EJB Server User’s Guide

Adaptive Server® Enterprise

12.5.1

DOCUMENT ID: DC33690-01-1251-01
LAST REVISED: August 2003

Copyright © 1989-2003 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in thisdocument is subject to change without notice. The software described herein is furnished under alicense agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customersin other countries with a U.S. license agreement may contact Customer Fulfillment viathe above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software rel ease dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture,
Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server
Enterprise Replication, Adaptive Server Everywhere, Adaptive Server 1Q, Adaptive Warehouse, Anywhere Studio, Application
Manager, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Trandlator, APT-Library, AvantGo,
AvantGo Application Alerts, AvantGo Mobile Delivery, AvantGo Mobile Document Viewer, AvantGo Mobile Inspection, AvantGo
Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon Application Server,
AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BizTracker, ClearConnect, Client-Library,
Client Services, Convoy/DM, Copernicus, DataPipeline, DataWorkbench, DataArchitect, Database Analyzer, DataExpress, DataServer,
Datawindow, DB-Library, doQueue, Devel opers Workbench, Direct Connect Anywhere, DirectConnect, Distribution Director, eeADK,
E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway, ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise
Application Studio, Enterprise Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server
Manager, Enterprise Work Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA,
Financial Fusion, Financia Fusion Server, Gateway Manager, GlobalFI X, ImpactNow, |ndustry Warehouse Studio, InfoMaker,
Information Anywhere, Information Everywhere, |nformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, Mail
Anywhere Studio, MainframeConnect, Maintenance Express, Manage Anywhere Studio, M-Business Channel, M-Business Network,
M-Business Server, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, My AvantGo, My AvantGo MediaChannel,
My AvantGo Mobile Marketing, MySupport, Net-Gateway, Net-Library, New Era of Networks, ObjectConnect, ObjectCycle,
OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open
Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC
Net Library, PocketBuilder, Pocket PowerBuilder, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class
Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft, PowerStage,
PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst,
Rapport, Report Workbench, Report-Execute, Replication Agent, Replication Driver, Replication Server, Replication Server Manager,
Replication Toolkit, Resource Manager, RW-DisplayLib, S-Designor, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian,
SKILS, smart.partners, smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL
Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART,
SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, SW.I.F.T.
Message Format Libraries, Sybase Central, Sybase Client/Server Interfaces, Sybase Financial Server, Sybase Gateways, Sybase MPP,
Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financial,
SyberAssist, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, TradeForce, Transact-SQL,
Trang ation Toolkit, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visua
Components, Visual Speller, VisualWriter, VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse
WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup
SQL Server, XA-Library, XA-Server and XP Server are trademarks of Sybase, Inc. 03/03

Unicode and the Unicode L ogo are registered trademarks of Unicode, Inc.
All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

About This Book

PART 1

CHAPTER 1

CHAPTER 2

User’'s Guide

... iX
OVERVIEW
ADOUL EJB SEIVEIiiiiiie ittt ettt 3
ADOUL EJB SEIVEToiiiitiii ettt ettt ettt e e eieee e e e 3
FRALUIES ... 7
The EJB Server execution engiNecccceevcieeeaniieeesnieeee e 8
COMPONENE SUPPOIT ...eeeiiiieeeiiiie e eiiee et e e 9
Network protocol SUPPOIToeviiiiiiieiiee e 10
Administration and development toolscccccooiieriinens 11
Client-session and component-lifecycle management............ 12
NAMING SEIVICES ...uvviiiie ittt seeeees 14
ConNNEection CACNINGcciiiiiiiiiiiiii e 15
Transaction Management.........ccuvvvveeeeeeniiiiiiee e siiireee e 15
Thread-safety fEatUresccccccvvviiiiiiie e 15
RESUIE-SEL SUPPOIT ..eeviieiiiiiiiiiiiee e 16
Permissions and rolesccceiiiiiie e 17
POWEIT OVEIVIEW ..ottt e e 17
Getting Startedcccvvvieieiee e 19
Before you uUse EJB SEIVEr..........cuvvieeiiiiiiiiieeee e 19
Terminology and CONCEPLScooviieiieiiiiie e 20
TEIMINOIOGY ..ttt e eeee e 20
CONCEPLS ..o s 21
Developing an applicationccccooiiiiiiii i 21
The EJB Server runtime environmMentccccveevvvveeeiiieeennns 22
BASIC LASKS ..ottt 23
Using the Adaptive Server plug-in to Sybase Central 24
ENabling EJB SEIVErcccuviiiiiiiiiiiiiiiiiee e 25
Disabling EJB SEIVETccuuviiiiiiiiiiiiiiieeee e 26
Starting EJB Server automatically.........cccccoovvviivieiiieesiiniiinnn, 27
Starting EJB Server independentlycococieiiiiiiiiineene 27

Contents

PART 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

Shutting down EJB SEerverS........cccocuviviieieeiiiiiiiieeeee e 28
Verifying the status of EJB Server.........cccovviveiiiiiiiinieieeee s 29

INFORMATION FOR DEVELOPERS

Enterprise JavaBeans OVEIVIEWocccceeiiiiiiieiniiiieieee e 33
About Enterprise JavaBean COMPONENES..........evveeviiiivineeieeesnnnnns 33
EJB COMPONENL LYPES .ooeieeiiiiieeeeeeeeeeee 34

EJB transaction attribute values............ccccceeviiiiiiiiiie e 36

EJB CONtAINET SEIVICESviiiiiiieie ittt 38

EJB SUPPOIT.. . 38
Running EJB components in EJB Server........ccccocccveeviieeen. 38

EJB clients connecting to EJB Server..........ccocceevieeeeiiienens 39
Creating Component-Based ApplicationS..........ccccccoeevvcvnvvnnnene. 41
Application architeCturecooieiiiiiiie e 41
Designing the applicationooiiiiiiieiiiee e 43
Implementing components and clientS..........cccoccceeeiieieniee e, 45
Deploying the applicationcooeiiiiiiiiiiee e a7
Deploying COMPONENES.....cuiiiiiiiiiiiiiiiee et e e 47
Developing CHENtSocvvveiiie i 48
Understanding Transactions and Component Lifecycles 49
Component lIfECYCIESuuviiiiiiiiiiiie e 49
The EJB Server transaction processing modelccccccvveeiiinnns 53
How EJB Server transactions WOrkccooovvveiniiveenninneens 54
Benefits of using EJB Server transactionsccocvvvveeeennn. 54
Defining transactional semantics..........cccocceveeiiieeeeicieee . 55
EXAMPIE oo 61
Dynamic enlistment in Bean-managed transactions 62
OTS/XA transaction Model............ooviiiiiiiiin i 64
Working with EJB Packages and Componentscccccccveeeeeennnn. 67
Packages and Enterprise JavaBean componentsc....... 67
Importing Enterprise JavaBeanscccceeiiuiieeeiiiieeeiiiee e 68
INstalling COMPONENLScooiiiiiiiiie e 72
Modifying COMPONENLScoeiiiiiiiiiiiie e 73
Configuring component Properties ... iviieeeeeeeniniiiiieeeee e 73
General component Properties........cccvvveeveeevviiiiieeneeeessninieeenns 73
Transactions tab component properties..........cccvvvvveeesiiivvnnn. 74
Instances tab component propertiescccccccveeeiiniiineenennnn. 75

EJB Server

Contents

CHAPTER 7

CHAPTER 8

CHAPTER 9

User’s Guide

Resources tab component propertiesccccoeceveeiiieeeeeneeen. 77
Persistence tab component properties.........cccoccoveeiiieeeenneeen. 79

All Properties tabcccvvvviieee e 80
Generating stubs and Skeletons.........cccccovviiiiieeie e 82
Creating Enterprise JavaBeanscccccouvvvriieeeeeiiiiiiiiieeeeeensinnns 83
Modifying PACKAGEScvviiiiiiiiiiiiiiie e 89
Configuring package propertiesccccccvviiiiieeenee i 90
Exporting packages to EJB-JAR fileS.......ccccccceeiiiiiiiiiiiiie e 91
Creating Enterprise JavaBean ClientS.......cccccccceveeeeviiiiicninnnnnnn. 93
Developing an EJB Clientcevvviieiiiiiiiiine e 93
Generating EJB StUDScoooeiiiiiiiieec e 94
JaVa PACKAGESeeiiieiie it et 95
Compiling StUDSeiiiiiie e 95
Instantiating home interface proxiesccccevieeiniiiee e 96
Obtaining an initial naming contextccccceiiiiieiiieee e 96
Resolving Bean home namescccceviiieeiiieee e 98
Instantiating remote interface proxiesccccovvvvveeerieiiniiiinvneennn. 99
Calling remote interface methodsccccovcvviieeiiiniiciiiieeeen 101
Managing tranSaACHIONSoocuviiiiiiee i 101
Serializing and deserializing Bean proXi€S........cccccouvcvvveevieeeninnns 102
Managing Persistent Component Stateccccocvveeeiiiiieeeenns 105
Persistence for entity Java Beans...........cccvvveeviiiiniiiiiiiene e, 105
Using component-managed persistence.........ccocccvveevvvivvnnen. 106
Using automatic persiStenCeccovceeeeiriieeeiiiieeeeieeeene 106
Persistence for stateful components............occcceivieeeiiinie e, 110
Using Java serialization..........cccoooeeeriiiiiie e 111
Using automatic persiStenCeccovceeeeriiieeeiniieeeeiieeeene 111
StOrage COMPONENTSuuiiieeiiiiiiieeieae e e et e e e e s e e e e e e aanees 112
Supported Java, IDL, and JDBC/SQL typescccoveviivieeernunenn. 112
Table schema for binary storage..........cccccoeeiiiiee i 113
Developing Applications with PowerJ and EJB Server........... 115
About the development ProCeSS...........cevvveviiiiiiiiieieeesiiiieee e 115
Creating workspaces, targets, and classes..........cccccceeeiinnns 118
Designing the user interface...........ccoocvvvveviee i 121
DeSigNiNg MENUS......ccoiiiiiiiiiiiie et 122
ACCESSING JALAciiiiiiiiiiiiie e 122
Coding application [0giICcocvvvveeeeeeiiiiiiiiiee e 123
Building distributed and Web applications that use EJB Server .. 124
ADOUL EJB SEIVETiiiiiiiiiie ettt 124

Contents

Architecture of distributed and Web applications 125
Building EJB Server components with Powerd 126
Building a Java client for a distributed or Web application.... 132
Building client/server applications using JDBCcccceeeiuneee.. 133
Building the applicationccccoviiieiiiii e, 134
Building Enterprise JavaBeans 1.1 components................ccc..e.... 137
PART 3 INFORMATION FOR ADMINISTRATORS
CHAPTER 10 Configuring EJB SEIVENcc.uuuiiiiiiiiieeeee i cccieeeeeee e e e e e e e e 141
Configuring an EJB SErVEr.........cccuuiiiiieiiiiiiiieiiie e 141
(€1 o= - | SRS 142
oo = (o =TSP 143
NAMING SEIVICEeeiiiiiie it 143
All PrOPEIIES ...ttt e e 144
Configuring server stack SiZeoccovieiiieeiiieee e 146
CharacCter SEtS.......cooiiiiieiie e 147
Shared-memory CONNECLIONSuuvvveeieeiiiiiiiiiee e 147
Managing connNection CaCheS..........ccoevvviiiiiiiiiieeeeniiiiieee e 148
Creating and installing a new connection cache.................... 148
Modifying connection Cachesccccceeeviiiiiieenie e, 149
Modifying connection cache properties..........cccccvvvvvvvvenennnn. 149
Connection cache refreshccocociii e 152
Connection Cache PING.......cueeeiiiiieeiiee e 153
Managing XA FESOUICESceiuureeiaieeeeaaieeaeaaieeeeeateeeeeaseeeeeaeeeess 154
Setting UP XA FE€SOUMCES.c.uvieieiiiieee it e e eiiee e e eiie e e enieee e 154
Creating XA FESOUICESccuuieeiiiiieeaaieeaeanieeeeeaieeeeeeeneeeeenee 155
Configuring LISTENEIScuviiieee e 158
Preconfigured lISteNers...........ocooviiiiiie i 158
Configuring lISLENEIS......ccvviiiiiiie e 158
Replacing an EJB SEIVErc.c.uuuiiiiiiiiiiiiieiie et 160
CHAPTER 11 EJB Server Naming ServiCeS......occciviiiiiiiiieiiiiiieee et 163
How does the EJB Server naming service WOrk?occuvveeen. 163
EJB Server initial CONEXEcovvvieiiiiiieeiieee e 164
Name binding example........cccoovciiiiiiieiie e 165
Transient vs. persistent StOrageccoovvvvvveerieeeiiiciiieeneeeennn 166
INDI SUPPOIT ...t neeeeeeeeeeennenneennnes 167
JINDI J2EE fEAUIESueieeiiiiiiiiiiie et 167
Configuring the EJB Server naming Servicecccceevveeeenenen. 172
Name binding password SECUTLYccooceveeireeericieeeeieenn 173
Using an LDAP server With EJB SEIVercccccvvcieeeiiiieeenaneen. 173

Vi EJB Server

Contents

LDAP object schema and EJB Server objects 174
Storing EJB Server object bindings on an LDAP server 174
1o = SRS 175

User’s Guide Vii

Contents

Viii EJB Server

About This Book

This book describes how to create Enterprise JavaBean (EJB) clients and
components for Sybase® EJB Server and Adaptive Server® Enterprise.

Audience Thisbook isintended for EJB component developers, Sybase System
Administrators, and others interested in EJB components.

How to use this book This book will assist you in creating EJB components and clients for
Sybase EJB Server. It contains these parts and chapters:

e Part 1, “Overview,” providesageneral description of the EJB Server
and sufficient information to allow you to get started using it. Part 1
contains these chapters:

Chapter 1, “ About EJB Server,” provides an overview of EJB
Server, asummary of EJB Server features, and a description of
Sybase PowerJ.

Chapter 2, “ Getting Started,” describes basic concepts,
terminology, and basic task information you need to use EJB
Server

e Part 2, “Information for Developers,” describes EJBs and presents
information about using the Adaptive Server plug-in for Sybase
Central and PowerJ to create EJB clients and components.

User’s Guide

Chapter 3, “Enterprise JavaBeans Overview,” describes
Enterprise JavaBeans components.

Chapter 4, “ Creating Component-Based Applications”
describes the process of designing, building, and deploying
applications with components executing in EJB Server.

Chapter 5, “Understanding Transactions and Component
Lifecycles’ explains the EJB Server component lifecycle and
transaction processing models.

Chapter 6, “Working with EJB Packages and Components,”
providesinstructionsfor creating, deploying, and modifying EJB
components and packages.

Related documents

e Chapter 7, “Creating Enterprise JavaBean Clients,” describes how to
implement EJB clients using the Sybase EJB client runtime.

e Chapter 8, “Managing Persistent Component State”’ describeshow to
manage persistence for Enterprise JavaBeans.

e Chapter 9, “Developing Applications with PowerJ and EJB Server,”
gives an overview of how to develop applications using PowerJ and
EJB Server

Part 3, “Information for Administrators,” describes how to set up and
manage the EJB Server. It also describes the system procedures that
support EJB Server.

e Chapter 10, “Configuring EJB Server,” describesbasic configuration
tasks to customize your installation, such as creating new servers,
changing server properties, and defining new connection caches

e Chapter 11, “EJB Server Naming Services’ describes how to use
naming services to associate alogical name with an object.

The following documents comprise the Sybase® Adaptive Server® Enterprise
documentation:

The release bulletin for your platform — contains last-minute information
that was too late to be included in the books.

A more recent version of the release bulletin may be available on the
World Wide Web. To check for critical product or document information
that was added after the release of the product CD, use the Sybase
Technical Library.

The Installation Guidefor your platform — describesinstallation, upgrade,
and configuration procedures for all Adaptive Server and related Sybase
products.

What's New in Adaptive Server Enterprise? — describes the new features
in Adaptive Server version 12.5.1, the system changes added to support
those features, and the changes that may affect your existing applications.

ASE Replicator User’s Guide — describes how to use the ASE Replicator
feature of Adaptive Server to implement basic replication from a primary
server to one or more remote Adaptive Servers.

Component Integration Services User’s Guide — explains how to use the
Adaptive Server Component Integration Services feature to connect
remote Sybase and non-Sybase databases.

EJB Server

About This Book

User’'s Guide

Configuring Adaptive Server Enterprise for your platform — provides
instructions for performing specific configuration tasks for Adaptive
Server.

Error Messages and Troubleshooting Guide — explains how to resolve
frequently occurring error messages and describes solutions to system
problems frequently encountered by users.

Full-Text Search Specialty Data Sore User’s Guide —describes how to use
the Full-Text Search feature with Verity to search Adaptive Server
Enterprise data.

Glossary — defines technical terms used in the Adaptive Server
documentation.

Historical Server User’s Guide—describes how to use Historical Server to
obtain performance information for SQL Server® and Adaptive Server.

Javain Adaptive Server Enterprise—describes how toinstall and use Java
classes as data types, functions, and stored procedures in the Adaptive
Server database.

jConnect for JIDBC Programmer’s Reference — describes the jConnect™
for IDBC™ product and explains how to use it to access data stored in
relational database management systems.

Job Scheduler User’s Guide — providesinstructions on how to install and
configure, and create and schedule jobs on alocal or remote Adaptive
Server using the command line or agraphical user interface (GUI).

Monitor Client Library Programmer’s Guide — describes how to write
Monitor Client Library applications that access Adaptive Server
performance data.

Monitor Server User’s Guide — describes how to use Monitor Server to
obtain performance statistics from SQL Server and Adaptive Server.

Performance and Tuning Guide —is a series of four books that explains
how to tune Adaptive Server for maximum performance:

e Basics—the basicsfor understanding and investigating performance
questions in Adaptive Server.

e Locking —describes how the various |ocking schemas can be used for
improving performance in Adaptive Server.

e Optimizer and Abstract Plans — describes how the optimizer
processes queries and how abstract plans can be used to change some
of the optimizer plans.

Xi

Xii

e Monitoring and Analyzing — explains how statistics are obtained and
used for monitoring and optimizing performance.

Quick Reference Guide — provides a comprehensive listing of the names
and syntax for commands, functions, system procedures, extended system
procedures, datatypes, and utilities in a pocket-sized book.

Reference Manual —is a series of four books that contains the following
detailed Transact-SQL® information:

e Building Blocks — Transact-SQL datatypes, functions, global
variables, expressions, identifiers and wildcards, and reserved words.

e Commands — Transact-SQL commands.

e Procedures — Transact-SQL system procedures, catalog stored
procedures, system extended stored procedures, and dbcc stored
procedures.

e Tables— Transact-SQL system tables and dbcc tables.

System Administration Guide — provides in-depth information about
administering servers and databases. This manual includes instructions
and guidelines for managing physical resources, security, user and system
databases, and specifying character conversion, international language,
and sort order settings.

System Tables Diagram — illustrates system tables and their entity
relationships in a poster format. Available only in print version.

Transact-SQL User’s Guide — documents Transact-SQL, Sybase's
enhanced version of the relational database language. This manual serves
as a textbook for beginning users of the database management system.
This manual also contains descriptions of the pubs2 and pubs3 sample
databases.

Using Adaptive Server Distributed Transaction Management Features —
explains how to configure, use, and troubleshoot Adaptive Server DTM
features in distributed transaction processing environments.

Using Sybase Failover in a High Availability System— provides
instructions for using Sybase’s Failover to configure an Adaptive Server
as a companion server in ahigh availability system.

Utility Guide — documents the Adaptive Server utility programs, such as
isgl and bep, which are executed at the operating system level.

Web Services User’s Guide — explains how to configure, use, and
troubleshoot Web Services for Adaptive Server.

EJB Server

About This Book

Other sources of
information

Sybasecertifications
on the Web

User’'s Guide

XA Interface Integration Guide for CICS, Encina, and TUXEDO —
provides instructions for using the Sybase DTM XA interface with
X/Open XA transaction managers.

XML Servicesin Adaptive Server Enter prise— describesthe Sybase native
XML processor and the Sybase Java-based XML support, introduces
XML in the database, and documents the query and mapping functions
that comprise XML Services.

Use the Sybase Getting Started CD, the Sybase Technical Library CD and the
Technical Library Product Manuals Web site to learn more about your product:

The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the Technical Library CD. It isincluded with
your software. To read or print documents on the Getting Started CD you
need Adobe Acrobat Reader (downloadable at no charge from the Adobe
Web site, using a link provided on the CD).

The Technical Library CD contains product manuals and isincluded with
your software. The DynaText reader (included on the Technical Library
CD) allows you to access technical information about your product in an
easy-to-use format.

Refer to the Technical Library Installation Guide in your documentation
package for instructions on installing and starting the Technical Library.

The Technical Library Product Manuals Web site isan HTML version of
the Technical Library CD that you can access using a standard Web
browser. In addition to product manuals, you will find linksto
EBFs/Updates, Technical Documents, Case Management, Solved Cases,
newsgroups, and the Sybase Developer Network.

To access the Technical Library Product Manuals Web site, go to Product
Manuals at http://www.sybase.com/support/manuals/.

Technical documentation at the Sybase Web site is updated frequently.

Finding the latest information on product certifications

1

Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

Select Products from the navigation bar on the left.
Select a product name from the product list and click Go.

Select the Certification Report filter, specify atime frame, and click Go.

Xiii

http://www.sybase.com/support/manuals/
http://www.sybase.com/support/techdocs/

Sybase EBFs and
software
maintenance

Java syntax
conventions

Xiv

5

Click a Certification Report title to display the report.

Creating a personalized view of the Sybase Web site (including support
pages)

Set up aMySybase profile. MySybaseisafree servicethat allowsyou to create
apersonalized view of Sybase Web pages.

1

2

Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

Click MySybase and create a MySybase profile.

Finding the latest information on EBFs and software maintenance

1

Point your Web browser to the Sybase Support Page at
http://lwww.sybase.com/support.

Select EBFs/Maintenance. Enter user name and password information, if
prompted (for existing Web accounts) or create a new account (afree
service).

Select a product.
Specify atime frame and click Go.

Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

This book uses these font and syntax conventions for Javaitems:

Classes, interfaces, methods, and packages are shown in Helveticawithin
paragraph text. For example:

SybEventHandler interface

setBinaryStream() method

com.Sybase.jdbx package

Objects and parameter names are shown in italics. For example:
“In the following example, ctx is a DirContext object.”

“eventHdler is an instance of the SybEventHandler class that you
implement.”

“The classes parameter is a string that lists specific classes you want to
debug.”

EJB Server

http://www.sybase.com/support/techdocs/
http://www.sybase.com/support

About This Book

Transact-SQL syntax
conventions

User’'s Guide

Javanames are always case sensitive. For example, if aJavamethod name
is shown as Misc.stripLeadingBlanks(), you must type the method name
exactly as displayed.

This book uses the same font and syntax conventions for Transact-SQL as
other Adaptive Server documents:

Command names, command option names, utility names, utility flags, and
other keywords are in Helvetica in paragraph text. For example:

select command

isql utility

-f flag

Variables, or wordsthat stand for valuesthat youffill in, arein italics. For example:
user_name

server_name

Code fragments are shown in a monospace font.Variables in code
fragments (that is, wordsthat stand for valuesthat youfill in) areitalicized.
For example:

Connection con = DriverManager. get Connecti on
("j dbc: sybase: Tds: host: port", props);

You can disregard case when typing Transact-SQL keywords. For
example, SELECT, Select, and select are the same.

Additional conventions for syntax statementsin this manual are described in
Table 1. Examplesillustrating each convention can be found in the System
Administration Guide.

XV

If you need help

XVi

Table 1: Syntax statement conventions

Key
{1

[]

()
I

Definition

Curly braces indicate that you choose at |east one of the enclosed
options. Do not include braces in your option.

Brackets mean choosing one or more of the enclosed optionsis
optional. Do not include brackets in your option.

Parentheses are to be typed as part of the command.

The vertical bar means you may select only one of the options
shown.

The comma means you may choose as many of the options shown
asyou like, separating your choices with commas to be typed as
part of the command.

Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manual s or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary

inyour area

EJB Server

PART 1 Overview

This part provides an overview of the Enterprise JavaBeans
Server (EJB Server) and the information you need to start
using EJB Server.

CHAPTER 1 About EJB Server

This chapter presents an overview of the Enterprise JavaBeans Server

(EJB Server).

Topic Page

About EJB Server 3

Features 7
The EJB Server execution engine 8
Component support 9
Network protocol support 10
Administration and development tools 11
Client-session and component-lifecycle management 12
Naming services 14
Connection caching 15
Transaction management 15
Thread-saf ety features 15
Result-set support 16
Permissions and roles 17
PowerJ overview 17

About EJB Server

Enterprise JavaBeans (EJB) Server is a component transaction server. It
supports the EJB server-side component model for developing and
deploying distributed, enterprise-level applicationsin a multi-tiered
environment. It provides the framework for creating, deploying, and
managing middle-tier business logic.

Inathree-tier environment, the client providesthe user interfacelogic, the
business rules are separated to the middle tier, and the database is the
information repository. The client does not access the database directly.
Instead, the client makesacall to the EJB Server onthemiddletier, which
then accesses the database.

User’s Guide 3

About EJB Server

The three tiers can reside on different machines or on the same machines. EJB
Server is designed to reside on the same machine as the database engines it
serves. Because the servers are on the same machine, EJB Server can
communicate with the database using Adaptive Server’s high-speed, shared-
memory JDBC driver. This approach ensures:

e High-speed communication and data transfer, even for large data sets

* Securedatatransmission becausethetransfer of information fromthethird
tier to the middle tier does not take place over the network

EJB components (or Beans) are reusable modul es of code that combinerelated
tasks (methods) into a well-defined interface. EJB components contain the
methods that execute business |ogic and access data sources. You (or the
Administrator) install the component’s executable code on EJB Server. Any
number of independent Java or EJB applications (clients) can use the EJBs.

There are three types of Enter prise JavaBeans. stateful session Beans,
stateless session Beans, and entity Beans. Each type of bean is a set of
methods and is responsible for different tasks on behalf of the client.

All session Bean instances are transient. They maintain a one-to-one
relationship with the client. They perform tasks, and can store information in
the database on the client’s behalf. Stateful session Beans manage complex
tasks that require the accumulation of data. Statel ess session Beans manage
tasks that do not store data between method calls. Entity Bean instances are
persistent. They represent underlying objects, typically a particular row ina
database. All three bean types work together to process a request and return
information to the client.

Figure 1-1shows how the client interacts with the EJB Server and the database.

EJB Server

CHAPTER 1 About EJB Server

Figure 1-1: EJB Server environment

Host machine

EJB Server

=
=
o
=
Client
Client
User’'s Guide

<O
O N L—5)

-/
Session Beans Entity Beans

DAGEDAGED

Adaptive Server engines

The stub and the skeleton allow EJB Server to appear to run locally on the
client. Every component instance has its own stub and skeleton created
specificaly for it. The stub resides on the client machine and is connected over
the network to the skeleton, which resides on EJB Server. The stub actsasa
surrogate for the client, transmitting requests to the skeleton. The skeleton
listens on an 11OP port for requests from the stub.

When the skel eton receives a request, it determines which method is required
and then invokes that method. Using the Sybase high-speed JDBC driver, EJB
Server sendstherequest to Adaptive Server. If values are returned, the skeleton
sends them to the stub, which returns them to the client application.

EJB Server providesefficient management of client sessions, threads, third-tier
database connections, and transaction flow, without requiring specialized
knowledge on the part of the component developer. As a consequence,

devel operscan focuson solving business problemsinstead of programming the
application’s infrastructure.

Developers use classes and interfaces from the javax.ejb packages of the
JavaSoft API to create and deploy components. To implement a component,
the developer must define interfaces and classes:

About EJB Server

Feature summary

Remote inter face — defines the Bean's business methods and extends
javax.ejb.EJBObject.

Home inter face — defines the Bean's lifecycle methods and extends
javax.ejb.EJBHome.

Bean class — implements the Bean's business methods and extends
javax.ejb.EnterpriseBean.

Primary key — provides a pointer into the Adaptive Server database and
must implement Serializable. Necessary for entity Beans only.

Sybase provides a graphi cs-based management tool, the Adaptive Server plug-
in to Sybase Central, for EJB Server devel opers and administrators. From this
graphical interface, developers can deploy components and administrators can
configure the server.

For detailed information about creating and implementing EJB clientsand
components, see Chapter 6, “Working with EJB Packages and
Components.”

For detailed information about configuring EJB Server, see Chapter 2,
“Getting Started,” and Chapter 10, “Configuring EJB Server.”

EJB Server features include the following:

A scalable, multithreaded, platform-independent execution engine
Dispatch and stub/proxy support for the EJB component model
High-speed communication through Adaptive Server shared memory

Graphical administration with the Adaptive Server plug-in to Sybase
Central

Easy integration with Sybase PowerJ development environment
Transparent client-session and component lifecycle management
Connection caching to allow reuse of database connections

Industry-standard naming services to resolve components using logical
names rather than server addresses

Transaction management to simplify the design and implementation of an
application’s transactions

Transparent thread-safety features to simplify use of shared data and
resources

EJB Server

CHAPTER 1 About EJB Server

Features

User’'s Guide

* Result-set support to enable efficient retrieval of tabular datain client
applications

e Support for Enterprise JavaBeans (EJB) components devel oped according
to version 1.1 of the Enterprise JavaBeans specification.

The following sections explain these features and describe how EJB Server
works.

EJB Server isfor deploying transaction-intensive business applications on the
Internet. These applications move beyond one-way dynamic updates or data
collection to real-time two-way updates of business critical information. You
can al'so migratetraditional client/server transactional applicationsto multitier
EJB Server applications.

EJB Server provides aframework for deploying the middle-tier logic of
distributed component-based applications. EJB Server’s high-performance
transaction server provides efficient management of client sessions, threads,
database connections, and transaction flow. EJB Server’s scalability and
platform independence allow you to develop your application on inexpensive
uniprocessor machines, then deploy the application on an enterprise-grade
multiprocessor server.

Client-side logic for enterprise applications must be as small and efficient as
possibleto conserve network bandwidth. To accomplish thisgoal, applications
arepartitioned into three parts: presentation logic, businesslogic, and database
logic. The database resides on the bottom tier of the enterprise system to
maintain and secure the organization's information assets. The business logic
residesinthe middletier. The presentation logic ison the user's desktop, or top
tier, or is dynamically downloaded to the user's desktop.

The EJB Server is responsible for executing and securing the vast majority of
acorporation's business logic. This makesit a critical component in the
emerging network-centric architecture. The Web browser connects to EJB
Server or aWeb server viaHTTP to download an HTML page containing a
Javaapplet that performs presentation functionality. The applet communicates
with EJB Server, calling middle-tier components that perform business logic.
Adaptive Server stores, processes, and protects the corporate data. EJB Server
manages a pool of connections to the back-end database, coordinating the
transaction processing to those servers.

Features

Components are objects that reside on EJB Server and can be used by many
different programs, regardless of the program’s programming language. A
client executes the methods in a component. Instead of creating one massive
program, you create a client that contains the GUI and validation code and
several individual componentsthat contain the functionality (or businesslogic)
of your program. By separating the functionality from the GUI, you can easily
upgrade and change the functionality of your program without having to
change the GUI. In addition, multiple clients can use components at the same
time.

The EJB Server execution engine

EJB Server’sruntime engine provides a scalable and platform-independent
environment for the execution of component-based applications. EJB Serveris
scalable because it is multithreaded and multiprocessor safe. The EJB Server
execution environment is the same across al platforms.

The EJB Server runtime engine provides these services:

* Network listenersfor the connections on which clients send remote
component invocations. EJB Server’s core network server technology is
based on Sybase’s Open Client/Server™ technol ogy.

» Anexecution environment for middle-tier components.
See “ Server-side component support” on page 9.

* A built-in HTTP server. You can use EJB Server’'s HTTP support to
deploy your application’s Java applets and HTML pages.

* Ability to run with different Java virtual machines.

» Connection caching. You can define caches of connectionsfor interacting
with databases from EJB Server components.

See “Connection caching” on page 15 for more information.

In addition to these built-in services, you can install service components
that run in the background and provide customized services to clients or
other components.

8 EJB Server

CHAPTER 1 About EJB Server

Component support

Components are reusable modules of code that combine related tasks
(methods) into awell-defined interface. EJB Server components are installed
on an EJB Server and contain the methods that execute business logic and
access data sources. You or your administrator install the component’s
executable code on the EJB Server. Components can be distributed to Adaptive
Server databases residing on the same host. Onceinstalled, components can be
used by any number of independent applications.

Since EJB Server components reside on the server, components do not contain
methods to display graphics or user interfaces—that is, EJB Server
components are inherently nonvisual.

User-interface developers or other component devel opers can browse a
component’s interface in the Adaptive Server plug-in for Sybase Central; in
their code, they use aclient stub or proxy to invoke the component’s methods.
Thestub or proxy actsasalocal surrogate for the remote component, providing
the same method signatures as the component and hiding the details of server
communication.

EJB Server’s server-side component support and client-side stub or proxy
support are independent. Any EJB Server client can execute any component.
Additionally, since EJB Server uses standard CORBA |IOP asitscore network
protocol, you can use CORBA client runtimes from other vendors to invoke
components installed on an EJB Server.

All clients and components share a common interface repository. Component
interfacesare stored in standard CORBA Interface Definition Language (IDL).
Interfaces can be defined by importing compiled Java classes or standard-
format EJB-JAR files.

