S SYBASE

Javain
Adaptive Server Enterprise

Adaptive server® Enterprise

12.5.1

DOCUMENT ID: DC31652-01-1251-02
LAST REVISED: November 2003

Copyright © 1989-2003 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in thisdocument is subject to change without notice. The software described herein is furnished under alicense agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customersin other countries with a U.S. license agreement may contact Customer Fulfillment viathe above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software rel ease dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture,
Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server
Enterprise Replication, Adaptive Server Everywhere, Adaptive Server 1Q, Adaptive Warehouse, Anywhere Studio, Application
Manager, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Trandlator, APT-Library, AvantGo,
AvantGo Application Alerts, AvantGo Mobile Delivery, AvantGo Mobile Document Viewer, AvantGo Mobile Inspection, AvantGo
Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon Application Server,
AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BizTracker, ClearConnect, Client-Library,
Client Services, Convoy/DM, Copernicus, DataPipeline, DataWorkbench, DataArchitect, Database Analyzer, DataExpress, DataServer,
Datawindow, DB-Library, doQueue, Devel opers Workbench, Direct Connect Anywhere, DirectConnect, Distribution Director, eeADK,
E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway, ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise
Application Studio, Enterprise Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server
Manager, Enterprise Work Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA,
Financial Fusion, Financia Fusion Server, Gateway Manager, GlobalFI X, ImpactNow, |ndustry Warehouse Studio, InfoMaker,
Information Anywhere, Information Everywhere, |nformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, Mail
Anywhere Studio, MainframeConnect, Maintenance Express, Manage Anywhere Studio, M-Business Channel, M-Business Network,
M-Business Server, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, My AvantGo, My AvantGo MediaChannel,
My AvantGo Mobile Marketing, MySupport, Net-Gateway, Net-Library, New Era of Networks, ObjectConnect, ObjectCycle,
OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open
Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC
Net Library, PocketBuilder, Pocket PowerBuilder, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class
Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft, PowerStage,
PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst,
Rapport, Report Workbench, Report-Execute, Replication Agent, Replication Driver, Replication Server, Replication Server Manager,
Replication Toolkit, Resource Manager, RW-DisplayLib, S-Designor, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian,
SKILS, smart.partners, smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL
Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART,
SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, SW.I.F.T.
Message Format Libraries, Sybase Central, Sybase Client/Server Interfaces, Sybase Financial Server, Sybase Gateways, Sybase MPP,
Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financial,
SyberAssist, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, TradeForce, Transact-SQL,
Trang ation Toolkit, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visua
Components, Visual Speller, VisualWriter, VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse
WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup
SQL Server, XA-Library, XA-Server and XP Server are trademarks of Sybase, Inc. 03/03

Unicode and the Unicode L ogo are registered trademarks of Unicode, Inc.
All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

ADOUL THIS BOOK ...iiiiiiiiii ettt ettt e e e et e e e e e ettt e e aaeesaanttaeeeaaeesannsbenenaaaeesannnes iX
CHAPTER 1 An Introduction to Java in the Databaseccccceceeeeiviiiene e, 1
Advantages of Java in the databasecccccoociiiiiiiiiiine e, 1
Capabilities of Java in the databasecccccceeeeeeeiciiiieeee e, 2
Invoking Java methods in the database...........cccccccvvviiiinennnnnn. 2
Storing Java classes as datatypes........ccccccveeeeeviiiiiieieneeeniiiinns 3
Storing and querying XML in the databasec.cc.ccccovunneee. 4
SEANAAIAS ... 4
Java in the database: questions and ansSwWersccccccovvvvvveeeneennn, 5
What are the key features?cccvvveeveiiiiiiiiieie e 5
How can | store Java instructions in the database? 6
How is Java executed in the database?...........ccccccovvieiiienens 6
How can | use Java and SQL together?...........cccccoovveiiienens 7
What is the JaVa API?veveei et 7
How can | access the Java APl from SQL?ccccceovceveeiiiinenns 8
Which Java classes are supported in the Java API? 8
Can | install my own Java Classes?......ccccccoevviiiiiiniiiee i, 8
Can | access data using Java?ccccvveevieeeiiiiiineeieee e 8
Can | use the same classes on client and server?...........cc....... 9
How do | use Java classes in SQL?.......uuvvvivieveeveeirennenneneeennnnnns 9
Where can | find information about Java in the database? 9
What you cannot do with Java in the database...................... 10
Sample JAVa CIASSESuuvviiiiiiiiiiiiiiiie et 10
CHAPTER 2 Preparing for and Maintaining Java in the Database................. 11
The Java runtime enviroNmMeNt..........cccveeeeeeeiiiciiieeee e 11
Java classes in the databasecccccoecieiiiiiii i 11
IDBC AFVETIS ..uvviiiiiieiiiiieee e eeiee e e e e e e e e e e e sirne e e e e e e e anes 12
THE JAVA VM ..ottt e e e 12
Configuring memory for Java in the database.............cc...c.ceeuveee. 13
Enabling the server for Javacccocieviiiiiiee e 13
Disabling the server for Java.........ccoccvviveeiiiiiiiiiiiicee e, 13

Java in Adaptive Server Enterprise iii

Contents

CHAPTER 3

Creating Java classes and JARScccccviiiiiiiiiee i 14
Writing the Java COUE........cooiiiiiiiiiiiei e 14
Compiling Java COUEc.uviiiiiieei i 14
Saving classes in @ JARileccccooviiiiiiii e, 14

Installing Java classes in the database.............ccccccevveeeiiiciiinenennn, 15
USING INStallJAVAccooeiieiiiiee e 16
Referencing other Java-SQL ClassSes........ccccocveeiiiieeniieneens 18

Viewing information about installed classes and JARs.................. 18

Downloading installed classes and JARS.............ccccvvvevveeeeeicciinnnnn, 19

Removing classes and JARSccviviiiiiiieiiee e 19
RetaiNiNg ClaSSESoovvveiiiieii e 19

Using Java Classes iN SQL.....ccoiiiiiiiiiiiiieee e 21

GENETal CONCEPLS .oovieiiiiiriiiie ettt a e seeeeees 22
Java CONSIAEIatiONS.cveeeeiiiiiee it 22
Java-SQL NAMES........ciiiii i 22

Using Java classes as datatypesooovvvvveerieeiiiiiiieeeiee s 23
Creating and altering tables with Java-SQL columns.............. 24
Selecting, inserting, updating, and deleting Java objects........ 26

Invoking Java methods in SQLoooiiiiiiiiiie e 28
Sample Methodscccoiiiiii e 29
Exceptions in Java-SQL methodscccceviiiiiiiiiieees 29

Representing Java iNStaNCeSccueveviieeeeiiiee e e 29

Assignment properties of Java-SQL data items...........ccccceveeeiinns 30

Datatype mapping between Java and SQL fieldscccovvvneene. 33

Character sets for data and identifierscccccviieiiiiiienninnn, 34

Subtypes in Java-SQL datauvevvieiiiiiiiiiiiiee i 34
Widening CONVEISIONScccceiiiiiiiiiiiie i iiiiiiieece e ssiiiieeeee e s 34
NarroWing CONVETISIONScviiieiiiiiiiiieieeesiesiiireereeessanneiineeeeeens 35
Runtime versus compile-time datatypescccoccoeveevienens 36

The treatment of nulls in Java-SQL data...........cccccceeeeviiiviiieeeeeennn. 36
References to fields and methods of null instances................ 36
Null values as arguments to Java-SQL methods..................... 38
Null values when using the SQL convert function.................... 39

Java-SQL StriNg dataccoooveiiiiiie e 40
Zero-1ength StrNGSvvveeeiiiiiiiiiee e 40

Type and void MethodS.........ccccoviiiiiiiiiie e 41
Java void instance methods...........ccceeviiiie e 41
Java void static Methodscoviiiiiieiiiiii e 43

Equality and ordering Operationsccccvveeeeeeiiiiiiiieeee e 43

Evaluation order and Java method callScccocoveiiiieieiiiienens 44
(0] 01191 1SR 45
Variables and parameterscccoocveeeeiiiiee e 45

Static variables in Java-SQL ClasSesccceeeviieeeeiiiieeiiee e 46

Adaptive Server Enterprise

Contents

Java classes in multiple databases...........ccccovieeiiiiiei i, 47
Yoo o PP PP P PP PPPPPR PP 47
Cross-database referenCescccooceeeviieeeeiiiee e 47
INter-class transfers ... 48
Passing inter-class argumentscccccceeeiiviiiieneee s, 49
Temporary and work databases...........coccvvvvviieiiiiiiiiiiiiee s 49

JAVA CIASSES....ceiiiiiii ettt 50

CHAPTER 4 Data Access USIiNG JDBC ... 55

OVEIVIBW ...ttt ettt et et e e e s nnrnee s 55

JDBC concepts and terminologycccceeeviiiiiiiieieeenniiiiiieeee e 56

Differences between client- and server-side JDBC..............cccc...... 56

PeIMISSIONS....eiiiiiie it 57

Using JDBC t0 @CCESS dataleeveeiiiiieiiiiiee et 57
Overview of the JDBCExamples classcccccovceeeiniineennee 58
The main() and serverMain() methodscccccccoeeriieeens 59
Obtaining a JDBC connection: the Connecter() method 60

Routing the action to other methods: the doAction() method. 61
Executing imperative SQL operations: the doSQL() method . 61
Executing an update statement: the UpdateAction() method. 61

Executing a select statement: the selectAction() method....... 62
Calling a SQL stored procedure: the callAction() method 63
Error handling in the native JIDBC driVer........cccccovvciiveviieeniiniiinnn, 64
The JDBCEXamPIes ClasS.........cccooivuvriiiiee e 66
The main() Methodccoooiiiiiii e 67
The internalMain() methodcccoeiiiii e 67
The connecter() Methodcccoo i 68
The doAction() method...........ccociiiiiiiii e 68
The doSQL() Method.........cooiiiiiiiiiee e 70
The updateAction() Method.........cccceeeiviiiiiiie e 70
The selectAction() methodcccceviiiiiiii e 70
The callAction() Methodcccvvieiiiiiiiiii e 71
CHAPTER 5 SQLJ Functions and Stored Procedures.........ccccceevvvvvvviriinnnnnnn. 73
OVEIVIBW ...ttt ettt ettt ettt e e s nnreee s 73
Compliance with SQLJ Part 1 specifications..............c.ccevveeee. 74
GENETAL ISSUES ..ottt 74
Security and PermisSSIiONSeevveeviiiiiiiieeeeeniiiieee e s 75
SQLIEXAMPIES ...t 76
Invoking Java methods in Adaptive Server.........cccccoecvveeviieeeeenne. 76
Using Sybase Central to manage SQLJ functions and procedures 78
SQLJ user-defined functions...........ccccceeiiiiii i 79
Handling null argument values............ccccoooiieiiiiee e, 82

Java in Adaptive Server Enterprise \

Contents

Deleting a SQLJ function Name..........cccceeevviiiviiieenee i, 84
SQLJ Stored ProCEAUIEScceiiiiiiiiiiieeeeeiiiiiiiee e e sibiieee e e aees 84
Modifying SQL data.......c.ceevvieiiiiiiiiiiiiiee i 87
Using input and output parameterscccccvvveeeeeeeesievvvnnnnn. 88
Returning reSult SEtSc.cvoiiiiiie e 91
Viewing information about SQLJ functions and procedures 95
AdVaNCEd tOPICSvuriiiiiee et 95
Mapping Java and SQL datatypescccccvevriereeiiieeenniieeeens 95
Using the command main method.............cccoociiiiiiiieiienens 99
SQLJ and Sybase implementation: a comparison 100
SQLIEXAMPIES CIASS ...uvvvvviiieiiiiiiiiiiiiee et 103
CHAPTER 6 Debugging Java in the Databasecccccevviiiiiiciiiiiee e, 107
Introduction to debugging Java..........cccuvvveeeieeiiiiiiiiiie e 107
How the debugger WOrkS..........ccocuviiieiiiniiiiii e, 107
Requirements for using the Java debuggercccccuveeennn. 107
What you can do with the debugger.........cccccceceiiiiiiiiinennnnnn, 108
Using the debugger..........oeiiiiciiiiiiiiee e 108
Starting the debugger and connecting to the database......... 108
Compiling classes for debuggingcccceeeeeeeiiieeeiiiieee e, 109
Attaching to @ Java VMccooiiiiiii e 109
The Source WINAOW.........ccoiiiiiiiiiiee e 110

(@] o] 1] o 1S3 SPRR 111
Setting breakpointS.........cccvviiiiiiiiii 112
Disconnecting from the database.............cccccccciiiiiiiinnnnnnn, 114

A debugging tutorialcveviieiiii 115
Before you begin ... 115
Start the Java debugger and connect to the database.......... 115
Attach t0 a Java VMceviiiiiiiiie e 116
Load source code into the debugger............cocooveiiiiennnes. 116
Step through source codeoccoeeiiiiiiiiiieeeee e 117
Inspecting and modifying variablesccccoccivinennnnn. 118
CHAPTER 7 Network Access Using java.net.......c.ccoecvviviiveeieee e, 121
OVEBIVIBW ...ttt ettt e et e e ente e e atae e e e enneeeas 121
JAVANEL CIASSES ... iiiiiie ettt 122
Setting UP JAVA.NEL ...cooiiiiiiie e 122
EXAMPIE USAGE ..cooiviiiiiiiee ettt 123
UsSiNg SOCKEL ClaSSES......uuuviiiiiiiiiiiiiiie e 123
Using the URL ClasS.......ccccccveiiiiiiiiiiiiiee i 126
USEI NOES ...ttt e e e e 129
Where t0 go for help......oooiiiiii 1 129

Vi Adaptive Server Enterprise

Contents

CHAPTER 8

REfErenCe TOPICS oo 131
ASSIGNIMENES...eci e e e e e e e aarraeeaaee s 131
Assignment rules at compile-timeccccoeiiiieriiiee s, 132
Assignment rules at runtimecoocoeeeeeiieee e 132
AllOWEd CONVEISIONSoeiiiiiiie ittt 133
Transferring Java-SQL objects to clientsccccccceeviiiiiieennnnn, 133
Supported Java API packages, classes, and methods................ 134
Supported Java packages and classes............occcvvvvviiieiiinns 134
Unsupported Java packages, classes, and methods............ 135
Unsupported java.sql methods and interfaces 136
INvoking SQL from Java.........ccceeeeeeieiiiiiiieee e 137
Special considerationsccceveuieeiiiiiee e 137
Transact-SQL commands from Java methods..............ccccvvveeee... 138
Datatype mapping between Java and SQL..........ccccceeeviieeeennnnnn. 143
Java-SQL identifiers ... 145
Java-SQL class and package names............cccccvveveeeeiiiciineeneennn. 146
Java-SQL column declarationsccccceeeiiiiiiiiiiiiiiians 147
Java-SQL variable declarationscccccooeiiiiiiiiiiiiiicccce 147
Java-SQL column referenCes.......coooovviiiiiiiiiiiicccc 148
Java-SQL member referencCesccoooeeiiiieiiiiiiiiciicceice e 149
Java-SQL method CallSuviviiiiiiiiiiiiiiiiiiiiiiiiiieiisierereeeeaeennenannns 150
.. 153
.. 159

Java in Adaptive Server Enterprise Vii

viii Adaptive Server Enterprise

About This Book

Thisbook describes how to install and use Java classes and methodsin the
Sybase® Adaptive Server® Enterprise database.

Audience This book is for Sybase System Administrators, Database Owners, and
userswho are familiar with the Java programming language and Transact-
SQL®, the Sybase version of Structured Query Language (SQL).
Familiarity with Java Database Connectivity (JDBC) isassumed for those
who use these features.

How to use this book Thisbook will assist you ininstalling, configuring, and using Javaclasses
and methodsin the Adaptive Server database. It includes these chapters:

Java in Adaptive Server Enterprise

Chapter 1, “An Introduction to Javain the Database,” provides an
overview of Javain Adaptive Server, including a“questions and
answers’ section for both novice and experienced Java users.

Chapter 2, “Preparing for and Maintaining Javain the Database,”
describes the Java runtime environment and the steps for enabling
Javaon the server and installing Java classes.

Chapter 3, “Using Java Classesin SQL,” describes how to use Java-
SQL classes in your Adaptive Server database.

Chapter 4, “Data Access Using JDBC,” describes how you use a
JDBC driver (on the server or on the client) to perform SQL
operations in Java.

Chapter 5, “SQLJ Functions and Stored Procedures,” describes how
you can enclose and use Java methods in SQL wrappers.

Chapter 6, “ Debugging Javain the Database,” describes how you use
the Sybase debugger with Java.

Chapter 7, “Network AccessUsing java.net,” describes how you can
use java.net, a package that allows you to create networking
applications over TCP/IP. It enables classes running in Adaptive
Server to access different kinds of servers.

Chapter 8, “Reference Topics,” provides information about datatype
mapping, Java-SQL syntax, and other useful information.

Related documents

In addition, a glossary provides descriptions of the Java and Java-SQL terms
used in this book.

Note Information about XML in the SQL database, included in this book
through version 12.5 of Adaptive Server, is now included in XML Servicesin
Adaptive Server Enterprise.

The following documents comprise the Sybase Adaptive Server Enterprise
documentation set:

e Therelease bulletin for your platform — contains last-minute information
that was too late to be included in the books.

A more recent version of the release bulletin may be available on the
World Wide Web. To check for critical product or document information
that was added after the release of the product CD, use the Sybase
Technical Library.

» Thelnstallation Guidefor your platform —describesinstal lation, upgrade,
and configuration procedures for all Adaptive Server and related Sybase
products.

e What's New in Adaptive Server Enterprise? — describes the new features
in Adaptive Server version 12.5.1, the system changes added to support
those features, and the changes that may affect your existing applications.

e ASE Replicator User’s Guide — describes how to use the ASE Replicator
feature of Adaptive Server to implement basic replication from a primary
server to one or more remote Adaptive Servers.

e Component Integration Services User’s Guide — explains how to use the
Adaptive Server Component Integration Services feature to connect
remote Sybase and non-Sybase databases.

e Configuring Adaptive Server Enterprise for your platform — provides
instructions for performing specific configuration tasks for Adaptive
Server.

e EJB Server User’s Guide — explains how to use EJB Server to deploy and
execute Enterprise JavaBeans in Adaptive Server.

« Error Messages and Troubl eshooting Guide — explains how to resolve
frequently occurring error messages and describes solutions to system
problems frequently encountered by users.

Adaptive Server Enterprise

About This Book

e Full-Text Search Secialty Data Sore User’s Guide —describeshow to use
the Full-Text Search feature with Verity to search Adaptive Server
Enterprise data.

e Glossary — defines technical terms used in the Adaptive Server
documentation.

e Historical Server User’s Guide —describes how to use Historical Server to
obtain performance information for SQL Server® and Adaptive Server.

e jConnect for JDBC Programmer’s Reference — describes the jConnect™
for IDBC™ product and explains how to use it to access data stored in
relational database management systems.

e Job Scheduler User’s Guide — provides instructions on how to install and
configure, and create and schedule jobs on alocal or remote Adaptive
Server using the command line or agraphical user interface (GUI).

e Monitor Client Library Programmer’s Guide — describes how to write
Monitor Client Library applications that access Adaptive Server
performance data.

* Monitor Server User’s Guide — describes how to use Monitor Server to
obtain performance statistics from SQL Server and Adaptive Server.

e Performance and Tuning Guide — is a series of four books that explains
how to tune Adaptive Server for maximum performance:

e Basics—the basics for understanding and investigating performance
questions in Adaptive Server.

e Locking —describes how the various |ocking schemas can be used for
improving performance in Adaptive Server.

e Optimizer and Abstract Plans — describes how the optimizer
processes queries and how abstract plans can be used to change some
of the optimizer plans.

e Monitoring and Analyzing — explains how statistics are obtained and
used for monitoring and optimizing performance.

e Quick Reference Guide — provides a comprehensive listing of the names
and syntax for commands, functions, system procedures, extended system
procedures, datatypes, and utilities in a pocket-sized book.

« Reference Manual —is a series of four books that contains the following
detailed Transact-SQL® information:

Java in Adaptive Server Enterprise Xi

e Building Blocks — Transact-SQL datatypes, functions, global
variables, expressions, identifiers and wildcards, and reserved words.

e Commands — Transact-SQL commands.

e Procedures — Transact-SQL system procedures, catalog stored
procedures, system extended stored procedures, and dbcc stored
procedures.

e Tables— Transact-SQL system tables and dbcc tables.

e System Administration Guide — provides in-depth information about
administering servers and databases. This manual includes instructions
and guidelines for managing physical resources, security, user and system
databases, and specifying character conversion, international language,
and sort order settings.

e System Tables Diagram — illustrates system tables and their entity
relationships in a poster format. Available only in print version.

e Transact-SQL User’s Guide — documents Transact-SQL, Sybase's
enhanced version of the relational database language. This manual serves
as a textbook for beginning users of the database management system.
This manual also contains descriptions of the pubs2 and pubs3 sample
databases.

e Using Adaptive Server Distributed Transaction Management Features —
explains how to configure, use, and troubleshoot Adaptive Server DTM
features in distributed transaction processing environments.

e Using Sybase Failover in a High Availability System— provides
instructions for using Sybase’s Failover to configure an Adaptive Server
as a companion server in ahigh availability system.

« Utility Guide — documents the Adaptive Server utility programs, such as
isgl and bep, which are executed at the operating system level.

e Wb Services User’s Guide — explains how to configure, use, and
troubleshoot Web Services for Adaptive Server.

e XAlnterface Integration Guide for CICS Encina, and TUXEDO —
providesinstructions for using the Sybase DTM XA interface with
X/Open XA transaction managers.

e XML Servicesin Adaptive Server Enterprise— describesthe Sybase native
XML processor and the Sybase Java-based XML support, introduces
XML in the database, and documents the query and mapping functions
that comprise XML Services.

Xii Adaptive Server Enterprise

About This Book

Other sources of Use the Sybase Getting Started CD, the Sybase Technical Library CD and the
information Technical Library Product Manuals Web site to learn more about your product:

The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the Technical Library CD. It isincluded with
your software. To read or print documents on the Getting Started CD you
need Adobe Acrobat Reader (downloadable at no charge from the Adobe
Web site, using a link provided on the CD).

The Technical Library CD contains product manuals and isincluded with
your software. The DynaText reader (included on the Technical Library
CD) allows you to access technical information about your product in an
easy-to-use format.

Refer to the Technical Library Installation Guide in your documentation
package for instructions on installing and starting the Technical Library.

The Technical Library Product Manuals Web site isan HTML version of
the Technical Library CD that you can access using a standard Web
browser. In addition to product manuals, you will find linksto
EBFs/Updates, Technical Documents, Case Management, Solved Cases,
newsgroups, and the Sybase Developer Network.

To access the Technical Library Product Manuals Web site, go to Product
Manuals at http://www.sybase.com/support/manuals/.

Sybasecertifications Technical documentation at the Sybase Web site is updated frequently.

on the Web

O Finding the latest information on product certifications

1

a b W DN

Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

Select Products from the navigation bar on the left.

Select a product name from the product list and click Go.

Select the Certification Report filter, specify atime frame, and click Go.
Click a Certification Report title to display the report.

0 Creating a personalized view of the Sybase Web site (including support
pages)
Set up aMySybase profile. MySybaseisafree service that allowsyouto create
apersonalized view of Sybase Web pages.

Java in Adaptive Server Enterprise Xiii

Sybase EBFs and
software updates

Java syntax
conventions

Transact-SQL syntax

conventions

Xiv

1

2

Point your Web browser to Technical Documents at
http://lwww.sybase.com/support/techdocs/.

Click MySybase and create a MySybase profile.

Finding the latest information on EBFs and software updates

1

Point your Web browser to the Sybase Support Page at
http://lwww.sybase.com/support.

Select EBFs/Updates. Enter user name and password information, if
prompted (for existing Web accounts) or create a new account (afree
service).

Select a product.
Specify atime frame and click Go.

Click the Info icon to display the EBF/Update report, or click the product
description to download the software.

This book uses these font and syntax conventions for Javaitems:

Classes, interfaces, methods, and packages are shown in Helveticawithin
paragraph text. For example:

SybEventHandler interface
setBinaryStream() method
com.Sybase.jdbx package

Objects, instances, and parameter names are shown in italics. For
example;

“In the following example, ctx is a DirContext object.”

“ eventHdler is an instance of the SybEventHandler class that you
implement.”

“The classes parameter is a string that lists specific classes you want to
debug.”

Javanames are always case sensitive. For example, if aJavamethod name
is shown as Misc.stripLeadingBlanks(), you must type the method name
exactly as displayed.

This book uses the same font and syntax conventions for Transact-SQL as
other Adaptive Server documents:

Adaptive Server Enterprise

About This Book

If you need help

Command names, command option names, utility names, utility flags, and
other keywords arein Helveticain paragraph text. For example:

select command
isql utility

-f flag

Variables, or words that stand for values that you fill in, arein italics. For
example:

user_name
server_name

Code fragments are shown in a monospace font.Variables in code
fragments (that is, wordsthat stand for valuesthat youfill in) areitalicized.
For example:

Connection con = DriverManager. get Connecti on
("j dbc: sybase: Tds: host: port", props);

You can disregard case when typing Transact-SQL keywords. For
example, SELECT, Select, and select are the same.

Additional conventions for syntax statementsin this manual are described in
Table 1. Examplesillustrating each convention can be found in the System
Administration Guide.

Table 1: Syntax statement conventions

Key Definition
{} Curly bracesindicate that you choose at least one of the enclosed

options. Do not include braces in your option.

[] Brackets mean choosing one or more of the enclosed optionsis

optional. Do not include brackets in your option.

() Parentheses are to be typed as part of the command.

The vertical bar means you may select only one of the options
shown.

The comma means you may choose as many of the options shown
asyou like, separating your choices with commas to be typed as
part of the command.

Each Sybaseinstallation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve aproblem using the manualsor online help, please havethe
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

Java in Adaptive Server Enterprise XV

XVi Adaptive Server Enterprise

CHAPTER 1 An Introduction to Java in the
Database

This chapter provides an overview of Java classes in Adaptive Server

Enterprise.
Topic Page
Advantages of Javain the database 1
Capabilities of Javain the database 2
Standards 4
Javain the database: questions and answers 5
Sample Java classes 10

Advantages of Java in the database

Adaptive Server provides a runtime environment for Java, which means
that Java code can be executed in the server. Building aruntime
environment for Java in the database server provides powerful new ways
of managing and storing both data and logic.

¢ You can use the Java programming language as an integral part of
Transact-SQL.

¢ You can reuse Java code in the different layers of your application—
client, middle-tier, or server—and use them wherever makes most
sense to you.

e Javain Adaptive Server provides a more powerful language than
stored procedures for building logic into the database.

e Javaclasses become rich, user-defined data types.

¢ Methods of Java classes provide new functions accessible from SQL .

Java in Adaptive Server Enterprise 1

Capabilities of Java in the database

e Javacan be used in the database without jeopardizing the integrity,
security, and robustness of the database. Using Java does not alter the
behavior of existing SQL statements or other aspects of non-Java
relational database behavior.

Capabilities of Java in the database

Javain Adaptive Server allows you to:

* Invoke Java methods in the database
e Store Java classes as datatypes

* Storeand query XML in the database

Invoking Java methods in the database

You can install Java classes in Adaptive Server, and then invoke the static
methods of those classes in two ways:

* You can invoke the Java methods directly in SQL.

* You can wrap the methods in SQL names and invoke them as you would
standard Transact-SQL stored procedures.

Invoking Java methods directly in SQL

The methods of an object-oriented language correspond to the functions of a
procedural language. You can invoke methods stored in the database by
referencing them, with name qualification, on instances for instance methods,
and on either instances or classesfor static (class) methods. You caninvokethe
method directly in, for example, Transact-SQL select lists and where clauses.

You can use static methods that return a value to the caller as user-defined
functions (UDFs).

Certain restrictions apply when using Java methods in this way:

e |If the Java method accesses the database through JDBC, result-set values
are available only to the Java method, not to the client application.

Adaptive Server Enterprise

CHAPTER 1 An Introduction to Java in the Database

e Output parameters are not supported. A method can manipulate the dataiit
receives from a JDBC connection, but the only value it can return to its
caller isasingle return value declared as part of its definition.

Invoking Java methods as SQLJ stored procedures and functions

You can enclose Java static methodsin SQL wrappers and use them exactly as
you would Transact-SQL stored procedures or built-in functions. This
functionality:

¢ Allows Java methods to return output parameters and result sets to the
calling environment.

« Allowsyou to take advantage of traditional SQL syntax, metadata, and
permission capabilities.

* Allowsyou to invoke SQLJ functions across databases.

* Allowsyou to use existing Java methods as SQL J procedures and
functions on the server, on the client, and on any SQL J-compliant, third-
party database.

e Complieswith Part 1 of the ANSI standard specification. See“ Standards”
on page 4.

Storing Java classes as datatypes

With Javain the database, you can install pure Java classesin a SQL system,
and then use those classesin anatural manner as datatypesin a SQL database.
This capability adds afull object-oriented datatype extension mechanism to
SQL, using amodel that iswidely understood and alanguage that is portable
and widely available. The objectsthat you create and storewith thisfacility are
readily transferable to any Java-enabled environment, either in another SQL
system or standal one Java environment.

This capability of using Java classes in the database has two different but
complementary uses:

e It provides atype extension mechanism for SQL, which you can use for
datathat is created and processed in SQL.

Java in Adaptive Server Enterprise 3

Standards

e |t providesapersistent data capability for Java, which you can useto store
datain SQL that is created and processed (mainly) in Java. Javain
Adaptive Server provides adistinct advantage over traditional SQL
facilities: you do not need to map the Java objectsinto scalar SQL
datatypes or store the Java objects as untyped binary strings.

Storing and querying XML in the database

Standards

Similar to Hypertext Markup Language (HTML), the eXtensible Markup
Language (XML) allows you to define your own application-specific markup
tags and is thus particularly suited for data interchange.

XML Servicesin Adaptive Server Enterprise describesthe Sybase native XML
processor and the Sybase Java-based XML support, introduces XML in the
database, and documentsthe query and mapping functions that comprise XML
Services.

The SQLJ consortium of SQL vendors devel ops specifications for using Java
with SQL. The consortium submits these specificationsto ANSI for formal
processing as standards. The standards can be found on the Web at
http://www.ansi.org. In this document, SQL J refers to capabilities compliant
with SQLJ Part 1 of the standard specifications

Compliance with SQLJ standards ensures that Sybase functionality portsto all
third-party, standards-compliant relational databases.

The standard specifications are in three parts:

» Part 0—"Database Language SQL—Part 10: Object Language Bindings
(SQL/OLB),” ANSI X3.135.10-1998.

Specifications for embedding SQL statementsin Javamethods. Similar to
the traditional SQL facilities for embedded SQL in COBOL and C and
other languages. The Java classes containing embedded SQL statements
are precompiled to pure Java classes with JDBC calls.

e Part1-"SQLJ—Part 1: SQL Routines using the Java Programming
Language,” ANSI NCITSN331.1.

Adaptive Server Enterprise

CHAPTER 1 An Introduction to Java in the Database

Specifications for installing Java classesin a SQL system, and for
invoking Java static methods as SQL stored procedures and functions.

e Part 2—"SQLJ—Part 2; SQL Types using the Java Programming
Language,” ANSI NCITSN331.2.

Specifications for using Java classes as SQL datatypes.

