
Administration Guide: Volume 2

Replication Server®
15.0.1

DOCUMENT ID: DC32518-01-1501-01

LAST REVISED: February 2007

Copyright © 1992-2007 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, SYBASE (logo), ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server, Adaptive Server
Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication, Adaptive Server Everywhere, Advantage
Database Server, Afaria, Answers Anywhere, Applied Meta, Applied Metacomputing, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute,
APT-Translator, APT-Library, ASEP, Avaki, Avaki (Arrow Design), Avaki Data Grid, AvantGo, Backup Server, BayCam, Beyond Connected, Bit-Wise,
BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional Logo, ClearConnect, Client-Library, Client
Services, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Data Pipeline, Data Workbench, DataArchitect,
Database Analyzer, DataExpress, DataServer, DataWindow, DataWindow .NET, DB-Library, dbQueue, Dejima, Dejima Direct, Developers Workbench,
DirectConnect Anywhere, DirectConnect, Distribution Director, Dynamic Mobility Model, e-ADK, E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway,
ECMAP, ECRTP, eFulfillment Accelerator, EII Plus, Electronic Case Management, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/
Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise Portal (logo), Enterprise SQL Server Manager, Enterprise Work
Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works
Together, EWA, ExtendedAssist, Extended Systems, ExtendedView, Financial Fusion, Financial Fusion (and design), Financial Fusion Server, Formula One,
Fusion Powered e-Finance, Fusion Powered Financial Destinations, Fusion Powered STP, Gateway Manager, GeoPoint, GlobalFIX, iAnywhere, iAnywhere
Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Anywhere Suite, Information Everywhere,
InformationConnect, InstaHelp, Intelligent Self-Care, InternetBuilder, iremote, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Legion, Logical
Memory Manager, lrLite, M2M Anywhere, Mach Desktop, Mail Anywhere Studio, Mainframe Connect, Maintenance Express, Manage Anywhere Studio,
MAP, M-Business Anywhere, M-Business Channel, M-Business Network, M-Business Suite, MDI Access Server, MDI Database Gateway, media.splash,
Message Anywhere Server, MetaWorks, MethodSet, mFolio, Mirror Activator, ML Query, MobiCATS, MobileQ, MySupport, Net-Gateway, Net-Library, New
Era of Networks, Next Generation Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS logo, ObjectConnect, ObjectCycle, OmniConnect,
OmniQ, OmniSQL Access Module, OmniSQL Toolkit, OneBridge, Open Biz, Open Business Interchange, Open Client, Open ClientConnect, Open Client/
Server, Open Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, Partnerships that Work, PB-Gen, PC
APT Execute, PC DB-Net, PC Net Library, Pharma Anywhere, PhysicalArchitect, Pocket PowerBuilder, PocketBuilder, Power++, Power Through Knowledge,
power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, Powering the New
Economy, PowerScript, PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare
Desktop, PowerWare Enterprise, ProcessAnalyst, Pylon, Pylon Anywhere, Pylon Application Server, Pylon Conduit, Pylon PIM Server, Pylon Pro,
QAnywhere, Rapport, Relational Beans, RemoteWare, RepConnector, Report Workbench, Report-Execute, Replication Agent, Replication Driver, Replication
Server, Replication Server Manager, Replication Toolkit, Resource Manager, RFID Anywhere, RW-DisplayLib, RW-Library, SAFE, SAFE/PRO, Sales
Anywhere, Search Anywhere, SDF, Search Anywhere, Secure SQL Server, Secure SQL Toolset, Security Guardian, ShareLink, ShareSpool, SKILS,
smart.partners, smart.parts, smart.script, SOA Anywhere Trademark,SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL
Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/
CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL Station, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, S.W.I.F.T. Message
Format Libraries, Sybase Central, Sybase Client/Server Interfaces, Sybase Development Framework, Sybase Financial Server, Sybase Gateways, Sybase
Learning Connection, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase Virtual Server
Architecture, Sybase User Workbench, SybaseWare, Syber Financial, SyberAssist, SybFlex, SybMD, SyBooks, System 10, System 11, System XI (logo),
SystemTools, Tabular Data Stream, The Enterprise Client/Server Company, The Extensible Software Platform, The Future Is Wide Open, The Learning
Connection, The Model For Client/Server Solutions, The Online Information Center, The Power of One, TotalFix, TradeForce, Transact-SQL, Translation
Toolkit, Turning Imagination Into Reality, UltraLite, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viafone,
Viewer, VisualWriter, VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL
Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, XcelleNet, XP Server,
XTNDAccess and XTNDConnect are trademarks of Sybase, Inc. or its subsidiaries. 11/06

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

Administration Guide iii

About This Book ... ix

CHAPTER 1 Verifying and Monitoring Replication Server 1
Checking replication system log files for errors................................ 2
Verifying a replication system... 2
Monitoring Replication Server .. 4

Verifying server status... 4
Visual monitoring of status .. 6
Displaying replication system thread status 6

Setting and using threshold levels ... 8
Monitoring partition percentages ... 9

CHAPTER 2 Customizing Database Operations.. 11
Overview .. 11
Working with functions, function strings, and classes 12

Functions... 13
Summary of system functions ... 16
Function strings ... 19
System functions with multiple function strings 20

Function-string classes .. 21
System-provided classes .. 22
Function-string inheritance .. 23
Restrictions in mixed-version systems 25

Managing function-string classes... 26
Creating a function-string class ... 27
Assigning a function-string class to a database 31
Dropping a function-string class .. 32

Managing function strings .. 32
Function strings and function-string classes 33
Function-string input and output templates 33
Using output templates.. 34
Using input templates.. 35
Using function-string variables .. 37

Contents

iv Replication Server

Creating function strings.. 39
Altering function strings ... 41
Dropping function strings... 43
Restoring default function strings .. 44
Creating empty function strings with the output template........ 45
Remapping table and column names with function strings 46
Defining multiple commands in a function string 46
Using declare statements in language output templates......... 47

Displaying function-related information .. 48
Obtaining information using the admin command................... 48
Obtaining information using stored procedures....................... 48

Using the default system variable .. 49
Extending default function strings ... 50
Using replicate minimal columns... 50

Using function strings with text, unitext, image, and rawobject
datatypes .. 51

Using output writetext for rs_writetext function strings 51
Using output none for rs_writetext function strings 52

CHAPTER 3 Managing Warm Standby Applications 55
Overview .. 56

How a warm standby works .. 56
Database connections in a warm standby application 57
Primary and replicate databases and warm

standby applications ... 57
Warm standby requirements and restrictions.......................... 59
Function strings for maintaining standby databases 60

What information is replicated?.. 61
Comparing replication methods... 62
Using sp_reptostandby to enable replication 63
Using sp_setreptable to enable replication 68
Using sp_setrepproc to copy user stored procedures............. 68
Replicating tables with the same name but different owners .. 69
Replicating text, unitext, image, and rawobject data 70
Changing replication for the current isql session..................... 72

Setting up warm standby databases .. 73
Before you begin ... 73
Task one: Creating the logical connection 74
Task two: Adding the active database..................................... 75
Task three: Enabling replication for objects in the

active database .. 76
Task four: Adding the standby database................................. 77

Switching the active and standby databases 85
Determining if a switch is necessary 86

Contents

Administration Guide v

Before switching active and standby databases 86
Internal switching steps ... 87
After switching active and standby databases 88
Making the switch.. 89

Monitoring a warm standby application.. 93
Replication Server log file.. 93
Commands for monitoring warm standby applications............ 94

Setting up clients to work with the active data server 95
Two interfaces files.. 96
Symbolic data server name for client applications 96
Map client data server to currently active data server............. 97

Altering warm standby database connections................................ 97
Altering logical connections... 97
Altering physical connections .. 100
Dropping logical database connections................................. 102

Warm standby applications using replication 103
Warm standby application for a primary database 103
Warm standby application for a replicate database 105

Using replication definitions and subscriptions 110
Creating replication definitions for warm standby databases 110
Using subscriptions with warm standby application 116
Missing columns when you create the standby database 120

Loss detection and recovery .. 121

CHAPTER 4 Performance Tuning ... 123
Replication Server internal processing... 123

Threads, modules, and daemons.. 124
Processing in the primary Replication Server 124
Processing in the replicate Replication Server...................... 130

Configuration parameters that affect performance....................... 131
Replication Server parameters that affect performance........ 131
Connection parameters that affect performance 136
Route parameters that affect performance............................ 139

Suggestions for using tuning parameters..................................... 140
Setting the amount of time SQM Writer waits 140
Caching system tables .. 141
Setting wake up intervals .. 142
Sizing the SQT cache.. 142
Controlling the number of network operations....................... 143
Controlling the number of outstanding bytes......................... 143
Controlling the number of commands the RepAgent executor can

process ... 144
Specifying the number of stable queue segments allocated . 145
Selecting disk partitions for stable queues 145

Contents

vi Replication Server

Making SMP more effective .. 145
Specifying the number of transactions in a group 146
Setting transaction size ... 148

Using parallel DSI threads ... 148
Benefits and risks .. 149
Parallel DSI parameters .. 150
Components of parallel DSI .. 153
Processing transactions with parallel DSI threads 154
Selecting isolation levels ... 155
Transaction serialization methods... 156
Partitioning rules: reducing contention and

increasing parallelism ... 159
Resolving conflicting updates.. 164
Configuring parallel DSI for optimal performance 170
Parallel DSI and the rs_origin_commit_time system variable 174

Dynamic SQL for enhanced Replication Server performance 175
Using multiprocessor platforms.. 177

Enabling multiprocessor support ... 177
Monitoring thread status.. 177
Monitoring performance .. 178

Allocating queue segments .. 178
Choosing disk allocations.. 179
Dropping hints and partitions... 181

Using the heartbeat feature in RMS... 181

CHAPTER 5 Using Counters to Monitor Performance 183
Introduction .. 183
Modules and counters: an overview... 184

Counters.. 185
Sampling .. 186

Collecting statistics for a specific time period........................ 186
Collecting statistics for an indefinite time period 190

Viewing statistics on screen ... 191
Viewing throughput rates... 192
Viewing statistics about messages and memory use............ 192
Viewing the number of transactions in the stable queues 193

Viewing statistics saved in the RSSD .. 193
Using the rs_dump_stats procedure 194

Viewing information about the counters 195
Resetting counters ... 196

CHAPTER 6 Handling Errors and Exceptions .. 197
General error handling ... 197

Contents

Administration Guide vii

Error log files .. 198
Replication Server error log... 198
RepAgent error log messages... 201

Data server error handling ... 202
Creating an error class .. 203
Initializing a new error class .. 204
Dropping an error class ... 204
Changing the primary Replication Server for an error class.. 205
Displaying error class information ... 206
Assigning actions to data server errors 206
Displaying assigned actions for error numbers 207

Exceptions handling ... 207
Handling failed transactions .. 208
Accessing the exceptions log .. 209
Deleting transactions from the exceptions log....................... 212

DSI duplicate detection .. 213
Duplicate detection for system transactions................................. 214

CHAPTER 7 Replication System Recovery.. 215
How to use recovery procedures ... 216
Configuring the replication system to support Sybase Failover ... 216

Overview ... 217
Enabling Failover support in Replication Server 217

Configuring the replication system to prevent data loss............... 220
Save interval for recovery.. 220
Backing up the RSSDs.. 223
Creating coordinated dumps ... 224

Recovering from partition loss or failure....................................... 225
Procedure for recovering from partition loss or failure 226
Message recovery from off-line database logs...................... 227
Message recovery from the online database log................... 229

Recovering from truncated primary database logs 229
Truncated message recovery from the database log 230

Recovering from primary database failures 232
Loading from coordinated dumps.. 233
Loading a primary database from dumps.............................. 234

Recovering from RSSD failure ... 235
Recovering an RSSD from dumps .. 236
Basic RSSD recovery procedure... 236
Subscription comparison procedure...................................... 239
Subscription re-creation procedure 246
Deintegration/reintegration procedure................................... 249

Recovery support tasks.. 250
Rebuilding stable queues .. 250

Contents

viii Replication Server

APPENDIX A Asynchronous Procedures... 263
Overview .. 263

Logging replicated stored procedures 264
Logging replicated stored restrictions.................................... 264
Mixed-mode transactions .. 265

Applied stored procedures ... 265
Request stored procedures.. 266
Asynchronous stored procedure prerequisites............................. 267
Steps for implementing an applied stored procedure................... 268

Warning conditions.. 270
Steps for implementing a request stored procedure 272
Specifying stored procedures and tables for replication 274
Managing user-defined functions ... 275

Creating a user-defined function ... 275
Adding parameters to a user-defined function 276
Dropping a user-defined function .. 277
Mapping to a different stored procedure name 278
Specifying a nonunique name for a user-defined function 279

APPENDIX B High Availability on Sun Cluster 2.2 .. 281
Introduction .. 281
Terminology ... 282
Technology overview ... 283
Configuring Replication Server for high availability...................... 284

Configuring Sun Cluster for HA ... 284
Installing Replication Server for HA....................................... 285
Installing Replication Server as a data service...................... 286

Administering Replication Server as a data service..................... 289
Data service start/shutdown .. 289
Logs... 289

Glossary ... 291

Index ... 307

Administration Guide ix

About This Book

Sybase® Replication Server® maintains replicated data at multiple sites
on a network. Organizations with geographically distant sites can use
Replication Server to create distributed database applications with better
performance and data availability than a centralized database system can
provide.

This book, Replication Server Administration Guide, provides an
overview of how Replication Server works, and describes Replication
Server administrative tasks.

Audience The Replication Server Administration Guide is for replication system
administrators, who manage the routine operation of their Replication
Servers. Any user who has been granted the sa permission can be a
replication system administrator, although each Replication Server
usually has just one.

How to use this book This book contains the following chapters:

• Chapter 1, “Verifying and Monitoring Replication Server” describes
checking error logs, verifying that the components of a replication
system are running, and monitoring the status of system components
and processes.

• Chapter 2, “Customizing Database Operations” describes how to use
functions, function strings, and function-string classes to customize
data replication with Adaptive Server® Enterprise and data servers
from other vendors.

• Chapter 3, “Managing Warm Standby Applications” describes how
to create and manage warm standby applications.

• Chapter 4, “Performance Tuning” describes how to manage
resources effectively and optimize the performance of individual
Replication Servers.

• Chapter 5, “Using Counters to Monitor Performance” describes
Replication Server counters and how to use them.

x Replication Server

• Chapter 6, “Handling Errors and Exceptions” discusses error conditions
and failed transactions and how to customize data server responses to
errors.

• Chapter 7, “Replication System Recovery” describes replication system
failure conditions and provides procedures for recovering from them.

• Appendix A, “Asynchronous Procedures” describes a method for
replicating stored procedures associated with table replication definitions.

• Appendix B, “High Availability on Sun Cluster 2.2,” provides
background and procedures for configuring Sybase Replication Server for
high availability (HA) on Sun Cluster 2.2.

Volume 1 of the System Administration Guide contains these chapters:

• Chapter 1, “Introduction” introduces you to Replication Server,
describing the role it plays in a distributed database system and its
concepts and components.

• Chapter 2, “Replication Server Technical Overview” provides a technical
overview of the replication system, giving you the background necessary
to maintain and troubleshoot the system.

• Chapter 3, “Managing Replication Server with Sybase Central”describes
using Sybase Central’s Replication Manager plug-in, which is a graphical
tool for managing Replication Server.

• Chapter 4, “Managing a Replication System” describes basic operations
such as starting, stopping, and configuring Replication Server.

• Chapter 5, “Setting Up and Managing RepAgent,” describes how to set
up, configure and manage RepAgent.

• Chapter 6, “Managing Routes” describes how to create and manage routes
between source and destination Replication Servers.

• Chapter 7, “Managing Database Connections” describes how to prepare
databases for replication and how to create and manage connections
between databases and Replication Servers.

• Chapter 8, “Managing Replication Server Security” describes how to
create and modify login names, passwords, and permissions and how to set
up network-based security.

• Chapter 9, “Managing Replicated Tables” describes how to set up and
manage replicated tables.

 About This Book

Administration Guide xi

• Chapter 10, “Managing Replicated Functions” describes how to copy the
execution of user stored procedures to remote sites in a replication system
using replication definitions.

• Chapter 11, “Managing Subscriptions” describes how to create and
manage subscriptions, which allow Replication Server to replicate data
between databases.

• Chapter 12, “Managing Replicated Objects Using Multi-Site
Availability,” describes how to create and manage database replication
definitions and database subscriptions.

Related documents The Sybase Replication Server documentation set consists of the following:

• The release bulletin for your platform – contains last-minute information
that was too late to be included in the books.

A more recent version of the release bulletin may be available on the
World Wide Web. To check for critical product or document information
that was added after the release of the product CD, use the Sybase®
Technical Library.

• Installation Guide for your platform – describes installation and upgrade
procedures for all Replication Server and related products.

• What’s New in Replication Server? – describes the new features in
Replication Server version 15.0.1 and the system changes added to support
those features.

• Administration Guide (this book) – contains an introduction to replication
systems. This manual includes information and guidelines for creating and
managing a replication system, setting up security, recovering from
system failures, and improving performance.

• Configuration Guide for your platform – describes configuration
procedures for all Replication Server and related products, and explains
how to use the rs_init configuration utility.

• Design Guide – contains information about designing a replication system
and integrating heterogeneous data servers into a replication system.

• Getting Started with Replication Server – provides step-by-step
instructions for installing and setting up a simple replication system.

• Heterogeneous Replication Guide – describes how to use Replication
Server to replicate data between databases supplied by different vendors.

xii Replication Server

• Reference Manual – contains the syntax and detailed descriptions of
Replication Server commands in the Replication Command Language
(RCL); Replication Server system functions; Sybase Adaptive Server
commands, system procedures, and stored procedures used with
Replication Server; Replication Server executable programs; and
Replication Server system tables.

• System Tables Diagram – illustrates system tables and their entity
relationships in a poster format. Available only in print version.

• Troubleshooting Guide – contains information to aid in diagnosing and
correcting problems in the replication system.

• Replication Manager plug-in help, which contains information about
using Sybase Central™ to manage Replication Server.

Other sources of
information

Use the Sybase Getting Started CD, the SyBooks™ CD, and the Sybase
Product Manuals Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It is included with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

• The Sybase Product Manuals Web site is an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://www.sybase.com/support/manuals/.

 About This Book

Administration Guide xiii

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click Certification Report.

3 In the Certification Report filter select a product, platform, and timeframe
and then click Go.

4 Click a Certification Report title to display the report.

❖ Finding the latest information on component certifications

1 Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

2 Either select the product family and product under Search by Base
Product; or select the platform and product under Search by Platform.

3 Select Search to display the availability and certification report for the
selection.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.

xiv Replication Server

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Conventions This section describes the styke and syntax conventions, RCL command
formmating conventions, and icons used in this book.

Style conventions Syntax statements that display the syntax and options for
a command are printed as follows:

alter user user
set password new_passwd
[verify password old_passwd]

See “Syntax conventions” on page xiv for more information.

Examples that show the use of Replication Server commands are printed as
follows:

alter user louise
 set password somNIfic
 verify password EnnuI

Command names, command option names, program names, program flags,
keywords, functions, and stored procedures are printed as follows:

Use alter user to change the password for a login name.

Variables, parameters, and user-supplied words are in italics in syntax and in
paragraph text, as follows:

The set password new_passwd clause specifies a new password.

Names of database objects such as databases, tables, columns, and datatypes,
are in italics in paragraph text, as follows:

The base_price column in the Items table is a money datatype.

Names of replication objects, such as function-string classes, error classes,
replication definitions, and subscriptions, are in italics.

Syntax conventions Syntax formatting conventions are summarized in the
following table. Examples combining these elements follow.

 About This Book

Administration Guide xv

Table 1: Syntax formatting conventions

Obligatory choices • Curly braces and vertical bars – choose only one option.

{red | yellow | blue}

• Curly braces and commas – choose one or more options. If you choose
more than one, separate your choices with commas.

{cash, check, credit}

Optional choices • One item in square brackets – choose it or omit it.

[anchovies]

• Square brackets and vertical bars – choose none or only one.

[beans | rice | sweet_potatoes]

• Square brackets and commas – choose none, one, or more options. If you
choose more than one, separate your choices with commas.

[extra_cheese, avocados, sour_cream]

Repeating elements An ellipsis (...) means that you may repeat the last unit as many times as
necessary. For the alter replication definition command, for example, you can list
one or more columns and their datatypes for the add clause or the add
searchable columns clause:

alter replication definition replication_definition
{add column datatype [, column datatype]... |
 add searchable columns column [, column]... |
 replicate {minimal | all} columns}

Key Definition
{ } Curly braces mean you must choose at least one of the enclosed

options. Do not include braces in the command.

[]

Brackets mean you may choose or omit enclosed options. Do not
include brackets in the command.

|

Vertical bars mean you may choose no more than one option
(enclosed in braces or brackets).

,

Commas mean you may choose as many options as you need
(enclosed in braces or brackets). Separate your choices with
commas, to be typed as part of the command.

Commas may also be required in other syntax contexts.

()

Parentheses are to be typed as part of the command.

... An ellipsis (three dots) means you may repeat the last unit as
many times as you need. Do not include ellipses in the command.

xvi Replication Server

RCL command
formatting

RCL commands are similar to Transact-SQL® commands. The following
sections present the formatting rules.

Command format and
command batches

• You can break a line anywhere except in the middle of a keyword or an
identifier. You can continue a character string on the next line by typing a
backslash (\) at the end of the line.

• Extra spaces are ignored, except after a backslash. Do not enter any spaces
after a backslash.

• You can enter more than one command in a batch unless otherwise
instructed.

• RCL commands are not transactional. Each command is executed
independently and is not affected by the completion status of other
commands in the batch. However, syntax errors in a command prevent
Replication Server from executing subsequent commands in a batch.

Case sensitivity • Keywords in RCL commands are not case sensitive. You can enter them
in any combination of uppercase or lowercase letters.

• Case sensitivity in identifiers and character data depends on the sort order
that is in effect.

• If you use a case-sensitive sort order such as “binary,” you must enter
identifiers and character data in the correct combination of uppercase
and lowercase letters.

• If you use a sort order that is not case sensitive, such as “nocase,” you
can enter identifiers and character data in any combination of
uppercase or lowercase letters.

Identifiers Identifiers are names you give to servers, databases, variables, parameters,
database objects, and replication objects. Database object names include
names for tables, columns, and views. Replication object names include names
for replication definitions, subscriptions, functions, and publications.

• Identifiers can be 1 – 255 bytes long (equivalent to 1 – 255 single-byte
characters) and must begin with a letter, the @ sign, or the _ character. See
“Support for longer identifiers” on page 117 of the Replication Server
Administration Guide Volume 1, for a list of identifiers that have been
extended to 255 bytes.

• Replication Server function parameters are the only identifiers that can
begin with the @ character. Function parameter names can include 255
characters after the @ character.

 About This Book

Administration Guide xvii

• After the first character, identifiers can include letters, digits, and the #, $,
or _ characters. Spaces are not allowed.

Parameters in function
strings

Parameters in function strings have the same rules as identifiers, except that:

• They are enclosed in question marks (?). This allows Replication Server to
locate them in the function string. Use two consecutive question marks
(??) to represent a literal question mark in a function string.

• The exclamation point (!) introduces a parameter modifier that indicates
the source of the data to be substituted for a parameter at runtime. Refer to
the Replication Server Reference Manual for a list of modifiers.

Data support Replication Server supports all Adaptive Server datatypes.

User-defined datatypes are not supported. The timestamp, double precision,
nchar, and nvarchar datatypes are indirectly supported; they are mapped to
other datatypes. Columns using the timestamp datatype are mapped to
varbinary(8).

For more information about the supported datatypes, including how to format
them, see “Datatypes,” in Chapter 2, “Topics” of the Replication Server
Reference Manual.

Icons Illustrations in this book use icons to represent the components of a replication
system.

Description

This icon represents Replication Server, the Sybase server
program maintains replicated data on a local-area network (LAN)
and processes data transactions received from other Replication
Servers on wide-area network (WAN).

This icon represents Adaptive Server, the Sybase data server. Data
servers manage databases containing primary or replicated data.
Replication Server also works with heteregenous data servers, so,
unless otherwise noted, this icon can represent any data server in
a replication system.

Note Since changing the name of Sybase SQL Server® to
Adaptive Server Enterprise, Sybase may use the names Adaptive
Server and Adaptive Server Enterprise to refer collectively to all
supported versions of Sybase SQL Server and Adaptive Server
Enterprise. From this point forward, in this document, Adaptive
Server Enterprise is referred to as Adaptive Server.

xviii Replication Server

Accessibility
features

This document is available in an HTML version that is specialized for
accessibility. You can navigate the HTML with an adaptive technology such as
a screen reader, or view it with a screen enlarger.

Replication Server HTML documentation has been tested for compliance with
U.S. government Section 508 Accessibility requirements. Documents that
comply with Section 508 generally also meet non-U.S. accessibility guidelines,
such as the World Wide Web Consortium (W3C) guidelines for Web sites.

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT as initials, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

This icon represents Replication Agent, a replication system
process or module that transfers transaction log information for
primary database to a Replication Server. The Replication Agent
for Adaptive Server is RepAgent. Sybase provides Replication
Agent products for Adaptive Server Anywhere, DB2, Informix,
Microsoft SQL Server, and Oracle data servers.

Except for RepAgent, which is an Adaptive Server thread, all
Replication Agents are separate processes. In general, this icon
only appears when representing a Replication Agent that is a
separate process.

This icon represents client application. A client application is a
user process or application connected to a data server. It may be a
front-end application program executed by a user or a program
that executes as an extension of the system.

This icon represents the Sybase Central Replication Manager
plug-in (RM), a management utility that lets a replication system
administrator develop, manage, and monitor a Sybase Replication
Server environment.

Description

 About This Book

Administration Guide xix

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

xx Replication Server

Administration Guide 1

C H A P T E R 1 Verifying and Monitoring
Replication Server

This chapter describes checking error logs, verifying that the components
of a replication system are running, and monitoring the status of system
components and processes.

The replication system includes data servers and Replication Servers. It
may also include Replication Agents for heterogeneous data servers. The
Replication Agent for Adaptive Server is RepAgent, an Adaptive Server
thread.

Note If you are using a Replication Agent for a heterogeneous data server,
refer to Replication Agent documentation for your data server for
information about troubleshooting your Replication Agent.

In a fully operational replication system, all data servers, Replication
Servers, Replication Agents, and their internal threads and other
components are running. This chapter tells you how to perform basic
troubleshooting tasks on the replication system, including:

1 Checking error logs for status and error messages.

2 Logging in to system servers and checking that all threads are
functioning, routes and connections are in place, and the interfaces
file information is correct.

This chapter also describes how you can monitor Replication Server and
its threads and check partition threshold levels.

Refer to the Replication Server Troubleshooting Guide for detailed
information about monitoring and troubleshooting Replication Server.

Topic Page
Checking replication system log files for errors 2

Verifying a replication system 2

Monitoring Replication Server 4

Setting and using threshold levels 8

Checking replication system log files for errors

2 Replication Server

Checking replication system log files for errors
The Replication Server records status and error messages, including internal
errors, in the Replication Server error log file. Use the admin log_name
command to display the path to the current log file. The default name for the
log file is repserver.log. You can change the default name by executing
repserver with the -E option and specifying the new log file name.

Refer to Chapter 3 “Replication Server Commands” of the Replication Server
Reference Manual, for more information about these commands.

Internal errors are those where the only action available to Replication Server
is to dump the stack and exit. For diagnostic purposes, Replication Server
prints a trace of its execution stack in the log and leaves a record of its state
when the error occurred.

Messages continue to accumulate in the error log files until you remove them.
For this reason, you may choose to truncate the log files when the Replication
Server is shut down. You can also close the Replication Server log file and
begin a new log file by using the admin set_log_name command.

The Replication Server log file contains messages generated during the
execution of asynchronous commands, such as create subscription and create
route, which continue processing after the commands complete. While you are
executing asynchronous commands, pay special attention to the log files for the
Replication Servers affected by the procedure.

If a log file is unavailable, important error information is written to the standard
error output file, which you can display on a terminal or redirect to a file.

Verifying a replication system
You need to verify that the entire replication system is working when you are
about to create replication definitions or subscriptions or when you are
performing diagnostics on your system. If you encounter errors, verifying your
system allows you to rule out the possibility that threads or components are not
running or that routes and connections are not properly set up.

To make sure that Replication Server threads are running, you can execute
admin who_is_down, which displays only those threads that are not running.
Alternatively, execute admin who to display information about all threads.

CHAPTER 1 Verifying and Monitoring Replication Server

Administration Guide 3

If no threads are down, you can confirm that the replication system is working
by checking the following:

1 Verify that replication system servers and Replication Agents are running
and available.

At the primary site, log in to these servers:

• Data server with the primary database and its Replication Agent

If you are using Adaptive Server, execute sp_help_rep_agent at
Adaptive Server to display status information for RepAgent thread.

• Replication Server managing the primary database

• RSSD (and its Replication Agent) for the primary Replication Server

If you are using Adaptive Server, execute sp_help_rep_agent at
Adaptive Server to display status information for RepAgent thread.

At replicate sites, log in to these servers:

• Data servers with replicate databases and, if request functions are
executed at these databases, their Replication Agents

If you are using Adaptive Server, execute sp_help_rep_agent at
Adaptive Server to display status information for RepAgent thread.

• Replication Servers managing replicate databases

• RSSDs (and their Replication Agents) for replicate Replication
Servers

If you are using Adaptive Server, execute sp_help_rep_agent at
Adaptive Server to display status information for RepAgent thread.

2 Use the admin show_connections command at Replication Server to verify
that these routes and connections are in place:

• Routes from the primary Replication Server to each replicate
Replication Server

• Database connection between the primary Replication Server and the
primary database

• Route from a replicate Replication Server to the primary Replication
Server, if the replicate Replication Server manages a replicate
database in which request functions are executed

• Database connections between each replicate Replication Server and
its replicate database

Monitoring Replication Server

4 Replication Server

3 Verify the accuracy of entries in the interfaces file.

When creating subscriptions, be sure an entry for the primary data server
exists in the interfaces file for the replicate Replication Server. (If you are
using atomic or non-atomic materialization, the replicate Replication
Server retrieves initial rows through a direct connection to the primary
data server.)

4 Use the admin who command to verify that these Replication Server
threads are running:

• Data Server Interface (DSI)

• Replication Server Interface (RSI)

• Distributor (DIST)

• Stable Queue Manager (SQM)

• Stable Queue Transaction interface (SQT)

• RepAgent User

For detailed information about monitoring Replication Server threads,
refer to “Displaying replication system thread status” on page 6.

Monitoring Replication Server
While the replication system is in operation, you may need to monitor its
components and processes. This section describes how to:

• Monitor replication system servers

• Monitor DSI, RSI, and other thread status

• Use system information commands to obtain information about various
aspects of the Replication Server.

Verifying server status
You can verify the status of your servers with these methods:

• Use isql to log in to each server. If the login succeeds, you know that the
server is running.

CHAPTER 1 Verifying and Monitoring Replication Server

Administration Guide 5

• Create a script that logs in to and displays the status of each Adaptive
Server and its RepAgent thread, other Replication Agent (if any), and
Replication Server. Make sure all servers in the script are included in the
interfaces file.

If a login fails, it may be caused by one of the following problems:

Problem: You typed an incorrect name, or the interfaces file you are using does
not have an entry for the server.

DB-LIBRARY error:
Server name not found in interface file.

Problem: The server is running, but you specified an incorrect login name or
password.

DB-LIBRARY error:
Login incorrect.

Problem: The server is not running.

Operating-system error:
Invalid argument

 DB-LIBRARY error:
Unable to connect: Server is unavailable
or does not exist.

Problem: The interfaces file cannot be found.

Operating-system error:
No such file or directory

 DB-LIBRARY error:
Could not open interface file.

Problem: The interfaces file exists, but you do not have permission to access it.

Operating-system error:
Permission denied

 DB-LIBRARY error:
 Could not open interface file

If you can not log in but do not receive an error message, you can assume that
the server has stopped processing. Call Sybase Technical Support if you need
assistance in determining the problem.

Monitoring Replication Server

6 Replication Server

Visual monitoring of status
Replication Manager graphically displays an environment or object status. The
status of an environment is the state of its components. An object’s status
includes its current state and a list of reasons for the state. The state of each
object is displayed on the object icon, in the parent object Details list, and on
the Properties dialog box for that object. You can monitor the status of servers,
connections, routes, and queues.

Use the Replication Manager GUI to monitor the status in Replication
Monitoring Services (RMS). The Replication Manager connects to the servers
in the environment through RMS.

Refer to Chapter 3, “Managing Replication Server with Sybase Central” in the
Replication Server Administration Guide Volume 1 for more information.

Displaying replication system thread status
You can monitor general information on current Replication Server threads.
Table 1-1 describes threads that apply to database connections and routes and
the admin who command you use to monitor them.

Table 1-1: Monitoring Replication Server threads

Replication Server thread Command

Distributor (DIST) – uses SQT and SQM to read transactions from the inbound
queue.

admin who, dist

Data Server Interface (DSI) – submits transactions to data server. admin who, dsi

REP AGENT USER – verifies that transactions from the data server are valid
and writes them to the inbound queue.

admin who

Note Use sp_who or
sp_help_rep_agent to display
status of RepAgent thread at
Adaptive Server.

Replication Server Interface (RSI) – logs in to each destination Replication
Server and transfers commands from the stable queue to the destination server.

admin who, rsi

Stable Queue Manager (SQM) – manages Replication Server stable queues. admin who, sqm

Stable Queue Transaction interface (SQT) – reads transactions in a queue and
passes them to the SQT reader.

admin who, sqt

CHAPTER 1 Verifying and Monitoring Replication Server

Administration Guide 7

Refer to Chapter 3, “Replication Server Commands,” in the Replication Server
Reference Manual for details on the admin who command. Refer to the
Replication Server Troubleshooting Guide to interpret the command output for
troubleshooting purposes.

Using system information commands

In addition to admin who, Replication Server offers other admin commands to
assist you in monitoring Replication Server.

These commands are listed in Table 1-2. Refer to Chapter 3, “Replication
Server Commands,” in the Replication Server Reference Manual for details on
each command.

Table 1-2: Overview of system information commands

Command Description

admin disk_space Displays utilization of disk partitions accessed by the Replication Server.

admin echo Determines if the local Replication Server is running.

admin get_generation Retrieves the generation number for a primary database, used in recovery
operations.

admin health Displays the overall status of the Replication Server.

admin log_name Displays the path to the current log file.

admin logical_status Displays the status of logical database connections, used in warm standby
applications.

admin pid Displays the process ID of the Replication Server.

admin quiesce_check Determines if the queues in the Replication Server have been quiesced.

admin quiesce_force_rsi Determines whether a Replication Server is quiescent. Also forces Replication
Server to deliver outbound messages.

admin rssd_name Displays the names of the data server and database for the RSSD.

admin security_property Displays security features of network-based security systems supported by
Replication Server.

admin security_setting Displays network-based security settings of a particular target server.

admin set_log_name Closes the existing Replication Server log file and opens a new log file.

admin show_connections Displays information about all connections and routes to and from Replication
Server.

admin show_function_classes Displays the names of existing function-string classes and their parent classes
and indicates the number of levels of inheritance.

admin show_route_version Displays the version number of routes that originate at Replication Server and
routes that terminate at Replication Server.

admin show_site_version Displays the site version of Replication Server.

admin sqm_readers Displays information about threads that are reading the inbound queue.

Setting and using threshold levels

8 Replication Server

Setting and using threshold levels
Stable queue partitions fill up when a Replication Server is receiving more
messages than it is sending. For example, if a network is down between a
primary site and a replicate site, the Replication Server at the primary site
queues up the undeliverable messages. When the network returns to service,
the messages can be delivered, and then deleted from the primary Replication
Server partitions.

If a partition becomes completely full, senders cannot deliver their messages to
the Replication Server, and messages begin to back up in the partitions at
previous sites and in the transaction logs for primary databases.

 Warning! If the situation is not corrected, RepAgent is unable to update the
secondary truncation point in the database log, and the transaction log fills.
Clients are then unable to execute transactions at the primary database.

admin stats Displays information and statistics about Replication Server counters. Replaces
admin statistics.

admin statistics, md Displays statistics about message delivery and counters.

admin statistics, mem Displays statistics about memory utilization.

admin statistics, reset Resets the message delivery statistics.

admin version Displays which version of the Replication Server you are running, representing
the software version.

admin who Displays information about all threads in the Replication Server.

admin who, dsi Displays information about DSI threads that connect to a data server.

admin who, rsi Displays information about RSI threads that connect to other Replication
Servers.

admin who, sqm Displays information about all queues managed by the SQM.

admin who, sqt Displays information about all queues managed by the SQT.

admin who_is_down Displays the same information as admin who, but only about threads that are
down.

admin who_is_up Displays the same information as admin who, but only about threads that are
running.

Command Description

CHAPTER 1 Verifying and Monitoring Replication Server

Administration Guide 9

You can configure Replication Server to warn when partitions become too full
by setting three rows in the rs_config system table: sqm_warning_thr1,
sqm_warning_thr2, and sqm_warning_thr_ind. These parameters are described
in Figure 4-2 on page 130.

Monitoring partition percentages
Replication Server operates on 1MB partition segments. Whenever it allocates
or deallocates a partition segment, it calculates these statistics:

• Percentage of total partition segments in use

• Percentage of total partition segments in use by the affected stable queue

If the percentage of partition segments in use rises above the percentage
specified by sqm_warning_thr1 or sqm_warning_thr2, a message like the
following is written to the log file:

WARNING: Stable Storage Use is Above threshold percent

If you see this message often, you may need to add partitions to the Replication
Server or correct a recurring failure that causes the queues to fill.

When the first percentage drops below the percentage specified by
sqm_warning_thr1 or sqm_warning_thr2, a message like the following is written
to the log file to note that the condition that caused the original warning no
longer exists:

WARNING CANCEL: Stable Storage Use is Below threshold
percent

The percentage of total partition segments in use by the affected stable queue
triggers the following warning message when the percentage of the total space
used by a single stable queue exceeds the percentage specified by
sqm_warning_thr_ind:

WARNING: Stable Storage Use by queue name is Above
threshold percent

This warning alerts you to problems that cause a particular stable queue to fill
until it is using a disproportionate share of the total partition space. For
example, if a route is suspended for a length of time, its stable queue may fill
until it occupies enough partition space to trigger a warning.

When the percentage of the total partition space used by a stable queue drops
below the sqm_warning_thr_ind percentage, Replication Server writes a cancel
message like the following to the log file:

Setting and using threshold levels

10 Replication Server

WARNING CANCEL: Stable Storage Use by queue name is
Below threshold percent.

Administration Guide 11

C H A P T E R 2 Customizing Database
Operations

This chapter explains how you can create and alter functions, function
strings, and function-string classes to allow replication definitions to work
with database servers other than Adaptive Server.

Overview
Replication Server translates commands from the primary database into
Replication Server functions that represent data server operations such as
insert, delete, select, begin transaction, and so on. It distributes these
functions to remote Replication Servers in the system, where they execute
those operations in remote databases.

The primary Replication Server distributes functions in the same format
regardless of the type of data server that actually updates the replicated
data. Functions are not database-specific. They include all the data needed
to perform the operation, but they do not specify the syntax needed to
complete the operation at the destination data server.

Topic Page
Overview 11

Working with functions, function strings, and classes 12

Function-string classes 21

Managing function-string classes 26

Managing function strings 32

Displaying function-related information 48

Using the default system variable 49

Using function strings with text, unitext, image, and rawobject
datatypes

51

Working with functions, function strings, and classes

12 Replication Server

The remote Replication Server converts functions to commands specific to the
destination data servers where they are executed. A function string contains the
database-specific instructions for executing a function. The replicate
Replication Server managing a database uses an appropriate function string to
map the function to a set of instructions for the data server. For example, the
function string for the rs_insert function provides the actual language to be
applied in a replicate database.

This separation between functions and data server commands lets you maintain
replicated data among heterogeneous data servers. Replication Server allows
you to customize function strings, specifying how Replication Server functions
map to SQL commands. You can create function strings if you require
customized data server operations. You customize replicated data applications
by changing the way operations are performed at the destination database.

Function strings are grouped into function-string classes, so you can group
mappings of functions to commands according to data server. Replication
Server provides function-string classes for Adaptive Server Enterprise, Oracle,
Informix, Microsoft SQL Server, Adaptive Server Anywhere, IMS, VSAM,
and DB2 databases. You can create new derived function-string classes in
which you customize certain function strings and inherit all others from these
or other classes. You can also create entirely new classes in which you create
all new function strings.

You may also need to create function strings for replicated functions, which
allow you to execute stored procedures on remote databases. You must create
a function string for any replicated function for which Replication Server does
not automatically generate a function string in the function-string class used by
the destination database.

Working with functions, function strings, and classes
You can work with functions and function strings to customize database
operations in any of these ways:

• Create a new function-string class for use with a specific type of database,
and customize some or all of the function strings. See “Managing
function-string classes” on page 26 for detailed information.

• For atomic materialization, use a function from a function-string class
associated with the primary database connection, not a function from the
function-string class associated with the replicate database connection.

CHAPTER 2 Customizing Database Operations

Administration Guide 13

• Alter function strings for the system-provided function-string class,
rs_sqlserver_function_class. See “Managing function strings” on page 32
for detailed information.

• Create a function-string class that inherits, either directly or indirectly,
function strings from the system-provided function-string class
rs_default_function_class.

• Use the system-provided function-string classes for non-Sybase data
servers: rs_db2_function_class, rs_informix_function_class,
rs_mss_function_class, or rs_oracle_function_class. See “Translating
datatypes using HDS” on page 307 in the Replication Server
Administration Guide Volume 1 for detailed information on datatype
translations using the heterogeneous datatype support (HDS) feature.

This section provides an overview of functions, function strings, and function-
string classes. The following sections include a summary of the system
functions, procedures, and guidelines for managing function strings and
function-string classes. They also summarize commands for displaying
information about the function strings and classes in the replication system.

You can work with functions, function strings, and classes using Sybase
Central or RCL commands. This chapter describes procedures and RCL
commands that you enter at the command line using isql.

Refer to Chapter 4, “Replication Server System Functions,” in the Replication
Server Reference Manual for more information about the system functions.

Functions
Replication Server uses two major types of functions:

• System functions

• User-defined functions

You can create custom function strings for either type of function, depending
on your needs.

See “Managing function strings” on page 32 for more information about when
to customize function strings.

Working with functions, function strings, and classes

14 Replication Server

System functions

System functions represent data server operations whose function strings are
supplied by Replication Server or are available when you install a new
database on the replication system. Unless your application requires it, you do
not need to customize function strings for system functions. The system-
provided class generates them for you.

System functions include:

• Functions that represent data-manipulation operations such as insert,
update, delete, select, and select with holdlock.

These system functions have replication-definition scope. See “Function
scope” on page 15 for details.

• Functions that represent transaction-control directives. These functions
include operations such as begin transaction and commit transaction.

These system functions have function-string-class scope. See “Function
scope” on page 15 for details.

See “Summary of system functions” on page 16 for more information about
each type of system function.

User-defined functions

User-defined functions allow you to use Replication Server to distribute
replicated stored procedures between sites in the replication system. You must
create function strings for user-defined functions unless you use a function-
string class that directly or indirectly inherits function strings from
rs_default_function_class. User-defined functions include:

• Functions that are used in replicating stored procedures associated with
function replication definitions. Replication Server automatically creates
a user-defined function of this type when you create a function-replication
definition.

Refer to Chapter 10, “Managing Replicated Functions” in the Replication
Server Administration Guide Volume 1 for details about function-
replication definitions and replicated stored procedures.

• Functions that are used in replicating stored procedures associated with
table-replication definitions. You create and maintain user-defined
functions of this type yourself.

For details about replicated stored procedures that use table-replication
definitions, see Appendix A, “Asynchronous Procedures.”

CHAPTER 2 Customizing Database Operations

Administration Guide 15

User-defined functions have replication-definition scope. See “Function
scope” on page 15 for details.

Any function string that you create for a user-defined function should be
created at the primary Replication Server, where the replication definition was
created. If you are using function replication definitions, see also
“Implementing an applied function” on page 326 or “Implementing a request
function” on page 329 in the Replication Server Administration Guide Volume
1.

Function scope

The scope of a function defines the object to which the function applies: either
to a replication definition or to a function-string class. Knowing a function’s
scope is important for determining where to customize a function string: at the
primary or replicate Replication Server. Functions can have one of two scopes:

• Function-string-class scope

• Replication-definition scope

Function-string-class
scope

A function with function-string-class scope is defined once for the class.
Functions with function-string-class scope include system functions that
represent transaction-control directives (such as rs_begin, rs_commit, or
rs_marker) and do not perform data manipulation. Function strings for user-
defined functions do not have class scope.

Function strings for functions with function-string-class scope must be
customized at the primary Replication Server for the function-string class. See
Table 2-1 on page 16 for a list of these functions. See “Primary site for a
function-string class” on page 29 for information on assigning a primary site.

Replication-definition
scope

A function with replication-definition scope is defined once for a specific
table-replication definition or function-replication definition—although the
function may have multiple function strings.

Functions with replication-definition scope include:

• System functions that perform data-manipulation operations (such as
rs_insert, rs_delete, rs_update, rs_select, rs_select_with_lock, and special
functions used in replicating text, unitext, and image data).

See Table 2-2 for a list of these functions.

• User-defined functions for table- or function-replication definitions.

Working with functions, function strings, and classes

16 Replication Server

System functions with replication-definition scope must be customized at
the Replication Server where the replication definition was created. User-
defined functions with replication-definition scope must be customized at
the Replication Server where the replication definition was created.

Summary of system functions
The following tables provide a summary of the available system functions.
Refer to Chapter 4, “Replication Server System Functions,” in the Replication
Server Reference Manual for complete documentation of all of the system
functions.

System functions with function-string-class scope

Table 2-1 lists the system functions with function-string-class scope.
Replication Server provides default generated function strings for each system-
provided class when you install the replication system.

Some functions are required for every Replication Server application, while
other functions only apply in particular cases, such as warm standby
applications, parallel DSI threads, or coordinated dumps.

If you use a function-string class other than the default
(rs_sqlserver_function_class), and you are not using function-string
inheritance, you must create a function-string for each system function you use
that has function-string class scope.

Customize function strings for system functions with class scope at the
Replication Server that is the primary site for the function-string class. See
“Changing the primary site for a function-string class” on page 30 for more
information about assigning or changing the primary Replication Server for a
function-string class.

Table 2-1: System functions with function-string-class scope

Function name Description

rs_batch_start Specify the SQL statements required in addition to the rs_begin statements to
mark the beginning of a batch of commands.

rs_batch_end Specify the SQL statements required to mark the end of a batch of commands.
This function string is used with rs_batch_start.

rs_begin Begin a transaction.

rs_check_repl Check if a table is marked for replication.

rs_commit Commit a transaction.

CHAPTER 2 Customizing Database Operations

Administration Guide 17

rs_dumpdb Initiate a coordinated database dump.

rs_dumptran Initiate a coordinated transaction dump.

rs_get_charset Return the character set used by a data server.

Sample function strings for replication into DB2 databases via Net-Gateway are
installed in the Sybase release directory in install/rs_db2_setup.sample (UNIX
systems) and install\rs_2_db2.txt (Windows 2000, 2003 systems).

rs_get_lastcommit Retrieve rows from the rs_lastcommit system table.

rs_get_sortorder Return the sort order used by a data server.

Sample function strings for replication into DB2 databases via Net-Gateway are
installed in the Sybase release directory in install/rs_db2_setup.sample (UNIX
systems) and install\rs_2_db2.txt (Windows 2000 and 2003 systems).

rs_get_thread_seq Return the current sequence number for the specified entry in the rs_threads
system table. This function is executed only when you are using parallel DSI.

rs_get_thread_seq_noholdlock Return the current sequence number for the specified entry in the rs_threads
system table, using the noholdlock option. This thread is used when
dsi_isolation_level is 3.

rs_initialize_threads Set the sequence of each entry in the rs_threads system table to 0. This function
is executed only when you are using parallel DSI.

rs_marker Help coordinate subscription materialization. The function passes its first
parameter to Replication Server as an independent command.

rs_raw_object_serialization Replicate Java columns as serialized data.

rs_repl_off Set replication off in Adaptive Server for a standby database connection.

rs_repl_on Set replication on in Adaptive Server for a standby database connection.

rs_rollback Roll back a transaction.

rs_set_ciphertext Turn on set ciphertext on, which enables replication of encrypted columns for
rs_default_function_class and rs_sqlserver_function_class. For all other classes,
this function is set to null.

rs_set_isolation_level Passes the isolation level for transaction to replicate data server.

rs_set_dml_on_computed Is applied at the replicate database DSI when a connection is established. It
issues the command set dml_on_computed “on” after the use database
statement

rs_set_proxy Assume the permissions, login name, and server user ID of the user.

rs_thread_check_lock Determines whether or not the DSI executor thread is holding a lock that blocks
a replicate database process.

rs_triggers_reset Set triggers off in Adaptive Server for a standby database connection.

rs_trunc_reset Reset the secondary truncation point in warm standby databases. This function
is executed only when you create a warm standby database or when you switch
to a standby database.

Function name Description

Working with functions, function strings, and classes

18 Replication Server

System functions with replication-definition scope

Table 2-2 lists the system functions with replication-definition scope.
Replication Server provides default function strings for each system-provided
class when you create a replication definition.

Some functions are required for every Replication Server application, while
other functions only apply in particular cases, such as replication of text,
unitext, and image datatypes, parallel DSI threads, or performing subscription
materialization or dematerialization.

Customize function strings for a system functions with replication-definition
scope at the Replication Server where the replication definition was created.

Table 2-2: System functions with replication definition scope

rs_trunc_set Set the secondary truncation point in warm standby databases. This function is
executed only when you create a warm standby database or when you switch to
a standby database.

rs_update_threads Update the sequence number for the specified entry in the rs_threads table. This
function is executed only when you are using parallel DSI.

rs_usedb Change the database context.

Function name Description

Function name Description

rs_datarow_for_writetext Provide an image of the data row associated with a text, unitext, or image column
updated with a Transact-SQL writetext command or with
 CT-Library or DB-Library functions.

rs_delete Delete a row in a table.

rs_get_textptr Retrieve the text pointer for a text, unitext, image, or rawobject column.

rs_insert Insert a row into a table.

rs_select Retrieve rows from a table for subscription materialization or dematerialization.

rs_select_with_lock Retrieve subscription materialization or dematerialization rows using a holdlock.

rs_textptr_init Allocate a text pointer for a text, unitext, image, or rawobject column.

rs_truncate Truncate a table.

rs_update Update a row in a table.

rs_writetext Alter text, unitext, image, or rawobject data.

CHAPTER 2 Customizing Database Operations

Administration Guide 19

Function strings
Function strings contain instructions for executing a function in a database.
These instructions may differ according to database. For example, a non-
Sybase database may require different instructions and have different function
strings than an Adaptive Server database.

Functions strings come in two formats: language and RPC. A language-format
function string contains a command, such as a SQL statement, that the data
server parses. An RPC-format function string contains a remote procedure call
that executes a registered procedure in an Open Server gateway application or
in an Adaptive Server database. Both function-string formats can contain
variables that get replaced with data values. What format a function string uses
is determined by the type of data server and how you want Replication Server
to interact with it. See “Using output templates” on page 34 for more
information.

Function strings are grouped into function-string classes. Each database
connection must be assigned a function-string class according to the type of
destination database. Replication Server provides function-string classes that
contain default function strings. Replication Server generates default function
strings for Adaptive Server, DB2, Informix, Microsoft SQL Server, and Oracle
function-string classes.

When you set up a replication system or add databases to the system, you
should anticipate your function-string requirements and decide how you will
use function-string classes and whether you need to customize function strings.
See “Function-string classes” on page 21 for more information.

See “Managing function strings” on page 32 for more information about
customizing function strings.

Input and output templates

Every function string uses an output template to instruct the destination
database in executing the function for a specific data server.

Function strings for the rs_select and rs_select_with_lock functions use both
input templates and output templates, which together perform subscription
materialization and dematerialization.

You customize function strings by altering their input and output templates.
You customize function strings for functions other than rs_select and
rs_select_with_lock by altering only the output template. How you alter a
function string depends on the function string’s format-language or RPC.

Working with functions, function strings, and classes

20 Replication Server

See “Function-string input and output templates” on page 33 for more
information about input and output templates.

Applications for customized function strings

You can customize function strings to:

• Perform operations in any native database language (including those other
than Transact-SQL) by altering function-string output templates to format
the commands sent to a data server.

• Materialize and dematerialize multiple subscriptions for the same
replication definition with a single function string.

• Perform the following tasks by altering output templates for existing
system function strings:

• Record auditing information.

• Execute remote procedure calls (RPCs).

• Replicate data into multiple replicate tables in the same database.

• Replicate data into a replicate table with a different name, column
names, or column order than the primary table.

If the replicate Replication Server is of version 11.5 or later, you can
perform the same tasks more easily by creating a customized
replication definition that specifies the relevant information about the
replicate table. See “Creating multiple replication definitions per
table” on page 259 in the Replication Server Administration Guide
Volume 1 for more information.

System functions with multiple function strings
For the class-scope system functions, each function maps to a function string
within the class. Each replication-definition-scope rs_insert, rs_delete, and
rs_update system function maps to a function string within the class for each
replication definition.

CHAPTER 2 Customizing Database Operations

Administration Guide 21

You can create multiple function-string instances for the same replication
definition for other system functions with replication-definition scope—
rs_select, rs_select_with_lock, rs_datarow_for_writetext, rs_get_textptr,
rs_textptr_init, and rs_writetext. In such cases, you must give each instance of a
function string a different name. System functions that can take multiple
function strings include:

• rs_select and rs_select_with_lock functions – used in subscription
materialization and dematerialization when multiple subscriptions exist
for the same replication definition. You can give each instance of the
function string any name that is unique for the replication definition. Each
instance of the function string corresponds to a where clause used in
creating subscriptions for the replication definition.

• rs_datarow_for_writetext, rs_get_textptr, rs_textptr_init, and rs_writetext
function each instance of the function string. You must name each instance
of a function string for the text, unitext, or image column specified in the
replication definition.

Function-string classes
Each function string belongs to a function-string class, which groups function
strings intended to be used with databases of a similar type or with similar
requirements. Replication Server assigns each database connection a function-
string class according to the data server of the destination database.

Replication Server applies functions to the database using the function strings
from its assigned function-string class. Function-string classes contain
function strings for system functions and for any user-defined functions.

You can use a function-string class on multiple databases if the function strings
can execute on all of the data servers. For example, a system with several
databases managed by Adaptive Server can use rs_sqlserver_function_class for
all the databases.

You can even use a single function-string class with heterogeneous data
servers, provided that the gateways that provide access to the various data
servers share a common interface.

Function-string classes

22 Replication Server

System-provided classes
Several function-string classes are provided with Replication Server. These are
called system-provided classes.

• rs_sqlserver_function_class – default Adaptive Server function strings are
provided for this class. The default function strings in
rs_sqlserver_function_class are identical to those in
rs_default_function_class. rs_sqlserver_function_class is assigned by
default to Adaptive Server databases you add to the replication system
using rs_init.

You can customize function strings for this class. However, this class
cannot participate in function-string class inheritance. In most cases, using
derived classes that specify rs_default_function_class as a parent class is
preferable to using rs_sqlserver_function_class directly.

• rs_default_function_class – default Adaptive Server function strings are
provided for this class. The default function strings in
rs_sqlserver_function_class are identical to those in
rs_default_function_class.

You cannot customize function strings for this class. However, this class
can participate in function-string class inheritance. In most cases, using
derived classes that specify rs_default_function_class as a parent class is
preferable to using rs_default_function_class directly.

Note The system-provided function-string classes
rs_default_function_class and rs_sqlserver_function_class contain default
function strings for all system functions except rs_dumpdb and
rs_dumptran. If you need to use function strings for these functions you
must create them yourself in a derived class or in
rs_sqlserver_function_class.

• rs_db2_function_class – DB2-specific function strings are provided for this
class. See “Creating class-level translations” on page 310 in the
Replication Server Administration Guide Volume 1 for more information
about using this class.

To allow rs_db2_function_class and other function-string classes to work,
issue the following commands:

alter connection to dataserver.database
set dsi_sql_data_style to 'db2'
alter connection to dataserver.database
set dsi_cmd_separator to ';'

CHAPTER 2 Customizing Database Operations

Administration Guide 23

The rs_writetext function string of rs_db2_function_class was changed to
“output none.” rs_db2_function_class does not support replication of text
or image data. To achieve this functionality, customize the rs_writetext
function string using the RPC method through a gateway.

You cannot customize function strings for this class. If you require DB2
function strings, using derived classes that specify rs_db2_function_class
as a parent class is preferable, in most cases, to using this class directly.

• rs_informix_function_class – Informix function strings are provided for this
class. You cannot customize function strings for this class. See “Creating
class-level translations” on page 310 in the Replication Server
Administration Guide Volume 1 for more information about using this
class.

• rs_mss_function_class – Microsoft SQL Server function strings are
provided for this class. You cannot customize function strings for this
class. See “Creating class-level translations” on page 310 in the
Replication Server Administration Guide Volume 1 for more information
about using this class.

• rs_oracle_function_class – Oracle function strings are provided for this
class. You cannot customize function strings for this class. See “Creating
class-level translations” on page 310 in the Replication Server
Administration Guide Volume 1 for more information about using this
class.

Table 2-1 on page 16 illustrates function-string inheritance relationships for
these and other classes.

Function-string inheritance
The ability to share function-string definitions among classes by creating
relationships between classes is called function-string inheritance.

Using function-string inheritance in general, and inheriting from system-
provided classes in particular, provides both administrative and upgrade
benefits to replication system administrators. Using classes that inherit from
system-provided classes, you alter only the function strings you want to
customize and inherit all others.

If you use classes that do not inherit from system-provided classes, you must
create all function strings yourself, and add new function strings whenever you
create a new table or function replication definition.

Function-string classes

24 Replication Server

A class that inherits function strings from a parent class is called a derived
class. A class from which a derived class inherits function strings is called the
parent class of the derived class. Generally, you create a derived class in order
to customize certain function strings and inherit all others from the parent class.

A class that does not inherit function strings from any parent class is called a
base class. The system-provided classes rs_default_function_class and
rs_db2_function_class, and any additional classes you create that do not inherit
function strings from a parent class, are base classes. The system-provided
classes rs_informix_function_class, rs_msss_function_class,
rs_oracle_function_class are derived from rs_default_function_class.

A parent class can have multiple derived classes, while a derived class can have
only one parent class. A derived class can also serve as the parent class for one
or more derived classes. A set of derived classes of any number of levels
stemming from the same base class is called a class tree.

The system-provided classes rs_default_function_class and
rs_db2_function_class can serve as parent classes for derived classes. However,
they cannot become derived classes of other parent classes.

The system-provided class rs_sqlserver_function_class cannot serve as a parent
class or become a derived class.

A base class that you have created can be modified to become a derived class,
or it can be designated as the parent class for a derived class. A derived class
can be modified to inherit function strings from a different parent class, or it
can be detached from a parent class and become a base class.

For every base class that you create, you must provide function strings for the
functions that Replication Server invokes in each database to which the class
is assigned. If you assign a function-string class to a database when some of the
function strings for system functions are missing, the DSI reports an error when
Replication Server tries to apply the function string, and suspends the database
connection.

Circular function-string inheritance relationships are disallowed. That is, a
parent class cannot be modified to inherit function strings from one of its own
derived classes or from a derived class of one of these derived classes.

Function-string class relationships are illustrated in Figure 2-1.

CHAPTER 2 Customizing Database Operations

Administration Guide 25

Figure 2-1: Function-string class relationships

Restrictions in mixed-version systems
In a mixed-version system, only Replication Servers of version 11.5 or later
can work with classes that participate in function-string inheritance.

rs-default_function_class Derived class for Adaptive Server/other

rs_db2_function_class

Derived class

rs_sqlserver_function_class

Cannot alter function strings

Can specify as parent class for
Adaptive Server or other database

Cannot alter function strings

Can specify as parent class
for DB2

Can alter function strings

Cannot specify as parent class

(Compatible with RS 11.0.x)

User-created base class

Must create/can alter function strings

Can specify as parent class

Derived class for DB2

System-provided class

User-created class

Inheritance by derived class

Can alter function strings

Can specify as parent class

Can alter function strings

Can specify as parent class

Can alter function strings

Can specify as parent class

Managing function-string classes

26 Replication Server

Any class whose primary site is Replication Server version 11.0.x cannot
participate in function-string inheritance. If you want to alter such a class to
become a derived class or use it as a parent class, you must move that class to
a primary site that is Replication Server version 11.5 or later. Then you can
alter the class relationships as desired and assign the class or its derived classes
to connections managed by Replication Server version 11.5 or later.

