
Performance and Tuning:
Monitoring and Analyzing

Adaptive Server® Enterprise

12.5.1

DOCUMENT ID: DC20022-01-1251-01

LAST REVISED: August 2003

Copyright © 1989-2003 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture,
Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server
Enterprise Replication, Adaptive Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, Anywhere Studio, Application
Manager, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Translator, APT-Library, AvantGo,
AvantGo Application Alerts, AvantGo Mobile Delivery, AvantGo Mobile Document Viewer, AvantGo Mobile Inspection, AvantGo
Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon Application Server,
AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BizTracker, ClearConnect, Client-Library,
Client Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer,
DataWindow, DB-Library, dbQueue, Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution Director, e-ADK,
E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway, ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise
Application Studio, Enterprise Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server
Manager, Enterprise Work Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA,
Financial Fusion, Financial Fusion Server, Gateway Manager, GlobalFIX, ImpactNow, Industry Warehouse Studio, InfoMaker,
Information Anywhere, Information Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, Mail
Anywhere Studio, MainframeConnect, Maintenance Express, Manage Anywhere Studio, M-Business Channel, M-Business Network,
M-Business Server, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, My AvantGo, My AvantGo Media Channel,
My AvantGo Mobile Marketing, MySupport, Net-Gateway, Net-Library, New Era of Networks, ObjectConnect, ObjectCycle,
OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open
Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC
Net Library, PocketBuilder, Pocket PowerBuilder, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class
Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft, PowerStage,
PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst,
Rapport, Report Workbench, Report-Execute, Replication Agent, Replication Driver, Replication Server, Replication Server Manager,
Replication Toolkit, Resource Manager, RW-DisplayLib, S-Designor, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian,
SKILS, smart.partners, smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL
Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART,
SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, S.W.I.F.T.
Message Format Libraries, Sybase Central, Sybase Client/Server Interfaces, Sybase Financial Server, Sybase Gateways, Sybase MPP,
Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financial,
SyberAssist, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, TradeForce, Transact-SQL,
Translation Toolkit, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual
Components, VisualSpeller, VisualWriter, VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse
WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup
SQL Server, XA-Library, XA-Server and XP Server are trademarks of Sybase, Inc. 03/03

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

Performance and Tuning: Monitoring and Analyzing iii

About This Book ... xiii

CHAPTER 1 Introduction to Performance and Tuning 1

CHAPTER 2 Monitoring Tables ... 3
Monitoring system tables in Adaptive Server 3

Using Transact-SQL to monitor performance............................ 4
The mon_role role .. 5
Examples of querying the monitoring tables 6
Processing information through search arguments.......................... 8
Wrapping counter datatypes .. 9
Stateful historical monitoring tables.. 9

Transient monitoring data.. 11
Installing the monitoring tables... 12
Adaptive Server configuration options ... 13

deadlock pipe active.. 13
deadlock pipe max messages ... 13
enable monitoring.. 14
errorlog pipe active.. 14
errorlog pipe max messages ... 14
max SQL text monitored.. 15
object lockwait timing .. 15
per object statistics active ... 15
plan text pipe active... 16
plan text pipe max messages.. 16
process wait events... 17
sql text pipe active... 17
sql text pipe max messages .. 17
statement pipe active .. 18
statement pipe max messages.. 18
statement statistics active ... 19
SQL batch capture .. 19
wait event timing.. 19

Contents

iv Adaptive Server Enterprise

System tables for monitor tables.. 20
monTables ... 20
monTableParameters... 20
monTableColumns ... 21
monState.. 22
monEngine ... 23
monDataCache .. 24
monProcedureCache ... 24
monOpenDatabases .. 25
monSysWorkerThread ... 25
monNetworkIO ... 27
monErrorLog .. 27
monLocks... 27
monDeadLock .. 28
monWaitClassInfo .. 30
monWaitEventInfo.. 31
monCachedObject ... 31
monCachePool... 32
monOpenObjectActivity.. 32
monIOQueue.. 33
monDeviceIO ... 34
monSysWaits ... 34
monProcess ... 35
monProcessLookup ... 36
monProcessActivity.. 37
monProcessNetIO.. 38
monProcessObject ... 39
monProcessWaits .. 39
monProcessStatement... 40
monProcessSQLText ... 41
monSysPlanText .. 42
monSysStatement.. 42
monCachedProcedures ... 44
monSysSQLText .. 44
monProcessProcedures... 45

CHAPTER 3 Using Statistics to Improve Performance 47
Importance of statistics .. 47

Updating .. 48
Adding statistics for unindexed columns 48

update statistics commands... 49
Using sampling for update statistics.. 50

Column statistics and statistics maintenance................................. 51
Creating and updating column statistics .. 53

Contents

Performance and Tuning: Monitoring and Analyzing v

When additional statistics may be useful 54
Adding statistics for a column with update statistics 54
Adding statistics for minor columns with update index statistics 55
Adding statistics for all columns with update all statistics 55

Choosing step numbers for histograms ... 55
Disadvantages of too many steps ... 55
Choosing a step number ... 56

Scan types, sort requirements, and locking 56
Sorts for unindexed or non leading columns 57
Locking, scans, and sorts during update index statistics 57
Locking, scans and sorts during update all statistics 58
Using the with consumers clause.. 58
Reducing update statistics impact on concurrent processes .. 58

Using the delete statistics command.. 59
When row counts may be inaccurate ... 59

CHAPTER 4 Using the set statistics Commands .. 61
Command syntax ... 61
Using simulated statistics... 62
Checking subquery cache performance... 62
Checking compile and execute time .. 62

Converting ticks to milliseconds .. 63
Reporting physical and logical I/O statistics................................... 63

Total actual I/O cost value... 64
Statistics for writes .. 64
Statistics for reads... 65
statistics io output for cursors.. 66
Scan count .. 67
Relationship between physical and logical reads.................... 69
statistics io and merge joins .. 71

CHAPTER 5 Using set showplan .. 73
Using ... 73
Basic showplan messages... 74

Query plan delimiter message... 74
Step message ... 74
Query type message ... 75
FROM TABLE message.. 75
TO TABLE message ... 78
Update mode messages ... 79
Optimized using messages ... 82

showplan messages for query clauses .. 82
GROUP BY message.. 83

Contents

vi Adaptive Server Enterprise

Selecting into a worktable ... 83
Grouped aggregate message.. 84
compute by message .. 86
Ungrouped aggregate message.. 87
messages for order by and distinct ... 89
Sorting messages.. 92

Messages describing access methods, caching, and I/O cost....... 93
Auxiliary scan descriptors message .. 93
Nested iteration message.. 95
Merge join messages .. 95
Table scan message ... 98
Clustered index message.. 99
Index name message .. 100
Scan direction messages .. 101
Positioning messages ... 102
Scanning messages .. 103
Index covering message ... 104
Keys message... 105
Matching index scans message .. 106
Dynamic index message (OR strategy)................................. 107
Reformatting Message .. 108
Trigger Log Scan Message ... 111
I/O Size Messages .. 112
Cache strategy messages... 112
Total estimated I/O cost message... 113

showplan messages for parallel queries 114
Executed in parallel messages.. 114

showplan messages for subqueries... 119
Output for flattened or materialized subqueries 120
Structure of subquery showplan output................................. 126
Subquery execution message ... 126
Nesting level delimiter message.. 126
Subquery plan start delimiter... 126
Subquery plan end delimiter.. 127
Type of subquery... 127
Subquery predicates ... 127
Internal subquery aggregates.. 128
Existence join message... 132

CHAPTER 6 Statistics Tables and Displaying Statistics with optdiag......... 135
System tables that store statistics.. 135

systabstats table.. 136
sysstatistics table .. 136

Viewing statistics with the optdiag utility 137

Contents

Performance and Tuning: Monitoring and Analyzing vii

optdiag syntax ... 137
optdiag header information.. 138
Table statistics... 138
Index statistics... 142
Column statistics ... 146
Histogram displays .. 151

Changing statistics with optdiag... 157
Using the optdiag binary mode.. 158
Updating selectivities with optdiag input mode...................... 159
Editing histograms... 160

Using simulated statistics... 162
optdiag syntax for simulated statistics................................... 163
Simulated statistics output... 163
Requirements for loading and using simulated statistics 165
Dropping simulated statistics... 167
Running queries with simulated statistics.............................. 167

Character data containing quotation marks 168
Effects of SQL commands on statistics.. 168

How query processing affects systabstats 170

CHAPTER 7 Tuning with dbcc traceon .. 171
Tuning with dbcc traceon(302) ... 171

dbcc traceon(310) ... 172
Invoking the dbcc trace facility .. 172
General tips for tuning with dbcc traceon(302)...................... 173
Checking for join columns and search arguments 173
Determining how the optimizer estimates I/O costs 174
Structure of dbcc traceon(302) output................................... 174

Table information block .. 175
Identifying the table ... 176
Basic table data... 176
Cluster ratio ... 176
Partition information .. 176

Base cost block .. 177
Concurrency optimization message 177

Clause block... 177
Search clause identification... 178
Join clause identification ... 179
Sort avert messages ... 179

Column block ... 180
Selectivities when statistics exist and values are known....... 181
When the optimizer uses default values................................ 181
Out-of-range messages... 182
“Disjoint qualifications” message... 183

Contents

viii Adaptive Server Enterprise

Forcing messages ... 184
Unique index messages .. 184
Other messages in the column block 184

Index selection block.. 185
Scan and filter selectivity values ... 185
Other information in the index selection block....................... 187

Best access block .. 187
dbcc traceon(310) and final query plan costs 189

Flattened subquery join order message 190
Worker process information .. 190
Final plan information .. 190

CHAPTER 8 Monitoring Performance with sp_sysmon 197
Using .. 198

When to run... 198
Invoking.. 199

Fixed time intervals ... 200
Using begin_sample and end_sample 200
Specifying report sections for output 201
Specifying the application detail parameter........................... 202
Cache Wizard syntax .. 202
Redirecting output to a file... 203

How to use the reports ... 203
Reading output .. 204
Interpreting the data .. 205

Sample interval and time reporting .. 206
Cache Wizard.. 207

Kernel utilization... 214
Sample output ... 214
Engine busy utilization... 214
CPU yields by engine .. 216
Network checks ... 217
Disk I/O checks ... 218
Total disk I/O checks ... 219

Worker process management .. 220
Sample output ... 220
Worker process requests .. 220
Worker process usage .. 221
Memory requests for worker processes 221
Avg mem ever used by a WP.. 221

Parallel query management ... 222
Sample output ... 222
Parallel query usage.. 223
Merge lock requests .. 224

Contents

Performance and Tuning: Monitoring and Analyzing ix

Sort buffer waits .. 224
Task management ... 224

Sample output ... 225
Connections opened ... 225
Task context switches by engine... 226
Task context switches due to .. 226

Application management.. 233
Sample output ... 233
Requesting detailed application information.......................... 234
Sample output ... 235
Application statistics summary (all applications) 236
Per application or per application and login 239

ESP management .. 240
Sample output ... 240

Housekeeper task activity .. 241
Sample output ... 241
Buffer cache washes ... 242
Garbage collections... 242
Statistics updates .. 242

Monitor access to executing SQL .. 242
Sample output ... 243

Transaction profile.. 243
Sample output ... 244
Transaction summary.. 244
Transaction detail .. 246
Inserts.. 246
Updates and update detail sections 248
Deletes .. 249

Transaction management .. 250
Sample output ... 250
ULC flushes to transaction log .. 251
Total ULC flushes.. 252
ULC log records .. 253
Maximum ULC size ... 253
ULC semaphore requests ... 253
Log semaphore requests... 254
Transaction log writes ... 255
Transaction log allocations.. 256
Avg # writes per log page.. 256

Index management .. 256
Sample output ... 256
Nonclustered maintenance.. 257
Page splits... 259
Page shrinks.. 264

Contents

x Adaptive Server Enterprise

Index scans ... 265
Metadata cache management.. 265

Sample output ... 265
Open object, index, and database usage.............................. 266
Object Manager Spinlock Contention.................................... 267
Object and index spinlock contention.................................... 267
Hash spinlock contention .. 268

Lock management.. 269
Sample output ... 269
Lock summary ... 272
Lock detail ... 272
Table lock hashtable ... 274
Deadlocks by lock type.. 274
Deadlock detection.. 275
Lock promotions .. 276
Lock time-out information .. 277

Data cache management ... 278
Sample output ... 278
Cache statistics summary (all caches) 280
Cache management by cache... 285

Procedure cache management .. 292
Sample output ... 292
Procedure requests ... 293
Procedure reads from disk .. 293
Procedure writes to disk .. 293
Procedure removals .. 294

Memory management .. 294
Sample output ... 294
Pages allocated... 294
Pages released ... 294

Recovery management .. 295
Sample output ... 295
Checkpoints... 295
Average time per normal checkpoint..................................... 297
Average time per free checkpoint.. 297
Increasing the housekeeper batch limit................................. 297

Disk I/O management .. 298
Sample output ... 298
Maximum outstanding I/Os.. 299
I/Os delayed by ... 299
Requested and completed disk I/Os 300
Device activity detail.. 301

Network I/O management .. 303
Sample output ... 303

Contents

Performance and Tuning: Monitoring and Analyzing xi

Total network I/Os requests .. 304
Network I/Os delayed .. 305
Total TDS packets received .. 305
Total bytes received .. 305
Average bytes received per packet 305
Total TDS packets sent ... 305
Total bytes sent ... 305
Average bytes sent per packet.. 306
Reducing packet overhead.. 306

Index ... 307

xii Adaptive Server Enterprise

Performance and Tuning: Monitoring and Analyzing xiii

About This Book

Audience This manual is intended for database administrators, database designers,
developers and system administrators.

Note You may want to use your own database for testing changes and
queries. Take a snapshot of the database in question and set it up on a test
machine.

How to use this book Chapter 1, “Introduction to Performance and Tuning” gives a general
description of this manual and the other manuals within the Performance
and Tuning Series for Adaptive Server.

Chapter 2, “Monitoring Tables” Adaptive Server includes a set of system
tables that contains monitoring and diagnostic information. This chapter
describes how to query Adaptive Server’s monitoring tables for statistical
and diagnostic information.

Chapter 3, “Using Statistics to Improve Performance” describes how to
use the update statistics command to create and update statistics.

Chapter 4, “Using the set statistics Commands” explains the commands
that provide information about execution.

Chapter 5, “Using set showplan” provides examples of showplan
messages.

Chapter 6, “Statistics Tables and Displaying Statistics with optdiag”
describes the tables that store statistics and the output of the optdiag
command that displays the statistics used by the query optimizer.

Chapter 7, “Tuning with dbcc traceon” explains how to use the dbcc
traceon commands to analyze query optimization problems.

Chapter 8, “Monitoring Performance with sp_sysmon” describes how to
use a system procedure that monitors Adaptive Server performance

Related documents • The remaining manuals for the Performance and Tuning Series are:

• Performance and Tuning: Basics

• Performance and Tuning: Locking

xiv Adaptive Server Enterprise

• Performance and Tuning: Optimizer and Abstract Plans

• The release bulletin for your platform – contains last-minute information
that was too late to be included in the books.

A more recent version of the release bulletin may be available on the
World Wide Web. To check for critical product or document information
that was added after the release of the product CD, use the Sybase
Technical Library.

• The Installation Guide for your platform – describes installation, upgrade,
and configuration procedures for all Adaptive Server and related Sybase
products.

• Configuring Adaptive Server Enterprise for your platform – provides
instructions for performing specific configuration tasks for Adaptive
Server.

• What’s New in Adaptive Server Enterprise? – describes the new features
in Adaptive Server version 12.5, the system changes added to support
those features, and the changes that may affect your existing applications.

• Transact-SQL User’s Guide – documents Transact-SQL, Sybase’s
enhanced version of the relational database language. This manual serves
as a textbook for beginning users of the database management system.
This manual also contains descriptions of the pubs2 and pubs3 sample
databases.

• System Administration Guide – provides in-depth information about
administering servers and databases. This manual includes instructions
and guidelines for managing physical resources, security, user and system
databases, and specifying character conversion, international language,
and sort order settings.

• Reference Manual – contains detailed information about all Transact-SQL
commands, functions, procedures, and data types. This manual also
contains a list of the Transact-SQL reserved words and definitions of
system tables.

• The Utility Guide – documents the Adaptive Server utility programs, such
as isql and bcp, which are executed at the operating system level.

• The Quick Reference Guide – provides a comprehensive listing of the
names and syntax for commands, functions, system procedures, extended
system procedures, data types, and utilities in a pocket-sized book.
Available only in print version.

 About This Book

Performance and Tuning: Monitoring and Analyzing xv

• The System Tables Diagram – illustrates system tables and their entity
relationships in a poster format. Available only in print version.

• Error Messages and Troubleshooting Guide – explains how to resolve
frequently occurring error messages and describes solutions to system
problems frequently encountered by users.

• Component Integration Services User’s Guide – explains how to use the
Adaptive Server Component Integration Services feature to connect
remote Sybase and non-Sybase databases.

• Java in Adaptive Server Enterprise – describes how to install and use Java
classes as data types, functions, and stored procedures in the Adaptive
Server database.

• XML Services in Adaptive Server Enterprise – describes the Sybase native
XML processor and the Sybase Java-based XML support, introduces
XML in the database, and documents the query and mapping functions
that comprise XML Services.

• Using Sybase Failover in a High Availability System – provides
instructions for using Sybase’s Failover to configure an Adaptive Server
as a companion server in a high availability system.

• Job Scheduler User’s Guide – provides instructions on how to create and
schedule jobs on a local or remote Adaptive Server using the command
line or a graphical user interface (GUI).

• Using Adaptive Server Distributed Transaction Management Features –
explains how to configure, use, and troubleshoot Adaptive Server DTM
features in distributed transaction processing environments.

• EJB Server User’s Guide – explains how to use EJB Server to deploy and
execute Enterprise JavaBeans in Adaptive Server.

• XA Interface Integration Guide for CICS, Encina, and TUXEDO –
provides instructions for using Sybase’s DTM XA interface with X/Open
XA transaction managers.

• Glossary – defines technical terms used in the Adaptive Server
documentation.

• Sybase jConnect for JDBC Programmer’s Reference – describes the
jConnect for JDBC product and explains how to use it to access data stored
in relational database management systems.

xvi Adaptive Server Enterprise

• Full-Text Search Specialty Data Store User’s Guide – describes how to use
the Full-Text Search feature with Verity to search Adaptive Server
Enterprise data.

• Historical Server User’s Guide –describes how to use Historical Server to
obtain performance information for SQL Server and Adaptive Server.

• Monitor Server User’s Guide – describes how to use Monitor Server to
obtain performance statistics from SQL Server and Adaptive Server.

• Monitor Client Library Programmer’s Guide – describes how to write
Monitor Client Library applications that access Adaptive Server
performance data.

Other sources of
information

Use the Sybase Technical Library CD and the Technical Library Product
Manuals Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the Technical Library CD. It is included with
your software. To read or print documents on the Getting Started CD you
need Adobe Acrobat Reader (downloadable at no charge from the Adobe
Web site, using a link provided on the CD).

• The Technical Library CD contains product manuals and is included with
your software. The DynaText reader (included on the Technical Library
CD) allows you to access technical information about your product in an
easy-to-use format.

Refer to the Technical Library Installation Guide in your documentation
package for instructions on installing and starting the Technical Library.

• The Technical Library Product Manuals Web site is an HTML version of
the Technical Library CD that you can access using a standard Web
browser. In addition to product manuals, you will find links to
EBFs/Updates, Technical Documents, Case Management, Solved Cases,
newsgroups, and the Sybase Developer Network.

To access the Technical Library Product Manuals Web site, go to Product
Manuals at http://www.sybase.com/support/manuals/.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

http://www.sybase.com/support/manuals/
http://www.sybase.com/support/techdocs/.

 About This Book

Performance and Tuning: Monitoring and Analyzing xvii

2 Select Products from the navigation bar on the left.

3 Select a product name from the product list and click Go.

4 Select the Certification Report filter, specify a time frame, and click Go.

5 Click a Certification Report title to display the report.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software updates

❖ Finding the latest information on EBFs and software updates

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Updates. Enter user name and password information, if
prompted (for existing Web accounts) or create a new account (a free
service).

3 Select a product.

4 Specify a time frame and click Go.

5 Click the Info icon to display the EBF/Update report, or click the product
description to download the software.

Conventions This section describes conventions used in this manual.

Formatting SQL
statements

SQL is a free-form language. There are no rules about the number of words you
can put on a line or where you must break a line. However, for readability, all
examples and syntax statements in this manual are formatted so that each
clause of a statement begins on a new line. Clauses that have more than one part
extend to additional lines, which are indented.

Font and syntax
conventions

The font and syntax conventions used in this manual are shown in Table 1.0:

Table 1: Font and syntax conventions in this manual

Element Example

Command names, command option names, utility
names, utility flags, and other keywords are bold.

select
sp_configure

http://www.sybase.com/support/techdocs/
http://www.sybase.com/support

xviii Adaptive Server Enterprise

• Syntax statements (displaying the syntax and all options for a command)
appear as follows:

Database names, datatypes, file names and path
names are in italics.

master database

Variables, or words that stand for values that you
fill in, are in italics.

select

column_name

from

table_name

where

search_conditions

Parentheses are to be typed as part of the command. compute

row_aggregate

 (

column_name

)

Curly braces indicate that you must choose at least
one of the enclosed options. Do not type the braces.

{cash, check, credit}

Brackets mean choosing one or more of the
enclosed options is optional. Do not type the
brackets.

[anchovies]

The vertical bar means you may select only one of
the options shown.

{die_on_your_feet | live_on_your_knees
| live_on_your_feet}

The comma means you may choose as many of the
options shown as you like, separating your choices
with commas to be typed as part of the command.

[extra_cheese, avocados, sour_cream]

An ellipsis (...) means that you can repeat the last
unit as many times as you like.

buy thing = price [cash | check |
credit]
 [, thing = price [cash | check |
credit]]...

You must buy at least one thing and give its price. You
may choose a method of payment: one of the items
enclosed in square brackets. You may also choose to buy
additional things: as many of them as you like. For each
thing you buy, give its name, its price, and (optionally) a
method of payment.

Element Example

 About This Book

Performance and Tuning: Monitoring and Analyzing xix

sp_dropdevice [device_name]

or, for a command with more options:

select column_name

from table_name

where search_conditions

In syntax statements, keywords (commands) are in normal font and identifiers
are in lowercase: normal font for keywords, italics for user-supplied words.

• Examples of output from the computer appear as follows:

0736 New Age Books Boston MA

0877 Binnet & Hardley Washington DC

1389 Algodata Infosystems Berkeley CA

Case In this manual, most of the examples are in lowercase. However, you can
disregard case when typing Transact-SQL keywords. For example, SELECT,
Select, and select are the same. Note that Adaptive Server’s sensitivity to the
case of database objects, such as table names, depends on the sort order
installed on Adaptive Server. You can change case sensitivity for single-byte
character sets by reconfiguring the Adaptive Server sort order.

See in the System Administration Guide for more information.

Expressions Adaptive Server syntax statements use the following types of expressions:

Table 2: Types of expressions used in syntax statements

Usage Definition

expression Can include constants, literals, functions, column identifiers, variables, or
parameters

logical expression An expression that returns TRUE, FALSE, or UNKNOWN

constant expression An expression that always returns the same value, such as “5+3” or “ABCDE”

float_expr Any floating-point expression or expression that implicitly converts to a floating
value

integer_expr Any integer expression, or an expression that implicitly converts to an integer value

numeric_expr Any numeric expression that returns a single value

char_expr Any expression that returns a single character-type value

binary_expression An expression that returns a single binary or varbinary value

xx Adaptive Server Enterprise

Examples Many of the examples in this manual are based on a database called pubtune.
The database schema is the same as the pubs2 database, but the tables used in
the examples have more rows: titles has 5000, authors has 5000, and titleauthor
has 6250. Different indexes are generated to show different features for many
examples, and these indexes are described in the text.

The pubtune database is not provided with Adaptive Server. Since most of the
examples show the results of commands such as set showplan and set statistics
io, running the queries in this manual on pubs2 tables will not produce the same
I/O results, and in many cases, will not produce the same query plans as those
shown here.

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

Performance and Tuning: Monitoring and Analyzing 1

C H A P T E R 1 Introduction to Performance and
Tuning

Tuning Adaptive Server Enterprise for performance can involve several
processes in analyzing the “Why?” of slow performance, contention,
optimizing and usage.

Adaptive Server employs reports for monitoring the server. This manual
explains how statistics are obtained and used for monitoring and
optimizing. The stored procedure sp_sysmon produces a large report that
shows the performance in Adaptive Server.

You can also use the Sybase Monitor in Sybase Central for realtime
information on the status of the server.

The remaining manuals for the Performance and Tuning Series are:

• Performance and Tuning: Basics

This manual covers the basics for understanding and investigating
performance questions in Adaptive Server. It guides you in how to
look for the places that may be impeding performance.

• Performance and Tuning: Optimizer

The Optimizer in the Adaptive Server takes a query and finds the best
way to execute it. The optimization is done based on the statistics for
a database or table. The optimized plan stays in effect until the
statistics are updated or the query changes. You can update the
statistics on the entire table or by sampling on a percentage of the
data.

• Performance and Tuning: Abstract Plans

Adaptive Server can generate an abstract plan for a query, and save
the text and its associated abstract plan in the sysqueryplans system
table. Abstract plans provide an alternative to options that must be
specified in the batch or query in order to influence optimizer
decisions. Using abstract plans, you can influence the optimization of
a SQL statement without having to modify the statement syntax.

• Performance and Tuning: Locking

2 Adaptive Server Enterprise

Adaptive Server locks the tables, data pages, or data rows currently used
by active transactions by locking them. Locking is a concurrency control
mechanism: it ensures the consistency of data within and across
transactions. Locking is needed in a multiuser environment, since several
users may be working with the same data at the same time.

Carefully considered indexes, built on top of a good database design, are
the foundation of a high-performance Adaptive Server installation.
However, adding indexes without proper analysis can reduce the overall
performance of your system. Insert, update, and delete operations can take
longer when a large number of indexes need to be updated.

Each of the manuals has been set up to cover specific information that may be
used by the system administrator and the database administrator.

Performance & Tuning: Monitoring and Analyzing 3

C H A P T E R 2 Monitoring Tables

This chapter describes how to query Adaptive Server’s monitoring tables
for statistical and diagnostic information.

Monitoring system tables in Adaptive Server
Adaptive Server includes a set of system tables that contains monitoring
and diagnostic information. The information in these tables provides you
with a statistical snapshot of the state of Adaptive Server, which allows
you to analyze the server for performance improvements. You can query
these system tables in much the same way you currently query any other
tables in Adaptive Server. For example, to display statistical information
about I/O on Sybase devices:

select * from monDeviceIO
Reads APFReads Writes DevSemaphoreRequests DevSemaphoreWaits IOTime
LogicalName PhysicalName
-------- ----------- -------- -------------------- ----------------- ------
--------------------------- -------------------------------
1563 7 7891 3 0 134900
master /dev/vx/rdsk/sybase/master_vol01
59 0 15 2 0 800
engcomdb_data_vol01 /dev/vx/rdsk/sybase/engcomdb_data_vol01
5 0 13 2 0 100

Topic Page

Monitoring system tables in Adaptive Server 3

The mon_role role 5

Examples of querying the monitoring tables 6

Processing information through search arguments 8

Wrapping counter datatypes 9

Stateful historical monitoring tables 9

Installing the monitoring tables 12

Adaptive Server configuration options 13

System tables for monitor tables 20

Monitoring system tables in Adaptive Server

4 Adaptive Server Enterprise

engcomdb_log_vol01 /dev/vx/rdsk/sybase/engcomdb_log_vol01
126255 59657 8604 2 0 1408700
qts_db_data_vol01 /dev/vx/rdsk/sybase/qts_db_data_vol01
31 0 9879 2 0 128400
qts_db_log_vol01 /dev/vx/rdsk/sybase/qts_db_log_vol01
51 0 19 2 0 400
sadb_data_vol01 /dev/vx/rdsk/sybase/sadb_data_vol01
5 0 12 2 0 200
sadb_log_vol01 /dev/vx/rdsk/sybase/sadb_log_vol01
56 0 25 2 0 900
scratchdb_vol01 /dev/vx/rdsk/sybase/scratchdb_vol01
0 0 0 2 0 0
rmdb_data_vol01 /dev/vx/rdsk/sybase/rmdb_data_vol01
0 0 0 2 0 0
rmdb_log_vol01 /dev/vx/rdsk/sybase/rmdb_log_vol01
52658 424 99512 2 0 2231300
sysprocsdev /dev/vx/rdsk/sybase/sybsystemprocs_vol01
146 0 3569 2 0 13700
tempdb_data /tmp/tempdb_data
4 0 814 2 0 400
tempdb_log /tmp/tempdb_log

Where monDeviceIO is the system table that contains statistical information
about disk I/O (physical name, reads, writes, and so on). To perform this query,
the user does not need to know if Monitor Server or any other monitoring agent
is executing on the same host server; the monDeviceIO table contains all the
information they need.

The monitoring tables are not created by default, but must be created using the
installmontables script. See “Installing the monitoring tables” on page 12 for
more information.

Note You must have the mon_role role to query these tables. For more
information, see “The mon_role role” on page 5.

Using Transact-SQL to monitor performance
Providing monitoring information as tables enables you to use Transact-SQL
to monitor Adaptive Server. For example, to identify the Transact-SQL
statements that are currently consuming CPU, enter:

select s.SPID, s.CpuTime, t.LineNumber, t.SQLText
from monProcessStatement s, monProcessSQLText t

CHAPTER 2 Monitoring Tables

Performance & Tuning: Monitoring and Analyzing 5

where s.SPID=t.SPID
order by s.CpuTime, s.SPID, t.LineNumber desc

You can this same query to find the SQL statements that are using the most
physical I/O by substituting CpuTime for PhysicalReads.

The information in each monitoring table can be sorted, selected, joined,
inserted into another table, and treated much the same as the information in a
regular Adaptive Server table.

The tables are read-only because they are in-memory tables that are generated
as they are queried.

Access to these tables is restricted to users with the mon_role role.

The definitions for the monitoring tables have a similar syntax to CIS
definitions, which allow remote procedures to be defined as local tables. For
example, the following syntax is used to create the monNetworkIO table on a
server named “loopback”:

create existing table monNetworkIO (
PacketsSent int,
PacketsReceived int,
BytesSent int,
BytesReceived int,

)
external procedure
at "loopback...$monNetworkIO"

The mon_role role
Only users with the mon_role role can access Adaptive Server’s monitoring
tables. You can provide extra role-based security by modifying the CIS proxy
table definitions provided with the monitoring tables. For information about
acquiring roles, see Chapter 11, “Managing User Permissions,” in the System
Administration Guide.

Some of the tables may contain sensitive information. For example,
monSysSQLText contains all the SQL text that was sent to the Adaptive Server.
This may contain information such as updates to employee salary records.

Examples of querying the monitoring tables

6 Adaptive Server Enterprise

Examples of querying the monitoring tables
This section provides examples of querying the monitoring tables.

• This query determines what monitoring tables are available:

select *
from master..monTables

• This query determines which parameters will improve performance by
including them in a where clause:

select * from master..monTableParameters
where TableName="monOpenObjectActivity"

See “Processing information through search arguments” on page 8 for
more information.

• This query determines what columns exist in a specific monitoring table:

select ColumnName, TypeName, Length, Description
from master..monTableColumns
where TableName=”monProcessSQLText

You can determine the columns for any of the monitoring tables by
substituting its name in the where clause and running the query.

• This example determines which queries are consuming the most CPU:

select s.SPID, s.CpuTime, t.LineNumber, t.SQLText
from master..monProcessStatement s, master..monProcessSQLText t
where s.SPID = t.SPID
order by s.CpuTime DESC

This query also provides the hit ratio over the life of Adaptive Server, and
must be rewritten to apply to a specific time period.

• This query determines the hit ratios for the data cache for the life of
Adaptive Server:

select "Procedure Cache Hit Ratio" = (Requests-Loads)*100/Requests
from master..monProcedureCache

This query also provides the hit ratio over the life of Adaptive Server, and
must be rewritten to apply to a specific time period.

Because the values for LogicalReads and CacheSearches are accumulated
over time, you must rewrite this query for a specific sampling period (for
example, use the changes of values over a 10-minute period). For example,
the following queries the monitoring tables for the sampling period:

select * into #moncache_prev

CHAPTER 2 Monitoring Tables

Performance & Tuning: Monitoring and Analyzing 7

from master..monDataCache
waitfor delay "00:10:00"
select * into #moncache_cur
from master..monDataCache
select p.CacheName,
"Hit Ratio"=(c.LogicalReads-p.LogicalReads)*100 / (c.CacheSearches -
p.CacheSearches)
from #moncache_prev p, #moncache_cur c
where p.CacheName = c.CacheName

• This query creates a stored procedure that prints the executed SQL and the
backtrace of any stored procedures for diagnostic purposes:

create procedure sp_backtrace @spid int as
begin
select SQLText
from master..monProcessSQLText
where SPID=@spid
print "Stacktrace:"
select ContextID, DBName, OwnerName, ObjectName
from master..monProcessProcedures
where SPID=@spid
end

• Identifies any indices that are not currently in use and can be dropped:

select DBID, ObjectID, LastUsedDate, UsedCount
from monOpenObjectActivity
where dbid=5 and ObjectID=1424005073 and IndexID > 1

To determine if an index can be dropped:

• All queries that access the table in question have been run. Typically,
you can determine this by ensuring that Adaptive Server has been
running long enough so that all applications have performed all of
their selects on the table.

• Ensure that the object has remained open. That is, the table and its
indexes have not been scavenged. You can determine this by looking
at the Reused column from the output of sp_monitorconfig for number
of open indexes and number of open objects. For example:

exec sp_monitorconfig ’number of open indexes’
exec sp_monitorconfig ’number of open objects’
Usage information at date and time: Oct 22 2002 1:49PM.
Name Num_free Num_active Pct_act
Max_Used Reused
------------------------- ----------- ----------- -------
---- ------

Processing information through search arguments

8 Adaptive Server Enterprise

number of open indexes 496 4 0.80
4 No
Usage information at date and time: Oct 22 2002 1:49PM.
Name Num_free Num_active Pct_act
Max_Used Reused
------------------------- ----------- ----------- -------
---- ------
number of open objects 494 6 1.20
6 No

Processing information through search arguments
You must correctly use search arguments when specifying parameters to
monitoring tables, or the efficiency of your query deteriorates. If the search
condition for your query is not precisely defined on one or more parameters of
the monitoring tables, information is collected for the entire result set, which
must then be filtered by the Adaptive Server language layer. The following
example correctly specifies the search arguments, where DBID = 1:

select * from monOpenObjectActivity
where DBID = 1

Adaptive Server uses certain search arguments (identified in
monTableParameters) to filter the result set and reduce the amount of work it
performs to produce the result set. These parameters are used only when you
specify an exactly matching search argument; for example, when a = 2.

But if the search conditions of the query are more loosely specified, for
example if DBID < 2 the DBID parameter cannot be used internally, and a
result set containing a row for every object in every database is produced. Also,
Adaptive Server’s language layer must filter the result set to simply return a
row for each object in the master database. This adversely affects your
performance.

Query the monTableParameters to determine which arguments should be
specified to improve query performance. For example, the following query
shows which search arguments should be specified for the
monOpenObjectActivity table:

select ParameterName, TypeName
from monTableParameters
where TableName = ’monOpenObjectActivity’
ParameterName TypeName

CHAPTER 2 Monitoring Tables

Performance & Tuning: Monitoring and Analyzing 9

----------------- ------------
DBID int
ObjectID int
IndexID int

Wrapping counter datatypes
Some columns in the monitoring tables contain integer counter values which
are incremented throughout the life of Adaptive Server. Once a counter reaches
the highest value possible (2,147,483,647), it is reset to 0, which is called
“wrapping.”

Because of wrapping, you should sample these counters over time and use the
result of sampling instead of the returned value. For example, use the
difference between the current value and the previous value instead of the
return value.

The Indicators column of the monTableColumns table specifies which columns
are prone to wrapping.

To display a list of columns that are counters, execute:

select TableName, ColumnName from monTableColumns
where (Indicators & 1) = 1

Stateful historical monitoring tables
A number of monitoring tables provide the most recent historical monitoring
information rather than information about the current state. Adaptive Server
maintains context for each client that accesses these tables and only returns
information that the client has not previously returned. These “stateful”
historical monitoring tables were designed to maximize performance and to
avoid duplicate rows when used to populate a repository for historical data.

The following stateful monitoring tables provide data that provides the most
recent historical data rather than information about the current state of
Adaptive Server:

• monErrorLog

• monDeadLock

Stateful historical monitoring tables

10 Adaptive Server Enterprise

• monSysStatement

• monSysSQLText

• monSysPlanText

You can identify stateful historical tables from their monTables.Indicators
column:

select TableName from monTables where Indicators & 1=1

The information returned from stateful historical tables is stored in buffers, one
for each historical monitoring table. Use the sp_configure options to configure
the size of the buffer and the information to be captured. Which sp_configure
options you use depends on which monitoring table you are interested in
configuring. For example, for the monSysPlanText table, you configure:

• plan text pipe max messages – configures the number of messages to be
stored for the particular buffer.

• plan text pipe active – indicates whether Adaptive Server writes
information to the buffer.

Each stored message stored contributes one row to the monitoring table. New
messages overwrite old messages in the buffers, so only the most recent
messages are returned.

See Chapter 5 of the System Administration Guide, “Setting Configuration
Parameters” and “Adaptive Server configuration options” on page 13 of this
chapter for more information about using sp_configure.

Because Adaptive Server retains a context for every client connection and
returns only the data that was added since the previous read, you may get
seemingly inconsistent result sets from queries that attempt to filter results
using a where clause, because:

• A select from the monitoring table always returns all previously unread
messages.

• The filtering is performed by the Adaptive Server language layer.

In the following example, the buffer associated with the monErrorLog table
contains two messages:

select SPID, ErrorMessage from monErrorLog
SPID ErrorMessage
------ --------------------------------------
20 An error from SPID 20
21 An error from SPID 21

CHAPTER 2 Monitoring Tables

Performance & Tuning: Monitoring and Analyzing 11

(2 rows affected)

If you reconnect, the two messages are returned, but you receive the following
messages when you filter the result set with a where clause:

select SPID, ErrorMessage from monErrorLog
where SPID=20
SPID ErrorMessage
------ --------------------------------------
20 An error from SPID 20
(1 row affected)

And:

select SPID, ErrorMessage from monErrorLog
where SPID=21
SPID ErrorMessage
------ --------------------------------------
(0 rows affected)

Even though you never see the row for SPID 21, a result set containing the
SPID was passed to Adaptive Server’s language layer, which filtered the row
before returning the result set to the client, and the message is marked as “read”
for this connection.

Note Because of the stateful nature of these tables, you should not use these
tables for ad-hoc queries. Instead, you should use a select * into or insert
into to populate a repository.

Transient monitoring data
Because monitoring tables contain stateful data, take care when joining or
using aggregates in your queries because data may not be available if the plan
requires that the table be queried multiple times. For example:

select s.SPID, s.CpuTime, s.LineNumber, t.SQLText
from monProcessStatement s, monProcessSQLText t
where s.SPID=t.SPID
and s.CpuTime = (select max(CpuTime) from monProcessStatement)

Here, the monProcessStatement table is queried twice; first to find the
maximum CpuTime, and then to match the maximum. When Adaptive Server
performs the second query, there are three potential outcomes returned from
monProcessStatement:

Installing the monitoring tables

12 Adaptive Server Enterprise

• The statement performes more work, consuming more CPU, and having a
CpuTime value greater than the previous maximum. This returns no
results.

• The statement finishes executing. This yields no results unless another
statement used exactly the amount of CPU as the previously obtained
maximum.

• The statement does not use any additional CPU, and its value of CpuTime
still matches the maximum. This is the only scenario that will produce the
expected results.

When you are designing queries, keep in mind that, because the data contained
in them is transient, joins and aggregates may not return the expected results if
the plan requires that the table is queried multiple times.

Installing the monitoring tables
Proxy tables for the monitoring tables are not created by default when you
configure Adaptive Server. You must create them using the installmontables
script located in the $SYBASE/ASE-12_5/scripts directory (%SYBASE%\ASE-
12_5\scripts for NT). This script requires that a server named “loopback” be
included in sysservers. To include this server, enter:

declare @servernetname varchar(30)
select @servernetname=srvnetname
from sysservers
where srvname=@@servername
exec sp_addserver loopback, NULL, @servernetname

Install the installmontables script the same way you install the installmaster
script. For example:

isql -Usa -Ppassword -Sserver_name -i $SYBASE/ASE-12_5/scripts/installmontables

CHAPTER 2 Monitoring Tables

Performance & Tuning: Monitoring and Analyzing 13

Adaptive Server configuration options
By default, Adaptive Server does not collect the monitoring information
required by the monitoring tables. You must use sp_configure to configure
Adaptive Server to start collecting the monitoring information. The monitoring
configuration parameters required are displayed when you enter:

sp_configure Monitoring

The following sections describe the configuration parameters that you must
configure before using monitoring tables.

deadlock pipe active

deadlock pipe active controls whether Adaptive Server collects deadlock
messages. If both deadlock pipe active and deadlock pipe max messages are
enabled, Adaptive Server collects the text for each deadlock. You can retrieve
these deadlock messages using monDeadLock.

deadlock pipe max messages

deadlock pipe max messages determines the number of deadlock messages
Adaptive Server stores. Adaptive Server allocates memory for storing as many
deadlock messages as indicated by the value of deadlock pipe max messages.

Summary information

Default value 0

Range of values 0–1

Status Dynamic

Display level Comprehensive

Required role System Administrator

Summary information

Default value 0

Range of values 0–2147483647

Status Dynamic

Display level Comprehensive

Required role System Administrator

Adaptive Server configuration options

14 Adaptive Server Enterprise

enable monitoring

enable monitoring controls whether Adaptive Server collects the monitoring
table data. Data is not collected if enable monitoring is set to 0. enable
monitoring acts as a master switch that determines whether any of the following
configuration parameters are enabled.

errorlog pipe active

errorlog pipe active controls whether Adaptive Server collects error log
messages. If both errorlog pipe active and errorlog pipe max messages are
enabled, Adaptive Server collects all the messages sent to the error log. You
can retrieve these error log messages using monErrorLog.

errorlog pipe max messages

Summary information

Default value 0

Range of values 0–1

Status Dynamic

Display level Comprehensive

Required role System Administrator

Summary information

Default value 0

Range of values 0–1

Status Dynamic

Display level Comprehensive

Required role System Administrator

Summary information

Default value 0

Range of values 0–2147483647

Status Dynamic

Display level Comprehensive

Required role System Administrator

CHAPTER 2 Monitoring Tables

Performance & Tuning: Monitoring and Analyzing 15

errorlog pipe max messages determines the number of error log messages
Adaptive Server stores. Adaptive Server allocates memory for storing as many
error messages as indicated by the value of errorlog pipe max messages.

max SQL text monitored

max SQL text monitored specifies the total number of bytes Adaptive Server
allocates for each user task to store SQL text.

object lockwait timing

object lockwait timing controls whether Adaptive Server collects timing
statistics for requests of locks on objects.

per object statistics active

Summary information

Default value 0

Range of values 0–2147483647

Status Dynamic

Display level Comprehensive

Required role System Administrator

Summary information

Default value 0

Range of values 0–1

Status Dynamic

Display level Comprehensive

Required role System Administrator

Summary information

Default value 0

Range of values 0–1

Status Dynamic

Display level Comprehensive

Adaptive Server configuration options

16 Adaptive Server Enterprise

per object statistic active controls whether Adaptive Server collects statistics for
each object.

plan text pipe active

plan text pipe active determines whether Adaptive Server collects query plan
text. If both plan text pipe active and plan text pipe max messages are enabled,
Adaptive Server collects the plan text for each query. You can use
monSysPlanText to retrieve the query plan text for all user tasks.

plan text pipe max messages

plan text pipe max messages determines the number of query plan text
messages Adaptive Server stores. Adaptive Server allocates memory for
storing as many messages as indicated by the value of this configuration
option.

Required role System Administrator

Summary information

Summary information

Default value 0

Range of values 0–1

Status Dynamic

Display level Comprehensive

Required role System Administrator

Summary information

Default value 0

Range of values 0–2147483647

Status Dynamic

Display level Comprehensive

Required role System Administrator

CHAPTER 2 Monitoring Tables

Performance & Tuning: Monitoring and Analyzing 17

process wait events

process wait events controls whether Adaptive Server collect statistics for each
wait event for every task. You can get wait information for a specific task using
monProcessWaits.

sql text pipe active

sql text pipe active controls whether Adaptive Server collects SQL text. If this
option is enabled and sql text pipe max messages is set, Adaptive Server
collects the SQL text for each query. You can use monSysSQLText to retrieve
the SQL text for all user tasks.

sql text pipe max messages

Summary information

Default value 0

Range of values 0–1

Status Dynamic

Display level Comprehensive

Required role System Administrator

Summary information

Default value 0

Range of values 0–1

Status Dynamic

Display level Comprehensive

Required role System Administrator

Summary information

Default value 0

Range of values 0–2147483647

Status Dynamic

Display level Comprehensive

Required role System Administrator

Adaptive Server configuration options

18 Adaptive Server Enterprise

sql text pipe max messages specifies the number of SQL text messages
Adaptive Server stores. Adaptive Server allocates memory for storing as many
messages as indicated by the value of sql text pipe max messages.

statement pipe active

statement pipe active controls whether Adaptive Server collects statement-level
statistics. If both statement pipe active and statement pipe max messages are
enabled, Adaptive Server collects the statement statistics for each query. You
can retrieve the statistics for all executed statements using monSysStatement.

statement pipe max messages

statement pipe max messages determines the number of statement statistics
messages Adaptive Server stores. Adaptive Server allocates memory for
storing as many messages as indicated by the value statement pipe max
messages.