Sybase supports Part 1 of the specification. In addition, Sybase extends the
capabilities provided in the standard. For example, Adaptive Server allowsyou
to reference Java methods and classes directly in SQL, whereas SQLJ Parts 1
and 2 require that you use SQL aliases.

Java in the database: questions and answers

Although this book assumes that readers are familiar with Java, thereis much
to learn about Javain adatabase. Sybase is not only extending the capabilities
of the database with Java, but also extending the capabilities of Java with the
database. See

Both experienced and novice Java users should read this section. It usesa
guestion-and-answer format to familiarize you with the basics of Javain
Adaptive Server.

What are the key features?

All of these points are explained in detail in later sections. With Javain
Adaptive Server, you can:

¢ Run Javain the database server using an internal Java Virtual Machine
(JavaVM).

e Cal Javafunctions (methods) directly from SQL statements.

e Wrap Javamethodsin SQL aliases and call them as standard SQL stored
procedures and built-in functions.

e Access SQL datafrom Java using an internal JDBC driver.
e UseJavaclasses as SQL datatypes.

e Saveinstances of Javaclassesin tables.

Java in Adaptive Server Enterprise 5

Java in the database: questions and answers

e Generate XML-formatted documents from raw data stored in Adaptive
Server databases and, conversely, store XML documents and data
extracted from them in Adaptive Server databases.

e Debug Javain the database.

How can | store Java instructions in the database?

Javais an object-oriented language. Its instructions (source code) comein the
form of classes. You write and compile the Java instructions outside the
database into compiled classes (byte code), which are binary files holding Java
instructions.

You then install the compiled classes into the database, where they can be
executed in the database server.

Adaptive Server isaruntime environment for Java classes. You need a Java
development environment, such as Sybase PowerJ™ or Sun Microsystems
Java Development Kit (JDK), to write and compile Java.

How is Java executed in the database?
To support Javain the database, Adaptive Server:

e Comeswith itsown JavaVM, specifically developed for handling Java
processing in the server.

e Usesitsown JDBC driver that runsin the server and accesses a database.

The Sybase Java VM runs in the database environment. It interprets compiled
Javainstructions and runs them in the database server.

The Sybase Java VM meets the JCM specifications from Java Software; it is
designed to work with the 2.0 version of the Java API. It supports public class
and instance methods; classesinheriting from other classes; the Java API; and
access to protected, public, and private fields. Some Java APl functionsthat are
not appropriate in a server environment, such as user interface elements, are
not supported. All supported Java APl packages and classes come with
Adaptive Server.

The Adaptive Server JavaVM is available at all timesto perform a Java
operation whenever it isrequired as part of the execution of a SQL statement.
The database server starts the Java VM automatically when it is needed; you
do not need to take any explicit action to start or stop the Java VM.

6 Adaptive Server Enterprise

CHAPTER 1 An Introduction to Java in the Database

Client- and server-side JDBC
JDBC istheindustry standard API for executing SQL in Java.

Adaptive Server provides a native JDBC driver. Thisdriver is designed to
maximize performance as it executes on the server because it does not need to
communicate across the network. Thisdriver permits Javaclassesinstalled in
adatabase to use JDBC classes that execute SQL statements.

When JDBC classes are used within aclient application, you typically must use
jConnect™ for JDBC™, the Sybase client-side JDBC database driver, to
provide the classes necessary to establish a database connection.

How can | use Java and SQL together?

A guiding principle for the design of Javain the database isthat it provides a
natural, open extension to existing SQL functionality.

« Javaoperationsareinvoked from SQL — Sybase has extended the range of
SQL expressionsto includefieldsand methods of Java objects, so that you
can include Java operationsin a SQL statement.

e Java methods as SQLJ stored procedures and functions — you create a
SQLJ alias for Java static methods, so that you can invoke them as
standard SQL stored procedures and user-defined functions (UDFs).

e Java classes become user-defined datatypes — you store Java class
instances using the same SQL statements asthose used for traditional SQL
datatypes.

You can use classes that are part of the Java API, and classes created and
compiled by Java devel opers.

What is the Java API?

The Java Application Programming Interface (API) is a set of classes defined
by Sun Microsystems. It providesarange of basefunctionality that can be used
and extended by Java devel opers. It isthe core of “what you can do” with Java.

The Java API offers considerable functionality initsown right. A large portion
of the Java API isbuilt in to any database that is enabled to use Java code—
which includes the majority of nonvisual classes from the Java API already
familiar to developers using the Sun Microsystems JDK.

Java in Adaptive Server Enterprise 7

Java in the database: questions and answers

How can | access the Java API from SQL?

You can use the Java AP in stored procedures, in UDFs, and in SQL
statements as extensions to the available built-in functions provided by SQL.

For example, the SQL function PI(*) returns the value for Pi. The Java APl
classjavalang.Math has a parallel field named PI that returns the same value.
But java.lang.Math a so has a field named E that returns the base of the natural
logarithm, as well as a method that computes the remainder operation on two
arguments as prescribed by the IEE754 standard.

Which Java classes are supported in the Java API?

Not all Java API classes are supported in the database. Some classes, for
example, the java.awt package that contains user interface components for
applications, are not appropriate inside a database server. Other classes,
including part of java.io, deal with writing information to adisk, and are also
not supported in the database server environment. See Chapter 8, “ Reference
Topics,” for alist of supported and unsupported classes.

Can Il install my own Java classes?

You caninstall your own Java classes into the database as, for example, a user-
created Employee class or Inventory class that a devel oper designed, wrote,
and compiled with a Java compiler.

User-defined Java classes can contain both information and methods. Once
installed in a database, Adaptive Server lets you use these classesin all parts
and operations of the database and execute their functionality (in the form of
class or instance methods).

Can | access data using Java?

The JDBC interface is an industry standard designed to access database
systems. The JDBC classes are designed to connect to a database, request data
using SQL statements, and return results that can be processed in the client
application.

8 Adaptive Server Enterprise

CHAPTER 1 An Introduction to Java in the Database

You can connect from a client application to Adaptive Server Enterprise via
JDBC, using jConnect or aJDBC/ODBC bridge. Adaptive Server also
provides an internal JDBC driver, which permits Java classesinstaled in a
database to use JDBC classes that execute SQL statements.

Can | use the same classes on client and server?

You can create Java classes that can be used on different levels of an enterprise
application. You can integrate the same Java class into either the client
application, amiddle tier, or the database.

How do | use Java classes in SQL?

Using Java classes, whether user-defined or from the Java API, is athree-step
activity:

1 Writeor acquire aset of Java classes that you want to use as SQL
datatypes, or as SQL aliases for static methods.

2 Install those classesin the Adaptive Server database.
3 Usethose classesin SQL code:
e Cal class (static) methods of those classes as UDFs.

e Declarethe Java classes as datatypes of SQL columns, variables, and
parameters. In this book, they are called Java-SQL columns,
variables, and parameters.

* Reference the Java-SQL columns, their fields, and their methods.

e Wrap static methodsin SQL aliases and usethem as stored procedures
or functions.

Where can | find information about Java in the database?

There are many books about Java and Java in the database. Two particularly
useful books are:

e James Gosling, Bill Joy, Guy Steele, and Gilad Bracha, The Java™
Language Specification, Second Edition, Addison-Wesl ey, 2000.

Java in Adaptive Server Enterprise 9

Sample Java classes

e Seth White, Maydene Fisher, Rick Cattell, Graham Hamilton, and Mark
Hapner, JDBC™ API Tutorial and Reference, Second Edition, Addison-
Wesley, 1999.

What you cannot do with Java in the database

Adaptive Server is aruntime environment for Java classes, not a Java
development environment.

You cannot perform these actions in the database:
* Edit class sourcefiles (* .java files).
* Compile Java class source files (*.java files).

» Execute Java APIsthat are not supported, such as applet and visual
classes.

» UseJavathreading. Adaptive Server doesnot support java.lang.Thread and
java.lang.ThreadGroup. If you attempt to spawn athread, Adaptive Server
throws java.lang.UnsupportedOperationException.

* Usethe Java Native Interface (INI).

» UseJavaobjectsas parameters sent to aremote procedure call or received
from aremote procedure call. They do not trandate correctly.

» Sybase recommends that you do not use static variables in methods
referenced by Java-SQL functions, SQLJ functions, or SQL J stored
procedures. The values returned for these variables may be unreliable as
the scope of the static variable is implementation-dependent.

Sample Java classes

The chapters of this book use simple Java classesto illustrate basic principles
for using Java in the database. You can find copies of these classes in the
chapters that describe them and in the Sybase release directory in
SSYBASE/$SYBASE_ASE/sample/JavaSyl-R2 (UNIX) or %SYBASEY0\Ase-
12 S\sample\Javasgl-2 (Windows NT). This subdirectory also contains
Javadoc facilities so that you can view specifications about sample classes and
methods with your Web browser.

10 Adaptive Server Enterprise

CHAPTER 2 Preparing for and Maintaining

Java in the Database

This chapter describes the Java runtime environment, how to enable Java
on the server, and how to install and maintain Java classesin the database.

Topic Page
The Java runtime environment 11
Configuring memory for Javain the database 13
Enabling the server for Java 13
Creating Java classes and JARs 14
Installing Java classes in the database 15
Viewing information about installed classes and JARs 18
Downloading installed classes and JARs 19
Removing classes and JARs 19

The Java runtime environment

The Adaptive Server runtime environment for JavarequiresaJavaVM,
which is available as part of the database server, and the Sybase runtime

Java classes, or Java API. If you are running Java applications on the
client, you may also require the Sybase JDBC driver, jConnect, on the

client.

Java classes in the database

You can use either of the following sources for Java classes:

e Sybase runtime Java classes

e User-defined classes

Java in Adaptive Server Enterprise

11

The Java runtime environment

Sybase runtime Java classes

The Sybase Java VM supports a subset of JDK version 2.0 (UNIX and
Windows NT) classes and packages.

The Sybase runtime Java classes are the low-level classesinstalled to Java-
enable adatabase. They are downloaded automatically when Adaptive Server
isinstalled and are available thereafter from $SYBASE
/$SYBASE_ASE/lib/runtime.zip (UNIX) or
%SYBASEY\%SYBASE_ASEYo\lib\runtime.zip (Windows NT). You do not
need to set the CLASSPATH environment variable specifically for Javain
Adaptive Server.

Sybase does not support runtime Java packages and classes that assume a
screen display, deal with networking and remote communications, or handle
security. See Chapter 8, “Reference Topics’ for alist of supported and
unsupported packages and classes.

User-defined Java classes

JDBC drivers

The Java VM

12

You install user-defined classes into the database using the installjava utility.
Once installed, these classes are available from other classes in the database
and from SQL as user-defined datatypes.

The Sybase native JDBC driver that comes with Adaptive Server supports
JDBC versions 1.1 and 1.2, and is compliant with several classes and methods
of IDBC version 2.0. See Chapter 8, “ Reference Topics,” for acompletelist of
supported and not supported classes and methods.

If your system requires a JDBC driver on the client, you must use jConnect
version 5.5 or later, which supports JDBC version 2.0.

To ensure that each invoked method is executed as quickly as possible, Sybase
provides aJava VM. The Java VM runs on the server. The Java VM requires
little or no administration once installation is complete.

Adaptive Server Enterprise

CHAPTER 2 Preparing for and Maintaining Java in the Database

Configuring memory for Java in the database

Usethe sp_configure system procedure to change memory allocationsfor Java
in Adaptive Server. You can change the memory allocation for:

e size of global fixed heap — specifies memory space for internal data
structures.

e size of process object fixed heap — specifies the total memory space
available for all user connections using the Java VM.

e size of shared class heap — specifies the shared memory space for al Java
classes called into the Java VM.

See “Java Services’ in the System Administration Guide for complete
information about these configuration parameters.

Enabling the server for Java

To enable the server and its databases for Java, enter this command from isql:
sp_configure “enable java”, 1
Then shut down and restart the server.

By default, Adaptive Server isnot enabled for Java. You cannot install Java
classes or perform any Java operations until the server is enabled for Java.

You can increase or decrease the amount of memory available for Javain
Adaptive Server and optimize performance using sp_configure. Java
configuration parameters are described in the System Administration Guide.

Disabling the server for Java
To disable Javain the database, enter this command from isql:

sp_configure “enable java”, 0

Java in Adaptive Server Enterprise 13

Creating Java classes and JARs

Creating Java classes and JARs

The Sybase-supported classes from the JDK areinstalled on your system when
youinstall Adaptive Server version 12 or | ater. This section describesthe steps
for creating and installing your own Java classes.

To make your Java classes (or classes from other sources) available for usein
the server, follow these steps:

1 Write and save the Java code that defines the classes.

2 Compilethe Java code.

3 Create Javaarchive (JAR) filesto organize and contain your classes.
4 Ingtal the JARS/classes in the database.

Writing the Java code

Use the Sun Java SDK or a devel opment tool such as Sybase PowerJ to write
the Java code for your class declarations. Save the Java code in afile with an
extension of .java. The name and case of the file must be the same as that of
the class.

Note Make certain that any Java APl classes used by your classes are among
the supported API classes listed in Chapter 8, “ Reference Topics'.

Compiling Java code

This step turns the class declaration containing Java code into a new, separate
file containing bytecode. The name of the new fileisthe same asthe Javacode
file but has an extension of .class. You can run acompiled Javaclassin aJava
runtime environment regardless of the platform on which it was compiled or
the operating system on which it runs.

Saving classes in a JAR file

You can organize your Java classes by collecting related classes in packages
and storing them in JAR files. JAR files allow you to install or remove related
classes as a group.

14 Adaptive Server Enterprise

CHAPTER 2 Preparing for and Maintaining Java in the Database

Installing uncompressed JARs

Toinstall Javaclassesin adatabase, savethe classes or packagesin aJAR file,
in uncompressed form. To create an uncompressed JAR file that contains Java
classes, use the Javajar cfo (“zero”) command.

InthisUNIX example, the jar command creates an uncompressed JAR file that
contains al .classfilesin the jcsPackage directory:

jar cf0O jcsPackage.jar jcsPackage/*.cl ass

Installing compressed JARS

You can aso install acompressed JAR fileif you first expand the compressed
file using the x option of the jar command. In this UNIX example, abcPackage
isacompressed file.

1 Placethe compressed JAR filein an empty directory and expand it;
jar xf0 abcPackage.j ar

2 Deletethe compressed JAR file so that it won't be included in the new,
uncompressed JAR file:

rm abcPackage. j ar
3 Create the uncompressed JAR file:

jar cf0 abcPackage.jar*

Installing Java classes in the database

To install Java classes from a client operating system file, use theinstalljava
(UNIX) or instjava (Windows NT) utility from the command line.

See the Adaptive Server Enterprise Utilities Guide for detailed information
about these utilities. Both utilities perform the same tasks; for simplicity, this
document uses UNIX examples.

Java in Adaptive Server Enterprise 15

Installing Java classes in the database

Using installjava

installjava copies a JAR file into the Adaptive Server system and makes the
Javaclasses contained in the JAR available for use in the current database. The
syntax is.

installjava

-f file_name

[-new | -update]

[-j jar_name]

[-S server_name]

[-U user_name]

[-P password]

[-D database_name]
[-l interfaces_file]

[-a display_charset]
[-J client_charset]

[-z language]

[-t timeout]

For example, to install classes in the addr.jar file, enter:
installjava -f “/hone/useral/jars/addr.jar”

The -f parameter specifies an operating system file that containsa JAR. You
must use the complete path name for the JAR.

This section describesretained JAR files (using -j) and updating installed JARs
and classes (using new and update). For more information about these and the
other options available with installjava, see the Utility Guide.

Note When youinstall aJAR file, Application Server copiesthefileto a
temporary table and then installs it from there. If you install alarge JAR file,
you may need to expand the size of tempdb using the alter database command.

Retaining the JAR file

16

When aJAR isinstalled in a database, the server disassemblesthe JAR,
extracts the classes, and stores them separately. The JAR isnot stored in the
database unless you specify installjava with the -j parameter.

Use of -j determines whether the Adaptive Server system retains the JAR
specifiedininstalljava or usesthe JAR only to extract the classesto beinstalled.

e If you specify the -j parameter, Adaptive Server installs the classes
contained in the JAR in the normal manner, and then retains the JAR and
its association with the installed classes.

Adaptive Server Enterprise

CHAPTER 2 Preparing for and Maintaining Java in the Database

If you do not specify the -j parameter, Adaptive Server does not retain any
association of the classes with the JAR. Thisis the default option.

Sybase recommends that you specify a JAR name so that you can better
manage your installed classes. If you retain the JAR file:

You canremovethe JAR and all classes associated withit, all at once, with
the remove java statement. Otherwise, you must remove each class or
package of classesone at atime.

You can use extractjava to download the JAR to an operating system file.
See “Downloading installed classes and JARS’ on page 19.

Updating installed classes

The new and update clauses of installjava indicate whether you want new
classesto replace currently installed classes.

If you specify new, you cannot install a class with the same name as an
existing class.

If you specify update, you can install a class with the same name as an
existing class, and the newly installed class replaces the existing class.

Warning! If you alter a class used as a column datatype by reinstalling a
modified version of the class, make sure that the modified class can read
and use existing objects (rows) in tables using that class as a datatype.
Otherwise, you may be unable to access existing objects without
reinstalling the original class.

Substitution of new classes for installed classes depends also on whether the
classes being installed or the already installed classes are associated with a
JAR. Thus:

If you update a JAR, al classesin the existing JAR are deleted and
replaced with classesin the new JAR.

A classcan beassociated only with asingle JAR. You cannot install aclass
inone JAR if aclass of that same nameisalready installed and associated
with another JAR. Similarly, you cannot install aclass not-associated with
aJARif that classis currently installed and associated with a JAR.

You can, however, install aclassin aretained JAR with the same name as
an installed class not associated with aJAR. In this case, the class not
associated with a JAR is deleted and the new class of the same nameis
associated with the new JAR.

Java in Adaptive Server Enterprise 17

Viewing information about installed classes and JARs

If you want to reorganize your installed classes in new JARS, you may find it
easier to first disassociate the affected classes from their JARs. See“ Retaining
classes’ on page 19 for more information.

Referencing other Java-SQL classes

Installed classes can reference other classes in the same JAR file and classes
previoudly installed in the same database, but they cannot reference classesin
other databases.

If the classesin aJAR file do reference undefined classes, an error may result:

» If anundefined classisreferenced directly in SQL, it causesa syntax error
for “undefined class.”

* If anundefined classis referenced within a Java method that has been
invoked, it throws a Java exception that may be caught intheinvoked Java
method or cause the general SQL exception described in “ Exceptionsin
Java-SQL methods” on page 29.

The definition of a class can contain references to unsupported classes and
methods as long as they are not actively referenced or invoked. Similarly, an
installed class can contain areference to a user-defined class that is not
installed in the same database as long as the classis not instantiated or
referenced.

Viewing information about installed classes and JARs

18

To view information about classesand JARsinstalled in the database, use. The
syntax is:

sp_helpjava [‘class’ [, name [, 'detail' | , ‘depends']] |
‘jar’ [, name [, 'depends']]]

To view detailed information about the Address class, for example, logintoisql
and enter:

sp_hel pjava “cl ass”, Address, detail

See“sp_helpjava’ in the Reference Manual for more information.

Adaptive Server Enterprise

CHAPTER 2 Preparing for and Maintaining Java in the Database

Downloading installed classes and JARsS

You can download copies of Java classes installed on one database for usein
other databases or applications.

Use the extractjava system utility to download a JAR file and its classes to a
client operating system file. For example, to download addr.jar to
~/home/usera/jars/addrcopy.jar, enter:

extractjava —j ‘addr.jar’ -f
‘ ~/ home/ user a/ j ar s/ addr copy. j ar'

See the Utility Guide manual for more information.

Removing classes and JARs

Use the Transact-SQL remove java statement to uninstall one or more Java-
SQL classes from the database. remove java can specify one or more Javaclass
names, Java package names, or retained JAR names. For example, to uninstall
the package utilityClasses, from isql enter:

renove java package “utilityCd asses”

Note Adaptive Server does not alow you to remove classes that are used as
the datatypes for columns and parameters or that are referenced by SQLJ
functions or stored procedures.

You must make sure that you do not remove subclasses or classes that are used
as variables or UDF return types.

remove java package deletes al classes in the specified package and all of its
sub-packages.

See the Reference Manual for more information about remove java.

Retaining classes

You can delete a JAR file from the database but retain its classes as classes no
longer associated with aJJAR. Useremove java with theretain classes option if,
for example, you want to rearrange the contents of several retained JARS.

Java in Adaptive Server Enterprise 19

Removing classes and JARs

For example, fromisql enter:
renove java jar 'utilityC asses’ retain classes

Once the classes are disassociated from their JARS, you can associate them
with new JARs using installjava with the new keyword.

20 Adaptive Server Enterprise

CHAPTER 3 Using Java Classes in SQL

This chapter describes how to use Java classes in an Adaptive Server
environment. The first sections give you enough information to get
started; succeeding sections provide more advanced information.

Topics Page
General concepts 22
Using Java classes as datatypes 23
Invoking Java methodsin SQL 28
Representing Java instances 29
Assignment properties of Java-SQL data items 30
Datatype mapping between Java and SQL fields 33
Character sets for data and identifiers 34
Subtypesin Java-SQL data 34
The treatment of nullsin Java-SQL data 36
Java-SQL string data 40
Type and void methods 41
Equality and ordering operations 43
Evaluation order and Java method calls 44
Static variablesin Java-SQL classes 46
Java classes in multiple databases 47
Java classes 50

In this document, SQL columns and variables whose datatypes are Java-
SQL classes are described as Java-SQL columns and Java-SQL variables
or as Java-SQL dataitems.

The sample classes used in this chapter can be found in:
* $SYBASE/$SYBASE ASE/sample/Javasgl-R2 (UNIX)
o %SYBASE%\Ase-12 S\sample\davaSgl-R2 (Windows NT)

Java in Adaptive Server Enterprise 21

General concepts

General concepts

This sections provides general Java and Java-SQL identifier information.

Java considerations

Java-SQL names

22

Before you use Javain your Adaptive Server database, here are some general
considerations.

» Javaclasses contain:
» Fieldsthat have declared Java datatypes.
» Methods whose parameters and results have declared Java datatypes.

» Javadatatypes for which there are corresponding SQL datatypes are
defined in “ Datatype mapping between Javaand SQL” on page 143.

» Javaclasses can include classes, fields, and methods that are private,
protected, friendly, or public.

Classes, fields and methods that are public can be referenced in SQL.
Classes, fields, and methods that are private, protected, or friendly cannot
be referenced in SQL, but they can be referenced in Java, and are subject
to normal Javarules.

» Javaclasses, fields, and methods all have various syntactic properties:
* Classes—the number of fields and their names
* Field —their datatypes

* Methods —the number of parameters and their datatypes, and the
datatype of the result

The SQL system determines these syntactic properties from the Java-SQL
classes themselves, using the Java Reflection API.

Java-SQL class names (identifiers) are limited to 255 bytes. Java-SQL field
and method names can be any length, but they must be 255 bytes or lessif you
use them in Transact-SQL . All Java-SQL names must conform to the rulesfor
Transact-SQL identifiersif you use them in Transact-SQL statements.

Adaptive Server Enterprise

CHAPTER 3 Using Java Classes in SQL

Class, field, and method names of 30 or more bytes must be surrounded by
quotation marks.

Thefirst character of the name must be either an alphabetic character
(uppercase or lowercase) or an underscore () symbol. Subsequent characters
can include al phabetic characters, numbers, the dollar ($) symbol, or the
underscore (_) symboal.

Java-SQL names are always case sensitive, regardless of whether the SQL
system is specified as case sensitive or case insensitive.

See Java-SQL identifiers on page 145 for more information about identifiers.

Using Java classes as datatypes

After you haveinstalled a set of Java classes, you can reference them as
datatypesin SQL. To be used as a column datatype, a Java-SQL class must be
defined as public and must implement either java.io.Serializable or
javaio.Externalizable.

You can specify Java-SQL classes as:
e Thedatatypes of SQL columns

¢ Thedatatypesof Transact-SQL variables and parametersto Transact-SQL
stored procedures

e Default values for SQL columns

When you create atable, you can specify Java-SQL classes as the datatypes of
SQL columns:

create table enmps (
nane var char (30),
hone_addr Address,
mai | i ng_addr Address2Line null)

The name column is an ordinary SQL character string, the home_addr and
mailing_addr columns can contain Java objects, and Address and Address2Line
are Java-SQL classes that have been installed in the database.

You can specify Java-SQL classes as the datatypes of Transact-SQL variables:

decl are @\ Address
decl are @2 Address2Li ne

Java in Adaptive Server Enterprise 23

Using Java classes as datatypes

You can also specify default values for Java-SQL columns, subject to the
normal constraint that the specified default must be aconstant expression. This
expression is normally a constructor invocation using the new operator with
constant arguments, such as the following:

create table enps (
nanme var char (30),
home_addr Address default new Address
(" Not known', ''),
mai | i ng_addr Address2Li ne

Creating and altering tables with Java-SQL columns

24

When you create or alter tables with Java-SQL columns, you can specify any
installed Java class as a column datatype. You can also specify how the
information inthe columnisto be stored. Your choice of storage options affects
the speed with which Adaptive Server referencesand updatesthefieldsin these
columns.

Column valuesfor arow typically are stored “in-row,” that is, consecutively on
the data pages allocated to a table. However, you can also store Java-SQL
columns in a separate “ off-row” location in the same way that text and image
dataitems are stored. The default value for Java-SQL columns is off-row.

If aJava-SQL columnis stored in-row:

» Objects stored in-row are processed more quickly than objects stored off-
row.

* Anobject stored in-row can occupy up to approximately 16K bytes,
depending on the page size of the database server and other variables. This
includesits entire serialization, not just the valuesinitsfields. A Java
object whose runtime representation is more than the 16K limit generates
an exception, and the command aborts.

If aJava-SQL columnisstored off-row, the columnissubject to therestrictions
that apply to text and image columns:

* Objects stored off-row are processed more slowly than objects stored in-
row.

» Anobject stored off-row can be of any size—subject to normal limits on
text and image columns.

* An off-row column cannot be referenced in a check constraint.

Adaptive Server Enterprise

CHAPTER 3 Using Java Classes in SQL

Similarly, do not reference a table that contains an off-row columnin a
check constraint. Adaptive Server allows you to include the check
constraint when you create or alter the table, but issuesawarning message
at compile time and ignores the constraint at runtime.

e You cannot include an off-row column in the column list of aselect query
with select distinct.

e You cannot specify an off-row column in a comparison operator, in a
predicate, or in agroup by clause.

Partial syntax for create table with thein row/off row option is:

create table...column_name datatype
[default {constant_expression | user | null}]
{[{identity | null | not null}]
[off row | [in row [(size_in_bytes)]]...
size in_bytes specifies the maximum size of the in-row column. The value can
be aslarge as 16K bytes. The default value is 255 bytes.

The maximum in-row column size you enter in create table must include the
column’s entire serialization, not just the valuesin its fields, plus minimum
valuesfor overhead.

To determine an appropriate column size that includes overhead and
serialization values, use the datalength system function. datalength allows you
to determine the actual size of arepresentative object you intend to storein the
column.

For example:
sel ect datalength (new class_nane(...))
where class nameisan installed Java-SQL class.

Partial syntax for alter table is:

alter table...{add column_name datatype
[default {constant_expression | user | null}]
{identity | null} [off row | [in row]...

Note You cannot change the column size of an in-row column using alter
column in this Adaptive Server release.

Java in Adaptive Server Enterprise 25

Using Java classes as datatypes

Altering partitioned tables

If atable containing Java columns s partitioned, you cannot ater the table
without first dropping the partitions. To change the table schema:

1 Removethe partitions.
2 Usethealter table command.
3 Repartition the table.

Selecting, inserting, updating, and deleting Java objects

After you specify Java-SQL columns, the values that you assign to those data
items must be Javainstances. Such instances are generated initially by callsto
Java constructors using the new operator. You can generate Javainstances for
both columns and variables.

Constructor methods are pseudo instance methods. They create instances.
Constructor methods have the same name as the class, and have no declared
datatype. If you do not include a constructor method in your class definition, a
default method is provided by the Java base class object. You can supply more
than one constructor for each class, with different numbers and types of
arguments. When a constructor isinvoked, the one with the proper number and
type of argumentsis used.

In the following example, Javainstances are generated for both columns and
variables:

decl are @A\ Address, @A Address, @\2 Address2Line,
@\A2 Addr ess2Li ne

sel ect @ = new Address()

sel ect @A = new Address(’ 123 Main Street’, '99123")

sel ect @\2 new Address2Li ne()

sel ect @A2 = new Address2Line(’ 987 Front Street’,
"Unit 2', '99543")

insert into enps val ues(’John Doe’, new Address(),
new Address2Line())
insert into enps values(’Bob Smth’,
new Address(' 432 El nStreet', ‘99654'),
new Address2Li ne(' PO Box 99', 'attn: Bob Smith', '99678'))

Values assigned to Java-SQL columns and variables can then be assigned to
other Java-SQL columns and variables. For example:

26 Adaptive Server Enterprise

CHAPTER 3 Using Java Classes in SQL

declare @\ Address, @A Address, @\2 Address2Li ne,
@\A2 Addr ess2Li ne

select @\ = honme_addr, @\2 = mailing_addr from enps
where nane = ' John Doe’
insert into enps values (' George Baker’', @\ @A2)

sel ect @\A2 = @A\2
updat e enps
set home_addr = new Address(’ 456 Shoreline Drive', '99321"),
mai | i ng_addr = @\A2
where nane = 'Bob Smith’

You can also copy values of Java-SQL columns from one table to another. For
example:

create table trainees (
nane char(30),
hone_addr Address,
mai | i ng_addr Address2Li ne nul |

)

insert into trainees

select * from enps
where nane in ('Don Geen’, 'Bob Snith’,
" Geor ge Baker')

n reference and update the fields of Java-SQL columns and of Java-SQL
variables with normal SQL qualification. To avoid ambiguities with the SQL
use of dotsto qualify names, use adouble-angle (>>) to qualify Javafield and
method names when referencing them in SQL.

decl are @ane varchar (100), @treet varchar(100),
@treetLine2 varchar(100), @ip char(10), @\ Address

sel ect @\ = new Address()
sel ect @\>>street = '789 (Oak Lane’
sel ect @treet = @>>street

sel ect @treet = hone_add>>street, @ip = hone_add>>zip from enps
where name = 'Bob Smith’

sel ect @ane = nane from enps
where hone_addr>>street= ' 456 Shoreline Drive’

updat e enps
set home_addr>>street = '457 Shoreline Drive’,
hone_addr >>zip = ' 99323’
where hone_addr>>street = '456 Shoreline Drive’

Java in Adaptive Server Enterprise 27

Invoking Java methods in SQL

Invoking Java methods in SQL

28

You can invoke Java methodsin SQL by referencing them, with name
gualification, on instances for instance methods, and on either instances or
classes for static methods.

Instance methods are generally closely tied to the data encapsulated in a
particular instance of their class. Static (class) methods affect the whole class,
not aparticular instance of the class. Static methods often apply to objects and
values from awide range of classes.

Once you have installed a static method, it is ready for use. A class that
contains a static method for use as a function must be public, but it does not
need to be serializable.

One of the primary benefits of using Javawith Adaptive Server isthat you can
use static methods that return avalue to the caller as user-defined functions
(UDFs).