Server-side component support

User’'s Guide

EJB Server supports Java components that follow the JavaSoft Enterprise
JavaBeans (EJB) specification, version 1.1. An Enterprise JavaBean isa
nonvisual, transactional component that isimplemented in Java

Chapter 6, “Working with EJB Packages and Components,” describes how to
create EJB components.

Features

Client stub/proxy support

Applicationsinvoke an EJB Server component using a stub or proxy object.
The stub or proxy acts as alocal surrogate for the remote component; it
provides the same method signatures as the component and hides the detail s of
server communication. Stubs and proxies are available for:

Java (EJB) Any component can be invoked viaa Java stub class. The
Adaptive Server plug-in generates source code for Java stubs. At runtime,
your client program instantiates the stub. When you call methods on the
stub class, the stub transparently invokes the component method on the
EJB Server. Using HTML pages, Java applets, and EJB Server’s built-in
HTTP support, you can create “zero-install” applications that have no
client-machineinstallation requirements other than the presence of a Java-
capable Web browser.

EJB Server supports the EJB Java client model.

« EJB Your program uses the JavaSoft EJB (javax.ejb) classes and
EJB Server’'s EJB stubsto call EJB Server component methods. This
client model follows the EJB 1.1 Specification.

Chapter 7, “ Creating Enterprise JavaBean Clients,” describes how to
implement EJB clients.

Network protocol support
EJB Server supports the following protocols:

10

Internet Inter-ORB Protocol (IIOP) IIOP isthe standard protocol for
communication between CORBA ORBsover TCP/IP networks. The EJB
client model uses I1OP. [1OP connections can also be tunnelled inside of
HTTPto alow connections through firewallsthat do not allow passage of
I1OP traffic, as discussed in “HTTP tunneling support” on page 11.

Hypertext Transfer Protocol (HTTP) HTTPisused by Web browsers
for file downloads and uploads. EJB Server provides HTTP support to
allow you to deploy HTML pages and Java applets on the EJB Server
itself.

To enable support for 110P, you must define a listener in the Adaptive Server
plug-in. The listener configuration specifies a server address (host name and
port number) as well as the network protocol and security settings to be used
by clients that connect to that listener.

EJB Server

CHAPTER 1 About EJB Server

To enable support for HTTP, you must use the standard configuration and port
number.

HTTP tunneling support

Almost al network firewalls allow HTTP traffic to pass, but some reject 110P
packets. When I1OP traffic is tunnelled inside of HTTR, your clients can
connect to the EJB Server through afirewall that does not allow [1OP traffic to
pass.

EJB Server’s Javaclient ORB performs HTTP tunnelling automatically using
the designated 11OP port. No additional configuration or proxies are required.
When connecting, the EJB Server client-side ORB first triesto open an I1OP
connection to the specified address and port. If the [1OP connection fails, the
ORB tries an HTTP-tunnelled connection to the same address and port. The
default behavior is appropriate when some users connect through firewall sthat
require tunnelling and others do not; the same application can serve both types.
If you know HTTP tunnelling is always required for a Java client, you can set
the ORBHLttp property to causethe ORB to use HT TP tunnelling without trying
plain 11OP connections first..

Administration and development tools

Development support

User’'s Guide

Sybase Central is a common management framework for Sybase application
and database servers. EJB Server provides the Adaptive Server plug-in to
Sybase Central plug-in for developers and administrators.

The Adaptive Server plug-in provides graphical administration facilities for
EJB Server, including support for development and deployment.

You can use Sybase PowerJ 3.6 with EJB Server. Using this IDE tool, you can
develop, deploy, and debug EJB Server components entirely within the

devel opment environment. You can also generate the proxies required for
client application development. For moreinformation, see Building Internet
and Enter prise Applicationsin the Enterprise Application Sudio online books
collection.

Interface definitions can be imported from existing Java classes or from
standard CORBA IDL files.

The Adaptive Server plug-in also generates stub classes for use in Java client
applications.

11

Features

Deployment support

Hot refresh support

To simplify application deployment, the Adaptive Server plug-in defines the
following basic, middle-tier application units:

Servers A server represents one EJB Server runtime process. Each
server hasitsown network addressesfor client session connectionsand for
HTTP (HTML) connections. All servers on one host machine share the
same configuration repository. For administration purposes, you can
connect to any server on the host machineto configure other serversonthe
same host.

Packages A package organizes components into cohesive, secure units
that can be easily deployed on another EJB Server. Packages can be
exported, or saved, as a Java archive (JAR) file. The package archive
includesthedefinition of all componentsin apackage, plusany supporting
files (such as source code and client files) that you specify. Package
archives exported from one server can easily be imported for
redeployment on another server.

Note Do not confuse EJB Server package names with Java package
names.

Components A component definition consists of the component’s
method signatures and other properties, such as component type,
transaction support, threading model, and the name of the Java class or
executable library that implements the component.

Before a client application can execute a component, the component must be
installed in an EJB Server package, and that package must be installed in the
server to which the client connects.

EJB Server provides a Refresh menu item to refresh components, packages,
and servers. This option lets you test and debug component implementation
changes without restarting EJB Server.

Client-session and component-lifecycle management

EJB Server client sessions are established internally by the client stubs and
proxies that applications use to invoke EJB Server component methods. A
component’s lifecycle determines how instances are all ocated, bound to client
sessions, and destroyed. EJB Server manages both client sessions and
component lifecycles without requiring specialized knowledge on the part of
the application devel oper.

12

EJB Server

CHAPTER 1 About EJB Server

Client-session
management

Component-lifecycle
management

User’'s Guide

Internally, the stub or proxy object establishes a network connection between
the EJB Server and aremote client. The stub/proxy model discussedin “ Client
stub/proxy support” on page 10 requires user-authentication parameters to
instantiate a stub or proxy object. The communication protocol is also
determined when the stub or proxy object isinstantiated. Once the stub or
proxy object exists, all details of network communication are hidden from the
application devel oper.

All stubs and proxies use the Inter-ORB Invocation Protocol (110P) to
communicate with the EJB Server. See “Network protocol support” on page
10 discusses client protocols in detail.

For more information on stub and proxy objects, see Chapter 7, “Creating
Enterprise JavaBean Clients.”

In the simplest case of lifecycle management, an instance is alocated for each
stub or proxy created by the client and is destroyed when the client explicitly
requests destruction or when it disconnects, whichever happens first.

M ore sophisticated components can be coded to support instance pooling.
Instance pooling allows EJB Server to maintain a cache of component
instances and bind them to client sessions on an as-needed basis. Instance
pooling requires the following changes to your component:

e Thecomponent must provide activate and deactivate methods. EJB Server
calls the activate method just before an instance is bound to a client
session. activate must be able to reset the component to an as-allocated
state. EJB Server calls deactivate just before an instance is unbound from
aclient session (that is, made idle again).

* Methods in the component must use the EJB Server transaction state
primitives to request early deactivation.

For components that support EJB Server transactions, the time between EJB
Server’s activate and deactivate calls coincides with the beginning and end of
that instance's participation in an EJB Server transaction.

Using components that support instance pooling increases the scalability of
your application. Instance pooling eliminates execution time and memory
consumption that would otherwise be spent all ocating unnecessary component
instances.

13

Features

Coded character set
conversions

Naming services

Configuring naming
services

14

EJB Server supports multiple coded character setsfor clients and components.
When aclient and component use different coded character sets, the EJB
Server automatically converts character datafrom one character set to another.
For example, if the client usesthe roman8 character set and the component uses
iso_1, EJB Server converts string parameters and return values automatically
from roman8 to iso_1 when the client calls the component methods.

In accordance with the Java standards, Java components use 16-bit Unicode.
Unicode contains mappings for al charactersin all other known coded
character sets.

Note EJB Server and its host Adaptive Server must use the same character set.
If you change the character set on Adaptive Server, you must perform asimilar
change on EJB Server. See “Configuring an EJB Server” on page 141.

When multiple servers are involved in your application, the naming service
allows you to specify logical server names rather than server addresses. For
example, instead of connecting to your finance component server at host
badger using port 9000, you can specify theinitial naming context for that
server, such as USA/MyCompany/FinanceServer. Components are identified
by specifying an initial server name context plus the package and component
name. For example:

USA/ My Conpany/ Fi nanceSer ver/ Fi nancePackage/ Payr ol | Admi n

This layer of abstraction allows you to move a server to another host without
affecting deployed client applications. Naming does require that one EJB
Server use awell-known, stable host and port. This server acts as the name
server for other serversthat participate in your application, and clients connect
to that server to resolve name requests.

You have the option of using persistent or transient storage for the naming
database. For transient storage, the EJB Server builds the name database in
memory when it starts, based on the contents of the EJB Server configuration
repository.

Naming configuration for a multi-server application is briefly summarized as
follows:

EJB Server

CHAPTER 1 About EJB Server

Client APIs for naming

1 Chooseone EJB Server to act as name server for the application. You can
configure this server to store names in memory (transient storage), or to
store names in athird-party directory server (persistent storage).

2 Configure each of the remaining serversto connect to the designated EJB
Server naming server to resolve names. Each server will also update the
name space when packages and components are added or deleted in the
Adaptive Server plug-in.

EJB Server provides industry standard client-side APIsfor naming services.
EJB Server also providesimplementations of the CORBA standard CosNaming
API and the Java Naming and Directory (JNDI) API.

See Chapter 7, “ Creating Enterprise JavaBean Clients,” for moreinformation.

Connection caching

Connection caching allows EJB Server components to share pools of
preallocated connections to the database server, avoiding the overhead
imposed when each instance of a component creates a separate connection.
Components that support transactions must use a connection from an EJB
Server connection cache to interact with the database.

Transaction management

EJB Server’s transaction management feature allows you to specify a
transaction coordinator and define a component’s transactional semantics as
part of the component interface.

Thread-safety features

User’'s Guide

Since EJB Server isamultithreaded environment, component instances that
share resources and volatile data must be coded or configured to avoid
problems with inconsistent state. For example, if al instances of a component
write to the samefile, you must take steps to ensure that the fileis “locked”
before each instance writes to it and “unlocked” when the write completes. If
writes to the file are allowed to occur simultaneously, then output from two
component instances may be mixed together within the file.

15

Features

Result-set support

16

Whenever possible, avoid the use of static classvariables. Also, avoid sharing
stateful (being able to maintain information about the state of aresource)
resources such as database connections or file descriptors. In cases where data
and resources are shared, there are two ways to ensure thread safety in a
component:

Configure the component for single-threaded execution.

Each component defined in EJB Server has a Concurrency property. By
default, components are multithreaded and instances are allowed to
execute concurrently on different threads. You can also request single-
threading; in asingle-threaded component, each method invocation blocks
other method invocations on instances of the same component.

For componentsin general, single-threading is the least desirable
alternative because it increases the likelihood that clients will block each
other’s execution and increase the apparent response time of client
applications. Single-threading makes sense for some specific problems;
for example, to share an output file among component instances, you can
create a single-threaded component with methods that write to the file
(another alternativeisto use explicit threading primitives when
implementing code that writes to the file, such as the Java synchronized

keyword).
Store shared data on the database.
You can use connection caching and store the data on the database, letting

the database server handle concurrency issues. (The component’s
transactional semantics may affect the interaction with the database.)

EJB Server methods can return tabular data to the calling client. This feature
can be useful for the following reasons:

Use with data-aware controls Some front-end tools provide objects
that can automatically display aresult set. For example, in a PowerJ
application, you can pass the result set obtained from an EJB Server
method invocation to a PowerJ Query object or DataWindow, and it will
display the rows.

Efficiency For tasks that require returning tabular data, using an EJB
Server result set isthe most efficient alternative. Common uses of result
sets include menu and pick-list population. For example, in an online
clothing catalog, you need to list in-stock sizes for each item.

EJB Server

CHAPTER 1 About EJB Server

Permissions and

PowerJ overview

User’'s Guide

The EJB Server result set allows data to be sent all at once (rather than
requiring a get-next-row method and one client-server round trip per
method). A large EJB Server result set can be sent with less overhead than
is required to encapsulate tabular data as an object and send a serialized
version of the object to the client.

Each component model provides an interface that allows you to define result
sets from scratch or to forward results from a database query directly to the
client.

roles

EJB Server and its host Adaptive Server share user names and roles. If you
create auser or arole in Adaptive Server, that user and role are also valid in
EJB Server. To use the Adaptive Server plug-in with EJB Server, you must be
aregistered user in Adaptive Server and have the System Administrator role.

System Administrator roleSecurity for components is handled at the method
level for each package. You include a J2EE role in the method you want to
restrict, and then map that J2EE role to arole in Adaptive Server so that only
users with that role can execute the method. The Adaptive Server plug-in
allowsyou to map rolesthrough each package for methodswithin the package.
See “Configuring package properties’ on page 90 for more information.

PowerJis Sybase's RAD tool for Java development. Even if you are not an
experienced Java programmer, you can use PowerJ to write sophisticated
programs. If you are an experienced Java programmer, you can use the full
facilities of Javawhenever necessary.

Because PowerJ provides facilities that let you build and deploy components
directly tothemiddietier, it istheidea web development environment for EJB
Server.

With PowerJ, you can:

* Write Java code that takes advantage of the PowerJ component library, a
collection of Java classes that speeds the devel opment process

e Useobject-oriented programming features such as inheritance,
encapsulation, and polymorphism to make your objects more reusable

17

Features

18

Create Java components that can be deployed directly to EJB Server

Deploy Java nonvisual objects to the Sybase Java VM running in an
Adaptive Server database

Retrieve and update database information using Sybase's patented
Datawindow technology

Access avariety of industry-standard databases through JDBC, the Java
standard for database access

Build windows, menus, and other user interface components using visual
programming tools

EJB Server

CHAPTER 2

Getting Started

This chapter provides basic concepts, terminology, and the task
information you need to get started using EJB Server.

Topic Page
Before you use EJB Server 19
Terminology and concepts 20
Basic tasks 23

Note Your installation must have avalid license for Adaptive Server-EJB
Server to use this product.

You can perform all the tasks necessary to use EJB Server from the Sybase
Central, the graphics based management tool for Sybase products. This
chapter presents a conceptual overview of the processes you will use to
develop EJB Server applications. Refer to Chapter 6, “Working with EJB
Packages and Components,” to create EJB component applications.

The installation process starts and preconfigures your Adaptive Server
host, your EJB server, and Sybase Central. This chapter provides
directions for enabling the EJB Server option, starting and stopping EJB
Server, and setting up the Adaptive Server plug-in to Sybase Central.
Refer to Chapter 10, “Configuring EJB Server,” for other configuration
tasks.

Before you use EJB Server

User’s Guide

To use EJB Server effectively, you should be able to create programsin
the Java/Enterprise JavaBeans programming language and component
model.

You should al so know how to retrieve and updateinformation in databases
and be familiar with component technology concepts.

19

Terminology and concepts

Terminology and concepts

This section explains some of the basic concepts and terminology associated
with devel oping component-based EJB Server applications. It isintended
primarily to provide you with enough information to begin using the Adaptive
Server plug-in for Sybase Central. For detailed information on EJB application
development, refer to Chapter 6, “Working with EJB Packages and
Components.”

Terminology

An EJB application consists of one or more packages and a client application
or applet. Packages consist of components, and components are made up of one
or more methods.

20

EJB Server hosts, manages, and executes JavaBean components. In the
EJB environment, a component is simply an application object that
consists of one or more methods. JavaBeans typically execute business
logic, access data sources, and return resultsto the client. Clients (applets)
create an instance of acomponent and execute methods associated with
that component. Components run strictly within the EJB Server.

A packageisa collection of components that work together to provide a
service or some aspect of your application’s businesslogic. A package
defines aboundary of trust within which components can easily
communicate. Each package acts as a unit of distribution, grouping
together application resources for ease of deployment and management.

A stub isaJava class stub generated by the Adaptive Server plug-in for
Sybase Central and acts as a proxy object for an EJB component. A stub
iscompiled and linked with your Javaapplets or client application. A stub
communicates with EJB Server to instantiate and invoke a method on a
component in the middletier. Stubs make aremote EJB component appear
local to the client.

A skeleton actsastheinterface between the EJB runtime environment and
the user code that implements the method. Skeletons are compiled and
linked with each of the components, and at runtime they enable EJB
Server to locate and invoke an appropriate method.

EJB Server

CHAPTER 2 Getting Started

e EJB Server transparently maintains a session between aclient application
and the EJB Server. Unlike atypical HTTP scenario, where a new
connection is created for each request and response, sessions allow a
browser to maintain aconnection with the server acrossamultiple request-
response cycle.

Concepts

EJB Server implements distributed computing architecture. In this model,
three sets of elements work together to give users access to data:

e Client-side applet or application
e EJB Server components
e Adaptive Server database

Java applets are downloaded to clients, which instantiate components on the
server. Client applications are installed on client machines, from which they
also instantiate components on the server.

An applet or application manages presentation and interaction with an end user.
Components running on EJB Server handle much of the application
processing. The database stores, manages, and processes the data.

If the client is an applet, users find and launch applications from traditional
HTML pages. Instead of simply loading a static page, EJB Server downloads
an executable applet to the individua’s browser. If the client is an already-
installed application, the user launchesthe application from hisor her machine.
Clients communicate directly with an application component running on EJB
Server. Server components access data from one or more databases, apply
business logic, and return results to the client applet for display.

When a proxy object is created on the client applet, it instantiates a
corresponding component registered with the EJB Server. Onthe server side, a
component is instantiated in response to a request from the proxy object
running in the client environment. A method on acomponent is executed when
it isinvoked by a proxy object on the client applet.

Developing an application

There are three basic steps involved in creating and deploying an EJB Server
application that employs a Java applet as aclient.

User’s Guide 21

Terminology and concepts

O To create and deploy an EJB Server application:

1

Define packages, components, and methods. The Adaptive Server plug-in
for Sybase Central isthe EJB Server GUI interface. It allowsyou to easily
define the packages, components, and methodsthat EJB Server clients use
to run an application. The Adaptive Server plug-in for Sybase Central
generates:

« Theclient-side stub files Stubscontaininterfaceinformation used
by the client to invoke EJB component methods.

« The server-side skeleton files Skeletons provide the interface
information of each component method.

Createthe applets and components. Once you have generated the stubs and
skeletons, write the Java classes that, once linked with the stub files, form
the basis of your downloadable applet.

In addition to the applet, you need to devel op the server-side components
that link with the skeletons to form the business|ogic of your serviet. EJB
Server supports many of the integrated development environment (IDE)
tools, such as PowerJ, available today.

Deploy the application. You register components on the EJB Server. Since
EJB Server is also a Web server, you can write an HTML page for your
applet and install it on EJB Server.

The EJB Server runtime environment

A typical EJB Server application has an applet or HTML page associated with
it. Once you build and deploy such an application, it runsin the following
fashion:

22

1

EJB Server receives an HTTP request and downloads the requested
HTML page or applet. Included with the applet are the Java stubs, which
through a proxy, instantiate components and invoke the methods on those
components.

The client establishes a session with EJB Server. The session, unlike an
HTTP connection, allows the client and EJB Server to maintain a
connection throughout the transaction.

EJB Server

CHAPTER 2 Getting Started

3 Theclient creates a component instance through a client-side proxy. The
proxy used depends on the type of component being instantiated. EJB
Server validates the user against the component’s accesslist. If theuser is
validated, the dispatcher checks the location and status of the component
and creates an instance.

4 Theclient invokes the component’s business logic by executing its
methods.

5 The component may interact with the database server. If it does, the
component obtains a connection to the database using the Sybase high-
speed JIDBC driver.

6 EJIB Server returns the results from the database to the client.

7 Theclient indicates that it has completed the operation. EJB Server
destroys the component instance or returnsit to a pool for future client
instantiations. The client disconnects from EJB Server.

Basic tasks

Theinstallation and configuration processwill preconfigure and start both your
Adaptive Server Enterprise and its EJB Server. As part of the post-installation
process, you will start up Sybase Central, the graphical user interface that
alows you to manage both Adaptive Server and EJB Server.

You can use EJB Server without further configuration, but to customize EJB
Server for your installation, see Chapter 10, “Configuring EJB Server.”

The following sections describe enabling and starting EJB Server and the
Adaptive Server plug-in for Sybase Central so that you can perform these basic
tasks yourself after installation.

The installation and configuration process will start Adaptive Server, enable
the EJB Server option, start EJB Server, and start the Adaptive Server plug-in
to Sybase Central.

User’s Guide 23

Basic tasks

Using the Adaptive Server plug-in to Sybase Central

What you can do from
the Adaptive Server

plug-in

The Adaptive Server plug-in runs within Sybase Central. Use the Adaptive
Server plug-in for Sybase Central to configure EJB Server and to define and
deploy software components and packages. An EJB Server must be running
before Sybase Central can connect to it.

You must have the System Administrator role in Adaptive Server to use the
Adaptive Server plug-in. The installation process creates this role.

EJB Server is preconfigured so that you can start up and run the server. You
may need to configure EJB Server further to run your applications.

From the Adaptive Server plug-in you can:

e Replace EJB servers

+ Shutdown and restart EJB Servers

e Add or drop connection caches

e Add, drop, export, or deploy packages

e Add or drop components

e Update object properties

e Generate stubs and skeletons for components

Each of these tasks is described in subsequent chapters.

Starting the Adaptive Server plug-in

Sybase Central

24

First start Sybase Central and then start the Adaptive Server plug-in from
within it.

You can start Sybase Central from the UNIX command line or from a Sybase
Central shortcut on the desktop.

0 To start Sybase Central from the UNIX command line:

1 Enter:
sour ce $SYBASE/ SYBASE. csh
2 Then enter:
$SYBASE/ sybcent 32/ j aval scj vi ew

EJB Server

CHAPTER 2 Getting Started

O To start Sybase Central from Windows NT:

e Select the Sybase Central Java Edition shortcut from the desktop. The
installation process creates this shortcut for you.

The Adaptive Server Once the Sybase Central Java version is running, you can start the Adaptive
plug-in Server plug-in.

O To connect to the Adaptive Server host:

1 Select Tools| Connect.

The Connect to Adaptive Server Enterprise screen displays.
Enter the sa user name and password.
Select the Adaptive Server host machine name or |P address.
Verify the Adaptive Server host port number.
Click Connect.

a b W DN

Disconnecting from the Adaptive Server host

dSybase Central allows you to disconnect the Adaptive Server plug-in from an
Adaptive Server host so that you can connect to another server, or reconnect to
the same server, without restarting the plug-in.

0 To disconnect from the Adaptive Server host:
1 Highlight the Adaptive Server host.

2 Select File | Disconnect.

Enabling EJB Server

Theinstallation process enables the EJB Server option in Adaptive Server.
Later on, you can enable or disable an EJB Server in either of two ways:

e From the Adaptive Server plug-in to Sybase Central
e From the command line using isq|

Enabling EJB Server isadynamic process. You do not need to restart Adaptive
Server for it to take effect. After you enable EJB Server, select File | Refresh
All to display the Enterprise JavaBeans folder beneath the host Adaptive
Server.

User’s Guide 25

Basic tasks

O To enable EJB Server from the Adaptive Server plug-in:
1 Highlight the Adaptive Server host for the EJB Server.

2 Select File| Configure.

3 Select “enable enterprise java beans’ from the alphabetical list of
configuration parameters.

4 Change the number in the Value column to 1.
Click OK.
O To enable EJB Server using isql:
1 Loginto Adaptive Server usingisql.
2 Enter:

sp_configure 'enable enterprise java beans’, 1

Disabling EJB Server
You can disable the EJB Server option in either of two ways:
e From the Adaptive Server plug-in to Sybase Central
e From the command line using isq|

Disabling EJB Server isadynamic process. You do not need to restart Adaptive
Server for it to take effect. After you disable EJB Server, select File | Refresh
All to remove the Enterprise JavaBeans folder beneath the host Adaptive
Server.

O To disable EJB Server from the Adaptive Server plug-in:
1 Highlight the Adaptive Server host for the EJB Server.
2 Select File| Configure.

3 Select “enable enterprise java beans’ from the alphabetical list of
configuration parameters.

4 Change the number in the Value column to O.
Click OK.

26 EJB Server

CHAPTER 2 Getting Started

O To disable EJB Server using isql:

1 Loginto Adaptive Server using isgl.
2 Enter:

sp_configure 'enable enterprise java beans’, 0

Starting EJB Server automatically

When the installation process is complete:
e EJB Server isrunning.

* EJB Server is configured to start up automatically each time Adaptive
Server starts up.

Later on, you can enable or disable automatic startup using the sp_serveroption
system procedure.

For example, to disable automatic startup, enter:

sp_serveroption 'SYB EJB,
"external engine auto start’, ’'false’

where SYB_EJB isthelogical name of the EJB Server.
To enable automatic startup, enter:

sp_serveroption 'SYB EJB',
"external engine auto start’, ’'true’

Starting EJB Server independently

User’'s Guide

Note Adaptive Server must be running before you can start EJB Server.

You can start or restart EJB Server in two ways:
e From the Adaptive Server plug-in to Sybase Central.

e Usingthe sp_extengine system procedure.

O To restart EJB Server from the Adaptive Server plug-in

1 Right-click onthe EJB Server you want to restart.
2 ChooseFile | Restart.

27

Basic tasks

3 PressView | Refresh Folder.

Note Restarting EJB Server may take a minute or two, depending on the
load on Adaptive Server.

You can stop and then restart EJB Server from the Adaptive Server plug-in. To
start an EJB Server that has been shut down in another way, you must use the
sp_extengine System procedure.

O To start EJB Server using the sp_extengine system procedure

1 Loginto Adaptive Server usingisql.
2 Enter thiscommand:
sp_extengine ' SYB EJB', ’'start’
where SYB_EJB isthelogical name of the EJB Server.

Shutting down EJB Servers

28

You can stop EJB Server in three ways:
* From the Adaptive Server plug-in
» Using the sp_extengine system procedure
* By shutting down Adaptive Server Enterprise
To shut down EJB Server from the Adaptive Server plug-in
1 Highlight the EJB Server you want to shut down.
2 PressFile| Stop EJB
To shut down EJB Server using sp_extengine
1 Loginto Adaptive Server using isgl.
2 Enter thiscommand:
sp_extengine ' SYB EJB', ’'stop’

where SYB_EJB isthe logical name of the server.
To shut down both EJB Server and Adaptive Server
1 Loginto Adaptive Server using isgl.

2 Enter thiscommand:

EJB Server

CHAPTER 2 Getting Started

shut down

You can also use shutdown with the no wait option.

Note Issuing a“kill -9” command on Adaptive Server will not shut down the
associated EJB Server.

Verifying the status of EJB Server
To determineif EJB Server isrunning, use the sp_extengine system procedure.
Log in to Adaptive Server using isql and enter:
sp_extengine 'SYB EJB', ’'status’
where SYB_EJB isthelogical name of the EJB Server.

User’s Guide 29

Basic tasks

30 EJB Server

PART 2

Information for
Developers

This part provides an overview of Enterprise JavaBeans
(EJBs) and information about using the Adaptive Server
plug-in for Sybase Central and PowerJ to createEJB
clients and components.

CHAPTER 3 Enterprise JavaBeans Overview

EJB Server supports Enterprise JavaBean (EJB) 1.1 components.

For details on EJB architecture, see the EJB 1.1 specifications from Sun

Microsystems at http://java.sun.com/products/ejb/.

Topic Page
About Enterprise JavaBean components 33
EJB support 38

About Enterprise JavaBean components

The EJB technology definesamodel for the devel opment and deployment

of reusable Java server components, called EJB components.

An EJB component is a nonvisual server component with methods that
typically provide businesslogic in distributed applications. A remote
client, called an EJB client, can invoke these methods, which typically

results in the updating of a database.
The EJB architecture looks like this:

EJE Server

‘ EJE Cantainer

EJE Home
LT Interface

EJB Client < ‘

EJE Femate
Interface

EJE Bean

User’s Guide

33

http://java.sun.com/products/ejb/

About Enterprise JavaBean components

EJB server EJB Server holdsthe EJB container, which providesthe services
required by the EJB component.

EJB client AnEJB client usually providesthe user-interfacelogic on aclient
machine. The EJB client makes calls to remote EJB components on a server
and needsto know how to find the EJB server and how to interact with the EJB
components. An EJB component can act asa EJB client by calling methodsin
another EJB component.

An EJB client does not communicate directly with an EJB component. The
container provides proxy objects that implement the components home and
remote interfaces. The component’s remote inter face defines the business
methods that can be called by the client. The client calls the home interface
methods to create and destroy proxies for the remote interface.

EJB container TheEJB specification defines a container asthe environment
in which one or more EJB components execute. The container provides the
infrastructure required to run distributed components, allowing client and
component developers to focus on programming business logic, and not
system-level code. In EJB Server, the container encapsulates:

* Theclient runtime and generated stub classes, which allow clients to
execute components on aremote server as if they were local objects.

» The naming service, which allows clients to instantiate components by
name, and components to obtain resources such as database connections
by name.

* TheEJB Server component dispatcher, which executes the component’s
implementation class and provides services such as transaction
management, database connection pooling, and instance lifecycle
management.

EJB component implementation The Java class that runsin the server
implements the Bean's business logic. The class must implement the remote
interface methods and additional methods for lifecycle management.

EJB component types

34

You can implement three types of EJB component, each for adifferent purpose:
+ Stateful session Beans
* Stateless session Beans

* Entity Beans

EJB Server

CHAPTER 3 Enterprise JavaBeans Overview

Stateful session Beans

A stateful session Bean manages complex processes or tasks that require the
accumulation of data, such as adding itemsto a Web catalog’s shopping cart.
Stateful session Beans have the following characteristics:

e They manage tasks that require more than one method call to complete,
but are relatively short-lived. For example, a session Bean might manage
the process of making an airline reservation.

e They typicaly store session state information in class instance data, and
do not survive server crashes.

e Thereisan affinity between each instance and one client from the time the
client createstheinstance until it is destroyed by the client or by the server
in response to an expired instance timeout limit.

For example, if you create a session Bean on a Web server that tracks auser’s
path through the site, the session Bean is destroyed when the user leaves the
site or idles beyond a specified time

Stateless session Beans

Entity Beans

User’'s Guide

A statel ess session Bean managestasksthat do not require the keeping of client
session data between method calls. Statel ess session Beans have the following
characteristics:

« Method invocations do not depend on data stored by previous method
invocations.

e Thereisno affinity between a component instance and a particular client.
Each call to aclient’s proxy may invoke a different instance.

* From theclient’s perspective, different instances of the same component
areidentical.

Unlike stateful session Beans, statel ess session Beans can be pooled by the
server, improving overall application performance.

An entity Bean models a business concept that is areal-world object. For
example, an entity Bean might represent a scheduled airplane flight, a seat on
the airplane, or a passenger’s frequent-flyer account. Entity Beans have the
following characteristics:

35

About Enterprise JavaBean components

e Eachinstance represents arow in a persistent database relation, such asa
table, view, or the results of acomplex query.

e TheBeanhasaprimary key that correspondsto the database rel ation’ skey,
and is represented by a Java datatype or class.

EJB transaction attribute values

36

Each EJB component has atransaction attribute that determines how instances
of the component participate in transactions. In EJB Server, you set the
transaction attribute in the Transaction tab of the Component Properties dialog
box.

When you design an EJB component, you must decide how the Bean will
manage transaction demarcation: either programmatically in the business
methods, or whether the transaction demarcation will be managed by the
container based on the value of the transaction attribute in the deployment
descriptor.

A session Bean can use either Bean-managed transaction demarcation or
contai ner-managed transaction demarcation; you cannot create a session Bean
where some methods use contai ner-managed demarcation and others use Bean-
managed demarcation. An entity Bean must use contai ner-managed transaction
demarcation.

Table 3-1 lists the transaction attribute values. Requires, Supports, Requires
New, or Mandatory are the values that specify container-managed transaction
demarcation. You can set the Transaction Attribute for the component and for
individual methodsin the home and remote interfaces. Values set at the method
level override the component setting.

EJB Server

CHAPTER 3 Enterprise JavaBeans Overview

User’'s Guide

Table 3-1: Transaction attribute values

Attribute

Description

Not Supported

(The component-level default.) The EJB component’s methods
never execute as part of atransaction. If the EJB component is
activated by aclient that has a pending transaction, the EJB
component’s work is performed outside the existing
transaction.

Since entity Beans are almost always involved in transactions,
thisvalueis not usually used for an entity Bean.

Supports

The EJB component can execute in the context of an EJB
Server transaction, but atransaction is not required to execute
the component’s methods. If amethod is called by abaseclient
that has a pending transaction, the method’s database work
occurs in the scope of the client’s transaction. Otherwise, the
EJB component’s database work is done outside of any
transaction.

Required

The EJB component always executesin atransaction. Usethis
option when your EJB component’s database activity needsto
be coordinated with other components, so that all components
participate in the same transaction.

Requires New

Whenever the EJB component is instantiated, a new
transaction begins.

Mandatory

EJB component methods must be called in the context of a
pending transaction. If aclient calls amethod without an open
transaction, the EJB Server ORB throws an exception.

Never

The component’s methods never execute as part of a
transaction, and the component may cannot be called in the
context of atransaction. If aclient or another component cals
the component with an outstanding transaction, EJB Server
throws an exception.

Bean
Managed

(For EJB session Beans only.) The EJB component can
explicitly begin, commit, and roll back new, independent
transactions by using the javax.transaction.UserTransaction
interface. Transactions begun by the component execute
independently of the client’stransaction. If the component has
not begun a transaction, the component’s database work is
performed independently of any EJB Server transaction.