A base class that you created in Replication Server version 11.5 or later and that
does not participate in function-string inheritance can be assigned to
connections managed by any Replication Server in the replication system. If it
is not assigned to any databases managed by Replication Server version 11.5
or later, then you can use the move primary command to assign it to a primary
site managed by Replication Server version 11.0.x.

Refer to the release bulletin for more information about compatibility between
Replication Servers.

Note For compatibility with Replication Servers of version 11.0.x, you may
need to continue to customize function strings in rs_sqlserver_function_class.
However, for databases managed by Replication Servers version 11.5 or later,
using function-string inheritance and customizing function strings only in
derived classes is encouraged.

Managing function-string classes
When you create or customize a function string, you specify which class it
belongs to. If you want to create and use customized function strings, you can:

• Create a derived function-string class that inherits function strings from
rs_default_function_class, rs_db2_function_class,or another parent class.
Then, in the derived class, create only the function strings that you are
interested in overriding.

Note You cannot alter, add to, delete, or change any of the function-string
classes for non-Sybase data servers.

• Create a new function-string class and create function strings for all
functions.

CHAPTER 2 Customizing Database Operations

Administration Guide 27

• Customize function strings in rs_sqlserver_function_class. See “Managing
function strings” on page 32 for information on this option.

Before you create customized function strings, you should decide in advance
which of these approaches to take and set up your classes accordingly.
Generally, it is preferable to customize function strings in derived classes
rather than to customize function strings in the class
rs_sqlserver_function_class. You must be using Replication Server version 11.5
or later in order to create and deploy a derived function-string class that inherits
function strings from other classes.

Creating a function-string class
If function strings in an existing class do not serve your needs for particular
database connections, and customizing function strings in an existing class is
not feasible, you can create a new class in which to create the function strings
you need. You can either:

• Create a derived class, one that inherits function strings from an existing
parent class.

• Create a base class, one that does not inherit function strings from another
class.

To create a derived or base function-string class and begin using it for a
database connection using RCL commands, follow these steps:

1 Create the function-string class with the create function string class
command, using the syntax appropriate for your task. See:

• “Creating a derived class” on page 28, or

• “Creating a base class” on page 29.

The name of the new class must conform to the rules for identifiers
provided in “Identifiers” in Chapter 2, “Topics,” in the Replication Server
Reference Manual.

2 Create function strings for the new class with the create function string
command, described in “Creating function strings” on page 39.

• If you are creating a derived class, you need create only the function
strings that you want to override and inherit all others from the
specified parent class.

Managing function-string classes

28 Replication Server

• The class rs_default_function_class does not contain default function
strings for the rs_dumpdb and rs_dumptran functions. If you require
them in a derived class that inherits from rs_default_function_class,
you must create them. See “System-provided classes” on page 22 for
more information.

• If you are creating a base class, you must create all the necessary
function strings for the class.

3 If you are preparing a new function-string class for an existing database
connection, you must suspend the connection before you can use the new
class. See “Suspending database connections” on page 165 in the
Replication Server Administration Guide Volume 1 for details.

4 Create or alter the database connection to use the new class. See
“Assigning a function-string class to a database” on page 31.

5 If you altered an existing database connection to use the new class, resume
the connection. See “Suspending database connections” on page 165 in
the Replication Server Administration Guide Volume 1 for details.

Creating a derived class

To create a derived function-string class that inherits function strings from a
parent class, enter a command like this at the primary site of the parent:

create function string class
 sqlserver_derived_class
 set parent to rs_default_function_class

In this example, the new class sqlserver_derived_class inherits function strings
from the system-provided class rs_default_function_class. You can then create
function strings that override some of the inherited function strings.

You can specify as the parent class any existing class whose primary site runs
Replication Server version 11.5 or later. However, you cannot specify as a
parent class the system-provided class rs_sqlserver_function_class. You also
cannot specify a parent class that would result in circular inheritance. See
“Function-string inheritance” on page 23 for details.

If the parent class is rs_default_function_class or a function-string class for a
non-Sybase data server, you can enter this command at any Replication Server
with routes to the other Replication Servers where the new class will be used.
This site is the primary site for the derived class and any new classes derived
from it.

CHAPTER 2 Customizing Database Operations

Administration Guide 29

If the parent class is a user-created class, enter this command in the Replication
Server that is the primary site for the parent class. This site is the primary site
for all classes derived from the parent class.

Creating a base class

To create a base function-string class, one which does not inherit function
strings from a parent class, enter a command like this:

create function string class base_class

In this example, the new class base_class does not inherit function strings from
a parent class.

Enter this command at any Replication Server that has routes to the other
Replication Servers where the new class will be used. This site then becomes
the primary site for the class and for any derived classes for which this class
serves as the parent class.

A base class can be used as a parent class for a derived class or can be modified
to become a derived class.

For every base class that you create, you must provide function strings for the
functions that Replication Server invokes in each database to which the class
is assigned.

If you create a base class and then alter it so it becomes a derived class before
actually using it with database connections, you do not have to create all the
function strings.

Primary site for a function-string class

Although most function strings are executed in replicate databases, you
execute the create function string class command in a Replication Server,
usually a primary Replication Server, that has routes to all sites where the
function-string class is to be used. This command designates that Replication
Server as the primary site for the class. Function-string classes are replicated
via routes, along with other replication system data.

You can only create or alter function strings that have class scope at the primary
site for a class. Function strings with replication-definition scope must be
created or altered at the primary site for the replication definition.

Managing function-string classes

30 Replication Server

By default, the class rs_sqlserver_function_class does not have a primary site.
To alter class-scope function strings for this class, you must first designate a
Replication Server as a primary site for the class. To specify a site for this
function-string class, execute the following command at the Replication Server
that is to be the primary site:

create function string class
rs_sqlserver_function_class

After you have executed this command, you can use the move primary
command to make further changes to the primary site for the function-string
class.

Changing the primary site for a function-string class

Use the move primary command or Sybase Central to change the primary
Replication Server for a function-string class. For example, you may need to
change the primary site from one Replication Server to another so that function
strings can be distributed through a new routing configuration. The new
primary site must include routes to all Replication Servers where the function-
string class will be used.

If you move a base class, all classes derived from that class move with it.

You cannot move the primary site for a derived class unless its parent class is
a default function-string class.

Execute move primary at the Replication Server that you want to designate as
the new primary site for the function-string class.

For example, the following command changes the primary site for the
sqlserver2_function_class function-string class to the SYDNEY_RS
Replication Server, where the command is entered:

move primary of function string class
 sqlserver2_function_class
 to SYDNEY_RS

If the class rs_sqlserver_function_class has not yet been assigned a primary site,
you cannot use the move primary command to assign one. You must use the
create function string class command to first designate a primary site for that
class. See “Changing the primary site for a function-string class” on page 30
for details.

CHAPTER 2 Customizing Database Operations

Administration Guide 31

Assigning a function-string class to a database
You can assign a function-string class to a database connection in Sybase
Central or with the create connection or alter connection commands, executed
in the Replication Server that manages the database. When you add a database
connection using the rs_init program, the class rs_sqlserver_function_class is
assigned to the database by default.

You must suspend the connection to the database before you alter the function-
string class that is assigned to the database. The set function string class clause
of create connection and alter connection specifies the name of the function-
string class to use with the database.

Before you can assign a function-string class to a database connection:

• The function-string class you specify must already exist and be available
to the Replication Server. See “Creating a function-string class” on page
27 for more information.

• All necessary function strings must be created in the class. See “Creating
function strings” on page 39 for details.

See “Creating database connections” on page 161 and “Altering database
connections” on page 164 in the Replication Server Administration Guide
Volume 1 for more information about using the create connection and alter
connection commands. Also refer to reference pages for these commands in the
Replication Server Reference Manual.

Refer to the Replication Server installation and configuration guides for your
platform for more information about rs_init.

Example for creating
new connection

The following command creates a connection to the pubs2 database managed
by the TOKYO_DS data server:

create connection to TOKYO_DS.pubs2
 set error class tokyo_error_class
 set function string class tokyo_func_class
 set username pubs2_maint
 set password pubs2_maint_pw

This command assigns the tokyo_func_class function-string class to the
database connection.

Example for altering
an existing connection

The following command alters an existing database connection to specify a
different function-string class:

alter connection to TOKYO_DS.pubs2
 set function string class tokyo_func_class2

Managing function strings

32 Replication Server

Dropping a function-string class
If you are sure that you will not need it again, you may want to drop a function-
string class that you created from the replication system. You can drop any
function-string class except the three system-provided classes and any user-
created class that currently serves as a parent class. Before you can drop a
function-string class, you must drop all database connections that use the
function-string class, or you can alter the connections to use a different class.

Dropping a function-string class deletes all function strings defined for the
class and removes all references to the class from the RSSD.

To drop a function-string class from the isql command line, use the drop function
string class command. For example, the following command drops the
tokyo_func_class function-string class and all of its function strings:

drop function string class tokyo_func_class

Enter this command in the Replication Server that is the primary site for the
class.

Refer to Chapter 3, “Replication Server Commands,” in the Replication Server
Reference Manual for more information about drop function string class
command.

Managing function strings
Each destination Replication Server uses function strings to convert the
functions to commands that are appropriate for the destination data server
(such as Adaptive Server) before it submits these commands. Refer to Chapter
2, “Replication Server Technical Overview” in the Replication Server
Administration Guide Volume 1 for more information about DSI threads, the
components that perform this conversion at the replicate Replication Server.

The following sections describe elements of function strings and the
commands for managing them. Refer to the Replication Server Reference
Manual for complete command syntax and permissions.

CHAPTER 2 Customizing Database Operations

Administration Guide 33

Function strings and function-string classes
If you do not require customized function strings, you can use one of the
system-provided function-string classes to provide default function strings. If
you require customized strings, you must use the system-provided class—
rs_sqlserver_function_class—in which you can customize function strings or
create a derived or base function-string class. See “Function-string classes” on
page 21 for details.

• If the connection for the database in which the function will be executed
uses a system-provided function-string class or a derived class that inherits
directly or indirectly from rs_default_function_class or a function-string
class for a non-Sybase data server, default function strings are provided for
every system function and user-defined function.

• If the connection uses a user-created base function-string class (which
does not inherit function strings) or a derived class that inherits from such
a class, you must create function strings for every system function and
user-defined function. Create them in the base class if you want them to be
available in all its derived classes.

Function-string input and output templates
To customize function strings, you alter their input and/or output templates.
Depending on the function, function strings may include both an input template
and an output template, an output template, or neither template:

• For the rs_select and rs_select_with_lock functions, used in subscription
materialization, Replication Server uses input templates to locate the
function string that corresponds to a subscription’s where clause.

• For all functions Replication Server uses output templates to map
functions to the language commands or to apply RPC invocations at the
destination data server.

Requirements for using input and output templates

When you alter templates to customize function strings, you should keep in
mind the following requirements:

• Function-string input and output templates are limited to 64K bytes. The
result of substituting runtime values for embedded variables in function-
string input or output templates must not exceed 64K.

Managing function strings

34 Replication Server

• Function-string input and output templates are delimited with single
quotation marks (').

• Function-string variables are enclosed within a pair of question marks (?).

• A variable name and its modifier are separated with an exclamation point
(!).

Language output templates involve additional related requirements. See
“Using output templates” on page 34 for details.

Using output templates
You alter output templates to customize function strings. Replication Server
uses output templates to determine the format of the command sent to a data
server. Most output templates use one of two formats: language or RPC,
corresponding to the format of the function string itself. (See “Function
strings” on page 19 for information on function-string formats.) An output
template for an rs_writetext function string can use the RPC format or one of
the additional formats writetext or none, but not a language output template. See
“Using function strings with text, unitext, image, and rawobject datatypes” on
page 51 for details.

Language output templates

Language output templates contain text that the data server interprets as
commands. Replication Server substitutes values for variables embedded in the
output template and passes the resulting language command(s) to the data
server to process.

See “Creating function strings” on page 39 for example output templates. See
“Using function-string variables” on page 37 for details on embedded
variables.

Within a language output template, Replication Server interprets certain
characters in special ways:

• Two single quote characters ('') are interpreted as one single quote

• Two question marks (??) are interpreted as one single question mark

• Two semicolons (;;) are interpreted as one single semicolon

CHAPTER 2 Customizing Database Operations

Administration Guide 35

Other than the embedded variable substitutions and these special
interpretations, Replication Server does not attempt to interpret the contents of
language output templates.

See “Function-string variable formatting” on page 39 for information about
how Replication Server formats function-string variables when it maps
function strings to data server commands.

RPC output templates

Unlike language output templates, Replication Server interprets the contents of
RPC output templates. They are written in the format of the Transact-SQL
execute command. Replication Server parses the output template to construct
a remote procedure call to send to the Adaptive Server, Open Server gateway,
or Open Server application.

RPC output templates work well with gateways or Open Servers with no
language parser. RPCs are usually more compact than language requests and,
since they do not require parsing by the data server, may also be more efficient.
Therefore, you might choose to use an RPC even when a data server supports
language requests.

Output templates for rs_writetext function strings

Replication Server supports three output formats for creating an rs_writetext
function string: RPC, writetext, and none. The writetext and none output
templates can only be used in rs_writetext function strings.

See “Using function strings with text, unitext, image, and rawobject
datatypes” on page 51 for more information about writetext and none.

Using input templates
Input templates are used only for non-bulk materialization and for
dematerialization with purge—those situations where Replication Server must
select data to add or delete from selected tables. rs_select and
rs_select_with_lock are the only function strings that can contain input
templates. Replication Server determines which function string to use with a
subscription during materialization or dematerialization by:

• Matching the subscription’s replication definition

• Matching the input template with the where clause used in the subscription

Managing function strings

36 Replication Server

rs_select and rs_select_with_lock also contain output templates to specify the
actual select statements or other operations that perform the desired
materialization or dematerialization.

For the system-provided classes, Replication Server generates default function
strings for the rs_select and rs_select_with_lock functions when you create a
replication definition. Generally, you only need to customize these function
strings if multiple subscriptions exist for your replication definition.

Function strings for the rs_select and rs_select_with_lock functions are most
often used for materialization. If you plan multiple subscriptions to the same
replication definition, create the function strings before you create the
subscriptions. See “Subscription materialization methods” on page 339 in the
Replication Server Administration Guide Volume 1 for more information about
subscription materialization.

Function strings for rs_select and rs_select_with_lock may also be used for
subscription dematerialization, which uses the where clause of the command
used to create the subscription. The function strings for these functions must
exist before you drop the subscriptions. See “Using the drop subscription
command” on page 366 in the Replication Server Administration Guide
Volume 1 for more information about dematerialization.

An input template can contain user-defined variables whose values come from
constants in the where clause of a subscription. No other types of function-
string variables are allowed in input templates. An output template in the same
function string can reference these user-defined variables.

If you need to customize an output template to select materialization data, you
can omit the input template from an rs_select or rs_select_with_lock function
string. Doing so creates a default function string that can match any select
statement when no other function string’s input template matches the select
command.

As with other functions with replication-definition scope, you create function
strings for the rs_select and rs_select_with_lock functions in the primary
Replication Server where the replication definition was created.

Class in which to create function strings

When you create rs_select and rs_select_with_lock function strings for
materialization, you create them in the function-string class that is assigned to
the connection to the primary database from which you are selecting
materialization data. If you are using bulk materialization, you do not need to
create rs_select and rs_select_with_lock function strings for materialization.

CHAPTER 2 Customizing Database Operations

Administration Guide 37

When you create rs_select and rs_select_with_lock function strings for
dematerialization, you create them in the function-string class that is assigned
to the connection to the replicate database for which you are selecting data to
be dematerialized. If you drop a subscription using drop subscription with the
without purge option, you do not need rs_select and rs_select_with_lock function
strings for dematerialization.

Example for rs_select
function string

In the following example, a site subscribes to a specified publisher’s book titles
through the replication definition titles_rep. There must be an rs_select function
string with an input template that compares the publisher column in the pubs2
database’s titles table to a user-defined value that identifies the publisher.

The create function string command creates a function string with an input
template that compares the publisher column pub_id to the user-defined
variable ?pub_id!user?. For details on function-string variables, see “Using
function-string variables” on page 37.

The input template matches any subscription with a where clause of the form
where pub_id = constant. As a result, the output template, when it is used,
includes the constant value. The output template selects materialization data
from two different tables.

create function string titles_rep.rs_select;pub_id
for sqlserver2_function_class

scan 'select * from titles where pub_id =
?pub_id!user?'

output language
'select * from titles where pub_id =
?pub_id!user?
union
select * from titles.pending where pub_id =
?pub_id!user?'

See “Creating function strings” on page 39 for details. Refer to the Replication
Server Reference Manual for complete syntax.

Using function-string variables
Variables embedded in function-string input or output templates are symbolic
markers for various runtime values.

A variable can represent a column name, the name of a system-defined
variable, the name of a parameter in a user-defined function, or a user-defined
variable defined in an input template. The variable must refer to a value with
the same datatype as anything to which it is assigned.

Managing function strings

38 Replication Server

Function-string variables are enclosed inside of a pair of question marks (?), as
shown:

?variable!modifier?

The modifier portion of a variable identifies the type of data the variable
represents. The modifier is separated from the variable name with an
exclamation (!).

The rs_truncate function string accepts position-based function string variable
in the format:

?n!param?

Where n is a number from 1 to 255, representing the position of function
parameter in the LTL. The first parameter for rs_truncate in the LTL is
represented in function string as ?1!param?. For position based function string
variable, the only acceptable modifier is param.

A sample function string for rs_truncate with the position-based variable is as
follows:

truncate table publishers partition ?1!param?

Replication Server recognizes the modifiers listed in Table 2-3:

Table 2-3: Function-string variable modifiers

Modifier Description

new, new_raw A reference to the new value of a column in a row that Replication Server is inserting or
updating.

old, old_raw A reference to the old values of a column in a row that Replication Server is inserting or
updating.

user, user_raw A reference to a variable that is defined in the input template of an rs_select or
rs_select_with_lock function string.

sys, sys_raw A reference to a system-defined variable.

param, param_raw A reference to a stored-procedure parameter.

text_status A reference to the text_status value for text, unitext, or image data. Possible values are:

• 0x000 – Text field contains NULL value, and the text pointer has not been initialized.

• 0x0002 – Text pointer is initialized.

• 0x0004 – Real text data will follow.

• 0x0008 – No text data will follow because the text data is not replicated.

• 0x0010 – The text data is not replicated but it contains NULL values.

CHAPTER 2 Customizing Database Operations

Administration Guide 39

Note Function strings for user-defined functions may not use the new or old
modifiers.

Refer to Chapter 3, “Replication Server Commands,” in the Replication Server
Reference Manual for a list of system-defined variables that you can use in
function-string input or output templates.

See “Using the default system variable” on page 49 for information on
applications for that system variable.

Function-string variable formatting

When Replication Server maps function-string output templates to data server
commands, it formats the variables using the Adaptive Server format.

For most variables (except those special cases with modifiers ending in _raw),
Replication Server formats data as follows:

• Adds an extra single-quote character to single-quote characters appearing
in character and date/time values.

• Adds single-quote characters around character and date/time values, if
they are missing.

• Adds the appropriate monetary symbol (for example, the dollar sign) to
values of money datatypes.

• Adds the “0x” prefix to values of binary datatypes.

• Adds a combination of a backslash (\) and newline character between
existing instances of a backslash and newline character in character
values. Adaptive Server treats a backslash followed by a newline as a
continuation character and, therefore, deletes the added pair of characters,
leaving the original characters intact.

Replication Server does not alter datatypes in these ways for modifiers that end
in _raw.

Creating function strings
To add a function string to a function-string class, use the create function string
command. Enter function-string commands at the primary site of the function
string:

Managing function strings

40 Replication Server

• For function strings with replication-definition scope, the primary site is
the Replication Server where the replication definition was created.

• For function strings with class scope, the primary site is the Replication
Server that is the primary site for the class. The primary site for a derived
class is the same as for its parent class, unless the parent class is one of the
system-provided classes. See “Primary site for a function-string class” on
page 29 for more information.

If you are using a derived function-string class whose parent class is not
provided by the system, you may choose to customize function strings in the
parent class rather than in the derived class that is actually assigned to a
particular database connection. Doing so would make the customized function
strings available for any additional derived classes of that parent class.

Guidelines for creating function strings

The following guidelines for creating function strings pertain to function-string
classes:

• If you need to customize function strings, you can do so in any class other
than the system-provided classes rs_default_function_class and
rs_db2_function_class.

• You must assign a function-string class a primary site before you can
create function strings for the class. The system-provided class
rs_sqlserver_function_class has no primary site until you assign one using
the create function string class command.

• If the function-string class is a new base class, you must create function
strings for all the necessary system functions before you can use the class.

The following guidelines pertain to function strings themselves:

• You can specify an optional name for the function string. For the rs_select,
rs_select_with_lock, rs_datarow_for_writetext, rs_get_textptr, rs_textptr_init,
and rs_writetext functions, Replication Server uses the function-string
name to uniquely identify the function strings. Function string names are
unique when you qualify them fully.

• If the input template is omitted for an rs_select or rs_select_with_lock
function string, Replication Server matches any subscriptions that do not
have matching function strings.

• If you are customizing function strings for functions with replication-
definition scope, you must create the function strings before you create the
subscriptions.

CHAPTER 2 Customizing Database Operations

Administration Guide 41

• You can put several commands in a language output template, separating
them with semicolons. See “Defining multiple commands in a function
string” on page 46 for details.

Make sure that the database connection batch parameter has been set to
allow command batching. See “Configuration parameters affecting
individual connections” on page 167 in the Replication Server
Administration Guide Volume 1.

• You can use Adaptive Server syntax to specify a null value for a constant
in a function string.

Refer to Chapter 3, “Replication Server Commands,” in the Replication Server
Reference Manual for the complete syntax for the create function string
command.

Example for rs_begin
function string

The following example creates a function string for the rs_begin function that
begins a transaction in the database by executing a stored procedure named
begin_xact.

create function string rs_begin
 for gateway_func_class
 output rpc 'execute begin_xact'

Example for rs_insert
function string

The following example creates a function string for a rs_insert function that
references the publishers_rep replication definition, which executes an RPC at
the replicate database as a result of an insert in the primary table. The stored
procedure insert_publisher is defined only at the replicate database.

create function string publishers_rep.rs_insert
for rs_sqlserver_function_class
output rpc
'execute insert_publisher

@pub_id = ?pub_id!new?,
@pub_name = ?pub_name!new?,
@city = ?city!new?,
@state = ?state!new?'

Altering function strings
The alter function string command replaces an existing function string. alter
function string acts essentially the same as create function string except that it
executes the drop function string command first. The function string is dropped
and re-created in a single transaction to prevent any errors from occurring as a
result of missing function strings.

Managing function strings

42 Replication Server

You can alter a function string using either the alter function string command or
the create function string command. To alter a function string using the create
function string command, you must include the optional clause with overwrite
after the name of the function-string class. This command drops and re-creates
an existing function string, the same as the alter function string command.

To alter a function string using the alter function string command, you must first
create a function string.

In a derived class, first use the create function string command to override the
function string that is inherited from the parent class. You cannot alter a
function string in a derived class unless the function string has been explicitly
created for the derived class.

You alter function strings at the Replication Server that is the primary site for
the existing function string:

• For functions of replication-definition scope, alter the function string at
the primary Replication Server where the replication definition was
defined.

• For functions of class scope, alter the function string at the primary site for
the function-string class. The primary site for a derived class is the same
as for its parent class, unless the parent class is one of the system-provided
classes. See “Primary site for a function-string class” on page 29 for more
information.

For system functions that allow multiple function-string mappings, such as
rs_select and rs_select_with_lock, provide the complete function string name in
the alter function string syntax. Replication Server uses the name to determine
which function string to alter.

See “Creating function strings” on page 39 for example function strings.

Refer to Chapter 3, “Replication Server Commands,” in the Replication Server
Reference Manual for the complete syntax for the alter function string
command.

CHAPTER 2 Customizing Database Operations

Administration Guide 43

Dropping function strings
To discard a customized function string in a derived class and restore the
function string from the parent class, drop the function string. Use the drop
function string command to remove one or more function strings in a function-
string class.

 Warning! If you want to drop and re-create a function string, use alter function
string to replace an existing function string with a new one. Dropping and then
re-creating a function string by other methods can lead to a state where the
function string is temporarily missing.
 If a transaction that uses this function string occurs between the time the
function string is dropped and the time it is re-created, Replication Server
detects the function string as missing and fails the transaction.

When you drop the function string from a derived class, you restore the
function string from the parent class.

Refer to Chapter 3, “Replication Server Commands,” in the Replication Server
Reference Manual for more information on drop function string command.

You can also drop customized function strings from the system-provided class
rs_sqlserver_function_class.

To restore a default function string for a function string with replication-
definition scope that you have dropped, use the alter function string command
to omit the output clause. See “Restoring default function strings” on page 44
for details.

Examples The following command drops the rs_insert function string for the
publishers_rep replication definition in the class sqlserver2_func_class:

drop function string
publishers_rep.rs_insert
for sqlserver2_func_class

The following command drops the pub_id instance of a function string for the
rs_select function for the publishers_rep replication definition in the class
derived_class. Drop function strings for the rs_select_with_lock function in a
similar way.

drop function string
publishers_rep.rs_select;pub_id
for derived_class

The following command drops the rs_begin function string from the
gateway_func_class function-string class:

Managing function strings

44 Replication Server

drop function string rs_begin
for gateway_func_class

Dropping all function
strings for a function

In cases where there are multiple function strings for a specified function, you
can drop all function strings for that function simultaneously.

The following command drops all function strings for the rs_select_with_lock
function that references the publishers_rep replication definition in the class
sqlserver2_func_class:

drop function string
publishers_rep.rs_select_with_lock;all
for sqlserver2_func_class

System functions that can have multiple function string mappings include the
rs_select, rs_select_with_lock, rs_get_textptr, rs_textptr_init, or rs_writetext
functions.

Examples of using the
all keyword as
shorthand

When dropping function strings for any system function for which you
provided a lengthy name, you can use the all keyword as shorthand for the
name of the function string instance. For example, the following command
gives a long name for a function string:

create function string
publishers_rep.rs_insert;my_insert_function_string
for sqlserver2_func_class
 ...

In this case, the following command drops the function string without you
having to enter the fully qualified name:

drop function string
publishers_rep.rs_insert;all
for sqlserver2_func_class

Restoring default function strings
To restore the Adaptive Server default function string for a system function
with replication definition scope, omit the output clause in the create function
string or alter function string command. You cannot omit an output template
from a system function with function-string-class scope, although you can
specify an empty template.

Refer to Chapter 3, “Replication Server Commands” of the Replication Server
Reference Manual, for more information on these commands.

CHAPTER 2 Customizing Database Operations

Administration Guide 45

In all classes, even derived classes, executing the create function string or alter
function string command without the output clause restores the same function
string that is provided by default for the system-provided classes
rs_sqlserver_function_class and rs_default_function_class.

The default function-string definition this method yields may or may not be
appropriate for the databases to which you have assigned the class. This
method may be most helpful when you are using a customized
rs_sqlserver_function_class or when you are using other user-created base
classes for Adaptive Server databases.

In a derived class, if you want to discard a customized function string and
restore the function string from the parent class, drop the function string. See
“Dropping function strings” on page 43 for details.

Example for alter
function string

The following command replaces a customized rs_insert function string for the
publishers_rep replication definition with the default function string:

alter function string publishers_rep.rs_insert
for rs_sqlserver_function_class

See “Altering function strings” on page 41 for details on using the alter function
string command.

Example for create
function string in a
derived class

You can use this method in a derived function-string class to override an
inherited function string with the Adaptive Server default function string. The
following command replaces an inherited rs_insert function string for the
publishers_rep replication definition with the default function string:

create function string publishers_rep.rs_insert
for derived_class

See “Creating function strings” on page 39 for details on using the create
function string command.

Creating empty function strings with the output template
You can create an empty function string—one that performs no action—by
including the output language clause with an empty function string specified
with two single quotes.

For example, the following command defines no action for the rs_insert
function string for the publishers_rep replication definition:

alter function string publishers_rep.rs_insert
for derived_class
output language ''

Managing function strings

46 Replication Server

See “Altering function strings” on page 41 for details on using the alter function
string command.

Remapping table and column names with function strings
You can use function strings to translate the table name and column names for
a replicated table to names other than those specified in the replication
definition. The function strings that Replication Server generates for the
rs_sqlserver_function_class function-string class use the names specified by the
replication definition for the table, but you can define your own function
strings with any names you like.

This procedure is useful if a site has existing client applications that use
different table and column names than those defined by the replication
definition for the primary data. Customizing function strings allows
Replication Server to maintain the data in the table and does not require that
you alter the site’s applications.

To do this, you can use either language function strings or RPC function strings
with Adaptive Server stored procedures at the remote site.

Defining multiple commands in a function string
Language output templates can contain many commands. Adaptive Server
permits multiple commands in a batch. Although most other data servers do not
offer this feature, Replication Server allows you to batch commands in function
strings for any data server by separating commands with a semicolon (;).

Use two consecutive semicolons (;;) to represent a semicolon that is not to be
interpreted as a command separator.

If the data server supports command batches, Replication Server replaces the
semicolons with the DSI command separator character (dsi_cmd_separator
configuration parameter), as necessary, and submits the commands in a single
batch.

If the data server does not support command batches, Replication Server
submits each command in the function string separately.

For example, the output template in the following function string contains two
commands:

create function string rs_commit

CHAPTER 2 Customizing Database Operations

Administration Guide 47

for sqlserver2_function_class
output language
'execute rs_update_lastcommit

@origin = ?rs_origin!sys?,
@origin_qid = ?rs_origin_qid!sys?,
@secondary_qid = ?rs_secondary_qid!sys?;
commit transaction'

Support for batches is enabled or disabled in Replication Server with the alter
connection command.

Set batch to “on” to allow command batching for a database, or set it to “off”
to send individual commands to the data server. The default is “on.”

To set batching “on” for this example, enter:

alter connection to SYDNEY_DS.pubs2
set batch to 'on'

To set batching “off,” enter:

alter connection to SYDNEY_DS.pubs2
set batch to 'off'

Using declare statements in language output templates
To include declare statements, used to define local variables, in the language
output templates, make sure that the batch configuration parameter is set to
“off” for the Replication Server connected to the database. When batch is set
to “on” (the default), Replication Server can send multiple invocations of a
function string to the data server as a single command batch, thereby putting
multiple declarations of the same variable in that batch, which is unacceptable
to Adaptive Server.

Performance is slower when batch mode is off because Replication Server
must wait for a response to each command before the next one is sent. If your
performance requirements are low, you can use declare statements in your
function strings if you set batch to “off.” Alternatively, if you want to use batch
mode for improved performance, create function-string language output
templates that execute stored procedures, which can include declare statements
and other commands.

Refer to “Setting and changing parameters affecting physical connections” on
page 166 in the Replication Server Administration Guide Volume 1 for more
information about batch.

Displaying function-related information

48 Replication Server

Displaying function-related information
You can obtain information about existing function strings and classes in your
replication system in two ways:

• Using Replication Server admin command

• Using Adaptive Server stored procedures

Refer to Chapter 3, “Replication Server Commands” of the Replication Server
Reference Manual, for more information on admin command.

Obtaining information using the admin command
You can display the names of the function-string classes used in your
Replication Server system using one of Replication Server’s admin commands.

Use admin show_function_classes to display the names of existing function-
string classes and their parent classes. It also indicates the inheritance level of
the class. Level 0 is a base class such as rs_default_function_class or
rs_db2_function_class, level 1 is a derived class that inherits from a base class,
and so on.

For example:

admin show_function_classes
Class ParentClass Level
-------- ------------ -----
sql_derived_class rs_default_function_class 1
rs_db2_derived_class rs_db2_function_class 1
rs_db2_function_class 0

...

For more information about this command, refer to Chapter 3, “Replication
Server Commands,” in the Replication Server Reference Manual.

Obtaining information using stored procedures
You can obtain information about existing functions, function strings, and
function-string classes in your system using stored procedures in a Replication
Server RSSD.

Refer to Chapter 6, “Adaptive Server Stored Procedures,” in the Replication
Server Reference Manual for more information about these stored procedures.

CHAPTER 2 Customizing Database Operations

Administration Guide 49

rs_helpfunc rs_helpfunc displays information about system functions and user-defined
functions for a Replication Server or for a particular table or function
replication definition. The syntax is:

rs_helpfunc [replication_definition [, function_name]]

rs_helpfstring rs_helpfstring displays the parameters and function-string text for functions
associated with a replication definition. The syntax is:

rs_helpfstring replication_definition
[, function_name]

rs_helpclass rs_helpclass lists all function-string classes and error classes and their primary
Replication Servers. The syntax is:

rs_helpclass [class_name]

rs_helpclassfstring rs_helpclassfstring displays the function-string information for class-scope
functions. The syntax is:

rs_helpclassfstring class_name [, function_name]

Using the default system variable
The rs_default_fs system variable allows you to perform the following tasks:

• Extend function strings with replication-definition scope to include
additional commands (such as those for auditing or tracking)

• Customize rs_update and rs_delete function strings and still be able to use
the replicate minimal columns option in your replication definitions

Note Function strings containing the rs_default_fs system variable may only
be applied on Adaptive Servers or data servers that accept Adaptive Server
syntax. Otherwise, errors will occur.

Refer to Chapter 3, “Replication Server Commands,” in the Replication Server
Reference Manual for a complete list of function string system variables.

Using the default system variable

50 Replication Server

Extending default function strings
You can use the rs_default_fs system variable with all function strings that
have replication-definition scope (table or function) as a way to extend the
default function-string behavior.

Using the rs_default_fs system variable reduces the amount of typing required
when you want to keep the functionality of the default function string intact and
include additional commands. For example, you can add commands to extend
the capabilities of the default function string for auditing or tracking purposes.

Commands that you add to the output language template may either precede or
follow the rs_default_fs system variable. They may or may not affect how the
row is replicated into the replicate table.

The following example shows how you might use the rs_default_fs system
variable in the create function string command (or the alter function string
command) to verify that an update has occurred:

create function string replication_definition.rs_update
for function_string_class
output language '?rs_default_fs!sys?;

if (@@rowcount = 0)
begin
raiserror 99999 "No rows updated!"
end'

In this example, the rs_default_fs system variable, embedded in the language
output template, maintains the functionality of the default rs_update function
string while the output template then checks to see if any rows have been
updated. If they have not been updated, Replication Server raises an error.

In this example, the commands that follow the system variable do not affect
how the row is to be replicated at the replicate site. You can use the
rs_default_fs system variable with similar additional commands for
verification or auditing purposes.

Using replicate minimal columns
If you have specified replicate minimal columns for a replication definition, you
normally cannot create non-default function strings for the rs_update,
rs_delete, rs_get_textptr, rs_textptr_init, or rs_datarow_for_writetext system
functions.

CHAPTER 2 Customizing Database Operations

Administration Guide 51

You can create non-default function strings for the rs_update and rs_delete
functions by embedding the rs_default_fs system variable in the output
language template of the create function string or alter function string commands
and still use the minimal columns option.

You cannot use any variables, including the rs_default_fs system variable, that
access non-key column values in rs_update or rs_delete function strings for
replication definitions that use the minimal columns option. When you create
such a function string, you may not know ahead of time which columns will be
modified at the primary table. You may, however, include variables that access
key column values.

See “create replication definition” in Chapter 3, “Replication Server
Commands,” in the Replication Server Reference Manual for more information
about the replicate minimal columns option.

Using function strings with text, unitext, image, and
rawobject datatypes

In an environment that supports text, unitext, image, and rawobject datatypes,
you can customize function strings for the rs_writetext function using the output
template formats writetext or none. The methods discussed in this section can
only be used with rs_writetext function string.

Refer to Chapter 4, “Replication Server System Functions” of the Replication
Server Reference Manual, for more information on rs_writext function string.

For Replication Server version 11.5 or later, you can use multiple replication
definitions instead of function strings. Refer to Chapter 9, “Managing
Replicated Tables” in the Replication Server Administration Volume 1 for
information about multiple replication definitions.

Using output writetext for rs_writetext function strings
The writetext output template option for rs_writetext function string instructs
Replication Server to use the Client-Library™ function ct_send_data to update
a text, unitext, image, or rawobject column value. It specifies logging behavior
for text, unitext, image, and rawobject columns in the replicate database.

Using function strings with text, unitext, image, and rawobject datatypes

52 Replication Server

writetext output templates support the following options:

• use primary log – logs the data in the replicate database, if the logging
option was specified in the primary database.

• with log – logs the data in the replicate database transaction log.

• no log – does not log the data in the replicate database transaction log.

Using output none for rs_writetext function strings
The none output template option for rs_writetext function strings instructs
Replication Server not to replicate a text, unitext, or image column value. This
option provides necessary flexibility for using text, unitext, and image columns
within a heterogeneous environment.

Heterogeneous replication and text, unitext, image, and rawobject data

To replicate text, unitext, image, and rawobject data from a foreign data server
into an Adaptive Server database, you must include the text, unitext, image, and
rawobject data in the replication definition so that a subscription can be created
for the Adaptive Server database. However, you might not want to replicate the
text, unitext, image, and rawobject data into other replicate data servers, whether
they are other foreign data servers or other Adaptive Servers.

With the none output template option, you can customize rs_writetext function
strings to map operations to a smaller table at a replicate site and to instruct the
rs_writetext function string not to perform any text, unitext, image, or rawobject
operation against the replicate site.

There is one rs_writetext function string for each text, unitext, image, and
rawobject column in the replication definition. If you do not want to replicate a
certain text, unitext, image, or rawobject column, customize the rs_writetext
function string for that column. Specify the column name in the create or alter
function string command, as shown in the example below. You may also need
to customize the rs_insert function string.

Example Assume that a replication definition does not allow null values in a text, unitext,
image, or rawobject column and that you do not require certain text, unitext,
image, or rawobject columns at the replicate site.

CHAPTER 2 Customizing Database Operations

Administration Guide 53

If inserts occur in those columns at the primary site, you must customize the
rs_writetext function strings for the text, unitext, image, or rawobject columns
that are not needed at the replicate site. You must also customize the rs_insert
function string for the replication definition.

For example, assume that you have primary table foo:

foo (int a, b text not null, c image not null)

In foo, you perform the following insert:

insert foo values (1, "111111", 0x11111111)

By default, Replication Server translates rs_insert into the following form for
application by the DSI thread into the replicate table foo:

insert foo (a, b, c) values (1, "", "")

The DSI thread calls:

• ct_send_data to insert text data into column b

• ct_send_data to insert image data into column c

Because null values are not allowed for the text column b and the image column
c, the DSI thread shuts down if the replicate table does not contain either
column b or column c.

If the replicate table only contains columns a and b, you need to customize the
rs_writetext function for column c to use output none, as follows:

alter function string foo_repdef.rs_writetext;c
for rs_sqlserver_function_class
output none

You must specify the column name (c in this example) as shown to alter the
rs_writetext function string for that column.

If the replicate table only contains columns a and b, you also need to customize
the rs_insert function string for the replication definition so that it will not
attempt to insert into column c, as follows:

alter function string foo_repdef.rs_insert
for rs_sqlserver_function_class
output language
'insert foo (a, b) values (?a!new?, "")'

You do not have to customize rs_insert if the replication definition specifies
that null values are allowed for column c. By default, rs_insert does not affect
any text, unitext, or image columns where null values are allowed.

Using function strings with text, unitext, image, and rawobject datatypes

54 Replication Server

Administration Guide 55

C H A P T E R 3 Managing Warm Standby
Applications

This chapter describes one way to create and manage a warm standby
application using Replication Server.

This chapter describes how to set up and configure a warm standby
application between two Adaptive Server databases—the primary or
active database and a single standby database. Changes to the primary
database are copied directly to the warm standby database. To change or
qualify the data sent, you must add table and function replication
definitions.

You can also use multi-site availability (MSA) to set up a warm standby
application between Adaptive Server databases. MSA enables replication
to multiple standby and replicate databases. You can choose whether to
replicate the entire database or replicate (or not replicate) specified tables,
transactions, functions, system stored procedures, and data definition
language (DDL). See Chapter 12, “Managing Replicated Objects Using
Multi-Site Availability,” in the Replication Server Administration Guide
Volume 1 for information about setting up a warm standby application
using MSA.

Topic Page
Overview 56

What information is replicated? 61

Setting up warm standby databases 73

Switching the active and standby databases 85

Monitoring a warm standby application 93

Setting up clients to work with the active data server 95

Altering warm standby database connections 97

Warm standby applications using replication 103

Using replication definitions and subscriptions 110

Loss detection and recovery 121

Overview

56 Replication Server

Overview
A warm standby application is a pair of Adaptive Server databases, one of
which is a backup copy of the other. Client applications update the active
database; Replication Server maintains the standby database as a copy of the
active database.

If the active database fails, or if you need to perform maintenance on the active
database or on the data server, a switch to the standby database allows client
applications to resume work with little interruption.

To keep the standby database consistent with the active database, Replication
Server reproduces transaction information retrieved from the active database’s
transaction log. Although replication definitions facilitate replication into the
standby database, they are not required. Subscriptions are not needed to
replicate data into the standby database.

How a warm standby works
Figure 3-1 illustrates the normal operation of an example warm standby
application.

Figure 3-1: Warm standby application

In this warm standby application:

• Client applications execute transactions in the active database.

Active
Database

Standby
Database

Clients

Replication Server

to other Replication Servers
or destination databases

CHAPTER 3 Managing Warm Standby Applications

Administration Guide 57

• The RepAgent for the active database retrieves transactions from the
transaction log and forwards them to Replication Server.

• Replication Server executes the transactions in the standby database.

• Replication Server may also copy transactions to destination databases
and remote Replication Servers.

See Figure 3-4 on page 86 for more details about the components and
processes in a warm standby application.

Database connections in a warm standby application
In a warm standby application, the active database and the standby database
appear in the replication system as a connection from the Replication Server to
a single logical database. The replication system administrator creates this
logical connection to establish one symbolic name for both the active and
standby databases.

Thus, a warm standby application involves three database connections from the
Replication Server:

• A physical connection for the active database

• A physical connection for the standby database

• A logical connection for the active and standby databases

Replication Server maps the logical connection to the currently active database
and copies transactions from the active to the standby database.

See “Setting up warm standby databases” on page 73 for details on creating
the logical and physical database connections. See Chapter 7, “Managing
Database Connections” in the Replication Server Administration Guide
Volume 1 for more information about physical database connections.

Primary and replicate databases and warm
standby applications

In many Replication Server applications:

• A primary database is the source of data that is copied to other databases
through the use of replication definitions and subscriptions.

• A destination database receives data from the primary (source) database.

Overview

58 Replication Server

Replication Server treats a logical database like any other database. Depending
on your application, the logical database in a warm standby application may
function as:

• A primary database, or

• A replicate database, or

• A database that does not participate in replication

See “Switching the active and standby databases” on page 85 for more
information about warm standby applications that do not participate in
standard replication.

See “Warm standby applications using replication” on page 103 for more
information about warm standby applications for primary or replicate
databases.

Comparison of database relationships

In most of this book, databases are defined as “primary” or “replicate.” In
discussing warm standby applications, however, databases are also defined as
“active” or “standby.” Table 3-1 explains the difference.

Table 3-1: Active and standby vs. primary and destination databases

Active and standby databases Primary and replicate databases

The active and standby databases must be
managed by the same Replication Server.

Primary and destination databases may be managed by the
same or different Replication Servers.

The active and standby databases must be
Adaptive Server databases.

Except where they participate in warm standby applications,
primary and destination databases need not be Adaptive Server
databases.

The active database has one standby database.

Information is always copied from the active to the
standby database.

A primary database can have one or more destination
databases.

Some databases contain both primary and copied data.

The use of replication definitions is optional.
Subscriptions are not used.

Replication definitions and subscriptions are required for
replication from a primary to a destination database.

The connection to the standby database uses the
function-string class rs_default_function_class.

You cannot customize function strings for this
class.

The connection to a replicate database can use a function-
string class in which you can customize function strings. For
example, it may use a derived class that inherits function
strings from rs_default_function_class.

You can switch the roles of the active and standby
databases.

You cannot switch the roles of primary and replicate databases.

CHAPTER 3 Managing Warm Standby Applications

Administration Guide 59

Warm standby requirements and restrictions
The following restrictions apply to all Replication Server warm standby
applications:

• You must use a Sybase Adaptive Server that supports warm standby
applications. Refer to your release bulletin for more information.

• One Replication Server manages both the active and standby databases.
Both the active and standby databases must be Adaptive Server databases.

• You cannot create a standby database for the RSSD. You can only create a
standby database for the master database if the Adaptive Server supports
master database replication.

• Replication Server does not switch client applications to the standby
database. See “Setting up clients to work with the active data server” on
page 95 for more information.

• You should run Adaptive Server for the active and standby databases on
different machines. Putting the active and standby databases on the same
data server or hardware resources undermines the benefits of the warm
standby feature.

• Although Adaptive Server allows tables that contain duplicate rows, tables
in the active and standby databases should have unique values for the
primary key columns in each row.

Client applications generally connect to the active
database. (However, you can perform read-only
operations at the standby database.)

No mechanism is provided for switching client
applications when you switch the Replication
Server to the standby database.

Client applications can connect to either primary or destination
database. Only primary data can be directly modified.

Generally, client applications do not need to switch between
primary and destination databases.

The RepAgent for the active database submits all
transactions on replicated tables, including
maintenance user transactions, to the Replication
Server, which reproduces them in the standby
database.

In a warm standby application for a destination
database, transactions in the active database are
normally executed by the maintenance user.

In most applications, RepAgent does not submit maintenance
user transactions to the Replication Server to be reproduced in
destination databases.

The maintenance user does not generally execute transactions
in primary databases.

Active and standby databases Primary and replicate databases

Overview

60 Replication Server

• Failover support is not a substitute for warm standby. While warm standby
keeps a copy of a database, Failover support accesses the same database
from a different machine. Failover support works the same for connections
from Replication Server to warm standby databases.

For more detailed information about how Sybase Failover works in
Adaptive Server, refer to Using Sybase Failover in a High Availability
System, which is part of the Adaptive Server Enterprise version 15.0
documentation set.

For more detailed information about how Failover support works in
Replication Server, see “Configuring the replication system to support
Sybase Failover” in Chapter 7, “Replication System Recovery”.

• The commands and procedures for abstract plans are replicated, except for
the following:

• The and set @plan_id clause of create plan is not replicated. For
example, this command is not replicated as shown.

create plan "select avg(price)
from titles" "(t_scan titles)
into dev_plans and set @plan_id

Rather, it is replicated as:

create plan "select avg(price)
from titles" "(t_scan titles)
into dev_plans

• The abstract plan procedures that take a plan ID as an argument
(sp_drop_qplan, sp_copy_qplan, sp_set_qplan) are not replicated.

• The set plan command is not replicated.

Function strings for maintaining standby databases
Replication Server uses the system-provided function-string class
rs_default_function_class for the standby DSI, which is the connection to the
standby database. Replication Server generates default function strings for this
class. You cannot customize the function strings in the class
rs_default_function_class.

CHAPTER 3 Managing Warm Standby Applications

Administration Guide 61

What information is replicated?
Replication Server supports different methods for enabling replication to the
standby database. The level and type of information that Replication Server
copies to the standby database depends on the method you choose.

You must choose one of these two methods:

• Use the sp_reptostandby system procedure to mark the entire database for
replication to the standby database. sp_reptostandby enables replication of
data manipulation language (DML) commands and a set of supported data
definition language (DDL) commands and system procedures.

• DML commands, such as insert, update, delete, and truncate table,
change the data in user tables.

• DDL commands and system procedures change the schema or
structure of the database.

sp_reptostandby allows replication of DDL commands and procedures that
make changes to system tables stored in the database. You can use DDL
commands to create, alter, and drop database objects such as tables and
views. Supported DDL system procedures affect information about
database objects. They are executed at the standby database by the original
user.

• If you choose not to use sp_reptostandby, you can mark individual user
tables for replication with sp_setreptable. This procedure enables
replication of DML operations for the marked tables.

Optionally, you can also tell Replication Server which user stored procedures
to replicate to the standby database:

• If you use Adaptive Server version 11.0.x, you can copy the execution of
user stored procedures to the standby database by marking them with the
sp_setrepproc system procedure. Normally, only stored procedures
associated with function replication definitions are replicated to standby
databases.

Refer to “Using sp_setrepproc to copy user stored procedures” on page 68
for more information.

What information is replicated?

62 Replication Server

Comparing replication methods
Table 3-2 compares sp_reptostandby and sp_setreptable, detailing how each
copies information to the standby database. Many of these issues are discussed
in detail later in the chapter.

Table 3-2: Comparison of table replication methods

sp_reptostandby sp_setreptable

Copies all user tables to the standby database. Lets you choose which user tables are copied to the
standby database.

Allows replication of DML commands and supported
DDL commands and system procedures. Supported
DDL operations are listed in “Supported DDL
commands and system procedures” on page 64.

Allows replication of DML commands executed on
marked tables.

Note Supported DDL operations can be replicated for an
isql sessions. Refer to “Forcing replication of DDL
commands to the standby database” on page 72 for more
information.

Does not copy DML and DDL operations to replicate
databases.

If the warm standby application also copies data to a
replicate database, you must mark tables to be copied to
the replicate database with sp_setreptable.

Copies DML operations to standby and replicate
databases.

Copies execution of the truncate table command to the
standby database. No subscription is needed.

Note You can enable or disable replication of truncate
table to standby databases with the alter logical
connection command. See “Replicating truncate table
to standby databases” on page 100 for more
information.

If you use Adaptive Server databases, copies execution of
truncate table to standby databases. No subscription is
needed.

Replication Server uses table name and table owner
information to identify a table at the standby database.

If you include the owner_on keywords when you mark a
table for replication to the warm standby, Replication
Server uses table name and table owner information to
identify a table at the standby database.

If you include the owner_off keywords when you mark a
table for replication to the warm standby, Replication
Server uses the table name and “dbo” to identify a table
at the standby database.

CHAPTER 3 Managing Warm Standby Applications

Administration Guide 63

Using sp_reptostandby to enable replication
Use sp_reptostandby to copy DML and supported DDL commands for all user
tables to the standby database.

Restrictions and requirements when using sp_reptostandby

Consider the following issues when you set up your warm standby application
and enable replication with sp_reptostandby.

• Both the active and standby databases must be managed by Adaptive
Servers and must support RepAgent. Both databases must have the same
disk allocations, segment names, and roles. Refer to the Adaptive Server
Enterprise System Administration Guide for details.

• The active database name must exist in the standby server. Otherwise,
replication of commands or procedures containing the name of that
database will fail.

• Replication Server does not support replication of DDL commands
containing local variables. You must explicitly define site-specific
information for these commands.

• Login information is not replicated to the standby database. Refer to
“Making the server user’s IDs match” on page 82 for information about
adding login information to the destination Replication Server.

• Some commands not copied to the standby database include:

• select into

• update statistics

By default, text, unitext, image, and rawobject columns
are copied to the standby database only if changed.

If you mark the database tables with sp_reptostandby
and sp_setreptable, text, unitext, image, and rawobject
data may be treated in a different way. Refer to
“Replicating text, unitext, image, and rawobject data”
on page 70 for more information.

By default, text, unitext, and image columns are always
copied to the standby database.

If you set the replication status with sp_setrepcol, text,
unitext, image, and rawobject columns are treated as
marked: always_replicate, replicate_if_changed, or
do_not_replicate.

The easiest method to use when the active and standby
databases are identical. Replication definitions are not
required, but can be used to optimize performance.

Replication definitions are not required, but can be used
to optimize performance.

sp_reptostandby sp_setreptable

What information is replicated?

64 Replication Server

• Database or configuration options such as sp_dboption and
sp_configure

“Supported DDL commands and system procedures” and list the DDL
commands—Transact-SQL commands and Adaptive Server system
procedures—that Replication Server reproduces at the standby database when
you enable replication with sp_reptostandby. An asterisk marks those
commands and stored procedures whose replication is supported for Adaptive
Server 12.5 and later.

Supported DDL commands and system procedures
alter table
alter key
create default
create index
create key
create plan*
create procedure
create rule
create schema*
create table
create trigger
create view
drop default
drop index
drop procedure
drop rule
drop table
drop trigger
drop view
grant
installjava*
remove java*
revoke
sp_addalias
sp_addgroup
sp_addmessage
sp_add_qpgroup*
sp_adduser
sp_addtype
sp_bindefault
sp_bindmsg

CHAPTER 3 Managing Warm Standby Applications

Administration Guide 65

sp_bindrule
sp_changegroup
sp_chgattribute
sp_commonkey
sp_config_rep_agentsp_dropalias
sp_drop_all_qplans*
sp_dropgroup
sp_dropkey
sp_dropmessage
sp_drop_qpgroup*
sp_droptype
sp_dropuser
sp_encryption
sp_export_qpgroup*
sp_foreignkey
sp_import_qpgroup*
sp_primarykeysp_procxmode
sp_recompile
sp_rename
sp_rename_qpgroup*
sp_setrepcol
sp_setrepdefmode
sp_setrepmode
sp_setrepproc
sp_setreptable
sp_unbindefault
sp_unbindmsg
sp_unbindrule

If the database is the master database, the DDL commands and system
procedures that are supported for replication in a user database are not
supported for replication in the master database.

In the master database, the supported DDL commands and system procedures
are:

alter role
create role
drop role
grant role
revoke role
sp_addlogin
sp_displaylevel
sp_droplogin

What information is replicated?

66 Replication Server

sp_locklogin
sp_modifylogin
sp_password
sp_passwordpolicy
sp_role

If a DDL command or system procedure contains password information, the
password information is sent through the replication environment using the
ciphertext password value stored in the source Adaptive Server system tables.

To enable replication of DML and DDL commands, execute sp_reptostandby
in the Adaptive Server that manages the active database. The syntax is:

sp_reptostandby dbname, [[, 'L1' | 'ALL' | 'NONE'] [, use_index]]

where dbname is the name of the active database and the keywords L1, all, and
none set the level of replication support.

L1 represents the level of replication supported by Adaptive Server version
12.5.

Use the all keyword to make sure that schema replication support is always at
the highest level available. For example, to set the schema replication support
level to that of the latest Adaptive Server version, log in to Adaptive Server and
execute this command at the isql prompt:

sp_reptostandby dbname, 'all'

Then, if the database is upgraded to a later Adaptive Server version with a
higher level of replication support, all new features of that version are enabled
automatically. Refer to Chapter 5, “Adaptive Server Commands and System
Procedures,” in the Replication Server Reference Manual for more information
about sp_reptostandby command.

Replicating alter table: limitations

When Adaptive Server performs an alter table ... add column_name default ...
statement, the server creates a constraint for the default value using the objid.
After Replication Server replicates this statement, the standby Adaptive Server
creates the same constraint but with a different objid.

If the constraint is later dropped at the primary using alter table ... drop
constraint ... , the statement cannot be performed at the warm standby because
the objid is not the same.

To drop the constraint at both the primary and standby databases, use either of
these two methods:

CHAPTER 3 Managing Warm Standby Applications

Administration Guide 67

• Execute this statement at the primary:

alter table table_name
...
replace column_name default null

• Execute this statement at the primary:

alter table table_name
...
drop constraint constraint_name

This statement causes the DSI to shut down. Execute the same command
at the standby database with its corresponding objid, and then resume the
connection to the DSI, skipping a transaction.

Replicating the master database: limitations

The user tables and user stored procedures are not replicated if the database
used is the master database.

If the master database is replicated, the following system procedures must be
executed in the master database:

sp_addlogin
sp_displaylevel
sp_droplogin
sp_locklogin
sp_modifylogin

Both the source and target Adaptive Servers must support the master database
replication feature if the database used is the master database.

If the database is the master database, both the source ASE server and the target
ASE server must be the same hardware architecture type (32-bit versions and
64-bit versions are compatible) and the same operating system (different
versions are also compatible).

Disabling replication

To turn off data and schema replication, log in to Adaptive Server and enter this
command at the isql prompt:

sp_reptostandby dbname,'none'

What information is replicated?

68 Replication Server

When replication is turned off, Adaptive Server locks all user tables in
exclusive mode and saves information about each of them. This process may
take some time if there are a large number of user tables in the database.

Use this procedure only if you are disabling the warm standby application.

Note If you want to turn off replication for the current isql session only, use the
set replication command. See “Changing replication for the current isql
session” on page 72 for more information. Also, if the database is marked for
replication to use indexes on text, unitext, image, and rawobject columns, the
above command also drops indexes for replication on tables not explicitly
marked for replication.

Using sp_setreptable to enable replication
Use sp_setreptable to mark individual tables for replication to replicate or
replicate and standby databases. Replication Server copies DML operations on
those tables to the standby and replicate databases.

Use sp_setreptable to mark tables for replication to the standby database if:

• You use Adaptive Server databases, or

• You choose not to use sp_reptostandby.

Using sp_setreptable maintains data, but not schema, consistency between the
active and standby databases. sp_setreptable normally does not copy supported
DDL commands and procedures to the standby database. You can, however,
use the set replication command to force replication of DDL commands for the
current isql session. Refer to “Changing replication for the current isql
session” on page 72 for more information about set replication.

If the database is the master database, user tables are not replicated.

Using sp_setrepproc to copy user stored procedures
To copy the execution of a user stored procedure to the standby database, mark
the stored procedure for replication with sp_setrepproc. Procedures marked
with sp_setrepproc are also reproduced at replicate databases if subscriptions
have been created for them.

CHAPTER 3 Managing Warm Standby Applications

Administration Guide 69

There are two possible scenarios for stored procedure execution in warm
standby applications:

• If you have marked the stored procedure for replication with
sp_setrepproc, Replication Server copies execution of the procedure to the
standby database. It does not copy the effects of the stored procedure to the
standby database.

• If you have not marked the stored procedure for replication, Replication
copies DML changes effected by the procedure to the standby database, if
the affected tables have been marked for replication.

See Chapter 10, “Managing Replicated Functions” in the Replication Server
Administration Guide Volume 1 for more information about the sp_setrepproc
system procedure.

If the database is the master database, user procedures are not replicated.

Replicating tables with the same name but different owners
Adaptive Server and Replication Server allow you to replicate tables with the
same name but different owners.

When you mark a database for replication with sp_reptostandby, updates are
copied automatically to the table of the same name and owner in the standby
database.

When you mark a table for replication using sp_setreptable, you can choose
whether the table owner name is used to select the correct table in the standby
database.

• If you set owner_on, Replication Server sends the table name and table
owner name to the standby database.

• If you set owner_off, Replication Server sends the table name and “dbo” as
the owner name to the standby database.

Note If you are copying information to a replicate database and have used
sp_setreptable to set owner_off, Replication Server sends the table name to the
replicate database. It does not send owner information.

What information is replicated?

70 Replication Server

Refer to “Enabling replication with owner_on status” on page 265 in the
Replication Server Administration Guide Volume 1 for syntax and other
information about using sp_setreptable to set owner status.

Note If you mark a table with a non-unique name for replication and then
create a replication definition for it, you must include owner information in the
replication definition. Otherwise, Replication Server will be unable to find the
correct table in the replicate or standby database.

Replicating text, unitext, image, and rawobject data
If a database is marked with sp_reptostandby, the replication status is
automatically replicate_if_changed, and Adaptive Server logs only text, unitext,
image, and rawobject columns that have been changed. This ensures that the
standby database stays in sync with the active database. You cannot change the
replication status of such a table using sp_setrepcol.

If a table is marked for replication with sp_setreptable, the default replication
status is always_replicate, and Adaptive Server logs all text, unitext, image, and
rawobject column data. You can change the replication status of text, unitext,
image, and rawobject columns in tables marked with sp_setreptable. Use
sp_setrepcol to change the replication status to replicate_if_changed or
do_not_replicate. A column or combination of columns must uniquely identify
each row.

If you use replication definitions, the primary key must be a set of columns that
uniquely identify each row in the table. You have to make sure that replication
status is the same at the Adaptive Server and the Replication Server. If the
replication status differs, you must resolve the inconsistencies. See “Resolving
inconsistencies in replication status” on page 277 in the Replication Server
Administration Guide Volume 1 for more information.

When warm standby involves a replicate database

You can copy information from an active database to a standby database and
also copy information from the active database to a replicate database.
Replication Server must copy a table’s text, unitext, image, and rawobject
columns to the standby and replicate databases with the same replication status.