Summary information

Default value 0

Range of values 0–1

Status Dynamic

Display level Comprehensive

Required role System Administrator

Summary information

Default value 0

Range of values 0–2147483647

Status Dynamic

Display level Comprehensive

Required role System Administrator

CHAPTER 2 Monitoring Tables

Performance & Tuning: Monitoring and Analyzing 19

statement statistics active

statement statistic active controls whether Adaptive Server collects the
monitoring tables statement-level statistics. You can use monProcessStatement
to get statement statistics for a specific task.

SQL batch capture

SQL batch capture controls whether Adaptive Server collects SQL text. If both
SQL batch capture and max SQL text monitored are enabled, Adaptive Server
collects the SQL text for each batch for each user task.

wait event timing

Summary information

Default value 0

Range of values 0–1

Status Dynamic

Display level Comprehensive

Required role System Administrator

Summary information

Default value 0

Range of values 0–1

Status Dynamic

Display level Comprehensive

Required role System Administrator

Summary information

Default value 0

Range of values 0–1

Status Dynamic

Display level Comprehensive

Required role System Administrator

System tables for monitor tables

20 Adaptive Server Enterprise

wait event timing controls whether Adaptive Server collects statistics for
individual wait events. A task may have to wait for a variety of reasons (for
example, waiting for a buffer read to complete). The monSysWaits table
contains the statistics for each wait event. The monWaitEventInfo table contains
a complete list of wait events.

System tables for monitor tables
This section lists the tables that are included with the monitoring tables feature.

monTables
Description Provides a description of all monitoring tables. No configuration options are

required for monTables.

Columns

monTableParameters
Description Provides a description of all the optional parameters for each monitoring table.

No configuration parameters are required for monTableParameters.

Name Datatype Attributes Description

TableID int Unique identifier for the table

Columns tinyint Total number of columns in the table

Parameters tinyint Total number of optional parameters
that can be specified

Indicators int Indicators for specific table
properties. For example, if the table
is a stateful monitoring table then
(Indicators & 1) =1

Size int Maximum row size (in bytes)

TableName varchar(30) null Table name

Description varchar(368) null Description of the view

CHAPTER 2 Monitoring Tables

Performance & Tuning: Monitoring and Analyzing 21

Columns

monTableColumns
Description Describes all the columns for each monitoring table. No configuration options

are required for monTableColumns.

Columns

Name Datatype Attributes Description

TableID int Unique identifier for the view

ParameterID int Position of the parameter

TypeID int Identifier of the datatype of the
parameter

Precision tiny_int Precision of the parameter, if
numeric

Scale tiny_int Scale of the parameter, if numeric

Length small_int Maximum length of the parameter
(in bytes)

TableName varchar(30) null Name of the table

ParameterName varchar(30) null Name of the parameter

TypeName varchar(20) null Name of the datatype of the
parameter

Description varchar(255) null Description of the parameter

Name Datatype Attributes Description

TableID int Unique identifier for the view

ColumnID int Position of the column

TypeID int Identifier for the datatype of the
column

Precision tinyint Precision of the column, if
numeric

Scale tinyint Scale of the column, if numeric

Length smallint Maximum length of the column
(in bytes)

Indicators int Indicators for specific column
properties (for example, if the
column is prone to wrapping and
should be sampled)

TableName varchar(30) null Name of the table

ColumnName varchar(30) null Name of the column

monState

22 Adaptive Server Enterprise

monState
Description Provides information regarding the overall state of Adaptive Server. No

configuration options are necessary for monState.

Columns

TypeName varchar(21) null Name of the datatype of the
column

Description varchar(255) null Description of the column

Name Datatype Attributes Description

Name Datatype Attributes Description

LockWaitThreshod int Time (in seconds) that processes
must have waited for locks in
order to be reported

LockWaits int Number of processes that have
waited longer than
LockWaitThreshold seconds

StartDate datetime Date and time that Adaptive
Server was started

DaysRunning int Number of days Adaptive Server
has been running

CountersCleared datetime Date and time the monitor
counters were last cleared

CheckPoints int Reports whether any checkpoint
is currently running

NumDeadlocks int counter Total number of deadlocks that
have occurred

Diagnostic Dumps int Reports whether sybmon is
performing a shared memory
dump

Connections int Number of active inbound
connections

Max Recovery int The maximum time (in minutes),
per database, that Adaptive
Server uses to complete its
recovery procedures in case of a
system failure; also, the current
Run Value for recovery interval in
minutes

CHAPTER 2 Monitoring Tables

Performance & Tuning: Monitoring and Analyzing 23

monEngine
Description Provides statistics regarding Adaptive Server engines. Requires the enable

monitoring configuration parameter to be enabled.

Columns

Name Datatype Attributes Description

Engine Number smallint Number of the Adaptive
Server engine

Starttime datetime Date that the engine came
online

StopTime datetime Date that the engine went
offline

CurrentKPID int Kernel process identifier for
the currently executing
process.

PreviousKPID int Kernel process identifier for
the previously executing
process

CPUTime int counter, reset Total time (in seconds) the
engine has been running

SystemCPUTime int counter, reset Time (in seconds) the engine
has been executing system
database services

UserCPUTime int counter, reset Time (in seconds) the engine
has been executing user
commands

IdleCPUTime int counter, reset Time (in seconds) the engine
has been in idle spin mode

ContextSwitches int counter, reset Number of context switches

Connections int counter Number of connections
handled

ProcessesAffiniti
ed

int Number of processes that
have been affinitied to this
engine

Status varchar(30) null Status of the engine (online,
offline, and so on)

AffinitiedToCPU int null The number of the CPU that
the engine is affinitied to

monDataCache

24 Adaptive Server Enterprise

monDataCache
Description Returns statistics relating to Adaptive Server data caches. Requires the enable

monitoring configuration parameter to be enabled.

Columns

monProcedureCache
Description Returns statistics relating to Adaptive Server procedure cache. Requires the

enable monitoring configuration parameter to be enabled.

Columns

Name Datatype Attributes Description

CacheID int Unique identifier for the cache

RelaxedReplace
ment

int Whether the cache is using relaxed
cache replacement strategy

BufferPools int The number of buffer pools within
the cache

CacheSearches int counter Cache searches directed to the
cache

PhysicalReads int counter Number of buffers read into the
cache from disk

PhysicalWrites int counter Number of buffers written from the
cache to disk

LogicalReads int counter Number of buffers retrieved from
the cache

Stalls int counter Number of “dirty” buffer retrievals

CachePartitions smallint Number of partitions currently
configured for the cache

CacheName varchar(30) null Name of cache

Name Datatype Attributes Description

Requests int counter, reset Number of stored procedures requested

Loads int counter, reset Number of stored procedures loaded into
cache

Writes int counter, reset Number of times a procedure was
normalized and the tree written back to
sysprocedures

CHAPTER 2 Monitoring Tables

Performance & Tuning: Monitoring and Analyzing 25

monOpenDatabases
Description Provides state and statistical information pertaining to databases that are

currently in use. Requires the enable monitoring configuration parameter to be
enabled.

Columns

monSysWorkerThread
Description Returns server-wide statistics related to worker threads. Requires the enable

monitoring configuration parameter to be enabled.

Stalls int counter, reset Number of times a process had to wait for
a free procedure cache buffer when
installing a stored procedure into cache

Name Datatype Attributes Description

Name Datatype Attributes Description

DBID int Unique identifier for the
database

BackupStartTime datetime Date that the last backup
started for the database

BackupInProgress int Whether a backup is currently
in progress for the database

LastBackupFailed int Whether the last backup of the
database failed

TransactionLogFull int Whether the database
transaction log is full

AppendLogRequests int counter Number of semaphore
requests when attempting to
append to the database
transaction log

AppendLogWaits int counter Number of times a task had to
wait for the append log
semaphore to be granted

DatabaseName varchar(30) null Name of the database

monSysWorkerThread

26 Adaptive Server Enterprise

Columns
Name Datatype Attributes Description

ThreadsActive int Number of worker
processes active

TotalWorkerThreads int Configured maximum
number of worker
processes

HighWater int reset The maximum number of
worker processes that
have ever been in use

ParallelQueries int counter, reset Number of parallel queries
that were attempted

PlansAltered int counter, reset Number of plans altered
due to worker processes
not being available

WorkerMemory int The amount of memory
currently in use by worker
processes

TotalWorkerMemory int The amount of memory
configured for use by
worker processes

WorkerMemoryHWM int reset The maximum amount of
memory ever used by
worker processes

MaxParallelDegree int The maximum degree of
parallelism that can be
used (the current Run
Value for max parallel
degree) configuration
parameter

MaxScanParallelDegree int The maximum degree of
parallelism that can be for
a scan (the current Run
Value for max scan parallel
degree configuration
parameter

CHAPTER 2 Monitoring Tables

Performance & Tuning: Monitoring and Analyzing 27

monNetworkIO
Description Returns network I/O statistics. Requires the enable monitoring configuration

parameter to be enabled.

Columns

monErrorLog
Description Returns the most recent error messages from the Adaptive Server error og. The

maximum number of messages returned can be tuned with the errorlog pipe max
messages. Requires the enable monitoring, errorlog pipe max messages, and
errorlog pipe active configuration parameters to be enabled.

Columns

monLocks
Description Returns a list of all locks that are being held, and those that have been

requested, by any process, for every object. Requires the enable monitoring and
wait event timing configuration parameters to be enabled.

Name Datatype Attributes Description

PacketsSent int counter, reset Number of packets sent

PacketsReceived int counter, reset Number of packets received

BytesSent int counter, reset Number of bytes sent

BytesReceived int counter, reset Number of bytes received

Name Datatype Attributes Description

SPID smallint Session process identifier

KPID int Kernel process identifier

FamilyID smallint SPID of the parent process

EngineNumber int Engine on which process
was running

ErrorNumber int Error message number

Severity int Severity of error

Time datetime Timestamp when error
occurred

ErrorMessage varchar(512) null Text of the error message

monDeadLock

28 Adaptive Server Enterprise

Columns

monDeadLock
Description Provides information pertaining to the most recent deadlocks that have

occurred in Adaptive Server. You can tune the maximum number of messages
returned with deadlock pipe max messages. Requires the enable monitoring,
deadlock pipe max messages, and deadlock pipe active configuration
parameters to be enabled.

Columns

Name Datatype Attributes Description

SPID smallint Session process identifier

KPID int Kernel process identifier

DBID int Unique identifier for the database

ParentSPID smallint Parent process ID

LockID int Lock object ID

Context int Lock context (bit field). These
values are the same as for those of
the of the context column in
syslocks. See the Reference
Manual for information about
syslocks

ObjectID int null Unique identifier for the object

LockState varchar(20) null Whether the lock has been
granted [Granted, Requested]

LockType varchar(20) null Type of lock [‘exclusive table’,
‘shared page’, and so on]

LockLevel varchar(30) null The type of object for which the
lock was requested (‘PAGE’,
‘ROW’, and so on)

WaitTIme int null The time (in seconds) that the lock
request has not been granted.

PageNumber int null Page that is locked when
LockLevel = ‘PAGE’

RowNumber int null Row that is locked when
LockLevel = ‘ROW’

Name Datatype Attributes Description

DeadLockID int Unique identifier for the deadlock

CHAPTER 2 Monitoring Tables

Performance & Tuning: Monitoring and Analyzing 29

VictimKPID int KPID of the victim process for the
deadlock

ResolveTime datetime Time at which the deadlock was
resolved

ObjectDBID int Unique database identifier for
database where the object resides

PageNumber int Page number for which the lock
was requested, if applicable

RowNumber int Row number for which the lock
was requested, if applicable

HeldFamilyId smallint SPID of the parent process of the
process holding the lock

HeldSPID smallint SPID of process holding the lock

HeldKPID int KPID of process holding the lock

HeldProcDBID int Unique identifier for the database
where the stored procedure that
caused the lock to be held resides,
if applicable

HeldProcedureID int Unique object identifier for the
stored procedure that caused the
lock to be held, if applicable

HeldBatchID int Unique batch identifier for the
SQL code being executed by the
process holding the lock when it
was blocked by another process
(not when it acquired the lock)

HeldContextID int Unique context identifier for the
process holding the lock when it
was blocked by another process
(not when it acquired the lock)

HeldLineNumber int Line number within the batch of
the statement being executed by
the process holding the lock when
it was blocked by another process
(not when it acquired the lock)

WaitFamilyId smallint SPID of the parent process of the
process waiting for the lock

WaitSPID smallint SPID of the process waiting for
the lock

WaitKPID int KPID of the process waiting for
the lock

Name Datatype Attributes Description

monWaitClassInfo

30 Adaptive Server Enterprise

monWaitClassInfo
Description Provides a textual description for all of the wait classes (for example, waiting

for a disk read to complete). All wait events (see the description for
monWaitEventInfo) have been grouped into wait classes that classify the type of
event that a process is waiting for.

Columns

WaitTime int Amount of time in milliseconds
that the waiting process was
blocked before the deadlock was
resolved

ObjectName varchar(30) null Name of the object

HeldUserName varchar(30) null Name of the user for whom the
lock is being held

HeldApplName varchar(30) null Name of the application holding
the lock

HeldTranName varchar(255) null The name of the transaction in
which the lock was acquired

HeldLockType varchar(20) null The type of lock being held

HeldCommand varchar(30) The command being executed that
caused the lock to be held

WaitUserName varchar(30) null Name of the user for whom the
lock is being requested

WaitLockType varchar(20) null The type of lock requested

Name Datatype Attributes Description

Name Datatype Attributes Description

WaitClassID smallint Unique identifier for the wait
event class

Description varchar(50) null Description of the wait event
class

CHAPTER 2 Monitoring Tables

Performance & Tuning: Monitoring and Analyzing 31

monWaitEventInfo
Description Provides a textual description for every possible situation where a process is

forced to wait within Adaptive Server. For example, wait for buffer read to
complete.

Columns

monCachedObject
Description Returns statistics for all objects and indexes with pages currently in a data

cache.

Columns

Name Datatype Attributes Description

WaitEventID smallint Unique identifier for the
wait event type

WaitClassID smallint Unique identifier for the
wait event class

Description varchar(50) null Description of the wait
event type

Name Datatype Attributes Description

CacheID int Unique identifier for the cache

ObjectID int Unique identifier for the object

IndexID int Unique identifier for the index

DBID int Unique identifier for the
database

OwnerUserID int Unique identifier for the
database owner

CachedKB int Number of kilobytes of the
cache the object is occupying

ProcessesAccessing int Number of processes currently
accessing the object

CacheName varchar(30) null Name of the cache

DBName varchar(30) null Name of the database

OwnerName varchar(30) null Name of the object owner

ObjectName varchar(30) null Name of the object

ObjectType varchar(30) null Object type

monCachePool

32 Adaptive Server Enterprise

monCachePool
Description Provides statistics for all pools allocated for all caches. Requires the enable

monitoring configuration parameter to be enabled.

Columns

monOpenObjectActivity
Description Provides statistics for all open objects. Requires the enable monitoring and per

object statistics active configuration parameter are enabled.

Columns

Name Datatype Attributes Description

CacheID int Unique identifier for the cache

IOBufferSize int Size (in bytes) of the I/O buffer
for the pool

AllocatedKB int Number of bytes that have been
allocated for the pool

PhysicalReads int counter Number of buffers that have
been read from disk into the pool

Stalls int counter Number of dirty buffer retrievals

PagesTouched int counter Number of bytes that are
currently being used within the
pool

PagesRead int counter Number of pages read into the
pool

BuffersToMRU int counter The number of buffers that were
fetched and replaced in the most
recently used portion of the pool

BuffersToLRU int counter The number of buffers that were
fetched and replaced in the least
recently used portion of the pool

CacheName varchar(30) null Name of the cache

Name Datatype Attributes Description

DBID int Unique identifier for the
database

ObjectID int Unique identifier for the
object

CHAPTER 2 Monitoring Tables

Performance & Tuning: Monitoring and Analyzing 33

monIOQueue
Description Provides device I/O statistics broken down into data and log I/O for normal and

temporary databases on each device. monIOQueue requires the enable
monitoring configuration parameter to be enabled.

Columns

IndexID int Unique identifier for the
index

LogicalReads int counter Total number of buffers read

PhysicalReads int counter Number of buffers read from
disk

APFReads int counter Number of APF buffers read

PagesRead int counter Total number of pages read

PhysicalWrites int counter Total number of buffers
written to disk

PagesWritten int counter Total number of pages
written to disk

RowsInserted int null, counter Number of rows inserted

RowsDeleted int null, counter Number of rows deleted

RowsUpdated int null, counter Number of updates

Operations int null, counter Number of times that the
object was accessed

LockRequests int null, counter Number of requests for a
lock on the object

LockWaits int null, counter Number of times a task
waited for a lock for the
object

Name Datatype Attributes Description

Name Datatype Attributes Description

IOs int counter Total number of I/O operations

IOTime int counter Amount of time (in milliseconds)
spent waiting for I/O requests to
be satisfied

LogicalName varchar(30) null Logical name of the device

IOType varchar(12) null Category for grouping I/O (‘user
data’, ‘User log’, ‘Tempdb Data’,
or ‘Tempdb log’)

monDeviceIO

34 Adaptive Server Enterprise

monDeviceIO
Description Returns statistical information relating to devices. monDeviceIO requires the

enable monitoring configuration parameter to be enabled.

Columns

monSysWaits
Description Provides a server-wide view of where processes are waiting for an event.

monSysWaits requires the enable monitoring and wait event timing configuration
parameters are enabled.

Columns

Name Datatype Attributes Description

Reads int counter, reset Number of reads from the
device (excluding APF)

APFReads int counter, reset Number of APF reads from
the device

Writes int counter, reset Number of writes to the
device

DevSemaphoreR
equests

int counter, reset Number of I/O requests

DevSemaphore
Waits

int counter, reset Number of tasks forced to
wait for synchronization of an
I/O request

IOTime int) counter Total amount of time (in
milliseconds) spent waiting
for I/O requests to be satisfied

LogicalName varchar(30) null Logical name of the device

PhysicalName varchar(128) null Full hierarchic file name of
the device

Name Datatype Attributes Description

WaitEventID smallint Unique identifier for the wait event

WaitTime int counter Amount of time (in milliseconds)
that tasks have spent waiting for the
event

Waits int Number of times tasks have waited
for the event

CHAPTER 2 Monitoring Tables

Performance & Tuning: Monitoring and Analyzing 35

monProcess
Description Provides detailed statistics about processes that are currently executing or

waiting. monProcess requires the enable monitoring and wait event timing
configuration parameters to be enabled.

Columns
Name Datatype Attributes Description

SPID smallint Session process identifier

KPID int Kernel process identifier

FamilyID smallint The SPID of the parent
process, if it exists

BatchID int Unique identifier for the
SQL batch containing the
statement being executed

ContextID int The stack frame of the
procedure, if it exists

LineNumber int Line number of the current
statement within the SQL
batch

SecondsConnected int Number of seconds since this
connection was established

WaitEventID smallint Unique identifier for the
event that the process is
waiting for, if the process is
currently in a wait state

BlockingSPID smallint Session process identifier of
the process holding the lock
that this process has
requested, if waiting for a
lock

DBID int Unique identifier for the
database being used by the
current process

EngineNumber int Unique identifier of the
engine on which the process
is executing

Priority int Priority at which the process
is executing

Login varchar(30) null Login user name

Application varchar(30) null Application name

monProcessLookup

36 Adaptive Server Enterprise

monProcessLookup
Description Provides information enabling processes to be tracked to an application, user,

client machine, and so on.

Columns

Command varchar(30) null Category of process or
command that the process is
currently executing

NumChildren int null Number of child processes, if
executing a parallel query

SecondsWaiting int null Amount of time in seconds
that the process has been
waiting, if the process is
currently in a wait state

BlockingXLOID int null Unique lock identifier for the
lock that this process has
requested, if waiting for a
lock

DBName varchar(30) null Name of process for the
database being used by the
current process

EngineGroupName varchar(30) null Engine group for the process

ExecutionClass varchar(30) null Execution class for the
process

MasterTransactionID varchar(255) null Unique transaction identifier
for the current transaction, if
in a transaction

Name Datatype Attributes Description

Name Datatype Attributes Description

SPID smallint Session process identifier

KPID int Kernel process identifier

Login varchar(30) null Login user name

Application varchar(30
)

null Application name

ClientHost varchar(30) null Host name of client

ClientIP varchar(24
)

null IP address of client

CHAPTER 2 Monitoring Tables

Performance & Tuning: Monitoring and Analyzing 37

monProcessActivity
Description Provides detailed statistics about process activity. monProcessActivity requires

the enable monitoring, wait event timing, and per object statistics active
configuration parameters to be enabled.

Columns

ClientOSPID varchar(30
)

null OS process identifier of the client
application

Name Datatype Attributes Description

Name Datatype Attributes Description

SPID smallint Session process identifier

KPID int Kernel process identifier

CPUTime int counter CPU time (in milliseconds) used
by the process

WaitTime int counter Time (in milliseconds) the
process has spent waiting

PhysicalReads int counter Number of buffers read from
disk

LogicalReads int counter Number of buffers read from
cache

PagesRead int counter Number of pages read

PhysicalWrites int counter Number of buffers written to disk

PagesWritten int counter Number of pages written

MemUsageKB int Amount of memory (in bytes)
allocated to the process

LocksHeld int Number of locks process
currently holds

TableAccesses int counter Number of pages where data was
retrieved without an index

IndexAccesses int) counter Number of pages where data was
retrieved using an index

TempDbAccess int counter Number of temporary tables
accessed

ULCBytesWritten int counter Number of bytes written to the
user log cache for the process

ULCFlushes int counter Total number of times the user
log cache was flushed

monProcessNetIO

38 Adaptive Server Enterprise

monProcessNetIO
Description Provides the network I/O activity information for each process.

monProcessNetIO requires the enable monitoring configuration parameters to
be enabled.

Columns

ULCFlushFull int counter Number of times the user log
cache was flushed because it was
full

ULCMaxUsage int The maximum ever usage (in
bytes) of the user log cache by
the process

ULCCurrentUsage int The current usage (in bytes) of
the Uuer log cache by the
process.

Transactions int counter Number of transactions started
by the process

Commits int counter Number of transactions
committed by the process

Rollbacks int counter Number of transactions rolled
back by the process

Name Datatype Attributes Description

Name Datatype Attributes Description

SPID smallint Session process identifier

KPID int Kernel process identifier

NetworkPacketSize int Network packet size the
session is currently using.

PacketSent int counter Number of packets sent

PacketsReceived int counter Number of packets received

BytesSent int counter Number of bytes sent

BytesRecieved int counter Number of bytes received

CHAPTER 2 Monitoring Tables

Performance & Tuning: Monitoring and Analyzing 39

monProcessObject
Description Provides statistical information regarding objects that have been accessed by

processes. monProcessObject requires the enable monitoring and per object
statistics active configuration parameters to be enabled.

Columns

monProcessWaits
Description Provides a server-wide view of where processes are waiting for an event.

monProcessWaits requires the enable monitoring and process wait events
configuration parameters to be enabled.

Columns

Name Datatype Attributes Description

SPID smallint Session process identifier

KPID int Kernel process identifier

DBID int Unique identifier for the
database where the object
resides

ObjectID int Unique identifier for the object

IndexID int Unique identifier for the index

OwnerUserID int User identifier for the object
owner

LogicalReads int counter Number of buffers read from
cache

PhysicalReads int counter Number of buffers read from
disk

PhysicalAPFReads int counter Number of APF buffers read
from disk

DBName varchar(30) null Name of database

ObjectName varchar(30) null Name of the object

ObjectType varchar(30) null Type of object

Name Datatype Attribute Description

SPID smallint Session process identifier

KPID int Kernel process identifier

WaitEventID smallint Unique identifier for the wait event

monProcessStatement

40 Adaptive Server Enterprise

monProcessStatement
Description Provides information for currently executing statements.

monProcessStatement requires the enable monitoring, statement statistics active,
and per object statistics active configuration parameters to be enabled.

Columns

Waits int counter Number of times the process has
waited for the event

WaitTime int counter Amount of time (in milliseconds)
that the process has waited for the
event

Name Datatype Attribute Description

Name Datatype Attributes Description

SPID smallint Session process identifier

KPID int Kernel process identifier

DBID int Unique identifier for the database

ProcedureID int Unique identifier for the
procedure

PlanID int Unique identifier for the stored
plan for the procedure

BatchID int Unique identifier for the SQL
batch containing the statement

ContextID int Stack frame of the procedure, if a
procedure

LineNumber int Line number of the statement
within the SQL batch

StartTime datetime Date when the statement began
execution

CPUTime int counter Number of milliseconds of CPU
used by the statement

WaitTime int counter Number of milliseconds the task
has waited during execution of
the statement

MemUsageKB int Number of kilobytes of memory
used for execution of the
statement

PhysicalReads int counter Number of buffers read from disk

CHAPTER 2 Monitoring Tables

Performance & Tuning: Monitoring and Analyzing 41

monProcessSQLText
Description Provides the SQL text that is currently being executed. The maximum size of

the SQL text is tuned by max SQL text monitored. monProcessSQLText requires
the enable monitoring, max SQL text monitored, and SQL batch capture
configuration parameters to be enabled.

Columns

LogicalReads int counter Number of buffers read from
cache

PagesModified int counter Number of pages modified by the
statement

PacketSent int counter Number of network packets sent
by Adaptive Server

PacketsReceived int counter Number of network packets
received by Adaptive Server

NetworkPacketSize int Size (in bytes) of the network
packet currently configured for
the session

PlansAltered int counter The number of plans altered at
execution time

Name Datatype Attributes Description

Name Datatype Attributes Description

SPID smallint Session process identifier.

KPID int Kernel process identifier.

BatchID int Unique identifier for the SQL
batch containing the SQL text.

LineNumber int Line number in SQL batch.

SequenceInLine int If the entered line of SQL text
exceeds the size of the SQL text
column, the text is split over the
multiple rows. Each row has a
unique, and increasing,
SequenceInLine value.

SQLText varchar(255) null SQL text.

monSysPlanText

42 Adaptive Server Enterprise

monSysPlanText
Description Provides the most recent generated text plan. Specify the maximum number of

messages returned with plan text pipe max messages. monSysPlanText requires
the enable monitoring, plan text pipe max messages, and plan text pipe active
configuration parameters to be enabled.

Columns

monSysStatement
Description Provides statistics pertaining to the most recently executed statements. The

maximum number of statement statistics returned can be tuned with statement
pipe max messages. monSysStatement requires the enable monitoring,
statement statistics active, per object statistics active, statement pipe max
messages, and statement pipe active configuration parameters to be enabled.

Name Datatype Attributes Description

PlanID int Unique identifier for the plan

SPID smallint Session process identifier

KPID int Kernel process identifier

BatchID int Unique identifier for the SQL
batch for which the plan was
created

ContextID int The stack frame of the
procedure, if a procedure

SequenceNumber int A monotonically increasing
number indicating the position
of the PlanText column within
the entire plan text

DBID int Unique identifier for the
database where the procedure is
stored, if the plan is for a stored
procedure

ProcedureID int Unique identifier for the
procedure, if the plan is for a
stored procedure

PlanText varchar(160) null Plan text output

CHAPTER 2 Monitoring Tables

Performance & Tuning: Monitoring and Analyzing 43

Columns
Name Datatype Attributes Description

SPID smallint Session process identifier

KPID int Kernel process identifier

DBID int Unique identifier for the database

ProcedureID int Unique identifier for the
procedure

PlanID int Unique identifier for the stored
plan for the procedure

BatchID int Unique identifier for the SQL
batch containing the statement

ContextID int Current procedure nesting level
when executing the statement

LineNumber int Line number of the statement
within the SQL batch

StartTime datetime Date when the statement began
execution

EndTime datetime Date when the statement finished
execution

CPUTime int counter Number of milliseconds of CPU
used by the statement.

WaitTime int counter Number of milliseconds the task
has waited during execution of the
statement

MemUsageKB int Number of kilobytes of memory
used for execution of the
statement

PhysicalReads int counter Number of buffers read from disk

LogicalReads int counter Number of buffers read from
cache

PagesModified int counter Number of pages modified by the
statement

PacketSent int counter Number of network packets sent
by Adaptive Server

PacketsReceived int counter Number of network packets
received by Adaptive Server

NetworkPacketSize int Size (in bytes) of the network
packet currently configured for
the session

PlansAltered int counter The number of plans altered at
execution time

monCachedProcedures

44 Adaptive Server Enterprise

monCachedProcedures
Description Provides statistics for all procedures currently stored in the procedure cache.

monCachedProcedures does not require any configuration parameters.

Columns

monSysSQLText
Description Provides the most recent SQL text that has been executed, or is currently being

executed. The maximum number of rows returned can be tuned with sql text
pipe max messages. monProcessSQLText requires the enable monitoring, max
SQL text monitored, SQL batch capture, sql text pipe max messages, and
statement pipe active configuration parameters to be enabled.

Columns

Name Datatype Attributes Description

ObjectID int Unique identifier for the
procedure

OwnerUID int Unique identifier for the
database owner

DBID int Unique identifier for the
database

PlanID int Unique identifier for the query
plan

MemUsageKB int Number of kilobytes of memory
used by the procedure

CompileDate datetime Date that the procedure was
compiled

ObjectName varchar(30) null Name of the procedure

ObjectType varchar(32) null The type of procedure (stored
procedure, trigger, and so on)

OwnerName varchar(30) null Number of the object owner

DBName varchar(30) null Name of the database

Name Datatype Attributes Description

SPID smallint Session process identifier

KPID int Kernel process identifier

BatchID int Unique identifier for the SQL
batch containing the SQL text

CHAPTER 2 Monitoring Tables

Performance & Tuning: Monitoring and Analyzing 45

monProcessProcedures
Description Returns a list of all procedures that are being executed by processes.

monProcessProcedures does not require any configuration options.

Columns

SequenceInBatch int Indicates the position of this
portion of the SQL text within a
batch

SQLText varchar(255) SQL text

Name Datatype Attributes Description

Name Datatype Attributes Description

SPID smallint Session process identifier

KPID int Kernel process identifier

DBID int Unique identifier for the
database

OwnerUID int Unique identifier for the object
owner

ObjectID int Unique identifier for the
procedure

PlanID int Unique identifier for the query
plan

MemUsageKB int Number of kilobytes of memory
used by the procedure

CompileDate datetime Compile date of the procedure

ContextID int Stack frame of the procedure

DBName varchar(30) null Name of the database that
contains the procedure

OwnerName varchar(30) null Name of the object owner

ObjectName varchar(30) null Name of the procedure

ObjectType varchar(32) null Type of procedure (stored
procedure, trigger procedure,
and so on)

monProcessProcedures

46 Adaptive Server Enterprise

Performance and Tuning: Monitoring and Analyzing 47

C H A P T E R 3 Using Statistics to Improve
Performance

Accurate statistics are essential to the query optimization. In some cases,
adding statistics for columns that are not leading index keys also improves
query performance. This chapter explains how and when to use the
commands that manage statistics.

Importance of statistics
Adaptive Server’s cost-based optimizer uses statistics about the tables,
indexes, and columns named in a query to estimate query costs. It chooses
the access method that the optimizer determines has the least cost. But this
cost estimate cannot be accurate if statistics are not accurate.

Some statistics, such as the number of pages or rows in a table, are updated
during query processing. Other statistics, such as the histograms on
columns, are only updated when you run the update statistics command or
when indexes are created.

If you are having problems with a query performing slowly, and seek help
from Technical Support or a Sybase news group on the Internet, one of the
first questions you are likely be asked is “Did you run update statistics?”
You can use the optdiag command to see the time update statistics was last
run for each column on which statistics exist:

Topic Page
Importance of statistics 47

update statistics commands 49

Column statistics and statistics maintenance 51

Creating and updating column statistics 53

Choosing step numbers for histograms 55

Scan types, sort requirements, and locking 56

When row counts may be inaccurate 59

Using the delete statistics command 59

Importance of statistics

48 Adaptive Server Enterprise

Last update of column statistics: Aug 31 2001
4:14:17:180PM

Another command you may need for statistics maintenance is delete statistics.
Dropping an index does not drop the statistics for that index. If the distribution
of keys in the columns changes after the index is dropped, but the statistics are
still used for some queries, the outdated statistics can affect query plans.

Updating
The update statistics command updates the column-related statistics such as
histograms and densities. So statistics need to be updated on those columns
where the distribution of keys in the index changes in ways that affect the use
of indexes for your queries.

Running the update statistics command requires system resources. Like other
maintenance tasks, it should be scheduled at times when load on the server is
light. In particular, update statistics requires table scans or leaf-level scans of
indexes, may increase I/O contention, may use the CPU to perform sorts, and
uses the data and procedure caches. Use of these resources can adversely affect
queries running on the server if you run update statistics at times when usage is
high. In addition, some update statistics commands require shared locks, which
can block updates. See “Scan types, sort requirements, and locking” on page
56 for more information.

Adding statistics for unindexed columns
When you create an index, a histogram is generated for the leading column in
the index. Examples in earlier chapters have shown how statistics for other
columns can increase the accuracy of optimizer statistics. For example, see
“Using statistics on multiple search arguments” in the Performance and
Tuning: Optimizer.

You should consider adding statistics for virtually all columns that are
frequently used as search arguments, as long as your maintenance schedule
allows time to keep these statistics up to date.

In particular, adding statistics for minor columns of composite indexes can
greatly improve cost estimates when those columns are used in search
arguments or joins along with the leading index key.

CHAPTER 3 Using Statistics to Improve Performance

Performance and Tuning: Monitoring and Analyzing 49

update statistics commands
The update statistics commands create statistics, if there are no statistics for a
particular column, or replaces existing statistics if they already exist. The
statistics are stored in the system tables systabstats and sysstatistics. The syntax
is:

update statistics table_name
 [[index_name] | [(column_list)]]
 [using step values]
 [with consumers = consumers]

update index statistics table_name [index_name]
 [using step values]
 [with consumers = consumers]

update all statistics table_name

The effects of the commands and their parameters are:

• For update statistics:

• table_name – Generates statistics for the leading column in each
index on the table.

• table_name index_name – Generates statistics for all columns of the
index.

• table_name (column_name) – Generates statistics for only this
column.

• table_name (column_name, column_name...) – Generates a
histogram for the leading column in the set, and multi column density
values for the prefix subsets.

• using step values – Identifies the number of steps used. The default is
20 steps. If you need to change the default number of steps, use
sp_configure.

• For update index statistics:

• table_name – Generates statistics for all columns in all indexes on the
table.

• table_name index_name – Generates statistics for all columns in this
index.

• For update all statistics:

update statistics commands

50 Adaptive Server Enterprise

• table_name – Generates statistics for all columns of a table.

• using step values – Identifies the number of steps used. The default is
20 steps. If you need to change the default number of steps, use
sp_configure.

Using sampling for update statistics
The optimizer for Adaptive Server uses the statistics on a database to set up and
optimize queries. The statistics must be as current as possible to generate
optimal results.

Run the update statistics commands against data sets, such as tables, to update
information about the distribution of key values in specified indexes or
columns, for all columns in an index, or for all columns in a table. The
commands revise histograms and density values for column-level statistics.
The results are then used by the optimizer to calculate the best way to set up a
query plan.

update statistics requires table scans or leaf-level scans of indexes, may
increase I/O contention, may use the CPU to perform sorts, and uses data and
procedure caches. Use of these resources can adversely affect queries running
on the server if you run update statistics when usage is high. In addition, some
update statistics commands require shared locks, which can block updates.

To reduce I/O contention and resources, run update statistics using a sampling
method, which can reduce the I/O and time when your maintenance window is
small and the data set is large. If you are updating a large data set or table that
is in constant use, being truncated and repopulated, you may want to do a
statistical sampling to reduce the time and the size of the I/O.

You must use caution with sampling since the results are not fully accurate.
Balance changes to histogram values against the savings in I/O.

Although a sampling of the data set may not be completely accurate, usually
the histograms and density values are reasonable within an acceptable range.

When you are deciding whether or not to use sampling, consider the size of the
data set, the time constraints you are working with, and if the histogram
produced is as accurate as needed.

The percentage to use when sampling depends on your needs. Test various
percentages until you receive a result that reflects the most accurate
information on a particular data set.

Statistics are stored in the system tables systabstats and sysstatistics.

CHAPTER 3 Using Statistics to Improve Performance

Performance and Tuning: Monitoring and Analyzing 51

To update statistics, use:

update statistics table_name
 [[index_name] | [(column_list)]]
 [using step values]
 [with consumers = consumers] [, sampling = percent]

update index statistics table_name [index_name]
 [using step values]
 [with consumers = consumers] [, sampling = percent

update all statistics table_name [index_name] [using step values]
[with consumers = consumers] [, sampling = percent]

Where:

• table_name – generates statistics for the leading column in each index on
the table.

• table_name [index_name] – generates statistics for all leading columns on
the specified index.

• table_name (column_list) – generates statistics for only this column.

• table_name (column_name, column_name...) – generates a histogram for
the first column in the list, and multi-column density values for the prefix
subsets.

• sampling = percent – the numeric value of the sampling percentage, such
as 05 for 5%, 10 for 10%, and so on. The sampling integer is between zero
(0) and one hundred (100).

Example:

update statistics authors(auth_id) with sampling = 5 percent

The serverwide sampling percent can be set using the configuration paramater:

sp_configure ‘sampling percent’, 5

This command sets a serverwide sampling of 5% for update statistics that
allows you to do the update statistics without the sampling syntax. The
percentage can be anywhere from zero (0) to one hundred (100) percent.

Column statistics and statistics maintenance
Histograms are kept on a per-column basis, rather than on a per-index basis.
This has certain implications for managing statistics:

Column statistics and statistics maintenance

52 Adaptive Server Enterprise

• If a column appears in more than one index, update statistics, update index
statistics or create index updates the histogram for the column and the
density statistics for all prefix subsets.

update all statistics updates histograms for all columns in a table.

• Dropping an index does not drop the statistics for the index, since the
optimizer can use column-level statistics to estimate costs, even when no
index exists.

If you want to remove the statistics after dropping an index, you must
explicitly delete them with delete statistics.

If the statistics are useful to the optimizer and you want to keep the
statistics without having an index, you need to use update statistics,
specifying the column name, for indexes where the distribution of key
values changes over time.

• Truncating a table does not delete the column-level statistics in
sysstatistics. In many cases, tables are truncated and the same data is
reloaded.

Since truncate table does not delete the column-level statistics, there is no
need to run update statistics after the table is reloaded, if the data is the
same.

If you reload the table with data that has a different distribution of key
values, you need to run update statistics.

• You can drop and re-create indexes without affecting the index statistics,
by specifying 0 for the number of steps in the with statistics clause to create
index. This create index command does not affect the statistics in
sysstatistics:

create index title_id_ix on titles(title_id)
 with statistics using 0 values

This allows you to re-create an index without overwriting statistics that
have been edited with optdiag.

• If two users attempt to create an index on the same table, with the same
columns, at the same time, one of the commands may fail due to an attempt
to enter a duplicate key value in sysstatistics.

CHAPTER 3 Using Statistics to Improve Performance

Performance and Tuning: Monitoring and Analyzing 53

Creating and updating column statistics
Creating statistics on unindexed columns can improve the performance of
many queries. The optimizer can use statistics on any column in a where or
having clause to help estimate the number of rows from a table that match the
complete set of query clauses on that table.

Adding statistics for the minor columns of indexes and for unindexed columns
that are frequently used in search arguments can greatly improve the
optimizer’s estimates.

Maintaining a large number of indexes during data modification can be
expensive. Every index for a table must be updated for each insert and delete
to the table, and updates can affect one or more indexes.

Generating statistics for a column without creating an index gives the optimizer
more information to use for estimating the number of pages to be read by a
query, without entailing the processing expense of index updates during data
modification.

The optimizer can apply statistics for any columns used in a search argument
of a where or having clause and for any column named in a join clause. You
need to determine whether the expense of creating and maintaining the
statistics on these columns is worth the improvement in query optimization.

The following commands create and maintain statistics:

• update statistics, when used with the name of a column, generates statistics
for that column without creating an index on it.

The optimizer can use these column statistics to more precisely estimate
the cost of queries that reference the column.

• update index statistics, when used with an index name, creates or updates
statistics for all columns in an index.

If used with a table name, it updates statistics for all indexed columns.

• update all statistics creates or updates statistics for all columns in a table.

Good candidates for column statistics are:

• Columns frequently used as search arguments in where and having clauses

• Columns included in a composite index, and which are not the leading
columns in the index, but which can help estimate the number of data rows
that need to be returned by a query.

Creating and updating column statistics

54 Adaptive Server Enterprise

See “How scan and filter selectivity can differ” on page 185 for
information on how additional column statistics can be used in query
optimization.

When additional statistics may be useful
To determine when additional statistics are useful, run queries using dbcc
traceon(302) and statistics io. If there are significant discrepancies between the
“rows to be returned” and I/O estimates displayed by dbcc traceon(302) and the
actual I/O displayed by statistics io, examine these queries for places where
additional statistics can improve the estimates. Look especially for the use of
default density values for search arguments and join columns.

See “Tuning with dbcc traceon(302)” on page 171 for more information.

Adding statistics for a column with update statistics
This command adds statistics for the price column in the titles table:

update statistics titles (price)

This command specifies the number of histogram steps for a column:

update statistics titles (price)
 using 50 values

This command adds a histogram for the titles.pub_id column and generates
density values for the prefix subsets pub_id; pub_id, pubdate; and pub_id,
pubdate, title_id:

update statistics titles(pub_id, pubdate, title_id)

Note Running update statistics with a table name updates histograms and
densities for leading columns for indexes only.

It does not update the statistics for unindexed columns.

To maintain these statistics, you must run update statistics and specify the
column name, or run update all statistics.

CHAPTER 3 Using Statistics to Improve Performance

Performance and Tuning: Monitoring and Analyzing 55

Adding statistics for minor columns with update index statistics
To create or update statistics on all columns in an index, use update index
statistics. The syntax is:

update index statistics table_name [index_name]
[using step values]
[with consumers = consumers]

Adding statistics for all columns with update all statistics
To create or update statistics on all columns in a table, use update all statistics.
The syntax is:

update all statistics table_name

Choosing step numbers for histograms
By default, each histogram has 20 steps which provides good performance and
modeling for columns that have an even distribution of values. A higher
number of steps can increase the accuracy of I/O estimates for:

• Columns with a large number of highly duplicated values

• Columns with unequal or skewed distribution of values

• Columns that are queried using leading wild cards in like queries

Note If your database was updated from a pre-11.9 version of the server,
the number of steps defaults to the number of steps that were used on the
distribution page.

Disadvantages of too many steps
Increasing the number of steps beyond what is needed for good query
optimization can hurt Adaptive Server performance, largely due to the amount
of space that is required to store and use the statistics. Increasing the number
of steps:

• Increases the disk storage space required for sysstatistics

Scan types, sort requirements, and locking

56 Adaptive Server Enterprise

• Increases the cache space needed to read statistics during query
optimization

• Requires more I/O, if the number of steps is very large

During query optimization, histograms use space borrowed from the procedure
cache. This space is released as soon as the query is optimized.

Choosing a step number
See “Choosing the number of steps for highly duplicated values” on page 156
for more information.

For example, if your table has 5000 rows, and one value in the column that has
only one matching row, you may need to request 5000 steps to get a histogram
that includes a frequency cell for every distinct value. The actual number of
steps is not 5000; it is either the number of distinct values plus one (for dense
frequency cells) or twice the number of values plus one (for sparse frequency
cells).

Scan types, sort requirements, and locking
Table 3-1 shows the types of scans performed during update statistics, the types
of locks acquired, and when sorts are needed.

Table 3-1: Scans, sorts, and locking during update statistics

update statistics specifying Scans and sorts performed Locking

Table name

Allpages-locked table Table scan, plus a leaf-level scan of each
nonclustered index

Level 1; shared intent table lock,
shared lock on current page

Data-only-locked table Table scan, plus a leaf-level scan of each
nonclustered index and the clustered
index, if one exists

Level 0; dirty reads

Table name and clustered index name

Allpages-locked table Table scan Level 1; shared intent table lock,
shared lock on current page

Data-only-locked table Leaf level index scan Level 0; dirty reads

Table name and nonclustered index name

CHAPTER 3 Using Statistics to Improve Performance

Performance and Tuning: Monitoring and Analyzing 57

Sorts for unindexed or non leading columns
For unindexed columns and columns that are not the leading columns in
indexes, Adaptive Server performs a serial table scan, copying the column
values into a worktable, and then sorts the worktable in order to build the
histogram. The sort is performed in serial, unless the with consumers clause is
specified.

See Chapter 9, “Parallel Sorting” in the Performance and Tuning: Optimizer
for information on parallel sort configuration requirements.