You can use a Java static method as a UDF in a stored procedure, atrigger, a
where clause, or anywhere that you can use a built-in SQL function.

Javamethodsinvoked directly in SQL as UDFsare subject to these limitations:

» If the Java method accesses the database through JDBC, result-set values
are available only to the Java method, not to the client application.

» Output parameters are not supported. A method can manipul ate the dataiit
receives from a JDBC connection, but the only valueit can return to its
caler isasingle return value declared as part of its definition.

* Cross-databaseinvocationsof static methods are supported only if you use
aclass instance as a column value.

Permission to execute any UDF is granted implicitly to public. If the UDF
performs SQL queries via JDBC, permission to access the datais checked
against the invoker of the UDF. Thus, if user A invokes a UDF that accesses
tablet1, user A must have select permission on t1 or the query will fail. For a
more detailed discussion of security models for Java method invocations, see
“Security and permissions’ on page 75.

To use Java static methodsto return result setsand output parameters, you must
enclose the methods in SQL wrappers and invoke them as SQL J stored
procedures or functions. See “Invoking Java methods in Adaptive Server” on
page 76 for acomparison of thewaysyou can invoke Javamethodsin Adaptive
Server.

Adaptive Server Enterprise

CHAPTER 3 Using Java Classes in SQL

Sample methods

The sample Address and Address2Line classes have instance methods named
toString(), and the sample Misc class has static methods named
stripLeadingBlanks(), getNumber(), and getStreet(). You can invoke value
methods as functions in a value expression.

decl are @uane varchar (100)
decl are @treet varchar(100)
declare @treetnumint

decl are @\2 Address2Line

sel ect @ane = M sc.

@treet =

stri pLeadi ngBl anks(nane),
M sc. stri pLeadi ngBl anks(hone_addr >>street),

@treetnum = M sc. get Nunber (hone_addr >>street),
@\2 = muiling_addr

from enps

where hone_addr>>toString() |ike ’'%shoreline%

For information about void methods (methods with no returned value) see
“Type and void methods” on page 41.

Exceptions in Java-SQL methods

entheinvocation of aJava-SQL method completeswith unhandled exceptions,
a SQL exception israised, and this error message displays:

Unhandl ed Java net hod exception

The message text for the exception consists of the name of the Java class that
raised the exception, followed by the character string (if any) supplied when
the Java exception was thrown.

Representing Java instances

Non-Java clients such asisql cannot receive serialized Java objects from the
server. To allow you to view and use the object, Adaptive Server must convert
the object to a viewable representation.

Java in Adaptive Server Enterprise 29

Assignment properties of Java-SQL data items

To use an actual string value, Adaptive Server must invoke a method that
translates the object into a char or varchar value. The toString() method in the
Address classis an example of such amethod. You must create your own
version of the toString() method so that you can work with the viewable
representation of the object.

Note The toString() method in the Java APl does not convert the object to a
viewable representation. The toString() method you create overrides the
toString() method in the Java API.

When you use atoString() method, Adaptive Server imposes alimit on the
number of bytes returned. Adaptive Server truncates the printable
representation of the object to the value of the @ @stringsize global variable.
The default value of @@stringsize is 50; you can change this value using the
set stringsize command. For example:

set stringsize 300

The display software on your computer may truncate the data item further so
that it fits on the screen without wrapping.

If you include atoString() or similar method in each class, you can return the
value of the object’s toString() method in either of two ways:

* You can select aparticular field in the Java-SQL column, which
automatically invokes toString():

sel ect honme_add>>street from enps

* You can select the column and the toString() method, which listsin one
string al of the field values in the column:

sel ect hone_addr>>toString() from enps

Assignment properties of Java-SQL data items

30

Thevalues assigned to Java-SQL dataitemsare derived ultimately from values
constructed by Java-SQL methods in the Java VM. However, the logical
representation of Java-SQL variables, parameters, and resultsisdifferent from
the logical representation of Java-SQL columns.

Adaptive Server Enterprise

CHAPTER 3 Using Java Classes in SQL

e Java-SQL columns, which are persistent, are Javaserialized streamsstored
in the containing row of the table. They are stored values containing
representations of Javainstances.

e Java-SQL variables, parameters, and function results are transient. They
do not actually contain Java-SQL instances, but instead contain references
to Javainstances contained in the Java VM.

These differences in representation give rise to differences in assignment
properties as these examples illustrate.

e TheAddress constructor method with the new operator is evaluated in the
Java VM. It constructs an Address instance and returns areferenceto it.
That referenceis assigned as the value of Java-SQL variable @A:

declare @\ Address, @A Address, @\2 Address2Li ne,
@\A2 Addr ess2Li ne
sel ect @\ = new Address(’ 432 Post Lane’, '99444')

* Variable @A contains areference to a Javainstance in the JavaVM. That
reference is copied into variable @AA. Variables @A and @AA now
reference the same instance.

sel ect @G\A=@A

« Thisassignment modifies the zip field of the Address referenced by @A.
Thisisthe same Address instance that is referenced by @AA. Therefore,
the values of @A.zip and @AA.zip are now both '99222'.

sel ect @\>>zi p=' 99222’

e The Address constructor method with the new operator constructs an
Address instance and returns areferencetoit. However, sincethetarget is
aJava-SQL column, the SQL system serializes the Address instance
denoted by that reference, and copiesthe serialized valueinto the new row
of the emps table.

insert into enps
val ues (' Don Green’, new Address(’234 Stone
Road’, '99777'), new Address2Line())

The Address2Line constructor method operates the same way as the
Address method, except that it returns a default instance rather than an
instance with specified parameter values. The action takenis, however, the
same as for the Address instance. The SQL system serializes the default
Address2Line instance, and storesthe serialized valueinto the new row of
the emps table.

Java in Adaptive Server Enterprise 31

Assignment properties of Java-SQL data items

32

insert into enps

insert into enps

Theinsert statement specifies no valuefor themailing_addr column, so that
column will be set to null, in the same manner as any other column whose
valueis not specified in aninsert. This null value is generated entirely in
SQL, and initialization of the mailing_addr column does not involve the
JavaVM at all.

(nane, hone_addr) values (' Frank Lee', @

Theinsert statement specifiesthat the value of the home_addr columnisto
be taken from the Java-SQL variable @A. That variable contains a
reference to an Address instancein the JavaV M. Sincethetargetisa Java-
SQL column, the SQL system serializes the Address instance denoted by
@A, and copies the serialized value into the new row of the emps table.

This statement inserts anew emps row for 'Bob Brown.' The value of the
home_addr column is taken from the SQL variable @A. It isalso a
seriaization of the Java instance referenced by @A.

(nane, hone_addr) values (' Bob Brown', @)

This update statement sets the zip field of the home_addr column of the
‘Frank Le€' row to ‘99777." Thishas no effect on the zip field in the ‘Bob
Brown' row, which is still 199444,

updat e enps
set hone_add>>zip = '99777’
where nane = ' Frank Lee’

The Java-SQL column home_addr contains a serialized representation of
thevalue of an Address instance. The SQL system invokesthe JavaVM to
deserialize that representation as a Java instance in the Java VM, and
return areference to the new deserialized copy. That referenceis assigned
to @AA. The deserialized Address instance that is referenced by @AA is
entirely independent of both the column value and the instance referenced
by @A.

sel ect @A = hone_addr from enps where nanme = 'Frank Lee’

This assignment modifiesthe zip field of the Address instance referenced
by @A. Thisinstanceisacopy of thehome_addr column of the'Frank Lee'
row, but isindependent of that column value. The assignment therefore
does not modify the zip field of the home_addr column of the 'Frank Lee
row.

sel ect @>>zip = ' 95678’

Adaptive Server Enterprise

CHAPTER 3 Using Java Classes in SQL

Datatype mapping between Java and SQL fields

When you transfer datain either direction between the JavaVM and Adaptive
Server, you must take into account that the datatypes of the dataitems are
different in each system. Adaptive Server automatically maps SQL itemsto
Javaitems and vice versa according to the correspondence tablesin “ Datatype
mapping between Javaand SQL” on page 143.

Thus, SQL type char translates to Java type String, the SQL type binary
tranglates to the Java type byte[], and so on.

« For the datatype correspondences from SQL to Java, char, varchar, and
varbinary types of any length correspond to Java String or byte[] datatypes,
as appropriate.

« For the datatype correspondences from Javato SQL :

e The Java String and byte[] datatypes correspond to SQL varchar and
varbinary, where the maximum length value of 16K bytesis defined
by Adaptive Server.

e The JavaBigDecimal datatype corresponds to SQL
numeric(precision,scale), where precision and scale are defined by the
user.

In the emps table, the maximum value for the Address and Address2Line
classes, street, zip, and line2 fields is 255 bytes (the default value). The Java
datatype of these classes is java.String, and they are treated in SQL as
varchar(255).

An expression whose datatype is a Java object is converted to the
corresponding SQL datatype only when the expression isused in a SQL
context. For example, if the field home_addr>>street for employee * Smith’ is
260 characters, and begins ‘6789 Main Street ...

sel ect M sc. get Street (hone_addr>>street) from enps where nanme="Snith’

The expression in the select list passes the 260-character value of
home_addr>>street to the getStreet() method (without truncating it to 255
characters). The getStreet() method then returns the 255-character string
beginning ‘Main Street....". That 255-character string isnow an element of the
SQL select list, and is, therefore, converted to the SQL datatype and (if need
be) truncated to 255 characters.

Java in Adaptive Server Enterprise 33

Character sets for data and identifiers

Character sets for data and identifiers

The character set for both Java source code and for Java String datais Unicode.
Fields of Java-SQL classes can contain Unicode data.

Note Javaidentifiersused in the fully qualified names of visible classes or in
the names of visible members can use only Latin characters and Arabic
numerals.

Subtypes in Java-SQL data

Class subtypes allow you to use subtype substitution and method override,
which are characteristics of Java. A conversion from aclassto one of its
superclassesis awidening conversion; a conversion from a classto one of its
subclasses is a narrowing conversion.

* Widening conversions are performed implicitly with normal assignments
and comparisons. They are always successful, since every subclass
instance is also an instance of the superclass.

* Narrowing conversions must be specified with explicit convert
expressions. A narrowing conversion is successful only if the superclass
instance is an instance of the subclass, or a subclass of the subclass.
Otherwise, an exception occurs.

Widening conversions

34

You do not need to use the convert function to specify awidening conversion.
For example, since the Address2Line classis a subclass of the Address class,
yOu can assign Address2Line values to Address dataitems. In the emps table,
the home_addr column is an Address datatype and the mailing_addr column is
an Address2Line datatype:

updat e enps
set hone_addr = nmmiling_addr
where hone_addr is null

For the rows fulfilling the where clause, the home_addr column contains an
Address2Line, even though the declared type of home_addr is Address.

Adaptive Server Enterprise

CHAPTER 3 Using Java Classes in SQL

Such an assignment implicitly treats an instance of a class as an instance of a
superclass of that class. The runtime instances of the subclass retain their
subclass datatypes and associated data.

Narrowing conversions

updat e

updat e

updat e

You must use the convert function to convert an instance of aclassto an
instance of a subclass of the class. For example:

enps
set muailing_addr = convert (Address2Li ne, hone_addr)
where mailing_addr is null

The narrowing conversions in the update statement cause an exception if they
are applied to any home_addr column that contains an Address instance that is
not an Address2Line. You can avoid such exceptions by including a condition
in the where clause:

enps
set mailing_addr = convert (Address2Li ne, hone_addr)
where nmiling addr is null

and home_addr >>get Gl ass()>>toString() = 'Address2Li ne’

The expression “home_addr>>getClass()>>toString()” invokes getClass()
and toString() methods of the Java Object class. The Object classisimplicitly a
superclass of all classes, so the methods defined for it are available for all
classes.

You can also use acase expression:

enps
set mailing_addr =
case
when hone_addr >>get d ass()>>toString()
=’ Addr ess2Li ne’
then convert (Address2Li ne, hone_addr)
el se nul |
end

where mailing_addr is null

Java in Adaptive Server Enterprise 35

The treatment of nulls in Java-SQL data

Runtime versus compile-time datatypes

sel ect

Neither widening nor narrowing conversions modify the actual instance value
or itsruntime datatype; they simply specify the classto be used for the compile-
time type. Thus, when you store Address2Line values from the mailing_addr
columninto thehome_address column, those values still have the runtimetype
of Address2Line.

For example, the Address class and the Address2Line subclass both have the
method toString(), which returns a String form of the complete address data.

nanme, home_addr>>toString() from enps
where hone_addr>>toString() not like '9%.ine2=[]’

For each row of emps, the declared type of the home_addr column is Address,
but the runtime type of the home_addr valueiseither Address or Address2Line,
depending on the effect of the previous update statement. For rows in which
the runtime value of the home_addr column is an Address, the toString()
method of the Address classisinvoked, and for rows in which the runtime
value of the home_addr column is Address2Line, the toString() method of the
Address2Line subclassisinvoked.

See “Null values when using the SQL convert function” on page 39 for a
description of null values for widening and narrowing conversions.

The treatment of nulls in Java-SQL data

This section discusses the use of nullsin Java-SQL dataitems.

References to fields and methods of null instances

36

If the value of the instance specified in afield referenceis null, then the field
referenceisnull. Similarly, if the value of the instance specified in an instance
method invocation is null, then the result of the invocation is null.

Java has different rulesfor the effect of referencing afield or method of anull
instance. In Java, if you attempt to reference afield of anull instance, an
exception is raised.

For example, suppose that the emps table has the following rows:

insert into enps (nanme, hone_addr)

Adaptive Server Enterprise

CHAPTER 3 Using Java Classes in SQL

val ues ("Al Adans",
new Address("123 Main", "95321"))

insert into enps (nane, home_addr)
val ues ("Bob Baker",
new Address("456 Side", "95123"))

insert into enps (nanme, hone_addr)
values ("Carl Carter", null)

Consider the following select:

sel ect nane, hone_addr>>zip from enps
where hone_addr>>zip in (’95123', '95125’, ’'95128")

If the Javarule were used for the referencesto “home_addr>>zip,” then those
references would cause an exception for the “ Carl Carter” row, whose
“home_addr” columnisnull. To avoid such an exception, you would need to
write such aselect as follows:

sel ect nane,
case when hone_addr is not null then home_addr>>zip
el se null end

from enps
where case when hone_addr is not nul
then hone_addr>>zip
el se
nul |l end
in (95123, '95125', '95128")
The SQL convention is therefore used for references to fields and methods of
null instances: if theinstanceisnull, then any field or method referenceisnull.
The effect of this SQL ruleis to make the above case statement implicit.

However, this SQL rulefor field references with null instances only appliesto
field references in source (right-side) contexts, not to field references that are
targets (left-side) of assignments or set clauses. For example:

update enps
set home_addr>>zip D ' 99123’
where nane D ' Charles Geen’

Thiswhere clauseis obviously truefor the “ Charles Green” row, so the update
statement triesto perform the set clause. Thisraises an exception, because you
cannot assigh avalue to afield of anull instance as the null instance has no
field to which avalue can be assigned. Thus, field references to fields of null
instances are valid and return the null value in right-side contexts, and cause
exceptionsin left-side contexts.

Java in Adaptive Server Enterprise 37

The treatment of nulls in Java-SQL data

The same considerations apply to invocations of methods of null instances,
and the samerule is applied. For example, if we modify the previous example
and invoke the toString() method of the home_addr column:

sel ect name, hone_addr>>toString()from enps
where hone_addr>>toString() D
" Street D234 Stone Road ZI PD 99777’

If the value of the instance specified in an instance method invocation is null,
then the result of the invocation is null. Hence, the select statement isvalid
here, whereas it raises an exception in Java.

Null values as arguments to Java-SQL methods

The outcome of passing null as aparameter isindependent of the actions of the
method for which it is an argument, but instead depends on the ability of the
return datatype to deliver anull value.

You cannot passthe null value asaparameter to a Javascal ar type method; Java
scalar types are always non-nullable. However, Java object types can accept
null values.

For the following Java-SQL class:

public class Ceneral inplements java.io.Serializable {
public static int identityl(int I) {return I;}
public static java.lang.Integer identity2
(java.lang.Integer 1) {return I;}
public static Address identity3 (Address A) {return A}

Consider these cdlls:

declare @ int
decl are @\ Address;

select @ = Ceneral.identityl(@)
select @ = Ceneral.identity2(new java.lang.Integer(@))
select @\ = Ceneral .identity3(@)

The values of both variable @I and variable @A are null, since values have not
been assigned to them.

e Thecall of theidentity1() method raises an exception. The datatype of the
parameter @I of identity1() isthe Javaint type, which is scalar and has no
null state. An attempt to pass a null valued argument to identity1() raises
an exception.

38 Adaptive Server Enterprise

CHAPTER 3 Using Java Classes in SQL

Thecall of theidentity2() method succeeds. The datatype of the parameter
of identity2() isthe Java class java.lang.Integer, and the new expression
creates an instance of java.lang.Integer that is set to the value of variable
@l.

The call of the identity3() method succeeds.

A successful call of identity1() never returns a null result because the return
type has no null state. A null cannot be passed directly because the method
resolution fails without parameter type information.

Successful calls of identity2() and identity3() can return null results.

Null values when using the SQL convert function

You use the convert function to convert a Java object of one classto a Java
object of asuperclass or subclass of that class.

Asshownin “Subtypesin Java-SQL data’ on page 34, the home_addr column
of the emps table can contain values of both the Address class and the
Address2Line class. In this example:

sel ect nane, hone_addr>>street, convert (Address2Li ne, hone_addr)>>line2,
hone_addr >>zi p from enps

the expression “ convert(Address2Line, home _addr)” contains a datatype
(Address2Line) and an expression (home_addr). At compile-time, the
expression (home_addr) must be a subtype or supertype of the class
(Address2Line). At runtime, the action of this convert invocation depends on
whether the runtime type of the expression’s value is a class, subclass, or
superclass:

If the runtime value of the expression (home_addr) is the specified class
(Address2Line) or one of its subclasses, the value of the expression is
returned, with the specified datatype (Address2Line).

If the runtime value of the expression (home_addr) is a superclass of the
specified class (Address), then anull is returned.

Adaptive Server evaluates the select statement for each row of the result. For
each row:

If the value of the home_addr column is an Address2Line, then convert
returnsthat value, and thefield reference extractstheline2 field. If convert
returns null, then the field reference itself is null.

When aconvert returns null, then thefield referenceitself evaluatesto null.

Java in Adaptive Server Enterprise 39

Java-SQL string data

Hence, the results of the select shows the line2 value for those rows whose
home_addr column is an Address2Line and anull for those rows whose
home_addr column is an Address. As described in “The treatment of nullsin
Java-SQL data” on page 36, the select also shows anull line2 value for those
rows in which the home_addr column is null.

Java-SQL string data

In Java-SQL columns, fields of type String are stored as Unicode.

When a Java-SQL String field is assigned to a SQL dataitem whose typeis
char, varchar, nchar, nvarchar, or text, the Unicode data is converted to the
character set of the SQL system. Conversion errors are specified by the set
char_convert options.

When a SQL dataitem whosetypeischar, varchar, nchar, or text isassigned to
aJava-SQL string field that is stored as Unicode, the character dataiis
converted to Unicode. Undefined codepoints in such data cause conversion
errors.

Zero-length strings

40

In Transact-SQL, a zero-length character string istreated as anull value, and
the empty string () istreated as a single space.

To be consistent with Transact-SQL, when a Java-SQL String value whose
lengthiszeroisassigned to aSQL dataitem whosetypeischar, varchar, nchar,
nvarchar, or text, the Java-SQL String value is replaced with a single space.

For example:

1> decl are @ varchar(20)

2> select @ = new java.lang.String()
3> select @, char_| ength(@)

4> go

(1 row affected)

1

Otherwise, the zero-length value would be treated in SQL as a SQL null, and
when assigned to a Java-SQL String, the Java-SQL String would be a Javanull.

Adaptive Server Enterprise

CHAPTER 3 Using Java Classes in SQL

Type and void methods

Java methods (both instance and static) are either type methods or void
methods. In general, type methods return a value with aresult type, and void
methods perform some action(s) and return nothing.

For example, in the Address class:
¢ ThetosString() method is a type method whose type is String.
¢ TheremoveleadingBlanks() method is avoid method.

e The Address constructor method is a type method whose typeis the
Address class.

You invoketype methods asfunctions and use the new keyword when invoking
a constructor method:

insert into enps
val ues (' Don Green’, new Address(’234 Stone Road’, '99777'),
new Address2Line())

sel ect nane, honme_addr>>toString() from enps
where hone_addr>>toString() |ike ‘% Baker%

The removeLeadingBlanks() method of the Address classisavoid instance
method that modifies the street and zip fields of a given instance. You can
invoke removelLeadingBlanks() for the home_addr column of each row of the
emps table. For example:

update enps
set home_addr =
hone_addr >>r enovelLeadi ngBl anks()

removeLeadingBlanks() removes the leading blanks from the street and zip
fields of the home_addr column. The Transact-SQL update statement does not
provide a framework or syntax for such an action. It simply replaces column
values.

Java void instance methods

To use the “update-in-place” actions of Javavoid instance methodsin the SQL
system, Javain Adaptive Server treatsacall of a Javavoid instance method as
follows:

For avoid instance method M() of an instance CI of aclass C, written
“CLM(.)":

Java in Adaptive Server Enterprise 41

Type and void methods

In SQL, the call istreated as atype method call. The result typeis
implicitly class C, and the result value is areference to ClI. That reference
identifies a copy of the instance ClI after the actions of the void instance
method call.

In Java, this call is avoid method call, which performsits actions and
returns no value.

For example, you can invoke the removeLeadingBlanks() method for the
home_addr column of selected rows of the emps table as follows;

updat e enps

set hone_addr = hone_addr >>r enovelLeadi ngBl anks()
wher e home_addr >>r enovelLeadi ngBl anks() >>street |ike “123%

1

In the where clause, “home_addr>>removel eadingBlanks()" callsthe
removelLeadingBlanks() method for the home_addr column of arow of the
emps table. removeLeadingBlanks() strips the leading blanks from the
street and zip fields of a copy of the column. The SQL system then returns
areference to the modified copy of the home_addr column. The
subsequent field reference:

home_addr >>r enovelLeadi ngBl anks() >>street

returnsthe street field that hasthe leading blanks removed. Thereferences
to home_addr in the where clause are operating on a copy of the column.
This evaluation of the where clause does not modify the home_addr
column.

The update statement performs the set clause for each row of emps in
which the where clause istrue.

On the right-side of the set clause, the invocation of
“home_addr>>removel eadingBlanks()" is performed asit was for the
where clause: removelLeadingBlank() strips the leading blanks from street
and zip fields of that copy. The SQL system then returns areference to the
modified copy of the home_addr column.

The Address instance denoted by the result of the right side of the set
clauseis serialized and copied into the column specified on the | eft-side of
the set clause: the result of the expression on theright side of the set clause
isacopy of the home_addr column in which the leading blanks have been
removed from the street and zip fields. The modified copy isthen assigned
back to the home_addr column as the new value of that column.

The expressions of the right and | eft side of the set clause are independent, as
isnormal for the update statement.

42

Adaptive Server Enterprise

CHAPTER 3 Using Java Classes in SQL

Thefollowing update statement shows an invocation of avoid instance method
of the mailing_addr column on theright side of the set clause being assigned to
the home_address column on the | eft side.

update enps
set home_addr = mailing_addr>>renpvelLeadi ngBl anks()
where ...

In this set clause, the void method removelLeadingBlanks() of the mailing_addr
column yields areference to amodified copy of the Address2Line instance in
the mailing_addr column. The instance denoted by that reference is then
serialized and assigned to the home_addr column. This action updates the
home_addr column; it has no effect on the mailing_addr column.

Java void static methods

You cannot invoke avoid static method using asimple SQL execute command.
Rather, you must place the invocation of the void static method in aselect
statement.

For example, suppose that a Java class C has avoid static method M(...), and
assume that M() performs an action you want to invoke in SQL. For example,
M() can use JDBC callsto perform a series of SQL statements that have no
return values, such as create or drop, that would be appropriate for avoid
method.

You must invoke the void static method in a select command, such as:
select CM...)

To alow void static methods to be invoked using aselect, void static methods
aretreated in SQL asreturning a value of datatype int with avalue of null.

Equality and ordering operations

You can use equality and ordering operatorswhen you use Javain the database.
You cannot:

e Reference Java-SQL dataitemsin ordering operations.

* Reference Java-SQL dataitemsin equality operationsif they are stored in
an off-row column.

Java in Adaptive Server Enterprise 43

Evaluation order and Java method calls

e Usethe order by clause, which requires that you determine the sort order.
e Makedirect comparisons using the“>", “<”, “<=", or “>=" operator.
These equality operations are allowed for in-row columns:

e Useof thedistinct keyword, which is defined in terms of equality of rows,
including Java-SQL columns.

e Direct comparisons using the “=" and “!=" operators.

e Use of the union operator (not union all), which eliminates duplicates, and
requires the same kind of comparisons as the distinct clause.

e Use of the group by clause, which partitions the rows into sets with equal
values of the grouping column.

Evaluation order and Java method calls

Adaptive Server does not have a defined order for eval uating operands of
comparisons and other operations. Instead, Adaptive Server evaluates each
guery and chooses an evaluation order based on the most rapid rate of
execution.

Thissection describeshow different eval uation orders affect the outcomewhen
you pass columns or variables and parameters as arguments. The examplesin
this section use the following Java-SQL class:

public class Utility inplenents java.io. Serializable {

public static int F (Address A {

if (A zip.length() > 5) return O;

else {A.zip = A zip + "-1234"; return 1;}
}
public static int G (Address A {

if (A zip.length() > 5) return O;

else {A zip = Azip + "-1234"; return 1;}

44 Adaptive Server Enterprise

CHAPTER 3 Using Java Classes in SQL

Columns

sel ect

In general, avoid invoking in the same SQL statement multiple methods on the
same Java-SQL object. If at |east one of them modifies the object, the order of
evaluation can affect the outcome.

For example, in this example:

* fromenp E
where Wility. F(E. home_addr) > Uility. F(E hone_addr)

the where clause passes the same home_addr column in two different method
invocations. Consider the evaluation of the where clause for arow whose
home_addr column has a 5-character zip, such as*95123."

Adaptive Server can initially evaluate either the | eft or right side of the
comparison. After the first eval uation completes, the second is processed.
Because it executes faster this way, Adaptive Server may let the second
invocation see the modifications of the argument made by the first invocation.

In the example, the first invocation chosen by Adaptive Server returns 1, and
the second returns 0. If the left operand is evaluated first, the comparisonis
1>0, and the where clause istrue; if the right operand is eval uated first, the
comparison is 0>1, and the where clause isfalse.

Variables and parameters

decl are @\ Address
decl are @ der

sel ect

sel ect

Similarly, the order of evaluation can affect the outcome when passing
variables and parameters as arguments.

Consider the following statements:

var char (20)

@\ = new Address(’95444’, '123 Port Avenue’)
sel ect case when Uility.F(@)>Utility. G @
then ‘Left’ else ‘Right’ end

@ der

case when utility. F(@) > utility. (@

then 'Left' else 'Right' end

The new Address has afive-character zip codefield. When the case expression
is evaluated, depending on whether the left or right operand of the comparison
isevaluated first, the comparisoniseither 1>0 or 0>1, and the @Order variable
isset to ‘Left’ or ‘Right’ accordingly.

Java in Adaptive Server Enterprise 45

Static variables in Java-SQL classes

As for column arguments, the expression value depends on the evaluation
order. Depending on whether the left or right operand of the comparison is
evaluated first, the resulting value of the zip field of the Address instance
referenced by @A is either “95444-4321" or “95444-1234."

Static variables in Java-SQL classes

46

A Javavariable that is declared static is associated with the Java class, rather
than with each instance of theclass. Thevariableisallocated oncefor theentire
class.

For example, you might include a static variable in the Address class that
specifies the recommended limit on the length of the Street field:

public class Address inplenents java.io. Serializable {

public static int recommendedLimt;
public String street;
public String zip;

/1

}

You can specify that a static variable isfinal, which indicates that it is not
updatable:

public static final int recommendedLimt;
Otherwise, you can update the variable.

You reference a static variable of aJavaclassin SQL by qualifying the static
variable with an instance of the class. For example:

decl are @ Address
sel ect @>>r econmendedLi mt

If you don't have an instance of the class, you can use the following technique:
sel ect convert (Address, null)>>recomendedLi mit

The expression “(convert(null, Address))” convertsanull value to an Address
type; that is, it generates a null Address instance, which you can then qualify
with the static variable name. You cannot reference astatic variable of aJava
classin SQL by qualifying the static variable with the class name. For example,
the following are both incorrect:

sel ect Address.recomendedLi m t

Adaptive Server Enterprise

CHAPTER 3 Using Java Classes in SQL

sel ect Address>>r econmendedLi m t

Values assigned to non-final static variables are accessible only within the
current session.

Java classes in multiple databases

You can store Java classes of the same namein different databasesin the same
Adaptive Server system. This section describes how you can use these classes.

Scope

When you install a Javaclass or set of classes, it isinstalled in the current
database. When you dump or load a database, the Java-SQL classes that are
currently installed in that database are always included—even if classes of the
same name exist in other databases in the Adaptive Server system.

You can install Java classes with the same name in different databases. These
synonymous classes can be;

e |dentica classes that have been installed in different databases.

« Different classes that are intended to be mutually compatible. Thus, a
serialized value generated by either classis acceptable to the other.

« Different classes that are intended to be “upward” compatible. That is, a
serialized value generated by one of the classes should be acceptableto the
other, but not vice versa.

« Different classes that are intended to be mutually incompatible; for
example, a class named Sheet designed for supplies of paper, and other
classes named Sheet designed for supplies of linen.

Cross-database references

You can reference obj ects stored in table columnsin one database from another
database.

For example, assume the following configuration:;

* TheAddress classisinstaled in dbl and db2.

Java in Adaptive Server Enterprise 47

Java classes in multiple databases

* Theemps table hasbeen created in both db1 with owner Smith, and indb2,
with owner Jones.

In these examples, the current database is db1. You can invoke ajoin or a
method across databases. For example:

e A join across databases might look like this:

decl are @ount int
sel ect @ount (*)
from db2. Jones. enps, dbl. Snith. enps
where db2. Jones. enps. hone_addr >>zip =
dbl. Sni t h. enps. hone_addr >>zi p

e A method invocation across databases might look like this:

sel ect db2. Jones. enps. home_addr>>t oString()
from db2. Jones. enps
where db2. Jones. enps. nane = ' John Stone’

In these exampl es, instance values are not transferred. Fields and methods of
an instance contained in db2 are merely referenced by aroutinein dbl. Thus,
for across-database joins and method invocations:

* dbl need not contain an Address class.

» |If dbl does contain an Address class, it can have completely different
properties than the Address classin db2.

Inter-class transfers

You can assign an instance of aclassin one database to an instance of a class
of the same name in another database. Instances created by the classin the
source database are transferred into columns or variables whose declared type
isthe classin the current (target) database.

You can insert or update from atable in one database to a table in another
database. For example:

insert into dbl. Smith.enps select * from
db2. Jones. enps

updat e dbl. Sm t h. enps
set hone_addr = (sel ect db2. Jones. enps. hone_addr
from db2. Jones. enps
where db2. Jones. enps. nane =
dbl. Snit h. enps. nane)

48 Adaptive Server Enterprise

CHAPTER 3 Using Java Classes in SQL

You can insert or update from a variable in one database to another database.
(The following fragment isin a stored procedure on db2.) For example:

decl are @uwone_addr Address

sel ect @one_addr = new Address(‘ 94608, ‘222 Baker
Street’)

insert into dbl.Janes. enps(nane, hone_addr)
val ues (‘Jone Stone’, @uone_addr)

In these examples, instance values are transferred between databases. You can:
* Transfer instances between two local databases.

