0 to indicate there is no current 
row. 

newRow Number. The number of the row that is about to become 
current. If the new row is going to be an inserted row, 
newrow is 0 to indicate that it does not yet exist. 



Alphabetical list of methods for the Web DataWindow client control

266  DataWindow .NET

Applies to Web DataWindow client control

Return codes Set the return code to affect the outcome of the event:

0 Continue processing (setting the current row)
1 Prevent the current row from changing

Usage Typically the RowFocusChanging event is coded to respond to a mouse click 
or keyboard action that would change the current row in the DataWindow 
object. 

See also ItemFocusChanged
RowFocusChanged

Alphabetical list of methods for the Web DataWindow 
client control

The list of Web DataWindow client control methods follows in alphabetical 
order.

AcceptText
Description Applies the contents of the DataWindow’s edit control to the current item in the 

buffer of a Web DataWindow client control. The data in the edit control must 
pass the validation rule for the column before it can be stored in the item.

Applies to Web DataWindow client control

Syntax number objdwcontrol.AcceptText ( )

Return value Returns 1 if it succeeds and -1 if it fails (for example, the data did not pass 
validation). 

Usage When a user moves from item to item in a Web DataWindow client control, the 
control validates and accepts data the user has edited. 

Argument Description

objdwcontrol A reference to a Web DataWindow client control



Chapter 12    Writing Scripts for the Web DataWindow Client Control

Programmer’s Guide 267

When a user modifies a DataWindow item then immediately changes focus to 
another control in the window, the Web DataWindow client control does not 
accept the modified data—the data remains in the edit control. Use the 
AcceptText method in this situation to ensure that the DataWindow object 
contains the data the user edited. 

AcceptText in the ItemChanged event
Calling AcceptText in the ItemChanged event has no effect.

DeletedCount
Description Reports the number of rows that have been marked for deletion in the database.

Applies to Web DataWindow client control

Syntax number objdwcontrol.DeletedCount ( )

Return value Returns the number of rows that have been deleted from objdwcontrol but not 
updated in the associated database table.

Returns 0 if no rows have been deleted or if all the deleted rows have been 
updated in the database table. DeletedCount returns -1 if it fails. 

Usage An updatable WebDataWindowControl has several buffers. The primary buffer 
stores the rows currently being displayed. The delete buffer stores rows that the 
application has marked for deletion by calling the DeleteRow method. These 
rows are saved until the database is updated. You can use DeletedCount to find 
out if there are any rows in the delete buffer.

If a DataWindow is not updatable, rows that are deleted are discarded—they 
are not stored in the delete buffer. Therefore, DeletedCount returns 0 for a 
nonupdatable DataWindow unless a method, such as RowsCopy or RowsMove, 
has been used to populate the delete buffer.

Argument Description

objdwcontrol A reference to a Web DataWindow client control



AcceptText

268  DataWindow .NET

DeleteRow
Description Deletes a row from a DataWindow.

Applies to Web DataWindow client control

Syntax number objdwcontrol.DeleteRow ( number row )

Return value Returns -1 if AcceptText fails and 1 otherwise. AcceptText is called for all 
methods that reload the page before sending data to the server. 

Usage DeleteRow deletes the row from the DataWindow’s primary buffer.

Calling DeleteRow causes the new status of the data to be sent back to the server 
where data is retrieved again minus the deleted row. Then the page is reloaded. 
But you must still call the Update method to update the database and the data 
on the server.

All methods that reload the page perform an AcceptText before sending data 
back to the server. If the method fails (returns -1), this means that pending data 
changes were not accepted and nothing was sent back to the server. Use the 
server-side AfterPerformAction event to detect and handle the failure 
appropriately. 

The AfterPerformAction event handler receives an argument of type 
AfterPerformActionEventArgs that contains an Action property that indicates 
the client DataWindow postback action, and an ActionResult property that 
contains the value 1 for success or -1 for failure.

Examples This function in a .aspx file displays the number of the row deleted in an alert 
message:

function btnDeleteRow_onclick() {
alert("DeleteRow returned: " +
objwdw.DeleteRow(Form1.rownum.value));

}

Argument Description

objdwcontrol A reference to a Web DataWindow client control.

row A value identifying the row you want to delete. To delete the current 
row, specify 0 for row.



Chapter 12    Writing Scripts for the Web DataWindow Client Control

Programmer’s Guide 269

GetClickedColumn
Description Obtains the number of the column the user clicked or double-clicked in a Web 

DataWindow client control.

Applies to Web DataWindow client control

Syntax number objdwcontrol.GetClickedColumn ( )

Return value Returns the number of the column that the user clicked or double-clicked in 
objdwcontrol. Returns 0 if the user did not click or double-click a column (for 
example, the user double-clicked outside the data area, in text or spaces 
between columns, or in the header, summary, or footer area). 

Usage Call GetClickedColumn in the Clicked event for a Web DataWindow client 
control.

When the user clicks on the column, that column becomes the current column 
after the Clicked event is finished. During this event, GetColumn and 
GetClickedColumn can return different values.

If the user arrived at a column by another means, such as tabbing, 
GetClickedColumn cannot identify that column. Use GetColumn instead to 
identify the current column.

GetClickedRow
Description Obtains the number of the row the user clicked or double-clicked in a Web 

DataWindow client control object.

Applies to Web DataWindow client control

Syntax number objdwcontrol.GetClickedRow ( )

Return value Returns the number of the row that the user clicked or double-clicked in 
objdwcontrol. Returns 0 if the user did not click or double-click a row (for 
example, the user double-clicked outside the data area, in text or spaces 
between rows, or in the header, summary, or footer area). 

Argument Description

objdwcontrol A reference to a Web DataWindow client control

Argument Description

objdwcontrol A reference to a Web DataWindow client control



AcceptText

270  DataWindow .NET

Usage Call GetClickedRow in the Clicked event for a Web DataWindow client control.

When the user clicks on the row, that row becomes the current row after the 
Clicked event is finished. During this event, GetRow and GetClickedRow can 
return different values.

If the user arrived at a row by another means, such as tabbing, GetClickedRow 
cannot identify that row. Use GetRow instead to identify the current row.

GetColumn
Description Obtains the number of the current column. The current column is the column 

that has focus.

Applies to Web DataWindow client control

Syntax number objdwcontrol.GetColumn ( )

Return value Returns the number of the current column in objdwcontrol. Returns 0 if no 
column is current (because all the columns have a tab value of 0, making all of 
them uneditable), and -1 if an error occurs.

Usage GetColumn and GetClickedColumn, when called in the Clicked event, can return 
different values. The column the user clicked does not become current until 
after the event.

The current column
A column becomes the current column after the user tabs to it or clicks it or if 
a script calls the SetColumn method. A column cannot be current if it cannot be 
edited (if it has a tab value of 0).

A DataWindow always has a current column, even when the control is not 
active, as long as there is at least one editable column.

Argument Description

objdwcontrol A reference to a Web DataWindow client control



Chapter 12    Writing Scripts for the Web DataWindow Client Control

Programmer’s Guide 271

GetItem
Description Gets the value of an item for the specified row and column. GetItem returns the 

value available in the data available to the client. This is equivalent to the 
primary buffer in other environments.

Applies to Web DataWindow client control

Syntax returnvalue objdwcontrol.GetItem (number row, number column )

returnvalue objdwcontrol.GetItem (number row, string column )

Return value Returns the value in the specified row and column. The datatype of the returned 
data corresponds to the datatype of the column. Returns the empty string ("") 
if an error occurs.

Usage Use GetItem to get data that has been accepted by the DataWindow. In a script 
for the ItemChanged or ItemError event, you can use the newValue argument 
to find out what the user entered before the data is accepted.

Examples This statement sets LName to the value for row 3 of the emp_name column in 
the DataWindow dwEmployee:

var LName = objdwEmployee.GetItem(3, "emp_name");

See also SetItem

GetItemStatus
Description Reports the modification status of a row or a column within a row. The 

modification status determines the type of SQL statement the Update client 
method or UpdateData server will generate for the row or column.

Applies to Web DataWindow client control

Argument Description

objdwcontrol A reference to a Web DataWindow client control. 

row A value identifying the row location of the data.

column The column location of the data. Column can be a column number or 
a column name. The column number is the number of the column as 
it is listed in the Column Specification view of the DataWindow 
painter—not necessarily the number of the column in the Design 
view.

To get the contents of a computed field, specify the name of the 
computed field for column. Computed fields do not have numbers.



AcceptText

272  DataWindow .NET

Syntax number objdwcontrol.GetItemStatus (number row, number columnNumber )

number objdwcontrol.GetItemStatus ( number row, string columnName )

Return value A number that identifies the status of the item at row, column of objdwcontrol:

If column is 0, GetItemStatus returns the status of row. 

Usage Use GetItemStatus to understand what SQL statements will be generated for 
new and changed information when you update the database.

Update generates an INSERT statement for rows with status 3. It generates an 
UPDATE statement for rows with status 1 and references the columns that have 
been affected.

Argument Description

objdwcontrol A reference to a Web DataWindow client control.

row A value identifying the row for which you want the status.

column The column for which you want the status. Column can be a column 
number or a column name. The column number is the number of the 
column as it is listed in the Column Specification view of the 
DataWindow painter—not necessarily the number of the column in 
the Design view.

Specify 0 to get the status of the whole row.

Status Meaning

0 The information in the row or column is unchanged.

1 The information in the column or one of the columns in the row has 
changed.

2 The row is new but no values have been specified for its columns. 
(Applies to rows only, not to individual columns.)

3 The row is new, and values have been assigned to its columns. In addition 
to changes caused by user entry or the SetItem method, a new row gets 
this status when one of its columns has a default value. (Apples to rows 
only, not to individual columns.)



Chapter 12    Writing Scripts for the Web DataWindow Client Control

Programmer’s Guide 273

GetNextModified
Description Reports the next row that has been modified in the specified buffer.

Applies to Web DataWindow client control

Syntax number objdwcontrol.GetNextModified (number row, number dwbuffer )

Return value Returns the number of the first row that was modified after row in 
objdwcontrol. Returns 0 if there are no modified rows after the specified row. 

Usage For more information on the status of rows and columns, see GetItemStatus.

GetNextModified finds changed rows only on the current page. The result set for 
the DataWindow can include rows that are on the server but not displayed in 
the browser. GetNextModified cannot find changed rows that are on the server 
but not on the client’s current page.

GetRow
Description Reports the number of the current row in a Web DataWindow client control.