Locking, scans, and sorts during update index statistics
The update index statistics command generates a series of update statistics
operations that use the same locking, scanning, and sorting as the equivalent
index-level and column-level command. For example, if the salesdetail table
has a nonclustered index named sales_det_ix on salesdetail(stor_id, ord_num,
title_id), this command:

update index statistics salesdetail

performs these update statistics operations:

update statistics salesdetail sales_det_ix
update statistics salesdetail (ord_num)
update statistics salesdetail (title_id)

Allpages-locked table Leaf level index scan Level 1; shared intent table lock,
shared lock on current page

Data-only-locked table Leaf level index scan Level 0; dirty reads

Table name and column name

Allpages-locked table Table scan; creates a worktable and sorts
the worktable

Level 1; shared intent table lock,
shared lock on current page

Data-only-locked table Table scan; creates a worktable and sorts
the worktable

Level 0; dirty reads

update statistics specifying Scans and sorts performed Locking

Scan types, sort requirements, and locking

58 Adaptive Server Enterprise

Locking, scans and sorts during update all statistics
The update all statistics commands generates a series of update statistics
operations for each index on the table, followed by a series of update statistics
operations for all unindexed columns, followed by an update partition statistics
operation.

Using the with consumers clause
The with consumers clause for update statistics is designed for use on
partitioned tables on RAID devices, which appear to Adaptive Server as a
single I/O device, but which are capable of producing the high throughput
required for parallel sorting. See chapter 9, Parallel Sorting in the Performance
and Tuning: Optimizer and Abstract Plans for more information.

Reducing update statistics impact on concurrent processes
Since update statistics uses dirty reads (transaction isolation level 0) for data-
only locked tables, it can be run while other tasks are active on the server, and
does not block access to tables and indexes. Updating statistics for leading
columns in indexes requires only a leaf-level scan of the index, and does not
require a sort, so updating statistics for these columns does not affect
concurrent performance very much.

However, updating statistics for unindexed and non leading columns, which
require a table scan, worktable, and sort can affect concurrent processing.

• Sorts are CPU intensive. Use a serial sort, or a small number of worker
processes if you want to minimize CPU utilization. Alternatively, you can
use execution classes to set the priority for update statistics.

See “Using Engines and CPUs” in the Performance and Tuning: Basics.

• The cache space required for merging sort runs is taken from the data
cache, and some procedure cache space is also required. Setting the
number of sort buffers to a low value reduces the space used in the buffer
cache.

If number of sort buffers is set to a large value, it takes more space from the
data cache, and may also cause stored procedures to be flushed from the
procedure cache, since procedure cache space is used while merging
sorted values.

CHAPTER 3 Using Statistics to Improve Performance

Performance and Tuning: Monitoring and Analyzing 59

Creating the worktables for sorts also uses space in tempdb.

Using the delete statistics command
In pre-11.9 versions of SQL Server and Adaptive Server, dropping an index
removes the distribution page for the index. In version 11.9.2, maintaining
column-level statistics is under explicit user control, and the optimizer can use
column-level statistics even when an index does not exist. The delete statistics
command allows you to drop statistics for specific columns.

If you create an index and then decide to drop it because it is not useful for data
access, or because of the cost of index maintenance during data modifications,
you need to determine:

• Whether the statistics on the index are useful to the optimizer.

• Whether the distribution of key values in the columns for this index are
subject to change over time as rows are inserted and deleted.

If the distribution of key values changes, you need to run update statistics
periodically to maintain useful statistics.

This example command deletes the statistics for the price column in the titles
table:

delete statistics titles(price)

Note The delete statistics command, when used with a table name, removes all
statistics for a table, even where indexes exist.

You must run update statistics on the table to restore the statistics for the index.

When row counts may be inaccurate
Row count values for the number of rows, number of forwarded rows, and
number of deleted rows may be inaccurate, especially if query processing
includes many rollback commands. If workloads are extremely heavy, and the
housekeeper wash task does not run often, these statistics are more likely to be
inaccurate.

When row counts may be inaccurate

60 Adaptive Server Enterprise

Running update statistics corrects these counts in systabstats.

Running dbcc checktable or dbcc checkdb updates these values in memory.

When the housekeeper wash task runs, or when you execute sp_flushstats,
these values are saved in systabstats.

Note The configuration parameter housekeeper free write percent must be set
to 1 or greater to enable housekeeper statistics flushing.

Performance and Tuning: Monitoring and Analyzing 61

C H A P T E R 4 Using the set statistics
Commands

Contains a guide to using the set statistics command.

Command syntax
The syntax for the set statistics commands is:

set statistics {io, simulate, subquerycache, time} [on | off]

You can issue a single command:

set statistics io on

You can combine more than one command on a single line by separating
them with commas:

set statistics io, time on

Topic Page
Command syntax 61

Using simulated statistics 62

Checking subquery cache performance 62

Checking compile and execute time 62

Reporting physical and logical I/O statistics 63

Using simulated statistics

62 Adaptive Server Enterprise

Using simulated statistics
The optdiag utility command allows you to load simulated statistics and
perform query diagnosis using those statistics. Since you can load simulated
statistics even for tables that are empty, using simulated statistics allows you to
perform tuning diagnostics in a very small database that contains only the
tables and indexes. Simulated statistics do not overwrite any existing statistics
when they are loaded, so you can also load them into an existing database.

Once simulated statistics have been loaded, instruct the optimizer to use them
(rather than the actual statistics):

set statistics simulate on

For complete information on using simulated statistics, see “Using simulated
statistics” on page 162.

Checking subquery cache performance
When subqueries are not flattened or materialized, a subquery cache is created
to store results of earlier executions of the subquery to reduce the number of
expensive executions of the subquery.

See “Displaying subquery cache information” on page 140 in the Performance
and Tuning: Optimizer and Abstract Plans for information on using this option.

Checking compile and execute time
set statistics time displays information about the time it takes to parse and
execute Adaptive Server commands.

Parse and Compile Time 57.
SQL Server cpu time: 5700 ms.

Execution Time 175.
SQL Server cpu time: 17500 ms. SQL Server elapsed time: 70973 ms.

The meaning of this output is:

CHAPTER 4 Using the set statistics Commands

Performance and Tuning: Monitoring and Analyzing 63

• Parse and Compile Time – The number of CPU ticks taken to parse,
optimize, and compile the query. See below for information on converting
ticks to milliseconds.

• SQL Server cpu time – Shows the CPU time in milliseconds.

• Execution Time – The number of CPU ticks taken to execute the query.

• SQL Server cpu time – The number of CPU ticks taken to execute the
query, converted to milliseconds.

• SQL Server elapsed time – The difference in milliseconds between the
time the command started and the current time, as taken from the operating
system clock.

This output shows that the query was parsed and compiled in 57 clock ticks. It
took 175 ticks, or 17.5 seconds, of CPU time to execute. Total elapsed time was
70.973 seconds, indicating that Adaptive Server spent some time processing
other tasks or waiting for disk or network I/O to complete.

Converting ticks to milliseconds
 To convert ticks to milliseconds

Milliseconds = CPYU_ticks*clock_rate
1000

To see the clock_rate for your system, execute:

sp_configure "sql server clock tick length"

See the System Administration Guide for more information.

Reporting physical and logical I/O statistics
set statistics io reports information about physical and logical I/O and the
number of times a table was accessed. set statistics io output follows the query
results and provides actual I/O performed by the query.

Reporting physical and logical I/O statistics

64 Adaptive Server Enterprise

For each table in a query, including worktables, statistics io reports one line of
information with several values for the pages read by the query and one row
that reports the total number of writes. If a System Administrator has enabled
resource limits, statistics io also includes a line that reports the total actual I/O
cost for the query. The following example shows statistics io output for a query
with resource limits enabled:

select avg(total_sales)
from titles

Table: titles scan count 1, logical reads: (regular=656 apf=0
total=656), physical reads: (regular=444 apf=212 total=656), apf
IOs used=212
Total actual I/O cost for this command: 13120.
Total writes for this command: 0

The following sections describe the four major components of statistics io
output:

• Actual I/O cost

• Total writes

• Read statistics

• Table name and “scan count”

Total actual I/O cost value
If resource limits are enabled, statistics io prints the “Total actual I/O cost” line.
Adaptive Server reports the total actual I/O as a unitless number. The formula
for determining the cost of a query is Cost = All physical IOs * 18 + All logical IOs
* 2

This formula multiplies the “cost” of a logical I/O by the number of logical I/Os
and the “cost” of a physical I/O by the number of physical I/Os.

For the example above that performs 656 physical reads and 656 logical reads,
656 * 2 + 656 * 18 = 13120, which is the total I/O cost reported by statistics io.

Statistics for writes
statistics io reports the total number of buffers written by the command. Read-
only queries report writes when they cause dirty pages to move past the wash
marker in the cache so that the write on the page starts.

CHAPTER 4 Using the set statistics Commands

Performance and Tuning: Monitoring and Analyzing 65

Queries that change data may report only a single write, the log page write,
because the changed pages remain in the MRU section of the data cache.

Statistics for reads
statistics io reports the number of logical and physical reads for each table and
index included in a query, including worktables. I/O for indexes is included
with the I/O for the table.

Table 4-1 shows the values that statistics io reports for logical and physical
reads.

Table 4-1: statistics io output for reads

Sample output with and without an index

Using statistics io to perform a query on a table without an index and the same
query on the same table with an index shows how important good indexes can
be to query and system performance. Here is a sample query:

select title
from titles
where title_id = "T5652"

Output Description

logical reads

regular Number of times that a page needed by the query was found
in cache; only pages not brought in by asynchronous
prefetch (APF) are counted here.

apf Number of times that a request brought in by an APF request
was found in cache.

total Sum of regular and apf logical reads.

physical reads

regular Number of times a buffer was brought into cache by regular
asynchronous I/O

apf Number of times that a buffer w.as brought into cache by
APF.

total Sum of regular and apf physical reads.

apf IOs used Number of buffers brought in by APF in which one or more
pages were used during the query.

Reporting physical and logical I/O statistics

66 Adaptive Server Enterprise

statistics io without an index

With no index on title_id, statistics io reports these values, using 2K I/O:

Table: titles scan count 1, logical reads:(regular=624
apf=0 total=624), physical reads:(regular=230 apf=394
total=624), apf IOs used=394
Total actual I/O cost for this command: 12480.
Total writes for this command: 0

This output shows that:

• The query performed a total of 624 logical I/Os, all regular logical I/Os.

• The query performed 624 physical reads. Of these, 230 were regular
asynchronous reads, and 394 were asynchronous prefetch reads.

• All of the pages read by APF were used by the query.

statistics io with an Index

With a clustered index on title_id, statistics io reports these values for the same
query, also using 2K I/O:

Table: titles scan count 1, logical reads: (regular=3 apf=0
total=3),
physical reads: (regular=3 apf=0 total=3), apf IOs used=0
Total actual I/O cost for this command: 60.
Total writes for this command: 0

The output shows that:

• The query performed 3 logical reads.

• The query performed 3 physical reads: 2 reads for the index pages and 1
read for the data page.

statistics io output for cursors
For queries using cursors, statistics io prints the cumulative I/O since the cursor
was opened:

1> open c

Table: titles scan count 0, logical reads: (regular=0 apf=0 total=0),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total actual I/O cost for this command: 0.

CHAPTER 4 Using the set statistics Commands

Performance and Tuning: Monitoring and Analyzing 67

Total writes for this command: 0
1> fetch c

title_id type price
 -------- ------------ ------------------------
 T24140 business 201.95
Table: titles scan count 1, logical reads: (regular=3 apf=0 total=3),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total actual I/O cost for this command: 6.
Total writes for this command: 0

1> fetch c

title_id type price
 -------- ------------ ------------------------
 T24226 business 201.95
Table: titles scan count 1, logical reads: (regular=4 apf=0
total=4), physical reads: (regular=0 apf=0 total=0), apf IOs
used=0
Total actual I/O cost for this command: 8.
Total writes for this command: 0

Scan count
statistics io reports the number of times a query accessed a particular table. A
“scan” can represent any of these access methods:

• A table scan.

• An access via a clustered index. Each time the query starts at the root page
of the index and follows pointers to the data pages, it is counted as a scan.

• An access via a nonclustered index. Each time the query starts at the root
page of the index and follows pointers to the leaf level of the index (for a
covered query) or to the data pages, it is counted.

• If queries run in parallel, each worker process access to the table is counted
as a scan.

Use showplan, as described in Chapter 5, “Using set showplan,” to determine
which access method is used.

Queries reporting a scan count of 1

Examples of queries that return a scan count of 1 are:

Reporting physical and logical I/O statistics

68 Adaptive Server Enterprise

• A point query:

select title_id
from titles
 where title_id = "T55522"

• A range query:

select au_lname, au_fname
 from authors
 where au_lname > "Smith"
 and au_lname < "Smythe"

If the columns in the where clauses of these queries are indexed, the queries can
use the indexes to scan the tables; otherwise, they perform table scans. In either
case, they require only a single scan of the table to return the required rows.

Queries reporting a scan count of more than 1

Examples of queries that return larger scan count values are:

• Parallel queries that report a scan for each worker process.

• Queries that have indexed where clauses connected by or report a scan for
each or clause. If the query uses the special OR strategy, it reports one scan
for each value. If the query uses the OR strategy, it reports one scan for
each index, plus one scan for the RID list access.

This query uses the special OR strategy, so it reports a scan count of 2 if
the titles table has indexes on title_id and another on pub_id:

select title_id
from titles
 where title_id = "T55522"
 or pub_id = "P988"

Table: titles scan count 2,logical reads: (regular=149 apf=0
total=149), physical reads: (regular=63 apf=80 total=143), apf IOs
used=80
Table: Worktable1 scan count 1, logical reads: (regular=172 apf=0
total=172), physical reads: (regular=0 apf=0 total=0), apf IOs

The I/O for the worktable is also reported.

• Nested-loop joins that scan inner tables once for each qualifying row in the
outer table. In the following example, the outer table, publishers, has three
publishers with the state “NY”, so the inner table, titles, reports a scan
count of 3:

select title_id

CHAPTER 4 Using the set statistics Commands

Performance and Tuning: Monitoring and Analyzing 69

from titles t, publishers p
where t.pub_id = p.pub_id
 and p.state = "NY"

Table: titles scan count 3,logical reads: (regular=442 apf=0
total=442), physical reads: (regular=53 apf=289 total=342), apf IOs
used=289
Table: publishers scan count 1, logical reads: (regular=2 apf=0
total=2), physical reads: (regular=2 apf=0 total=2), apf IOs used=0

This query performs a table scan on publishers, which occupies only 2 data
pages, so 2 physical I/Os are reported. There are 3 matching rows in
publishers, so the query scans titles 3 times, using an index on pub_id.

• Merge joins with duplicate values in the outer table restart the scan for
each duplicate value, and report an additional scan count each time.

Queries reporting scan count of 0

Multistep queries and certain other types of queries may report a scan count of
0. Some examples are:

• Queries that perform deferred updates

• select...into queries

• Queries that create worktables

Relationship between physical and logical reads
If a page needs to be read from disk, it is counted as a physical read and a
logical read. Logical I/O is always greater than or equal to physical I/O.

Logical I/O always reports 2K data pages. Physical reads and writes are
reported in buffer-sized units. Multiple pages that are read in a single I/O
operation are treated as a unit: they are read, written, and moved through the
cache as a single buffer.

Logical reads, physical reads, and 2K I/O

With 2K I/O, the number of times that a page is found in cache for a query is
logical reads minus physical reads. When the total number of logical reads and
physical reads is the same for a table scan, it means that each page was read
from disk and accessed only once during the query.

Reporting physical and logical I/O statistics

70 Adaptive Server Enterprise

When pages for the query are found in cache, logical reads are higher than
physical reads. This happens frequently with pages from higher levels of the
index, since they are reused often, and tend to remain in cache.

Physical reads and large I/O

Physical reads are not reported in pages, but in buffers, that is, the actual
number of times Adaptive Server accesses the disk.

• If the query uses 16K I/O (showplan reports the I/O size), a single physical
read brings 8 data pages into cache.

• If a query reports 100 16K physical reads, it has read 800 data pages into
cache.

• If the query needs to scan each of those data pages, it reports 800 logical
reads.

• If a query, such as a join query, must read the page multiple times because
other I/O has flushed the page from the cache, each physical read is
counted.

Reads and writes on worktables

Reads and writes are reported for any worktable that needs to be created for the
query. When a query creates more than one worktable, the worktables are
numbered in statistics io output to correspond to the worktable numbers used in
showplan output.

Effects of caching on reads

If you are testing a query and checking its I/O, and you execute the same query
a second time, you may get surprising physical read values, especially if the
query uses LRU replacement strategy.

The first execution reports a high number of physical reads; the second
execution reports 0 physical reads.

The first time you execute the query, all the data pages are read into cache and
remain there until other server processes flush them from the cache. Depending
on the cache strategy used for the query, the pages may remain in cache for a
longer or shorter period of time.

• If the query uses the fetch-and-discard (MRU) cache strategy, the pages
are read into the cache at the wash marker.

CHAPTER 4 Using the set statistics Commands

Performance and Tuning: Monitoring and Analyzing 71

In small or very active caches, pages read into the cache at the wash
marker are flushed quickly.

• If the query uses LRU cache strategy to read the pages in at the top of the
MRU end of the page chain, the pages remain in cache for longer periods
of time.

During actual use on a production system, a query can be expected to find some
of the required pages already in the cache, from earlier access by other users,
while other pages need to be read from disk. Higher levels of indexes, in
particular, tend to be frequently used, and tend to remain in the cache.

If you have a table or index bound to a cache that is large enough to hold all the
pages, no physical I/O takes place once the object has been read into cache.

However, during query tuning on a development system with few users, you
may want to clear the pages used for the query from cache in order to see the
full physical I/O needed for a query. You can clear an object’s pages from cache
by:

• Changing the cache binding for the object:

• If a table or index is bound to a cache, unbind it, and rebind it.

• If a table or index is not bound to a cache, bind it to any cache
available, then unbind it.

You must have at least one user-defined cache to use this option.

• If you do not have any user-defined caches, you can execute a sufficient
number of queries on other tables, so that the objects of interest are flushed
from cache. If the cache is very large, this can be time-consuming.

• The only other alternative is rebooting the server.

For more information on testing and cache performance, see “Testing data
cache performance” on page 218 Performance and Tuning: Basics.

statistics io and merge joins
statistics io output does not include sort costs for merge joins. If you have allow
resource limits enabled, the sort cost is not reported in the “Total estimated I/O
cost” and “Total actual I/O cost” statistics. Only dbcc traceon(310) shows these
costs.

Reporting physical and logical I/O statistics

72 Adaptive Server Enterprise

Performance and Tuning: Monitoring and Analyzing 73

C H A P T E R 5 Using set showplan

This chapter describes each message printed by the showplan utility.
showplan displays the steps performed for each query in a batch, the keys
and indexes used for the query, the order of joins, and special optimizer
strategies.

Using
To see the query plan for a query, use:

set showplan on

To stop displaying query plans, use:

set showplan off

You can use showplan in conjunction with other set commands.

When you want to display showplans for a stored procedure, but not
execute them, use the set fmtonly command.

See Chapter 4, “Query Tuning Tools,” in Performance and Tuning:
Optimizer for information on how options affect each other’s operation.

Note Do not use set noexec with stored procedures - compilation and
execution will not occur and you will not get the necessary output

Topic Page
Using 73

Basic showplan messages 74

showplan messages for query clauses 82

Messages describing access methods, caching, and I/O cost 93

showplan messages for parallel queries 114

showplan messages for subqueries 119

Basic showplan messages

74 Adaptive Server Enterprise

Basic showplan messages
This section describes showplan messages that are printed for most select,
insert, update, and delete operations.

Query plan delimiter message
QUERY PLAN FOR STATEMENT N (at line N)

Adaptive Server prints this line once for each query in a batch. Its main
function is to provide a visual cue that separates one section of showplan output
from the next section. Line numbers are provided to help you match query
output with your input.

Step message
STEP N

showplan output displays “STEP N” for every query, where N is an integer,
beginning with “STEP 1”. For some queries, Adaptive Server cannot retrieve
the results in a single step and breaks the query plan into several steps. For
example, if a query includes a group by clause, Adaptive Server breaks it into
at least two steps:

• One step to select the qualifying rows from the table and to group them,
placing the results in a worktable

• Another step to return the rows from the worktable

This example demonstrates a single-step query.

select au_lname, au_fname
from authors
where city = "Oakland"

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 authors
 Nested iteration.
 Table Scan.
 Forward scan.

CHAPTER 5 Using set showplan

Performance and Tuning: Monitoring and Analyzing 75

 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

Multiple-step queries are demonstrated following “GROUP BY message” on
page 83.

Query type message
The type of query is query type.

This message describes the type of query for each step. For most queries that
require tuning, the value for query type is SELECT, INSERT, UPDATE, or
DELETE. However, the query type can include any Transact-SQL command
that you issue while showplan is enabled. For example, here is output from a
create index command:

STEP 1
 The type of query is CREATE INDEX.
 TO TABLE
 titleauthor

FROM TABLE message
FROM TABLE
 tablename [correlation_name]

This message indicates which table the query is reading from. The “FROM
TABLE” message is followed on the next line by the table name. If the from
clause includes correlation names for tables, these are printed after the table
names. When queries create and use worktables, the “FROM TABLE” prints
the name of the worktable.

When your query joins one or more tables, the order of “FROM TABLE”
messages in the output shows you the order in which the query plan chosen by
the optimizer joins the tables. This query displays the join order in a three-table
join:

select a.au_id, au_fname, au_lname
 from titles t, titleauthor ta, authors a
where a.au_id = ta.au_id
 and ta.title_id = t.title_id
 and au_lname = "Bloom"

QUERY PLAN FOR STATEMENT 1 (at line 1).

Basic showplan messages

76 Adaptive Server Enterprise

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 authors
 a
 Nested iteration.
 Index : au_lname_ix
 Forward scan.
 Positioning by key.
 Keys are:
 au_lname ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

 FROM TABLE
 titleauthor
 ta
 Nested iteration.
 Index : at_ix
 Forward scan.
 Positioning by key.
 Index contains all needed columns. Base table will not be
read.
 Keys are:
 au_id ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.

 FROM TABLE
 titles
 t
 Nested iteration.
 Using Clustered Index.
 Index : title_id_ix
 Forward scan.
 Positioning by key.
 Index contains all needed columns. Base table will not be
read.
 Keys are:
 title_id ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.

CHAPTER 5 Using set showplan

Performance and Tuning: Monitoring and Analyzing 77

The sequence of tables in this output shows the order chosen by the query
optimizer, which is not the order in which they were listed in the from clause or
where clause:

• First, the qualifying rows from the authors table are located (using the
search clause on au_lname).

• Then, those rows are joined with the titleauthor table (using the join clause
on the au_id columns).

• Finally, the titles table is joined with the titleauthor table to retrieve the
desired columns (using the join clause on the title_id columns).

FROM TABLE and referential integrity

When you insert or update rows in a table that has a referential integrity
constraint, the showplan output includes “FROM TABLE” and other messages
indicating the method used to access the referenced table. This salesdetail table
definition includes a referential integrity check on the title_id column:

create table salesdetail (
 stor_id char(4),
 ord_num varchar(20),
 title_id tid
 references titles(title_id),
 qty smallint,
 discount float)

An insert to salesdetail, or an update on the title_id column, requires a lookup
in the titles table:

insert salesdetail values ("S245", "X23A5", "T10", 15,
40.25)

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.

 FROM TABLE
 titles
 Using Clustered Index.
 Index : title_id_ix
 Forward scan.
 Positioning by key.
 Keys are:
 title_id

Basic showplan messages

78 Adaptive Server Enterprise

 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 TO TABLE
 salesdetail

The clustered index on title_id_ix is used to verify the referenced value.

TO TABLE message
TO TABLE
 tablename

When a command such as insert, delete, update, or select into modifies or
attempts to modify one or more rows of a table, the “TO TABLE” message
displays the name of the target table. For operations that require an
intermediate step to insert rows into a worktable, “TO TABLE” indicates that
the results are going to the “Worktable” table rather than to a user table. This
insert command shows the use of the “TO TABLE” statement:

insert sales
values ("8042", "QA973", "12/7/95")
QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 TO TABLE
 sales

Here is a command that performs an update:

update publishers
set city = "Los Angeles"
where pub_id = "1389"

 QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is UPDATE.
 The update mode is direct.

 FROM TABLE
 publishers
 Nested iteration.
 Using Clustered Index.
 Index : publ_id_ix
 Forward scan.

CHAPTER 5 Using set showplan

Performance and Tuning: Monitoring and Analyzing 79

 Positioning by key.
 Keys are:
 pub_id ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 publishers

The update query output indicates that the publishers table is used as both the
“FROM TABLE” and the “TO TABLE”. In the case of update operations, the
optimizer needs to read the table that contains the row(s) to be updated,
resulting in the “FROM TABLE” statement, and then needs to modify the
row(s), resulting in the “TO TABLE” statement.

Update mode messages
Adaptive Server uses different modes to perform update operations such as
insert, delete, update, and select into. These methods are called direct update
mode and deferred update mode.

Direct update mode
The update mode is direct.

Whenever possible, Adaptive Server uses direct update mode, since it is faster
and generates fewer log records than deferred update mode.

The direct update mode operates as follows:

1 Pages are read into the data cache.

2 The changes are recorded in the transaction log.

3 The change is made to the data page.

4 The transaction log page is flushed to disk when the transaction commits.

For more information on the different types of direct updates, see “How
Update Operations Are Performed” on page 112.

Adaptive Server uses direct update mode for the following delete command:

delete
from authors
where au_lname = "Willis"

Basic showplan messages

80 Adaptive Server Enterprise

and au_fname = "Max"
QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is DELETE.
 The update mode is direct.

 FROM TABLE
 authors
 Nested iteration.
 Using Clustered Index.
 Index : au_names_ix
 Forward scan.
 Positioning by key.
 Keys are:
 au_lname ASC
 au_fname ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 authors

Deferred mode
The update mode is deferred.

In deferred mode, processing takes place in these steps:

1 For each qualifying data row, Adaptive Server writes transaction log
records for one deferred delete and one deferred insert.

2 Adaptive Server scans the transaction log to process the deferred inserts,
changing the data pages and any affected index pages.

Consider the following insert...select operation, where mytable is a heap
without a clustered index or a unique nonclustered index:

insert mytable
 select title, price * 2
 from mytable

 QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is deferred.

CHAPTER 5 Using set showplan

Performance and Tuning: Monitoring and Analyzing 81

 FROM TABLE
 mytable
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 mytable

This command copies every row in the table and appends the rows to the end
of the table.

It needs to differentiate between the rows that are currently in the table (prior
to the insert command) and the rows being inserted so that it does not get into
a continuous loop of selecting a row, inserting it at the end of the table,
selecting the row that it just inserted, and reinserting it.

The query processor solves this problem by performing the operation in two
steps:

1 It scans the existing table and writes insert records into the transaction log
for each row that it finds.

2 When all the “old” rows have been read, it scans the log and performs the
insert operations.

Deferred index and deferred varcol messages
The update mode is deferred_varcol.

The update mode is deferred_index.

These showplan messages indicate that Adaptive Server may process an update
command as a deferred index update.

Adaptive Server uses deferred_varcol mode when updating one or more
variable-length columns. This update may be done in deferred or direct mode,
depending on information that is available only at runtime.

Adaptive Server uses deferred_index mode when the index is unique or may
change as part of the update. In this mode, Adaptive Server deletes the index
entries in direct mode but inserts them in deferred mode.

showplan messages for query clauses

82 Adaptive Server Enterprise

Optimized using messages
These messages are printed when special optimization options are used for a
query.

Simulated statistics message
Optimized using simulated statistics.

The simulated statistics message is printed when:

• The set statistics simulate option was active when the query was optimized,
and

• Simulated statistics have been loaded using optdiag.

Abstract plan messages
Optimized using an Abstract Plan (ID : N).

The message above is printed when an abstract plan was associated with the
query. The variable prints the ID number of the plan.

Optimized using the Abstract Plan in the PLAN clause.

The message above is printed when the plan clause is used for a select, update,
or delete statement. See Creating and Using Abstract Plans in the Performance
and Tuning Guide: Optimizer for more information.

showplan messages for query clauses
Use of certain Transact-SQL clauses, functions, and keywords is reflected in
showplan output. These include group by, aggregates, distinct, order by, and
select into clauses.

Use of certain Transact-SQL clauses, functions, and keywords is reflected in
showplan output. These include group by, aggregates, distinct, order by, and
select into clauses.

Table 5-1: showplan messages for various clauses

Message Explanation

GROUP BY The query contains a group by statement.

CHAPTER 5 Using set showplan

Performance and Tuning: Monitoring and Analyzing 83

GROUP BY message
GROUP BY

This statement appears in the showplan output for any query that contains a
group by clause. Queries that contain a group by clause are always executed in
at least two steps:

• One step selects the qualifying rows into a worktable and groups them.

• Another step returns the rows from the worktable.

Selecting into a worktable
The type of query is SELECT (into WorktableN).

The type of query is SELECT (into
WorktableN).

The step creates a worktable to hold
intermediate results.

Evaluate Grouped type AGGREGATE

Evaluate Ungrouped type AGGREGATE.

The query contains an aggregate function.

“Grouped” indicates that there is a grouping
column for the aggregate (vector aggregate).

“Ungrouped” indicates that there is no
grouping column (scalar aggregate). The
variable indicates the type of aggregate.

Evaluate Grouped ASSIGNMENT
OPERATOR

Evaluate Ungrouped ASSIGNMENT
OPERATOR

The query includes compute (ungrouped) or
compute by (grouped).

WorktableN created for DISTINCT. The query contains the distinct keyword in the
select list and requires a sort to eliminate
duplicates.

WorktableN created for ORDER BY. The query contains an order by clause that
requires ordering rows.

This step involves sorting. The query includes on order by or distinct
clause, and results must be sorted.

Using GETSORTED The query created a worktable and sorted it.
GETSORTED is a particular technique used
to return the rows.

The sort for WorktableN is done in Serial.

The sort for WorktableN is done in Parallel.

Indicates how the sort for a worktable is
performed.

Message Explanation

showplan messages for query clauses

84 Adaptive Server Enterprise

Queries using a group by clause first put qualifying results into a worktable.
The data is grouped as the table is generated. A second step returns the grouped
rows.

The following example returns a list of all cities and indicates the number of
authors that live in each city. The query plan shows the two steps: the first step
selects the rows into a worktable, and the second step retrieves the grouped
rows from the worktable:

select city, total_authors = count(*)
 from authors
 group by city

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT (into Worktable1).
 GROUP BY
 Evaluate Grouped COUNT AGGREGATE.

 FROM TABLE
 authors
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.

 FROM TABLE
 Worktable1.
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

Grouped aggregate message
Evaluate Grouped type AGGREGATE

CHAPTER 5 Using set showplan

Performance and Tuning: Monitoring and Analyzing 85

This message is printed by queries that contain aggregates and group by or
compute by.

The variable indicates the type of aggregate—COUNT, SUM OR AVERAGE,
MINIMUM, or MAXIMUM.

avg reports both COUNT and SUM OR AVERAGE; sum reports SUM OR
AVERAGE. Two additional types of aggregates (ONCE and ANY) are used
internally by Adaptive Server while processing subqueries.

See “Internal Subquery Aggregates” on page 864.

Grouped aggregates and group by

When an aggregate function is combined with group by, the result is called a
grouped aggregate, or vector aggregate. The query results have one row for
each value of the grouping column or columns.

The following example illustrates a grouped aggregate:

select type, avg(advance)
from titles
group by type

 QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT (into Worktable1).
 GROUP BY
 Evaluate Grouped COUNT AGGREGATE.
 Evaluate Grouped SUM OR AVERAGE AGGREGATE.

 FROM TABLE
 titles
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.

 FROM TABLE
 Worktable1.

showplan messages for query clauses

86 Adaptive Server Enterprise

 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

In the first step, the worktable is created, and the aggregates are computed. The
second step selects the results from the worktable.

compute by message
Evaluate Grouped ASSIGNMENT OPERATOR

Queries using compute by display the same aggregate messages as group by,
with the “Evaluate Grouped ASSIGNMENT OPERATOR” message.

The values are placed in a worktable in one step, and the computation of the
aggregates is performed in a second step. This query uses type and advance,
like the group by query example above:

select type, advance from titles
having title like "Compu%"
order by type
compute avg(advance) by type

In the showplan output, the computation of the aggregates takes place in step 2:

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Worktable1 created for ORDER BY.

 FROM TABLE
 titles
 Nested iteration.
 Index : title_ix
 Forward scan.
 Positioning by key.
 Keys are:
 title ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

CHAPTER 5 Using set showplan

Performance and Tuning: Monitoring and Analyzing 87

 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.
 Evaluate Grouped SUM OR AVERAGE AGGREGATE.
 Evaluate Grouped COUNT AGGREGATE.
 Evaluate Grouped ASSIGNMENT OPERATOR.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

Ungrouped aggregate message
Evaluate Ungrouped type AGGREGATE.

This message is reported by:

• Queries that use aggregate functions, but do not use group by

• Queries that use compute

Ungrouped aggregates

When an aggregate function is used in a select statement that does not include
a group by clause, it produces a single value. The query can operate on all rows
in a table or on a subset of the rows defined by a where clause.

When an aggregate function produces a single value, the function is called a
scalar aggregate, or an ungrouped aggregate. Here is showplan output for an
ungrouped aggregate:

select avg(advance)
from titles
where type = "business"

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

showplan messages for query clauses

88 Adaptive Server Enterprise

 Evaluate Ungrouped COUNT AGGREGATE.
 Evaluate Ungrouped SUM OR AVERAGE AGGREGATE.

 FROM TABLE
 titles
 Nested iteration.
 Index : type_price
 Forward scan.
 Positioning by key.
 Keys are:
 type ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

 STEP 2
 The type of query is SELECT.

This is a two-step query, similar to the showplan from the group by query shown
earlier.

Since the scalar aggregate returns a single value, Adaptive Server uses an
internal variable to compute the result of the aggregate function, as the
qualifying rows from the table are evaluated. After all rows from the table have
been evaluated (step 1), the final value from the variable is selected (step 2) to
return the scalar aggregate result.

compute messages
Evaluate Ungrouped ASSIGNMENT OPERATOR

When a query includes compute to compile a scalar aggregate, showplan prints
the “Evaluate Ungrouped ASSIGNMENT OPERATOR” message. This query
computes an average for the entire result set:

select type, advance from titles
where title like "Compu%"
order by type
compute avg(advance)

The showplan output shows that the computation of the aggregate values takes
place in the step 2:

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1

CHAPTER 5 Using set showplan

Performance and Tuning: Monitoring and Analyzing 89

 The type of query is INSERT.
 The update mode is direct.
 Worktable1 created for ORDER BY.

 FROM TABLE
 titles
 Nested iteration.
 Index : title_ix
 Forward scan.
 Positioning by key.
 Keys are:
 title ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.
 Evaluate Ungrouped SUM OR AVERAGE AGGREGATE.
 Evaluate Ungrouped COUNT AGGREGATE.
 Evaluate Ungrouped ASSIGNMENT OPERATOR.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

messages for order by and distinct
Some queries that include distinct use a sort step to enforce the uniqueness of
values in the result set. distinct queries and order by queries do not require the
sorting step when the index used to locate rows supports the order by or distinct
clause.

For those cases where the sort is performed, the distinct keyword in a select list
and the order by clause share some showplan messages:

showplan messages for query clauses

90 Adaptive Server Enterprise

• Each generates a worktable message.

• The message “This step involves sorting.”.

• The message “Using GETSORTED”.

Worktable message for distinct
WorktableN created for DISTINCT.

A query that includes the distinct keyword excludes all duplicate rows from the
results so that only unique rows are returned. When there is no useful index,
Adaptive Server performs these steps to process queries that include distinct:

1 It creates a worktable to store all of the results of the query, including
duplicates.

2 It sorts the rows in the worktable, discards the duplicate rows, and then
returns the rows.

Subqueries with existence joins sometimes create a worktable and sort it to
remove duplicate rows.

See “Flattening in, any, and exists subqueries” on page 145 for more
information.

The “WorktableN created for DISTINCT” message appears as part of “Step 1”
in showplan output. “Step 2” for distinct queries includes the messages “This
step involves sorting” and “Using GETSORTED”. See “Sorting messages” on
page 812.

select distinct city
from authors

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Worktable1 created for DISTINCT.

 FROM TABLE
 authors
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

CHAPTER 5 Using set showplan

Performance and Tuning: Monitoring and Analyzing 91

 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

Worktable message for order by
WorktableN created for ORDER BY.

Queries that include an order by clause often require the use of a temporary
worktable. When the optimizer cannot use an index to order the result rows, it
creates a worktable to sort the result rows before returning them. This example
shows an order by clause that creates a worktable because there is no index on
the city column:

select *
from authors
order by city

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Worktable1 created for ORDER BY.

 FROM TABLE
 authors
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

showplan messages for query clauses

92 Adaptive Server Enterprise

 STEP 2
 The type of query is SELECT.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

order by queries and indexes

Certain queries using order by do not require a sorting step, depending on the
type of index used to access the data.

See Chapter 8, “Indexing for Performance,” for more information.

Sorting messages
These messages report on sorts.

Step involves sorting message
This step involves sorting.

This showplan message indicates that the query must sort the intermediate
results before returning them to the user. Queries that use distinct or that have
an order by clause not supported by an index require an intermediate sort. The
results are put into a worktable, and the worktable is then sorted.

For examples of this message, see “Worktable message for distinct” on page
810 and “Worktable message for order by” on page 811.

GETSORTED message
Using GETSORTED

This statement indicates one of the ways that Adaptive Server returns result
rows from a table.

CHAPTER 5 Using set showplan

Performance and Tuning: Monitoring and Analyzing 93

In the case of “Using GETSORTED,” the rows are returned in sorted order.
However, not all queries that return rows in sorted order include this step. For
example, order by queries whose rows are retrieved using an index with a
matching sort sequence do not require “GETSORTED.”

The “Using GETSORTED” method is used when Adaptive Server must first
create a temporary worktable to sort the result rows and then return them in the
proper sorted order. The examples for distinct on and for order by on show the
“Using GETSORTED” message.

Serial or parallel sort message
The sort for WorktableN is done in Serial.

The sort for WorktableN is done in Parallel.

These messages indicate whether a serial or parallel sort was performed for a
worktable. They are printed after the sort manager determines whether a given
sort should be performed in parallel or in serial.

If set noexec is in effect, the worktable is not created, so the sort is not
performed, and no message is displayed.

Messages describing access methods, caching, and
I/O cost

showplan output provides information about access methods and caching
strategies.

Auxiliary scan descriptors message
Auxiliary scan descriptors required: N

When a query involving referential integrity requires a large number of user or
system tables, including references to other tables to check referential integrity,
this showplan message indicates the number of auxiliary scan descriptors
needed for the query. If a query does not exceed the number of pre allocated
scan descriptors allotted for the session, the “Auxiliary scan descriptors
required” message is not printed.

Messages describing access methods, caching, and I/O cost

94 Adaptive Server Enterprise

The following example shows partial output for a delete from the employees
table, which is referenced by 30 foreign tables:

delete employees
where empl_id = "222-09-3482"

QUERY PLAN FOR STATEMENT 1 (at line 1).

Auxiliary scan descriptors required: 4

 STEP 1
 The type of query is DELETE.
 The update mode is direct.

 FROM TABLE
 employees
 Nested iteration.
 Using Clustered Index.
 Index : employees_empl_i_10080066222
 Forward scan.
 Positioning by key.
 Keys are:
 empl_id ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

 FROM TABLE
 benefits
 Index : empl_id_ix
 Forward scan.
 Positioning by key.
 Index contains all needed columns. Base table will not be
read.
 Keys are:
 empl_id ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 .
 .
 .
 FROM TABLE
 dependents
 Index : empl_id_ix
 Forward scan.
 Positioning by key.

CHAPTER 5 Using set showplan

Performance and Tuning: Monitoring and Analyzing 95

 Index contains all needed columns. Base table will not be
read.
 Keys are:
 empl_id ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 TO TABLE
 employees

Nested iteration message
Nested Iteration.

This message indicates one or more loops through a table to return rows. Even
the simplest access to a single table is an iteration, as shown here:

select * from publishers
QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 publishers
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

For queries that perform nested-loop joins, access to each table is nested within
the scan of the outer table.

See “Nested-Loop Joins” on page 128 for more information.

Merge join messages
Merge join (outer table).

Merge join (inner table).

Merge join messages indicate the use of a merge join and the table’s position
(inner or outer) with respect to the other table in the merge join. Merge join
messages appear immediately after the table name in the

Messages describing access methods, caching, and I/O cost

96 Adaptive Server Enterprise

FROM TABLE

 output. This query performs a mixture of merge and nested-loop joins:

select pub_name, au_lname, price
from titles t, authors a, titleauthor ta,
 publishers p
where t.title_id = ta.title_id
 and a.au_id = ta.au_id
 and p.pub_id = t.pub_id
 and type = ’business’
 and price < $25

Messages for merge joins are printed in bold type in the showplan output:

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 3 worker
processes.

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Executed in parallel by coordinating process and 3
worker processes.

 FROM TABLE
 titles
 t
 Merge join (outer table).
 Parallel data merge using 3 worker processes.
 Using Clustered Index.
 Index : title_id_ix
 Forward scan.
 Positioning by key.
 Keys are:
 title_id ASC
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

 FROM TABLE
 titleauthor
 ta
 Merge join (inner table).
 Index : ta_ix
 Forward scan.
 Positioning by key.
 Index contains all needed columns. Base table will

CHAPTER 5 Using set showplan

Performance and Tuning: Monitoring and Analyzing 97

not be read.
 Keys are:
 title_id ASC
 Using I/O Size 16 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf
pages.

 FROM TABLE
 authors
 a
 Nested iteration.
 Index : au_id_ix
 Forward scan.
 Positioning by key.
 Keys are:
 au_id ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf
pages.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.
 Worktable1 created for sort merge join.

 STEP 2
 The type of query is INSERT.
 The update mode is direct.
 Executed by coordinating process.

 FROM TABLE
 publishers
 p
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable2.
 Worktable2 created for sort merge join.

 STEP 3
 The type of query is SELECT.
 Executed by coordinating process.

Messages describing access methods, caching, and I/O cost

98 Adaptive Server Enterprise

 FROM TABLE
 Worktable1.
 Merge join (outer table).
 Serial data merge.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

 FROM TABLE
 Worktable2.
 Merge join (inner table).
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

Total estimated I/O cost for statement 1 (at line 1): 4423.

The sort for Worktable1 is done in Serial

The sort for Worktable2 is done in Serial

This query performed the following joins:

• A full-merge join on titles and titleauthor, with titles as the outer table

• A nested-loop join with the authors table

• A sort-merge join with the publishers table

Worktable message
WorktableN created for sort merge join.

If a merge join requires a sort for a table, a worktable is created and sorted into
order by the join key. A later step in the query uses the worktable as either an
inner table or outer table.

Table scan message
Table Scan.

CHAPTER 5 Using set showplan

Performance and Tuning: Monitoring and Analyzing 99

This message indicates that the query performs a table scan. The following
query shows a typical table scan:

select au_lname, au_fname
from authors
QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 authors
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data
pages.

Clustered index message
Using Clustered Index.

This showplan message indicates that the query optimizer chose to use the
clustered index on a table to retrieve the rows. The following query shows the
clustered index being used to retrieve the rows from the table:

select title_id, title
from titles
where title_id like "T9%"

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 titles
 Nested iteration.
 Using Clustered Index.
 Index : title_id_ix
 Forward scan.
 Positioning by key.
 Keys are:
 title_id ASC
 Using I/O Size 16 Kbytes for index leaf pages.

Messages describing access methods, caching, and I/O cost

100 Adaptive Server Enterprise

 With LRU Buffer Replacement Strategy for index
leaf pages.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data
pages.

Index name message
Index : indexname

This message indicates that the query is using an index to retrieve the rows. The
message includes the index name.

If the line above this message in the output is “Using Clustered Index,” the
index is clustered; otherwise, the index is nonclustered.

The keys used to position the search are reported in the “Keys are...” message.

See “Keys message” on page 105.

This query illustrates the use of a nonclustered index to find and return rows:

select au_id, au_fname, au_lname
from authors
where au_fname = "Susan"

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 authors
 Nested iteration.
 Index : au_names_ix
 Forward scan.
 Positioning by key.
 Keys are:
 au_fname ASC
 Using I/O Size 16 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index
leaf pages.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data
pages.

CHAPTER 5 Using set showplan

Performance and Tuning: Monitoring and Analyzing 101

Scan direction messages
Forward scan.

Backward scan.

These messages indicate the direction of a table or index scan.

The scan direction depends on the ordering specified when the indexes were
created and the order specified for columns in the order by clause.

Backward scans cam be used when the order by clause contains the asc or desc
qualifiers on index keys, in the exact opposite of those in the create index
clause. The configuration parameter allow backward scans must be set to 1 to
allow backward scans.

The scan-direction messages are followed by positioning messages. Any keys
used in the query are followed by “ASC” or “DESC”. The forward and
backward scan messages and positioning messages describe whether a scan is
positioned:

• At the first matching index key, at the start of the table, or at the first page
of the leaf-level pages chain, and searching toward end of the index, or

• At the last matching index key, or end of the table, or last page of the leaf-
level page chain, and searching toward the beginning.

If allow backward scans is set to 0, all accesses use forward scans.

This example uses a backward scan:

select *
from sysmessages
where description like "%Optimized using%"
order by error desc

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 sysmessages
 Nested iteration.
 Table Scan.
 Backward scan.
 Positioning at end of table.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data
pages.

Messages describing access methods, caching, and I/O cost

102 Adaptive Server Enterprise

This query using the max aggregate also uses a backward scan:

select max(error) from sysmessages
QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.
 Evaluate Ungrouped MAXIMUM AGGREGATE.