» Transfer instances between alocal database and a remote database.

e Transfer instances between a SQL client and an Adaptive Server.

¢ Replace classes using install and update statements or remove and update
statements.

Inaninter-classtransfer, the Java serialization istransferred from the source to
thetarget. If the classin the source database is not compatible with the classin
the target database, then the Java exception InvalidClassException is raised.

Passing inter-class arguments

You can pass arguments between classes of the same name in different
databases.When passing inter-class arguments:

¢ A Java-SQL column is associated with the version of the specified Java
classin the database that contains the column.

¢ A Java-SQL variable (in Transact-SQL) is associated with the version of
the specified Java class in the current database.

¢ A Java-SQL intermediateresult of class C isassociated with the version of
class C in the same database as the Java method that returned the result.

¢ When aJavainstance value JI is assigned to atarget variable or column,
or passed to a Java method, JI is converted from its associated classto the
class associated with the receiving target or method.

Temporary and work databases

All rules for Java classes and databases al so apply to temporary databases and
the model database:

Java in Adaptive Server Enterprise 49

Java classes

e Java-SQL columns of temporary tables contain byte string serializations
of the Javainstances.

e A Java-SQL columnisassociated with the version of the specified classin
the temporary database.

You can install Java classes in atemporary database, but they persist only as
long as the temporary database persists.

The simplest way to provide Javaclasses for reference in temporary databases
istoinstall Javaclasses in the model database. They are then present in any
temporary database derived from the model.

Java classes

This section shows the simple Java classes that this chapter uses to illustrate
Javain Adaptive Server. You can also find these classes and their Java source
code in $SYBASE/$SYBASE ASE/sample/JavaSgl-R2. (UNIX) or
%SYBASEY\Ase-12_S\sample\JavaSgl-R2 (Windows NT).

Thisisthe Address class:

I

/1 Copyright (c) 1999

/1 Sybase, Inc

/1 Emeryville, CA 94608
/1 Al Rights Reserved

I

/**

* Asinmple class for address data, to illustrate using a Java cl ass
* as a SQL datatype.

*/

public class Address inplenments java.io.Serializable {

/**

* The street data for the address.
* @erial A sinple String val ue.
*/

public String street;

/**

* The zi pcode data for the address.
* @erial A sinple String val ue.

50 Adaptive Server Enterprise

CHAPTER 3 Using Java Classes in SQL

*/
String zip;
/** A default constructor.
*/
public Address () {
street = "Unknown";
zip = "None";
}
/**

* A constructor with paraneters

* @aram S a string with the street information
* @aram Z a string with the zi pcode information
*/

public Address (String S, String 2) {
street = S
zip = Z
}
/**
* A nethod to return a display of the address data.
* @eturns a string with a display version of the address data.
*/
public String toString() {
return "Street=" + street + " ZIP=" + zip;
}
/**
* A void nmethod to renove | eadi ng bl anks.
* This nmethod uses the static method
* <code>M sc. stri pLeadi ngBl anks</ code>.

*/

public void renovelLeadi ngBl anks() {

street = M sc.striplLeadi ngBl anks(street);

zip = Msc.striplLeadi ngBl anks(street);

}
}

Thisisthe Address2Line class, which is a subclass of the Address class:

I

/1 Copyright (c) 1999

/'l Sybase, Inc

/1 Emeryville, CA 94608

/1 Al R ghts Reserved

I

/**

* A subclass of the Address class that adds a seond |ine of address data,
* <p>This is a sinple subclass to illustrate using a Java subcl ass

Java in Adaptive Server Enterprise 51

Java classes

* as a SQL dat atype.
*/
public class Address2Li ne extends Address inplenents java.io.Serializable {

/**
* The second |ine of street data for the address.
* @erial a sinple String val ue
*/
String line2;

/**

* A default constructor

*/
public Address2Line () {
street = "Unknown";
line2 =" ",
zip = "None";
}
/**

* A constructor with paraneters.
* @aram S a string with the street information
* @aramL2 a string with the second |line of address data
* @aram Z a string with the zipcode infornation
*/
public Address2Line (String S, String L2, String 2) {
street = §;
line2 = L2;
zip = Z
}

/**
* A nmethod to return a display of the address data

* @eturns a string with a display version of the address data
*/

public String toString() {
return "Street=" + street + " Line2=" + line2 + " ZIP=" + zip;

}

/**

* A void nethod to renmove | eadi ng bl anks.
* This method uses the static method

* <code>M sc. stri pLeadi ngBl anks</ code>.
*/

public void renpbvelLeadi ngBl anks() {
line2 = Msc.stripLeadingBl anks(line2);

52 Adaptive Server Enterprise

CHAPTER 3 Using Java Classes in SQL

super . renovelLeadi ngBl anks();

The Misc class contains sets of miscellaneous routines:
/1
/1 Copyright (c) 1999
/'l Sybase, Inc
/1 Enmeryville, CA 94608
/1 Al Rights Reserved
/1
/**
* A non-instantiable class with niscellaneous static nethods
* that illustrate the use of Java nethods in SQ.
*
/

public class M sc{

/**

* The Msc class contains only static nmethods and cannot be instantiated.
*/

private Msc() { }

/**
* Renoves | eading blanks froma String
*/
public static String striplLeadi ngBl anks(String s) {
if (s == null) return null;
for (int scan=0; scan<s.length(); scan++)
if (!java.lang. Character.isWitespace(s.charAt(scan)))
br eak;
} else if (scan == s.length()){
return
} else return s.substring(scan);
}
}
}
return
}
/**
* Extracts the street nunber froman address line.
* e.g., Msc.getNunber(" 123 Main Street") == 123
* M sc. get Nunber (" Main Street") ==
* M sc. get Nunber("") == 0
* M sc. get Nunber (" 123 ") == 123
* M sc. get Nunber (" Main 123 ") == 0

Java in Adaptive Server Enterprise 53

Java classes

* @arams a string assuned to have address data
* @eturn a string with the extracted street nunber
*/

public static int getNunber (String s) {
String stripped = stripLeadi ngBl anks(s);
if (s==null) return -1,
for(int right=0; right < stripped.length();

ri ght++){

if (!java.lang.Character.isbDigit(stripped.charAt(right))) {

break;

} else if (right==0)({
return O;

} else {

return java.l ang. I nteger. parselnt
(stripped. substring(0, right), 10);

}
}
return -1;
}
* %
Extract the "street" from an address l|ine.
e.g., Msc.getStreet (" 123 Main Street") == "Miin Street"
M sc.getStreet (" Main Street") == "Miin Street"

M sc.getStreet("") ==

M sc.get Street (" 123 ") ==

M sc.get Street (" Main 123 ") == "Main 123"
@aram s a string assuned to have address data
* @eturn a string with the extracted street nane
*/

* ok Xk % 3k F T~

public static String getStreet(String s) {
int left;
if (s==null) return null;
for (left=0; left<s.length(); left++){

i f(java.lang. Character.isLetter(s.charAt(left))) {

br eak;
} else if (left == s.length()) {
return ""
} else {
return s.substring(left);
}
}
return ""
}
}
54

Adaptive Server Enterprise

CHAPTER 4 Data Access Using JDBC

This chapter describes how to use Java Database Connectivity (JDBC) to

access data.
Topics Page
Overview 55
JDBC concepts and terminol ogy 56
Differences between client- and server-side JDBC 56
Permissions 57
Using JDBC to access data 57
Error handling in the native JDBC driver 64
The JDBCExamples class 66

Overview

JDBC provides a SQL interface for Java applications. If you want to

access relational data from Java, you must use JDBC calls.

You can use JDBC with the Adaptive Server SQL interface in either of

two ways:

« JDBC ontheclient—Javaclient applications can make JDBC callsto

Adaptive Server using the Sybase jConnect JDBC driver.

* JDBC ontheserver —Javaclassesinstalled in the database can make
JDBC callsto the database using the JDBC driver native to Adaptive

Server.

The use of JDBC callsto perform SQL operationsis essentially the same

in both contexts.

This chapter provides sample classes and methods that describe how you
might perform SQL operations using JDBC. These classes and methods

are not intended to serve as templates, but as general guidelines.

Java in Adaptive Server Enterprise

55

JDBC concepts and terminology

JDBC concepts and terminology

JDBC isaJava APl and a standard part of the Java class libraries that control
basic functions for Java application development. The SQL capabilities that
JDBC provides are similar to those of ODBC and dynamic SQL.

The following sequence of eventsistypical of a JDBC application:

1

Create a Connection object — call the getConnection() static method of the
DriverManager class to create a Connection object. This establishes a
database connection.

Generate a Satement object — use the Connection object to generate a
Satement object.

Pass a SQL statement to the Satement object —if the statement isa query,
this action returns a ResultSet object.

The ResultSet object contains the data returned from the SQL statement,
but provides it one row at atime (similar to the way a cursor works).

Loop over the rows of the results set — call the next() method of the
ResultSet object to:

* Advancethe current row (the row in the result set that is being
exposed through the ResultSet object) by one row.

» Return aBoolean value (true/false) to indicate whether thereisarow
to advance to.

For each row, retrieve the values for columnsin the ResultSet object —use
the getint(), getString(), or similar method to identify either the name or
position of the column.

Differences between client- and server-side JDBC

Thedifference between JDBC on the client and in the database server isin how
aconnection is established with the database environment.

56

When you use client-side or server-side JDBC, you call the
Drivermanager.getConnection() method to establish a connection to the server.

For client-side JDBC, you use the Sybase jConnect JDBC driver, and call
the Drivermanager.getConnection() method with the identification of the
server. This establishes a connection to the designated server.

Adaptive Server Enterprise

CHAPTER 4 Data Access Using JDBC

e For server-side JDBC, you use the Adaptive Server native JDBC driver,
and call the Drivermanager.getConnection() method with one of the
following values:

¢ jdbc:default:connection
¢ jdbc:sybase:ase

e jdbc:default

e empty string

Thisestablishes aconnection to the current server. Only thefirst call tothe
getConnection() method creates a new connection to the current server.
Subsequent calls return awrapper of that connection with all connection
properties unchanged.

You can write JIDBC classes to run at both the client and the server by using a
conditional statement to set the URL.

Permissions

e Java execution permissions— like all Java classesin the database, classes
containing JDBC statements can be accessed by any user. Thereisno
equivalent of the grant execute statement that grants permission to execute
procedures in Java methods, and there is no need to qualify the name of a
class with the name of its owner.

e S0QL execution permissions — Java classes are executed with the
permissions of the connection executing them. This behavior is different
from that of stored procedures, which execute with granted permission by
the database owner.

Using JDBC to access data

This section describes how you can use JDBC to perform thetypical operations
of aSQL application. The examples are extracted from the class
JDBCExamples, which isdescribed in “The JDBCExamplesclass’ on page 66
and in $SYBASE/$SYBASE_ASE/sample/Javasl-R2 (UNIX) or
%SYBASEY\Ase-12_5\sample\Javasgl-R2 (Windows NT).

Java in Adaptive Server Enterprise 57

Using JDBC to access data

JDBCExamples illustrates the basics of a user interface and shows the internal
coding techniques for SQL operations.

Overview of the JDBCExamples class

The JDBCExamples class uses the Address class shown in “ Sample Java
classes” on page 10. To execute these examples on your machine, install the
Address class on the server and include it in the Java CLASSPATH of the

jConnect client.

You can call the methods of JDBCExamples from either ajConnect client or
Adaptive Server.

Note You must create or drop stored procedures from the jConnect client. The
Adaptive Server native driver does not support create procedure and drop
procedure statements.

JDBCExamples static methods perform the following SQL operations:
» Create and drop an example table, xmp:

create table xmp (id int, nane varchar(50), hone Address)
» Create and drop a sample stored procedure, inoutproc:

create procedure inoutproc @d int, @ewnane varchar (50),
@ewhorre Address, @l dname varchar (50) output, @l dhome
Addr ess out put as

sel ect @l dname = nane, @l dhone = hone from xnp

where i d=@d
update xnmp set nane=@ewnane, hone = @ewhone
where i d=@d

* Insert arow into the xmp table.
* Select arow from the xmp table.
e Update arow of the xmp table.

e Cdl the stored procedure inoutproc, which has both input parameters and
output parameters of datatypes java.lang.String and Address.

JDBCExamples operates only on the xmp table and inoutproc procedure.

58 Adaptive Server Enterprise

CHAPTER 4 Data Access Using JDBC

The main() and serverMain() methods
JDBCExamples has two primary methods:
e main() —isinvoked from the command line of the jConnect client.

e serverMain() — performsthe same actions asmain(), but isinvoked within
Adaptive Server.

All actions of the IDBCExamples class are invoked by calling one of these
methods, using a parameter to indicate the action to be performed.

Using main()
You can invoke the main() method from ajConnect command line as follows:

j ava JDBCExanpl es
“server - nane: port - nunber ?2user =user - nane&passwor d=passwor d” acti on

You can determine server-name and port-number from your interfacesfile,
using the dsedit tool. user-name and password are your user name and
password. If you omit &password=password, the default isthe empty password.
Here are two examples:

“anti bes: 4000?user =sm t h&passwor d=1x2x3"
“anti bes: 4000?user =sa”

Make sure that you enclose the parameter in quotation marks.

The action parameter can be create table, create procedure, insert, select,
update, or call. It is caseinsensitive.

You can invoke JDBCExamples from ajConnect command line to create the
table xmp and the stored procedure inoutproc as follows:

j ava JDBCExanpl es “anti bes: 4000?user=sa” CreateTabl e
j ava JDBCExanpl es “anti bes: 4000?user=sa” CreateProc

You can invoke JDBCExamples for insert, select, update, and call actions as
follows:

j ava JDBCExanpl es “anti bes: 4000?user=sa” insert
java JDBCExanpl es “anti bes: 4000?user=sa” update
j ava JDBCExanpl es “anti bes: 4000?user=sa” call

j ava JDBCExanpl es “anti bes: 4000?user=sa” sel ect

These invocations display the message “ Action performed.”
To drop the table xmp and the stored procedure inoutproc, enter:

j ava JDBCExanpl es “anti bes: 4000?user=sa” droptabl e

Java in Adaptive Server Enterprise 59

Using JDBC to access data

Using serverMain()

j ava JDBCExanpl es “anti bes: 4000?user=sa” dropproc

Note Because the server-side JDBC driver does not support create procedure
or drop procedure, create the table xmp and the example stored procedure
inoutproc with client-side calls of the main() method before executing these
examples. Refer to “ Overview of the JDBCExamples class’ on page 58.

After creating xmp and inoutproc, you can invoke the serverMain() method as
follows:

sel ect JDBCExanpl es. serverMain(’'insert’)
ggl ect JDBCExanpl es. server Mai n(’ select’)
ggl ect JDBCExanpl es. server Mai n(’ update’)
ggl ect JDBCExanpl es. serverMain('call’)
go

Note Server-side calls of serverMain() do not require a server-name: port-
number parameter; Adaptive Server simply connectsto itself.

Obtaining a JDBC connection: the Connecter() method

60

Both main() and serverMain() call the connecter() method, which returns a
JDBC Connection object. The Connection object isthe basisfor all subsequent
SQL operations.

Both main() and serverMain() call connecter() with a parameter that specifies
the JDBC driver for the server- or client-side environment. The returned
Connection object is then passed as an argument to the other methods of the
JDBCExamples class. By isolating the connection actionsin the connecter()
method, JDBCExamples’ other methods are independent of their server- or
client-side environment.

Adaptive Server Enterprise

CHAPTER 4 Data Access Using JDBC

Routing the action to other methods: the doAction() method

ThedoAction() method routesthe call to one of the other methods, based on the
action parameter.

doAction() has the Connection parameter, which it smply relays to the target
method. It also has a parameter locale, which indicates whether the call is
server- or client-side. Connection raises an exception if either create procedure
or drop procedure isinvoked in a server-side environment.

Executing imperative SQL operations: the doSQL() method

The doSQL() method performs SQL actions that require no input or output
parameters such as create table, create procedure, drop table, and drop
procedure.

doSQL() has two parameters: the Connection object and the SQL statement it
isto perform. doSQL() creates a JDBC Satement object and usesit to execute
the specified SQL statement.

Executing an update statement: the UpdateAction() method

The updateAction() method performs a Transact-SQL update statement. The
update actionis:

String sql = "update xmp set name = ?, home = ? where id = ?";
It updates the name and home columns for all rows with agiven id value.

The update values for the name and home column, and the id value, are
specified by parameter markers (?). updateAction() supplies values for these
parameter markers after preparing the statement, but before executing it. The
values are specified by the JIDBC setString(),

setObject(), and setint() methods with these parameters:

e Theordinal parameter marker to be substituted
e Thevalueto be substituted
For example:

pstnt.setString(1l, nane);
pstnt.set Cbject (2, hone);
pstnt.setInt(3, id);

Java in Adaptive Server Enterprise 61

Using JDBC to access data

After making these substitutions, updateAction() executes the update
Statement.

To simplify updateAction(), the substituted valuesin the example are fixed.
Normally, applications compute the substituted values or obtain them as
parameters.

Executing a select statement: the selectAction() method

62

The selectAction() method executes a Transact-SQL select Sstatement:
String sgql = "select name, home from xmp where id=?";

Thewhere clause uses a parameter marker (?) for the row to be selected. Using
the JDBC setint() method, selectAction() supplies avalue for the parameter
marker after preparing the SQL statement:

Prepar edSt at ement pstm =
con. prepareSt at enent (sql) ;
pstnt.setint(1, id);

selectAction() then executes the select statement:

ResultSet rs = pstnt. executeQuery();

Note For SQL statementsthat return no results, use doSQL() and updateAction(
). They execute SQL statements with the executeUpdate() method.

For SQL statements that do return results, use the executeQuery() method,
which returns a JDBC ResultSet object.

The ResultSet object issimilar toaSQL cursor. Initialy, it is positioned before
the first row of results. Each call of the next() method advances the ResultSet
object to the next row, until there are no more rows.

selectAction() requires that the ResultSet object have exactly one row. The
selecter() method invokes the next method, and checks for the case where
ResultSet has no rows or more than one row.

if (rs.next()) {
rs.getString(1);
(Address)rs. get Obj ect (2);
if (rs.next()) {
throw new Exception("Error: Select returned nultiple rows");
} else { // No action

Adaptive Server Enterprise

CHAPTER 4 Data Access Using JDBC

}

} else { throw new Exception("Error: Select returned no rows");

}

Executing in batch
mode

In the above code, the call of methods getString() and getObject() retrieve the
two columns of the first row of the result set. The expression
“(Address)rs.getObject(2)” retrieves the second column as a Java object, and
then coerces that object to the Address class. If the returned object is not an
Address, then an exception is raised.

selectAction() retrieves a single row and checks for the cases of no rows or
more than one row. An application that processes a multiple row ResultSet
would simply loop on the calls of the next() method, and process each row as
for asingle row.

If you want to execute a batch of SQL statements, make sure that you use the
execute() method. If you use executeQuery() for batch mode:

e If the batch operation does not return aresult set (contains no select
statements), the batch executes without error.

« If the batch operation returns one result set, all statements after the
statement that returnsthe result areignored. If getxxX() iscalled to get an
output parameter, the remaining statements execute and the current result
set is closed.

e If the batch operation returns more than one result set, an exceptionis
raised and the operation aborts.

Using execute() ensures that the complete batch executes for all cases.

Calling a SQL stored procedure: the callAction() method

The callAction() method calls the stored procedure inoutproc;

create proc inoutproc @d int, @ewnane varchar(50), @ewhone Address,
@| dnanme varchar (50) output, @l dhome Address output as

sel ect

@l dnane = nane, @l dhone = hone from xnmp where id=@d

update xnmp set nane=@ewnane, hone = @ewhone where id=@d

This procedure hasthree input parameters (@id, @newname, and @newhome)
and two output parameters (@oldname and @oldhome). callAction() setsthe
name and home columns of the row of table xmp with the ID value of @id to
the values @newname and @newhome, and returns the former values of those
columns in the output parameters @oldname and @oldhome.

Java in Adaptive Server Enterprise 63

Error handling in the native JDBC driver

Theinoutproc procedure illustrates how to supply input and output parameters

inaJDBC cal.
callAction() executes the following call statement, which prepares the call
statement:

Cal | abl eStatenent cs = con.prepareCall ("{call inoutproc (?, 2, 2, ?2, 2}");

All of the parameters of the call are specified as parameter markers (?).

callAction() supplies values for the input parameters using JDBC setint(),
setString(), and setObject() methods that were used in the doSQL(),
updatAction(), and selectAction() methods:

cs.setlnt(1, id);
cs.setString(2, newNane);
cs.set vj ect (3, newHone);

These set methods are not suitable for the output parameters. Before executing
the call statement, callAction() specifies the datatypes expected of the output
parameters using the JDBC registerOutParameter() method:

cs.regi sterCQut Paraneter (4, java.sql.Types. VARCHAR) ;
cs.regi sterCut Paraneter (5, java.sql.Types. JAVA OBJECT);

callAction() then executesthe call statement and obtainsthe output values using

the same getString() and getObject() methods that the selectAction() method
used:

int res = cs. executeUpdate();
String ol dNane = cs.getString(4);
Addr ess ol dHonme = (Address)cs. get Obj ect (5);

Error handling in the native JDBC driver

64

Sybase supports and implements all methods from the java.sql. SQLException
and java.sql.SQLWarning classes. SQLException provides information on
database access errors. SQLWarning extends SQLException and provides
information on database access warnings.

Errors raised by Adaptive Server are numbered according to severity. Lower
numbers are less severe; higher numbers are more severe. Errors are grouped
according to severity:

e Warnings (EX_INFO: severity 10) — are converted to SQLWarnings.

Adaptive Server Enterprise

CHAPTER 4 Data Access Using JDBC

« Exceptions (severity 11 t018) — are converted to SQL Exceptions.
e Fatal errors (severity 19 to 24) — are converted to fatal SQL Exceptions.

SQL Exceptions can be raised through JDBC, Adaptive Server, or the native
JDBC driver. Raising a SQLException aborts the JDBC query that caused the
error. Subsequent system behavior differs depending on where the error is
caught:

e Iftheerror iscaughtin Java—a“try” block and subsequent “catch” block
process the error.

Adaptive Server provides several extended JDBC driver-specific
SQLException error messages. All are EX_USER (severity 16) and can
aways be caught. There are no driver-specific SQLWarning messages.

e Iftheerror isnot caughtin Java—the JavaVM returns control to Adaptive
Server, Adaptive Server catchesthe error, and an unhandled SQLException
error israised.

Theraiserror command is used typically with stored proceduresto raise an
error and to print a user-defined error message. When a stored procedure
that calls the raiserror command is executed via JDBC, the error is treated
asaninternal error of severity EX_USER, and anonfatal SQLException is
raised.

Note You cannot access extended error data using the raiserror command,;
the with errordata clause is not implemented for SQLException.

If an error causes atransaction to abort, the outcome depends on the transaction
context in which the Java method is invoked:

« Ifthetransaction contains multiple statements —the transaction abortsand
control returns to the server, which rolls back the entire transaction. The
JDBC driver ceasesto process queries until control returnsfrom the server.

« If thetransaction contains a single statement — the transaction aborts, the
SQL statement it contains rolls back, and the JDBC driver continuesto
process queries.

The following scenarios illustrate the different outcomes. Consider a Java
method jdbcTests.Errorexample() that contains these statements:

stnt . executeUpdate(“del ete fromparts where partno = 0”); (02
stnt.executeQuery(“select 1/0"); (0]
stnt . executeUpdate(“del ete fromparts where partno = 10”); (0]

A transaction containing multiple statements includes these SQL commands:

Java in Adaptive Server Enterprise 65

The JDBCExamples class

begi n transaction
delete fromparts where partno = 8 Q
sel ect JDBCTests. Errorexanpl e()

In this case, these actions result from an aborted transaction:

* A divide-by-zero exception israised in Q3.

e Changesfrom Q1 and Q2 are rolled back.

* Theentiretransaction aborts.

A transaction containing a single statement includes these SQL commands:

set chai ned off
delete fromparts where partno = 8 QA
sel ect JDBCTests. Errorexanpl e()

In this case:
e A divide-by-zero exceptionisraised in Q3.
e Changesfrom Q1 and Q2 are not rolled back

e Theexceptionis caught in “catch” and “try” blocksin
JDBCTests.Errorexample.

e Thedeletion specified in Q4 does not execute becauseit is handled in the
same “try” and “ catch” blocks as Q3.

« JDBC queries outside of the current “try” and “catch” blocks can be
executed.

The JDBCExamples class

/1l An exanple class illustrating the use of JDBC facilities
/1l with the Java in Adaptive Server feature.
I

/'l The methods of this class performa range of SQ operations.
/1 These methods can be invoked either froma Java client,

/1 using the main nethod, or fromthe SQ. server, using

/'l the internal Main met hod.

I

i nport java.sql.*; /1 JDBC
public class JDBCExanpl es {

{

66 Adaptive Server Enterprise

CHAPTER 4 Data Access Using JDBC

The main() method

/1 The main nmethod, to be called froma client-side comand |ine
I
public static void main(String args[]) {
if (args.length!=2) {
Systemout.println("\n Usage:
+ "java External Connect server-nane: port-nunber
action ");
Systemout.println(" The action is connect, createtable,
+ "createproc, drop,
+ "insert, select, update, or call \n");
return;

}
try{
String server args[0];
String action args[1].toLower Case();
Connecti on con = connecter(server);
String workString = doAction(action, con, client);
Systemout.println("\n" + workString + "\n");
} catch (Exception e) {
Systemout.println("\'n Exception: ");
e.printStackTrace();

The internalMain() method

/1 A JDBCExanpl es nethod equivalent to "'main’,
/1 to be called from SQ. or Java in the server

public static String internal Main(String action) {
try {
Connection con = connecter("default");
String workString = doAction(action, con, server);
return workString;
} catch (Exception e) {
if (e.getMessage().equals(null)) {

return "Exc: " + e.toString();
} else {
return "Exc - " + e.getMessage();

}

Java in Adaptive Server Enterprise 67

The JDBCExamples class

The connecter() method

/1 A JDBCExanpl es nethod to get a connection.
/1 It can be called fromthe server with argunent 'default’,
/1l or froma client, with an argunent that is the server nane.

public static Connection connecter(String server)
throws Exception, SQLException, C assNotFoundException {

String forName="";
String url="";

if (server=="default") { // server connection to current server
forNane = "sybase. asej dbc. ASEDri ver";
url = "jdbc:default:connection”;

} else if (server!="default") { //client connection to server
for Nane= "com sybase. j dbc. SybDriver";
url = "jdbc:sybase: Tds: "+ server;

}

String user = "sa";
String password = "";

/1 Load the driver

Cl ass. f or Name(f or Nane) ;

/1 Get a connection

Connection con = DriverManager. get Connection(url,
user, password);

return con;

The doAction() method

/1 A JDBCExanpl es nethod to route to the 'action’ to be perforned

public static String doAction(String action, Connection con,
String | ocale)
t hrows Exception {

String createProcScript =
create proc inoutproc @d int, @ewnanme varchar(50),
@ewhone Address,
+ " @l dnane varchar (50) output, @l dhone Address
out put as "
+ " select @l dnane = nane, @l dhome = honme from xnp

68 Adaptive Server Enterprise

CHAPTER 4 Data Access Using JDBC

where id=@d "
+ " update xnp set name=@ewnane, honme = @ewhone
where id=@d ";

String createTabl eScript =
" create table xnp (id int, nane varchar(50),
hone Address)"

String dropTabl eScript = "drop tabl e xnmp

String dropProcScript "drop proc inoutproc ";
String insertScript "insert into xmp "
+ "values (1, 'Joe Smith', new Address(’ 987 Shore’,
112345))";

String workString = "Action (" + action +)
if (action.equal s("connect")) {
workString += "perfornmed";
} else if (action.equal s("createtable")) {
workString += doSQL(con, createTableScript);
} else if (action.equals("createproc")) {
if (locale.equals(server)) {
throw new exception (CreateProc cannot be perforned
in the server);
} else {
workString += doSQL(con, createProcScript);
}
} else if (action.equals("droptable")) {
wor kString += doSQ.(con, dropTabl eScript);
} else if (action.equal s("dropproc")) {
if (locale.equal s(server)) {
t hrow new exception (CreateProc cannot be perforned
in the server);
} else {
wor kString += doSQ.(con, dropProcScript);
}
} else if (action.equals("insert")) {
workString += doSQL(con, insertScript);
} else if (action.equal s("update")) {
wor kSt ri ng += updat eAction(con);
} else if (action.equals("select")) {
workString += sel ect Action(con);
} else if (action.equals("call")) {
workString += cal | Acti on(con);
} else { return "lInvalid action: " + action ;

}

return workString;

Java in Adaptive Server Enterprise 69

The JDBCExamples class

The doSQL() method
/1 A JDBCExanpl es nmethod to execute an SQL statenent.

public static String doSQ. (Connection con, String action)
throws Exception {

Statenent stmt = con.createStatenent();
int res = stnt.executeUpdate(action);
return "perforned";

The updateAction() method

/1 A method that updates a certain row of the 'xnp’ table.
/1 This nethod illustrates prepared statenents and paraneter markers.

public static String updateActi on(Connection con)
t hrows Exception {

String sgql = "update xnmp set name = ?, honme = ? where id = ?";
int id=1;

Addr ess hone = new Address("123 Mai n", "98765");

String nane = "Sam Brown";

Prepar edSt at enent pstmt = con. prepareStatenent (sql);
pstnt.setString(1l, nane);

pstnt.set Oj ect (2, hone);

pstnt.setlnt(3, id);

int res = pstnt.executeUpdate();

return "perforned";

The selectAction() method

/1 A JDBCExanples nethod to retrieve a certain row

/1 of the 'xnp’ table.

/1 This method illustrates prepared statenments, paraneter narkers,
/1 and result sets.

public static String sel ectAction(Connection con)
throws Exception {

String sgql = "select nanme, hone from xnmp where id=?";

70 Adaptive Server Enterprise

CHAPTER 4 Data Access Using JDBC

int id=1;
Address hone = null;
String name = "";
String street = "";
String zip ="";
Prepar edSt at enent pstnt = con. prepareStatenent (sql);
pstnt.setlnt(1, id);
ResultSet rs = pstnt.executeQuery();
if (rs.next()) {

name = rs.getString(1);

hone = (Address)rs. get Object(2);

if (rs.next()) {

t hrow new Exception("Error: Select returned
multiple rows");
} else { // No action

}
} else { throw new Exception("Error: Select returned no rows");
}
return "- Rowwith id=1: name("+ nane +)

+ " street(" + hone.street +) zip("+ honme.zip +);

The callAction() method

/1 A JDBCExanpl es nethod to call a stored procedure,
/1 passing input and output paraneters of datatype String
/1 and Address.