Default to
component

(Method-level default) In the Transactions tab of the Method
properties window, choose this option if the method should
inherit the transaction attribute set in the component
properties.

37

EJB support

EJB container services

EJB support

The EJB container provides servicesto EJB components. The servicesinclude
transaction and persistence support.

Transaction support An EJB container must support transactions. EJB
specifications provide an approach to transaction management called
declarative transaction management. In declarative transaction management,
you specify the type of transaction support required by your EJB component.
When the Bean is deployed, the container provides the necessary transaction
support.

Persistence support An EJB container can provide support for persistence
of EJB components. An EJB component is persistent if it is capable of saving
andretrievingitsstate. A persistent EJB component savesits stateto sometype
of persistent storage (usually afile or a database). With persistence, an EJB
component does not have to be re-created with each use.

An EJB component can manage its own persistence (by means of thelogic you
provide in the Bean) or delegate persistence services to the EJB container.
Container-managed persi stence means that the data appears as member data
and the container performs all dataretrieval and storage operationsfor the EJB
component. See Chapter 8, “ M anaging Persistent Component State,” for more
information.

EJB Server can host EJB components devel oped according to version 1.1 of the
Enterprise JavaBeans specification. EJB Server supports session Beans and
entity Beans with Bean-managed persistence or contai ner-managed
persistence.

See the complete EJB 1.1 specifications from Sun Microsystems at
http://java.sun.com/products/ejb/.

Running EJB components in EJB Server

38

You can run Enterprise JavaBeans as EJB Server components using any of
these techniques:

EJB Server

http://java.sun.com/products/ejb/

CHAPTER 3 Enterprise JavaBeans Overview

« Define EIJB components in PowerJ, using wizards to define the interfaces

and deploy the Bean directly from PowerJto EJB Server. See the PowerJ
documentation for more information.

e Usethe Adaptive Server plug-in to Sybase Central to import an EJB-JAR

file that contains the classes and deployment descriptors for one or more
EJB components. The Adaptive Server plug-in defines components with
properties matching the deployment descriptor settings.

« Import compiled versions of a home interface, remote interface,

implementation class, and (for entity Beans) the primary key class. The
Adaptive Server plug-in defines IDL interfaces for the interfaces and the
primary key, and defines an EJB component with default settings. You can
configure additional settings such as transaction attributes and database
resource references using the Adaptive Server plug-in Component
Properties dialog box.

« Define an EJB component from scratch in the Adaptive Server plug-in,

using the IDL generation tools to define the home interface, remote
interface, and primary key type. The Adaptive Server plug-in generates
Java classes for the home and remote interfaces and primary key class, as
well as atemplate for the implementation class.

EJB clients connecting to EJB Server

User’'s Guide

EJB Server also supports the Enterprise JavaBean client model by generating
EJB proxies and providing an EJB-compliant implementation of the JNDI
NamingContext class. You can generate EJB-style proxiesfor any IDL interface,
and use the proxies to call methods on components that implement that
interface. The NamingContext class can also be used in EJB components to
instantiate home interfaces for intercomponent calls.

39

EJB support

40

EJB Server

CHAPTER 4

Creating Component-Based
Applications

This chapter describes the process of designing, building, and deploying
applications with components executing in EJB Server.

Topic Page
Application architecture 41
Designing the application 43
Implementing components and clients 45
Deploying the application 47

Application architecture

EJB Server architecture

User’s Guide

EJB Server applications are composed of clients and an EJB Server that
hosts components. The clients can run on different machines; the
components execute on the host server machine as part of the EJB Server
process. Components, in turn, connect to databases on the host server
machine.

Building EJB Server applicationsis different from building standard
client/server applicationsin that the parts of the application communicate
with each other in avariation of traditional three-tiered architecture.

In traditional three-tiered architecture, the client resides on the first tier,
the application server and components reside on the second tier, and
remote databases reside on the third tier. In the EJB Server three-tiered
architecture, see Figure 4-1, the databases reside on the same host as the
EJB Server. They communicate using a Sybase high-speed JDBC driver
through shared memory.

Executing methods on acomponent from the client or another component,
retrieving datafrom databases, and other communi cations are managed by
the EJB Server. EJB Server handles the details of transactions, threads,
security, database connections, and network communication so that you
can concentrate on writing the business logic and user interface for the
components and clients.

41

Application architecture

Figure 4-1: EJB Server architecture

Host
Component

NN oA

Client [L>-1.-

vV oy
Component

Asin client/server applications, the client contains the user interface. Unlike
client/server applications, however, business|ogic (such as stored procedures)
is separate from both the clients and the database. Instead, business logic
resides in the second tier as components that analyze data, perform
computations, or retrieve information from data sources and processit. You
design an EJB Server application by coding these tasks into an interface and
into method prototypes.

A primary benefit of this model isthat you can include pre-built components
inthe EJB Server application. If these components have been built outside EJB
Server, you can import them using the Adaptive Server plug-in. Importing
components adds their interfaces and method prototypes to EJB Server. The
client and components are built from the same interface and method
prototypes. You can build the client and components concurrently, as long as
the client and component devel opment teams notify each other if either of them
changes the interface or method prototypes.

42 EJB Server

CHAPTER 4 Creating Component-Based Applications

Designing the application

Plan for server
infrastructure needs

Define EJB Server
packages

User’'s Guide

In the design stage, you plan the infrastructure for developing and deploying
the application, define the EJB Server components, the component interfaces,
and the EJB Server packages that contain the components. At the end of this
phase, you will have packages and components defined in the Adaptive Server
plug-in.

Follow these steps to design the application:

1 “Planfor server infrastructure needs’ on page 43

2 “Define EJB Server packages’ on page 43

3 “Define components’ on page 44

4 “Define connection caches’ on page 45

For an enterprise application implemented by several developers, you may
need to create several EJB Servers to increase developer productivity. For
example, you might want dedicated servers for each of the following:

« Component development Serversto test components that are under
development or revision. A typical configuration uses one server per
devel oper, running on the developer’s personal workstation.

» Client testing/Quality Assurance (QA) Client developersrequire a
server with a stable installation of the application components, to be used
by client developersto test their programs. During the early devel opment
phase, you can deploy stubbed componentsto this server to allow testing
of client connectivity and basic method execution. (A stubbed component
has empty method implementations. For most component models, the EJB
Server generates source for a stubbed implementation when you generate
the component skeleton.)

» Production Youwill needtoinstall EJB Server on the host machine for
the live version of the application. For Internet applications, this machine
must be available to clients that are outside your corporate firewall.

Components must be installed in a package before they are availablefor usein
applications. You should install componentsthat perform rel ated taskstogether
in asingle package. Chapter 6, “Working with EJB Packages and
Components,” describes how to create packages in the Adaptive Server plug-
in.

43

Designing the application

Define components

44

Packages are the units of deployment for your application; you can use the
Adaptive Server plug-in to import and export archives of a package, its
installed components, and related application files. For example, you can
deploy atested configuration by exporting packages from your test server and
importing them into the production server. For more information, see
“Deploying components” on page 47.

Packages are also onelevel in the EJB Server authorization hierarchy. You can
edit the package's required Role Memberships to restrict which users can
access components in the package.

For each component, you must choose the component model, design the
component interface, determine transactional semantics, and define the
component in EJB Server.

Choose the component model Choose the component model based on
your devel opment team’s expertise. “ Server-Side Component Support” on
page 7 describes the available component models.

Design the transactional semantics You must decide what transactional
semantics the component will follow and how the component lifecycle will be
managed. Chapter 5, “Understanding Transactions and Component
Lifecycles’ explains the design concepts for transaction and lifecycle control
in EJB Server components.

The following design decisions determine how EJB Server manages your
component’s transactions:

* Which transaction attribute the component uses

* Whether transaction boundaries are managed explicitly in the component
implementation or implicitly by EJB Server

If your component interacts with the database, you must specify atransactional
attribute that determines how the component’ s database work is grouped within
EJB Server transactions. If another component invokes your component, the
transaction attribute determines whether your component’s database work is
done independently or as part of the existing EJB Server transaction.

You must also decide whether or not you will code your component to manage
transaction boundaries explicitly. To manage transaction boundaries explicitly,
each method must call one of EJB Server’s transaction state primitives to
indicate the status of the component’s transactional work. “Using transaction
state primitives’ on page 59 describes this topic in detail.

EJB Server

CHAPTER 4 Creating Component-Based Applications

Define connection
caches

Implementing

User’'s Guide

Instead of writing code to manage transaction boundaries explicitly, you can
set the component’s Automatic demarcation/deactivation property in the
Adaptive Server plug-in. This setting is appropriate if every method in your
component executes a compl ete unit of transactional work (in other words, the
transactional outcome is never pending when a method returns). When this
option is enabled, EJB Server deactivates the component instance after every
method invocation. Upon deactivation, the transaction is always committed
unless the component aborts the transaction by calling the rollbackWork
transaction primitive. In the Adaptive Server plug-in, the Automatic
demarcation/deactivation property is set in the Component Properties window,
beneath the Transactionstab. “ Configuring component properties’ on page 73
describes how to view and modify component propertiesin the Adaptive
Server plug-in.

For any component, transactional or not, you must decide how your
component’s instance lifecycle will be managed. “ Component lifecycles’ on
page 49 describes the general instance lifecycle model and your options for
instance lifecycle management.

Define the component in the Adaptive Server plug-in Use the Adaptive
Server plug-in to define the components. If you have already created Java
components, you canimport the component interfacesinto the Adaptive Server
plug-in—you do not need to define method prototypes again in the Adaptive
Server plug-in.

Connection caching increases the scalability of your application, sinceit
eliminates repetitive login/logoff operations for connections to databases.
Connection caching is also required for EJB Server transactionsto function as
intended.

You must define a connection cache for the database that your components
interact with, and then implement your componentsto use cached connections.
See “Managing connection caches” on page 148, which describes how to
define connection caches in the Adaptive Server plug-in

components and clients

Withthe design in place, your component devel opersand client developerscan
begin implementing the clients and components that form the application.

45

Implementing components and clients

Implementing
components

Design and implement
the client

46

To create an EJB component, use PowerJ or another JDK-1.2 compatible
development tool to create the component. From PowerJ you can import the
component definitionsinto EJB Server, and deploy the component on the EJB
Server. If using another development tool, you must perform these tasks with
the Adaptive Server plug-in.

To learn how to build EJB components, see Chapter 6, “Working with EJB
Packages and Components.”

Client developers can work concurrently with component devel opers. Toallow
prototyping and testing of client programs, you may want to create a client test
server that hosts stubbed versions of the application components (that is,
components with minimal method implementations). All clients for EJB
Server components must be Java clients.

The Java client Javaapplets do not require customer installation and
simplify the task of providing upgrades. The customer aways downloads the
most recent applet. If you do not want the customer to wait for the Java classes
to download from the EJB Server, you can install the Javaclasses on the client
machine or use Marimba Castanet to speed up the download time.

If the client application islarge and requires many Javaclasses, download time
might be unacceptable. In this case, use a Java application that isinstalled
locally on the client machine. This approach isideal for intranet customers or
even regular Internet customers. Although not as simple as providing upgrades
with an applet, Java applications are no more difficult to upgrade than
conventional software. In fact, Marimba Castanet can be used to automatically
upgrade the Java application across the Internet.

Java IDEs such as PowerJ offer visual interface builders that greatly simplify
the implementation of the user interface.

In some situations, you might want to implement different versions of aclient
for different users. For example, you may implement a Java applet version to
allow new customers to connect over the Internet without installing a client
program. For established customers who use the application heavily, you can
implement a standal one client program that offersimproved performance.

Client design issues In designing your client, plan to optimize network
performance by keeping traffic between the client and components on the
server to aminimum. To optimize network performance, plan to:

e Cache property changesin client data structures.
» Vaidatefield values on the client.

EJB Server

CHAPTER 4 Creating Component-Based Applications

« Updateonly therowsand columnsthat have changed. For example, do not
implement a client to update an entire table when only afew rows have
changed.

e Group datachanges into larger sets with fewer method calls.

Deploying the application

After you have tested and debugged the application on your test server, it is
time to deploy the component files to a production server and make the client
application filesavailable to the application users. Follow these stepsto deploy
the application:

1 “Deploying components’ on page 47.

2 “Developing clients’ on page 48.

Deploying components

Using PowerJ

Importing an EJB JAR

User’'s Guide

To deploy components, you copy component definitions and implementation
filesto EJB Server. There are two ways to do this:

e Using PowerJ
e Importing an EJB JAR

If developing Java clients and components, you can deploy your application to
the EJB Server directly from the PowerJ IDE. To deploy components,
configure deployment options using the Run | Deploy options menu item, then
deploy using the Run | Deploy menu item. See the PowerJ documentation or
online help for more information.

You can use a Java devel opment tool such as Sybase PowerJ to define and
develop Beansinthe EJB 1.1 format and create an EJB-JARfile. The Adaptive
Server plug-in can read the JAR file and create a package containing a
component for each Bean in the JAR file. See Chapter 6, “Working with EJB
Packages and Components,” for more information about importing EJB JAR
files.

47

Deploying the application

Developing clients

48

You can use PowerJ to develop Javaclients for EJB Server components. Basic
tasks for developing clients include:

* Generate EJB stubs.

e Add codeto create theinitia naming context and instantiate the home
interface proxies.

e Add code to instantiate remote interface proxies.
e Add codeto call remote interface methods.

See Chapter 7, “ Creating Enterprise JavaBean Clients,” for detailed
information about developing clients.

EJB Server

CHAPTER 5

Understanding Transactions and
Component Lifecycles

This chapter explainsthe EJB Server component lifecycle and transaction
processing models. Transactions allow you to group database updates
performed by multiple components into a single atomic unit of work,
which greatly simplifies error recovery in component-based applications.

The component lifecycle determines how instances of a component are
alocated, bound to a client, and destroyed. The EJB Server component
lifecycleis designed to maximize reuse of resources and minimize the
possibility that a client application can monopolize a server resource.

The component lifecycle and the transaction model are tightly integrated.
You must understand both to use transactions effectively in your
application.

Topic Page
Component lifecycles 49
The EJB Server transaction processing model 53
OTS/XA transaction model 64

Component lifecycles

User’s Guide

The EJB Server component lifecycleis designed to:
e Maximize sharing and reuse of server resources

e Minimize the possibility that a client application can monopolize
Sserver resources

To achieve these goals, EJB Server supports the concepts of component
instance pooling and early deactivation.

49

Component lifecycles

I nstance pooling allows a single component instance to service multiple
clients. The component lifecycle contains activation and deactivation steps:
Activation binds an instance to an individual client; deactivation indicates that
the instance is unbound. Instance pooling eliminates resource drain from
repeated allocation of component instances.

Early deactivation allows a component’s methods to specify when
deactivation occurs. Early deactivation preventsaclient application fromtying
up the resources that are associated with a component instance and allows the
instance to serve more clientsin a given time frame.

A component that is deactivated after each method call and supports instance
pooling is said to be a stateless component because the component’s state is
reset across the boundary of atransaction and activation. Early deactivation
and instance pooling promotes greater scalability by enabling an increasing
number of clientsto use a static number of instances. An application design
based on statel ess components offers the greatest scalability.

States in the Generic component lifecycle EJB Server components in any component
component lifecycle model follow the state diagram illustrated in this figure:

Figure 5-1: States in the EJB Server component lifecycle

New instance
Li Destruction 1--------------
e " Dty
Activation Deactivation
Active
Invoke method Invocation complete
In Method

The state transitions are as follows:

50 EJB Server

CHAPTER 5 Understanding Transactions and Component Lifecycles

+ New instance The EJB Server runtime allocates a new instance of the
component. Theinstance remainsidlein the instance pool waiting for the
first method invocation.

« Activation Activation preparesacomponent instancefor use by aclient.
Once an instance is activated, it is bound to one client and can service no
other client until it has been deactivated. If a component is transactional,
activation also indicates the beginning of the instance’'s participation in a
transaction.

» Inmethod Inresponseto amethod invocation request from the client,
the EJB Server runtime calls the corresponding method in the component.
The next state depends on which of the transaction state primitives the
method calls before returning. (The state transition also depends on
whether the method returns with an uncaught exception.) See “Using
transaction state primitives’ on page 59 for more information.

» Deactivation Deactivation indicates that the component is no longer
bound to the client. Methods can call either the completeWork or
rollbackWork transaction state primitives to cause explicit deactivation of
theinstance. Asdiscussed in “ Using transaction state primitives’ on page
59, these primitives also affect the transaction’s outcome. Deactivation
can also occur automatically, under any of the following circumstances:

e If theinstanceis participating in atransaction, the instance is
deactivated when the transaction commits, rolls back, or times out.

e If you have configured the component’s I nstance Timeout property to
afinite setting, an instance is deactivated if the time between
consecutive method calls exceeds the timeout value. “ Resources tab
component properties’ on page 77 describes how to configure this
property.

» Destruction Destruction occursif the component instance cannot be
recycled. “ Supporting instance pooling in your component” on page 52
describes how to ensureinstance reuse. |If the component cannot be reused,
deactivation is followed by destruction of the instance.

User’'s Guide 51

Component lifecycles

Supporting instance
pooling in your
component

Stateful versus
stateless components

52

The EJB Server component lifecycle allows component instances to be
recycled; idle component instances can be cached when idle and bound to the
service of individual clients only as needed. If your component has been coded
to support early deactivation, a client holding a reference to the component’s
stub or proxy object may be serviced by several different instances of the
component. After each deactivation, the next method invocation causes an
instance to be activated and bound to the client. Overall server scalability is
increased because a new instance does not have to be instantiated each time a
client invokes a method.

Instance pooling eliminates resource drain caused by repeated all ocation of
new component instances.

For Java components, you can implement a lifecycle-control interface to
control whether the component instances are pooled. These interfaces also
provide activate and deactivate methods that are called to indicate state
transitions in a component instance’s lifetime. For more information on these
interfaces, see the following sections;

e Java components can implement the interface
jaguar.beans.enterprise.ServerBean.

To support instance pooling, code that responds to activation events must
restore the component to itsinitia state (that is, asif it were newly created).
The Javainterface has methods that allow an instance to selectively refuse
pooling: canReuse in Java.

When the component Pooling option is set in EJB Server, the Java canReuse
method is not called, even if the component implements the ServerBean Java
interface.

A component that can remain active between consecutive method invocations
iscalled astateful component. A component that is deactivated after each
method call and that supports instance pooling is said to be a stateless
component. Typically, an application built with stateless components offers
the greatest scalability.

Stateful components A stateful component remains active across method
cals.

Since deactivation happens at the mercy of client applications, you may wish
to configure the Instance Timeout property for stateful components so that a
client cannot monopolize a component instance indefinitely. See “ Resources
tab component properties’ on page 77 for more information.

Stateless components In order for acomponent to be stateless, both of the
following must be true:

EJB Server

CHAPTER 5 Understanding Transactions and Component Lifecycles

e You have configured or implemented the component to be deactivated
after every method invocation. In the Adaptive Server plug-in, you can
enabl e the Automatic deactivation / demarcation property for the
component (located on the Transactions tab in the Component Properties
window). Alternatively, you can implement the component so that it calls
either completeWork or rollbackWork in every method.

* You have enabled the Pooling option in the Component Propertieswindow
(this option is located on the I nstances tab).

Statel ess components cannot use instance-specific data to accumul ate data
between method invocations.

Some situations require that you accumul ate data across method invocations.
For example, aPurchaseOrder component might have an additem() method that
is called repeatedly to specify the contents of an order. In lieu of instance-
specific data, you can use one of these alternatives to accumulate data:

« Accumulate datain the database Use connection caching and
database commands to accumulate data in the database. Thisisthe
preferred technique.

» Accumulate datain the client Create adata structure that is passed to
each method invocation and contains all accumul ated data. Thistechnique
isonly practical if the amount of datais small. Sending large amounts of
data over the network will degrade performance.

» Accumulate datain afile If theaccumulated datais small and
represented by simple data structures, you can store the datain alocal file.

The EJB Server transaction processing model

Transactions

User’'s Guide

An EJB Server transaction isatransaction whose boundaries and outcome are
determined by EJB Server. Components can be marked as transactional in the
Adaptive Server plug-in. If acomponent is transactional, the EJB Server
transaction manager ensures that the component’s third-tier database queries
execute as part of atransaction. Multiple components can participatein an EJB
Server transaction; the EJB Server transaction manager ensures that all
database changes performed by the participating transactionsare all committed
or rolled back.

All transactions are defined by the ACID test:

53

The EJB Server transaction processing model

« Atomic If atransactionisinterrupted, all changes that the transaction
has made are cancelled or rolled back.

» Consistent A transaction produces results that preserve invariant
properties.

« Isolated A transaction’sintermediate states cannot be monitored or
changed by other transactions; transactions execute their results one after
another.

« Durable The changes that atransaction completes are permanent.

How EJB Server transactions work

In the Adaptive Server plug-in, you can declare EJB Server components to be
transactional. When a component is transactional and uses the EJB Server
connection management feature, commands sent on a third-tier-database
connection are automatically performed as part of a transaction. Component
methods can call the EJB Server transaction state primitives to influence
whether EJB Server commits or aborts the current transaction.

The component lifecycleistightly integrated with the EJB Server transaction
model. Component instances that participate in atransaction are not
deactivated until the transaction ends or until the component indicates that its
contribution to the transaction is over (that is, its work is done and ready for
commit or that its work must be rolled back). An instance’s time in the active
state corresponds to the beginning and end of its participation in a transaction.

Benefits of using EJB Server transactions

A transaction involving
multiple components

54

The benefits of using transactions to group database updates are clear. You can
easily code methodsin a single component to implement transactions that run
against asingle data source. However, those methods may in turn be executed
by another component, which itself is defining a transaction. In this situation,
error recovery becomesdifficult. For example, consider the following scenario
in which an Enrolliment component calls both Registrar and Billing components:

In the following figure, the Enroliment.enroll() method calls methods in the
Registrar and StudentBilling components:

* Registar.reserveSeat() checks that a seat is available. If so, it decrements
the count of available seats and adds the student to the course’s enrollment
list. If no seats are available, reserveSeat() fails.

EJB Server

CHAPTER 5 Understanding Transactions and Component Lifecycles

* StudentBilling.addToBill() checks that the student has a billable credit
record. If so, addToBill() adds the course cost to the student’s hill for that
semester. If the student has a credit problem (if, for example, she owes
money for an overdue book), addToBill() fails.

Figure 5-2: An example EJB Server transaction

Registrar

reserve Seai(student, cowse)

de’ Cowse)

StudentEilling

enroll{student, course)

Envoliment

To be correct, both the database update made by the Registrar and the update
made by the StudentBilling components must occur, or neither must occur. In
other words, if the student cannot be billed, the course's avail able seats must
not be changed. To handle this case, you could add logic to the enroll() method
to undo changes (requiring an unreserveSeat() method in Registrar). However,
as more components are added to the scenario, the logic needed to undo
previous changes quickly becomes unmanageable. It is much easier to define
all the participating componentsto use EJB Server transactions. Then an error
in any component can induce arollback of al changes made by the other
participating components before the error occurred.

By defining the participating components to use EJB Server transactions, you
can be sure that the work performed by the components that participatein a
transaction occurs as intended.

Defining transactional semantics

O To define how a component participates in transactions, you must:

1 Choose atransaction coordinator. The transaction coordinator manages
the flow of transactions that involve more than one connection.
“Transaction coordinators’ on page 56 describes the available options.

User’s Guide 55

The EJB Server transaction processing model

Transaction
coordinators

Transactional
component attribute

56

2 Specify the component’s transaction attribute. Each component has a
transaction attribute that determines whether instances of the component
participate in transactions. “ Transactional component attribute” on page
56 describes the attribute settings and their meanings.

3 Code methodsto call the EJB Server transaction state primitives. Each
method should call the appropriate transaction state primitiveto reflect the
state of the work that the component has contributed to the transaction.
“Using transaction state primitives’ on page 59 describes the state
primitivesin detail.

4 Specify atransaction timeout period if needed. By default, transactionsare
never timed out. You can configure afinite timeout period in the Adaptive
Server plug-in. See “ Transaction Timeout property” on page 60 for more
information.

All componentsinstalled in one EJB Server share the same transaction
coordinator.

Choices for transaction coordinator include:

« Shared connection This"pseudo-coordinator” isbuilt into EJB Server.
In thismodel, all components participating in a transaction share asingle
connection. To use thismodel, all of your application data must reside on
one data server, and all components that participate in a transaction must
use a connection with the same user name and password.

« OTS/XA transactions For NT or UNIX users, thisoption complieswith
the Object Transaction Service (OTS) and X/Open Architecture (XA)
standards. This option uses the Transarc Encina® transaction coordinator
that isbuilt into EJB Server. The Encina transaction coordinator uses two-
phase commit to coordinate transactions among multiple databases.

The default coordinator isthe “ Shared Connection” coordinator. To view or
change the coordinator, use the Server Properties dialog box in the Adaptive
Server plug-in.

Components in EJB Server have a transaction attribute that indicates how a
component participatesin transactions. You can view and change a
component’s transaction attribute using the Adaptive Server plug-in; the
attribute is displayed on the Transactions tab in the Component Properties
window. The attribute has the following values:

« Not Supported The Default. The component’s methods never execute
as part of atransaction. If the component is activated by another
component that is executing within atransaction, the new instance’s work
is performed outside of the existing transaction.

EJB Server

CHAPTER 5 Understanding Transactions and Component Lifecycles

User’'s Guide

» Supports Transaction The component can execute in the context of a
EJB Server transaction, but aconnectionisnot required in order to execute
the component’s methods. If the component is instantiated directly by a
base client, EJB Server does not begin atransaction. If component A is
instantiated by component B, and component B is executing within a
transaction, component A executes in the same transaction.

» Requires Transaction Thecomponent always executesin atransaction.
When the component is instantiated directly by a base client, a new
transaction begins. If component A is activated by component B, and B is
executing within atransaction, then A executes within the same
transaction; if B isnot executing in atransaction, then A executesin anew
transaction.

+ Requires New Transaction Whenever the component is instantiated, a
new transaction begins. If component A is activated by component B, and
B isexecuting within atransaction, then A beginsanew transactionthat is
unaffected by the outcome of B’stransaction; if B is not executing in a
transaction, then A executesin a new transaction.

+ Mandatory Methods may only be invoked by aclient that has an
outstanding transaction.

+ Bean Managed UsesEJB 1.1 transactional behavior. The component
cannot inherit aclient or other component’s transaction. The component
can execute without a transaction or explicitly begin, commit, and roll
back transactions by using the javax.transaction.UserTransaction interface for
EJB components.

The following table lists design scenarios and the transaction attributes that
apply to each.

57

The EJB Server transaction processing model

Table 5-1: Deciding on a transaction attribute

Design scenario

Applicable transaction
attributes

Your component interacts with the database, and its
methods may be called by another component as part
of alarger transaction. Multiple updates are issued
before calling completeWork, or an update depends on
theresultsof queriesthat wereissued sincethelast call
to completeWork.

Requires Transaction
or
Requires New Transaction

Updates from your component are performed by a
single database update, the update | ogic isindependent
of any other query issued by the method, and you call
completeWork in each method that issues an update. In
other words, your component’s updates are already
atomic.

Supports Transaction

Your component’s methods make intercomponent
method calls, and the work done by called components
must be included in one transaction.

Requires Transaction
or
Requires New Transaction

Methodsin the component interact with more than one
database, and updates to different databases must be
grouped in the same transaction (this also requires a
transaction coordinator that supports two-phase
commit to those databases).

Requires Transaction
or
Requires New Transaction

Transactions begun by your component must not be
affected by the outcome of transactions begun by other
components that call your component.

Requires New Transaction

Work done by your component must never be done as
part of atransaction.

Not Supported

58

For example, in the scenario illustrated in “ A transaction involving multiple
components’ on page 54, the Enroliment component must be marked Requires
Transaction or Requires New Transaction, since it calls methods in the
Registrar and StudentBilling components, and the work performed by the called
components must be grouped in asingle transaction. Both Registrar and
StudentBilling must be marked Supports Transaction or Requires Transaction
so that their database updates can be grouped in the transaction begun by the
Enrollment component.

Transaction Not Supported is useful when your component performs updates
to anoncritical database. For example, consider a component whose sole
function isto log usage statistics to the database. Since usage statistics are not
mission-critical data, you can choose Not Supported as the component’s
transaction attribute to ensure that the logging updates do not incur the
overhead of using two-phase commit.

EJB Server

CHAPTER 5 Understanding Transactions and Component Lifecycles

Determining when
transactions begin

Using transaction
state primitives

User’'s Guide

After abase client instantiates a transactional component, the first method
invocation beginsan EJB Server transaction. Thisinstanceissaid to bether oot
instance of the transaction. If the root instance invokes methods in other
transactional components, those components join the existing transaction.

The outcome of the transaction is determined by how the participating
components call the transaction state primitives discussed in “Using
transaction state primitives’” on page 59.

Note Use the homeinterface for the called component. For transactions to
occur with the intended semantics, you must perform intercomponent calls
using the home interface. Do not invoke another component’s methods
directly.

EJB Server providestransaction state primitives that methods can call to direct
the outcome of the current transaction. Each component model provides an
interface containing methods for these primitives.

These methods end acomponent’s participation in atransaction (both cause the
current instance to be deactivated):

» completeWork The component finished its work for the current
transaction and should be deactivated when the method returns.

» rollbackWork The component cannot complete its work. Doom the
current transaction and deactivate the instance when the method returns.

These methods are used to maintain state after the method returns (they delay
deactivation of the component instance):

» continueWork Continue this component’s participation in the current
transaction after the method returns, and allow the transaction to be
committed if the component is deactivated. If amethod calls no
transaction primitive, thisis the default behavior.

« disallowCommit Continuethiscomponent’s participation in the current
transaction after the method returns, but roll back the transaction if the
component is deactivated before calling another primitive besides
disallowCommit.

These primitives can be used to query the state of the transaction (if any) in
which the method is executing:

« isInTransaction Query whether the current method is executing in the
context of atransaction.

59

The EJB Server transaction processing model

Transaction Timeout
property

60

+ isRollbackOnly Query whether the current transaction is doomed to be
rolled back or is till viable.

Table 5-2 describes how the transaction primitives are invoked in Java
components.

Table 5-2: Java transaction primitives

Transaction Java InstanceContext

primitive method

completeWork completeWork

rollbackWork rollbackWork

continueWork continueWork

disallowCommit None. You can achieve the same effect by calling, and then

raising an exception if deactivate is called before the next
method invocation.

isInTransaction inTransaction
isRollbackOnly isRollbackOnly

Any participating component can roll back the transaction by calling the
rollbackWork primitive; Javacomponents can al so cause arollback by returning
an unhandled exception. Only the action of the root component determines
when EJB Server commits the transaction. The transaction is committed when
the root component returns with a state of completewWork and no participating
component has set a state of disallowCommit.

You can use the transaction state primitives in any component; the component
does not have to be declared transactional. Calling completeWork or
rollbackWork from methods causes early deactivation.

The root instance's Transaction Timeout property specifies the maximum
duration of an EJB Server transaction. The default timeout period isinfinite.
You can configure finite timeouts in the Adaptive Server plug-in, as described
in “ Resources tab component properties’” on page 77.

A transaction begins when a base client activates a transactional component;
thiscomponent isthe root component of the transaction. The root component’s
Transaction Timeout property determines the maximum duration of the
transaction.

If the transaction is not committed or rolled back within the alotted time, itis
automatically rolled back. In this case, the client receives the CORBA
TRANSACTION_ROLLEDBACK exception when it tries another method
invocation. The client’s object reference remainsvalid, and the transaction can
be retried.

EJB Server

CHAPTER 5 Understanding Transactions and Component Lifecycles

Example

User’'s Guide

Transactions are never rolled back in the middle of amethod invocation. If the
timeout occurs during a method invocation, and the method does not commit
the transaction, the transaction is rolled back when the invocation compl etes.

Asdiscussed in “ Benefits of using EJB Server transactions’ on page 54, EJB
Server transactionsare most useful when your application usesintercomponent
cals.

As an example, consider the scenario illustrated in “A transaction involving
multiple components” on page 54. The pseudocode below shows the logic
used to ensure that the work performed by the Registrar.reserveSeat() and
StudentBilling.addToBill() occurs within the same transaction.

In the Registrar component, the reserveSeat() method must check the number
of seats. If thereis space for the new student, then the method adds the student,
decrements the count of available seats, and sets a state of completework. If a
seat is not an available, the method call s rollbackWork to roll back the current
transaction.

Here is the pseudocode for Registrar.reserveSeat():

check nunber of seats
i f enough seats
decrenent nunber of seats
add student to enrollnent |ist
conpl et eWbr k
el se
rol | backWor k
end if

Thetransaction attribute for Registrar must be Requires Transaction so that the
query for available seats and the update of available seats always occur in the
same transaction.

In the StudentBilling component, the addToBill() method must verify the
student’s credit. If the student does not already owe money, the method adds
the cost to the semester bill and setsastate of completeWork. If the student owes
money, the method callsrollbackWork to roll back the current transaction. Here
is the pseudocode for StudentBilling.addToBill():

check student’s bal ance
if balance > 0
add cost to bill
debit bal ance

61

The EJB Server transaction processing model

conpl et eWor k
el se

rol | backWor k
end if

Thetransaction attribute for StudentBilling must be Requires Transaction so that
the balance query, the billing cal cul ation, and the debit of the student’s balance
always occur in the same transaction.