Applies to Web DataWindow client control

Syntax number objdwcontrol.GetRow ( )

Return value Returns the number of the current row in objdwcontrol. Returns 0 if no row is 
current and -1 if an error occurs. 

Current row not always displayed
The current row is not always a row displayed on the screen. For example, if 
the cursor is on row 7 column 2 and the user uses the scroll bar to scroll to row 
50, the current row remains row 7 unless the user clicks row 50.

Argument Description

objdwcontrol A reference to a Web DataWindow client control in which you want 
to locate the modified row.

row A value identifying the row location after which you want to locate 
the modified row. To search from the beginning, specify 0.

dwbuffer Ignored for the Web DataWindow client control.

Argument Description

objdwcontrol A reference to a Web DataWindow client control



AcceptText

274  DataWindow .NET

InsertRow
Description Inserts a row in a Web DataWindow client control. If any columns have default 

values, the row is initialized with these values before it is displayed.

Applies to Web DataWindow client control

Syntax number objdwcontrol.InsertRow ( number row ) 

Return value Returns -1 if AcceptText fails and otherwise returns the number of the row that 
was added. AcceptText is called for all methods that reload the page before 
sending data to the server.

Usage Calling InsertRow causes the new status of the data to be sent back to the server 
where the data is retrieved again and the row is inserted. Then the page is 
reloaded. 

All methods that reload the page perform an AcceptText before sending data 
back to the server. If the method fails (returns -1), this means that pending data 
changes were not accepted and nothing was sent back to the server. Use the 
server-side AfterPerformAction event to detect and handle the failure 
appropriately. 

The AfterPerformAction event handler receives an argument of type 
AfterPerformActionEventArgs that contains an Action property that indicates 
the client DataWindow postback action, and an ActionResult property that 
contains the value 1 for success or -1 for failure.

Examples This function in a .aspx file displays the number of the row inserted in an alert 
message:

function btnInsertRow_onclick() {
alert("InsertRow returned: " +
objwdw.InsertRow(Form1.rownum.value));

}

Argument Description

objdwcontrol A reference to a Web DataWindow client control.

row A value identifying the row before which you want to insert a 
row. To insert a row at the end, specify 0.



Chapter 12    Writing Scripts for the Web DataWindow Client Control

Programmer’s Guide 275

IsRowSelected
Description Determines whether a row is selected in a DataWindow. A selected row is 

highlighted using reverse video.

Applies to Web DataWindow client control

Syntax boolean dwcontrol.IsSelected ( number row ) 

Return value Returns true if row in dwcontrol is selected and false if it is not selected. If row 
is greater than the number of rows in dwcontrol or is 0 or negative, 
IsRowSelected also returns false. 

Usage You can call IsRowSelected in a script for the Clicked event to determine 
whether the row the user clicked was selected. With IsRowSelected and 
SelectRow, you can highlight a row on the client without causing a postback.

Examples This code calls IsRowSelected to test whether the clicked row is selected. If the 
row is selected, SelectRow deselects it; if it is not selected, SelectRow selects it:

function objdw_1_Clicked (sender, rowNumber, 
objectName) {

if (rowNumber > 0)
{

if (sender.IsRowSelected(rowNumber))
sender.SelectRow(rowNumber, false);

else
sender.SelectRow(rowNumber, true);

}

See also SelectRow

Argument Description

dwcontrol A reference to a DataWindow control, DataStore, or child 
DataWindow

row A value identifying the row you want to test to see if it is selected



AcceptText

276  DataWindow .NET

ModifiedCount
Description Reports the number of rows that have been modified but not updated in a 

DataWindow or DataStore.

Applies to Web DataWindow client control

Syntax number objdwcontrol.ModifiedCount ( ) 

Return value Returns the number of rows that have been modified in the primary buffer. 
Returns 0 if no rows have been modified or if all modified rows have been 
updated in the database table. Returns -1 if an error occurs. 

Usage ModifiedCount reports the number of rows that are scheduled to be added or 
updated in the database table associated with a DataWindow.

Retrieve
Description Retrieves rows from the database for a Web DataWindow client control. If 

arguments are included, the argument values are used for the retrieval 
arguments in the SQL SELECT statement for the DataWindow object.

Applies to Web DataWindow client control

Syntax number objdwcontrol.Retrieve ( ) 

Return value Returns -1 if AcceptText fails and otherwise returns the number of rows 
displayed. AcceptText is called for all methods that reload the page before 
sending data to the server.

Usage After rows are retrieved, the DataWindow object’s filter is applied. Therefore, 
any retrieved rows that do not meet the filter criteria are immediately moved to 
the filter buffer and are not included in the return count.

Before you can retrieve rows for a Web DataWindow client control, you must 
specify a transaction object with SetTransaction and establish a database 
connection.

Calling Retrieve causes data to be retrieved on the server and the page to be 
reloaded.

Argument Description

objdwcontrol A reference to a Web DataWindow client control

Argument Description

objdwcontrol A reference to a Web DataWindow client control.



Chapter 12    Writing Scripts for the Web DataWindow Client Control

Programmer’s Guide 277

All methods that reload the page perform an AcceptText before sending data 
back to the server. If the method fails (returns -1), this means that pending data 
changes were not accepted and nothing was sent back to the server. Use the 
server-side AfterPerformAction event to detect and handle the failure 
appropriately. 

The AfterPerformAction event handler receives an argument of type 
AfterPerformActionEventArgs that contains an Action property that indicates 
the client DataWindow postback action, and an ActionResult property that 
contains the value 1 for success or -1 for failure.

Examples This function in a .aspx file displays the number of rows retrieved and 
displayed in an alert message:

function btnRetrieve_onclick() {
alert("Retrieve returned: " +
objwdw.Retrieve(Form1.deptid.value));

}

RowCount
Description Obtains the number of rows that are currently available in a Web DataWindow 

client control. To determine the number of rows available, the RowCount 
method checks the primary buffer.

Applies to Web DataWindow client control

Syntax number objdwcontrol.RowCount ( ) 

Return value Returns the number of rows that are currently available in objdwcontrol, 0 if no 
rows are currently available, and -1 if an error occurs. 

Usage The primary buffer for a Web DataWindow client control contains the rows that 
are currently available for display or printing. These are the rows counted by 
RowCount. The number of currently available rows equals the total number of 
rows retrieved minus any deleted or filtered rows plus any inserted rows. The 
deleted and filtered rows are stored in the DataWindow’s delete and filter 
buffers.

Argument Description

objdwcontrol A reference to a Web DataWindow client control



AcceptText

278  DataWindow .NET

ScrollFirstPage
Description Scrolls a Web DataWindow client control to the first page, displaying the result 

set’s first group of rows in the Web page. (A page is the number of rows that 
are displayed in the Web DataWindow client control at one time.) 
ScrollFirstPage changes the current row, but not the current column.

Applies to Web DataWindow client control

Syntax number objdwcontrol.ScrollFirstPage ( ) 

Return value Returns -1 if AcceptText fails and 1 otherwise. AcceptText is called for all 
methods that reload the page before sending data to the server.

Usage Calling ScrollFirstPage causes the page to be reloaded with another set of rows 
from the result set.

All methods that reload the page perform an AcceptText before sending data 
back to the server. If the method fails (returns -1), this means that pending data 
changes were not accepted and nothing was sent back to the server. Use the 
server-side AfterPerformAction event to detect and handle the failure 
appropriately. 

The AfterPerformAction event handler receives an argument of type 
AfterPerformActionEventArgs that contains an Action property that indicates 
the client DataWindow postback action, and an ActionResult property that 
contains the value 1 for success or -1 for failure.

Examples This statement scrolls dwEmployee to the first page:

objdwEmployee.ScrollFirstPage();

See also ScrollLastPage
ScrollNextPage
ScrollNextPage
SetScroll

Argument Description

objdwcontrol A reference to a Web DataWindow client control 



Chapter 12    Writing Scripts for the Web DataWindow Client Control

Programmer’s Guide 279

ScrollLastPage
Description Scrolls a Web DataWindow client controll to the last page, displaying the result 

set’s last group of rows in the Web page. (A page is the number of rows that are 
displayed in the DataWindow control at one time.) ScrollLastPage changes the 
current row, but not the current column.

Applies to Web DataWindow client control

Syntax number objdwcontrol.ScrollLastPage ( ) 

Return value Returns -1 if AcceptText fails and 1 otherwise. AcceptText is called for all 
methods that reload the page before sending data to the server.

Usage Calling ScrollLastPage causes the page to be reloaded with another set of rows 
from the result set.

All methods that reload the page perform an AcceptText before sending data 
back to the server. If the method fails (returns -1), this means that pending data 
changes were not accepted and nothing was sent back to the server. Use the 
server-side AfterPerformAction event to detect and handle the failure 
appropriately. 

The AfterPerformAction event handler receives an argument of type 
AfterPerformActionEventArgs that contains an Action property that indicates 
the client DataWindow postback action, and an ActionResult property that 
contains the value 1 for success or -1 for failure.

Examples This statement scrolls dwEmployee to the last page:

objdwEmployee.ScrollLastPage();

See also ScrollFirstPage
ScrollNextPage
ScrollNextPage
SetScroll

Argument Description

objdwcontrol A reference to a DataWindow control 



AcceptText

280  DataWindow .NET

ScrollNextPage
Description Scrolls a DataWindow control forward one page, displaying the next group of 

rows in the DataWindow’s display area. (A page is the number of rows that can 
be displayed in the DataWindow control at one time.) ScrollNextPage changes 
the current row, but not the current column.

Applies to Web DataWindow client control

Syntax number objdwcontrol.ScrollNextPage ( ) 

Return value Returns -1 if AcceptText fails and otherwise returns the number of the row 
displayed at the top of the DataWindow control when the scroll finishes or tries 
to scroll past the last row. ScrollNextPage returns 1 with nested or composite 
reports since, in these cases, the current row cannot be changed. AcceptText is 
called for all methods that reload the page before sending data to the server. 

Usage Calling ScrollNextPage causes the page to be reloaded with another set of rows 
from the result set.

All methods that reload the page perform an AcceptText before sending data 
back to the server. If the method fails (returns -1), this means that pending data 
changes were not accepted and nothing was sent back to the server. Use the 
server-side AfterPerformAction event to detect and handle the failure 
appropriately. 

The AfterPerformAction event handler receives an argument of type 
AfterPerformActionEventArgs that contains an Action property that indicates 
the client DataWindow postback action, and an ActionResult property that 
contains the value 1 for success or -1 for failure.