/1 This method illustrates callable statenments, paraneter narkers,

// and result sets.

public static String call Acti on(Connection con)
throws Exception {

Cal | abl eStatenent cs = con.prepareCall("{call inoutproc
(22,2, 2 2)}");
int id =1

String newNane = "Frank Farr";

Addr ess newHonme = new Address("123 Farr Lane", "87654");
cs.setInt(1l, id);

cs.setString(2, newNane);

cs.set Obj ect (3, newHone);

cs.registerQut Paraneter (4, java.sql.Types. VARCHAR);
cs.registerQut Paraneter (5, java.sql.Types. JAVA OBJECT);
int res = cs. executeUpdate();

String ol dName = cs.getString(4);

Addr ess ol dHome = (Address)cs. get Obj ect (5);

return "- Od values of rowwth id=1: name("+ol dNane+)

Java in Adaptive Server Enterprise

71

The JDBCExamples class

street (" + oldHone.street + ") zip("+ oldHone.zip +);

72 Adaptive Server Enterprise

CHAPTER 5 SQLJ Functions and Stored
Procedures

This chapter describes how to wrap Java methods in SQL names and use

them as Adaptive Server functions and stored procedures.

Name Page
Overview 73
Invoking Java methods in Adaptive Server 76
Using Sybase Central to manage SQL J functions and procedures 78
SQL J user-defined functions 79
SQLJ stored procedures 84
Viewing information about SQL J functions and procedures 95
Advanced topics 95
SQLJ and Sybase implementation: a comparison 100
SQLJExamples class 103

Overview

You can enclose Java static methods in SQL wrappers and use them

exactly as you would Transact-SQL stored procedures or built-in

functions. This functionality:

¢ AllowsJavamethodsto return output parametersand result setsto the

calling environment.

e Complieswith Part 1 of the ANSI SQL J standard specification.
* Allowsyou to take advantage of traditional SQL syntax, metadata,

and permission capabilities.

« Allowsyou to use existing Java methods as SQL J procedures and
functions on the server, on the client, and on any SQL J-compliant,

third-party database.

Java in Adaptive Server Enterprise

73

Overview

O Creating a SQLJ stored procedure or function

Perform these stepsto create and execute a SQLJ stored procedure or function.

1 Create and compile the Java method. Install the method classin the
database using the installjava utility.

Refer to Chapter 2, “ Preparing for and Maintaining Javain the Database,”
for information on creating, compiling, and installing Java methods in
Adaptive Server.

2 Using the SQLJ create procedure or create function statement, define a
SQL name for the method.

3 Executethe procedureor function. The examplesin thischapter use JDBC
method calls or isgl. You can aso execute the method using Embedded
SQL or ODBC.

Compliance with SQLJ Part 1 specifications

General issues

74

Adaptive Server SQL Jstored procedures and functions comply with SQL JPart
1 of the standard specifications for using Javawith SQL. See “ Standards’ on
page 4 for adescription of the SQLJ standards.

Adaptive Server supports most features described in the SQLJ Part 1
specification; however, there are some differences. Unsupported features are
listed in Table 5-3 on page 101; partially supported features are listed in
Table 5-4 on page 101. Sybase-defined features—those not defined by the
standard but |eft to the implementation—are listed in Table 5-5 on page 102.

In those instances where Sybase proprietary implementation differs from the
SQLJ specifications, Sybase supports the SQLJ standard. For example, non-
Java Sybase SQL stored procedures support two parameter modes: in and inout.
The SQLJ standard supports three parameter modes: in, out, and inout. The
Sybase syntax for creating SQLJ stored procedures supports all three
parameter modes.

This section describes general issues and constraints that apply to SQLJ
functions and stored procedures.

» Only public static (class) methods can be referenced in a SQL J function or
stored procedure.

Adaptive Server Enterprise

CHAPTER 5 SQLJ Functions and Stored Procedures

« Datatype mapping is checked when the SQLJ routine is created. During
the execution of aSQL Jroutine, datais passed from SQL to Javaand back
to SQL. Any data conversions required during execution must follow the
rules for datatype mapping outlined in the JDBC standard.

Refer to “Mapping Java and SQL datatypes’ on page 95 for a discussion
of datatype mapping and conversions for SQL J routines.

e If amethod referenced by a SQLJ function or stored procedure invokes
SQL, returns parameters from the SQL system to the calling environment,
or returns result sets from SQL to the calling environment, you must use
an Adaptive Server JDBC interface, such as Sybase jConnect or the
internal Adaptive Server JIDBC driver, that enables object-oriented access
to the relational database.

Security and permissions

Sybase provides different security models for SQL J stored procedures and
SQLJ functions.

SQL J functions and user-defined functions (UDFs) (see “Invoking Java
methods in SQL” on page 28) use the same security model. Permission to
execute any UDF or SQLJ function is granted implicitly to public. If the
function performs SQL queries via JDBC, permission to access the datais
checked against the invoker of the function. Thus, if user A invokes afunction
that accessestablet1, user A must have select permission on t1 or the query
fails.

SQL J stored procedures use the same security model as Transact-SQL stored
procedures. The user must be granted explicit permission to executea SQL Jor
Transact-SQL stored procedure. |If a SQLJ procedure performs SQL queries
via JDBC, implicit permission grant support is applied. This security model
allows the owner of the stored procedure, if the owner owns all SQL objects
referenced by the procedure, to grant execute permission on the procedure to
another user. The user who has execute permission can execute all SQL queries
in the stored procedure, even if the user does not have permission to access
those objects.

For a more detailed description of security for stored procedures, see the
System Administration Guide.

Java in Adaptive Server Enterprise 75

Invoking Java methods in Adaptive Server

SQLJExamples

The examples used in this chapter assume a SQL table called sales_emps with
these columns:

name — the employee’s name

id — the employee’s identification number

state — the state in which the employee is located
sales —amount of the employee’s sales

jobcode — the employee’s job code

The table definition is:

create tabl e sal es_enps
(nanme varchar(50), id char(5),
state char(20), sales deciml (6, 2),
j obcode integer null)

he example classis SQLJExamples, and the methods are:

region() —mapsaU.S. state code to aregion number. The method does not

use SQL.

correctStates() — performs a SQL update command to correct the spelling
of state codes. Old and new spellings are specified by input parameters.

bestTwoEmps() — determines the top two employees by their sales records
and returns those values as output parameters.

SQLJExamplesorderedEmps() — creates a SQL result set consisting of
selected employeerows ordered by valuesin the sales column, and returns
the result set to the client.

job() — returns a string value corresponding to an integer job code value.

See “ SQL JExamples class’ on page 103 for the text of each method.

Invoking Java methods in Adaptive Server

You can invoke Java methods in two different waysin Adaptive Server:

76

Invoke Javamethods directly in SQL. Directionsfor invoking methodsin
thisway are presented in Chapter 3, “Using Java Classes in SQL.”

Adaptive Server Enterprise

CHAPTER 5 SQLJ Functions and Stored Procedures

Invoking Java
methods directly with
their Java names

Invoking Java
methods indirectly
using SQLJ

e Invoke Java methods indirectly using SQLJ stored procedures and
functions that provide Transact-SQL aliases for the method name. This
chapter describes invoking Java methods in this way.

Whichever way you choose, you must first create your Javamethodsand install
them in the Adaptive Server database using the installjava utility. See Chapter
2, “Preparing for and Maintaining Javain the Database,” for more
information.

You can invoke Java methods in SQL by referencing them with their fully
qualified Java names. Reference instances for instance methods, and either
instances or classes for static methods.

You can use static methods as user-defined functions (UDFs) that return a
valueto the calling environment. You can use aJava static method asaUDFin
stored procedures, triggers, where clauses, select statements, or anywhere that
you can use a built-in SQL function.

When you call a Java method using its name, you cannot use methods that
return output parameters or result sets to the calling environment. A method
can manipulate the data it receives from a JDBC connection, but the method
can only return the single return value declared in its definition to the calling
environment.

You cannot use cross-database invocations of UDF functions.

See Chapter 3, “Using JavaClassesin SQL,” for information about using Java
methods in this way.

You can invoke Java methods as SQL J functions or stored procedures. By

wrapping the Java method in a SQL wrapper, you take advantage of these

capabilities:

e You can use SQLJ stored procedures to return result sets and output
parameters to the calling environment.

e You can take advantage of SQL metadata capabilities. For example, you
can view alist of al stored procedures or functionsin the database.

e SQLJprovidesaSQL name for amethod, which allowsyou to protect the
method invocation with standard SQL permissions.

e Sybase SQLJ conforms to the recognized SQLJ Part 1 standard, which
allows you to use Sybase SQL J procedures and functionsin conforming
non-Sybase environments.

e You can invoke SQLJ functions and SQL J stored procedures across
databases.

Java in Adaptive Server Enterprise 77

Using Sybase Central to manage SQLJ functions and procedures

e Because Adaptive Server checks datatype mapping when the SQLJ
routineis created, you need not be concerned with datatype mapping when
executing the routines.

You must reference static methods in a SQLJ routine; you cannot reference
instance methods.

This chapter describes how you can use Java methods as SQL J stored
procedures and functions.

Using Sybase Central to manage SQLJ functions and

procedures

78

You can manage SQL Jfunctions and procedures from the command line using
isgl and from the Adaptive Server plug-in to Sybase Central. From the
Adaptive Server plug-in you can:

e Createa SQLJfunction or procedure

» Execute a SQLJ function or procedure

* View and modify the properties of a SQLJfunction or procedure
» Deletea SQLJfunction or procedure

* View the dependencies of a SQLJ function or procedure

» Create permissions for a SQL J procedure

The following procedures describes how to create and view the properties of a
SQLJroutine. You can view dependencies and create and view permissions
from the routine’s property sheet.

Creating a SQLJ function/procedure

First, create and compile the Java method. Install the method classin the
database using installjava. Then follow these steps:

1 Start the Adaptive Server plug-in and connect to Adaptive Server.

2 Double-click on the database in which you want to create the routine.
3 Open the SQLJ Procedures/SQL J Functions folder.

4 Double-click the Add new Java Stored Procedure/Function icon.

Adaptive Server Enterprise

CHAPTER 5 SQLJ Functions and Stored Procedures

5

Use the Add new Java Stored Procedure/Function wizard to create the
SQLJ procedure or function.

When you have finished using the wizard, the Adaptive Server plug-in
displays the SQL J routine you have created in an edit screen, where you
can modify the routine and execute it.

O To view the properties of a SQLJ function or procedure

1

a b~ W DN

Start the Adaptive Server plug-in and connect to Adaptive Server.
Double-click on the database in which the routineis stored.

Open the SQLJ Procedures/SQL J Functions folder.

Highlight a function or procedure icon.

Select File | Properties.

SQLJ user-defined functions

Thecreate function command specifiesa SQL Jfunction name and signature for
a Java method. You can use SQL J functions to read and modify SQL and to
return a value described by the referenced method.

The SQLJ syntax for create function is:

create function [owner].sqgl _function_nane
([sql _paraneter _nane sql _dat at ype
[(length)| (precision[, scale])]
[, sqgl _parameter_nanme sqgl _datatype
[(Tength) | (precision[, scale])]]
1)
returns sql _datatype
[(length)| (precision[, scale])]
[rmodi fies sqgl data]
[returns null on null input
called on null input]
[deterministic | not determnistic]
[export abl e]
| anguage j ava
paraneter style java
external name ’'java_nethod_nane
[([java_datatype[{, java_datatype }
DD

Java in Adaptive Server Enterprise 79

SQLJ user-defined functions

80

When creating a SQL J function:

The SQL function signatureisthe SQL datatype sgl_datatype of each
function parameter.

To comply with the ANSI standard, do not include an @ sign before
parameter names.

Sybase adds an @ sign internally to support parameter name binding. You
will seethe @ sign when using sp_help to print out information about the
SQL J stored procedure.

When creating a SQL J function, you must include the parentheses that
surround the sgl_parameter_nameand sgl_ datatype information—even if
you do not include that information.

For example:

create function sqlj_fc()
| anguage j ava
paraneter style java
external name ' SQLJExanpl es. net hod’

The modifies sql data clause specifies that the method invokes SQL
operations and reads and modifies SQL data. Thisisthedefault value. You
do not need to include it except for syntactic compatibility with the SQLJ
Part 1 standard.

esreturns null on null input and called on null input specify how Adaptive
Server handles null arguments of a function call. returns null on null input
specifiesthat if the value of any argument is null at runtime, the return
value of the function is set to null and the function body is not invoked.
called on null input is the default. It specifies that the function isinvoked
regardless of null argument values.

Function calls and null argument values are described in detail in
“Handling nulls in the function call” on page 84.

You can include the deterministic or not deterministic keywords, but
Adaptive Server does not use them. They are included for syntactic
compatibility with the SQLJ Part 1 standard.

Clauses exportable keyword specifies that the functionisto run on a
remote server using Sybase OmniConnect™ capabilities. Both the
function and the method on which it is based must be installed on the
remote server.

Adaptive Server Enterprise

CHAPTER 5 SQLJ Functions and Stored Procedures

Writing the Java
method

Creating the SQLJ
function

Clauseslanguage java and parameter style java specify that the referenced
method iswritten in Javaand that the parameters are Java parameters. You
must include these phrases when creating a SQL J function.

The external name clause specifies that the routine is not written in SQL
and identifies the Java method, class and, package name (if any).

The Java method signature specifies the Java datatype java_datatype of
each method parameter. The Java method signatureis optional. If it isnot
specified, Adaptive Server infersthe Java method signature from the SQL
function signature.

Sybase recommends that you include the method signature asthis practice
handles all datatype translations. See “Mapping Java and SQL datatypes’
on page 95.

You can define different SQL names for the same Java method using
create function and then use them in the same way.

Before you can create a SQL J function, you must write the Java method that it
references, compile the method class, and install it in the database.

In this example, SQLJExamples.region() maps a state code to aregion number
and returns that number to the user.

public static int region(String s)

throws SQ.Exception {

s =s.trim);

if (s.equals(“MN') || s.equals(“VT") ||
s.equal s(“NH')) return 1;

if (s.equals(“FL") || s.equals(“GA") ||
s.equal s(“AL")) return 2;

if (s.equals(“CA") || s.equals(“AZ") ||
s.equal s(“NV')) return 3;

el se throw new SQLExcepti on
(“I'nvalid state code”, “X2001");

After writing and installing the method, you can create the SQL J function. For
example:

create function region_of (state char(20))
returns integer

| anguage j ava paraneter style java

ext ernal name
' SQLJExanpl es. regi on(java.l ang. String)'

Java in Adaptive Server Enterprise 81

SQLJ user-defined functions

Calling the function

The SQLJ create function statement specifies an input parameter (st at e
char (20)) and an integer return value. The SQL function signatureischar(20).
The Java method signature is java.lang.String.

You can call a SQLJ function directly, asif it were a built-in function. For
example;

sel ect nane, region_of(state) as region
from sal es_enps
where regi on_of (state)=3

Note The search sequence for functionsin Adaptive Server is:
1 Built-in functions

2 SQLJfunctions

3 Java-SQL functionsthat are called directly

Handling null argument values

82

Java class datatypes and Java primitive datatypes handle null argument values
in different ways.

e Javaobject datatypesthat are classes—such asjava.lang.Integer,
java.lang.String, java.lang.byte[], and java.sql. Timestamp—can hold both
actual values and null reference values.

e Javaprimitive datatypes—such asboolean, byte, short, and int—have no
representation for anull value. They can hold only non-null values.

When a Java method isinvoked that causes a SQL null value to be passed as
an argument to a Java parameter whose datatype isa Javaclass, it is passed as
aJavanull reference value.When a SQL null valueis passed as an argument to
aJava parameter of a Java primitive datatype, however, an exception israised
because the Java primitive datatype has no representation for a null value.

Typicaly, you will write Java methods that specify Java parameter datatypes

that are classes. In this case, nulls are handled without raising an exception. If
you choose to write Java functions that use Java parameters that cannot handle
null values, you can either;

e Include the returns null on null input clause when you create the SQLJ
function, or

Adaptive Server Enterprise

CHAPTER 5 SQLJ Functions and Stored Procedures

¢ Invokethe SQLJfunction using acase or other conditional expression to
test for null valuesand call the SQL Jfunction only for the non-null values.

You can handle expected nullswhen you create the SQL Jfunction or when you
call it. The following sections describe both scenarios, and reference this
method:

public static String job(int jc)
throws SQ.Exception {

if (jc==1) return “Adnmin”;

else if (jc==2) return “Sal es”;

else if (jc==3) return “Cerk”;

el se return “unknown j obcode”;

}

Handling nulls when creating the function

If null values are expected, you can include the returns null on null input clause
when you create the function. For example;

create function job_of (jc integer)
returns varchar (20)

returns null on null input

| anguage j ava paraneter style java

external nanme ' SQLJExanpl es.job(int)’

You can then call job_of in thisway:

sel ect nane, job_of(jobcode)
from sal es_enps
where job_of (j obcode) <> “Adm n”

When the SQL system evaluates the call job_of(jobcode) for arow of
sales_emps in which the jobcode column is null, the value of the call is set to
null without actually calling the Javamethod SQLJExamples.job. For rowswith
non-null values of the jobcode column, the call is performed normally.

Thus, when a SQL J function created using the returns null on null input clause
encounters a null argument, the result of the function call is set to null and the
function is not invoked.

Note If youinclude the returns null on null input clause when creating a SQLJ
function, the returns null on null input clause appliesto all function parameters,
including nullable parameters.

Java in Adaptive Server Enterprise 83

SQLJ stored procedures

If you include the called on null input clause (the default), null arguments for
non-nullable parameters generates an exception.

Handling nulls in the function call

You can use a conditiona function call to handle null values for non-nullable
parameters. The following example uses a case expression:

sel ect nane,
case when jobcode is not null
t hen job_of (j obcode)
el se null end
from sal es_enps where
case when jobcode is not null
t hen job_of (j obcode)
el se null end <> “Admin”

In this example, we assume that the function job_of was created using the
default clause called on null input.

Deleting a SQLJ function name

You can delete the SQL J function name for a Java method using the drop
function command. For example, enter:

drop function region_of

which deletes the region_of function name and its reference to the
SQLJExamples.region method. drop function does not affect the referenced Java
method or class.

See the Reference Manual for complete syntax and usage information.

SQLJ stored procedures

84

Using Java-SQL capahilities, you can install Java classes in the database and
then invoke those methods from a client or from within the SQL system. You
can also invoke Java static (class) methods in another way—as SQL J stored
procedures.

SQL J stored procedures:

Adaptive Server Enterprise

CHAPTER 5 SQLJ Functions and Stored Procedures

e Canreturn result sets and/or output parameters to the client
* Behave exactly as Transact-SQL stored procedures when executed
e Canbecaled from the client using ODBC, isql, or JIDBC

e Can be caled within the server from other stored procedures or native
Adaptive Server IDBC

The end user need not know whether the procedure being called isa SQLJ
stored procedure or a Transact-SQL stored procedure. They are both invoked
in the same way.

The SQLJ syntax for create procedure is:

create procedure [owner.]sql _procedure_nane

([[in] out | inout] sql_paraneter_nane
sql _datatype [(|ength)
(precision[, scale])]

[, [in] out | inout] sql_paraneter_nane
sql _datatype [(|ength)
(precision[, scale]) 1]

1)

[rmodi fies sqgl data]

[dynamic result sets integer]

[deterministic | not deterministic]

| anguage j ava

paraneter style java

external nane 'java_nethod_nane
[([java_datatype[, java_datatype

1D

Note Tocomply withthe ANSI standard, the SQL Jcreate procedure command
syntax is different from syntax used to create Sybase Transact-SQL stored
procedures.

Refer to the Reference Manual for a detailed description of each keyword and
option in this command.

When creating SQL J stored procedures;

e TheSQL proceduresignatureisthe SQL datatype sql_datatype of each
procedure parameter.

e When creating a SQL J stored procedure, do not include an @ sign before
parameter names. This practise is compliant with the ANSI standard.

Java in Adaptive Server Enterprise 85

SQLJ stored procedures

86

Sybase adds an @ sign internally to support parameter name binding. You
will seethe @ sign when using sp_help to print out information about the
SQL J stored procedure.

When creating a SQL J stored procedure, you must include the parentheses
that surround the sgl_parameter_name and sgl_datatype information—
even if you do not include that information.

For example:

create procedure sqlj_sproc ()
| anguage j ava
paraneter style java
external nanme ‘ SQLJExanpl es. net hodl’

You can include the keywords modifies sqgl data to indicate that the method
invokes SQL operations and reads and modifies SQL data. Thisisthe
default value.

You must include the dynamic result sets integer option when result sets
are to be returned to the calling environment. Use the integer variable to
specify the maximum number of result sets expected.

You can include the keywords deterministic or not deterministic for
compatibility with the SQL J standard. However, Adaptive Server doesnot
make use of this option.

You must include the language java parameter and style java keywords,
which tell Adaptive Server that the external routineiswritten in Javaand
the runtime conventions for arguments passed to the external routine are
Java conventions.

The external name clause indicates that the external routine iswrittenin
Javaand identifies the Java method, class, and package name (if any).

The Java method signature specifies the Java datatype java_datatype of
each method parameter. The Java method signature is optional. If oneis
not specified, Adaptive Server infers one from the SQL procedure
signature.

Sybase recommends that you include the method signature asthis practice
handles all datatype translations. See“Mapping Java and SQL datatypes’
on page 95 for more information.

You can define different SQL names for the same Java method using
create procedure and then use them in the same way.

Adaptive Server Enterprise

CHAPTER 5 SQLJ Functions and Stored Procedures

Modifying SQL data

You can use a SQL J stored procedure to modify information in the database.
The method referenced by the SQLJ procedure must be either:

* A method of typevoid, or

* A method with an int return type (incorporation of theint return typeisa
Sybase extension of the SQLJ standard).

Writing the Java Themethod SQLJExamples.correctStates() performsaSQL update statement to
method correct the spelling of state codes. Input parameters specify the old and new
spellings. correctStates() is a void method; no value is returned to the caller.

public static void correctStates(String ol dSpelling,
String newSpelling) throws SQ.Exception {

Connection conn = null;
Prepar edSt at emrent pstmt = nul | ;
try {
Cl ass. f or Name(” sybase. asej dbc. ASEDri ver”);
conn = Driver Manager. get Connecti on
(“j dbc: defaul t: connection”);
}
catch (Exception e) {
Systemerr.println(e.getMessage() +
“:error in connection”);

}
try {
pstmt = conn. prepar eSt at enent
(“UPDATE sal es_enps SET state = ?
WHERE state = ?");
pstnt.set.String(1, newSpelling);
pstnt.set.String(2, oldSpelling);
pst nt . execut eUpdat e();
}

catch (SQLException e) {
Systemerr.println(“SQ.Exception: “ +
e.get ErrorCode() + e.getMessage());

}
return;
}
Creating the stored Before you can call a Javamethod with a SQL name, you must create the SQL
procedure name for it using the SQLJ create procedure command. The modifies sql data

clauseis optional.

create procedure correct_states(old char(20),

Java in Adaptive Server Enterprise 87

SQLJ stored procedures

Calling the stored
procedure

not ol d char (20))

nodi fies sql data

| anguage java paraneter style java

ext ernal nane
" SQLJExanpl es. correct St ates
(java.lang. String, java.lang.String)’

The correct_states procedure has a SQL procedure signature of char(20),
char(20). The Java method signature is java.lang.String, java.lang.String.

You can execute the SQL J procedure exactly as you would a Transact-SQL
procedure. In this example, the procedure executes from isql:

execute correct_states 'CGEO, 'GA

Using input and output parameters

88

Javamethods do not support output parameters. When you wrap a Javamethod
in SQL, however, you can take advantage of Sybase SQL J capabilities that
allow input, output, and input/output parameters for SQL J stored procedures.

When you create a SQL J procedure, you identify the mode for each parameter
asin, out, Or inout.

» Forinput parameters, use thein keyword to qualify the parameter. in isthe
default; Adaptive Server assumes an input parameter if you do not enter a
parameter mode.

» For output parameters, use the out keyword.

» For parameters that can pass val ues both to and from the referenced Java
method, use the inout keyword.

Note You create Transact-SQL stored procedures using only thein and out
keywords. The out keyword corresponds to the SQL Jinout keyword. See the
create procedure reference pagesin the Adaptive Server Reference Manual for
more information.

To create a SQL J stored procedure that defines output parameters, you must:

» Definethe output parameter(s) using either the out or inout option when
you create the SQLJ stored procedure.

» Declare those parameters as Java arrays in the Java method. SQL J uses
arrays as containers for the method's output parameter values.

Adaptive Server Enterprise

CHAPTER 5 SQLJ Functions and Stored Procedures

For example, if you want an Integer parameter to return avalue to the
caller, you must specify the parameter type as Integer[] (an array of Integer)

in the method.

The array object for an out or inout parameter is created implicitly by the
system. It has asingle element. The input value (if any) is placed in the

first (and only)

element of the array before the Java method is called.

When the Java method returns, the first element is removed and assigned
tothe output variable. Typically, thiselement will be assigned anew value
by the called method.

The following examples illustrate the use of output parameters using a Java
method bestTwoEmps() and a stored procedure best2 that references that

method.

Writing the Java
method

The SQLJExamples.bestTwoEmps() method returns the name, ID, region, and
sales of the two employees with the highest sales performance records. The

first eight parameters are output parameters requiring a containing array. The
ninth parameter is an input parameter and does not require an array.

public static void best TwoEmps(String[] ni,

String[] idl, int[] r1,
Bi gDeci mal [] s1, String[] n2,
String[] id2, int[] r2, BigDecimal[] s2,
int regionParnm) throws SQLException {

nl[o] P “****”:

idi[0] =

ri[0] = 0;

s1[0] = new Bi gbeci nal (0):

n2[0] = “****”;

id2[0] = **;

r2[0] = 0;

s2[0] = new Bi gDeci mal (0);

try {

Connection conn

Dri ver Manager . get Connecti on

(“j dbc: defaul t: connection”);

j ava.
conn. pr epar eSt at enent (“ SELECT nane,

+

+
+
+

stnt.
Resul t Set

Java in Adaptive Server Enterprise

sql . PreparedSt at ement stnt
id,”
“region_of (state) as region, sales FROW
“sal es_enps WHERE"

“regi on_of (state)>? AND’

“sales IS NOT NULL ORDER BY sal es DESC’);
setlnteger (1, regionParm;

r stnt. executeQuery();

89

SQLJ stored procedures

Creating the SQLJ
procedure

Calling the procedure

90

if(r.next()) {
nl[0] = r.getString(“name”);
idl[0] = r.getString(“id");
r1[0] r.getint(“region”);
s1[0] r. get Bi gDeci mal (“sal es”);

}

el se return;

if(r.next()) {
n2[0] = r.getString(“nane”);
id2[0] = r.getString(“id");
r2[0] r.getint(“region”);
s2[0] r.get Bi gDeci nal (“sal es”);

}

el se return;
}
catch (SQLException e) {
Systemerr.println(“SQ.Exception: “ +
e.getError Code() + e.getMssage());
}

Create a SQL name for the bestTwoEmps method. The first eight parameters
are output parameters; the ninth is an input parameter.

create procedure best2

(out nl varchar(50), out idl varchar(5),

out sl decinmual (6,2), out rl integer,

out n2 varchar(50), out id2 varchar(50),

out r2 integer, out s2 decinal (6, 2),

in region integer)

| anguage j ava

paraneter style java

external nane
' SQLJExanpl es. best TwoEnps (j ava.l ang. Stri ng,
java.lang. String, int, java.math. Bi gbeci nal,
java.lang. String, java.lang.String, int,
java. mat h. Bi gDeci mal , int)'

The SQL procedure signature for best2 is: varchar(20), varchar(5), decimal (6,2)
and so on. The Javamethod signatureis String, String, int, BigDecimal and so on.

After the method isinstalled in the database and the SQL J procedure
referencing the method has been created, you can call the SQLJ procedure.

At runtime, the SQL system:

Adaptive Server Enterprise

CHAPTER 5 SQLJ Functions and Stored Procedures

1 Createsthe needed arraysfor the out and inout parameters when the SQL J
procedure is called.

2 Copiesthe contents of the parameter arrays into the out and inout target
variables when returning from the SQLJ procedure.

The following example calls the best2 procedure from isql. The value for the
region input parameter specifies the region number.

declare @1 varchar(50), @d1l varchar(5),
@1 decimal (6,2), @1 integer, @2 varchar(50),
@d2 varchar(50), @2 integer, @2 decinmal (6, 2),
@ egi on integer

select @egion = 3

execute best2 @1 out, @dl out, @1 out, @1 out,
@2 out, @d2 out, @2 out, @2 out, @egion

Note Adaptive Server calls SQLJ stored procedures exactly asit calls
Transact-SQL stored procedures. Thus, when using isql or any other non-Java
client, you must precede parameter names by the @ sign.

Returning result sets

A SQL result set is a sequence of SQL rowsthat is delivered to the calling
environment.

When a Transact-SQL stored procedure returns one or more results sets, those
result sets are implicit output from the procedure call. That is, they are not
declared as explicit parameters or return values.

Java methods can return Java result set objects, but they do so as explicitly
declared method values.

To return a SQL-style result set from a Java method, you must first wrap the
Javamethod in a SQL J stored procedure. When you call the method asa SQL J
stored procedure, the result sets, which are returned by the Javamethod as Java
result set objects, are transformed by the server to SQL result sets.

When writing the Java method to be invoked as a SQL J procedure that returns
aSQL-style result set, you must specify an additional parameter to the method
for each result set that the method can return. Each such parameter isasingle-
element array of the Java ResultSet class.

Java in Adaptive Server Enterprise 91

SQLJ stored procedures

This section describesthe basi c process of writing amethod, creating the SQLJ
stored procedure, and calling the method. See “ Specifying Java method
signatures explicitly or implicitly” on page 97 for more information about
returning result sets.

Writing the Java Thefollowing method, SQLIJExamples.orderedEmps, invokes SQL, includesa
method ResultSet parameter, and uses JDBC calls for securing a connection and
opening a statement.

public static void orderedEnps
(int regionParm ResultSet[] rs) throws
SQLException {

Connection conn = null;
Pr epar edSt at ement pstmt = nul | ;

try {
d ass. f or Nane

(“sybase. asej dbc. ASEDri ver”);
Connection conn =
Dri ver Manager . get Connecti on
(“j dbc: def aul t: connection”);
}
catch (Exception e) {
Systemerr.println(e.get Message()
+ “:error in connection”);

}
try {
j ava. sql . Prepar edSt at enent
stnt = conn. prepar eSt at enent
(“SELECT nane, region_of(state)”
“as region, sales FROM sal es_enps”
“WHERE regi on_of (state) > ? AND’
“sales I'S NOT NULL”
“ORDER BY sal es DESC’);
stnt.setlnt(1, regionParn;
rs[{0] = stnt.executeQuery();
return;
}

catch (SQLException e) {
Systemerr.println(“SQ.Exception:”
+ e.get ErrorCode() + e.getMessage());
}

return;

92 Adaptive Server Enterprise

CHAPTER 5 SQLJ Functions and Stored Procedures

Creating the SQLJ
stored procedure

orderedEmps returns asingle result set. You can also write methods that return
multiple result sets. For each result set returned, you must:

¢ Include a separate ResultSet array parameter in the method signature.
« Create a Statement object for each result set.
e Assign each result set to the first element of its ResultSet array.

Adaptive Server always returns the current open ResultSet object for each
Statement object. When creating Java methods that return result sets:

« Create a Statement object for each result set that isto be returned to the
client.

« Do not explicitly close ResultSet and Statement objects. Adaptive Server
closes them automatically.

Note Adaptive Server ensuresthat ResultSet and Statement objectsare not
closed by garbage collection unless and until the affected result sets have
been processed and returned to the client.