In the Enroliment component, the enroll() method first calls
Registrar.reserveSeat(). After Registrar.reserveSeat() returns, the method
checkswhether thetransactionisstill viable using theisRollbackOnly primitive.
If the transaction is viable, the method calls StudentBilling.addToBill(). Hereis
the pseudocode for Enroliment.enroll():

i nvoke Registrar.reserveSeat ()
if isRollbackOnly returns true
return
el se
i nvoke StudentBilling
conpl et eWbr k
endi f

The transaction attribute for Enroliment must be Requires Transaction so that
the work done by StudentBilling and Registrar occurs as a single transaction.

Dynamic enlistment in Bean-managed transactions

EJB Server supports dynamic enlistment for Bean-managed transactions,
which allows you to create a connection in one method of a stateful Bean, use
the connection in another method, and close the connection in a third method.

For aJDBC 2.0 shared connection (PooledConnection), the container manages
the single connection’s enlistment and deenlistment in transactions.

For XA connections, the Object Transaction Service libraries need to know all
the resources that will participate in a transaction when it starts. If you get an
XAConnection before you start atransaction, EJB Server enlists the
XAConnection in the transaction. If you start a transaction before you create
an XAConnection, EJB Server creates the connection and enlistsit in the
transaction.

Dynamic enlistment allows you to do this:

connl = dsl. get Connection();
/1A

62 EJB Server

CHAPTER 5 Understanding Transactions and Component Lifecycles

user _transaction. begi n();

/1

conn2 = ds2. get Connection();
conn3 = ds3. get Connection();
/1 B

conn2. cl ose();

/1

user _transaction.commt();
/Il C

conn3. cl ose();
connl. cl ose();

Where at these points, the following are true;

A —connlisnot part of any transaction.
B — connl, conn2, and conn3 are part of the user_transaction.
C — connl and conn3 are not part of any transaction.

You can get only one connection per resource. Each getConnection call for the
same database returns the same connection.

Warning! XA performance diminishes when connections span methods.

Entity Bean local diamonds

An entity object accessed from more than one path in the same transaction, as
shown in Figure 5-3, is called adiamond. A local diamond exists when the
access paths originate from, and the entity object resides on, the same server.

Typically, EJB Server uploads data from the database at the beginning of a
transaction and downloads data to the database at the end of atransaction.
When more than one program accesses an Entity Bean within the same
transaction, this can lead to inconsistent views of the data. For instance, if
Program B updates the entity’s data and then Program C reads the data,
Program C does not see the changes made by Program B. To solve this
problem, when EJB Server detects adiamond, it uploads data at method
invocation and downloads data when the method completes.

User’s Guide 63

OTS/XA transaction model

Figure 5-3: Entity object diamond

EIB Container

Txl

[Entity Object

Txl

OTS/XA transaction model

64

EJB Server includes CORBA Object Transaction Service (OTS) and X/Open
architecture (XA) as one of its distributed transaction models. The Transarc
Encina® transaction coordinator manages OTS/XA transactions for EJB
Server. You can define components, and component methods so that the
transaction coordinator automatically handles transactions (called implicit
control). You can a so write code in the component or client to manage
transactions (called explicit control).

EJB Server provides for distributed transactions using the two-phase commit
protocol. Two-phase commit ensuresthat all changes to recoverable resources
(for example, multiple database servers) occur atomically, and the failure of
any resource to complete causes all other resources to undo changes. Two-
phase commit consists of a prepare phase and an execution phase. In the
prepare phase, the transaction coordinator validates that all resources are
available. In the execution phase, the transaction coordinator executes all
updates to the resources.

Note EJB Server does not currently support nested OTS/XA transactions (also
called subtransactions). If amethod attempts to create a subtransaction, the
SubTransactionUnavailable exception is raised.

EJB Server

CHAPTER 5 Understanding Transactions and Component Lifecycles

Component lifecycle
and transactional
behavior

User’'s Guide

An OTS/XA transaction coordinator uses XA resources to manage
transactions. An XA resource manages information using an XA-compliant
interface, for example, a database server or IBM’s MQSeri (amessage
queueing system). The XA interface standard is an element of the X/Open
Distributed Transaction Processing (DTP) model. Currently, Sybase provides
an XA-compliant interface through CT-Lib. In addition, EJB Server supports
jConnect, which isa JTA (Java Transaction API)-compliant JDBC driver. See
the “Managing XA resources’ on page 154 for detailed information about
enabling and managing XA resources.

A component with the OTS-Style transaction attribute enabled follows the
standard component lifecycle asdescribed in “ Component lifecycles’ on page
49.

Generally, OT S transactions behavein the sasmeway as described in“ The EJB
Server transaction processing model” on page 53. For moreinformation about
component transaction attributes, see “ Transactional component attribute” on

page 56.

EJB Server does not support transactions that spawn over multiple EJB
Servers.

65

OTS/XA transaction model

66 EJB Server

CHAPTER 6 Working with EJB Packages and
Components

This chapter describes how to install, modify, and deploy Enterprise
JavaBeansin EJB Server packages using the Adaptive Server plug-in.

If your site uses PowerJ, see the PowerJ documentation for information on
deploying EJB classes directly to EJB Server from PowerJ.

Topic Page
Packages and Enterprise JavaBean components 67
Importing Enterprise JavaBeans 68
Installing components 72
Modifying components 73
Configuring component properties 73
Generating stubs and skeletons 82
Creating Enterprise JavaBeans 83
Modifying packages 89
Configuring package properties 90
Exporting packages to EJB-JAR files 91

Packages and Enterprise JavaBean components

In the Adaptive Server plug-in, EJB Server packages allow you to group
related EJB components as alogical unit. Typically, componentsin a
package work together to provide a coherent service or function.

You can create JavaBeans from scratch or, more likely, import the
JavaBeansto EJB Server using the Adaptive Server plug-in. When you
import JavaBeans, they must be contained in aJAR file or Javaclassfile.
The Adaptive Server plug-in readsthe JAR file or classfile and createsan
EJB Server package containing acomponent for each Beanin thefile. See
“Importing Enterprise JavaBeans’ on page 68.

EJB Server packages serve the following purposes:

User’s Guide 67

Importing Enterprise JavaBeans

Default packages

They are a unit of deployment Using the Adaptive Server plug-in, you
canimport and export archived copies of the componentsin apackage and
related application files.

They allow you to control which users can access the o
components Packagesform one level in the EJB Server authorization

hierarchy. A packageisnot availableto the user unlessit isdeployed to the
EJB Server’s Installed Packages folder. The Adaptive Server plug-in
allows you to map roles through each package for methods within the
package. See" Configuring package properties’ on page 90 for
information about mapping roles.

When EJB Server isinstalled, the AseAuth default package is deployed
automatically to EJB Server. You will see this package in the Installed
Packages folder. AseAuth contains information you need to log in to EJB
Server from the Adaptive Server plug-in. Do not alter or delete this package.

Importing Enterprise JavaBeans

This section describes how you import Enterprise JavaBeans. These are the
usual methods you will use with EJB Server. See “ Creating Enterprise
JavaBeans’ on page 83 for directions for creating JavaBeans from scratch.

68

The Adaptive Server plug-in to Sybase Central supports two methods of
importing Enterprise JavaBeans:

From an EJB-JAR file An EJB-JAR file contains the implementation
classes, interface classes, and deployment descriptor for one or more
Beans. You can use a Java development tool such as Sybase PowerJ to
define and devel op Beans and create an EJB-JAR file. You can import
JAR filesinthe EJB 1.1 format. The Adaptive Server plug-in reads the
JAR file and creates a package containing a component for each Bean in
the JAR file.

From an EJB class file The Adaptive Server plug-in can import
component and method information from Javaclassfiles. Usethismethod
if you have created aBean'sinterfaces and implementation class, but have
not created adeployment descriptor. You will need to manually configure
properties that would otherwise be read from the deployment descriptor.
You cannot import Java package files.

EJB Server

CHAPTER 6 Working with EJB Packages and Components

Importing EJBs from
an EJB-JAR file

User’'s Guide

PowerJ deploys Enterprise JavaBeans directly to EJB Server
If you are developing in PowerJ, use the Enterprise JavaBean Deployment

Wizard to install EJB componentsin EJB Server. If using another IDE, usethe
Adaptive Server plug-in to import the Bean as described below.

Note Finder methodsin an entity Bean's home interface can return
java.util.Collection or java.util. Enumeration. All EJB components defined in a
package or an EJB-JAR file must use the same type for finder method return
values.

Importing an EJB 1.1 JAR fileis a two-step process:
1 Deploy the JAR file to the repository.

2 Install the packagein the Installed Packages folder in the Adaptive Server
plug-in.

Deploying an EJB 1.1 JAR file to the repository

1 Start the Adaptive Server plug-inif it isnot already running, and connect
to the EJB Server where you want to install the component.

2 Double-click the Installed EJB Packages folder.
3 Sdlect File| Deploy |EJB 1.1 JAR
The Deploy wizard displays.

4 If apackage existsin your repository with the same name asthe EJB JAR
display name, indicate whether the Adaptive Server plug-in should prompt
you before overwriting existing packages with the new definition.

5 Enter the path to the JAR file and click Next.

6 The Adaptive Server plug-in creates a new package in the repository that
containsacomponent for each Bean defined inthe JARfile, printing status
messages and warnings to the Deploy Wizard. The new package has the
same name as the EJB JAR display name. If thereis no display name, the
new package has the same name asthe JAR file. For each Bean in the EJB-
JAR, EJB Server creates an EJB component with the same name asthe ejb-
name element in the EJB-JAR deployment descriptor.

69

Importing Enterprise JavaBeans

70

O

Home names for imported EJB components
EJB Server setsan imported Bean's home nameto the EJB Server default,

package/component, where package is the Adaptive Server plug-in
package name, and component is the Adaptive Server plug-in component
name.

Installing a package in the Adaptive Server plug-in

1

Double-click the Installed EJB Packages folder. Choose File | Install
Existing Packages.

The Select dialog box displays.

Choose a package from the drop-down list of deployed packages in the
repository.

Click OK.
Select View | Refresh All.
The package appears in the Installed EJB Packages folder.

Optionally generate stubs and skeletons for the component Beans. See
“Generating stubs and skeletons’ on page 82.

Use the status dialog as a to-do list
In the deployment status dialog box, the Adaptive Server plug-in displays

warnings for each setting that requires further attention before running the
application. You can copy and paste thistext to atext editor to use as ato-do

list.

You may need to configure the following settingsin the Component Properties
dialog box before running EJBs:

For Beans that use container-managed persistence, the settings described
in Persistence for entity components

Resource references, described in Configuring resource references

EJB references (to components that are not installed with the JAR file),
described in Configuring EJB references

Environment properties, described in Configuring environment properties

You may need to configure the Role mapping settingsin the Package Properties
dialog box, described in “Role Mapping properties’ on page 90.

EJB Server

CHAPTER 6 Working with EJB Packages and Components

Importing EJBs from
EJB class files

User’'s Guide

The Adaptive Server plug-in can import component and method information
from Javaclassfiles. Usethistechniqueif you have created aBean’sinterfaces
and implementation class, but have not created a deployment descriptor. You
will need to manually configure properties that would otherwise be read from
the deployment descriptor afterwards.

Importing EJB class files

Before importing class files
Verify that the code base under which the classfileis deployed is specified in

the CLASSPATH environment variable, as inherited by the Adaptive Server
plug-in process.

Create a package to contain the component if necessary.

Import EJB classfiles as follows:
1 Specify the package in which to install the component as follows:

a Openthelnstaled EJB Packages folder.

b Double-click the package to which the component will be added.
2 Double-click the Add new component icon in the right window.

The Component wizard displays.

3 Inthe Type of Component window, select Import an EJB Class File, and
click Next.

4 Enter the component name and EJB class and interface names as follows:

+ Component name The name of the component to be created in the
Adaptive Server plug-in, for example, FinanceBean.

« Component type Choose one of the following to match your
implementation:

Type Description

Statel essSessionBean A stateless session Bean

Stateful SessionBean A stateful session Bean

EntityBean An entity Bean with Bean-managed
persistence

+ Remote interface The full path to the Java class file that contains
the Bean's remote interface.

71

Installing components

5
6

« Home interface Thefull pathtothe Javaclassfilethat containsthe
Bean’s home interface.

« Bean class name Thefull path to the Javaclassfile that contains
the Bean’'simplementation class.

e Primary key class If defining an entity Bean, enter the full path to
the Java class file that contains the Bean's remote interface. If
defining a session Bean, leave blank.

Click Next.

The Adaptive Server plug-in displays the Component Properties dialog
box. The Component’s type and Java classes have been filled in by the
importer. Specify values for the remaining properties before running the
Bean.

Installing components

Your component must be installed in a package before it can be run by
applications. Componentsthat have the samename but areinstalled in different
packages are different components; modifying or deleting one does not effect
the other.

72

You can create a new component and install it to a package as follows:

1

2
3
4

6

Double-click the Installed Packages folder to expand it.
Double-click the package to which the component will be added.
Double-click the Add new component icon.

In the Component Wizard dial og box, select Define New Component, and
click Next.

Enter the component name in the Enter New Component Name dialog
box, and click Next.

The Summary Page window displays.

Verify the component name.

The new component appears in the package's list of installed components.
Configure the settings as described in “ Configuring component properties’ on

page 73

EJB Server

CHAPTER 6 Working with EJB Packages and Components

Modifying components

0 To modify a component:
1 Highlight the component you want to modify.
2 From the File menu, select one of the following options:

« Properties Displaysthe Component Properties window described
in “Configuring component properties’ on page 73. Make any
maodifications required, and click OK.

+ Delete Removesthe component from the package.

Configuring component properties

The Component Properties window allows you to configure the settings that
EJB Server usesto load the component and invoke its methods. Component
properties are organized on the following tabs:

Tab Description

Genera Defines basic information about the component, including the
supported I DL interfaces, the component type, and implementation
details.

Transactions Defines the components transactional properties, such as how the
component participates in transactions and whether the component
explicitly commits its work.

Instances Defines how instances of the component are managed, including
instance cresation, thread binding, and client/component bindings.
Resources Configures properties that govern the component’s use of server

and database resources.
Persistence Specifies the primary key type for EJB entity Beans.

All Properties | Allows you to manually edit component property settingsin the
EJB Server configuration repository. For advanced users.

General component properties

The General tab defines basic information about the component, including the
supported IDL interfaces, the component type, and implementation details.
These properties may have already been configured correctly by the import
process. The following table describes the window controls.

User’s Guide 73

Configuring component properties

Table 6-1: General component properties

Property Description Notes

Component Specifies the type of the EJB components must be

Type component, which can be: implemented in accordwith version
EJB - Stateless Session 1.1 of the Enterprise JavaBeans
Bean A statelesssession specification.
bean EJB component.

EJB - Stateful Session
Bean A stateful session

Bean EJB component.
EJB - Entity Bean Anentity
Bean EJB component.

Comment Specifies description of the Enter acomment that describes the
component. The description purpose of the component.
can be up to 255 characters.

Class The name of the class that
implements the Bean, in Java
dot notation.

Transactions tab component properties

The Transactions tab configures the component’s transactional properties.
Chapter 5, “ Understanding Transactions and Component Lifecycles,”
provides useful background for the transactional properties.

Transaction attribute The transaction attribute determines how methods in your component
values participate in transactions; the setting affects all methods.

The transaction attribute can have the following values:

* Not Supported (The component-level default) The component’s
methods never execute as part of a transaction. If the component is
activated by another component that is executing within atransaction, the
new instance’s work is performed outside of the existing transaction.

« Supports Thecomponent can execute in the context of an EJB Server
transaction, but a connection is not required in order to execute the
component’s methods. If the component is instantiated directly by abase
client, EJB Server does not begin atransaction. If component A is
instantiated by component B, and component B is executing within a
transaction, component A executes in the same transaction.

74 EJB Server

CHAPTER 6 Working with EJB Packages and Components

« Required Thecomponent always executes in atransaction. When the
component isinstantiated directly by a base client, a new transaction
begins. If component A is activated by component B, and B is executing
within atransaction, then A executes within the same transaction; if B is
not executing in a transaction, then A executesin a new transaction.

* Requires New Whenever the component is instantiated, a new
transaction begins. If component A is activated by component B, and B is
executing within atransaction, then A begins a new transaction that is
unaffected by the outcome of B’stransaction; if B is not executing in a
transaction, then A executesin a new transaction.

+ Mandatory Methods may only be invoked by aclient that has an
outstanding transaction.

+ Bean Managed For EJB session Bean componentsonly. The component
can explicitly begin, commit, and rollback new, independent transactions
by using the javax.transaction.UserTransaction interface. Transactions
begun by the component execute independently of the client’ stransaction.
If the component has not begun a transaction, the component’s database
work is performed independently of any EJB Server transaction.

Stateless session Beans can use this attribute, but transactions begun in a
method must be committed or rolled back before that method returns.
Otherwise, EJB Server logs an error and returns an exception to the client.
Stateful session Beans can create transactions that remain open across
several method calls.

« Never Thecomponent’s methods never execute as part of atransaction,
and the component may cannot be called in the context of atransaction. If
aclient or another component calls the component with an outstanding
transaction, EJB Server throws an exception.

Instances tab component properties

Properties on the Instances tab configure how instances of the component are
created and bound to server-side threads and client-side object references. The
properties are as follows:

User’s Guide 75

Configuring component properties

Property Description

Concurrency | Enabling this option allows multiple method invocations to occur
simultaneously. Concurrent access can decrease the response time of
client method invocations. Enable this option for any component that
isthread safe.

If thisoptionisdisabled, EJB Server serializesall method callsto the
component.

Concurrency applies to execution of al instances

Concurrency option disabled
If the Sharing and Bind Thread options are sel ected, the Concurrency

optionisimplicitly disabled.

Bind Object | Appliesto stateful session Beansonly. When thisproperty isenabled,
aninstanceis bound to a client’s proxy reference until the client
destroys or releases the reference.

If you enable this option, your component must be thread-safe; that
is, one instance must be able to execute on multiple threads
concurrently. A client may call the proxy from multiple threads, or
pass the proxy to another process or component; conseguently, there
is no guarantee that calls are serialized with Bind Object enabled.

Component instances are destroyed when the client instance
reference times out (the time out period is configured on the
Instancestab—see | nstances tab component properties’ on page 75).
Instances are not pooled.

Bind Object is most commonly used for storage components, which
are used to store a component’s state information in a database. See
“Persistence tab component properties’ on page 79 for more
information on storage components.

Bind Thread | When this option is enabled, component instances are bound to the
creating thread. Enablethisoptionif the component usesthread-local
storage.

If the Bind Thread option is selected, multiple instancesmay still run
concurrently on separate threads. To ensure that only one instance is
active at atime, make sure that the Concurrency option is not
selected.

When Bind Thread is enabled, instances are pooled if the Pooling
option is enabled. The thread is pooled with the instance in this case.

Pooling When this option is enabled, component instances are always pooled
after deactivation. If you enable the Pooling option in the Adaptive
Server plug-in, your component is always pooled, and these methods
are not called.

76 EJB Server

CHAPTER 6 Working with EJB Packages and Components

Property Description

Sharing When this option is enabled, a single, shared instance of the
component services all client requests.

A shared component can store datain instance variables. However, if
the component’s Concurrency option is also selected, you must add
code to synchronize access to instance variables.

Sharing setting overrides Pooling setting
If you select both Sharing and Pooling, Sharing takes precedence.

Stateless For EJB session Beans, the Statel ess option is set correctly when the
component type is set, and must not be changed.
Transient For EJB stateful session Beans, this property must be enabled for the

standard EJB passivation and activation to occur. It must be disabled
if you want to configure a stateful session Bean to support failover
using the Persistence tab properties (see “ Persistence tab component
properties’ on page 79).

Reentrant When this option is enabled, an instance is allowed to participate in
loopback call sequences, which are call sequences where one of the
Bean's methods calls another component which in turn callsa
method in the calling Bean instance. Most Beans are not
implemented to support reentrancy, and you must not enable this
option unless the Bean developer has verified that the
implementation allowsit.

Resources tab component properties

Properties on this tab govern the allocation and deallocation of resources
required by the component.

« Transaction Timeout A component’s Transaction Timeout property
specifiesthe maximum duration of an EJB Server transaction. See Chapter
5, “Understanding Transactions and Component Lifecycles,” for more
information on EJB Server transactions.

User’'s Guide 77

Configuring component properties

78

The timeout period is configured in seconds, with 0 indicating infinity
(that is, no timeout). If the component’s Transaction Timeout property is
not set, the default isinherited from the server properties. The default for
anew server is 0. When specifying timeouts, aresolution of 5 secondsis
recommended. EJB Server checksfor timeouts after each method returns.
Your component will not be deactivated in the middle of an invocation
because of atimeout. When a transaction times out, the next method
invocation in the client-side ORB throws the

CORBA:: TRANSACTION_ROLLEDBACK system exception.

To set Transaction Timeout for a server, display the All Propertiestab in
the Server Properties window. Then set the
com.sybase.jaguar.server.tx_timeout property.

Network transport timeis included in the measured timeout period. You
may need to configure alarger timeout period if clients connect over slow
networks.

Instance Timeout Specifieshow long, in seconds, an active component
instance can remain idle between method calls before the client’s proxy
becomes invalid. If the timeout expires, the instance is automatically
deactivated. Instance Timeout isuseful for ensuring timely deactivation of
stateful components. (“ Stateful versus statel ess components” on page 52
explains this term.) The setting has no effect for statel ess components.

When the timeout period is exceeded, EJB Server deactivates the
component and invalidates the client’s object reference. If the client
attempts another method invocation, the client-side ORB throws the
CORBA::OBJECT_NOT_EXIST exception. At this point, the client must
create a new proxy instance for the component.

This property is not set for new components; the component inherits a
default value from the server properties. At the server level, configure the
instance timeout by displaying the All Properties tab in the Server
Properties window. Then set the com.sybase.jaguar.server.timeout

property.

The timeout period is configured in seconds, with O indicating infinity
(that is, no timeout). If the component’s | nstance Timeout property is not
set, the default isinherited from the server properties. The default for a
new server is 0. When specifying timeouts, a resolution of 5 secondsis
recommended.

Network transport timeis not included in the measured timeout period.
You may need to configure alarger timeout period if clients connect over
slow networks.

EJB Server

CHAPTER 6 Working with EJB Packages and Components

Persistence tab component properties

The Persistencetab allowsyouto specify an EJB entity Bean’sprimary key and
configure settings that allow EJB Server to save component state to adatabase

User’'s Guide

server.

Table 6-2 summarizes the Persistence settings. See Chapter 8, “Managing
Persistent Component State,” for detailed information on these fields.

Table 6-2: Persistence tab component properties

Field

Description

Persistence

Specifies whether component state is saved, and if so, how. The

available options are:

« None Thedefault. The component’s state is not stored in a
database.

+ Java Serialization For EJB stateful Session Beans only. The
component implementation classis serialized and deserialized to
save and restore component state.

« Component Class Your component implementation manages
persistence. Used for EJB entity Beans.

« Automatic Persistent State EJB Server managesthe persistent
state of your component.

Primary Key

The primary key for EJB entity Beans. Specify the IDL type of the
components primary key. For example: f oo: : bar: : MyPK.
Components with a primary key must have afindByPrimaryKey
method in their home interface, and can have additional finder
methods that allow clients to look up instances that match a desired
primary key.

Unless you have defined an entity Bean by importing class or EJB-
JARfiles, youmust definethe primary key typeyourself. For an EJB
entity Bean, choosefrom thetypeslistedin “ Allowable primary key
types’ on page 85.

Storage
Component

Specifies the name of acomponent that reads and writes component
state information from a remote database server. Required when
using automatic persistence, or when using component-managed
persistence with an implementation that delegates to EJB Server’s
built-in storage component.

Connection
Cache

Specifies the connection cache used by the storage component. The
cache must be installed on all servers where your component runs
and allow by-name access.

Table

Specifies the name of the database table to store component state
information. Create the table in the default database rather than in
the doname..table.

Time Out

This setting is reserved for future use.

79

Configuring component properties

All Properties tab

80

Field Description

TimeStamp | When using a mapped database table, specifies the timestamp used
for optimistic concurrency control. Specify one of the following:

« A column name Thenameof acolumninthemapped tablethat
isincremented in each update. By default, EJB Server uses4-byte
integer timestamp. You can also use a 16-byte binary value, but
to do so, you must set the
com sybase. j aguar. conponent . ts. | engt h property to
bi nary(16).

« “None” Enter“none’ todisableoptimistic concurrency control.
This setting is not recommended.

» Novalue If you leavethe Time Stamp field blank, EJB Server
usesall column valuesto perform optimistic concurrency control.

For best performance, use a 4-byte integer timestamp column. The
timestamp column need not be mapped to the component’s
persistent state fields. 16-byte binary timestamp values are not
usable when other processes (besides EJB Server) update atable.

The All Properties tab allows you to edit component property settings as they
are stored in the EJB Server configuration repository. You can only modify or
delete properties that you have added—you cannot modify or delete default
properties, such as the Instance Timeout property.

To add a property:

1 Fillinthe Add fields as follows:
a Enter the property name in the Name field.
b Enter the value in the Valuefield.

2 Click Add and then OK.

To delete a property:

1 Highlight the property you want to delete:

2 Click Delete and then OK.

The following component properties can be configured only from the All
Properties tab:

EJB Server

CHAPTER 6 Working with EJB Packages and Components

User’'s Guide

com.sybase.jaguar.component.keys For an EJB entity Bean, specifiesthe
name of an IDL typedef for a sequence of the Bean's primary key structures.
Thistypeisused when generating the skeleton and implementation classes for
the component.

When you manually specify avalue for the Primary Key field on the
Persistence tab, EJB Server sets this property to nodul e: : conponent Keys
where module is the module containing the primary key type, and component
isthe component name. The Adaptive Server plug-in definesthe typeif it does
not exist, using the following structure:

typedef <sequence pk> conponent Keys
where pk is the primary key type, and component is the component name.

Set the com.sybase.jaguar.component.keys property only when you have
manually defined a sequence that uses another naming convention or that is
located in another module.

If you have used PowerJ or the Adaptive Server plug-inimport feature to
import an entity Bean, the com.sybase jaguar.component.keys typedef may use
adifferent naming convention.

com.sybase.jaguar.component.tx_outcome Determines whether an
exception is thrown to the client when a transaction isrolled back. Sybase
recommends that you do not alter this setting.

com.sybase.jaguar.component.refresh This property specifies whether
the component can be refreshed. If thevalueisft al se, the File| Refresh option
has no effect for the component. Allowable valuesaret rue andf al se. The
defaultist rue.

com.sybase.jaguar.component.java.classes For Java components, this
property listsadditional javaclassesthat must be rel oaded when the component
isrefreshed. The property takes as values alist of fully qualified class names
separated by commas. You can specify al classesin apackageusing wildcards,
asin thisexample:

com xyz. MyPackage. *

You can specify all classesin aJAR file by specifying the JAR file name, asin
this example:

M/Enti tyBean. j ar

The JAR file must be deployed in the $SYBASE/$SYBASE_EJB/java/classes
subdirectory.

81

Generating stubs and skeletons

Copies of the specified classes must be deployed under one of the following
locations. When loading classes required by Java components, EJB Server
searches for classes in this order:

1 AnyJARfilethatislistedinthe
com.sybase.jaguar.component.java.classes property and deployed in the
EJB Server SYBASE/$SYBASE_EJB/java/classes subdirectory.

2 Theclasstree based at the SYBASE/$SYBASE_EJB/java/classes
subdirectory.

3 Theclasstree based at the SYBASE/$SYBASE_EJB/html/classes
subdirectory.

com.sybase.jaguar.component.control Specifies the name of the IDL
control interface. The control interface defines methods called by the EJB
Server in response to changes in the instance lifecycle. The choices are
summarized in thistable:

Control interface Description
JaguarEJB::EntityBean For EJB entity Beans.
JaguarEJB::StatefulSessionBean For EJB stateful session Beans.
JaguarEJB::StatelessSessionBean | For EJB stateless session Beans.

Generating stubs and skeletons

82

You must generate stubs and skeletons for a Bean before it can run.
To generate stubs and skeletons for a component Bean:
1 Highlight the component icon.
2 Choose File | Generate Stubs/Skel etons.
The stubs and skeletons dialog box opens.
Select Generate Skeleton.

4 Enter acode base for the generated files. Sybase recommends the
$SYBASE/$SYBASE_EJB/java/classes subdirectory.

5 Click OK.

EJB Server

CHAPTER 6 Working with EJB Packages and Components

Creating Enterprise JavaBeans

User’'s Guide

In most casesit is easiest to define a Bean using one of the import methods
described in “Importing Enterprise JavaBeans’ on page 68. However, if you
prefer editing IDL to Java, you may follow the technique described here.
Creating a new EJB component from scratch:

Follow this procedureto create anew EJB component and define the homeand
remote interface.

1 Double-click the Installed Packages folder that will contain the Enterprise
JavaBean.

2 Select the Add new component icon in the right window.
The Component wizard displays.

3 Inthe Add Component dialog box, select the Define New Component
check box and click Next.

4 Inthe Name of Component dialog box, enter a name for the component
and click Next.

5 Inthe Summary Page, click Finish to create the object.

6 Display the Component Properties dialog box. Make the following
changes on the General tab:

a Setthe Component Typeto correspond to one of the following values:

Component type To indicate

EJB - Entity Bean An entity Bean

EJB - Stateful Session Bean | A stateful session Bean
EJB - Stateless Session Bean | A stateless session Bean

b Inthe Class Typefield, enter the name of the Java class that will
implement your Bean, for example, foo.bar.MyBeanimpl.

Note The Home Interface Class, Remote Interface Class, and
Primary Key Class fields cannot be edited. These fields are set
automatically after the Bean'sIDL interfaces and datatypes have been
defined. You can change them by changing the component’s IDL
interfaces and types in subsequent steps.

83

Creating Enterprise JavaBeans

84

10

11

12

13

14

15

If you are defining a stateful session Bean, optionally switch to the
Persistence tab and enter atime limit in the Time Out field. Thisvalue
specifieshow long, in seconds, that aclient can hold an instance reference
without making any calls. If you do not enter avalue, or you specify 0,
client references do not expire.

If you are creating an entity Bean, specify the primary key as follows:

a Definethe primary key type as one of the “ Allowable primary key
types’ on page 85.

b Click on the Persistence tab, and type the name of the IDL primary
key typeinto the Primary Key field. The Persistence field must be set
to Component Class (the default). Leave al other fields besides
Persistence and Primary Key blank.

Click OK to close the Component Properties dialog box.

The Adaptive Server plug-in has created default home and remote
interfaces named package::componentHome and package::component,
respectively, where packageisthe Adaptive Server plug-in package name,
and component is the component name.

Edit the home interface methods, following the design patterns described
in “ Defining home interface methods” on page 85.

Edit the remote interface methods. See “ Defining remote interface
methods’ on page 87.

Note If portability to other EJB Serversisrequired, use only in parameters
in remote interface methods.

If creating an entity Bean with container-managed persistence, configure
the persistence settings as described in Chapter 8, “Managing Persistent
Component State.”

Optionally configure the transaction properties for each method in the
home and remote interfaces, or if all are the same, configure the
component’s transaction properties.

Generate stubs and skeletons for the component as follows:
a Highlight the component icon.
b Choose File | Generate Stubs/Skeletons.
The stubs and skeletons dialog box displays.
Cc Select Generate Skeletons and click OK.

EJB Server

CHAPTER 6 Working with EJB Packages and Components

Allowable primary key
types

Defining home
interface methods

User’'s Guide

d Specify acode base for the generated files.
e Click OK.

16 The Adaptive Server plug-in generates atemplate for the Bean
implementation class suffixed with .new, for example
MyBeanlmpl.java.new. Use this template as the basis for your Java
implementation. The Adaptive Server plug-in also generates Java
equivalentsfor the home and remote interfaces, and for an entity Bean, the

primary key type.

17 Compile the component source files, and make sure they are correctly
deployed to EJB Server. See “ Deploying component classes’ on page 88.

18 If you aretesting the component with a Java applet, generate and compile
stubs using the $SYBASE/$SYBASE_EJB/html/classes subdirectory asthe
Java code base.

Define an entity Bean's primary key as one of the following:

An IDL structure The structure should reflect the primary key for the
database rel ation that the entity Bean represents. In other words, add afield for
each columninthe primary key. Definethe structureto match theintended Java
package and class name. For example, if the Java classisto be foo.bar.PK1,
define a new structure PK1 in module foo::bar.

The name of a serializable Java class Enter the name of aserializable
Java class, for example: foo.bar.MyPK.

The IDL string type Usestring if the key relation has only a string column.
In Java, the mapped primary key isjavalang.String.

You can add methods to a home interface using atext editor. However, the
method signatures in a home interface must follow the design patterns
described here to ensure that the generated code works as intended.

Patterns for create methods All Beans can have create methods, which
clients call to instantiate proxies for session Beans and insert new datafor
entity Beans.

Create methods must return the Bean's IDL remote interface type and raise
CtsComponents::CreateException. Create methods can take any number of in
parameters. To distinguish multiple overloaded create methods, append two
underscores and a unique suffix. (Thisisthe standard Javato | DL mapping for
overloaded method names. When generating stubs for Java, EJB Server
removes the underscores and suffix from the stub method name). The pattern
is as shown below:

85

Creating Enterprise JavaBeans

86

renote-interface create

(

i n-paraneters
) raises (CtsConponents:: CreateException);

renote-interface create__suffixl

(
i n-paraneters
) raises (CtsConponents:: CreateException);

Patterns for finder methods Only entity Beans can have finder methods.
Clients call finder methods to look up entity instances for existing database
rows. Names of finder methods typically have names beginning with find.