 FROM TABLE
 sysmessages
 Nested iteration.
 Index : ncsysmessages
 Backward scan.
 Positioning by key.
 Scanning only up to the first qualifying row.
 Index contains all needed columns. Base table
will not be read.
 Keys are:
 error ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index
leaf pages.

 STEP 2
 The type of query is SELECT.

Positioning messages
Positioning at start of table.

Positioning at end of table.

Positioning by Row IDentifier (RID).

Positioning by key.

Positioning at index start.

Positioning at index end.

These messages describe how access to a table or to the leaf level of an index
takes place. The choices are:

Positioning at start of table.

Indicates a forward table scan, starting at the first row of the table.

Positioning at end of table.

CHAPTER 5 Using set showplan

Performance and Tuning: Monitoring and Analyzing 103

Indicates a backward table scan, starting at the last row of the table.
Positioning by Row IDentifier (RID).

It is printed after the OR strategy has created a dynamic index of row IDs.

See “Dynamic index message (OR strategy)” on page 107 for more
information about how row IDs are used.

Positioning by key.

Indicates that the index is used to position the search at the first qualifying
row. It is printed for:

• Direct access an individual row in a point query

• Range queries that perform matching scans of the leaf level of an
index

• Range queries that scan the data pages when there is a clustered index
on an allpages-locked table

• Indexed accesses to inner tables in joins

Positioning at index start.
Positioning at index end.

These messages indicate a nonmatching index scan, used when the index
covers the query. Matching scans are positioned by key.

Forward scans are positioned at the start of the index; backward scans are
positioned at the end of the index.

Scanning messages
Scanning only the last page of the table.

This message indicates that a query containing an ungrouped (scalar) max
aggregate can access only the last page of the table to return the value.

Scanning only up to the first qualifying row.

Messages describing access methods, caching, and I/O cost

104 Adaptive Server Enterprise

This message appears only for queries that use an ungrouped (scalar) min
aggregate. The aggregated column needs to be the leading column in the index.

Note For indexes with the leading key created in descending order, the use of
the messages for min and max aggregates is reversed:

min uses “Positioning at index end”

while max prints “Positioning at index start” and “Scanning only up to the first
qualifying row.”

See Performance and Tuning Guide: Optimizing and Abstract Plans for more
information.

Index covering message
Index contains all needed columns. Base table will not
be read.

This message indicates that an index covers the query. It is printed both for
matching and nonmatching scans. Other messages in showplan output help
distinguish these access methods:

• A matching scan reports “Positioning by key.”

A nonmatching scan reports “Positioning at index start,” or “Positioning
at index end” since a nonmatching scan must read the entire leaf level of
the index.

• If the optimizer uses a matching scan, the “Keys are...” message reports
the keys used to position the search. This message is not included for a
nonmatching scan.

The next query shows output for a matching scan, using a composite,
nonclustered index on au_lname, au_fname, au_id:

select au_fname, au_lname, au_id
from authors
where au_lname = "Williams"

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE

CHAPTER 5 Using set showplan

Performance and Tuning: Monitoring and Analyzing 105

 authors
 Nested iteration.
 Index : au_names_id
 Forward scan.
 Positioning by key.
 Index contains all needed columns. Base table
will not be read.
 Keys are:
 au_lname ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index
leaf pages.

With the same composite index on au_lname, au_fname, au_id, this query
performs a nonmatching scan, since the leading column of the index is not
included in the where clause:

select au_fname, au_lname, au_id
from authors
where au_id = "A93278"

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 authors
 Nested iteration.
 Index : au_names_id
 Forward scan.
 Positioning at index start.
 Index contains all needed columns. Base table
will not be read.
 Using I/O Size 16 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index
leaf pages.

Note that the showplan output does not contain a “Keys are...” message, and the
positioning message is “Positioning at index start.” This query scans the entire
leaf level of the nonclustered index, since the rows are not ordered by the
search argument.

Keys message
Keys are:

Messages describing access methods, caching, and I/O cost

106 Adaptive Server Enterprise

 key [ASC | DESC] ...

This message is followed by the index key(s) used when Adaptive Server uses
an index scan to locate rows. The index ordering is printed after each index key,
showing the order, ASC for ascending or DESC for descending, used when the
index was created. For composite indexes, all leading keys in the where clauses
are listed.

Matching index scans message
Using N Matching Index Scans.

This showplan message indicates that a query using or clauses or an in (values
list) clause uses multiple index scans (also called the “special OR strategy”)
instead of using a dynamic index.

Multiple matching scans can be used only when there is no possibility that the
or clauses or in list items will match duplicate rows – that is, when there is no
need to build the worktable and perform the sort to remove the duplicates.

For more information on how queries containing or are processed, see
Performance and Tuning Guide: Optimizer.

For queries that use multiple matching scans, different indexes may be used for
some of the scans, so the messages that describe the type of index, index
positioning, and keys used are printed for each scan.

The following example uses multiple matching index scans to return rows:

select title
 from titles
 where title_id in ("T18168","T55370")

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 titles
 Nested iteration.
 Using 2 Matching Index Scans
 Index : title_id_ix
 Forward scan.
 Positioning by key.
 Keys are:
 title_id

CHAPTER 5 Using set showplan

Performance and Tuning: Monitoring and Analyzing 107

 Index : title_id_ix
 Forward scan.
 Positioning by key.
 Keys are:
 title_id
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

Dynamic index message (OR strategy)
Using Dynamic Index.

The term dynamic index refers to a worktable of row IDs used to process some
queries that use or clauses or an in (values list) clause. When the OR strategy is
used, Adaptive Server builds a list of all the row IDs that match the query, sorts
the list to remove duplicates, and uses the list to retrieve the rows from the
table.

For a full explanation, see Performance and Tuning Guide: Optimizer.

For a query with two SARGs that match the two indexes (one on au_fname, one
on au_lname), the showplan output below includes three “FROM TABLE”
sections:

• The first two “FROM TABLE” blocks in the output show the two index
accesses, one for the first name “William” and one for the last name
“Williams”.

These blocks include the output “Index contains all needed columns,”
since the row IDs can be retrieved from the leaf level of a nonclustered
index.

• The final “FROM TABLE” block shows the “Using Dynamic Index”
output and “Positioning by Row IDentifier (RID).”

In this step, the dynamic index is used to access the data pages to locate
the rows to be returned.

select au_id, au_fname, au_lname
from authors
where au_fname = "William"
 or au_lname = "Williams"

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

Messages describing access methods, caching, and I/O cost

108 Adaptive Server Enterprise

 FROM TABLE
 authors
 Nested iteration.
 Index : au_fname_ix
 Forward scan.
 Positioning by key.
 Index contains all needed columns. Base table will not be read.
 Keys are:
 au_fname ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.

 FROM TABLE
 authors
 Nested iteration.
 Index : au_lname_ix
 Forward scan.
 Positioning by key.
 Index contains all needed columns. Base table will not be read.
 Keys are:
 au_lname ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.

 FROM TABLE
 authors
 Nested iteration.
 Using Dynamic Index.
 Forward scan.
 Positioning by Row IDentifier (RID).
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

Reformatting Message
WorktableN Created for REFORMATTING.

When joining two or more tables, Adaptive Server may choose to use a
reformatting strategy to join the tables when the tables are large and the tables
in the join do not have a useful index.

The reformatting strategy:

• Inserts the needed columns from qualifying rows of the smaller of the two
tables into a worktable.

CHAPTER 5 Using set showplan

Performance and Tuning: Monitoring and Analyzing 109

• Creates a clustered index on the join column(s) of the worktable. The
index is built using keys to join the worktable to the other table in the
query.

• Uses the clustered index in the join to retrieve the qualifying rows from the
table.

See Performance and Tuning Guide: Optimizer for more information on
reformatting.

The following example illustrates the reformatting strategy. It performs a three-
way join on the titles, titleauthor, and titles tables. There are no indexes on the
join columns in the tables (au_id and title_id), so Adaptive Server uses the
reformatting strategy on two of the tables:

select au_lname, title
from authors a, titleauthor ta, titles t
where a.au_id = ta.au_id
and t.title_id = ta.title_id

QUERY PLAN FOR STATEMENT 1 (at line 1).

STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Worktable1 created for REFORMATTING.

 FROM TABLE
 titleauthor
 ta
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is INSERT.
 The update mode is direct.
 Worktable2 created for REFORMATTING.

 FROM TABLE
 authors
 a

Messages describing access methods, caching, and I/O cost

110 Adaptive Server Enterprise

 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable2.

 STEP 3
 The type of query is SELECT.

 FROM TABLE
 titles
 t
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

 FROM TABLE
 Worktable1.
 Nested iteration.
 Using Clustered Index.
 Forward scan.
 Positioning by key.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

 FROM TABLE
 Worktable2.
 Nested iteration.
 Using Clustered Index.
 Forward scan.
 Positioning by key.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

This query was run with set sort_merge off. When sort-merge joins are enabled,
this query chooses a sort-merge join instead.

CHAPTER 5 Using set showplan

Performance and Tuning: Monitoring and Analyzing 111

Trigger Log Scan Message
Log Scan.

When an insert, update, or delete statement causes a trigger to fire, and the
trigger includes access to the inserted or deleted tables, these tables are built by
scanning the transaction log.

This example shows the output for the update to the titles table when this insert
fires the totalsales_trig trigger on the salesdetail table:

insert salesdetail values (’7896’, ’234518’, ’TC3218’,
75, 40)

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is UPDATE.
 The update mode is direct.

 FROM TABLE
 titles
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

 FROM TABLE
 salesdetail
 EXISTS TABLE : nested iteration.
 Log Scan.
 Forward scan.
 Positioning at start of table.

 Run subquery 1 (at nesting level 1).
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 titles

NESTING LEVEL 1 SUBQUERIES FOR STATEMENT 4.

 QUERY PLAN FOR SUBQUERY 1 (at nesting level 1 and at line 23).

 Correlated Subquery.
 Subquery under an EXPRESSION predicate.

Messages describing access methods, caching, and I/O cost

112 Adaptive Server Enterprise

 STEP 1
 The type of query is SELECT.
 Evaluate Ungrouped SUM OR AVERAGE AGGREGATE.

 FROM TABLE
 salesdetail
 Nested iteration.
 Log Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

I/O Size Messages
Using I/O size N Kbtyes for data pages.

Using I/O size N Kbtyes for index leaf pages.

The messages report the I/O sizes used in the query. The possible sizes are 2K,
4K, 8K, and 16K.

If the table, index, LOB object, or database used in the query uses a data cache
with large I/O pools, the optimizer can choose large I/O. It can choose to use
one I/O size for reading index leaf pages, and a different size for data pages.
The choice depends on the pool size available in the cache, the number of pages
to be read, the cache bindings for the objects, and the cluster ratio for the table
or index pages.

See Chapter 14, “Memory Use and Performance,” for more information on
large I/O and the data cache.

Cache strategy messages
With <LRU/MRU> Buffer Replacement Strategy for data
pages.

With <LRU/MRU> Buffer Replacement Strategy for index
leaf pages.

These messages indicate the cache strategy used for data pages and for index
leaf pages.

CHAPTER 5 Using set showplan

Performance and Tuning: Monitoring and Analyzing 113

See “Overview of cache strategies” on page 180 for more information on cache
strategies.

Total estimated I/O cost message
Total estimated I/O cost for statement N (at line N): X.

Adaptive Server prints this message only if a System Administrator has
configured Adaptive Server to enable resource limits. Adaptive Server prints
this line once for each query in a batch. The message displays the optimizer’s
estimate of the total cost of logical and physical I/O. If the query runs in
parallel, the cost per thread is printed. System Administrators can use this value
when setting compile-time resource limits.

See “Total actual I/O cost value” on page 780 for information on how cost is
computed

 If you are using dbcc traceon(310), this value is the sum of the values in the
FINAL PLAN output for the query.

The following example demonstrates showplan output for an Adaptive Server
configured to allow resource limits:

select au_lname, au_fname
from authors
where city = "Oakland"

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 authors
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

Total estimated I/O cost for statement 1 (at line 1): 1160.

For more information on creating resource limits, see in the System
Administration Guide.

showplan messages for parallel queries

114 Adaptive Server Enterprise

showplan messages for parallel queries
showplan reports information about parallel execution, showing which query
steps are executed in parallel.

showplan reports information about parallel execution, explicitly stating which
query steps are executed in parallel.

Table 5-2: showplan messages for parallel queries

Executed in parallel messages
The Adaptive Server optimizer uses parallel query optimization strategies only
when a given query is eligible for parallel execution. If the query is processed
in parallel, showplan uses three separate messages to report:

• The fact that some or all of the query was executed by the coordinating
process and worker processes. The number of worker processes is
included in this message.

Message Explanation

Executed in parallel by coordinating process and N
worker processes.

Indicates that a query is run in parallel,
and shows the number of worker
processes used.

Executed in parallel by N worker processes. Indicates the number of worker
processes used for a query step.

Executed in parallel with a N-way hash scan.

Executed in parallel with a N-way partition scan.

Indicates the number of worker
processes and the type of scan, hash-
based of partition-based, for a query
step.

Parallel work table merge.
Parallel network buffer merge.
Parallel result buffer merge.

Indicates the way in which the results of
parallel scans were merged.

Parallel data merge using N worker processes. Indicates that a merge join used a
parallel data merge, and the number of
worker processes used.

Serial data merge. Indicates that the merge join used a
serial data merge.

AN ADJUSTED QUERY PLAN WILL BE USED
FOR STATEMENT N BECAUSE NOT ENOUGH
WORKER PROCESSES ARE AVAILABLE AT
THIS TIME. ADJUSTED QUERY PLAN:

Indicates that a run-time adjustment to
the number of worker processes was
required.

CHAPTER 5 Using set showplan

Performance and Tuning: Monitoring and Analyzing 115

• The number of worker processes for each step of the query that is executed
in parallel.

• The degree of parallelism for each scan.

Note that the degree of parallelism used for a query step is not the same as the
total number of worker processes used for the query.

For more examples of parallel query plans, see Chapter 7, “Parallel Query
Optimization.”

Coordinating process message
Executed in parallel by coordinating process and N worker processes.

For each query that runs in parallel mode, showplan reports prints this message,
indicating the number of worker processes used.

Worker processes message
Executed in parallel by N worker processes.

For each step in a query that is executed in parallel, showplan reports the
number of worker processes for the step following the “Type of query”
message.

Scan type message
Executed in parallel with a N-way hash scan.

Executed in parallel with a N-way partition scan.

For each step in the query that accesses data in parallel, showplan prints the
number of worker processes used for the scan, and the type of scan, either
“hash” or “partition.”

Merge messages

Results from the worker processes that process a query are merged using one
of the following types of merge:

• Parallel worktable merge

• Parallel network buffer merge

• Parallel result buffer merge

showplan messages for parallel queries

116 Adaptive Server Enterprise

Merge message for worktables

Parallel work table merge.

Grouped aggregate results from the worktables created by each worker process
are merged into one result set.

In the following example, titles has two partitions. The showplan information
specific to parallel query processing appears in bold.

select type, sum(total_sales)
 from titles
 group by type

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT (into Worktable1).
 GROUP BY
 Evaluate Grouped SUM OR AVERAGE AGGREGATE.
 Executed in parallel by coordinating process and 2 worker
processes.

 FROM TABLE
 titles
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Executed in parallel with a 2-way partition scan.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 Parallel work table merge.

 STEP 2
 The type of query is SELECT.
 Executed by coordinating process.

 FROM TABLE
 Worktable1.
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

CHAPTER 5 Using set showplan

Performance and Tuning: Monitoring and Analyzing 117

See “Merge join messages” on page 824 for an example that uses parallel
processing to perform sort-merge joins.

Merge message for buffer merges

Parallel network buffer merge.

Unsorted, non aggregate results returned by the worker processes are merged
into a network buffer that is sent to the client. In the following example, titles
has two partitions.

select title_id from titles
QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2 worker processes.

 STEP 1
 The type of query is SELECT.
 Executed in parallel by coordinating process and 2 worker
processes.

 FROM TABLE
 titles
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Executed in parallel with a 2-way partition scan.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

 Parallel network buffer merge.

Merge message for result buffers

Parallel result buffer merge.

Ungrouped aggregate results or unsorted, non aggregate variable assignment
results from worker processes are merged.

Each worker process stores the aggregate in a result buffer. The result buffer
merge produces a single value, ranging from zero-length (when the value is
NULL) to the maximum length of a character string.

In the following example, titles has two partitions:

select sum(total_sales)
from titles

QUERY PLAN FOR STATEMENT 1 (at line 1).

showplan messages for parallel queries

118 Adaptive Server Enterprise

Executed in parallel by coordinating process and 2 worker
processes.

 STEP 1
 The type of query is SELECT.
 Evaluate Ungrouped SUM OR AVERAGE AGGREGATE.
 Executed in parallel by coordinating process and 2 worker
processes.

 FROM TABLE
 titles
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Executed in parallel with a 2-way partition scan.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

 Parallel result buffer merge.

 STEP 2
 The type of query is SELECT.
 Executed by coordinating process.

Data merge messages
Parallel data merge using N worker processes.

Serial data merge.

The data merge messages indicate whether a serial or parallel data merge was
performed. If the merge is performed in parallel mode, the number of worker
processes is also printed.

For sample output, see “Merge join messages” on page 95“.

Runtime adjustment message
AN ADJUSTED QUERY PLAN WILL BE USED FOR STATEMENT N BECAUSE NOT
ENOUGH WORKER PROCESSES ARE AVAILABLE AT THIS TIME.
ADJUSTED QUERY PLAN:

showplan output displays this message and an adjusted query plan when fewer
worker processes are available at runtime than the number specified by the
optimized query plan.

CHAPTER 5 Using set showplan

Performance and Tuning: Monitoring and Analyzing 119

showplan messages for subqueries
Since subqueries can contain the same clauses that regular queries contain,
their showplan output can include many of the messages listed in earlier
sections.

The showplan messages for subqueries, shown in “Subquery optimization” on
page 131 in the Performance and Tuning: Optimizer, include delimiters so that
you can spot the beginning and the end of a subquery processing block, the
messages that identify the type of subquery, the place in the outer query where
the subquery is executed, and messages for special types of processing that is
performed only in subqueries.

The showplan messages for subqueries include special delimiters that allow
you to easily spot the beginning and end of a subquery processing block,
messages to identify the type of subquery, the place in the outer query where
the subquery is executed, or special types of processing performed only in
subqueries

Table 5-3: showplan messages for subqueries

Message Explanation

Run subquery N (at nesting level N). This message appears at the point in the
query where the subquery actually runs.
Subqueries are numbered in order for
each side of a union.

NESTING LEVEL N SUBQUERIES FOR STATEMENT N. Shows the nesting level of the subquery.

QUERY PLAN FOR SUBQUERY N (at nesting level N and at line N).

END OF QUERY PLAN FOR SUBQUERY N.

These lines bracket showplan output for
each subquery in a statement. Variables
show the subquery number, the nesting
level, and the input line.

Correlated Subquery. The subquery is correlated.

Non-correlated Subquery. The subquery is not correlated.

Subquery under an IN predicate. The subquery is introduced by in.

Subquery under an ANY predicate. The subquery is introduced by any.

Subquery under an ALL predicate. The subquery is introduced by all.

Subquery under an EXISTS predicate. The subquery is introduced by exists.

Subquery under an EXPRESSION predicate. The subquery is introduced by an
expression, or the subquery is in the
select list.

showplan messages for subqueries

120 Adaptive Server Enterprise

For information about how Adaptive Server optimizes certain types of
subqueries by materializing results or by flattening the queries to joins, see
“Subquery optimization” on page 131 in the Performance and Tuning:
Optimizer.

For basic information on subqueries, subquery types, and the meaning of the
subquery predicates, see the Transact-SQL User’s Guide.

Output for flattened or materialized subqueries
Certain forms of subqueries can be processed more efficiently when:

• The query is flattened into a join query, or

• The subquery result set is materialized as a first step, and the results are
used in a second step with the rest of the outer query.

When the optimizer chooses one of these strategies, the query is not processed
as a subquery, so you will not see the subquery message delimiters. The
following sections describe showplan output for flattened and materialized
queries.

Flattened queries

Adaptive Server can use one of several methods to flatten subqueries into joins.

These methods are described in “Flattening in, any, and exists subqueries” on
page 145.

Evaluate Grouped ANY AGGREGATE. Evaluate Grouped ONCE
AGGREGATE. Evaluate Grouped ONCE-UNIQUE AGGREGATE.

or

Evaluate Ungrouped ANY AGGREGATE.
Evaluate Ungrouped ONCE AGGREGATE.
Evaluate Ungrouped ONCE-UNIQUE AGGREGATE.

The subquery uses an internal aggregate.

EXISTS TABLE: nested iteration The query includes an exists, in, or any
clause, and the subquery is flattened into
a join.

Message Explanation

CHAPTER 5 Using set showplan

Performance and Tuning: Monitoring and Analyzing 121

Subqueries executed as existence joins

When subqueries are flattened into existence joins, the output looks like
normal showplan output for a join, with the possible exception of the message
“EXISTS TABLE: nested iteration.”

This message indicates that instead of the normal join processing, which looks
for every row in the table that matches the join column, Adaptive Server uses
an existence join and returns TRUE as soon as the first qualifying row is
located.

For more information on subquery flattening, see “Flattened subqueries
executed as existence joins” on page 148.

Adaptive Server flattens the following subquery into an existence join:

select title
from titles
where title_id in
 (select title_id
 from titleauthor)
and title like "A Tutorial%"

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 titles
 Nested iteration.
 Index : title_ix
 Forward scan.
 Positioning by key.
 Keys are:
 title ASC
 Using I/O Size 16 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

 FROM TABLE
 titleauthor
 EXISTS TABLE : nested iteration.
 Index : ta_ix
 Forward scan.
 Positioning by key.
 Index contains all needed columns. Base table will not be read.
 Keys are:

showplan messages for subqueries

122 Adaptive Server Enterprise

 title_id ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.

Subqueries using unique reformatting

If there is not a unique index on publishers.pub_id, this query is flattened by
selecting the rows from publishers into a worktable and then creating a unique
clustered index. This process is called unique reformatting:

select title_id
from titles
where pub_id in
(select pub_id from publishers where state = "TX")

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Worktable1 created for REFORMATTING.

 FROM TABLE
 publishers
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.

 FROM TABLE
 Worktable1.
 Nested iteration.
 Using Clustered Index.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

 FROM TABLE
 titles

CHAPTER 5 Using set showplan

Performance and Tuning: Monitoring and Analyzing 123

 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

For more information, see “Flattened subqueries executed using unique
reformatting” on page 135 in the Performance and Tuning: Optimizer.

Subqueries using duplicate elimination

This query performs a regular join, selecting all of the rows into a worktable.
In the second step, the worktable is sorted to remove duplicates. This process
is called duplicate elimination:

select title_id, au_id, au_ord
from titleauthor ta
where title_id in (select ta.title_id
 from titles t, salesdetail sd
 where t.title_id = sd.title_id
 and ta.title_id = t.title_id
 and type = ’travel’ and qty > 10)

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Worktable1 created for DISTINCT.

 FROM TABLE
 salesdetail
 sd
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

 FROM TABLE
 titles
 t
 Nested iteration.
 Using Clustered Index.
 Index : title_id_ix
 Forward scan.

showplan messages for subqueries

124 Adaptive Server Enterprise

 Positioning by key.
 Keys are:
 title_id ASC
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

 FROM TABLE
 titleauthor
 ta
 Nested iteration.
 Index : ta_ix
 Forward scan.
 Positioning by key.
 Keys are:
 title_id ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

Materialized queries

When Adaptive Server materializes subqueries, the query is executed in two
steps:

1 The first step stores the results of the subquery in an internal variable or
worktable.

2 The second step uses the internal variable or worktable results in the outer
query.

This query materializes the subquery into a worktable:

CHAPTER 5 Using set showplan

Performance and Tuning: Monitoring and Analyzing 125

select type, title_id
from titles
where total_sales in (select max(total_sales)
 from sales_summary
 group by type)

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT (into Worktable1).
 GROUP BY
 Evaluate Grouped MAXIMUM AGGREGATE.

 FROM TABLE
 sales_summary
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.

 FROM TABLE
 titles
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

 FROM TABLE
 Worktable1.
 EXISTS TABLE : nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

The showplan message “EXISTS TABLE: nested iteration,” near the end of the
output, shows that Adaptive Server performs an existence join.

showplan messages for subqueries

126 Adaptive Server Enterprise

Structure of subquery showplan output
When a query contains subqueries that are not flattened or materialized:

• The showplan output for the outer query appears first. It includes the
message “Run subquery N (at nesting level N)”, indicating the point in the
query processing where the subquery executes.

• For each nesting level, the query plans at that nesting level are introduced
by the message “NESTING LEVEL N SUBQUERIES FOR
STATEMENT N.”

• The plan for each subquery is introduced by the message “QUERY PLAN
FOR SUBQUERY N (at nesting level N and at line N)”, and the end of its
plan is marked by the message “END OF QUERY PLAN FOR
SUBQUERY N.” This section of the output includes information showing:

• The type of query (correlated or uncorrelated)

• The predicate type (IN, ANY, ALL, EXISTS, or EXPRESSION)

Subquery execution message
Run subquery N (at nesting level N).

This message shows the place where the subquery execution takes place in the
execution of the outer query. Adaptive Server executes the subquery at the
point in the outer query where it need to be run least often.

The plan for this subquery appears later in the output for the subquery’s nesting
level. The first variable in this message is the subquery number; the second
variable is the subquery nesting level.

Nesting level delimiter message
NESTING LEVEL N SUBQUERIES FOR STATEMENT N.

This message introduces the showplan output for all the subqueries at a given
nesting level. The maximum nesting level is 16.

Subquery plan start delimiter
QUERY PLAN FOR SUBQUERY N (at nesting level N and at line N).

CHAPTER 5 Using set showplan

Performance and Tuning: Monitoring and Analyzing 127

This statement introduces the showplan output for a particular subquery at the
nesting level indicated by the previous NESTING LEVEL message.

Line numbers to help you match showplan output to your input.

Subquery plan end delimiter
END OF QUERY PLAN FOR SUBQUERY N.

This statement marks the end of the query plan for a particular subquery.

Type of subquery
Correlated Subquery.

Non-correlated Subquery.

A subquery is either correlated or non correlated.

• A correlated subquery references a column in a table that is listed in the
from list of the outer query. If the subquery is correlated, showplan includes
the message “Correlated Subquery.”

• A non correlated subquery can be evaluated independently of the outer
query. Non correlated subqueries are sometimes materialized, so their
showplan output does not include the normal subquery showplan
messages.

Subquery predicates
Subquery under an IN predicate.

Subquery under an ANY predicate.

Subquery under an ALL predicate.

Subquery under an EXISTS predicate.

Subquery under an EXPRESSION predicate.

Subqueries introduced by in, any, all, or exists are quantified predicate
subqueries. Subqueries introduced by >, >=, <, <=, =, != are expression
subqueries.

showplan messages for subqueries

128 Adaptive Server Enterprise

Internal subquery aggregates
Certain types of subqueries require special internal aggregates, as listed in
Table 5-4. Adaptive Server generates these aggregates internally – they are not
part of Transact-SQL syntax and cannot be included in user queries.

Table 5-4: Internal subquery aggregates

Messages for internal aggregates include “Grouped” when the subquery
includes a group by clause and computes the aggregate for a group of rows,
otherwise the messages include “Ungrouped”; the subquery the aggregate for
all rows in the table that satisfy the correlation clause.

Quantified predicate subqueries and the ANY aggregate
Evaluate Grouped ANY AGGREGATE.

Evaluate Ungrouped ANY AGGREGATE.

All quantified predicate subqueries that are not flattened use the internal ANY
aggregate. Do not confuse this with the any predicate that is part of SQL
syntax.

The subquery returns TRUE when a row from the subquery satisfies the
conditions of the subquery predicate. It returns FALSE to indicate that no row
from the subquery matches the conditions.

For example:

select type, title_id
from titles
where price > all
 (select price
 from titles
 where advance < 15000)

Subquery type Aggregate Effect

Quantified
predicate

ANY Returns TRUE or FALSE to the
outer query.

Expression ONCE Returns the result of the
subquery. Raises error 512 if the
subquery returns more than one
value.

Subquery
containing distinct

ONCE-UNIQUE Stores the first subquery result
internally and compares each
subsequent result to the first.
Raises error 512 if a subsequent
result differs from the first.

CHAPTER 5 Using set showplan

Performance and Tuning: Monitoring and Analyzing 129

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 titles
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.

 Run subquery 1 (at nesting level 1).
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

NESTING LEVEL 1 SUBQUERIES FOR STATEMENT 1.

 QUERY PLAN FOR SUBQUERY 1 (at nesting level 1 and at line 4).

 Correlated Subquery.
 Subquery under an ALL predicate.

 STEP 1
 The type of query is SELECT.
 Evaluate Ungrouped ANY AGGREGATE.

 FROM TABLE
 titles
 EXISTS TABLE : nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

 END OF QUERY PLAN FOR SUBQUERY 1.

Expression subqueries and the ONCE aggregate
Evaluate Ungrouped ONCE AGGREGATE.

Evaluate Grouped ONCE AGGREGATE.

Expression subqueries return only a single value. The internal ONCE
aggregate checks for the single result required by an expression subquery.

showplan messages for subqueries

130 Adaptive Server Enterprise

This query returns one row for each title that matches the like condition:

select title_id, (select city + " " + state
 from publishers
 where pub_id = t.pub_id)
from titles t
where title like "Computer%"

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 titles
 t
 Nested iteration.
 Index : title_ix
 Forward scan.
 Positioning by key.
 Keys are:
 title ASC

 Run subquery 1 (at nesting level 1).
 Using I/O Size 16 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

NESTING LEVEL 1 SUBQUERIES FOR STATEMENT 1.

 QUERY PLAN FOR SUBQUERY 1 (at nesting level 1 and at line 1).

 Correlated Subquery.
 Subquery under an EXPRESSION predicate.

 STEP 1
 The type of query is SELECT.
 Evaluate Ungrouped ONCE AGGREGATE.

 FROM TABLE
 publishers
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.

CHAPTER 5 Using set showplan

Performance and Tuning: Monitoring and Analyzing 131

 With LRU Buffer Replacement Strategy for data pages.

 END OF QUERY PLAN FOR SUBQUERY 1.

Subqueries with distinct and the ONCE-UNIQUE aggregate
Evaluate Grouped ONCE-UNIQUE AGGREGATE.

Evaluate Ungrouped ONCE-UNIQUE AGGREGATE.

When the subquery includes distinct, the ONCE-UNIQUE aggregate indicates
that duplicates are being eliminated:

select pub_name from publishers
where pub_id =
(select distinct titles.pub_id from titles
 where publishers.pub_id = titles.pub_id
 and price > $1000)

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 publishers
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.

 Run subquery 1 (at nesting level 1).
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

NESTING LEVEL 1 SUBQUERIES FOR STATEMENT 1.

 QUERY PLAN FOR SUBQUERY 1 (at nesting level 1 and at line 3).

 Correlated Subquery.
 Subquery under an EXPRESSION predicate.

 STEP 1
 The type of query is SELECT.
 Evaluate Ungrouped ONCE-UNIQUE AGGREGATE.

 FROM TABLE

showplan messages for subqueries

132 Adaptive Server Enterprise

 titles
 Nested iteration.
 Index : pub_id_ix
 Forward scan.
 Positioning by key.
 Keys are:
 pub_id ASC
 Using I/O Size 16 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

 END OF QUERY PLAN FOR SUBQUERY 1.

Existence join message
EXISTS TABLE: nested iteration

This message indicates a special form of nested iteration. In a regular nested
iteration, the entire table or its index is searched for qualifying values.

In an existence test, the query can stop the search as soon as it finds the first
matching value.

The types of subqueries that can produce this message are:

• Subqueries that are flattened to existence joins

• Subqueries that perform existence tests

Subqueries that perform existence tests

There are several ways you can write queries that perform an existence test, for
example, using exists, in, or =any. These queries are treated as if they were
written with an exists clause. The following example shows an existence test.
This query cannot be flattened because the outer query contains or:

select au_lname, au_fname
from authors
where exists
 (select *
 from publishers
 where authors.city = publishers.city)
or city = "New York"

QUERY PLAN FOR STATEMENT 1 (at line 1).

CHAPTER 5 Using set showplan

Performance and Tuning: Monitoring and Analyzing 133

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 authors
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.

 Run subquery 1 (at nesting level 1).
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

NESTING LEVEL 1 SUBQUERIES FOR STATEMENT 1.

 QUERY PLAN FOR SUBQUERY 1 (at nesting level 1 and at line 4).

 Correlated Subquery.
 Subquery under an EXISTS predicate.

 STEP 1
 The type of query is SELECT.
 Evaluate Ungrouped ANY AGGREGATE.

 FROM TABLE
 publishers
 EXISTS TABLE : nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

END OF QUERY PLAN FOR SUBQUERY 1.

showplan messages for subqueries

134 Adaptive Server Enterprise

Performance and Tuning: Monitoring and Analyzing 135

C H A P T E R 6 Statistics Tables and Displaying
Statistics with optdiag

This chapter explains how statistics are stored and displayed.

For more information on managing statistics, see Chapter 3, “Using
Statistics to Improve Performance.”

System tables that store statistics
The systabstats and sysstatistics tables store statistics for all tables,
indexes, and any unindexed columns for which you have explicitly
created statistics. In general terms:

• systabstats stores information about the table or index as an object,
that is, the size, number of rows, and so forth.

It is updated by query processing, data definition language, and
update statistics commands.

• sysstatistics stores information about the values in a specific column.

It is updated by data definition language and update statistics
commands.

For more information, see “Effects of SQL commands on statistics” on
page 168.

Topic Page
System tables that store statistics 135

Viewing statistics with the optdiag utility 137

Changing statistics with optdiag 157

Using simulated statistics 162

Character data containing quotation marks 168

Effects of SQL commands on statistics 168

System tables that store statistics

136 Adaptive Server Enterprise

systabstats table
The systabstats table contains basic statistics for tables and indexes, for
example:

• Number of data pages for a table, or the number of leaf level pages for an
index

• Number of rows in the table

• Height of the index

• Average length of data rows and leaf rows

• Number of forwarded and deleted rows

• Number of empty pages

• Statistics to increase the accuracy of I/O cost estimates, including cluster
ratios, the number of pages that share an extent with an allocation page,
and the number of OAM and allocation pages used for the object

• Stopping points for the reorg command so that it can resume processing

systabstats stores one row for each table and nonclustered index in the
database. The storage for clustered index information depends on the locking
scheme for the table:

• If the table is a data-only-locked table, systabstats stores an additional row
for a clustered index.

• If the table is an allpages-locked table, the data pages are treated as the leaf
level of the index, so the systabstats entry for a clustered index is stored in
the same row as the table data.

The indid column for clustered indexes on allpages-locked tables is always
1.

See the Adaptive Server Reference Manual for more information.

sysstatistics table
The sysstatistics table stores one or more rows for each indexed column on a
user table. In addition, it can store statistics for unindexed columns.

CHAPTER 6 Statistics Tables and Displaying Statistics with optdiag

Performance and Tuning: Monitoring and Analyzing 137

The first row for each column stores basic statistics about the column, such as
the density for joins and search arguments, the selectivity for some operators,
and the number of steps stored in the histogram for the column. If the index has
multiple columns, or if you specify multiple columns when you generate
statistics for unindexed columns, there is a row for each prefix subset of
columns.

For more information on prefix subsets, see “Column statistics” on page 146.

Additional rows store histogram data for the leading column. Histograms do
not exist if indexes were created before any data was inserted into a table (run
update statistics after inserting data to generate the histogram).

See “Histogram displays” on page 151 for more information.

See the Adaptive Server Reference Manual for more information.

Viewing statistics with the optdiag utility
The optdiag utility displays statistics from the systabstats and sysstatistics
tables. optdiag can also be used to update sysstatistics information. Only a
System Administrator can run optdiag.

optdiag syntax
The syntax for optdiag is:

optdiag [binary] [simulate] statistics
 {-i input_file |
 database[.owner[.[table[.column]]]]
 [-o output_file]}
 [-U username] [-P password]
 [-I interfaces_file]
 [-S server]
 [-v] [-h] [-s] [-Tflag_value]
 [-z language] [-J client_charset]
 [-a display_charset]

You can use optdiag to display statistics for an entire database, for a single table
and its indexes and columns, or for a particular column.

To display statistics for all user tables in the pubtune database, placing the
output in the pubtune.opt file, use the following command:

Viewing statistics with the optdiag utility

138 Adaptive Server Enterprise

optdiag statistics pubtune -Usa -Ppasswd
-o pubtune.opt

This command displays statistics for the titles table and for any indexes on the
table:

optdiag statistics pubtune..titles -Usa -Ppasswd
 -o titles.opt

See Utility Programs Manual for your platform for more information on the
optdiag command. The following sections provide information about the output
from optdiag.

optdiag header information
After printing the version information for optdiag and Adaptive Server, optdiag
prints the server name and summarizes the arguments used to display the
statistics.

The header of the optdiag report lists the objects described in the report:

Server name: "test_server"

Specified database: "pubtune"
Specified table owner: not specified
Specified table: "titles"
Specified column: not specified

Table 6-1 describes the output.

Table 6-1: Table and column information

Table statistics
This optdiag section reports basic statistics for the table.

Row Label Information Provided

Server name The name of the server, as stored in the
@@servername variable. You must use
sp_addserver, and restart the server for the server
name to be available in the variable.

Specified database Database name given on the optdiag command line.

Specified table owner Table owner given on the optdiag command line.

Specified table Table name given on the optdiag command line.

Specified column Column name given on the optdiag command line.

CHAPTER 6 Statistics Tables and Displaying Statistics with optdiag

Performance and Tuning: Monitoring and Analyzing 139

Sample output for table statistics
Table owner: "dbo"

Statistics for table: "titles"

 Data page count: 662
 Empty data page count: 10
 Data row count: 4986.0000000000000000
 Forwarded row count: 18.0000000000000000
 Deleted row count: 87.0000000000000000
 Data page CR count: 86.0000000000000000
 OAM + allocation page count: 5
 First extent data pages: 3
 Data row size: 238.8634175691937287

 Derived statistics:
 Data page cluster ratio: 0.9896907216494846

Table 6-2: Table statistics

Row label Information provided

Table owner Name of the table owner. You can omit owner names on the
command line by specifying dbname..tablename. If multiple tables
have the same name, and different owners, optdiag prints
information for each table with that name.

Statistics for table Name of the table.

Data page count Number of data pages in the table.

Empty data page count Count of pages that have deleted rows only.

Data row count Number of data rows in the table.

Forwarded row count Number of forwarded rows in the table. This value is always 0 for an
allpages-locked table.

Deleted row count Number of rows that have been deleted from the table. These are
committed deletes where the space has not been reclaimed by one of
the functions that clears deleted rows.

This value is always 0 for an allpages-locked table.

Data page CR count A counter used to derive the data page cluster ratio.

See “Data page CR count” on page 140.

OAM + allocation page count Number of OAM pages for the table, plus the number of allocation
units in which the table occupies space. These statistics are used to
estimate the cost of OAM scans on data-only-locked tables.

The value is maintained only on data-only-locked tables.

Viewing statistics with the optdiag utility

140 Adaptive Server Enterprise

Data page CR count

The “Data Page CR count” is used to compute the data page cluster ratio, which
can help determine the effectiveness of large I/O for table scans and range
scans. This value is updated only when you run update statistics.

Table-level derived statistics

The “Derived statistics” in the table-level section reports the statistics derived
from the “Data Page CR count” and data page count. Table 6-3 describes the
output.

First extent data pages Number of pages that share the first extent in an allocation unit with
the allocation page. These pages need to be read using 2K I/O, rather
than large I/O.

This information is maintained only for data-only-locked tables.

Data row size Average length of a data row, in bytes. The size includes row
overhead.

This value is updated only by update statistics, create index, and alter
table...lock.

Index height Height of the index, not counting the leaf level. This row is included
in the table-level output only for clustered indexes on allpages-
locked tables. For all other indexes, the index height appears in the
index-level output.

This value does not apply to heap tables.

Row label Information provided

CHAPTER 6 Statistics Tables and Displaying Statistics with optdiag

Performance and Tuning: Monitoring and Analyzing 141

Table 6-3: Cluster ratio for a table

Data page cluster ratio

For allpages-locked tables, the data page cluster ratio measures how well the
pages are sequenced on extents, when the table is read in page-chain order. A
cluster ratio of 1.0 indicates perfect sequencing. A lower cluster ratio indicates
that the page chain is fragmented.

For data-only-locked tables, the data page cluster ratio measures how well the
pages are packed on the extents. A cluster ratio of 1.0 indicates complete
packing of extents. A low data page cluster ratio indicates that extents allocated
to the table contain empty pages.

For an example of how the data page cluster ratio is used, see “How cluster
ratios affect large I/O estimates” on page 69 in the Performance and Tuning:
Optimizer.

Space utilization

Space utilization uses the average row size and number of rows to compute the
expected minimum number of data pages, and compares it to the current
number of pages. If space utilization is low, running reorg rebuild on the table
or dropping and re-creating the clustered index can reduce the amount of empty
space on data pages, and the number of empty pages in extents allocated to the
table.

If you are using space management properties such as fillfactor or
reservepagegap, the empty space that is left for additional rows on data pages
of a table with a clustered index and the number of empty pages left in extents
for the table affects the space utilization value.

Row label Information provided

Data page cluster ratio The data page cluster ratio is used to estimate the
effectiveness of large I/O.

It is used to estimate the number of I/Os required
to read an allpages-locked table by following the
page chain, and to estimate the number of large
I/Os required to scan a data-only-locked table
using an OAM scan.

Space utilization The ratio of the minimum space usage for this
table, and the current space usage.

Large I/O efficiency Estimates the number of useful pages brought in
by each large I/O.

Viewing statistics with the optdiag utility

142 Adaptive Server Enterprise

If statistics have not been updated recently and the average row size has
changed or the number of rows and pages are inaccurate, space utilization may
report values greater than 1.0.

Large I/O efficiency

Large I/O efficiency estimates the number of useful pages brought in by each
large I/O. For examples, if the value is.5, a 16K I/O returns, on average, 4 2K
pages needed for the query, and 4 other pages, either empty pages or pages that
share the extent due to lack of clustering. Low values are an indication that re-
creating the clustered index or running reorg rebuild on the table could improve
I/O performance.

Index statistics
This optdiag section is printed for each nonclustered index and for a clustered
index on a data-only-locked table. Information for clustered indexes on
allpages-locked tables is reported as part of the table statistics. Table 6-4
describes the output.

Sample output for index statistics
Statistics for index: "title_id_ix" (nonclustered)
Index column list: "title_id"
 Leaf count: 45
 Empty leaf page count: 0
 Data page CR count: 4952.0000000000000000
 Index page CR count: 6.0000000000000000
 Data row CR count: 4989.0000000000000000
 First extent leaf pages: 0
 Leaf row size: 17.8905999999999992
 Index height: 1

 Derived statistics:
 Data page cluster ratio: 0.0075819672131148
 Index page cluster ratio: 1.0000000000000000
 Data row cluster ratio: 0.0026634382566586

CHAPTER 6 Statistics Tables and Displaying Statistics with optdiag

Performance and Tuning: Monitoring and Analyzing 143

Table 6-4: Index statistics

Index-level derived statistics

The derived statistics in the index-level section are based on the “CR count”
values shown in “Index statistics” on page 142.

Row label Information provided

Statistics for index Index name and type.

Index column list List of columns in the index.

Leaf count Number of leaf-level pages in the index.

Empty leaf page
count

Number of empty leaf pages in the index.

Data page CR count A counter used to compute the data page
cluster r.atio for accessing a table using the
index.

See “Index-level derived statistics” on page
143.

Index page CR count A counter used to compute the index page
cluster ratio.

See “Index-level derived statistics” on page
143.

Data row CR count A counter used to compute the data row cluster
ratio

See “Index-level derived statistics” on page
143.

First extent leaf pages The number of leaf pages in the index stored in
the first extent in an allocation unit. These
pages need to be read using 2K I/O, rather than
large I/O.

This information is maintained only for
indexes on data-only-locked tables.

Leaf row size Average size of a leaf-level row in the index.
This value is only updated by update statistics,
create index, and alter table...lock.

Index height Index height, not including the leaf level.

Viewing statistics with the optdiag utility

144 Adaptive Server Enterprise

Table 6-5: Cluster ratios for a nonclustered index

Data page cluster ratio

The data page cluster ratio is used to compute the effectiveness of large I/O
when this index is used to access the data pages. If the table is perfectly
clustered with respect to the index, the cluster ratio is 1.0. Data page cluster
ratios can vary widely. They are often high for some indexes, and very low for
others.

See “How cluster ratios affect large I/O estimates” on page 69 in the
Performance and Tuning: Optimizer for more information.

Index page cluster ratio

The index page cluster ratio is used to estimate the cost of large I/O for queries
that need to read a large number of leaf-level pages from nonclustered indexes
or clustered indexes on data-only-locked tables. Some examples of such
queries are covered index scans and range queries that read a large number of
rows.

Row label Information provided

Data page cluster ratio The fraction of row accesses that do not require an
additional extent I/O because of storage fragmentation,
while accessing rows in order by this index using large
I/O.

It is a measure of the sequencing of data pages on
extents.

Index page cluster
ratio

The fraction of index leaf page accesses via the page
chain that do not require extra extent I/O.

It is a measure of the sequencing of index pages on
extents.

Data row cluster ratio The fraction of data page accesses that do not require an
extra I/O when accessing data rows in order by this
index.

It is a measure of the sequencing of rows on data pages.