CHAPTER 3 Managing Warm Standby Applications

Administration Guide 71

Do not change the replication status for the table if you want to copy all text,
unitext, image, and rawobject columns to the standby and replicate databases.
By default, all text, unitext, image, and rawobject columns are copied to standby
and replicate databases.

If you want to copy only text, unitext, image, and rawobject columns that have
changed, use sp_setrepcol to set the replication status to replicate_if_changed.

Using the use_index option in a replicate database

The use_index option is used to speed up the process of setting the text, unitext,
image, or rawobject columns for replication. It is specially useful for large
tables containing one or more text, unitext, image, or rawobject columns. You
can set use_index option at a database level, table level, or column level. For
example, a table can be marked without using indexes, but you can explicitly
mark only one column to use an index for replication.

When you use the use_index option with sp_reptostandby, the database is
marked to use indexes on text, unitext, image, or rawobject columns, and
internal indexes are created on tables that are not explicitly marked for
replication.

For a database marked for replication to use indexes, if a new table with off-
row columns is created, the indexes for replication are created as well.
Similarly, when an alter table...add column command is executed in a database
marked to use indexes, an internal index is created in the new off-row column.
With the alter table...drop column command, if the column being dropped is
marked to use an index, the internal index for replication is dropped as well.

The replication index status at different object levels is in this order: column,
table, and database. If the database is marked to use indexes for replication, but
you marked a table without using indexes, the table status overrides the
database status.

Note The replication performance on off-row (text, unitext, image, or
rawobject) columns does not change. Only the process of marking a database,
table or column for replication is affected.

You can use the use_index option if the table has a large number of rows or if
the database has one or more tables with a considerable number of rows and
several off-row columns.

What information is replicated?

72 Replication Server

Changing replication for the current isql session
You can use set replication to control replication of DML and/or DDL
commands and procedures for an isql session.

Execute set replication at the Adaptive Server that manages the active database.
The syntax is:

set replication ['on' | 'force_ddl' | 'default' | 'off']

The default setting is “on.” Default behavior depends on whether or not the
database has been marked for replication with sp_reptostandby. Table 3-3
describes the default behavior of set replication.

Table 3-3: Default behavior of set replication

Some examples of set replication follow. Refer to Chapter 5, “Adaptive Server
Commands and System Procedures” in the Replication Server Reference
Manual for more information about set replication command.

Forcing replication of DDL commands to the standby database

To force replication of all supported DDL commands and system procedures
for an isql session, enter:

set replication 'force_ddl'

This command enables replication of DDL commands and system procedures
for tables marked with sp_setreptable.

To turn off force_ddl and return set replication to default status, enter:
set replication 'default'

Turning off all replication to the standby database

To turn off all replication to the standby database for an isql session, enter:

set replication 'off'

If the database has been marked for
replication with sp_reptostandby

If the database has not been marked for
replication with sp_reptostandby

Replication Server copies DML and supported DDL
commands to the standby database for all user tables.

Replication Server copies DML commands to standby and
replicate databases for tables marked with sp_setreptable.

CHAPTER 3 Managing Warm Standby Applications

Administration Guide 73

Setting up warm standby databases
Setting up databases for a warm standby application involves three high-level
tasks. Each of these tasks may include additional tasks.

1 Create a single logical connection that will be used by both the active and
standby databases.

2 Use Sybase Central or rs_init to add the active database to the replication
system. You do not need to add the active database if you have designated
as the active database a database that was previously added to the
replication system.

3 Use sp_reptostandby or sp_setreptable to enable replication for tables in
the active database.

4 Use Sybase Central or rs_init to add the standby database to the replication
system, then initialize the standby database.

Before you begin
Before setting up the databases, note that:

• The Replication Server that manages the active and standby databases
must be installed and running. A single Replication Server manages both
the active and the standby database.

• The Adaptive Servers that contain the active and standby databases must
be installed and running. Ideally, these databases should be managed by
data servers running on different machines.

• Before you can add a database to the replication system as an active or
standby database, it must already exist in the Adaptive Server.

See “Warm standby requirements and restrictions” on page 59 for additional
information.

Client application issues

Depending on your client applications and your method of initializing the
standby database, you may be suspending transaction processing in the active
database until you have initialized the standby database.

Setting up warm standby databases

74 Replication Server

If you do not suspend transaction processing, ensure that Replication Server
has sufficient stable queue space to hold the transactions that execute while you
are loading data into the standby database.

Before you set up the warm standby databases, you should have decided on and
implemented a mechanism for switching client applications to the new active
database. See “Setting up clients to work with the active data server” on page
95 for more information.

Task one: Creating the logical connection
This section explains how to create the logical connection for the warm
standby application. See “Database connections in a warm standby
application” on page 57 for more information about logical connections.

This section also explains how to reconfigure RepAgent for the active
database, which you must do if the active database was already part of the
replication system.

Naming the logical connection

When you create the logical connection, use the combination of logical data
server name and logical database name, in the form data_server.database.

There are two methods for naming the logical connection:

• If the active database has not yet been added to the replication system –
use a different name for the logical connection than for the active database.
Using unique names for the logical and physical connections makes
switching the active database more straightforward.

• If the active database has previously been added to the replication system
– use the data_server and database names of the active database for the
logical connection name. The logical connection inherits any existing
replication definitions and subscriptions that reference this physical
database.

When you create a replication definition or subscription for a warm standby
application, specify the logical connection instead of a physical connection.
Specifying the logical connection allows Replication Server to reference the
currently active database.

CHAPTER 3 Managing Warm Standby Applications

Administration Guide 75

See “Warm standby applications using replication” on page 103 for more
information. Also see “Using replication definitions and subscriptions” on
page 110.

Procedure for creating the logical connection

Follow these steps to create the logical connection:

1 Using a login name with sa permission, log in to the Replication Server
that will manage the warm standby databases.

2 Execute the create logical connection command:

create logical connection to data_server.database

The data server name can be any valid Adaptive Server name, and the
database name can be any valid database name.

Reconfiguring and restarting RepAgent

If you designate as the active database a database that was previously added to
the replication system, the RepAgent thread for the active database shuts down
when you create the logical connection.

1 Reconfigure RepAgent with sp_config_rep_agent, setting the
send_warm_standby_xacts configuration parameter.

2 Restart RepAgent.

For information about how to configure and start RepAgent, refer to “Setting
up RepAgent” on page 107 in the Replication Server Administration Guide
Volume 1. Refer to the Replication Server Reference Manual for more
information about the sp_config_rep_agent system procedure.

Task two: Adding the active database
To add a database to the replication system as the active database for a warm
standby application, rs_init, as described in the Replication Server installation
and configuration guides for your platform. Perform the steps described for
adding a database to the replication system.

Setting up warm standby databases

76 Replication Server

Task three: Enabling replication for objects in the
active database

You can enable replication for tables in the active database in either of two
ways:

• Use sp_reptostandby to mark the database for replication, enabling
replication of data and supported schema changes.

• Use sp_setreptable to mark individual tables for replication of data
changes.

Refer to “What information is replicated?” on page 61 for more information
about these commands.

1 Log in to the Adaptive Server as the System Administrator or as the
Database Owner, and:

use active_database

2 Mark database tables for replication, using one of these methods:

• Mark all user tables by executing the sp_reptostandby system
procedure:

sp_reptostandby dbname, ['L1' | 'all']

where dbname is the name of the active database, L1 sets the
replication level to that of Adaptive Server version 11.5, and all sets
the replication level to the current version of Adaptive Server. This
method replicates both DML and DDL commands and procedures.

• Mark all user tables by executing sp_reptostandby with the use_index
option:

sp_reptostandby dbname, [[, 'L1' | 'ALL'][,
use_index]]

where dbname is the name of the active database. With the use_index
option, the database is marked to use indexes on text, unitext, image,
or rawobject columns, and internal indexes are created on those tables
not explicitly marked for replication.

• Mark individual user tables by executing the sp_setreptable system
procedure for each table that you want to replicate into the standby
database:

sp_setreptable table_name, 'true'

where table_name is the name of the table. This method replicates
DML commands.

CHAPTER 3 Managing Warm Standby Applications

Administration Guide 77

3 If you are using the replicated functions feature described in Chapter 10,
“Managing Replicated Functions,” in the Replication Server
Administration Guide Volume 1, execute the following system procedure
for every stored procedure whose executions you want to replicate into the
standby database:

sp_setrepproc proc_name, 'function'

4 If you are using replicated stored procedures associated with table
replication definitions, as described in Appendix A, “Asynchronous
Procedures,” execute the following system procedure for every such
stored procedure whose executions you want to replicate into the standby
database:

sp_setrepproc proc_name, 'table'

Enabling replication for objects added later

Later on, you may add new tables and user stored procedures that you want to
replicate to the standby database.

• If you marked the database for replication with sp_reptostandby, new
tables are automatically marked for replication.

• If you marked database tables for replication to the standby database with
sp_setreplicate, you must mark each new table that you want to replicate
with sp_setreplicate.

• You must mark each new user stored procedure that you want to replicate
with sp_setrepproc.

Task four: Adding the standby database
Use rs_init to add the standby database and its RepAgent to the replication
system, then you initialize it with data from the active database.

This section explains how to add the standby database to the replication system
and prepare it for operation.

This section also describes enabling replication for objects in the standby
database and granting permissions to the maintenance user in the standby
database. Whether or not you need to perform these steps depends on your
method for initializing the standby database.

Before you add the standby database:

Setting up warm standby databases

78 Replication Server

1 Create the standby database, if it does not already exist.

2 Determine how to initialize the standby database.

3 Add the standby database maintenance user—if you are using dump and
load to initialize the standby database.

4 Online the new database using the online database clause before
replicating.

Creating the standby database

If it does not already exist, you must create the standby database in the
appropriate Adaptive Server, according to your needs.

Refer to the Adaptive Server Enterprise System Administration Guide for
details on creating databases.

Determining how to initialize the standby database

You initialize the standby database with data from the active database. To do
this, use these Adaptive Server commands and utilities:

• dump and load, or

• bcp, or

• quiesce database ... to manifest_file and mount.

Replication Server writes an “enable replication” marker into the active
database transaction log when you add the standby database using Sybase
Central or rs_init. Adaptive Server writes a dump marker into the active
database transaction log when you perform a dump operation—either a dump
database or a dump transaction.

If you do not suspend transaction processing during initialization:

• Choose the “dump marker” option in Sybase Central or rs_init, and use the
dump and load commands.

If you suspend transaction processing during initialization:

• Do not choose the “dump marker” option in Sybase Central or rs_init, and
use the dump and load commands, or

• Use bcp, or

• Use quiesce database ... to manifest_file and mount.

CHAPTER 3 Managing Warm Standby Applications

Administration Guide 79

The target database cannot be materialized with dump or load if the database
used is the master database. You may use other methodologies such as bcp
where the data can be manipulated to resolve inconsistencies.

Table 3-4 summarizes each of the initialization methods and the role of these
markers.

Table 3-4: Issues in initializing the standby database

Issue

Use dump and
load with “dump
marker”

Use dump and
load without
“dump marker” Use bcp Use mount

Working with client
applications.

Use if you can not
suspend transaction
processing for
client applications.

Use if you can suspend transaction
processing for client applications.

Use if you can suspend
transaction processing for
client applications.

When does
Replication Server
begin replicating
into the standby
database?

Replication Server
starts replicating
into the standby
database from the
first dump marker
after the enable
replication marker.

Replication Server starts replicating into
the standby database from the enable
replication marker.

Replication Server starts
replicating into the
standby database from the
enable replication marker.

Creating
maintenance user
login names and
making sure all
user IDs match.

Add the login name for the standby
database maintenance user in both the
active Adaptive Server and the standby
Adaptive Server, and ensure that the
server user’s IDs match.

(You create login names in the active
Adaptive Server because using dump and
load to initialize the standby database
with data from the active database
overrides any previous contents of the
standby database with the contents of the
active database.)

When you add the
standby database,
Sybase Central or
rs_init adds the
maintenance user
login name and
user in the standby
Adaptive Server
and the standby
database.

Add the login name for
the standby database
maintenance user in both
the active and standby
Adaptive Servers. Ensure
that the server user’s IDs
match. (You create login
names in the active
Adaptive Server because
using mount to initialize
the standby database with
data from the active
database overrides any
previous contents of the
standby database with the
contents of the active
database.)

Initializing standby
database.

Use dump and load to transfer data from
the active database to the standby
database.

You can use database dumps and/or
transaction dumps.

Use bcp to copy
each replicated
table from the
active database to
the standby
database.

Use quiesce database ...
to manifest_file and mount
database to transfer data
from the active database
to the standby database.

Setting up warm standby databases

80 Replication Server

If you do not suspend
transaction processing

If you do not suspend transaction processing for the active database while
initializing the standby database, choose the “dump marker” option when you
add the standby database. Then initialize the standby database by using the
dump and load commands.

Replication Server starts replicating into the standby database from the first
dump marker after the enable replication marker in the transaction log of the
active database.

In Figure 3-2, transaction T1, executed after you added the standby database,
appears after the enable replication marker in the log. T1 is included in dumps,
so it is present in the standby database after you have loaded the dumps.
Replication Server does not need to replicate it into the standby database.

Figure 3-2: Using dump and load with dump marker

Transactions can be executed in the active database between the time the
enable replication marker is written and the time the data in the active database
is dumped.

Active database
connection state.

The connection to
the active database
does not change.

Replication Server suspends the
connection to the active database.

Replication Server
suspends the connection
to the active database.

Resuming
connections.

Resume connection
to the standby
database.

Resume connections to the active and
standby databases; resume transaction
processing in the active database.

Resume connections to
the active and standby
database; resume
transaction processing in
the active database.

Issue

Use dump and
load with “dump
marker”

Use dump and
load without
“dump marker” Use bcp Use mount

Log
grows

Dump marker

Active database
transaction log

T1

Included in dumps,
and loaded in the
standby database

Applied to the
standby database

Enable marker

CHAPTER 3 Managing Warm Standby Applications

Administration Guide 81

You can load the last full database dump and any subsequent transaction dumps
into the standby database until both markers have been received and the
standby database is ready for operation. Then, optionally, you can use a final
transaction dump of the active database to bring the standby database up to
date. Any transactions not included in dumps will be replicated.

Replication Server does not replicate transactions from the active to the
standby database until it has received both the enable replication marker and
the first subsequent dump marker. After receiving both markers, Replication
Server starts executing transactions in the standby database.

See Table 3-4 for more information about this method.

If you suspend
transaction processing

If you suspend transaction processing for the active database while initializing
the standby database, do not choose the “dump marker” option when you add
the standby database. You can initialize the standby database by using the dump
and load commands, by using bcp, or by using mount.

Replication Server starts replicating into the standby database from the enable
replication marker in the transaction log of the active database. No transactions
occur after the enable replication marker, because client applications are
suspended.

Figure 3-3: Using dump and load without dump marker, or using bcp

As shown in Figure 3-3, no transactions are executed in the active database
between the time the enable replication marker is written and the time the data
in the active database is dumped using the dump command, or copied using bcp
or mount.

You can load the last full database dump or the last set of replicated tables
copied with bcp into the standby database until the standby database receives
the enable replication marker.

Included in dumps,
and loaded in the
standby databaseLog

grows
Enable marker

Active database
transaction log

Applied to the
standby database

Setting up warm standby databases

82 Replication Server

After receiving this marker, Replication Server starts executing transactions in
the standby database.

Adding the standby database maintenance user

If you plan to initialize the standby database using the dump and load
commands, with or without the “dump marker” option, you must create the
maintenance user login name for the standby database in both the standby and
the active data servers. Do this before you add the standby database.

Both Sybase Central and rs_init automatically add the active database
maintenance user in the active data server when you add the active database.

Making the server
user’s IDs match

Within each data server, the server user’s ID (suid) for each login name must
be the same in the syslogins table in the master database and the sysusers table
in each user database. This must be true for the active and standby databases in
a warm standby application. The server user’s ID and role settings must also be
the same in the syslogins and sysloginroles tables in the master database.

Use one of these three methods to make the server user’s IDs match:

• Add all login names, including maintenance user names, to both Adaptive
Servers in the same order. Adaptive Server assigns server user’s IDs
sequentially, so the server user’s IDs for all login names will match.

• After loading the dump into the standby, reconcile the sysusers table in the
standby database with the syslogins table in the master database of the
standby Adaptive Server.

• Maintain a master Adaptive Server with all of your login names and copy
the syslogins table from the master database for the master Adaptive
Server to all newly created Adaptive Servers.

Adding the
maintenance user

To add the maintenance user login name for the standby database to both the
standby and the active data servers:

1 In the standby data server, execute the sp_addlogin system procedure to
create the maintenance user login name.

Refer to the Adaptive Server Enterprise System Administration Guide for
more information about using sp_addlogin.

2 In the active data server, execute sp_addlogin to create the same
maintenance user login name that you created in the standby data server.

When you set up the standby database using the dump and load commands,
the sysusers table is loaded into the standby database along with the other
data from the active database.

CHAPTER 3 Managing Warm Standby Applications

Administration Guide 83

Adding the standby database to the replication system

To add the standby database to the replication system:

1 Suspend transaction processing in the active database, if appropriate for
your client applications and your method of initializing the standby
database.

You must use dump and load with the “dump marker” method if you do not
suspend transaction processing.

2 Use Sybase Central or rs_init to add the standby database to the replication
system. Perform the steps described for adding a database to the
replication system.

3 To monitor the status of the logical connection at any time, enter:

admin logical_status, logical_ds, logical_db

The Operation in Progress and State of Operation in Progress output
columns indicate the standby creation status.

4 If you are initializing the standby database using dump and load, use the
dump command to dump the contents of the active database, and load the
standby database. For example:

dump database active_database to dump_device
load database standby_database from dump_device

5 If you have already loaded a previous database dump and subsequent
transaction dumps, you can just dump the transaction log and load it into
the standby database. For example:

dump transaction active_database to dump_device
load transaction standby_database from dump_device

6 After completing load operations, bring the standby database online:

online database standby_database

Refer to the Adaptive Server Enterprise Reference Manual for help with
using the dump and load commands and the online database command.

7 Initialize the standby database. Use bcp or quiesce ... to manifest_file and
mount.

• To initialize the standby database using bcp, copy each of the
replicated tables in the active database to the standby database.

You must copy the rs_lastcommit table, which was created when you
added the active database to the replication system.

Setting up warm standby databases

84 Replication Server

Refer to the Adaptive Server utility programs manual for help with
using the bcp program.

• To initialize the standby database using quiesce ... to manifest_file and
mount, quiesce the database and create the manifest file. Make a copy
of both the database and log devices. Mount the devices on the
standby database.

8 If you initialized the standby database by using dump and load without the
“dump marker” method, or by using bcp, or by using quiesce database ...
to manifest_file and mount, Replication Server suspended the connection
to the active database. Resume the connection by executing the following
command in the Replication Server:

resume connection to active_ds.active_db

9 Regardless of your method for initializing the standby database, you must
resume the connection to the standby database by executing the following
command:

resume connection to standby_ds.standby_db

10 Resume transaction processing in the active database, if it was suspended.

Using a blocking
command for standby
creation

In Replication Server, the wait for create standby command is a blocking
command. It tells Replication Server not to accept commands until the standby
database is ready for operation. You can use this command in a script that
creates a standby database. The syntax is:

wait for create standby for logical_ds.logical_db

Enabling replication for objects in the standby database

To be ready to switch to the standby database, replication must be enabled for
the tables and stored procedures in the standby database that you want to
replicate into the new standby database after the switch.

• If you initialized the standby database using the dump and load or mount
commands, the tables and stored procedures in the standby database will
have the same replication settings as the active database.

• If you initialized the standby database using bcp, enable replication for
these objects by using sp_setreptable or sp_reptostandby, and
sp_setrepproc. To do this, adapt the procedure under “Task three: Enabling
replication for objects in the active database” on page 76 to enable
replication for objects in the standby database.

CHAPTER 3 Managing Warm Standby Applications

Administration Guide 85

Enabling replication
for objects added later

Later on, you may add new tables and user stored procedures that you want to
replicate to the new standby database.

• If you marked the standby database for replication with sp_reptostandby,
any new tables are automatically marked for replication.

• If you marked individual database tables for replication to the new standby
database with sp_setreplicate, you must mark each new table that you want
to replicate with sp_setreplicate.

• You must mark each new user stored procedure that you want to replicate
with sp_setrepproc.

Granting permissions to the maintenance user

After adding the standby database, you must grant the necessary permissions
to the maintenance user.

To grant permissions:

1 Log in to the Adaptive Server as the System Administrator or as the
Database Owner, and enter:

use standby_database

2 Grant replication_roleto the maintenance user. replication_role ensures that
the maintenance user can execute truncate table at the standby database.

sp_role “grant”, replication_role, maintenance_user

3 Execute this command for each table:

grant all on table_name to maintenance_user

Switching the active and standby databases
This section contains information about switching to the standby database
when the active database fails or when you want to perform maintenance on the
active database.

Switching the active and standby databases

86 Replication Server

Determining if a switch is necessary
Determining when it is necessary to switch from the active to the standby
database depends on the requirements of your applications.

In general, you should not switch when the active data server experiences a
transient failure. A transient failure is a failure from which the Adaptive Server
recovers upon restarting with no need for additional recovery steps. You
probably should switch if the active database will be unavailable for a long
period of time.

Determining when to switch depends on issues such as how much recovery the
active database requires, to what degree the active and standby databases are in
sync, and how much downtime your users or applications can tolerate.

You may also want to switch the roles of the active and standby databases to
perform planned maintenance on the active database or its data server.

Before switching active and standby databases
Figure 3-4 illustrates a warm standby application for a database that does not
participate in the replication system other than through the activities of the
warm standby application itself. Figure 3-4 represents the warm standby
application in normal operation, before you switch the active and standby
databases.

Figure 3-4: Warm standby application example—before switching

Standby
DSI

Inbound Queue

Standby
Database

Active
Database

Replication Server

Clients

CHAPTER 3 Managing Warm Standby Applications

Administration Guide 87

Figure 3-4 adds internal detail to Figure 3-1, to show that:

• Replication Server writes transactions received from the active database
into an inbound message queue.

See “Distributed concurrency control” on page 48 in the Replication
Server Administration Guide Volume 1 for more information about
inbound and outbound queues.

• This inbound queue is read by the DSI thread for the standby database,
which executes the transactions in the standby database.

Messages received from the active database cannot be truncated from the
inbound queue until the standby DSI thread has read them and applied
them to the standby database.

In this example, transactions are simply replicated from the active database
into the standby database. The logical database itself does not:

• Contain primary data that is replicated to replicate databases or remote
Replication Servers, or

• Receive replicated transactions from another Replication Server

See “Warm standby applications using replication” on page 103 for
information about warm standby applications for a primary or replicate
database.

Internal switching steps
When you switch active and standby databases, here is what Replication Server
does:

1 Issues log suspend against the active and standby RepAgent connections.

2 Reads all messages left in the inbound queue and applies them to the
standby database and, for subscription data or replicated stored
procedures, to outbound queues.

All committed transactions in the inbound queue must be processed before
the switch can complete.

3 Suspends the standby DSI.

4 Enables the secondary truncation point in the new active database.

Switching the active and standby databases

88 Replication Server

5 Places a marker in the transaction log of the new active database.
Replication Server uses this marker to determine which transactions to
apply to the new standby database and to any replicate databases.

6 Updates data in the RSSD pertaining to the warm standby databases.

7 Resumes the connection for the new active database, and resumes log
transfer for the new active database so that new messages can be received.

After switching active and standby databases
After you have switched the roles of the active and standby databases, the
replication system will have changed, as shown in Figure 3-5:

Figure 3-5: Warm standby application example—after switching

• The previous standby database is the new active database. Client
applications will have switched to the new active database.

• The previous active database, in this example, becomes the new standby
database. Messages for the previous active database are queued for
application to the new active database.

Note RepAgent for the previous active database has shut down. RepAgent for
the new active database has started.

Standby
DSI

Inbound Queue

Standby
Database

Active
Database

Replication Server

Clients

CHAPTER 3 Managing Warm Standby Applications

Administration Guide 89

Making the switch

❖ Switching from the active to the standby database

1 Disconnect client applications from the active database if they are still
using it

2 In Replication Server, switch the active and standby databases

3 Restart client applications with the new active database

4 Start RepAgent for the new active database

5 Determine whether to drop the old active database or use it as the new
standby database

The following sections contain the procedures for these tasks.

Disconnect client applications from the active database

Before you switch to the standby database, you must stop clients from
executing transactions in the active database. If the database failed, of course,
clients cannot execute transactions. However, you may need to take steps to
prevent them from updating that database after it is back online.

See “Setting up clients to work with the active data server” on page 95 for
more information about client application issues.

Procedure for switching the active and standby databases

Before switching, you must implement a method for switching clients, as
described in “Setting up clients to work with the active data server” on page
95.

Follow these steps to switch the active and standby databases for a logical
connection:

1 At the Adaptive Server of the active database, ensure that the RepAgent is
shut down. Otherwise, use sp_stop_rep_agent to shut down the RepAgent.

2 At the Replication Server, enter:

switch active for logical_ds.logical_db
to data_server.database

 data_server.database is the new active database.

See “Internal switching steps” on page 87 for information on what
Replication Server does when you switch.

Switching the active and standby databases

90 Replication Server

3 To monitor the progress of a switch, you can use the admin logical_status
command:

admin logical_status, logical_ds, logical_db

The Operation in Progress and State of Operation in Progress output
columns indicate the switch status.

4 When the active database switch is complete, you must restart RepAgent
for the new active database:

sp_start_rep_agent dbname

Note If Replication Server stops in the middle of switching, the switch
resumes after you restart Replication Server.

Using a blocking command for switch active

In Replication Server, the wait for switch command is a blocking command. It
tells Replication Server to wait until the standby database is ready for
operation. You can use this command in a script that switches the active
database. The syntax is:

wait for switch for logical_ds.logical_db

Monitoring the switch

You can use admin logical_status to check for replication system problems that
prevent the switch from proceeding. Such problems may include a full
transaction log for the standby database or a suspended standby DSI. If you
cannot resolve the problems, you can abort the switch using the abort switch
command.

The Operation in Progress and State of Operation in Progress output columns
indicate the switch status.

For example, suppose the admin logical_status command persistently returns
one of the following messages in its State of Operation in Progress output
column:

Standby has some transactions that have not been applied

or

Inbound Queue has not been completely read by
Distributor

CHAPTER 3 Managing Warm Standby Applications

Administration Guide 91

These messages may indicate a problem that you cannot resolve, in which case
you may choose to abort the switch. You can use admin who commands to
obtain more information about the state of the switching operation.

See “Commands for monitoring warm standby applications” on page 94 for
more information.

Aborting a switch

Unless Replication Server has proceeded too far in switching the active and
standby databases, you can abort the process by using the abort switch
command:

abort switch for logical_ds.logical_db

If the abort switch command cancels the switch active command successfully,
you may have to restart the RepAgent for the active database.

You cannot cancel the switch active command after it reaches a certain point. If
this is the case, you must wait for the switch active command to complete, then
use it again to return to the original active database.

Restart client applications

When the admin logical_status command indicates that there is no operation in
progress, or when the wait for switch command returns an isql prompt, you can
restart client applications in the new active database.

Client applications must wait until Replication Server switch to the new active
database is complete before they begin executing transactions in the new active
database. You should provide an orderly method for moving clients from the
old active database to the new active database. See “Setting up clients to work
with the active data server” on page 95 for more information.

Resolving paper-trail transactions

If the old active database failed, determine if any transactions were not
transmitted to the new active database. Such transactions are called paper-trail
transactions if there is an external record of their execution.

When you switch from an active to a standby database, all committed
transactions in the inbound queue are applied to the new active database before
the switch is complete. However, it is possible that some transactions that
committed at the active database before the failure were not received by
Replication Server and, therefore, were not applied to the standby database.

Switching the active and standby databases

92 Replication Server

When you switch the active and standby databases, you can re-execute the
paper-trail transactions in the new active database. If there are dependencies,
you may need to re-execute the paper-trail transactions before you allow new
transactions to execute. Be sure to execute the paper-trail transactions using the
original client’s login name, not the maintenance user login name.

If you bring the old active database online as the new standby database, you
must first reverse the paper-trail transactions so they will not be duplicated in
the standby database.

Manage the old active database

After you have switched to the new active database, you must decide what to
do with the old active database. You can:

• Bring the database online as the new standby database and resume the
connection so that Replication Server can apply new transactions, or

• Drop the database connection using the drop connection command, and
add it again later as the new standby database. If you drop the database,
any queued messages for the database are deleted. Refer to Chapter 3,
“Replication Server Commands,” in the Replication Server Reference
Manual for more information about drop connection command.

Bringing the old active database online as the new standby

If the old active database is undamaged, you can bring it back online as the new
standby database by entering:

resume connection to data_server.database

where data_server.database is the physical database name of the old active
database.

You may need to resolve paper-trail transactions in the database in order to
avoid duplicate transactions. Depending on your applications, you may need to
do this before you bring the old active database back online as the new standby
database.

Because paper-trail transactions must be re-executed in the new active
database, you must prepare the new standby database so that it can receive the
transactions again when they are delivered through the replication system.

To resolve the conflicts, you can:

• Undo or reverse the duplicate transactions in the new standby database, or

• Ignore the duplicate transactions and deal with them later.

CHAPTER 3 Managing Warm Standby Applications

Administration Guide 93

Monitoring a warm standby application
This section describes methods you can use to monitor a warm standby
application.

Replication Server log file
You can read the Replication Server log file for messages pertaining to warm
standby operations. This section discusses log messages you will see when you
add the standby database.

Standby connection created

These are examples of the messages that Replication Server writes while
creating the physical connection for a standby database:

I. 95/11/01 17:47:50. Create starting : SYDNEY_DS.pubs2
I. 95/11/01 17:47:58. Placing marker in TOKYO_DS.pubs2 log
I. 95/11/01 17:47:59. Create completed : SYDNEY_DS.pubs2

In these examples, SYDNEY_DS is the standby data server and TOKYO_DS
is the active data server.

When you create the physical connection for the standby database, Replication
Server writes an “enable replication” marker in the active database transaction
log. The standby DSI ignores all transactions until it has received this marker.
If, however, you chose the “dump marker” option, the standby DSI continues
to ignore messages until it encounters the next dump marker in the log.

When the appropriate marker arrives at the standby database from the active
database RepAgent, the standby DSI writes a message in the Replication
Server log file and then begins executing subsequent transactions in the
standby database.

In the example messages above, Replication Server has created the connection
for the standby database, SYDNEY_DS.pubs2, and suspended its DSI thread.
At this point, the Database Administrator dumps the contents of the active
database, TOKYO_DS.pubs2, and loads it into the standby database.

Monitoring a warm standby application

94 Replication Server

Standby connection resumed after initialization

After the Database Administrator has loaded the dump into the standby
database and resumed the connection to the standby database, the standby DSI
begins processing messages from the active database. Replication Server
writes in its log messages similar to this:

I. 95/11/01 18:50:34. The DSI thread for database 'SYDNEY_DS.pubs2' is started.
I. 95/11/01 18:50:41. Setting LTM truncation to 'ignore' for SYDNEY_DS.pubs2 log
I. 95/11/01 18:50:43. DSI for SYDNEY_DS.pubs2 received and processed Enable

Replication Marker. Waiting for Dump Marker
I. 95/11/01 18:50:43. DSI for SYDNEY_DS.pubs2 received and processed Dump

Marker. DSI is now applying commands to the Standby

When you see the final message in the log file, the warm standby database
creation process has completed.

Commands for monitoring warm standby applications
Use the admin commands to monitor the status of a warm standby application.
Refer to Chapter 3, “Replication Server Commands,” in the Replication Server
Reference Manual for more information about these commands.

admin logical_status

The admin logical_status command tells you:

• How the addition of a standby database or the switching between active
and standby databases is progressing.

• Whether the active or standby database connection is suspended.

• Whether the standby DSI is ignoring messages. The standby DSI ignores
messages while it waits for a marker to arrive in the transaction stream
from the active database.

admin who, dsi

The admin who, dsi command provides another method to check the status of
the standby DSI. The IgnoringStatus output column contains either:

• “Applying” – if the DSI is applying messages to the standby database, or

• “Ignoring” – if the DSI is waiting for a marker.

CHAPTER 3 Managing Warm Standby Applications

Administration Guide 95

admin who, sqm

The admin who, sqm command provides information about the state of stable
queues. In a warm standby application, the inbound queue is read by the
Distributor thread, if you have not disabled it, and by the standby DSI thread.
Replication Server cannot delete messages from the inbound queue until both
threads have read and delivered them.

If Replication Server is not deleting messages from the inbound queue, you can
use the admin who, sqm command to investigate the problem. The command
tells you how many threads are reading the queue and the minimum deletion
point in the queue.

admin sqm_readers

The admin sqm_readers command monitors the read and delete points of the
individual threads that are reading the inbound queue. If the inbound queue is
not being deleted, admin sqm_readers will help you find the thread that is not
reading the queue.

The admin sqm_readers command takes two parameters: the queue number and
the queue type for the logical connection.

You can find the queue number and queue type in the Info column of the admin
who, sqm command output: the queue number is the 3-digit number to the left
of the colon, while the queue type is the digit to the right of the colon.

Queue type 1 is an inbound queue. Queue type 0 is an outbound queue. The
inbound queue for a logical connection can be read by more than one thread.
For example, to find out about the threads reading inbound queue number 102,
execute admin sqm_readers as follows:

admin sqm_readers, 102, 1

Setting up clients to work with the active data server
When you switch the active and standby databases in Replication Server using
the switch active command, Replication Server does not switch client
applications to the new active data server and database automatically. You must
devise a method to switch client applications. This section describes three
sample methods for setting up client applications to connect to the currently
active data server. You can create:

Setting up clients to work with the active data server

96 Replication Server

• Two interfaces files

• An interfaces file entry with a symbolic data server name for client
applications

• A mechanism that automatically maps the client application data server
connections to the currently active data server

You must implement your method before you set up the warm standby
databases.

Regardless of your method for switching applications, do not modify the
interfaces file entries used by Replication Server.

Two interfaces files
With this method, you set up two interfaces files, one for the client applications
and one for Replication Server. When you switch the clients, you can modify
their interfaces file entry to use the host name and port number of the data
server with the new active database.

Symbolic data server name for client applications
With this method, you create an interfaces file entry with a symbolic data
server name for client applications.

The interfaces file might contain entries like these:

Table 3-5: Symbolic data server name in interfaces file

You could create an interfaces entry for a data server named CLIENT_DS.
Client applications would always connect to CLIENT_DS. The CLIENT_DS
entry would use the same host name and port number as the data server with
the active database.

Replication Server connects to the same host name and port number as the
client applications but uses a different data server name. In this example,
Replication Server would switch between the TOKYO_DS_X and
TOKYO_DS_Y data servers.

Data server name Host name Port number

Client applications CLIENT_DS machine_1 2800

Active database TOKYO_DS_X machine_1 2800

Standby database TOKYO_DS_Y machine_2 2802

CHAPTER 3 Managing Warm Standby Applications

Administration Guide 97

After switching the active database, you would change the CLIENT_DS
interfaces entry to the host name and port number of the data server with the
new active database—in this example, machine_2 and port number 2802.

Map client data server to currently active data server
With this method, you create a mechanism, such as an intermediate Open
Server application, that automatically maps the client application data server
connections to the currently active data server.

Refer to Open Server documentation, such as the Open Server Server-
Library/C Reference Manual, for more information about how to create such
an Open Server application.

Altering warm standby database connections
This section describes options for reconfiguring or modifying the logical
database connection and the physical database connections. Under ordinary
circumstances, if you set up a warm standby application through the usual
procedure, the default settings will work correctly.

Altering logical connections
Use the alter logical connection command to modify parameters that:

• Affect logical connections

• Enable or disable the Distributor thread

• Enable or disable the replication of truncate table to the standby database

Changing parameters affecting logical connections

To update parameters that affect logical connections, log in to the source
Replication Server and, at the isql prompt, enter:

alter logical connection
 to logical_ds.logical_db
set logical_database_param to 'value'

Altering warm standby database connections

98 Replication Server

where logical_ds is the data server name for the logical connection, logical_db
is the database name for the logical connection, logical_database_param is a
logical database parameter, and value is a character string setting for the
parameter.

New settings take effect immediately.

 Warning! You should reset the logical connection parameters
materialization_save_interval and save_interval only when there is a serious lack
of stable queue space. Resetting them (from strict to a given number of
minutes) may lead to message loss at the standby database.

Table 3-6 displays the configuration parameters that affect logical database
connections.

Table 3-6: Configuration parameters affecting logical connections

logical_database_param value

materialization_save_interval Materialization queue save interval. This parameter is only used for standby
databases in a warm standby application.

Default: “strict” for standby databases

replicate_minimal_columns Specifies whether Replication Server should send all replication definition
columns for all transactions or only those needed to perform update or delete
operations at the standby database. Values are “on” and “off.”

Replication Server uses this value in standby situations only when a replication
definition does not contain a “send standby” parameter. Otherwise, Replication
Server uses the value of the “replicate minimal columns” or “replicate all
columns” parameter in the replication definition.

Default: on

save_interval The number of minutes that the Replication Server saves messages after they have
been successfully passed to the destination data server. See “Save interval for
recovery” on page 220 for details.

Default: 0 minutes

CHAPTER 3 Managing Warm Standby Applications

Administration Guide 99

Disabling the Distributor thread

If you do not replicate data from the active database into databases other than
the standby database, Replication Server does not need a Distributor thread for
the logical connection. You can disable the Distributor thread to save
Replication Server resources.

To disable the Distributor thread, you must first drop any subscriptions for the
data in the logical database. Then execute alter logical connection at the
Replication Server:

alter logical connection
 to logical_ds.logical_db
set distribution off

If you decide later to replicate data out of the active database, you can use this
command to reenable the Distributor thread.

 Warning! If you disable the Distributor thread and then drop the standby
database from the replication system, no Replication Server threads will be left
to read the inbound queue from the active database. The inbound queue will
continue to fill until you either add another standby database, set distribution
to “on” for the logical connection, or drop the active database from the
replication system.

send_standby_repdef_cols Specifies which columns Replication Server should send to the standby database
for a logical connection. Overrides “send standby” options in the replication
definition that tell Replication Server which table columns to send to the standby
database. Values are:

• on – send only the table columns that appear in the matching replication
definition. Ignore the “send standby” option in the replication definition.

• off – send all table columns to the standby. Ignore the “send standby” option in
the replication definition.

• check_repdef – send all table columns to the standby based on “send standby”
option.

Default: check_repdef

logical_database_param value

Altering warm standby database connections

100 Replication Server

Replicating truncate table to standby databases

Replication Server copies execution of truncate table to warm standby
databases. The active and standby databases must be Adaptive Server version
11.5 or later to support this feature.

To enable or disable replication of truncate table, log in to the source
Replication Server and enter:

alter logical connection
 to logical_ds.logical_db
set send_truncate_table to {on | off}

If your warm standby application was created before you upgraded or installed
Replication Server version 11.5 or later, Replication Server does not copy
truncate table to the standby database unless you enable this feature with alter
logical connection. To preserve compatibility with existing warm standby
applications, the default setting is “off.”

If your warm standby application was created after you upgraded or installed
Replication Server version 11.5 or later, Replication Server automatically
copies truncate table to the standby database unless you disable this feature
with alter logical connection. The default setting is “on.”

Altering physical connections
Use the alter connection command at the source Replication Server to modify
parameters that affect physical connections for warm standby applications:

alter connection to data_server.database
set database_param to 'value'

where data_server is the destination data server, database is the database the
data server manages, database_param is a parameter that affects the
connection and value is a setting for database_param.

You must suspend the connection before altering it; then, after executing alter
connection, you resume the connection for new parameter settings to take
effect. See “Altering database connections” on page 164 in the Replication
Server Administration Guide Volume 1 for more information.

CHAPTER 3 Managing Warm Standby Applications

Administration Guide 101

Configuring triggers in the standby database

By default, the standby DSI thread executes a set triggers off Adaptive Server
command when it logs in to a standby database. This prevents Adaptive Server
from firing triggers for the replicated transactions, thereby preventing
duplicate updates in the standby database.

You can alter the default behavior by using the alter connection command to
configure a connection to fire or not fire triggers. To do this, set the
dsi_keep_triggers configuration parameter to “on” or “off.” The default
dsi_keep_triggers setting for all connections except standby databases is “on.”

Configuring replication in the standby database

The dsi_replication configuration parameter specifies whether or not
transactions applied by the DSI are marked in the transaction log as being
replicated. It must be set to “on” for the active replicate database. By default,
it is set to “off” for the standby database and set to “on” for all other databases.

When dsi_replication is set to “off,” the DSI executes set replication off in the
database, preventing Adaptive Server from adding replication information to
log records for transactions that the DSI executes. Since these transactions are
executed by the maintenance user and, therefore, are not replicated further
(except if there is a standby database), setting this parameter to “off” where
appropriate writes less information into the transaction log.

Use admin who, dsi to see how this parameter is set for a connection.

Changing configuration parameters in the standby database

When you create the standby database, the following configuration parameters,
if they are set for the active database, are copied from the active database to the
standby database:

Altering warm standby database connections

102 Replication Server

Table 3-7: Configuration parameters copied to standby database

You can change the setting of any of these configuration parameters. See
Chapter 7, “Managing Database Connections” in the Replication Server
Administration Guide Volume 1 for more information.

Dropping logical database connections
If you are dismantling a warm standby application, you may need to remove a
logical database from the replication system. To do this, drop the standby
database, then execute the drop logical connection command. Before you
execute the command, you must drop the standby database. See “Dropping
database connections” on page 181 in the Replication Server Administration
Guide Volume 1 for information about dropping physical database connections.

The syntax for drop logical connection is:

drop logical connection to data_server.database

data_server and database represent the logical data server and logical
database.

For example, to drop the connection to the pubs2 logical database in the LDS
logical data server, enter:

drop logical connection to LDS.pubs2

Dropping a logical database from the ID Server

When a warm standby application exists in the replication system, logical
databases, along with physical databases, data servers, and Replication
Servers, are listed in the rs_idnames system table in the RSSD for the ID
Server. Occasionally, it may be necessary to remove the entry for a logical
database from this system table.

batch batch_begin command_retry

db_packet_size dsi_charset_convert dsi_cmd_batch_size

dsi_cmd_separator dsi_fadeout_time dsi_keep_triggers

dsi_large_xact_size dsi_max_cmds_to_log dsi_max_text_to_log

dsi_num_large_xact_threads dsi_num_threads dsi_replication

dsi_serialization_method dsi_sql_data_style dsi_sqt_max_cache_size

dsi_xact_group_size dsi_xact_in_group dump_load

parallel_dsi dsi_isolation_level use_batch_markers

CHAPTER 3 Managing Warm Standby Applications

Administration Guide 103

For example, if a drop logical connection command fails, you may have to force
the ID Server to delete from the rs_idnames system table the row that
corresponds to the logical database. Logical database connections show an “L”
in the ltype column.

The sysadmin dropldb command logs in to the ID Server and deletes the entry
for the specified logical database. The syntax is:

sysadmin dropldb, data_server, database

data_server and database refer to the logical data server and the logical
database names.

You must have sa permission to execute any sysadmin command.

Warm standby applications using replication
This section describes warm standby applications that involve replication,
where the logical database serves as a primary or replicate database in the
replication system.

Also see “Using replication definitions and subscriptions” on page 110.

Warm standby application for a primary database
Figure 3-6 illustrates a warm standby application for a primary database. In
this example, one Replication Server manages three databases:

• The active database for a logical primary database,

• The standby database for a logical primary database, and

• A replicate database that has subscriptions for the data in the logical
primary database.

In this example, a single Replication Server manages both the primary and
replicate databases. In other instances, different Replication Servers may
manage the primary and replicate databases.

Warm standby applications using replication

104 Replication Server

Figure 3-6: Warm standby application for a primary database

The numbers in Figure 3-6 indicate the flow of transactions from client
applications through the replication system in a warm standby application for
a primary database.

From client
applications to
inbound queue

In Figure 3-6, numbers 1 through 3 trace transactions from clients to an
inbound queue in the Replication Server:

• Clients execute transactions in the active primary data server.

• The active primary data server updates the active primary database.

• The RepAgent thread for the active primary database reads transactions
for replicated data in the database log. It forwards the transactions to the
Replication Server, which writes them into an inbound queue.

All transactions for replicated data, including those executed by the
maintenance user, are sent to the Replication Server for application in the
standby database.

From inbound queue
to replicate database

In Figure 3-6, numbers 4 through 8 trace transactions from the inbound queue
to the replicate database:

CHAPTER 3 Managing Warm Standby Applications

Administration Guide 105

• The Distributor thread reads transactions from the inbound queue.

• The Distributor thread processes transactions against subscriptions and
writes replicated transactions into an outbound queue.

Transactions executed by the maintenance user, which are always
replicated into the standby database (because you set the
send_warm_standby_xacts parameter when you configure RepAgent with
sp_config_rep_agent), are not replicated to replicate databases unless you
also set the send_maint_xacts_to_replicate parameter for RepAgent.

• A DSI thread reads transactions from the outbound queue.

• The DSI thread executes the transactions in the replicate data server.

• The replicate data server updates the replicate database.

If the transactions are to be replicated to a database managed by a different
Replication Server, they are written into an RSI outbound queue managed
by an RSI thread instead of a DSI thread. The RSI thread delivers the
transactions to the other Replication Server.

From inbound queue
to standby database

In Figure 3-6, numbers 9 through 11 trace transactions from the inbound queue
to the standby database for the logical primary database:

• The standby DSI thread reads transactions from the inbound queue.

• The standby DSI thread executes transactions in the standby data server.

• The standby data server updates the standby database.

The inbound queue is read by the standby DSI and the Distributor. The two
threads do their work concurrently. Messages cannot be truncated from the
inbound queue until both threads have read them and delivered them to their
destination. The messages remain in the queue until the DSI has applied them
to the standby database and, if there are subscriptions or replicated stored
procedure executions, the Distributor has written them to the outbound queue.

Depending on your replication system, the transactions may be replicated into
the standby database before the replicate database. However, Replication
Server guarantees that the standby primary database and replicate databases
will be kept in sync with the active primary database.

Warm standby application for a replicate database
Figure 3-7 illustrates a warm standby application for a replicate database. In
this example, a single Replication Server manages three databases:

Warm standby applications using replication

106 Replication Server

• A primary database,

• The active database for a logical replicate database, and

• The standby database for a logical replicate database.

The logical replicate database has subscriptions for the data in the primary
database. Therefore, updates from the primary database are replicated to both
the active and the standby databases.

In this example, a single Replication Server manages both the primary and
replicate databases. In other instances, different Replication Servers may
manage the primary and replicate databases.

CHAPTER 3 Managing Warm Standby Applications

Administration Guide 107

Figure 3-7: Warm standby application for a replicate database

The numbers in Figure 3-7 indicate the flow of transactions from client
applications through the replication system in a warm standby application for
a replicate database.

From client
applications to primary
and active databases

In Figure 3-7, numbers 1 through 8 trace transactions from clients to the
primary database, and, via normal replication, to the active replicate database:

• Clients execute transactions in the primary data server.

• The primary data server updates the primary database.

Standby
Database

Standby
Data Server

DSI

Inbound Queue

Inbound Queue

Active
Database Standby

DSI

Primary
Data Server

Primary
Database

2

8

9

12

7

4

11

10

Distributor

5

6

Outbound Queue

Clients

1

Replication Server

Active
Data Server

If Replication Server does not manage the primary
database, replicated data is received from the primary
Replication Server and written directly into the out-
bound queue, bypassing steps 1–5.

3

Warm standby applications using replication

108 Replication Server

• RepAgent for the primary database reads transactions for replicated data
in the transaction log and forwards them to the Replication Server, which
writes them into an inbound queue.

• The Distributor thread reads transactions from the inbound queue.

• The Distributor processes transactions against subscriptions and writes
replicated transactions into an outbound queue.

If the Replication Server managing the warm standby application for the
replicate database does not also manage the primary database, replicated
data is received from the primary Replication Server and written directly
to the outbound queue. Steps 1 through 5 are bypassed.

• A DSI thread reads transactions from the outbound queue.

• The DSI thread executes the transactions in the replicate data server, which
is the active data server for the warm standby application.

• The active data server updates the active database.

If the transactions originate in a primary database managed by a different
Replication Server, the Distributor thread in the primary Replication
Server writes them into an RSI outbound queue. Then they are replicated
to a DSI outbound queue in the replicate Replication Server in order to be
applied in the active database for the logical replicate database.

From active database
to standby database

In Figure 3-7, numbers 9 through 12 trace transactions from the active database
for the logical replicate database to its standby database:

• RepAgent for the active database reads the transactions in the active
database log and forwards them to the Replication Server, which writes
them into an inbound queue.

All transactions for replicated data, including those executed by the
maintenance user, are sent to the Replication Server for application in the
standby database.

• The standby DSI thread reads transactions from the inbound queue.

• The standby DSI thread executes transactions in the standby data server.

• The standby data server updates the standby database.

CHAPTER 3 Managing Warm Standby Applications

Administration Guide 109

Configuring logical connection save intervals

This section describes some options for reconfiguring the save intervals for a
logical replicate database. A save interval for a connection specifies how long
messages will be retained in a stable queue before they can be deleted. If you
set up a warm standby application through the usual procedure, the default
settings will work correctly.

You can use the configure logical connection command to configure the DSI
queue save interval and the materialization queue save interval for the logical
connection.

Refer to Chapter 3, “Replication Server Commands,” in the Replication Server
Reference Manual for the syntax of configure logical connection command.

 Warning! The DSI queue save interval and the materialization queue save
interval settings for a logical connection should be reset only under serious
conditions stemming from a lack of stable queue space. Resetting these save
intervals (from strict to a given number of minutes) may lead to message loss
at the standby database. Replication Server cannot detect this type of loss; you
have to verify the integrity of the standby database yourself.

The DSI queue save
interval

By default, the DSI queue save interval for the logical connection is set to 'strict'
when you create a standby database. This causes Replication Server to retain
DSI queue messages until they are delivered to the standby database. If you
must change the DSI queue save interval for the logical connection, use the
configure logical connection command.

For example, to force a replicate Replication Server to save messages destined
for its logical replicate data server LDS for one hour (sixty minutes), enter the
following command:

configure logical connection to LDS.logical_pubs2
set save_interval to '60'

To reset this save interval back to 'strict', enter:

configure logical connection to LDS.logical_pubs2
set save_interval to 'strict'

The materialization
queue save interval

The materialization queue save interval for the logical connection is set to
'strict' by default when you create a subscription. This causes Replication
Server to retain materialization queue messages until they are delivered to the
standby database. If you must change the materialization queue save interval
for the logical connection, use the configure logical connection command.

Using replication definitions and subscriptions

110 Replication Server

For example, to force a replicate Replication Server to save messages in the
materialization queue for its logical replicate data server LDS for one hour
(sixty minutes), enter the following command:

configure logical connection to LDS.logical_pubs2
set materialization_save_interval to '60'

To reset this save interval back to 'strict', enter:

configure logical connection to LDS.logical_pubs2
set materialization_save_interval to 'strict'

Using replication definitions and subscriptions
This section contains information about using warm standby databases with
replication definitions and subscriptions. See “Warm standby applications
using replication” on page 103 for more information about warm standby
applications for a primary or replicate database.

Creating replication definitions for warm standby databases
Replication Server does not require replication definitions to maintain a
standby database, although using replication definitions can improve
performance when replicating into a standby database. You can create a
replication definition for each table in the logical database. You can also use
function replication definitions when replicating into a standby database.

Replication definitions can change how Replication Server replicates data into
a standby database, allowing you to optimize your warm standby application
or enable a non-default behavior that your application requires.

You can use replication definitions in a warm standby application in the
following scenarios:

• To improve the performance of the replication system, as described under
“Using replication definitions to optimize performance” on page 113.

• In normal replication into or out of the logical database, as described in
“Warm standby applications using replication” on page 103.

CHAPTER 3 Managing Warm Standby Applications

Administration Guide 111

alter table support for warm standby

Adaptive Server Enterprise version 12.0 and later allows users to alter existing
tables—add non-nullable columns, drop columns, and modify column
datatypes.

This section describes how Replication Server supports table changes resulting
from the alter table command when the table has no subscriptions.

Note To support table changes that result from alter table when subscriptions
exist for that table, you need to alter the table’s replication definition. See
“Modifying replication definitions” on page 284 in the Replication Server
Administration Guide Volume 1 for instructions.

In previous releases, when a replication definition was defined for a table,
Replication Server always used the column datatype defined in the warm
standby replication definition. Beginning with Replication Server version 12.0,
and depending on the situation, Replication Server may or may not use a table’s
replication definition.

No replication definition

When you use alter table against a table without replication definitions,
Replication Server sends warm standby databases the same information it
receives from the primary server. All options of alter table are supported. When
you execute alter table at the primary, the command is replicated to the warm
standby, and replication to the standby continues—no action is required in the
Replication Server.

See the Adaptive Server Enterprise Reference Manual, Volume2: Commands
for alter table syntax and information.

alter table add column with default

When you issue the alter table command in the active database to add a column
with a default value, Adaptive Server creates a constraint with an auto-
generated name. When the command is replicated to the standby database, the
standby database also creates the same constraint with another, different auto-
generated name. When you drop the constraint in the active database, the
standby database does not recognize the constraint name and generates a data
server interface (DSI) error.

Using replication definitions and subscriptions

112 Replication Server

To avoid this, drop the constraint in the active database first. The data server
interface (DSI) shuts down automatically. Then drop the constraint created in
the standby database and issue the resume dsi skip transaction command.

An alternative workaround is to execute:

alter table table name
replace column name
default null

This automatically drops the constraints created on both active and standby
sites.

Warm standby with no send standby clause

When there is no send standby clause associated with any replication
definition, Replication Server sends whatever data it receives from the primary
table without referring to the replication definitions.

Replication Server uses the original column names and datatypes to send data
received from the RepAgent. The replication definition is used only to find the
primary key. The primary keys are the union of primary keys in all replication
definitions for the table.

If schema changes do not involve dropping all primary key columns in all
replication definitions of the table, the scenario is the same as discussed in “No
replication definition” on page 111. All options of alter table are supported, and
no action is required in the Replication Server.

You can alter the replication definition at any point to drop all primary keys in
the replication definitions, and add the new primary key columns to the
replication definitions before you alter the primary table.

Drop the old primary keys only after all of the old data rows are out of the
replication system. Otherwise, the Data Server Interface (DSI) shuts down. If
this occurs, see for recovery instructions.

Warm standby with send standby all columns clause

When send standby all columns is associated with a replication definition,
Replication Server sends whatever data it receives from the RepAgent using
the original column names and datatypes. The replication definition is used
only to find the primary key.

CHAPTER 3 Managing Warm Standby Applications

Administration Guide 113

If schema changes do not involve dropping all primary key columns in the
replication definition with the send standby all columns clause, the scenario is
the same as “No replication definition” on page 111. All options of alter table
are supported, and no action is required in the Replication Server.

You can alter the replication definition at any time to drop all primary keys in
the replication definition with the send standby all columns clause, and add the
new primary key columns to the replication definition before you alter the
primary table.

Drop the old primary keys after all of the old data rows have left the replication
system. Otherwise, the Data Server Interface (DSI) shuts down. If this occurs,
see “Recovering from inbound queue problems” on page 288 in the
Replication Server Administration Guide Volume 1 for recovery instructions.

Warm standby with send standby replication definition columns clause

When there is a send standby replication definition columns clause in the
replication definition, the standby will continue to use the replicate table name
and column names as well as the datatype defined in the table’s corresponding
replication definition.

If you want the replication definition datatype to be used in the standby, always
create a replication definition with a send standby replication definition columns
clause.

Please note that:

• To add or alter columns in the primary database, follow the “Migration
procedure” on page 286 in the Replication Server Administration Guide
Volume 1.

• To drop columns in the primary database, you do not need to alter the
replication definition of the table as long as you do not drop all primary
key columns.

• To drop all primary key columns, alter the replication definition to add
new primary key columns before you alter the primary table. You can drop
the old primary keys when the old data rows have been removed from the
replication system.

Using replication definitions to optimize performance

When you specify that you want to use a replication definition for replicating
into a standby database:

Using replication definitions and subscriptions

114 Replication Server

• Replication Server optimizes updates and deletes by using the primary key
defined in the replication definition to generate the where clause.

• You can specify whether Replication Server uses the replication
definition’s replicate minimal columns setting for replicating into the
standby database. This setting indicates whether updates replace the
values for all columns or only the columns with changed values.

• You can specify whether Replication Server replicates all of a table’s
columns or all of a stored procedure’s parameters to the standby database
or only those columns or parameters listed in the table or function
replication definition.

Creating a replication
definition for
replicating into a
standby database

To create a replication definition just for replicating into the standby database,
use the send standby clause in the create replication definition command. The
replication definition’s primary key and replicate minimal columns setting will
be used in replicating into the standby database.

Refer to Chapter 3, “Replication Server Commands,” in the Replication Server
Reference Manual for detailed information about using create replication
definition command.

Specifying a primary
key

Replication Server generates a where clause to specify target rows for updates
and deletes.

• If a replication definition for a table is marked with the send standby
clause, the generated where clause contains only the columns listed in the
primary key clause of the create replication definition command.

• If there are replication definitions for a table but none are marked with the
send standby clause, the generated where clause contains the columns
listed in the union of the primary key clauses of all of the replication
definitions.

• If there is no replication definition for a table, the generated where clause
includes all columns in the table except text, unitext, image, rawobject,
rawobject in row, timestamp, and sensitivity columns.

Updating minimal
columns

If you create a replication definition for replicating into a standby database, you
can take advantage of another replication system performance optimization,
the minimal columns setting.

When you use the replicate minimal columns clause, replicated update and
delete transactions include only the required columns. Values for unchanged
columns can be omitted from update commands. Omitting the unnecessary
columns reduces the size of messages delivered through the replication system
and requires Adaptive Server to do less work.

CHAPTER 3 Managing Warm Standby Applications

Administration Guide 115

If you are not using replication definitions for replicating into the standby, you
can still attain this performance benefit.

Minimal column replication occurs automatically if you have no replication
definitions for a table or if you have replication definitions for a table but do
not use one for replicating into the standby database.

Specifying columns to
replicate into the
standby database

If you create a replication definition for replicating into a standby database, you
can specify which set of columns to replicate:

• Specify send standby or send standby all columns to replicate all the
columns in the table into the standby database.

• Specify send standby replication definition columns to replicate only the
replication definition’s columns into the standby database.

Refer to Chapter 3, “Replication Server Commands,” in the Replication Server
Reference Manual for more information about using the send standby clause
with the create replication definition command.

Specifying parameters
to replicate into the
standby database

If you create a function replication definition, you can specify which set of
parameters to replicate:

• Specify send standby all parameters (or omit the all parameters clause) to
replicate all the parameters for the stored procedure into the standby
database.

• Specify send standby replication definition parameters to replicate only the
replication definition’s parameters into the standby database.

If a replicated stored procedure has no function replication definition, when the
stored procedure is executed, Replication Server replicates all of its parameters
from the active database into the standby database. You can create only one
function replication definition per replicated stored procedure.

Refer to Chapter 3, “Replication Server Commands,” in the Replication Server
Reference Manual for more information about using the send standby clause
with the create function replication definition command.

Using replication definitions for tables with more than 1024 columns

Adaptive Server limits the number of expressions in the where clause to 1024.
For warm standby applications, you must use replication definitions to
replicate tables with more than 1024 columns, and make sure that the primary
key is not more than 1024 columns. Adaptive Server generates an error if the
Replication Server where clause has more than 1024 columns.

Using replication definitions and subscriptions

116 Replication Server

See “Using replication definitions to optimize performance” on page 113 for
more information about the primary key and replication into the standby
database.

Using replication definitions to copy redundant updates

Without a replication definition, Replication Server does not replicate
redundant updates to the warm standby. That is, if an update merely changes
the current value to the same value, and thus the before and after images are
identical, Replication Server does not replicate the update.

However, if you want to replicate redundant updates, create a replication
definition for the column that includes the send standby replication definition
parameters option.

If you create a replication definition for a table, Replication Server always
sends redundant updates, even when the replication definition is created with
the replicate minimal columns option.

Using subscriptions with warm standby application
Although subscriptions are not used in replicating from the active to the
standby database, you can:

• Create subscriptions for the data in a logical primary database, or

• Create subscriptions in order to replicate data from other databases into a
logical replicate database.

The create subscription and define subscription commands use the logical
database and data server names instead of the physical names.

