
Copyright 1997-2007 by Sybase, Inc. All rights reserved. Sybase trademarks can be viewed at the Sybase trademarks page
at http://www.sybase.com/detail?id=1011207. Sybase and the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States
of America. Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. Unicode
and the Unicode Logo are registered trademarks of Unicode, Inc. All other company and product names mentioned may be trademarks of the respec-
tive companies with which they are associated.

 EAServer 6.1 New Features Guide
Document ID: DC38032-01-0610-01

Last revised: December 2007

.NET client support
EAServer 6.1 includes .NET client support, and enables IIOP/IIOPS
communication between:

• .NET C# clients and EAServer components

• PowerBuilder® WinForm applications and EAServer

• .NET and J2EE distributed objects

.NET client support includes data marshalling: data from multiple
sources is collected, converted to a common format if necessary, and
prepared to send over a network.

These components provide .NET client support:

• NetCompiler Generates C# stubs and helper classes for EAServer
components. To invoke NetCompiler, run:

%DJC_HOME%\bin\netcc.bat [class name] | [ejbjar-name] | [name.jar]

Topic Page

.NET client support 1

Management Console Eclipse plug-in 10

Single sign-on and SiteMinder support 10

Customizing the location of system log files 11

Tracking HTTP sessions 11

Java SE 6.0 support 11

Deploying J2EE archives 12

Internationalization support 12

.NET client support

2 New Features

where:

• .NET runtime assemblies Assembly files that provide runtime support
to enable C# stubs to communicate with EAServer:

• com.sybase.iiop.net.dll – for data marshalling, and for managing
connections, SSL, and compression. The next two runtime assemblies
depend on this one.

• com.sybase.ejb.net.dll – enables invoking EJBs.

• com.sybase.jms.net.dll – enables calling JMS.

The .NET runtime assemblies are located in %DJC_HOME%\lib.

Developing and running a sample client
This section describes how to develop and run a .NET C# client application
that communicates with an EAServer EJB component.

❖ Creating and deploying an EJB

1 Create an EJB called EchoEJB and add it to EchoEJB.jar.

2 To deploy the EJB, run:

deploy.bat EchoEJB.jar

❖ Generating the C# stubs

1 Verify that the C# compiler (csc.exe) is in your path.

2 Run NetCompiler:

Option Description

class name A class that is either an interface or serializable:

• If the class is an interface, NetCompiler generates stubs for
it.

• If the class is serializable, NetCompiler generates helper
classes for data marshalling.

If the class name begins with “java” or if the class is a
primitive, it is ignored.

ejbjar-name An EJB that is deployed in EAServer. NetCompiler generates
C# stubs for both the home and remote interfaces.

name.jar An EJB JAR that is deployed in EAServer. NetCompiler
generates C# stubs for both the home and remote interfaces.

.NET client support

EAServer 6.1 3

netcc.bat ejbjar-echoejb

NetCompiler creates these C# source files in %DJC_HOME%\genfiles\cs\src:

• echoejb.cs – interface file, which must be included to call the EJB.

• echoejb_Stub.cs – stub file.

• echoejbHelper.cs – helper classes for data marshalling and narrowing.

The source files are packaged in the output assembly
%DJC_HOME%\deploy\assemblies\echoejb.client.dll.

Note You can use the C# stubs that are compiled into assembly files from
Visual Basic .NET clients.

❖ Developing the C# sample client

• Create a C# file called EchoClient.cs, and add this code:

using System;
using System.Data;
using System.Collections;
using System.Net;
using System.Net.Sockets;

using com.sybase.ejb.net;
using com.sybase.net;

public class EchoClient
{

public static void Main()
{

EjbProvider ejbProvider = EjbProvider.GetInstance();
ejbProvider.SetProviderURL("iiop://host:port");
ejbProvider.SetUsername("admin@system");
ejbProvider.SetPassword("sybase123");