« If somerowsof theresult set arefetched by calls of the Javanext() method,
only the remaining rows of the result set are returned to the client.

When you create a SQL J stored procedure that returns result sets, you must
specify the maximum number of result sets that can be returned. In this
example, the ranked_emps procedure returns a single result set.

create procedure ranked_enps(region integer)
dynamic result sets 1
| anguage j ava paraneter style java
external nanme ' SQLJExanpl es. or der edEnps(i nt,
ResultSet[]’

If ranked_emps generates more result sets than are specified by create
procedure, awarning displays and the procedure returns only the number of
result sets specified. Aswritten, the ranked_emps SQL J stored procedures
matches only one Java method.

Note Somerestrictionsapply to method overloading when you infer amethod
signature involving result sets. See “Mapping Java and SQL datatypes’ on
page 95 for more information.

Java in Adaptive Server Enterprise 93

SQLJ stored procedures

Calling the procedure

After you have installed the method's class in the database and created the
SQL Jstored procedure that references the method, you can call the procedure.
You can write the call using any mechanism that processes SQL result sets.

For example, to call the ranked_emps procedure using JDBC, enter the
following:

java.sql.Call abl eStatenent stnt =
conn. prepareCall (“{call ranked_ems(?)}");
stnt.setlnt(1,3);
ResultSet rs = stnt.executeQuery();
while (rs.next()) {
String name = rs.getString(1);
int.region = rs.getlnt(2);
Bi gDeci mal sales = rs.get. Bi gDeci nmal (3);

Systemout.print(“Nane = “ + nane);
Systemout.print(“Region = “ + region);
Systemout.print(“Sales = “ + sales);

Systemout.printin():
}

Theranked_emps procedure supplies only the parameter declared in the create
procedure statement. The SQL system supplies an empty array of ResultSet
parameters and callsthe Java method, which assigns the output result set to the
array parameter. When the Javamethod compl etes, the SQL system returnsthe
result set in the output array element asa SQL result set.

Note You can return result sets from atemporary table only when using an
external JDBC driver such as jConnect. You cannot use the Adaptive Server
native JDBC driver for thistask.

Deleting a SQLJ stored procedure name

94

You can delete the SQL J stored procedure name for a Java method using the
drop procedure command. For example, enter:

drop procedure correct_states

which deletes the correct_states procedure name and its reference to the
SQLJExamples.correctStates method. drop procedure does not affect the Java
class and method referenced by the procedure.

Adaptive Server Enterprise

CHAPTER 5 SQLJ Functions and Stored Procedures

Viewing information about SQLJ functions and

procedures

Several system stored procedures can provide information about SQL J
routines:

« sp_depends lists database objects referenced by the SQL J routine and
database objects that reference the SQL J routine.

« sp_help lists each parameter name, type, length, precision, scale,
parameter order, parameter mode and return type of the SQLJ routine.

e sp_helpjava lists information about Java classes and JARs installed in the
database. The depends parameter lists dependencies of specified classes
that are named in the external name clause of the SQLJ create function or
SQLJ create procedure statement.

¢ sp_helprotect reportsthe permissionsof SQLJstored proceduresand SQLJ
functions.

See the Adaptive Server Reference Manual for complete syntax and usage
information for these system procedures.

Advanced topics

The following topics present a detailed description of SQLJtopicsfor
advanced users.

Mapping Java and SQL datatypes

When you create a stored procedure or function that references a Java method,
the datatypes of input and output parameters or result sets must not conflict

when values are converted from the SQL environment to the Java environment
and back again. The rulesfor how this mapping takes place are consistent with
the JDBC standard implementation. They are shown below andin Table 5-1 on

page 97.

Each SQL parameter and its corresponding Java parameter must be mappable.
SQL and Java datatypes are mappabl e in these ways:

Java in Adaptive Server Enterprise 95

Advanced topics

96

e A SQL datatype and a primitive Java datatype are simply mappable if so
specified in Table 5-1.

e A SQL datatype and anon-primitive Java datatype are object mappable if
so specified in Table 5-1.

e A SQL abstract datatype (ADT) and a non-primitive Java datatype are
ADT mappableif both are the same class or interface.

e A SQL datatype and a Java datatype are output mappable if the Java
datatype is an array and the SQL datatype is simply mappable, object
mappable, or ADT mappable to the Java datatype. For example, character
and String[] are output mappable.

e A Javadatatypeisresult-set mappableif it isan array of the result set-
oriented class: java.sql.ResultSet.

In general, a Java method is mappable to SQL if each of its parametersis
mappable to SQL and itsresult set parameters are result-set mappable and the
return type is either mappable (functions) or void or int (procedures).

Support for int return types for SQLJ stored procedures is a Sybase extension
of the SQLJ Part 1 standard.

Adaptive Server Enterprise

CHAPTER 5 SQLJ Functions and Stored Procedures

Specifying Java
method signatures
explicitly or implicitly

Table 5-1: Simply and object mappable SQL and Java datatypes
Corresponding Java datatypes

SQL datatype

Simply mappable

Object mappable

char/unichar javalang.String

nchar javalang.String
varchar/univarchar javalang.String
nvarchar javalang.String

text javalang.String
numeric java.math.BigDecimal
decimal javamath.BigDecimal
money javamath.BigDecimal
smallmoney java.math.BigDecimal
bit boolean Boolean

tinyint byte Integer

smallint short Integer

integer int Integer

rea float Float

float double Double

double precision double Double

binary byte[]

varbinary byte[]

datetime java.sgl.Timestamp
smalldatetime java.sgl.Timestamp

When you create a SQL J function or stored procedure, you typically specify a
Java method signature. You can also allow Adaptive Server to infer the Java

method signature from the routine's SQL signature according to standard

JDBC datatype correspondence rules described earlier in this section and in

Table 5-1.

Sybase recommendsthat you include the Javamethod signature asthis practise
ensuresthat all datatype translations are handled as specified.

You can alow Adaptive Server to infer the method signature for datatypesthat

are:

e Simply mappable

e ADT mappable

e Output mappable

e Result-set mappable

Java in Adaptive Server Enterprise

97

Advanced topics

Returning result sets
and method
overloading

98

For example, if you want Adaptive Server to infer the method signature for
correct_states, the create procedure statement is;

create procedure correct_states(old char(20),
not ol d char (20))
nmodi fies sql data
| anguage java paraneter style java
ext ernal nanme ‘ SQLJExanpl es. correct St at es’

Adaptive Server infers a Java method signature of java.lang.String and
java.lang.String. If you explicitly add the Java method signature, the create
procedure statement looks like this;

create procedure correct_states(old char(20),
not ol d char (20))
nodi fies sql data
| anguage j ava paraneter style java
ext ernal name ‘ SQLJExanpl es. correct St at es
(java.lang. String, java.lang.String)’

You must explicitly specify the Java method signature for datatypes that are
object mappable. Otherwise, Adaptive Server infers the primitive, simply
mappabl e datatype.

For example, the SQLIExamples.job method contains a parameter of typeint.
(See “Handling null argument values’ on page 82.) When creating a function
referencing that method, Adaptive Server infersaJavasignature of int, and you
need not specify it.

However, suppose the parameter of SQLJExamples.job was JavaInteger, which
is the object-mappabl e type. For example:

public class SQLIExanpl es {
public static String job(Integer jc)
t hrows SQLException ...

Then, you must specify the Java method signature when you create afunction
that referencesit:

create function job_of (jc integer)

external name
" SQLJExanpl es. job(java.l ang. I nteger)’

When you create a SQLJ stored procedure that returns result sets, you specify
the maximum number of result sets that can be returned.

If you specify a Java method signature, Adaptive Server looks for the single
method that matches the method name and signature. For example:

Adaptive Server Enterprise

CHAPTER 5 SQLJ Functions and Stored Procedures

Ensuring signature
validity

create procedure ranked_enps(region integer)
dynamc result sets 1
| anguage j ava paraneter style java
ext ernal name ' SQLJExanpl es. or der edEnps
(int, java.sql.ResultSet[])’

In this case, Adaptive Server resolves parameter types using normal Java
overloading conventions.

Suppose, however, that you do not specify the Java method signature:

create procedure ranked_enps(region integer)
dynamic result sets 1
| anguage java paraneter style java
external name ' SQLJExanpl es. or der edEnps’

If two methods exist, onewith asignature of int, RS[], the other with asignature
of int, RS[1, RS[], Application Server cannot distinguish between the two
methods and the procedurefails. If you alow Adaptive Server to infer the Java
method signature when returning result sets, make sure that only one method
satisfies the inferred conditions.

Note The number of dynamic result sets specified only affects the maximum
number of results that can be returned. It does not affect method overloading.

If an installed class has been modified, Adaptive Server checks to make sure
that the method signature is valid when you invoke a SQL J procedure or
function that references that class. If the signature of amodified method is till
valid, the execution of the SQLJ routine succeeds.

Using the command main method

In aJavaclient, you typically begin Java applications by running the Java
Virtual Machine (VM) on the command main method of aclass. The
JDBCExamplesclass, for example, containsamain method. When you execute
the class from the command line as in the following:

j ava JDBCExanpl es

it is the command main method that executes.

Note You cannot reference a Java main method in a SQL J create function
statement.

Java in Adaptive Server Enterprise 99

SQLJ and Sybase implementation: a comparison

If you reference a Java main method in a SQL J create procedure statement, the
command main method must have the Java method signature St ri ng[] asin:

public static void main(java.lang.String[]) {

If the Java method signature is specified in the create procedure statement, it
must be specified as(j ava. | ang. String[]) . If theJavamethod signatureis
not specified, it isassumedto be (j ava. l ang. String[]).

If the SQL procedure signature contains parameters, those parameters must be
char, unichar, varchar, or univarchar. At runtime, they are passed asa Javaarray
of javalang.String.

Each argument you provide to the SQLJ procedure must be char, unichar,
varchar, univarchar, or aliteral string becauseit is passed to the main method as
an element of the javalang.String array. You cannot use the dynamic result sets

clause when creating a main procedure.

SQLJ and Sybase implementation: a comparison

This section describes differences between SQL JPart 1 standard specifications
and the Sybase proprietary implementation for SQL J stored procedures and
functions.

Table 5-2 describes Adaptive Server enhancements to the SQLJ
implementation.

Table 5-2: Sybase enhancements

Category

SQLJ standard

Sybase implementation

create procedure command

Supports only Java methods that do
not return values. The methods must
have void return type.

Supports Javamethodsthat allow an
integer value return. The methods
referenced in create procedure can
have either void or integer return

types.

create procedure and create function
commands

Supports only SQL datatypesin
create procedure Or create function

parameter list.

Supports SQL datatypes and
nonprimitive Java datatypes as
abstract data types (ADTS).

SQLJ function and SQLJ procedure
invocation

100

Does not support implicit SQL
conversion to SQLJ datatypes.

Supportsimplicit SQL conversionto
SQLJ datatypes.

Adaptive Server Enterprise

CHAPTER 5 SQLJ Functions and Stored Procedures

Category

SQLJ standard

Sybase implementation

SQLJ functions

Does not alow SQLJ functions to
run on remote servers.

Allows SQLJfunctionsto run on
remote servers using Sybase
OmniConnect capabilities.

drop procedure and drop function
commands

Requires complete command name:
drop procedure or drop function.

Supports complete function name
and abridged names: drop proc and
drop func.

Table 5-3 describes SQL J standard features not included in the Sybase
implementation.

Table 5-3: SQLJ features not supported

SQLJ category

SQLJ standard

Sybase implementation

create function command

Allows users to specify the same
SQL name for multiple SQLJ
functions.

Requires unique namesfor all stored
procedure and functions.

utilities

Supports sqlj.install_jar,
sqlj.replace_jar, sqlj.remove_jar, and
similar utilitiesto install, replace,
and remove JAR files.

Supports the installjava utility and
the remove java Transact-SQL
command to perform similar
functions.

Table 5-4 describesthe SQL Jstandard features supported in part by the Sybase
implementation.

Table 5-4: SQLJ features partially supported

SQLJ category

SQLJ standard

Sybase implementation

create procedure and create function
commands

Allows usersto install different
classes with the same name in the
samedatabaseif they arein different
JAR files.

Requires unique class names in the
same database.

create procedure and create function
commands

Supports the key words no sql,
contains sq|, reads sgl data, and
modifies sql data to specify the SQL
operations the Java method can
perform.

Supports modifies sql data only.

create procedure command

Supports java.sql.ResultSet and the
SQL/OLB iterator declaration.

Supports java.sql.ResultSet only.

drop procedure and drop function
commands

Java in Adaptive Server Enterprise

Supportsthekey wordrestrict, which
requires the user to drop all SQL
objects (tables, views, and routines)
that invokethe procedure or function
before dropping the procedure or
function.

Does not support the restrict key
word and functionality.

101

SQLJ and Sybase implementation: a comparison

Table 5-5 describes the SQL J implementation-defined featuresin the Sybase
implementation.

Table 5-5: SQLJ features defined by the implementation

SQLJ category

SQLJ standard

Sybase implementation

create procedure and create function
commands

Supports the deterministic |

not deterministic keywords, which
specify whether or not the procedure
or function always returns the same
values for the out and inout
parameters and the function resullt.

Supports only the syntax for
deterministic | not deterministic, not
the functiondlity.

create procedure and create function
commands

The validation of the mapping
between the SQL signature and the
Java method signature can be
performed either when the create
command is executed or when the
procedure or function isinvoked.
The implementation defines when
the validation is performed.

If the referenced class has been
changed, performs all validations
when the create command is
executed, which enables faster
execution.

create procedure and create function
commands

Can specify the create procedure or
create function commands within
deployment descriptor files or as
SQL DDL statements. The
implementation defines which way
(or ways) the commands are
supported.

Supports create procedure and
create function as SQL DDL
statements outside of deployment
descriptors.

Invoking SQLJ routines

When aJavamethod executesa SQL
statement, any exception conditions
areraised in the Java method as a
Java exception of the
Exception.SQLException subclass.
Theeffect of the exception condition
is defined by the implementation.

Follows the rules for Adaptive
Server IDBC.

Invoking SQLJ routines

102

Theimplementation defineswhether
aJavamethod called using a SQL
name executes with the privileges of
the user who created the procedure
or function or those of theinvoker of
the procedure or function.

SQL J procedures and functions
inherit the security features of SQL
stored procedures and Java-SQL
functions, respectively.

Adaptive Server Enterprise

CHAPTER 5 SQLJ Functions and Stored Procedures

SQLJ category

SQLJ standard

Sybase implementation

drop procedure and drop function
commands

Can specify the drop procedure or
drop function commands within
deployment descriptor filesor as
SQL DDL statements. The
implementation defines which way
(or ways) the commands are
supported.

SQLJExamples class

This section displays the SQLIExamples class used to illustrate SQL J stored

procedures and functions. They arealsoin

Supports create procedure and
create function as SQL DDL
statements outside of deployment
descriptors.

$SYBASE/$SYBASE_ASE/sample/JavaSyl-R2. (UNIX) or %SYBASEY6\Ase-

12 S\sample\Javasgl-R2 (Windows NT).

i mport java.lang. *;
i nport java.sql.*;
inport java.math.*;

static String _url

public class SQ.Exanpl es {

public static int

= “jdbc: defaul t: connection”;

region(String s)

throws SQ.Exception {

s = s.trin();

if (s.equals(“M\N') || s.equals(“VT") ||
s.equal s(“NH')) return 1;

if (s.equals(“FL") || s.equals(“GA") ||
s.equal s(“AL")) return 2;

if (s.equals(“CA") || s.equals(“AZ") ||
s.equal s(“NV’')) return 3;

el se throw new SQLException

(“I'nvalid state code”,

}

“X2001”) :

public static void correctStates
(String ol dSpelling, String newSpelling)

throws SQ.Exception {

Connecti on conn =
Pr epar edSt at enent

Java in Adaptive Server Enterprise

nul | ;
pst nt

= null;

103

SQLJExamples class

try {
d ass. f or Nane

("sybase. asej dbc. ASEDri ver”);
conn = Driver Manager. get Connection(_url);
}
catch (Exception e) {
Systemerr.println(e.get Message() +
“:error in connection”);

}
try {
pstnt = conn. prepareSt at emrent
(“UPDATE sal es_enps SET state = ?
VWHERE state = ?");
pstnt.setString(1, newSpelling);
pstnt.setString(2, ol dSpelling);
pstnt. execut eUpdat e();
}

catch (SQLException e) {
Systemerr.println(“SQ.Exception: “ +
e.getError Code() + e.getMessage());

}
public static String job(int jc)
t hrows SQLException {
if (jc==1) return “Admn”;
else if (jc==2) return “Sal es”;
else if (jc==3) return “derk”;
el se return “unknown jobcode”;
}
public static String job(int jc)
t hrows SQLException {
if (jc==1) return “Admn”;
else if (jc==2) return “Sal es”;
else if (jc==3) return “Cerk”;
el se return “unknown jobcode”;

}

public static void best TwoEnps(String[] n1,
String[] idl, int[] r1,
Bi gDeci nal [] s1, String[] n2,
String[] id2, int[] r2, BigDecimal[] s2,
int regionParm throws SQ.Exception {

nl[0] = dkkkkT

id1[0] = “*;
r1[0] = 0;

104 Adaptive Server Enterprise

CHAPTER 5 SQLJ Functions and Stored Procedures

s1[0] = new Bi gDeci mal (0):
n2[0] = “****”:

id2[0] = “*;

r2[0] = 0;

s2[0] = new Bi gbeci nal (0);
try {

Connection conn = DriverManager. get Connecti on
(“j dbc: defaul t: connection”);
java.sql . PreparedStatenent stnt =
conn. prepar eSt at ement (“ SELECT nane, id,”
+ “region_of (state) as region, sales FROVW
+ “sal es_enps VWHERE"
+ “regi on_of (state)>? AND’
+ “sales |I'S NOT NULL ORDER BY sal es DESC');
stm . setlnteger(1, regionParnj;
ResultSet r = stnt.executeQery();

if(r.next()) {
nl[0] = r.getString(“nane”);
idl[0] =r.getString(“id");
ri[0] r.getlnt(“region”);
s1[0] r.get Bi gDeci mal (“sal es”);

}

el se return;

if(r.next()) {
n2[0] = r.getString(“nane”);
id2[0] = r.getString(“id");
r2[0] =r.getlnt(“region”);
s2[0] = r.getBi gDeci nal (“sal es”);
}
el se return;
}
catch (SQLException e) {
Systemerr.println(“SQException: “ +
e.getErrorCode() + e.getMessage());
}
}

public static void orderedEnmps
(int regionParm ResultSet[] rs) throws
SQLException {

Connection conn = null;
PreparedStatement pstm = null;

Java in Adaptive Server Enterprise 105

SQLJExamples class

106

try {
C ass. f or Nane

(“sybase. asej dbc. ASEDri ver”);
Connection conn =
Dri ver Manager . get Connecti on
(“j dbc: def aul t: connection”);
}
catch (Exception e) {
Systemerr.println(e.get Message()
+ “:error in connection”);

}
try {
j ava. sql . Prepar edSt at enent
stnt = conn. prepar eSt at enent
(“SELECT name, region_of(state)”
“as region, sales FROM sal es_enps”
“WHERE regi on_of (state) > ? AND’
“sales I'S NOT NULL”
“ORDER BY sal es DESC’);
stnt.setlnt(1, regionParn;
rs[0] = stnt.executeQery();
return;
}

catch (SQLException e) {
Systemerr. println(*“SQ.Exception:”
+ e.get ErrorCode() + e.getMessage());
}
return;
return;

Adaptive Server Enterprise

CHAPTER 6 Debugging Java in the Database

This chapter describes the Sybase Java debugger and how you can use it
when developing Javain Adaptive Server.

Name Page
Introduction to debugging Java 107
Using the debugger 108
A debugging tutorial 115

Introduction to debugging Java

You can use the Sybase Java debugger to test Java classes and fix
problems with them.

How the debugger works

The Sybase Java debugger is a Java application that runs on a client
machine. It connects to the database using the Sybase jConnect JDBC
driver.

The debugger debugs classes running in the database. You can step
through the source code for the files as long as you have the Java source
code on thedisk of your client machine. (Remember, the compiled classes
areinstalled in the database, but the source code is not).

Requirements for using the Java debugger
To use the Java debugger, you need:

¢ A Javaruntime environment such as the Sun Microsystems Java
Runtime Environment, or the full Sun Microsystems JDK on your
machine.

Java in Adaptive Server Enterprise 107

Using the debugger

e The source code for your application on your client machine.

What you can do with the debugger
Using the Sybase Java debugger, you can:

» Trace execution — Step line by line through the code of a class running in
the database. You can aso look up and down the stack of functions that
have been called.

* Set breakpoints— Run the code until you hit a breskpoint, and stop at that
point in the code.

» Set break conditions— Breakpointsinclude lines of code, but you can aso
specify conditionswhen the code isto break. For example, you can stop at
alinethetenth timeit is executed, or only if avariable has a particular
value. You can also stop whenever a particular exception isthrown in the
Java application.

» Browse classes— You can browse through the classes installed into the
database that the server is currently using.

* Inspect and set variables — You can inspect the values of variables alter
their value when the execution is stopped at a breakpoint.

* Inspect and break on expressions — You can inspect the value of awide
variety of expressions.

Using the debugger

This section describes how to use the Java debugger. The next section provides
asimpletutorial.

Starting the debugger and connecting to the database

The debugger isthe JAR file Debug.jar, installed in your Adaptive Server
installation directory in $SYBASE/$SYBASE_ASE/debugger. If itisnot already
present, add thisfile as the first element to your CLASSPATH environment
variable.

108 Adaptive Server Enterprise

CHAPTER 6 Debugging Java in the Database

Debug.jar contains many classes. To start the debugger you invoke the
sybase.vm.Debug class, which has amain() method.You can start the debugger
in three ways:

* Run the jdebug script located in $SYBASE/$SYBASE_ASE/debugger.

“A debugging tutorial” on page 115 provides a sample debugging session
using the jdebug script.

* From the command line, enter:
j ava sybase. vm Debug

In the Connect window, enter a URL, user login name, and password to
connect to the database.

¢ From Sybase Central:

a Start Sybase Central and open the Utilities folder, under Adaptive
Server Enterprise.

b Double-click the Java debugger icon in the right panel.

¢ Inthe Connect window, enter aURL, user login name, and password
to connect to the database.

Compiling classes for debugging

Javacompilers such asthe Sun Microsystemsjavac compiler can compile Java
classes at different levels of optimization. You can opt to compile Javacode so
that information used by debuggersis retained in the compiled class files.

If you compile your source codewithout using switchesfor debugging, you can
still step through code and use breakpoints. However, you cannot inspect the
values of local variables.

To compile classes for debugging using the javac compiler, use the -g option:

javac -g O assNane.java

Attaching to a Java VM

When you connect to a database from the debugger, the Connection window
shows all currently active JavaVMs under the user login name. If there are
none, the debugger goes into wait mode. Wait mode works like this:

Java in Adaptive Server Enterprise 109

Using the debugger

The Source window

The debugger windows

110

Each time anew JavaVM is started, it shows up inthelist.

You may choose either to debug the new JavaVM or to wait for another
one to appear.

Once you have passed on aJava VM, you lose your chance to debug that
Java VM. If you then decide to attach to the passed Java VM, you must
disconnect from the database and reconnect. At thistime, the JavaVM
appears as active, and you can attach to it.

The Source window:

Displays Java source code, with line numbers and breakpoint indicators
(an asterisk in the left column).

Displays execution status in the status box at the bottom of the window.

Provides access to other debugger windows from the menu.

The debugger has the these windows:

Breakpoints window — Displays the list of current breakpoints.
Calls window — Displays the current call stack.

Classes window — Displays alist of classes currently loaded in the Java
VM. In addition, this window displays alist of methods for the currently
selected class and alist of static variablesfor the currently selected class.
In this window you can set breakpoints on entry to a method or when a
static variable is written.

Connection window — The Connection window is shown when the
debugger isstarted. You candisplay it againif you wish to disconnect from
the database.

Exceptions window — You can set a particular exception on which to
break, or choose to break on all exceptions.

Inspection window — Displays current static variables, and allows you to
modify them. You can also inspect the value of a Java expression, such as
the following:

e Local variables

Adaptive Server Enterprise

CHAPTER 6 Debugging Java in the Database

e Staticvariables

* Expressions using the dot operator
e Expressions using subscripts|]

« Expressions using parentheses, arithmetic, or logical operators.

For example, the following expressions could be used:

e Localswindow — Displays current local variables, and allows you to

x[i].field
q+1
i =7
(i +1)*3

modify them.

e Status window — Displays messages describing the execution state of the
JavaVM.

Options

The complete set of options for stepping through source code are displayed on

the Run menu. They include the following:

Function

Shortcut key

Description

Run

F5

Continue running until
the next breakpoint, until
the Stop item is selected,
or until execution
finishes.

Step Over

F7 or Space

Steptothenextlineinthe
current method. If the
line steps into a different
method, step over the
method, not into it. Also,
step over any breakpoints
within methods that are
stepped over.

Step Into

Java in Adaptive Server Enterprise

F8ori

Step to the next line of
code. If theline stepsinto
adifferent method, step
into the method.

111

Using the debugger

Function Shortcut key Description

Step Out F11 Complete the current
method, and break at the
next line of the calling
method.

Stop Break execution.

Run to Selected F6 Run until the currently
selected lineis executed
and then break.

Home F4 Select the line where the

execution is broken.

Setting breakpoints

When you set abreakpoint in the debugger, the JavaV M stops execution at that
breakpoint. Once execution is stopped, you can inspect and modify the values
of variablesand other expressionsto better understand the state of the program.
You can then trace through execution step by step to identify problems.

Setting breakpoints in the proper placesis akey to efficiently pinpointing the
problem execution steps.

The Javadebugger allowsyou to set breakpoints not only on aline of code, but
on many other conditions. This section describes how to set breakpoints using
different conditions.

Breaking on aline number

112

When you break on aparticular line of code, execution stopswhenever that line
of codeis executed.

To set abreakpoint on a particular line:
* Inthe Source window, select the line and press F9.
Alternatively, you can double-click aline.

When abreskpoint is set on aline number, the breakpoint is shown in the
Source window by an asterisk in theleft column. If the Breakpoints window is
open, the method and line number is displayed in the list of breakpoints.

You can toggle the breakpoint on and off by repeatedly double-clicking or
pressing FO.

Adaptive Server Enterprise

CHAPTER 6 Debugging Java in the Database

Breaking on a static method

When you break on a method, the break point is set on thefirst line of codein
the method that contains an executable statement.

To set a breakpoint on a static method:
1 From the Source window, choose Break — New. The Break At window is
displayed.

2 Enter the name of a method in which you wish execution to stop. For
example:

JDBCExanpl es. sel ecter
stops execution whenever the JIDBCExamples.selecter() method isentered.

When a breakpoint is set on a method, the breakpoint is shown in the Source
window by an asterisk in the left column of the line where the breakpoint
actually occurs. If the Breakpointswindow is open, the method is displayed in
the list of breakpoints.

Using counts with breakpoints

If you set abreakpoint on aline that isin aloop, or in amethod that is
frequently invoked, you may find that the line is executed many times before
the condition you arereally interested in takes place. The debugger allowsyou
to associate a count with a breakpoint, so that execution stops only when the
line is executed a set number of times.

To associate a count with a breakpoint:

1 From the Source window, select Break - Display. The Breakpoints
window is displayed.

2 Inthe Breakpoints window, click abreakpoint to select it.

3 Select Break - Count. A window is displayed with afield for entering a
number of iterations. Enter an integer value. The execution will stop when
the line has been executed the specified number of times.

Using conditions with breakpoints

The debugger allows you to associate a condition with a breakpoint, so that
execution stops only when the line is executed and the condition is met.

To associate a condition with a breakpoint:

Java in Adaptive Server Enterprise 113

Using the debugger

1 From the Source window, select Break - Display. The Breakpoints
window is displayed.

2 Inthe Breakpoints window, click a breakpoint to select it.

3 Select Break - Condition. A window isdisplayed with afield for entering
an expression. The execution will stop when the condition is true.

The expressions used here are the same as those that can be used in the
Inspection window, and include the following:

* Locad variables

+ Staticvariables

e Expressions using the dot operator
e Expressions using subscripts|]

« Expressions using parentheses, arithmetic, or logical operators.

Breaking when execution is not interrupted

With a single exception, breakpoints can only be set when program execution
isinterrupted. If you clear al breakpoints, and run the program you are
debugging to compl etion, you can no longer set a breakpoint on aline or at the
start of amethod. Also, if aprogram isrunning in aloop, execution is
continuing and is not interrupted.

To debug your program under either of these conditions, select Run - Stop
from the Source window. This stops execution at the next line of Java code that
is executed. You can then set breakpoints at other pointsin the code.

Disconnecting from the database

When the program has run to compl etion, or at anytime during debugging, you
can disconnect from the database from the Connect window. Then, exit the
Source window and reconnect to the database after the debug program
terminates.

114 Adaptive Server Enterprise

CHAPTER 6 Debugging Java in the Database

A debugging tutorial

This section takes you through a simple debugging session.

Before you begin

The source code for the class used in this tutorial islocated in
$SYBASE/$SYBASE ASE/sample/Javasgl/manual -
examples/JDBCExamples.java.

Before you run the debugger, compile the source code using the javac
command with the -g option.

See " Creating Javaclassesand JARS’ on page 14 for compl ete instructionsfor
compiling and installing Java classes in the database.

Start the Java debugger and connect to the database

You can start the debugger and connect to the database using a script, command
line options, or Sybase Central. In this tutorial, we use jdebug to start the
debugger. You can use any database.

Follow these steps:
1 Start Adaptive Server.

2 If Javaqueries have not yet been executed on your server, run any Java
query to initialize the Java subsystem and start a Java VM.

3 Runthe $SYBASE/$SYBASE ASE/debugger/jdebug script. jdebug
prompts you for these parameters:

a Machine name of the Adaptive Server
b Port number for the database

¢ Your login name

d Your password

e An alternate path to Debug.jar if itslocation isnot in your
CLASSPATH

Once the connection is established, the debugger window displays alist of
available JavaVMsor “Waiting for aVM.”

Java in Adaptive Server Enterprise 115

A debugging tutorial

Attach to a Java VM
To attach to a Java VM from your user session:

1 Withthedebugger running, connect to the sample database fromisgl asthe
sa.

$SYBASE/ bi n/isgl -Usa -P

Note You cannot start Java execution from the debugger. To start a Java
VM you must carry out aJavaoperation from another connection using the
same user name.

2 Execute Java code using the following statements:

sel ect JDBCExanpl es. serverMai n(‘ createtable’)
sel ect JDBCExanpl es. serverMain('insert’)
sel ect JDBCExanpl es. server Mai n(' sel ect’)

The Sybase Java VM starts in order to retrieve the Java objects from the
table. The debugger immediately stops execution of the Java code.

The debugger Connection window displaysthe JavaVMsbelonging to the
user in thisformat:

VM “1 ogi n_name, spid:spi d#”

3 Inthedebugger Connection window, click the JavaVM you want and then
click Attach to VM. The debugger attaches to the Java VM and the Source
window appears. The Connection window disappears.

Next, enable the Source window to show the source code for the method.
The source code is available on disk.

Load source code into the debugger

The debugger looks for source code files. You need to make the
$SYBASE/$SYBASE ASE/sample/JavaSgl/manual-examples subdirectory
available to the debugger, so that the debugger can find source code for the
class currently executing in the database.