ScrollPriorPage
Description Scrolls a DataWindow control backward one page, displaying another group of 

rows in the DataWindow’s display area. (A page is the number of rows that can 
be displayed in the DataWindow control at one time.) ScrollPriorPage changes 
the current row but not the current column.

Applies to Web DataWindow client control

Argument Description

objdwcontrol A reference to a DataWindow control or child DataWindow



Chapter 12    Writing Scripts for the Web DataWindow Client Control

Programmer’s Guide 281

Syntax number objdwcontrol.ScrollPriorPage ( ) 

Return value Returns -1 if AcceptText fails and otherwise returns the number of the row 
displayed at the top of the DataWindow control when the scroll finishes or tries 
to scroll past the first row. AcceptText is called for all methods that reload the 
page before sending data to the server. 

Usage Calling ScrollNextPage causes the page to be reloaded with another set of rows 
from the result set.

All methods that reload the page perform an AcceptText before sending data 
back to the server. If the method fails (returns -1), this means that pending data 
changes were not accepted and nothing was sent back to the server. Use the 
server-side AfterPerformAction event to detect and handle the failure 
appropriately. 

The AfterPerformAction event handler receives an argument of type 
AfterPerformActionEventArgs that contains an Action property that indicates 
the client DataWindow postback action, and an ActionResult property that 
contains the value 1 for success or -1 for failure.

SelectRow
Description Highlights or removes highlights from rows in a DataWindow control or 

DataStore. You can select all rows or a single row. SelectRow does not affect 
which row is current. It does not select rows in the database.

Applies to Web DataWindow client control

Syntax void dwcontrol.SelectRow ( number row, boolean select ) 

Argument Description

objdwcontrol The name of the DataWindow control or child DataWindow you 
want to page (scroll) to the prior page

Argument Description

dwcontrol A reference to a Web DataWindow client control.

row A value identifying the row you want to select or deselect. Specify 0 
to select or deselect all rows.

select A boolean value that determines whether the row is selected or not 
selected:

• True – Select the row(s) so that they are highlighted.

• False – Deselect the row(s) so that they are not highlighted.



AcceptText

282  DataWindow .NET

Return value Returns 1 if it succeeds and -1 if an error occurs. If there is no DataWindow 
object assigned to the Web DataWindow client control, the method returns 1.

Usage If a row is already selected and you specify that it be selected (boolean is true), 
it remains selected. If a row is not selected and you specify that it not be 
selected (boolean is false), it remains unselected. With IsRowSelected and 
SelectRow, you can highlight a row on the client without causing a postback.

Examples This statement selects the fifteenth row in dw_employee:

dw_employee.SelectRow(15, true)

See also IsRowSelected

SetColumn
Description Sets the current column in a Web DataWindow client control.

Applies to Web DataWindow client control

Syntax number objdwcontrol.SetColumn ( string column ) 

number objdwcontrol.SetColumn ( number column ) 

Return value Returns 1 if it succeeds and -1 if an error occurs. If column is less than 1 or 
greater than the number of columns, SetColumn fails.

Usage SetColumn moves the cursor to the current column but does not scroll the 
DataWindow control.

Only an editable column can be current. (A column is editable when its tab 
order value is greater than 0.) Do not try to set a noneditable column as the 
current column.

Avoiding infinite loops
Never call SetColumn in the ItemChanged, ItemError, or ItemFocusChanged 
event. Because SetColumn can trigger these events, such a recursive call can 
cause a stack fault.

Argument Description

objdwcontrol A reference to a Web DataWindow client control.

column The column you want to make current. Column can be a 
column number or a column name.



Chapter 12    Writing Scripts for the Web DataWindow Client Control

Programmer’s Guide 283

SetItem
Description Sets the value of a row and column in a Web DataWindow client control to the 

specified value.

Applies to Web DataWindow client control

Syntax number objdwcontrol.SetItem ( number row, number column, variant value ) 

number objdwcontrol.SetItem ( number row, string column, variant value ) 

Return value Returns 1 if it succeeds and -1 if an error occurs. 

Usage SetItem sets a value in the Primary buffer. It does not affect the value currently 
in the edit control over the current row and column, which is the data the user 
has changed or might change. The value in the edit control does not become the 
value of the DataWindow item until it is validated and accepted (see 
AcceptText).

You can use SetItem to set the value of an item when the data the user entered 
is not valid. When you use a return code that rejects the data the user entered 
but allows the focus to change (return code of 2 in the script of the 
ItemChanged event or return code of 3 in the ItemError event), you can call 
SetItem to put valid data in the row and column.

Using SetItem to correct user input
If the DataWindow engine cannot properly convert the string the user entered, 
you must include statements in the script for the ItemChanged or ItemError 
event to convert the data and use SetItem with the converted data. For example, 
if the user enters a number with commas and a dollar sign (for example, 
$1,000), the DataWindow engine is unable to convert the string to a number 
and you must convert it in the script.

Argument Description

objdwcontrol The name of the Web DataWindow client control in which you 
want to set a specific row and column to a value.

row The row location of the data.

column The column location of the data. Column can be a column 
number or a column name. The column number is the number 
of the column as it is listed in the Column Specification view of 
the DataWindow painter—not necessarily the number of the 
column in the Design view.

value The value to which you want to set the data at the row and 
column location. The datatype of the value must be the same 
datatype as the column.



AcceptText

284  DataWindow .NET

If you use SetItem to set a row and column to a value other than the value the 
user entered, you can use SetText to assign the new value to the edit control so 
that the user sees the current value.

Examples This script fragment checks whether a valid item has been selected before 
setting the item’s value:

itemValue = objdwProd.GetItem(rowNumber, colName);
if (itemValue == 0) {

objdwProd.SetItem(rowNumber, colName, 1);
thePage.submit();

} else if (itemValue == 1) {
alert(objdwCust.GetItem(1, "custfname") + 

", item already selected.");
} else {
alert("Error, item not available.");
}

See also GetItem

SetRow
Description Sets the current row in a Web DataWindow client control.

Applies to Web DataWindow client control

Syntax number objdwcontrol.SetRow ( number row ) 

Return value Returns 1 if it succeeds and -1 if an error occurs. If row is less than 1 or greater 
than the number of rows, SetRow fails. 

Usage SetRow moves the cursor to the current row but does not scroll the Web 
DataWindow client control.

Avoiding infinite loops
Never call SetRow in the ItemChanged event or any of the other events that it 
might trigger. Such a recursive call can cause a stack fault.

Argument Description

objdwcontrol A reference to a Web DataWindow client control in which you want 
to set the current row

row The row you want to make current



Chapter 12    Writing Scripts for the Web DataWindow Client Control

Programmer’s Guide 285

SetScroll
Description Scrolls a Web DataWindow control to a specified row or to the prior or next 

page in the result set.

Applies to Web DataWindow client control

Syntax number dwcontrol.SetScroll ( scrollAction, data) 

Return value Returns 1 if it succeeds and -1 if an error occurs. 

If dwcontrol is null, the method returns null.

Usage The SetScroll method lets users scroll backwards and forwards through the 
result set one page at a time without causing a postback to the server. Calling 
ScrollPriorPage and ScrollNextPage causes the page to be reloaded with another 
set of rows from the result set.

If scrollAction is 1, SetScroll does not highlight the row. Use SelectRow to let 
the user know what row is current.

Events SetScroll may trigger these events: 

ItemChanged
ItemError
ItemFocusChanged
RowFocusChanged
RowFocusChanging

Examples This statement scrolls dw_employee to the prior page:

dw_employee.SetScroll(2, 0);

This statement scrolls dw_employee to row 120:

dw_employee.SetScroll(1, 120);

Argument Description

dwcontrol A reference to a Web DataWindow client control.

scrollAction An integer that indicates the scroll action to be taken. Values are: 

• 1 – Scroll to the row number indicated by data.

• 2 – Scroll to the page indicated by data.

data If scrollAction is 1, an integer that specifies the row number to scroll 
to. 

If scrollAction is 2, an integer that specifies the page to scroll to. 
Values are: 

• 0 – Scroll to prior page.

• 1 – Scroll to next page.



AcceptText

286  DataWindow .NET

See also ScrollNextPage
ScrollPriorPage
SelectRow

SetSort
Description Specifies sort criteria for a Web DataWindow client control.

Applies to Web DataWindow client control

Syntax number objdwcontrol.SetSort ( string format ) 

Return value Returns 1 if it succeeds and -1 if an error occurs.

Usage A DataWindow object can have sort criteria specified as part of its definition. 
SetSort overrides the definition, providing new sort criteria for the 
DataWindow. However, it does not actually sort the rows. Call the Sort method 
to perform the actual sorting.

The sort criteria for a column have one of the forms shown in the following 
table, depending on whether you specify the column by name or number.

Table 12-3: Examples for specifying sort order

The following table shows the recognized values for order. These values are 
case insensitive. For example, as, s, AS, or S all specify a case-sensitive sort in 
ascending order.

Argument Description

objdwcontrol A reference to a Web DataWindow client control.

format A string whose value is valid sort criteria for the DataWindow 
(see Usage). The expression includes column names or 
numbers. 

A column number must be preceded by a pound sign (#). 

Syntax for sort order Examples

columnname order "emp_lname A"

"emp_lname asc, dept_id desc"

# columnnumber order "#3 A"



Chapter 12    Writing Scripts for the Web DataWindow Client Control

Programmer’s Guide 287

Table 12-4:  Recognized values for sort order

If you omit order or specify an unrecognized string, the sort is performed in 
ascending order and is case insensitive. You can specify secondary sorting by 
specifying criteria for additional columns in the format string. Separate each 
column specification with a comma.

Examples This function on a client-side button sets the sort criteria for objdwSort so that 
dwSort is sorted in ascending order by the values in the column selected by the 
user. Since ascending order is the default, the + "A" in the call to SetSort could 
be omitted:

function btn_ClientSort_onclick() {
if (!columnSelected) {

alert("Select a column on which to sort!");
return;

}
objdwSort.SetSort(Form1.sle_colname.value + "A");
objdwSort.Sort();

}

The button is defined in the JavaScript for the form:

<INPUT language="javascript" id="btn_ClientSort" 
style="Z-INDEX: 101; LEFT: 40px; WIDTH: 96px; POSITION: 
absolute; TOP: 312px; HEIGHT: 24px"onclick="return 
btn_ClientSort_onclick()" type="button" value="Sort 
from Client">

Sort
Description Sorts the rows in a Web DataWindow client control using the DataWindow’s 

current sort criteria.