Every entity Bean must have afindByPrimaryKey method that matches the
following pattern:

renote-interface findByPrimaryKey

(
in pk-type prinmaryKey
) raises (CtsConponents:: Fi nder Exception)

whereremote-interfaceisthe DL remoteinterface, and pk-typeisthe DL type
of the primary key.

Entity Beans can have additional finder methods of two types:

e Those that return a single remote interface instance and raise
CtsComponents::FinderException, as shown in the pattern below:

renote-interface findSuffix

(
i n-paraneters
) raises (CtsConponents:: Finder Exception)

where remote-interfaceisthe IDL remote interface, Suffix isaname suffix
other than ByPrimaryKey, and in-parametersis avalid parameter list
composed solely of in parameters.

» Those that return a sequence of instances whose primary keys match a
specified search criteria. The patterniis:

conponent Li st findSuffix
(

i n-paraneters
) rai ses (CtsConponents:: Fi nder Excepti on)

where component is the component name, SUffix is a name suffix other
than ByPrimaryKey, and in-parametersisavalid parameter list composed
solely of in parameters.

EJB Server

CHAPTER 6 Working with EJB Packages and Components

Sequence types are automatically generated
The Adaptive Server plug-in creates IDL typedefs defining a sequence of

remoteinterface methods and asequence of primary keyswhen you set the
Primary Key field on the Persistence tab of the Component Properties
dialog box. The type for a sequence of remote interface instancesis
componentList and a sequence of primary keys is componentKeys, where
component is the component name.

Defining remote The IDL for your Enterprise Bean's remote interface must define aremove
interface methods method and the business methods implemented by the Bean.

remove methods are called by clientsto del ete the database row associated with
an entity Bean, and to release a reference to a session Bean instance. remove
methods have the following signature:

voi d renpve
(
)

rai ses (::CtsConponents:: RenmoveException);

You can define business methods using atext editor. The procedureisthe same
asfor any other IDL interface.

Note If portability to other EJB Serversisrequired, use only in parametersin
remote interface methods.

O To configure EJB 1.1 role references:

1 If necessary, define new Adaptive Server rolesto be used by callers of the
component. You can create rolesin the Adaptive Server plug-in in the
Roles folder under the Adaptive Server icon. Adaptive Server and EJB
Server shareroles.

2 Verify that J2EE roles are mapped to Adaptive Server rolesin the
properties of the package wherethe component isinstalled; check the Role
Mappings tab in the Package Properties window—see “ Configuring
package properties’ on page 90. You must map a J2EE role namefor each
roleto be used in role references.

User’s Guide 87

Creating Enterprise JavaBeans

Deploying component
classes

88

If you are creating components from scratch in the Adaptive Server plug-in to
Sybase Central, you must follow the steps in this section to deploy the
component class and other classes that it depends on. If you deploy from
PowerJ, PowerJ performs these steps for you. If you are using another EJB
development tool that can export EJB-JAR files, import the EJB-JAR file as
described in “Importing Enterprise JavaBeans’ on page 68. If you import an
EJB-JAR filethat callsEJB Server componentsthat are not implemented inthe
same JAR file, you must list the stub classes for the called componentsin the
custom class list as described below.

EJB Server supports hot refresh of components by using a Java class loader.
This feature speeds the development process by allowing you to deploy new
class versions without restarting EJB Server. Repeat the steps bel ow to deploy
new versions of your implementation.

0 To deploy EJB component classes:

1 Deploy thecomponent classfiles, stub and skeletonfiles, and other classes
required by theimplementation to EJB Server. For example, you may need
to copy stubs for user defined types and utility classes that arein your
component’s package.

If deploying class files, place each classin their respective
$SYBASE/$SYBASE_EJB/java/classes package subdirectories. If
deployingaJAR file, placeitin the $SYBASE/$SYBASE_EJB/java/classes
subdirectory.

The preferred code base is $SYBASE/$SYBASE_EJB/java/classes
For security reasons, it is preferable to deploy Java components to the

$SYBASE/$SYBASE EJB/java/classes subdirectory or some cther
directory that is not accessible to HTTP downloads. Deploying to this
directory also allows your component to be refreshed, and allows you to
deploy classesin JAR files without reconfiguring the server’s
CLASSPATH environment variable. If you deploy to another location,
make sureit islisted in the server’s CLASSPATH environment variable.

2 Usethe Adaptive Server plug-in to configure the component’s custom
classlist, specifying the classesthat must beloaded when your component
isloaded or reloaded, as described in “ The custom classlist” on page 89.

3 Usethe Adaptive Server plug-in to refresh the component by highlighting
itsicon and choosing View | Refresh All. You can also refresh the
component by refreshing the package, application, or server whereit is
installed.

EJB Server

CHAPTER 6 Working with EJB Packages and Components

The custom class list To support component refresh, you must specify the
custom classlist to be loaded when a component is refreshed in the
“com.sybase.jaguar.component.java.classes’ on page 81 component property.
This property must be set on the Properties tab in the Component Properties
dialog box. “ com.sybase.jaguar.component.java.classes’ on page 81 describes
the syntax of this property.

The custom class list for an EJB component must contain these classes:
e These packages:
com sybase. ej b. *; j avax. nam ng. *; j avax. nam ng. spi . *

e Stubsfor al components that your component calls. If the called
component’s classes are loaded in a JAR filg, list the JAR file namein the
custom class list.

e Other classes that your component loads and passes as parameters or
return values for intercomponent calls, or passes to clients as method
return values and output parameter values.

e Classesthat extend javax.naming.InitialContext or other javax.naming
classes and that are called by your component.

Troubleshooting ClassCastException errors
When calling javax.naming.InitialContext.lookup, if you see NamingContext

exceptions with root-cause exception ClassCastException, check for the
following errors:

¢ You are casting to an incorrect type (check the class name of the object
returned by lookup).

e Your component has refresh enabled, and the custom class list does not
contain some required classes.

e Your component has refresh enabled, and calls a component that has
refresh disabled or vice-versa.

Modifying packages

0 To modify an existing package:
1 Highlight the package you want to modify.

User’s Guide 89

Configuring package properties

2 From the File menu, select one of the following options:

« Properties Displaysthe Package Properties window described in
“Configuring package properties’ on page 90. Make any
modifications required, and click Ok.

« Delete Removesthe package from EJB Server and from the
repository.

Configuring package properties
The Package Properties window has three tabs:
+ Generd
e Role Mapping
e All Properties
General tab properties The following table describes the properties on the General tab.

Table 6-3: Package properties: General tab
Property | Description | Comments/Example

Description A description of the package. | View or change the description of
The description can be up to an existing component or set the

255 characters. description of anew one.
Role Mapping You can map permissions for component methods to rolesdefined in Adaptive
properties Server. See “ Permissions and roles’ on page 17 for more information about

rolesin EJB Server.
If you want to restrict access to a Bean, you must, for each method:
e Include a J2EE role at the method |evel when you create the Bean.

e Mapthe J2EE roleto an Adaptive Server rolein the Role Mapping dialog
box.

0 To map a J2EE role to an Adaptive Server role:

1 If necessary, define anew Adaptive Server role. See the Adaptive Server
Administration Guide for instructions.

2 Select the Role Mapping tab from the Package Properties window.

3 Click Add. Double-click the J2EE role and enter a J2EE role name. You
can also enter adescription for the role in the provided field.

90 EJB Server

CHAPTER 6 Working with EJB Packages and Components

All Properties settings

Select an Adaptive Server role from the drop-down list. Thisistherole
from which the J2EE role inherits its permissions and members.

Repeat steps 2 through 4 for each method in the package with an encoded
J2EE role.

The All Propertiestab allows you to edit package property settings asthey are
stored in the EJB Server configuration repository. You can only delete
properties that you have added—you cannot delete default properties, such as
the com.sybase jaguar.package.components property.

0 To edit package properties:

1

Look for the property name in the list of properties. If it is displayed,
highlight the property and click Modify. Otherwise, click Add.

If adding the property, fill in the Add Property fields as follows:
e Enter the property name in the Name field
e Enter the valuein the Valuefield.

If modifying a property, edit the displayed value in the Modify Property
window.

Exporting packages to EJB-JAR files

You can create an EJB-JAR file that contains the Java classes and deployment
descriptors for the EJB componentsinstalled in an EJB Server package. The
JAR file can be deployed to another EJB Server or any EJB-compatible server.

User’'s Guide

Exporting JAR files requires the Java Development Kit (JDK) version 1.2.2.
The EJB Server installation enables the JDK for exporting packages. See the
installation guide for your platform for information.

0 Exporting an EJB-JAR file

1

In the Installed Packages folder, highlight the package to export and
choose File | Export | EJB 1.1 JAR.

Enter the path and file name for the new JAR file and click Next.

The Adaptive Server plug-in creates the JAR file, displaying status
messages in the Export wizard.

91

Exporting packages to EJB-JAR files

92 EJB Server

CHAPTER 7 Creating Enterprise JavaBean
Clients

This chapter describes how to implement EJB clients. For general
information on implementing Enterprise JavaBeans and EJB clients,
please see the EJB Specification, available for download from Sun
Microsystems Web site at http://java.sun.com/products/ejb/docs.html.

If your site uses PowerJ, please see the PowerJ documentation for
information on code generation wizards for EJB clients.

Contents .
Topic Page
Developing an EJB client 93
Generating EJB stubs 94
Instantiating home interface proxies 96
Instantiating remote interface proxies 99
Calling remote interface methods 101
Managing transactions 101
Serializing and deserializing Bean proxies 102
Developing an EJB client
Follow the steps in the table below to create an EJB client:
Step | Action For more information
1 Generate EJB stubs. See “Generating EJB stubs’ on page
94
2 Add code to create the initial See “Instantiating home interface
naming context and instantiatethe | proxies” on page 96.
home interface proxies.
3 Add code to instantiate remote See “Instantiating remote interface
interface proxies. proxies’ on page 99.
4 Add codeto call remoteinterface | See “Calling remote interface
methods. methods” on page 101.
User’s Guide 93

http://java.sun.com/products/ejb/docs.html

Generating EJB stubs

Step | Action

For more information

5 Optionally add code to control See:

deserialize instances.

transactions and serialize and

« “Managing transactions” on page
101

» “Serializing and deserializing Bean
proxies’ on page 102

Generating EJB stubs

Stub classes act as proxies for an instance of the EJB component. You can
generate EJB stubs for components that are implemented in any of the EJB
Server supported component models.

O To generate Java source files for stub classes:
Highlight a component to generate stubs for all interfaces and types
required by a component.

Select File | Generate Stubs/Skeletons. The Generate Stubs & Skeletons
dialog box displays.

1

Select the Generate Stubs option and the Generate Java Stubs option. Enter
valuesin the Stubs fields as follows:

Java Version Choose Java 2.0 if any home interface has finder
methods that return java.util.Collection.

Java Code Base Enter the top-level directory path where
generated files should be created.

The path must be valid. It can include adrive and as many directories
as you want. You can use %SYBASE%\%SYBASE EJB% (Windows
NT) or $SYBASE/$SYBASE _EJB (UNIX) to specify subdirectories
within the EJB Server installation directory, for example:

YSYBASE% ¥GSYBASE_EJB% ht nl \ cl asses

Other variable substitutions or shell aliases such as“~" to indicate
your home directory are not allowed.

If you specify arelative path, such as myclasses, the path is
interpreted relative to the EJB Server
$SYBASE/$SYBASE_EJB/html/classes directory.

4 Click OK.

94

EJB Server

CHAPTER 7 Creating Enterprise JavaBean Clients

Java packages

Compiling stubs

User’'s Guide

For each IDL module, Javaequivalentsfor all interfaces, types, and exceptions
that are defined in the module are generated to a single Java package. The
default Java package name is specified by the module's name or its Javadoc
package comment.

If the module has aline of this form in the doc comment, stubs are written in
the specified Java package:

** <l-- javaPackage dotty-package -->
where dotty-package is the dot-format Java package name.

If the doc comment does not specify a Java package, stubs are generated to a
package that matches the IDL module name. For example, stubs for module
foo::bar are generated in Java package foo.bar.

For each IDL interface that is assigned to a component, the Adaptive Server
plug-in generates a Java interface with the same name asthe IDL interface, a
stub class that implements that interface, a helper class, and aholder class. For
example, for an IDL interface named Calculator::Calc, the Adaptive Server
plug-in creates the source files listed in the following table:

Table 7-1: Java stub source files for example interface calc
File name Purpose

Calcjava Defines an interface with methods equivalent to the
component’s methods.

Calc_Sub.java Class that implements the interface.

CalcHolder.java | Used when interface references are passed as an inout or
output parameter.

The Adaptive Server plug-in creates stubs for each interface and datatype
defined in amodule. If your component references amodule that contains
multipleinterfaces, youwill find that additional stub files are generated besides
the stubs for the interfaces that are directly implemented by your component.

Compile the stub classes with a JDK 1.2 compiler. Make sure that the
CLASSPATH setting contains the code base directory and the EJB Server
html/classes subdirectory. For example:

95

Instantiating home interface proxies

set CLASSPATH=%SYBASE\ SYBASE EJB% ht m \ cl asses;
%SYBASE\ SYBASE _EJB% j ava\ cl asses; “SYBASE\ SYBASE_EJB%
javac *.java

Instantiating home interface proxies

EJB clients use the Java Naming and Directory Interface (JNDI) to resolve
logical Bean home namesto proxy instancesfor aBean’shomeinterface. Each
EJB container vendor provides an implementation of thisinterface that works
with the vendor’s server and network protocol.

Obtaining an initial naming context

The core INDI interface used by client applications is javax.naming.Context,
which represents the initial naming context used to resolve names to Bean
proxies. To obtain an initial naming context, initialize ajava.util.Properties
instance and set the properties listed in Table 7-2. Pass the properties instance
to the javax.naming.InitialContext constructor. The code fragment bel ow shows
atypical call sequence:

i mport javax.nanming.*;

static public Context getlnitial Context() throws Exception {
java.util.Properties p = new java.util.Properties();

/1 Sybase inplenentation of I|nitial ContextFactory
p. put (Cont ext . | NI TI AL_CONTEXT_FACTORY,
"com sybase. ej b. I nitial ContextFactory");

/1 URL for the Server’s |1OP port
p. put (Cont ext . PROVI DER_URL, "iiop://myhost:9000");

/'l Usernane "pooh", password is "tigger2"
p. put (Cont ext . SECURI TY_PRI NCI PAL, "pooh");
p. put (Cont ext . SECURI TY_CREDENTI ALS, "tigger2");

/1 Now create an Initial Context that uses the properties
return new I nitial Context(p);

96 EJB Server

iiop://myhost:9000

CHAPTER 7 Creating Enterprise JavaBean Clients

EJB servers from different vendors require different InitialContext property
settings. If you are creating a client application that must be portable to other
EJB servers, use an external mechanism to specify properties rather than hard-
coding values in the source code. For example, in a Java application use
command-line arguments or a serialized Java propertiesfile.

Sybase InitialContext The Sybase InitialContext implementation recognizes the propertiesin the

properties following table. You can create multiple contexts with different properties. For
example, you might create one context for proxiesthat connect with plain [10P
and another for proxies that connect using SSL.

Table 7-2: Sybase EJB 1. 1 InitialContext Properties

Property name Description
java.naming.factory. Specifies the fully qualified Java class name of the class
initial that returns javax.naming.InitialContext instances that

interact with the naming provider. Use
com sybase. ej b. I ni ti al Cont ext Fact ory for EJB

Server clients.
java.naming.provider. Specifies the URL to connect to the EJB name server. Set
url the value to a URL with the following format:

iiop://hostnane:iiop-port/initial-context
where:

* hostname is the host machine name for the EJB Server
that serves as the name server for your application. If
omitted, the default is| ocal host .

* iiop-portisthe IIOP port number for the server.

* initial-context istheinitial naming context. This can be
used to set adefault prefix for name resolution. For
example, if you specify USA/Sybase/, all namesthat you
resolve with the context are assumed to berelative to
thislocation inthe name hierarchy. When specifying the
initial context, the trailing slash is optional; it is added
automatically if youdo not specify aninitial context that
endswith aslash.

If you do not set this property, the default is
iiop://1ocal host:9000/.

java.naming.security. Specifies the user name for the EJB Server session.
principal Required if user name/password authentication is enabled
for your EJB Server.

java.naming.security. Specifies the password for the EJB Server session.
credentias Required if user name/password authentication is enabled
for your EJB Server.

User’s Guide 97

iiop://hostname:iiop-port/initial-context
iiop://localhost:9000/

Instantiating home interface proxies

Property name

Description

com.sybase.gjb. Specify the number of times to retry when the initial

RetryCount attempt to connect to the server fails. The default is 5.

com.sybase.gjb. Specify the delay, in milliseconds, between retry attempts

RetryDelay when theinitial attempt to connect to the server fails. The
default is 2000.

com.sybase.gjb. Specify the number of timesthat anetwork connection may

socketReuseLimit

be reused to call methods from one server. The default isO,
whichindicatesnolimit. Thedefaultisideal for short-lived
clients.

In Sybase testing, settings between 10 and 30 proved to be
agood starting point. If the reuse limit is too low, client
performance degrades.

com.sybase.gjb.
GClnterval

Specifies how often the ORB forces deallocation (Java
garbage collection) of unused classreferences. Though this
property is set on an individual ORB instance, it affects all
ORB instances. The default is 30 seconds. The default is
appropriate unless you have set an idle connection timeout
of lessthan 30 seconds. In that case, you should specify a
lower value for the garbage collection interval, since
connections are only closed while performing garbage
collection. In other words, the effective idle connection
timeout ranges from the idle connection timeout setting to
the smallest integral multiple of the garbage collection
interval.

com.sybase.gjb.
IdleConnectionTimeout

Resolving Bean home names

Call the Context.lookup method to resolve a Bean's home name to a proxy for
the Bean’shome interface. If the server wherethe Bean isinstalled hasaname
context configured, pass the server’s name context as part of the Bean home

98

name, in the format:

Specifiesthetime, in seconds, that a connectionis allowed
to sit idle. When the timeout expires, the ORB closesthe
connection. The default is 0, which specifies that
connections can never timeout. The connection timeout
does not affect the life of proxy instance references; the
ORB may close and reopen connections transparently
between proxy method calls. Specifying afinitetimeout for
your client applicationscanimprove server performance. If
many instances of the client run simultaneously, afinite
client connection timeout limits the number of server
connections that are devoted to idle clients.

EJB Server

CHAPTER 7 Creating Enterprise JavaBean Clients

Ser ver - nane- cont ext / Bean- hone

Call javax.rmi.PortableRemoteObject.narrow to narrow the returned object to
the Bean's home interface class. narrow requires as parameters the object to be
narrowed and a java.lang.Class reference that specifies the interface typeto
returned. To obtain thejava.lang.Class reference, use Home.class, where Home
isthe Bean's home interface type. Cast the object returned by the narrow
method to the Bean's Java home interface.

The lookup method throws javax.naming.NamingException if the Bean home
name cannot be resolved or the home interface proxy cannot be created. This
can happen for any of the following reasons:

e Theserver address specified withthe Context. PROVIDER_URL property is
incorrect or the server is not running.

* Authentication with the specified credentials failed.

e TheBeanisincorrectly configured on the server. For example, a skeleton
has not been generated, or the Bean's properties specify the wrong
implementation class.

Check the server’slog fileif the cause of the error is not clear from the
exception’s detail message.

The call below instantiates a proxy for a Bean with Java home interface
test.pl.StatelessIHome and Bean home name of test/p1/Stateless1:

i mport test.pl.*;
i mport javax. nam ng. *;
javax.rni . Port abl eRenot ebj ect ;

try {
bject o = ctx.lookup("test/pl/ Statel essl");

St at el ess1lHone hone = (Statel esslHone)
Por t abl eRenpt eChj ect. narrow(o, Statel esslHone. cl ass);
} catch (Nam ngException ne) {
Systemout.println("Error: Nanmi ng exception:
+ ne. get Expl anation());

Instantiating remote interface proxies

Use the home interface create and finder methods to create proxies for session
Beans and entity Beans.

User’s Guide 99

Instantiating remote interface proxies

Instantiating proxies
for a session Bean

Instantiating proxies
for an entity Bean

100

A session Bean’shomeinterface can have several create methods. Each creates
an instance with different initial-value criteria. The fragment below shows a
typical cal:

try {

Inventory inv = invHone. create();
} catch (CreateException ce)
{

Systemout. println("Create Exception:"
+ ce. get Message());
}

Each instance of an entity Bean represents arow in an underlying database
table. An entity Bean's home interface may contain both finder methods and
create methods.

Finder methods Finder methods return instances that match an existing row
in the underlying database.

A home interface may contain several finder methods, each of which accepts
parameters that constrain the search for matching database rows. Every entity
Bean home interface has a findByPrimaryKey method that accepts a structure
that represents the primary key for arow to look up.

Finder methods throw javax.ejb.FinderException if no rows match the specified
search criteria.

Create methods Create methods insert arow into the underlying database.

When instantiating an entity Bean proxy, call afinder method first if you are
not sure whether an entity Bean’s datais already in the database. Create
methods throw ajavax.ejb.CreateException exception if you attempt to insert a
duplicate database row.

Example: instantiating an Entity Bean This exampleinstantiates an Entity
bean that represents a customer credit account. The primary key class has two
fields: custNameisastring and creditTypeis also astring. The example looks
for acustomer named Morry using the findByPrimaryKey method. If
FinderException is thrown, the example calls a create method to create a new
entity for customer Morry:

String _custName = "Mrry";
String _creditType = "VISA";

cust Credi t Key cust Key = new cust CreditKey();
cust Key. cust Nane = _cust Nane;

cust Key. credi t Type = _creditType;

cust Mai nt enance cust;

EJB Server

CHAPTER 7 Creating Enterprise JavaBean Clients

try {
System out. printl n(
"Looking for customer " + _custNane);
cust = cust Hone. fi ndByPri mar yKey(cust Key) ;
} catch (FinderException fe) {
System out. printl n(
"Not found. Creating custonmer " + _custNane);

try {
cust = cust Hone. creat e(_cust Nanme, 2000);

} catch (CreateException ce)
System out . printl n(
"Error: could not create custoner "
+ _cust Nane) ;

Calling remote interface methods

After instantiating a proxy for the Bean, call the remote interface methodsto
invokethe Bean'sbusinesslogic. You can call the proxy methods asyou would
invoke methods on any other object.

Managing transactions

EJB clients can begin transactions using the javax.transaction.UserTransaction
interface. Obtain an instance from the initial naming context by resolving the
name javax.transaction.UserTransaction. For example:

i mport javax.transaction.*;
i mport javax. nam ng. *;

Cont ext ctx;

ctx has been initialized ...
User Transacti on uTrans =
(User Transaction) ctx. | ookup(
"javax.transaction. User Transacti on");

You can call the begin(), commit(), and rollback() methods to begin and end
transactions. You can enlist multiple component methodsin atransaction, with
these restrictions:

User’s Guide 101

Serializing and deserializing Bean proxies

e Each method must allow inheritance of an existing transaction context.
That is, the method's transaction attribute must be Supports, Requires, or
Mandatory. Methods with other transaction attributes run outside the
scope of your transaction. See “ Transactions tab component properties”
on page 74 for more information on transaction attributes.

e All components must be on the same server, and all must use the same
transaction coordinator.

e All methods must be invoked by the thread that began the transaction.

Serializing and deserializing Bean proxies

Serialization alows you to save a Bean proxy as afile. Deserialization allows
you to extract the proxy from thefilein another process or on another machine,
and, if the component instanceis still active, reestablish your session with the
component.

To serialize a proxy Call the getHandle method on the remote interface, which returns a
javax.ejb.Handle instance. You can serialize the Handle instance using the
standard Java serialization protocol, as shown in the example below:

String _serializeTo; // Nane of file to save to
Stateful 1 proxy; /1 Active proxy instance

try {
Systemout.println("Serializing to
Handl e handl e = proxy. get Handl e();
Fi | eQut put St ream ostream = new
Fi | eQut put Strean(_serializeTo);
hj ect Qut put Stream p = new
hj ect Qut put St rean{ ost reamn ;
p.witeObject(handle);
p. flush();
ostream cl ose();
} catch (Exception e)
{
Systemout.println("Serializationfailed. Exception"
+ e.toString());
e.printStackTrace();

+ _serializeTo);

return;
}
To deserialize the Use the standard Java deserialization protocol to extract the Handle instance,
proxy then call getEJBObject to restore the proxy, as shown in the example below:

102 EJB Server

CHAPTER 7 Creating Enterprise JavaBean Clients

User’'s Guide

String _serializeFrom // Nane of file to read from
Stateful 1 proxy;

try {
Systemout.println("Deserializing proxy from"
+ _serializeFrom;
Fil el nput Stream i stream = new
Fil el nput Strean(_serializeFrom;
bj ect I nput Stream p = new Obj ect | nput Strean(i strean ;
Handl e handl e = (Handl e) p. readObj ect () ;
proxy = (stateful 1) handl e. get EJBObj ect () ;
i stream cl ose();
} catch (Exception e)

System out. printl n(
"Deserialization failed. Exception
+ e.toString());
e.printStackTrace();
return;

103

Serializing and deserializing Bean proxies

104 EJB Server

CHAPTER 8

Managing Persistent Component
State

You can code componentsto store state information in the database rather
than in memory. Doing so offers failover for stateful components, and
allowsyou to map relational datato a component interface using the EJB
entity Bean model.

Topic Page
Persistence for entity Java Beans 105
Persistence for stateful components 110
Storage components 112
Supported Java, IDL, and JDBC/SQL types 112
Table schema for binary storage 113

Persistence for entity Java Beans

User’s Guide

Entity components present an object view of relational datato clients;
each instance of an entity component mapsto arow in adatabaserelation.

Entity components must be EJB entity Beans implemented according to
the EJB 1.1 standard (see Chapter 6, “Working with EJB Packages and
Components”). You canimplement entity components by following these
requirements;

« Defineaprimary key type for the component. See “ Allowable
primary key types’ on page 85 for more information.

e Create ahomeinterface for the component with afindByPrimaryKey
method and, optionally, additiona finder and create methods. See
Patters for finder methods for more information.

For an entity component, you can manage persistence using these
techniques:

105

Persistence for entity Java Beans

« Component managed In thistechnique, you implement the code that
reads and writes persistent data and maps the relational column values to
fields in the implementation class. This model corresponds to the Bean
Managed Persistence model required by the EJB 1.1 specification.

« Automatic persistence Inthistechnique, EJB Server manages the
storage and retrieval of persistent data.

» Generated class Inthistechnique, a generated Java class saves and
restores component state from aremote database. The Adaptive Server
plug-in does not generate such classes, but third-party tool vendors can use
this option. The generated class can inherit from or delegate to the
component’s implementation class to save and restore component state.

Using component-managed persistence

To use component-managed persistence, you must configure the component’s
persistence properties and i mplement the required methods from the EntityBean
interface.

Display the Component Properties window in the Adaptive Server plug-in and
configure the following fields on the Persistence tab:

e Persistence Choose Component Class.

e Primary Key Enter the name of the primary key type (see “Allowable
primary key types’ on page 85).

In most cases, no other persistence settings are required. You can delegate to
EJB Server’s built-in storage components rather than implementing your own
database access code. If you do so, configure the Storage Component,
Connection Cache, and Table fields (see “ Storage components’ on page 112).

Using automatic persistence

When using automatic persistence, EJB Server managesall interaction with the
database. There are two options for database storage when using automatic
persistence:

106 EJB Server

CHAPTER 8 Managing Persistent Component State

Using mapped fields Inthe mapped table model, you define amapping
from a database table to fields in your component implementation class.
When awriteto the databaseisrequired, EJB Server readsthefield values,
after reading new data from the database, EJB Server assigns new field
values for each mapped database column. This model corresponds to the
Container Managed Persistence model required by the EJB 1.1
specification.

Using binary storage Inthismodel, you define state-accessor methods
and an|DL statetype. EJB Server callsyour state-accessor methods before
writing data to the database and after reading from the database. The state
datais stored in an encoded binary form. Because the relational datais
encoded, this model does not support finder methods other than
findByPrimaryKey.

Identifying the storage technique
The component uses mapped field storage if the value of the Table field on the

Persistence tab begins with map: , for example, map: My Tabl e.

O To configure automatic persistence:
1 Configure Persistence tab properties.

2 Specify field to column mapping properties.

3 Specify finder-method queries.

Configure Persistence tab properties

Display the Component Propertieswindow in the Adaptive Server plug-in and
configure the following fields on the Persistence tab:

User’'s Guide

Persistence Choose Automatic Persistent State.

Primary Key Enter the name of the primary key type (see “Allowable
primary key types’ on page 85). If you have imported an EJB entity Bean,
the primary key has been defined already.

Storage Component Enter or choose the name of the component that
manages interaction with the database. See “ Storage components’ on
page 112 for more information.

Connection Cache Enter the name of a JDBC connection cache that
connects to the database. The cache must have by-name access enabled
and beinstalled on all servers where your component isinstalled.

Table If using mapped table fields, enter:

107

Persistence for entity Java Beans

map: t abl e

Where table is the database table name. If you are using binary storage,
simply enter the table name.

+ Time Stamp When you are using mapped table fields, the Time Stamp
setting determines how the server uses optimistic concurrency control to
prevent overlapping updates to the same column. Specify:

+ Acolumn name The name of acolumn inthe mapped table that
serves as atimestamp. By default, EJB Server uses a 4-byte integer
timestamp and explicitly increments the value with each update.

The timestamp column need not be mapped to the component’s persistent
state fields. Other processes that update the mapped table must increment
the timestamp with each update.

Specify field to column mapping properties

If the table’s primary key maps to asingle field in the implementation class
(which must be the same type asthe component’s primary key), display the All
Properties tab and configure the propertiesin the following table:

Table 8-1: Mapping database columns to a single field

Property name Value
mapFi el d: [key] The database column name.
(For single-column keys only.)
com sybase. j aguar. The name of the component field that the key
conmponent . key. field maps to.

To map database fields to columns, display the All Properties tab and define
propertiesto map database columnsto fieldsin theimplementation class, using
the name/val ue patterns listed in the table bel ow:
Table 8-2: Mapping database columns to class fields
For columns of this

type Property name Value

Key fields (enter one mapFi el d: fi el d[key | Thedatabase
property for each key] column name.
field) Wherefield isthe name of the

field in the implementation
class that this key column
maps to.

108 EJB Server

CHAPTER 8 Managing Persistent Component State

For columns of this
type Property name Value
Non-key fields mepFi el d:field The database
(enter one property for | \herefield isthe name of the | column name.
each field) field that this key column

maps to.

You can optionally append a SQL type name to column names, in square
brackets. For example, to specify the column type must be varbinary(1024),
enter:

i con[var bi nary(1024)]

The type name is used during automatic table creation. This feature is useful
when a Java type can map to multiple SQL types; in that case, EJB Server
defaultsto the type with minimal storage requirementswhen creating the table.
Varchar columns default to 100 bytes length, and varbinary columns default to
255 bytes. Specify atype name to override the default.

Specify finder-method queries

User’'s Guide

Each finder method in the component’s home interface requires a database
query to select aset of primary keys. For example, the findByPrimaryKey
method selects the key that matches the input parameter. A findAll method
might return all keysin the table.

EJB Server can correctly infer the query required to execute the
findByPrimaryKey method. For other finder methods, you must enter properties
to specify the query. Display the All Properties tab and define new properties
for each finder method. Name each property mapQuery: met hod, where
method is the finder method name. For the value, enter a query to select
primary key values with afilter appropriate for the semantics of the finder
method. You can use the following placehol dersto represent column and table
names and parameter values:

Placeholder To indicate

[key] The table’s primary key (which can
consist of multiple columns).

[table] The name of the table.

109

Persistence for stateful components

Placeholder To indicate

@param Reference the value of parameter
paramin the finder method's IDL
signature.

Note If the component wasimported
from an EJB JAR file, the parameter
names will not match thosein the
origina Javaimplementation.
Instead, they are pO, p1, and so forth.

@param.fieldName If method parameter paramis not a
simple type, reference the val ue of
field fieldName.

The following are examples of queries using placeholders. This query returns
al rowsin atable:

sel ect [key] from[table]

This query uses the value of the expiryDate parameter to filter arange of
closingDate column values:

sel ect [key] from[table] where closingDate <
@xpi ryDat e

Persistence for stateful components

110

Stateful components collect client session data over successive client method
invocations. Normally, state datais stored in memory using fieldsin the
implementation class.

You can manage persistence using these techniques:

« Javaserialization Thismodel can be used only in EJB stateful session
Beans. To save persistent state, EJB Server serializes the component class
instance and saves the binary data to the database.

« Automatic persistence Inthismodel, youdefineastatedatatypeinIDL
or Javaand implement component methodsto receive state dataread from
the database and return state data to be written to the database. EJB Server
calls your state access methods, and manages interaction with the
database.

EJB Server

CHAPTER 8 Managing Persistent Component State

Using Java serialization

To use Java serialization, configure the following fields on the Persistence Tab
in the Component Properties window:

Persistence Choose Java Serialization.

Storage Component Enter or choose the name of the component that
manages i nteraction with the database. See “ Storage components’ on
page 112 for more information.

Connection Cache Enter the name of a JDBC connection cache that
connects to the database. The cache must have by-name access enabled
and beinstalled on all servers where your component is installed.

Table Enter the name of a database table where the serialized dataisto
be stored. EJB Server createsthe tableif it does not exist.