See “Warm standby applications using replication” on page 103 for more
information about warm standby applications for a primary or replicate
database. Also see Chapter 11, “Managing Subscriptions” in the Replication
Server Administration Guide Volume 1 for more information about
subscriptions and subscription materialization.

Restrictions on using subscriptions

Replication Server supports all forms of subscription materialization and
dematerialization in warm standby applications. These restrictions apply to the
creation of subscriptions that replicate data from or into warm standby
databases:

CHAPTER 3 Managing Warm Standby Applications

Administration Guide 117

• When there is a logical connection for a database, you cannot create a
subscription for the physical active or standby database. You must create
the subscription for the logical database in order to replicate subscription
data into or from both the active and standby databases.

• You cannot create subscriptions while adding the standby database to the
replication system. You must wait until the standby database has been
properly initialized.

• You cannot add the standby database to the replication system while any
subscriptions are being created.

• You cannot create new subscriptions while the switch active command is
executing.

Subscription materialization for logical primary database

This section describes subscription materialization issues for a logical primary
database. It also describes what happens if you execute the switch active
command for a logical primary database during subscription materialization.

During subscription materialization, data is selected from the active primary
database into a materialization queue.

When you execute the switch active command, the primary Replication Server
replicates RSSD information to notify replicate sites that the active database
has been changed. When a replicate Replication Server with a materializing
subscription receives this information, the materialization queue is dropped. A
new queue is built by reselecting the subscription data from the new active
primary database.

Note The RepAgent thread for the RSSD of the primary Replication Server
must be running for replicate Replication Servers to detect that the active
database has been changed.

Subscription materialization for logical replicate database

This section describes subscription materialization issues for a logical replicate
database. It also describes what happens if you execute the switch active
command for a logical replicate database during subscription materialization.

The following sections discuss each subscription materialization method.

Using replication definitions and subscriptions

118 Replication Server

Atomic materialization When you use atomic materialization, Replication Server sets the save interval
for the materialization queue to 'strict'. Transactions are not deleted from the
materialization queue until the data has been applied to the active database and
replicated into the standby database.

Replication Server executes a marker in the active replicate database when the
materialization queue has been applied. The marker marks the start of
transactions that execute after the materialization queue is applied.

When the marker is executed at the active replicate database, Replication
Server writes an informational message like this in its log:

I. 95/10/03 18:00:15. REPLICATE RS: Created atomic subscription
publishers_sub for replication definition publishers_rep at active replicate
for <LDS.pubs2>

When the marker arrives at the standby replicate database, Replication Server
writes an informational message like this in its log:

I. 95/10/03 18:00:15. REPLICATE RS: Created atomic subscription
publishers_sub for replication definition publishers_rep at standby
replicate for <LDS.pubs2>

Materialization is now complete and Replication Server drops the
materialization queue. The subscription is considered VALID at both the active
and the standby replicate database.

If you execute the switch active command while the materialization queue is
being processed, Replication Server reapplies the materialization queue to the
new active database. If you used the incrementally option to create the
subscription, only the batches of materialization rows that were not already
replicated into the new active database are reexecuted.

Nonatomic
materialization

When you use nonatomic materialization, the save interval is set to 0, allowing
Replication Server to delete rows from the materialization queue after they are
applied to the active database.

If a subscription is materializing when you execute the switch active command,
Replication Server finishes processing the materialization queue, but marks the
subscription “suspect.” Use the check subscription command to find the
subscription status in the active and replicate databases. You must drop and re-
create suspect subscriptions.

Bulk materialization If you use bulk materialization to create a subscription that replicates data into
a warm standby application, you must ensure that the subscription data is
loaded into the active and standby replicate databases.

CHAPTER 3 Managing Warm Standby Applications

Administration Guide 119

If you load the data with a method that logs the inserted rows, such as logged
bcp, Replication Server replicates the rows into the standby database. If you
load the data with a non-logged method, you must also load it into the standby
database because the active database log contains no insert records to replicate
into the standby database.

During bulk materialization, you execute the activate subscription with
suspension command before you load the subscription data into the replicate
database. By default, activate subscription with suspension suspends the DSI
threads for both the active database and the standby database. Suspending DSI
threads allows you to load the data into both databases.

If you load the data using logged bcp or some other method that logs the rows,
execute activate subscription with suspension at active replicate only so that
Replication Server only suspends the DSI for the active database. This allows
the inserted rows to be replicated from the active database into the standby
database.

Checking subscriptions

For a warm standby application for a logical replicate database, you can use the
check subscription command to check subscription status. The Replication
Server managing the warm standby application returns either one or two status
messages, depending on whether or not the status is different for the active and
the standby database.

For example, while you are creating a subscription, the materialization status
may be VALID at the active database and ACTIVATING at the standby
database.

Dropping subscriptions

For a logical replicate database, you can drop a subscription using the drop
subscription command with the with purge option. A drop subscription marker
follows the dematerialization data from the DSI queue to the active database,
and then travels to the standby database. After the marker has been received at
both databases, subscription data is deleted from both databases.

While executing
switch active

You can execute the switch active command at the replicate Replication Server
while you drop a subscription using the drop subscription command with the
with purge option. Replication Server suspends DSI threads and temporarily
suspends dematerialization. After switch active completes, the DSI threads are
resumed and dematerialization restarts.

Using replication definitions and subscriptions

120 Replication Server

Suspect drop
subscription

Dropping a subscription using the with purge option for a logical replicate
database may lead to a suspect drop subscription if:

• The subscription is materializing in the active database, and

• You switch the active and standby databases, then

• You drop the subscription while it is materializing in the new active
database.

Dematerialization restarts and proceeds normally for the new active database,
but the new standby (old active) database may retain some subscription data
that is not purged. To resolve the discrepancy, you can reconcile the active and
the standby database using the rs_subcmp program, or you can drop and re-
create the standby database.

For example, you may see a warning message like this when you try to execute
drop subscription:

W. 95/10/02 20:59:15. WARNING #28171 DSI(111 SYDNEY_DS.pubs2) -
/sub_dsi.c(1231)
 REPLICATE RS: Dropped subscription publishers_sub for replication
 definition publishers_rep at standby replicate for <SYDNEY_DS.pubs2> before
 it completed materialization at the Active Replicate. Standby replicate may
 have some subscription data rows left in the database

Missing columns when you create the standby database
When you create a standby database for an existing database that has
replication definitions, missing columns may result under the following
combination of circumstances:

• If the existing database has a replication definition that does not include all
columns in the table, and

• An insert or update transaction that has not been committed is in the
inbound queue, and

• You create a standby database for the existing database (now the active
database), after which

• The transaction commits.

CHAPTER 3 Managing Warm Standby Applications

Administration Guide 121

Although, by default, a standby database is supposed to receive all columns, at
the time the transaction began, the standby database did not exist. Replication
Server would have discarded values for columns not in the replication
definition. If a column is not in the replication definition and the standby
database allows a null value for the column, the row can be inserted into or
updated in the standby database without the missing value. Otherwise, you
must reconcile the databases yourself.

Loss detection and recovery
Creating a warm standby application introduces additional types of loss
detection messages into a replication system. See Chapter 7, “Replication
System Recovery” for general information on Replication Server recovery, and
for recovery procedures.

If you rebuild queues in a Replication Server that participates in a warm
standby application, the Replication Server may detect losses between any of
the following databases:

Table 3-8: Loss detection in warm standby applications

If you need to use the ignore loss command in database recovery operations
where a warm standby application is involved, use the same logical or physical
data server and database designations that appear in the loss detection
messages you received.

Loss detected from To

Logical replicate database Logical primary database

Logical primary database Physical replicate database

Physical primary database Logical replicate database

Physical active database Physical standby database

Logical primary database Replication Server

Loss detection and recovery

122 Replication Server

Administration Guide 123

C H A P T E R 4 Performance Tuning

To meet the needs and demands of your Replication Server system, you
must manage resources effectively and optimize the performance of
individual Replication Servers. You can affect the performance of a
Replication Server by changing the values of configuration parameters, by
using parallel DSI threads, or by choosing disk allocations. To manage
these resources successfully, you should understand something about
Replication Server internal processing.

Replication Server internal processing
During replication, data operations are carried out by several Replication
Server threads. On UNIX platforms, they are POSIX threads. On
Windows platforms, they are WIN32 threads. Replication Server also
stores data in queues and relies on the Replication Server System
Database (RSSD) for critical system information. This section describes
how these internal operations support various processes within the
primary and replicate Replication Servers.

Name Page
Replication Server internal processing 123

Configuration parameters that affect performance 131

Suggestions for using tuning parameters 140

Using parallel DSI threads 148

Dynamic SQL for enhanced Replication Server performance 175

Using multiprocessor platforms 177

Allocating queue segments 178

Using the heartbeat feature in RMS 181

Replication Server internal processing

124 Replication Server

Threads, modules, and daemons
Replication Server runs multiple threads concurrently. The total number of
threads depends on the number of databases that a Replication Server manages
and the number of Replication Servers to which it has direct routes. Each
thread performs a specific function such as managing a user session, receiving
messages from a RepAgent, receiving messages from another Replication
Server, or applying transactions to databases.

Some threads call specific portions (or “modules”) of Replication Server to
determine the destination of messages and transactions, and to determine what
operations to replicate and how to replicate them.

Daemon threads, which run in the background and perform specified
operations at predefined times or in response to certain events, run during such
Replication Server activities as subscription materialization.

For details on Replication Server threads, modules, and daemons involved in
processes specific to the primary Replication Server, see “Processing in the
primary Replication Server” on page 124.

When you troubleshoot the replication system, verify the status of Replication
Server threads, modules, and daemons. See Chapter 1, “Verifying and
Monitoring Replication Server” for details.

Processing in the primary Replication Server
This section describes how a transaction that originates in a primary data server
is sent to the primary Replication Server and subsequently distributed to a
replicate Replication Server as illustrated in Figure 4-1.

CHAPTER 4 Performance Tuning

Administration Guide 125

Figure 4-1: Threads used for processing in the primary Replication
Server

Replication agent user thread

The information in this section applies to all Replication Agents.

RepAgent logs in to Replication Server through an Open Client interface. It
scans the transaction log, converts log records directly into LTL (Log Transfer
Language) commands, and sends them to Replication Server as soon as they
are logged—either in batches or one at a time. Replication Server then
distributes the transaction information to subscribing replicate databases.

Replication Server has one RepAgent user thread for each primary database
that it manages. Thus, Replication Server has one RepAgent user thread for
each RepAgent. The RepAgent user thread verifies that RepAgent submissions
are valid and writes them into the inbound stable queue for the database.

DIST
SRE
TD

MD
DSI-S

Replication

DSI-E

RSI

Replicate 1
Replication Server

Replicate 2
Data Server

Stable
Queue

Outbound

Stable
Queue

Inbound

Primary
Data Server

SQT

RepAgent
 User

Replicate 1
Data Server

Server

SQM

SQM

SQM
Stable
Queue

Outbound

Replication Server internal processing

126 Replication Server

Stable Queue Manager thread

There is one Stable Queue Manager (SQM) thread for each stable queue
accessed by the primary Replication Server, whether inbound or outbound.
Each RepAgent user thread works with a dedicated SQM thread that reclaims
stable queue space after a transaction is forwarded to a data server or to another
Replication Server.

Stable Queue Transaction thread

Commands stored in transaction log records and in the inbound queue are
ordered according to the sequence in which they were committed—although
they are not necessarily grouped by transaction. It is the task of the Stable
Queue Transaction (SQT) thread to reassemble transactions and place the
transactions in commit order. Transactions must be in commit order for final
application on the destination’s data servers and for materialization processing.

The SQT thread reassembles transactions as it reads commands from its stable
inbound queue and keeps a linked list of transactions. For the outbound queue,
the DSI/S thread schedules transactions, and performs the SQT function of
assembling and ordering transactions. When it reads a commit record, the SQT
makes that transaction available to the distributor (DIST) thread or to the DSI
thread, depending on what process required the SQT ordering of the
transaction.

When it reads a rollback record, the SQT thread tells the SQM thread to delete
affected records from all stable queues. Operated by the DSI/S thread, the SQT
library notifies the DSI when a transaction exceeds the large transaction
threshold. See “Using parallel DSI threads” on page 148 for more information
on transaction thresholds.

Distributor thread and related modules

For each primary database managed by a Replication Server, there is a
distributor (DIST) thread, which in turn uses SQT to read from the inbound
queue and SQM threads to write transactions to the outbound queue. Thus, for
example, if there are three primary databases, then there are three inbound
queues, three DIST threads, and three SQT threads.

Note If the only destination for transactions is a standby database, Sybase
recommends that you disable the DIST thread, which also disables the SQT
thread. The SQM thread is present and responsible for writing to the queue.

CHAPTER 4 Performance Tuning

Administration Guide 127

In determining the destination of each transaction row, the DIST thread makes
calls to the following modules: Subscription Resolution Engine (SRE),
Transaction Delivery, and Message Delivery. All DIST threads share these
modules. These modules, and the role they play in the replication system, are
described in the following sections.

Subscription Resolution Engine

The Subscription Resolution Engine (SRE) matches transaction rows with
subscriptions. When it finds a match, it attaches a destination-database ID to
each row. It marks only rows required for subscriptions, thereby minimizing
network traffic. If no subscriptions match, the DIST thread discards the row
data.

For each row, the SRE determines whether subscription migration occurs.

• A row migrates into a subscription when its column values change so that
the row matches the subscription and must be added to the replicate table.

• A row migrates out of a subscription when its column values change so
that it no longer matches the subscription and must be deleted from the
replicate table.

When the SRE detects subscription migration, it determines which operation to
replicate (insert, delete, or update) to maintain consistency between the
replicate and primary tables.

Transaction Delivery module

The Transaction Delivery (TD) module is called by the DIST thread to package
transaction rows for distribution to data servers and other Replication Servers.

Message Delivery module

The Message Delivery (MD) module is called by the DIST thread to optimize
routing of transactions to data servers or other Replication Servers. The DIST
thread passes the transaction row and the destination ID to the MD module.
Using this information and routing information in the RSSD, the module
determines where to send the transaction:

• To a data server via a DSI thread, or

• To a Replication Server via an RSI thread.

After determining how to send the transaction, the MD module places the
transaction into the appropriate outbound queue.

Replication Server internal processing

128 Replication Server

Data Server Interface threads

Replication Server starts DSI threads to submit transactions to a replicate
database to which it maintains a connection.

Each DSI thread is composed of a scheduler thread (DSI-S) and one or more
executor threads (DSI-E). Each DSI executor thread opens an Open Client
connection to a database.

To improve performance in sending transactions from a Replication Server to
a replicate database it manages, you can configure a database connection so
that transactions are applied using more than one DSI executor thread. See
“Using parallel DSI threads” on page 148 for a description of this feature.

The DSI scheduler thread calls the SQT interface to:

• Collect small transactions into groups by commit order

• Dispatch transaction groups to the next available DSI executor thread

The DSI executor threads:

• Map functions using the function strings defined for the functions,
according to the function-string class assigned to the database connection

• Execute the transactions in the replicate database

• Take action on any errors returned by the data server; depending on the
assigned error actions, also record any failed transactions in the exceptions
log

The DSI thread may apply a mixture of transactions from all primary databases
supported by the Replication Server. The transactions are read from a single
outbound stable queue for the replicate data server.

Replication Server Interface thread

RSI threads are asynchronous interfaces to send messages from one
Replication Server to another. One RSI thread exists for each destination
Replication Server to which the source database has a direct route.

The DIST thread in the primary Replication Server processes transactions,
causing those destined for other Replication Servers to be written to RSI
outbound queues. An RSI thread logs in to each replicate Replication Server
and transfers messages from the stable queue to the replicate Replication
Server.

CHAPTER 4 Performance Tuning

Administration Guide 129

When a direct route is created from one Replication Server to another, an RSI
thread in the source Replication Server logs in to the replicate Replication
Server. When an indirect route is created, Replication Server does not create a
new stable queue and RSI thread. Instead, messages for indirect routes are
handled by the RSI thread for the direct route. For details, see Chapter 6,
“Managing Routes,” in the Replication Server Administration Guide Volume 1.

Miscellaneous daemon threads

The Replication Server daemon threads shown in Table 4-1 perform
miscellaneous tasks in the replication system.

Table 4-1: Additional Replication Server daemon threads

Thread or daemon name Description

Alarm daemon (dALARM) The alarm daemon keeps track of alarms set by other threads, such as the
fade-out time for connections and the interval for the subscription retry
daemon.

Asynchronous I/O daemon (dAIO) The asynchronous I/O daemon manages asynchronous I/O to Replication
Server stable queues.

Connection manager daemon (dCM) The connection manager daemon manages connections to data servers and
other Replication Servers.

Recovery daemon (dREC) The recovery daemon takes care of various operations in connection with
warm standby applications, routing, and recovery procedures.

Subscription retry daemon (dSUB) The subscription retry daemon wakes up after a configurable timeout
period (sub_daemon_sleep_time configuration parameter in the rs_config
system table) and attempts to resume processing for subscriptions that
may have failed.

Version daemon (dVERSION) The version daemon activates briefly when the Replication Server is
started for the first time after an upgrade. It communicates the Replication
Server new version number to the ID Server.

RS user thread The RS user thread manages connections from replicate Replication
Servers during the process of creating or dropping subscriptions.

See “Subscription materialization methods” on page 339 in the
Replication Server Administration Guide Volume 1 for the data flow
involved in creating and dropping subscriptions.

USER thread A USER thread is created when a user logs in to a Replication Server to
execute RCL commands.

Replication Server internal processing

130 Replication Server

Processing in the replicate Replication Server
This section describes the processes involved when a replicate Replication
Server receives incoming messages from a primary Replication Server.

“Processing in the primary Replication Server” on page 124 describes
processing for some of the threads—SQM, RSI, DSI—described in this
section. Refer to Figure 4-1 on page 125.

Figure 4-2: Transaction processing in the replicate Replication Server

RSI user thread

The RSI user thread is a client connection thread for incoming messages from
another Replication Server. It calls the Message Delivery (MD) module to
determine whether to send the message to:

• A data server using the DSI thread, described in “Data Server Interface
threads” on page 128. The DSI thread is composed of a scheduler thread
(DSI-S) and one or more executor threads (DSI-E).

• Another Replication Server using the RSI thread, described in
“Replication Server Interface thread” on page 128.

Primary

Replicate

Replication Server

Replication Server

RSI User

SQM

SQM DSI-S

MD

Other Replicate
Replication Server

Replicate
Data Server

DSI-E

RSI

RSI

DIST

Stable
Queue

Outbound

Stable
Queue

Outbound

Stable
Queue

Outbound

CHAPTER 4 Performance Tuning

Administration Guide 131

The RSI user thread writes commands destined for other Replication Servers
or databases into outbound queues. See “Processing in the primary Replication
Server” on page 124 for details on how messages are processed after they are
stored in the outbound queues.

Configuration parameters that affect performance
Replication Server provides configuration parameters for improving
performance that affect the entire server, or are targeted for individual
connections or routes.

Replication Server parameters that affect performance
rs_init sets default configuration parameters after you install your Replication
Server. You can change the values of the configuration parameters shown in
Table 4-2 to improve Replication Server performance.

 See “Changing Replication Server parameters” on page 90 in the Replication
Server Administration Guide Volume 1 for information on how to modify these
parameters using configure replication server.

Table 4-2: Replication Server parameters that affect performance

Configuration parameter Description

deferred_queue_size The maximum size of an Open Server™ deferred queue. If Open Server
limits are exceeded, increase the maximum size. The value must be greater
than 0.

Note If modified, you must restart the Replication Server for the change
to take effect.

Default: 2048 on Linux and HPIA32
1024 on other platforms

dynamic_sql Turns dynamic SQL feature on or off. Other dynamic SQL related
configuration parameters will only take effect if this parameter is set to on.

Default: off

Configuration parameters that affect performance

132 Replication Server

dynamic_sql_cache_size Gives the Replication Server a hint on how many database objects may use
the dynamic SQL statement for a connection.
Minimum: 1
Maximum: 65536

Default: 20

dynamic_sql_cache_management Manages the dynamic SQL cache for a DSI executor thread.
Values:
mru (default) - keeps the most recently used statements and deallocates the
rest to allocate new dynamic statements when dynamic_sql_cache_size is
reached.
fixed - Replication Server stops allocating the new dynamic statements
once dynamic_sql_cache_size is reached.

exec_cmds_per_timeslice Specifies the number of LTL commands an LTI or RepAgent executor
thread can process before yielding the CPU. By increasing this value, you
allow the RepAgent executor thread to control CPU resources for longer
periods of time, which may improve throughput from RepAgent to
Replication Server.

Sybase recommends that you set this parameter at the connection level
using alter connection.

See “Controlling the number of commands the RepAgent executor can
process” on page 144.

Default: 5

Minimum: 1

Maximum: 2,147,483,647

exec_sqm_write_request_limit Specifies the amount of memory available to the LTI or RepAgent
Executor thread for messages waiting to be written to the inbound queue.

Default: 1MB
Minimum: 16KB
Maximum: 2GB

init_sqm_write_delay The initial amount of time an SQM Writer should wait for more messages
before writing a partially full block of messages to the queue. The SQM
Writer always tries to write full blocks to the queue. If it has partially filled
a block, and cannot fill it, SQM Writer waits the amount of time specified
by init_sqm_write_delay before rechecking whether messages are waiting
to be added to the block. If no messages exist, SQM Writer doubles the
init_sqm_write_delay time. The SQM Writer continues to double the delay
time until it reaches the value of init_sqm_write_max_delay. At this point,
SQM Writer writes the partially full block.

See “Setting the amount of time SQM Writer waits” on page 140.

Default: 1000 milliseconds

Configuration parameter Description

CHAPTER 4 Performance Tuning

Administration Guide 133

init_sqm_write_max_delay The maximum amount of time an SQM Writer thread should wait for more
messages before writing a partially full block of messages to the queue. See
the description of init_sqm_write_delay for more information. See also
“Setting the amount of time SQM Writer waits” on page 140.

Default: 10,000 milliseconds

md_sqm_write_request_limit Specifies the amount of memory available to the Distributor for messages
waiting to be written to the outbound queue.

Note In Replication Server 12.1, md_sqm_write_request_limit replaces
md_source_memory_pool. md_source_memory_pool is retained for
compatibility with older Replication Servers.

Default: 1MB
Minimum: 16KB
Maximum: 2GB

memory_limit The maximum total memory the Replication Server can use.

Values for several other configuration parameters are directly related to the
amount of memory available from the memory pool indicated by
memory_limit. These include exec_sqm_write_request_limit,
md_sqm_write_request_limit, queue_dump_buffer_size,
sqt_max_cache_size, sre_reserve, and sts_cachesize.

Default: 20MB

rec_daemon_sleep_time Specifies the sleep time for the recovery daemon, which handles “strict”
save interval messages in warm standby applications and certain other
operations. See “Setting wake up intervals” on page 142.

Default: 2 minutes

smp_enable Enables symetric multiprocessing (SMP). Specifies whether Replication
Server threads should be scheduled internally by Replication Server or
externally by the operation system. When Replication Server threads are
scheduled internally, Replication Server is restricted to one machine
processor, regardless of how many may be available. Values are “on” and
“off.”

See “Making SMP more effective” on page 145.

Default: off

sqm_recover_segs Specifies the number of stable queue segments Replication Server
allocates before updating the RSSD with recovery QID information.

See “Specifying the number of stable queue segments allocated” on page
145.

Default: 1
Minimum: 1
Maximum: 2,147,483,648

Configuration parameter Description

Configuration parameters that affect performance

134 Replication Server

sqm_write_flush Specifies whether or not writes to memory buffers are flushed to the disk
before the write operation completes. Values are “on” and “off.”

See also “Stable devices: considerations.”

Default: on

sqt_init_read_delay The length of time an SQT thread sleeps while waiting for an SQM read
before checking to see if it has been given new instructions in its command
queue. With each expiration, if the command queue is empty, SQT doubles
its sleep time up to the value set for sqt_max_read_delay.

Default: 1 milliseconds (ms)
Minimum: 0 ms
Maximum: 86,400,000 ms (24 hours)

sqt_max_cache_size Maximum SQT cache memory, in bytes. See “Sizing the SQT cache” on
page 142.

Default: 1,048,576 bytes

sqt_max_read_delay The maximium length of time an SQT thread sleeps while waiting for an
SQM read before checking to see if it has been given new instructions in
its command queue.

Default: 1 ms
Minimum: 0 ms
Maximum: 86,400,000 ms (24 hours)

sts_cachesize The total number of rows that are cached for each cached RSSD system
table. Increasing this number to the number of active replication definitions
prevents Replication Server from executing expensive table lookups.

Monitor whether the STS cache is too small by reviewing counter 11008 –
STSCacheExceed or examing the Replication Server log for warnings that
rows have been removed from the STS cache. See “Caching system
tables” on page 141.

Default: 100

sts_full_cache_table_name Specifies an RSSD system table that is to be fully cached. Fully cached
tables do not require access to the RSSD for simple select statements.

See “Caching system tables” on page 141 for a list of RSSD tables that can
be fully cached.

sub_daemon_sleep_time Number of seconds the subscription daemon sleeps before waking up to
recover subscriptions. The range is 1 to 31,536,000.

See“Setting wake up intervals” on page 142.

Default: 120 seconds

Configuration parameter Description

CHAPTER 4 Performance Tuning

Administration Guide 135

Stable devices: considerations

Like any application, Replication Server is subject to standard I/O and I/O
device best practices. You should consider the impact of contention for disk
Read/Write heads and I/O channels when planning how your stable devices
will be used to support your stable queues. To the extent that you can dedicate
one or more devices to each queue, I/O will be less of a performance issue. This
includes guarding the devices from use by other processes such as primary or
replicate databases or RSSDs. You can use the database connection parameter
disk_affinity to establish affinities between queues and specific partitions that
are supported by dedicated devices.

For stable queues initialized on UNIX operating system files, the
sqm_write_flush configuration parameter controls whether or not writes to
memory buffers are flushed to the disk before the write operation completes.

When sqm_write_flush is on, Replication Server opens stable queues using the
O_DSYNC flag. This flag ensures that writes are flushed from memory buffers
to the disk before write operations complete. Because the data is stored on
physical media, Replication Server can always recover the data in the event of
a system failure. This is the default setting.

When sqm_write_flush is off, writes may be buffered in the UNIX file system.
If subsequent writes fail, automatic recovery is not guaranteed. Testing has
shown that when comparing the write rates of the various options for partition
types and I/O flushing that writing to a buffered file system with
sqm_write_flush on is up to five times slower than writes to raw partitions.

sub_sqm_write_request_limit Specifies the memory available to the subscription materialization
or dematerialization thread for messages waiting to be written to
the outbound queue.

Default: 1MB
Minimum: 16KB
Maximum: 2GB

Configuration parameter Description

Configuration parameters that affect performance

136 Replication Server

Further, testing has shown that writes to raw partitions are up to seven times
slower than writes to buffered file systems with sqm_write_flush off. Turning
sqm_write_flush off when using UNIX Buffered file systems for stable devices
provides peak I/O performance but with an increased risk of data loss. Provided
you keep primary database transaction log backups, that risk can be reduced or
eliminated.

Note The sqm_write_flush setting is ignored for stable queues initialized on
raw partitions or Windows files. In these cases, write operations always take
place directly to media.

Connection parameters that affect performance
Table 4-3 describes the database connection parameters that can affect
performance. See Chapter 7, “Managing Database Connections,” in the
Replication Server Administration Guide Volume 1 for a complete list of
connection parameters.

Table 4-3: Connection parameters that affect performance

Configuration parameter Description

batch The default, “on,” allows command batches to a replicate database.

Default: on

db_packet_size The maximum size of a network packet. During database communication, the
network packet value must be within the range accepted by the database.

Maximum: 16384 bytes

Default: 512-byte network packet for all Adaptive Server databases

disk_affinity Specifies an allocation hint for assigning the next partition. Enter the logical name
of the partition to which the next segment should be allocated when the current
partition is full. Values are “partition_name” and “off.”

Default: off

dsi_cmd_batch_size The maximum number of bytes that Replication Server places into a command
batch.

Default: 8192 bytes

dsi_commit_check_locks_intrvl The number of milliseconds (ms) the DSI executor thread waits between
executions of the rs_dsi_check_thread_lock function string. Used with parallel
DSI. See “Using parallel DSI threads” on page 148.

Default: 1000 ms (1 second)

Minimum: 0

Maximum: 86,400,000 ms (24 hours)

CHAPTER 4 Performance Tuning

Administration Guide 137

dsi_commit_check_locks_max The maximum number of times the DSI executor thread executes the
rs_dsi_check_thread_lock function string before rolling back and retrying a
transaction. Used with parallel DSI. See “Using parallel DSI threads” on page
148.

Default: 400
Minimum: 1
Maximum: 1,000,000

dsi_commit_control Specifies whether commit control processing is handled internally by Replication
Server using internal tables (on) or externally using the rs_threads system table
(off). Used with parallel DSI. See “Using parallel DSI threads” on page 148.

Default: on

dsi_isolation_level Specifies the isolation level for transactions. ANSI standard and Adaptive Server
supported values are:

• 0 – ensures that data written by one transaction represents the actual data.

• 1 – prevents dirty reads and ensures that data written by one transaction
represents the actual data.

• 2 – prevents nonrepeatable reads and dirty reads, and ensures that data written
by one transaction represents the actual data.

• 3 – prevents phantom rows, nonrepeatable reads, and dirty reads, and ensures
that data written by one transaction represents the actual data.

Through the use of custom function strings, Replication Server can support any
isolation level the replicate data server may use. Support is not limited to the ANSI
standard only.

Default: the current transaction isolation level for the target data server

dsi_large_xact_size The number of commands allowed in a transaction before the transaction is
considered to be large.

Minimum: 4

Maximum: 2147483647
Default: 100

dsi_max_xacts_in_group Specifies the maximum number of transactions in a group. Larger numbers may
reduce commit processing at the replicate database, and thereby improve
throughput. Range of values: 1 – 100.

See “Specifying the number of transactions in a group” on page 146.

Default: 20

dsi_num_large_xact_threads The number of parallel DSI threads to be reserved for use with large transactions.
The maximum value is one less than the value of dsi_num_threads.

Default: 0

dsi_num_threads The number of parallel DSI threads to be used. The maximum value is 255.

Default: 1

Configuration parameter Description

Configuration parameters that affect performance

138 Replication Server

dsi_partitioning_rule Specifies the partitioning rules (one or more) the DSI uses to partition transactions
among available parallel DSI threads. Values are origin, origin_sessid, none, time,
user, and name. See also “Partitioning rules: reducing contention and increasing
parallelism” on page 159.

Default: none

dsi_serialization_method Specifies the method used to determine when a transaction can start, while still
maintaining consistency. In all cases, commit order is preserved.

These option methods are ordered from most to least amount of parallelism.
Greater parallelism can lead to more contention between parallel transactions as
they are applied to the replicate database. To reduce contention, use the
dsi_partition_rule option.

• no_wait – specifies that a transaction can start as soon as it is ready—without
regard to the state of other transactions.

• wait_for_start – specifies that a transaction can start as soon as the transaction
scheduled to commit immediately before it has started.

• wait_for_commit – specifies that a transaction cannot start until the transaction
scheduled to commit immediately preceding it is ready to commit.

These options are retained only for backward compatibility with older versions of
Replication Server:

• none – same as wait_for_start.

• single_transaction_per_origin – same as wait_for_start with dsi_partitioning_rule
set to origin.

• isolation_level_3 – same as wait_for_start with dsi_isolation_level set to 3.

Default: wait_for_commit

dsi_sqt_max_cache_size Maximum SQT (Stable Queue Transaction) interface cache memory for the
database connection, in bytes.
The default, 0, means the current setting of the sqt_max_cache_size parameter is
used as the maximum cache size for the connection.

Default: 0

dsi_xact_group_size The maximum number of bytes, including stable queue overhead, to place into
one grouped transaction. A grouped transaction is a set of transactions that the DSI
applies as a single transaction. –1 means no grouping.

Sybase recommends that you set dsi_xact_group_size to the maximum value and
use dsi_max_xacts_in_group to control the number of transactions in a group.

Maximum: 2,147,483,647
Default: 65,536 bytes

exec_cmds_per_timeslice Specifies the number of LTL commands an LTI or RepAgent Executor thread can
process before it must yield the CPU to other threads. The range is 1 to
2,147,483,648.

Default: 5

Configuration parameter Description

CHAPTER 4 Performance Tuning

Administration Guide 139

Route parameters that affect performance
Table 4-4 describes the route configuration parameters that affect performance.
See Chapter 6, “Managing Routes,” in the Replication Server Administration
Guide Volume 1 for a complete list of route parameters.

exec_sqm_write_request_limit Specifies the amount of memory available to the LTI or RepAgent Executor thread
for messages waiting to be written to the inbound queue.

Default: 1MB
Minimum: 16KB
Maximum: 2GB

md_sqm_write_request_limit Specifies the amount of memory available to the Distributor for messages waiting
to be written to the outbound queue.

Note In Replication Server 12.1, md_sqm_write_request_limit replaces
md_source_memory_pool. md_source_memory_pool is retained for compatibility
with older Replication Servers.

Default: 1MB
Minimum: 16KB
Maximum: 2GB

parallel_dsi A shorthand method for configuring parallel DSI to default values. A value of
“on” sets dsi_num_threads to 5, dsi_num_large_xact_threads to 2,
dsi_serialization_method to wait_for_commit, and dsi_sqt_max_cache_size to 1
million bytes. A value of “off” sets the parallel DSI values to their defaults. You
can set this parameter to “on” and then set individual parallel DSI configuration
parameters to fine-tune your configuration.

Default: off

use_batch_markers If use_batch_markers is set to on, the function strings rs_batch_start and
rs_batch_end will be executed.

Note This parameter will only need to be set to on for replicate data servers that
require additional SQL translation to be sent at the beginning and end of a batch
of commands that are not contained in the rs_begin and rs_commit function
strings.

Default: off

Configuration parameter Description

Suggestions for using tuning parameters

140 Replication Server

Table 4-4: Route parameters that affect performance

Suggestions for using tuning parameters
This section provides basic recommendations for improving Replication
Server performance. Whether or not changing these configuration values
improves your system performance depends on your system configuration and
how Replication Server is used at your site.

Setting the amount of time SQM Writer waits
Replication Server configuration parameters: init_sqm_write_delay and
init_sqm_write_max_delay

In a low-volume system, set init_sqm_write_delay and
init_sqm_write_max_delay to a low value so that the SQM Writer need not wait
long before writing a partially full block. In a high-volume system, set these
parameters higher because the SQM Writer rarely waits to fill a block.

Monitor how often the SQM Writer waits by reviewing counter 6038 –
WritesTimerPop.

Determine the number of full or partially full blocks that have been written by
reviewing these counters:

• 6002 – BlocksWriten

• 6041 – BlocksFullWrite

Configuration parameter Description

rsi_batch_size The number of bytes sent to another Replication Server before a truncation point
is requested.

Default: 256KB
Minimum: 1KB
Maximum: 128MB

rsi_packet_size Packet size, in bytes, for communications with other Replication Servers. The
range is 1024 to 16384.

Default: 2048 bytes

rsi_sync_interval The number of seconds between RSI synchronization inquiry messages. The
Replication Server uses these messages to synchronize the RSI outbound queue
with destination Replication Servers. The value must be greater than 0.
Default: 60 seconds

CHAPTER 4 Performance Tuning

Administration Guide 141

If counter 62006 – SleepsWriteQ is relatively high compared to counter 62002
– BlocksRead, SQM Readers must too often wait for the next block of
messages to deliver downstream—which causes latency. Decrease the values
of init_sqm_write_delay and init_sqm_write_max_delay so that SQM Writer does
not wait to long before writing a partially full block.

Ideally, the ratio of counter 62004 – BlocksReadCached to counter 62002 –
BlocksRead should be high, and counter 62006 – SleepsWriteQ should be
relatively low. Such numbers would indicate that the SQM Writer is working
approximately as fast as the SQM Reader, handing off blocks from the former
to the latter without reading from disk. However, these are Replication Server–
wide parameters, adjusting them to make one queue more efficient may
decrease the efficiency of another.

Caching system tables
Replication Server configuration parameters: sts_cache_size and
sts_full_cache_table_name

You can fully cache certain system tables so that simple select statements on
those tables do not require access to the RSSD. By default, rs_repobjs and
rs_users are fully cached. Sybase recommends that you cache rs_objects,
rs_columns, and rs_functions. Depending on the number of replication
definitions and subscriptions used, fully caching these tables may significantly
reduce RSSD access requirements. However, if the number of unique rows in
rs_objects is approximately equal to the value for sts_cachesize, these tables
may already be fully cached

Table 4-5 lists those tables that can be fully cached.

Table 4-5: System tables that can be cached

Tables

rs_classes rs_dbsubsets rs_version rs_datatype

rs_databases rs_columns rs_config rs_routes

rs_objects rs_diskaffinity rs_functions rs_users

rs_sites rs_queues rs_repdbs rs_dbreps

rs_repobjs rs_systext rs_publications

Suggestions for using tuning parameters

142 Replication Server

Setting wake up intervals
Replication Server configuration parameters: rec_daemon_sleep_time and
sub_daemon_sleep_time

By default, the recovery and subscription daemons wake up every two minutes
to check the RSSD for messages. In a typical production environment, the
subscription daemon is used rarely. As a consequence, you may be able to set
the subscription daemon wake-up interval to the maximum value: 31,536,000
seconds. Similarly, you can evaluate whether you want to set the recovery
daemon to a longer wake-up interval.

Sizing the SQT cache
Replication Server configuration parameter: sqt_max_cache_size
Database connection configuration parameter: dsi_sqt_max_cache_size

Monitor SQT cache usage by reviewing counter 24005 – CacheMemUsed.
Although this counter may indicate that the SQT cache is constantly full,
sqt_max_cache_size may not need to be increased. Instead, monitor counter
24009 – TransRemoved. If TransRemoved remains zero, indicating that
transactions are not being flushed from the cache to make room for others, you
may not need to adjust sqt_max_cache_size.

However, sqt_max_cache_size can be set too high. Monitor counter 24019 –
SQTCacheLowBnd to determine the minimum cache size before transactions
are flushed. This value depends on the number and size (in terms of bytes
requred to store in cache) of transactions; it varies as the transaction profile
varies. Monitor this counter when there is a heavy transaction load, and set
sqt_max_cache_size to the size reported by this counter plus 10 to 20%. At this
size, you may see an occasional transaction removed from cache, but typically
a frequency of no more than one transaction every five minutes does not
introduce significant latency.

CHAPTER 4 Performance Tuning

Administration Guide 143

sqt_max_cache_size applies to all SQT caches supporting DIST clients, and
provides a default value for SQT caches that support DSI clients. The DISTs
can push through transactions rapidly; their SQT caches do not need to be as
large as SQT caches for DSIs. Thus, it is advisable to set SQT cache sizes for
DSIs individually using the connection configuration parameter
dsi_sqt_max_cache_size, and using sqt_max_cache_size for DIST SQT caches
only.

Note In versions of Replication Server earlier than 12.6, Sybase advised users
to increase sqt_max_cache_size to ensure that many closed transactions were
ready to be distributed or sent to the replicate database when resources became
available. With Replication Server 12.6 and later, this advice no longer applies.

Controlling the number of network operations
Database connection configuration parameter: dsi_cmd_batch_size

dsi_cmd_batch_size controls the size of a DSI command batch. That is, it
controls the size of the buffer a DSI uses to send commands to a replicate data
server. When the DSI configuration batch is set on, the DSI places as many
commands as will fit into a single command batch before sending it to the
replicate. In some cases, increasing the value of dsi_cmd_batch_size improves
throughput by providing the replicate database with more work per command
batch.

You can monitor the average size of a batch by referring to counter 57076 –
DSIEBatchSize. You can monitor the average amount of time taken to process
a batch (the time from when the batch is created until it is flushed and the
results processed) by referring to counter 57070 – DSIEBatchTime.

The following counters may also be useful in monitoring the effectiveness of
batching and batch size:

Controlling the number of outstanding bytes
Database connection configuration parameters: exec_sqm_write_request_limit
and md_sqm_write_request_limit

57037 – SendTime 57079 – DSIEOCmdCount 57063 – DSIEResultTime

57070 – DSIEBatchTime 57092 – DSIEBFMaxBytes 57076 – DSIEBatchSize

Suggestions for using tuning parameters

144 Replication Server

exec_sqm_write_request_limit controls the maximum number of outstanding
bytes the RepAgent User thread can hold before it must wait for some of those
bytes to be written to the inbound queue. Similarly,
md_sqm_write_request_limit controls the number of outstanding bytes a DIST
thread can hold before it must wait for some of those bytes to be written to the
outbound queue.

Monitor the number of times and duration of time the RepAgent Executor
sleeps while waiting for outstanding write requests to complete by reviewing
this counter:

• 58019 – RAWriteWaitsTime

If the RepAgent Executor consistently reaches this threashold, review the
StableDevice I/O.

Controlling the number of commands the RepAgent executor can
process

Database connection configuration parameter: exec_cmds_per_timeslice

By default, the value of the exec_cmds_per_timeslice parameter is 5, which
indicates that the RepAgent executor thread can process no more than five
commands before it must yield the CPU to other threads. Depending on your
environment, increasing or decreasing these values may improve performance.

If the in-bound queue is slow to be processed, try increasing these values to
give the RepAgent executor thread and the DIST thread more time to perform
their work. If, however, the out-bound queue is slow to be processed, try
decreasing these parameter values so that the DSI has more time to work.

If CPU resources are limited with respect to the number of connections
Replication Server supports, increasing the value of exec_cmds_per_timeslice
may result in decreased overall performance. In this case, giving the RepAgent
Executor more control of CPU resources may reduce resources to other
Replication Server threads.

Monitor the number of times and duration of time the RepAgent executor
thread yields CPU with this counter:

• 58016 – RAYieldTime

CHAPTER 4 Performance Tuning

Administration Guide 145

Specifying the number of stable queue segments allocated
Replication Server configuration parameter: sqm_recover_segs

sqm_recover_segs specifies the number of stable queue segments Replication
Server allocates before updating the RSSD with recovery QID information.

If sqm_recover_segs is set low, more RSSD updates are performed, possibly
slowing performance. If sqm_recover_segs is set high, fewer RSSD updates
are performed, possibly improving performance at the expense of longer
recovery times.

Monitor how often an SQM Writer makes updates to the rs_oqids table by
reviewing counter 6036 – UpdsRsoqid. Typically, increasing the value of
sqm_recover_segs improves performance by reducing the amount of time and
system resources necessary to allocate segments. However, queue startup and
restart take longer as the SQM Writer must scan more of the queue to determine
the last message successfully written for each origin. Each segment requires
1MB of queue space; determine the value of sqm_recover_segs by calculating
the number of megabytes the SQM Writer can afford to scan at startup or
restart. For example, if the SQM Writer can scan 50MB of queue without
slowing Replication Server startup or restart, set sqm_recover_segs to 50.

Selecting disk partitions for stable queues
Database connection configuration parameter: disk_affinity

The Replication Server partition affinity feature (see “Allocating queue
segments” on page 178) allows you to choose the disk partition to which
Replication Server allocates segments for stable queues. Sybase suggests that
to improve overall throughput, you associate faster devices with stable queues
that process more slowly.

Making SMP more effective
Replication Server configuration parameter: smp_enable

Suggestions for using tuning parameters

146 Replication Server

To determine the number of processors required to make effective use of SMP,
establish a base of two processors plus one more for every four queues.
Processor speed may determine whether these numbers are correct to meet
your performance needs. If you have outbound queues supporting parallel DSI,
and there are more than 12 DSI Executor threads, you may want to increase the
processor/thread ratio for outbound queues—one processor for every three or
even two outbound queues.

Replication Server always uses a finite number of threads based on the number
of supported connections and routes. Even if all threads are to be kept always
busy, making more and more processors available to Replication Server will
eventually cause “CPU saturation”—beyond which more processors will not
increase performance. At that point, any performance issues you experience as
a result of CPU resources may best be addresssed by introducing CPUs running
at faster speeds.

In some cases, there is evidence that making too many processors available to
Replication Server can actually decrease performance. In such cases, the issue
seems to be the amount of time taken to force thread context switches among
the available processors. Use your operating system (OS) monitoring utilities
to monitor the OS’s management of the Replication Server process and its
threads. These utilities will help you determine if a reduction in CPUs made
available to Replication Server reduces the number of such context switches.

Specifying the number of transactions in a group
You can use different configuration parameters to control the number of
transactions in a group.

Database configuration parameter : dsi_max_xacts_in_group

dsi_max_xacts_in_group specifies the maximum number of transactions in a
group. Larger numbers may reduce commit processing at the replicate
database, and thereby improve throughput.

Monitor the average number of transactions placed in a group per DSI-E thread
by reviewing counter 57001 – UnGroupedTransSched.

Monitor the average number of transactions per group for the total DSI
connection by reviewing these counters:

• 5000 – DSIReadTranGroups

• 5002 – DSIReadTransUngrouped

CHAPTER 4 Performance Tuning

Administration Guide 147

Use dsi_max_xacts_in_group to control group size. Set dsi_xact_group_size to
the maximum value of 2147483647 and do not change it. Contention among
parallel transactions may be reduced by reducing the value of
dsi_max_cacts_in_group to 1, which indicates no grouping.

Monitor why groups are being closed by reviewing these counters:

• 5042 – GroupsClosedBytes

• 5043 – GroupsClosedNoneOrig

• 5044 – GroupsClosedMixedUser

• 5045 – GroupsClosedMixedMode

• 5049 – GroupsClosedTranPartRule

• 5051 – UserRuleMatchGroup

• 5053 – TimeRuleMatchGroup

• 5055 – NameRuleMatchGroup

• 5063 – GroupsClosedTrans

• 5068 – GroupsClosedLarge

• 5069 – GroupsClosedWSBSpec

• 5070 – GroupsClosedResume

• 5071 – GroupsClosedSpecial

• 5072 – OriginRuleMatchGroup

• 5074 – OSessIDRuleMatchGroup

• 5076 – IgOrigRuleMarchGroup

Database configuration parameters: dsi_xact_group_size and
dsi_max_xacts_in_group

Use these configuration parameters together to increase the number of
transactions that can be grouped as a single transaction for application to the
replicate database. If the average number of commands per transaction is small
(five or fewer), you can use dsi_xact_group_size and dsi_max_xact_in_group to
improve transaction application time.

Sybase recommends that you set dsi_xact_group_size to the maximum value,
and use dsi_max_xact_in_group to control transaction group size.

Using parallel DSI threads

148 Replication Server

Setting transaction size
For single DSI connections, Sybase recommends that you set the value of
dsi_large_xact_size to the maximum value of 21474836467. Even when
parallel DSI is not configured, the DSI/S reads the statement limit set by
dsi_large_xact_size and performs several tasks related to parallel DSI.

Using parallel DSI threads
You can configure a database connection so that transactions are applied to a
replicate data server using parallel DSI threads rather than a single DSI thread.
Applying transactions in parallel increases the speed of replication, yet
maintains the serial commit order of the transactions that occurred at the
primary site.

When parallel DSI threads are active, Replication Server normally starts
processing a transaction before the preceding transaction has committed and
after the DSI has seen the commit record for the next transaction. The commit
is delayed until it is determined that all preceding transactions have committed.
Replication Server can maintain the order in which transactions are committed
and detect conflicting updates in transactions that are executing in parallel
simultaneously, using either of these methods:

• Internally, using Replication Server internal tables and function strings, or

• Externally, using th rs_threads system table in the replicate database.

Replication Server can achieve additional parallelism in the way it processes
transactions containing a large number of operations with parallel DSI threads.
Large transactions begin processing before the DSI has seen the commit
record. While this means a large transaction can be processed sooner, it also
means that in a warm standby situation, Replication Server might start
processing a transaction that is ultimately rolled back. However, with
subscription replication, the rollback transaction would be caught by the DIST
thread.

Replication Server provides other options for maximizing parallelism and
minimizing contentions between transactions. For example:

• Transaction serialization methods allow you to choose the degree of
parallelism your system can handle without inducing conflicts.

CHAPTER 4 Performance Tuning

Administration Guide 149

• Transaction partitioning rules provide additional tuning to affect how
transactions are grouped and distributed to avoid contention in the
replicate database.

Benefits and risks
For most primary databases, many users and applications can create
transactions simultaneously. Funneling all of these transactions to the replicate
through a single connection can create a serious bottleneck. This bottleneck
can cause periods of unwanted latency between the primary and the replicate.

The benefit of enabling parallel DSI within Replication Server is to reduce this
potential bottleneck by processing multiple transactions across multiple
replicate datases at the same time.

The risk in enabling parallel DSI is the introduction of contention between the
multiple replicate connections and their transactions. The simultaneous
application of transactions against the replicate may introduce competition
between the transactions for replicate resources, creating a different kind of
bottleneck.

As a result, using parallel DSI threads successfully requires an in-depth
knowledge of your replication environment and iterative testing to determine
which of the parallel DSI tuning parameters are most beneficial. The objective
is to provide high throughput while controlling the amount of contention
introduced at the replicate.

For example, consider a body of work that includes 1000 transactions that must
be replicated. It will take some time to send all 1000 transactions across a
single replicate connection. However, attempting to configure and use 1000
connections, one for each transaction, will likely result in contentions and
strained server resources. A successful configuration requires a balance
between the two scenarios; it depends on both the transaction profile and the
impact of issuing those transactions against the replicate using parallel DSI.

In a second example, two serial transactions issued at the primary each perform
a single update operation to the same table row. If these two transactions are
attempted in parallel at the replicate by two connections, the first transaction to
access the table row is granted exclusive access. The second transaction must
wait until the first transaction has either committed or rolled back and thus
released the row. Although both transactions are ultimately applied, there is no
benefit from the parallel DSI configuration. The transactions are processed
serially in the same way they would have been processed without parallel DSI.
The contention has nullified any benefit from using parallel DSI.

Using parallel DSI threads

150 Replication Server

Parallel DSI parameters
You can customize the parallel DSI thread environment using the configuration
parameters shown in Table 4-6. Use these configuration parameters with alter
connection to tune parallel DSI threads for individual connections.

Table 4-6: Parallel DSI configuration parameters

Configuration parameter Description

dsi_commit_check_locks_intrvl The number of milliseconds (ms) the DSI executor thread waits between
executions of the rs_dsi_check_thread_lock function string.

Default: 1000 ms (1 second)
Minimum: 0
Maximum: 86,400,000 ms (24 hours)

dsi_commit_check_locks_log The number of times the DSI executor thread executes the
rs_dsi_check_thread_lock function string before logging a warning message.

Default: 200
Minimum: 1
Maximum: 1,000,000

dsi_commit_check_locks_max The maximum number of times the DSI executor thread executes the
rs_dsi_check_thread_lock function string before rolling back and retrying a
transaction.

Default: 400
Minimum: 1
Maximum: 1,000,000

dsi_commit_control Specifies whether commit control processing is handled internally by
Replication Server using internal tables (on) or externally using the rs_threads
system table (off).

Default: on

dsi_ignore_underscore_names When the dsi_partitioning_rule is set to “name,” specifies whether or not
Replication Server ignores transaction names that begin with an underscore.
Values are “on” and “off.”

Default: on

CHAPTER 4 Performance Tuning

Administration Guide 151

dsi_isolation_level Specifies the isolation level for transactions. ANSI standard and Adaptive
Server supported values are:

• 0 – ensures that data written by one transaction represents the actual data.

• 1 – prevents dirty reads and ensures that data written by one transaction
represents the actual data.

• 2 – prevents nonrepeatable reads and dirty reads, and ensures that data written
by one transaction represents the actual data.

• 3 – prevents phantom rows, nonrepeatable reads, and dirty reads, and ensures
that data written by one transaction represents the actual data.

Through the use of custom function strings, Replication Server can support any
isolation level the replicate data server may use. Support is not limited to the
ANSI standard only.

Default: the current transaction isolation level for the target data server

dsi_large_xact_size The number of statements allowed in a transaction before it is considered to be
a large transaction.

Default: 100
Minimum: 4

dsi_num_large_xact_threads The number of parallel DSI threads to be reserved for use with large transactions.
The maximum value is one less than the value of dsi_num_threads.

Default: 0

dsi_num_threads The number of parallel DSI threads to be used for a connection. A value of 1
disables the parallel DSI feature.

Default: 1
Minimum: 1
Maximum: 255

dsi_partitioning_rule Specifies the partitioning rules (one or more) the DSI uses to partition
transactions among available parallel DSI threads. Values are origin,
origin_sessid, time, user, name, none, and ignore_origin. See “Partitioning rules:
reducing contention and increasing parallelism” on page 159 for detailed
information.

Default: none

Configuration parameter Description

Using parallel DSI threads

152 Replication Server

To configure a connection for parallel DSI, set the parallel_dsi parameter to on
and then set individual parallel DSI configuration parameters to fine-tune your
environment.

For example, to enable parallel DSI for the connection to the pubs2 database
on the SYDNEY_DS data server, enter:

alter connection to SYDNEY_DS.pubs2
 set parallel_dsi to 'on'

dsi_serialization_method Specifies the method used to determine when a transaction can start, while still
maintaining consistency. In all cases, commit order is preserved.

These option methods are ordered from most to least amount of parallelism.
Greater parallelism can lead to more contention between parallel transactions as
they are applied to the replicate database. To reduce contention, use the
dsi_partition_rule option.

• no_wait – specifies that a transaction can start as soon as it is ready, without
regard to the state of other transactions.

• wait_for_start – specifies that a transaction can start as soon as the transaction
scheduled to commit immediately before it has started.

• wait_for_commit – specifies that a transaction cannot start until the transaction
scheduled to commit immediately preceding it is ready to commit.

These options are retained only for backward compatibility with earlier versions
of Replication Server:

• none – same as wait_for_start.

• single_transaction_per_origin – same as wait_for_start with
dsi_partitioning_rule set to origin.

• isolation_level_3 – same as wait_for_start with dsi_isolation_level set to 3.

Default: wait_for_commit

dsi_sqt_max_cache_size The maximum SQT cache size for the database connection. The default, 0,
means the current setting of the sqt_max_cache_size parameter is used as the
maximum cache size for the connection.

See “Sizing the SQT cache” on page 142 for more information about setting the
SQT cache size.

Default: 0

parallel_dsi A shorthand method for configuring parallel DSI to default values. A value of
“on” sets dsi_num_threads to 5, dsi_num_large_xact_threads to 2,
dsi_serialization_method to wait_for_commit, and dsi_sqt_max_cache_size to 1
million bytes. A value of “off” sets the parallel DSI values to their defaults. You
can set this parameter to “on” and then set individual parallel DSI configuration
parameters to fine-tune your configuration.

Default: off

Configuration parameter Description

CHAPTER 4 Performance Tuning

Administration Guide 153

See “Configuring parallel DSI for optimal performance” on page 170 for
guidelines on configuring the parameters.

Components of parallel DSI
Figure 4-3 shows the components of parallel DSI.

Figure 4-3: Parallel DSI components

DSI scheduler thread

The DSI scheduler thread (shown as DSI-S in Figure 4-3) collects small
transactions into groups by commit order. Once transactions are grouped, the
DSI scheduler dispatches the groups to the next available DSI executor thread.
The DSI scheduler attempts to dispatch groups for different origins in parallel,
because they can commit in parallel. If contention between transactions from
different origins is too high, set the the ignore_origin option for the
dsi_partitioning_rule parameter.

Transaction partitioning rules allow you to specify additional criteria the DSI
scheduler can use to group transactions. See “Partitioning rules: reducing
contention and increasing parallelism” on page 159.

DSI executor threads

The DSI executor threads (shown as DSI-E in Figure 4-3) map functions to
function strings and execute the transactions on the replicate database. The DSI
executor threads also take action on any errors the replicate data server returns.

Replicate

Replicate
data server

Replication Server

stable
queue

Outbound
DSI-S

DSI-E

DSI-E

DSI-E

DSI-E

Using parallel DSI threads

154 Replication Server

Processing transactions with parallel DSI threads
You can define large and small transactions with the dsi_large_xact_size
database connection configuration parameter. dsi_large_xact_size specifies the
number of commands allowed in a transaction before the transaction is
considered to be large. Replication Server normally processes small and large
transactions differently.

Small transactions

Replication Server attempts to group similar transactions to process them as
one, larger transaction. In this way, Replication Server can issue one commit
for the group rather than committing each individual transaction. A group of
transactions is complete and sent to the next available DSI executor thread
when one of several criteria is met. For example:

• The next transaction has been issued from a different origin.

• The number of transactions in the group exceeds the value specified by
dsi_max_xacts_in_group.

• The total size, in bytes, of the transactions in the group exceeds the value
specified by dsi_xact_group_size.

• The next transaction is a large transaction, which is always grouped by
itself.

• A transaction partitioning rule determines that the next transaction cannot
be grouped with the existing group.

Once a group is complete, it can be sent to the next available DSI executor
thread. Only committed transactions can be added to a group. That is,
transactions are not added to the transaction group until their commit record is
read.

Large transactions

Large transactions are submitted to the next available DSI executor thread that
is reserved for a large transaction. The DSI executor thread sends the
transaction to the replicate data server without waiting to see the commit
record. If the transaction was rolled back at the primary data server, the DSI
executor thread rolls it back at the replicate data server.

If Replication Server encounters a large transaction, and a dedicated large
transaction thread is not available, the transaction is processed in the same way
as a small transaction.

CHAPTER 4 Performance Tuning

Administration Guide 155

Selecting isolation levels
By selecting a transaction isolation level, you can control the degree to which
data can be accessed by other users during a transaction. The ANSI SQL
standard defines four levels of isolation for transactions. Each isolation level
specifies the kinds of actions that are not permitted while concurrent
transactions are processing. Higher levels include the restrictions imposed by
lower levels. For more information about isolation levels, see the Adaptive
Server Enterprise Transact-SQL Guide.

Note Replication Server supports not just the ANSI standard values, but all
values needed to replicate to any supported data servers.

• Level 0 – prevents other transactions from changing data that has already
been modified by an uncommited transaction. However, other transactions
can still read the uncommited data, which results in dirty reads.

• Level 1 – prevents dirty reads, which occur when one transaction modifies
a row, and a second transaction reads that row before the first transaction
commits the change.

• Level 2 – prevents nonrepeatable reads, which occur when one transaction
reads a row and a second modifies that row. If the second transaction
commits its change, subsequent reads by the first transaction yield
different results than the original read.

• Level 3 – ensures that data read by one transaction is valid until the end of
the transaction. It prevents “nonrepeatable reads” and “phantom rows” by
applying an index page or table lock until the end of the transaction.

Select isolation level 3 if you are using triggers to enforce referential
integrity of data across a database. Isolation level 3 prevents phantom rows
from occurring in a table while a trigger is executing.

You can set the isolation level using create connection or configure connection
with the dsi_isolation_level option. For example, to change the isolation level to
3 for the connection to the pubs2 database on the SYDNEY_DS data server,
enter:

alter connection to SYDNEY_DS.pubs2

Using parallel DSI threads

156 Replication Server

set dsi_isolation_level to ’3’

Note Isolation levels may vary depending on the replicate data server. The
rs_set_isolation_level function string must be edited for non-Sybase replicate
data servers, and include the rs_isolation_level system-defined variable. See
the Replication Server Reference Manual for more information about
rs_set_isolation_level.

Replication Server sets the isolation-level value to the rs_set_isolation_level
function string using the rs_isolation_level system variable.
rs_set_isolation_level executes when Replication Server establishes the
connection with the replicate data server. If no value has been set, Replication
Server does not execute rs_dsi_isolation_level, and instead uses the isolation
level of the data server. The default isolation level for Adaptive Server is 1.

If you are using a data server other than Adaptive Server, make sure you
include the rs_isolation_level variable when you modify the
rs_set_isolation_level function string for your data server.

Transaction serialization methods
Replication Server provides four different serialization methods for specifying
the level of parallelization. The serialization method you choose depends on
the amount of contention you expect between parallel threads and your
replication environment. Each serialization method defines how much of a
transaction can start before it must wait for the previous transaction to commit.

Use the dsi_partitioning_rule parameter to reduce the probability of contention
without reducing the degree of parallelism assigned by the serialization
method. See “Partitioning rules: reducing contention and increasing
parallelism” on page 159.