Applies to Web DataWindow client control

Syntax number objdwcontrol.Sort ( ) 

Order value Resulting sort order

a, asc, ascending, ai, i Case-insensitive ascending

d, desc, descending, di Case-insensitive descending

as, s Case-sensitive ascending

ds Case-sensitive descending

Argument Description

objdwcontrol A reference to a Web DataWindow client control



AcceptText

288  DataWindow .NET

Return value Returns 1 if it succeeds and -1 if an error occurs.

Usage Sort uses the current sort criteria for the DataWindow. To change the sort 
criteria, use the SetSort method. The SetSort method is equivalent to using the 
Sort command on the Rows menu of the DataWindow painter. If you do not call 
SetSort to set the sort criteria before you call Sort, Sort uses the sort criteria 
specified in the DataWindow object definition.

Calling Sort causes the page to be reloaded.

All methods that reload the page perform an AcceptText before sending data 
back to the server. If the method fails (returns -1), this means that pending data 
changes were not accepted and nothing was sent back to the server. In this 
situation the ItemError event occurs.

Built-in client-side sorting In Web DataWindows that use the Grid 
presentation style and the XML rendering format, a client-side sort can be 
performed with no coding. The order of numeric or text-based data values in a 
DataWindow column changes when the user clicks the column header. When 
the user moves the mouse over a column header, the cursor changes 
automatically to the Hand style to provide a cue to the user that sorting can be 
performed on that column. 

This sorting functionality is based on client-side XSLT processing. For 
text-based sorting, the rules for sorting are language dependent, and are 
therefore controlled by the local language of the client computer running the 
XSLT processor. A white paper describing implementation details of 
language-dependent, text-based sorting is available on the Unicode 
Consortium Web site.

Because the sorting functionality is based on client-side XSLT processing, 
changing the order of items in a column does not force a page refresh. The sort 
functionality is not available with HTML or XHTML DataWindows, or with 
XML DataWindows that have non-grid presentation styles. 

Update
Description Updates the database with the changes made in a Web DataWindow client 

control. Update can also call AcceptText for the current row and column before 
it updates the database.

Applies to Web DataWindow client control



Chapter 12    Writing Scripts for the Web DataWindow Client Control

Programmer’s Guide 289

Syntax number objdwcontrol.Update ( ) 

Return value Returns -1 if AcceptText fails and 1 otherwise. AcceptText is called for all 
methods that reload the page before sending data to the server.

Usage Calling Update in the client control causes changed data to be passed to the 
server and updated there. Data is retrieved again and the page is reloaded. Data 
is not committed or rolled back automatically after the client-side Update 
action is performed. 

The Transaction and AdoTransaction objects are programmable, and you 
should perform transaction management yourself in the AfterPerformAction 
server-side event or elsewhere. 

All methods that reload the page perform an AcceptText before sending data 
back to the server. If the method fails (returns -1), this means that pending data 
changes were not accepted and nothing was sent back to the server. Use the 
server-side AfterPerformAction event to detect and handle the failure 
appropriately. 

The AfterPerformAction event handler receives an argument of type 
AfterPerformActionEventArgs that contains an Action property that indicates 
the client DataWindow postback action, and an ActionResult property that 
contains the value 1 for success or -1 for failure.

Frequent updating improves performance The Web DataWindow client 
maintains the state of the server component in string form and the information 
is sent to the server and back again with every request. If the user has not 
modified the data, the amount of client-side state information is small. The 
amount of client-side state information grows proportionally to the number of 
outstanding changes that have not been updated to the database. When the 
client control calls Update or server-side code calls the UpdateData method, the 
state information returns to the minimum amount, so calling Update or 
UpdateData frequently can reduce the amount of information transferred back 
and forth. 

Examples function btnUpdate_onclick() {
alert("Update returned: " + objwdw.Update());

}

Argument Description

objdwcontrol A reference to a Web DataWindow client control.



AcceptText

290  DataWindow .NET



Programmer’s Guide 291

C H A P T E R  1 3 Deploying DataWindow .NET 
Applications

About this chapter This chapter lists the files you need to deploy to the client with 
DataWindow .NET Windows form applications and to the production 
Web server for ASP.NET Web form applications. 

Contents

Deploying applications
Whether you are deploying a Windows application to a user’s computer or 
a Web application to a server, you need to deploy all the files your 
application needs. You may also need to perform some configuration 
tasks. This chapter summarizes deployment requirements for Windows 
and Web form applications and describes deployment tools provided with 
DataWindow .NET.

Requirements for PDF If your application uses the ability to save as PDF, additional files and 
some configuration are required on the Windows application user’s 
system or on the production Web server. For more information, see 
“Saving data in PDF format” on page 300.

Topic Page

Deploying applications 291

Deploying Windows form applications 292

Deploying ASP.NET applications 293

About deployment libraries 296

DataWindow .NET runtime files 296

Deploying .NET assemblies 297

Using the Runtime Packager 298

Using deployment dialog boxes 300

Saving data in PDF format 300



Deploying Windows form applications

292  DataWindow .NET

Deploying Windows form applications
You need to deploy several types of files with a Windows application:

• Application-specific files

• Deployment libraries

• DataWindow .NET runtime files 

Application-specific 
files

After you build a Windows form .NET application, you need to deploy the 
executable file and any DLLs that were compiled and saved in the Release\bin 
directory on the development computer. The files should be installed in the 
application’s directory on the target computer.

Deployment libraries The deployment library (PBD) or PBL file or files that contain the 
DataWindow objects used in your application need to be distributed with your 
application in a directory on the system path. At runtime, the DataWindow 
server strips the full path from each library and looks for the library in the 
system path. If you have more than one copy of a library, one in the path 
specified in the library list and one in the system path, you might see 
unexpected results when you run or debug the application if the DataWindow 
exists in only one version of the library or has been modified in only one 
version.

For information about PBDs, see “About deployment libraries” on page 296.

DataWindow .NET 
runtime files

You must deploy a set of core DataWindow .NET runtime files with a 
DataWindow .NET application, as well as files that are required if your 
application uses specific features. The application looks for the files in the 
directories in the same directory as the executable file or in the system PATH 
environment variable. For a complete list of files, see “DataWindow .NET 
runtime files” on page 296.

Some of the files you need to deploy, DataWindow.dll, 
DataWindowInterop.dll, Sybase.PowerBuilder.Db.dll, and 
Sybase.PowerBuilder.DbExt.dll, are strong-named assemblies. A strong name 
includes the assembly’s identity as well as a public key and a digital signature. 
The way you deploy these files can limit your choice of deployment 
techniques. For more information, see “Deploying .NET assemblies” on page 
297. 



Chapter 13    Deploying DataWindow .NET Applications

Programmer’s Guide 293

Deployment techniques for Windows applications
DataWindow .NET provides ways to simplify deployment of DataWindow 
.NET runtime files using a Microsoft Windows Installer file. You can also copy 
all the files you need to a release directory using dialog boxes built into the 
DataWindowControl. See “Using the Runtime Packager” on page 298 and 
“Using deployment dialog boxes” on page 300. For more information about 
deploying .NET applications, see your Microsoft documentation.

Deploying ASP.NET applications
You need to deploy several types of files to the production server for an 
ASP.NET Web application:

• Application files

• Deployment libraries

• DataWindow .NET runtime files 

Application files When you build an ASP.NET application, the code class file (.aspx.vb, or 
.aspx.cs), but not the .aspx file, is compiled into a project DLL file along with 
all other class files included in your project. You need to deploy this DLL and 
the .aspx file to the server.

Application-specific files should be copied to the bin directory for your 
application in a path on the default Web share root directory (wwwroot). 

Deployment libraries The deployment library (PBD) or PBL file or files that contain the 
DataWindow objects used in your application must be available on the Web 
server. The WebDataWindowControl’s LibraryList property contains URLs of 
the PBLs or PBDs that the Web DataWindow uses to load the DataWindow 
object. You deploy the PBLs or PBDs as content resources as you would image 
resources. 

At runtime, the URL of a PBL or PBD is mapped internally into a physical 
directory and file from which the DataWindow object is loaded. If the URL is 
not an absolute physical file path, it should be part of your Web application’s 
virtual path.

For example, suppose your Web application’s URL is http://localhost/mydemo 
and it maps to C:\Inetpub\wwwroot\MyDemo, and that there is a subdirectory 
called pbls in C:\Inetpub\wwwroot\MyDemo. If the pbls directory contains 
dwobjects.pbl, the URL for this PBL should be /mydemo/pbls/dwobjects.pbl.

http://localhost/mydemo


Deploying ASP.NET applications

294  DataWindow .NET

At runtime, the Page.MapPath method maps /mydemo/pbls/dwobjects.pbl to 
C:\Inetpub\wwwroot\MyDemo\pbls\dwobjects.pbl.

You can also use an absolute file path URL in the LibraryList property, such as: 

file:///C:\Inetpub\wwwroot\MyDemo\pbls\dwobjects.pbl

For more information about PBD files, see “About deployment libraries” on 
page 296.

DataWindow .NET 
runtime files

You must deploy a set of core DataWindow .NET runtime files with a 
DataWindow .NET application, as well as files that are required if your 
application uses specific features. For a complete list of files, see 
“DataWindow .NET runtime files” on page 296.

Some of these files are unmanaged DLLs. The Web application looks for these 
files in a directory specified in an environment variable named 
DWDOTNET20. If you use the packaging tool provided with DataWindow 
.NET, this environment variable is created for you. For more information, see 
“Finding files in a Web application” on page 299. 

Four of the files you need to deploy, DataWindow.dll, DataWindowInterop.dll, 
WebDataWindow.dll, and Sybase.PowerBuilder.Db.dll are strong-named 
assemblies. A strong name includes the assembly’s identity as well as a public 
key and a digital signature. The way you deploy these files can limit your 
choice of deployment techniques. For more information, see “Deploying .NET 
assemblies” on page 297.

Deployment techniques for Web applications
If your ASP.NET application does not require changes to IIS settings or 
registration of COM objects, and if it does not use assemblies in the GAC, you 
can copy the files your application needs to the production server using a 
simple copy technique such as the xcopy command-line tool or FTP. 

If your application needs IIS configuration or uses COM objects that must be 
registered, or if it uses shared assemblies that are stored in the server’s global 
assembly cache (GAC), you might need to use another technique. For more 
information about deploying ASP.NET applications, see your Microsoft 
documentation.