Space utilization The ratio of the minimum space usage for the leaf level
of this index, and the current space usage.

Large I/O efficiency Estimates the number of useful pages brought in by
each large I/O.

CHAPTER 6 Statistics Tables and Displaying Statistics with optdiag

Performance and Tuning: Monitoring and Analyzing 145

On newly created indexes, the “Index page cluster ratio” is 1.0, or very close
to 1.0, indicating optimal clustering of index leaf pages on extents. As index
pages are split and new pages are allocated from additional extents, the ratio
drops. A very low percentage could indicate that dropping and re-creating the
index or running reorg rebuild on the index would improve performance,
especially if many queries perform covered scans.

See “How cluster ratios affect large I/O estimates” on page 69 in the
Performance and Tuning: Optimizer for more information.

Data row cluster ratio

The data row cluster ratio is used to estimate the number of pages that need to
be read while using this index to access the data pages. This ratio may be very
high for some indexes, and quite low for others.

Space utilization for an index

Space utilization uses the average row size and number of rows to compute the
expected minimum size of leaf-level index pages and compares it to the current
number of leaf pages.

If space utilization is low, running reorg rebuild on index or dropping and re-
creating the index can reduce the amount of empty space on index pages, and
the number of empty pages in extents allocated to the index.

If you are using space management properties such as fillfactor or
reservepagegap, the empty space that is left for additional rows on leaf pages,
and the number of empty pages left in extents for the index affects space
utilization.

If statistics have not been updated recently and the average row size has
changed or the number of rows and pages are inaccurate, space utilization may
report values greater than 1.0.

Large I/O efficiency for an index

Large I/O efficiency estimates the number of useful pages brought in by each
large I/O. For examples, if the value is.5, a 16K I/O returns, on average, 4 2K
pages needed for the query, and 4 other pages, either empty pages or pages that
share the extent due to lack of clustering.

Viewing statistics with the optdiag utility

146 Adaptive Server Enterprise

Low values are an indication that re-creating indexes or running reorg rebuild
could improve I/O performance.

Column statistics
optdiag column-level statistics include:

• Statistics giving the density and selectivity of columns. If an index
includes more than one column, optdiag prints the information described
in Table 6-6 for each prefix subset of the index keys. If statistics are
created using update statistics with a column name list, density statistics
are stored for each prefix subset in the column list.

• A histogram, if the table contains one or more rows of data at the time the
index is created or update statistics is run. There is a histogram for the
leading column for:

• Each index that currently exists (if there was at least one non-null
value in the column when the index was created)

• Any indexes that have been created and dropped (as long as delete
statistics has not been run)

• Any column list on which update statistics has been run

There is also a histogram for:

• Every column in an index, if the update index statistics command was
used

• Every column in the table, if the update all statistics command was
used

optdiag also prints a list of the columns in the table for which there are no
statistics. For example, here is a list of the columns in the authors table that do
not have statistics:

No statistics for column(s): "address"
(default values used) "au_fname"
 "phone"
 "state"
 "zipcode"

CHAPTER 6 Statistics Tables and Displaying Statistics with optdiag

Performance and Tuning: Monitoring and Analyzing 147

Sample output for column statistics

The following sample shows the statistics for the city column in the authors
table:

Statistics for column: "city"
Last update of column statistics: Jul 20 1998 6:05:26:656PM

 Range cell density: 0.0007283200000000
 Total density: 0.0007283200000000
 Range selectivity: default used (0.33)
 In between selectivity: default used (0.25)

Viewing statistics with the optdiag utility

148 Adaptive Server Enterprise

Table 6-6: Column statistics

Range cell and total density values

Row label Information provided

Statistics for column Name of the column; if this block of information
provides information about a prefix subset in a
compound index or column list, the row label is
“Statistics for column group.”

Last update of column
statistics

Date the index was created, date that update
statistics was last run, or date that optdiag was last
used to change statistics.

Statistics originated from
upgrade of distribution page

Statistics resulted from an upgrade of a pre-11.9
distribution page. This message is not printed if
update statistics has been run on the table or
index or if the index has been dropped and re-
created after an upgrade.

If this message appears in optdiag output, running
update statistics is recommended.

Statistics loaded from
Optdiag

optdiag was used to change sysstatistics
information. create index commands print
warning messages indicating that edited statistics
are being overwritten.

This row is not displayed if the statistics were
generated by update statistics or create index.

Range cell density Density for equality search arguments on the
column.

See “Range cell and total density values” on
page 148.

Total density Join density for the column. This value is used to
estimate the number of rows that will be returned
for a join on this column.

See “Range cell and total density values” on
page 148.

Range selectivity Prints the default value of .33, unless the value
has been updated using optdiag input mode.

This is the value used for range queries if the
search argument is not known at optimize time.

In between selectivity Prints the default value of .25, unless the value
has been updated using optdiag input mode.

This is the value used for range queries if the
search argument is not known at optimize time.

CHAPTER 6 Statistics Tables and Displaying Statistics with optdiag

Performance and Tuning: Monitoring and Analyzing 149

Adaptive Server stores two values for the density of column values:

• The “Range cell density” measures the duplicate values only for range
cells.

If there are any frequency cells for the column, they are eliminated from
the computation for the range-cell density.

If there are only frequency cells for the column, and no range cells, the
range-cell density is 0.

See “Understanding histogram output” on page 152 for information on
range and frequency cells.

• The “Total density” measures the duplicate values for all columns, those
represented by both range cells and frequency cells.

Using two separate values improves the optimizer’s estimates of the number of
rows to be returned:

• If a search argument matches the value of a frequency cell, the fraction of
rows represented by the weight of the frequency cell will be returned.

• If a search argument falls within a range cell, the range-cell density and the
weight of the range cell are used to estimate the number of rows to be
returned.

For joins, the optimizer bases its estimates on the average number of rows to
be returned for each scan of the table, so the total density, which measures the
average number of duplicates for all values in the column, provides the best
estimate. The total density is also used for equality arguments when the value
of the search argument is not known when the query is optimized.

See “Range and in-between selectivity values” on page 150 for more
information.

For indexes on multiple columns, the range-cell density and total density are
stored for each prefix subset. In the sample output below for an index on titles
(pub_id, type, pubdate), the density values decrease with each additional
column considered.

Statistics for column: "pub_id"
Last update of column statistics: Feb 4 1998 12:58PM

 Range cell density: 0.0335391029690461
 Total density: 0.0335470400000000

Statistics for column group: "pub_id", "type"
Last update of column statistics: Feb 4 1998 12:58PM

Viewing statistics with the optdiag utility

150 Adaptive Server Enterprise

 Range cell density: 0.0039044009265108
 Total density: 0.0039048000000000

Statistics for column group: "pub_id", "type", "pubdate"
Last update of column statistics: Feb 4 1998 12:58PM

 Range cell density: 0.0002011791956201
 Total density: 0.0002011200000000

With 5000 rows in the table, the increasing precision of the optimizer’s
estimates of rows to be returned depends on the number of search arguments
used in the query:

• An equality search argument on only pub_id results in the estimate that
0.0335391029690461 * 5000 rows, or 168 rows, will be returned.

• Equality search arguments for all three columns result in the estimate that
0.0002011791956201 * 5000 rows, or only 1 row will be returned.

This increasing level of accuracy as more search arguments are evaluated can
greatly improve the optimization of many queries.

Range and in-between selectivity values

optdiag prints the default values for range and in-between selectivity, or the
values that have been set for these selectivities in an earlier optdiag session.
These values are used for range queries when search arguments are not known
when the query is optimized.

For equality search arguments whose value is not known, the total density is
used as the default.

Search arguments cannot be known at optimization time for:

• Stored procedures that set variables within a procedure

• Queries in batches that set variables for search arguments within a batch

Table 2-2 on page 21 in the Performance and Tuning: Optimizer shows the
default values that are used. These approximations can result in suboptimal
query plans because they either overestimate or underestimate the number of
rows to be returned by a query.

See “Updating selectivities with optdiag input mode” on page 159 for
information on using optdiag to supply selectivity values.

CHAPTER 6 Statistics Tables and Displaying Statistics with optdiag

Performance and Tuning: Monitoring and Analyzing 151

Histogram displays
Histograms store information about the distribution of values in a column.
Table 6-7 shows the commands that create and update histograms and which
columns are affected.

Table 6-7: Commands that create histograms

Sample output for histograms
Histogram for column: "city"
Column datatype: varchar(20)
Requested step count: 20
Actual step count: 20

optdiag first prints summary data about the histogram, as shown in Table 6-8.

Table 6-8: Histogram summary statistics

Histogram output is printed in columns, as described in Table 6-9.

Command Histogram for

create index Leading column only

update statistics

table_name or index_name Leading column only

column_list Leading column only

update index statistics All indexed columns

update all statistics All columns

Row label Information provided

Histogram for column Name of the column.

Column datatype Datatype of the column, including the length,
precision and scale, if appropriate for the datatype.

Requested step count Number of steps requested for the column.

Actual step count Number of steps generated for the column.

This number can be less than the requested number
of steps if the number of distinct values in the
column is smaller than the requested number of
steps.

Viewing statistics with the optdiag utility

152 Adaptive Server Enterprise

Table 6-9: Columns in optdiag histogram output

No heading is printed for the Operator column.

Understanding histogram output

A histogram is a set of cells in which each cell has a weight. Each cell has an
upper bound and a lower bound, which are distinct values from the column.
The weight of the cell is a floating-point value between 0 and 1, representing
either:

• The fraction of rows in the table within the range of values, if the operator
is <=, or

• The number of values that match the step, if the operator is =.

The optimizer uses the combination of ranges, weights, and density values to
estimate the number of rows in the table that are to be returned for a query
clause on the column.

Adaptive Server uses equi-height histograms, where the number of rows
represented by each cell is approximately equal. For example, the following
histogram on the city column on pubtune..authors has 20 steps; each step in the
histogram represents about 5 percent of the table:

Step Weight Value

 1 0.00000000 <= "APO
Miamh\377\377\377\377\377\377\377"
 2 0.05460000 <= "Atlanta"
 3 0.05280000 <= "Boston"
 4 0.05400000 <= "Charlotte"
 5 0.05260000 <= "Crown"
 6 0.05260000 <= "Eddy"
 7 0.05260000 <= "Fort Dodge"
 8 0.05260000 <= "Groveton"

Column Information provided

Step Number of the step.

Weight Weight of the step.

(Operator) <, <=, or =, indicating the limit of the value.
Operators differ, depending on whether the cell
represents a range cell or a frequency call.

Value Upper boundary of the values represented by a
range cell or the value represented by a frequency
count.

CHAPTER 6 Statistics Tables and Displaying Statistics with optdiag

Performance and Tuning: Monitoring and Analyzing 153

 9 0.05340000 <= "Hyattsville"
 10 0.05260000 <= "Kunkle"
 11 0.05260000 <= "Luthersburg"
 12 0.05340000 <= "Milwaukee"
 13 0.05260000 <= "Newbern"
 14 0.05260000 <= "Park Hill"
 15 0.05260000 <= "Quicksburg"
 16 0.05260000 <= "Saint David"
 17 0.05260000 <= "Solana Beach"
 18 0.05260000 <= "Thornwood"
 19 0.05260000 <= "Washington"
 20 0.04800000 <= "Zumbrota"

The first step in a histogram represents the proportion of null values in the
table. Since there are no null values for city, the weight is 0. The value for the
step that represents null values is represented by the highest value that is less
than the minimum column value.

For character strings, the value for the first cell is the highest possible string
value less than the minimum column value (“APO Miami” in this example),
padded to the defined column length with the highest character in the character
set used by the server. What you actually see in your output depends on the
character set, type of terminal, and software that you are using to view optdiag
output files.

In the preceding histogram, the value represented by each cell includes the
upper bound, but excludes the lower bound. The cells in this histogram are
called range cells, because each cell represents a range of values.

The range of values included in a range cell can be represented as follows:

lower_bound < (values for cell) <= upper bound

In optdiag output, the lower bound is the value of the previous step, and the
upper bound is the value of the current step.

For example, in the histogram above, step 4 includes Charlotte (the upper
bound), but excludes Boston (the lower bound). The weight for this step
is.0540, indicating that 5.4 percent of the table matches the query clause:

where city > Boston and city <= "Charlotte"

The operator column in the optdiag histogram output shows the <= operator.
Different operators are used for histograms with highly duplicated values.

Viewing statistics with the optdiag utility

154 Adaptive Server Enterprise

Histograms for columns with highly duplicated values

Histograms for columns with highly duplicated values look very different from
histograms for columns with a large number of discrete values. In histograms
for columns with highly duplicated values, a single cell, called a frequency
cell, represents the duplicated value.

The weight of the frequency cell shows the percentage of columns that have
matching values.

Histogram output for frequency cells varies, depending on whether the column
values represent one of the following:

• A dense frequency count, where values in the column are contiguous in the
domain. For example, 1, 2, 3 are contiguous integer values

• A sparse frequency count, where the domain of possible values contains
values not represented by the discrete set of values in the table

• A mix of dense and sparse frequency counts.

Histogram output for some columns includes a mix of frequency cells and
range cells.

Histograms for dense frequency counts

The following output shows the histogram for a column that has 6 distinct
integer values, 1–6, and some null values:

Step Weight Value

 1 0.13043478 < 1
 2 0.04347826 = 1
 3 0.17391305 <= 2
 4 0.30434781 <= 3
 5 0.13043478 <= 4
 6 0.17391305 <= 5
 7 0.04347826 <= 6

The histogram above shows a dense frequency count, because all the values
for the column are contiguous integers.

The first cell represents null values. Since there are null values, the weight for
this cell represents the percentage of null values in the column.

The “Value” column for the first step displays the minimum column value in
the table and the < operator.

CHAPTER 6 Statistics Tables and Displaying Statistics with optdiag

Performance and Tuning: Monitoring and Analyzing 155

Histograms for sparse frequency counts

In a histogram representing a column with a sparse frequency count, the highly
duplicated values are represented by a step showing the discrete values with the
= operator and the weight for the cell.

Preceding each step, there is a step with a weight of 0.0, the same value, and
the < operator, indicating that there are no rows in the table with intervening
values. For columns with null values, the first step will have a nonzero weight
if there are null values in the table.

The following histogram represents the type column of the titles table. Since
there are only 9 distinct types, they are represented by 18 steps.

Step Weight Value

 1 0.00000000 < "UNDECIDED "
 2 0.11500000 = "UNDECIDED "
 3 0.00000000 < "adventure "
 4 0.11000000 = "adventure "
 5 0.00000000 < "business "
 6 0.11040000 = "business "
 7 0.00000000 < "computer "
 8 0.11640000 = "computer "
 9 0.00000000 < "cooking "
 10 0.11080000 = "cooking "
 11 0.00000000 < "news "
 12 0.10660000 = "news "
 13 0.00000000 < "psychology "
 14 0.11180000 = "psychology "
 15 0.00000000 < "romance "
 16 0.10800000 = "romance "
 17 0.00000000 < "travel "
 18 0.11100000 = "travel "

For example, 10.66% of the values in the type column are “news,” so for a table
with 5000 rows, the optimizer estimates that 533 rows will be returned.

Histograms for columns with sparse and dense values

For tables with some values that are highly duplicated, and others that have
distributed values, the histogram output shows a combination of operators and
a mix of frequency cells and range cells.

The column represented in the histogram below has a value of 30.0 for a large
percentage of rows, a value of 50.0 for a large percentage of rows, and a value
100.0 for another large percentage of rows.

Viewing statistics with the optdiag utility

156 Adaptive Server Enterprise

There are two steps in the histogram for each of these values: one step
representing the highly duplicated value has the = operator and a weight
showing the percentage of columns that match the value. The other step for
each highly duplicated value has the < operator and a weight of 0.0. The
datatype for this column is numeric(5,1).

Step Weight Value

 1 0.00000000 <= 0.9
 2 0.04456094 <= 20.0
 3 0.00000000 < 30.0
 4 0.29488859 = 30.0
 5 0.05996068 <= 37.0
 6 0.04292267 <= 49.0
 7 0.00000000 < 50.0
 8 0.19659241 = 50.0
 9 0.06028834 <= 75.0
 10 0.05570118 <= 95.0
 11 0.01572739 <= 99.0
 12 0.00000000 < 100.0
 13 0.22935779 = 100.0

Since the lowest value in the column is 1.0, the step for the null values is
represented by 0.9.

Choosing the number of steps for highly duplicated values

The histogram examples for frequency cells in this section use a relatively
small number of highly duplicated values, so the resulting histograms require
less than 20 steps, which is the default number of steps for create index or
update statistics.

If your table contains a large number of highly duplicated values for a column,
and the distribution of keys in the column is not uniform, increasing the
number of steps in the histogram can allow the optimizer to produce more
accurate cost estimates for queries with search arguments on the column.

For columns with dense frequency counts, the number of steps should be at
least one greater than the number of values, to allow a step for the cell
representing null values.

CHAPTER 6 Statistics Tables and Displaying Statistics with optdiag

Performance and Tuning: Monitoring and Analyzing 157

For columns with sparse frequency counts, use at least twice as many steps as
there are distinct values. This allows for the intervening cells with zero
weights, plus the cell to represent the null value. For example, if the titles table
in the pubtune database has 30 distinct prices, this update statistics command
creates a histogram with 60 steps:

update statistics titles
using 60 values

This create index command specifies 60 steps:

create index price_ix on titles(price)
with statistics using 60 values

If a column contains some values that match very few rows, these may still be
represented as range cells, and the resulting number of histogram steps will be
smaller than the requested number. For example, requesting 100 steps for a
state column may generate some range cells for those states represented by a
small percentage of the number of rows.

Changing statistics with optdiag
A System Administrator can use optdiag to change column-level statistics.

 Warning! Using optdiag to alter statistics can improve the performance of
some queries. Remember, however, that optdiag overwrites existing
information in the system tables, which can affect all queries for a given table.

Use extreme caution and test all changes thoroughly on all queries that use the
table. If possible, test the changes using optdiag simulate on a development
server before loading the statistics into a production server.

If you load statistics without simulate mode, be prepared to restore the
statistics, if necessary, either by using an untouched copy of optdiag output or
by rerunning update statistics.

Do not attempt to change any statistics by running an update, delete, or insert
command.

optdiag output from a 32-bit Adaptive Server can be used to change statistics
in another 32-bit Adaptive Server, but not a 64-bit Adaptive Server. Similarly,
optdiag output from a 64-bit Adaptive Server should not be used as input to a
32-bit Adaptive Server.

Changing statistics with optdiag

158 Adaptive Server Enterprise

After you change statistics using optdiag, running create index or update
statistics overwrites the changes. The commands succeed, but print a warning
message. This message indicates that altered statistics for the titles.type column
have been overwritten:

WARNING: Edited statistics are overwritten. Table: ’titles’
(objectid 208003772), column: ’type’.

Using the optdiag binary mode
Because precision can be lost with floating point numbers, optdiag provides a
binary mode. The following command displays both human-readable and
binary statistics:

optdiag binary statistics pubtune..titles.price
 -Usa -Ppasswd -o price.opt

In binary mode, any statistics that can be edited with optdiag are printed twice,
once with binary values, and once with floating-point values. The lines
displaying the float values start with the optdiag comment character, the pound
sign (#).

This sample shows the first few rows of the histogram for the city column in the
authors table:

Step Weight Value

 1 0x3d2810ce <= 0x41504f204d69616d68ffffffffffffffffffffff
1 0.04103165 <= "APO Miamh\377\377\377\377\377\377\377\377"
 2 0x3d5748ba <= 0x41746c616e7461
2 0.05255959 <= "Atlanta"
 3 0x3d5748ba <= 0x426f79657273
3 0.05255959 <= "Boyers"
 4 0x3d58e27d <= 0x4368617474616e6f6f6761
4 0.05295037 <= "Chattanooga"

When optdiag loads this file, all uncommented lines are read, while all
characters following the pound sign are ignored. To edit the float values instead
of the binary values, remove the pound sign from the lines displaying the float
values, and insert the pound sign at the beginning of the corresponding line
displaying the binary value.

CHAPTER 6 Statistics Tables and Displaying Statistics with optdiag

Performance and Tuning: Monitoring and Analyzing 159

When you must use binary mode

Two histogram steps in optdiag output can show the same value due to loss of
precision, even though the binary values differ. For example, both
1.999999999 and 2.000000000 may be displayed as 2.000000000 in decimal,
even though the binary values are 0x3fffffffffbb47d0 and
0x4000000000000000. In these cases, you should use binary mode for input.

If you do not use binary mode, optdiag issues an error message indicating that
the step values are not increasing and telling you to use binary mode. optdiag
skips loading the histogram in which the error occurred, to avoid losing
precision in sysstatistics.

Updating selectivities with optdiag input mode
You can use optdiag to customize the server-wide default values for
selectivities to match the data for specific columns in your application. The
optimizer uses range and in-between selectivity values when the value of a
search argument is not known when a query is optimized.

The server-wide defaults are:

• Range selectivity – 0.33

• In-between selectivity – 0.25

You can use optdiag to provide values to be used to optimize queries on a
specific column. The following example shows how optdiag displays default
values:

Statistics for column: "city"
Last update of column statistics: Feb 4 1998 8:42PM

 Range cell density: 0x3f634d23b702f715
Range cell density: 0.0023561189228464
 Total density: 0x3f46fae98583763d
Total density: 0.0007012977830773
 Range selectivity: default used (0.33)
Range selectivity: default used (0.33)
 In between selectivity: default used (0.25)
In between selectivity: default used (0.25)

To edit these values, replace the entire “default used (0.33)” or “default used
(0.25)” string with a float value. The following example changes the range
selectivity to .25 and the in-between selectivity to .05, using decimal values:

Changing statistics with optdiag

160 Adaptive Server Enterprise

 Range selectivity: 0.250000000
 In between selectivity: 0.050000000

Editing histograms
You can edit histograms to:

• Remove a step, by transferring its weight to an adjacent line and deleting
the step

• Add a step or steps, by spreading the weight of a cell to additional lines,
with the upper bound for column values the step is to represent

Adding frequency count cells to a histogram

One common reason for editing histograms is to add frequency count cells
without greatly increasing the number of steps. The changes you will need to
make to histograms vary, depending on whether the values represent a dense or
sparse frequency count.

Editing a histogram with a dense frequency count

To add a frequency cell for a given column value, check the column value just
less than the value for the new cell. If the next-lesser value is as close as
possible to the value to be added, then the frequency count determined simply.

If the next lesser column value to the step to be changed is as close as possible
to the frequency count value, then the frequency count cell can be extracted
simply.

For example, if a column contains at least one 19 and many 20s, and the
histogram uses a single cell to represent all the values greater than 17 and less
than or equal to 22, optdiag output shows the following information for the cell:

Step Weight Value
...
4 0.100000000 <= 17
5 0.400000000 <= 22
...

Altering this histogram to place the value 20 on its own step requires adding
two steps, as shown here:

...
4 0.100000000 <= 17

CHAPTER 6 Statistics Tables and Displaying Statistics with optdiag

Performance and Tuning: Monitoring and Analyzing 161

5 0.050000000 <= 19
6 0.300000000 <= 20
7 0.050000000 <= 22
...

In the altered histogram above, step 5 represents all values greater than 17 and
less than or equal to 19. The sum of the weights of steps 5, 6, and 7 in the
modified histogram equals the original weight value for step 5.

Editing a histogram with a sparse frequency count

If the column has no values greater than 17 and less than 20, the representation
for a sparse frequency count must be used instead. Here are the original
histogram steps:

Step Weight Value
...
4 0.100000000 <= 17
5 0.400000000 <= 22
...

The following example shows the zero-weight step, step 5, required for a
sparse frequency count:

...
4 0.100000000 <= 17
5 0.000000000 < 20
6 0.350000000 = 20
7 0.050000000 <= 22
...

The operator for step 5 must be <. Step 6 must specify the weight for the value
20, and its operator must be =.

Skipping the load-time verification for step numbering

By default, optdiag input mode checks that the numbering of steps in a
histogram increases by 1. To skip this check after editing histogram steps, use
the command line flag -T4:

optdiag statistics pubtune..titles -Usa -Ppassword
 -T4 -i titles.opt

Rules checked during histogram loading

During histogram input, the following rules are checked, and error messages
are printed if the rules are violated:

Using simulated statistics

162 Adaptive Server Enterprise

• The step numbers must increase monotonically, unless the -T4 command
line flag is used.

• The column values for the steps must increase monotonically.

• The weight for each cell must be between 0.0 and 1.0.

• The total of weights for a column must be close to 1.0.

• The first cell represents null values and it must be present, even for
columns that do not allow null values. There must be only one cell
representing the null value.

• Two adjacent cells cannot both use the < operator.

Re-creating indexes without losing statistics updates

If you need to drop and re-create an index after you have updated a histogram,
and you want to keep the edited values, specify 0 for the number of steps in the
create index command. This command re-creates the index without changing
the histogram:

create index title_id_ix on titles(title_id)
with statistics using 0 values

Using simulated statistics
optdiag can generate statistics that can be used to simulate a user environment
without requiring a copy of the table data. This permits analysis of query
optimization using a very small database. For example, simulated statistics can
be used:

• For Technical Support replication of optimizer problems

• To perform “what if” analysis to plan configuration changes

In most cases, you will use simulated statistics to provide information to
Technical Support or to perform diagnostics on a development server.

See “Requirements for loading and using simulated statistics” on page 165 for
information on setting up a separate database for using simulated statistics.

CHAPTER 6 Statistics Tables and Displaying Statistics with optdiag

Performance and Tuning: Monitoring and Analyzing 163

You can also load simulated statistics into the database from which they were
copied. Simulated statistics are loaded into the system tables with IDs that
distinguish them from the actual table data. The set statistics simulate on
command instructs the server to optimize queries using the simulated statistics,
rather than the actual statistics.

optdiag syntax for simulated statistics
This command displays simulate-mode statistics for the pubtune database:

optdiag simulate statistics pubtune -o pubtune.sim

If you want binary simulated output, use:

optdiag binary simulate statistics pubtune -
o pubtune.sim

To load these statistics, use:

optdiag simulate statistics -i pubtune.sim

Simulated statistics output
Output for the simulate option to optdiag prints a row labeled “simulated” for
each row of statistics, except histograms. You can modify and load the
simulated values, while retaining the file as a record of the actual values.

• If binary mode is specified, there are three rows of output:

• A binary “simulated” row

• A decimal “simulated” row, commented out

• A decimal “actual” row, commented out

• If binary mode is not specified, there are two rows:

• A “simulated” row

• An “actual” row, commented out

Here is a sample of the table-level statistics for the titles table in the pubtune
database:

Table owner: "dbo"
Table name: "titles"

Using simulated statistics

164 Adaptive Server Enterprise

Statistics for table: "titles"

 Data page count: 731.0000000000000000 (simulated)
Data page count: 731.0000000000000000 (actual)
 Empty data page count: 1.0000000000000000 (simulated)
Empty data page count: 1.0000000000000000 (actual)
 Data row count: 5000.0000000000000000 (simulated)
Data row count: 5000.0000000000000000 (actual)
 Forwarded row count: 0.0000000000000000 (simulated)
Forwarded row count: 0.0000000000000000 (actual)
 Deleted row count: 0.0000000000000000 (simulated)
Deleted row count: 0.0000000000000000 (actual)
 Data page CR count: 0.0000000000000000 (simulated)
Data page CR count: 0.0000000000000000 (actual)
 OAM + allocation page count: 6.0000000000000000 (simulated)
OAM + allocation page count: 6.0000000000000000 (actual)
 First extent data pages: 0.0000000000000000 (simulated)
First extent data pages: 0.0000000000000000 (actual)
 Data row size: 190.0000000000000000 (simulated)
Data row size: 190.0000000000000000 (actual)

In addition to table and index statistics, the simulate option to optdiag copies
out:

• Partitioning information for partitioned tables. If a table is partitioned,
these two lines appear at the end of the table statistics:

 Pages in largest partition: 390.0000000000000000 (simulated)
Pages in largest partition: 390.0000000000000000 (actual)

• Settings for the parallel processing configuration parameters:

Configuration Parameters:
 Number of worker processes: 20 (simulated)
Number of worker processes: 20 (actual)
 Max parallel degree: 10 (simulated)
Max parallel degree: 10 (actual)
 Max scan parallel degree: 3 (simulated)
Max scan parallel degree: 3 (actual)

• Cache configuration information for the default data cache and the caches
used by the specified database or the specified table and its indexes. If
tempdb is bound to a cache, that cache’s configuration is also included.
Here is sample output for the cache used by the pubtune database:

Configuration for cache: "pubtune_cache"

CHAPTER 6 Statistics Tables and Displaying Statistics with optdiag

Performance and Tuning: Monitoring and Analyzing 165

 Size of 2K pool in Kb: 15360 (simulated)
Size of 2K pool in Kb: 15360 (actual)
 Size of 4K pool in Kb: 0 (simulated)
Size of 4K pool in Kb: 0 (actual)
 Size of 8K pool in Kb: 0 (simulated)
Size of 8K pool in Kb: 0 (actual)
 Size of 16K pool in Kb: 0 (simulated)
Size of 16K pool in Kb: 0 (actual)

If you want to test how queries use a 16K pool, you could alter the simulated
statistics values above to read:

Configuration for cache: "pubtune_cache"

 Size of 2K pool in Kb: 10240 (simulated)
Size of 2K pool in Kb: 15360 (actual)
 Size of 4K pool in Kb: 0 (simulated)
Size of 4K pool in Kb: 0 (actual)
 Size of 8K pool in Kb: 0 (simulated)
Size of 8K pool in Kb: 0 (actual)
 Size of 16K pool in Kb: 5120 (simulated)
Size of 16K pool in Kb: 0 (actual)

Requirements for loading and using simulated statistics
To use simulated statistics, you must issue the set statistics simulate on
command before running the query.

For more information, see “Running queries with simulated statistics” on page
167.

To accurately simulate queries:

• Use the same locking scheme and partitioning for tables

• Re-create any triggers that exist on the tables and use the same referential
integrity constraints

• Set any non default cache strategies and any non default concurrency
optimization values

• Bind databases and objects to the caches used in the environment you are
simulating

Using simulated statistics

166 Adaptive Server Enterprise

• Include any set options that affect query optimization (such as set
parallel_degree) in the batch you are testing

• Create any view used in the query

• Use cursors, if they are used for the query

• Use a stored procedure, if you are simulating a procedure execution

Simulated statistics can be loaded into the original database, or into a database
created solely for performing “what-if” analysis on queries.

Using simulated statistics in the original database

When the statistics are loaded into the original database, they are placed in
separate rows in the system tables, and do not overwrite existing non-simulated
statistics. The simulated statistics are only used for sessions where the set
statistics simulate command is in effect.

While simulated statistics are not used to optimize queries for other sessions,
executing any queries by using simulated statistics may result in query plans
that are not optimal for the actual tables and indexes, and executing these
queries may adversely affect other queries on the system.

Using simulated statistics in another database

When statistics are loaded into a database created solely for performing “what-
if” analysis on queries, the following steps must be performed first:

• The database named in the input file must exist; it can be as small as 2MB.
Since the database name occurs only once in the input file, you can change
the database name, for example, from production to test_db.

• All tables and indexes included in the input file must exist, but the tables
do not need to contain data.

• All caches named in the input file must exist. They can be the smallest
possible cache size, 512K, with only a 2K pool. The simulated statistics
provide the information for pool configuration.

CHAPTER 6 Statistics Tables and Displaying Statistics with optdiag

Performance and Tuning: Monitoring and Analyzing 167

Dropping simulated statistics
Loading simulated statistics adds rows describing cache configuration to the
sysstatistics table in the master database. To remove these statistics, use delete
shared statistics. The command has no effect on the statistics in the database
where the simulated statistics were loaded.

If you have loaded simulated statistics into a database that contains real table
and index statistics, you can drop simulated statistics in one of these ways:

• Use delete statistics on the table which deletes all statistics, and run update
statistics to re-create only the non simulated statistics.

• Use optdiag (without simulate mode) to copy statistics out; then run delete
statistics on the table, and use optdiag (without simulate mode) to copy
statistics in.

Running queries with simulated statistics
set statistics simulate on tells the optimizer to optimize queries using simulated
statistics:

set statistics simulate on

In most cases, you also want to use set showplan on or dbcc traceon(302).

If you have loaded simulated statistics into a production database, use set
noexec on when you run queries using simulated statistics so that the query
does not execute based on statistics that do not match the actual tables and
indexes. This lets you examine the output of showplan and dbcc traceon(302)
without affecting the performance of the production system.

showplan messages for simulated statistics

When set statistics simulate is enabled and there are simulated statistics
available, showplan prints the following message:

Optimized using simulated statistics.

If the server on which the simulation tests are performed has the parallel query
options set to smaller values than the simulated values, showplan output first
displays the plan using the simulated statistics, and then an adjusted query plan.
If set noexec is turned on, the adjusted plan is not displayed.

Character data containing quotation marks

168 Adaptive Server Enterprise

Character data containing quotation marks
In histograms for character and datetime columns, all column data is contained
in double quotes. If the column itself contains the double-quote character,
optdiag displays two quotation marks. If the column value is:

a quote "mark"

optdiag displays:

 "a quote" "mark"

The only other special character in optdiag output is the pound sign (#). In input
mode, all characters on the line following a pound sign are ignored, except
when the pound sign occurs within quotation marks as part of a column name
or column value.

Effects of SQL commands on statistics
The information stored in systabstats and sysstatistics is affected by data
definition language (DDL). Some data modification language also affects
systabstats. Table 6-10 summarizes how DDL affects the systabstats and
sysstatistics tables.

Table 6-10: Effects of DDL on systabstats and sysstatistics

Command Effect on systabstats Effect on sysstatistics

alter table...lock Changes values to reflect the changes to table
and index structure and size.

When changing from allpages locking to
data-only locking, the indid for clustered
indexes is set to 0 for the table, and a new row
is inserted for the index.

Same as create index, if changing
from allpages to data-only locking
or vice versa; no effect on changing
between data-only locking
schemes.

alter table to add, drop or
modify a column definition

If the change affects the length of the row so
that copying the table is required,

create table Adds a row for the table. If a constraint
creates an index, see the create index
commands below.

No effect, unless a constraint
creates an index. See the create
index commands below.

create clustered index For allpages-locked tables, changes indid to 1
and updates columns that are pertinent to the
index; for data-only-locked tables, adds a
new row.

Adds rows for columns not already
included; updates rows for columns
already included.

CHAPTER 6 Statistics Tables and Displaying Statistics with optdiag

Performance and Tuning: Monitoring and Analyzing 169

create nonclustered index Adds a row for the nonclustered index. Adds rows for columns not already
included; updates rows for columns
already included.

delete statistics No effect. Deletes all rows for a table or just
the rows for a specified column.

drop index Removes rows for nonclustered indexes and
for clustered indexes on data-only-locked
tables. For clustered indexes on allpages-
locked tables, sets the indid to 0 and updates
column values.

Does not delete actual statistics for
the indexed columns. This allows
the optimizer to continue to use this
information.

Deletes simulated statistics for
nonclustered indexes. For clustered
indexes on allpages-locked tables,
changes the value for the index ID
in the row that contains simulated
table data.

drop table Removes all rows for the table. Removes all rows for the table.

reorg Updates restart points, if used with a time
limit; updates number of pages and cluster
ratios if page counts change; affects other
values such as empty pages, forwarded or
deleted row counts, depending on the option
used.

The rebuild option recreates
indexes.

truncate table Resets values to reflect an empty table. Some
values, like row length, are retained.

No effect; this allows reloading a
truncated table without rerunning
update statistics.

update statistics

table_name Updates values for the table and for all
indexes on the specified table.

Updates histograms for the leading
column of each index on the table;
updates the densities for all indexes
and prefix subsets of indexes.

index_name Updates values for the specified index. Updates the histogram for the
leading column of the specified
index; updates the densities for the
prefix subsets of the index.

column_name(s) No effect. Updates or creates a histogram for a
column and updates or creates
densities for the prefix subsets of
the specified columns.

update index statistics

Command Effect on systabstats Effect on sysstatistics

Effects of SQL commands on statistics

170 Adaptive Server Enterprise

How query processing affects systabstats
Data modification can affect many of the values in the systabstats table. To
improve performance, these values are changed in memory and flushed to
systabstats periodically by the housekeeper chores task.

If you need to query systabstats directly, you can flush the in-memory statistics
to systabstats with sp_flushstats. This command flushes the statistics for the
titles table and any indexes on the table:

sp_flushstats titles

If you do not provide a table name, sp_flushstats flushes statistics for all tables
in the current database.

Note Some statistics, particularly cluster ratios, may be slightly inaccurate
because not all page allocations and deallocations are recorded during changes
made by data modification queries. Run update statistics or create index to
correct any inconsistencies.

table_name Updates values for the table and for all
columns in all indexes on the specified table.

Updates histograms for all columns
of each index on the table; updates
the densities for all indexes and
prefix subsets of indexes.

index_name Updates values for the specified index Updates the histogram for all
column of the specified index;
updates the densities for the prefix
subsets of the index.

update all statistics

table_name Updates values for the table and for all
columns in the specified table.

Updates histograms for all columns
on the table; updates the densities
for all indexes and prefix subsets of
indexes.

Command Effect on systabstats Effect on sysstatistics

Performance and Tuning: Monitoring and Analyzing 171

C H A P T E R 7 Tuning with dbcc traceon

This chapter describes the output of the dbcc traceon(302, 310) diagnostic
tools. These tools can be used for debugging problems with query
optimization.

Tuning with dbcc traceon(302)
showplan tells you the final decisions that the optimizer makes about your
queries. dbcc traceon(302) can often help you understand why the
optimizer makes choices that seem incorrect. It can help you debug
queries and decide whether to use certain options, like specifying an index
or a join order for a particular query. It can also help you choose better
indexes for your tables.

When you turn on dbcc traceon(302), you eavesdrop on the optimizer as it
examines query clauses and applies statistics for tables, search arguments,
and join columns.

The output from this trace facility is more detailed than showplan and
statistics io output, but it provides information about why the optimizer
made certain query plan decisions.

The query cost statistics printed by dbcc traceon(302) can help to explain,
for example, why a table scan is chosen rather than an indexed access, why
index1 is chosen rather than index2, and so on.

Topic Page
Tuning with dbcc traceon(302) 171

Table information block 175

Base cost block 177

Clause block 177

Column block 180

Index selection block 185

Best access block 187

dbcc traceon(310) and final query plan costs 189

Tuning with dbcc traceon(302)

172 Adaptive Server Enterprise

dbcc traceon(310)
dbcc traceon(310) output can be extremely lengthy and is hard to
understand without a thorough understanding of the optimizer. You often
need to have your showplan output available as well to understand the join
order, join type, and the join columns and indexes used.

The most relevant parts of dbcc traceon(310) output, however, are the per-
table total I/O estimates.

Invoking the dbcc trace facility
To start the dbcc traceon(302) trace facility, execute the following
command from an isql batch, followed by the query or stored procedure
that you want to examine:

dbcc traceon(3604, 302)

This is what the trace flags mean:

To turn off the output, use:

dbcc traceoff(3604, 302)

dbcc traceon(302) is often used in conjunction with dbcc traceon(310),
which provides more detail on the optimizer’s join order decisions and
final cost estimates. dbcc traceon(310) also prints a “Final plan” block at
the end of query optimization. To enable this trace option also, use:

dbcc traceon(3604, 302, 310)

To turn off the output, use:

dbcc traceoff(3604, 302, 310)

See “dbcc traceon(310) and final query plan costs” on page 189 for
information on dbcc traceon(310).

Trace flag Explanation

3604 Directs trace output to the client, rather than to the error log.

302 Prints trace information on index selection.

CHAPTER 7 Tuning with dbcc traceon

Performance and Tuning: Monitoring and Analyzing 173

General tips for tuning with dbcc traceon(302)
To get helpful output from dbcc traceon(302), be sure that your tests cause
the optimizer to make the same decisions that it would make while
optimizing queries in your application.

• You must supply the same parameters and values to your stored
procedures or where clauses.

• If the application uses cursors, use cursors in your tuning work

• If you are using stored procedures, make sure that they are actually
being optimized during the trial by executing them with recompile.

Checking for join columns and search arguments
In most cases, Adaptive Server uses only one index per table in a query.
This means that the optimizer must often choose between indexes when
there are multiple where clauses supporting both search arguments and
join clauses. The optimizer first matches the search arguments to available
indexes and statistics and estimates the number of rows and pages that
qualify for each available index.

The most important item that you can verify using dbcc traceon(302) is that
the optimizer is evaluating all possible where clauses included in the
query.

If a SARG clause is not included in the output, then the optimizer has
determined it is not a valid search argument. If you believe your query
should benefit from the optimizer evaluating this clause, find out why the
clause was excluded, and correct it if possible.

Once all of the search arguments have been examined, each join
combination is analyzed. If the optimizer is not choosing a join order that
you expect, one of the first checks you should perform is to look for the
sections of dbcc traceon(302) output that show join order costing: there
should be two blocks of output for each join.

If there is only one output for a given join, it means that the optimizer
cannot consider using an index for the missing join order.

The most common reasons for clauses that cannot be optimized include:

• Use of functions, arithmetic, or concatenation on the column in a
SARG, or on one of the join columns

Tuning with dbcc traceon(302)

174 Adaptive Server Enterprise

• Datatype mismatches between SARGs and columns or between two
columns in a join

• Numerics compared against constants that are larger than the
definition of the column in a SARG, or joins between columns of
different precision and scale

See “Search arguments and useful indexes” on page 15 in Performance
and Tuning: Optimizer for more information on requirements for search
arguments.

Determining how the optimizer estimates I/O costs
Identifying how the optimizer estimates I/O often leads to the root of the
problems and to solutions. You can to see when the optimizer uses actual
statistics and when it uses default values for your search arguments.

Structure of dbcc traceon(302) output
dbcc traceon(302) prints its output as the optimizer examines the clauses
for each table involved in a query. The optimizer first examines all search
clauses and determines the cost for each possible access method for the
search clauses for each table in the query. It then examines each join clause
and the cost of available indexes for the joins.

dbcc traceon(302) output prints each search and join analysis as a block of
output, delimited with a line of asterisks.

The search and join blocks each contain smaller blocks of information:

• A table information block, giving basic information on the table

• A block that shows the cost of a table scan

• A block that displays the clauses being analyzed

• A block for each index analyzed

• A block that shows the best index for the clauses in this section

For joins, each join order is represented by a separate block. For example,
for these joins on titles, titleauthor, and authors:

 where titles.title_id = titleauthor.title_id
 and authors.au_id = titleauthor.au_id

CHAPTER 7 Tuning with dbcc traceon

Performance and Tuning: Monitoring and Analyzing 175

there is a block for each join, as follows:

• titles, titleauthor

• titleauthor, titles

• titleauthor, authors

• authors, titleauthor

Additional blocks and messages

Some queries generate additional blocks or messages in dbcc traceon(302)
output, as follows:

• Queries that contain an order by clause contain additional blocks for
displaying the analysis of indexes that can be used to avoid
performing a sort.

See “Sort avert messages” on page 179 for more information.

• Queries using transaction isolation level 0 (dirty reads) or updatable
cursors on allpages-locked tables, where unique indexes are required,
return a message like the following:

Considering unique index ’au_id_ix’, indid 2.

• Queries that specify an invalid prefetch size return a message like the
following:

Forced data prefetch size of 8K is not available.
The largest available prefetch size will be used.

Table information block
This sample output shows the table information block for a query on the
titles table:

Beginning selection of qualifying indexes for table ’titles’,
correlation name ’t’, varno = 0, objectid 208003772.
 The table (Datapages) has 5000 rows, 736 pages,
 Data Page Cluster Ratio 0.999990
 The table has 5 partitions.
 The largest partition has 211 pages.
 The partition skew is 1.406667.

Table information block

176 Adaptive Server Enterprise

Identifying the table
The first two lines identify the table, giving the table name, the correlation
name (if one was used in the query), a varno value that identifies the order
of the table in the from clause, and the object ID for the table.

In the query, titles is specified using “t” as a correlation name, as in:

 from titles t

The correlation name is included in the output only if a correlation name
was used in the query. The correlation name is especially useful when you
are trying to analyze the output from subqueries or queries doing self-joins
on a table, such as:

 from sysobjects o1, sysobjects o2

Basic table data
The next lines of output provide basic data about the table: the locking
scheme, the number of rows, and the number of pages in the table. The
locking scheme is one of: Allpages, Datapages, or Datarows.

Cluster ratio
The next line prints the data page cluster ratio for the table.

Partition information
The following lines are included only for partitioned tables. They give the
number of partitions, plus the number of pages in the largest partition, and
the skew:

The table has 5 partitions.
The largest partition has 211 pages.
The partition skew is 1.406667.

This information is useful if you are tuning parallel queries, because:

• Costing for parallel queries is based on the cost of accessing the
table’s largest partition.

• The optimizer does not choose a parallel plan if the partition skew is
2.0 or greater.

CHAPTER 7 Tuning with dbcc traceon

Performance and Tuning: Monitoring and Analyzing 177

See Chapter 7, “Parallel Query Processing,” in Performance and Tuning:
Optimizer for more information on parallel query optimization.

Base cost block
The optimizer determines the cost of a table scan as a first step. It also
displays the caches used by the table, the availability of large I/O, and the
cache replacement strategy.

The following output shows the base cost for the titles table:

Table scan cost is 5000 rows, 748 pages,
 using data prefetch (size 16K I/O),
 in data cache ’default data cache’ (cacheid 0) with LRU replacement

If the cache used by the query has only a 2K pool, the prefetch message is
replace by:

using no data prefetch (size 2K I/O)

Concurrency optimization message
For very small data-only-locked tables, the following message may be
included in this block:

If this table has useful indexes, a table scan will
not be considered because concurrency optimization
is turned ON for this table.