The serialization methods are:

• no_wait

• wait_for_start

• wait_for_commit

Use the alter connection command with the dsi_serialization_method parameter
to select the serialization method for a database connection. For example, enter
the following command to select the wait_for_commit serialization method for
the connection to the pubs2 database on the SYDNEY_DS data server:

CHAPTER 4 Performance Tuning

Administration Guide 157

alter connection to SYDNEY_DS.pubs2
 set dsi_serialization_method to 'wait_for_commit'

A transaction contains three parts:

• The beginning

• The body of the transaction, consisting of operations such as insert, update,
or delete

• The end of the transaction, consisting or a commit or a rollback

While providing commit consistency, the serialization method defines whether
the beginning of the transaction waits for the previous transaction to become
ready to commit or if the beginning of the transaction can be processed earlier.

no_wait

This method instructs the DSI to initiate the next transaction without waiting
for the previous transaction to commit. It assumes that your primary
applications are designed to avoid conflicting updates, or that
dsi_partitioning_rule is used effectively to reduce or eliminate contention.
Adaptive Server does not hold update locks unless dsi_isolation_level has been
set to 3. The method assumes little contention between parallel transactions
and results in the nearly parallel execution shown in Figure 4-6.

Figure 4-4: Thread timing with the no_wait serialization method

no_wait provides the better opportunity for increased performance, but also
provides the greater risk of creating contentions.

EndBody

Transaction A

EndBody

Transaction B

EndBody

Transaction C

Time

Using parallel DSI threads

158 Replication Server

wait_for_start

wait_for_start specifies that a transaction can start as soon as the transaction
scheduled to commit immediately before it has started. See Figure 4-5.

Sybase recommends that you do not concurrently set dsi_serialization_method
to wait_for_start and dsi_commit_control to off.

Figure 4-5: Thread timing with wait_for_start serialization method

wait_for_commit

In this method, the next thread’s transaction group is not sent for processing
until the previous transaction has processed successfully and the commit is
being sent. This is the default setting. It assumes considerable contention
between parallel transactions and results in the staggered execution shown in
Figure 4-6.

Figure 4-6: Thread timing with wait_for_commit serialization method

EndBody

Transaction A

EndBody

Transaction B

Time

EndBody

EndBody

Transaction A

EndBody

Transaction B

EndBody

Transaction C

Time

CHAPTER 4 Performance Tuning

Administration Guide 159

This method maintains transaction serialization by instructing the DSI to wait
until a transaction is ready to commit before initiating the next transaction. The
next transaction can be submitted to the replicate data server while the first
transaction is committing, since the first transaction already holds the locks
that it requires.

Partitioning rules: reducing contention and
increasing parallelism

Another parallel DSI tuning parameter is dsi_partitioning_rule. Partitioning
rules set using dsi_partitioning_rule allow the parallel DSI feature to make
decisions about transaction groups and parallel execution based on transactions
having common names, users, overlapping begin/commit times, or a
combination of these. Partitioning rules allow the parallel DSI feature to more
closely mimic processing order at the primary, and are intended to be used in
reducing contention at the replicate.

Each of the parallel DSI parameters provides a method for fine-tuning the
feature based on conditions at your installation. dsi_num_threads controls the
number of DSI threads available for a connection. dsi_serialization_method
controls the amount of parallelism for the connection, but must balance
increased parallelism with the potential for contentions at the replicate.
dsi_partitioning_rule provides a method for reducing contentions without
reducing the overall capabilities of the parallel DSI feature.

Using transaction-partitioning rules

Replication Server allows you to partition transactions for each connection
according to one or more of these attributes:

• Origin

• Origin and session ID

• None, in which no partitioning rule is applied

• User name

• Origin begin and commit times

• Transaction name

Using parallel DSI threads

160 Replication Server

• Ignore origin

Note If partitioning rules are to be used to improve performance,
dsi_serialization_method must not be wait_for_commit. wait_for_commit
removes contention by reducing parallelism.

To select partition rules, use the alter connection command with the
dsi_partitioning_rule option. The syntax is:

alter connection to data_server.database
set dsi_partitioning_rule to ‘{ none|rule[, rule] }’

Values for rule are user, time, origin, origin_sessid, name, and ignore_origin.

For example, to partition transactions according to user name and origin begin
and commit times, enter:

alter connection to TOKYO_DS.pubs2
set dsi_partitioning_rule to ‘user,time’

Partitioning rule: origin

origin causes transactions from the same origin to be serialized when applied to
the replicate database .

Partitioning rule: origin and process ID

origin_sessid causes transactions with the same origin and the same process ID
to be serialized when applied to the replicate database. Sybase recommends
that when first trying partitioning rules start with a setting of
origin_sessid,time.

Note The process ID for Application Server is the Session Process ID (SPID).

Partitioning rule: none

none is the default behavior, in which the DSI scheduler assigns each
transaction group or large transaction to the next available parallel DSI thread.

Partitioning rule: user

If you choose to partition transactions according to user name, transactions
entered by the same primary database user ID are processed serially. Only
transactions entered by different user IDs are processed in parallel.

CHAPTER 4 Performance Tuning

Administration Guide 161

Use of this partitioning rule avoids contentions, but may in some cases cause
unnecessary loss of parallelism. For example, consider a DBA who is running
multiple batch jobs. If the DBA submits each batch job using the same user ID,
Replication Server processes each one serially.

The user name partitioning rule is most useful if each user connection at the
primary has a unique ID. It is less useful if multiple users log on using the same
ID, such as “sa.” In such cases, orig_sessid may be a better option.

Partitioning rule: origin time begin and commit times

If the time partitioning rule is used, the DSI scheduler looks at the origin begin
and commit times of transactions to determine which transactions could not
have been executed by the same process at the primary database. A transaction
whose origin begin time is earlier than the commit time of the preceding
transaction can be processed by a different DSI executor thread.

Suppose the origin begin and commit times partitioning rule has been selected,
and the transactions and processing times shown in Figure 4-7 are all from the
same primary database.

Figure 4-7: Transaction origin begin and commit times

T1 T2 T3 T4 T5 T6 T7 T8

B

A

C

D

Time

Executor thread X Executor thread Y
A
B
D

C

Using parallel DSI threads

162 Replication Server

In this example, the DSI scheduler gives transaction A to DSI executor thread
X. The scheduler then compares the begin time of transaction B and the
commit time of transaction A. As transaction A has committed before
transaction B begins, the scheduler gives transaction B to executor thread X.
That is, transactions A and B may be grouped together and may be processed
by the same DSI executor thread. Transaction C, however, begins before
transaction B commits. Therefore, the scheduler assumes that transactions B
and C were applied by different processes at the primary, and gives transaction
C to executor thread Y. Transactions B and C are not allowed in the same group
and may be processed by different DSI executor threads. Because transaction
D begins before transaction C commits, the scheduler can safely give
transaction D to executor thread X.

Note Use of the origin begin and commit times partitioning rule may lead to
contentions when large transactions are processed, as they are scheduled before
the commits are seen.

Partitioning rule: name

The DSI scheduler can use transactions names to group transactions for serial
processing. When creating a transaction on Adaptive Server, you can use the
begin transaction command to assign a transaction name.

If the transaction name partitioning rule is applied, the DSI scheduler assigns
transactions with the same name to the same executor thread. Transactions with
different transaction names are processed in parallel. Transactions with a null
or blank name are ignored by the name parameter. Their processing is
determined by other DSI parallel processing parameters or the availability of
other executor threads.

Note This partitioning rule is available to non-Sybase data servers only if they
support transaction names.

Default transaction
names

By default, Adaptive Server always assigns a name to each transaction. If a
name has not been assigned explicitly using begin transaction, Adaptive Server
assigns a name that begins with the underscore character and includes
additional characters that describe the transaction. For example, Adaptive
Server assigns a single insert command the default name “_ins.”

CHAPTER 4 Performance Tuning

Administration Guide 163

Use the dsi_ignore_underscore_name option with alter connection to specify
whether or not Replication Server ignores these names when partitioning
transactions based on transaction name. By default,
dsi_ignore_underscore_name is on, and Replication Server treats transactions
with names that begin with an underscore in the same way it treats transactions
with null names.

Partitioning rule: ignore origin

All partitioning rules, except ignore_origin, allow transactions from different
origins to be applied in parallel, regardless of other specified partitioning rules.
For example:

alter connection dataserver.db
 set dsi_partitioning_rule to "name"

In this case, transactions with different origins are applied in parallel, whether
or not they have the same name.

The name partitioning rule only affects transactions from the same origin.
Thus, transactions with the same origin and name are applied serially, and
transactions with the same origin and different names are applied in parallel.

ignore_origin overrides the default handling of transactions from different
origins, and allows them to be partitioned as if they all came from the same
origin.

If ignore_origin is listed first in the alter connection statement, Replication
Server partitions transactions with the same or different origins according to
the second or succeeding rules in the statement. For example:

alter connection dataserver.db
 set dsi_partitioning_rule to "ignore_origin, name"

In this case, all transactions with the same name are applied serially and all
transactions with different names are applied in parallel. The origin of the
transaction is irrelevant.

If ignore_origin is listed in the second or a succeeding position in the alter
connection statement, Replication Server ignores it.

Using multiple transaction rules

You can set multiple transaction rules for a single connection. For example,
applying both origin session ID and origin begin and commit times best
approximates the processing environment at the primary database.

Using parallel DSI threads

164 Replication Server

When more than one transaction rule is specified, Replication Server applies
the rules in the order in which they are entered in the alter connection set
dsi_partitioning_rule syntax.

For example, if dsi_partitioning_rule is set to “time, user,” Replication Server
checks origin begin and commit times before checking user ID. If no conflict
exists for origin begin and commit times, Replication Server checks user ID. If
there is a conflict involving begin and commit times, Replication Server
applies the time rule without checking the user ID. Thus, two transactions will
be assigned to different parallel DSI threads if the origin begin time of the later
transaction is earlier than the commit time—even if both transactions have the
same user ID.

Grouping logic and transaction partitioning rules

Partitioning rules can affect grouping as well as scheduling decisions. When no
partitioning rule is applied, a group is complete when, for example, the
maximum size for a group is reached or a large transaction is encountered.

If a partitioning rule determines that two transactions occurred at overlapping
times (time rule), have different transaction names (name rule), or are from
different users (user rule), the two transactions are not allowed in the same
group. Otherwise, normal group-size decisions are applied, based on
transaction size, origin, and so forth. See “Small transactions” on page 154.

Resolving conflicting updates
Parallel DSI processing must duplicate the commit order of transactions at the
primary database, yet allow transaction updates to process simultaneously. It
must then resolve any transaction contentions that occur as a result. Commit
order deadlock transaction contentions—or contention deadlocks—can occur
when a transaction cannot commit because it must wait for an earlier
transaction to commit, and the earlier transaction cannot commit because
needed resources are locked by the later transaction.

For example, DSI threads A and B are processing transactions in parallel.
Thread A’s transaction must commit before thread B’s transaction. Thread B’s
transaction locks resources needed by thread A. Thread B’s transaction cannot
commit until thread A’s transaction commits, and thread A’s transaction cannot
commit because needed resources are locked by thread B.

Replication Server provides two methods for resolving commit order
deadlocks:

CHAPTER 4 Performance Tuning

Administration Guide 165

• Internally, using Replication Server internal tables and a function string, or

• Externally, using the rs_threads system table in the replicate database and
several function strings.

The internal method is handled primarily within Replication Server, and uses
the rs_dsi_check_thread_lock function string for commit order deadlock
detection. The external method requires both Replication Server and the
replicate database, and uses the rs_threads system table for both commit order
validation and commit order deadlock detection.

Sybase recommends the internal method, which is the default, for both Sybase
and non-Sybase data servers. This method requires less network I/O than the
external method, and, if a commit order deadlock occurs, may require the
rollback of only a single transaction. The external method requires more
network I/O and results in the rollback of several transactions. The external
method is included for compatibility with earlier versions of Replication
Server.

If Replication Server encounters commit order deadlock and
dsi_commit_control is on, Replication Server rolls back and retries one
transaction. If, however, Replication Server encounters commit order deadlock
and dsi_commit_control is off, Replication Server rolls back and retries all
transactions serially.

To select a method, enter the alter connection command with the
dsi_commit_control option. For example, to choose the internal method for the
pubs2 database on the TOKYO_DS data server, enter:

alter connection to TOKYO_DS.pubs2
set dsi_commit_control to ‘on’

Setting dsi_commit_control to “on” specifies the internal method; setting
dsi_commit_control to “off” specifies the external method.

Resolving conflicts internally using the rs_dsi_check_thread_lock function
string

To preserve transactional integrity, Replication Server must maintain
transaction commit order and resolve commit order consistency deadlocks.
Figure 4-8 describes the logic Replication Server uses to resolve commit order
deadlocks using the rs_dsi_check_thread_lock function string.

Using parallel DSI threads

166 Replication Server

Figure 4-8: Conflict resolution logic using the
rs_dsi_check_thread_lock function string

Transaction path

Primary data server

No

No

Is transaction at
top of OQID stack?

Process

Is transaction next
n

Commit

Yes

Roll back Yes

Replication Server

Yes

No

Wait
one to commit?

Has dsi_commit_check_

Is rs_dsi_check_thread_lock > 0?

locks_intrvl time elapsed?

Has dsi_commit_check_
locks_max been reached?

Yes

No

CHAPTER 4 Performance Tuning

Administration Guide 167

Note The internal method resolves commit order deadlocks that Replication
Server detects and resolves conflicting updates only within Replication Server.
If a deadlock is detected by the replicate database, the replicate chooses a
transaction to roll back. To guarantee commit order, Replication Server must
roll back all transactions currently executing against the replicate database.
Replication Server then reapplies the transactions serially.

Maintaining commit
order

Replication Server reads the commit information sent from the primary
database and uses this information to define and maintain the transaction
commit order at the replicate database.

If a DSI executor thread’s transaction processing is complete and it is expected
to be the “next” transaction to commit, it is allowed to do so. If a thread’s
transaction processing is complete and it is not the “next” transaction expected
to commit, the thread must await its turn to commit.

Resolving commit
consistency deadlocks

If a thread’s transaction processing is complete and it is not the next transaction
expected to commit, the transaction could be holding resources required by a
transaction scheduled to commit earlier. See Figure 4-8 on page 166. After
waiting the amount of time specified in the dsi_commit_check_locks_intrvl
parameter, a DSI executor thread executes the
rs_dsi_commit_check_thread_lock function string to determine if the thread
holds a lock on resources needed by the earlier transaction:

• If the thread is blocking another transaction (rs_dsi_check_thread_lock >
0), the current transaction rolls back, which resolves the commit order
deadlock and allows the earlier transaction to commit. Only the blocking
transaction rolls back; other transactions process normally.

• If the thread is not blocking another transaction, it checks to see if it has
executed rs_dsi_check_thread_lock more times than is defined by the
dsi_commit_check_locks_max parameter.

• If the thread has not executed rs_dsi_check_thread_lock more times
than is defined in dsi_commit_check_locks_max, the transaction
commits if it is next, or it waits again the amount of time specified in
dsi_commit_check_locks_intrvl.

• If the thread has executed rs_dsi_check_thread_lock more times than
is defined in dsi_commit_check_locks_max, the current transaction
rolls back.

Using parallel DSI threads

168 Replication Server

Function strings for internal commit control

Replication Server uses the rs_dsi_check_thread_lock function to check
whether the current DSI executor thread is blocking another replicate database
process. This function has function-string-class scope. It is called only if the
DSI executor thread is ready to commit but cannot because it is not next to
commit, and the amount of time specified for dsi_commit_check_locks_intrvl
has elapsed. If commit order contention occurs frequently, consider decreasing
the wait time specified by dsi_commit_check_locks_intrvl.

Table 4-7: System functions that support internal commit control

Note Replication Server automatically creates function strings for the above
function in function-string classes in which Replication Server generates
default function strings. For other function-string classes, you must create
these function strings before you can use parallel DSI features with
dsi_commit_control set on.

Using rs_threads to resolve conflicts externally

The rs_threads table is located in the replicate database. It contains a row for
each DSI executor thread. To simulate row-level locking, it has two columns,
id and seq, and enough dummy columns so that only one row fits on a page.
The id column is used as a unique clustered index.

At the beginning of a transaction, the DSI executor thread updates its row in
the rs_threads table with the next available sequence number. When it is ready
to commit the transaction, the thread sends a select statement to the replicate
data server to select, from the rs_threads table, the sequence number of the
transaction that should have committed prior to the transaction.

Because the preceding transaction holds a lock on this row in rs_threads, this
thread is blocked until the preceding transaction commits.

Function Description

rs_dsi_check_thread_lock Determines whether or not the DSI executor thread is holding a lock that blocks
a replicate database process. A return value greater than 0 indicates that the
thread is holding resources required by another database process, and that the
thread should roll back and retry the transaction.

CHAPTER 4 Performance Tuning

Administration Guide 169

If the sequence number that is returned is less than the expected value, the
thread determines whether it should roll back the transaction or retry the select
operation. Because the DSI formats many commands into a single batch before
submitting it to the Adaptive Server, a thread may be ready to commit before
the preceding transaction has submitted any commands to the Adaptive Server.
In this case, the select in the rs_threads table may be submitted several times.

If the sequence number that is returned matches the expected value, the
transaction can commit.

Handling deadlocks

If a transaction is ready to commit, but cannot because it is not next in proper
commit order, and this transaction is holding locks on resources that are needed
by a transaction that must commit before this one, a database resource deadlock
occurs at the replicate database. The database resource deadlock consists of the
lock on rs_threads held by the next transaction in commit order, and the locks
held on resources needed by that transaction. The database resource deadlock
is detected by the replicate database, which chooses a transaction to roll back.
Since Replication Server must guarantee commit order, when this rollback is
forced by the replicate database, Replication Server rolls back all transactions
executing against the replicate database and reapplies them serially in commit
order.

Function strings for commit control using rs_threads

Replication Server manipulates the rs_threads system table with the system
functions listed below. These functions have function-string-class scope. They
are executed only when more than one DSI thread is defined for a connection.

Table 4-8: System functions that modify the rs_threads system table

Function Description

rs_initialize_threads Sets the sequence of each entry in the rs_threads system table to 0. This function
is executed during the initialization of a connection.

rs_update_threads Updates the sequence number for the specified entry in the rs_threads system
table.

rs_get_thread_seq Returns the current sequence number for the specified entry in the rs_threads
system table.

rs_get_thread_seq_noholdlock Returns the current sequence number for the specified entry in the rs_threads
system table, using the noholdlock option. This thread is used when
dsi_isolation_level is 3.

Using parallel DSI threads

170 Replication Server

Note The function strings described in Table 4-8 are needed only when the
external, rs_threads method is used for commit control.

Configuring parallel DSI for optimal performance
The following guidelines can help you configure parallel DSI to achieve
optimal performance. The objective is to tune parallel DSI processing to
provide the best replication performance, balancing parallel processing with
acceptable levels of contention. Contentions will always occur. The only way
to eliminate contentions is to turn off parallel DSI processing. At the same
time, setting all parallel DSI parameters for maximum parallelism may cause
Replication Server to spend more time recovering from contentions than
actually applying transactions to the replicate. Optimal performance is
achieved through a clear understanding of your operating environment so that
you can successfully balance parallel processing with acceptable contention
levels.

Before you begin

Before you begin tuning for performance:

• Understand your transaction profile. What kinds of transactions are being
replicated? Do these transactions affect the same rows and tables? Are
these transactions liable to conflict if applied in parallel? Is the transaction
profile constant, or does it change, perhaps with the time of day or month.
A clear understanding of your transaction profile helps you select those
parameters and settings that will be most useful.

• Tune the replicate database to handle contentions. Most primary
databases have been tuned to minimize contentions through the use of
clustered indexes, partitioning, row-level locking, and so on. Make sure
that your replicate database has been tuned similarly.

• Define a set of repeatable transactions that accurately reflect your
replication environment. Tuning your parallel DSI environment is an
iterative process. You will need to set parameters, run a test, measure
performance, compare against previous measurements, and repeat until
you have maximized your results.

CHAPTER 4 Performance Tuning

Administration Guide 171

• First, reset the dsi_serialization_method parameter. Set the
dsi_serialization_method parameter to no_wait to enable maximum
parallelism. Then attempt to reduce contentions by testing other
parameters. Because the wait_for_commit (the default) setting supplies
minimal parallelism and therefore minimal benefit, only reset
dsi_serialization_method to wait_for_commit after all attempts to reduce
contention using the no_wait setting have failed to increase performance.

• Set the dsi_num_threads parameter correctly. The dsi_num_threads
parameter defines the total number of DSI executor threads; the
dsi_num_large_xact_threads parameter defines the total number of DSI
executor threads reserved for large transactions. Thus, the total number of
DSI executor threads (dsi_num_threads) equals the number of DSI threads
reserved for large transactions plus the number of threads available for
small transactions.

To begin, try setting dsi_num_threads to 5, and dsi_num_large_xact threads
to 2. After selecting a dsi_serialization_method and a dsi_partitioning_rule:

• Increase dsi_num_threads if contention does not increase, or

• Decrease dsi_num_threads if contention does not decrease.

Make sure that dsi_num_threads is greater than the default, and that the
value for dsi_num_threads is greater than that for
dsi_num_large_xact_threads.

Reducing contention

Start tuning parallel DSI parameters to reduce contention when you have
completed the tasks described in “Before you begin” on page 170, and
performance tests indicate that contentions are affecting performance. For
example:

• The replicate is blocking activity.

• Replication Server is rolling back and reapplying a large percentage of
transactions due to deadlock conditions. Refer to counter 5060 –
TrueCheckThrdLock.

Start by tuning the dsi_max_xacts_in_group parameter, which determines the
number of transactions grouped in a single begin/commit block. By reducing
the value of dsi_max_xacts_in_group, you cause the DSI executor threads to
commit more frequently. Thus, the DSI executor threads hold fewer replicate
resources for shorter periods of time and contentions should decrease.

Using parallel DSI threads

172 Replication Server

Adjusting the dsi_num_threads parameter also affects contention. The larger
the number of DSI executor threads available, the more likely contentions will
arise among the threads. Try decreasing the value of dsi_num_threads even to
3 with one reserved for large transactions. Finding the values that provide best
performance is iterative. Remember that some contention is acceptable if
overall performance improves.

Using partitioning rules

Partitioning rules can also reduce contention, but require a clear understanding
of your transaction profile.

The transaction name rule

Do transactions have transaction names? Is the contention caused by
transactions with the same name? Try setting the transaction name rule, which
forces transactions with the same name to be sent to the replicate one-by-one.

If transactions are not named, you could change the application so that names
are added. Then use the name rule to serialize only specified transactions.
Suppose a particular type of large transaction always causes problems if the
DSI executor threads attempt to process two or more in parallel. By giving the
problem transactions the same name, and applying the name rule, you can
ensure that the problem transactions are processed serially. Remember,
however, that the name rule is applied to all transactions, and all transactions
with the same name will be processed serially.

The user name rule

Setting the user name rule may help reduce contentions caused by transactions
processed in parallel from the same user ID. Like the transaction name rule, the
user name rule, if set, is applied to all transactions, and every transaction from
the same user ID will be processed serially.

The origin begin and commit times rule

The time rule forces serial execution of transactions with nonoverlapping
commit/begin times. That is, if the commit time of the first transaction comes
before the begin time of the next transaction, these two transactions must
execute serially.

CHAPTER 4 Performance Tuning

Administration Guide 173

Combining partition rules

You can combine rules. The first rule to be satisfied takes precedence. Thus, if,
for example, the origin_sessid, time rule is specified, two transactions with the
same origin session ID will be forced to run serially, and the time rule is not
applied.

Frequent conflicting updates

If your transactions conflict with each other frequently, set the parallel DSI
configuration parameters as follows:

• dsi_serialization_method – set this parameter to wait_for_commit.

• dsi_num_large_xact_threads – set this parameter to 2. If you are
configuring parallel DSI in a warm standby application, set the
dsi_num_larg_xact_threads parameter for the standby database to one
more than the number of simultaneous large transactions executed at the
active database.

• dsi_num_threads – set this parameter to 3 plus the value of the
dsi_num_large_xact_threads parameter. If your transactions are usually
small, such as one or two statements, set dsi_num_threads to 1 plus the
value of dsi_num_large_xact_threads.

Setting the parallel_dsi configuration parameter on provides a shorthand
method for configuring parallel DSI as described above. It also sets the
dsi_sqt_max_cache_size parameter to 1 million bytes.

Infrequent conflicting updates

If your transactions conflict with each other only occasionally, set the parallel
DSI configuration parameters as follows:

• dsi_isolation_level – set this parameter to isolation level 3 if your replicate
data server is Adaptive Server. For non-Sybase data servers, set to the level
that corresponds to ANSI standard level 3.

• dsi_num_large_xact_threads – set this parameter to 2. If you are
configuring parallel DSI in a warm standby application, set the
dsi_num_larg_xact_threads parameter for the standby database to one
more than the number of simultaneous large transactions executed at the
active database.

• dsi_num_threads – set this parameter to 3 plus the value of the
dsi_num_large_xact_threads parameter.

Using parallel DSI threads

174 Replication Server

Using isolation levels

Use DSI isolation levels to prevent loss of parts of transactions when parallel
DSI is enabled, and the replicate table is configured for row-level locking. In
these cases, the order of individual operations within transactions may not
match that seen at the primary, even if the transactions themselves are
committed in proper order.

For example, if the second transaction to commit updates a row inserted by the
first transaction to commit, the update may take place before the commit. In
this case, the transactions commit correctly, but the update is lost, even though
the insert remains.

To avoid out-of-sequence DML operations, set dsi_isolation_level to 3. In the
example, if dsi_isolation_level is 3, the second transaction to commit acquires a
range lock on the as-yet nonexistent row it intends to update, which causes a
deadlock with the first transaction to commit. The data server declares a
database resource deadlock. Replication Server rolls back all open transactions
and serially reapplies them, and the update is not lost.

Setting the size for large transactions

Setting dsi_large_xact_size to a large number, even the maximum
(2147483647), to remove the overhead of handling large transactions may give
better performance than allowing large transactions to start before their commit
point is read.

Parallel DSI and the rs_origin_commit_time system variable
The value of the rs_origin_commit_time system variable depends on whether
you are using the parallel DSI feature.

• If you are not using parallel DSI to process large transactions, the value of
rs_origin_commit_time contains the time when the last transaction in the
transaction group committed at the primary site.

• If you are using parallel DSI to process large transactions (before their
commit has been read from the DSI queue), when the DSI threads start
processing one of these transactions, the value of rs_origin_commit_time
is set to the value of rs_origin_begin_time.

CHAPTER 4 Performance Tuning

Administration Guide 175

When the commit statement for the transaction is read, the value of
rs_origin_commit_time is set to the actual commit time. Therefore, when
the configuration parameter dsi_num_large_xact_threads is set to a value
greater than zero, the value for rs_origin_commit_time is not reliable for
any system function other than rs_commit.

Dynamic SQL for enhanced Replication Server
performance

Dynamic SQL in Replication Server enhances replication performance by
allowing Replication Server Data Server Interface (DSI) to prepare dynamic
SQL statements at the target user database and to execute them repeatedly.
Instead of sending SQL language commands to the target database, only the
literals are sent on each execution, thereby eliminating the overheads brought
by SQL statement syntax checks and optimized query plan builds.

You can use dynamic SQL in a user database connection for a language
command if:

• The command is insert, update, or delete.

• There are no text, image, or java columns in the command.

• There are no NULL values in the where clause for update or delete
command.

• There are no more than 255 parameters in the command:

• insert commands can have no more than 255 columns.

• update commands can have no more than 255 columns in the set
clause and where clauses combined.

• delete commands can have no more than 255 columns in the where
clause.

• The command does not use user-defined function strings.

Setting up the
configuration
parameters to use
dynamic SQL

Configure dynamic SQL at a server or a connection level by issuing the
following commands:

configure replication server
set { dynamic_sql |

dynamic_sql_cache_size |
dynamic_sql_cache_management }

Dynamic SQL for enhanced Replication Server performance

176 Replication Server

to value

alter connection to server.db
set { dynamic_sql |

dynamic_sql_cache_size |
dynamic_sql_cache_management }

to value

The server-level configurations provide the default values for the connections
created or started in the future. For database level configurations:

• dynamic_sql – turns dynamic SQL on or off for a connection. Other
dynamic SQL related configuration parameters take effect only if this
parameter is set to on.

• dynamic_sql_cache_size – tells the Replication Server how many database
objects may use the dynamic SQL for a connection. This parameter is
provided to limit the resource demand on the data server.

• dynamic_sql_cache_management – manages the dynamic SQL cache for a
connection. Once the dynamic SQL statements reaches
dynamic_sql_cache_size for a connection, it either stops allocating new
dynamic SQL statements if the value is fixed, or it keeps the most recently
used statements and deallocates the rest to allocate new statements if the
value is mru.

Limitations Dynamic SQL has these limitations:

• If a table is replicated to a standby or MSA connection using an internal
replication definition, and dynamic SQL is enabled for the connection, any
new replication definition for the table should define the column order
consistent with the column order in the primary database. Otherwise, the
existing prepared statements may be invalidated, and may require the
standby or MSA connection to be restarted.

• Dynamic SQL requires ASE or DirectConnect 12.6.1 ESD#2 for UDB as
target database.

CHAPTER 4 Performance Tuning

Administration Guide 177

Using multiprocessor platforms
You can run Replication Server on symmetric multiprocessor (SMP) or single-
processor platforms. Replication Server multithreaded architecture supports
both hardware configurations. On a single processor platform, Replication
Server threads run serially. On a multiprocessor platform, Replication Server
threads can run in parallel, thereby improving performance and efficiency.

Replication Server is an Open Server application. Replication Server support
for multiple processors is based on Open Server support for multiple
processors. Both servers use the POSIX thread library on UNIX platforms and
the WIN32 thread library on Windows platforms. For detailed information
about Open Server support for multiple processing machines, see the Open
Server Server-Library/C Reference Manual.

When Replication Server is in single-processor mode, a server-wide mutual
exclusion lock (mutex) enforces serial thread execution. Serial thread
execution safeguards global data, server code, and system routines, ensuring
that they remain thread-safe.

When Replication Server is in multiprocessor mode, the server-wide mutex is
disengaged and individual threads use a combination of thread management
techniques to ensure that global data, server code, and system routines remain
secure.

Enabling multiprocessor support
To specify whether Replication Server takes advantage of a multiprocessor
machine, use configure replication server with the smp_enable option. For
example:

configure replication server set smp_enable to 'on'

Setting smp_enable “on” specifies multiprocessor support; setting smp_enable
“off” specifies single-processor support. The default is “off.”

smp_enable is a static option. You must restart Replication Server after
changing the status of smp_enable.

Monitoring thread status
You can verify Replication Server thread status using these commands:

Allocating queue segments

178 Replication Server

• admin who – provides information on all Replication Server threads

• admin who_is_up or admin who_is_down – lists Replication Server threads
that are running, or not running.

• sp_help_rep_agent – provides information on the RepAgent thread and the
RepAgent User thread.

See Chapter 1, “Verifying and Monitoring Replication Server” for more
information about monitoring thread status.

Monitoring performance
Replication Server provides monitors and counters for monitoring
performance. See “Using Counters to Monitor Performance” on page 183.

Allocating queue segments
You can choose the disk partition to which Replication Server allocates
segments for stable queues. By choosing the stable queue placement, you can
enhance load balancing and read/write distribution.

Replication Server stores messages destined for other sites on partitions. It
allocates space in partitions to stable queues and operates in 1MB chunks
called segments. Each stable queue holds messages to be delivered to another
Replication Server or to a data server. The queues hold data until it is sent to its
destination.

rs_init assigns Replication Server initial partition. You may need additional
partitions, depending on the number of databases and remote Replication
Servers to which the Replication Server distributes messages.

A Replication Server can have any number of partitions of varying sizes. The
sum of the partition sizes is the Replication Server capacity for queued
transactions.

By default, Replication Server assigns queue segments to the first partition in
an ordered list of partitions. See Figure 4-9. When the first partition becomes
full, the first partition becomes the last partition, and the next queue segment is
allocated to the new first partition. When the default method is used, the rolling
allocation of segments is automatic and cannot be controlled by the user.

CHAPTER 4 Performance Tuning

Administration Guide 179

Figure 4-9: Default allocation mechanism

Choosing disk allocations
To choose the segment allocation, use the alter connection or alter route
command with the “set disk_affinity” option. The syntax is:

alter connection to dataserver.database
set disk_affinity to ['partition' | 'off']

alter route to replication_server
set disk_affinity to ['partition' | 'off']

partition is the logical name of the partition to which you want to allocate the
next segment for the connection or route.

Each allocation directive is called a “hint” because Replication Server can
override the allocation if, for example, the allocated partition is full or has been
dropped. If Replication Server overrides the hint, it allocates segments
according to the default mechanism described in Figure 4-9.

Replication Server checks for an allocation hint each time it allocates a new
segment for a queue. Each hint is stored in the rs_diskaffinity system table. Each
partition may have many hints, but each stable queue can have only one hint.

Partition 1 Partition 2

Allocation

Allocation

First allocation

Second allocation

Partition 2 Partition 3

Partition 3 Partition n

Partition n Partition 1

Allocating queue segments

180 Replication Server

Successfully using disk allocation to improve performance depends on the
architecture and other characteristics of your site. Sybase suggests that one way
to improve overall throughput is to associate faster devices with those stable
queues that process more slowly.

In addition, if new partitions are added after all connections are in place, the
new partitions are not used until the existing ones are filled. You can force a
connection to use the new partition by adding allocation hints.

An example

You can allocate different disk partitions to different stable queues. You could,
for example, make partitions of different sizes available to different database
connections. In this example, we add partitions of 10MB and 20MB to the
Replication Server and specify allocation hints for the TOKYO_DS and
SEATTLE_DS data servers. The procedure is:

1 Make the partitions P1 and P2 on the device named /dev/rds0a available to
Replication Server, enter:

create partition P1 on '/dev/rds0a' with size 20
create partition P2 on '/dev/rds0a' with size 10

2 Suspend the connection to the TOKYO_DS and SEATTLE_DS data
servers, enter:

suspend connection to TOKYO_DS
suspend connection to SEATTLE_DS

3 Specify allocation hints for the connection to the TOKYO_DS and
SEATTLE_DS data servers, enter:

alter connection to TOKYO_DS.db1
set disk_affinity to 'P1'

alter connection to SEATTLE_DS.db5
set disk_affinity to 'P2'

4 Resume the connections to the TOKYO_DS and SEATTLE_DS data
servers, enter:

resume connection to TOKYO_DS
resume connection to SEATTLE_DS

CHAPTER 4 Performance Tuning

Administration Guide 181

Dropping hints and partitions
You can remove an allocation hint using the alter connection or alter route
command with the set disk_affinity to 'off' parameter. For example:

alter connection to TOKYO_DS.db1
set disk_affinity to 'P1' to 'off'

This command deletes the allocation hint for P1 from the rs_diskaffinity table.

You can remove a partition from Replication Server using the drop partition
command. If the partition you are dropping has one or more allocation hints in
the rs_diskaffinity table, Replication Server marks the allocation hints for
deletion, but does not delete them until all data stored on the partition has been
successfully delivered and the partition has been dropped.

Using the heartbeat feature in RMS
To view latency information, use the heartbeat feature in the command line
service, Replication Monitoring Services (RMS). The heartbeat feature uses
the stored procedure rs_ticket to generate latency information, which is the
amount of time it takes a transaction to move from the primary to the replicate
database. At a specified interval, the RMS executes rs_ticket at a primary
database. The latency information that has been generated is stored in a table
in the replicate database.

RMS provides commands to set up the heartbeat process and to retrieve that
latency information from the replicate database. The heartbeat feature is
available only through RMS. See the Replication Server Reference Manual for
more information about the heartbeat commands.

Using the heartbeat feature in RMS

182 Replication Server

Administration Guide 183

C H A P T E R 5 Using Counters to Monitor
Performance

This chapter describes how to use Replication Server counters to monitor
performance. To monitor performance using the RepAgent counters, see
“Using counters to monitor RepAgent performance” on page 123 in the
Replication Server Administration Guide Volume 1.

Introduction
Replication Server has several hundred different counters that can monitor
performance at various points and areas in the replication process. By
default, counters are not active until you choose to activate them—with
the exception of a few counters that are always active.

You can view current counter values and other performance information
at any time using these commands:

• admin stats – displays current values for specified counters.

• admin stats, backlog – displays the current backlog in the Replication
Server stable queues.

• admin stats, { tps | cps | bps } – displays throughput in terms of
transactions per second, commands per second, or bytes per second.

Topic Page
Introduction 183

Modules and counters: an overview 184

Sampling 186

Viewing statistics on screen 191

Viewing statistics saved in the RSSD 193

Viewing information about the counters 195

Resetting counters 196

Modules and counters: an overview

184 Replication Server

• admin stats, { md | mem | mem_in_use } – displays message and memory
information.

Counter values can also be saved (or flushed) to the RSSD, where averages and
rates can be calculated and viewed using standard Transact-SQL statements or
the rs_dump_stats stored procedure.

Modules and counters: an overview
In Replication Server, a module is a group of components that work together to
perform specific services. For example, the Stable Queue Manager (SQM)
consists of logically related components that provide stable queue services.
Replication Server provides counters that can track activity at each instance
(occurrence) of each module.

Some modules have exactly one instance in Replication Server. Instances of
those modules can be identified by the module name alone. Examples of this
type of module are:

• System Table Services (STS)

• Connection Manager (CM)

Other modules can have multiple instances in Replication Server. To uniquely
identify each instance of the module, you must include both the module name
and the instance ID. Examples include:

• Replication Server Interface (RSI)

• Distributor (DIST)

• Data Server Interface, scheduler thread (DSI/S)

Still other modules require three identifiers to differentiate them: the module
name, the instance ID, and an instance value. Examples include:

• Stable Queue Transaction thread (SQT)

• Stable Queue Manager (SQM)

• Data Server Interface, executor thread (DSIEXEC)

Table 5-1 lists the most commonly used modules. Counters for independent
modules can be addressed directly using Replication Server commands. To
access counters for dependent modules, use the name of their parent modules.

CHAPTER 5 Using Counters to Monitor Performance

Administration Guide 185

Table 5-1: Replication Server modules

Counters
To view descriptive and status information about Replication Server counters,
use the rs_helpcounter stored procedure. See “Viewing information about the
counters” on page 195.

Each counter has a descriptive name and a display name that you use to identify
the counter when you enter RCL commands and when you view displayed
information.

Different kinds of counters provide different types of information. Although
not all counters can be divided into discrete categories, when Replication
Server displays counter information it uses these categories:

• Observers – collect the number of occurrences of an event over a time
period. For example, observers might collect the number of times a
message is read from a queue. Replication Server reports the number of
occurrences and the number of occurrences per second.

• Monitors – collect measurements at a given time or times. For example,
monitors might collect the number of operations per transaction.
Replication Server reports the number of observations, the last value
collected, the maximum value, and the average value.

Module name Acronym Independent/dependent

Connection Manager CM Independent

Distributor DIST Independent

Data Server Interface DSI Independent

DSI Executor DSIEXEC Dependent of DSI

RepAgent thread REPAGENT Independent

Replication Server Interface RSI Independent

RSI User RSIUSER Independent

Replication Server Global SERV Independent

Stable Queue Manager SQM Independent

SQM Reader SQMR Dependent of SQM

SQM Transaction Manager SQT Independent

System Table Services STS Independent

Thread Synchronization SYNC Independent

SYNC Element SYNCELE Dependent of SYNC

Sampling

186 Replication Server

• Counters – collect a variety of measurements. Counters that measure
duration are in this group as are counters that collect total numbers of
bytes. For this category, Replication Server can report number of
observations, total value, last value, maximum value, an average, and rate
per second.

Sampling
You have several options for gathering data. You can choose whether to sample
data over a long period of time, a short period of time (seconds), or a single
occurrence.

You can collect counter statistics in either of two ways:

• By executing admin stats with the display option, which instructs
Replication Server to collect information for a specified time period and
then, at the end of that time period, to display the information collected on
the computer screen.

• By executing admin stats with the save option, which instructs Replication
Server to collect information for a specified number of observations within
a specified time period, and save that information to the RSSD.

By default, information is not collected from the counters until you turn them
on. You can turn them on for a specific time period when you execute admin
stats. You can also turn on sampling for an indefinite time period by setting the
stats_sampling configuration parameter on.

Turning on sample collection activates all counters. However, you can display
or save statistics only for those counters or modules that are of interest.

Statistics shown on the computer screen record the number of events and
computed values—such as averages and rates—for a single observation period.
When statistics are sent to the RSSD, Replication Server saves raw values—
such as observations, totals, last value, and maximum value—for multiple
consecutive observation periods. You can then compute averages and rates
from these stored values.

Collecting statistics for a specific time period
The syntax for admin stats is:

CHAPTER 5 Using Counters to Monitor Performance

Administration Guide 187

admin { stats | statistics } [, sysmon | "all"
| module_name [, inbound | outbound] [, display_name]]
[, server[, database] | instance_id]
[, display |, save [, obs_interval]]
[, sample_period]

admin stats lets you specify:

• The counters to be sampled

• The length of the observation interval and the sample period

• Whether to save statistics to the RSSD or display them on the computer
screen

Note admin stats also supports the cancel option. This stops the currently
running command.

By default, Replication Server does not report counters that show 0 (zero)
observations for the sample period. You can change that behavior by setting the
stats_show_zero_counter configuration on using configure replication server.
See the Replication Server Reference Manual for complete syntax and usage
information.

Specifying the counters to be sampled

You can specify all counters or as few as a single instance of a counter.

• sysmon – samples all counters marked by Sybase as most important to
performance and tuning. This is the default value.

To view a list of the sysmon counters, enter:

rs_helpcounter sysmon

• "all" – samples all counters.

• module_name – samples all counters for a particular module. See
“Modules and counters: an overview” on page 184 for a list of modules.

• module_name, display_name – samples all instances of a particular
counter. Use sp_helpcounter for a list of counters.

Sampling

188 Replication Server

• module_name, display_name, instance_id – samples a particular instance of
a counter. To find the numeric ID for an instance, execute admin_who and
see the Info column.

Note If the instance ID is specified and the module is either SQT or SQM,
you can specify whether you want information supplied by the inbound or
outbound queue for the counter instance.

For example, to collect statistics for the sysmon counters for one second and
send the information to the computer screen, enter:

admin stats, sysmon, display, 1

Specifying the sample period

You specify a sampling period in numbers of seconds. Replication Server
collects statistics for the named counters for that number of seconds and reports
to the screen or the RSSD. The default value is 0 (zero) seconds—which causes
all counters to report their current value.

For example, to collect statistics for all counters for one minute and display
them on the computer screen, enter:

admin stats, "all", display, 60

Specifying how statistics are to be reported

Statistics can be sent to the computer screen or to the RSSD.

Displaying statistics on the computer screen

To send statistics to the computer screen, include the display option. In this
case, Replication Server makes a single observation at the end of the specified
time period. The observed statistics are sent only to the computer screen.

For example, to report the number of blocks read from all queues and by all
readers over a five-minute interval, enter:

admin stats, sqm, blocksread, display, 300

When you execute admin stats with a nonzero time period using the display
option, Replication Server:

1 Resets all counters to zero.

2 Turns on all counters.

CHAPTER 5 Using Counters to Monitor Performance

Administration Guide 189

3 Puts your session to sleep for the specified time period.

4 Turns off all counters.

5 Reports the requested data.

Saving statistics in the RSSD

To save statistics in the RSSD, include the save option, which immediately
returns the session.

When you send statistics to the RSSD, you can specify the length for each
observation interval (obs_interval) during the specified sampling period.
obs_interval can be a numeric value in seconds, or a quoted time format string
hh:mm[:ss].

For example, to start sampling and saving statistics to the RSSD for one hour
and thirty minutes at 20-second intervals, enter:

admin stats, "all", save, 20, "01:30:00"

To collect statistics for the outbound SQT for connection 108 for two minutes
at 30-second intervals, enter:

admin stats, sqt, outbound, 108, save, 30, 120

Replication Server determines the number of observation intervals by dividing
the sampling period by the observation interval. The remainder in seconds, if
any, is added to the last observation interval.

When you execute admin stats with a nonzero time period using the save
option, Replication Server starts a background thread to collect sampling data
and returns your session immediately. Once the session is returned, you can use
admin stats, status command to check the sampling progress. The background
thread:

Sampling period
(sample_period)

Observation interval
(obs_interval)

Number of observation
intervals

60 seconds 15 Four 15-second intervals

75 seconds 5 Not allowed – observation
interval must be => 15
seconds

60 seconds 30 Two 30-second intervals

130 seconds 20 Five 20-second intervals and a
final 30-second interval

10 seconds Not specified One 10-second interval

Sampling

190 Replication Server

1 Truncates the rs_statrun and rs_statdetail system tables if the configuration
parameter stats_reset_rssd is set to on.

2 Resets all counters.

3 Turns on all counters.

4 Writes the requested counters to the RSSD at the end of each observation
period.

5 Turns off all counters.

Note To keep old sampling data, set the configuration parameter
stats_reset_rssd to off or make sure that you have dumped any needed
information from rs_statrun and rs_statdetail before executing admin stats with
the save option. See “Using the rs_dump_stats procedure” on page 194 for
information about dumping information from these tables.

Collecting statistics for an indefinite time period
To turn on sampling for an indefinite period, configure Replication Server
using the stats_sampling parameter. Enter:

configure replication server
 set stats_sampling to "on"

Replication Server continues to collect data until you reconfigure Replication
Server to turn sampling off.

configure replication server
set stats_sampling to "off"

Then, when you want to view data on the computer screen or send the collected
data to the RSSD, use admin stats.

Note Use admin stats with care when stats_sampling is on. If you execute
admin stats and specify a nonzero time period, Replication Server clears the
counters, executes the command, and turns stats_sampling off.

For example, to collect statistics for two consecutive 24-hour periods,
reporting results to the computer screen, you might follow this sequence:

Day 1, 8am

1 Clear existing statistics, enter:

CHAPTER 5 Using Counters to Monitor Performance

Administration Guide 191

admin statistics, reset

2 Turn on sampling:

configure replication server
set stats sampling to "on"

Day 2, 8am

1 Turn off sampling to ensure Replication Server does not collect statistics
as statistics are dumped to the screen.

configure replication server
set stats sampling to "off"

2 Dump statistics to the screen:

admin statistics, "all"

3 Clear all statistics:

admin statistics, reset

4 Turn on sampling:

configure replication server
set stats_sampling to "on"

Day 3, 8am

1 Turn off sampling to ensure Replication Server does not collect statistics
as statistics are dumped to the screen.

configure replication server
set stats sampling to "off"

2 Dump statistics to the screen:

admin statistics, "all"

3 Clear all statistics:

admin statistics, reset

Viewing statistics on screen
admin stats displays statistics on the computer screen from a single sample run.
You can display statistics for a single counter instance, a single counter, all
counters for a particular module, the generally most useful or “sysmon”
counters, or all counters.

Viewing statistics on screen

192 Replication Server

You choose whether to display statistics on the screen when you configure the
sample run using admin stats—see “Collecting statistics for a specific time
period” on page 186.

See the Replication Server Reference Manual for example output and complete
syntax and usage information.

Viewing throughput rates
Use admin stats with the tps, cps, or bps option to view the current throughput
in terms of transactions, commands, or bytes per second.

Transactions per
second

Replication Server calculates the transaction rate based on the number of
processed transactions and the number of elapsed seconds since the counters
were last reset. The data is obtained from several modules, including the SQT,
DIST, and DSI modules.

To view throughput in transactions per second, enter:

admin stats, tps

Commands per
second

The number of commands per second is calculated from the number of
commands processed and the number of elapsed seconds since the last reset.
The data is obtained from the REPAGENT, RSIUSER, RSI, SQM, DIST, and
DSI modules.

To view throughput in commands per second, enter:

admin stats, cps

Bytes per second The number of bytes per second is calculated from the number of bytes
processed and the number of elapsed seconds since the last reset. The data is
obtained from the REPAGENT, RSIUSER, SQM, DSI, and RSI modules.

To view throughput in bytes per second, enter:

admin stats, bps

Viewing statistics about messages and memory use
Use admin stats with the md option to view information about the number of
messages. Use admin stats with the mem, or mem_in_use options to view
information about memory use.

• To view statistics for message delivery, which is associated with
Distributors and RSI users, enter:

CHAPTER 5 Using Counters to Monitor Performance

Administration Guide 193

admin stats, md

• To view current segment usage according to segment size, enter:

admin stats, mem

• To view current memory use in bytes, enter:

admin stats, mem_in_use

Viewing the number of transactions in the stable queues
You can view the number of transactions in both the inbound and outbound
stable queues awaiting distribution. Replication Server reports the data in terms
of segments and blocks, where one segment is equal to 1MB, and one block is
equal to 16K. The data is obtained from the SQMRBacklogSeg and the
SQMRBacklogBlock counters.

To view the stable queue backlog, enter:

admin stats, backlog

Viewing statistics saved in the RSSD
Statistics sent to the RSSD are stored in these system tables:

• rs_statcounters – contains descriptive information for each counter

• rs_statdetail – contains observed metrics for each sampling run for each
counter

• rs_statrun – describes each sampling run

See the Replication Server Reference Manual for detailed information about
these tables.

You can view statistics stored in these tables using:

• select and other Transact-SQL commands

• rs_dump_stats

• rs_helpcounter to display information from rs_statcounters

Viewing statistics saved in the RSSD

194 Replication Server

Using the rs_dump_stats procedure
rs_dump_stats dumps the contents of the rs_statrun and rs_statdetail system
tables to a CSV file that can be loaded into a spreadsheet for analysis. For
complete syntax and usage information for rs_dump_stats, see the Replication
Server Reference Manual.

To use rs_dump_stats, log in to the RSSD and execute the stored procedure. For
example:

1> rs_dump_stats
2> go

Note Comments to the right of the output are included to explain the example.
They are not part of the rs_dump_stats output.

Comment: Sample of rs_dump_stats output
Nov 5 2005 12:29:18:930AM *Start time stamp*
Nov 5 2005 12:46:51:350AM *End time stamp*
16 *No of obs intervals*
1 *No of min between obs*
16384 *SQM bytes per block*
64 *SQM blocks per segment*
CM *Module name*
13 *Instance ID*
-1 *Instance value*
dCM *Module name*
CM: Outbound database connection request *Counter external name*
CMOBDBReq *Counter display name*
13003 , , 13, -1 *Counter ID, instance ID,

instance value*
ENDOFDATA *EOD for counter*

CM: Outbound non-database connection requests *Counter external name*
CMOBNonDBReq *Counter display name*
13004 , , 13, -1 *Counter ID, instance ID,

instance value*
Nov 5 2005 12:29:18:930AM, 103, 103, 1, 1 *Dump ts, obs, total,

last, max*
Nov 5 2005 12:30:28:746AM, 103, 103, 1, 1
Nov 5 2005 12:31:38:816AM, 107, 107, 1, 1
Nov 5 2005 12:32:49:416AM, 104, 104, 1, 1
Nov 5 2005 12:33:58:766AM, 114, 114, 1, 1
...
Nov 5 2005 12:46:51:350AM, 107, 107, 1, 1

CHAPTER 5 Using Counters to Monitor Performance

Administration Guide 195

ENDOFDATA *EOD for counter*

CM: Outbound 'free' matching connections found *Counter external name*
CMOBFreeMtchFound *Counter display name*
13005 , , 13, -1 *Counter ID, instance ID,

instance value*

Nov 5 2005 12:29:18:930AM, 103, 103, 1, 1 *Dump ts, obs, total,
last, max*

Nov 5 2005 12:30:28:746AM, 103, 103, 1, 1
...
Nov 5 2005 12:46:51:350AM, 2, 2, 1, 1
ENDOFDATA *EOD for counter*

Viewing information about the counters
You can view descriptive information about the counters stored in the
rs_statcounters table using the rs_helpcounter system procedure. See
“rs_helpcounter” in the Replication Server Reference Manual for detailed
syntax and usage information.

• To view a list of modules that have counters and the syntax of the
rs_helpcounter procedure, enter:

rs_helpcounter

• To view descriptive information about all counters for a specified module,
enter:

rs_helpcounter module_name[, short | long]

If you enter short, Replication Server prints the display name, module
name, and counter descriptions for each counter.

If you enter long, Replication Server prints every column in rs_statcounters
for each counter.

If you do not enter a second parameter, Replication Server prints the
display name, the module name, and the external name of each counter.

• To list all counters that match a keyword, enter:

rs_helpcounter keyword [, short |, long]

• To list counters with a specified status, the syntax is:

Resetting counters

196 Replication Server

rs_helpcounter { sysmon | internal | must_sample
| no_reset | old | configure }

Resetting counters
You can reset all counters, except those that are never reset, to 0 (zero) by
issuing the admin stats, reset command:

admin stats, reset

If sampling has not been enabled using the stats_sampling parameter, counter
values are zero. Executing admin stats with a nonzero sample period sets the
counters to zero, turns on sampling, turns off counter sampling after the
sampling run is completed, and resets the counters to zero. If the sampling
period is zero, current counter values are reported.

If sampling has been enabled, use admin stats with care. With sampling enabled
using the stats_sampling configuration, counter values are accumulating.
Issuing admin stats and specifying a sample period causes Replication Server
to clear all counters and disable sampling (stats_sampling off) after the
sampling run.

Administration Guide 197

C H A P T E R 6 Handling Errors and Exceptions

This chapter describes various error handing methods for Replication
Server.

Refer to the Replication Server Troubleshooting Guide for information
about resolving specific errors.

General error handling
Replication Server passes messages to data servers and other Replication
Servers while they are accessible and queues messages when connections
are down. Using Sybase Central, you can monitor the status of the
replication system and troubleshoot problems as they arise.

Normally, short-term failures of networks and data servers do not require
special error handling or intervention. When the failure is corrected,
replication system components resume their work automatically.
Lengthier failures may require intervention if there is not enough disk
space to queue up messages or if it is necessary to reconfigure the
replication system to work around the failure.

Failures of some system components, such as Replication Server
partitions or primary databases, also require user intervention. Refer to
Chapter 7, “Replication System Recovery” for more information about
recovery procedures.

Topic Page
General error handling 197

Error log files 198

Data server error handling 202

Exceptions handling 207

DSI duplicate detection 213

Duplicate detection for system transactions 214

Error log files

198 Replication Server

A Replication Server response to errors depends on the kind of error, source of
the error, and how the Replication Server is configured. Replication Server
handles errors in these ways:

• Logs errors in its error log file.

• Responds to data server errors based on configuration settings.

• If transactions fail to commit in a database, writes the transactions to the
exceptions log for manual resolution.

• Detects duplicate transactions after system restart.

Error log files
This section describes error log files in the replication system. You can access
log files to help you troubleshoot Replication Server and RepAgent. To view
skipped transactions that are written to system tables, you can access the
Adaptive Server for the Replication Server managing a specified database.
Refer to the Replication Server Troubleshooting Guide for details on
troubleshooting errors.

Replication Server allows user-definable error processing in response to data
server errors. For details, see “Data server error handling” on page 202.

Replication Server error log
The Replication Server error log is a text file where Replication Server writes
informational and error messages.

By default, the Replication Server error log file name is repserver.log, and
resides in the directory where you started the Replication Server. You can
specify the name and location of the error log file by using the -E command line
flag when you start the Replication Server or in a Replication Server run file

Each log message begins with a letter to indicate the message type. Table 6-1
lists the possible message types.

Table 6-1: Message types in the Replication Server error log

Error
code Description

I An informational message.

CHAPTER 6 Handling Errors and Exceptions

Administration Guide 199

Informational messages

For informational messages in the error log, the format is as follows:

I. date: message

The letter “I” at the beginning of a message means that the message is provided
for information. It does not mean that an error occurred. For example,
Replication Server outputs the following messages as it drops a subscription:

I. 95/11/01 05:41:54. REPLICATE RS: Dropping
subscription authors_sub for replication definition
authors with replicate at <SYDNEY_DS.pubs2>
I. 95/11/01 05:42:02. SQM starting: 104:-2147483527
authors.authors_sub
I. 95/11/01 05:42:12. SQM Stopping: 104:-2147483527
authors.authors_sub
I. 95/11/01 05:42:20. REPLICATE RS: Dropped
subscription authors_sub for replication definition
authors with replicate at <SYDNEY_DS.pubs2>

Error and warning messages

For messages other than informational messages, the format is as follows:

severity, date. ERROR #error_number
thread_name(context) - source_file(line) message

If the message is a warning, “ERROR” in the above format becomes
“WARNING.”

The severity is either W, E, H, F, or N, as listed in Table 6-1. The date is the
date and time that the error occurred. The error_number is the Replication
Server error number.

W A warning about a condition that has not yet caused an error, but may require attention. An
example is running out of a resource.

E An error that does not prevent further processing, such as a site that is unavailable.

H A Replication Server thread has died. An example is a lost network connection.

F Fatal. A serious error caused Replication Server to exit. An example is starting the
Replication Server with an incorrect configuration.

N Internal error. These errors are caused by anomalies in the Replication Server software.
Report these errors to Sybase Technical Support.

Error
code Description

Error log files

200 Replication Server

The thread_name is the name of the Replication Server thread that received the
error. See Chapter 2, “Replication Server Technical Overview” in the
Replication Server Administration Guide Volume 1 and Chapter 4,
“Performance Tuning” for details about Replication Server threads. The
context provides some information about the thread’s context at the time the
error occurred.

The source_file and line point to the program file and line number in the
Replication Server source code where the error was reported.

The message is the full text of a message from a Replication Server. It is in the
language specified in the RS_language configuration parameter. Some
messages also include a message from a data server, or one of the component
libraries that Replication Server uses.

Note Replication Server puts question marks (?) in messages where more
specific information is not available. For example, if an error occurs during
initialization, Replication Server may not yet have completed some internal
structures, so it prints question marks in place of information it has not yet
collected.

The following example shows the Replication Server error log entry for a data
server:

E. 95/11/01 05:30:52. ERROR #1028 DSI(SYDNEY_DS.pubs2)
- dsiqmint.c(3522)Message from server:
 Message: 2812, State: 4, Severity: 16 --
 ’Stored procedure ’upd_authors’ not found.
H. 95/11/01 05:30:53. THREAD FATAL ERROR #5049
DSI(SYDNEY_DS.pubs2) - dsiqmint.c(3529)
The DSI thread for database ’SYDNEY_DS.pubs2’ is being
shutdown because of error action mapped from data server
error ’2812’. The error was caused by output command ’1’
mapped from source command ’2’ of the transaction.

The messages indicate that Adaptive Server returned error number 2812,
causing Replication Server to take the stop_replication action. See “Assigning
actions to data server errors” on page 206.

Finding the name of the Replication Server error log

Use the admin log_name command to find the name of the current Replication
Server error log file. Replication Server displays the path to the log file, as the
following UNIX example shows:

CHAPTER 6 Handling Errors and Exceptions

Administration Guide 201

Log File Name

 /work/sybase/SYDNEY_RS/SYDNEY_RS.log

Changing to a new Replication Server log file

To begin a new error log file, use the admin set_log_name command. This
command closes the current log file and opens a new one. Subsequent
messages are written in the new log file.

Following is an example of the admin set_log_name command for UNIX:

admin set_log_name,
'/work/sybase/SYDNEY_RS/951101.log'

The previous log remains active if Replication Server fails to create and open
the new log file.

RepAgent error log messages
All RepAgent error, trace, and information messages are logged in the
Adaptive Server error log file. Each message identifies the RepAgent that
logged the error in the string “RepAgent (dbid)”, which appears in the first line
of the message. dbid is the database identification number of the RepAgent that
logged the error.

Here is an example of an information message:

RepAgent(dbid): Recovery of transaction log is
complete. Please load the next transaction log dump and
then start up the Rep Agent Thread with
sp_start_rep_agent, with 'recovery' specified.

The Adaptive Server error log is a text file. The messages are printed in the
language specified at Adaptive Server. RepAgent records errors and
informational messages that occur when transferring replicated objects from
the Adaptive Server transaction log and converting them into commands.
RepAgent errors are generally in the 9200 to 9299 range.

Adaptive Server performs actions based on the severity and recoverability of
an error. Some errors are for information only, others cause Adaptive Server to
retry the operation that caused the error until it succeeds, and still others
indicate an error too severe to continue and RepAgent shuts down. For more
information about the Adaptive Server error log file, refer to the Adaptive
Server Enterprise System Administration Guide.

Data server error handling

202 Replication Server

Sample error messages

This section describes some common RepAgent error messages and possible
solutions.

• In this example, the RepAgent login name is not present on the Replication
Server.

RepAgent(6): Failed to connect to Replication
Server. Please check the Replication Server,
username, and password specified to
sp_config_rep_agent. RepSvr = repserver_name, user =
RepAgent_username
RepAgent(6): This Rep Agent Thread is aborting due
to an unrecoverable communications or Replication
Server error.