To add a source code |ocation to the debugger:

1 From the Source window, select File - Source Path. The Source Path
window displays.

116 Adaptive Server Enterprise

CHAPTER 6 Debugging Java in the Database

2

From the Source Path window, select Path - Add. Enter the following
location into the text box:

$SYBASE/ $SYBASE_ASE/ sanpl e/ JavaSql /
manual - exanpl es/

The source code for the IDBCExamples class displaysin the window, with
the first line of the Query method serverMain() highlighted. The Java
debugger has stopped execution of the code at this point.

You can now close the Source Path window.

Step through source code

You can step through source code in the Java debugger in several ways. In this
section we illustrate the different ways you can step through code using the
serverMain() method.

When execution pauses at aline until you provide further instructions, we say
that the execution breaks at the line. Thelineis abreakpoint. Stepping
through codeis a matter of setting explicit or implicit breakpointsin the code,
and executing code to that breakpoint.

Following the previous section, the debugger should have stopped execution of
JDBCExamples.serverMain() at the first statement:

Examples

Here are some steps you can try:

1

Stepping into afunction — press F7 to step to the next line in the current
method.

Press F8 to step into the function doAction() in line 99.

Run to a selected line. You are now in function doAction(). Click on line
155 and press F6 to run to that line and break:

String workString = “Action(“ + action + “)”

Set a breakpoint and execute to it — select line 179 and press F9 to set a
breakpoint on that line when running isgl sel ect
JDBCExanpl es. server Mai n(’ select’):

workString + = sel ecter(con);

Press F5 to execute to that line.

Java in Adaptive Server Enterprise 117

A debugging tutorial

5 Experiment —try different methods of stepping through the code. End with
F5 to complete the execution.

When you have completed the execution, the Interactive SQL Data
window displays:

Action(select) — Rowwith id = 1: nane(Joe Smith)

Inspecting and modifying variables

You can inspect the values of both local variables (declared in a method) and
class static variables in the debugger.

Inspecting local variables

118

You can inspect the values of local variables in a method as you step through
the code, to better understand what is happening.

To inspect and change the value of avariable;

1 Setabreakpoint at thefirst line of the selecter() method from the
Breakpoint window. Thislineis:

String sgl = "select nane, hone from xnp where
id=?";

2 InInteractive SQL, enter the following statement again to execute the
method:

sel ect JDBCExanpl es. server Mai n(‘ select’)
The query executes only as far as the breakpoint.
3 PressF7 to step to the next line. The sgl variable has now been declared
and initialized.
4 From the Source window, select Window — Locals. The Local window
appears.

The Locals window shows that there are several local variables. The sgl
variable has avalue of zero. All others are listed as not in scope, which
means they are not yet initialized.

You must add the variables to the list in the Inspect window.

5 In the Source window, press F7 repestedly to step through the code. As
you do so, the values of the variables appear in the Locals window.

Adaptive Server Enterprise

CHAPTER 6 Debugging Java in the Database

If alocal variableisnot asimpleinteger or other quantity, then as soon as
itisset a+ sign appears next to it. Thismeansthelocal variable hasfields
that have values. You can expand alocal variable by double-clicking the +
sign or setting the cursor on the line and pressing Enter.

Complete the execution of the query to finish this exercise.

Modifying local variables
You can aso modify values of variables from the Locals window.

To modify alocal variable:

1

In the debugger Source window, set a breakpoint at the following linein
the selecter() method of the serverMain
class:

String sql = "select name, hone from xnp where
id=?";

Step past thisline in the execution.
Open the Locals window. Select theid variable, and select

Local - Modify. Alternatively, you can set the cursor on theline and press
Enter.

Enter avalue of 2 in the text box, and click OK to confirm the new value.
Theid variableis set to 2 in the Local's window.

From the Source window, press F5 to complete execution of the query. In
the Interactive SQL Data window, an error message displays indicating
that no rows were found.

Inspecting static variables
You can a'so inspect the values of class-level variables (static variables).

To inspect a static variable:

1

From the debugger Source window, select Window — Classes. The Classes
window is displayed.

Select aclassin theleft box. The methods and static variables of the class
are displayed in the boxes on the right.

Select Static - Inspect. The Inspect window is displayed. It lists the
variables avail able for inspection.

Java in Adaptive Server Enterprise 119

A debugging tutorial

120 Adaptive Server Enterprise

CHAPTER 7 Network Access Using java.net

Adaptive Server 12.5 supports java.net, a package that allows you to
create networking applications and access different kinds of external

servers.
Topic Page
Overview 121
java.net classes 122
Setting up java.net 122
Example usage 123
User notes 129
Where to go for help 129

Adaptive Server java.net is compliant with the Java 1.2 API.

Overview

Support for java.net in the Adaptive Server allowsyou to createclient-side
Java networking applications within the server. You can create a network
Java client application in the Adaptive Server that connectsto any server,
which in effect enables Adaptive Server to function asaclient to external
servers. See* Example usage” on page 123.

You can use java.net for many purposes:
e Download documents from any URL address on the Internet.
¢ Send e-mail messages from inside the server.

e Connect to an external server to save a document and perform file
functions: saving a document, editing a document, and so forth.

e Access documentsusing XML.

Java in Adaptive Server Enterprise 121

java.net classes

java.net classes

Table 1.1 shows the java.net classes Sybase supports.

Table 7-1: Supported java.net classes

Class Supported | Special circumstances
InetAddress Yes None
Socket Yes Does not support deprecated

constructor “Socket (string host, int
port, boolean stream)” when stream

=fase

URL Yes No file URL
HttpURLConnection Yes None
URLConnection Yes No file URL
URLDecoder Yes None
URLEncoder Yes None
DatagramPacket No

DatagramSocket No

MulticastSocket No

ServerSocket No

You can use any of the supported classes in java.net to write Adaptive Server
client applications.

Setting up java.net
The following steps enable java.net.

O enabling jave.net
1 Enable Java Virtua Machine (VM).

sp_configure “enable java”, 1

2 Specify the number of sockets you want to open (the default is 0). The
number of sockets configuration parameter is dynamic; you need not
restart Adaptive Server if you change the configuration option. For
example, to open 10 sockets, enter

sp_configure “nunber of java sockets”, 10

122 Adaptive Server Enterprise

CHAPTER 7 Network Access Using java.net

3 Adjust the amount of memory available for the Java VM. Since you may
be streaming largetext documentsin and out, you may need toincreasethe
amount of memory available to the Java VM. The parameters you may
need to adjust are;

* size of global fixed heap
* size of process object heap
* size of shared class heap

For more information on these parameters, see Chapter 5, “ Configuration
Parameters,” in the Sybase System Administration Guide.

Example usage

This section provides examples for using both socket classes and the URL
class. You can:

e Access an external document with XQL, using the URL class
e Savetext out of Adaptive Server

¢ Usethe MailTo class URL to mail a document

Using socket classes

Socket classes alow you to do more sophisticated network transfers than you
can achieve using URL classes. The Socket class allows you to connect to
specified port on any specified network host, and use the InputStream and
OutputStream classes to read and write the data.

Saving text out of Adaptive Server

This example describes how to set up a client application in Adaptive Server.
Adaptive Server version12.5 does not support direct accessto afile; this
example is aworkaround for this limitation.

You can write your own external server, which performs file operations, and
connect to this new server from the Adaptive Server, using a socket created
from a Socket class.

Java in Adaptive Server Enterprise 123

Example usage

In the basic roles of client and server, the client connects to the server and
streams the text, while the server receives the stream and streamsiit to afile.

This example shows how you caninstall a Java applicationin Adaptive Server,
using java.net. This application acts as a client to an external server.

0 The client process:
1 Receives an InputStream.

2 Creates asocket using the Socket class to connect to the server.
3 Creates an OutputStream on the socket.
4 Readsthe InputStream and writes it to the OutputStream:

i mport java.io.*;
i nport java.net.*;
public class TestStreanRFile {
public static void witeQut(lInputStreamfin)throws Exception
{
Socket socket = new Socket ("l ocal host", 1718);
Qut put Stream fout =
newBuf f er edQut put St r ean(socket . get Qut put Strean()) ;
byte[] buffer = new byte[10];
int bytes_read;
while ((bytes_read = fin.read(buffer)) I'=-1) {
fout.write(buffer, 0, bytes_read);

fout.close();

Compile this program.

O The server process:
1 Creates aserver socket, using the SocketServer class, to listen on a port.

2 Usesthe server socket to obtain a socket connection.

124 Adaptive Server Enterprise

CHAPTER 7 Network Access Using java.net

i mport
i mport
public

}

static

3 Receives an InputStream.

4 Readsthe InputStream and writes it to a FileOutputStream.

Note Inthisexample, the server does not use threads, and therefore it can
receive a connection from only oneclient at atime.

java.io.*;

java.net.*;

cl ass FileServer {

public static void main (string[] args) throws | OException{
Socket client = accept (1718);

try{
InputStreamin = client.getlnputStream();
Fi | eQut put Stream fout = new
Fi | eQut put Strean("chastity.txt");
byte[] buffer = new byte [10];
int bytes_read;
while (bytes read = in.read(buffer))!= -1){
fout.wite(buffer, 0, bytes read);
}
fout.close();
}
finally {
client.close ();
}

Socket accept (int port) throwsl OException {

Systemout.prinln ("Starting on port " + port);

Server Socket server = new Server Socket (port);
Systemout.println ("Witing");

Socket client = server.accept ();

Systemout.println ("Accepted from" + client.getlnetAddress ());
server.close ();

return client;

}

Compile this program.

To use this combination of client and server, you must install the client in
Adaptive Server and start the external server:

witness% java Fil eServer &

Java in Adaptive Server Enterprise 125

Example usage

[2] 28980
witness% Starting on port 1718
Wi ting

Invoke the client from within Adaptive Server.

use pubs2

go

sel ect TestStreanRFile.witeQut(cl) from bl urbs
where au_id = “486-29-1786"

go

Using the URL class

You can use the URL class to:
e Send an e-mail message.

* Download an HT TP document from a Web server. This document can be
astatic file or can be dynamically constructed by the Web server.

» Access an external document with XQL

Use the mailto:URL class to mail a document

126

Mailing a document is a good example of using the URL class. Before you
start, your client must connect to amail server, so that the machine referenced
by System Properties (in this case salsa.sybase.com) isrunning a mail server,
such as sendmail.

1 CreateaURL object.

2 Set aURLConnection object.

3 Create an OutputStream object from the URL object.
4 Write the mail. For example:

i mport java.io.*;
i nport java.net.*;
public class Ml To {
public static void sendlt() throws Exception{
System get Property("mail. host", "sal sa.sybase.cont');
URL url = new URL(nailto:"namne@ybase. cont');
URLConnection conn = url.openConnection();
PrintStream out = new Print Strean{conn. get Qut put Streamn(),

true);

Adaptive Server Enterprise

CHAPTER 7 Network Access Using java.net

out.print ("From kennys@ybase.con'+"\r\n");

out.print ("Subject: Works Geat!"+"\r\n");

out.print ("Thanks for the exanple - it works great!"+"\r\n");
out.close();

System out. println("Messsage Sent");

5

Install mailto:URL for sending e-mail from within the database:

sel ect Mail To.sendlt()
Message Sent!

A connection to a server isrequired for these actions.

Obtaining an HTTP document

Another way to use the URL classis to download a document from an HTTP
URL. When you start the client connects to a Web server. In the client code,

you:

Create a URL object.
Create an InputStream object from the URL object.

Use read on the InputStream object to read in the document.

The following code sample works by:

Reading the entire document into Adaptive Server memory.
Creating a new InputStream on the document in Adaptive Server memory.

i mport java.io.*;
i nport java.net.?*;
public class URLprocess {
public static |nputStream readURL()
throws Exception {
URL u = newURL(“http://ww xxxx.comni);
InputStreamin = u.openStrean();
/1 This is the same as creating URLConnection, then
/lcalling getlnputStrean(). In ASE you need to read
//the entire docunent into menory, then create an
/11 nput Stream on the in-nenory copy.
int n=0, of f;
byte b[]=new byt e[50000] ;
for(of f=0; (of f <b. | engt h512)
&&((n=in.read(b, of f,512)!=-1); of f +=n) {}
Systemout. println(“Nunber of bytes read :” + off);

Java in Adaptive Server Enterprise 127

Example usage

in.close();
Byt eArrayl nput Stream test =

new Byt eArrayl nput Strean(b, 0, of f);
return (lnputStrean) test;

}
}

After you create the new InputStream class, you can install this class and use it
to read atext file into the database, inserting data into atable, asin the
following example.

create table t (cl text)
go

insert intot values (URLprocess.readURL())

go
Nurmber of bytes read : 40867

sel ect datalength(cl) fromt
go

Accessing an external document with XQL

You can access an external document using the Adaptive Server XQL query
function, which both parses and queries XML documents.

Passthe XML document to the XQL parser as an InputStream. You can use the
class URLProcess to passthe XML document to either the XQL parse method
or the XQL query method.

The class URLProcess is available on

sel ect xm . Xql.query(“//ltem D",
URLpr ocess. readURL
(“http://ww. nyserver.conl xmtest.xm”))

* $SYBASE/ASE-12_5/sample/Javasql-R2 for UNIX environments
e O%SYBASE\ASE-12 5S\sample\Javasql-R2 for NT environments

128 Adaptive Server Enterprise

CHAPTER 7 Network Access Using java.net

User notes

Certain aspects of java.net require caution:

Most objects associated with java.net are not serializable, which means
that you cannot insert them into tables.

You might encounter the exception “ Too many open files,” when you have
opened only afew. Check Number of Java Sockets configuration
parameter.

Most of the I/O-related functions use buffered 1/O, which means that you
might need to flush your data explicitly. The PrintWriter classis an
example of aclassin which the datais not automatically flushed.

Where to go for help

Reference documents:

Java Examplesin a Nutshell: A Desktop Quick Reference. David
Flanagan, O’ Reilly 1997

JavaNetwork Programming: Complete guide to networking, streams, and
distributed computing. Hughes, Shoffner, Hamner, Bellur, Manning 1997

These documents are printed; you can find many more Java documents on the
java.sun.com Web site.

Java in Adaptive Server Enterprise 129

Where to go for help

130 Adaptive Server Enterprise

CHAPTER 8

Assignments

Reference Topics

This chapter presents information on several reference topics.

Topic Page
Assignments 131
Allowed conversions 133
Transferring Java-SQL objectsto clients 133
Supported Java API packages, classes, and methods 134
Invoking SQL from Java 137
Transact-SQL commands from Java methods 138
Datatype mapping between Java and SQL 143
Java-SQL identifiers 145
Java-SQL class and package names 146
Java-SQL column declarations 147
Java-SQL variable declarations 147
Java-SQL column references 148
Java-SQL member references 149
Java-SQL method calls 150

This section defines the rules for assignment between SQL dataitems

whose datatypes are Java-SQL classes.

Each assignment transfers a source instance to a target data item:

¢ Foraninsert statement specifying atablethat hasa Java-SQL column,
refer to the Java-SQL column as the target data item and the insert

val ue as the source instance.

e For anupdate statement that updates a Java-SQL column, refer to the
Java-SQL column as the target data item and the update value as the

source instance.

Java in Adaptive Server Enterprise

131

Assignments

For aselect or fetch statement that assignsto avariable or parameter, refer

to the variable or parameter as the target dataitem and the retrieved value

as the source instance.

Note If the sourceisavariable or parameter, then it isareference to an object
inthe Java VM. If the source is a column reference, which contains a
serialization, then the rules for column references (see Java-SQL column
references on page 148) yield areference to an object in the Java VM. Thus,
the source is areference to an object in the Java VM.

Assignment rules at compile-time

1

Define SC and TC as compile-time class names of the source and target.
Define SC_T and TC_T asclasses named SC and DT in the database
associated with the target. Similarly, define SC_S and TC_S as classes
named SC and DT in the database associated with the source.

SC_T must bethesameas TC_T or asubclassof TC_T.

Assignment rules at runtime
Assumethat DT_SC isthe sameasDT_TC or its subclass.

132

Define RSC asthe runtime class name of the source value. DefineRSC_S
asthe class named RSC in the database associated with the source. Define
RSC_T asthe name of aclassRSC_T installed in the database associated
with the target. If thereisno classRSC_T, then an exceptionisraised. If
RSC_T isneither the sasme as TC_T nor asubclass of TC_T, then an
exception is raised.

If the databases associated with the source and target are not the same
database, then the source object is serialized by its current class, RSC_S,
and that serialization is deserialized by the classRSC_T that it will be
associated with in the database associated with the target.

If thetarget is a SQL variable or parameter, then the source is copied by
reference to the target.

If the target is a Java-SQL column, then the source is serialized, and that
serialization is deep copied to the target.

Adaptive Server Enterprise

CHAPTER 8 Reference Topics

Allowed conversions

Y ou can use convert to change the expression datatype in these ways:

Convert Java types where the Java datatype is a Java abject type to the
SQL datatype shown in “ Datatype mapping between Javaand SQL” on
page 143. The action of the convert function isthe mapping implied by the
Java-SQL mapping.

Convert SQL datatypes to Java types shown in “ Datatype mapping
between Java and SQL” on page 143. The action of the convert function
is the mapping implied by the SQL -Java mapping.

Convert any Java-SQL classinstalled in the SQL system to any other Java-
SQL classinstalled in the SQL system if the compile-time datatype of the
expression (source class) is a subclass or superclass of the target class.
Otherwise, an exception is raised.

The result of the conversion is associated with the current database.

See “Using the SQL convert function for Java subtypes,” for a discussion of
the use of the convert function for Java subtypes.

Transferring Java-SQL objects to clients

When a value whose datatype is a Java-SQL object typeistransferred from
Adaptive Server to aclient, the data conversion of the object depends on the
client type:

If the client isan isql client, the toString() or similar method of the object
isinvoked and the result istruncated to varchar, which istransferred to the
client.

Note The number of bytestransferred to the client is dependent on the
value of the @ @stringsize global variable. The default value is 50 bytes.
See “ Representing Java instances’ on page 29 for more information.

If the client is a Java client that uses jConnect 4.0 or later, the server
transmits the object serialization to the client. This seriadization is
seamlessly deserialized by jConnect to yield a copy of the object.

If the client isabcp client:

Java in Adaptive Server Enterprise 133

Supported Java API packages, classes, and methods

If the object is acolumn declared asin row, the serialized value
contained in the column istransferred to the client asavarbinary value
of length determined by the size of the column.

Otherwise, the serialized value of the object (the result of the
writeObject method of the object) istransferred to the client as an
image value.

Supported Java API packages, classes, and methods

Adaptive Server supportsmany but not all classes and methodsinthe JavaAPI.
In addition, Adaptive Server may impose security restrictions and
implementation limitations. For example, Adaptive Server does not support al
of the thread creation and manipulation facilities of javalang.Thread.

The supported packages are installed with Adaptive Server and are always
available. They cannot beinstalled by the user.

Note Javain Adaptive Server doesnot support the JavaNative Interface (INI).

This section lists:

» Supported Java packages and classes

» Unsupported Java packages

» Unsupported java.sgl methods

Supported Java packages and classes

* java.io

134

Externalizable
Datalnput
DataOutput
ObjectlnputStream
ObjectOutputStream

Serializable

Adaptive Server Enterprise

CHAPTER 8 Reference Topics

java.lang — see “Unsupported java.sgl methods and interfaces’ on page
136 for alist of the unsupported classes in java.lang.

java.math
java.net — see Chapter 7, “Network Access Using java.net”

java.sgl —see"“ Unsupported java.sgl methods and interfaces’ on page 136
for alist of the unsupported methods and interfaces in java.sql.

java.text
java.util

java.util.zip

Unsupported Java packages, classes, and methods

java.applet

java.awt
java.awt.datatransfer
java.awt.event
java.awt.image
java.awt.peer
java.beans
java.lang.ref
java.lang.Thread
java.lang.ThreadGroup
java.rmi

java.rmi.dgc
java.rmi.registry
java.rmi.server
java.security
java.security.acl

java.security.interfaces

Java in Adaptive Server Enterprise 135

Supported Java API packages, classes, and methods

Unsupported java.sql methods and interfaces

136

Connection.commit()
Connection.getMetaData()
Connection.nativeSQL()
Connection.rollback()
Connection.setAutoCommit()
Connection.setCatalog()
Connection.setReadOnly()

Connection.setTransactionlsolation()

DatabaseMetaData.* — DatabaseMetaData is supported except for these

methods:

* deletesAreDetected()

e getUDTs()

. insertsAreDetected()

* updatesAreDetected()

e othersDeletesAreVisible()

e othersinsertsAreVisible()

* othersUpdatesAreVisible()

* ownDeletesAreVisible()

* ownlinsertsAreVisible()

* ownUpdatesAreVisible()
PreparedStatement.setAsciiStream()
PreparedStatement.setUnicodeStream()
PreparedStatement.setBinaryStream()
ResultSetMetaData.getCatalogName()
ResultSetMetaData.getSchemaName()
ResultSetMetaData.getTableName()
ResultSetMetaData.isCaseSensitive()

ResultSetMetaData.isReadOnly()

Adaptive Server Enterprise

CHAPTER 8 Reference Topics

* ResultSetMetaData.isSearchable()
* ResultSetMetaData.isWritable()

e Statement.getMaxFieldSize()

e Statement.setMaxFieldSize()

e Statement.setCursorName()

e Statement.setEscapeProcessing()
e Statement.getQueryTimeout()

e Statement.setQueryTimeoutt()

Invoking SQL from Java

Adaptive Server suppliesanative JIDBC driver, java.sql, that implementsJDBC
1.1 and 1.2 specifications, and is compliant with version 2.0. It is described at
http://www.javasoft.com. java.sql enables Java methods executing in Adaptive
Server to perform SQL operations.

Special considerations
java.sgl.DriverManager.getConnection() accepts these URLSs:
e null
e “7 (thenull string)
¢ jdbc:default:connection
When invoking SQL from Java some restrictions apply:

A SQL query that is performing update actions (update, insert, or delete)
cannot use the facilities of java.sgl to invoke other SQL operations that
aso perform update actions.

e Triggersthat arefired by SQL using the facilities of java.sql cannot
generate result sets.

e java.sgl cannot be used to execute extended stored procedures or remote
stored procedures.

Java in Adaptive Server Enterprise 137

Transact-SQL commands from Java methods

Transact-SQL commands from Java methods

You can use certain Transact-SQL commands in Java methods called within
the SQL system. Table 8-1 lists Transact-SQL commands and whether or not
you can use them in Java methods. You can find further information on most
of these commands in the Sybase Adaptive Server Enterprise Reference
Manual.

138 Adaptive Server Enterprise

CHAPTER 8 Reference Topics

Table 8-1: Support status of Transact-SQL commands

Command Status

alter database Not supported.

alter role Not supported.

alter table Supported.

begin ... end Supported.

begin transaction Not supported.

break Supported.

case Supported.

checkpoint Not supported.

commit Not supported.

compute Not supported.

connect - disconnect Not supported.

continue Supported.

create database Not supported.

create default Not supported.

create existing table Not supported.

create function Supported.

create index Not supported.

create procedure Not supported.

create role Not supported.

create rule Not supported.

create schema Not supported.

create table Supported.

create trigger Not supported.

create view Not supported.

cursors Not supported.
Only “server cursors’ are
supported, that is, cursors
that are declared and used
within a stored procedure.

dbce Not supported.

declare Supported.

disk init Not supported.

disk mirror Not supported.

disk refit Not supported.

disk reinit Not supported.

disk remirror Not supported.

Java in Adaptive Server Enterprise

139

Transact-SQL commands from Java methods

140

Command Status

disk unmirror Not supported.
drop database Not supported.
drop default Not supported.
drop function Supported.
drop index Not supported.
drop procedure Not supported.
drop role Not supported.
drop rule Not supported.
drop table Supported.
drop trigger Not supported.
drop view Not supported.
dump database Not supported.
dump transaction Not supported.
execute Supported.
goto Supported.
grant Not supported.
group by and having clauses Supported.
if...else Supported.
insert table Supported.

kill Not supported.
load database Not supported.
load transaction Not supported.
online database Not supported.
order by Clause Supported.
prepare transaction Not supported.
print Not supported.
raiserror Supported.
readtext Not supported.
return Supported.
revoke Not supported.
rollback trigger Not supported.
rollback Not supported.
save transaction Not supported.

set See Table 12-2 for set
options.

setuser Not supported.

shutdown Not supported.

Adaptive Server Enterprise

CHAPTER 8

Reference Topics

Command Status
truncate table Supported.
union Operator Supported.
update statistics Not supported.
update Supported.
use Not supported.
waitfor Supported.
where Clause Supported.
while Supported.
writetext Not supported.

Table 8-2 lists set command options and whether or not you can use them in

Java methods.

Java in Adaptive Server Enterprise

141

Transact-SQL commands from Java methods

142

Table 8-2: Support status of set command options

set command option Status

ansinull Supported.
ansi_permissions Supported.

arithabort Supported.

arithignore Supported.

chained Not supported. See Note 1.
char_convert Not supported.
cis_rpc_handling Not supported

close on endtran Not supported

Cursor rows Not supported
datefirst Supported

dateformat Supported

fipsflagger Not supported
flushmessage Not supported
forceplan Supported
identity_insert Supported

language Not supported

lock Supported

nocount Supported

noexec Not supported

offsets Not supported
or_strategy Supported
parallel_degree Supported. See Note 2.
parseonly Not supported
prefetch Supported
process_limit_action Supported. See Note 2.
procid Not supported

proxy Not supported
quoted_identifier Supported

replication Not supported

role Not supported
rowcount Supported
scan_parallel_degree Supported. See Note2.
self_recursion Supported
session_authorization Not supported
showplan Supported
sort_resources Not supported

Adaptive Server Enterprise

CHAPTER 8

Reference Topics

set command option Status

statistics io Not supported

statistics subquerycache Not supported

statistics time Not supported
string_rtruncation Supported

stringsize Supported

table count Supported

textsize Not supported

transaction iso level Not supported. See Note 1.
transactional_rpc Not supported

Note (1) set commands with options chained or
transaction isolation level are allowed only if the setting
that they specify is already in effect. That is, thiskind of
set command is allowed if it has no affect. Thisisdoneto
support common coding practises in stored procedures.

Note (2) set commands pertaining to parallel degree are
alowed but have no affect. This supportsthe use of stored
procedures that set the parallel degree for other contexts.

Datatype mapping between Java and SQL

Adaptive Server maps SQL datatypes to Java types (SQL -Java datatype
mapping) and Java scalar typesto SQL datatypes (Java-SQL datatype

mapping). Table 8-3 shows SQL -Java datatype mapping.

Java in Adaptive Server Enterprise

143

Datatype mapping between Java and SQL

144

Table 8-3: Mapping SQL datatypes to Java types

SQL type Java type

char String

varchar String

nchar String

nvarchar String

text String

numeric java.math.BigDecimal
decimal java.math.BigDecimal
money java.math.BigDecimal
smallmoney Java.math.BigDecimal
bit boolean

tinyint byte

smallint short

integer int

real float

float double

double precision double

binary byte[]

varbinary byte[]

image java.io.InputStream
datetime java.sql.Timestamp

smalldatetime

java.sql.Timestamp

Table 8-4 shows Java-SQL datatype mapping.

Adaptive Server Enterprise

CHAPTER 8 Reference Topics

Table 8-4: Mapping Java scalar types to SQL datatypes

Java scalar type SQL type
boolean bit

byte tinyint
short smallint
int integer
long integer
float real

double double

Java-SQL identifiers

Java-SQL identifiers are a subset of Javaidentifiers that can be referenced in

SQL.

java_sql_identifier ::= alphabetic character | underscore (_) symbol

Description

Syntax

Usage

[alphabetic character | arabic numeral | underscore(_) symbol |
dollar ($) symbol]
Java-SQL identifiers can be amaximum of 255 bytesin length if they are
surrounded by quotation marks. Otherwise, they must be 30 bytes or
fewer.

Thefirst character of the identifier must be either an a phabetic character
(uppercase or lowercase) or the underscore () symbol. Subsequent
characters can include al phabetic characters (uppercase or lowercase),
numbers, the dollar ($) symbol, or the underscore () symbol.

Java-SQL identifiers are always case sensitive.

Delimited Identifiers

Delimited identifiers are object names enclosed in double quotes. Using
delimited identifiers for Java-SQL identifiers allows you to avoid certain
restrictions on the names of Java-SQL identifiers.

Note You can use double quotes with Java-SQL identifiers whether the
set quoted_identifier option is on or off.

Delimited identifiers allow you to use SQL reserved words for packages,
classes, methods, and so on. Each time you use the delimited identifier in
a statement, you must enclose it in double quotes. For example:

Java in Adaptive Server Enterprise 145

Java-SQL class and package names

See also

create table t1l
(cl char(12)
c2 pl.”select”.p2.”jar”)

» Doublequotessurround only individual Java-SQL identifiers, not thefully
qualified name.

For additional information about identifiers, see Chapter 5, “ Transact-SQL
Topics,” in the Reference Manual.

Java-SQL class and package names

Description

Syntax

Parameters

Usage

146

To reference a Java-SQL class or package, use the following syntax:

java_sql_class_name ::= [java_sql_package name.]Jjava_sql_identifier

java_sql_package_name ::=
[java_sql_package name.]java_sql_identifier

java_sgl_class name
The fully qualified name of a Java-SQL classin the current database.

java_sql_package name
The fully qualified name of a Java-SQL package in the current database.

java_sql_identifier
See Java-SQL identifiers.

For Java-SQL class names:
e A class namereference aways refersto a classin the current database.

» If you specify a Java-SQL class name without referencing the package
name, only one Java-SQL class of that name must exist in the current
database, and its package must be the default (anonymous) package.

e |f aSQL user-defined datatype and a Java-SQL class possess the same
sequence of identifiers, Adaptive Server uses the SQL user-defined
datatype name and ignores the Java-SQL class name

For Java-SQL package names:

e If you specify a Java-SQL subpackage name, you must reference the
subpackage name with its package name:

java_sql_package_name.java_sql_subpackage_name

Adaptive Server Enterprise

CHAPTER 8 Reference Topics

e UseJava-SQL package names only as qualifiersfor class names or
subpackage names and to del ete packages from the database using the
remove java command.

Java-SQL column declarations

Description

Syntax

Parameters

Usage

See also

To declare a Java-SQL column when you create or alter atable, use the
following syntax:

java_sql_column ::= column_name java_sql_class_name

java_sql_column
Specifies the syntax of Java-SQL column declarations.

column_name
The name of the Java-SQL column.

java_sql_class name
Thename of aJava-SQL classin the current database. Thisisthe “declared
class’ of the column.

e Thedeclared class must implement either the Serializable or Externalizable
interface.

e A Java-SQL column is aways associated with the current database.
e A Java-SQL column cannot be specified as:

e notnull

* unique

e A primary key

You use aJava-SQL column declaration only when you create or alter atable.
See the create table and alter table information in the Reference Manual.

Java-SQL variable declarations

Description

Syntax

Use Java-SQL variable declarations to declare variables and stored procedure
parameters for datatypes that are Java-SQL classes.

java_sql_variable ::= @variable_name java_sql_class_name

Java in Adaptive Server Enterprise 147

Java-SQL column references

Parameters

Usage

See also

java_sql_parameter ::= @parameter_name java_sql_class_name
java_sqgl_variable
Specifies the syntax of a Java-SQL variable in a SQL stored procedure.

java_sql_parameter
Specifies the syntax of a Java-SQL parameter in a SQL stored procedure.

java_sgl_class_name
The name of a Java-SQL classin the current database.