Using automatic persistence

To use automatic persistence, configure the following properties fields on the
Persistence Tab in the Component Properties window:

User’'s Guide

Persistence Choose Automatic Persistent State.

Storage Component Enter or choose the name of the component that
manages interaction with the remote database. See “ Storage components”
on page 112 for more information.

Connection Cache Enter the name of a JDBC connection cache that
connects to the database. The cache must have by-name access enabled
and beinstalled on all servers where your component isinstalled.

Table Enter the name of a database table where the serialized dataisto
be stored. EJB Server creates the table if it does not exist.

111

Storage components

Storage components

A storage component read and writes component state information from the
database server. If your component uses automatic persistence or Java
serialization, you must specify the storage component used to interact with the
persistent data store. The storage component uses the connection cache and
database table identified on the Persistence tab in the Component Properties
dialog box.

The storage component options are:

« CtsComponents/JdbcStorage UsesaJDBC connection cache to
provide persistent storage of component state. This component has the
Requires transaction attribute. The component’s state is saved in the
context of any existing transaction associated with the component.

« CtsComponents/JdbcStorageReqNew A copy of the
CtsComponents/JDBCSorage component that has the RequiresNew
transaction attribute. The component’s state is saved using a separate
transaction from that used to manage any database work performed by the
component.

Supported Java, IDL, and JDBC/SQL types

Table 8-3 lists the Java, IDL, and JDBC/SQL typesthat EJB Server supports
for persistent storage using mapped fields. Types on one row are equivalent.
The JDBC/SQL column lists the java.sql. Types constants that the storage
component uses to bind to the database column. When creating tables, ensure
that each column’s type is compatible with the IDBC/SQL type that
corresponds to the mapped Javafield.

Table 8-3: Supported Java, IDL, and JDBC datatypes

112

JDBC/SQL column
Java field type CORBA IDL field type type
boolean boolean TINYINT
char char CHAR
byte octet TINYINT
short short SMALLINT
int long INTEGER
long long long BIGINT
float float REAL

EJB Server

CHAPTER 8 Managing Persistent Component State

JDBC/SQL column
Javafield type CORBA IDL field type type
double double FLOAT
javalang.String CtsComponents:: StringValue VARCHAR
byte[] CtsComponents::BinaryValue VARBINARY
javalang.Boolean CtsComponents::BooleanValue TINYINT
javalang.Character CtsComponents::CharValue CHAR
javalang.Byte CtsComponents::OctetValue TINYINT
javalang.Short CtsComponents:: ShortValue SMALLINT
javalang.Integer CtsComponents::LongValue INTEGER
javalang.Long CtsComponents::LongL ongValue BIGINT
javalang.Float CtsComponents::FloatValue REAL
javalang.Double CtsComponents::DoubleValue FLOAT
javalang.BigDecima | CtsComponents::DecimalValue DECIMAL
javalang.Date CtsComponents::DateValue DATE
javalang.Time CtsComponents:: TimeValue TIME
javalang.Timestamp CtsComponents:: TimestampValue TIMESTAMP
Serializable object (N/A) VARBINARY

Values that can be null
If afield can contain nulls, do not use a primitive type. Instead, use the

CtsComponents::TypeValue IDL type and the equivalent Java object type. For
example, rather than float, use CtsComponents::FloatValue and java.lang.Float.

Table schema for binary storage

When using the binary storage technique, the table used by the JdbcStorage and
JdbcStorageRegNew components has this schema:

User’s Guide 113

Table schema for binary storage

Column

Data format

ps_key (primary key)

Thetable's primary key. The column datatype is
different for different component primary key types
(thatis, the IDL or Javatype specified in the Primary
Key field on the Persistence tab):

« If the component hasno primary key, ps_key must
be variable-length binary, 16-byte maximum
length.

* |f the component’skey isthe IDL string type,
ps_key must be variable length character, 255-
character maximum length.

« If the component uses any other primary key type,
including java.lang.String, ps_key must be
variable length binary, 255-byte maximum length.

This column cannot be null.

ps_size

Integer, cannot be null.

ps_binl

Variable length binary, 255 bytes maximum length,
can be null.

ps_bin2

Variable length binary, 255 bytes maximum length,
can be null.

ps_bin3

Variable length binary, 255 bytes maximum length,
can be null.

ps_bin4

Variable length binary, 255 bytes maximum length,
can be null.

ps_data

114

Binary large object. This type must be functionally
equivalent to a Sybase image type. The JDBC driver
used by the specified connection cache must alow
access to the ps_data column using the JDBC
setBytes and getBytes methods.

EJB Server

CHAPTER 9

Developing Applications with
PowerJ and EJB Server

This chapter gives an overview of how to develop distributed, Web, and
client/server applications with PowerJ and EJB Server. You'll find
information about the objects and code that make up the pieces of an
application and the ways PowerJ and EJB Server together can provide
business solutions.

Topic Page
About the development process 115
Building distributed and Web applications that use EJB Server 124
Building client/server applications using JDBC 133
Building Enterprise JavaBeans 1.1 components 137

About the development process

What you can build

User’s Guide

This chapter describes scenarios for devel oping the following kinds of
applications:

« Distributed or Web applications using EJB Server in the middle tier
e Client/server applications

Applets, applications, components, and Web server extensions
There are severa types of Java programs: applets, applications,

components, and Web server extensions. PowerJ generates behind-the-
scenes code for each of these types so that you don’'t have to write asmuch
code for the mechanics of the program. You can concentrate on program-
specific code.

Applets An applet isaJava program that requires a host program, such
as abrowser, to run. An applet isusually part of an HTML pageand is
downloaded when it is needed. You don't have to deploy applets to
individua computers. Because they are downloaded as needed, applets
should be small so users don’t get impatient waiting for the applet to start.

115

About the development process

Because applets are downloaded, they are subject to restrictions so they can't
harm the user’s system. For example, applets cannot access the local file
system and can make connections only back to the server they came from.

Your applet class will extend the standard class java.applet.Applet, which
provides default implementations for the init, start, stop, and paint methods. In
your applet source file, PowerJ generates code to override the init method.

Applications A Java application behaves like any other program. In Java
terminol ogy, an application isaJavaprogram that does not require ahost server
or browser to run. The user sees windows and menus and interacts with
controls. The application can connect with amiddle-tier or database server.

Since applications must be locally installed rather than downl oaded each time
they arerun, they can belarger than applets. The user’s class path environment
variable must include the directories containing the application’s code files.

A standalone application has a main method that runs when the application
starts. It includes amain form and can include other forms, including dialog
boxes and frames with menus.

Components Components are standardized, reusabl e pieces of software that
are hosted in another program. You caninstall them in serversthat are designed
to host components like EJB Server, or include them in Java applications.

Business-logic components consist of methods that implement business rules
and other application logic. These components can be included in aclient
application, but are more typically hosted in a component server like EJB
Server in adistributed application.

User-interface components are used in client applications to enhance the user
interface. Typically, user-interface components extend standard user interface
classes. For example, a custom list box component might provide custom
sorting methods, or atext box or check box might have data awareness.

In PowerJ, you can add componentsto the component pal ette and include them
inyour applications. You can put components on your forms, customize them,
and use their methods through the Reference Card and drag-and-drop
programming. For business-logic components on an EJB Server, when you add
acomponent to PowerJ, aproxy for it isadded to the palette. You can then use
distributed components just as you would local components.

116 EJB Server

CHAPTER 9 Developing Applications with PowerJ and EJB Server

How you build it

User’'s Guide

In PowerJ, it is easy to create JavaBeans components. A Bean might be an
encapsul ated user-interface component, such as an enhanced button with
custom functionality, or it might be a business-logic component that includes
methods and events. You can use the class, method, property, and event
wizards to create the Java classes for the component. You can also write code
that allows the JavaBeans user to modify properties at design time. There are
specific standards and conventions for creating Beans.

Web server extensions You can create Web server extensions that follow
the Java Servlet API. You can deploy servletsin EJB Server or other Web
serversthat support Java Servlets. For Web serversthat do not directly support
the Servlet API, PowerJ providesaDLL that trandates from CGI, NSAPI, or
ISAPI to the Serviet API.

You use PowerJ to build most of the pieces of the applications described here.
Some of the activities for building a Java application are listed below.
Depending on which application architecture you choose, some of these
activities may apply to creating the client and others to creating the server.

1 Createaworkspace, then create atarget, whichisthe type of program you
want to build. A workspace can include several targets, where each target
isapart of alarger application.

2 Createthe user interface by creating one or more forms and adding
controls and nonvisual components.

3 Optionally, add menus by creating a frame (atype of form), adding a
MenuBar object to the frame, and using the Menu editor to design menus.

4 Optionally, access database data by adding transaction and query objects
to the form. Make the visual components of the form bound to the query
object.

5 Code application-processing logic. You can place this code in different
locations:

* |nevents and methods for aform, control, or menu

« Ineventsand methods for nonvisual components on aform (PowerJ
calls these framework classes—they are visible at design time as
icons)

e Inclassesthat you add to your application

The PowerJ Reference Card and drag-and-drop programming makeit easy
to look up classes, properties, and methods and insert appropriate code in
your program.

117

About the development process

Creating workspaces, targets, and classes

What you do

Targets

Workspaces

118

First, create aworkspace. A workspace contains targets, and targets contain
forms and other classes.

A target isan application, applet, class, or collection that you create with
PowerJ. Types of targets include:

e Applet

e Standalone Java application

* A setof Javaclassfiles

* Servlet

e Enterprise JavaBeans component
e JavaBeans component

e WebApplication

* ZIP,JAR, and CAB archivefiles

You can run atarget program anytime during a PowerJ session. PowerJ builds
the target by compiling PowerJfiles into Java class files and displaying the
program’s user interface. Depending on the target type and your current run
options, your application may be displayed in the applet viewer, in aWeb
browser, or as a standal one program.

Not all targets can be run. For example, you cannot run a set of Javaclassfiles
that make up a class library, because it is not a complete application.

A WebA pplication target can be used to tie other targets and filestogether into
asingle manageabl e package. It letsyou organize, maintain, and publish all the
files of an application for an intranet or the Internet.

Similarly, archivefiletargets (ZIP, JAR, and CAB) can be used to collect other
targets and filesinto asingle archivefile.

Each target has its own folder; this avoids naming conflicts when source files
have the same name.

All work in PowerJ is done within awor kspace, which is a collection of one
or more targets. Your workspace can include all the targetsinvolved in the
complete application.

PowerJ creates aworkspace definition file for aworkspace. Thefileisa
summary of theworkspace and lists all thetargetsthat bel ong to the workspace.

EJB Server

CHAPTER 9 Developing Applications with PowerJ and EJB Server

The Workspace view displays the targets in the current workspace. A target's
Build Options property sheet |ets you specify options for building the target.

File Edit “iew Go Toolz ‘Window Help

(2o ¥ ¥ ¥

9|0k

Targets And Files

My Workspace [SLEJEClient1]
J %ElientBean [JDK 1.1 or later Classes) =

CliertBean [DK 1o Iatr Claszes) ClientBeanall [Java JAR]
(1] ClientBeanall [Java JAR] SIEjbClient1 [JDK 1.1 or later Application)
-- SIEjbClientl (DK 1.1 or later Application)

-

LI (I I + I\,Conlenlséﬁeneml WSource Conlmlf

@I Workspace I @ Objects I@ Intemationalizationl

’W\:\u"orkspace [SLEJEClient1] i
Classes Each Javafileinthetarget isaJavaclass. You can expand the targetsin the left

pane of the Workspace view to show classesaswell asthe properties, methods,
and data members of individual classes. A pop-up menu lets you add new
properties, methods, and events. In the right pane, you can further define your
classes and attributes, and view and edit Java code.

File Edit “iew Go Toolz ‘Window Help

e» [DEk[2]s 6 ¢

Targets And Files SIEbClient1 Frame

EE My wiorkspace [SLEJBClient1) =))) =
- ClientBean (DK 1.1 or later Classes) 7 cus=tom imports for S1EjbClientlFrai
- Elie.ntheanAII WavaJaR] 1l 2dd your custom import statements]
=- SIEjbClient! (DK 1.1 or later Applicati

(- SIEjbClient1 |
= SIEjbClient1Frame: class S1EjbClientlFramne extends java.:

[(Imparts)
(1 [Data Members) public S1EjbClient1Frame()

getContentPane()

processE ventfjava, awt &w TE supsr():

SIEibClient! Frame(] ¥

c:b_.‘l_a.c:tlonF'erforme.d public woid processEvent(java.awt
SIEibClient] Frame_windowClc— I -

3

unhandledE vent| String Iiste_niLI I I
LI—I 4 4 | + |m[ﬁode ‘Alllihules iﬁenetal f

@I Workspace I @ Objects I@ Intemationalizationl
SIEjbClient]Frame Y

-

User’s Guide 119

About the development process

Writing code

120

From the Workspace view, you can use the code page or open the code editor
for aclass or an individual method or event. In the editor options, you can
choose to view all the code for the class or one method at atime. You can hide
or view the code that PowerJ generates.

&4 SIEjbClient1Frame M=l B3
File Edit Search Toolz Debug Bun Miew “Window Help
HEOHOT G o[t BRX|(A 6O \
-hmpmw I
r FY
r /¢ custom imports for S1EjbClientlFrams —
r
s add your custom import statement= here
r
r
r clas= SlEjbClientlFrame extends java. awt Frame implemnsnts ja
r
. {
@ public S1EjbClientlFramne()
? {
2 super()
2
r
@ public woid processEvent{java. awt. AWTEvent event)
2 —
@ defaul tProcessEvent (event) ;
2
r
@ private void unhandledEvent{ String listenerHame, String
2
2 +
r
@ public java.awt. Container getContentPane()
2
#+ U=ze the following if you inherit from a JFC cont
| S return SuDer.aetiDntentPanef): _J:J
4 3
|Ln 4 Col1 [v

EJB Server

CHAPTER 9 Developing Applications with PowerJ and EJB Server

Designing the user interface

You create the user interface in a PowerJ form. A form is an application
window on which you place buttons, text boxes, and other elements of the user
interface.

Ega ContactMaintenanceClient H[=] E3

Any program with agraphical user interface hasamain form, whichisthefirst
window displayed by the application. When you create an applet or application
target, amain form is created for you.

Your application may require additional forms, which you can add by selecting
File | New from the menu bar or clicking the corresponding toolbar button.

Construct the user interface by sel ecting components on the component pal ette
and dropping them onto the form. In the code editor for the class, you write
code for component events.

Templatesl Databasel Intemetl Utilitiesl JEIassI JScape LiteI Swing I

el N) e Y Y R

Abc
Def

D& @|=)

User’s Guide 121

About the development process

Designing menus

Accessing data

122

You add menusto your application withaMenuBar object. A M enuBar obj ect
represents all the menus displayed by the form. MenuBar objects can be added
only to forms that are based on the Frame class.

To add amenu to your application, you create aform whose type is Frame and
drop aMenuBar object onto the form. You can add individual menus and menu
itemsin the Menu Editor, accessed by sdlecting Edit Menu from the form’s

pop-up menu.

it menu_1 HE

File “iew Menu Help

| Menu Layout Froperties for ‘menw_1_ltem1'

% el

General |

Laption:

[Exit

Wariable name suffix:

[Exit

[Disabled
" Checkable
= Checked

-l ¥ NewEopupl Mews ltem |

In PowerJ, you can use the transaction object to simplify connecting to many
types of datasources. You can use either the DatawWindow, Java Edition (also
known as the Datawindow JavaBeans component) or the query object for
SQL statements and dataretrieval. You use the query object if you want to use
data-bound controlsinstead of the DataWindow. Both the Datawindow
JavaBeans component and the query object can use the transaction object, or
they can process result sets without a database connection.

The Database component palette includes icons for adding transaction and
query objectsto aform. You create instances of the Transaction and Query
classes by selecting them in the palette and dropping their icons onto a form.

EJB Server

CHAPTER 9 Developing Applications with PowerJ and EJB Server

Todisplay retrieved data, you can use either data-bound controlswith the query
object, or the Datawindow JavaBeans component. On the Standard component
palette, many of the visual controls (such as check boxes, text boxes, and
labels) can be connected to a data source and column so that they display the
datain the current row of aquery object’s result set. You make the connection
to the query on the Database page of the control’s property sheet.

Coding application logic

What you do

Events

Methods

Classes

User’'s Guide

You can add your application logic in event handlers, methods, or external
classes. In choosing where to add this code, keep in mind that effective
encapsulation will make your classes more reliable and reusable. Don't try to
accomplish everything in a single method.

At design time, PowerJmakesit easy for you to write code that gets executed
when events are triggered. PowerJ takes care of the infrastructure for events,
such as event sources and listeners. You just write event-handler code that you
want to be run when the event occurs.

If you want to set up anew event handler in your code, then your code must set
up the event infrastructure.

When you add anew method, PowerJinserts the method declaration and opens
the code window so you can write the method's code.

When writing code, you can use the PowerJ Reference Card to look up
methods and properties of classes and components and then insert the method
callsinto your code.

In Java, aclass provides the definition of an object; an object isan instantiation
of aclass. An application with a user interface includes forms, which are
classes with specific support for the design environment. You can also have
classesthat are not forms. For these classes, you work in the Workspace view
and code editor. You add methods to the class to contain the application logic.

You can add a class to atarget and use the Workspace view to add properties,
methods, and eventsto the class. Thisis called a managed class because
PowerJ has records of the functionsit contains.

You can aso add a Java source file to atarget. You can edit the source in the
code editor, but the Workspace view does not display the methods and
properties of the class. The extension for a sourcefileis.java.

123

Building distributed and Web applications that use EJB Server

PowerJ uses an enhanced file format for saving forms and managed classes.
Files for forms have the extension .wxf; files for managed classes have the
extension .wxc. When you build your application, PowerJ generates Java
source files (with the extension .java) that are then compiled into binary files
(with the extension .class). The binary files contain bytecodes that can be
interpreted by aJava VM. These files are usually called classfiles.

Building distributed and Web applications that use
EJB Server

This section describes how to use PowerJ and EJB Server together to create
distributed and Web applications.

About EJB Server

What it is EJB Server isacomponent transaction server that hosts Java components.
Using PowerJ, you can develop EJB Server Java components and Java client
programs that connect to EJB Server and execute component methods.

When aclient invokes a method on an EJB Server component, EJB Server
intercepts the call, locates an instance of that component that can carry out the
request, passes the parameters and invokes the method, then returns the result

to the client.
EJB Server An EJB Server component is areusable module of code that combines related
components tasksinto awell-defined interface. EJB Server components are installed on an

EJB Server and contain methods that execute business logic and access data
sources. Components are nonvisual—they do not display graphics or user
interfaces. You can import an EJB Server component into PowerJ and use the
Reference Card to browse its methods and properties.

Data access To optimize database processing, EJB Server provides support for connection
caching. Connection caching allows EJB Server components to share pool s of
preallocated connections to the database server, avoiding the overhead
imposed when each instance of acomponent creates a separate connection. By
establishing a connection cache, an EJB Server can reuse connectionsmade to
the same data source.

124 EJB Server

CHAPTER 9 Developing Applications with PowerJ and EJB Server

Architecture of distributed and Web applications

How it works

About the distributed
architecture

About the Web
architecture

Creating a distributed
or Web application

User’'s Guide

In adistributed or Web application that uses Java and EJB Server together, a
Java client accesses the EJB Server, which in turn accesses a database.

In the distributed architecture, the client is a Java application rather than an
applet. The application and JavaVM need to beinstalled on the user’s machine
and the application files made accessible to the Java VM.

A Web applicationisavariation on thedistributed architecture where the client
is aJava applet hosted in a Web browser.

About the Web client The browser handles communication with a Web
server viathe HTTP protocol. The Web page that contains the applet and the
applet itself are downloaded viaHTTP. The applet then runsin the Web
browser but bypasses the Web connection and communicates directly with the
EJB Server. Connecting directly to EJB Server enables persistent connections
with the client and avoids the problems with statelessHTTP.

A major advantage of the Web architecture is that the client applet is
downloaded when the Web page is requested. You don’t have to worry about
deployment to individual users.

The main disadvantage of the Web architecture is that an applet must be
downloaded each timeitisrun, and unlessit is marked as trusted, cannot
provide full application services, such as accessing other files, running other
programs, or making nétive calls.

EJB Server as Web server EJB Server can fill therole of Web server using
the HTTP protocol, aswell asprovide support for 11 OP connectionsthat invoke
the services of the EJB Server transaction server.

The general procedure for using PowerJ to create a distributed or Web Java
application that uses EJB Server is:

1 Decide what functionality will be encapsulated in an EJB Server
component. Typically, the component implements business logic that
analyzes data, performs computations, or retrieves and processes data
from the database.

2 InPower], write the code for the component. In addition to implementing
the component’s businesslogic, you may also call EJB Server methodsto
take advantage of transactions and other EJB Server performance features
(information about these features follows).

3 InPowerJor the Adaptive Server plug-in to Sybase Central, define
connection cachesto manage pools of connectionsto the remote databases
that your component connects to.

125

Building distributed and Web applications that use EJB Server

4 In Power], set the deployment options for your component, including
transaction management, instance pooling, and timeout settings.

5 In PowerJ, deploy the component to EJB Server. This automatically
creates CORBA skeletons for your component, and optionally adds a
proxy to the PowerJ component pal ette.

6 InPower], createtheclient, which can be aJavaapplication or applet. Add
the proxy object and PowerJ Initial Context object to your client, and you
can access your component’s methods as easily asif the component were
available locally. The Initial Context object takes care of connecting to
your EJB Server component and initializing the proxy.

Information about building client applications and appletsisin “Building
aJavaclient for adistributed or Web application” on page 132.

Building EJB Server components with PowerJ

126

A Java component for EJB Server can be an interface, aclass, or a JavaBeans
component. You can implement any of these in PowerJ.

An EJB Server Java component follows the Enterprise JavaBeans
implementation model. Enterprise JavaBeans (EJB) components are portable
to any server that follows Sun's EJB 1.1 specification. An EJB session Bean
models the interaction between an end user and the EJB Server. For example,
inan online purchasing application, asession Bean might keep track of auser’s
uncommitted purchases. An EJB entity Bean represents arow of data stored
in adatabase. For example, an entity Bean might represent a customer’s
purchase order. From the client’s view, entity Beans persist aslong as the
associated database row has not been deleted. EJB components use standard
javax.ejb APIsfor component lifecycle and transaction control.

The Enterprise JavaBeans model allow you to use the EJB Server connection
caching, transaction management, and lifecycle control features.

There are some restrictions to keep in mind for components. They include:

» Parametersfor methodsin an EJB Server component must have datatypes
that can be defined with CORBA IDL.

* Classes and JavaBeans components must have a default constructor (a
constructor with zero parameters). When you deploy the component to the
EJB Server , PowerJ warns you about classes and methods that don't
conform.

EJB Server

CHAPTER 9 Developing Applications with PowerJ and EJB Server

Implementing the component

General procedure

EJB Server services

User’'s Guide

Creating and deploying an EJB Server component involves these main tasks:

1

Define and implement the EJB component in PowerJ.

Create an EJB 1.1 target that defines the type of Bean, the Java package
and class hames, and the component’s transactional attribute. PowerJ
generates skeleton implementations for the SessionBean or EntityBean’s
home interface, remote interface, and implementation class. Provide
signatures for business methods in the remote interface and for any
required methods in the home interface, and add code to implement these
methods in the implementation class.

Set the deployment optionsfor your component, including the EJB Server
package name and EJB Server component name.

Deploy to EJB Server so you can test the component. Thisis an iterative
process (deploy, test, debug, and redeploy). PowerJ supports in-process
debugging of EJB Server components.

For more information about debugging Java components running in EJB
Server, see the PowerJ documentation.

When designing the component, you can take advantage of these EJB Server
services to enhance your application’s performance:

Transaction management
Database access and result set management
Connection caching

Instance pooling

These EJB Server features enable you to write high-performance applications
with effective error management. You need to set deployment optionsin
PowerJ to enable some of these features in your component, and your
component needs to call methods that alow it to cooperate with other
components.

127

Building distributed and Web applications that use EJB Server

Transaction management

How it works

When a component is transactional and uses the EJB Server connection
management feature, commands sent to a data source are automatically
performed as part of atransaction. Component methods can call EJB Server’s
transaction state primitivesto influence whether EJB Server commits or aborts
the current transaction.

The EJB Server coordinates the database activity of all transactional
components participating in the transaction. The application can roll back
everything that took place in the transaction if any component could not
complete its part of the work.

To define how a component participates in transactions:

1 Chooseatransaction coordinator for the EJB Server. The transaction
coordinator manages the flow of transactions that involve more than one
connection and sometimes more than one data source.

2 Set the component'stransaction attribute to determine how the
component participates in transactions.

3 Code methods to call EJB Server’stransaction state primitivesto
influence the transaction outcome.

Each task is described in detail below.

Choosing a transaction coordinator

Thetransaction coordinator managestheflow of transactionsthat involve more
than one connection and sometimes more than one data source. To enable
transactions invol ving multiple data sources, you must configure your EJB
Server to use atransaction coordinator that supports two-phase commit, such
as OTS/XA.

Setting the transaction attribute

128

Each EJB Server component has a transaction attribute that determines how
instances of the component participate in transactions. Values are:

Attribute Description

Requires The component always executes in a transaction. Use this option

Transaction when your component’s database activity needs to be coordinated
with other components, so that all components participate in the
same transaction.

EJB Server

CHAPTER 9 Developing Applications with PowerJ and EJB Server

Attribute Description

RequiresNew | Whenever the component is instantiated, a new transaction begins.
Transaction

Supports The component can execute in the context of an EJB Server

Transaction transaction, but a transaction is not required to execute the
component’s methods. If amethod is called by abase client that has
a pending transaction, the method’s database work occursin the
scope of the client’s transaction. Otherwise, the component’s
database work is done outside of any transaction.

Not Supported | The component's methods never execute as part of atransaction. If
the component is activated by a client that has a pending
transaction, the component’swork is performed outside the existing
transaction.

Mandatory Component methods must be called in the context of a pending
transaction. If aclient calls a method without an open transaction,
the EJB Server ORB throws an exception.

Bean For EJB session Beans only. The component can explicitly begin,
Managed commit, and rollback new, independent transactions by using the
javax.transaction.UserTransaction interface. Transactions begun by
the component execute independently of the client’s transaction. If
the component has not begun a transaction, the component’s
database work is performed independently of any EJB Server
transaction.

Influencing transaction outcome

If your component participates in EJB Server transactions, you can call
transaction state primitives to explicitly commit or roll back database updates
performed in a method.

Components that use the Bean Managed or OTS Style transaction attribute
must explicitly begin and end transactions using the API's described below. For
components that use any other attribute, EJB Server implicitly commits each
method’s work when the method returns unless the method has requested
rollback.

Different component types use different transaction APIs:

User’s Guide 129

Building distributed and Web applications that use EJB Server

EJB components using attribute Bean Managed Only EJB session
Beans can use the Bean Managed transaction attribute. Componentsusing
this attribute must call the methods in the interface
javax.transaction.UserTransaction to begin, commit, and roll back
transactions. If the component is not a stateful session Bean, then
transactions begun in a method call must be committed or rolled back
before the method returns. Otherwise, EJB Server logsaruntime error and
returns an exception to the client.

EJB components using any other attribute When an EJB component
does not use the Bean Managed transaction attribute, EJB Server
implicitly commits the component’s work after each method returns. To
override the default outcome, call the EJBContext.setRollBackOnly
method.

Database access and result set management

How it works

Sending a ResultSet
object to the client

Sending results row
by row

Connection caching

How it works

130

Java components send result setsto the client using the interfaces in the
com.sybase.jaguar.sql package:

Methods in the JServerResultSetMetaData interface define the format of
rowsin aresult set.

Methods in the JServerResultSet interface define column values for rows
in aresult set and send the rows to the client.

You don’t have to implement these interfaces. The jaguar.server.JContext class
contains static methods for obtaining objects that implement these interfaces.

To send database data to the client:

Get the data by sending a query to the remote server. Use
java.sgl.Satement or one of its extensions. The appropriate method
depends on the query you are making.

Convert the results of the query to Tabular Results.ResultSet.

You can also send the result set row by row by building another ResultSet
object that contains asubset of the original query. Methodsin the metadata and
resultset interfaces let you specify the columns and data in the result set.

A connection cache contains a pool of preallocated connections that
components can use repeatedly as needed to communicate with a database
server using acommon user name and password. Connection caching provides:

EJB Server

CHAPTER 9 Developing Applications with PowerJ and EJB Server

Java Connection
Manager classes

User’'s Guide

« Improved performance through reuse of connections The EJB
Server connection manager allows client sessions to share previoudy
opened connections so that server CPU time and memory are not
consumed by opening more connections than necessary.

+ Improved scalability Since connection caching allowsthe same number
of clients to be serviced using fewer connections, less memory and other
resources are required.

« Support for transaction semantics EJB Server’s declarative
transaction model requires that you call the connection caching APIsto
obtain and release all database connections

To realize these benefits, a component must be coded to use a cached
connection only when necessary and to release the connection back to the
cache at other times. A component should not hold connections while waiting
for more input from the client application. Asageneral rule, each method call
that requires athird-tier connection should take a connection handle when
invoked and release it before returning.

JDBC 2.0 driversprovideimplicit support for connection pooling. When using
JDBC driversthat do not conform to the JIDBC 2. 0 specification, you can
define a connection cache in the Adaptive Server plug-in or PowerJ for your
components' use.

Transaction support requires cached connections
If your component participates in EJB Server transactions, you must use an

JDBC 2.0 driver or define an EJB Server connection cache and obtain
connections using the EJB Server connection manager classes.

Java components can use the Java Connection Manager (JCM) classes for
connection caching. The JCM classes manage JDBC connections.

The JCM classes are;

» com.sybase.jaguar.jcm.JCMCache Representsa configured
connection cache and provides methods to manage connectionsin the
cache.

« com.sybase.jaguar.jcm.JCM Provides accessto JDBC connection
caches defined in the Adaptive Server plug-in. JCM methods return
JCM Cache instances.

To access a connection cache, configure a PowerJtransaction object to connect
to the cache, and use the transaction object. Typically, you will al'so useaquery
or DataStore object.

131

Building distributed and Web applications that use EJB Server

Instance pooling
How it works

Implicit pooling of EJB
components

Instance pooling allows EJB Server to maintain a cache of component
instances and bind them to client sessions on an as-needed basis. When
components support instance pooling, the scalability of your application
increases. |nstance pooling eliminates execution time and memory
consumption that would otherwise be spent all ocating unnecessary component
instances.

Entity Beans and statel ess session Beans can be implicitly pooled after any
method invocation. EJB Server calls the activate and passivate methods to
indicate when an instance has been bound to a client session.

Stateful session Beans remain bound to a client session as long the server has
not crashed, the client has not called remove to unbind from theinstance, or the
Beans session timeout value has not expired. EJB Server may serialize the
instance and saveit to disk to conserve memory. EJB Server callsthe passivate
method before serializing the Bean, and the activate method when the Bean has
been deserialized. In the code for these methods, you must release and
reacquire any object references that do not support serialization.

Building a Java client for a distributed or Web application

Types of clients

Enterprise JavaBeans
model for clients

General procedure

132

The Javaclient in a EJB Server distributed application can be an applet or an
application, depending on whether you want your client to run in a Web
browser.

EJB Server supports the EJB 1.1 client model using stubsthat call the EJB
Server CORBA ORB.

Creating a Java client for EJB Server involves these general steps:

1 InPower], add the EJB Server component. This creates a proxy on the
PowerJ component palette.

2 Add aproxy object and PowerJ Initial Context object to your client.
3 Write code that:

» Cadlscomponent methods by calling the corresponding method in the
stub class.

» Cleans up client-side resources by setting proxy references to null.
This expedites Java garbage collection.

4 Execute the Build command to compile your Java client and then deploy it.

EJB Server

CHAPTER 9 Developing Applications with PowerJ and EJB Server

Compiling and deploying the Java client

What you do

Setting up and
publishing a client
applet

Deploying a client
application

In PowerJ, you compile your Java classes with the Build command. Testing the
distributed or Web application requires accessto the EJB Server, on either your
own machine or another machine accessible to you.

When PowerJ buildsan applet, it generatesan HTML filewith an APPLET tag
that you can use for testing. You can copy the APPLET tag from the generated
fileinto the HTML file you are developing for your applet.

PowerJ provides a WebA pplication target type that you can useto collect all
the files that you want to deploy.

After you build the client application, you can test it within PowerJ. You can
runin Debug or Release (nondebug) mode.

When you are ready to deploy the application to a user’s machine, you can
check the CLASSPATH directoriesthat PowerJisusing so that you can set the
CLASSPATH correctly for the users.

Building client/server applications using JDBC

How it works

User’'s Guide

Client/server architecture means an application that connects directly to a
database. Businesslogic and the user interface areimplemented together on the
client. Your application may also have business logic as stored proceduresin
the database.

In Java applications, the database connection is made using JDBC.

Java client Database
application server
I Corporate

— - JDBC

data

133

Building client/server applications using JDBC

About JDBC

The Java client application uses atransaction object to make a database
connection. A query object or DataWindow obj ect makesthe SQL query and
managesthe result set. To present the datain the user interface, you can usethe
DataWindow JavaBeans component or adata-bound control.

The PowerJ Database wizard makes it easy to create database forms and
generates much of the required code for instantiating the transaction and query
objects and managing the data binding.