You must either add RepAgent’s login name to Replication Server or
change RepAgent’s login name.

• In this example, RepAgent cannot connect to Replication Server.

RepAgent(7): The Rep Agent Thread will retry the
connection to the Replication Server every 60
second(s). (RepSvr = repserver_name.)

Check Replication Server status. If Replication Server is down, resolve the
problem and restart. Otherwise, wait for possible network problem to
resolve.

Data server error handling
Replication Server allows user-definable error processing for data server
errors. This is accomplished by creating an error class for a database and
specifying responses for each error that the data server returns when the error
is encountered in the database. The data server returns the defined errors to
Replication Server. Table 6-2 lists the RCL commands and Adaptive Server
system procedures that manage errors and error classes.

Table 6-2: RCL commands and system procedures for error processing

Command Description

rs_helpclass Adaptive Server system procedure that displays the name of each existing
error class, function-string class, and their primary Replication Server

create error class Creates a new error class

CHAPTER 6 Handling Errors and Exceptions

Administration Guide 203

A default error class, rs_sqlserver_error_class, is provided for Adaptive Server
databases.

Creating an error class
You can define a single error class to use with all databases managed by the
same type of data server. For example, you can use the default Adaptive Server
error class, rs_sqlserver_error_class, with any Adaptive Server database. There
is no need to create another error class unless a database has special error-
handling requirements.

An error class is a name used to group error action assignments. The syntax for
the create error class command is:

create error class error_class

For example, to create an error class named pubs2_error_class, use this
command:

create error class pubs2_error_class

Initially, rs_sqlserver_error_class, the default error class that is predefined to
work with Adaptive Server databases, does not have a primary site. Since you
can only create server-wide error classes at a primary site for a class, you need
to designate one of the Replication Servers as a primary site for a Adaptive
Server error class.

You must specify a primary site before you can modify a default error class.
You can designate a site as primary by executing the create error class
command for a Adaptive Server error class at that site. To do this, execute
create error class rs_sqlserver_error_class at the primary site. Make sure all
other Replication Servers have direct or indirect routes from the primary site.

drop error class Drops an existing error class

assign action Specifies an error processing action for one or more data server errors

create connection Associates an error class with a new database connection

alter connection Associates an error class with an existing database connection

Command Description

Data server error handling

204 Replication Server

The default error action for all errors returned by a data server is
stop_replication. This is also the most serious action: it suspends replication for
the database, as if you entered the suspend connection command. To assign less
severe actions to errors you want to handle differently, use the assign action
command. See “Assigning actions to data server errors” on page 206 for more
information.

Initializing a new error class
After you have created a new error class, you can initialize it with error actions
from an error class such as the system-provided rs_sqlserver_error_class. To do
this, use the rs_init_erroractions stored procedure:

rs_init_erroractions new_error_class, template_class

For example, to create the error class pubs2_error_class, based on the template
error class rs_sqlserver_error_class, enter:

rs_init_erroractions pubs2_error_class,
rs_sqlserver_error_class

Then use the assign action command to change the actions for individual errors.

Dropping an error class
The drop error class command drops an error class and all actions associated
with it. The error class must not be in use with an active database connection
when you drop it. The syntax for drop error class is:

drop error class error_class

For example, to drop the pubs2_error_class error class, use this command:

drop error class pubs2_error_class

You cannot drop the rs_sqlserver_error_class error class.

CHAPTER 6 Handling Errors and Exceptions

Administration Guide 205

Changing the primary Replication Server for an error class
Use the move primary command to change the primary site for an error class.
This is necessary when you are changing the primary site from one Replication
Server to another so that error actions can be distributed through new routes.
For example, you must use this command if you are dropping from the
replication system the Replication Server that is the current primary site for an
error class.

Before you execute move primary, make sure that a route exists from:

• The new primary site to each Replication Server that will use the error
class

• The current primary to the new primary site

• The new primary to the current primary site

The syntax for the move primary command, for error classes, is:

move primary of error class class_name
to replication_server

Execute the move primary command at the Replication Server that you want to
designate as the new primary site for the error class.

• class_ name – the name of the error class whose primary Replication
Server is to be changed.

• replication_server – specifies the new primary Replication Server for the
error class.

The following command changes the primary site for the pubs2_error_class
error class to the TOKYO_RS Replication Server where the command is
entered:

move primary of error class pubs2_error_class
 to TOKYO_RS

For the default error class, rs_sqlserver_error_class, no Replication Server is
the primary site until you assign one as the primary site. You must specify a
primary site before you can use the assign action command to change default
error actions.

To specify a primary site for the default error class, execute the following
command in that Replication Server:

create error class rs_sqlserver_error_class

After you have executed this command, you can use the move primary
command to change the primary site for the error class.

Data server error handling

206 Replication Server

Displaying error class information
The Adaptive Server rs_helpclass stored procedure displays the names of
existing error classes and function-string classes in the replication system and
their primary Replication Servers. For example:

rs_helpclass error_class
Error Class(es) PRS for class
 -------------- ---------
rs_sqlserver_error_class Not Yet Defined

Refer to Chapter 6, “Adaptive Server Stored Procedures,” in the Replication
Server Reference Manual for more information about rs_helpclass command.

Assigning actions to data server errors
The assign action command specifies the action to take for errors that a data
server can return to Replication Server. The syntax for the assign action
command is:

assign action {ignore | warn | retry_log | log |
 retry_stop | stop_replication}
 for error_class
to data_server_error [, data_server_error]...

For example, to instruct Replication Server to ignore Adaptive Server errors
5701 and 5703:

assign action ignore
 for rs_sqlserver_error_class
 to 5701, 5703

The default error class provided for Adaptive Server databases is
rs_sqlserver_error_class. You must create this error class at a primary site
before you can use the assign action command to change default error actions.
The data_server_error parameter is the data server error number.

Enter one of the six possible error actions at the Replication Server where the
error class was created. These actions are listed in Table 6-3, in order of
severity: ignore is the least severe action and stop_replication is the most severe.

When a transaction causes multiple errors, Replication Server chooses just one
action—the most severe action assigned to any of the errors that occurred. To
return an error to the default error action, stop_replication, you must reassign it
explicitly.

CHAPTER 6 Handling Errors and Exceptions

Administration Guide 207

Table 6-3: Replication Server actions for data server errors

Displaying assigned actions for error numbers
Execute the rs_helperror stored procedure to display the action assigned for an
error number. The syntax for the rs_helperror stored procedure is:

rs_helperror server_error_number [, v]

where server_error_number parameter is the data server error number of the
error you want information for. The v parameter specifies “verbose” reporting.
When you supply this option, rs_helperror also displays the Adaptive Server
error message text, if available. Refer to Chapter 6, “Adaptive Server Stored
Procedures,” in the Replication Server Reference Manual for more details on
using rs_helperror command.

Exceptions handling
When a transaction submitted by Replication Server fails, Replication Server
records the transaction in the exceptions log in the RSSD. The replication
system administrator at the site must resolve the transactions in the exceptions
log. See “Accessing the exceptions log” on page 209.

Action Description

ignore Assume that the command succeeded and that there is no error or warning condition to process.
This action can be used for a return status that indicates successful execution.

warn Log a warning message, but do not roll back the transaction or interrupt execution.

retry_log Roll back the transaction and retry it. The number of retry attempts is set with the configure
connection command. If the error continues after retrying, write the transaction into the
exceptions log, and continue, executing the next transaction.

log Roll back the current transaction and log it in the exceptions log; then continue, executing the next
transaction.

retry_stop Roll back the transaction and retry it. The number of retry attempts is set with the configure
connection command. If the error recurs after retrying, suspend replication for the database.

stop_replication Roll back the current transaction and suspend replication for the database. This is equivalent to
using the suspend connection command. This action is the default.

Since this action stops all replication activity for the database, it is important to identify the data
server errors that can be handled without shutting down the database connection, and assign them
to another action.

Exceptions handling

208 Replication Server

Transactions can fail due to errors such as duplicate keys, column value checks,
and insufficient disk space. They may also be rejected for reasons such as
insufficient permissions, version control conflicts, and invalid object
references.

Because skipping a transaction causes inconsistency and can have an adverse
affect on the system, you should review on a regular basis any transactions that
have been recorded in the exceptions log and resolve them. The best resolution
for a transaction may depend on the client application that originated it. For
example, if a failed transaction corresponds to a real-world event, such as a
cash withdrawal, the transaction must somehow be applied.

Refer to the Replication Server Troubleshooting Guide for more information
on the implications of skipping a transaction.

Handling failed transactions
This section outlines the recommended process for handling failed transactions
that require manual intervention.

Suspend database connection

When a data server begins rejecting transactions because of a temporary
failure, such as lack of space in a database or log file, you can suspend the
database connection until the error is corrected.

If the database connection is not suspended, Replication Server writes the
transactions into the exceptions log for the database. Since these transactions
must then be resolved manually, you can save time by shutting down the
connection until the error condition is corrected.

While a database connection is suspended, Replication Server stores
transactions in a stable queue. When the connection is resumed, the stored
transactions are sent to the data server.

To stop the flow of transactions from a Replication Server to a database, use
the suspend connection command:

suspend connection to data_server.database

The command requires sa permission and must be entered at the Replication
Server that manages the database.

CHAPTER 6 Handling Errors and Exceptions

Administration Guide 209

Analyze and resolve the problem

You then need to determine why the transaction failed, make corrections or
adjustments, and resubmit the transaction. For example, if a transaction failed
because the maintenance user had insufficient permissions, grant the
maintenance user the needed permissions and retry the transaction.

If you are resolving transactions in the exceptions log:

1 Retrieve a list of the transactions from the exceptions log. See “Accessing
the exceptions log” on page 209.

2 Investigate the transactions to determine the cause of failure and the best
method for resolution.

3 Resolve the transactions according to your plan. For example, you might
correct a permissions problem and then resubmit a transaction.

4 Delete resolved transactions from the exceptions log. See “Deleting
transactions from the exceptions log” on page 212.

Resume the connection

Restart the flow of transactions for a suspended database connection with the
resume connection command. The same command is used whether you
suspended the connection intentionally, using the suspend connection
command, or whether it was suspended by Replication Server as the result of
an error action. The syntax for resume connection is:

resume connection to data_server.database
[skip transaction]

The command requires sa permission and must be entered at the Replication
Server that manages the database.

Use the skip transaction clause to instruct Replication Server to ignore the first
transaction in the queue. You may need to do this if a transaction continues to
fail each time you resume the connection.

Accessing the exceptions log
Replication Manager provides a graphical interface to view and manage the
transactions in the exeptions log.

Exceptions handling

210 Replication Server

Displaying transactions in the exceptions log

You can display a summary list of all transactions in the exceptions log using
the rs_helpexception stored procedure. The syntax for the rs_helpexception
stored procedure is:

rs_helpexception [transaction_id, [, v]]

If you supply a valid transaction_id and v for “verbose” reporting,
rs_helpexception displays a detailed description of a transaction. Use
rs_helpexception with no parameters to obtain transaction_id numbers for all
transactions in the exceptions log.

Querying the exceptions log system tables

You can join the rs_exceptshdr and rs_exceptscmd system tables on the
sys_trans_id column.

You can also join the rs_exceptscmd and rs_systext system tables to retrieve the
text of a transaction. To do this, join the cmd_id column in rs_exceptscmd to the
parentid column in rs_systext.

Figure 6-1 illustrates the exceptions log system tables.

CHAPTER 6 Handling Errors and Exceptions

Administration Guide 211

Figure 6-1: Exceptions log system tables

The rs_exceptshdr system table contains descriptive information about the
transactions in the exceptions log, including the following:

• User-assigned transaction name

• Site and database where the transaction originated

• User at the origin site who submitted the transaction

• Information about the error that caused the transaction to be recorded in
the exceptions log

sys_trans_id rs_id

src_cmd_line int

output_cmd_index int

cmd_type char

cmd_id rs_id

sys_trans_id rs_id

rs_trans_id binary

app_trans_name varchar

orig_siteid int

orig_site varchar

orig_db varchar

orig_time datetime

orig_user varchar

error_siteid int

error_site varchar

error_db varchar

log_time datetime

ds_error int

ds_errmsg varchar

error_src_line int

error_proc int

err_output_line int

log_reason char

trans_status smallint

retry_status smallint

app_usr varchar

app_pwd varchar

prsid int

parentid rs_id

texttype char

sequence int

textval varchar

rs_exceptshdr

rs_exceptscmd
rs_systex

Exceptions handling

212 Replication Server

To retrieve a list of the excepted transactions for a given database, use, for
example, the following query:

select * from rs_exceptshdr
 where error_site = 'data_server'
 and error_db = 'database'
 order by log_time

To retrieve the source and output text for a transaction with a given system
transaction ID, use:

select t.texttype, t.sequence,
 t.textval
 from rs_systext t, rs_exceptscmd e
 where e.sys_trans_id = sys_trans_id
and t.parentid = e.cmd_id
 order by e.src_cmd_line, e.output_cmd_index,
 t.sequence

Refer to Chapter 8, “Replication Server System Tables,” in the Replication
Server Reference Manual for a list of all of the columns in these Replication
Server system tables.

Deleting transactions from the exceptions log
To delete a transaction from the exceptions log, use the rs_delexception stored
procedure.

rs_delexception [transaction_id]

With no parameters, rs_delexception displays a summary of transactions in the
exceptions log. If you supply a valid transaction_id, rs_delexception deletes a
transaction. You can find the transaction_id for a transaction by using either
rs_helpexception or rs_delexception with no parameters.

See Chapter 3, “Managing Replication Server with Sybase Central” in the
Replication Server Administration Guide Volume 1 for information about
viewing queue data.

CHAPTER 6 Handling Errors and Exceptions

Administration Guide 213

DSI duplicate detection
The DSI records the last transaction committed or written into the exceptions
log so that it can detect duplicates after a system restart. Each transaction is
identified by a unique origin database ID and an origin queue ID that increases
for each transaction.

The last transaction committed from each origin database is recorded at a data
server by executing the function strings defined for the data server’s function-
string class. For the system-defined classes, this is done in the function string
for a commit command, that is, the rs_commit function. Every function-string
class supports the rs_get_lastcommit function, which returns the origin_qid and
secondary_qid for each origin database. The secondary_qid is the ID of the
queue used for subscription materialization or dematerialization.

The origin_qid and secondary_qid for the last transaction written into the
exceptions log from each origin is recorded into the rs_exceptslast system
table. However, transactions logged explicitly by the sysadmin log_first_tran
command are not recorded in this system table. These transactions are logged,
but they are not skipped.

When a DSI is started or restarted, it gets the origin_qid returned by the
rs_get_lastcommit function and the one stored in the rs_exceptslast system
table. It assumes that any transaction in the queue with an origin_qid less than
the larger of these two values is a duplicate and ignores it.

If the origin_qid values stored in a data server or the rs_exceptslast system table
are modified by mistake, non-duplicate transactions may be ignored or
duplicate transactions may be reapplied. If you suspect that this is happening
in your system, check the values stored and compare them with the transactions
in the database’s stable queue to determine the validity of the values. If the
values are wrong, you must modify them directly.

Refer to the Replication Server Troubleshooting Guide for details on how to
dump transactions in a queue.

Duplicate detection for system transactions

214 Replication Server

Duplicate detection for system transactions
truncate table and certain supported DDL commands are not logged, although
they can be replicated to standby and replicate databases. Refer to “Supported
DDL commands and system procedures” on page 64 for a list of DDL
commands supported for replication. Refer to the Adaptive Server Enterprise
Reference Manual for information about each DDL command.

Replication Server copies these commands as system transactions, in which
Replication Server “sandwiches” the truncate table or similar command
between two complete transactions. Execution of the first transaction is
recorded in the replicate database in the secondary_qid column of the
rs_lastcommit table and in the origin_qid column of that table. If Replication
Server records the second transaction, the system transaction has completed,
and Replication Server clears the secondary_qid column.

If there is a system failure, and you see the following error message when the
system restarts:

5152 DSI_SYSTRAN_SHUTDOWN,"There is a system
transaction whose state is not known. DSI will be
shutdown."

a system command has not completed, and the connection shuts down. You
must verify whether the command within the system transaction has executed
at the replicate database.

• If the command has executed, or if you choose to execute the command
yourself, you can skip the first transaction in the queue and continue with
the second transaction when you resume the connection. At the replicate
Replication Server, enter:

resume connection to data_server.database
skip transaction

• If the command has not executed, you can fix the problem and then
execute the first command in the queue. At the replicate Replication
Server, enter:

resume connection to data_server.database
execute transaction

You must include the skip transaction or execute transaction clause with resume
connection. Otherwise, Replication Server does not reset the secondary_qid
correctly, and the error message reappears.

Administration Guide 215

C H A P T E R 7 Replication System Recovery

This chapter describes how to prevent or recover from certain kinds of
system failures in a replication system.

While Replication Server tolerates most failure conditions and recovers
from them automatically, some failures require user intervention. This
chapter identifies those failures and provides procedures for recovery.
These procedures are designed to maintain the integrity of the replication
system by recovering lost and corrupted data and restoring that data to its
previous state.

You should design, install, and administer your replication system with
backup and recovery in mind. We assume that dumps are performed on a
regular basis and that appropriate tools and settings for handling recovery
are in place. See “Creating coordinated dumps” on page 224 for details on
performing dumps.

In this chapter, the current Replication Server refers to the one with a
database (for example, RSSD) that you are recovering. An upstream
Replication Server has a direct or indirect route to the current Replication
Server. A downstream Replication Server is one to which the current
Replication Server has a direct or indirect route.

Topic Page
How to use recovery procedures 216

Configuring the replication system to support Sybase Failover 216

Configuring the replication system to prevent data loss 220

Recovering from partition loss or failure 225

Recovering from truncated primary database logs 229

Recovering from primary database failures 232

Recovering from RSSD failure 235

Recovery support tasks 250

How to use recovery procedures

216 Replication Server

How to use recovery procedures
When using recovery procedures in this chapter, always write down or check
off recovery steps as you perform them. Such information can help Sybase
Technical Support determine where you are in the recovery procedure, if
necessary.

Table 7-1 lists failure conditions described in this chapter, and indicates where
to find information on corresponding failure symptoms and recovery
procedures.

Table 7-1: Overview of available recovery procedures

Recovery procedures are only intended for the specific situations noted in this
chapter. Do not use recovery procedures for replication system problems such
as failure to replicate data.

 Warning! Use recovery procedures in this chapter only for the failure
condition specific to the procedure. Attempting to use recovery procedures on
conditions other than those specified can complicate your problem and require
more drastic recovery actions.

Refer to the Replication Server Troubleshooting Guide for help in diagnosing
and correcting problems.

Configuring the replication system to support Sybase
Failover

This section describes how Replication Server version 12.0 and later supports
Sybase Failover available in Adaptive Server Enterprise version 12.0 and later.

Failure condition For symptoms and recovery procedures

Replication Server partition loss or failure “Recovering from partition loss or failure” on page 225

Truncated primary database logs “Recovering from truncated primary database logs” on page 229

Primary database failure “Recovering from primary database failures” on page 232

RSSD failure “Recovering from RSSD failure” on page 235

CHAPTER 7 Replication System Recovery

Administration Guide 217

Overview
Sybase Failover allows you to configure two version 12.0 and later Adaptive
Servers as companions. If the primary companion Adaptive Server fails, that
server’s devices, databases, and connections can be taken over by the
secondary companion Adaptive Server.

You can configure a high availability system either asymmetrically or
symmetrically.

An asymmetric configuration includes two Adaptive Servers that are
physically located on different machines, but share the same system devices,
system/master databases, user databases, and user logins. These two servers are
connected so that if one of the servers is brought down, the other assumes its
workload. The secondary Adaptive Server acts as a “hot standby” and does not
perform any work until failover occurs.

A symmetric configuration also includes two Adaptive Servers running on
separate machines, but each Adaptive Server is fully functional with its own
system devices, system/master databases, user databases, and user logins. If
failover occurs, either Adaptive Server can act as a primary or secondary
companion for the other Adaptive Server.

In either setup, the two machines are configured for dual access, which makes
the disks visible and accessible to both servers.

In a replication system, where Replication Server makes many connections to
Adaptive Servers, you can enable or disable Failover support of the database
connections initiated by a Replication Server to Adaptive Servers. When you
enable Failover support, Replication Servers connected to an Adaptive Server
that fails are automatically switched to the second companion machine,
reestablishing network connections.

See the Adaptive Server Enterprise documentation for more detailed
information about how Sybase Failover works in Adaptive Server. See
Appendix B, “High Availability on Sun Cluster 2.2” for information about
Failover support for Replication Server.

Enabling Failover support in Replication Server
You enable Failover support for each Replication Server in your system; once
for the RSSD connection, and once for all other database connections from the
specified Replication Server to Adaptive Servers.

Configuring the replication system to support Sybase Failover

218 Replication Server

You cannot enable Failover support for individual connections, except the
RSSD connection.

The default for Failover support in Replication Server is “off” for all
connections from a Replication Server to Adaptive Servers.

For continuing replication, you should enable Failover support for all
connections. However, in some cases you may want to disable connection
Failover when the secondary server’s workload exceeds its capacity.

How Sybase Failover works with Replication Server

To configure Sybase Failover from Replication Server to Adaptive Server, the
Adaptive Server must be configured to allow connection failover.

When Adaptive Servers are in failover companion mode and the primary
companion fails, the secondary companion takes over the workload.
Incomplete transactions or operations that require updates to the RSSD fail.
Replication Server retries existing connections, but new connections are failed
over.

For Data Server Interface (DSI) connections, the DSI retries failed transactions
after a brief sleep.

For RSSD connections, user commands that are executed during failover do
not succeed. Internal operations (such as updates to locator, disk segment, and
so on) should not fail. Replication of RSSD objects should be covered by the
DSI.

Asynchronous commands (for example, subscription, routing, and standby
commands) may be rejected or encounter errors and require recovery if the
commands have been accepted but not completed. For example, a create
subscription command may have been accepted, but the subscription may still
be being created.

Note Failover support is not a substitute for warm standby. While warm
standby keeps a copy of a database, Failover support accesses the same
database from a different machine. Failover support works the same for
connections from Replication Server to warm standby databases.

Requirements

• To enable Failover support, a Replication Server must connect to Adaptive
Servers that are version 12.0 or later and configured for Failover.

CHAPTER 7 Replication System Recovery

Administration Guide 219

• Failover of Replication Server System Databases (RSSDs) and user
databases is configured directly through the Adaptive Server.

• Failover support responds only to failover of the Adaptive Servers; that is,
failover of Replication Servers is not supported.

• Adaptive Server is responsible for the RepAgent thread failover and its
reconnection to Replication Server after failover/failback.

• Each Replication Server configures its own connections.

Enabling Failover support for an RSSD connection

To enable Failover support for an RSSD connection, use either of the following
methods:

• Use rs_init when you install a new Replication Server.

For instructions, refer to Chapter 2, “Configuring Replication Server and
Adding New Databases,” in the Replication Server Configuration Guide
for your platform.

• Edit the Replication Server configuration file after you have installed the
Replication Server.

a Use a text editor to open the Replication Server configuration file.
The default file name is the Replication Server name with a “.cfg”
extension.

The configuration file contains one line per entry.

b Find the line “RSSD_ha_failover=no” and change it to:

RSSD_ha_failover=yes

c To disable Failover support for an RSSD connection, change the
“RSSD_ha_failover=yes” to:

RSSD_ha_failover=no

These changes take affect immediately; that is, you do not have to
restart Replication Server to enable Failover support.

Enabling Failover support for non-RSSD database connections

You can enable Failover support for new database connections from the
Replication Server to Adaptive Servers using the procedure in this section.

Configuring the replication system to prevent data loss

220 Replication Server

For more information about Sybase Failover, refer to the Adaptive Server
Enterprise book Using Sybase Failover in a High Availability System.

❖ Enabling Failover support using configure replication server

1 If necessary, start the Replication Server, as described in the section
“Starting Replication Server” in Chapter 4.

2 Log in to the Replication Server:

isql -Uuser_name -Ppassword -Sserver_name

where user_name must have Administrator privileges. Specify the name
of the Replication Server using the -S flag.

When your login is accepted, isql displays a prompt:

1>

3 Enter the following RCL command:

configure replication server
set ha_failover to 'on'

Configuring the replication system to prevent data loss
This section contains recommended measures for preventing data loss in the
event of an irrecoverable database error. If used properly, these measures allow
you to restore replicated data using the system recovery procedures.

Save interval for recovery
Replication Servers are designed to store messages from their source and
forward them to their destinations. To increase the chances of recovering
online messages after rebuilding stable queues, you can set save intervals,
measured in minutes, for routes between Replication Servers. A save interval
is the amount of time that a message is stored after it has been forwarded. You
can also set save intervals for a physical or logical database connection from a
Replication Server, allowing Replication Server to save messages in a DSI
outbound queue.

CHAPTER 7 Replication System Recovery

Administration Guide 221

To find the current save interval for a route or connection, use the admin who,
sqm command. The Save_Int:Seg column holds two values. The value
preceding the colon is the save interval. The value after the colon is the first
saved segment in the stable queue.

Details on setting save intervals for routes and connections are described in the
following sections.

Routes between Replication Servers

If the Replication Server has suspended routes, or if a network or data server
connection is down, a backlog of messages may accumulate in the Replication
Server stable queues. The chance of recovering these messages decreases with
time. Source Replication Servers may already have deleted messages from
their stable queues and database logs may already have been truncated.

When you set the save_interval for each route between Replication Servers,
you allow each Replication Server to retain messages for a minimum period of
time after the next site in the route acknowledges that it has received the
messages. The availability of these messages increases the chance of
recovering online messages after queues are rebuilt.

For example, in Figure 7-1 on page 222, Replication Server TOKYO_RS
maintains a direct route to MANILA_RS, and MANILA_RS maintains a direct
route to SYDNEY_RS.

TOKYO_RS retains messages for a period of time after MANILA_RS has
received them. If MANILA_RS experiences a partition failure, it requires that
TOKYO_RS to resend the backlogged messages. MANILA_RS can also retain
messages to allow SYDNEY_RS to recover from failures.

When all of the messages stored on a stable queue segment are at least as old
as the save_interval setting, Replication Server deletes the segment so it can be
reused.

Configuring the replication system to prevent data loss

222 Replication Server

Figure 7-1: Save interval example

Setting the save
interval for routes

To set the save_interval for a route, execute the alter route command at the
source Replication Server. Using as an example the replication system in
Figure 7-1, here is the command to set Replication Server TOKYO_RS to save
for one hour any messages destined for MANILA_RS:

alter route to MANILA_RS
set save_interval to '60'

By default, the save_interval is set to 0 (minutes). For systems with low
volume, this may be an acceptable setting for recovery, since Replication
Server does not delete messages immediately after receiving acknowledgment
from destination servers. Rather, messages are deleted periodically in large
chunks.

However, to accommodate the volume and activity of sites that receive
distributions from the Replication Server and to increase the chance of full
recovery from database or partition failures, you may want to change the
save_interval setting.

In case of a partition failure on the stable queues, be sure your setting allows
adequate time to restore your system. Consider also the size of the partitions
that are allocated for backlogged messages. Partitions must be large enough to
hold the extra messages.

Refer to the Replication Server Design Guide capacity planning guidelines for
help in determining queue space requirements.

TOKYO_RS SYDNEY_RS

TOKYO_RS SYDNEY_RS

MANILA_RS

MANILA_RS

Primary
Data Server

Replicate
Data Server

TOKYO_DS SYDNEY_DS

RSSDRSSD RSSD

CHAPTER 7 Replication System Recovery

Administration Guide 223

Connections between Replication Servers and data servers

When you set the save_interval for a physical or logical connection between a
Replication Server and a data server and database, you allow Replication
Server to save transactions in the DSI queue. You can restore the backlogged
transactions using the sysadmin restore_dsi_saved_segments command. Refer
to the Replication Server Reference Manual for more information.

You can use these saved transactions to resynchronize a database after it has
been loaded to a previous state from transaction dumps and database dumps.

For example, in Figure 7-1, if the replicate data server SYDNEY_DS that is
connected to Replication Server SYDNEY_RS experiences a failure, it can
obtain the messages saved in the DSI queue at SYDNEY_RS to resynchronize
the replicate database after it has been restored.

You can also use the save_interval for setting up a warm standby of a database
that holds some replicate data or one that receives applied functions.

Setting the save interval for connections

To set the save_interval for a database connection, execute the alter connection
command at the Replication Server. For example, here is the command to set
Replication Server SYDNEY_RS to save for one hour any messages destined
for its replicate data server SYDNEY_DS.

alter connection to SYDNEY_DS.pubs2
set save_interval to '60'

By default, the save_interval is set to 0 (minutes).

You can also configure the save intervals for the DSI queue and the
materialization queue for a logical connection. See “Configuring logical
connection save intervals” on page 109 for details.

Backing up the RSSDs
If you cannot recover an RSSD’s most recent state, RSSD recovery can be
complex. The procedure you use depends on how much RSSD activity there
has been since the last dump. See Table 7-3 on page 236 for a list of possible
recovery procedures.

You should perform a dump of your RSSDs following any replication DDL,
such as changing routes or adding subscriptions.

Configuring the replication system to prevent data loss

224 Replication Server

Creating coordinated dumps
When you must recover a primary database by restoring backups, you must
also make sure that replicate data in the affected databases at other sites is
consistent with the primary data. To provide for consistency after a restore on
multiple data servers, Replication Server provides a method for coordinating
database dumps and transaction dumps at all sites in a replication system.

You initiate a database dump or transaction dump from the primary database.
RepAgent retrieves the dump record from the log and submits it to Replication
Server so that the dump request can be distributed to the replicate sites. The
method ensures that all of the data can be restored to a known point of
consistency.

You can only use a coordinated dump with databases that store either primary
data or replicated data but not both. You initiate a coordinated dump from
within a primary database.

The process for coordinating dumps works as follows:

• In each function-string class assigned to the databases involved, the
Replication System Administrator at each site creates function strings for
the rs_dumpdb and rs_dumptran system functions. The function strings
should call stored procedures that execute the dump database and dump
transaction or equivalent commands and update the rs_lastcommit system
table. Refer to the Replication Server Reference Manual for examples.

• You must be using a function-string class, such as a derived class, in which
you can create and modify function strings. See “Managing function-
string classes” on page 26 for more information.

• Using the alter connection command, the replication system administrator
at each replicate site configures the Replication Servers to enable a
coordinated dump.

• When a dump is started in a primary database, the RepAgent transfers the
dump database or dump transaction log record to the Replication Server.

• Replication Server distributes an rs_dumpdb or rs_dumptran function call
to sites that have subscriptions for the replicated tables in the database.

• The rs_dumpdb and rs_dumptran function strings at the replicate sites
execute the customized stored procedures at each replicate site.

CHAPTER 7 Replication System Recovery

Administration Guide 225

Recovering from partition loss or failure
When a Replication Server detects a failed or missing partition, it shuts down
the stable queues that are using the partition and logs messages about the
failure. Restarting Replication Server does not correct the problem. You must
drop the damaged partition and rebuild the stable queues.

Complete recovery depends on the volume of messages cleared from the queue
and on how soon you apply the recovery procedure after the failure occurs. If
a Replication Server maintains minimal latency in the replication system, only
the most recent messages are lost when its queues are rebuilt.

If a partition fails in a primary Replication Server, you can usually resend lost
messages from their source using an off-line database log. If partitions fail in a
replicate Replication Server, you need to recover from the stable queue of the
upstream Replication Server.

In some cases, using an off-line log may be the only way you can recover your
messages. If the Replication Server has suspended routes or connections, or if
a network or data server connection goes down, a backlog may have
accumulated in the Replication Server stable queues. Unless you have
specified a save interval setting that can cover the backlog, your chance of
recovering these messages decreases with time. Source Replication Servers
may have already deleted messages from their stable queues and may have
truncated the database logs.

Note For details on setting and displaying the save interval for recovery
purposes, see “Recovering from partition loss or failure” on page 225.

Table 7-2 summarizes when to use and where to locate the appropriate
recovery procedure for partition loss or failure.

Table 7-2: Overview of symptoms and procedures

Symptom Use this procedure

Replication Server detects lost, damaged, or failed stable
queue.

“Procedure for recovering from partition loss or
failure” on page 226.

Message loss occurred because a backlog existed in the
failed Replication Server and there were insufficient
messages saved at the previous site.

“Message recovery from off-line database logs”
on page 227.

In addition to message loss, database logs have been
truncated. Either the secondary truncation point is invalid
or the dbcc settrunc('ltm', 'ignore') command, was
executed to truncate log records that have not been
transferred by RepAgent to the Replication Server.

Use “Truncated message recovery from the
database log” on page 230 to recover the
database log. Then use “Message recovery from
off-line database logs” on page 227 to rebuild
the stable queues and recover lost messages.

Recovering from partition loss or failure

226 Replication Server

Procedure for recovering from partition loss or failure
To recover from Replication Server partition loss or failure, perform the
following steps:

1 Log in to the Replication Server and drop the failed partition:

drop partition logical_name

Replication Server does not immediately drop a partition that was in use.
If the partition is undamaged, Replication Server drops it only after all of
the messages it holds are delivered and deleted.

Refer to Chapter 3, “Replication Server Commands,” in the Replication
Server Reference Manual for more information about drop partition
command.

2 If the failed partition was the only one available to the Replication Server,
add another one to replace it:

create partition logical_name
on 'physical_name' with size size
[starting at vstart]

Refer to the Replication Server Reference Manual for more information.

3 Since the partition is damaged, you must rebuild the stable queues:

rebuild queues

See “Rebuilding queues online” on page 251 for a description of this
process.

When all stable queues on the partition are removed, Replication Server
drops the failed partition from the system and rebuilds the queues using the
remaining partitions.

4 After rebuilding the queues, check the Replication Server logs for loss
detection messages.

See “Loss detection after rebuilding stable queues” on page 253 for
background and details.

5 If Replication Server detected message loss, you can:

• Perform “Message recovery from off-line database logs” on page
227, or

CHAPTER 7 Replication System Recovery

Administration Guide 227

• Request that Replication Server ignore the loss by executing the
ignore loss command for the database on the Replication Server where
the loss was detected.

Note If you specify that Replication Server ignore message losses and you
have rebuilt the queues of a Replication Server that is part a route, you must re-
create subscriptions at the destination or use the rs_subcmp program with the -
r flag to reconcile primary and replicate data.

Message recovery from off-line database logs
If the online log does not contain all the data needed to recover, you must load
an older version of the primary database into a separate database and start
RepAgent for the database. Although RepAgent is accessing a different
database, it submits messages as if they were from the database whose
messages you are recovering.

To recover messages from off-line logs after a partition failure:

1 Restart Replication Server in standalone mode, using the -M flag.

2 Log in to the Replication Server, and enter:

rebuild queues

See “Rebuilding queues online” on page 251 for a description of this
process.

3 Inspect the Replication Server logs at each site for “Checking Loss”
messages.

See “Determining which dumps to load” on page 260 for background and
details on examining these messages.

4 Use the date and time in the error log messages to determine which dumps
to load.

5 Enable RepAgent for a temporary recovery database, using the
sp_config_rep_agent system procedure.

sp_config_rep_agent temp_dbname, 'enable', \
'rs_name', 'rs_user_name', 'rs_password'

See “Setting Replication Server configuration parameters” on page 86 in
the Replication Server Administration Guide Volume 1 for information
about configuring RepAgent.

Recovering from partition loss or failure

228 Replication Server

6 Load the database dump and the first transaction log dump in to a
temporary recovery database.

7 Start RepAgent in recovery mode for the temporary database:

sp_start_rep_agent temp_dbname, 'recovery', \
'connect_dataserver', 'connect_database', \
'rs_name', 'rs_user_name', 'rs_password'

where “connect_dataserver” and “connect_database” specify the
original primary data server and database.

RepAgent transfers data in the transaction log of the temporary recovery
database to the original primary database. When RepAgent completes
scanning the transaction log, it shuts down.

8 Verify that RepAgent has replayed the transaction log of the temporary
database. Use either of these methods:

• Check the Adaptive Server log for a message similar to the following:

Recovery of transaction log is complete. Please
load the next transaction log dump and then start
up the Rep Agent Thread with sp_start_rep_agent,
with ‘recovery’ specified.

Then, perform the appropriate actions.

• From Adaptive Server, execute the sp_help_rep_agent system
procedure for recovery:

sp_help_rep_agent dbname, 'recovery'

This procedure displays RepAgent’s recovery status. If the recovery
status is “not running” or “end of log,” then recovery is complete. You
can load the next transaction log dump. If the recovery status is
“initial” or “scanning,” either the log has not been replayed, or the
replay is not complete.

9 If you have performed another recovery procedure since you performed
the last database dump, you may need to change the database generation
number after loading a transaction log dump. See “Determining database
generation numbers” on page 261.

10 If there are more transaction log dumps to load, repeat the following three
steps for each dump:

a Load the next transaction log dump. (Be sure to load the dumps in the
correct order.)

b Restart RepAgent in recovery mode.

CHAPTER 7 Replication System Recovery

Administration Guide 229

c Watch the Adaptive Server log for the completion message or use
sp_help_rep_agent.

11 Check the Replication Server logs for loss detection messages.

No losses should be detected unless you failed to load the database to a
state old enough to retrieve all of the messages.

See “Loss detection after rebuilding stable queues” on page 253 for
background and details.

12 Restart the Replication Server in normal mode.

13 Restart RepAgent for the original primary data server and database in
normal mode.

Message recovery from the online database log
To recover messages that are still in the online log at the primary database,
perform the following steps:

1 Stop all client activity.

2 Restart RepAgent for the primary database in recovery mode.

This process causes RepAgent to scan the log from the beginning so that
it retrieves all messages.

Recovering from truncated primary database logs
This section describes how to recover from failures caused by truncating a
primary transaction log before Replication Server has received the messages.

This situation typically occurs if RepAgent, a Replication Server (managing a
primary database), or a network between them is down for a long time and
RepAgent or Replication Server is unable to read records from the transaction
log. The secondary truncation point cannot be moved, which prevents
Adaptive Server from truncating the log and causes the transaction log of the
primary database to fill up. You can then remove the secondary truncation point
by executing sp_stop_rep_agent followed by dbcc settrunc (ltm, ignore).

Recovering from truncated primary database logs

230 Replication Server

When a failed component returns to service, messages are missing at the
Replication Server. Depending on the status of the lost messages, use one of the
following procedures:

• If messages are still in the online log at the primary database (which is
unlikely), see “Message recovery from the online database log” on page
229.

• If messages have been truncated from the online database log, see
“Truncated message recovery from the database log” on page 230.

Truncated message recovery from the database log
In this procedure, you must load a previous database dump and transaction log
dumps into a temporary recovery database. Then connect a RepAgent to that
database to transmit the truncated log to the Replication Server. After the
missing log records are recovered, you can restart the system using the regular
primary database.

Using a temporary recovery database permits transaction recovery from clients
that continued to use the primary database after its log was truncated.

Note Use the temporary database exclusively for recovering messages. Any
modification to the database prevents you from loading the next transaction log
dump. Also limit the activity on the original primary database so that the
recovery can be completed before the transaction log on the original primary
database must be dumped and truncated again.

To replay off-line transaction logs, follow these steps:

1 Create a temporary database such that the sysusages tables are similar in
both the original and the temporary databases. To do this, you must use the
same sequence of create database and alter database commands when
creating the temporary database as were used to create the original
database.

2 Shut down Replication Server.

3 Restart Replication Server in standalone mode, using the -M flag.

4 Log in to the Replication Server and execute the set log recovery command
for each primary database you are recovering.

See “Setting log recovery for databases” on page 258.

CHAPTER 7 Replication System Recovery

Administration Guide 231

This command puts the Replication Server into loss detection mode for the
databases. Replication Server logs a message similar to the following:

Checking Loss for DS1.PDB from DS1.PDB
date=Nov-01-1995 10:35am
qid=0x01234567890123456789

5 Execute the allow connections command to allow Replication Server to
accept connections only from other Replication Servers and from
RepAgents in recovery mode.

Note If you attempt to connect to this Replication Server by automatically
restarting RepAgent in normal mode with scripts, the Replication Server
rejects the connection. You must restart RepAgent in recovery mode while
pointing to the correct off-line log. This step allows you to resend old
transaction logs before current transactions are processed.

6 Load the database dump into the temporary primary database.

7 Load the first or next transaction log dump into the temporary primary
database.

8 Start the RepAgent for the temporary database in recovery mode:

sp_start_rep_agent temp_dbname, 'recovery',
'connect_dataserver', 'connect_database',
'repserver_name', 'repserver_username',
'repserver_password'

where connect_dataserver and connect_database specify the original
primary data server and database.

RepAgent transfers data in the transaction log of the temporary recovery
database to the original primary database. When RepAgent completes
scanning the current transaction log, it shuts down.

9 Verify that RepAgent has replayed the transaction log of the temporary
database.

a Check the Adaptive Server log for the following message:

Recovery of transaction log is complete. Please
load the next transaction log dump and then start
up the Rep Agent Thread with sp_start_rep_agent,
with ‘recovery’ specified.

and perform the appropriate actions, or

b Execute admin who_is_down.

Recovering from primary database failures

232 Replication Server

If the RepAgent reports “down,” load the next transaction log.

10 Repeat steps 7 through 9 until all transaction logs have been processed.

You are now ready to resume normal replication from the primary
database.

11 Shut down Replication Server, which is still in standalone mode.

12 Execute the following commands:

rs_zeroltm data_server, database
dbcc settrunc('ltm', 'valid')

Note You may need to execute rs_zeroltm to clear the locator information.

13 Restart Replication Server in normal mode.

14 Restart RepAgent for both the primary database and RSSD using
sp_start_rep_agent.

15 If you have performed another recovery procedure since you performed
the last database dump, you may need to change the database generation
number after loading a transaction log dump. See “Determining database
generation numbers” on page 261.

Recovering from primary database failures
Most database failures are recovered without losing any committed
transactions. No special Replication Server recovery procedure is needed if the
database recovers on restart—Replication Server performs a handshake with
the database, ensuring that no transactions are lost or duplicated in the
replication system.

If a primary database fails and you are unable to recover all committed
transactions, you must load the database to a previous state and follow a
recovery procedure designed to restore consistency at the replicate sites.

Here are two possible scenarios for recovering from primary database failures:

• Recovering with coordinated dumps

If you have coordinated dumps of primary and replicate databases, you can
use them to load all databases in the replication system to a consistent
state.

CHAPTER 7 Replication System Recovery

Administration Guide 233

See “Loading from coordinated dumps” on page 233 for details.

• Recovering with primary dumps only

If you do not have coordinated dumps, you can load the failed primary
database and then verify the consistency of the replicate databases with the
restored primary database.

See “Loading a primary database from dumps” on page 234 for details.

Loading from coordinated dumps
Use this procedure only if you have coordinated dumps of both primary and
replicate databases. To load a primary database and all replicate databases to
the same state, follow this procedure:

1 Perform steps 1 through 10 from “Loading a primary database from
dumps” on page 234.

2 Suspend connections to the replicate databases that must be restored.

3 For each replicate database, log in to its managing Replication Server and
execute the suspend connection command:

suspend connection to data_server.database

4 Load the replicate databases from the coordinated dumps that correspond
to the restored primary database state.

5 For each replicate database, log in to its managing Replication Server and
execute a sysadmin set_dsi_generation command to set the generation
number for the database to the same generation number used in step 1:

sysadmin set_dsi_generation, 101,
primary_data_server, primary_database,
replicate_data_server, replicate_database

The parameters primary_data_server and primary_database specify the
primary database for loading. The parameters replicate_data_server and
replicate_database specify the replicate database for loading.

Setting the generation numbers in this manner prevents Replication
Servers from applying to the replicate databases any old messages that
may be in the queues.

6 For each replicate database, log in to its managing Replication Server and
execute the resume connection command to restart the DSI for the
database:

Recovering from primary database failures

234 Replication Server

resume connection to data_server.database

7 Restart the primary Replication Server in normal mode.

8 Restart RepAgent for the primary database in normal mode.

Note If any subscriptions were materializing when the failure occurred, drop
them and re-create them.

Loading a primary database from dumps
Use this procedure if you are loading only a primary database in a replication
system. To load the database to a previous state and resolve any inconsistencies
with replicate databases, follow this procedure:

1 Log in to the primary Replication Server and use the admin get_generation
command to get the database generation number for the primary database:

admin get_generation, data_server, database

Write down the generation number so you have it for step 7.

2 Shut down the RepAgent for the primary database. To do this execute
sp_stop_rep_agent system procedure.

sp_stop_rep_agent database

3 Suspend the DSI connection to the primary database (for exclusive use).

4 Load the database to the most recent or previous state.

This step entails loading the most recent database dump and all subsequent
transaction log dumps.

Refer to the Adaptive Server Enterprise System Administration Guide for
instructions.

5 Resume the DSI connection.

6 Enter the following commands to dump the transaction log:

use database
go
dbcc settrunc('ltm', 'ignore')
go
dump tran database with truncate_only
go
dbcc settrunc('ltm', 'valid')

CHAPTER 7 Replication System Recovery

Administration Guide 235

go

7 Execute the dbcc settrunc command in the restored primary database to set
the generation number to the next higher number. For example, if the
admin get_generation command in step 1 returned 0, enter the following
commands:

use database
go
dbcc settrunc('ltm', 'gen_id', 1)

8 Run the following command to clear the locator information:

rs_zeroltm data_server, database

9 Start RepAgent for the primary database. To do this, execute the following
command:

sp_start_rep_agent database

10 Run the rs_subcmp program for each subscription at the replicate sites.
Use the -r flag to reconcile the replicate data with the restored primary
data, or drop all the subscriptions and re-create them.

See Chapter 11, “Managing Subscriptions” in the Replication Server
Administration Guide Volume 1 for more information on using rs_subcmp.
Also refer to Chapter 7, “Executable Programs,” in the Replication Server
Reference Manual for more information about rs_subcmp command.

Recovering from RSSD failure
If you cannot recover the RSSD’s most recent database state, recovering from
an RSSD failure is a complex process. In this case, you must load the RSSD
from old database dumps and transaction log dumps.

The procedure for recovering an RSSD is similar to that for recovering a
primary database. However, it requires more steps, since the RSSD holds
information about the replication system itself. RSSD system tables are closely
associated with the state of the stable queues and of other RSSDs in the
replication system.

If a Replication Server RSSD has failed, you first need to determine the extent
of recovery required. To do this, perform one or more of the following actions:

Recovering from RSSD failure

236 Replication Server

• When the RSSD becomes available, log in to the Replication Server and
execute admin who_is_down. Some Replication Server threads may have
shut down during the RSSD’s period of inactivity.

• If an SQM thread for an inbound or outbound queue or an RSI
outbound queue is down, restart the Replication Server.

• If a DSI thread is down, resume the connection to the associated
database.

• If an RSI thread is down, resume the route to the destination database.

• Check all connecting RepAgents to see if they are running with the
sp_help_rep_agent system procedure. (RepAgents may have shut down in
response to errors resulting from RSSD shutdown.) Restart them if
necessary.

• If you cannot recover the RSSD’s most recent database state, you must
load it from old database dumps and transaction log dumps. See
“Recovering an RSSD from dumps” on page 236.

Recovering an RSSD from dumps
The procedure you use to recover an RSSD depends on how much RSSD
activity there has been since the last RSSD dump. There are four increasingly
severe levels of RSSD failure, with corresponding recovery requirements. Use
Table 7-3 to locate the RSSD recovery procedure you need.

Table 7-3: Recovering from RSSD failures

Basic RSSD recovery procedure
Use the basic RSSD recovery procedure to restore the RSSD if you have
executed no DDL commands since the last RSSD dump. DDL commands in
RCL include those for creating, altering, or deleting routes, replication
definitions, subscriptions, function strings, functions, function-string classes,
or error classes.

Activity since last RSSD dump Use this procedure

No DDL activity “Basic RSSD recovery procedure” on page 236

DDL activity, but no new routes or subscriptions created “Subscription comparison procedure” on page 239

DDL activity, but no new routes created “Subscription re-creation procedure” on page 246

New routes created “Deintegration/reintegration procedure” on page 249

CHAPTER 7 Replication System Recovery

Administration Guide 237

Certain steps in this procedure are also referenced by other RSSD recovery
procedures in this chapter.

 Warning! Do not execute any DDL commands until you have completed this
recovery procedure.

To perform basic RSSD recovery, follow these steps:

1 Shut down all RepAgents that connect to the current Replication Server.

2 Since its RSSD has failed, the current Replication Server is down. If for
some reason it is not down, log in to it and use the shutdown command to
shut it down.

Note Some messages may still be in the Replication Server stable queues.
Data in those queues may be lost when you rebuild these queues in later
steps.

3 Restore the RSSD by loading the most recent RSSD database dump and
all transaction dumps.

4 Restart the Replication Server in standalone mode, using the -M flag.

You must start the Replication Server in standalone mode, because the
stable queues are now inconsistent with the RSSD state. When the
Replication Server starts in standalone mode, reading of the stable queues
is not automatically activated.

5 Log in to the Replication Server, and get the generation number for the
RSSD, using the admin get_generation command:

admin get_generation, data_server, rssd_name

For example, the Replication Server may return a generation number of
100.

6 In the Replication Server, rebuild the queues with the following command:

rebuild queues

See “Rebuilding queues online” on page 251 for a description of this
process.

7 Start all RepAgents (except the RSSD RepAgent) that connect to the
current Replication Server in recovery mode.

Wait until each RepAgent logs a message in the Adaptive Server log that
it is finished with the current log.

Recovering from RSSD failure

238 Replication Server

8 Check the loss messages in the Replication Server log, and in the logs of
all the Replication Servers with direct routes from the current Replication
Server.

• If all your routes were active at the time of failure, you probably will
not experience any real data loss.

• However, loss detection may indicate real loss. Real data loss may be
detected if the database logs were truncated at the primary databases,
so that the rebuild process did not have enough information to
recover. If you have real data loss, reload database logs from old
dumps. See “Recovering from truncated primary database logs” on
page 229.

• See “Loss detection after rebuilding stable queues” on page 253 for
background and details on loss detection.

9 Shut down RepAgents for all primary databases managed by the current
Replication Server.

10 Execute the dbcc settrunc command at the Adaptive Server for the restored
RSSD. Move up the secondary truncation point.

use rssd_name
go
dbcc settrunc('ltm', 'ignore'
dump tran rssd_name with truncate_only
go
begin tran commit tran
go 40

Note The begin tran commit tran go 40 command moves the Adaptive
Server log onto the next page.

After completing step 10 and before continuing with step 11, run the
following command to clear the locater information.

rs_zeroltm rssd_server, rssd_name
go

11 Execute the dbcc settrunc command at the Adaptive Server for the restored
RSSD to set the generation number to one higher than the number returned
by admin get_generation in step 5.

dbcc settrunc('ltm', 'valid')
go

CHAPTER 7 Replication System Recovery

Administration Guide 239

Make a record of this generation number and of the current time, so that
you can return to this RSSD recovery procedure, if necessary. Or, you can
dump the database after setting the generation number.

12 Restart the Replication Server in normal mode.

If you performed this procedure as part of the subscription comparison or
subscription re-creation procedure, the upstream RSI outbound queue may
contain transactions, bound for the RSSD of the current Replication
Server, that have already been applied using rs_subcmp. If this is the case,
after starting the Replication Server, the error log may contain warnings
referring to duplicate inserts. You can safely ignore these warnings.

13 Restart RepAgents for the RSSD and for user databases in normal mode.

If you performed this procedure as part of the subscription comparison or
subscription re-creation RSSD recovery procedure, you should expect to
see messages regarding RSSD losses being detected in all Replication
Servers that have routes from the current Replication Server.

Subscription comparison procedure
Follow this RSSD recovery procedure if you have executed some DDL
commands since the last transaction dump but you have not created any new
subscriptions or routes. DDL commands in RCL include those for creating,
altering, or deleting routes, replication definitions, subscriptions, function
strings, functions, function-string classes, or error classes.

 Warning! Do not execute any DDL commands until you have completed this
recovery procedure.

Following this procedure makes the failed RSSD consistent with upstream
RSSDs or consistent with the most recent database and transaction dumps (if
there is no upstream Replication Server). It then makes downstream RSSDs
consistent with the recovered RSSD.

If DDL commands have been executed at the current Replication Server since
the last transaction dump, you may have to re-execute them.

 Warning! This procedure may fail if you are operating in a mixed-version
environment; that is, the Replication Servers in your replication system are not
all at the same version level.

Recovering from RSSD failure

240 Replication Server

To restore an RSSD with subscription comparison, follow these steps:

1 To prepare the failed RSSD for recovery, perform steps 1 through 4 of
“Basic RSSD recovery procedure” on page 236.

2 To prepare all upstream RSSDs for recovery, execute the admin
quiesce_force_rsi command at each upstream Replication Server.

• This step ensures that all committed transactions from the current
Replication Server have been applied before you execute the
rs_subcmp program.

• Execute this command sequentially, starting with the Replication
Server that is furthest upstream from the current Replication Server.

• Make sure that RSSD changes have been applied, that is, that the
RSSD DSI outbound queues are empty.

• The Replication Server that is directly upstream from the current
Replication Server cannot be quiesced.

3 To prepare all downstream RSSDs for recovery, execute the admin
quiesce_force_rsi command at each downstream Replication Server.

• This step ensures that all committed transactions bound for the current
Replication Server have been applied before you execute the
rs_subcmp program.

• Execute this command sequentially, starting with Replication Servers
that are immediately downstream from the current Replication Server.

• Make sure that RSSD changes have been applied, that is, that the
RSSD DSI outbound queues are empty.

4 Reconcile the failed RSSD with all upstream RSSDs, using the rs_subcmp
program.

• First execute rs_subcmp without reconciliation to get an idea of what
operations it will perform. When you are ready to reconcile, use the
-r flag to reconcile the replicate data with the primary data.

• You must execute rs_subcmp as the maintenance user. See Chapter 8,
“Managing Replication Server Security” in the Replication Server
Administration Guide Volume 1 for more information on the
maintenance user.

• In each instance, specify the failed RSSD as the replicate database.

• In each instance, specify the RSSD of each upstream Replication
Server as the primary database.

CHAPTER 7 Replication System Recovery

Administration Guide 241

• Start with the furthest upstream Replication Server, and proceed
downstream for all other Replication Servers with routes (direct or
indirect) to the current Replication Server.

• Reconcile each of the following RSSD system tables: rs_articles,
rs_classes, rs_columns, rs_databases, rs_erroractions, rs_functions,
rs_funcstrings, rs_objects, rs_publications, rs_systext, and
rs_whereclauses.

• When you execute rs_subcmp on replicated RSSD tables, the where
and order by clauses of the select statement must include all rows to
be replicated. See “Using rs_subcmp on replicated RSSD system
tables” on page 242 for more information.

The failed RSSD should now be recovered.

5 Reconcile all downstream RSSDs with the RSSD for the current
Replication Server, which was recovered in the previous step, using the
rs_subcmp program.

• First execute rs_subcmp without reconciliation to get an idea of what
operations it will perform. When you are ready to reconcile, use the -
r flag to reconcile the replicate data with the primary data.

• You must execute rs_subcmp as the maintenance user. See Chapter 8,
“Managing Replication Server Security” in the Replication Server
Administration Guide Volume 1 for more information on the
maintenance user.

• In each instance, specify as the primary database the recovered RSSD.

• In each instance, specify as the replicate database the RSSD of each
downstream Replication Server.

• Start with the Replication Servers that are immediately downstream,
then proceed downstream for all other Replication Servers with routes
(direct or indirect) from the current Replication Server.

• Reconcile each of the following RSSD system tables: rs_articles,
rs_classes, rs_columns, rs_databases, rs_erroractions, rs_functions,
rs_funcstrings, rs_objects, rs_publications, rs_systext, and
rs_whereclauses.

• When you execute rs_subcmp on replicated RSSD tables, the where
and order by clauses of the select statement must select all rows to be
replicated. See “Using rs_subcmp on replicated RSSD system tables”
on page 242 for more information.

Recovering from RSSD failure

242 Replication Server

All downstream RSSDs should now be fully recovered.

6 If the recovering Replication Server is an ID Server, you must restore the
Replication Server and database IDs in its RSSD.

a For every Replication Server, check the rs_databases and rs_sites
system tables for their IDs.

b Insert the appropriate rows in the recovering RSSD’s rs_idnames
system table if they are missing.

c Delete from the recovering RSSD’s rs_idnames system table any IDs
of databases or Replication Servers that are no longer part of the
replication system.

d To ensure that the rs_ids system table is consistent, execute the
following stored procedure in the RSSD of the current Replication
Server:

rs_mk_rsids_consistent

7 If the recovering Replication Server is not an ID Server, and a database
connection was created at the recovering Replication Server after the last
transaction dump, delete the row corresponding to that database
connection from the rs_idnames system table in the ID Server’s RSSD.

8 Perform steps 5 through 13 of “Basic RSSD recovery procedure” on page
236.

9 To complete RSSD recovery, re-execute any DDL commands executed at
the current Replication Server since the last transaction dump.

Using rs_subcmp on replicated RSSD system tables

When executing rs_subcmp on replicated RSSD tables during RSSD recovery
procedures, formulate the where and order by clauses of the select statement to
select all rows that must be replicated for each system table.

Table 7-4 illustrates the general form of these select statements.

Note You may need to adjust these select statements in a mixed-version
environment.

CHAPTER 7 Replication System Recovery

Administration Guide 243

Table 7-4: select statements for rs_subcmp procedure

In the select statements in Table 7-4, sub_select represents the following sub-
selection statement, which selects all site IDs that are the source Replication
Servers for the current Replication Server:

(select source_rsid from rs_routes
where

(through_rsid = PRS_site_ID
or through_rsid = RRS_site_ID)

and
dest_rsid = RRS_site_ID)

where PRS_site_ID is the site ID of the Replication Server managing the
primary RSSD, and RRS_site_ID is the site ID of the Replication Server
managing the replicate RSSD for the rs_subcmp operation.

For the rs_columns, rs_databases, rs_funcstrings, rs_functions, and rs_objects
system tables, if rowtype = 1, then the row is a replicated row. Only replicated
rows need be compared using rs_subcmp.

For each system table, the primary_keys are its unique indexes.

RSSD table
name select statement

rs_articles select * from rs_articles where prsid in sub_select order by primary_key

rs_classes select * from rs_classes where prsid in sub_select order by primary_keys

rs_columns select * from rs_columns where prsid in sub_select and rowtype = 1 order by primary_keys

rs_databases select * from rs_databases where prsid in sub_select and rowtype = 1 order by primary_keys

rs_erroractions select * from rs_erroractions where prsid in sub_select order by primary_keys

rs_funcstrings select * from rs_funcstrings where prsid in sub_select and rowtype = 1 order by
primary_keys

rs_functions select * from rs_functions where prsid in sub_select and rowtype = 1 order by primary_keys

rs_objects select * from rs_objects where prsid in sub_select and rowtype = 1 order by primary_keys

rs_publications select * from rs_publications where prsid in sub_select order by primary_key

rs_systext select * from rs_systext where prsid in sub_select and texttype in ('O', 'S') order by
primary_keys

rs_whereclauses select * from rs_whereclauses where prsid in sub_select order by primary_key

Recovering from RSSD failure

244 Replication Server

Classes and system tables

The system-provided function-string classes and error class do not initially
have a designated primary site, that is, their site ID equals 0. The classes
rs_default_function_class and rs_db2_function_class cannot be modified, and
thus can never have a designated primary site. The classes
rs_sqlserver_function_class and rs_sqlserver_error_class may be assigned a
primary site and modified. The primary site of a derived function-string class
is the same as its parent class.

If the recovering Replication Server was made the primary site for a function-
string class or error class since the last transaction dump, the rs_subcmp
procedure described earlier in this section would find orphaned rows in
downstream RSSDs.

In that event, run rs_subcmp again on the rs_classes, rs_erroractions,
rs_funcstrings, and rs_systext system tables. Set prsid = 0 in order to repopulate
these tables with the necessary default settings. For example, use the following
select statement for the rs_classes table:

select * from rs_classes where prsid = 0
order by primary_keys

Example

Suppose you have the following Replication Server sites in your replication
system, where an arrow (→) indicates a route. Site B is the failed site, and there
are no indirect routes.

• A > B

• C > B

• C > D

• B > E

These Replication Servers have the following site IDs:

• A = 1

• B = 2

• C = 3

• D = 4

• E = 5

CHAPTER 7 Replication System Recovery

Administration Guide 245

In this example, to bring the RSSDs to a consistent state, you would perform
the following tasks, in the order presented, on the rs_classes, rs_columns,
rs_databases, rs_erroractions, rs_funcstrings, rs_functions, rs_objects, and
rs_systext system tables.