For more information, see “Concurrency optimization for small tables”
on page 55 in Performance and Tuning: Optimizer.

Clause block
The clause block prints the search clauses and join clauses that the
optimizer considers while it estimates the cost of each index on the table.
Search clauses for all tables are analyzed first, and then join clauses.

Clause block

178 Adaptive Server Enterprise

Search clause identification
For search clauses, the clause block prints each of the search clauses that
the optimizer can use. The list should be compared carefully to the clauses
that are included in your query. If query clauses are not listed, it means that
the optimizer did not evaluate them because it cannot use them.

For example, this set of clauses on the titles table:

where type = "business"
 and title like "B%"
 and total_sales > 12 * 1000

produces this list of optimizable search clauses, with the table names
preceding the column names:

Selecting best index for the SEARCH CLAUSE:
 titles.title < ’C’
 titles.title >= ’B’
 titles.type = ’business’
 titles.total_sales > 12000

Notice that the like has been expanded into a range query, searching for >=
‘B’ and <‘C’. All of the clauses in the SQL statement are included in the
dbcc traceon(302) output, and can be used to help optimize the query.

If search argument transitive closure and predicate factoring have added
optimizable search arguments, these are included in this costing block too.

See “Search arguments and useful indexes” on page 15 in Performance
and Tuning: Optimizer for more information.

When search clauses are not optimizable

The following set of clauses on the authors table includes the substring
function on the au_fname column:

 where substring(au_fname,1,4) = "Fred"
 and city = "Miami"

Due to the use of the substring function on a column name, the set of
optimizable clauses does not include the where clause on the au_fname
column:

Selecting best index for the SEARCH CLAUSE:
 authors.city = ’Miami’

CHAPTER 7 Tuning with dbcc traceon

Performance and Tuning: Monitoring and Analyzing 179

Values unknown at optimize time

For values that are not known at optimize time, dbcc traceon(302) prints
“unknown-value.” For example, this clause uses the getdate function:

where pubdate > getdate()

It produces this message in the search clause list:

titles.pubdate > unknown-value

Join clause identification
Once all of the search clauses for each table have been analyzed, the join
clauses are analyzed and optimized.

Each table is analyzed in the order listed in the from clause. dbcc
traceon(302) prints the operator and table and column names, as shown in
this sample output of a join between titleauthor and titles, during the costing
of the titleauthor table:

Selecting best index for the JOIN CLAUSE:
 titleauthor.title_id = titles.title_id

The table currently undergoing analysis is always printed on the left in the
join clause output. When the titles table is being analyzed, titles is printed
first:

Selecting best index for the JOIN CLAUSE:
 titles.title_id = titleauthor.title_id

If you expect an index for a join column to be used, and it is not, check for
the JOIN CLAUSE output with the table as the leading table. If it is not
included in the output, check for datatype mismatches on the join columns.

Sort avert messages
If the query includes an order by clause, additional messages are displayed.
The optimizer checks to see if an index matches the ordering required by
the order by clause, to avoid incurring sort costs for the query.

This message is printed for search clauses:

 Selecting best index for the SEARCH SORTAVERT CLAUSE:
 titles.type = ’business’

Column block

180 Adaptive Server Enterprise

The message for joins shows the column under consideration first. This
message is printed while the optimizer analyzes the titles table:

Selecting best index for the JOIN SORTAVERT CLAUSE:
 titles.title_id = titleauthor.title_id

At the end of the block for the search or join clause, one of two messages
is printed, depending on whether an index exists that can be used to avoid
performing a sort step. If no index is available, this message is printed:

No sort avert index has been found for table ’titles’
(objectid 208003772, varno = 0).

If an index can be used to avoid the sort step, the sort-avert message
includes the index ID, the number of pages that need to be accessed, and
the number of rows to be returned for each scan. This is a typical message:

The best sort-avert index is index 3, costing 9 pages
and generating 8 rows per scan.

This message does not mean that the optimizer has decided to use this
index. It means simply that, if this index is used, it does not require a sort.

If you expect an index to be used to avoid a sort, and you see the “No sort
avert index” message, check the order by clauses in the query for the use
of asc and desc to request ascending and descending ordering, and check
the ordering specifications for the index.

For more information, see “Costing for queries using order by” on page
79 in Performance and Tuning: Optimizer.

Column block
This section prints the selectivity of each optimizable search argument or
join clause. Selectivity is used to estimate the number of matching rows
for a search clause or join clause.

The optimizer uses column statistics, if they exist and if the value of the
search argument is known at optimize time. If not, the optimizer uses
default values.

CHAPTER 7 Tuning with dbcc traceon

Performance and Tuning: Monitoring and Analyzing 181

Selectivities when statistics exist and values are known
This shows the selectivities for a search clause on the title column, when
an index exists for the column:

Estimated selectivity for title,
 selectivity = 0.001077, upper limit = 0.060200.

For equality search arguments where the value falls in a range cell:

• The selectivity is the “Range cell density” displayed by optdiag.

• The upper limit is the weight of the histogram cell.

If the value matches a frequency cell, the selectivity and upper limit are the
weight of that cell.

For range queries, the upper limit is the sum of the weights of all histogram
cells that contain values in the range. The upper limit is used only in cases
where interpolation yields a selectivity that is greater than the upper limit.

The upper limit is not printed when the selectivity for a search argument
is 1.

For join clauses, the selectivity is the “Total density” displayed by optdiag.

When the optimizer uses default values
The optimizer uses default values for selectivity:

• When the value of a search argument is not known at the time the
query is optimized

• For search arguments where no statistics are available

In both of these cases, the optimizer uses different default values,
depending on the operators used in the query clause.

Unknown values

Unknown values include variables that are set in the same batch as the
query and values set within a stored procedure. This message indicates an
unknown value for a column where statistics are available and the equality
(=) operator is used:

SARG is a local variable or the result of a function or an expression,
using the total density to estimate selectivity.

Column block

182 Adaptive Server Enterprise

Similar messages are printed for open-ended range queries and queries
using between.

If no statistics are available

If no statistics are available for a column, a message indicates the default
selectivity that will be used. This message is printed for an open-ended
range query on the total_sales table:

No statistics available for total_sales,
using the default range selectivity to estimate selectivity.

Estimated selectivity for total_sales,
 selectivity = 0.330000.

See “Default values for search arguments” on page 21 for the default
values used for search arguments and “When statistics are not available
for joins” on page 23 in Performance and Tuning: Optimizer for the
default values used for joins.

You may be able to improve optimization for queries where default values
are used frequently, by creating statistics on the columns.

See “Creating and updating column statistics” on page 53.

Out-of-range messages
Out-of-range messages are printed when a search argument is out of range
of the values included in the histogram for an indexed column.

The following clause searches for a value greater than the last title_id:

 where title_id > "Z"

dbcc traceon(302) prints:

Estimated selectivity for title_id,
 selectivity = 0.000000, upper limit = 0.000000.
Lower bound search value ’’Z’’ is greater than the largest value
in sysstatistics for this column.

For a clause that searches for a value that is less than the first key value in
an index, dbcc traceon(302) prints:

Estimated selectivity for title_id,
 selectivity = 0.000000, upper limit = 0.000000.
Upper bound search value ’’B’’ is less than the smallest value

CHAPTER 7 Tuning with dbcc traceon

Performance and Tuning: Monitoring and Analyzing 183

in sysstatistics for this column.

If the equality operator is used instead of a range operator, the messages
read:

Estimated selectivity for title_id,
 selectivity = 0.000000, upper limit = 0.000000.
Equi-SARG search value ’’Zebracode’’ is greater than the largest
value in sysstatistics for this column.

or:

Estimated selectivity for title_id,
 selectivity = 0.000000, upper limit = 0.000000.
Equi-SARG search value ’’Applepie’’ is less than the smallest value
in sysstatistics for this column.

These messages may simply indicate that the search argument used in the
query is out of range for the values in the table. In that case, no rows are
returned by the query. However, if there are matching values for the out-
of-range keys, it may indicate that it is time to run update statistics on the
table or column, since rows containing these values must have been added
since the last time the histogram was generated.

There is a special case for search clauses using the >= operator and a value
that is less than or equal to the lowest column value in the histogram. For
example, if the lowest value in an integer column is 20, this clause:

where col1 >= 16

produces this message:

Lower bound search condition ’>= 16’ includes all values in this
column.

For these cases, the optimizer assumes that all non-null values in the table
qualify for this search condition.

“Disjoint qualifications” message
The “disjoint qualifications” message often indicates a user error in
specifying the search clauses. For example, this query searches for a range
where there could be no values that match both of the clauses:

 where advance > 10000
 and advance < 1000

The selectivity for such a set of clauses is always 0.0, meaning that no
rows match these qualifications, as shown in this output:

Column block

184 Adaptive Server Enterprise

Estimated selectivity for advance,
 disjoint qualifications, selectivity is 0.0.

Forcing messages
dbcc traceon(302) prints messages if any of the index, I/O size, buffer
strategy, or parallel force options are included for a table or if an abstract
plan specifying these scan properties was used to optimize the query. Here
are sample messages for a query using an abstract plan:

For table ‘titles’:
User forces index 2 (index name = type_price_ix)
User forces index and data prefetch of 16K
User forces MRU buffer replacement strategy on index and data
pages
User forces parallel strategy. Parallel Degree = 3

Unique index messages
When a unique index is being considered for a join or a search argument,
the optimizer knows that the query will return one row per scan. The
message includes the index type, the string “returns 1 row,” and a page
estimate, which includes the number of index levels, plus one data page:

Unique clustered index found, returns 1 row, 2 pages
Unique nonclustered index found, returns 1 row, 3 pages

Other messages in the column block
If the statistics for the column have been modified using optdiag, dbcc
traceon(302) prints:

Statistics for this column have been edited.

If the statistics result from an upgrade of an earlier version of the server or
from loading a database from an pre-11.9 version of the server, dbcc
traceon(302) prints:

Statistics for this column were obtained from upgrade.

If this message appears, run update statistics for the table or index.

CHAPTER 7 Tuning with dbcc traceon

Performance and Tuning: Monitoring and Analyzing 185

Index selection block
While costing index access, dbcc traceon(302) prints a set of statistics for
each useful index. This index block shows statistics for an index on
au_lname in the authors table:

Estimating selectivity of index ’au_names_ix’, indid 2
 scan selectivity 0.000936, filter selectivity 0.000936
 5 rows, 3 pages, index height 2,
 Data Row Cluster Ratio 0.990535,
 Index Page Cluster Ratio 0.538462,
 Data Page Cluster Ratio 0.933579

Scan and filter selectivity values
The index selection block includes, a scan selectivity value and a filter
selectivity value. In the example above, these values are the same
(0.000936).

For queries that specify search arguments on multiple columns, these
values are different when the search arguments include the leading key,
and some other index key that is not part of a prefix subset.

That is, if the index is on columns A, B, C, D, a query specifying search
arguments on A, B, and D will have different scan and filter selectivities.
The two selectivities are used for estimating costs at different levels:

How scan and filter selectivity can differ

This statement creates a composite index on titles:

create index composite_ix
on titles (pub_id, type, price)

Both of the following clauses can be used to position the start of the search
and to limit the end point, since the leading columns are specified:

Scan Selectivity Filter Selectivity

Used to estimate: Number of index rows and
leaf-level pages to be read

Number of data pages to be
accessed

Determined by: Search arguments on
leading columns in the
index

All search arguments on the
index under consideration.
even if they are not part of
the prefix subset for the
index

Index selection block

186 Adaptive Server Enterprise

 where pub_id = "P099"
 where pub_id = "P099" and type = "news"

The first example requires reading all the index pages where pub_id equals
“P099”, while the second reads only the index pages where both
conditions are true. In both cases, these queries need to read the data rows
for each of the index rows that are examined, so the scan and filter
selectivity are the same.

In the following example, the query needs to read all of the index leaf-level
pages where pub_id equals “P099”, as in the queries above. But in this
case, Adaptive Server examines the value for price, and needs to read only
those data pages where the price is less than $50:

 where pub_id = "P099" and price < $50

In this case, the scan and filter selectivity differ. If column-level statistics
exist for price, the optimizer combines the column statistics on pub_id and
price to determine the filter selectivity, otherwise the filter selectivity is
estimated using the default range selectivity.

In the dbcc traceon(302) output below, the selectivity for the price column
uses the default value, 0.33, for an open range. When combined with the
selectivity of 0.031400 for pub_id, it yields the filter selectivity of
0.010362 for composite_ix:

Selecting best index for the SEARCH CLAUSE:
 titles.price < 50.00
 titles.pub_id = ’P099’

Estimated selectivity for pub_id,
 selectivity = 0.031400, upper limit = 0.031400.

No statistics available for price,
using the default range selectivity to estimate selectivity.

Estimated selectivity for price,
 selectivity = 0.330000.

Estimating selectivity of index ’composite_ix’, indid 6
 scan selectivity 0.031400, filter selectivity 0.010362
 52 rows, 57 pages, index height 2,
 Data Row Cluster Ratio 0.013245,
 Index Page Cluster Ratio 1.000000,
 Data Page Cluster Ratio 0.100123

CHAPTER 7 Tuning with dbcc traceon

Performance and Tuning: Monitoring and Analyzing 187

Other information in the index selection block
The index selection block prints out an estimate of the number of rows that
would be returned if this index were used and the number of pages that
would need to be read. It includes the index height.

For a single-table query, this information is basically all that is needed for
the optimizer to choose between a table scan and the available indexes. For
joins, this information is used later in optimization to help determine the
cost of various join orders.

The three cluster ratio values for the index are printed, since estimates for
the number of pages depend on cluster ratios.

If the index covers the query, this block includes the line:

Index covers query.

This message indicates that the data pages of the table do not have to be
accessed if this index is chosen.

Best access block
The final section for each SARG or join block for a table shows the best
qualifying index for the clauses examined in the block.

When search arguments are being analyzed, the best access block looks
like:

The best qualifying index is ’pub_id_ix’ (indid 5)
 costing 153 pages,
 with an estimate of 168 rows to be returned per scan of the table,
 using index prefetch (size 16K I/O) on leaf pages,
 in index cache ’default data cache’ (cacheid 0) with LRU
replacement
 using no data prefetch (size 2K I/O),
 in data cache ’default data cache’ (cacheid 0) with LRU replacement
Search argument selectivity is 0.033539.

If no useful index is found, the final block looks like:

The best qualifying access is a table scan,
 costing 621 pages,
 with an estimate of 1650 rows to be returned per scan of the table,
 using data prefetch (size 16K I/O),
 in data cache ’default data cache’ (cacheid 0) with LRU replacement

Best access block

188 Adaptive Server Enterprise

Search argument selectivity is 0.330000.

For joins, there are two best access blocks when a merge join is considered
during the join-costing phase, one for nested-loop join cost, and one for
merge-join cost:

The best qualifying Nested Loop join index is ’au_city_ix’ (indid
4)
 costing 6 pages,
 with an estimate of 4 rows to be returned per scan of the table,
 using index prefetch (size 16K I/O) on leaf pages,
 in index cache ’default data cache’ (cacheid 0) with LRU
replacement
 using no data prefetch (size 2K I/O),
 in data cache ’default data cache’ (cacheid 0) with LRU
replacement
Join selectivity is 0.000728.

The best qualifying Merge join index is ’au_city_ix’ (indid 4)
 costing 6 pages,
 with an estimate of 4 rows to be returned per scan of the table,
 using no index prefetch (size 2K I/O) on leaf pages,
 in index cache ’default data cache’ (cacheid 0) with LRU
replacement
 using no data prefetch (size 2K I/O),
 in data cache ’default data cache’ (cacheid 0) with LRU
replacement
Join selectivity is 0.000728.

Note that the output in this block estimates the number of “rows to be
returned per scan of the table.” At this point in query optimization, the join
order has not yet been chosen.

If this table is the outer table, the total cost of accessing the table is 6 pages,
and it is estimated to return 4 rows.

If this query is an inner table of a nested-loop join, with a cost of 6 pages
each time, each access is estimated to return 4 rows. The number of times
the table will be scanned depends on the number of estimated qualifying
rows for the other table in the join.

If no index qualifies as a possible merge-join index, dbcc traceon(302)
prints:

If this access path is selected for merge join, it
will be sorted

CHAPTER 7 Tuning with dbcc traceon

Performance and Tuning: Monitoring and Analyzing 189

dbcc traceon(310) and final query plan costs
The end of each search clause and join clause block prints the best index
for the search or join clauses in that particular block. If you are concerned
only about the optimization of the search arguments, dbcc traceon(302)
output has probably provided the information you need.

The choice of the best query plan also depends on the join order for the
tables, which is the next step in query optimization after the index costing
step completes. dbcc traceon(310) provides information about the join
order selection step.

It starts by showing the number of tables considered at a time during a join.
This message shows three-at-a-time optimization, with the default for set
table count, and a 32-table join:

QUERY IS CONNECTED
Number of tables in join: 32
Number of tables considered at a time: 3
Table count setting: 0 (default value used)

dbcc traceon(310) prints the first plan that the optimizer considers, and
then each cheaper plan, with the heading “NEW PLAN.”

To see all of the plans, use dbcc traceon(317). It prints each plan
considered, with the heading “WORK PLAN.” This may produce an
extremely large amount of output, especially for queries with many tables,
many indexes, and numerous query clauses.

If you use dbcc traceon(317), also use dbcc traceon(3604) and direct the
output to a file, rather than to the server’s error log to avoid filling up the
error log device.

dbcc traceon(310) or (317) prints the join orders being considered as the
optimizer analyzes each of the permutations. It uses the varno,
representing the order of the tables in the from clause. For example, for the
first permutation, it prints:

 0 - 1 - 2 -

This is followed by the cost of joining the tables in this order. The
permutation order for subsequent join orders follows, with “NEW PLAN”
and the analysis of each table for the plan appearing whenever a cheaper
plan is found. Once all plans have been examined, the final plan is
repeated, with the heading “FINAL PLAN”. This is the plan that Adaptive
Server uses for the query.

dbcc traceon(310) and final query plan costs

190 Adaptive Server Enterprise

Flattened subquery join order message
For some flattened subqueries, certain join orders are possible only if a
sort is later used to remove duplicate results. When one of these join orders
is considered, the following message is printed right after the join
permutation order is printed:

2 - 0 - 1 -

This join order created while converting an exists join to a
regular join, which can happen for subqueries, referential
integrity, and select distinct.

For more information on subqueries and join orders, see “Flattened
subqueries using duplicate elimination” on page 136 in Performance and
Tuning: Optimizer.

Worker process information
Just before printing final plan information, dbcc traceon(310) prints the
parallel configuration parameters and session level settings in effect when
the command was run.

PARALLEL:
 number of worker processes = 20
 max parallel degree = 10
 min(configured,set) parallel degree = 10
 min(configured,set) hash scan parallel degree = 3

If session-level limits or simulated statistics in effect when the query is
optimized, those values are shown in the output.

Final plan information
The plan chosen by the optimizer is displayed in the final plan block.
Information about the cost of each table is printed; the output starts from
the outermost table in the join order.

select pub_name, au_lname, price
from titles t, authors a, titleauthor ta,
 publishers p
where t.title_id = ta.title_id
 and a.au_id = ta.au_id
 and p.pub_id = t.pub_id

CHAPTER 7 Tuning with dbcc traceon

Performance and Tuning: Monitoring and Analyzing 191

 and type = ’business’
 and price < $25

FINAL PLAN (total cost = 3909)

varno=0 (titles) indexid=1 (title_id_ix)
path=0xd6b25148 pathtype=pll-mrgscan-outer
method=NESTED ITERATION
scanthreads=3
outerrows=1 outer_wktable_pgs=0 rows=164 joinsel=1.000000
jnpgs_per_scan=3 scanpgs=623
data_prefetch=YES data_iosize=16 data_bufreplace=LRU
scanlio_perthrd=211 tot_scanlio=633 scanpio_perthrd=116
tot_scanpio=346
outer_srtmrglio=0 inner_srtmrglio=0
corder=1

varno=2 (titleauthor) indexid=3 (ta_ix)
path=0xd6b20000 pathtype=pll-mrgscan-inner
method=FULL MERGE JOIN
scanthreads=3 mergethreads=3
outerrows=164 outer_wktable_pgs=0 rows=243 joinsel=0.000237
jnpgs_per_scan=2 scanpgs=87
index_prefetch=YES index_iosize=16 index_bufreplace=LRU
scanlio_perthrd=29 total_scanlio=87 scanpio_perthrd=29
tot_scanpio=87
outer_srtmrglio_perthrd=0 tot_outer_srtmrglio=0
inner_srtmrglio_perthrd=0 tot_inner_srtmrglio=0
corder=2

varno=1 (authors) indexid=3 (au_id_ix)
path=0xd6b20318 pathtype=join
method=NESTED ITERATION
scanthreads=1
outerrows=243 rows=243 joinsel=0.000200 jnpgs_per_scan=3
index_prefetch=NO index_iosize=2 index_bufreplace=LRU
data_prefetch=NO data_iosize=2 data_bufreplace=LRU
scanlio=82 scanpio=9
corder=1

jnvar=2 refcost=0 refpages=0 reftotpages=0 ordercol[0]=1
ordercol[1]=1

varno=3 (publishers) indexid=0 ()
path=0xd6b1f150 pathtype=sclause
method=SORT MERGE JOIN
scanthreads=1

dbcc traceon(310) and final query plan costs

192 Adaptive Server Enterprise

outerrows=243 outer_wktable_pgs=7 rows=243 joinsel=0.033333
jnpgs_per_scan=1 scanpgs=3
data_prefetch=NO data_iosize=2 data_bufreplace=LRU
scanlio=3 scanpio=3
outer_srtmrglio_perthrd=88 tot_outer_srtmrglio=250
inner_srtmrglio_perthrd=31 tot_inner_srtmrglio=30
corder=0

Sort-Merge Cost of Inner = 98
Sort-Merge Cost of Outer = 344

For the showplan output for the same query, see “Merge join messages” on
page 95.

Table 7-1 shows the meaning of the values in the output.

CHAPTER 7 Tuning with dbcc traceon

Performance and Tuning: Monitoring and Analyzing 193

Table 7-1: dbcc traceon(310) output

Label Information provided

varno Indicates the table order in the from clause, starting
with 0 for the first table. The table name is provided
in parentheses.

indexid The index ID, followed by the index name, or 0 for
a table scan.

pathtype The access method for this table. See Table 7-2.

method The method used for the scan or join:

• NESTED ITERATION

• NESTED ITERATION with Tuple Filtering

• REFORMATTING

• REFORMATTING with Unique Reformatting

• OR OPTIMIZATION

• SORT MERGE JOIN

• RIGHT MERGE JOIN

• LEFT MERGE JOIN

• FULL MERGE JOIN

scanthreads Number of worker processes to be used for the scan
of this table.

merge threads Number of threads to use for a parallel data merge,
for a sort-merge join.

outerrows Number of rows that qualify from the outer tables in
the query or 1, for the first table in the join order.

outer_wktable_pgs For a merge join, the number of pages in the
worktable that is outer to this table, or tables in a
full-merge join.

rows Number of rows estimated to qualify in this table or
as a result of this join. For a parallel query, this is the
maximum number of rows per worker process.

joinsel The join selectivity.

jnpgs_per_scan Number of index and data pages to be read for each
scan.

scanpgs The total number of index and data pages to be read
for the table.

index_prefetch YES if large I/O will be used on index leaf pages
(not printed for table scans and allpages-locked
table clustered index scans).

dbcc traceon(310) and final query plan costs

194 Adaptive Server Enterprise

index_iosize The I/O size to be used on the index leaf pages (not
printed for table scans and allpages-locked table
clustered index scans).

index_bufreplace The buffer replacement strategy to be used on the
index leaf pages (not printed for table scans and
allpages-locked table clustered index scans).

data_prefetch YES if large I/O will be used on the data pages; NO
if large I/O will not be used (not printed for covered
scans).

data_iosize The I/O size to be used on the data pages (not printed
for covered scans).

data_bufreplace The buffer replacement strategy to be used on the
data pages (not printed for covered scans).

scanlio Estimated total logical I/O for a serial query.

scanpio Estimated total physical I/O for a serial query.

scanlio_perthrd Estimated logical I/O per thread, for a parallel query.

tot_scanlio Estimated total logical I/O, for a parallel query.

scanpio_perthrd Estimated physical I/O per thread, for a parallel
query.

tot_scanpio Estimated total physical I/O, for a parallel query.

outer_srtmrglio_perthrd Estimated logical I/O on the outer table to perform
the sort-merge, per thread.

tot_outer_srtmrglio Estimated total logical I/O on the outer table to
perform a sort-merge.

inner_srtmrglio_perthrd Estimated logical I/O on the inner table to perform a
sort-merge join, per thread.

tot_inner_srtmrglio Estimated total logical I/O on the inner table to
perform a sort-merge join.

corder The order of the column used as a search argument
or join key.

jnvar The varno of the table to which this table is being
joined, for second and subsequent tables in a join.

refcost The total cost of reformatting, when reformatting is
considered as an access method.

refpages The number of pages read in each scan of the table
created for formatting. Included for the second and
subsequent tables in the join order.

reftotpages The number of pages in the table created for
formatting. Included for the second and subsequent
tables in the join order.

Label Information provided

CHAPTER 7 Tuning with dbcc traceon

Performance and Tuning: Monitoring and Analyzing 195

Table 7-2 shows the access methods that correspond to the pathtype
information in the dbcc traceon(310) output.

Table 7-2: pathtypes in dbcc traceon(310) output

Sort-merge costs

If the query plan includes a sort-merge join, the cost of creating the
worktables and sorting them are printed. These messages include the total
cost that is added to the query cost:

Sort-Merge Cost of Inner = 538
Sort-Merge Cost of Outer = 5324

These are the total costs of performing the sort-merge work, representing
the logical I/O on the worktables multiplied by 2.

ordercol[0] The order of the join column from the inner table.

ordercol[1] The order of the join column from the outer table.

pathtype Access method

sclause Search clause

join Join

orstruct or clause

join-sort Join, using a sort-avert index

sclause-sort Search clause, using a sort-avert index

pll-sarg-nc Parallel index hash scan on a search clause

pll-join-nc Parallel index hash scan on a join clause

pll-sarg-cl Parallel clustered index scan on a search clause

pll-join-cl Parallel clustered index scan on a join

pll-sarg-cp Parallel partitioned clustered index scan on a search
clause

pll-join-cp Parallel partitioned clustered index scan on a join
clause

pll-partition Parallel partitioned table scan

pll-nonpart Parallel nonpartitioned table scan

pll-mrg-scan-inner Parallel sort-merge join, with this table as the inner
table

pll-mrg-scan-outer Parallel sort-merge join, with this table as the outer
table

Label Information provided

dbcc traceon(310) and final query plan costs

196 Adaptive Server Enterprise

Performance and Tuning; Monitoring and Analyzing 197

C H A P T E R 8 Monitoring Performance with
sp_sysmon

This chapter describes output from sp_sysmon, a system procedure that
produces Adaptive Server performance data. It includes suggestions for
interpreting its output and deducing possible implications.

sp_sysmon output is most valuable when you have a good understanding
of your Adaptive Server environment and its specific mix of applications.
Otherwise, you may find that sp_sysmon output has little relevance.

Topic Page
Using 198

Invoking 199

How to use the reports 203

Sample interval and time reporting 206

Kernel utilization 214

Worker process management 220

Parallel query management 222

Task management 224

Application management 233

ESP management 240

Housekeeper task activity 241

Monitor access to executing SQL 242

Transaction profile 243

Transaction management 250

Index management 256

Metadata cache management 265

Lock management 269

Data cache management 278

Procedure cache management 292

Memory management 294

Recovery management 295

Disk I/O management 298

Network I/O management 303

Using

198 Adaptive Server Enterprise

Using
When you invoke sp_sysmon, it clears all accumulated data from a set of
counters that will be used during the sample interval to accumulate the results
of user and system activity. At the end of the sample interval, the procedure
reads the values in the counters, prints the report, and stops executing.

sp_sysmon contributes 5 to 7% overhead while it runs on a single CPU server,
and more on multiprocessor servers. The amount of overhead increases with
the number of CPUs.

 Warning! sp_sysmon and Adaptive Server Monitor use the same internal
counters. sp_sysmon resets these counters to 0, producing erroneous output for
Adaptive Server Monitor when it is used simultaneously with sp_sysmon.

Also, starting a second execution of sp_sysmon while an earlier execution is
running clears all the counters, so the first iteration of reports will be
inaccurate.

Our performance tuning tips are based on the sampling interval. You need to
review any recommendations thoroughly, based on your system requirements,
before you incorporate them in your production system. You should set up a
test area with your data and test any changes before implementing.

Also since sp_sysmon only gets a snapshot view of the system, these
recommendations might not be applicable when the workload changes.

When to run
You can run sp_sysmon both before and after tuning Adaptive Server
configuration parameters to gather data for comparison. This data gives you a
basis for performance tuning and lets you observe the results of configuration
changes.

Use sp_sysmon when the system exhibits the behavior you want to investigate.
For example, if you want to find out how the system behaves under typically
loaded conditions, run sp_sysmon when conditions are normal and typically
loaded.

In this case, it would not make sense to run sp_sysmon for 10 minutes starting
at 7:00 p.m., before the batch jobs begin and after most of the day’s OLTP users
have left the site. Instead, it would be best to run sp_sysmon both during the
normal OLTP load and during batch jobs.

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 199

In many tests, it is best to start the applications, and then start sp_sysmon when
the caches have had a chance to reach a steady state. If you are trying to
measure capacity, be sure that the amount of work you give the server keeps it
busy for the duration of the test.

Many of the statistics, especially those that measure data per second, can look
extremely low if the server is idle during part of the sample interval.

In general, sp_sysmon produces valuable information when you use it:

• Before and after cache or pool configuration changes

• Before and after certain sp_configure changes

• Before and after the addition of new queries to your application mix

• Before and after an increase or decrease in the number of Adaptive Server
engines

• When adding new disk devices and assigning objects to them

• During peak periods, to look for contention or bottlenecks

• During stress tests to evaluate an Adaptive Server configuration for a
maximum expected application load

• When performance seems slow or behaves abnormally

It can also help with micro-level understanding of certain queries or
applications during development. Some examples are:

• Working with indexes and updates to see if certain updates reported as
deferred_varcol are resulting direct vs. deferred updates

• Checking caching behavior of particular queries or a mix of queries

• Tuning the parameters and cache configuration for parallel index creation

Invoking
There are two ways to use sp_sysmon:

• Using a fixed time interval to provide a sample for a specified number of
minutes

• Using the begin_sample and end_sample parameters to start and stop
sampling

Invoking

200 Adaptive Server Enterprise

You can also tailor the output to provide the information you need:

• You can print the entire report.

• You can print just one section of the report, such as “Cache Management”
or “Lock Management.”

Note The Cache Wizard section is a special section of the report. You need
to specify the section for Cache Wizard to get output on it. See “Output”
on page 208

• You can include application-level detailed reporting for named
applications (such as isql, bcp, or any named application) and for
combinations of named applications and user names. (The default is to
omit this section.)

Fixed time intervals
To invoke sp_sysmon, execute the following command using isql:

sp_sysmon interval [, section [, applmon]]

interval must be in the form “hh:mm:ss”. To run sp_sysmon for 10 minutes, use
this command:

sp_sysmon "00:10:00"

The following command prints only the “Data Cache Management” section of
the report:

sp_sysmon "00:10:00", dcache

For information on the applmon parameter, see “Specifying the application
detail parameter” on page 202.

Using begin_sample and end_sample
With the begin_sample and end_sample parameters, you can invoke sp_sysmon
to start sampling, issue queries, and end the sample and print the results at any
point in time. For example:

sp_sysmon begin_sample
execute proc1
execute proc2
select sum(total_sales) from titles

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 201

sp_sysmon end_sample

Note On systems with many CPUs and high activity, counters can overflow if
the sample period is too long.

If you see negative results in your sp_sysmon output, reduce your sample time.

Specifying report sections for output
To print only a single section of the report, use one of the values listed in Table
8-1 for the second parameter.

Table 8-1: sp_sysmon report sections

* Most of the information available through sp_sysmon_mdcache can be
obtained throu using sp_monitorconfig.

Report section Parameter

Application Management appmgmt

Cache Wizard cache wizard

Data Cache Management dcache

Disk I/O Management diskio

ESP Management esp

Houskeeper Task Activity housekeeper

Index Management indexmgmt

Kernel Utilization kernel

Lock Management locks

Memory Management memory

Metadata Cache Management mdcache*

Monitor Access to Executing SQL monaccess

Network I/O Management netio

Parallel Query Management parallel

Procedure Cache Management pcache

Recovery Management recovery

Task Management taskmgmt

Transaction Management xactmgmt

Transaction Profile xactsum

Worker Process Management wpm

Invoking

202 Adaptive Server Enterprise

Specifying the application detail parameter
If you specify the third parameter to sp_sysmon, the report includes detailed
information by application or by application and login name. This parameter is
valid only when you print the entire report or when you request the Application
Management section by specifying appmgmt as the section. It is ignored if you
specify it and request any other section of the report.

The third parameter must be one of the following:

This example runs sp_sysmon for 5 minutes and prints the “Application
Management” section, including the application and login detail report:

sp_sysmon "00:05:00", appmgmt, appl_and_login

See “Per application or per application and login” on page 239 for sample
output.

Cache Wizard syntax
To obtain output from the Cache Wizard:

sp_sysmon begin_sample
sp_sysmon { end_sample | interval }
[, ’cache wizard’ [, top_N [, filter]]]

Parameters

Use these parameters:

• top_N

 A varchar datatype that limits the list of objects reported in the Object
Section based on the ranking criteria for the number of logical reads in the
specified interval (as displayed in the LR/sec column).

Parameter Information reported

appl_only CPU, I/O, priority changes, and resource limit
violations by application name.

appl_and_login CPU, I/O, priority changes, and resource limit
violations by application name and login name.
Can be used with all sections.

no_appl Skips the application and login section of the
report. This is the default.

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 203

The order of ranking is ascending or descending based on whether the
specified value is a positive or negative integer. The entire list of objects
occupying the cache at the end of the interval can be obtained by
specifying a value of ’0’. The default value 10.

• Filter

A varchar datatype that allows you to specify a pattern for the cache(s)
included in the report.

For example, if it is specified as default data cache, the report will only
contain information about the default data cache. If it is specified as emp%,
the output includes information on all caches with a name matching this
pattern.

If no value is given the output contains all the caches with the default data
cache appearing first, followed by the other caches in alphabetical order

For more information, see “Output” on page 208 for the Cache Wizard.

Redirecting output to a file
A full sp_sysmon report contains hundreds of lines of output. Use isql input and
output redirect flags to save the output to a file.

See the Utility Programs manual for more information on isql.

How to use the reports
sp_sysmon can give you information about Adaptive Server system behavior
both before and after tuning. It is important to study the entire report to
understand the full impact of the changes you make. Sometimes removing one
performance bottleneck reveals another.

It is also possible that your tuning efforts might improve performance in one
area, while actually causing performance degradation in another area.

In addition to pointing out areas for tuning work, sp_sysmon output is valuable
for determining when further tuning will not pay off in additional performance
gains.

It is just as important to know when to stop tuning Adaptive Server, or when
the problem resides elsewhere, as it is to know what to tune.

How to use the reports

204 Adaptive Server Enterprise

Other information can contribute to interpreting sp_sysmon output:

• Information on the configuration parameters in use, from sp_configure or
the configuration file

• Information on the cache configuration and cache bindings, from
sp_cacheconfig and sp_helpcache

• Information on disk devices, segments, and the objects stored on them

Reading output
sp_sysmon displays performance statistics in a consistent tabular format. For
example, in an SMP environment running nine Adaptive Server engines, the
output typically looks like this:

Engine Busy Utilization:
 Engine 0 98.8 %
 Engine 1 98.8 %
 Engine 2 97.4 %
 Engine 3 99.5 %
 Engine 4 98.7 %
 Engine 5 98.7 %
 Engine 6 99.3 %
 Engine 7 98.3 %
 Engine 8 97.7 %
 ----------- --------------- ----------------
 Summary: Total: 887.2 % Average: 98.6 %

Rows

Most rows represent a specific type of activity or event, such as acquiring a
lock or executing a stored procedure. When the data is related to CPUs, the
rows show performance information for each Adaptive Server engine in the
SMP environment. Often, when there are groups of related rows, the last row
is a summary of totals and an average.

The sp_sysmon report indents some rows to show that one category is a
subcategory of another. In the following example, “Found in Wash” is a
subcategory of “Cache Hits”, which is a subcategory of “Cache Searches”:

Cache Searches
 Cache Hits 202.1 3.0 12123 100.0 %
 Found in Wash 0.0 0.0 0 0.0 %
 Cache Misses 0.0 0.0 0 0.0 %

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 205

 ------------------------- --------- --------- -------
 Total Cache Searches 202.1 3.0 12123

Many rows are not printed when the “count” value is 0.

Columns

Unless otherwise stated, the columns represent the following performance
statistics:

• “per sec”– average per second during sampling interval

• “per xact” – average per committed transaction during sampling interval

• “count” – total number during the sample interval

• “% of total” – varies, depending on context, as explained for each
occurrence

Interpreting the data
When tuning Adaptive Server, the fundamental measures of success appear as
increases in throughput and reductions in application response time.
Unfortunately, tuning Adaptive Server cannot be reduced to printing these two
values.

In most cases, your tuning efforts must take an iterative approach, involving a
comprehensive overview of Adaptive Server activity, careful tuning and
analysis of queries and applications, and monitoring locking and access on an
object-by-object basis.

Per second and per transaction data

Weigh the importance of the per second and per transaction data on the
environment and the category you are measuring. The per transaction data is
generally more meaningful in benchmarks or in test environments where the
workload is well defined.

It is likely that you will find per transaction data more meaningful for
comparing test data than per second data alone because in a benchmark test
environment, there is usually a well-defined number of transactions, making
comparison straightforward. Per transaction data is also useful for determining
the validity of percentage results.

Sample interval and time reporting

206 Adaptive Server Enterprise

Percent of total and count data

The meaning of the “% of total” data varies, depending on the context of the
event and the totals for the category. When interpreting percentages, keep in
mind that they are often useful for understanding general trends, but they can
be misleading when taken in isolation.

For example, 50% of 200 events is much more meaningful than 50% of 2
events.

The “count” data is the total number of events that occurred during the sample
interval. You can use count data to determine the validity of percentage results.

Per engine data

In most cases, per engine data for a category shows a fairly even balance of
activity across all engines. Two exceptions are:

• If you have fewer processes than CPUs, some of the engines will show no
activity.

• If most processes are doing fairly uniform activity, such as simple inserts
and short selects, and one process performs some I/O intensive operation
such as a large bulk copy, you will see unbalanced network and disk I/O.

Total or summary data

Summary rows provide an overview of Adaptive Server engine activity by
reporting totals and averages.

Be careful when interpreting averages because they can give false impressions
of true results when the data is skewed. For example, if one Adaptive Server
engine is working 98% of the time and another is working 2% of the time, a
49% average can be misleading.

Sample interval and time reporting
The heading of an sp_sysmon report includes the software version, server
name, run date, the date and time the sample interval started, the time it
completed, and the duration of the sample interval.

===
Sybase Adaptive Server Enterprise System Performance Report

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 207

===
Server Version: Adaptive Server Enterprise/12.5.1/XXXXX/P/Sun_svr4/OS 5.
Server Name: Server is coffee
Run Date: Jul 17, 2003
Statistics Cleared at: Jul 17, 2003 09:02:35
Statistics Sampled at: Jul 17, 2003 09:04:35
Sample Interval: 00:02:00

===

Cache Wizard
The Cache Wizard section can aid in the monitoring and configuring of data
caches for optimal performance.

Cache Wizard allows you to identify:

• Hot objects (objects that are often accessed). The output is ranked by the
number of logical reads in a named cache or default data cache.

• Spinlock contention on the cache.

• The usage of the cache and buffer pools.

• The percentage of hits at a cache, buffer pool and object level. (THIS
SENTENCE NEEDS TO BE MADE MORE CLEARER.

• The effectiveness of large I/O.

• The effectiveness of APF.

• The cache occupancy by the various objects.

The Cache Wizard section appears in the sp_sysmon output only when you
include the cache wizard parameter. You can include two parameters with
Cache Wizard, topN and filter. See syntax details on “Cache Wizard syntax” on
page 202.

A Cache Wizard recommendation section is printed at the end of the output on
this report.

Before you run sp_sysmon with the Cache Wizard section, you must first
install the monitoring tables.

Sample interval and time reporting

208 Adaptive Server Enterprise

Preparing to run the cache wizard

sp_sysmon retrieves the information for the Cache Wizard from the monitoring
tables and monitor counters.

To install the monitoring tables:

• Add the loopback server to sysservers:

sp_addserver loopback, NULL, <srvnetname>

• Grant the mon_role role to sa_role:

sp_role ’grant’, mon_role, sa_role

• Install the monitoring tables with the installmontables script (located in
$SYBASE/ASE-12_5/scripts):

$SYBASE/$SYBASE_OCS/bin/isql -Usa -P -i
$SYBASE/$SYBASE_ASE/scripts/installmontables

• The Cache Wizard requires the following configuration parameters to be
enabled. If these configuration parameters are not enabled, sp_sysmon
automatically enables them at the beginning of the interval and disables
them at the end.

enable monitoring - set to 1. This option is dynamic.
per object statistics active - set to 1. This option is dynamic.

For more information about configuration parameters, see Chapter 5, "Setting
Configuration Parameters" in the System Administration Guide.

Output

The Cache Wizard output contains five main sections for each cache. This is
followed by a recommendation section and a legend section at the end of the
report. The three main sections for each cache are:

• cache section provides summary statistics for a specific cache:

default data cache

Run Size : 100.00 Mb Usage% : 2.86
LR/sec : 41.10 PR/sec : 22.57 Hit%: 45.09
Cache Partitions: 4 Spinlock Contention%: 0.00

Usage%

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 209

Each time a set of pages is brought into the cache, it is tracked track if that
page gets is referenced (used). Once the page is removed from the cache
this count gets reduced. This value gives the current usage of the cache as
a % of the cache size.

LR/sec

A logical read is any read in a read from the cache (hit) or a disk read
(miss). LR/sec is the number of logical reads in the cache during the
interval divided by the sample interval.

PR/sec

A physical read is a read from disk (miss). PR/sec is the number of
physical reads in the cache during the interval divided by the sample
interval.

Hit%

Ratio of the hits to total cache reads, such as the ratio of (LR/sec - PR/sec)
to LR/sec

• Buffer pool section breaks down the 'cache section' statistics into the
various buffer pools in the cache.

Buffer Pool Information

IO Size Wash Size Run Size APF% LR/sec PR/sec Hit% APF-Eff% Usage%
------- ---------- ------- ------ ------- -------- ------ -------- ------
4 Kb 3276 Kb 16.00 Mb 10.00 0.47 0.13 71.43 n/a 0.20
2 Kb 17200 Kb 84.00 Mb 10.00 40.63 22.43 44.79 n/a 3.37

APF-Eff% ratio between pages brought for the account of Asynchronous
Prefetch (APF) and used, to the number of pages brought in account of
APF.

Usage% is similar to the Cache section, tracks if a page brought into the
buffer pool is referenced or not. This gives the ratio of the pages
referenced in the buffer pool to the run size of the buffer pool.

• Object section reports statistics on the objects occupying the cache at the
end of the interval. The output of this section can be limited by using the
topN parameter. The objects are always displayed in the ascending order
of PR/sec.

Object Statistics

Object LR/sec PR/sec Hit% Obj_Cached% Cache_Occp%
------------------------------- ------- ------- ------ ----------- -----

Sample interval and time reporting

210 Adaptive Server Enterprise

empdb.dbo.t1 0.57 0.30 47.06 56.25 0.02
empdb.dbo.t2 0.30 0.30 0.00 56.25 0.02
empdb.dbo.t3 0.30 0.30 0.00 56.25 0.02

Object Obj Size Size in Cache
------------------------------- ----------- -------------
empdb.dbo.t1 32 Kb 18 Kb
empdb.dbo.t2 32 Kb 18 Kb
empdb.dbo.t3 32 Kb 18 Kb

• Recommendations section gives a set of recommendations where
applicable based on the data collected in the sample interval:

The various recommendations are as follows:
Usage% for ’default data cache’ is low (< 5%)
Usage% for 4k buffer pool in cache:default data cache is low (< 5%)
Consider using Named Caches or creating more cache partitions for
’default data cache’ or both
Consider increasing the ’wash size’ of the 2k pool for ’default data
cache’
Consider adding a large I/O pool for ’default data cache’

• Legend explains the various terms used in the output. Some of the terms
from the output are explained here in greater detail.