EjbConnection ejb = EjbConnection.GetInstance();
EchoRemoteHome home = (EchoRemoteHome)

ejb.LookupHome(typeof(EchoRemoteHome), "EchoEJB/EchoBean");
EchoRemote echo = home.create();
Console.WriteLine(echo.hello("World"));

}
}

where:

.NET client support

4 New Features

❖ Compiling and running the C# sample client

1 To compile EchoClient.cs, run:

csc EchoClient.cs /r:%DJC_HOME%\lib\com.sybase.iiop.net.dll
/r:%DJC_HOME%\lib\com.sybase.ejb.net.dll
/r:%DJC_HOME%\deploy\assemblies\echoejb.client.dll

Compiling the client creates EchoClient.exe, which you can run from the
command line.

Note com.sybase.iiop.net.dll and com.sybase.ejb.net.dll are shipped with
EAServer 6.1 in the lib subdirectory, and are the basic framework of the
.NET client runtime support. echoejb.client.dll is created by netcc.bat when
you generate the C# stubs for the EJB. The classes in echoejb.client.dll call
methods in com.sybase.iiop.net.dll and com.sybase.ejb.net.dll.

2 Run:

EchoClient.exe

The program output is:

Hello World!

Code Description

using com.sybase.net Imports the stub classes that were generated by
running netcc.bat.

EjbProvider Acts as a name service. The code defines the URL
(machine name and IIOP port number), user
name, and password.

ejb.LookupHome Gets the home interface
com.sybase.net.EchoRemoteHome, looks up the
server’s naming context, and gets a stub from the
server using the connection information from
EjbProvider.

Note The code for EjbProvider and EjbConnection
is in com.sybase.ejb.net.dll.

home.create Gets the remote interface
com.sybase.net.EchoRemote.

echo.hello Calls the remote interface business method hello.

.NET client support

EAServer 6.1 5

❖ Troubleshooting

• If you see the following error message when you run the client application,
the necessary assembly files cannot be found:

Unhandled Exception: System.IO.FileNotFoundException: Could not load
file or assembly 'com.sybase.ejb.net, Version=0.0.0.0, Culture=neutral,
PublicKeyToken=null' or one of its dependencies. The system cannot find
the file specified. File name: 'com.sybase.ejb.net, Version=0.0.0.0,
Culture=neutral, PublicKeyToken=null' at EchoClient.Main()

To solve this problem, you can either:

• Copy the assembly files to the current directory, or

• Create an XML configuration file to identify the location of the
assembly files:

a In the directory that contains EchoClient.exe, create an XML file
called EchoClient.exe.config, and add this code:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
<runtime>

<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
<probing privatePath="lib"/>
</assemblyBinding>

</runtime>
</configuration>

b Copy these assembly files to the location identified by
privatePath, which must be a subdirectory of the application’s
base directory:

• com.sybase.iiop.net.dll

• com.sybase.ejb.net.dll

• com.sybase.jms.net.dll

.NET client support

6 New Features

Creating a .NET JMS sample client
.NET clients can use the Java Messaging System (JMS) to create, send, and
receive messages. You can also use JMS from Visual Basic .NET clients. The
clients can use either a point-to-point or publish/subscribe messaging model,
as illustrated in the following sample client. The point-to-point messaging
model delivers messages to specific queues. The publish/subscribe messaging
model defines a topic and publishes messages that can be read by all
subscribers to the topic.

This sample client acts as both the producer and consumer of JMS messages.
In real applications, .NET clients can also send messages to, and receive
messages from, Java applications. You can compile this client application by
running csc.exe:

using System;
using System.Threading;
using System.Net;
using com.sybase.jms.net;

public class JmsTest
{

// To get this test to pass, first run:
//
// set-password testuser testpass1

public static void Main()
{

int retry = 3;

Create a JmsProvider instance, and set its URL, user name, and password
properties:

JmsProvider jmsProvider = JmsProvider.GetInstance();
jmsProvider.SetProviderURL("iiop://" +

Dns.GetHostName() + ":2000");
jmsProvider.SetUsername("testuser");
jmsProvider.SetPassword("testpass1");