JDBC isastandard that describes how to connect to and talk to adatabase from
within a Java application or applet. JDBC is a set of Javainterfaces, not actual
Javaclasses. The JDBC interface (also called the JIDBC API) provides Java

programmers with a uniform interface to awide range of relational databases.

To use JDBC, you need a JDBC driver that implements the methods specified
in the interface.EJB Server provides the Sybase high-speed, shared-memory
driver for this purpose.

Building the application

What you do

Transaction object

134

PowerJ makesit easy to create a database form. Typically, you use the Form
wizard to createtheform. The wizard gathersyour specification and setsup the
transaction object, query object, and bound controls that will display the
retrieved data. PowerJ takes care of most of the code for instantiating the
objects, making the database connection, executing the query, and populating
the controls.

CRIrStNEME e

CLastMame e

In a PowerJ program, the transaction object handles the database connection.
Its properties store information about the database you want to connect to, and
it manages SQL transactions via commits and rollbacks.

EJB Server

CHAPTER 9 Developing Applications with PowerJ and EJB Server

Query object

User’'s Guide

Thetransaction object isin the Database page of the component palette. To add
atransaction object to your form, you select the transaction icon in the palette
and click on the form. If you used the database option in the Form wizard, the
transaction object is added automatically.

Transaction properties Thetransaction object has propertiesfor connection
and transaction management. You can set them in thewizard or on the object’s
property sheet. You need to specify the JDBC driver and the URL for the
database, among other properties. You can also specify that you want to
connect to the database automatically when the form is created, whether each
database operation gets committed automatically when it is completed, and
whether updates are allowed.

You can also set propertiesat runtime. It istypical to let the user specify auser
ID and password and set the Userld and Password propertiesin code. The
following code sets these properties with values saved in string variables:

transaction_1.setUserl D(userid);
transaction_1. set Password(password);

Connecting If you have not set up AutoConnect behavior, you can connect
to the database using the connect method of the transaction object:

transaction_1.connect();

Transaction management |f you havenot set up AutoCommit behavior, you
can commit or roll back changes explicitly with methods of the transaction
object:

transaction_1.comit();
transaction_1.rol |l back();

A query object represents a query on a specific database and can be used to
execute any SQL statement. After the transaction object connects to the
database, interactions with the database are done through query objects.

How the query object manages data A query object has several data
buffers. The buffers store the data as it was retrieved from the database, the
current state of the data, rows that have been deleted, and rows that are
temporarily filtered out of view.

To update the database, PowerJ generates SQL statements to modify the
contents of the database so that they match the contents of the primary buffer.

Query object properties The query object has properties that associate it
with a transaction object, describe the SQL statement for the query, and
provide information necessary for updating the database, such as primary key
columns. You can set the propertiesin the query object property sheet at design
time or you can use query object methods at runtime.

135

Building client/server applications using JDBC

Setting up data-bound
controls

136

For the SQL statement, you can type the text in the property sheet or use the
PowerJ Query Editor to construct the query. If you want to change the SQL
statement at runtime, you can use the setSQL method:

String userStatenment = "select * from dba. enpl oyee”;
query_1.set SQL(userStatenent);

Executing the query If you set the query’s AutoOpen property, your
program will automatically execute the query when the query object iscreated.
To execute the query at runtime, you call the open method:

query_1. open();

If the query’s SQL statement returns a result set, you can call methods that
work with the data, often using bound controls.

A data-bound control is an object whose value is automatically updated by
guery results. When you use bound controls, you can display database data
with very little coding effort. For example, you can bind a text box to a query
object so that the text box always shows the value of a specified columnin the
current row. If you move the cursor to a different row of data, the text box
automatically changes to show the value in the same column of the new row.

If the user changes the value of abound contral, it typically changes the
corresponding valuein the query object’s primary buffer. For example, if atext
box displays the value of Column 1, changing the value of the text box
typically changes the value of Column 1 in the current row (as stored in the
primary buffer). Changesmadein the primary buffer can beincorporatedin the
database itself using the update method.

A bound control, such asatext box or check box, displaysvaluesfrom asingle
database column. Controls such as grids can display values from several
columns.

To use an object as a bound control, you check the Bound Control check box
on the object’s property sheet at design time. You can’t convert an ordinary
control to a bound control at runtime.

Data for bound controls To associate data with the bound control, you set
the control’s DataSource and DataColumns properties. You can set them onthe
property sheet at design time or with the set methods at runtime.

The DataSource property specifies the query object to which the control will
be bound. To set its value at runtime, use the control’s setDataSource method:

textf 1.setDataSource(query_ 1);

EJB Server

CHAPTER 9 Developing Applications with PowerJ and EJB Server

The DataColumns property determines which column’s value is displayed by
the bound control. To set its value at runtime, use the setDataColumns method.
The string identifying the column can be the column’s name or number:

textf _1.setDataCol ums("enp_id");

To specify multiple columns for controls such as grids, you can list more than
one column, with entries separated by semicolons:

grid_1.setDataCol uims("enp_id;dept _id");

Data navigator PowerJs data navigator control provides a simple way for
the user to move through a database. It displays forward and back buttons and
buttons for adding, editing, and deleting rows.

Data navigators are bound controls, just like the controls that display data.
They control the position of the cursor in the result set by calling methods of
the query object, such as moveFirst or movePrevious.

Building Enterprise JavaBeans 1.1 components

User’'s Guide

PowerJ 3.6 supports Version 1.1 of the Enterprise JavaBeans specification.

See Sun EJB component specs
See the EJB 1.1 specification from Sun Microsystems at

http://java.sun.com/products/ejb/.

Using Power J, you can automatically deploy EJB 1.1 components to EJB
Server. But EJB 1.1 components created in PowerJ can also be imported into
other application servers by using that application server's importing
methodol ogy.

If you are currently using an application server that does not support EJB 1.1
component technology, either upgrade your current application server to a
versionin which EJB 1.1 is supported or use EJB Server.

Creating an EJB 1.1 component isdonein nearly the same way as described in
the PowerJ 3.5 documentation. You use the EJB 1.1 Component wizard to
specify the EJB component and the wizard creates an EJB 1.1 target and,
optionally, an associated JAR file. The EJB 1.1 target contains the EJB
component’s implementation class, the Home interface, and the Remote
interface.

137

http://java.sun.com/products/ejb/

Building Enterprise JavaBeans 1.1 components

138 EJB Server

PART 3 Information for
Administrators

This part describes how to set up and manage EJB Server.

charTer 10 Configuring EJB Server

This chapter describes basic configuration tasks that you can perform to
customize your installation, such as replacing an EJB Server, changing
server properties, and defining new connection caches.

The EJB Server runtime environment is preconfigured. With minimum
setup, you can have afully functioning EJB Server. Although the default
settingsare usually sufficient, EJB Server providesyou with theflexibility
to customize your server environment when necessary.

You can perform all configuration tasks using the Adaptive Server plug-
in. For instructions for starting Sybase Central and the Adaptive Server
plug-inandfor starting and enabling EJB Server, refer to task descriptions
in Chapter 2, “Getting Started.”

Topic Page
Configuring an EJB Server 141
Configuring server stack size 146
Character sets 147
Shared-memory connections 147
Managing connection caches 148
Managing XA resources 154
Configuring listeners 158
Replacing an EJB Server 160

Configuring an EJB Server

To configure or modify the properties of an individual EJB Server:

1 Fromwithinthe Adaptive Server plug-in, display the EJB Server you
want to configure by double-clicking the host Adaptive Server icon
and then doubl e-clicking the Enterprise JavaBeans folder.

2 Highlight the EJB Server.

User’s Guide 141

Configuring an EJB Server

3 Select File| Properties. You see the Server Properties window, which
contains these tabs:

e Genera —define genera individual server properties.
e Naming Service — set the EJB Server naming service options.

e All Properties— edit server property settingsin their raw format, that
is, asthey are stored in the configuration repository.

Saving property changes and refreshing the server:
If you modify any property, click OK in the Server Properties window to save

your changes, or click Cancel to disregard the changes.

When you modify server properties you must refresh the server for the changes
to take effect. To refresh the server, select View | Refresh All.

General

Table 10-1describes the general properties that you can configure for
individual servers.

Table 10-1: Server general properties

Property Description Comments

Charset Specify the character set used by the By default, the server
server. Make sure that the character set usesiso_1.
in the EJB Server isthe same as that
used in Adaptive Server.

Description Enter a description of the server, up to
255 charactersin length.

Classpath Displays the contents of the server’s Thefield isread-only
CLASSPATH environment variable. and helpful for
This setting specifies the directories debugging various
from which Java classfiles can be errors.

loaded. It is defined by the start-up
script when you start the server.

142 EJB Server

CHAPTER 10 Configuring EJB Server

Log/Trace

Naming Service

Initial Context

User’'s Guide

Tracing provides information about activities carried out by your application.
Trace output is sent to the EJB Server log file. To establish the level of detail
for logging and tracing, select the Log/Trace tab. Table 10-2 describes the
logging and trace properties.

Table 10-2: Debug/Trace properties

Property Description

Log File Name The name of the EJB Server log file. Thisfile defaults to
srvlog in the Adaptive Server startup directory. srvlog
logs awide range of information and is helpful in isolating
problems.

You can create the log file in an alternate directory by
prefixing afull path to the file name you enter.

Log File Size (Bytes) Thesize, in bytes, to which the log file grows beforeiit is

truncated.

Truncate Log on When thisflag is set, the log truncates every time the server

Startup isrestarted. Keep in mind that if the server crashes and this
flagis set, you will lose the log file and the information it
contains.

Trace Attentions If set, traces attentions received or acknowledged by EJB
Server.

TraceNetwork Driver If set, traces Net-Lib driver requests.

APIs

TraceNetwork Driver I set, traces network layer protocol requests.
Requests

Select the Naming Service tab on the Server Properties window to set the EJB
Server’s naming service options. You can use this property sheet to configure
an EJB Server to be aname server.

Enter the EJB Server default name context. The name server binds any object
implementations on the server to the server’sinitial name context.

If you use aEJB Server asaname server, the name context can be acompound
name with each organization level separated with aforward slash (*/”); for
example, /ug/sybase/finance.

143

Configuring an EJB Server

Naming Server

Use these options to specify whether the EJB Server is also a name server and
whether to enable heartbeat detection.

If aserver isnot accepting connections, the name server does not return a
profile (host:port) information to the client. The name server al so detectswhen
afailed server is ready to accept connections again and starts routing client
requests to that server.

» Click Enable as a Name Server to configure the EJB Server as aname
server. If you select this option, you can then set the other Naming Service
options described bel ow.

Naming Server Strategy

All Properties

144

If you enabled the EJB Server as a name server, indicate whether the server
provides transient or persistent object name storage. By itself, an EJB Server
name server provides transient storage. However, you can add persistent
storage capabilitiesto EJB Server by using an external naming service, such as
an LDAP name server.

If you enable persistent storage, enter the following information:
* TheURL of the LDAP name server

e A manager DN (distinguished name) for the LDAP server

e The manager DN password

The manager DN provides exclusive access to all objectsin the LDAP server
database to bind and update the objects on the name server. The manager DN
and its password are part of the LDAP server configuration properties set by
the server administrator. Refer to your LDAP server documentation for
complete information.

For advanced users only. Select this tab to edit server property settingsin the
EJB Server configuration repository. You can use thistab to edit any property
prefixed with “ com.sybase.jaguar.server.”

Most server properties can be configured on other tabsin the Server Properties
dialog box, except the following:

EJB Server

CHAPTER 10 Configuring EJB Server

com.sybase.jaguar.server.authservice The name of a custom
component that authenticates 11OP user connections. The default is
AseAuth/DbAuth.

com.sybase.jaguar.server.authorization.service The name of a
custom component that authorizes user access to components and HTTP
URLs.

com.sybase.jaguar.server.authorization.permcachetimeout The
length of time, in seconds, that the server can cache authorization data for
auser's access to aresource. The default is 7200 seconds, which is
equivalent to 2 hours.

com.sybase.jaguar.server.jvm.debugging Whether in-process Java
debugging is enabled for servlets and Java components. Set to true to
enable debugging (you must also start the debug version of the EJB
Server).

com.sybase.jaguar.server.jvm.nojit Specifieswhether the JavaVirtual
Machine just-in-time (JI'T) compilation feature is disabled. Set the value
to true (the default) to disable the JIT feature.

com.sybase.jaguar.server.jvm.options Specifiesinitialization options
for the Java Virtual Machine. You can specify any option that isvalid for
the java command line. Separate options with commas, for example:

- Dny. system property. 1=f oo, - Dny. system property. 2=bar

User’'s Guide

com.sybase.jaguar.server.jvm.verbose Specifies whether the Java
class|oader should write information about each class |oaded to the server
log. The default isfalse, which indicates that class loader logging is
disabled.

com.sybase.jaguar.server.jvm.verboseGC Specifieswhether the Java
garbage collector should write information about each that is destroyed to
the server log. The default isfalse, which indicates that garbage collector
logging is disabled

com.sybase.jaguar.server.roleservice The name of a custom
component that evaluates user’s role membership to control accessto
components and HTTP URLSs. The default value is AseAuth/DbAuth.

com.sybase.jaguar.server.services A list of componentsthat run as
service components in the server.

com.sybase.jaguar.server.timeout Specifiesthe default instance
timeout for stateful components running in the server.

145

Configuring server stack size

+ com.sybase.jaguar.server.tx_timeout Specifiesthedefault transaction
timeout for components running in the server.

See “Configuring server stack size” on page 146 for information about setting
server stack size using the com.sybase.jaguar.server.stacksize parameter.

Configuring server stack size

146

Your EJB Server has a stack size property that determines the amount of
memory reserved for the call stack associated with each thread created by the
server. EJB Server runs each client request on a different thread, so the stack
size is the dominant factor in determining how many client requests can be
served simultaneously.

Thedefault stack sizeis256 K. Thisisappropriatefor almost all situations, and
provides adequate reserve memory for the worst case loads that have been
tested by Sybase engineering and customers.

For production servers that see heavy use from large numbers of clients, you
may wish to decrease the stack size from the default value. However, you must
ensure that the stack sizeis adequate for the components running on the server.
If the stack sizeistoo small, your server may experience thread stack overflow
errors (these are recorded in the server log).

Warning! Under no circumstances should you reduce the stack size below
64K . If you reduce the stack size, test your server thoroughly under worst-case
client loads and check the log for stack overflow errors.

O Configuring stack size for servers

1 Highlight theicon for the EJB Server and select File | Server Properties.

2 Display the All Properties tab. Scroll down if necessary to the
com.sybase.jaguar.server.stacksize property. Server propertiesarelistedin
alphabetical order.

3 Enter astack sizein the Valuefield, specified in bytes as a decimal
number. (The field will display with no value if you have not specified a
value before. This means the default setting isin effect.)

4 Stop and restart the EJB Server.

EJB Server

CHAPTER 10 Configuring EJB Server

Character sets

EJB Server and Adaptive Server must have identical character sets. If you
change the value of the Adaptive Server character set, you must also change
thevalue of the EJB Server character set. You can set the EJB Server character
set in the All Properties tab of the EJB Server properties sheet. See “All
Properties’ on page 144.

Shared-memory connections

Adaptive Server usesthe value of the number of user connections configuration
parameter to establish the number of shared-memory connections for EJB
Server. Thus, if number of user connections is 30, Adaptive Server establishes
10 shared-memory connections for EJB Server. Shared-memory connections
are not asubset of user connections, and are not subtracted from the number of
user connections.

To increase the number of user connections for shared memory, you must:

1 Increase number of user connections to a number one-third of which isthe
number of desired shared-memory connections.

2 Reboot Adaptive Server.

Although number of user connections is a dynamic configuration parameter,
you must restart the server to change the number of user connectionsfor shared
memory. See the System Administration Guide for more information.

User’'s Guide 147

Managing connection caches

Managing connection caches

A connection cache maintains a pool of available connectionsthat EJB Server
componentsuseto interact with the dataserver. You must configure connection
caches for the specific user/database combinations used by your components.
A connection cache entry improves performance by eliminating the overhead
associated with setting up a connection when one is required.

Note You mustinstall cachesin an EJB Server before componentsin that
server can access the cache. You must refresh the cache or refresh the server
using View | Refresh All, or restart the server before any changes to the list of
installed caches or to cache properties take effect.

Creating and installing a new connection cache

148

To create a new connection cache and add it to an EJB Server:
1 Double-click the EJB Server icon.
2 Double-click the Installed Connection Caches folder.

3 Double-click the Add new connection cacheicon in the right side of the
window.

4 Follow directionsin the Add Connection Cache wizard. You will enter:
* The connection cache name
* Anoptional description of the cache
e TheJDBC driver name
* The server name, which isthe URL appropriate for JDBC calls
* Theuser name for the cache
* Theuser password for the cache

5 Configure the connection cache properties as described in Table 10-3:
General tab connection cache properties.

Configured connection cache entries appear on the right side of the window of
the Adaptive Server plug-in whenever you highlight the Installed Connection
Cache folder on the left side of the window.

EJB Server

CHAPTER 10 Configuring EJB Server

Modifying connection caches

To view or modify a connection cache entry:

1 Expand the Installed Connection Cache folder.

2 Highlight the connection cache you want to modify.

3 From the File menu, select one of the following options;

e Properties— view or modify this connection cache's properties. See
Table 10-3 on page 150.

* Delete — removes the connection cache from the server.

Modifying connection cache properties

User’'s Guide

To modify the properties of a connection cache:

1 Double-click the EJB Server for which you want to modify connection
cache properties.

2 Click on the Installed Connection Cache folder.
Highlight the connection cache you want to modify.

4 Select File| Properties. You see the Connection Cache Properties window,
which contains these tabs:

¢ Genera —define general server properties.

e Advanced —edit server property settingsin their raw format, that is,
asthey are stored in the configuration repository.

You must use the cache properties file to manually configure the additional
properties described in “ Other cache settings” on page 151.

After you have configured a connection cache, click OK to save your changes,
or click Cancel to disregard them. You must refresh anewly installed cache for
any changesto take effect, and you should test the connection with Ping before
trying to access it from components. These operations are described in detail
below.

You cannot define two distinct cachesthat use identical valuesfor server, user,
password, and JDBC driver. If two caches are defined with matching valuesfor
these settings, and your application requests one, EJB Server returns the first
match that is found.

149

Managing connection caches

Saving property changes and refreshing the server:
If you modify any property, click OK or Apply in the Connection Cache

Properties sheet to saveyour changes, or click Cancel to disregard the changes.

When you modify server properties you must refresh the server for the changes
to take effect. To refresh the server, highlight the server icon and select
View | Refresh All.

General
Select the General tab on the Connection Cache Properties window to set the
basic connection cache options described in Table 10-3.
From the General tab window, you can test the cache configuration to verify
that connections can be made using the options you supply. See “ Connection
cache ping” on page 153 for more information.
Table 10-3: General tab connection cache properties
Property Description Comments/Example
Connection The name for this cache Connection cache names are limited to one word, which can
Cache configuration. contain letters, numbers, and underscores. Names are case-
Name sengitive. You cannot modify the name of an existing connection
cache.
Description The description of the The description is a string of up to 255 characters.
for the connection cache section.
cache
Server The URL appropriatefor usein For the Sybase shared-memory JDBC driver, use:
Name JOBC calls. j dbc: sybase: shmnull: 0
where host name = null and port = 0 (zero), because the connection
is made through shared memory and not through the network.
Driver name Set the driver name and The names for each of the cache types are:
propertiesusing the Drivertab o For NT platforms:
th i . .
onthe Géneral W.I ndow.) JDBC —the Java class name for the driver class. For example,
Your choicefor library typeis: the Sybase jConnect 5.2 driver requires
« JDBC —for connections com.sybase.jdbc2.jdbc.SybConnectionPool DataSource.
using the Sybase shared-
memory JOBC driver. » For UNIX platforms:
JDBC —the Java class name for the driver class; for example,
com.sybase.jdbc2.jdbc.SybDriver.
User Name The user name for this cache. The name used (along with a password) to connect to the database

150

identified by the server entry.

EJB Server

CHAPTER 10 Configuring EJB Server

Property Description Comments/Example
Password The password for this cache. The password used in connection with a user name to connect to
the database identified by the server entry. Passwords are
encrypted in the EJB Server configuration file.
The Adaptive Server plug-in does not display passwords for
existing caches. If you need to change a password, enter the new
password and click OK.
Advanced
Select the Advanced tab on the Connection Cache Propertieswindow to set the
cache options described in Table 10-4
Table 10-4: Advanced tab connection cache properties
Property Description Comments/Example
Enable Select this option to allow By default, a cache cannot be retrieved by its name. You must be
cache-by- retrieval of adatabase logged in as sa to update the cache's properties to allow the cache
name access connection using the to be retrieved by name.
connection cachenameinstead cache by-nameis less secure than requiring a user name and
of requiring a user name and password.
password.
Enable Whether connectionsshouldbe Components may release a connection that is not ready for use by
connection verified beforereleasing them another component. For example, there may be unretrieved results
sanity check into the cache. on the connection. Enabling this option causes EJB Server to test
whether the connection is usable before replacing it in the cache.
Disabling the option increases performance, but may complicate
debugging.
Number of The number of connectionsin After aconnectionis released, it is returned to the pool. The
Connections the pool. default value is 10. You can increase this number if performance
in Cache suffers due to an insufficient number of available connections.
Service The name of the Adaptive Service nameisignored for caches that use JDBC drivers other
Name Server to which the Sybase than jConnect. ™

shared-memory JDBC driver

connects.

Other cache settings

User’'s Guide

The cache settings described in this section can not be set in the Adaptive
Server plug-in. You must edit the underlying configuration file to change them.
Use atext editor to edit the cache’s property file located in the
$SYBASE/$SSYBASE EJB/Repository/ConnCache subdirectory. Thefileis
CacheName.props, where CacheName represents the cache name as displayed
in the Adaptive Server plug-in.

151

Managing connection caches

JDBC connection properties

For aJDBC connection cache, these connection propertiesallow you to specify
settings beyond those shown in the Connection Cache Properties dialog box.
Different JDBC drivers recognize different sets of properties.

For the Sybase high-speed, shared-memory JDBC driver, define cache
propertiesin this form:

j dbc: sybase: shmnul | : 0

Any property whose name does not begin with com sybase. j aguar is
passed to the JDBC driver as a connection property. For example:

PACKETSI ZE=2048

If aproperty setting conflicts with a setting in the Connection Cache Properties
dialog box, the dialog box setting takes precedence.

Enabling set-proxy support

Adaptive Server Enterprise allows a user to assume the identity and privileges
of another user. Thisfeature can be used with any database that recognizesthe
command:

set session authorization “Ilogin-nane”

When proxy support isenabled, connections retrieved from the cache are set to
act as a proxy for the username associated with the EJB Server client. To set-
proxy to another user name, use the Java JCMCache.getProxyConnection()
method in your component.

Set-proxy support must be enabled in the cache properties file before
components can take advantage of it. To enable set-proxy support, add the
following line to the cache propertiesfile:

com sybase. j aguar. conncache. ssa=t rue

To disable support, delete thisline or changet r ue tof al se.

Connection cache refresh

If you have just installed the cache in a server or modified an installed cache,
refresh the server or the connection cache before you attempt to test the cache.
You can refresh as follows:

* Torefresh the cache:

152 EJB Server

CHAPTER 10 Configuring EJB Server

a Highlight the Installed Connection Caches folder under the server
icon where the cache isinstalled.

b Select View | Refresh Folder.

To refresh the server, highlight the server icon where the cacheisinstalled,
then choose View | Refresh All. All cachesinstalled in the server will be
refreshed.

Refreshing a cache may affect running components that are using the cache,
specificaly:

If you change the connectivity library setting, cache references held by
components become invalid. Attempts to retrieve connections or query
cache properties will cause errors. In this case, the component must
retrieve a new cache handle.

If you change other properties, such as user name, password, server name,
or the number of connectionsin a cache, cache references remain valid,
but components may be affected by the changed settings. For example, if
you changethe server name, connectionsretrieved after the cache hasbeen
refreshed will go to the server indicated by the new name.

Connection cache ping

This feature allows you to test the cache configuration to verify that
connections can be made using the supplied parameters. To ping, the
connection must be installed in the server that the Adaptive Server plug-inis
connected to. If you have just installed the cache or changed any settings,
refresh the cache before testing it.

To test the cache with Ping:

User’'s Guide

1

a b W DN

Open the Installed Connection Cache folder under the EJB Server icon
where the cacheisinstalled.

Right-click on theicon of the cache you want to ping.
Choose File | Properties.
In the General tab of the Connection Cache Properties dialog, click Ping.

The Adaptive Server plug-in reports whether the connection attempt
succeeded.

If Ping fails, check the message text for a description of the problem. The
server log file may contain additional information about the cause of the error.

153

Managing XA resources

If you change the cache propertiesto correct the problem, you must refresh the
cache before testing again.

Managing XA resources

EJB Server usesthetwo-phase commit protocol for distributed transactions. To
use this feature, your Adaptive Server installation must have avalid
ASE DTM license.

You can use the Adaptive Server plug-in to:

Enable the OTS/XA feature for EJB Server

Create XA connection resources for accessing Adaptive Server

Setting up XA resources

This section describes procedures for configuring and enabling X A resources
on Adaptive Server and EJB Server.

154

To configure Adaptive Server and EJB Server for XA resources:
You can also perform steps 2 and 4 from the Adaptive Server plug-in.

1

Make a copy of the $SYBASE/$SYBASE_EJB/config/afconfig.dat file and
move the copy to a secure location. If the XA configuration processfails,
you will need to copy an uncorrupted version of thisfile back into the
release area before reconfiguring XA resources.

Enable Distributed Transaction Management (DTM) on Adaptive Server:
sp_configure 'enable dtm, 1

Run the script sglserver12.sgl located in
$SYBASE/$SYBASE_EJIB/html/classes/sp.

Grant the dtm_tm_role system role to the user in Adaptive Server:
sp_role "grant’, dtmtmrole, user_nane

Create the OTS/XA transaction log device in $SYBASE/$SYBASE EJB:

* From the UNIX command shell, execute:

echo x | dd seek=8k of =server_naneOTSLog. dev

EJB Server

CHAPTER 10 Configuring EJB Server

e From the DOS prompt on Windows NT, execute;
Fi l evol server_naneOTSLog. dev 4000K

where server_nameisthe physical name of your EJB Server. If you do not
create alog file, EJB Server will not start up.

6 Shutdown and restart Adaptive Server.

0 To enable EJB Server for OTS/XA transactions:

Enable the EJB Server for OTS/XA transactions from the Adaptive Server
plug-in:

1 Highlight the EJB Server folder.

Select File | Properties.

Select the Transactions tab.

Select OTS/XA Transactions.

Press OK.

a ~r W DN

Creating XA resources

User’'s Guide

You must configure XA resources to access a specific database. XA resources
differ from connection cachesin that XA resources are XA-Library interfaces
that maintain their own connection pool separate from the connection cache
connection pool.

If aget connection call (such as the Java getConnection method call) isin a
transaction, the XA resource is automatically used to return a connection. If a
get connection call isnot in atransaction, the connection cacheisautomatically
used. If the transactional behavior for acomponent uses the Supported option,
then EJB Server determines at runtime whether the component executesits get
connection callsin atransaction; if it does, you must configure both a
connection cache and a corresponding XA resource for a database.

If you execute atransaction without an XA resource configured for adatabase,
the EJB Server connection manager returns CS_FAIL.

By default, EJB Server usesthe XA resource library for the JIDBC connection:
com sybase. j dbc2. j dbc. SybXADat aSour ce. You can also use these shared
libraries or DLLsto obtain an XA resource that is exported from the database
connection libraries:

155

Managing XA resources

156

Connection library Shared library DLL

Sybase Client Library 11.0 libjxa.so libjxa.dll
Oracle OCI 7.x libclntsh.so xar3.dll
Oracle OCI 8.x libclntsh.so xa30.dll

To changethe shared library or DLL, edit the connection cache propertiesfile
%SYBASEY%\%SYBASE EJB%Repository\ConnCache\
<cache_name>.props. For example, to instruct EJB Server to use
oraclient8.dll instead of xa80.dll for Oracle OCI 8.1.x, add thisline to the
connection cache propertiesfile:

com sybase. j aguar. conncache. xadl | nane = oraclient8.dll

Note You must install XA resourcesin an EJB Server before componentsin
that server can access the XA resources. You must refresh XA resources or
refresh the server using View | Refresh All in the Adaptive Server plug-in, or
restart the server before any changesto thelist of installed X A resources or to
XA resource properties take effect.

If aconfigured XA resourceis not running or cannot be connected to, the EJB
Server cannot initialize. Copy an uncorrupted version of the
$SYBASE/$SYBASE EJB/config/afconfig.dat file back into the release area
and reconfiguring XA resources. See “To enable EJB Server for OTS/XA
transactions.” on page 155.

To create OTS/XA transactions for XA resources:

See Table 10-5 for a description of the XA properties you enter when you
create an OTS/XA transaction resource.

1 Double-click the XA Resources folder.

2 Double-click the Add an XA resourceicon in the right side of the window.
The Add an XA Resource wizard displays.

3 Enter aname and description of the XA resource. Press Next.

4 Enter the server name, a user name, and a password in the Database
Connection Information window. Press Next.

5 Enter adll or class name in the Connectivity Information window. Press
Next.

EJB Server

CHAPTER 10 Configuring EJB Server

6 Enter adatabase name, a default string, an open string, and a close string
in the XA Driver Information window.

Note If the Open String is set incorrectly, the EJB Server does not

initialize.
Press Finish.
Table 10-5: XA resource properties
Property Description
Name A name for the XA resource.
Description A brief phrase describing the purpose of the XA resource.
Server Name Name of the XA resource server for shared memory. Enter:
Net wor kPr ot ocol =shm Ser ver=nul | : Port =0

User Name A name you can use to access the server.
Password The password for the user.

DLL or ClassName | The file name of the XA resource library. Enter:

com sybase. j dbc2. j dbc. SybXADat aSour ce

Database Name If you selected CT-LIB, OCI 7.x, or 8.x, specify the database name.
Default String The string used to connect to the XA resource. You cannot modify
thisstring, which isautomatically built from theinformation that you
entered in the previous tabs.

Open String In this optional field, you can specify any valid open string options.
For example, for a Sybase Client-Library 11.0 XA resource, you can
enter:

-L logfile
where logfile iswhere you want to store log information.

Close String Inthisoptional field, you can specify avalue used by the resourceto
close a connection.

See your XA resource documentation for more information about the Open
Suffix and Close String syntax

User’'s Guide 157

Configuring Listeners

Configuring Listeners

A listener is an EJB Server port that communicates to clients using various
protocols. Supported protocols are 11OP, TDS, and HTTP.

This section describes the tasks required to configure listeners. You can:
* Createanew listener.
* Modify listener settings.

Preconfigured listeners

Listener failover

EJB Server comes with preconfigured listeners for al protocols. The default
host for these listenersis specified at installation. You can also modify port
number settings for the preconfigured listeners. For more information, see
“Modifying an existing listener” on page 159.

If aserver cannot retrieve listener information from the repository for an 110OP
listener or if an I1OP listener has not been configured, the server attemptsto
open alistener at this address:

|1 OP: |ocal host, 9000

Listener start-up can fail if aport isalready in use. You can verify the listener
addressesin use by viewing the initial log entriesin the srv.log file.

Configuring listeners

158

This section describes how to create, modify, and delete alistener. All of the
configuration tasks require you to first access the Listeners folder from the
Adaptive Server plug-in:

1 Double-click the Adaptive Server icon.

2 Double-click the Enterprise Java Beans fol der.
3 Double-click the EJB Server folder.
4

Click the Listeners folder on the right side of the window.

EJB Server

CHAPTER 10 Configuring EJB Server

O Creating a new listener
1 Double-click the Add new listener icon.

The Add new listener wizard displays.

2 Addthename, host name, and port number for thelistener inthe Name and
Description window. Press Next. See Table 10-6

3 Select theiiop, http, or tds protocol from the drop-down menu on the
Select Type of Protocol window. Press Next.

4 Verify the new listener on the Summary Page Window. Press Finish.
The new listener appears on the right side of the window.
O Modifying an existing listener
1 Highlight the listener you want to modify.
2 Select File| Properties.

3 Makeyour modifications and click OK. Listener properties are described
in Table 10-6.

O Deleting a listener
1 Highlight the listener you want to delete.
2 Select File| Delete.

Table 10-6: Listener profile properties

Property Description Comments/example

Protocol Select the protocol from the TDS, IIOP, and HTTP do not provide encryption. TDS and
drop-down list: I1OP provide user name and password-based authentication.
« |IOP
e HTTP
« TDS

Host name The name or IP address of the Use the actual machine name or |P address. This allows
EJB Server host to which the clients from other machines accessto EJB Server.
listener is being assigned.

Port The port number onthehostto ~ Make sure that the port is not in use by any other service.

which the listener is assigned.

User’s Guide 159

Replacing an EJB Server

Replacing an EJB Server

Use the Sybase Installer to add an EJB Server to anew Adaptive Server host.
You can replace an existing EJB Server with anew EJB Server using the
Adaptive Server plug-in.

Warning! Replacing an EJB Server removes the existing EJB Server from
Sybase Central and from the sysservers table in the master database.
Connection caches and packages associated with the old EJB Server are lost.

Use caution when replacing an EJB Server.

Before replacing an EJB Server, make alist of the packages and connection
caches in the existing server that you want to redeploy to the new server.

0O Toreplacethe EJB Server:
1 Highlight the Enterprise JavaBeans folder.
2 Double-click the Add an EJB Server icon in the right window.
The Add an EJB Server wizard displays.