Sample output for Cache Wizard
sp_sysmon ’00:00:30’, ’cache wizard’

===
Cache Wizard
===

default data cache

Run Size : 100.00 Mb Usage% : 2.86
LR/sec : 41.10 PR/sec : 22.57 Hit%: 45.09
Cache Partitions: 4 Spinlock Contention%: 0.00

Buffer Pool Information

IO Size Wash Size Run Size APF% LR/sec PR/sec Hit% APF-Eff% Usage%
------- ---------- ----------- ------ -------- -------- ------ -------- ------
4 Kb 3276 Kb 16.00 Mb 10.00 0.47 0.13 71.43 n/a 0.20
2 Kb 17200 Kb 84.00 Mb 10.00 40.63 22.43 44.79 n/a 3.37

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 211

(1 row affected)

Object Statistics

Object LR/sec PR/sec Hit% Obj_Cached% Cache_Occp%
------------------------------- ------- ------- ------ ----------- -----------
empdb.dbo.t1 0.57 0.30 47.06 56.25 0.02
empdb.dbo.t2 0.30 0.30 0.00 56.25 0.02
empdb.dbo.t3 0.30 0.30 0.00 56.25 0.02
empdb.dbo.t4 0.30 0.30 0.00 56.25 0.02
empdb.dbo.t5 0.30 0.30 0.00 56.25 0.02
empdb.dbo.t6 0.30 0.30 0.00 56.25 0.02
empdb.dbo.t8 0.30 0.30 0.00 56.25 0.02
empdb.dbo.t7 0.57 0.20 64.71 62.50 0.02
tempdb.dbo.tempcachedobjstats 3.63 0.00 100.00 50.00 0.01
tempdb.dbo.tempobjstats 0.47 0.00 100.00 25.00 0.00

Object Obj Size Size in Cache
------------------------------- ----------- -------------
empdb.dbo.t1 32 Kb 18 Kb
empdb.dbo.t2 32 Kb 18 Kb
empdb.dbo.t3 32 Kb 18 Kb
empdb.dbo.t4 32 Kb 18 Kb
empdb.dbo.t5 32 Kb 18 Kb
empdb.dbo.t6 32 Kb 18 Kb
empdb.dbo.t8 32 Kb 18 Kb
empdb.dbo.t7 32 Kb 20 Kb
tempdb.dbo.tempcachedobjstats 16 Kb 8 Kb
tempdb.dbo.tempobjstats 16 Kb 4 Kb

company_cache

Run Size : 1.00 Mb Usage% : 0.39
LR/sec : 0.07 PR/sec : 0.07 Hit%: 0.00
Cache Partitions: 1 Spinlock Contention%: 0.00

Buffer Pool Information

IO Size Wash Size Run Size APF% LR/sec PR/sec Hit% APF-Eff% Usage%
------- ---------- ----------- ------ -------- -------- ------ -------- ------
2 Kb 204 Kb 1.00 Mb 10.00 0.07 0.07 0.00 n/a 0.39

Object Statistics

Sample interval and time reporting

212 Adaptive Server Enterprise

Object LR/sec PR/sec Hit% Obj_Cached% Cache_Occp%
-------------------- ------- ------- ------ ----------- -----------
empdb.dbo.history 0.07 0.07 0.00 25.00 0.39

Object Obj Size Size in Cache
-------------------- ----------- -------------
empdb.dbo.history 16 Kb 4 Kb

companydb_cache

Run Size : 5.00 Mb Usage% : 100.00
LR/sec : 380.97 PR/sec : 56.67 Hit%: 85.13
Cache Partitions: 1 Spinlock Contention%: 0.00

Buffer Pool Information

IO Size Wash Size Run Size APF% LR/sec PR/sec Hit% APF-Eff% Usage%
------- ---------- ----------- ------ -------- -------- ------ -------- ------
2 Kb 1024 Kb 5.00 Mb 10.00 380.97 56.67 85.13 98.42 100.00

Object Statistics

Object LR/sec PR/sec Hit% Obj_Cached% Cache_Occp%
----------------------------- ------- ------- ------ ----------- -----------
company_db.dbo.emp_projects 41.07 22.80 44.48 19.64 9.45
company_db.dbo.dept_det 93.03 20.67 77.79 99.08 54.53
company_db.dbo.emp_perf 116.70 2.63 97.74 97.77 34.18
company_db.dbo.dept_locs 0.43 0.17 61.54 50.00 0.16

Object Obj Size Size in Cache
----------------------------- ----------- -------------
company_db.dbo.emp_projects 2464 Kb 484 Kb
company_db.dbo.dept_det 2818 Kb 2792 Kb
company_db.dbo.emp_perf 1790 Kb 1750 Kb
company_db.dbo.dept_locs 16 Kb 8 Kb

TUNING RECOMMENDATIONS
--
Usage% for ’default data cache’ is low (< 5%)
Usage% for 4k buffer pool in cache:default data cache is low (< 5%)
Usage% for 2k buffer pool in cache:default data cache is low (< 5%)

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 213

Usage% for ’company_cache’ is low (< 5%)

 Usage% for 2k buffer pool in cache:company_cache is low (< 5%)

 Consider adding a large I/O pool for ’companydb_cache’

LEGEND

LR/sec - number of logical reads per second, i.e. sum of cache & disk reads

PR/sec - number of physical reads per second i.e. disk reads

Run Size- size of cache or buffer pool in Kilobytes

Cache Partitions- number of cache partitions

Spinlock Contention%- Percentage spinlock contention for the cache

Hit% - ratio of hits to total searches

Usage% - ratio of pages referenced to Run Size

Wash Size- wash size of buffer pool in Kilobytes

APF% - asynchronous prefetch % for this buffer pool

APF-Eff%- Ratio of buffers found in cache and brought in because

 of APF to the number of APF disk reads performed

Object - combination of db, owner, object and index name

Obj Size- size of the object in Kilobytes

Size in Cache- size occupied in cache in Kilobytes at the end of sample

Obj_Cached%- Ratio of ’Size in Cache’ to ’Obj Size’

Cache_Occp%- Ratio of ’Size in Cache’ to ’Run Size’ of cache

Kernel utilization

214 Adaptive Server Enterprise

Kernel utilization
“Kernel Utilization” reports Adaptive Server activities. It tells you how busy
Adaptive Server engines were during the time that the CPU was available to
Adaptive Server, how often the CPU yielded to the operating system, the
number of times that the engines checked for network and disk I/O, and the
average number of I/Os they found waiting at each check.

Sample output
The following sample shows sp_sysmon output for “Kernel Utilization” in an
environment with eight Adaptive Server engines.

Kernel Utilization

Your Runnable Process Search Count is set to 2000
and I/O Polling Process Count is set to 10

In this example, the CPU did not yield to the operating system, so there are no
detail rows.

Engine busy utilization
“Engine Busy Utilization” reports the percentage of time the Adaptive Server
Kernel is busy executing tasks on each Adaptive Server engine (rather than
time spent idle). The summary row gives the total and the average active time
for all engines combined.

The values reported here may differ from the CPU usage values reported by
operating system tools. When Adaptive Server has no tasks to process, it enters
a loop that regularly checks for network I/O, completed disk I/Os, and tasks in
the run queue.

Operating system commands to check CPU activity may show high usage for
a Adaptive Server engine because they are measuring the looping activity,
while “Engine Busy Utilization” does not include time spent looping—it is
considered idle time.

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 215

One measurement that cannot be made from inside Adaptive Server is the
percentage of time that Adaptive Server had control of the CPU vs. the time the
CPU was in use by the operating system. Check your operating system
documentation for the correct commands.

If you want to reduce the time that Adaptive Server spends checking for I/O
while idle, you can lower the sp_configure parameter runnable process search
count. This parameter specifies the number of times a Adaptive Server engine
loops looking for a runnable task before yielding the CPU.

For more information, see the System Administration Guide.

“Engine Busy Utilization” measures how busy Adaptive Server engines were
during the CPU time they were given. If the engine is available to Adaptive
Server for 80% of a 10-minute sample interval, and “Engine Busy Utilization”
was 90%, it means that Adaptive Server was busy for 7 minutes and 12 seconds
and was idle for 48 seconds.

This category can help you decide whether there are too many or too few
Adaptive Server engines. Adaptive Server’s high scalability is due to tunable
mechanisms that avoid resource contention.

By checking sp_sysmon output for problems and tuning to alleviate contention,
response time can remain high even at “Engine Busy” values in the 80 to 90%
range. If values are consistently very high (more than 90%), it is likely that
response time and throughput could benefit from an additional engine.

The “Engine Busy Utilization” values are averages over the sample interval, so
very high averages indicate that engines may be 100% busy during part of the
interval.

When engine utilization is extremely high, the housekeeper wash task writes
few or no pages out to disk (since it runs only during idle CPU cycles.) This
means that a checkpoint finds many pages that need to be written to disk, and
the checkpoint process, a large batch job, or a database dump is likely to send
CPU usage to 100% for a period of time, causing a perceptible dip in response
time.

If the “Engine Busy Utilization” percentages are consistently high, and you
want to improve response time and throughput by adding Adaptive Server
engines, check for increased resource contention in other areas after adding
each engine.

Kernel utilization

216 Adaptive Server Enterprise

In an environment where Adaptive Server is serving a large number of users,
performance is usually fairly evenly distributed across engines. However,
when there are more engines than tasks, you may see some engines with a large
percentage of utilization, and other engines may be idle. On a server with a
single task running a query, for example, you may see output like this:

Engine Busy Utilization CPU Busy I/O Busy Idle
------------------------ -------- -------- --------

Engine 0 0.0 % 0.2 % 99.8 %
Engine 1 0.0 %

----------- --------------- ----------------
 Summary Total 97.2 % Average 16.2 %

In an SMP environment, tasks have soft affinity to engines. Without other
activity (such as lock contention) that could cause this task to be placed in the
global run cue, the task continues to run on the same engine.

CPU yields by engine
“CPU Yields by Engine” reports the number of times each Adaptive Server
engine yielded to the operating system. “% of total” data is the percentage of
times an engine yielded as a percentage of the combined yields for all engines.

“Total CPU Yields” reports the combined data over all engines.

If the “Engine Busy Utilization” data indicates low engine utilization, use
“CPU Yields by Engine” to determine whether the “Engine Busy Utilization”
data reflects a truly inactive engine or one that is frequently starved out of the
CPU by the operating system.

When an engine is not busy, it yields to the CPU after a period of time related
to the runnable process search count parameter. A high value for “CPU Yields
by Engine” indicates that the engine yielded voluntarily.

If you also see that “Engine Busy Utilization” is a low value, then the engine
really is inactive, as opposed to being starved out.

Engine Busy CPY Yields :

Low Low Engine is CPU starved
Low High Engine inactive
High Low
High High Engine busy/active

See the System Administration Guide for more information.

CPU Yields by Engine per sec per xact count % of total

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 217

------------------------- ------------ ------------ ---------- ----------
Total CPU Yields 0.0 0.0 0 n/a

Network checks
“Network Checks” includes information about blocking and non-blocking
network I/O checks, the total number of I/O checks for the interval, and the
average number of network I/Os per network check.

Adaptive Server has two ways to check for network I/O: blocking and non-
blocking modes.

Network Checks
Non-Blocking 683.5 20503.5 82014 93.2 %
Blocking 49.5 1484.5 5938 6.8 %

------------------------- ------------ ------------ ----------
Total Network I/O Checks 732.9 21988.0 87952
Avg Net I/Os per Check n/a n/a 0.00000 n/a

Non–blocking

“Non-Blocking” reports the number of times Adaptive Server performed non-
blocking network checks. With non-blocking network I/O checks, an engine
checks the network for I/O and continues processing, whether or not it found
I/O waiting.

Blocking

“Blocking” reports the number of times Adaptive Server performed blocking
network checks.

After an engine completes a task, it loops waiting for the network to deliver a
runnable task. After a certain number of loops (determined by the sp_configure
parameter runnable process search count), the Adaptive Server engine goes to
sleep after a blocking network I/O.

When an engine yields to the operating system because there are no tasks to
process, it wakes up once per clock tick to check for incoming network I/O. If
there is I/O, the operating system blocks the engine from active processing
until the I/O completes.

Kernel utilization

218 Adaptive Server Enterprise

If an engine has yielded to the operating system and is doing blocking checks,
it might continue to sleep for a period of time after a network packet arrives.
This period of time is referred to as the latency period. You can reduce the
latency period by increasing the runnable process search count parameter so
that the Adaptive Server engine loops for longer periods of time.

See the System Administration Guide for more information.

Total network I/O checks

“Total Network I/O Checks” reports the number of times an engine polls for
incoming and outgoing packets. This category is helpful when you use it with
“CPU Yields by Engine.”

When an engine is idle, it loops while checking for network packets. If
“Network Checks” is low and “CPU Yields by Engine” is high, the engine
could be yielding too often and not checking the network frequently enough. If
the system can afford the overhead, it might be acceptable to yield less often.

Average network I/Os per check

“Avg Net I/Os per Check” reports the average number of network I/Os (both
sends and receives) per check for all Adaptive Server engine checks that took
place during the sample interval.

The sp_configure parameter i/o polling process count specifies the maximum
number of processes that Adaptive Server runs before the scheduler checks for
disk and/or network I/O completions. Tuning i/o polling process count affects
both the response time and throughput of Adaptive Server.

See the System Administration Guide.

If Adaptive Server engines check frequently, but retrieve network I/O
infrequently, you can try reducing the frequency for network I/O checking.

Disk I/O checks
This section reports the total number of disk I/O checks, and the number of
checks returning I/O.

 Disk I/O Checks
Total Disk I/O Checks 732.9 21988.0 87952 n/a
Checks Returning I/O 83.8 2512.5 10050 11.4 %
Avg Disk I/Os Returned n/a n/a 0.00020 n/a

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 219

Total disk I/O checks
“Total Disk I/O Checks” reports the number of times engines checked for disk
I/O.

When a task needs to perform I/O, the Adaptive Server engine running that task
immediately issues an I/O request and puts the task to sleep, waiting for the I/O
to complete. The engine processes other tasks, if any, but also loops to check
for completed I/Os. When the engine finds completed I/Os, it moves the task
from the sleep queue to the run queue.

Checks returning I/O

“Checks Returning I/O” reports the number of times that a requested I/O had
completed when an engine checked for disk I/O.

For example, if an engine checks for expected I/O 100,000 times, this average
indicates the percentage of time that there actually was I/O pending. If, of those
100,000 checks, I/O was pending 10,000 times, then 10% of the checks were
effective, and the other 90% were overhead.

However, you should also check the average number of I/Os returned per check
and how busy the engines were during the sample interval. If the sample
includes idle time, or the I/O traffic is “bursty,” it is possible that during a high
percentage of the checks were returning I/O during the busy period.

If the results in this category seem low or high, you can configure i/o polling
process count to increase or decrease the frequency of the checks.

See the System Administration Guide.

Average disk I/Os returned

“Avg Disk I/Os Returned” reports the average number of disk I/Os returned
over all Adaptive Server engine checks combined.

Increasing the amount of time that Adaptive Server engines wait between
checks may result in better throughput because Adaptive Server engines can
spend more time processing if they spend less time checking for I/O. However,
you should verify this for your environment. Use the sp_configure parameter i/o
polling process count to increase the length of the checking loop.

See the System Administration Guide.

Worker process management

220 Adaptive Server Enterprise

Worker process management
“Worker Process Management” reports the use of worker processes, including
the number of worker process requests that were granted and denied and the
success and failure of memory requests for worker processes.

You need to analyze this output in combination with the information reported
under “Parallel query management” on page 222.

Sample output
==

Worker Process Management

per sec per xact count % of total
------------ ------------ ---------- -------

Worker Process Requests
Total Requests 0.0 0.0 0 n/a

Worker Process Usage
Total Used 0.0 0.0 0 n/a
Max Ever Used During Sample 0.0 0.0 0 n/a

Memory Requests for Worker Processes
Total Requests 0.0 0.0 0 n/a

Avg Mem Ever Used by a WP
 (in bytes) n/a n/a 311.7 n/a n/a

Worker process requests
This section reports requests for worker processes and worker process memory.
A parallel query may make multiple requests for worker processes. For
example, a parallel query that requires a sort may make one request for
accessing data and a second for parallel sort.

The “Requests Granted” and “Requests Denied” rows show how many
requests were granted and how many requests were denied due to a lack of
available worker processes at execution time.

To see the number of adjustments made to the number of worker processes, see
“Parallel query usage” on page 223.

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 221

“Requests Terminated” reports the number of times a request was terminated
by user action, such as pressing Ctrl-c, that cancelled the query.

Worker process usage
In this section, “Total Used” reports the total number of worker processes used
during the sample interval. “Max Ever Used During Sample” reports the
highest number in use at any time during sp_sysmon’s sampling period. You
can use “Max Ever Used During Sample” to set the configuration parameter
number of worker processes.

Memory requests for worker processes
This section reports how many requests were made for memory allocations for
worker processes, how many of those requests succeeded and how many failed.
Memory for worker processes is allocated from a memory pool configured
with the parameter memory per worker process.

If “Failed” is a nonzero value, you may need to increase the value of memory
per worker process.

Avg mem ever used by a WP
This row reports the maximum average memory used by all active worker
processes at any time during the sample interval. Each worker process requires
memory, principally for exchanging coordination messages. This memory is
allocated by Adaptive Server from the global memory pool.

The size of the pool is determined by multiplying the two configuration
parameters, number of worker processes and memory per worker process.

If number of worker processes is set to 50, and memory per worker process is set
to the default value of 1024 bytes, 50K is available in the pool. Increasing
memory for worker process to 2048 bytes would require 50K of additional
memory.

Parallel query management

222 Adaptive Server Enterprise

At start-up, static structures are created for each worker process. While worker
processes are in use, additional memory is allocated from the pool as needed
and deallocated when not needed. The average value printed is the average for
all static and dynamically memory allocated for all worker processes, divided
by the number of worker processes actually in use during the sample interval.

If a large number of worker processes are configured, but only a few are in use
during the sample interval, the value printed may be inflated, due to averaging
in the static memory for unused processes.

If “Avg Mem” is close to the value set by memory per worker process and the
number of worker processes in “Max Ever Used During Sample” is close to the
number configured, you may want to increase the value of the parameter.

If a worker process needs memory from the pool, and no memory is available,
the process prints an error message and exits.

Note For most parallel query processing, the default value of 1024 is more
than adequate.

The exception is dbcc checkstorage, which can use up 1792 bytes if only one
worker process is configured. If you are using dbcc checkstorage, and number
of worker processes is set to 1, you may want to increase memory per worker
process.

Parallel query management
“Parallel Query Management” reports the execution of parallel queries. It
reports the total number of parallel queries, how many times the number of
worker processes was adjusted at runtime, and reports on the granting of locks
during merges and sorts.

Sample output
===

Parallel Query Management

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 223

Parallel Query Usage per sec per xact count % of total
------------------------- ------------ ------------ ---------- ----------

Total Parallel Queries 0.0 0.0 0 n/a

Merge Lock Requests per sec per xact count % of total
------------------------- ------------ ------------ ---------- ----------

Total # of Requests 0.0 0.0 0 n/a

Sort Buffer Waits per sec per xact count % of total
------------------------- ------------ ------------ ---------- ----------

Total # of Waits 0.0 0.0 0 n/a

Parallel query usage
“Total Parallel Queries” reports the total number of queries eligible to be run
in parallel. The optimizer determines the best plan, deciding whether a query
should be run serially or in parallel and how many worker processes should be
used for parallel queries.

“WP Adjustments Made” reports how many times the number of worker
processes recommended by the optimizer had to be adjusted at runtime. Two
possible causes are reported:

• “Due to WP Limit” indicates the number of times the number of worker
processes for a cached query plan was adjusted due to a session-level limit
set with set parallel_degree or set scan_parallel_degree.

If “Due to WP Limit” is a nonzero value, look for applications that set
session-level limits.

• “Due to No WPs” indicates the number of requests for which the number
of worker processes was reduced due to lack of available worker
processes. These queries may run in serial, or they may run in parallel with
fewer worker processes than recommended by the optimizer. It could
mean that queries are running with poorly-optimized plans.

If “Due to No WPs” is a nonzero value, and the sample was taken at a time
of typical load on your system, you may want to increase the number of
worker processes configuration parameter or set session-level limits for
some queries.

Running sp_showplan on the fid (family ID) of a login using an adjusted
plan shows only the cached plan, not the adjusted plan.

Task management

224 Adaptive Server Enterprise

If the login is running an adjusted plan, sp_who shows a different number
of worker processes for the fid than the number indicated by sp_showplan
results.

Merge lock requests
“Merge Lock Requests” reports the number of parallel merge lock requests that
were made, how many were granted immediately, and how many had to wait
for each type of merge. The three merge types are:

• “Network Buffer Merge Locks”–reports contention for the network
buffers that return results to clients.

• “Result Buffer Merge Locks”–reports contention for the result buffers
used to process results for ungrouped aggregates and nonsorted, non
aggregate variable assignment results.

• “Work Table Merge Locks”–reports contention for locks while results
from work tables were being merge.

“Total # of Requests” prints the total of the three types of merge requests.

Sort buffer waits
This section reports contention for the sort buffers used for parallel sorts.
Parallel sort buffers are used by:

• Producers – the worker processes returning rows from parallel scans

• Consumers – the worker processes performing the parallel sort

If the number of waits is high, you can configure number of sort buffers to a
higher value.

See “Sort buffer configuration guidelines” on page 225 in Performance and
Tuning: Optimizer for guidelines.

Task management
“Task Management” provides information on opened connections, task context
switches by engine, and task context switches by cause.

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 225

Sample output
The following sample shows sp_sysmon output for the “Task Management”
categories.

===
Task Management per sec per xact count % of total
--------------------------- ------------ ------------ ---------- ----------

Connections Opened 0.0 0.0 0 n/a

Task Context Switches by Engine
Engine 0 0.6 16.5 66 100.0 %

Task Context Switches Due To:
Voluntary Yields 0.2 7.0 28 42.4 %
Cache Search Misses 0.0 0.0 0 0.0 %
System Disk Writes 0.0 0.0 0 0.0 %
I/O Pacing 0.0 0.0 0 0.0 %
Logical Lock Contention 0.0 0.0 0 0.0 %
Address Lock Contention 0.0 0.0 0 0.0 %
Latch Contention 0.0 0.0 0 0.0 %
Log Semaphore Contention 0.0 0.0 0 0.0 %
PLC Lock Contention 0.0 0.0 0 0.0 %
Group Commit Sleeps 0.0 0.0 0 0.0 %
Last Log Page Writes 0.0 0.0 0 0.0 %
Modify Conflicts 0.0 0.0 0 0.0 %
I/O Device Contention 0.0 0.0 0 0.0 %
Network Packet Received 0.0 0.0 0 0.0 %
Network Packet Sent 0.0 0.0 0 0.0 %
Other Causes 0.3 9.5 38 57.6 %

Connections opened
“Connections Opened” reports the number of connections opened to Adaptive
Server. It includes any type of connection, such as client connections and
remote procedure calls. It counts only connections that were started during the
sample interval.

Connections that were established before the interval started are not counted,
although they may be active and using resources.

Task management

226 Adaptive Server Enterprise

This provides a general understanding of the Adaptive Server environment and
the work load during the interval. This data can also be useful for
understanding application behavior – it can help determine if applications
repeatedly open and close connections or perform multiple transactions per
connection.

See “Transaction profile” on page 243 for information about committed
transactions.

Task context switches by engine
“Task Context Switches by Engine” reports the number of times each Adaptive
Server engine switched context from one user task to another. “% of total”
reports the percentage of engine task switches for each Adaptive Server engine
as a percentage of the total number of task switches for all Adaptive Server
engines combined.

“Total Task Switches” summarizes task-switch activity for all engines on SMP
servers. You can use “Total Task Switches” to observe the effect of re
configurations. You might reconfigure a cache or add memory if tasks appear
to block on cache search misses and to be switched out often. Then, check the
data to see if tasks tend to be switched out more or less often.

Task context switches due to
“Task Context Switches Due To” reports the number of times that Adaptive
Server switched context for a number of common reasons. “% of total” reports
the percentage of times the context switch was due to each specific cause as a
percentage of the total number of task context switches for all Adaptive Server
engines combined.

“Task Context Switches Due To” provides an overview of the reasons that tasks
were switched off engines. The possible performance problems shown in this
section can be investigated by checking other sp_sysmon output, as indicated
in the sections that describe the causes.

For example, if most of the task switches are caused by physical I/O, try
minimizing physical I/O by adding more memory or re configuring caches.
However, if lock contention causes most of the task switches, check the locking
section of your report.

See “Lock management” on page 269 for more information.

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 227

Voluntary yields

“Voluntary Yields” reports the number of times a task completed or yielded
after running for the configured amount of time. The Adaptive Server engine
switches context from the task that yielded to another task.

The configuration parameter time slice sets the amount of time that a process
can run. A CPU-intensive task that does not switch out due to other causes
yields the CPU at certain “yield points” in the code, in order to allow other
processes a turn on the CPU.

See “Scheduling client task processing time” on page 42 in Performance and
Tuning: Basics for more information.

A high number of voluntary yields indicates that there is little contention.

Cache search misses

“Cache Search Misses” reports the number of times a task was switched out
because a needed page was not in cache and had to be read from disk. For data
and index pages, the task is switched out while the physical read is performed.

See “Data cache management” on page 278 for more information about the
cache-related parts of the sp_sysmon output.

System disk writes

“System Disk Writes” reports the number of times a task was switched out
because it needed to perform a disk write or because it needed to access a page
that was being written by another process, such as the housekeeper or the
checkpoint process.

Most Adaptive Server writes happen asynchronously, but processes sleep
during writes for page splits, recovery, and OAM page writes.

If “System Disk Writes” seems high, check the value for page splits to see if
the problem is caused by data page and index page splits.

See “Page splits” on page 259 for more information.

If the high value for system disk writes is not caused by page splitting, you
cannot affect this value by tuning.

Task management

228 Adaptive Server Enterprise

I/O pacing

“I/O Pacing” reports how many times an I/O-intensive task was switched off
an engine due to exceeding an I/O batch limit. Adaptive Server paces disk
writes to keep from flooding the disk I/O subsystems during certain operations
that need to perform large amounts of I/O.

Two examples are the checkpoint process and transaction commits that write a
large number of log pages. The task is switched out and sleeps until the batch
of writes completes and then wakes up and issues another batch.

By default, the number of writes per batch is set to 10. You may want to
increase the number of writes per batch if:

• You have a high-throughput, high-transaction environment with a large
data cache

• Your system is not I/O bound

Valid values are from 1 to 50. This command sets the number of writes per
batch to 20:

dbcc tune (maxwritedes, 20)

Logical lock contention

“Logical Lock Contention” reports the number of times a task was switched
out due to contention for locks on tables, data pages, or data rows.

Investigate lock contention problems by checking the transaction detail and
lock management sections of the report.

• See “Transaction detail” on page 246 and “Lock management” on page
269.

• Check to see if your queries are doing deferred and direct expensive
updates, which can cause additional index locks.

See “Updates” on page 248.

• Use sp_object_stats to report information on a per-object basis.

See “Identifying tables where concurrency is a problem” on page 88 of
Performance and Tuning: Locking.

For additional help on locks and lock contention, check the following sources:

• “Types of Locks” in the System Administration Guide provides
information about types of locks to use at server or query level.

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 229

• “Reducing lock contention” on page 40 of Performance and Tuning:
Locking provides pointers on reducing lock contention.

• Chapter 13, “Indexing for Performance,” in Performance and Tuning:
Basics, provides information on indexes and query tuning. In particular,
use indexes to ensure that updates and deletes do not lead to table scans
and exclusive table locks.

Address lock contention

“Address Lock Contention” reports the number of times a task was switched
out because of address locks. Adaptive Server acquires address locks on index
pages of allpages-locked tables. Address lock contention blocks access to data
pages.

Latch contention

“Latch Contention” reports the number of times a task was switched out
because it needed to wait for a latch.

If your user tables use only allpages-locking, this latch contention is taking
place either on a data-only-locked system table or on allocation pages.

If your applications use data-only-locking, the contention reported here
includes all waits for latches, including those on index pages and OAM pages
as well as allocation pages.

Reducing contention during page allocation

In SMP environments where inserts and expanding updates are extremely high,
so that page allocations take place very frequently, contention for the allocation
page latch can reduce performance. Normally, Adaptive Server allocates new
pages for an object on an allocation unit that is already in use by the object and
known to have free space.

For each object, Adaptive Server tracks this allocation page number as a hint
for any tasks that need to allocate a page for that object. When more than one
task at a time needs to allocate a page on the same allocation unit, the second
and subsequent tasks block on the latch on the allocation page.

You can specify a “greedy allocation” scheme, so that Adaptive Server keeps
a list of eight allocation hints for page allocations for a table.

This command enables greedy allocation for the salesdetail table in database 6:

dbcc tune(des_greedyalloc, 6, salesdetail, "on")

Task management

230 Adaptive Server Enterprise

To turn it off, use:

dbcc tune(des_greedyalloc, 6, salesdetail, "off")

The effect of dbcc tune(des_greedyalloc) are not persistent, so you need to
reissue the commands after a reboot.

You should use this command only if all of the following are true:

• You have multiple engines. It is rarely useful with fewer than four engines.

• A large number of pages are being allocated for the object. You can use
sp_spaceused or optdiag to track the number of pages.

• The latch contention counter shows contention.

Greedy allocation is more useful when tables are assigned to their own
segments. If you enable greedy allocation for several tables on the same
segment, the same allocation hint could be used for more than one table. Hints
are unique for each table, but uniqueness is not enforced across all tables.

Greedy allocation is not allowed in the master and tempdb databases, and is not
allowed on system tables. Greedy page allocation is not applicable to
partitioned tables.

The hints are allocation pages which potentially have free space and that the
maximum number of hints maintained is 16.

Log semaphore contention

“Log Semaphore Contention” reports the number of times a task was switched
out because it needed to acquire the transaction log semaphore held by another
task. This applies to SMP systems only.

If log semaphore contention is high, see “Transaction management” on page
250.

Check disk queuing on the disk used by the transaction log.

See “Disk I/O management” on page 298.

Also see “Engine busy utilization” on page 214. If engine utilization reports a
low value, and response time is within acceptable limits, consider reducing the
number of engines. Running with fewer engines reduces contention by
decreasing the number of tasks trying to access the log simultaneously.

PLC lock contention

“PLC Lock Contention” reports contention for a lock on a user log cache.

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 231

Group commit sleeps

“Group Commit Sleeps” reports the number of times a task performed a
transaction commit and was put to sleep until the log was written to disk.

Compare this value to the number of committed transactions, reported in
“Transaction profile” on page 243. If the transaction rate is low, a higher
percentage of tasks wait for “Group Commit Sleeps.”

If there are a significant number of tasks resulting in “Group Commit Sleeps,”
and the log I/O size is greater than 2K, a smaller log I/O size can help to reduce
commit time by causing more frequent page flushes. Flushing the page wakes
up tasks sleeping on the group commit.

In high throughput environments, a large log I/O size helps prevent problems
in disk queuing on the log device. A high percentage of group commit sleeps
should not be regarded as a problem.

Other factors that can affect group commit sleeps are the number of tasks on
the run queue and the speed of the disk device on which the log resides.

When a task commits, its log records are flushed from its user log cache to the
current page of the transaction log in cache. If the log page (or pages, if a large
log I/O size is configured) is not full, the task is switched out and placed on the
end of the run queue. The log write for the page is performed when:

• Another process fills the log page(s), and flushes the log

• When the task reaches the head of the run queue, and no other process has
flushed the log page

For more information, see “Choosing the I/O size for the transaction log” on
page 234 in Performance and Tuning: Basics.

Last log page writes

“Last Log Page Writes” reports the number of times a task was switched out
because it was put to sleep while writing the last log page.

The task switched out because it was responsible for writing the last log page,
as opposed to sleeping while waiting for some other task to write the log page,
as described in “Group commit sleeps” on page 231.

If this value is high, review “Avg # writes per log page” on page 256 to
determine whether Adaptive Server is repeatedly writing the same last page to
the log. If the log I/O size is greater than 2K, reducing the log I/O size might
reduce the number of unneeded log writes.

Task management

232 Adaptive Server Enterprise

Modify conflicts

“Modify Conflicts” reports the number of times that a task tried to get
exclusive access to a page that was held by another task under a special
lightweight protection mechanism. For certain operations, Adaptive Server
uses a lightweight protection mechanism to gain exclusive access to a page
without using actual page locks. Examples are access to some system tables
and dirty reads. These processes need exclusive access to the page, even
though they do not modify it.

I/O device contention

“I/O Device Contention” reports the number of times a task was put to sleep
while waiting for a semaphore for a particular device.

When a task needs to perform physical I/O, Adaptive Server fills out the I/O
structure and links it to a per-engine I/O queue. If two Adaptive Server engines
request an I/O structure from the same device at the same time, one of them
sleeps while it waits for the semaphore.

If there is significant contention for I/O device semaphores, try reducing it by
redistributing the tables across devices or by adding devices and moving tables
and indexes to them.

See “Spreading data across disks to avoid I/O contention” on page 93 in
Performance and Tuning: Basics for more information.

Network packet received

When task switching is reported by “Network Packet Received,” the task
switch is due to one of these causes:

• A task received part of a multi packet batch and was switched out waiting
for the client to send the next packet of the batch, or

• A task completely finished processing a command and was put into a
receive sleep state while waiting to receive the next command or packet
from the client.

If “Network Packet Received” is high, see “Network I/O management” on
page 303 for more information about network I/O. Also, you can configure the
network packet size for all connections or allow certain connections to log in
using larger packet sizes.

See “Changing network packet sizes” on page 27 in Performance and Tuning:
Basics and the System Administration Guide.

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 233

Network packet sent

“Network Packet Sent” reports the number of times a task went into a send
sleep state while waiting for the network to send each packet to the client. The
network model determines that there can be only one outstanding packet per
connection at any one point in time. This means that the task sleeps after each
packet it sends.

If there is a lot of data to send, and the task is sending many small packets (512
bytes per packet), the task could end up sleeping a number of times. The data
packet size is configurable, and different clients can request different packet
sizes.

For more information, see “Changing network packet sizes” on page 27 in
Performance and Tuning: Basics and the System Administration Guide.

If “Network Packet Sent” is a major cause of task switching, see “Network I/O
management” on page 303 for more information.

Other causes

“Other Causes” reports the number of tasks switched out for any reasons not
described above. In a well-tuned server, this value may rise as tunable sources
of task switching are reduced.

Application management
“Application Management” reports execution statistics for user tasks. This
section is useful if you use resource limits, or if you plan to tune applications
by setting execution attributes and assigning engine affinity. Before making
any adjustments to applications, logins, or stored procedures, run sp_sysmon
during periods of typical load, and familiarize yourself with the statistics in this
section.

For related background information, see Chapter 5, “Distributing Engine
Resources,” in Performance and Tuning:Basics.

Sample output
===

Application management

234 Adaptive Server Enterprise

Application Management

Application Statistics Summary (All Applications)

Priority Changes per sec per xact count % of total
------------------------- ------------ ------------ ---------- ----------

To High Priority 0.0 0.0 0 0.0 %
To Medium Priority 0.0 1.3 5 50.0 %
To Low Priority 0.0 1.3 5 50.0 %

------------------------- ------------ ------------ ----------
Total Priority Changes 0.1 2.5 10

Allotted Slices Exhausted per sec per xact count % of total
------------------------- ------------ ------------ ---------- ----------

Total Slices Exhausted 0.0 0.0 0 n/a

Skipped Tasks By Engine per sec per xact count % of total
------------------------- ------------ ------------ ---------- ----------

Total Engine Skips 0.0 0.0 0 n/a

Engine Scope Changes 0.0 0.0 0 n/a

Requesting detailed application information
• If you request information about specific tasks using the third sp_sysmon

parameter, sp_sysmon output gives statistics specific to each application
individually in addition to summary information. You can choose to
display detailed application information in one of two ways:

• Application and login information (using the sp_sysmon parameter
appl_and_login) – sp_sysmon prints a separate section for each login and
the applications it is executing.

• Application information only (using the sp_sysmon parameter, appl_only)
– sp_sysmon prints a section for each application, which combines data for
all of the logins that are executing it.

For example, if 10 users are logged in with isql, and 5 users are logged in with
an application called sales_reports, requesting “application and login”
information prints 15 detail sections. Requesting “application only”
information prints 2 detail sections, one summarizing the activity of all isql
users, and the other summarizing the activity of the sales_reports users.

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 235

The appl_and_login can be used with all sections of the sp_sysmon. An
example of the syntax:

sp_sysmon “00:05:00”, @applmon=appl_and_login

See “Specifying the application detail parameter” on page 202 for information
on specifying the parameters for sp_sysmon.

Sample output
The following sample shows sp_sysmon output for the “Application
Management” categories in the summary section.

Application Management

 Application Statistics Summary (All Applications)

 Priority Changes per sec per xact count % of total
 ------------------ ---------- ----------- ---------- ----------
 To High Priority 15.7 1.8 5664 49.9 %
 To Medium Priority 15.8 1.8 5697 50.1 %
 To Low Priority 0.0 0.0 0 0.0 %
 -------------------- ---------- ---------- ----------
 Total Priority Changes 31.6 3.5 11361

 Allotted Slices Exhausted per sec per xact count % of total
 ------------------------- ------- ---------- ---------- ----------
 High Priority 0.0 0.0 0 0.0 %
 Medium Priority 7.0 0.8 2522 100.0 %
 Low Priority 0.0 0.0 0 0.0 %
 ---------------------- --------- ---------- ----------
 Total Slices Exhausted 7.0 0.8 2522

 Skipped Tasks By Engine per sec per xact count % of total
 ---------------------- ---------- ---------- ---------
 Total Engine Skips 0.0 0.0 0 n/a

 Engine Scope Changes 0.0 0.0 0 n/a

The following example shows output for application and login; only the
information for one application and login is included. The first line identifies
the application name (before the arrow) and the login name (after the arrow).

 Application->Login: ctisql->adonis

Application management

236 Adaptive Server Enterprise

 Application Activity per sec per xact count % of total
 ---------------------- ---------- --------- -------- ----------
 CPU Busy 0.1 0.0 27 2.8 %
 I/O Busy 1.3 0.1 461 47.3 %
 Idle 1.4 0.2 486 49.9 %

Number of Times Scheduled 1.7 0.2 597 n/a

 Application Priority Changes per sec per xact count % of total
 ------------------------- ---------- --------- ------- ----------
 To High Priority 0.2 0.0 72 50.0 %
 To Medium Priority 0.2 0.0 72 50.0 %
 To Low Priority 0.0 0.0 0 0.0 %
 ------------------------ ----------- --------- -------
 Total Priority Changes 0.4 0.0 144

 Application I/Os Completed per sec per xact count % of total
 ------------------------- --------- ---------- -------- ----------
 Disk I/Os Completed 0.6 0.1 220 53.9 %
 Network I/Os Completed 0.5 0.1 188 46.1 %
 ------------------------- ------------ ------- --------
 Total I/Os Completed 1.1 0.1 408

 Resource Limits Violated per sec per xact count % of total
 ------------------------ -------- ---------- ------ -----------
 IO Limit Violations
 Estimated 0.0 0.0 0 0.0 %
 Actual 0.1 4.0 4 50.0 %
 Time Limit Violations
 Batch 0.0 0.0 0 0.0 %
 Xact 0.0 0.0 0 0.0 %
 RowCount Limit Violations 0.1 4.0 4 50.0 %

---------------------------- -------- --------- -------
 Total Limits Violated 0.1 8.0 8

Application statistics summary (all applications)
The sp_sysmon statistics in the summary section can help you determine
whether there are any anomalies in resource utilization. If there are, you can
investigate further using the detailed report.

This section gives information about:

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 237

• Whether tasks are switching back and forth between different priority
levels

• Whether the assigned time that tasks are allowed to run is appropriate

• Whether tasks to which you have assigned low priority are getting starved
for CPU time

• Whether engine bindings with respect to load balancing is correct

Note that “Application Statistics Summary” includes data for system tasks as
well as for user tasks. If the summary report indicates a resource issue, but you
do not see supporting evidence in the application or application and login
information, investigate the sp_sysmon kernel section of the report (“Kernel
utilization” on page 214).

Priority changes

“Priority Changes” reports the priority changes that took place for all user tasks
in each priority run queue during the sample interval. It is normal to see some
priority switching due to system-related activity. Such priority switching
occurs, for example, when:

• A task sleeps while waiting on a lock – Adaptive Server temporarily raises
the task’s priority.

• A housekeeper task sleeps – Adaptive Server raises the priority to medium
when the housekeeper wash and housekeeper chores task wake up, and
changes them back to low priority when they go back to sleep.

• A task executes a stored procedure – the task assumes the priority of the
stored procedure and resumes its previous priority level after executing the
procedure.

If you are using logical process management and there are a high number of
priority changes compared to steady state values, it may indicate that an
application, or a user task related to that application, is changing priorities
frequently. Check priority change data for individual applications. Verify that
applications and logins are behaving as you expect.

If you determine that a high-priority change rate is not due to an application or
to related tasks, then it is likely due to system activity.

Application management

238 Adaptive Server Enterprise

Total priority changes

“Total Priority Changes” reports the total number of priority changes during
the sample period. This section gives you a quick way to determine if there are
a high number of run queue priority changes occurring.

Allotted slices exhausted

“Allotted Slices Exhausted” reports the number of times user tasks in each run
queue exceeded the time allotted for execution. Once a user task gains access
to an engine, it is allowed to execute for a given period of time. If the task has
not yielded the engine before the time is exhausted, Adaptive Server requires
it to yield as soon as possible without holding critical resources. After yielding,
the task is placed back on the run queue.

This section helps you to determine whether there are CPU-intensive
applications for which you should tune execution attributes or engine
associations. If these numbers are high, it indicates that an application is CPU
intensive. Application-level information can help you figure out which
application to tune. Some tasks, especially those which perform large sort
operations, are CPU intensive.

Skipped tasks by engine

“Skipped Tasks By Engine” reports the number of times engines skipped a user
task at the head of a run queue. This happens when the task at the head of the
run queue has affinity to an engine group and was bypassed in the queue by an
engine that is not part of the engine group.

The value is affected by configuring engine groups and engine group bindings.
A high number in this category might be acceptable if low priority tasks are
bypassed for more critical tasks. It is possible that an engine group is bound so
that a task that is ready to run might not be able to find a compatible engine. In
this case, a task might wait to execute while an engine sits idle. Investigate
engine groups and how they are bound, and check load balancing.

Engine scope changes

“Engine Scope Changes” reports the number of times a user changed the
engine group binding of any user task during the sample interval.

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 239

Per application or per application and login
This section gives detailed information about system resource used by
particular application and login tasks, or all users of each application.

Application activity

Application Activity helps you to determine whether an application is I/0
intensive or CPU intensive. It reports how much time all user task in the
application spend executing, doing I/O, or being idle. It also reports the number
of times a task is scheduled and chosen to run.

CPU busy

“CPU Busy” reports the number of clock ticks during which the user task was
executing during the sample interval. When the numbers in this category are
high, it indicates a CPU- bound application. If this is a problem, engine binding
might be a solution.

I/O busy

“I/O Busy” reports the number of clock ticks during which the user task was
performing I/O during the sample interval. If the numbers in this category are
high, it indicates an I/O-intensive process. If idle time is also high, the
application could be I/O bound.

The application might achieve better throughput if you assign it a higher
priority, bind it to a lightly loaded engine or engine group, or partition the
application’s data onto multiple devices.

Idle

“Idle” reports the number of clock ticks during which the user task was idle
during the sample interval.

Number of times scheduled

“Number of Times Scheduled” reports the number of times a user task is
scheduled and chosen to run on an engine. This data can help you determine
whether an application has sufficient resources. If this number is low for a task
that normally requires substantial CPU time, it may indicate insufficient
resources. Consider changing priority in a loaded system with sufficient engine
resources.

ESP management

240 Adaptive Server Enterprise

Application priority changes

Application Priority Changes reports the number of times this application had its
priority changed during the sample interval.

When the Application Management category indicates a problem, use this
section to pinpoint the source.

Application I/Os completed

“Application I/Os Completed” reports the disk and network I/Os completed by
this application during the sample interval.

This category indicates the total number of disk and network I/Os completed.

If you suspect a problem with I/O completion, see “Disk I/O management” on
page 298 and “Network I/O management” on page 303.

Resource limits violated

“Resource Limits Violated” reports the number and types of violations for:

• I/O Limit Violations–Estimated and Actual

• Time Limits–Batch and Transaction

• RowCount Limit Violations

• “Total Limits Violated”

If no limits are exceeded during the sample period, only the total line is printed.

See the System Administration Guide for more information on resource limits.

ESP management
This section reports on the use of extended stored procedures.

Sample output
===

ESP Management per sec per xact count % of total

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 241

--------------------------- ------------ ------------ ---------- ----------
ESP Requests 0.0 0.0 0 n/a

ESP requests

“ESP Requests” reports the number of extended stored procedure calls during
the sample interval.

Avg. time to execute an ESP

“Avg. Time to Execute an ESP” reports the average length of time for all
extended stored procedures executed during the sample interval.

Housekeeper task activity
The “Housekeeper Tasks Activity” section reports on housekeeper tasks. If the
configuration parameter housekeeper free write percent is set to 0, the
housekeeper task does not run. If housekeeper free write percent is 1 or greater,
space reclamation can be enabled separately by setting enable housekeeper GC
to 1, or disabled by setting it to 0.

Sample output
===

Housekeeper Task Activity

per sec per xact count % of total
------------ ------------ ----------

Buffer Cache Washes
Clean 0.3 7.8 31 93.9 %
Dirty 0.0 0.5 2 6.1 %

------------ ------------ ----------
Total Washes 0.3 8.3 33

Garbage Collections 0.2 6.0 24 n/a
Pages Processed in GC 0.0 0.0 0 n/a

Statistics Updates 0.0 0.5 2 n/a

Monitor access to executing SQL

242 Adaptive Server Enterprise

Buffer cache washes
This section reports:

• The number of buffers examined by the housekeeper wash task

• The number that were found clean

• The number that were found dirty

The number of dirty buffers includes those already in I/O due to writes being
started at the wash marker.