DataWindow .NET provides a way to simplify deployment of DataWindow 
.NET runtime files using a Microsoft Windows Installer file. See “Using the 
Runtime Packager” on page 298.

file:///C:\Inetpub\wwwroot\MyDemo\pbls\dwobjects.pbl


Chapter 13    Deploying DataWindow .NET Applications

Programmer’s Guide 295

Write permission for 
directories for 
generated files

If your DataWindow .NET application specifies a path for dynamically 
generated files, make sure that the ASP.NET account (or, for Windows 2003 
server, the IIS_WPG user group) has write permission to the directories. You 
need to do this if your application uses graphs in Web DataWindows or saves 
the JavaScript, XML, XSLT, and CSS files generated for XML or XHTML 
Web DataWindows into separate directories. 

For more information about setting permissions for ASP.NET applications, see 
the Microsoft documentation.

Configuring the server 
for DataWindow 
printing

If your application uses the Print method or the SaveAs method with the 
argument Pdf to print Web DataWindows, you need to take the same 
configuration steps on the production server that were required on the 
development server. For more information, see “Printing Web DataWindows” 
on page 207.

Configuring the server 
for DBCS characters

If you plan to use DBCS characters, such as Chinese, Korean, or Japanese, with 
the Web DataWindow, you need to configure the server to handle them. This 
configuration is required if you want to save a DataWindow object that 
contains DBCS characters to text, CSV, or Excel files that use ANSI encoding, 
or import text or CVS files containing DBCS characters into a DataWindow 
object using ANSI encoding.

The regional settings you set in the Windows control panel on the server apply 
to the current user, not to the ASP.NET account under which the Web 
application is running. The regional settings used by IIS are the settings that 
were in effect when IIS was installed. Changing the locale on an English 
Windows operating system does not resolve the problem. There are three ways 
to resolve this issue:

1 Run IIS on a Native Language Windows operating system.

2 Set the regional settings you need before installing IIS.

3 Change the user account that starts running IIS from the default ASP.NET 
user account to a user account with the regional setting you want. To do 
this, you need to edit the <processModel> section in the server’s 
machine.config file or the impersonate setting in the web.config file. 
Windows Server 2003 requires a different technique.

For more information, see your Microsoft ASP.NET documentation.



About deployment libraries

296  DataWindow .NET

About deployment libraries
When you are ready to deploy your application, consider building a 
deployment library (a PBD) for each of your PBLs and changing the 
LibraryList property of each DataWindowControl or DataStore to reference the 
PBD file instead of the PBL. PBD files cannot be opened by users and take less 
disk space. 

• If your application uses images, you can build them into the executable or 
PBD files. For more information, see the section on creating a deployment 
library in the DataWindow Designer User’s Guide.

DataWindow .NET runtime files
This section lists the files that you need to deploy to a client with DataWindow 
.NET Windows applications. The same files are required on the production 
server for Web applications (they are not required on Web clients).

The DataWindow .NET initialization files and DLLs listed in this section are 
all installed in the Sybase\DataWindow .NET 2.0 directory and are freely 
redistributable.

Required files The files listed in Table 13-1 must be distributed with all applications that use 
DataWindow .NET if they are not already installed on the target system. 

Table 13-1: DataWindow .NET required runtime files

The pbshr105.dll has dependencies on the Microsoft C++ runtime files 
msvcr71.dll and msvcp71.dll and the Microsoft GDI+ module gdiplus.dll. If 
you use Ink controls, the Microsoft .NET Active Template Library (ATL) 
module, atl71.dll, is also required.

File Description

DataWindow.dll Front end, interacts with the .NET runtime

WebDataWindow.dll Web DataWindow front end; required on 
production server for Web applications

DataWindowInterop.dll Interop layer, communicates between front end 
and DataWindow server

pbdwn105.dll DataWindow server

pbshr105.dll Required utilities



Chapter 13    Deploying DataWindow .NET Applications

Programmer’s Guide 297

Optional files The files listed in Table 13-2 need only be deployed if your application requires 
them. Typically you will deploy the Xerces files and at least one database 
interface.

Table 13-2: DataWindow .NET optional runtime files

Deploying .NET assemblies
DataWindow.dll, DataWindowInterop.dll, WebDataWindow.dll, 
Sybase.PowerBuilder.Db.dll and Sybase.PowerBuilder.DbExt.dll are .NET 
assemblies. The WebDataWindow.dll is required only for Web applications. 
You can use one of three techniques to deploy these files:

• Deploy .NET assemblies in the same directory as the executable file for a 
Windows application or into your Web application’s bin directory.

• Use a .NET application configuration file to assign the path of the .NET 
assembly. The file contains configuration settings that the common 
language runtime (CLR) reads as well as settings that the application 
reads. For an executable file, the configuration file has the same name as 
the executable file with the extension .config.

File Required for

pblab105.ini DataWindows that use the Label presentation 
style

PBXerces105.dll, 
xerces-c_2_6.dll, 
xerces-depdom_2_6.dll

XML or XHTML RenderFormat or DataWindow 
export to or import from XML

pbado105.dll, 
Sybase.PowerBuilder.Db.dll, 
Sybase.PowerBuilder.DbExt.dll

ADO.NET database connections

pbdir105.dll Sybase DirectConnect database connections

pbin9105.dll Informix 9 database connections

pbo84105.dll Oracle8i database connections

pbo90105.dll Oracle9i database connections

pbo10105.dll Oracle 10g database connections

pbodb105.dll ODBC database connections

pbodb105.ini ODBC database connections

pbole105.dll OLE DB database connections

pbsyc105.dll Sybase Adaptive Server Enterprise database 
connections



Using the Runtime Packager

298  DataWindow .NET

For more information about configuration files, see the .Microsoft .NET 
Framework documentation.

• Add the assembly to the Global Assembly Cache (GAC). Use this 
technique only when the assembly must be shared by several applications. 
You can no longer install an application using xcopy if one of the 
assemblies it uses is in the GAC.

For more information about the GAC, see the .Microsoft .NET Framework 
documentation.

Using the Runtime Packager
The DataWindow .NET Runtime Packager is a tool that packages most of the 
files a DataWindow .NET application needs at runtime into a Microsoft 
Windows Installer (MSI) file. Windows installer is an installation and 
configuration service that is installed with most Microsoft operating systems.

❖ To build an MSI file for a DataWindow .NET application:

1 Launch the dwpack20 executable file in your Sybase\DataWindow .NET 
2.0 directory.



Chapter 13    Deploying DataWindow .NET Applications

Programmer’s Guide 299

2 Select WinForm deployment for a Windows form application or WebForm 
deployment for an ASP.NET Web application.

3 Clear the check boxes for the database interfaces not required for your 
application.

4 If your application does not use the ability to import or export the data in 
a DataWindowControl in XML format, clear the XML Support check box.

5 (Optional) Specify a different name and/or location for the DataWindow 
.NET runtime package.

6 Click Create.

The Runtime Packager creates an MSI file and adds to it the base 
components listed in Table 13-1 on page 296, the pblab105.ini file, and 
the files you selected. It does not add any executable, DLL, PBD, or PBL 
files to the package. You can add these files to the MSI file or copy them 
to the destination directory manually. Running the MSI file on the target 
computer copies all the files in the package into the directory specified.

For information about working with MSI files, see the Windows Installer 
section in the Microsoft documentation.

Finding files in a Web 
application

When the MSI file generated for a Web application is run on the Web server, it 
creates an environment variable called DWDOTNET20 and sets its value to the 
path where the DataWindow DLLs were installed. When the Web application 
runs, the DataWindow server loads the unmanaged DataWindow .NET DLLs 
based on the directory specified in the DWDOTNET20 environment variable.

If you choose not to use the Runtime Packager, you can create a 
DWDOTNET20 environment variable and copy the unmanaged DLLs to the 
directory it specifies manually.

The .NET assemblies, DataWindow.dll, DataWindowInterop.dll, 
WebDataWindow.dll, Sybase.PowerBuilder.Db.dll, and 
Sybase.PowerBuilder.DbExt.dll are also installed in the specified directory. 
You should move these files to your application’s bin directory, or use another 
technique for deploying them, as described in “Deploying .NET assemblies” 
on page 297.



Using deployment dialog boxes

300  DataWindow .NET

Using deployment dialog boxes
You can deploy a Windows application by simply copying the contents of your 
project’s bin\Release directory to the user’s computer. To make sure that all the 
files you need are in the bin directory, right-click on a DataWindowControl and 
select Prepare for Deployment from the pop-up menu. You can also open the 
Prepare for Deployment dialog box by clicking the link at the bottom of the 
Properties window for a DataWindowControl.

❖ To prepare an application for deployment by copying files:

1 In the Prepare for Deployment dialog box, select the database interface 
your application uses. 

2 Click OK.

The Copy for Deployment dialog box opens, listing the PBD file that holds 
your DataWindow objects, the required DLLs, and the DLLs for the 
database interface you selected.

3 If the list includes files that you do not want to copy, clear the check box 
next to them.

4 Click the browse (...) button next to the Target Directory box, browse to 
the bin\Release directory for your project, and click OK.

The files you selected are copied to the target directory. You can copy the 
contents of this directory, which also contains the executable file and any 
application-specific files, to a user’s computer, or add the contents of this 
directory to a package or ZIP file to be distributed to users.

Saving data in PDF format
In order for users of Windows forms applications to use the SaveAs method to 
save data as PDF, they must first download and install GNU Ghostscript on 
their computers as described in the procedure that follows. If you are setting up 
a Web server for a Web forms application, follow the same procedure to install 
Ghostscript on the server. Ghostscript is not required on the client for Web 
applications.

The use of GNU Ghostscript is subject to the terms and conditions of the GNU 
General Public License (GPL). Users should be asked to read the GPL before 
installing GNU Ghostscript on their computers. A copy of the GPL is available 
on the GNU Project Web server at http://www.gnu.org/license.

http://www.gnu.org/licenses/gpl.html.


Chapter 13    Deploying DataWindow .NET Applications

Programmer’s Guide 301

❖ To install GNU Ghostscript:

1 Into a temporary directory on your computer, download the self-extracting 
executable file for the version of Ghostscript you want from one of the 
sites listed on the Ghostscript Web site at 
http://www.ghostscript.com/doc/GPL.

2 Run the executable file to install Ghostscript on your system. 

The default installation directory is C:\gs. You can select a different 
directory and/or choose to install shortcuts to the Ghostscript console and 
readme file.

Location of files When you save a DataWindow object as PDF, the DataWindow server searches 
in the following locations for an installation of GNU Ghostscript:

• The Windows registry

• The relative path of the pbdwn105.dll file

• The system PATH environment variable

If GNU Ghostscript is installed using the Ghostscript executable file, the path 
is added to the Windows registry. 