Create a JmsConnection object to act as the gateway between EAServer and the
.NET client:

JmsConnection jmsConn = jmsProvider.GetConnection();

.NET client support

EAServer 6.1 7

Define the local-storage location for messages, which allows .NET clients to
temporarily store messages locally, then send the messages when the clients
connect to EAServer. This example uses the Windows registry for local
storage. WorkOffline directs the client to work locally.

jmsConn.SetLocalStore(LocalRegistry.GetStore());
jmsConn.WorkOffline();
Console.WriteLine("*** working offline ***");

Create a text message:

Message msg1 =
MessageUtil.GetTextMessage("QueueQueue");

Send delivers the message to MyQueue1. Since the client is working in offline
mode, the message is stored locally:

string q1 = "MyQueue1";
jmsConn.Send(q1, msg1);
Console.WriteLine("<== sent message: " +

msg1.body.text());

Thread.Sleep(3000);

Tell the client to work in online mode. Messages that are stored locally are sent
to the remote server. The client can also receive messages from the remote
server.

jmsConn.WorkOnline();
Console.WriteLine("*** working online ***");
Thread.Sleep(3000);

Calling Receive(q1, 1000) receives messages from MyQueue1 with a timeout
value of one second. After the client receives a message, it calls Acknowledge
to tell EAServer that the message was received and it is safe to delete it.

for (int i = 0; i < retry; i++)
{

Message msg = jmsConn.Receive(q1, 1000);

if (msg != null)
{

Console.WriteLine("==> received message :" +
msg.body.text());

jmsConn.Acknowledge(msg);

.NET client support

8 New Features

}
}

To publish a text message, define the topic, and create the message:

String topic = "MyTopic";
Message msg2 =
MessageUtil.GetTextMessage("TopicTopic");

Set the client ID, which identifies the client application:

jmsConn.SetClientID("ccID");
string queue = jmsConn.GetClientID();

Call Subscribe to register a subscription to the topic. This example uses the
client ID as the subscribing queue ID:

jmsConn.Subscribe(queue, topic);

Working in offline mode, publish the message (msg2), which is stored locally.
When the client changes to online mode, any queue that is subscribed to the
topic receives the message:

jmsConn.WorkOffline();
Console.WriteLine("*** working offline");

jmsConn.Publish(topic, msg2);
Console.WriteLine("<== published message: " +

msg2.body.text());

Thread.Sleep(3000);

Change to work online. Receive and acknowledge messages with the topic
MyTopic:

jmsConn.WorkOnline();
Console.WriteLine("*** working online");
Thread.Sleep(3000);

for (int i = 0; i < retry; i++)
{

Message msg = jmsConn.Receive(queue, 1000);

if (msg != null)
{

Console.WriteLine("==> received message from

.NET client support

EAServer 6.1 9

topic: " + msg.body.text());
jmsConn.Acknowledge(msg);

}
}

Call Unsubscribe to tell EAServer that this queue is no longer interested in
receiving messages with the specified topic.

msConn.Unsubscribe(queue);
}
}

Datatype support
EAServer 6.1 supports marshalling for the following datatypes in .NET clients.
Marshalling is supported for data passed either by reference or by value.

Table 1 describes the datatype mappings between IDL, Java, and C#.

Table 1: Datatype mappings

Datatype

boolean

byte

int

string

Array (one, two, or three dimensional)

Exception

Object Reference

Structure

Union

IDL datatype Java datatype C# datatype

boolean boolean System.Boolean

char char System.Char

octet byte System.Byte

short short System.Int16

long int System.Int32

long long long System.Int64

float float System.Single

double double System.Double

string String System.String

Management Console Eclipse plug-in

10 New Features

Management Console Eclipse plug-in
In EAServer 6.1, the Management Console is available as an Eclipse 3.2
plug-in. The plug-in is installed automatically when you install EAServer and
upgrade Eclipse. You can run the Management Console either in Eclipse or in
a Web browser.