A java_sgl_variable or java_sqgl_parameter is aways associated with the
database containing the stored procedure.

Refer to the Reference Manual for more information about variable
declarations.

Java-SQL column references

Description

Syntax

Parameters

Usage

148

To reference a Java-SQL column, use the following syntax:

column_reference ::=
[[[database_name.]Jowner.]table_name.]column_name
| database_name..table_name.column_name

column_reference
A reference to a column whose datatype is a Java-SQL class.
» If the value of the column is null, then the column reference is aso null.

* If thevaue of the column is aJava serialization, S, and the name of its
classisCs, then:

* If theclassCs does not exist in the current database or if CS isnot the
name of aclassin the database associated with the serialization, then
an exception israised.

Note The database associated with the serialization is normally the
database that contains the column. Serializations contained in work
tablesand in temporary tables created with “insert into #tempdb” are,
however, associated with the database in which the serialization was
stored originally.

* Thevalue of the column referenceis:
CSC.readObject(S)

Adaptive Server Enterprise

CHAPTER 8 Reference Topics

where CSC is the column reference. If the expression raises an
uncaught Java exception, then an exception is raised.

The expression yields areference to an object in the Java VM, which
is associated with the database associated with the serialization.

Java-SQL member references

Description

Syntax

Parameters

Usage

References a field or method of a class or class instance.

member_reference ::= class_member_reference |
instance_member_reference

class_member_reference ::= java_sql_class_name.method_name
instance_member_reference ::= instance_expression>>member_name

instance_expression ::= column_reference | variable_name
| parameter_name | method_call | member_reference

member_name ::= field_name | method_name
member_reference
An expression that describes afield or method of aclass or object.

class_ member_reference
An expression that describes a static method of a Java-SQL class.

instance_member_reference
An expression that describes a static or dynamic method or field of a Java-
SQL classinstance.

java_sql_class name

A fully qualified name of aJava-SQL classin the current database.
instance_expression

An expression whose datatype is a Java-SQL class.

member_name
The name of afield or method of the class or class instance.

« If amember references afield of aclassinstance, the instance has a null
value, and the Java-SQL member reference is the target of afetch, select,
or update statement, then an exception is raised.

Otherwise, the Java-SQL member reference has the null value.

e Thedouble angle (>>) and dot (.) qualification take precedence over any
operator, such asthe addition (+) or equal to (=) operator, for example:

Java in Adaptive Server Enterprise 149

Java-SQL method calls

X>>A1>>Bl + X>>A1>>B2

In this expression, the addition operation is performed after the members
have been referenced.

» Thefield or method designated by a member reference is associated with
the same database asthat of its Java-SQL class or instance of its Java-SQL
class.

If the Javatype of amember referenceisone of the Java scalar types (such
as boolean, byte, and so on), then the corresponding SQL datatype of the
referenceis obtained by mapping the Javatypeto its equivalent SQL type.

If the Javatype of a member reference is an object type, then the SQL
datatype is the same Java object type or class.

Java-SQL method calls

Description

Syntax

Parameters

Usage

150

To invoke aJava-SQL method, which returns asingle value, use the following
syntax:

method_call ::= member_reference ([parameters])
| new java_sql_class_name ([parameters])

parameters ::= parameter [(, parameter)...]
parameter ::= expression

method_call
An invocation of a static method, instance method, or class constructor. A
method call can be used in an expression where a non-constant value of the
method’s datatype is required.

member_reference
A member reference that denotes a method.

parameters
Thelist of parametersto be passed to the method. If there are no parameters,
include empty parentheses.

Method overloading

* When there are methods with the same name in the same class or instance,
the issue is resolved according to Java method overloading rules.

Datatype of method calls
* Thedatatype of amethod call is determined as follows:

Adaptive Server Enterprise

CHAPTER 8 Reference Topics

If amethod call specifies new, its datatype isthat of its Java-SQL
class.

If amethod call specifies amember reference that denotes a type-
valued method, then the datatype of the method call isthat type.

If amethod call specifies amember reference that denotes avoid
static method, then the datatype of the method call is SQL integer.

If amethod call specifies amember reference that denotes avoid
instance method of a class, then the datatype of the method call isthat
of the class.

e Toinclude a parameter in a member reference when the parameter isa
Java-SQL instance associated with another database, you must ensure that
the class name associated with the Java-SQL instance is included in both
databases. Otherwise, an exception is raised.

Runtime results

¢ Theruntimeresult of amethod call is as follows:

Java in Adaptive Server Enterprise

If amethod call specifiesamember reference whose runtimevalueis
null (that is, areferenceto amember of anull instance), then theresult
isnull.

If amethod call specifies amember reference that denotes a type-
valued method, then the result is the value returned by the method.

If amethod call specifies a member reference that denotes avoid
static method, then the result is the null value.

If amethod call specifies a member reference that denotes avoid
instance method of an instance of aclass, thentheresult isareference
to that instance.

The method call and result of the method call are associated with the
same database.

Adaptive Server does not pass the null value asthe value of a
parameter to a method whose Javatypeis scalar.

151

Java-SQL method calls

152 Adaptive Server Enterprise

Glossary

assignment
associated JAR

bytecode

class

class method

class file
class instance

datatype mapping

declared class

document type
declaration (DTD)

Java in Adaptive Server Enterprise

Thisglossary describes Java and Java-SQL terms used in this book. For a
description of Adaptive Server and SQL terms, refer to the Adaptive
Server Glossary.

A generic term for the data transfers specified by select, fetch, insert, and
update Transact-SQL commands. An assignment sets a source value into
atarget dataitem.

If aclass/JAR isinstalled with installjava and the -jar option, then the JAR
isretained in the database and the class is linked in the database with the
associated JAR. Seeretained JAR.

The compiled form of Java source code that is executed by the Java VM.

A class is the basic element of Java programs, containing a set of field
declarations and methods. A classisthe master copy that determines the
behavior and attributes of each instance of that class. classdefinition isthe
definition of an active data type, that specifies alegal set of values and
defines a set of methods that handle the values. See class instance.

See static method.

A file of type“class’ (for example, myclass.class) that contains the
compiled bytecode for a Java class. See Java file and Java archive (JAR).

Value of the class datatype that contains avaluefor each field of the class
and that accepts all methods of the class.

Conversions between Java and SQL datatypes.

The declared datatype of aJava-SQL dataitem. It is either the datatype of
the runtime value or a supertype of it.

In XML, every valid document hasa DTD that describes the elements
available in that document type. A DTD can be embedded in the XML
document or referenced by it.

153

Glossary

eXtensible Markup
Language (XML)

eXtensible Query
Language (XQL)

eXtensible Style
Language (XSL)

externalization

Hypertext Markup
Language (HTML)

installed classes

instance method

interface

Java archive (JAR)

Java Database
Connectivity (JDBC)

Java datatypes

Java Development
Kit (JDK)

Java file

Java method
signature

Java object

154

A metalanguage designed for Web applications that |ets you define your own
markup tags and attributes for different kinds of documents. XML is a subset
of SGML.

A markup language for querying XML documents stored in arelational
database. Adaptive Server providesan XQL query engine that can beinstalled
in Adaptive Server or run as a standalone program

A markup language designed to format XML documentsinto HTML or other
XML documents with different attributes and tags.

An externalization of a Javainstance is a byte stream that contains sufficient
information for the class to reconstruct the instance. Externalization is defined
by the externalizable interface. All Java-SQL classes must be either
externalizable or serializable. See serialization.

A subset of SGML designed for the Web.

Java classes and methods that have been placed in the Adaptive Server system
by theinstalljava utility.

A invoked method that references a specific instance of aclass.

A named collection of method declarations. A class canimplement aninterface
if the class defines all methods declared in the interface.

A platform-independent format for collecting classesin asinglefile.

A Java-SQL API that isastandard part of the Java Class Libraries that control
Java application development. JDBC provides capabilities similar to those of
ODBC.

Java classes, either user-defined or from the JavaSoft API, or Java primitive
datatypes, such as boolean, byte, short, and int.

A toolset from Sun Microsystems that allows you to write and test Java
programs from the operating system.

Afileof type“java’ (for example, myfile.java) that contains Java source code.
Seeclass file and Java archive (JAR).

The Java datatype of each parameter of a Java method.

Aninstance of aJavaclassthat iscontained in the storage of the JavaVM. Java
instancesthat are referenced in SQL are either values of Java columns or Java
objects.

Adaptive Server Enterprise

Glossary

Java-SQL column

Java-SQL class

Java-SQL datatype
mapping

Java-SQL variable

Java Virtual Machine
(Java VM)

mappable

method

narrowing
conversion

A SQL column whose datatypeis a Java-SQL class.

A public Java class that has been installed in the Adaptive Server system. It
consists of aset of variable definitions and methods.

A classinstance consists of an instance of each of the fields of the class. Class
instances are strongly typed by the class name.

A subclassisaclassthat is declared to extend (at most) to one other class. That
other classis called the direct superclass of the subclass. A subclass has all of
the variables and methods of its direct and indirect superclasses, and may be
used interchangeably with them.

Conversions between Java and SQL datatypes. See “ Datatype mapping
between Javaand SQL” on page 143.

A SQL variable whose datatype is a Java-SQL class.

The Javainterpreter that processes Javain the server. It isinvoked by the SQL
implementation.

A Javadatatypeis mappableif it is either:

e Listedinthefirst column of Table 8-3 on page 144, or

e A public Java-SQL classthat isinstalled in the Adaptive Server system.
A SQL datatypeis mappableif it is either:

e Listedinthefirst column of Table 8-4 on page 145, or

¢ A public Java-SQL classthat isbuilt-in or installed in the Adaptive Server
system.

A Javamethod is mappableif al of its parameter and result datatypes are
mappable.

A set of instructions, contained in aJavaclass, for performing atask. A method
can be declared static, in which caseit iscalled aclass method. Otherwiseg, itis
an instance method. Class methods can be referenced by qualifying the method
name with either the class name or the name of an instance of the class.
Instance methods are referenced by qualifying the method name with the name
of an instance of the class. The method body of an instance method can
reference the variables local to that instance.

A Javaoperation for converting areference to aclassinstanceto areferenceto
an instance of asubclass of that class. Thisoperationiswrittenin SQL with the
convert function. See also widening conversion.

Java in Adaptive Server Enterprise 155

Glossary

package

procedure
public
retained JAR

serialization

SQL function
signature

SQL-Java datatype

mapping

SQL procedure
signature

static method

subclass

superclass

synonymous
classes

Unicode

valid document

variable

156

A packageisaset of related classes. A classeither specifiesapackage or ispart
of an anonymous default package. A class can use Javaimport statements to
specify other packages whose classes can then be referenced.

An SQL stored procedure, or a Java method with a void result type.
Public fields and methods, as defined in Java.
See associated JAR.

A serialization of a Javainstance is a byte stream containing sufficient
information to identify its class and reconstruct the instance. All Java-SQL
classes must be either externalizable or serializable. See externalization.

The SQL datatype of each parameter of a SQL J function.

Conversions between Java and SQL datatypes. See “ Datatype mapping
between Javaand SQL” on page 143.

The SQL datatype of each parameter of a SQLJ procedure.

A method invoked without referencing an object. Static methods affect the
whole class, not an instance of the class. Also called a class method.

A class below another classin ahierarchy. It inherits attributes and behavior
from classes above it. A subclass may be used interchangeably with its
superclasses. The class above the subclassis its direct superclass. See
superclass, narrowing conversion, and widening conversion.

A class above one or more classes in a hierarchy. It passes attributes and
behavior to the classes below it. It may not be used interchangeably with its
subclasses. See subclass, narrowing conversion, and widening conversion.

Java-SQL classes that have the same fully qualified name but are installed in
different databases.

A 16-bit character set defined by 1SO 10646 that supports many languages.

In XML, avalid document hasaDTD and adherestoit. Itisalso awell-formed
document.

In Java, avariableislocal to aclass, to instances of the class, or to a method.

A variable that is declared static is local to the class. Other variables declared
in the class are local to instances of the class. Those variables are called fields
of theclass. A variable declared in amethod is local to the method.

Adaptive Server Enterprise

Glossary

visible

well-formed
document

widening conversion

A Java classthat has been installed in a SQL systemisvisiblein SQL if itis
declared public; afield or method of a Javainstanceisvisiblein SQL if itis
both public and mappable. Visible classes, fields, and methods can be
referenced in SQL. Other classes, fields, and methods cannot, including classes
that are private, protected, or friendly, and fields and methods that are either
private, protected, or friendly, or are not mappable.

In XML, the necessary characteristics of awell-formed document include: all
elements with both start and end tags, attribute values in quotes, all elements
properly nested.

A Javaoperation for converting areference to aclassinstanceto areferenceto
an instance of a superclass of that class. This operation iswritten in SQL with
the convert function. See also narrowing conversion.

Java in Adaptive Server Enterprise 157

Glossary

158 Adaptive Server Enterprise

Index

Symbols

, (comma)
in SQL statements xv
() (parentheses)
in SQL statements xv
[]1 (square brackets)
in SQL statements xv
>> (double angle)
to qualify Javafields and methods 149
@sign 80
{} (curly braces) in SQL statements xv

A

Adaptive Server

plug-in 25,78
additional information

about Java 9
ADT mappable datatypes 96
dter table

command 25

syntax 25
ANSI standards 4
assignment properties

Java-SQL dataitems 30
assignments 131
attachingtoaJavaVM 109

B

breaking
onaclassmethod 113
onalinenumber 112
using conditions 113
using counts 113
when execution isnot interrupted 114
breakpoints 112

Java in Adaptive Server Enterprise

C

caled on null input parameter 80
case expressions 35, 84
character sets

Adaptive server plug-in - 78

unicode 25, 34,78
classnames 146
classsubtypes 34-36
classes. See Java classes
clients

bcp 133

isg 133
client-sideJDBC 7
column

declarations 147

referencing 148
column datatypes, requirements 23
column declarations 147
column references 148
comma (,) in SQL statements xv
command main method 99
commands

createtable 24,25

drop function 84

SQLJcreate function 79

SQLJ create procedure 85
commands, create procedure SQLJ 87
compile-time datatypes 36
compiling Javacode 14
configuration parameter, Number of Java Sockets
constructor method 26
constructors 26, 41
conventions

Java-SQL syntax xiv

Transact-SQL syntax ~ xv
conversions 133

narrowing 35

widening 34
convert function 34, 133

129

159

Index

create procedure (SQLJ) command 85, 87

create table command, syntax 24, 25
creating
client applications 121
network applications, javanet 121
tables 24
user-defined classes 14
curly braces ({}) in SQL statements xv

D

DatagramPacket, Javaclass 122
datatype conversions 133
datatype mapping 33, 75, 95, 143-145
datatypes

compile-time 36

conversions 133

Javaclasses 3

method calls 150

runtime 36
Debug.jar, Javafile 108
debugger

attachingtoaJavaVM 109
compiling classesfor 109
disconnecting 114
how it works 107
location 108

options 111
requirementsfor using 107
starting 108

wait mode 109
debugger capabilities
browseclasses 108
inspect and break on expressions 108
inspect and set variables 108
set break conditions 108
set breakpoints 108

trace execution 108
debugger windows

breakpoints 110

cals 110

classes 110

connection 110
exceptions 110
inspection 110

160

locals 111
source 110
debugging
Java 107119
debugging tutorial 115-119
attachingtoaJavaVM 116
examples 117
inspecting local variables 118
inspecting static variables 119
inspecting variables 117
loading sourcecode 116
modifying local variables 119
source code 115
starting the debugger 115
stepping through source code 117
deleting 26, 94
Javaobjects 26
delimited identifiers 145
deterministic parameter 80, 86
disabling Java 13
distinct keyword 44
double angle
qualifying Javafields and methods 149
to qualify Javafields and methods 27
downloading
installed classes 19
installed JARs 19
drop function command 84
dynamic result sets parameter 86

E
email

javanet 121

messages, sending 121
enabling Java 13
enabling java.net, procedure 122
equality operations 43
examples

for SQLJroutines 76
exceptions 29
explicit Java method signatures 97
external name parameter 86
external server, writing with javanet 123
externdization 147

Adaptive Server Enterprise

extrectjava utility 19

F

flushing data explicitly 129

G

group by clause 44

H

HttpURL Connection, Javaclass 122

identifiers 145

delimited 145
implicit Java method signatures 97
in parameter 88
InetAddress, Javaclass 122
inout parameter 88
InputStream class 126
InputStream, Javaclass 128
inserting

datainatable 126
Javaobjects 26
installing

compressed JARS 15
Javaclasses 15,18
uncompressed JARS 15
installjava utility 12, 15
-f option 16

-j option 16

-new option 17
syntax 16

update option 17
instance methods 41
inter-class arguments 49
invoking

Javamethod, using SQLJ 77
Javamethods 28, 76

Java in Adaptive Server Enterprise

Javamethods, invoking directly 76
Javamethods, using SQLJ 76
SQL fromJava 137, 143

J

JAR files

creating 15

installing 14

retaining 16
JARs

compressed, installing 15
uncompressed, installing 15
JavaAPl 7

accessing fromSQL 8
supported packages 134-137
Sybase support for 8
Javaarrays 88
Javaclass datatypes 82
Java classes

asdatatypes 3,23
cresting 14
DatagramPacket 122
DatagramSocket 122
HttpURL Connection
InetAddress

InputStream 123, 126, 128
installing 15-18
MailTo 126
MulticastSocket 122
OutputStream 123, 126
PrintWriter 129
referencing other classes 18
retained 19

runtime 12
savinginJAR 14
ServerSocket 122, 124
Socket

SQLJexamples 76
subtypes 34

supported 8

updating 17

URL 126, 127

URL class,using 124
URLConnection 122

Index

161

Index

URLDecoder 122
URLEncoder 122
user-defined 8, 12
Java code
compiling 14
writing 14
Javacompiler 109
Java datatypes
ADT mappable 96
object mappable 96
output mappable 96
result-set mappable 96
simply mappable 96
Java Development Kit 6
Javain the database
advantagesof 1
capabilities 2
key features 5
preparing for 11-20
questions and answers 5
Javainstances, representing 30
Javamethod signature 81, 86
Java methods
cal by reference 29, 44
command main 99
exceptions 29
instance 41
invoking 28, 76
static 43
type 40,41
void 41
Javaobjects 26
Java operations, invoked fromSQL 7
Java primitive datatypes 82
Javaruntime environment 11
JavaVM 6,11
JavaVM parameters
sizeof global fixed heap 123
size of processobject heap 123
sizeof shared classheap 123
Java, SQL, using together 7
javanet 122,123, 124, 129
accessing documentsusing XML, JDBC 121
accessing external documents 123
cautions 129
classes

162

client application, settingup 123
client process 124
client process procedure 124
connecting through JDBC with jconnect
creating networking applications 121
downloading documents 121
enabling 122
examples 123
help 129
mailing documents 123
objects not seridizable 129
procedure for enabling 122
reference documents 129
references, online 129
references, written 129
saving documents 121
saving text from Adaptive Server 123
sending email messages 121
server process 124
server process procedure 124
writing external server 123
java.net classes
HttpURL Connection 122
InetAddress 122
See Java classes
Socket 122
URL 122
URLConnection 122
URLDecoder 122
URLEncoder 122
javanet, for network access 121
javasgl 137
javasgl methods, unsupported 136
Java-SQL
classnames 146
column declarations 147
column references 148
columns 31,45
cregting tables 24
functionresults 31
identifiers 145
member references 149
method calls 150
names 22
package names 146
parameters 31, 45

Adaptive Server Enterprise

121

static variables 46
transferring objects 133
transferring objectsto clients 133
unsupported methods 136
variable declarations 147
variables 31, 45
Java-SQL classes
in multiple databases 46
installing 15-18
Java-SQL columns
storage options 24
jConnect
JDBC 7
jconnect 121
JDBC 55-72
accessingdata 57
client-side 7,56
concepts 56
connection defaults 57
connections 60
interface 8
JDBCExamplesclass 58
obtaining a connection 60
permissions 57
server-side 7,56
terminology 56
version support 12
JDBC drivers 12, 137
client-side 7,56
jConnect 7
server-side 7,56
JDBC standard datatype mapping 95
JDBCExamplesclass 66-72
methods 59-64
overview 58

L

language java parameter 86

M

mailing adocument 123
MailTo, Javaclass 126

Java in Adaptive Server Enterprise

Index

mapping datatypes 143-145
mapping Javaand SQL datatypes 95
member references 149
method calls 150
datatype of 150
method overloading 98, 150
methods
exceptions 29
runtime results 151
See also XQL methods
SQLJExamples.bestTwoEmps() 76
SQLJExamples.correctStates() 76, 87
SQLJExamplesjob() 76
SQLJExamples.region() 76
modifies sgl data parameter 80, 86
MulticastSocket, Javaclass 122
multiple databases 47

N

namesin JavaSQL 22

case 23

length 22
narrowing conversions 35
network access, javanet 121
null values

case statements 84

in SQLJfunctions 82
nullsinJavaSQL 3640

argumentsto methods 38

using convert functions 39
Number of Java Sockets, configuration parameter

O

object mappable datatypes 96
obtaining connections 60
options
external name 81
languagejava 81
parameter stylejava 81
order by clauses 44
ordering operations 43
out parameter 88

129

163

Index

output mappable datatypes 96

P

package names 146
parameter style java parameter 86
parameters
(JavaVM) size of global fixed heap 123
(JavaVM) size of processobject heap 123
(JavaVM) size of shared classheap 123
deterministic 86
external name 86
inout 88
input 88
languagejava 86
modifiessgl data 86
not deterministic 86
output 88
parameter stylejava 86
parentheses ()
in SQL statements xv
permissions
Java 6,22
JDBC 57
SQLJroutines 75
persistent dataitems 31
PrintWriter, Javaclass 129
procedure
creating SQLJroutine 74
enabling javanet 122
procedures
client process, java.net 124
server process, javanet 124

Q

questions and answers 5

R

rearranging installed classes 19
referencing
fields 27

164

remove javacommand 19, 147
removing classes 19
removing JARs 19
restrictions on Javain the database 10
result sets 98
ResultSet
mappable datatypes 96
returns null on null input parameter, Java clause
runtime
datatypes 36
Runtime environment 11
Runtime Java classes
location of 12
runtime Javaclasses 12

S

sampleclasses 50-53
address 50
address2Line 51
JDBCExamples 58-72
location of 10
misc 53
saving text out of Adaptiveserver 123
search order
functiontypes 82
security
SQLJroutines 75
selecting Javaobjects 26
seridlization 147, 148
server process 124
server-side JDBC 7
ServerSocket, Javaclass 122,124
set commands
alowed in Javamethods 142
updating 42
settingup 122
shared classhesp 122
simply mappable datatypes 96
Socket classes, using 123
Socket, Javaclass 122
sp_configure system procedure 13
sp_depends system procedure 95
sp_help system procedure 95
sp_helpjava

Adaptive Server Enterprise

80

syntax 18
utilitysp_helpjava 18
sp_helpjava system procedure 95
sp_helprotect system procedure 95
QL
expressions, include Javaobjects 7
function signature 80
procedure signature 85
wrappers 73,77
SQLJ create procedure command 85
SQLJfunctions 79-84
dropping 84
viewing information about 95
SQLJimplementation
features not supported 101
features partially supported 101
SQLJand Sybase differences 100
Sybase defined 102
SQLJstandards 74
SQLJ stored procedures 84-86, 94
capabilitiesof 84
deleting 94
modifying SQL data 87
using input and output parameters 88
viewing information about 95
SQLJExamplesclass 103
SQL JExampl es.best TwoEmps() method 76
SQL JExampl es.correctStates() method 76, 87
SQLJExamplesjob() method 76
SQL JExamples.region() method 76, 81
square brackets]
in SQL statements xv
standards specifications 4
static methods 43, 74, 77, 84
static variables 46
storage options
inrow 24
String data
zerolength 40
string data 40
style javakeyword 86
subtypes 34
supertypes 34
Sybase Central
creating a SQLJfunction or procedurefrom 78
managing SQLJ procedures and functions from

Java in Adaptive Server Enterprise

78
viewing SQLJ routine properties from
syntax conventions
JavaSQL xiv
Transact-SQL ~ xv
system procedures
helpjava 18
sp_depends 95
sp_help 95
sp_helpjava 95
sp_helprotect 95

T

table definition 76
temporary databases 49
transact-SQL

commands, in Javamethods 138
transient dataitems 31

U

unicode 40
union operator 44
updating Javaobjects 26
URL
Javaclass 124
URL class
accessing external server with XQL
downloading HTTP document 126
inserting datain atable 126
Javaclass 122, 126, 127
obtainingan HTTP document 126
sending email 126
usng 126
URL Connection, Javaclass 122
URLDecoder, Javaclass 122
URLEncoder, Javaclass 122
user-defined classes, creating 14
using
Javaand SQL together 7
Javaclasses 21,50
Socket classes 123
URL class 124

Index

79

126

165

Index

Vv

variable declarations 147
variables 147

datatypesof 23

static 46

valuesassignedto 26
viewing information

about installed classes 18

about installed JARs 18
void methods 87

w

whereclause 34, 42,45
work databases 49

X

XML

accessing documentswith javanet 121
XQL

parse method 128

parsesand queries 128

query method 128

Z

zero-length strings 40

166 Adaptive Server Enterprise

	Java in Adaptive Server Enterprise
	About This Book
	CHAPTER 1 An Introduction to Java in the Database
	Advantages of Java in the database
	Capabilities of Java in the database
	Invoking Java methods in the database
	Invoking Java methods directly in SQL
	Invoking Java methods as SQLJ stored procedures and functions

	Storing Java classes as datatypes
	Storing and querying XML in the database

	Standards
	Java in the database: questions and answers
	What are the key features?
	How can I store Java instructions in the database?
	How is Java executed in the database?
	Client- and server-side JDBC

	How can I use Java and SQL together?
	What is the Java API?
	How can I access the Java API from SQL?
	Which Java classes are supported in the Java API?
	Can I install my own Java classes?
	Can I access data using Java?
	Can I use the same classes on client and server?
	How do I use Java classes in SQL?
	Where can I find information about Java in the database?
	What you cannot do with Java in the database

	Sample Java classes

	CHAPTER 2 Preparing for and Maintaining Java in the Database
	The Java runtime environment
	Java classes in the database
	Sybase runtime Java classes
	User-defined Java classes

	JDBC drivers
	The Java VM

	Configuring memory for Java in the database
	Enabling the server for Java
	Disabling the server for Java

	Creating Java classes and JARs
	Writing the Java code
	Compiling Java code
	Saving classes in a JAR file
	Installing uncompressed JARs
	Installing compressed JARs

	Installing Java classes in the database
	Using installjava
	Retaining the JAR file
	Updating installed classes

	Referencing other Java-SQL classes

	Viewing information about installed classes and JARs
	Downloading installed classes and JARs
	Removing classes and JARs
	Retaining classes

	CHAPTER 3 Using Java Classes in SQL
	General concepts
	Java considerations
	Java-SQL names

	Using Java classes as datatypes
	Creating and altering tables with Java-SQL columns
	Altering partitioned tables

	Selecting, inserting, updating, and deleting Java objects

	Invoking Java methods in SQL
	Sample methods
	Exceptions in Java-SQL methods

	Representing Java instances
	Assignment properties of Java-SQL data items
	Datatype mapping between Java and SQL fields
	Character sets for data and identifiers
	Subtypes in Java-SQL data
	Widening conversions
	Narrowing conversions
	Runtime versus compile-time datatypes

	The treatment of nulls in Java-SQL data
	References to fields and methods of null instances
	Null values as arguments to Java-SQL methods
	Null values when using the SQL convert function

	Java-SQL string data
	Zero-length strings

	Type and void methods
	Java void instance methods
	Java void static methods

	Equality and ordering operations
	Evaluation order and Java method calls
	Columns
	Variables and parameters

	Static variables in Java-SQL classes
	Java classes in multiple databases
	Scope
	Cross-database references
	Inter-class transfers
	Passing inter-class arguments
	Temporary and work databases

	Java classes

	CHAPTER 4 Data Access Using JDBC
	Overview
	JDBC concepts and terminology
	Differences between client- and server-side JDBC
	Permissions
	Using JDBC to access data
	Overview of the JDBCExamples class
	The main() and serverMain() methods
	Using main()
	Using serverMain()

	Obtaining a JDBC connection: the Connecter() method
	Routing the action to other methods: the doAction() method
	Executing imperative SQL operations: the doSQL() method
	Executing an update statement: the UpdateAction() method
	Executing a select statement: the selectAction() method
	Calling a SQL stored procedure: the callAction() method

	Error handling in the native JDBC driver
	The JDBCExamples class
	The main() method
	The internalMain() method
	The connecter() method
	The doAction() method
	The doSQL() method
	The updateAction() method
	The selectAction() method
	The callAction() method

	CHAPTER 5 SQLJ Functions and Stored Procedures
	Overview
	Compliance with SQLJ Part 1 specifications
	General issues
	Security and permissions
	SQLJExamples

	Invoking Java methods in Adaptive Server
	Using Sybase Central to manage SQLJ functions and procedures
	SQLJ user-defined functions
	Handling null argument values
	Handling nulls when creating the function
	Handling nulls in the function call

	Deleting a SQLJ function name

	SQLJ stored procedures
	Modifying SQL data
	Using input and output parameters
	Returning result sets
	Deleting a SQLJ stored procedure name

	Viewing information about SQLJ functions and procedures
	Advanced topics
	Mapping Java and SQL datatypes
	Using the command main method

	SQLJ and Sybase implementation: a comparison
	SQLJExamples class

	CHAPTER 6 Debugging Java in the Database
	Introduction to debugging Java
	How the debugger works
	Requirements for using the Java debugger
	What you can do with the debugger

	Using the debugger
	Starting the debugger and connecting to the database
	Compiling classes for debugging
	Attaching to a Java VM
	The Source window
	The debugger windows

	Options
	Setting breakpoints
	Breaking on a line number
	Breaking on a static method
	Using counts with breakpoints
	Using conditions with breakpoints
	Breaking when execution is not interrupted

	Disconnecting from the database

	A debugging tutorial
	Before you begin
	Start the Java debugger and connect to the database
	Attach to a Java VM
	Load source code into the debugger
	Step through source code
	Examples

	Inspecting and modifying variables
	Inspecting local variables
	Modifying local variables
	Inspecting static variables

	CHAPTER 7 Network Access Using java.net
	Overview
	java.net classes
	Setting up java.net
	Example usage
	Using socket classes
	Saving text out of Adaptive Server

	Using the URL class
	Use the mailto:URL class to mail a document
	Obtaining an HTTP document
	Accessing an external document with XQL

	User notes
	Where to go for help

	CHAPTER 8 Reference Topics
	Assignments
	Assignment rules at compile-time
	Assignment rules at runtime

	Allowed conversions
	Transferring Java-SQL objects to clients
	Supported Java API packages, classes, and methods
	Supported Java packages and classes
	Unsupported Java packages, classes, and methods
	Unsupported java.sql methods and interfaces

	Invoking SQL from Java
	Special considerations

	Transact-SQL commands from Java methods
	Datatype mapping between Java and SQL
	Java-SQL identifiers
	Java-SQL class and package names
	Java-SQL column declarations
	Java-SQL variable declarations
	Java-SQL column references
	Java-SQL member references
	Java-SQL method calls
	Glossary

	Index