If the Ghostscript files are in the relative path of the pbdwn105.dll file, they 
must be installed in this directory structure:

dirname\pbdwn105.dll
dirname\gs\gsN.NN
dirname\gs\fonts

where dirname is the directory that contains the runtime DLLs and N.NN 
represents the release version number for Ghostscript.

You might not need to distribute all the fonts provided in the distribution. For 
information about fonts, see Fonts and font facilities supplied with Ghostscript at 
http://www.ghostscript.com/doc/gnu/7.05/Fonts.htm.

You must also deploy the default PostScript printer driver and related files that 
are installed in Sybase\DataWindow.NET 2.0\drivers. These files can be copied 
to or installed on the target computers. They must be located in this directory 
structure:

dirname\pbdwn105.dll
dirname\drivers

http://www.ghostscript.com/doc/GPL
http://www.ghostscript.com/doc/gnu/7.05/Fonts.htm


Saving data in PDF format

302  DataWindow .NET

PostScript printer 
profile

Each user’s computer (or the Web server for Web applications) must have a 
PostScript printer profile called Sybase DataWindow PS. This profile is added 
to your development computer automatically when you save a DataWindow’s 
rows to a PDF file in the DataWindow painter.

Users can add the profile manually using the Windows Add Printer wizard. In 
the wizard, click the Have Disk button and browse to the Adist5.inf file 
installed in the DataWindow .NET 2.0\drivers directory, or to another 
PostScript driver file.



Programmer’s Guide 303

A
AcceptText method

about 266
calling from Update 288

ADO.NET Connection object
creating 122
Open method 123

AdoTransaction class 111
AdoTransaction methods, summary 111
AdoTransaction object

associating with a DataWindow control or 
DataStore 124

BeginTransaction method 125
BindConnection method 124
Commit method 125
properties 123
Rollback method 125
SetTransaction method 124
using 120

aggregation functions, Web DataWindow 226
aligning columns in DataWindow objects 30
applications, using DataWindow objects in 13, 57
architecture, DataWindow .NET 4
area graphs 98
arguments, retrieval 276
ASP.NET

about 172
account access 204
postbacks 197
ViewState 192
Web server controls 173

AutoCommit Transaction property 115
AutoRestoreContext property 194
AutoRestoreDataCache property 195
AutoSaveDataCacheAfterRetrieve property 195

B
bar graphs 98
BeginInit method 103
BeginTransaction method 125
BindConnection method 124
bitmaps, dynamically adding and removing 148
blobs

DataWindow synchronization 109
DataWindowChanges 108
DataWindowFullState 108

Border property (DataWindow object), examples of 
setting 128

buffers
DataStore 104
DataWindow 75, 86
retrieving data 271
returning modified rows 273
setting values of rows and columns 283

Button controls, Web DataWindow 226
ButtonClicked event 259
ButtonClicking event 261

C
Case function, Web DataWindow 226
class hierarchy

DataWindow .NET 5
Edit styles 137
ExpressionBasedProperty 135
GraphicObject 131
WebDataWindowControl 6

class instances, obtaining 133
Clear method 77
ClearDataCache method 196
Clicked event 261, 269, 270, 275
client control methods

AcceptText 266
DeletedCount 267

Index



Index

304 DataWindow .NET

DeleteRow 268
GetClickedColumn 269
GetClickedRow 269
GetColumn 270
GetItem 271
GetItemStatus 271
GetNextModified 273
GetRow 273
InsertRow 274
IsRowSelected 275
ModifiedCount 276
Retrieve 276
RowCount 277
ScrollFirstPage 278
ScrollLastPage 279
ScrollNextPage 280
ScrollPriorPage 280
SelectRow 281
SetColumn 282
SetItem 283
SetRow 284
SetSort 286
Sort 287
Update 288

client control, Web DataWindow 175
ClientObjectName property for WebDataWindow control 

253
CodeTableValue structure 8
column graphs 98
column status

changing 88
in DataWindow controls 86

columns
aligning 30
clicked 269
current 270, 282
graphing data in 98
in DataWindow expressions 134
initializing 274
modification status of 271
rearranging 29
retrieving from buffer 271
updating 288
values of 283

comments, DataWindow 19, 29
Commit method 65, 125

communication with databases 62
computed fields in DataWindow expressions 134
Connect method 117
connecting, and Transaction object 117
Connection AdoTransaction property 123
connection code, generated on Preview tab 115
context management, Web DataWindow 193
context, restoring 194
context-sensitive help 12
continuous data 98
controls, supported in Web DataWindow 214
Copy method 77
copy method, for saving graphs 166
count of rows marked for deletion 267
create capability for Modify 148
Create method 7, 149
criteria, sort 286, 287
CrosstabDialog method 97
crosstabs

modifying during execution 151
users redefining during execution 97
using in applications 97
viewing underlying data 97

CSS 177
current

column 282
row 273, 281, 284
row before inserting 274

cursor and current row 284
Cut method 77

D
data

retrieving and updating 62
retrieving from buffers 271
retrieving, example 38
sharing 105
updating 64
updating, example 42
Web DataWindow 215

data cache, Web DataWindow 195
data modified status flags 86



Index

Programmer’s Guide 305

data source
external 74, 104
Quick Select 16

database connections, about 62
database errors 93
Database Transaction object property 114
Database Transaction property 114
databases

communicating with 62
connecting to 37, 50, 117
deleted rows 267
disconnecting from 118
profiles, connection properties in 114
retrieving data 271, 276
retrieving, presenting, and manipulating data 62
updating 64, 288

DataModified item status 273
DataObject property of DataWindow controls 60
DataPoint field 163
DataStore

about 2
inheritance 5
working with 101

DataStore methods
common 104
GetChanges 107
GetFullState 107
ResetUpdateStatus 109
SetChanges 107
SetFullState 107
ShareData 106
ShareDataOff 107
UpdateData, synchronizing data after calling 109

DataStore objects
accessing data 104
buffers 104
importing data from external sources 104
methods 104
sharing data 105

DataWindow
server 4
synchronization 107
technology 1

DataWindow .NET
architecture 4
class hierarchy 5

classes 7, 9
controls, registering 10
DataWindow server 4
delegates 7, 9
enumerations 7, 9
front end 4
structures 7, 9

DataWindow controls
about 57
accessing the current text 76
assigning transaction objects to 149
associating with objects during execution 60
buffers 75, 86
column status 86
creating reports with 94
data management in 75
DataObject property 60
handling errors 93
importing data from external sources 74
ItemChanged event 77
ItemError event 77
methods 84
names 32
placing in windows 32, 45, 58
processing entries 76
row status 86
rows available for display 277
updating, use of row/column status when 86
using crosstabs 97
using graph methods 162

DataWindow Designer project, creating 15
DataWindow Designer, about 2
DataWindow expression functions 135
DataWindow expressions

as values for properties 128
defined 128
format in painter versus code 135

DataWindow methods
BeginInit 103
Clear 77
context-sensitive help on 12
Copy 77
Create 149
CrossTabDialog 97
Cut 77
DataWindowSyntaxFromSql 7, 150



Index

306 DataWindow .NET

defined on interfaces 5
DeleteRow 88
Describe 130, 148
Describe, exceptions thrown by 143
EndInit 103
exceptions thrown by 92
for handling events 90
GetChanges 107
GetChild 96
GetColumnObjectByNumber 133
GetFullState 107
GetItem 78
GetItemDate 78
GetItemDateTime 78
GetItemDecimal 78
GetItemDouble 78
GetItemSqlDateTime 78
GetItemSqlDecimal 78
GetItemSqlDouble 78
GetItemSqlString 78
GetItemStatus 88
GetItemString 78
GetItemTime 78
GetObjectByName 133
GetObjectByName, using with graphs 164
GetProperty 131, 148
GetProperty, exceptions thrown by 143
GetRowStatus 88
GetStateStatus 107
GetText 76
ImportClipboard 74, 104
ImportFile 74, 104
ImportString 74, 104
IsItemNull 79
list of common 84
Modify 130, 148
Modify, advantages and drawbacks 141
Modify, changing crosstab report with 151
Modify, changing graph properties at runtime 160
Modify, creating composite report with 151
Modify, exceptions thrown by 143
Print 95
Refresh 167
Replace 77
Retrieve 62, 86
Retrieve, example 39, 54

Retrieve, exceptions thrown by 93
Retrieve, providing query ability with 152
Retrieve, with DataStore 102
SaveAs 74
SaveAs, software required for PDF 300
SaveAsFormattedText 74
SelectRow 281
SelectText 77
SetChanges 107
SetFullState 107
SetItem 78
SetItem, modifying status 87
SetItemDate 78, 79
SetItemDateTime 79
SetItemDouble 79
SetItemNull 79
SetItemSqlDateTime 79
SetItemSqlDecimal 79
SetItemSqlDouble 79
SetItemSqlString 79
SetItemStatus 88
SetItemString 79
SetItemTime 79
SetProperty 131, 148
SetProperty, changing crosstab report with 151
SetProperty, changing graph properties at runtime 

160
SetProperty, exceptions thrown by 143
SetRedrawOff 167
SetRedrawOn 167
SetRowStatus 88
SetText 76
SetTransaction, calling after Create 149
ShareData 96
supported by DataStores 102
UpdateData 62, 86
UpdateData, example 42
UpdateData, exceptions thrown by 93
UpdateData, when called 87
where described x

DataWindow objects
about 1
aligning columns 30
and graphs in 98
associating with controls 34, 46, 60
basic use of 13, 57



Index

Programmer’s Guide 307

creating 16, 24
creating dynamically 149
creating reports with 94
data source 16
designing for Web DataWindow 214
display order 17
displaying data 62
dynamic use of 147
editing 60
enhancing 29
generating HTML from 74
graphs in 159
HTML preview 230
listing 61
names 32
presentation style 16
presentation styles 2
printing multiple on a page 96
properties of 85, 127
rearranging columns 29
retrieval arguments 26
saving 19
selecting columns with Quick Select 17
WHERE clause 26

DataWindow painter
aligning columns and labels 30
bands 18
editing DataWindow object 60
modifying objects 20
modifying objects in 29
retrieval argument 26
views 18
WHERE clause 26

DataWindow property expressions 128
DataWindow.dll 4
DataWindowBand structure 8
DataWindowChanges object 108
DataWindowChild class 5
DataWindowControl

about 2
adding to a form 32, 35, 45, 47
inheritance 6

DataWindowFullState object 108
DataWindowInterop.dll 4
DataWindowSyntaxFromSql method 7, 150

and data cache 196

setting initial property values 129
DataWindowSyntaxGenerator class 7
DbHandle Transaction property 115
Dbms Transaction object property 114
Dbms Transaction property 114
DbParameter AdoTransaction property 123
DbParameter Transaction object property 114
DbParameter Transaction property 115
default values 274
delegate classes 8, 10, 90
Delete buffer