Reconciling with upstream RSSDs

1 Run rs_subcmp against the above tables, specifying site B as the replicate
and site A as the primary, with prsid = 1 in the where clauses. For example,
the select statement for rs_columns should look like the following:

select * from rs_columns where prsid in
(select source_rsid from rs_routes
where

(through_rsid = 1 or through_rsid = 2)
 and dest_rsid = 2)
and rowtype = 1
order by objid, colname

2 Run rs_subcmp against the above tables, specifying site B as the replicate
and site C as the primary, with prsid = 3 in the where clauses. For example,
the select statement for rs_columns should look like the following:

select * from rs_columns where prsid in
(select source_rsid from rs_routes
 where
(through_rsid = 3 or through_rsid = 2)
 and dest_rsid = 2)

 and rowtype = 1
 order by objid, colname

Reconciling downstream RSSDs

1 Run rs_subcmp against the above tables, specifying site B as the primary
and site E as the replicate, with prsid = 2 in the where clauses. For example,
the select statement for rs_columns should look like the following:

select * from rs_columns where prsid in
(select source_rsid from rs_routes
 where
(through_rsid = 2 or through_rsid = 5)
 and dest_rsid = 5)

 and rowtype = 1
 order by objid, colname

Recovering from RSSD failure

246 Replication Server

Refer to Chapter 7, “Executable Programs,” in the Replication Server
Reference Manual for more information on rs_subcmp. Refer to Chapter 8,
“Replication Server System Tables,” in the Replication Server Reference
Manual for more information on the RSSD system tables.

Subscription re-creation procedure
Follow this RSSD recovery procedure if you have created new subscriptions or
other DDL since the last transaction dump, and you have not created new
routes. DDL commands in RCL include those for creating, altering, or deleting
routes, replication definitions, subscriptions, function strings, functions,
function-string classes, or error classes.

 Warning! Do not execute any DDL commands until you have completed the
subscription re-creation recovery procedure.

As with the subscription-comparison RSSD recovery procedure, following this
procedure makes the failed RSSD consistent with upstream RSSDs or with the
most recent database and transaction dumps (if there is no upstream
Replication Server). It then makes downstream RSSDs consistent with the
recovered RSSD.

In this procedure, however, you also either delete or re-create subscriptions that
are in limbo due to the loss of the RSSD.

If DDL commands have been executed at the current Replication Server since
the last transaction dump, you may have to reexecute them.

To restore an RSSD that requires that lost subscriptions be re-created, follow
these steps:

1 To prepare the failed RSSD for recovery, perform steps 1 through 4 of
“Basic RSSD recovery procedure” on page 236.

2 To prepare the RSSDs of all upstream and downstream Replication
Servers for recovery, perform step 2 through 3 of “Subscription
comparison procedure” on page 239.

3 Shut down all upstream and downstream Replication Servers affected by
the previous step. Use the shutdown command.

4 Restart all upstream and downstream Replication Servers in standalone
mode, using the -M flag.

CHAPTER 7 Replication System Recovery

Administration Guide 247

All RepAgents connecting to these Replication Servers shut down
automatically when you restart the Replication Servers in standalone
mode.

5 To reconcile the failed RSSD with all upstream RSSDs, perform step 4 of
“Subscription comparison procedure” on page 239.

The failed RSSD should now be recovered.

6 To reconcile all downstream RSSDs with the RSSD for the current
Replication Server, perform step 5 of “Subscription comparison
procedure” on page 239.

7 If the recovering Replication Server is an ID Server, to restore the IDs in
its RSSD, perform step 6 of “Subscription comparison procedure” on
page 239.

8 If the recovering Replication Server is not an ID Server and a database
connection was created at the recovering Replication Server after the last
transaction dump, perform step 7 of “Subscription comparison procedure”
on page 239.

9 Query the rs_subscriptions system table of the current Replication Server
for the names of subscriptions and replication definitions or publications
and their associated databases.

• Also query all Replication Servers with subscriptions to primary data
managed by the current Replication Server, or with primary data to
which the current Replication Server has subscriptions.

• You can query the rs_subscriptions system table by using the
rs_helpsub stored procedure.

10 For each user subscription in the rs_subscriptions system table, execute the
check subscription command using the information obtained in step 9.

• Execute this command at the current Replication Server and at all
Replication Servers with subscriptions to primary data managed by
the current Replication Server, or with primary data to which the
current Replication Server has subscriptions.

• Subscriptions with a status other than VALID must be deleted or re-
created, as described below.

11 For each Replication Server that has a non-VALID subscription with the
current Replication Server as the primary:

• Note its subid, and delete the appropriate row from the primary
rs_subscriptions system table.

Recovering from RSSD failure

248 Replication Server

• Use the subid from rs_subscriptions to find corresponding rows in the
rs_rules system table, and also delete those rows.

For each system table, rs_subscriptions and rs_rules:

• If a subscription is in the primary table and not in the replicate table
(because it was dropped), delete the subscription row from the
primary table.

• If a subscription is in the replicate table and not in the primary table,
delete the subscription row from the replicate table. After completing
the rest of this procedure, re-create the subscription, as described in
steps 17 through 19.

• If a subscription is in both the primary and replicate tables but is not
VALID at one of the sites, delete the rows from both tables. After
completing the rest of this procedure, re-create the subscription, as
described in steps 17 through 19.

12 For each primary Replication Server for which the current Replication
Server has a non-VALID user subscription:

• Note its subid, and delete the appropriate row from the primary
rs_subscriptions system table.

• Use the subid from rs_subscriptions to find corresponding rows in the
rs_rules system table, and also delete those rows.

For each system table, rs_subscriptions and rs_rules:

• If a subscription is in the primary table and not in the replicate table,
delete the subscription row from the primary table. After completing
the rest of this procedure, re-create the subscription, as described in
steps 17 through 19.

• If a subscription is in the replicate table and not in the primary table
(because it was dropped), delete the subscription row from the
replicate table.

• If a subscription is in both the primary and replicate tables, but not
VALID at one of the sites, delete the rows from both tables. After
completing the rest of this procedure, re-create the subscription, as
described in steps 17 through 19.

13 At both the primary and replicate Replication Server, execute the sysadmin
drop_queue command for all existing materialization queues for
subscriptions deleted in steps 17 through 19.

CHAPTER 7 Replication System Recovery

Administration Guide 249

14 Restart in normal mode all Replication Servers, and their RepAgents, that
had subscriptions to primary data managed by the current Replication
Server or with primary data to which the current Replication Server had
subscriptions.

15 Perform steps 5 through 13 of “Basic RSSD recovery procedure” on page
236.

16 Reexecute any DDL commands that executed at the current Replication
Server since the last transaction dump.

17 Enable autocorrection for each replication definition.

18 Re-create the missing subscriptions using either the bulk materialization
method or no materialization.

Use the define subscription, activate subscription, validate subscription, and
check subscription commands for bulk materialization.

19 For each re-created subscription, restore consistency between the primary
and replicate data in either of two ways:

• Drop a subscription using the drop subscription command and the with
purge option. Then re-create the subscription.

• Use the rs_subcmp program with the -r flag to reconcile replicate and
primary subscription data.

Refer to Chapter 7, “Executable Programs,” in the Replication Server
Reference Manual for more information on the rs_subcmp program. Refer to
Chapter 8, “Replication Server System Tables,” in the Replication Server
Reference Manual for more information on the RSSD system tables.

Deintegration/reintegration procedure
If you created routes since the last time the RSSD was dumped, you are
required to perform the following tasks:

1 Remove the current Replication Server from the replication system.

See “Removing a Replication Server” on page 101 in the Replication
Server Administration Guide Volume 1 for details.

2 Reinstall the Replication Server.

Refer to the Replication Server installation and configuration guides for
your platform for complete information on re-installing Replication
Server.

Recovery support tasks

250 Replication Server

3 Re-create Replication Server routes and subscriptions.

See Chapter 6, “Managing Routes” and Chapter 11, “Managing
Subscriptions” in the Replication Server Administration Guide Volume 1
for details.

Recovery support tasks
This section describes standard recovery tasks that are required in performing
the recovery procedures described in this chapter. Use recovery tasks only for
the procedure to which they apply. These tasks support recovery by letting you
manipulate and identify critical data in the replication system.

Refer to this section for background in performing the recovery procedures in
this chapter.

Table 7-5 lists the recovery support tasks.

Table 7-5: Overview of recovery support tasks

Rebuilding stable queues
The rebuild queues command removes all existing queues and rebuilds them. It
cannot rebuild individual stable queues.

You can rebuild queues online or off-line, depending on your situation.
Generally, you rebuild queues online first to detect if there are lost stable queue
messages. If there are lost messages, you can retrieve them by first putting the
Replication Server in standalone mode and recovering the data from an off-line
log.

Recovery support task See

Rebuild stable queues “Rebuilding stable queues” on page 250

Check for Replication Server loss detection
messages after rebuilding stable queues

“Loss detection after rebuilding stable queues” on page
253

Put Replication Server in log recovery mode “Setting log recovery for databases” on page 258

Check for Replication Server loss detection
messages after setting log recovery for databases

“Loss detection after setting log recovery” on page 259

Determine which dumps and logs to load “Determining which dumps to load” on page 260

Adjust database generation numbers “Adjusting database generation numbers” on page 261

CHAPTER 7 Replication System Recovery

Administration Guide 251

Both methods for rebuilding queues are described in more detail in the
following sections. Refer to Chapter 3, “Replication Server Commands,” in the
Replication Server Reference Manual for more information about rebuild
queues command.

Rebuilding queues online

During the online rebuild process, the Replication Server is in normal mode.
All RepAgents and other Replication Servers are automatically disconnected
from the Replication Server. Connection attempts are rejected with the
following message:

Replication Server is Rebuilding

Replication Servers and RepAgents retry connections periodically until rebuild
queues has completed. At this time, the connections are successful.

When the queues are cleared, the rebuild is complete. The Replication Server
then attempts to retrieve the cleared messages from the following sources:

• Other Replication Servers that have direct routes to the rebuilt Replication
Server. If you have set a save interval from other Replication Servers, you
have a greater likelihood of recovery.

• Database transaction logs for primary databases the Replication Server
manages.

If there are loss detection messages, you need to check the status of these
messages. Depending on the failure condition, if these messages are no longer
available at their source, you may need to rebuild the queues using off-line
logs. Or, you can request that Replication Server ignore the lost messages. See
“Rebuilding queues from off-line database logs” on page 251 and “Loss
detection after rebuilding stable queues” on page 253.

Rebuilding queues from off-line database logs

This task is used to recover data from off-line database logs. You use the rebuild
queues command only after you have restarted the Replication Server in
standalone mode. For details on standalone mode, see “Using standalone
mode” on page 252. Executing rebuild queues in standalone mode puts
Replication Server in recovery mode.

In recovery mode, the Replication Server allows only RepAgents in recovery
mode to connect. If a RepAgent that is not in recovery mode attempts to
connect, Replication Server rejects it with following error message:

Recovery support tasks

252 Replication Server

Rep Agent not in recovery mode

If you use a script that automatically restarts RepAgent and connects it to the
Replication Server, you must start RepAgent using the for_recovery option.
RepAgents are not allowed to connect in normal mode.

Figure 7-2 illustrates the progression from normal mode to standalone mode to
recovery mode using the rebuild queues command.

Figure 7-2: Entering recovery mode with the rebuild queues command

Using standalone mode

To start Replication Server in standalone mode, use the -M flag. Standalone
mode is useful for looking at the state of Replication Server because the state
is static. Standalone mode allows you to review the contents of the stable
queues because no messages are being written to or read from the queues.

Standalone mode differs from the Replication Server normal mode in the
following ways:

Standalone Mode

Normal
Mode

Reject
“Not in Recovery”RepAgent connect attempt

rebuild queues

Restart

Restart -M

Restart -M

Restart -M

Recovery Mode
Log recovery set for

all databases

CHAPTER 7 Replication System Recovery

Administration Guide 253

• No incoming connections are accepted. If any RepAgent or Replication
Server attempts to connect to a Replication Server in standalone mode, the
message “Replication Server is in Standalone Mode” is raised.

• No outgoing connections are started. A Replication Server in standalone
mode does not attempt to connect to other Replication Servers.

• No DSI threads are started, even if there are messages in the DSI queues
that have not been applied.

• No Distributor (DIST) threads are started. A DIST thread reads messages
from the inbound queues, performs subscription resolution, and writes
messages to the outbound queues.

Loss detection after rebuilding stable queues

To determine if any messages could not be recovered after the stable queues
were rebuilt, the Replication Server performs loss detection. By checking
Replication Server loss-detection messages, you can determine what kind of
user intervention, if any, is necessary to restore all data to the system.

Replication Server detects two types of losses after rebuilding stable queues:

• SQM loss, which refers to data lost between two Replication Servers,
detected at the next downstream site

• DSI loss, which refers to data lost between a Replication Server and a
replicate database that the Replication Server manages

Both kinds of loss detection are addressed in the following sections.

Recovery support tasks

254 Replication Server

If all data is available, no intervention is necessary and the replication system
can return to normal operations. For example, if you know that the save interval
for the route or connection is set for a longer length of time than the failure, you
can recover all messages with no intervention. However, if the save interval is
not set or is set too low, some messages may be lost.

Note A Replication Server that has detected a loss does not accept messages
from the source. Loss detection prevents the source from truncating its stable
queues. For example, if Replication Server RS2 detects that replicate data
server DS2.RDB has lost data from primary data server DS1.PDB, Replication
Server RS1 cannot truncate its queues until you decide how to handle the loss.

As a result, RS1 may run out of stable storage. Before a loss is detected (that
is, after the “Checking Loss” message is reported), you can choose to ignore
losses for a source and destination pair.

SQM loss between two Replication Servers

Every time you rebuild stable queues during a recovery procedure, Replication
Server requests backlogged messages from sites that send its distributions. If
the Replication Server manages primary databases, it instructs their RepAgents
to send messages from the beginning of the online transaction logs. The
backlogged messages repopulate the emptied stable queues.

Replication Server enables loss detection mode at those sites you are rebuilding
that have a direct route from the Replication Server. In Figure 7-3, Replication
Server RS3 detects losses if you rebuild the queues of Replication Server RS2.
Similarly, RS2 detects losses if you rebuild the queues of Replication Server
RS1.

CHAPTER 7 Replication System Recovery

Administration Guide 255

Figure 7-3: Replication system loss detection example

When you execute the rebuild queues command at RS2, RS3 performs loss
detection for all primary databases whose updates are routed to RS3 through
RS2. RS3 logs messages for each of these databases. If you rebuild queues at
RS3, no SQM loss detection is performed, because there are no routes
originating from RS3.

Replication Server detects loss by looking for duplicate messages. If RS3
receives a message that it had received before the rebuild queues command,
then no messages were lost. If the first message RS3 receives after rebuild
queues has not been seen before, then either messages were lost, or no
messages were in the stable queue.

Even if there are no messages in the stable queue from a specific source, RS3
identifies them as lost because it has no duplicate messages to use for a
comparison. You can prevent this false loss detection by creating a heartbeat
with an interval that is less than the save interval. This guarantees that there
will always be at least one message in the stable queue.

SQM example When RS3 performs SQM loss detection for the rebuilt RS2, it logs in to its log
file messages similar to the following “Checking Loss” message examples.
These messages mark the beginning of the loss detection process. Subsequent
messages are logged with the results. Each message contains a source and
destination pair.

The first example message indicates that RS3 is checking loss for the RSSD at
RS3 from the RSSD at RS2:

Checking Loss for DS3.RS3_RSSD from DS2.RS2_RSSD
date=Nov-01-95 10:15 am
qid=0x01234567890123456789

The second example message indicates that RS3 is checking loss for the
replicate database RDB at RS3, from the primary database PDB at RS1:

Primary
Database

RS1 RS2 RS3

RS1 RSSD RS2 RSSD RS3 RSSD

Replicate
Database

Recovery support tasks

256 Replication Server

Checking Loss for DS3.RDB from DS1.PDB
date=Nov-01-95 11:00am
qid=0x01234567890123456789

The third example message indicates that RS3 is checking loss for the RSSD
at RS3 from the RSSD at RS1:

Checking Loss for DS3.RS3_RSSD from DS1.RS1_RSSD
date=Nov-01-95 10:00am
qid=0x01234567890123456789

RS3 reports whether it detects a loss. For example, the results of such loss-
detection tests might read as follows:

No Loss for DS3.RS3_RSSD from DS2.RS2_RSSD
Loss Detected for DS3.RDB from DS1.PDB
No Loss for DS3.RS3_RSSD from DS1.RS1_RSSD

DSI loss between a Replication Server and its databases

Some messages in Replication Server queues are destined for databases, rather
than for other Replication Servers. The DSI performs loss detection in a way
that is similar to stable queue loss detection.

If you rebuild queues at a Replication Server that has no originating routes, no
SQM loss detection is performed, but the Replication Server performs DSI loss
detection for its messages.

DSI example The DSI at Replication Server RS2 generates the following message for the
RSSD at RS2:

DSI: detecting loss for database DS2.RS2_RSSD from
origin DS1.RS1_RSSD
date=Nov-01-95 10:58pm
qid=0x01234567890123456789

When retained messages begin arriving from previous sites, the DSI detects a
loss, depending on whether the first message from the origin has already been
seen by the DSI. If it detects no loss, a message similar to the following one is
generated:

DSI: no loss for database DS2.RS2_RSSD from origin
DS1.RS1_RSSD

If the DSI does detect a loss, a message like the following one is generated:

DSI: loss detected for database DS2.RS2_RSSD from origin
DS1.RS1_RSSD

CHAPTER 7 Replication System Recovery

Administration Guide 257

Handling losses

When Replication Server detects a loss, no further messages are accepted on
the connection to the SQM or the DSI.

For example, when RS3 detects an SQM message loss for the RDB database
from the PDB database, it rejects all subsequent messages from the PDB
database to the RDB database.

Recovering a loss To recover the loss, you need to choose one of the following options:

• Ignore the loss and continue, even though some messages may be lost. You
can use the rs_subcmp program with the -r flag to reconcile primary and
replicate data.

To run rs_subcmp, see “Subscription comparison procedure” on page 239.
See also Chapter 11, “Managing Subscriptions” in the Replication Server
Administration Guide Volume 1. Also, refer to Chapter 7, “Executable
Programs,” in the Replication Server Reference Manual for more
information about rs_subcmp command.

• Ignore the loss, then drop and re-create the subscriptions.

• Recover by replaying transactions from off-line logs (primary Replication
Server loss only). In this case, you are not ignoring the loss.

Ignoring a loss You must execute an ignore loss command in the following situations:

• If you choose to recover the lost messages by re-creating subscriptions or
replaying logs.

• For an SQM loss, at the Replication Server that reported that loss, to force
the Replication Server to begin accepting messages again. For example, to
ignore a loss RS3 detected from DS1.PDB, enter the following command
at RS3:

ignore loss from DS1.PDB to DS3.RDB

• For a DSI loss, at the database on the Replication Server where the loss
was detected. For example, to ignore a loss reported in DS2.RS2_RSSD
from origin DS1.RS1_RSSD, enter the following command at RS2:

ignore loss from DS1.RS1_RSSD to DS2.RS2_RSSD

• For both an SQM and a DSI loss that is detected by a Replication Server
at the destination of the route when you rebuild two Replication Servers in
succession.

Recovery support tasks

258 Replication Server

In this case, you need to execute ignore loss twice, once for SQM losses
and once for DSI losses. The ignore loss command that you execute to
ignore DSI loss at the destination Replication Server is the same command
you use to ignore SQM loss from the previous site.

Setting log recovery for databases

Setting log recovery manually is part of the procedure for recovering from
truncated primary database logs off-line or restoring primary and replicate
databases from dumps. While the procedure to rebuild queues off-line
automatically sets log recovery for all databases, setting log recovery manually
allows you to recover each database without reconstructing the stable queue.

The set log recovery command places Replication Server in log recovery mode
for a database. You execute this command after placing Replication Server in
standalone mode. To connect the RepAgents only to those databases that have
been set for log recovery mode, execute the allow connections command. This
puts the Replication Server in recovery mode.

Figure 7-4 illustrates the progression from normal mode to standalone mode to
recovery mode using the set log recovery and allow connections commands.

For databases specified with the set log recovery command, Replication Server
only accepts connections from other Replication Servers and from RepAgents
that are in recovery mode. You then recover the transaction dumps into a
temporary recovery database.

CHAPTER 7 Replication System Recovery

Administration Guide 259

Figure 7-4: Entering recovery mode with the allow connections
command

Loss detection after setting log recovery

While you are applying the temporary recovery database to the primary
database, Replication Server may detect SQM loss between a primary database
and the Replication Server that manages that primary database.

If all data is available, no intervention is necessary and the replication system
can return to normal operations. The Replication Server logs a message such
as:

No Loss Detected for DS1.PDB from DS1.PDB

If there were not enough messages, Replication Server logs a loss detection
message similar such as:

Standalone Mode

Normal
Mode

DS1.DB1 Repagent
connect attempt in

normal mode

DS1.DB1 RepAgent connect
attempt in recovery mode

set log recovery for DS1.DB1

allow connections

Restart

Restart -M

Restart -M

Restart -M

Accept DS2.DB1
connect attempt

Accept

Reject

Recovery Mode
Log recovery set for

DS1.DB1

Recovery support tasks

260 Replication Server

Loss Detected for DS1.PDB from DS1.PDB

You must decide whether to ignore the losses by executing the ignore loss
command, or repeat the recovery procedure from the beginning. To ignore the
loss, enter the following command at the primary Replication Server:

ignore loss for DS1.PDB from DS1.PDB

If you received loss detection messages, you failed to reload the database to a
state old enough to retrieve all of the messages. See “Determining which
dumps to load” on page 260.

Determining which dumps to load

When loading transaction log dumps, always examine the “Checking Loss”
message that is displayed during loss detection. If there is more than one
message, choose the earliest date and time to determine which dumps to load.

For example, if the following message is generated by a Replication Server,
you would load the dumps taken just before November 1, 1995 at 10:58 p.m.:

Checking Loss for DS3.RDB from DS1.PDB
date=Nov-01-1995 10:58pm
qid=0x01234567890123456789

The date in the message is the date and time of the oldest open transaction in
the log when the last message received by the Replication Server was
generated by the origin queue. Locate the most recent transaction dump with a
timestamp before the date and time in the message. Then find the full database
dump taken before that transaction dump.

The origin queue ID, or qid, is formed by the RepAgent and identifies a log
record in the transaction log. The date is embedded in the qid as a timestamp.
Replication Server converts the timestamp to a date for RepAgents for
Adaptive Server.

Replication agents for non-Sybase data servers may also embed the timestamp
in the qid. Replication Server converts the timestamp for non-Sybase data
servers in bytes 20–27. The use of these bytes depends on the Replication
Agent.

Note If the data server is not an Adaptive Server, the date in the message may
appear nonsensical. You may need to decode the qid in bytes 20–27 to identify
the dumps to load.

CHAPTER 7 Replication System Recovery

Administration Guide 261

Adjusting database generation numbers

Each primary database in a replication system includes a database generation
number. This number is stored both in the database and in the RSSD of the
Replication Server that manages the database.

Any time you load a database for recovery, you may be required to change the
database generation number, as instructed in the recovery procedure you are
using. This section explains this step.

Determining database generation numbers

RepAgent for a primary database places the database generation number in the
high-order 2 bytes of the qid that it constructs for each log record it passes to
the Replication Server.

The remainder of the qid is constructed from other information that gives the
location of the record in the log and also ensures that the qid increases for each
record passed to Replication Server.

The requirement for increasing qid values allows Replication Server to detect
duplicate records. For example, when a RepAgent restarts, it may resend some
log records that Replication Server has already processed. If Replication Server
receives a record with a lower qid than the last record it processed, it treats the
record as a duplicate and ignores it.

If you are restoring a primary database to an earlier state, increment the
database generation number so that the Replication Server does not ignore log
records submitted after the database is reloaded. This step applies only if you
are using the procedures described in “Loading a primary database from
dumps” on page 234 or in “Loading from coordinated dumps” on page 233.

If you are replaying log records, increment the database generation number
only if RepAgent previously sent the reloaded log records with the higher
generation number. This situation arises only if you have to restore the database
and log to a previous state for the first failure and then later replay the log due
to a second failure.

 Warning! Only change the database generation number as part of a recovery
procedure. Changing the number at any other time can result in duplicate or
missing data at replicate databases.

Recovery support tasks

262 Replication Server

Dumps and database generation numbers

When you reload a database dump, the database generation number is included
in the restored database. Since the database generation number is also stored in
the RSSD of the Replication Server that manages the database, you may need
to update that number so that it matches the one in the restored database.

However, when you reload a transaction log, the database generation number
is not included in the restored log. For example, assume the following
operations have occurred in a database:

Table 7-6: Dumps and database generation numbers

If you reload database dump D1, database generation number 100 is restored
with it. If you reload transaction dump T1, the generation number remains at
100. After transaction dump T2, the generation number remains at 100,
because reloading transaction dumps does not alter the database generation
number. In this case, you need to change the database generation number to 101
using the dbcc settrunc command before having RepAgent scan transaction
dump T2.

However, if you load database dump D2 before resuming replication, you do
not have to alter the database generation number, since the number 101 is
restored.

Operation Database generation number

database dump D1 100

transaction dump T1 100

dbcc settrunc('ltm', 'gen_id', 101) 101

transaction dump T2 101

database dump D2 101

Administration Guide 263

A P P E N D I X A Asynchronous Procedures

This appendix describes asynchronous stored procedures.

This appendix describes the method for replicating stored procedures that
are associated with table replication definitions. This method is supported
for applications that require it.

See Chapter 10, “Managing Replicated Functions” in the Replication
Server Administration Guide Volume 1 for information about replicated
stored procedures that are associated with function replication definitions.
The method described in that chapter is the recommended method for
replicating stored procedures.

Refer to Replication Server Design Guide for more information on
replication system design issues relating to replicated stored procedures.

Overview
Asynchronous procedure delivery allows you to execute SQL stored
procedures that are designated for replication at primary or replicate
databases. Because these stored procedures are marked for replication
using the sp_setreplicate or sp_setrepproc system procedures, they are
called replicated stored procedures.

Topic Page
Overview 263

Applied stored procedures 265

Request stored procedures 266

Asynchronous stored procedure prerequisites 267

Steps for implementing an applied stored procedure 268

Steps for implementing a request stored procedure 272

Specifying stored procedures and tables for replication 274

Managing user-defined functions 275

Overview

264 Replication Server

To satisfy the requirements of distributed applications, Replication Server
provides two types of asynchronous stored procedure delivery: applied stored
procedures and request stored procedures. Each type is described in this
appendix.

Logging replicated stored procedures
Adaptive Server uses the following method to determine in which database a
replicated stored procedure execution will be logged:

The procedure gets logged in the database in which the enclosing transaction
was started.

• If the user does not begin a transaction explicitly, Adaptive Server will
begin one in the user’s current database before the stored procedure
execution.

• If the user begins the transaction in one database, and then executes a
replicated stored procedure in another database, the execution will still be
logged in the database where the user began the transaction.

If the execution of a table-style replicated stored procedure (marked for
replication by using either sp_setreplicateproc_name, 'true' or
sp_setrepprocproc_name, 'table') is logged in one database and changes
replicated tables in another database, the table’s changes and the procedure
execution are logged in different databases. Therefore, the effects of the stored
procedure execution can be replicated twice. The first time the stored
procedure execution itself is replicated. The second time table changes that
have been logged in the other database are replicated.

Logging replicated stored restrictions
Note that replicated Adaptive Server stored procedures may not contain
parameters with the text, unitext, or image datatypes. Refer to the Adaptive
Server Reference Manual for more information.

APPENDIX A Asynchronous Procedures

Administration Guide 265

Mixed-mode transactions
If a single transaction that invokes one or more request stored procedures is a
mixed-mode transaction that also executes applied stored procedures or
contains data modification language, Replication Server processes the request
stored procedures after all the other operations. All request operations are
processed together in a single separate transaction. This situation may arise
where a single Replication Server manages both primary and replicate data.

Applied stored procedures
Replicated stored procedures that Replication Server delivers from a primary
database to a replicate database are called applied stored procedures.

You use applied stored procedure delivery to replicate transactions first
performed on primary data to replicate databases. Data changes are applied at
a primary database and then distributed at a later time to replicate databases
that subscribe to replication definitions for the data. Replication Server
executes the replicated stored procedure in the replicate database as the
maintenance user, which is consistent with normal data replication.

You can use applied stored procedures to realize important performance
benefits. For example, if your organization has a large amount of row changes,
you can create an applied stored procedure which changes many rows, rather
than replicating the rows individually. You can also use applied stored
procedures to replicate data set changes which are difficult to express using
normal subscriptions. Refer to the Replication Server Design Guide for more
information.

You set up applied stored procedures by making the first statement in the stored
procedure update a table. You must also make sure that the destination
databases have subscriptions to the before and after images of that updated row.
The applied stored procedure must update only one row in a replicated table.
Replication Server uses the first row updated by the stored procedure to
determine where to send the user-defined function for the procedure.

If the rules in setting up the applied stored procedure are not met, Replication
Server fails to distribute the stored procedure to replicate databases. See
“Warning conditions” on page 270 for a list of actions that Replication Server
takes if it fails to deliver the applied stored procedure.

Request stored procedures

266 Replication Server

Request stored procedures
Replicated stored procedures that Replication Server delivers from a replicate
database to a primary database are called request stored procedures. You use a
request stored procedure to deliver a transaction from a replicate database back
to the primary database.

For example, a client application at a remote location may need to make
changes to primary data. In this case, the application at the remote location
executes a request stored procedure locally to change the primary data.
Replication Server delivers this request stored procedure to the primary
database by executing, in the replicate database, a stored procedure that has the
same name as the stored procedure in the primary database. The stored
procedure in the primary database updates the primary data that the transaction
changes.

Replication Server executes the replicated stored procedure in the primary
database as the user who executed the stored procedure in the replicate
database. This ensures that only authorized users may change primary data.

In an application, Replication Server may replicate some or all of the data that
is changed in the primary database. The changes are propagated to replicate
databases managed by Replication Servers with subscriptions for the related
data, either as data rows (insert, delete, or update operation) or as stored
procedures. Using this mechanism, the effect of a transaction quickly arrives at
both the primary and replicate databases.

 Warning! Do not execute a request stored procedure in a primary database.
This can lead to looping behavior, in which replicate Replication Servers cause
the same procedure to execute in the primary database.

Using request stored procedures ensures that all updates are made at the
primary database, preserving the Replication Server basic primary copy data
model while keeping the replication system invulnerable to network failures
and excess traffic. Even when there is primary database failure, or network
failure from the replicate database to the primary database, Replication Server
remains fault tolerant. It queues any undelivered request stored procedure
invocations until the failed components come back online. When the
components are again in service, Replication Server completes delivery.

APPENDIX A Asynchronous Procedures

Administration Guide 267

By using the Replication Server guaranteed request stored procedure delivery
feature, you can obtain all the benefits of having a single, definitive copy of
your data that includes all the latest changes. At the same time, Replication
Server provides the availability and performance benefits of de-coupling
applications at replicate databases from the primary database.

Refer to the Replication Server Design Guide for more information on
replication system design issues relating to asynchronous procedure delivery.

Asynchronous stored procedure prerequisites
Before implementing applied or request stored procedures on your system, be
sure you:

• Understand how you will use asynchronous procedure delivery to meet
your application needs. Refer to the Replication Server Design Guide for
more information.

• Set up a RepAgent for the stored procedure, even if the database contains
no primary data (such as when using request functions). Refer to the
Replication Server installation and configuration guides for your platform
for details.

• Create a function string for user-defined functions for function-string
classes for which Replication Server does not generate default function
strings. You can use the alter function string command to replace a default
function string with one that performs the action your application requires.

See “Function strings and function-string classes” on page 33 for more
information.

• Follow the step-by step instructions provided in this chapter for setting up
applied or request stored procedures.

Note For function-string classes for which default generated function strings
are provided, Replication Server creates a default function string that executes
a stored procedure with the same name as the user-defined function. The
procedures in this chapter assume that Replication Server processes applied or
request stored procedures for such classes. For all other classes, you must
create function strings for the user-defined function string.

Steps for implementing an applied stored procedure

268 Replication Server

Steps for implementing an applied stored procedure
To implement an applied stored procedure, perform the following steps:

1 Review the requirements described in “Asynchronous stored procedure
prerequisites” on page 267.

2 Set up replicate databases that contain replicate tables. These tables may
or may not match the replication definition for the primary table.

3 As necessary, set up routes from the primary Replication Server to the
replicate Replication Servers that have subscriptions to replication
definitions for the primary table.

See Chapter 6, “Managing Routes” in the Replication Server
Administration Guide Volume 1 for details on setting up routes.

4 Locate or create a replication definition on the primary Replication Server
that identifies the table to be modified.

See Chapter 9, “Managing Replicated Tables” in the Replication Server
Administration Guide Volume 1 for information on creating replication
definitions.

5 In the primary database, use the sp_setreplicate system procedure or the
sp_setreptable system procedure to mark the table for replication. For
example, for a table named employee:

sp_setreplicate employee, 'true'

or

sp_setreptable employee, 'true'

For sp_setreptable, the single quotes are optional.

See “Specifying stored procedures and tables for replication” on page 274
for details on using sp_setreplicate. See “Using the sp_setreptable system
procedure” on page 264 in the Replication Server Administration Guide
Volume 1 for details on using sp_setreptable.

6 Create the stored procedure on the primary database. The first statement in
the stored procedure must contain an update command for the first row of
the primary table. For example:

create proc upd_emp
 @emp_id int, @salary float
 as
 update employee
 set salary = salary * @salary

APPENDIX A Asynchronous Procedures

Administration Guide 269

 where emp_id = @emp_id

 Warning! If the first statement in the stored procedure contains an
operation other than update, Replication Server cannot distribute the
stored procedure to replicate databases. See “Warning conditions” on page
270 for more information.
 Never include dump transaction or dump database commands in the stored
procedure. If the stored procedure contains commands with statement
level errors, the error may occur at the replicate DSI. Depending on the
error actions, the DSI may shut down.

7 In the primary database, use the sp_setreplicate system procedure or the
sp_setrepproc system procedure to mark the stored procedure for
replication. For example:

sp_setreplicate upd_emp, 'true'

or

sp_setrepproc upd_emp, 'table'

See “Specifying stored procedures and tables for replication” on page 274
for details on using sp_setreplicate. See “Marking stored procedures for
replication” on page 331 in the Replication Server Administration Guide
Volume 1 for details on using sp_setrepproc.

8 At the replicate Replication Servers, create subscriptions to a replication
definition for the table that the stored procedure at the primary database
updates.

See Chapter 11, “Managing Subscriptions” in the Replication Server
Administration Guide Volume 1 for details on creating subscriptions.

 Warning! Be sure the replicate database subscribes to both the before
image and after image of the updated row. If it does not, Replication Server
cannot distribute the stored procedure to the replicate database. See
“Warning conditions” on page 270 for more information.

9 Create a stored procedure on the replicate database with the same name
and parameters as the stored procedure on the primary database, but do not
mark the procedure as replicated. For example:

create proc upd_emp
 @emp_id int, @salary float
 as
 update employee

Steps for implementing an applied stored procedure

270 Replication Server

 set salary = salary * @salary
 where emp_id = @emp_id

10 Grant execute permission on the stored procedure to the maintenance user.
For example:

grant execute on upd_emp to maint_user

11 Create a user-defined function on the primary Replication Server that
associates the stored procedure to the name of a replication definition for
the table it updates. For example:

create function employee_rep.upd_emp
 (@emp_id int, @salary float)

Only one user-defined function are shared by all replication definitions for
the same table. You can specify the name of any of these replication
definitions.

12 Verify that all Replication Server and database objects in steps 1 through
11 exist at the appropriate locations.

Refer to Chapter 6, “Adaptive Server Stored Procedures,” in the
Replication Server Reference Manual for information about stored
procedures used to query the RSSD for system information.

Warning conditions
If the first statement in the applied stored procedure is an operation other than
update, or the replicate database does not subscribe to the before image and
after image of the updated row, Replication Server fails to deliver the applied
stored procedure to the replicate database. Instead, Replication Server
performs other actions that you can interpret as warnings.

The actions Replication Server takes is based on:

• The first operation (other than update) contained in the applied stored
procedure at the primary database

• Whether the row modification stays in the subscription for the replicate
database, and whether it matches the subscription’s before image or after
image

Conditions and
actions

This section identifies the warning conditions that prevent Replication Server
from delivering an applied stored procedure at a replicate database.

Condition: The first row operation is an insert operation.

APPENDIX A Asynchronous Procedures

Administration Guide 271

Action: Replication Server distributes the insert operation instead of the
applied stored procedure.

Condition: The first row operation is a delete operation.

Action: Replication Server distributes the delete operation instead of the
applied stored procedure.

Condition: Replicate Replication Servers have subscriptions that match the
before image, but not the after image, of the modified row.

Action: Replication Server distributes a delete operation (rs_delete system
function) to replicate databases with subscriptions to the before image but not
the after image of the row modification.

Example: Assume there is a table T1 that has a column named C1 with a value
of 1. A replicate database has a subscription to a replication definition for table
T1 where C1 = 1.

If the associated stored procedure is executed with the parameters= 1 (before
image) and = 2 (after image), the replicate database does not subscribe to the
after image value of 2. Therefore, Replication Server distributes the delete
operation to the replicate database.

Condition: Replicate Replication Servers have subscriptions that match the
after image, but not the before image of the modified row.

Action: Replication Server distributes an insert operation (rs_insert system
function) to replicate databases with subscriptions to the after image but not the
before image of the row modification.

Example: Assume there is a table T1 that has a column named C1 with a value
of 1. A replicate database has a subscription to a replication definition for table
T1 where C1 = 2.

If the associated stored procedure is executed with the parameters = 1 (before
image) and = 2 (after image), the replicate database does not subscribe to the
before image value of 1. Therefore, Replication Server distributes the insert
operation to the replicate database.

Condition: Replicate Replication Servers have subscriptions that match neither
the before image nor the after image of the row modification.

Action: Replication Server does not distribute any operation or stored
procedure to the replicate databases.

Example: Assume there is a table T1 that has a column named C1 with a value
of 1. A replicate database has a subscription to a replication definition for table
T1 where C1 > 2.

Steps for implementing a request stored procedure

272 Replication Server

If the associated stored procedure is executed with the parameters equal to 1
(before image) and equal to 2 (after image), the replicate Replication Server
does not subscribe to either the before image value of 1 or the after image value
of 2. Therefore, Replication Server performs no distribution to the replicate
database.

Steps for implementing a request stored procedure
To implement a request stored procedure, perform the following steps:

1 Review the requirements described in “Asynchronous stored procedure
prerequisites” on page 267.

2 As necessary, set up a route from the replicate Replication Server to the
primary Replication Server where the data is updated, and from the
primary Replication Server to the replicate Replication Server that sends
the update.

See Chapter 6, “Managing Routes” in the Replication Server
Administration Guide Volume 1 for details on setting up routes.

3 Create a login name and password at the primary Replication Server for
the user at the replicate Replication Server.

See Chapter 8, “Managing Replication Server Security” in the
Replication Server Administration Guide Volume 1 for details.

4 At the replicate Replication Server, create the necessary permissions for
this user to execute the stored procedure at the primary Replication Server.

See Chapter 8, “Managing Replication Server Security” in the
Replication Server Administration Guide Volume 1 for details.

5 At the primary Replication Server, locate or create a replication definition
that identifies the table to be modified.

See Chapter 9, “Managing Replicated Tables” in the Replication Server
Administration Guide Volume 1 for information on creating replication
definitions.

The replicate Replication Server may have subscriptions on the replication
definition.

6 Create the stored procedure, which does not perform any updates, on the
replicate database. For example:

APPENDIX A Asynchronous Procedures

Administration Guide 273

create proc upd_emp
 @emp_id int, @salary float
 as
 print "Transaction accepted."

If you want the stored procedure to have the same name as those in
different replicate databases, see “Specifying a nonunique name for a
user-defined function” on page 279 for details.

7 In the replicate database, use the sp_setreplicate system procedure or the
sp_setrepproc system procedure to mark the stored procedure for
replication. For example:

sp_setreplicate upd_emp, 'true'

or

sp_setrepproc upd_emp, 'table'

See “Specifying stored procedures and tables for replication” on page 274
for details on using sp_setreplicate. See “Marking stored procedures for
replication” on page 331 in the Replication Server Administration Guide
Volume 1 for details on using sp_setrepproc.

8 Create a stored procedure on the primary database with the same name as
the stored procedure on the replicate database, but do not mark the
procedure as replicated. This stored procedure modifies a primary table.
For example:

create proc upd_emp
 @emp_id int, @salary float
 as
 update employee
 set salary = salary * @salary
 where emp_id = @emp_id

Note The stored procedure names on the primary and replicate databases
can differ if you alter the function string for the function to execute a
stored procedure with a different name. See “Mapping to a different stored
procedure name” on page 278 for more information.

9 Grant permission on the stored procedure to the replicate Replication
Server users who will execute this stored procedure. For example:

grant all on upd_emp to public

Specifying stored procedures and tables for replication

274 Replication Server

10 Create a user-defined function on the primary Replication Server that
associates the stored procedure to the name of a replication definition for
the table it updates. For example:

create function employee_rep.upd_emp
 (@emp_id int, @salary float)

11 Verify that all Replication Server and database objects in steps 1 through
10 exist at the appropriate locations.

Refer to Chapter 6, “Adaptive Server Stored Procedures,” in the
Replication Server Reference Manual for information about stored
procedures used to query the RSSD for system information.

Specifying stored procedures and tables for replication
You can use the sp_setreplicate system procedure in Adaptive Server to mark
database tables and stored procedures for replication.

You can also use the sp_setreptable system procedure to mark tables for
replication and the sp_setrepproc system procedure to mark stored procedures
for replication. These system procedures extend the capabilities of
sp_setreplicate and are intended to replace it.

See “Using the sp_setreptable system procedure” on page 264 and “Marking
stored procedures for replication” on page 331 in the Replication Server
Administration Guide Volume 1 for details.

The syntax for the sp_setreplicate system procedure is:

sp_setreplicate [object_name [, {' true' | 'false']]

object_name can be either a table name or a stored procedure name.

The “true” and “false” parameters change the replication status of a specified
object. (The single quotes are optional.)

• Use sp_setreplicate with no parameters to list all replicated objects in the
database.

• Use sp_setreplicate with just the object name to check the replication
status of the object. Adaptive Server reports 'true' if replication is enabled
for the object, or 'false' if it is not.

APPENDIX A Asynchronous Procedures

Administration Guide 275

• Use sp_setreplicate with the object name and either 'true' or 'false' to enable
or disable replication for the object. You must be the Adaptive Server
System Administrator or the Database Owner to use sp_setreplicate to
change the replication status of an object.

 Warning! A replicated stored procedure should only modify data in the
database in which it is executed. If it modifies data in another database,
Replication Server replicates the updated data and the stored procedure.

Managing user-defined functions
This section describes commands for managing user-defined functions. See
Chapter 8, “Managing Replication Server Security” in the Replication Server
Administration Guide Volume 1 for a list of permissions that are required to use
the commands. See Chapter 2, “Customizing Database Operations” for details
on altering function strings for user-defined functions and displaying function-
related information.

Creating a user-defined function
Use the create function command to register a replicated stored procedure with
Replication Server. When a stored procedure is executed, Replication Server
maps it to a replication definition. The replication definition contains a user-
defined function name that matches the name of the stored procedure.

Replication Server delivers the function to the Replication Server that is
primary for the replication definition. When the destination Replication Server
that owns the replication definition receives the function, it maps the stored
procedure parameters into the commands for the user-defined function.

The syntax for the create function command is:

create function replication_definition.function
([@parameter datatype [, @parameter datatype]...])

The replication_definition must be an existing replication definition.

Observe these guidelines when using this command:

• Execute this command at the Replication Server where the replication
definition was created.

Managing user-defined functions

276 Replication Server

• Do not use the names of system functions. See Chapter 2, “Customizing
Database Operations” for the list of reserved system-function names.

• Include the parentheses surrounding the listed parameters, even when you
are defining functions with no parameters.

• If you are not using a function-string class for which default generated
function strings are provided, after you have created a user-defined
function, use the create function string command to add a function string.
See Chapter 2, “Customizing Database Operations” for details.

The following example creates a user-defined function named Stock_receipt.
The function is associated with the Items_rd replication definition:

create function Items_rd.Stock_receipt
 (@Location int, @Recpt_num int,
 @Item_no char(15), @Qty_recd int)

When a user executes the replicated stored procedure, Replication Server now
delivers it.

Adding parameters to a user-defined function
When you add a parameter to a replicated stored procedure, use the alter
function command to tell Replication Server about the new parameters. To add
the parameters:

1 Alter the stored procedure at the primary or replicate data server and
provide defaults for new parameters.

2 As a precaution, quiesce the system. Altering functions while updates are
in process can have unpredictable results.

See “Quiescing Replication Server” on page 100 in the Replication Server
Administration Guide Volume 1 for details on quiescing the system.

3 Alter the function using the alter function command.

4 If you are not using a function-string class for which default generated
function strings are provided, alter function strings to use the new
parameters. See Chapter 2, “Customizing Database Operations” for
details.

The syntax for the alter function command is:

alter function replication_definition.function
add parameters @parameter datatype
[, @parameter datatype]...

APPENDIX A Asynchronous Procedures

Administration Guide 277

The replication_definition is the name of the replication definition for the
function. A function can have up to 255 parameters.

The following example adds an int parameter named Volume to the New_issue
function for the Tokyo_quotes replication definition:

alter function Tokyo_quotes.New_issue
 add parameters @Volume int

Dropping a user-defined function
Use the drop function command to drop a user-defined function. This command
drops a function name and any function strings that have been created for it.
You cannot drop system functions.

Before you drop the user-defined function, be sure to:

1 Drop the stored procedure at the primary database using the drop procedure
Adaptive Server command, or use the sp_setreplicate or sp_setrepproc
system procedure and specify 'false' to disable replication for the stored
procedure.

See “Specifying stored procedures and tables for replication” on page 274
for details on using sp_setreplicate. See “Marking stored procedures for
replication” on page 331 in the Replication Server Administration Guide
Volume 1 for details on using sp_setrepproc.

2 As a precaution, quiesce the system before executing the drop function
command. Dropping functions while updates are in process can have
unpredictable results.

See “Quiescing a replication system” on page 100 in the Replication
Server Administration Guide Volume 1 for details on quiescing the system.

The syntax for the drop function command is:

drop function replication_definition.function

Execute the command on the Replication Server where the replication
definition was created.

The following command drops the Stock_receipt user-defined function created
in the previous section:

drop function Items_rd.Stock_receipt

Managing user-defined functions

278 Replication Server

Mapping to a different stored procedure name
When you create a user-defined function in a database that uses the a function-
string class for which default generated function strings are provided,
Replication Server generates a default function string. The default generated
function string executes a stored procedure with the same name and parameters
as the user-defined function.

For example, if you are using a default function string, you can set up a request
stored procedure to execute in the replicate database by creating a stored
procedure in the primary database with the same name and parameters as the
user-defined function.

If you want to map the user-defined function to a different stored procedure
name, use the alter function string command to configure Replication Server to
deliver the stored procedure by executing a stored procedure with a different
name. You can also do so in function-string classes that allow you to customize
function strings.

Example This example illustrates how to map a user-defined function to a different
stored procedure name.

1 Assume the stored procedure upd_sales exists on the primary Adaptive
Server, and that it performs an update on the Adaptive Server sales table:

create proc upd_sales
 @stor_id varchar(10),
 @ord_num varchar(10),
 @date datetime
 as
64 update sales set date = @date
 where stor_id = @stor_id
 and ord_num = @ord_num

2 To register the upd_sales stored procedure with the Replication Server,
create the following function, whose name includes in its name the
sales_def replication definition on the sales table and the upd_sales
replicated stored procedure:

create function sales_def.upd_sales
 (@stor_id varchar(10), @date datetime)

3 On the replicate Adaptive Server, a version of the stored procedure
upd_sales that performs no work is created with the same name:

create proc upd_sales
 @stor_id varchar(10),
 @ord_num varchar(10),
 @date datetime

APPENDIX A Asynchronous Procedures

Administration Guide 279

 as
 print "Attempting to Update Sales Table"
 print "Processing Update Asynchronously"

4 To execute the upd_sales stored procedure with the name real_update
instead of upd_sales:

• The default generated function string is altered:

alter function string sales_def.upd_sales
 for rs_sqlserver_function_class
 output rpc
 'execute real_update
 @stor_id = ?stor_id!param?,
 @date = ?date!param?'

• A stored procedure in the primary database is created with the name
real_update. It accepts two parameters.

Specifying a nonunique name for a user-defined function
The name of a user-defined function must be globally unique in the replication
system so that Replication Server can locate the particular replication
definition for which the user-defined function is defined. If you create more
than one replication definition for the same primary table, there is only one
user-defined function for all of that table’s replication definitions.

If the user-defined function name is not unique, the first parameter of the stored
procedure must be @rs_repdef, and the name of the replication definition must
be passed in this parameter when the stored procedure is executed.

Do not define the @rs_repdef parameter in the create function command for the
user-defined function. The Replication Agent extracts the replication definition
name and sends it with the LTL commands. This convention works with
RepAgent for Adaptive Server, but may not be supported by Replication
Agents for other data servers.

Example This example assumes that the user-defined function is not unique and the
replication definition name is passed to the @rs_repdef parameter when the
following stored procedure is executed:

create proc upd_sales
 @rs_repdef varchar(255),
 @stor_id varchar(10),
 @date datetime
 as

Managing user-defined functions

280 Replication Server

 print "Attempting to Update Sales Table"
 print "Processing Update Asynchronously"

Administration Guide 281

A P P E N D I X B High Availability on Sun
Cluster 2.2

This appendix provides background and procedures for configuring
Sybase Replication Server for high availability (HA) on Sun Cluster 2.2.

Introduction
This appendix assumes that:

• You are familiar with Sybase Replication Server. This chapter does
not explain the steps necessary to install Sybase Replication Server.

• You are familiar with Sun Cluster HA. This document does not
explain the steps necessary to install Sun Cluster HA.

• You have a two-node cluster hardware with Sun Cluster HA 2.2.

Documentation references:

• Sun Cluster 2.2 Software Planning and Installation Guide

• Sun Cluster 2.2 System Administration Guide

• Configuring Sybase Adaptive Server Enterprise 12.0 Server for High
Availability: Sun Cluster HA (see White Papers at
http://www.sybase.com/products/databaseservers/ase)

• Replication Server documentation (see Product Manuals at
http://www.sybase.com/support/manuals/)

Topic Page
Introduction 281

Terminology 282

Technology overview 283

Configuring Replication Server for high availability 284

Administering Replication Server as a data service 289

Terminology

282 Replication Server

Terminology
These terms are used in this chapter:

• Cluster – multiple systems, or nodes, that work together as a single entity
to provide applications, system resources, and data to users.

• Cluster node – a physical machine that is part of a Sun Cluster. Also called
a physical host.

• Data service – an application that provides client service on a network and
implements read and write access to disk-based data. Replication Server
and Adaptive Server Enterprise are examples of data services.

• Disk group – a well-defined group of multihost disks that move as a unit
between two servers in an HA configuration.

• Fault monitor – a daemon that probes data services.

• High availability (HA) – very low downtime. Computer systems that
provide HA usually provide 99.999% availability, or roughly five minutes
unscheduled downtime per year.

• Logical host – a group of resources including a disk group, logical host
name, and logical IP address. A logical host resides on (or is mastered by)
a physical host (or node) in a cluster machine. It can move as a unit
between physical hosts on a cluster.

• Master – the node with exclusive read and write access to the disk group
that has the logical address mapped to its Ethernet address. The current
master of the logical host runs the logical host’s data services.

• Multihost disk – a disk configured for potential accessibility from multiple
nodes.

• Failover – the event triggered by a node or a data service failure, in which
logical hosts and the data services on the logical hosts move to another
node.

• Failback – a planned event, where a logical host and its data services are
moved back to the original hosts.

APPENDIX B High Availability on Sun Cluster 2.2

Administration Guide 283

Technology overview
Sun Cluster HA is a hardware- and software-based high availability solution.
It provides high availability support on a cluster machine and automatic data
service failover in just a few seconds. It accomplishes this by adding hardware
redundancy, software monitoring, and restart capabilities.

Sun Cluster provides cluster management tools for a System Administrator to
configure, maintain, and troubleshoot HA installations.

The Sun Cluster configuration tolerates these single-point failures:

• Server hardware failure

• Disk media failure

• Network interface failure

• Server OS failure

When any of these failures occur, HA software fails over logical hosts onto
another node and restarts data services on the logical host in the new node.

Sybase Replication Server is implemented as a data service on a logical host on
the cluster machine. The HA fault monitor for Replication Server periodically
probes Replication Server. If Replication Server is down or hung, the fault
monitor attempts to restart Replication Server locally. If Replication Server
fails again within a configurable period of time, the fault monitor fails over to
the logical host so the Replication Server will be rebooted on the second node.

To Replication Server clients, it appears as though the original Replication
Server has experienced a reboot. The fact that it has moved to another physical
machine is transparent to the users. Replication Server is affiliated with a
logical host, not the physical machine.

As a data service, the Replication Server includes a set of scripts registered
with Sun Cluster as callback methods. Sun Cluster calls these methods at
different stages of Failover:

• FM_STOP – to shut down the fault monitor for the data service to be failed
over.

• STOP_NET – to shut down the data service itself.

• START_NET – to start the data service on the new node.

• FM_START – to start the fault monitor on the new node for the data
service.

Configuring Replication Server for high availability

284 Replication Server

Each Replication Server is registered as a data service using the hareg
command. If you have multiple Replication Servers running on the cluster, you
must register each of them. Each data service has its own fault monitor as a
separate process.

Note For detailed information about the hareg command, see the appropriate
Sun Cluster documentation.

Configuring Replication Server for high availability
This section describes the tasks required to configure a Replication Server for
HA on Sun Cluster (assuming a two-node cluster machine).

• “Configuring Sun Cluster for HA” on page 284

• “Installing Replication Server for HA” on page 285

• “Installing Replication Server as a data service” on page 286

Configuring Sun Cluster for HA
The system should have following components:

• Two homogenous Sun Enterprise servers with similar configurations in
terms of resources like CPU, memory, and so on. The servers should be
configured with cluster interconnect, which is used for maintaining cluster
availability, synchronization, and integrity.

• The system should be equipped with a set of multihost disks. The
multihost disk holds the data (partitions) for a highly available Replication
Server. A node can access data on a multihost disk only when it is a current
master of the logical host to which the disk belongs.

• The system should have Sun Cluster HA software installed, with
automatic failover capability. The multihost disks should have unique path
names across the system.

• For disk failure protection, disk mirroring (not provided by Sybase) should
be used.

APPENDIX B High Availability on Sun Cluster 2.2

Administration Guide 285

• Logical hosts should be configured. Replication Server runs on a logical
host.

• Make sure the logical host for the Replication Server has enough disk
space in its multihosted disk groups for the partitions, and that any
potential master for the logical host has enough memory for the
Replication Server.

Installing Replication Server for HA
During Replication Server installation, you need to perform these tasks in
addition to the tasks described in the Replication Server installation guide:

1 As a Sybase user, load Replication Server either on a shared disk or on the
local disk. If it is on a shared disk, the release cannot be accessed from both
machines concurrently. If it is on a local disk, make sure the release paths
are the same for both machines. If they are not the same, use a symbolic
link, so they will be the same. For example, if the release is on
/node1/repserver on node1, and /node2/repserver on node2, link them to
/repserver on both nodes so the $SYBASE environment variable is the
same across the system.

2 Add entries for Replication Server, RSSD server, and primary/replicate
data servers to the interfaces file in the $SYBASE directory on both
machines. Use the logical host name for Replication Server in the
interfaces file.

Note To use LDAP directory services instead of interfaces files, supply
multiple entries in the DIRECTORY section of the Replication Server
configuration file. If the connection to the first entry fails, the directory
control layer (DCL) attempts to connection to the second entry and so on.
If a connection cannot be made to any entry in the DIRECTORY section,
Open Client/Server does not use the default interfaces file to attempt a
connection.

See the configuration guide for your platform for information about setting
up LDAP directory services.

3 Start the RSSD server.

4 Follow the installation guide for your platform to install Replication
Server on the node that is currently the master in the logical host. Make
sure that you:

Configuring Replication Server for high availability

286 Replication Server

a Set the environment variables SYBASE, SYBASE_REP, and
SYBASE_OCS:

setenv SYBASE /REPSERVER1210
setenv SYBASE_REP REP-12_1
setenv SYBASE_OCS OCS-12_0

 /REPSERVER1210 is the release directory.

b Choose a run directory for the Replication Server that will contain the
Replication Server run file, configuration file, and log file. The run
directory should exist on both nodes and have exactly the same paths
on both nodes (the path can be linked if necessary).

c Choose the multihosted disks for the Replication Server partitions.

d Initiate the rs_init command, from the run directory:

cd RUN_DIRECTORY
$SYBASE/$SYBASE_REP/install/rs_init

5 Make sure that Replication Server is started.

6 As a Sybase user, copy the run file and the configuration file to the other
node in the same path. Edit the run file on the second node to make sure it
contains the correct path of the configuration and log files, especially if
links are used.

Note The run file name must be RUN_repserver_name, where
repserver_name is the name of the Replication Server. You can define the
configuration and log file names.

Installing Replication Server as a data service
You also need to perform these specialized tasks to install Replication Server
as a data service:

1 As root, create the directory /opt/SUNWcluster/ha/repserver_name on
both cluster nodes, where repserver_name is the name of your Replication
Server. Each Replication Server must have its own directory with the
server name in the path. Copy the following scripts from the Replication
Server installation directory $SYBASE/$SYBASE_REP/sample/ha to:

/opt/SUNWcluster/ha/repserver_name

APPENDIX B High Availability on Sun Cluster 2.2

Administration Guide 287

on both cluster nodes, where repserver_name is the name of your
Replication Server:

repserver_start_net
repserver_stop_net
repserver_fm_start
repserver_fm_stop
repserver_fm
repserver_shutdown
repserver_notify_admin

If the scripts already exist on the local machine as part of another
Replication Server data service, you can create the following as a link to
the script directory instead:

/opt/SUNWcluster/ha/repserver_name

2 As root, create the directory /var/opt/repserver on both nodes if it does not
exist.

3 As root, create a file /var/opt/repserver/repserver_name on both nodes for
each Replication Server you want to install as a data service on Sun
Cluster, where repserver_name is the name of your Replication Server.
This file should contain only two lines in the following form with no blank
space, and should be readable only by root:

repserver:logicalHost:RunFile:releaseDir:SYBASE_OCS
:SYBASE_REP

probeCycle:probeTimeout:restartDelay:login/password

where:

• repserver – the Replication Server name.

• logicalHost – the logical host on which Replication Server runs.

• RunFile – the complete path of the runfile.

• releaseDir – the $SYBASE installation directory.

• SYBASE_OCS – the $SYBASE subdirectory where the connectivity
library is located.

• SYBASE_REP – the $SYBASE subdirectory where the Replication
Server is located.

• probeCycle – the number of seconds between the start of two probes
by the fault monitor.

Configuring Replication Server for high availability

288 Replication Server

• probeTimeout – time, in seconds, after which a running Replication
Server probe is aborted by the fault monitor, and a timeout condition
is set.

• restartDelay – minimum time, in seconds, between two Replication
Server restarts. If, in less than restartDelay seconds after a Replication
Server restart, the fault monitor again detects a condition that requires
a restart, it triggers a switch over to the other host instead. This
resolves situations where a database restart does not solve the
problem.

• login/password – the login/password the fault monitor uses to ping
Replication Server.

To change probeCycle, probeTimeout, restartDelay, or login/password for
the probe after Replication Server is installed as data service, send
SIGINT(2) to the monitor process (repserver_fm) to refresh its memory.

kill -2 monitor_process_id

4 As root, create a file /var/opt/repserver/repserver_name.mail on both
nodes, where repserver_name is the name of your Replication Server. This
file lists the UNIX login names of the Replication Server administrators.
The login names should be all in one line, separated by one space.

If the fault monitor encounters any problems that need intervention, this is
the list to which it sends mail.