Single sign-on and SiteMinder support
Single sign-on (SSO) support allows clients to access multiple applications that
require credentials by logging in only once.

EAServer 6.1 works with Computer Associates (formerly Netegrity)
SiteMinder, which provides security features, such as X509 single sign-on.

❖ Enabling SSO

1 In the Management Console, expand the Servers node, and select the
server.

2 On the server’s HTTP tab, select Single Sign On, then click Apply.

BCD::Binary byte System.Byte[]

BCD::Decimal java.math.BigDecimal System.Decimal

BCD::Money java.math.BigDecimal System.Decimal

MJD::Date java.util.Calendar System.DateTime

MJD::Time java.util.Calendar System.DateTime

MJD::Timestamp java.util.Calendar System.DateTime

TabularResults::ResultSet java.sql.ResultSet System.Data.DataTable

TabularResults::ResultSets java.sql.ResultSet[] System.Data.DataTable[]

MyModule::MyException MyModule.ejb.MyException MyModule.ejb.MyException

MyModule::MyComp MyModule.ejb.MyComp MyModule.ejb.MyComp

MyModule::MyStruct MyModule.ejb.MyStruct MyModule.ejb.MyStruct

MyModule::MyUnion MyModule.ejb.UnionName MyModule.ejb.UnionName

MyModule::MySequence MyModule.ejb.MyElement[] MyModule.ejb.MyElement[]

IDL datatype Java datatype C# datatype

Customizing the location of system log files

EAServer 6.1 11

Customizing the location of system log files
To customize the location of the EAServer system log files, you can either:

• Specify the location for all log files by setting the djc.logFileLocation
property in local-setenv.bat (Windows) or local-setenv.sh (UNIX), or

• Specify the location for the server log only by setting the djc.logFile
property in the server properties file.

Note If you set both property values, djc.logFileLocation takes precedence.

The log files and their archives are moved from the old location to the new
location.

Tracking HTTP sessions
You can specify whether to track HTTP sessions using a cookie by setting the
web.useCookie property in a Web-application configuration script, either
webapp-${webapp}.xml or webapp-${webapp}-user.xml. For example:

<property name="web.useCookie" value="true"/>

To disable cookies for the Web application, set the value of web.useCookie to
false; the default value is true.

Java SE 6.0 support
EAServer 6.1 includes the Java Standard Edition (SE) 6.0 JDK. To start the
server using JDK 1.6, run:

• Windows:

start-server -jdk16

• UNIX:

start-server.sh -jdk16

Deploying J2EE archives

12 New Features

For a complete list of the server start-up options, see “Starting the server” in
Chapter 3, “Creating and Configuring Servers,” in the System Administration
Guide.

Deploying J2EE archives
To use the deploy command line tool to deploy a J2EE archive, use these
options to specify the JDK version, the runtime library, and the compiler
version for compiling the generated Java source files:

For example, to deploy test.war, load eas-server-15.jar, and compile the
generated Java source files with the JDK 1.5 compiler, run:

deploy.bat -jdk15 -rt15 -target15 test.war

The full description of the deploy command is in Chapter 12, “Command Line
Tools,” in the System Administration Guide.

Internationalization support
EAServer 6.1 supports internationalization-compliant entity names for:

• CORBA/Java packages and components

• EJB packages and components

• Web application packages and components

• Application clients

• Application packages and components

• Connectors

• Data sources

• Web services exposed from CORBA and EJB components

Compiler version Options

JDK 1.4 -jdk14 -rt14 -target14

JDK 1.5 -jdk15 -rt15 -target15

JDK 1.6 -jdk16 -rt16 -target16

	EAServer 6.1 New Features Guide
	.NET client support
	Developing and running a sample client
	Creating a .NET JMS sample client
	Datatype support

	Management Console Eclipse plug-in
	Single sign-on and SiteMinder support
	Customizing the location of system log files
	Tracking HTTP sessions
	Java SE 6.0 support
	Deploying J2EE archives
	Internationalization support