3 Enter anamefor the new server. Server names must be one word, and can
be up to 30 characterslong.

4 Enter aport number for the new server. The default is 9000.
5 Select Finish.
6 Install AseAuth from the Repository.

See “Installing a package in the Adaptive Server plug-in” on page 70 for
how to install a package.

7 Set these property values on the All Properties tab of the EJB Server
properties window for AseAuth:

e com.sybase.jaguar.server.authservice=AseAuth/DbAuth
e com.sybase.jaguar.server.dbsecurityurl=jdbc:sybase;shm:null:0

e com.sybase.jaguar.server.dbsecuritydriver=
com.sybase.jdbc2.jdbc.SybDriver

e com.sybase.jaguar.server.dbauthl ogfile=dbauth.log or the name of
the EJB Server log file (optional)

e com.sybase.jaguar.service.roleservice=AseAuth/DbAuth

160 EJB Server

CHAPTER 10 Configuring EJB Server

User’'s Guide

10

See “All Properties’ on page 144 for information on how to set these
options.

Start the EJB Server. See* Starting EJB Server independently” on page 27.
Reimport packages from the Repository.

Reconfigure the connection caches.

161

Replacing an EJB Server

162 EJB Server

CHAPTER 11

EJB Server Naming Services

A naming serviceletsyou associate alogical name with an object, such as
a package and component. Naming helps EJB Server applications easily
locate an object anywhere on a network, then implement the referenced
object.

The naming service “binds’ a name to an object. The combination of
bound name and its referenced object is the name context. The referenced
object in aname context can be acomponent within a package or even an
existing name context, the same way a named directory can contain afile
or other named directory.

The collection of nhame context information—each object and its bound
name—comprises the namespace. When client applications reference an
object, they look to the namespace to cross-reference or resolve the name
with the referenced object.

Topic Page
How does the EJB Server naming service work? 163
JINDI support 167
Configuring the EJB Server naming service 172
Using an LDAP server with EJB Server 173

How does the EJB Server naming service work?

User’s Guide

The process of binding objectsis performed by a name server. Each EJB
Server can beits own name server, or you can configure an EJB Server to
use another server asits name server. You can al so use an external naming
service, such as an LDAP server, in conjunction with the EJB Server
naming service.

You set the naming service optionsfor each EJB Server using the Naming
Service tab on the Server Properties window.

163

How does the EJB Server naming service work?

EJB Server initial context

164

The EJB Server naming servicerelies on an “initial” or default name context
for each EJB Server. You set theinitial context when you set up the EJB Server
Naming Service properties.

The server name context syntax follows a specific organization or schema. You
can use this schemato represent the hierarchy of objectsin the namespace, for
example by geographic region, organizational unit, and so on.

If you use an EJB Server asthe name EJB Server server uses this format:
<Level 1>/<Level 2>/<Level 3>/...

The number of levels depends on the hierarchy you want to represent. For
example:

US'sybase/finance
US'sybase/marketing
US'sybase/sales

If you use an LDAP server as an external naming service, the initial context
must follow the syntax and schema of the LDAP server. LDAP servers have
predefined schema for common objects such as country, organization, and
organizational unit. EJB Server uses the following format for an LDAP-
compatibleinitial context:

ou=<organizational unit>, o=<organization>, c=<country>
Using the previous examples, the initial contexts would be:

ou=finance,o=sybase,c=US
ou=marketing,0=sybase,c=US
ou=sales,0=sybase,c=US

On start-up, the name server bindsall object implementationson an EJB Server
to theinitial context of the server on which the object isinstalled. Once the
server binds an object, the structure of the resulting name context is:

<initial context>/< package>/< component>
where

<initial context> istheinitia context property for the server where the
component isinstalled.

<package> isthe name of the package being bound, as displayed in the
Adaptive Server plug-in.

EJB Server

CHAPTER 11 EJB Server Naming Services

<component> is the name of the component being bound, as displayed in the
Adaptive Server plug-in.

Note You can set the server propertiesto enable password protection for name
binding on a EJB Server name server. See “Name binding password security”
on page 173.

Name binding example

To illustrate how an EJB Server name server uses theinitial context to creste
name contexts for objects on multiple servers, assume two EJB Servers:

e Server A contains package Pkgl and components CompX and CompY. You
assign the server an initial context of /us/sybase/serverA.

» Designate server B to be the name server for server A by specifying the
URL for server B (iiop://myhost: 9050) in its Naming Services properties.

When you start server A, it connectsto server B, using the name server URL
you entered in server A’'s Naming Service properties. The name server getsthe
initial context for server A and binds each object installed on server A. The
resulting name contexts are based on server A'sinitial context, the package
name, and the components in the package. For this example, the name server
creates the following bindings:

Jus/sybase/ser ver A/Pkgl/CompX
Jus/sybase/server A/Pkgl/CompY

Figure 11-1 illustrates the name binding process.

User’s Guide 165

iiop://myhost:9050

How does the EJB Server naming service work?

Figure 11-1: Name binding process

Bind:
Server A Jus/sybase/serverA/Pkgl/CompX
Jus/sybase/serverA/Pkgl/CompY Server B
/us/sybase/serverA -
Designated name server for
Pkgl Server A

CompX| [CompY

Server name: myhost
Server port: 9050

An application referencing object CompY uses the URL of the name server,
followed by the object’s name context. For example:

iiop://myhost: 9050/us/sybase/server A/Pkgl/CompY

The name server finds the name context in the namespace, resolves the name
context with the object it references, then implements the object.

If you had not assigned an initial context to Server A, the name server, server
B, would create name contextsfor objects Pkgl/CompX and Pkg1l/CompY using
theinitial context of the name server. In this case, the client application can
simply retrieve CompY using this URL:

iiop://myhost: 9050/Pkgl/CompY

Transient vs. persistent storage

166

The EJB Server naming service inherently provides transient object name
storage. The name server is instantiated when you start an EJB Server, and
binds namesto all the known object references. The name server provides the
bound name and object referencesto the EJB Server’s session manager object.
Because thisinformation is stored in memory, the name context information is
retained only aslong asthe EJB Server isrunning.

You can add per sistent object name storage capabilitiesto EJB Server by using
an external directory naming service, such as an LDAP server. The external
server retains object name information, and the EJB Server name server
updates thisinformation whenever it creates new bindings or unbinds existing
ones.

EJB Server

iiop://myhost:9050/us/sybase/serverA/Pkg1/CompY
iiop://myhost:9050/Pkg1/CompY

CHAPTER 11 EJB Server Naming Services

JNDI support

To use an external naming service, specify the URL of the external server in
the Naming Service properties of the designated EJB Server name server. You
must also provide a manager DN (distinguished name) and password that has
exclusive accessto all objectsin the LDAP server database for EJB Server to
be able to update the stored name context information.

Java Naming and Directory Interface (JNDI) is a standard Java interface for
accessing distributed objects and services by name. It provides a portable,
unified interface for naming and directory services. The INDI specification is
independent of any specific directory or naming service such as LDAP, NDS,
DCE/CDS, or NIS.

The EJB Server INDI implementation includes the INDI service provider
interface (SPI), which enables you to use a variety of custom directory and
naming services. EJB Server uses the SPI in conjunction with the CosNaming
interface to provide component lookup capability. Given abound name, the
SPI locates the referenced package and component. Once it locates the
component, the SPI works with the client stub interface to instantiate the
component and return the requested object.

JNDI version level
In EJB Servers, the INDI InitialContext object follows the INDI 1.2 interface

specification. When you start the EJB Server, the INDI classesrequired for the
server’'s JDK version are configured automatically.

JNDI J2EE features

User’'s Guide

EJB Server supports the INDI features required by the Java 2 Enterprise
Edition (J2EE) platform specification.

In J2EE, you can use the application component’s naming environment to
customize an application’s business logic without accessing the source code.
The appli cation component’s container implementsthe environment asa JNDI
naming context and provides the JINDI interfaces to access the environment
properties that you define in the deployment descriptor.

167

JNDI support

Environment properties

168

When you deploy a J2EE application, use the deployment descriptor to define
all the environment properties that the application component needs to access.
Thissampl ecode definesthe environment property (env-entry) maxExemptions
as an Integer and setsits valueto 10:

<env-entry>
<descri ption>
The maxi mum nunber of tax exenptions
</ descri pti on>
<env- ent ry- nane>maxExenpti ons</ env- entry- name>
<env-entry-type>j ava.l ang. | nt eger</env-entry-type>
<env-entry-val ue>10</env-entry-val ue>
</env-entry>

The information between the opening and closing env-entry tags defines an
environment entry element, which consists of:

« description Thisisoptional.

« env-entry-name The environment property name, relative to the
java:comp/env context.

« env-entry-type The environment property’s Java datatype must be one
of: Boolean, Byte, Double, Float, Integer, Long, Short, Or String.

» env-entry-value The environment property value, which is optional.

Within the same container, all instances of an application component share the
same environment properties. The component instances cannot modify the
environment at runtime.

An application component instance uses the JNDI interfaces to locate the
environment naming context and access the environment properties. To locate
the naming context, an application creates a javax.naming.InitialContext object
and gets the InitialContext for java: comp/env. In this example, the application
retrieves the value of the environment property maxExemptions and uses that
value to determine an outcome:

Context initContext = new Initial Context();
Cont ext nmyEnv =
(Context)initContext.|ookup(“java: conp/env”);

/1l Get the maxi mum nunber of tax exenptions
I nt eger max=(| nteger) myEnv. | ookup(“maxExenpti ons”);

/1 Get the mininmum nunber of tax exenptions
Integer mn = (Integer)nyEnv. | ookup(“m nExenptions”);

EJB Server

CHAPTER 11 EJB Server Naming Services

EJB references

Declaring an EJB
reference

User’'s Guide

/'l Use these properties to custom ze the business |ogic
i f (nunber O Exenptions > max.intValue() ||
(nunmber O Exenpti ons < min.intVal ue())
t hrow new | nval i dNunber Of Exenpt i onsException();

Default name service
When you call theempty constructor to create anew Initial Context, EJB Server

sets the Context.INITIAL_CONTEXT_FACTORY system property and sets
the EJB Server EJB name service as the defaullt.

An EJB reference identifies the home of an enterprise Bean. You can use the
deployment descriptor to create a link between an EJB reference and an
enterprise Bean, contained within an EJB JAR file. Deployment descriptor
interfaces allow an application component to access an enterprise Bean'shome
interface using EJB references.

To locate an enterprise Bean's home interface, declare an EJB referencein the
deployment descriptor and use JNDI to look up the interface. The referenced
enterprise Bean must be in the gjb subcontext of the application component’s
environment.

You can declare an EJB reference in the deployment descriptor using the ejb-
ref element. The data between the opening and closing ejb-ref tags defines an
ejb-ref element. This code sample defines an EJB reference to the Employee
entity Bean:

<ej b-ref>
<descri pti on>
Ref erence to the Enpl oyee entity Bean
</ descri ption>
<ej b-ref - name>ej b/ Enpl oyee</ ej b-r ef - name>
<ej b-ref-type>Entity</ejb-ref-type>
<home>com woost er . enpl . Enpl oyeeHone</ hone>
<r enot e>com woost er . enpl . Enpl oyee</ r enot e>
</ejb-ref>

An ejb-ref element contains:
» description Thisisoptional.

+ ejb-ref-name The name of the Bean used in the application component.

169

JNDI support

ejb-ref-type The Bean type, Entity or Session.
home The expected Javatype of the home interface.
remote The expected Javatype of the remote interface.

ejb-link Thisisoptional.

This code sampleillustrates how to use INDI to ook up the home interface of
the Employee enterprise Bean:

/Il Get the default initial JND context
Context initContext = new Initial Context();

/1 Look up the home interface of the Enpl oyee enterprise
/1 Bean
oj ect result =

i ni t Cont ext. | ookup(“java: conp/ env/ ej b/ Enpl oyee”);

/1 Convert the result to the correct type

Enpl oyeeHone enpHone = (Enpl oyeeHone)
javax.rm . Portabl eRenot eCbj ect. narrow(resul t,
Enpl oyeeHone. cl ass) ;

Declaring an EJB link You can define alink from an EJB reference to an enterprise Bean by declaring
an ejb-link element in the deployment descriptor. The application component
and the target enterprise Bean must be in the same J2EE application. This
sample code creates alink to the Employee enterprise Bean, by adding an ejb-
link element to the Bean's EJB reference definition:

<ej b-ref>

<descri ption>
Reference to the Enpl oyee entity Bean

</ descri pti on>
<ej b-ref - name>ej b/ Enpl oyee</ ej b-r ef - nane>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com woost er . enpl . Enpl oyeeHone</ home>
<r enot e>com woost er. enpl . Enpl oyee</r enot e>
<ej b- | i nk>Enpl oyee</ ej b-1i nk>

</ ejb-ref>

For information about using the Adaptive Server plug-in to add and configure
EJB references in EJB components, see Chapter 6, “Working with EJB
Packages and Components.”

170

EJB Server

CHAPTER 11 EJB Server Naming Services

Resource factory references

A resource factory is an object that you use to create resources. You can assign
alogical name to aresource factory in the deployment descriptor.

A resource-ref element defines a single resource factory reference. This code
sample defines a reference to the resource factory that implements the
DataSource interface:

<resource-ref>
<descri ption>
Dat a source for the database in which the Enpl oyee
enterprise Bean records transactions
</ descri ption>
<res-ref - name>j dbc/ Enpl oyeeAppDB</r es-r ef - nane>
<res-type>j avax. sql . Dat aSour ce</res-type>
<r es- aut h>Cont ai ner </r es- aut h>
</resource-ref>

A resource-ref element contains:

» description Thisisoptional.

« res-ref-name Resource reference name used in the application’s code.
+ res-type Resource Javadatatype that the application expects.

« res-auth Resource sign-on authorization, Bean or Container.

This code sample obtains a reference to the resource factory that implements
the DataSource interface, and uses that reference to get a database connection
(resource):

/1 Cbtain the initial JNDI context
Context initContext = new Initial Context();

/1 Look up the resource factory using JNDI
j avax. sql . Dat aSource ds = (javax.sql . DataSource)
i ni t Cont ext.| ookup
(“java: conp/ env/j dbc/ Enpl oyeeAppDB”) ;

/] Get a database connection
j ava. sql . Connecti on connecti on = ds. get Connection();

For information about using the Adaptive Server plug-in to add and configure
resource references in EJB components, see Chapter 6, “Working with EJB
Packages and Components.”

User’'s Guide 171

Configuring the EJB Server naming service

UserTransaction references

J2EE application components can use the Java Transaction APl (JTA)
UserTransaction interface to manage transactions. A component instance can
look up an object that implements the interface using the INDI name
java:comp/User Transaction.

In this code sample, an application component uses the interface to manage a
transaction:

// Get the initial JNDI context
Context initContext = new Initial Context();

/1 Look up the UserTransacti on object
User Transacti on tran = (User Transacti on)
i ni t Cont ext.| ookup(“java: conp/ User Transacti on”);

// Start a transaction
tran. begin();

/1 data updates

// Conmit the transaction
tran.commit();

Configuring the EJB Server naming service

Use the Naming Service tab on the Server Properties window to set the EJB
Server’snaming service options. You can use the Naming Service propertiesto
configure an EJB Server to be aname server, or point to another EJB Server as
its name server.

172

The Naming Service property sheet includes:

The EJB Server’'sinitial context.
Whether or not the EJB Server is enabled as aname server.

If the server is not enabled as aname server, the URL for the EJB Server
acting as the name server.

Heartbeat detection — periodically verifies that name servers are either
accepting client connections or have failed.

EJB Server

CHAPTER 11 EJB Server Naming Services

e If youareusing an LDAP server to provide persistent name storage, the
URL of the LDAP name server, aswell asthe manager DN (distinguished
name) for the LDAP server.

For complete information about setting the Naming Service properties for an
EJB Server, see “Naming Service” on page 143.

Name binding password security

You can establish password protection on the EJB Server naming service to
allow name binding only from designated EJB Servers. This prevents
unauthorized applications from creating name bindings using an EJB Server
name server.

To use the name binding password feature, you must set the:
com sybase. j aguar . server. CosNam ng. bi ndpassword

property for the name server and each server participating in the naming
service. You set this property using the All Properties tab in the Server
Properties window. The default valueis “jaguar.”

All servers participating in the password-protected name service must have the
same password as the name server. If the bindpassword property is empty, or
does not exist in the property file for a name server, the name server accepts
binds from any source.

Using an LDAP server with EJB Server

User’'s Guide

To add persistent object name storage capabilities to EJB Server, you can use
an external directory naming service, such asan LDAP server. The EJB Server
properties include an optional URL for specifying the port for the external
name server.

When you use an external name server, EJB Server uses JINDI to communicate
with the name server through the specified URL.

173

Using an LDAP server with EJB Server

LDAP object schema and EJB Server objects

LDAP servers have predefined schema for common objects such as country,
organization, and organizational unit. EJB Server usesthe following format for
an LDAP-compatible initial context:

ou=<organizational unit>, o=<organization>, c=<country>

Storing EJB Server object bindings on an LDAP server

174

When you use an LDAP server with an EJB Server name server, the
CosNaming component binds all implemented objects on the servers that use
the designated EJB Server name server, and stores the name context
information on the LDAP server. If EJB Server detects previously-bound
objects on the external name server, it updates the existing bindings with
current name context information. When you shut down the EJB Servey, it
unbinds the stored information.

To connect an EJB Server name server to an LDAP server:

1 Onstart-up, the EJB Server name server connects to the LDAP server
using the URL specified in the EJB Server name server’s Naming Service
properties.

2 TheEJB Server name server authenticates the connection to the LDAP
server using the manager DN specified in the EJB Server name server’s
Naming Service properties.

3 TheEJB Server name server attempts to retrieve any existing matching
name contexts from the LDAP server. If successful, the EJB Server name
server uses the existing name context information.

4 The EJB Server name server prepares the server object with the required
attributes.

5 TheEJB Server name server attemptsto add the server object tothe LDAP
server. If the object already exists, the LDAP server updates the existing
object with the current attributes.

6 TheEJB Server server adds any new package/component name context
information, or modifies the existing information if necessary.

EJB Server

Index

Sym bols of EJB Server applications 41

. (comma) AseAuth package 68, 160

in SQL statements xvi
{} (curly braces)

in SQL statements xvi B
() (parentheses) .

in SQL statements xvi E?Sdc tasks d23_12793
[]1 (square brackets) b:J?| d:iEnEgSquI’

in SQL statements xvi components 46

EJB Server applications 41
business logic and EJB Server components 124

A

activation, component
definitionof 51 C
Adaptive Server plug-in 45, 127
application objects managed in 12
capabilities 24
generating EJB stubswith 94
overview of 11

caches, connection
support for 15

character sets 14
conversions 14

classes, Java

setup 24 :

sarting 24 for EJB components 88
classpath

addresses, network

configuring 10
specifying in EJB clients 97
afconfig.dat file 154
applets

about 115

distributed applications 125
applications, EJB Server
architectureof 41
creating 41

environment variable 150
CLASSPATH environment variable 125, 133, 150
client session management 13
client/server applications
Java 115,133
clients
deployment of 48
design considerationsfor 46
development processfor 45

defining componentsfor 45 EJB 93

deployment of 47 session managementand 12

designof 43 typesof 10

introductionto 41 code set

architecture See Also character sets

comma(,)

EJB t ' _

EjB ;er?/[:ner:u % in SQL statements xvi
compiling

User’s Guide 175

Index

Javastubs 95
component
definition 20

executing methodson 21
instantiating 21
restarting after modifying 142, 150
component lifecycle
management of 13
component models
supported 20
component transaction server see EJB Server
components
building 46
client stubsand proxiesfor 10
configuring propertiesfor 73
creation and destruction of 13, 50
defining 44
definition of 12
deploying 88
designof 44
development processfor 45
EB 33,67
installing to apackage 72
introductionto 9
lifecycle management 13
lifecycleof 49,50

overview 9
persistent 105
PowerJ 18

properties to control instance allocation 75
recycling of instances 52
refreshing 81
refreshing after modifying 12
stateful 52
stateful vs. stateless 52
stateless 50, 52
storage 112
supported types 9
transactional properties 56, 74
typesof 9
concepts 21
concurrency
component property 76
configuring
listeners 158
connecting to the Adaptive Server 25

176

connection cache properties 150, 151
Advanced 151

cache-by-name 151

connection cache sanity 151
description 150

Genera 150
JDBC 152
name 150

number of connections 151
server name 150
servicename 151
connection caches

cregting 148

defining 45

installing 148
managing 148
modifying 149
removing 149

support for 15
connection caching 124
connection timeout
configuring for EJB clients 98
container 34
conventions

Java-SQL syntax xiv
Transact-SQL syntax — xv
create methods

IDL design patternfor 85
creating

listeners 159
curly braces ({})

in SQL statements xvi
custom classlist

configuring 81, 89

D

databases
dataaccessand EJB Server 130
PowerJ JIDBC access 122, 134
transaction management 128
transactionsin Java 134
deactivation
definition of 51
default packages 68

EJB Server

deleting
EJB Server packages 73, 90
listeners 159
deploying components
EJB JAR 47
Powerd 47
deploying packages 12
description
component property 74
EJB Server package property 90
design, application 43
developing
EJB Server applications 41
developing clients 48
development process
Powerd 115
disabling EJB Server 26
disconnecting from the Adaptive Server plug-in 25
distributed applications
applet clients 125
connection caching 130
Javaand EJB Server 125
Javaclient, deploying 133
transaction management 128
Distributed Transaction Management (DTM) 154
dtm_tm_rolesystemrole 154

E

early deactivation
definition of 50

EJB 10
See also EJB clients, EJB components
client model 93
EJB Server support for 38
generating stubsfor 94
homeinterfaces 85
JARfile 68,91
overview of 33
remoteinterfaces 87

EJB architecture 33

EJB clients 34, 39
creating 93

EJB components
creating 67, 83

User’s Guide

Index

creating home interfacesfor 85
defining remote interfacesfor 87
deploying classesfor 88
exporting 91

importing 68

introductionto 33

primary keysfor 85

running 38

typesof 34

using transactionsin 36

EJB container 34

EJB Server 34

architecture 41

component lifecyclemodel 49
configuring 141

connection caching 124, 130
creating applicationsfor 41
description 7

developing distributed applicationswith Java 125
disabling 26

early deactivation 128

EJB component supportin 38
enabling 25

execution engine 8

instance pooling 132
Javacomponents 124, 127
overview 3

prerequisite knowledge 19
result set management 130
roles 90

server runtime 8

ServerBean interface 132
services for components 127
shutting down 28

starting 27

transaction management 128
transaction processing model 53
verifying status 29

EJB Server properties 149

EJB Server roles 17

EJB Server runtime environment 22
EJB Server transactions

benefitsof 54
explanationof 54

EJB transaction attributes 36
enabling EJB Server 25

177

Index

Enterprise JavaBeans
SeeEJB
Enterprise JavaBeans (EJB) components
building with Powerd 137
entity Bean 35
EJB component type 34
entity components
definitionof 105
environment variables
CLASSPATH 150
classpath 150
events, Java 123

F

finder methods
IDL design patternfor 86

G

garbage collection, Java
configuring for EJB clients 98

general server properties
description 142

generating
EJB stubs 82,94

H

HTTP
protocol and EJB Server 125
support for 10

I1OP

support for 10
initial context 164
installing

components 72
instance pooling

adding support for 52

178

configuring 76

definition of 50
instance timeout

component property 77
instances, component

properties to configure allocation of
instantiating

components 21
intercomponent calls

and EJB Server transactions 54

interfaces
EJB home 85
EJB remote 87
J
J2EEroles 17,87, 90
JARfile 68
EB 11 68,91
Java

components 116

packages for generated stubs 95

version for generated stubs 94
Java applications

about 116

developing 17
Java classes

for EJB components 88
Javaclients

compiling 95
Java Connection Manager classes 131
JavaBean components, creating in PowerJ
jConnect database interface 134
JDBC

Java client/server applications 133

L

LDAPserver 173
lifecycles

component statesin 50

of componentsingeneral 49
listeners

configuring 10, 158

75

117

EJB Server

creating 159

default host name 158
deleting 159

modifying 159
preconfigured 158
properties 159

localhost

default listener settings 158

M

managing connection caches 148
managing XA resources 154
mapping roles 90
menus

Powerd 122
method

restarting after modifying 142, 150
middle-tier servers see EJB Server
modifying

listeners 159
multitier

application development overview 21

N

name binding 165
naming conventions
for Javastub files 95
naming services
about 163
explanationof 14
initial context 164
LDAPserver 173
name binding 165
password 173
persistent storage 166
support for 14
transient storage 166
network
addresses 10
protocols 10
number of user connections parameter 147

User’s Guide

O

object-oriented programming
Powerd 17
OTS/XA
transaction options 56
overview
EJB Server features 3
multitier application development

P

package
restarting after modifying 150
package, EJB Server
definition 20
installing componentsin 72
modifying 89
propertiesof 90
refreshing after modifying 12
restarting after modifying 142
usesof 12

package, Java

for generated stub classes 95
parentheses ()

in SQL statements xvi
persistence

container managed 106
for entity components 105
for stateful components 110
of component state 105
persistent storage 166
pooling

component property 76
port numbers

configuring for servers 10
specifying in EJB clients 97
PowerJ 11

about 17
applicationlogic 123
building EJB components 137
classes 119, 123
codewindow 120
component palettes 121
component targets 127
components 116

21

Index

179

Index

database access 122

database forms 134

data-bound controls 123, 136
defining EJB componentsin = 39
deploying components 47
development process 115
events 123

forms 121

managed classes 123

menus 122

methods 123

projects 118

query object 122,135

targets 118

transaction object 122, 134

user interface 121
preconfigured listeners

security profiles 158
primary keys

specifying for EJB components 85
properties

listeners 159

of components 73

of EJB Server packages 90

to configure component instance alocation 75
to configure threading behavior 75
to control transactional behavior 74
protocols

HTTP 10

IIOP 10

supported 10
proxies

purposeof 10
proxy objects

and stubs 20

definitionof 10

R

refresh
disabling for components 81
replacing an EJB Server 160
restarting server after modifying
components 142, 150
methods 142, 150

180

packages 142, 150
result sets

explanation of 16
roles

EJB Server 17,90

mapping of 90
runtime

server engine 8
runtime environment 22

S

server
naming service 163
server applications see components/ EJB Server
server debugging and trace properties
log filename 143
logfilesize 143
truncate log on start-up 143
server log
srv.log file 143
server properties
General 142
initial context 164
Log/Trace 143
Naming Service 143, 163
servers
as managed in the Adaptive Server plug-inr
configuring network addressesfor 10
overviewof 8
protocols supported by 10
servicesprovidedby 8
use during development and testing 43
service components
definitionof 8
services
provided by EJB Server 8
session
client, management of 12
definition 21
session Bean
EJB component type 34
stateful 35
stateless 35
session management 12

EJB Server

12

shared-memory connections 147
sharing
component property 77
shutting down EJB Server 28
skeleton
definition 20
sp_extengine stored procedure 28
sp_serveroption stored procedure 27
square brackets]
in SQL statements xvi
srv.log file
serverlog 143
starting EJB Server 27
state primitives, for transactions 59
stateful components
definition of 52
stateful session Bean 35
statel ess components
creating 52
deactivation and instance pooling of 50
definition of 52
stateless sessionBean 35
states
in component lifecycle 50
storage components
configuring 112
definition of 112
stored procedures
Sp_extengine 28
Sp_serveroption 27
stub object
definitionof 10
stubs
and proxy objects 20
compiling 95
explanation of 10
generating 82
Sybase Central
Adaptive Server plug-infor 11
explanationof 11
syntax conventions
Java-SQL xiv
Transact-SQL xv
System Administrator role 24

User’s Guide

Index

T

terminology
component based applications 20
thread safety
explanationof 15
threading models
component propertiesto configure 75
threads
management of 15
timeouts
configuring propertiesfor 77
for EJB clients 98
transaction 60
trace flag properties 143
transaction options
OTSXA 56
transaction timeout
component property 77
transaction, EJB Server
definition of 53
transactions
and intercomponent calls 54
benefitsof using 54
component propertiesto configure 74
configuring timeout property for 60, 77
controlling outcome of 59
defining how components participatein 55
examplesof 54, 61
how to commit and roll back 59
management by EJB Server 128
multi-component 59
overview of 53
semanticsof 55
server processing of 53
specifying coordinatorsfor 56
specifying how a component participatesin 56
state primitivesfor 59
usein EJB components 36
transient storage 166

U

URL for JDBCcalls 150
user interface, designing in PowerJ 121
user names

181

Index

specifying in EJB clients 97

Vv

verifying status of EJB Server 29

w

Web applications
about 115

X

XA resources
afconfig.dat file 154
managing 154

182

EJB Server

	EJB Server User’s Guide
	About This Book
	CHAPTER 1 About EJB Server
	About EJB Server
	Features
	The EJB Server execution engine
	Component support
	Server-side component support
	Client stub/proxy support

	Network protocol support
	HTTP tunneling support

	Administration and development tools
	Client-session and component-lifecycle management
	Naming services
	Connection caching
	Transaction management
	Thread-safety features
	Result-set support
	Permissions and roles
	PowerJ overview

	CHAPTER 2 Getting Started
	Before you use EJB Server
	Terminology and concepts
	Terminology
	Concepts
	Developing an application
	The EJB Server runtime environment

	Basic tasks
	Using the Adaptive Server plug-in to Sybase Central
	Starting the Adaptive Server plug-in
	Disconnecting from the Adaptive Server host

	Enabling EJB Server
	Disabling EJB Server
	Starting EJB Server automatically
	Starting EJB Server independently
	Shutting down EJB Servers
	Verifying the status of EJB Server

	CHAPTER 3 Enterprise JavaBeans Overview
	About Enterprise JavaBean components
	EJB component types
	Stateful session Beans
	Stateless session Beans
	Entity Beans

	EJB transaction attribute values
	EJB container services

	EJB support
	Running EJB components in EJB Server
	EJB clients connecting to EJB Server

	CHAPTER 4 Creating Component-Based Applications
	Application architecture
	Designing the application
	Implementing components and clients
	Deploying the application
	Deploying components
	Developing clients

	CHAPTER 5 Understanding Transactions and Component Lifecycles
	Component lifecycles
	The EJB Server transaction processing model
	How EJB Server transactions work
	Benefits of using EJB Server transactions
	Defining transactional semantics
	Example
	Dynamic enlistment in Bean-managed transactions
	Entity Bean local diamonds

	OTS/XA transaction model

	CHAPTER 6 Working with EJB Packages and Components
	Packages and Enterprise JavaBean components
	Importing Enterprise JavaBeans

	Installing components
	Modifying components
	Configuring component properties
	General component properties
	Transactions tab component properties
	Instances tab component properties
	Resources tab component properties
	Persistence tab component properties
	All Properties tab

	Generating stubs and skeletons
	Creating Enterprise JavaBeans

	Modifying packages
	Configuring package properties
	Exporting packages to EJB-JAR files

	CHAPTER 7 Creating Enterprise JavaBean Clients
	Developing an EJB client
	Generating EJB stubs
	Java packages
	Compiling stubs

	Instantiating home interface proxies
	Obtaining an initial naming context
	Resolving Bean home names

	Instantiating remote interface proxies
	Calling remote interface methods
	Managing transactions
	Serializing and deserializing Bean proxies

	CHAPTER 8 Managing Persistent Component State
	Persistence for entity Java Beans
	Using component-managed persistence
	Using automatic persistence
	Configure Persistence tab properties
	Specify field to column mapping properties
	Specify finder-method queries

	Persistence for stateful components
	Using Java serialization
	Using automatic persistence

	Storage components
	Supported Java, IDL, and JDBC/SQL types
	Table schema for binary storage

	CHAPTER 9 Developing Applications with PowerJ and EJB Server
	About the development process
	Creating workspaces, targets, and classes
	Designing the user interface
	Designing menus
	Accessing data
	Coding application logic

	Building distributed and Web applications that use EJB Server
	About EJB Server
	Architecture of distributed and Web applications
	Building EJB Server components with PowerJ
	Implementing the component
	Transaction management
	Database access and result set management
	Connection caching
	Instance pooling

	Building a Java client for a distributed or Web application
	Compiling and deploying the Java client

	Building client/server applications using JDBC
	Building the application

	Building Enterprise JavaBeans 1.1 components

	CHAPTER 10 Configuring EJB Server
	Configuring an EJB Server
	General
	Log/Trace
	Naming Service
	Initial Context
	Naming Server
	Naming Server Strategy

	All Properties

	Configuring server stack size
	Character sets
	Shared-memory connections
	Managing connection caches
	Creating and installing a new connection cache
	Modifying connection caches
	Modifying connection cache properties
	General
	Advanced
	Other cache settings

	Connection cache refresh
	Connection cache ping

	Managing XA resources
	Setting up XA resources
	Creating XA resources
	Configuring Listeners
	Preconfigured listeners
	Listener failover

	Configuring listeners

	Replacing an EJB Server

	CHAPTER 11 EJB Server Naming Services
	How does the EJB Server naming service work?
	EJB Server initial context
	Name binding example
	Transient vs. persistent storage

	JNDI support
	JNDI J2EE features
	Environment properties
	EJB references
	Resource factory references
	UserTransaction references

	Configuring the EJB Server naming service
	Name binding password security

	Using an LDAP server with EJB Server
	LDAP object schema and EJB Server objects
	Storing EJB Server object bindings on an LDAP server

	Index