5 Register the Replication Server as a data service on Sun Cluster:

hareg -r repserver_name \
-b "/opt/SUNWcluster/ha/repserver_name" \
-m START_NET="/opt/SUNWcluster/ha/repserver_name/
repserver_start_net" \
-t START_NET=60 \
-m STOP_NET="/opt/SUNWcluster/ha/repserver_name/
repserver_stop_net" \
-t STOP_NET=60 \
-m FM_START="/opt/SUNWcluster/ha/repserver_name/
repserver_fm_start" \
-t FM_START=60 \
-m
FM_STOP="/opt/SUNWcluster/ha/repserver_name/repserv
er_fm_stop" \
-t FM_STOP=60 \
[-d sybase] -h logical_host

APPENDIX B High Availability on Sun Cluster 2.2

Administration Guide 289

where -d sybase is required if the RSSD is under HA on the same cluster,
and repserver_name is the name of your Replication Server and must be
in the path of the scripts.

6 Turn on the data service using hareg -y repserver_name.

Administering Replication Server as a data service
This section describes how to start and shut down Replication Server as a data
service, and useful logs for monitoring and troubleshooting.

Data service start/shutdown
Once a Replication Server is registered as data service, use the following to
start Replication Server as a data service:

hareg -y repserver_name

This starts Replication Server if it is not already running, and also starts the
fault monitor for Replication Server.

To shut down Replication Server, use:

hareg -n repserver_name

The fault monitor restarts or fails over this Replication Server if it is shut down
or stopped (killed) any other way.

Logs
There are several logs you can use for debugging:

• Replication Server log – the Replication Server logs its messages here.
Use the log to find informational and error messages from Replication
Server. The log is located in the Replication Server Run directory.

• Script log – the data service START and STOP scripts log messages here.
Use the log to find informational and error messages that result from
running the scripts. The log is located in /var/opt/repserver/harep.log.

Administering Replication Server as a data service

290 Replication Server

• Console log – the operating system logs messages here. Use this log to find
informational and error messages from the hardware. The log is located in
/var/adm/messages.

• CCD log – the Cluster Configurations Database, which is part of the Sun
Cluster configuration, logs messages here. Use this log to find
informational and error messages about the Sun Cluster configuration and
health. The log is located in /var/opt/SUNWcluster/ccd/ccd.log.

Administration Guide 291

Glossary

active database In a warm standby application, a database that is replicated to a standby
database. See also warm standby application.

Adaptive Server The Sybase version 11.5 and later relational database server. If you choose
the RSSD option when configuring Replication Server, Adaptive Server
maintains Replication Server system tables in the RSSD database.

application programming
interface (API)

A predefined interface through which users or programs communicate
with each other. Open Client and Open Server are examples of APIs that
communicate in a client/server architecture. RCL, the Replication
Command Language, is the Replication Server API.

applied function A replicated function, associated with a function replication definition,
that Replication Server delivers from a primary database to a subscribing
replicate database. The function passes parameter values to a stored
procedure that is executed at the replicate database. See also replicated
function delivery, request function, and function replication definition.

article A replication definition extension for tables or stored procedures that can
be an element of a publication. Articles may or may not contain where
clauses, which specify a subset of rows that the replicate database
receives.

asynchronous procedure
delivery

A method of replicating, from a source to a destination database, a stored
procedure that is associated with a table replication definition.

asynchronous command A command that a client submits where the client is not prevented from
proceeding with other operations before the completion status is received.
Many Replication Server commands function as asynchronous commands
within the replication system.

 Glossary

292 Replication Server

atomic
materialization

A materialization method that copies subscription data from a primary to a
replicate database through the network in a single atomic operation, using a
select operation with a holdlock. No changes to primary data are allowed until
data transfer is complete. Replicate data may be applied either as a single
transaction or in increments of ten rows per transaction, which ensures that the
replicate database transaction log does not fill. Atomic materialization is the
default method for the create subscription command. See also nonatomic
materialization, bulk materialization and no materialization.

autocorrection Autocorrection is a setting applied to replication definitions, using the set
autocorrection command, to prevent failures caused by missing or duplicate
rows in a copy of a replicated table. When autocorrection is enabled,
Replication Server converts each update or insert operation into a delete
followed by an insert. Autocorrection should only be enabled for replication
definitions whose subscriptions use nonatomic materialization.

base class A function-string class that does not inherit function strings from a parent class.
See also function-string class.

bitmap subscription A type of subscription that replicates rows based on bitmap comparisons.
Create columns using the int datatype, and identify them as the rs_address
datatype when you create a replication definition. When you create a
subscription, compare each rs_address column to a bitmask using a bitmap
comparison operator (&) in the where clause. Rows matching the
subscription’s bitmap are replicated.

bulk materialization A materialization method whereby subscription data in a replicate database is
initialized outside of the replication system. For example, data may be
transferred from a primary database using media such as magnetic tape,
diskette, CD-ROM, or optical storage disk. Bulk materialization involves a
series of commands, starting with define subscription. You can use bulk
materialization for subscriptions to table replication definitions or function
replication definitions. See also atomic materialization, nonatomic
materialization, and no materialization.

centralized database
system

A database system where data is managed by a single database management
system at a centralized location.

class See error class and function-string class.

class tree A set of function-string classes, consisting of two or more levels of derived and
parent classes, that derive from the same base class. See also function-string
class.

 Glossary

Administration Guide 293

client A program connected to a server in a client/server architecture. It may be a
front-end application program executed by a user or a utility program that
executes as an extension of the system.

Client/Server
Interfaces (C/SI)

The Sybase interface standard for programs executing in a client/server
architecture.

concurrency The ability of multiple clients to share data or resources. Concurrency in a
database management system depends upon the system protecting clients from
conflicts that arise when data in use by one client is modified by another client.

connection A connection from a Replication Server to a database. See also Data Server
Interface (DSI) and logical connection.

coordinated dump A set of database dumps or transaction dumps that is synchronized across
multiple sites by distributing an rs_dumpdb or rs_dumptran function through
the replication system.

database A set of related data tables and other objects that is organized and presented to
serve a specific purpose.

database generation
number

Stored in both the database and the RSSD of the Replication Server that
manages the database, the database generation number is the first part of the
origin queue ID (qid) of each log record. The origin queue ID ensures that the
Replication Server does not process duplicate records. During recovery
operations, you may need to increment the database generation number so that
Replication Server does not ignore records submitted after the database is
reloaded.

database replication
definition

A description of a set of database objects—tables, transactions, functions,
system stored procedures, and DDL—for which a subscription can be created.

You can also create table replication definitions and function replication
definitions. See also table replication definition and function replication
definition.

database server A server program, such as Sybase Adaptive Server, that provides database
management services to clients.

data definition
language (DDL)

The set of commands in a query language, such as Transact-SQL, that
describes data and their relationships in a database. DDL commands in
Transact-SQL include those using the create, drop, and alter keywords.

data manipulation
language (DML)

The set of commands in a query language, such as Transact-SQL, that operates
on data. DML commands in Transact-SQL include select, insert, update, and
delete.

 Glossary

294 Replication Server

data server A server whose client interface conforms to the Sybase Client/Server
Interfaces and provides the functionality necessary to maintain the physical
representation of a replicated table in a database. Data servers are usually
database servers, but they can also be any data repository with the interface and
functionality Replication Server requires.

Data Server Interface
(DSI)

Replication Server threads corresponding to a connection between a
Replication Server and a database. DSI threads submit transactions from the
DSI outbound queue to a replicate data server. They consist of a scheduler
thread and one or more executor threads. The scheduler thread groups the
transactions by commit order and dispatches them to the executor threads. The
executor threads map functions to function strings and execute the transactions
in the replicate database. DSI threads use an Open Client connection to a
database. See also outbound queue and connection.

data source A specific combination of a database management system (DBMS) product
such as a relational or non-relational data server, a database residing in that
DBMS, and the communications method used to access that DBMS from other
parts of a replication system. See also database and data server.

decision support
application

A database client application characterized by ad hoc queries, reports, and
calculations and few data update transactions.

declared datatype The datatype of the value delivered to the Replication Server from the
Replication Agent:

• If the Replication Agent delivers a base Replication Server datatype, such
as datetime, to the Replication Server, the declared datatype is the base
datatype.

• Otherwise, the declared datatype must be the UDD for the original
datatype at the primary database.

default function
string

The function string that is provided by default for the system-provided classes
rs_sqlserver_function_class and rs_default_function_class and classes that
inherit function strings from these classes, either directly or indirectly. See also
function string.

dematerialization The optional process, when a subscription is dropped, whereby specific rows
that are not used by other subscriptions are removed from the replicate
database.

derived class A function-string class that inherits function strings from a parent class. See
also function-string class and parent class.

 Glossary

Administration Guide 295

direct route A route used to send messages directly from a source to a destination
Replication Server, with no intermediate Replication Servers. See also indirect
route and route.

disk partition See partition.

distributed database
system

A database system where data is stored in multiple databases on a network. The
databases may be managed by data servers of the same type (for example,
Adaptive Server) or by heterogeneous data servers.

Distributor A Replication Server thread (DIST) that helps to determine the destination of
each transaction in the inbound queue.

dump marker A message written by Adaptive Server in a database transaction log when a
dump is performed. In a warm standby application, when you are initializing
the standby database with data from the active database, you can specify that
Replication Server use the dump marker to determine where in the transaction
stream to begin applying transactions in the standby database. See also warm
standby application.

Embedded
Replication Server
System Database
(ERSSD)

The Adaptive Server Anywhere (ASA) database that stores Replication Server
system tables. You can choose whether to store Replication Server system
tables on the ERSSD or the Adaptive Server RSSD. See also Replication
Server System Database (RSSD).

error action A Replication Server response to a data server error. Possible Replication
Server error actions are ignore, warn, retry_log, log, retry_stop, and
stop_replication. Error actions are assigned to specific data server errors.

error class A name for a collection of data server error actions that are used with a
specified database.

exceptions log A set of three Replication Server system tables that holds information about
transactions that failed on a data server. The transactions in the log must be
resolved by a user or by an intelligent application. You can use the
rs_helpexception stored procedure to query the exceptions log.

Failover Sybase Failover allows you to configure two version 12.0 and later Adaptive
Servers as companions. If the primary companion fails, that server’s devices,
databases, and connections can be taken over by the secondary companion.

For more detailed information about how Sybase Failover works in Adaptive
Server, refer to Using Sybase Failover in a High Availability System, which is
part of the Adaptive Server Enterprise documentation set.

 Glossary

296 Replication Server

For instructions on how to enable Failover support for non-RSSD Replication
Server connections to Adaptive Server, see “Configuring the replication
system tosupport Sybase Failover” in Chapter 7, “Replication System
Recovery”.

fault tolerance The ability of a system to continue to operate correctly even though one or
more of its component parts is malfunctioning.

function A Replication Server object that represents a data server operation such as
insert, delete, select, or begin transaction. Replication Server distributes such
operations to other Replication Servers as functions. Each function consists of
a function name and a set of data parameters. In order to execute the function
in a destination database, Replication Server uses function strings to convert a
function to a command or set of commands for a type of database. See also
user-defined function, and replicated function delivery.

function replication
definition

A description of a replicated function used in replicated function delivery. The
function replication definition, maintained by Replication Server, includes
information about the parameters to be replicated and the location of the
primary version of the affected data. See also replicated function delivery.

function scope The range of a function’s effect. Functions have replication definition scope or
function-string class scope. A function with replication definition scope is
defined for a specific replication definition, and cannot be applied to other
replication definitions. A function with function-string class scope is defined
once for a function-string class and is available only within that class.

function string A string that Replication Server uses to map a database command to a data
server API. For the rs_select and rs_select_with_lock functions only, the string
contains an input template, used to match function strings with the database
command. For all functions, the string also contains an output template, used
to format the database command for the destination data server.

function-string class A named collection of function strings used with a specified database
connection. Function-string classes include those provided with Replication
Server and those you have created. Function-string classes can share function
string definitions through function-string inheritance. The three system-
provided function-string classes are rs_sqlserver_function_class,
rs_default_function_class, and rs_db2_function_class. See also base class,
class tree, derived class, function-string inheritance, and parent class.

function-string
inheritance

The ability to share function string definitions between classes, whereby a
derived class inherits function strings from a parent class. See also derived
class, function-string class, and parent class.

 Glossary

Administration Guide 297

function-string
variable

An identifier used in a function string to represent a value that is to be
substituted at run time. Variables in function strings are enclosed in question
marks (?). They represent column values, function parameters, system-defined
variables, or user-defined variables.

function
subscription

A subscription to a function replication definition (used in applied function
delivery).

generation number See database generation number.

heterogeneous data
servers

Multi-vendor data servers used together in a distributed database system.

high availability (HA) Very low downtime. Computer systems that provide HA usually provide
99.999% availability, or roughly five minutes unscheduled downtime per year.

hibernation mode A Replication Server state in which all DDL commands, except admin and
sysadmin commands, are rejected; all routes and connections are suspended;
most service threads, such as DSI and RSI, are suspended; and RSI and
RepAgent users are logged off and not allowed to log on. Used during route
upgrades, and may be turned on for a Replication Server to debug problems.

hot standby
application

A database application in which the standby database can be placed into
service without interrupting client applications and without losing any
transactions. See also warm standby application.

ID Server One Replication Server in a replication system is the ID Server. In addition to
performing the usual Replication Server tasks, the ID Server assigns unique ID
numbers to every Replication Server and database in the replication system,
and maintains version information for the replication system.

inbound queue A stable queue used to spool messages from a Replication Agent to a
Replication Server.

indirect route A route used to send messages from a source to a destination Replication
Server, through one or more intermediate Replication Servers. See also direct
route and route.

interfaces file A file containing entries that define network access information for server
programs in a Sybase client/server architecture. Server programs may include
Adaptive Servers, gateways, Replication Servers, and Replication Agents. The
interfaces file entries enable clients and servers to connect to each other in a
network.

 Glossary

298 Replication Server

latency The measure of the time it takes to distribute to a replicate database a data
modification operation first applied in a primary database. The time includes
Replication Agent processing, Replication Server processing, and network
overhead.

local-area network
(LAN)

A system of computers and devices, such as printers and terminals, connected
by cabling for the purpose of sharing data and devices.

locator value The value stored in the rs_locater table of the Replication Server’s RSSD that
identifies the latest log transaction record received and acknowledged by the
Replication Server from each previous site during replication.

logical connection A database connection that Replication Server maps to the connections for the
active and standby databases in a warm standby application. See also
connection and warm standby application.

login name The name that a user or a system component such as Replication Server uses
to log in to a data server, Replication Server, or Replication Agent.

Log Transfer
Language (LTL)

A subset of the Replication Command Language (RCL). A Replication Agent
such as RepAgent uses LTL commands to submit to Replication Server the
information it retrieves from primary database transaction logs.

maintenance user A data server login name that Replication Server uses to maintain replicate
data. In most applications, maintenance user transactions are not replicated.

materialization The process of copying data specified by a subscription from a primary
database to a replicate database, thereby initializing the replicate table.
Replicate data can be transferred over a network, or, for subscriptions
involving large amounts of data, loaded initially from media. See also atomic
materialization, bulk materialization, no materialization, and nonatomic
materialization.

materialization
queue

A stable queue used to spool messages related to a subscription being
materialized or dematerialized.

missing row A row missing from a replicated copy of a table but present in the primary
table.

mixed-version
system

A replication system containing Replication Servers of different software
versions that have different capabilities based on their different software
versions and site versions. Mixed-version support is available only if the
system version is 11.0.2 or greater.

 Glossary

Administration Guide 299

For example, a replication system containing Replication Servers version 11.5
or later and version 11.0.2 is a mixed-version system. A replication system
containing Replication Servers of releases earlier than release 11.0.2 is not a
mixed-version system, because any newer Replication Servers are restricted by
the system version from using certain new features. See also site version and
system version.

more columns Columns in a replication definition exceeding 250, but limited to 1024. More
columns are supported by Replication Server version 12.5 and later.

multi-site availability
(MSA)

Methodology for replicating database objects—tables, functions, transactions,
system stored procedures, and DDL from the primary to the replicate database.
See also database replication definition.

name space The scope within which an object name must be unique.

nonatomic
materialization

A materialization method that copies subscription data from a primary to a
replicate database through the network in a single operation, without a
holdlock. Changes to the primary table are allowed during data transfer, which
may cause temporary inconsistencies between replicate and primary databases.
Data is applied in increments of ten rows per transaction, which ensures that
the replicate database transaction log does not fill. Nonatomic materialization
is an optional method for the create subscription command. See also
autocorrection, atomic materialization, no materialization, and bulk
materialization.

network-based
security

Secure transmission of data across a network. Replication Server supports
third-party security mechanisms that provide user authentication, unified login,
and secure message transmission between Replication Servers.

no materialization A materialization method that lets you create a subscription when the
subscription data already exists at the replicate site. Use the create subscription
command with the without materialization clause. You can use this method to
create subscriptions to table replication definitions and function replication
definitions. See also atomic materialization and bulk materialization.

online transaction
processing (OLTP)
application

A database client application characterized by frequent transactions involving
data modification (inserts, deletes, and updates).

Origin Queue ID (qid) Formed by the RepAgent, the qid uniquely identifies each log record passed to
the Replication Server. It includes the date and timestamp and the database
generation number. See also database generation number.

orphaned row A row in a replicated copy of a table that does not match an active subscription.

 Glossary

300 Replication Server

outbound queue A stable queue used to spool messages. The DSI outbound queue spools
messages to a replicate database. The RSI outbound queue spools messages to
a replicate Replication Server.

parallel DSI Configuring a database connection so that transactions are applied to a
replicate data server using multiple DSI threads operating in parallel, rather
than a single DSI thread. See also connection and Data Server Interface (DSI).

parameter An identifier representing a value that is provided when a procedure executes.
Parameter names are prefixed with an @ character in function strings. When a
procedure is called from a function string, Replication Server passes the
parameter values, unaltered, to the data server. See also searchable parameter.

parent class A function-string class from which a derived class inherits function strings. See
also function-string class and derived class.

partition A raw disk partition or operating system file that Replication Server uses for
stable queue storage. Only use operating system files in a test environment.

physical connection See connection.

primary data The definitive version of a set of data in a replication system. The primary data
is maintained on a data server that is known to all of the Replication Servers
with subscriptions for the data.

primary database Any database that contains data that is replicated to another database via the
replication system.

primary fragment A horizontal segment of a table that holds the primary version of a set of rows.

primary key A set of table columns that uniquely identifies each row.

primary site A Replication Server where a function-string class or error class is defined. See
error class and function-string class.

principal user The user who starts an application. When using network-based security,
Replication Server logs in to remote servers as the principal user.

projection A vertical slice of a table, representing a subset of the table’s columns.

publication A group of articles from the same primary database. A publication lets you
collect replication definitions for related tables and/or stored procedures and
then subscribe to them as a group. You collect replication definitions as articles
in a publication at the source Replication Server and subscribe to them with a
publication subscription at the destination Replication Server. See also article
and publication subscription.

 Glossary

Administration Guide 301

publication
subscription

A subscription to a publication. See also article and publication.

published datatype The datatype of the column after the column-level translation (and before a
class-level translation, if any) at the replicate data server. The published
datatype must be either a Replication Server base datatype or a UDD for the
datatype in the target data server. If the published datatype is omitted from the
replication definition, it defaults to the declared datatype.

query In a database management system, a query is a request to retrieve data that
meets a given set of criteria. The SQL database language includes the select
command for queries.

quiescent A quiescent replication system is one in which all updates have been
propagated to their destinations. Some Replication Server commands or
procedures require that you first quiesce the replication system.

remote procedure
call (RPC)

A request to execute a procedure that resides in a remote server. The server that
executes the procedure could be a Adaptive Server, a Replication Server, or a
server created using Open Server. The request can originate from any of these
servers or from a client application. The RPC request format is a part of the
Sybase Client/Server Interfaces.

RepAgent thread The Replication Agent for Adaptive Server databases. RepAgent is an
Adaptive Server thread; it transfers transaction log information from the
primary database to a Replication Server for distribution to other databases.

replicate database Any database that contains data that is replicated from another database via the
replication system.

replicated function
delivery

A method of replicating, from a source to a destination database, a stored
procedure that is associated with a function replication definition. See also
applied function, request function, and function replication definition.

replicated stored
procedure

An Adaptive Server stored procedure that is marked as replicated using the
sp_setrepproc or the sp_setreplicate system procedure. Replicated stored
procedures can be associated with function replication definitions or table
replication definitions. See also replicated function delivery and
asynchronous procedure delivery.

replicated table A table that is maintained by Replication Server, in part or in whole, in
databases at multiple locations. There is one primary version of the table,
which is marked as replicated using the sp_setreptable or the sp_setreplicate
system procedure; all other versions are replicated copies.

 Glossary

302 Replication Server

Replication Agent A program or module that transfers transaction log information representing
modifications made to primary data from a database server to a Replication
Server for distribution to other databases. RepAgent is the Replication Agent
for Adaptive Server databases.

Replication
Command Language
(RCL)

The commands used to manage information in Replication Server.

replication definition Usually, a description of a table for which subscriptions can be created. The
replication definition, maintained by Replication Server, includes information
about the columns to be replicated and the location of the primary version of
the table.

You can also create function replication definitions; sometimes the term “table
replication definition” is used to distinguish between table and function
replication definitions. See also function replication definition.

Replication Server The Sybase server program that maintains replicated data, typically on a LAN,
and processes data transactions received from other Replication Servers on the
same LAN or on a WAN.

Replication Server
Interface (RSI)

A thread that logs in to a destination Replication Server and transfers
commands from the RSI outbound stable queue to the destination Replication
Server. There is one RSI thread for each destination Replication Server that is
a recipient of commands from a primary or intermediate Replication Server.
See also outbound queue and route.

Replication
Monitoring Services
(RMS)

A small Java application built using the Sybase Unified Agent Framework
(UAF) that monitors and troubleshoot a replication environment.

replication system
administrator

The system administrator that manages routine operations in the Replication
Server.

Replication Server
System Database
(RSSD)

The Adaptive Server database containing a Replication Server system tables.
You can choose whether to store Replication Server system tables on the RSSD
or the Adaptive Server Anywhere (ASA) ERSSD. See also Embedded
Replication Server System Database (ERSSD).

Replication Server
system Adaptive
Server

The Adaptive Server with the database containing a Replication Server’s
system tables (the RSSD).

replication system A data processing system where data is replicated in multiple databases to
provide remote users with the benefits of local data access. Specifically, a
replication system that is based upon Replication Server and includes other
components such as Replication Agents and data servers.

 Glossary

Administration Guide 303

replication system
domain

All replication system components that use the same ID Server.

request function A replicated function, associated with a function replication definition, that
Replication Server delivers from a replicate database to a primary database.
The function passes parameter values to a stored procedure that is executed at
the primary database. See also replicated function delivery, request function,
and function replication definition.

route A one-way message stream from a source Replication Server to a destination
Replication Server. Routes carry data modification commands (including those
for RSSDs) and replicated functions or stored procedures between Replication
Servers. See also direct route and indirect route.

route version The lower of the site version numbers of the route’s source and destination
Replication Servers. Replication Server version 11.5 and later use the route
version number to determine which data to send to the replicate site. See also
site version.

row migration The process whereby column value changes in rows in a primary version of a
table cause corresponding rows in a replicate version of the table to be inserted
or deleted, based on comparison with values in a subscription’s where clause.

SQL Server The Sybase relational database pre-11.5 server.

schema The structure of the database. DDL commands and system procedures change
system tables stored in the database. Supported DDL commands and system
procedures can be replicated to standby databases when you use Replication
Server version 11.5 or later and Adaptive Server version 11.5 or later.

searchable column A column in a replicated table that can be specified in the where clause of a
subscription or article to restrict the rows replicated at a site.

searchable
parameter

A parameter in a replicated stored procedure that can be specified in the where
clause of a subscription to help determine whether or not the stored procedure
should be replicated. See also parameter.

secondary
truncation point

See truncation point.

site An installation consisting of, at minimum, a Replication Server, data server,
and database, and possibly a Replication Agent, usually at a discrete
geographic location. The components at each site are connected over a WAN
to those at other sites in a replication system. See also primary site.

 Glossary

304 Replication Server

site version The version number for an individual Replication Server. Once the site version
has been set to a particular level, the Replication Server enables features
specific to that level, and downgrades are not allowed. See also software
version, route version, and system version.

software version The version number of the software release for an individual Replication
Server. See also site version and system version.

Stable Queue
Manager (SQM)

A thread that manages the stable queues. There is one Stable Queue Manager
(SQM) thread for each stable queue accessed by the Replication Server,
whether inbound or outbound.

Stable Queue
Transaction (SQT)
interface

A thread that reassembles transaction commands in commit order. A Stable
Queue Transaction (SQT) interface thread reads from inbound stable queues,
puts transactions in commit order, then sends them to the Distributor (DIST)
thread or a DSI thread, depending on which thread required the SQT ordering
of the transaction.

stable queues Store-and-forward queues where Replication Server stores messages destined
for a route or database connection. Messages written into a stable queue remain
there until they can be delivered to the destination Replication Server or
database. Replication Server builds stable queues using its disk partitions. See
also inbound queue, outbound queue, and materialization queue.

standalone mode A special Replication Server mode used for initiating recovery operations.

standby database In a warm standby application, a database that receives data modifications
from the active database and serves as a backup of that database. See also warm
standby application.

stored procedure A collection of SQL statements and optional control-of-flow statements stored
under a name in a Adaptive Server database. Stored procedures supplied with
Adaptive Server are called system procedures. Some stored procedures for
querying the RSSD are included with the Replication Server software.

subscription A request for Replication Server to maintain a replicated copy of a table, or a
set of rows from a table, in a replicate database at a specified location. You can
also subscribe to a function replication definition, for replicating stored
procedures.

subscription
dematerialization

See dematerialization.

subscription
materialization

See materialization.

 Glossary

Administration Guide 305

subscription
migration

See row migration.

Sybase Central A graphical tool that provides a common interface for managing Sybase and
Powersoft products. Replication Server uses Replication Server Manager as a
Sybase Central plug-in. See also Replication Monitoring Services (RMS).

symmetric
multiprocessing
(SMP)

On a multiprocessor platform, the ability of an application’s threads to run in
parallel. Replication Server supports SMP, which can improve server
performance and efficiency.

synchronous
command

A command that a client considers complete only after the completion status is
received.

system function A function that is predefined and part of the Replication Server product.
Different system functions coordinate replication activities, such as rs_begin,
or perform data manipulation operations, such as rs_insert, rs_delete, and
rs_update.

system-provided
classes

Replication Server provides the error class rs_sqlserver_error_class and the
function-string classes rs_sqlserver_function_class, rs_default_function_class,
and rs_db2_function_class. Function strings are generated automatically for the
system-provided function-string classes and for any derived classes that inherit
from these classes, directly or indirectly. See also error class and function-
string class.

system version The version number for a replication system that represents the version for
which new features are enabled, for Replication Servers of release 11.0.2 or
earlier, and below which no Replication Server can be downgraded or installed.
For a Replication Server version 11.5, your use of certain new features requires
a site version of 1150 and a system version of at least 1102. See also mixed-
version system, site version, and software version.

table replication
definition

See replication definition.

table subscription A subscription to a table replication definition.

thread A process running within Replication Server. Built upon Sybase Open Server,
Replication Server has a multi-threaded architecture. Each thread performs a
certain function such as managing a user session, receiving messages from a
Replication Agent or another Replication Server, or applying messages to a
database. See also Data Server Interface (DSI), Distributor, and Replication
Server Interface (RSI).

 Glossary

306 Replication Server

transaction A mechanism for grouping statements so that they are treated as a unit: either
all statements in the group are executed or no statements in the group are
executed.

Transact-SQL The relational database language used with Adaptive Server. It is based on
standard SQL (Structured Query Language), with Sybase extensions.

truncation point An Adaptive Server database that holds primary data has an active truncation
point, marking the transaction log location where Adaptive Server has
completed processing. This is the primary truncation point.

The RepAgent for an Adaptive Server database maintains a secondary
truncation point, marking the transaction log location separating the portion of
the log successfully submitted to the Replication Server from the portion not
yet submitted. The secondary truncation point ensures that each operation
enters the replication system before its portion of the log is truncated.

user-defined
function

A function that allows you to create custom applications that use Replication
Server to distribute replicated functions or asynchronous stored procedures
between sites in a replication system. In replicated function delivery, a user-
defined function is automatically created by Replication Server when you
create a function replication definition.

variable See function-string variable.

version See mixed-version system, site version, software version, and system version.

warm standby
application

An application that employs Replication Server to maintain a standby database
for a database known as the active database. If the active database fails,
Replication Server and client applications can switch to the standby database.

wide-area network
(WAN)

A system of local-area networks (LANs) connected together with data
communication lines.

wide columns Columns in a replication definition containing char, varchar, binary, varbinary,
unichar, univarchar, or Java inrow data that are wider that 255 bytes. Wide
columns are supported by Replication Server version 12.5 and later.

wide data Wide data rows, limited to the size of the data page on the data server. Adaptive
Server supports page sizes of 2K, 4K, 8K, and 16K. Wide data is supported by
Replication Server version 12.5 and later.

wide messages Messages larger that 16K that span blocks. Wide messages are supported by
Replication Server version 12.5 and later.

Administration Guide 307

Numerics
1024 columns, limit to expressions in where clause

115

A
abort switch command 90, 91
abstract plans, replication of 60
activate subscription command

with suspension at replicate only clause 119
with suspension clause 119

active database 56
managing old active after switching 92
restarting clients 91

Adaptive Server
error handling 206

admin commands 90
described 7

alarm daemon (dAlarm) 129
allow connections command 258
alter connection command

assigning databases to function-string classes 31
alter function command 276
alter function string command 41

mapping user-defined functions 278
replacing default function string 267

alter logical connection command 99
alter table command support for warm standby 111
applied stored procedures

prerequisites for implementing 267
setting up 268

assign action command 206
asynchronous I/O daemon (dAIO) 129
asynchronous stored procedures

adding parameters to 276
and non-unique user-defined function name 279
applied 265
executing 263

request stored procedures 266
user-defined functions 275

atomic materialization
in warm standby applications 117

B
batch commands in function strings 46
batch configuration parameter 136
bcp utility program 78, 119
bulk materialization

in warm standby applications 118

C
case, in RCL commands xvi
certifications

component xiii
product xiii

changing
function strings 16

check subscription command
after executing switch active command 118, 119

client application
restarting after active switch 91

clusters
Sun 281
terminology 282

commands
hareg 289

configuration parameters
affecting performance 131
dynamic_sql 176
dynamic_sql_cache_management 176
dynamic_sql_cache_size 176
for parallel DSI 150
rs_config system table 131
stats_reset_rssd 190

Index

Index

308 Replication Server

configure connection command, setting save interval 223
configure logical connection command 109

setting DSI queue save interval 109
setting materialization queue save interval 110

configure route, setting save interval 222
connection manager daemon (dCM) 129
connections

setting save interval 223
consistency

maintaining for replicate databases 224
coordinated dumps

creating 224
loading primary and replicate databases 233
recovering databases 232

counter names 185
counters 183–196

overview 184
resetting 196
viewing information about 195

create connection command 31
create error class 203
create function command 275
create function string class command 27, 29
create function string command 39
create logical connection command 75
creating

function strings 39
function-string classes 27
user-defined functions 275

D
daemons

alarm (dAlarm) 129
asynchronous I/O (dAIO) 129
connection manager (dCM) 129
described 124
miscellaneous 129
recovery (dREC) 129
subscription retry (dSUB) 129
version (dVERSION) 129

data server
error handling 202, 207

data service
Replication Server as 289

start/shuntdown 289
database connections

configuring for parallel DSI 150
for warm standby applications 57

database generation numbers
adjusting during database recovery 261
and dumps 262
qid 261

database logs
determining for reload 260
recovering messages off-line 227
recovering messages online 229
reloading 262
truncated primary recovery 229

databases
active 57
assigning function-string classes 31
customizing operations 11, 49
failures 232
logical 57
setting log recovery 258
standby 57

datatypes
text and image 63

db_packet_size configuration parameter 136
DB2 databases, function-string class 12
db2_function_class, described 22
dbcc settrunc Transact-SQL command 229
deadlock detection, parallel dsi 168
debugging

high availability 289
default function strings, restoring 44
default partition allocation mechanism 179
deferred_queue_size configuration parameter 131
deleting

transactions in the exceptions log 212
derived function-string class, described 26
disk partitions 178
disk_affinity configuration parameter 136, 145
displaying

assigned actions for error numbers 207
error class information 206
function-related information 48
transactions in the exceptions log 210

distributor thread (DIST) 133, 139
described 126

Index

Administration Guide 309

disabling 99
drop connection command 92
drop error class 204
drop function command 277
drop function string class command 32
drop function string command 43
drop logical connection command 102
dropping

function string class 32
function strings 43
logical database connections 102
logical databases from the ID Server 102
user-defined functions 277

DSI threads
described 128
detecting duplicate transactions 213
detecting losses 256
executor 128, 153
handling losses 257
parallel 148
scheduler 128, 153
for standby database 87
suspending to load bulk materialization data 119

dsi_cmd_batch_size configuration parameter 136
dsi_cmd_batch_size parameter 143
dsi_commit_check_locks_intrvl configuration

parameter 136, 150
dsi_commit_check_locks_log configuration parameter

150
dsi_commit_check_locks_max configuration

parameter 137, 150
dsi_commit_control configuration parameter 137,

150
dsi_ignore_underscore_name configuration parameter

150
dsi_isolation_level configuration parameter 137, 151
dsi_large_xact_size configuration parameter 137,

151
dsi_max_xacts_in_group configuration parameter

137
dsi_num_large_xact_thread configuration parameter

151
dsi_num_large_xact_threads configuration parameter

137
dsi_num_threads configuration parameter 137, 151

dsi_partitioning_rule configuration parameter 138,
151

dsi_serialization_method configuration parameter
138, 152

dsi_sqt_max_cache_size configuration parameter 138
dsi_xact_group_size configuration parameter 138
dump database command 83, 224
dump marker option for rs_init program 80, 93
dump transaction command 83, 224
dumps

creating 224
database generation numbers 262
determining for reload 260
initializing warm standby databases 78, 83
transaction timestamp 260

dynamic SQL 175
configuring parameters 175
limitations 176

dynamic_sql configuration parameter 131
dynamic_sql_cache_management configuration

parameter 132
dynamic_sql_cache_size configuration parameter 132

E
empty function strings, creating 45
enable replication marker 78
error classes

changing primary Replication Server 205
creating 203
dropping 204
initializing 204
rs_sqlserver_error_class 203

error handling
assigning actions 206
data server 202, 207
general 197
Replication Server 198
system transactions 214

error log files
beginning a new Replication Server log file 201
described 198
displaying current log file name 200
Replication Server 2, 198

error messages

Index

310 Replication Server

format 199
Replication Server login name 5
severity levels 199
system transactions 214

errors
log file for Replication Server 2
standard error output 2

examples
DSI loss detection 256
SQM loss detection 255
warm standby application 86

exceptions log
accessing 209
deleting transactions 212
displaying transactions 210
exceptions handling 207

exec_cmds_per_timeslice configuration parameter 132,
138, 144

exec_sqm_write_request_limit configuration parameter
132, 139

exec_sqm_write_request_limit parameter 144

F
failed transactions

handling 208, 212
process for resolving 209

failover, support for in Replication Server 216
failure

data server 197
network 197

files
Replication Server error log 2
standard error output 2

finding current save interval 221
flushed values

viewing 193
formatting, RCL commands xv
function replication definitions

sending parameters to standby database 115
function scope, described 15
function strings

changing 16
creating 39
creating empty 45

defining multiple commands 46
described 19
dropping 43
examples 41
generated for standby databases 60
input templates 33
managing 32, 47
none 52
output templates 33
remapping table and column names 46
restoring default 44
restoring defaults with output template 44
updating 41
variables 37
writetext 51

functions
described 13

function-string classes
assigning to databases 31
changing the primary Replication Server 30
creating 27
described 21
dropping 32
for DB2 databases 12
managing 26, 30
rs_default_function_class 60

function-string inheritance 26

G
grant command 85

H
ha_failover configuration parameter 219
hareg command 289
high availability 281–290

configuring Replication Server for 284
configuring Sun Cluster for 284
installing Replication Server for 285
scripts 283
technology overview 283
terminology 282

hints 179

Index

Administration Guide 311

I
icons

Adaptive Server xvii
client application xvii
Replication Agent xvii
Replication Manager xvii
Replication Server xvii

ID Server
dropping a logical database from 102

identifiers
format xvi
function parameters xvi
length xvi

ignore loss command
handling losses 257
ignoring SQM and DSI losses 258
ignoring SQM loss after setting log recovery 259
and warm standby applications 121

inbound queue
displaying reader threads 95
multiple reader threads 99

informational messages
format 199

init_sqm_write_delay configuration parameter 132
init_sqm_write_max_delay configuration parameter

133
input templates, example 37
installing Replication Server

as a data service 286
for HA 285

interfaces file
checking for accuracy 4
modifying for warm standby application 96

isolation levels 155
isql interactive SQL utility

verifying server status 4

L
language

function string output templates 34
large transactions 154
load database command 83
load transaction command 83
loading

primary database from dumps 234
log recovery

detecting losses 259
setting for databases 258

logical connection
configuring materialization queue save interval

109
configuring save interval 109
creating 74
send standby_repdef_cols configuration parameter

99
logical database connections

dropping 102
loss detection

after setting log recovery 259
checking messages 255
DSI loss 253, 256
handling losses 257
preventing false losses in stable queue 255
rebuilding stable queues 253
SQM loss 253
with warm standby applications 121

M
maintenance user

for standby database 85
master database

DDL commands and system procedures 65
replication limitations 67
and warm standby applications 59

materialization queue save interval
setting for logical connections 109
strict setting 109

materialization_save_interval configuration parameter
for logical connections 98

md_sqm_write_request_limit configuration parameter
133, 139

md_sqm_write_request_limit parameter 144
memory_limit configuration parameter 133
Message Delivery module (MD) 127
messages

handling loss in stable queues 257
recovering from off-line database logs 227
recovering from online database logs 229

Index

312 Replication Server

SQM loss detection 259
modifiers

in function string variables 38
modules

described 124
Message Delivery 127
overview 184
Transaction Delivery 127

monitoring
partition percentages 9
Replication Server 4

monitoring of status 6
monitoring status

replication objects 6
mount command 78
move primary command 30, 205
multiple replication definitions

and function strings 20
multiprocessor platforms 177
multiprocessors

enabling 177
monitoring 177

MySybase xiii

N
nonatomic materialization

in warm standby applications 118
none

transaction serialization method 159
none function string output templates 52

O
online database command 83
OQID commit stack 165
origin queue ID (qid) 260

determining database generation numbers 261
output templates

creating empty function strings 45
language 34
none 52
restoring default function strings 44
rpc 35

writetext 51

P
parallel DSI

benefits and risks 149
components for 153
conflicting updates 173
deadlocks 169
described 148
function strings for 168, 169
grouping logic 164
infrequent conflicting updates 173
isolation levels for 155
optimal performance 170
OQID commit stack 165
parameters for 150
partitioning rules 159, 172
reducing contentions 171
resolving conflicts 164
setting parameters for 152

parallel_dsi configuration parameter 139, 152
parameters

disk_affinity 145
dsi_cmd_batch_size 143
exec_cmds_per_timeslice 144
exec_sqm_write_request_limit 144

parameters, stored procedure
adding to user-defined functions 276

parent function-string class 26
partition affinity

allocation hint 179
alter connection command 179
alter route command 179
default allocation 178
rs_diskaffinity system table 179

partition failure
recovering 225, 229

partitioning rules 159, 172
none 160
origin begin and commit times 161
transaction name 162
user name 160

partitions 178
monitoring percentages 9

Index

Administration Guide 313

recovering from loss or failure 225, 229
space requirements 222

personalized views
creating xiii

primary databases
loading from dumps 234
recovering from failure 232
recovering truncated logs 229

primary dumps
recovering primary databases 233

primary key
for tables in a warm standby database 114

primary Replication Server
changing for an error class 205
changing function-string class to another

Replication Server 30
processing in 124, 129

Q
queries

for exceptions log system tables 211
queue ID 260
quiesce database ... to manifest_file command 78

R
RCL commands 275

abort switch command 90, 91
admin log_name command 200
admin logical_status command 90, 94
admin set_log_name 201
admin set_log_name command 2
admin who, sqm command 220
allow connections command 258
alter connection command 31
alter function command 276
alter function string command 41
assign action command 206
configure connection command 47, 101, 224
create connection command 31
create error class command 203
create function string class command 29
create function string command 41

create logical connection command 75
drop connection command 92
drop error class command 204
drop function string class command 32
drop function string command 43
ignore loss command 257, 260
move primary command 30, 205
rebuild queues command 250
resume connection 84
resume connection command 84, 209
set log recovery command 258
suspend connection command 208
sysadmin dropldb command 103
sysadmin restore_dsi_saved_segments command

223
wait for create standby command 84
wait for switch command 90

RCL, formatting commands xv
rebuild queues command 250
rec_daemon_sleep_time configuration parameter 133,

142
recovery

from primary database failures 232
of messages from off-line database logs 227
overview 235
partition loss or failure 225, 229
from RSSD failure 235, 250
of RSSD from dumps 236
setting save intervals 220
support tasks 250, 262
from truncated primary database logs 229, 232
using procedures 216

recovery daemon (dREC) 129
recovery mode

Replication Server 251, 258
RepAgent

error log messages 201
RepAgent Executor 138
RepAgent user thread 125
replicate databases

preventing data loss 220
replicate minimal columns

and non-default function strings 51
and rs_default_fs system variable 50

replicate Replication Server
processing in 130

Index

314 Replication Server

replicated stored procedures
enabling for replication 275

replication
configuring in standby databases 101

replication definitions
required for warm standby 110
sending columns to standby database 115
using for tables with more than 1024 columns 115

Replication Server
checking for errors 2
error log 93, 198
handling lost messages 257
informational messages 199
internals 123, 131
log recovery mode 258
monitoring 4
partitions 8, 9
processing in primary 124, 129
processing in replicate 130
rebuilding stable queues 250
recovery mode 251, 258
standalone mode 227, 250
standard errors 2
verifying a working system 2
verifying status 4

Replication Server programs
rs_subcmp 257

Replication Server System Database (RSSD)
recovering from failure 235
updating database generation numbers 262

replication system
error log files 198
preventing data loss 220

Replication System Administrator
role of ix

request stored procedures 266
prerequisites for implementing 267
setting up 272

restoring
dumps 224
primary and replicate databases 233
RSSD 236

restrictions
warm standby applications 59

resume connection command 84, 209
routes

RSSD recovery 249
setting save interval 221

RPC function string output templates 35
RS user thread 129
rs_batch_end system function 16
rs_batch_start system function 16
rs_begin system function 16
rs_check_repl system function 16
rs_commit system function 16
rs_config system table

configuration parameters 131
rs_datarow_for_writetext system function 18
rs_default_function_class 60

described 22
rs_delete system function 18
rs_delexception stored procedure 212
rs_diskaffinity system table 179
rs_dumpdb system function 17, 224
rs_dumptran system function 17, 224
rs_get_charset system function 17
rs_get_lastcommit system function 17
rs_get_sortorder system function 17
rs_get_textptr system function 18
rs_get_thread_seq system function 17, 169
rs_get_thread_seq_noholdlock system function 17,

169
rs_helpclass stored procedure 49
rs_helperror stored procedure 207
rs_helpexception stored procedure 210
rs_helpfstring stored procedure 49
rs_helpfunc stored procedure 49
rs_idnames system table

dropping logical database from 103
rs_init program

adding a standby database 83
adding warm standby databases 75

rs_init_erroractions stored procedure 204
rs_initialize_threads system function 17, 169
rs_insert system function 18
rs_marker system function 17
rs_mk_rsids_consistent stored procedure 242
rs_raw_object_serialization function 17
rs_repl_off system function 17
rs_repl_on system function 17
rs_rollback system function 17
rs_select system function 18

Index

Administration Guide 315

updating function strings 42
rs_select_with_lock system function 18

updating function strings 42
rs_set_ciphertext system function 17
rs_set_deml_on_computed system function 17
rs_set_isolation_level function string 156
rs_set_isolation_level system function 17
rs_set_proxy function 17
rs_sqlserver_error_class error class 203
rs_sqlserver_function_class 30, 46

described 22
rs_statcounters system table 195
rs_subcmp program 120, 257
rs_textptr_init system function 18
rs_thread_check_lock system function 17
rs_triggers_reset system function 17
rs_trunc_reset system function 17
rs_trunc_set system function 18
rs_truncate function 18
rs_update system function 18
rs_update_threads system function 18, 169
rs_usedb system function 18
rs_writetext system function 18
RSI threads

described 128
RSI user thread 130
rsi_batch_size configuration parameter 140
rsi_packet_size configuration parameter 140
rsi_sync_interval configuration parameter 140
RSSD failure

recovering 235, 250

S
sa permission ix
save interval

described 220
setting for connections 223
setting for logical connections 109
setting for routes 222
strict setting 109, 118

save_interval configuration parameter 220
for logical connection 98

scope, of functions 15
scripts

verifying server status 5
send standby clause

for columns 115
for parameters 115

send standby_repdef_cols configuration parameter for
logical connections 99

serialization methods
no_wait 157
none 157
wait_for_commit 158
wait_for_start 158

server user’s ID
for warm standby databases 82

servers
verifying operation 4

set function string class clause 31
set log recovery command 258
set replication Transact-SQL command 72, 101
set triggers off Transact-SQL command 101
severity levels

data server errors 206
error messages 199
Replication Server 206

skip transaction clause 209
small transactions 154
smp_enable configuration parameter 133
sp_helpcounter command system procedure 195
sp_reptostandby system procedure 63, 84
sp_setreplicate system procedure

marking stored procedures for replication 275
sp_setrepproc system procedure 68

marking stored procedures in a warm standby active
database 84

sp_setreptable system procedure
marking tables in a warm standby active database

84
sqm_recover_segs configuration parameter 133
sqm_write_flush configuration parameter 134, 135
sqt_init_read_delay configuration parameter 134
sqt_max_cache_size configuration parameter 134,

152
sqt_max_read_delay configuration parameter 134
Stable Queue Manager thread (SQM) 126

detecting loss during stable queue rebuild 254
handling losses 257
loss detection after log recovery 259

Index

316 Replication Server

Stable Queue Transaction thread (SQT) 126
stable queues 135

detecting losses 253
DSI loss 253
handling partition failure 222
off-line rebuild from database logs 251
online rebuild 251
rebuilding 250

standalone mode
Replication Server 227, 250

standby database 56
adding 77
monitoring status of add 93
switching to 85

stats_reset_rssd configuration parameter 190
status

monitoring 6
verifying data servers 4
verifying RepAgents 4
verifying Replication Servers 4

stored procedures
dropping 277
marking for replication using sp_setreplicate 274
rs_delexception 212
rs_helpclass 49
rs_helperror 207
rs_helpexception 210
rs_helpfstring 49
rs_init_erroractions 204
rs_mk_rsids_consistent 242

sts_cachesize configuration parameter 134
sts_full_cache configuration parameter 134
style conventions xiv
sub_daemon_sleep_time configuration parameter 134
sub_sqm_write_request_limit configuration parameter

135
subscribing

to data in warm standby databases 116
subscription materialization 135
subscription migration

described 127
subscription resolution engine (SRE) 127
subscription retry daemon (dSUB) 129
subscriptions

comparing after restoring backups 239
re-creating after backups 246

restrictions in warm standby applications 116
Sun Cluster HA 281, 283

references 281
suspect subscriptions 118
suspend connection command 208, 209
switch active command

during atomic materialization 118
during subscription dematerialization 119
during subscription materialization 117

sysadmin dropldb command 103
sysadmin restore_dsi_saved_segments command 223
system functions

rs_dumpdb 224
rs_dumptran 224

system functions, list of
with function-string class scope 16
with replication definition scope 18

system procedures
sp_helpcounter command 195
sp_setreplicate 275
sp_setrepproc 84
sp_setreptable 84

system tables
rs_diskaffinity 179
rs_idnames 102
rs_statcounters 195

system transactions 214

T
testing

Replication Server components 2
Replication Server connections 3

threads
described 124
displaying for replication system 6
distributor (dist) 126
DSI executor 128, 153
DSI scheduler 128, 153
in primary Replication Server described 129
in primary replication server described 124
for parallel DSI 148
RS user 129
RSI 128
RSI user 130

Index

Administration Guide 317

Stable Queue Manager (SQM) 125
Stable Queue Transaction (SQT) 126
USER 129

threads, miscellaneous 129
threshold levels

setting and using for partitions 8
timestamp

qid 260
Transaction Delivery module (TD) 127
transaction names, default 162
transactions

exceptions handling 207
large 154
loading log dumps 260
processing with parallel DSI threads 148
reasons for failure 207
serialization methods 156
small 154
timestamp 260

Transact-SQL commands
dump database 224
dump transaction 224
set replication off 101
set triggers off 101

triggers
configuring in standby databases 101

truncate table command 214
RCL 62

truncated database logs, recovering 229

U
updating function strings 41
use_batch_markers configuration parameter 139
USER thread 129
user-defined functions

adding parameters 276
associating replicated stored procedures with 275
described 14
dropping 277
managing 275
mapping to a different stored procedure 278
specifying a non-unique function name 279

V
variables

function strings 37
modifiers 38
system-defined 38

version daemon (dVERSION) 129
visual monitoring of status 6

W
wait for create standby command 84
wait for switch command 90
warm standby applications

comparing methods 61
database connections 57
databases 57
effects of switching to the standby database 88
forcing replication of DDL commands 72
logical connections 57
monitoring 93
physical connections 57
for a primary database 103
for a replicate database 105
restrictions 59
setting up databases 73, 99
switching to the standby database 85
tables with the same name 69
turning off replication 72

warm standby, alter table command support 111
where clause

limit to expressions 1024 columns 115
write operations 135
writetext function string output templates 51
writing directly to media 135

Index

318 Replication Server

	Administration Guide: Volume 2
	About This Book
	CHAPTER 1 Verifying and Monitoring Replication Server
	Checking replication system log files for errors
	Verifying a replication system
	Monitoring Replication Server
	Verifying server status
	Visual monitoring of status
	Displaying replication system thread status
	Using system information commands

	Setting and using threshold levels
	Monitoring partition percentages

	CHAPTER 2 Customizing Database Operations
	Overview
	Working with functions, function strings, and classes
	Functions
	System functions
	User-defined functions
	Function scope

	Summary of system functions
	System functions with function-string-class scope
	System functions with replication-definition scope

	Function strings
	Input and output templates
	Applications for customized function strings

	System functions with multiple function strings

	Function-string classes
	System-provided classes
	Function-string inheritance
	Restrictions in mixed-version systems

	Managing function-string classes
	Creating a function-string class
	Creating a derived class
	Creating a base class
	Primary site for a function-string class

	Assigning a function-string class to a database
	Dropping a function-string class

	Managing function strings
	Function strings and function-string classes
	Function-string input and output templates
	Requirements for using input and output templates

	Using output templates
	Language output templates
	RPC output templates
	Output templates for rs_writetext function strings

	Using input templates
	Class in which to create function strings

	Using function-string variables
	Function-string variable formatting

	Creating function strings
	Guidelines for creating function strings

	Altering function strings
	Dropping function strings
	Restoring default function strings
	Creating empty function strings with the output template
	Remapping table and column names with function strings
	Defining multiple commands in a function string
	Using declare statements in language output templates

	Displaying function-related information
	Obtaining information using the admin command
	Obtaining information using stored procedures

	Using the default system variable
	Extending default function strings
	Using replicate minimal columns

	Using function strings with text, unitext, image, and rawobject datatypes
	Using output writetext for rs_writetext function strings
	Using output none for rs_writetext function strings
	Heterogeneous replication and text, unitext, image, and rawobject data

	CHAPTER 3 Managing Warm Standby Applications
	Overview
	How a warm standby works
	Database connections in a warm standby application
	Primary and replicate databases and warm standby applications
	Comparison of database relationships

	Warm standby requirements and restrictions
	Function strings for maintaining standby databases

	What information is replicated?
	Comparing replication methods
	Using sp_reptostandby to enable replication
	Restrictions and requirements when using sp_reptostandby
	Disabling replication

	Using sp_setreptable to enable replication
	Using sp_setrepproc to copy user stored procedures
	Replicating tables with the same name but different owners
	Replicating text, unitext, image, and rawobject data
	When warm standby involves a replicate database
	Using the use_index option in a replicate database

	Changing replication for the current isql session
	Forcing replication of DDL commands to the standby database
	Turning off all replication to the standby database

	Setting up warm standby databases
	Before you begin
	Client application issues

	Task one: Creating the logical connection
	Naming the logical connection
	Procedure for creating the logical connection
	Reconfiguring and restarting RepAgent

	Task two: Adding the active database
	Task three: Enabling replication for objects in the active database
	Enabling replication for objects added later

	Task four: Adding the standby database
	Creating the standby database
	Determining how to initialize the standby database
	Adding the standby database maintenance user
	Adding the standby database to the replication system
	Enabling replication for objects in the standby database
	Granting permissions to the maintenance user

	Switching the active and standby databases
	Determining if a switch is necessary
	Before switching active and standby databases
	Internal switching steps
	After switching active and standby databases
	Making the switch
	Disconnect client applications from the active database
	Procedure for switching the active and standby databases
	Restart client applications
	Manage the old active database

	Monitoring a warm standby application
	Replication Server log file
	Standby connection created
	Standby connection resumed after initialization

	Commands for monitoring warm standby applications
	admin logical_status
	admin who, dsi
	admin who, sqm
	admin sqm_readers

	Setting up clients to work with the active data server
	Two interfaces files
	Symbolic data server name for client applications
	Map client data server to currently active data server

	Altering warm standby database connections
	Altering logical connections
	Changing parameters affecting logical connections
	Disabling the Distributor thread
	Replicating truncate table to standby databases

	Altering physical connections
	Configuring triggers in the standby database
	Configuring replication in the standby database
	Changing configuration parameters in the standby database

	Dropping logical database connections
	Dropping a logical database from the ID Server

	Warm standby applications using replication
	Warm standby application for a primary database
	Warm standby application for a replicate database
	Configuring logical connection save intervals

	Using replication definitions and subscriptions
	Creating replication definitions for warm standby databases
	alter table support for warm standby
	Using replication definitions to optimize performance
	Using replication definitions for tables with more than 1024 columns
	Using replication definitions to copy redundant updates

	Using subscriptions with warm standby application
	Restrictions on using subscriptions
	Subscription materialization for logical primary database
	Subscription materialization for logical replicate database
	Checking subscriptions
	Dropping subscriptions

	Missing columns when you create the standby database

	Loss detection and recovery

	CHAPTER 4 Performance Tuning
	Replication Server internal processing
	Threads, modules, and daemons
	Processing in the primary Replication Server
	Replication agent user thread
	Stable Queue Manager thread
	Stable Queue Transaction thread
	Distributor thread and related modules
	Data Server Interface threads
	Replication Server Interface thread
	Miscellaneous daemon threads

	Processing in the replicate Replication Server
	RSI user thread

	Configuration parameters that affect performance
	Replication Server parameters that affect performance
	Stable devices: considerations

	Connection parameters that affect performance
	Route parameters that affect performance

	Suggestions for using tuning parameters
	Setting the amount of time SQM Writer waits
	Caching system tables
	Setting wake up intervals
	Sizing the SQT cache
	Controlling the number of network operations
	Controlling the number of outstanding bytes
	Controlling the number of commands the RepAgent executor can process
	Specifying the number of stable queue segments allocated
	Selecting disk partitions for stable queues
	Making SMP more effective
	Specifying the number of transactions in a group
	Database configuration parameter : dsi_max_xacts_in_group
	Database configuration parameters: dsi_xact_group_size and dsi_max_xacts_in_group

	Setting transaction size

	Using parallel DSI threads
	Benefits and risks
	Parallel DSI parameters
	Components of parallel DSI
	DSI scheduler thread
	DSI executor threads

	Processing transactions with parallel DSI threads
	Small transactions
	Large transactions

	Selecting isolation levels
	Transaction serialization methods
	no_wait
	wait_for_start
	wait_for_commit

	Partitioning rules: reducing contention and increasing parallelism
	Using transaction-partitioning rules
	Using multiple transaction rules
	Grouping logic and transaction partitioning rules

	Resolving conflicting updates
	Resolving conflicts internally using the rs_dsi_check_thread_lock function string
	Using rs_threads to resolve conflicts externally

	Configuring parallel DSI for optimal performance
	Before you begin
	Reducing contention
	Using partitioning rules
	Frequent conflicting updates
	Infrequent conflicting updates
	Using isolation levels
	Setting the size for large transactions

	Parallel DSI and the rs_origin_commit_time system variable

	Dynamic SQL for enhanced Replication Server performance
	Using multiprocessor platforms
	Enabling multiprocessor support
	Monitoring thread status
	Monitoring performance

	Allocating queue segments
	Choosing disk allocations
	An example

	Dropping hints and partitions

	Using the heartbeat feature in RMS

	CHAPTER 5 Using Counters to Monitor Performance
	Introduction
	Modules and counters: an overview
	Counters

	Sampling
	Collecting statistics for a specific time period
	Specifying the counters to be sampled
	Specifying the sample period
	Specifying how statistics are to be reported

	Collecting statistics for an indefinite time period

	Viewing statistics on screen
	Viewing throughput rates
	Viewing statistics about messages and memory use
	Viewing the number of transactions in the stable queues

	Viewing statistics saved in the RSSD
	Using the rs_dump_stats procedure

	Viewing information about the counters
	Resetting counters

	CHAPTER 6 Handling Errors and Exceptions
	General error handling
	Error log files
	Replication Server error log
	Informational messages
	Error and warning messages
	Finding the name of the Replication Server error log
	Changing to a new Replication Server log file

	RepAgent error log messages
	Sample error messages

	Data server error handling
	Creating an error class
	Initializing a new error class
	Dropping an error class
	Changing the primary Replication Server for an error class
	Displaying error class information
	Assigning actions to data server errors
	Displaying assigned actions for error numbers

	Exceptions handling
	Handling failed transactions
	Suspend database connection
	Analyze and resolve the problem
	Resume the connection

	Accessing the exceptions log
	Displaying transactions in the exceptions log
	Querying the exceptions log system tables

	Deleting transactions from the exceptions log

	DSI duplicate detection
	Duplicate detection for system transactions

	CHAPTER 7 Replication System Recovery
	How to use recovery procedures
	Configuring the replication system to support Sybase Failover
	Overview
	Enabling Failover support in Replication Server
	How Sybase Failover works with Replication Server
	Requirements
	Enabling Failover support for an RSSD connection
	Enabling Failover support for non-RSSD database connections

	Configuring the replication system to prevent data loss
	Save interval for recovery
	Routes between Replication Servers
	Connections between Replication Servers and data servers

	Backing up the RSSDs
	Creating coordinated dumps

	Recovering from partition loss or failure
	Procedure for recovering from partition loss or failure
	Message recovery from off-line database logs
	Message recovery from the online database log

	Recovering from truncated primary database logs
	Truncated message recovery from the database log

	Recovering from primary database failures
	Loading from coordinated dumps
	Loading a primary database from dumps

	Recovering from RSSD failure
	Recovering an RSSD from dumps
	Basic RSSD recovery procedure
	Subscription comparison procedure
	Using rs_subcmp on replicated RSSD system tables
	Classes and system tables

	Subscription re-creation procedure
	Deintegration/reintegration procedure

	Recovery support tasks
	Rebuilding stable queues
	Rebuilding queues online
	Rebuilding queues from off-line database logs
	Loss detection after rebuilding stable queues
	Setting log recovery for databases
	Loss detection after setting log recovery
	Determining which dumps to load
	Adjusting database generation numbers

	APPENDIX A Asynchronous Procedures
	Overview
	Logging replicated stored procedures
	Logging replicated stored restrictions
	Mixed-mode transactions

	Applied stored procedures
	Request stored procedures
	Asynchronous stored procedure prerequisites
	Steps for implementing an applied stored procedure
	Warning conditions

	Steps for implementing a request stored procedure
	Specifying stored procedures and tables for replication
	Managing user-defined functions
	Creating a user-defined function
	Adding parameters to a user-defined function
	Dropping a user-defined function
	Mapping to a different stored procedure name
	Specifying a nonunique name for a user-defined function

	APPENDIX B High Availability on Sun Cluster 2.2
	Introduction
	Terminology
	Technology overview
	Configuring Replication Server for high availability
	Configuring Sun Cluster for HA
	Installing Replication Server for HA
	Installing Replication Server as a data service

	Administering Replication Server as a data service
	Data service start/shutdown
	Logs

	Glossary
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