DataStore 104
DataWindow 75
returning modified rows 273

DeletedCount method 267
DeleteRow method 88, 268
deploying your application 296
deployment DLLs 296
deployment library, building 44
Describe method 148, 150

error handling 143
getting property values 130

destroy capability for Modify 148
detail band in DataWindow objects 18
directory structure, required for save as PDF 301
Disconnect method 118
disconnecting from databases 118
display formats in Web DataWindow 215
distributed applications, performing database updates in 

107
distributing your application 296
DLLs, required for deployment 296
DropDownDataWindow edit style 31
dwItemStatus enumerated data type 271
DWP, creating 15
DWPack utility 298
DWToolBoxReg utility 10
dynamic DataWindow objects

about 147
adding elements 148
creating 149
modifying 148
providing query mode 152
specifying create syntax 150



Index

308 DataWindow .NET

E
early binding, accessing properties 131
EAS Demo database 14

connecting to 15
creating a profile 16

edit controls 75, 76, 77
applying contents of 266

edit styles
drop-down DataWindow 31
overriding in query mode 156
Web DataWindow 215

EditChanged event 76
EditControl class 7, 9, 75
EnableDataState property 194
EndInit method 103
enumerations 8, 10
errors, following database retrieval or update 93
events

handling 90
ItemChanged 77
ItemError 77
Web DataWindow client control 254

exception handling
DataWindow processing 91
Describe and Modify methods 143
Transaction object 118

execution
accessing graphs 160
associating DataWindow objects with controls 60
modifying DataWindow objects 148

Export/Import Template view icons 236
expressions

assigning DataWindow property values 148
examples 139
for DataWindow object properties 134

extended attributes 31
External data source, importing data 74, 104

F
filter buffer 75, 104

returning modified rows 273
filters, applying 276
focus, column 270
fonts, using in reports 95

footer band in DataWindow objects 18
formats, sort criteria 286
forms, adding DataWindowControls to 58
Freeform presentation style, columns 29

G
GetChanges method 107, 108
GetChild method 96
GetClickedColumn method 269
GetClickedRow method 269
GetColumn method 270
GetColumnObjectByNumber method 134
GetDataObject method 196
GetDataStyle method 167
GetDataWindowObjectEntries utility 61
GetFullState method 107, 108
GetItem method 271
GetItemDate method 78
GetItemDateTime method 78
GetItemDecimal method 78
GetItemDouble method 78
GetItemSqlDateTime method 78
GetItemSqlDecimal method 78
GetItemSqlDouble method 78
GetItemSqlString method 78
GetItemStatus method 88, 271
GetItemString method 78
GetItemTime method 78
GetNextModified method 273
GetObjectByName method 133
GetRow method 273
GetRowStatus method 88
GetSeriesStyle method 167
GetText method 76
Ghostscript, downloading 300
GNU Ghostscript, downloading 300
Gob property 134
graph methods

for data display 167
for getting information 162

GraphConfigurations property 203
GraphDataStyle class 167



Index

Programmer’s Guide 309

GraphicObject classes
about 7, 9
hierarchy 131, 135, 137
list of 132

GraphicObjectUnderMouse property 163
graphics, adding to DataWindow objects 148
GraphObjectAtPointer structure 7, 8
GraphObjectType enumerated value 163
GraphObjectUnderMouse property 163
graphs

about 159
data properties 162
getting information about 162
in DataWindow objects 98
in Web DataWindow 203
internal representation 160
making three-dimensional 99
modifying display of data 167
modifying during execution 160
properties of 160
types of 98

GraphSeriesStyle class 167
grAxis subobject of graphs 161
grDispAttr subobject of graphs 160

H
handling errors 143
handling events 90
header band in DataWindow objects 18
header section in XML template 240
help, providing in dynamic DataWindow objects 157
highlighting rows 275, 281
HTML

appending to a control 231
including in a control 231
saving DataWindow data as 74

HTML Preview 230

I
IDataStore interface 6
IDataWindow interface 6
IDataWindowBase interface 5

IIS, configuring for printing 207
image file formats for graphs 204
ImportClipboard method 74, 104
ImportFile method 74, 104
ImportString method 74, 104
InsertRow method 274
installation 10
integrated data cache management 195
IsBound AdoTransaction property 123
IsConnected Transaction property 115
IsItemNull method 79
IsRowSelected function 275
ItemChanged event 76, 77, 262
ItemError event 76, 77
ItemFocusChanged event 264
items in DataWindow controls 75
ItemStatus, changing 88

J
JavaScript caching

in DataWindow Designer 223
in Visual Studio .NET 190

JavaScriptConfigurations property 189

L
late binding, accessing properties 130
library, creating 15
line graphs 98
links, in ObjectLink Collection Editor 205
Lock Transaction property 115
loops, avoiding infinite 282, 284

M
master-detail DataWindows, example 38
methods

DataStore 104
DataWindow 84
graph 162
JavaScript caching 223
Web DataWindow client control 256



Index

310 DataWindow .NET

Modified status 89
ModifiedCount method 276
Modify method

basic usage 148
error handling 143
using query mode 152
with crosstabs 151

N
names of DataWindow controls and DataWindow 

objects 32
nested reports

creating during execution 151
using in applications 95

nested strings 145
.NET remoting, support for 107
New status 86, 89
NewAndModified status 89
NewModified item status, returning next row with 273
NewModified status 86
NotModified status 86, 89
null values, testing for 79

O
ObjectAtPointer structure 8
ObjectType field 163
ObjectUnderMouse property 134
On methods for events 90
online help 12
Open method, Connection object 123

P
Page_Init event 174
Page_Load event 174
Page_Unload event 174
Password Transaction object property 114
Password Transaction property 114
PBDs, required for deployment 296
pbdwn105.dll 4

not loaded 33

PBL, creating 15
PDF

saving as 210
software required for 300

Picture button in Web DataWindow 227
Picture controls in Web DataWindow 228
pie graphs 98
postbacks 197
presentation styles

DataWindow object 16
supported in Web DataWindow 214
Tabular 16

presentation styles for DataWindows 2
Preview tab in Database Profile painter 115
Preview tab, generating syntax 115
Primary buffer 75, 104

retrieving data from 271
returning modified rows 273
row count 277

Print method 95
printing

multiple DataWindow objects on a page 96
reports 95
Web DataWindows 207

profiles, database 114
programs, using DataWindow objects in 13, 57
properties

about 127
conditional values using expressions 130
DataWindow expressions as property values 128
DataWindow object 85
examples of setting 128
retrieving current values of 148, 150
special characters for accessing 144
Transaction object 114
values in code 128, 130
values in painter 128, 129

property expressions, when to use 131

Q
query mode

clearing 156
forcing equality 157



Index

Programmer’s Guide 311

providing to users 152
sorting in 156

quick reference 8, 10
Quick Select 16

sort criteria 18
using 16

quotes in sort criteria 286

R
recursive call 282
Refresh method 167
remoting, support for .NET 107
Replace method 77
reports

creating with DataWindow objects 94
nested 95
printing 95

ResetUpdateStatus method 109
RestoreContext method 194
RestoreDataCache method 195
retrieval arguments

creating 26
defining 26
using 62
WHERE clause 26

Retrieve method 86, 276
accessing a database 62
and retrieval arguments 39, 54, 62
example 39, 54
exceptions thrown by 93
handling errors 93
using 62

RetrieveStart event 276
return count 276
Rollback method 65, 125
row status, changing 89
RowCount method 277
RowFocusChanged event 265
RowFocusChanging event 265
rows

clicked 269
deleting 267, 268
getting current 273
in primary buffer 277

inserting 274
modification status 271, 273, 276
providing user-specified retrieval 152
retrieving data from 271
retrieving from database 276
selecting 275, 281
setting current 284
setting value of 283
sorting 287
status in DataWindow controls 86
updating 288

RowsAffected Transaction property 115
RowsPerPage property 200
RowStatus, changing 89
runtime DLLs 296
Runtime Packager 298

S
SaveAs method 74

software required for PDF 300
SaveAsFormattedText method 74
SaveDataCache method 195
saving graphs 166
scatter graphs 99
scatter graphs, having no category axis 164
scripts, modifying graphs in 160
scroll bars in Web DataWindows 200
ScrollFirstPage method 278
ScrollLastPage method 279
ScrollNextPage method 280
ScrollPriorPage method 280
Select painter

about 25
tab area 25

SELECT statement 25
SELECT statements, modifying at execution time 155
selection criteria for query mode 152
selection, of rows 275
SelectRow method 281
SelectText method 77
separator line in XML template 240
series, implicit in all graphs 164
SeriesName field 163



Index

312 DataWindow .NET

server component methods
SetColumn 282
SetRow 284
SetSort 286

ServerName Transaction object property 114
ServerName Transaction property 115
SetChanges method 107, 108
SetColumn method 282
SetDataObject method 196
SetDataStyle method 167
SetFullState method 107, 108
SetItem method 283
SetItem methods, changing status with 87
SetItemDate method 79
SetItemDateTime method 79
SetItemDecimal method 79
SetItemDouble method 79
SetItemNull method 79
SetItemSqlDateTime method 79
SetItemSqlDecimal method 79
SetItemSqlDouble method 79
SetItemSqlString method 79
SetItemStatus method 88
SetItemString method 79
SetItemTime method 79
SetProperty method 148

changing crosstab report with 151
changing graph properties at runtime 160
exceptions thrown by 143

SetRedrawOff method 167
SetRedrawOn method 167
SetRow method 284
SetRowStatus method 88
SetSeriesStyle method 167
SetSort method 286
SetText method 76
SetTransaction method 117, 124
ShareData method 96, 106
ShareDataOff method 107
Sort method 287
sort order, specifying criteria 286
sorting in query mode 156
SQL Select 24
SQL statements

and modification status 271
CONNECT 276

specifying retrieval arguments 276
SQL statements, SELECT 25
SQL syntax, in Select painter 25
SqlDbCode TransactionException property 118
SqlErrText TransactionException property 118
SqlReturnData Transaction object property 114
SqlReturnData Transaction property 115
stack faults, avoiding 282
stacked graphs 99
status of rows and columns 271
status of rows or columns 86
strings, retrieving from buffers 271
structures 8
summary band in DataWindow objects 18
SyntaxFromSQL 150
SyntaxFromSql 7, 150
SYSTEM account, configuring 209
System.EventArgs class 7, 9
System.Exception class 7, 9

T
Tabular presentation style 16
text controls in DataWindow objects 148
text in DataWindow edit control 75
three-dimensional graphs, about 99
tilde character, SpinRange property 145
Transaction AdoTransaction property 123
Transaction class

description 111
using 112

Transaction methods
Commit 111
Connect 117
Disconnect 111, 118
exceptions thrown 118
Rollback 111
SetTransaction 117, 124
summary 111

Transaction object
adding to a form 36, 48
associating with a DataWindow control or DataStore 

117, 124
exception handling 118
properties 114



Index

Programmer’s Guide 313

reassociating DataWindow controls with 149
specifying before row retrieval 276

TransactionException object 118
tutorial 14

U
UnbindConnection method 124
Update method 288
update status

and Update method 271
in distributed applications 107

UpdateData method 86
accessing a database 62
example 42
exceptions thrown by 93
handling errors 93
resetting status flags 109
saving changes 64
using 64
when called 87

updating data 64
example 42

UserID Transaction property 114
Utility class 8

GetDataWindowObjectEntries method 61

V
validation rules in Web DataWindow 215
view, types of

Design (DataWindow painter) 18
HTML Preview (DataWindow painter) 19
Preview (DataWindow painter) 19
Syntax (Select painter) 25
Table Layout (Select painter) 25

ViewState, in ASP.NET 192

W
Web applications and DataWindow technology 171
Web DataWindow

about 171
aggregation functions 226
client-side scripts 254
context management 193
controls 175
data cache management 195
data manipulation 226
DataWindow objects 214
events for client control 254
expressions 226
graphs 203
JavaScript caching 223
JavaScript Generator wizard 223
maintaining state 192
methods for client control 256
navigation 226
picture button 227
printing 207
process 179
render formats 184
scroll bars 200
server component and client control 175
types 172
using 176

Web DataWindow client control functions
IsRowSelected 275

Web DataWindow methods
SetScroll 285

Web page processing 174
Web server controls 173
WebDataWindowControl

about 175
properties 185

WHERE clause
building 24
specifying 26

wizards
DataWindow 16
Web DataWindow JavaScript Generator 223



Index

314 DataWindow .NET

X
XHTML export template

creating and saving 236
Detail Start element 240
editing 242
exporting 251
saving 238

XML 177
XML Web DataWindow

benefits 184
how it works 181
how to use 178
using 176

XmlConfigurations property 190
XSLT 177


	Programmer’s Guide
	About This Book
	Subject
	Audience
	Related books
	Code samples
	Other sources of information
	If you need help

	CHAPTER 1 Introduction to DataWindow .NET
	About DataWindow objects, DataWindowControls, WebDataWindowControls, and DataStores
	DataWindow .NET components
	DataWindow .NET class hierarchy
	Classes, structures, delegates, and enumerations in the Sybase.DataWindow namespace
	Classes, structures, delegates, and enumerations in the Sybase.DataWindow.Web namespace
	Installing DataWindow .NET
	Getting context-sensitive help

	CHAPTER 2 Tutorial
	About this tutorial
	Creating a project and library
	Connecting to the EAS Demo database
	Creating and saving a DataWindow object
	Modifying the appearance of the DataWindow object
	Copying a DataWindow object into a library
	Creating a second DataWindow object
	Using SQL Select to build a DataWindow object

	Modifying the appearance of the second DataWindow object
	Adding DataWindows to a form
	Adding a DataWindowControl to a Windows form
	Associating a DataWindow object with the control
	Adding a second DataWindowControl to the form
	Adding a Transaction object to the form
	Connecting to the database
	Retrieving data
	Updating data
	Building a deployment library
	Adding a WebDataWindowControl to a Web form
	Associating a DataWindow object with the control
	Adding a second DataWindowControl to the form
	Adding a Transaction object to the form
	Connecting to the database
	Retrieving data into the detail DataWindow

	CHAPTER 3 Working with DataWindow Controls
	About DataWindow controls
	Using drag-and-drop
	Creating a control in code
	Editing the DataWindow object in the control
	Specifying the DataWindow object at runtime

	Accessing a database
	Retrieving and updating data
	Basic data retrieval
	Using retrieval arguments
	Retrieving data into DataWindow controls on tab pages
	Updating data


	Using a DataSet as the data source
	The binding model
	The retrieve and update model

	Importing data from an external source
	Exporting data from a DataWindow object
	Manipulating data in a DataWindow control
	How a DataWindowControl manages data
	Accessing and manipulating the text in the edit control
	Coding the ItemChanged event
	Coding the ItemError event

	Accessing the items in a DataWindow
	Accessing data values using methods
	Accessing data values using DataWindow data expressions
	Accessing data: examples


	Using other DataWindow methods
	Accessing the properties of a DataWindow object
	Updating the database
	How the DataWindow control updates the database
	Changing row or column status programmatically

	Handling events
	Handling DataWindow exceptions
	The DbErrorException class

	Creating reports
	Planning and building the DataWindow object
	Printing the report

	Using composite reports
	Using crosstabs
	Viewing the underlying data
	Letting users redefine the crosstab

	Using graphs
	Types of graphs
	For more information


	CHAPTER 4 Working with DataStores
	About DataStores
	Working with a DataStore
	Accessing and manipulating data in a DataStore
	Event handling
	Sharing information
	.NET remoting
	Typical usage scenario


	CHAPTER 5 Working with Transaction and AdoTransaction Objects
	About the Transaction and AdoTransaction classes
	Using a Transaction object
	Creating a Transaction object using drag and drop
	Creating a Transaction object in code
	Setting Transaction object properties
	Connecting to the database
	Associating the Transaction object with a DataWindow control or DataStore
	Disconnecting from the database
	Exception handling

	Using an AdoTransaction object
	Creating an ADO.NET Connection object
	Opening a connection
	Creating an AdoTransaction object
	Associating the AdoTransaction object with a DataWindow control or DataStore
	Starting a transaction and manipulating data


	CHAPTER 6 Accessing DataWindow Object Properties in Code
	About properties of the DataWindow object and its controls
	What you can do with DataWindow object properties
	How to specify property values in the DataWindow painter

	Accessing DataWindow object property values in code
	Late binding
	Early binding

	Accessing properties directly
	GraphicObject classes
	Using DataWindow expressions as property values
	PrintProperties class
	Edit style properties

	Using Modify and SetProperty
	Advantages and drawbacks of the Modify method
	Handling errors
	Nested strings and special characters for DataWindow object properties


	CHAPTER 7 Dynamically Changing DataWindow Objects
	About dynamic DataWindow processing
	Modifying a DataWindow object
	Creating a DataWindow object
	Create and SetTransaction
	Specifying the DataWindow object syntax
	Using DataWindowSyntaxFromSql
	Creating the syntax yourself
	Creating and destroying composite reports at runtime
	Modifying a crosstab's properties at runtime


	Providing query ability to users
	How query mode works
	Using query mode

	Providing Help buttons

	CHAPTER 8 Manipulating Graphs
	Using graphs
	Modifying graph properties
	How parts of a graph are represented
	Referencing parts of a graph

	Accessing data properties
	Getting and setting information about the data and its display
	Saving graph data
	Modifying colors, fill patterns, and other data


	CHAPTER 9 Using Web DataWindows
	What the Web DataWindow is
	About ASP.NET
	ASP.NET application files
	Web server controls
	Web page processing

	The Web DataWindow server control and client control
	Using the Web DataWindow
	About XML, XSLT, CSS, and XHTML
	How to use the Web DataWindow
	How the Web DataWindow works
	How the XML Web DataWindow works
	Server-side and client-side activity

	XML, XHTML, and HTML formats

	WebDataWindowControl properties
	Controlling the size of generated code
	Generating JavaScript for common management tasks
	Configuring XML
	Maintaining state
	DataWindow .NET context management
	Integrated data cache management
	Avoiding property conflicts
	Life cycle

	Postbacks and callbacks
	Paging methods
	RowsPerPage and scroll bars
	Page navigation bars
	Rendering graphs
	Creating hyperlinks

	Printing Web DataWindows
	Server-side printing
	Saving as PDF

	Setting up database connections

	CHAPTER 10 Designing Web DataWindows
	Working in DataWindow Designer
	Designing DataWindow objects for the Web DataWindow
	Web DataWindow properties
	Setting Web generation properties for the Web DataWindow

	Using JavaScript caching in DataWindow Designer
	Using expressions
	Using Button and Picture controls
	Using a drop-down calendar
	Using a drop-down DataWindow
	Previewing the DataWindow
	Rendering HTML for controls in an HTML Web DataWindow

	CHAPTER 11 Working with XHTML Templates
	The Export Template view for XHTML
	What you can customize
	The default XHTML export template
	Managing templates
	Creating and saving templates
	Selecting the template to use

	Template structure
	Header section
	Detail section

	Editing XHTML export templates
	Element Context Menus
	Root element
	DataWindow controls
	DataWindow painter expressions
	Element attributes
	Style declarations
	JavaScript event handlers
	CDATA sections

	Selecting XHTML export templates at runtime
	Exporting DataWindow data in XML or in XHTML

	CHAPTER 12 Writing Scripts for the Web DataWindow Client Control
	About client-side programming
	Implementing an event
	Calling client methods
	Alphabetical list of events for the Web DataWindow client control
	ButtonClicked
	ButtonClicking
	Clicked
	ItemChanged
	ItemError
	ItemFocusChanged
	RowFocusChanged
	RowFocusChanging
	Alphabetical list of methods for the Web DataWindow client control
	AcceptText
	DeletedCount
	DeleteRow
	GetClickedColumn
	GetClickedRow
	GetColumn
	GetItem
	GetItemStatus
	GetNextModified
	GetRow
	InsertRow
	IsRowSelected
	ModifiedCount
	Retrieve
	RowCount
	ScrollFirstPage
	ScrollLastPage
	ScrollNextPage
	ScrollPriorPage
	SelectRow
	SetColumn
	SetItem
	SetRow
	SetScroll
	SetSort
	Sort
	Update

	CHAPTER 13 Deploying DataWindow .NET Applications
	Deploying applications
	Deploying Windows form applications
	Deployment techniques for Windows applications

	Deploying ASP.NET applications
	Deployment techniques for Web applications

	About deployment libraries
	DataWindow .NET runtime files
	Deploying .NET assemblies
	Using the Runtime Packager
	Using deployment dialog boxes
	Saving data in PDF format

	Index