The “Recovery Management” section of sp_sysmon reports how many times
the housekeeper wash task was able to write all dirty buffers for a database.

See“Recovery management” on page 295.

Garbage collections
This section reports the number of times the housekeeper garbage collection
task checked to determine whether there were committed deletes that indicated
that there was space that could be reclaimed on data pages.

“Pages Processed in GC” reports the number of pages where the housekeeper
garbage collection task succeeded in reclaiming unused space on the a page of
a data-only-locked table.

Statistics updates
“Statistics Updates” reports on the number of times the housekeeper chores
task checked to see if statistics needed to be written.

Monitor access to executing SQL
This section reports:

• Contention that occurs when sp_showplan or Adaptive Server Monitor
accesses query plans

• The number of overflows in SQL batch text buffers and the maximum size
of SQL batch text sent during the sample interval

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 243

Sample output
===

Monitor Access to Executing SQL

per sec per xact count % of total
------------ ------------ ---------- ----------

Waits on Execution Plans 0.0 0.0 0 n/a
Number of SQL Text Overflows 0.0 0.0 0 n/a
Maximum SQL Text Requested n/a n/a 0 n/a

(since beginning of sample)

Waits on execution plans

“Waits on Execution Plans” reports the number of times that a process
attempting to use sp_showplan had to wait to acquire read access to the query
plan. Query plans may be unavailable if sp_showplan is run before the
compiled plan is completed or after the query plan finished executing. In these
cases, Adaptive Server tries to access the plan three times and then returns a
message to the user.

Number of SQL text overflows

“Number of SQL Text Overflows” reports the number of times that SQL batch
text exceeded the text buffer size.

Maximum SQL text requested

“Maximum SQL Text Requested” reports the maximum size of a batch of SQL
text since the sample interval began. You can use this value to set the
configuration parameter max SQL text monitored.

See the System Administration Guide.

Transaction profile
The “Transaction Profile” section reports on data modifications by type of
command and table locking scheme.

Transaction profile

244 Adaptive Server Enterprise

Sample output
The following sample shows sp_sysmon output for the “Transaction Profile”
section.

===
Transaction Profile

Transaction Summary per sec per xact count % of total
------------------------- ------------ ------------ ---------- ----------

Committed Xacts 0.0 n/a 4 n/a

Transaction Detail per sec per xact count % of total
------------------------- ------------ ------------ ---------- ----------

Total Rows Affected 0.0 0.0 0 n/a

Transaction summary
“Transaction Summary” reports committed transactions. “Committed Xacts”
reports the number of transactions committed during the sample interval.

The count of transactions includes transactions that meet explicit, implicit, and
ANSI definitions for “committed”, as described here:

• An implicit transaction executes data modification commands such as
insert, update, or delete. If you do not specify a begin transaction statement,
Adaptive Server interprets every operation as a separate transaction; an
explicit commit transaction statement is not required. For example, the
following is counted as three transactions.

1> insert …
2> go
1> insert …
2> go
1> insert …
2> go

• An explicit transaction encloses data modification commands within begin
transaction and commit transaction statements and counts the number of
transactions by the number of commit statements. For example the
following set of statements is counted as one transaction:

1> begin transaction
2> insert …
3> insert …

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 245

4> insert …
5> commit transaction
6> go

• In the ANSI transaction model, any select or data modification command
starts a transaction, but a commit transaction statement must complete the
transaction. sp_sysmon counts the number of transactions by the number
of commit transaction statements. For example, the following set of
statements is counted as one transaction:

1> insert …
2> insert …
3> insert …
4> commit transaction
5> go

If there were transactions that started before the sample interval began and
completed during the interval, the value reports a larger number of transactions
than the number that started and completed during the sample interval. If
transactions do not complete during the interval, “Total # of Xacts” does not
include them. In Figure 8-1, both T1 and T2 are counted, but T3 is not.

Figure 8-1: How transactions are counted

How to count multi database transactions

Multi database transactions are also counted. For example, a transaction that
modifies three databases is counted as three transactions.

Multi database transactions incur more overhead than single database
transactions: they require more log records and more ULC flushes, and they
involve two-phase commit between the databases.

You can improve performance by reducing the number of multi database
transactions whenever possible.

T1

T2
T3

Interval

Transaction profile

246 Adaptive Server Enterprise

Transaction detail
“Transaction Detail” gives statistical detail about data modification operations
by type. The work performed by rolled back transactions is included in the
output below, although the transaction is not counted in the number of
transactions.

For the “Total Rows” for inserts, updates, and deletes, the “% of total” column
reports the percentage of the transaction type as a percentage of all
transactions.

See “Update mode messages” on page 79 for more information on deferred
and direct inserts, updates, and deletes.

In the output for this section, APL indicates allpages-locked tables and DOL
indicates data-only-locked tables.

Inserts
”Inserts” provides detailed information about the types of inserts taking place
on heap tables (including partitioned heap tables), clustered tables, and all
inserts as a percentage of all insert, update, and delete operations. It displays
the number of inserts performed on:

• Allpages-locked heap tables

• Allpages-locked tables with clustered indexes

• Data-only locked tables

Insert statistics do not include fast bulk copy inserts, because those are written
directly to the data pages and to disk without the normal insert and logging
mechanisms.

APL heap tables

“APL Heap Tables” reports the number of row inserts that took place on
allpages-locked heap tables—all tables that do not have a clustered index. This
includes:

• Partitioned heap tables

• Unpartitioned heap tables

• Slow bulk copy inserts into heap tables

• select into commands

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 247

• Inserts into worktables

The “% of total” column shows the percentage of row inserts into heap tables
as a percentage of the total number of inserts.

If there are a large number of inserts to heap tables, determine if these inserts
are generating contention.

Check the sp_sysmon report for data on last page locks on heaps in “Lock
detail” on page 272. If there appears to be a contention problem, Adaptive
Server Monitor can help you figure out which tables are involved.

In many cases, creating a clustered index that randomizes insert activity solves
the performance problems for heaps. In other cases, you might need to
establish partitions on an unpartitioned table or increase the number of
partitions on a partitioned table.

For more information, see Chapter 12, “How Indexes Work” and “Improving
insert performance with partitions” on page 101 in Performance and Tuning:
Basics.

APL clustered table

“APL Clustered Table” reports the number of row inserts to allpages-locked
tables with clustered indexes. The “% of total” column shows the percentage
of row inserts to tables with clustered indexes as a percentage of the total
number of rows inserted.

Inserts into allpages-locked clustered tables can lead to page splitting.

See Row ID updates from clustered split and “Page splits” on page 259.

Data only lock table

“Data Only Lock Table” reports the number of inserts for all data-only-locked
tables. The “% of total” column shows the percentage of inserts to data-only-
locked tables as a percentage of all inserts.

Total rows inserted

“Total Rows Inserted” reports all row inserts to all tables combined. It gives the
average number of all inserts per second, the average number of all inserts per
transaction, and the total number of inserts. “% of total” shows the percentage
of rows inserted compared to the total number of rows affected by data
modification operations.

Transaction profile

248 Adaptive Server Enterprise

Updates and update detail sections
The “Updates” report has two sections, “Updates” and “Data Only Locked
Updates.”

Updates

“Updates” reports the number of deferred and direct row updates. The “% of
total” column reports the percentage of each type of update as a percentage of
the total number of row updates. sp_sysmon reports the following types of
updates:

• APL Deferred

• APL Direct In-place

• APL Direct Cheap

• APL Direct Expensive

• DOL Deferred

• DOL Direct

Direct updates incur less overhead than deferred updates and are generally
faster because they limit the number of log scans, reduce locking, save
traversal of index B-trees (reducing lock contention), and can save I/O because
Adaptive Server does not have to refetch pages to perform modification based
on log records.

For a description of update types, see “How update operations are performed”
on page 94 in Performance and Tuning: Optimizer.

If there is a high percentage of deferred updates, see “Optimizing updates” on
page 102 of the same book.

Total rows updated

“Total Rows Updated” reports all deferred and direct updates combined. The
“% of total” columns shows the percentage of rows updated, based on all rows
modified.

Data-only-locked updates

This section reports more detail on updates to data-only-locked tables:

• DOL Replace – The update did not change the length of the row; some or
all of the row was changed resulting in the same row length

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 249

• DOL Shrink – The update shortened the row, leaving non contiguous
empty space on the page to be collected during space reclamation.

• DOL Cheap Expand – The row grew in length; it was the last row on the
page, so expanding the length of the row did not require moving other
rows on the page.

• DOL Expensive Expand – The row grew in length and required movement
of other rows on the page.

• DOL Expand and Forward – The row grew in length, and did not fit on the
page. The row was forwarded to a new location.

• DOL Fwd Row Returned – The update affected a forwarded row; the row
fit on the page at its original location and was returned to that page.

The total reported in “Total DOL Rows Updated” are not included in the “Total
Rows Affected” sum at the end of the section, since the updates in this group
are providing a different breakdown of the updates already reported in “DOL
Deferred” and “DOL Direct.”

Deletes
“Deletes” reports the number of deferred and direct row deletes from allpages-
locked tables. All deletes on data-only-locked tables are performed by marking
the row as deleted on the page, so the categories “direct” and “deferred” do
not apply. The “% of total” column reports the percentage of each type of
delete as a percentage of the total number of deletes.

Total rows deleted

“Total Rows Deleted” reports all deferred and direct deletes combined. The “%
of total” columns reports the percentage of deleted rows as a compared to all
rows inserted, updated, or deleted.

Transaction management

250 Adaptive Server Enterprise

Transaction management
“Transaction Management” reports transaction management activities,
including user log cache (ULC) flushes to transaction logs, ULC log records,
ULC semaphore requests, log semaphore requests, transaction log writes, and
transaction log allocations.

Sample output
The following sample shows sp_sysmon output for the “Transaction
Management” categories.

===

Transaction Management

ULC Flushes to Xact Log per sec per xact count % of total
------------------------- ------------ ------------ ---------- ----------

by Full ULC 0.0 0.0 0 0.0 %
by End Transaction 0.0 0.0 0 0.0 %
by Change of Database 0.0 0.0 0 0.0 %
by Single Log Record 0.0 0.0 0 0.0 %
by Unpin 0.0 0.0 0 0.0 %
by Other 0.0 0.0 0 0.0 %

------------------------- ------------ ------------ ----------
Total ULC Flushes 0.0 1.0 4

ULC Log Records 0.0 0.0 0 n/a
Max ULC Size During Sample n/a n/a 0 n/a

ULC Semaphore Requests
Granted 0.1 4.0 16 100.0 %
Waited 0.0 0.0 0 0.0 %

------------------------- ------------ ------------ ----------
Total ULC Semaphore Req 0.1 4.0 16

Log Semaphore Requests
Granted 0.0 1.0 4 100.0 %
Waited 0.0 0.0 0 0.0 %

------------------------- ------------ ------------ ----------
Total Log Semaphore Req 0.0 1.0 4

Transaction Log Writes 0.0 0.0 0 n/a

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 251

Transaction Log Alloc 0.0 0.0 0 n/a

ULC flushes to transaction log
“ULC Flushes to Xact Log” reports the total number of times that user log
caches (ULCs) were flushed to a transaction log. The “% of total” column
reports the percentage of times the type of flush took place, for each category,
as a percentage of the total number of ULC flushes. This category can help you
identify areas in the application that cause problems with ULC flushes.

There is one user log cache (ULC) for each configured user connection.
Adaptive Server uses ULCs to buffer transaction log records. On both SMP and
single-processor systems, this helps reduce transaction log I/O. For SMP
systems, it reduces the contention on the current page of the transaction log.

You can configure the size of ULCs with the configuration parameter user log
cache size.

See the System Administration Guide.

ULC flushes are caused by the following activities:

• “by Full ULC” – A process’s ULC becomes full.

• “by End Transaction” – A transaction ended (rollback or commit, either
implicit or explicit).

• “by Change of Database” – A transaction modified an object in a different
database (a multi database transaction).

• “by System Log Record” – A system transaction (such as an OAM page
allocation) occurred within the user transaction.

• “by Other” – Any other reason, including needing to write to disk.

When one of these activities causes a ULC flush, Adaptive Server copies all
log records from the user log cache to the database transaction log.

“Total ULC Flushes” reports the total number of all ULC flushes that took
place during the sample interval.

Note In databases with mixed data and log segments, the user log cache is
flushed after each record is added.

Transaction management

252 Adaptive Server Enterprise

By full ULC

A high value for “by Full ULC” indicates that Adaptive Server is flushing the
ULCs more than once per transaction, negating some performance benefits of
user log caches. If the “% of total” value for “by Full ULC” is greater than 20%,
consider increasing the size of the user log cache size parameter.

Increasing the ULC size increases the amount of memory required for each
user connection, so you do not want to configure the ULC size to suit a small
percentage of large transactions.

By end transaction

A high value for “by End Transaction” indicates a healthy number of short,
simple transactions.

By change of database

The ULC is flushed every time there is a database change. If this value is high,
consider decreasing the size of the ULC if it is greater than 2K.

By system log record and by other

If either of these values is higher than approximately 20%, and size of your
ULC is more than 2048, consider reducing the ULC size.

Check sections of your sp_sysmon report that relate to log activity:

• Contention for semaphore on the user log caches (SMP only); see “ULC
semaphore requests” on page 253

• Contention for the log semaphore. (SMP only); see “Log semaphore
requests” on page 254

• The number of transaction log writes; see “Transaction log writes” on
page 255

Total ULC flushes
“Total ULC Flushes” reports the total number of ULC flushes during the
sample interval.

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 253

ULC log records
This row provides an average number of log records per transaction. It is useful
in benchmarking or in controlled development environments to determine the
number of log records written to ULCs per transaction.

Many transactions, such as those that affect several indexes or deferred updates
or deletes, require several log records for a single data modification. Queries
that modify a large number of rows use one or more records for each row.

If this data is unusual, study the data in the next section, Maximum ULC size
and look at your application for long-running transactions and for transactions
that modify large numbers of rows.

Maximum ULC size
The value in the “count” column is the maximum number of bytes used in any
ULCs, across all ULCs. This data can help you determine if ULC size is
correctly configured.

Since Adaptive Server flushes the ULC when a transaction completes, any
unused memory allocated to the ULCs is wasted. If the value in the “count”
column is consistently less than the defined value for the user log cache size
configuration parameter, reduce user log cache size to the value in the “count”
column (but no smaller than 2048 bytes).

When “Max ULC Size” equals the user log cache size, check the number of
flushes due to transactions that fill the user log cache (see “By full ULC” on
page 252). If the number of times that logs were flushed due to a full ULC is
more than 20%, consider increasing the user log cache size configuration
parameter.

See the System Administration Guide.

ULC semaphore requests
“ULC Semaphore Requests” reports the number of times a user task was
immediately granted a semaphore or had to wait for it. “% of total” shows the
percentage of tasks granted semaphores and the percentage of tasks that waited
for semaphores as a percentage of the total number of ULC semaphore
requests. This is relevant only in SMP environments.

Transaction management

254 Adaptive Server Enterprise

A semaphore is a simple internal locking mechanism that prevents a second
task from accessing the data structure currently in use. Adaptive Server uses
semaphores to protect the user log caches since more than one process can
access the records of a ULC and force a flush.

This category provides the following information:

• Granted – The number of times a task was granted a ULC semaphore
immediately upon request. There was no contention for the ULC.

• Waited – The number of times a task tried to write to ULCs and
encountered semaphore contention.

• Total ULC Semaphore Requests – The total number of ULC semaphore
requests that took place during the interval. This includes requests that
were granted or had to wait.

Log semaphore requests
“Log Semaphore Requests” reports of contention for the log semaphore that
protects the current page of the transaction log in cache. This data is
meaningful for SMP environments only.

This category provides the following information:

• Granted – The number of times a task was granted a log semaphore
immediately after it requested one. “% of total” reports the percentage of
immediately granted requests as a percentage of the total number of log
semaphore requests.

• Waited – The number of times two tasks tried to flush ULC pages to the
log simultaneously and one task had to wait for the log semaphore. “% of
total” reports the percentage of tasks that had to wait for a log semaphore
as a percentage of the total number of log semaphore requests.

• Total Log Semaphore Requests – The total number of times tasks
requested a log semaphore including those granted immediately and those
for which the task had to wait.

Log semaphore contention and user log caches

In high throughput environments with a large number of concurrent users
committing transactions, a certain amount of contention for the log semaphore
is expected. In some tests, very high throughput is maintained, even though log
semaphore contention is in the range of 20 to 30%.

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 255

Preallocating Log Pages to Reduce Contention

In SMP environments with high rates of data modification transactions, use the
dbcc tune(log_prealloc) command if log semaphore contention is high. A
system task, the log allocator process, performs transaction log allocations,
reducing the time that each task holds the log semaphore.

To start the log allocator process for a database, use:

dbcc tune(log_prealloc, dbid, "on")

The log allocator loops through databases in a way similar to the checkpoint
process, except that a System Administrator chooses which databases need log
pre allocation. The log allocator runs once per minute.

When the log allocator is enabled for a database, it preallocates 64 log pages at
a time.

Some options for reducing log semaphore contention are:

• Increasing the ULC size, if filling user log caches is a frequent cause of
user log cache flushes.

See “ULC flushes to transaction log” on page 251 for more information.

• Reducing log activity through transaction redesign. Aim for more
batching with less frequent commits. Be sure to monitor lock contention
as part of the transaction redesign.

• Reducing the number of multi database transactions, since each change of
database context requires a log write.

• Dividing the database into more than one database so that there are
multiple logs. If you choose this solution, divide the database in such a
way that multi database transactions are minimized.

Transaction log writes
“Transaction Log Writes” reports the total number of times Adaptive Server
wrote a transaction log page to disk. Transaction log pages are written to disk
when a transaction commits (after a wait for a group commit sleep) or when the
current log page(s) become full.

Index management

256 Adaptive Server Enterprise

Transaction log allocations
“Transaction Log Alloc” reports the number of times additional pages were
allocated to the transaction log. This data is useful for comparing to other data
in this section and for tracking the rate of transaction log growth.

Avg # writes per log page
“Avg # Writes per Log Page” reports the average number of times each log
page was written to disk. The value is reported in the “count” column.

In high throughput applications, this number should be as low as possible. If
the transaction log uses 2K I/O, the lowest possible value is 1; with 4K log I/O,
the lowest possible value is .5, since one log I/O can write 2 log pages.

In low throughput applications, the number will be significantly higher. In very
low throughput environments, it may be as high as one write per completed
transaction.

Index management
This category reports index management activity, including nonclustered
maintenance, page splits, and index shrinks.

Sample output
The following sample shows sp_sysmon output for the “Index Management”
categories.

===

Index Management

Nonclustered Maintenance per sec per xact count % of total
------------------------- ------------ ------------ ---------- ----------

Ins/Upd Requiring Maint 0.0 0.0 0 n/a
of NC Ndx Maint 0.0 0.0 0 n/a

Deletes Requiring Maint 0.0 0.0 0 n/a

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 257

of NC Ndx Maint 0.0 0.0 0 n/a

RID Upd from Clust Split 0.0 0.0 0 n/a
of NC Ndx Maint 0.0 0.0 0 n/a

Upd/Del DOL Req Maint 0.0 0.0 0 n/a
of DOL Ndx Maint 0.0 0.0 0 n/a

Page Splits 0.0 0.0 0 n/a

Page Shrinks 0.0 0.0 0 n/a

Index Scans per sec per xact count % of total
------------------------- ------------ ------------ ---------- ----------

Ascending Scans 0.0 0.5 2 100.0 %
DOL Ascending Scans 0.0 0.0 0 0.0 %
Descending Scans 0.0 0.0 0 0.0 %
DOL Descending Scans 0.0 0.0 0 0.0 %

------------ ------------ ----------

Nonclustered maintenance
This category reports the number of operations that required, or potentially
required, maintenance to one or more indexes; that is, it reports the number of
operations for which Adaptive Server had to at least check to determine
whether it was necessary to update the index. The output also gives the number
of indexes that were updated and the average number of indexes maintained
per operation.

In tables with clustered indexes and one or more nonclustered indexes, all
inserts, all deletes, some update operations, and any data page splits, require
changes to the nonclustered indexes. High values for index maintenance
indicate that you should assess the impact of maintaining indexes on your
Adaptive Server performance. While indexes speed retrieval of data,
maintaining indexes slows data modification. Maintenance requires additional
processing, additional I/O, and additional locking of index pages.

Other sp_sysmon output that is relevant to assessing this category is:

• Information on total updates, inserts and deletes, and information on the
number and type of page splits

See “Transaction detail” on page 246, and “Page splits” on page 259.

• Information on lock contention.

Index management

258 Adaptive Server Enterprise

See “Lock detail” on page 272.

• Information on address lock contention.

See “Address lock contention” on page 229 and “Address locks” on page
273.

For example, you can compare the number of inserts that took place with the
number of maintenance operations that resulted. If a relatively high number of
maintenance operations, page splits, and retries occurred, consider the
usefulness of indexes in your applications.

See Chapter 13, “Indexing for Performance,” in Performance and Tuning:
Basics for more information.

Inserts and updates requiring maintenance to indexes

The data in this section gives information about how insert and update
operations affect indexes on allpages-locked tables. For example, an insert to a
clustered table with three nonclustered indexes requires updates to all three
indexes, so the average number of operations that resulted in maintenance to
nonclustered indexes is three.

However, an update to the same table may require only one maintenance
operation—to the index whose key value was changed.

• “Ins/Upd Requiring Maint” reports the number of insert and update
operations to a table with indexes that potentially required modifications
to one or more indexes.

• “# of NC Ndx Maint” reports the number of nonclustered indexes that
required maintenance as a result of insert and update operations.

• “Avg NC Ndx Maint/Op” reports the average number of nonclustered
indexes per insert or update operation that required maintenance.

For data-only-locked tables, inserts are reported in “Ins/Upd Requiring Maint”
and deletes and inserts are reported in “Upd/Del DOL Req Maint.”

Deletes requiring maintenance

The data in this section gives information about how delete operations affected
indexes on allpages-locked tables:

• “Deletes Requiring Maint” reports the number of delete operations that
potentially required modification to one or more indexes.

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 259

See “Deletes” on page 249.

• “# of NC Ndx Maint” reports the number of nonclustered indexes that
required maintenance as a result of delete operations.

• “Avg NC Ndx Maint/Op” reports the average number of nonclustered
indexes per delete operation that required maintenance.

Row ID updates from clustered split

This section reports index maintenance activity caused by page splits in
allpages-locked tables with clustered indexes. These splits require updating the
nonclustered indexes for all of the rows that move to the new data page.

• “RID Upd from Clust Split” reports the total number of page splits that
required maintenance of a nonclustered index.

• “# of NC Ndx Maint” reports the number of nonclustered rows that
required maintenance as a result of row ID update operations.

• “Avg NC Ndx Maint/Op” reports the average number of nonclustered
indexes entries that were updated for each page split.

Data-Only-Locked updates and deletes requiring maintenance

The data in this section gives information about how updates and deletes
affected indexes on data-only-locked tables:

• “Upd/Del DOL Req Maint” reports the number of update and delete
operations that potentially required modification to one or more indexes.

• “# of DOL Ndx Main” reports the number of indexes that required
maintenance as a result of update or delete operations.

• “Avg DOL Ndx Maint/Op” reports the average number of indexes per
update or delete operation that required maintenance.

Page splits
“Page Splits” reports the number page splits for data pages, clustered index
pages, or nonclustered index pages because there was not enough room for a
new row.

Index management

260 Adaptive Server Enterprise

When a data row is inserted into an allpages-locked table with a clustered
index, the row must be placed in physical order according to the key value.
Index rows must also be placed in physical order on the pages. If there is not
enough room on a page for a new row, Adaptive Server splits the page,
allocates a new page, and moves some rows to the new page. Page splitting
incurs overhead because it involves updating the parent index page and the
page pointers on the adjoining pages and adds lock contention. For clustered
indexes, page splitting also requires updating all nonclustered indexes that
point to the rows on the new page.

See “Choosing space management properties for indexes” on page 321 in
Performance and Tuning: Basics for more information about how to
temporarily reduce page splits using fillfactor.

Reducing page splits for ascending key inserts

If “Page Splits” is high and your application is inserting values into an
allpages-locked table with a clustered index on a compound key, it may be
possible to reduce the number of page splits through a special optimization that
changes the page split point for these indexes.

The special optimization is designed to reduce page splitting and to result in
more completely filled data pages. This affects only clustered indexes with
compound keys, where the first key is already in use in the table, and the
second column is based on an increasing value.

Default data page splitting

The table sales has a clustered index on store_id, customer_id. There are three
stores (A, B, and C). Each store adds customer records in ascending numerical
order. The table contains rows for the key values A,1; A,2; A,3; B,1; B,2; C,1;
C,2; and C,3, and each page holds four rows, as shown in Figure 8-2.

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 261

Figure 8-2: Clustered table before inserts

Using the normal page-splitting mechanism, inserting “A,4” results in
allocating a new page and moving half of the rows to it, and inserting the new
row in place, as shown in Figure 8-3.

Figure 8-3: Insert causes a page split

When “A,5” is inserted, no split is needed, but when “A,6” is inserted, another
split takes place, as shown in Figure 8-4.

Figure 8-4: Another insert causes another page split

Adding “A,7” and “A,8” results in yet another page split, as shown in Figure 8-
5.

Page 1007
A 1 ...
A 2 ...
A 3 ...
B 1 ...

Page 1009
B 2 ...
C 1 ...
C 2 ...
C 3 ...

Page 1007
A 1 ...
A 2 ...

Page 1009
B 2 ...
C 1 ...
C 2 ...
C 3 ...

Page 1129
A 3 ...
A 4 ...
B 1 ...

Page 1007
A 1 ...
A 2 ...

Page 1009
B 2 ...
C 1 ...
C 2 ...
C 3 ...

Page 1129
A 3 ...
A 4 ...

Page 1134
A 5 ...
A 6 ...
B 1 ...

Index management

262 Adaptive Server Enterprise

Figure 8-5: Page splitting continues

Effects of ascending inserts

You can set ascending inserts mode for a table, so that pages are split at the
point of the inserted row, rather than in the middle of the page. Starting from
the original table shown in Figure 8-2 on page 261, the insertion of “A,4”
results in a split at the insertion point, with the remaining rows on the page
moving to a newly allocated page, as shown in Figure 8-6.

Figure 8-6: First insert with ascending inserts mode

Inserting “A,5” causes a new page to be allocated, as shown in Figure 8-7.

Figure 8-7: Additional ascending insert causes a page allocation

Adding “A,6”, “A,7”, and “A,8” fills the new page, as shown in Figure 8-8.

Page 1007
A 1 ...
A 2 ...

Page 1009
B 2 ...
C 1 ...
C 2 ...
C 3 ...

Page 1129
A 3 ...
A 4 ...

Page 1134
A 5 ...
A 6 ...

Page 1137
A 7 ...
A 8 ...
B 1 ...

Page 1007
A 1 ...
A 2 ...
A 3 ...
A 4 ...

Page 1009
B 2 ...
C 1 ...
C 2 ...
C 3 ...

Page 1129
B 1 ...

Page 1007
A 1 ...
A 2 ...
A 3 ...
A 4 ...

Page 1009
B 2 ...
C 1 ...
C 2 ...
C 3 ...

Page 1129
B 1 ...

Page 1134
A 5 ...

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 263

Figure 8-8: Additional inserts fill the new page

Setting ascending inserts mode for a table

The following command turns on ascending insert mode for the sales table:

dbcc tune (ascinserts, 1, "sales")

To turn ascending insert mode off, use:

dbcc tune (ascinserts, 0, "sales")

These commands update the status2 bit of sysindexes.

If tables sometimes experience random inserts and have more ordered inserts
during batch jobs, it is better to enable dbcc tune (ascinserts) only for the period
during which the batch job runs.

Retries and deadlocks

“Deadlocks” reports the number of index page splits and shrinks that resulted
in deadlocks. Adaptive Server has a mechanism called deadlock retries that
attempts to avoid transaction rollbacks caused by index page deadlocks.
“Retries” reports the number of times Adaptive Server used this mechanism.

Deadlocks on index pages take place when each of two transactions needs to
acquire locks held by the other transaction. On data pages, deadlocks result in
choosing one process (the one with the least accumulated CPU time) as a
deadlock victim and rolling back the process.

By the time an index deadlock takes place, the transaction has already updated
the data page and is holding data page locks so rolling back the transaction
causes overhead.

In a large percentage of index deadlocks caused by page splits and shrinks, both
transactions can succeed by dropping one set of index locks, and restarting the
index scan. The index locks for one of the processes are released (locks on the
data pages are still held), and Adaptive Server tries the index scan again,
traversing the index from the root page of the index.

Page 1007
A 1 ...
A 2 ...
A 3 ...
A 4 ...

Page 1009
B 2 ...
C 1 ...
C 2 ...
C 3 ...

Page 1129
B 1 ...

Page 1134
A 5 ...
A 6 ...
A 7 ...
A 8 ...

Index management

264 Adaptive Server Enterprise

Usually, by the time the scan reaches the index page that needs to be split, the
other transaction has completed, and no deadlock takes place. By default, any
index deadlock that is due to a page split or shrink is retried up to five times
before the transaction is considered deadlocked and is rolled back.

For information on changing the default value for the number of deadlock
retries, see the System Administration Guide.

The deadlock retries mechanism causes the locks on data pages to be held
slightly longer than usual and causes increased locking and overhead.
However, it reduces the number of transactions that are rolled back due to
deadlocks. The default setting provides a reasonable compromise between the
overhead of holding data page locks longer and the overhead of rolling back
transactions that have to be reissued.

A high number of index deadlocks and deadlock retries indicates high
contention in a small area of the index B-tree.

If your application encounters a high number of deadlock retries, reduce page
splits using fillfactor when you re-create the index.

See “Reducing index maintenance” on page 183 in Performance and Tuning:
Basics.

Add index level

“Add Index Level” reports the number of times a new index level was added.
This does not happen frequently, so you should expect to see result values of 0
most of the time. The count could have a value of 1 or 2 if your sample includes
inserts into either an empty table or a small table with indexes.

Page shrinks
“Page Shrinks” reports the number of times that deleting index rows caused the
index to shrink off a page. Shrinks incur overhead due to locking in the index
and the need to update pointers on adjacent pages. Repeated “count” values
greater than 0 indicate there may be many pages in the index with fairly small
numbers of rows per page due to delete and update operations. If there are a
high number of shrinks, consider rebuilding the indexes.

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 265

Index scans
The “Index Scans” section reports forward and backward scans by lock
scheme:

• “Ascending Scans” reports the number of forward scans on allpages-
locked tables.

• “DOL Ascending Scans” reports the number of forward scans on data-
only-locked tables.

• “Descending Scans” reports the number of backward scans on allpages-
locked tables.

• “DOL Descending Scans” reports the number of backward scans on data-
only-locked tables.

For more information on forward and backward scans, see “Costing for queries
using order by” on page 79 in Performance and Tuning: Optimizer.

Metadata cache management
“Metadata Cache Management” reports the use of the metadata caches that
store information about the three types of metadata caches: objects, indexes,
and databases. This section also reports the number of object, index and
database descriptors that were active during the sample interval, and the
maximum number of descriptors that have been used since the server was last
started. It also reports spinlock contention for the object and index metadata
caches.

Sample output
===

Metadata Cache Management

Metadata Cache Summary per sec per xact count % of total
------------------------- ------------ ------------ ---------- ----------

Open Object Usage
Active n/a n/a 393 n/a

Metadata cache management

266 Adaptive Server Enterprise

Max Ever Used Since Boot n/a n/a 393 n/a
Free n/a n/a 107 n/a
Reuse Requests

Succeeded n/a n/a 0 n/a
Failed n/a n/a 0 n/a

Open Index Usage
Active n/a n/a 44 n/a
Max Ever Used Since Boot n/a n/a 46 n/a
Free n/a n/a 456 n/a
Reuse Requests

Succeeded n/a n/a 0 n/a
Failed n/a n/a 0 n/a

Open Database Usage
Active n/a n/a 7 n/a
Max Ever Used Since Boot n/a n/a 7 n/a
Free n/a n/a 5 n/a
Reuse Requests

Succeeded n/a n/a 0 n/a
Failed n/a n/a 0 n/a

Object Manager Spinlock Contention n/a n/a n/a 0.0 %

Object Spinlock Contention n/a n/a n/a 0.0 %

Index Spinlock Contention n/a n/a n/a 0.0 %

Hash Spinlock Contention n/a n/a n/a 0.0 %

Open object, index, and database usage
Each of these sections contains the same information for the three types of
metadata caches. The output provides this information:

• “Active” reports the number of objects, indexes, or databases that were
active during the sample interval.

• “Max Ever Used Since Boot” reports the maximum number of
descriptors used since the last restart of Adaptive Server.

• “Free” reports the number of free descriptors in the cache.

• “Reuse Requests” reports the number of times that the cache had to be
searched for reusable descriptors:

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 267

• “Failed” means that all descriptors in cache were in use and that the
client issuing the request received an error message.

• “Succeeded” means the request found a reusable descriptor in cache.
Even though “Succeeded” means that the client did not get an error
message, Adaptive Server is doing extra work to locate reusable
descriptors in the cache and to read metadata information from disk.

You can use this information to set the configuration parameters number of
open indexes, number of open objects, and number of open databases, as shown
in Table 8-2.

Table 8-2: Action to take based on metadata cache usage statistics

Object Manager Spinlock Contention
This is one server-wide spinlock used to manager internal states of the object
descriptor.

If the contention on this spinlock is > 10% use dbcc tune(des_bind) to address
this contention. More details on this can be found as part of the documentation
on dbcc tune(des_bind) in the Adaptive Server Enterprise Reference Manual.

Object and index spinlock contention
These sections report on spinlock contention on the object descriptor and index
descriptor caches. You can use this information to tune the configuration
parameters open object spinlock ratio and open index spinlock ratio. If the
reported contention is more than 3%, decrease the value of the corresponding
parameter to lower the number of objects or indexes that are protected by a
single spinlock.

sp_sysmon output Action

Large number of “Free” descriptors Set parameter lower

Very few “Free” descriptors Set parameter higher

“Reuse Requests Succeeded” nonzero Set parameter higher

“Reuse Requests Failed” nonzero Set parameter higher

Metadata cache management

268 Adaptive Server Enterprise

Hash spinlock contention
This section reports contention for the spinlock on the index metadata cache
hash table. You can use this information to tune the open index hash spinlock
ratio configuration parameter. If the reported contention is greater than 3%,
decrease the value of the parameter.

Using sp_monitorconfig to find metadata cache usage statistics

sp_monitorconfig displays metadata cache usage statistics on certain shared
server resources, including:

• The number of databases, objects, and indexes that can be open at any one
time

• The number of auxiliary scan descriptors used by referential integrity
queries

• The number of free and active descriptors

• The percentage of active descriptors

• The maximum number of descriptors used since the server was last started

• The current size of the procedure cache and the amount actually used.

For example, suppose you have configured the number of open indexes
configuration parameter to 500. During a peak period, you can run
sp_monitorconfig as follows to get an accurate reading of the actual metadata
cache usage for index descriptors. For example:

1> sp_monitorconfig "number of open indexes"

Usage information at date and time: Apr 22 2002 2:49PM.
Name num_free num_active pct_act Max_Used Reused
-------------- -------- ---------- ------- -------- ------
number of open 217 283 56.60 300 No

In this report, the maximum number of open indexes used since the server was
last started is 300, even though Adaptive Server is configured for 500.
Therefore, you can reset the number of open indexes configuration parameter to
330, to accommodate the 300 maximum used index descriptors, plus space for
10 percent more.

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 269

You can also determine the current size of the procedure cache with
sp_monitorconfig procedure cache size. This parameter describes the amount of
space in the procedure cache is currently configured for and the most it has ever
actually used. For example, the procedure cache in the following server is
configured for 20,000 pages:

1> sp_configure "procedure cache size"

option_name config_value run_value
------------------------------ ------------ ---------
procedure cache size 3271 3271

However, when you run sp_montorconfig “procedure cache size”, you find that
the most the procedure cache has ever used is 14241 pages, which means that
you can lower the run value of the procedure cache, saving memory:

1> sp_monitorconfig "procedure cache size"

Usage information at date and time: Apr 22 2002 2:49PM.
Name num_free num_active pct_act Max_Used Reused
-------------- -------- ---------- ------- -------- ------
procedure cache 5878 14122 70.61 14241 No

Lock management
“Lock Management” reports locks, deadlocks, lock promotions, and lock
contention.

Sample output
The following sample shows sp_sysmon output for the “Lock Management”
categories.

===

Lock Management

Lock Summary per sec per xact count % of total
------------------------- ------------ ------------ ---------- ----------

Total Lock Requests 0.2 6.5 26 n/a
Avg Lock Contention 0.0 0.0 0 0.0 %
Deadlock Percentage 0.0 0.0 0 0.0 %

Lock management

270 Adaptive Server Enterprise

Lock Detail per sec per xact count % of total
------------------------- ------------ ------------ ---------- ----------

Table Lock Hashtable
Lookups 0.0 0.5 2 n/a
Avg Chain Length n/a n/a 0.00000 n/a
Spinlock Contention n/a n/a n/a 0.0 %

Exclusive Table
Total EX-Table Requests 0.0 0.0 0 n/a

Shared Table
Total SH-Table Requests 0.0 0.0 0 n/a

Exclusive Intent
Total EX-Intent Requests 0.0 0.0 0 n/a

Shared Intent
Granted 0.0 0.5 2 100.0 %
Waited 0.0 0.0 0 0.0 %

------------------------- ------------ ------------ ---------- ----------
Total SH-Intent Requests 0.0 0.5 2 7.7 %

Page & Row Lock HashTable
Lookups 0.1 3.5 14 n/a
Avg Chain Length n/a n/a 0.00000 n/a
Spinlock Contention n/a n/a n/a 0.0 %

Exclusive Page
Total EX-Page Requests 0.0 0.0 0 n/a

Update Page
Total UP-Page Requests 0.0 0.0 0 n/a

Shared Page
Granted 0.1 3.5 14 100.0 %
Waited 0.0 0.0 0 0.0 %

------------------------- ------------ ------------ ---------- ----------
Total SH-Page Requests 0.1 3.5 14 53.8 %

Exclusive Row
Total EX-Row Requests 0.0 0.0 0 n/a

Update Row

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 271

Total UP-Row Requests 0.0 0.0 0 n/a

Shared Row
Total SH-Row Requests 0.0 0.0 0 n/a

Next-Key
Total Next-Key Requests 0.0 0.0 0 n/a

Address Lock Hashtable
Lookups 0.1 2.5 10 n/a
Avg Chain Length n/a n/a 0.00000 n/a
Spinlock Contention n/a n/a n/a 0.0 %

Exclusive Address
Granted 0.0 1.0 4 100.0 %
Waited 0.0 0.0 0 0.0 %

------------------------- ------------ ------------ ---------- ----------
Total EX-Address Requests 0.0 1.0 4 15.4 %

Shared Address
Granted 0.1 1.5 6 100.0 %
Waited 0.0 0.0 0 0.0 %

------------------------- ------------ ------------ ---------- ----------
Total SH-Address Requests 0.1 1.5 6 23.1 %

Last Page Locks on Heaps
Total Last Pg Locks 0.0 0.0 0 n/a

Deadlocks by Lock Type per sec per xact count % of total
------------------------- ------------ ------------ ---------- ----------
Total Deadlocks 0.0 0.0 0 n/a

Deadlock Detection
Deadlock Searches 0.0 0.0 0 n/a

Lock Promotions
Total Lock Promotions 0.0 0.0 0 n/a

Lock Timeouts by Lock Type per sec per xact count % of total
------------------------- ------------ ------------ ---------- ----------
Total Timeouts 0.0 0.0 0 n/a

“Lock Promotions” does report detail rows if there were no occurrences of
them during the sample interval. In this sample report, “Deadlocks by Lock
Type” is one example.

Lock management

272 Adaptive Server Enterprise

Lock summary
“Lock Summary” provides overview statistics about lock activity that took
place during the sample interval.

• “Total Lock Requests” reports the total number of lock requests.

• “Avg Lock Contention” reports the average number of times there was
lock contention as a percentage of the total number of lock requests.

If the lock contention average is high, study the lock detail information
below.

See Chapter 3, “Locking Configuration and Tuning,” in Performance and
Tuning: Locking for more information on tuning locking behavior.

• “Deadlock Percentage” reports the percentage of deadlocks as a
percentage of the total number lock requests.

If this value is high, see “Deadlocks by lock type” on page 274.

• “Avg Hash Chain Length” reports the average number of locks per hash
bucket during the sample interval. You can configure the size of the lock
hash table with the configuration parameter lock hashtable size. If the
average number of locks per hash chain is more than four, consider
increasing the size of the hash table.

See “Configuring the lock hashtable (Lock Manager)” on page 47 in
Performance and Tuning: Locking for more information.

Large inserts with bulk copy are an exception to this guideline. Lock hash
chain lengths may be longer during large bulk copies.

Lock detail
“Lock Detail” provides information that you can use to determine whether the
application is causing a lock contention or deadlock-related problem.

This output reports locks by type, displaying the number of times that each lock
type was granted immediately, and the number of times a task had to wait for
a particular type of lock. The “% of total” is the percentage of the specific lock
type that was granted or had to wait with respect to the total number of lock
requests.

“Lock Detail” reports the following types of locks:

• Exclusive Table

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 273

• Shared Table

• Exclusive Intent

• Shared Intent

• Exclusive Page

• Update Page

• Shared Page

• Exclusive Row

• Update Row

• Shared Row

• Exclusive Address

• Shared Address

• Last Page Locks on Heaps

Lock contention can have a large impact on Adaptive Server performance.
Table locks generate more lock contention than page or row locks because no
other tasks can access a table while there is an exclusive table lock on it, and if
a task requires an exclusive table lock, it must wait until all shared locks are
released. If lock contention is high, run sp_object_stats to help pinpoint the
tables involved.

See “Identifying tables where concurrency is a problem” on page 88 in
Performance and Tuning: Locking for more information.

Address locks

“Exclusive Address” and “Shared Address” report the number of times address
locks were granted immediately or the number of times the task had to wait for
the lock. Address locks are held on index pages of allpages-locked tables. They
can have serious impact, since a lock on an index page blocks access to all data
pages pointed to by the index page.

Last page locks on heaps

“Last Page Locks on Heaps” reports locking attempts on the last page of a
partitioned or unpartitioned heap table. It only reports on allpages-locked
tables.

Lock management

274 Adaptive Server Enterprise

This information can indicate whether there are tables in the system that would
benefit from using data-only-locking or from partitioning or from increasing
the number of partitions. Adding a clustered index that distributes inserts
randomly across the data pages may also help. If you know that one or more
tables is experiencing a problem with contention for the last page, Adaptive
Server Monitor can help determine which table is experiencing the problem.

See “Improving insert performance with partitions” on page 101 in
Performance and Tuning: Basics for information on how partitions can help
solve the problem of last-page locking on unpartitioned heap tables.

Table lock hashtable
“Lock Hashtable Lookups” reports the number of times the lock hash table was
searched for a lock on a page, row, or table.

You can configure the size of the lock hash table with the configuration
parameter lock hashtable size. If the average number of locks per hash chain is
more than 4, consider increasing the size of the hash table. See “Configuring
the lock hashtable (Lock Manager)” on page 47 in Performance and Tuning:
Locking for more information.

Deadlocks by lock type
“Deadlocks by Lock Type” reports the number of specific types of deadlocks.
“% of total” gives the number of each deadlock type as a percentage of the total
number of deadlocks.

Deadlocks may occur when many transactions execute at the same time in the
same database. They become more common as the lock contention increases
between the transactions.

This category reports data for the following deadlock types:

• Exclusive Table

• Shared Table

• Exclusive Intent

• Shared Intent

• Exclusive Page

• Update Page

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 275

• Shared Page

• Exclusive Row

• Update Row

• Shared Row

• Shared Next-Key

• Exclusive Address

• Shared Address

• Others

“Total Deadlocks” summarizes the data for all lock types.

As in the example for this section, if there are no deadlocks, sp_sysmon does
not display any detail information, it only prints the “Total Deadlocks” row
with zero values.

To pinpoint where deadlocks occur, use one or both of the following methods:

• Use sp_object_stats. See “Identifying tables where concurrency is a
problem” on page 88 in Performance and Tuning: Locking for more
information.

• Enable printing of detailed deadlock information to the log.

See “Printing deadlock information to the error log” on page 85
Performance and Tuning: Monitoring and Analyzing for Performance .

For more information on deadlocks and coping with lock contention, see
“Deadlocks and concurrency” on page 81 and “Locking and performance” on
page 39 in Performance and Tuning: Locking.

Deadlock detection
“Deadlock Detection” reports the number of deadlock searches that found
deadlocks and deadlock searches that were skipped during the sample interval

 For a discussion of the background issues related to this topic, see “Deadlocks
and concurrency” on page 81 Performance and Tuning: Locking.

Lock management

276 Adaptive Server Enterprise

Deadlock searches

“Deadlock Searches” reports the number of times that Adaptive Server
initiated a deadlock search during the sample interval. Deadlock checking is
time-consuming overhead for applications that experience no deadlocks or
very low levels of deadlocking. You can use this data with Average deadlocks
per search to determine if Adaptive Server is checking for deadlocks too
frequently.

Searches skipped

“Searches Skipped” reports the number of times that a task started to perform
deadlock checking, but found deadlock checking in progress and skipped its
check. “% of total” reports the percentage of deadlock searches that were
skipped as a percentage of the total number of searches.

When a process is blocked by lock contention, it waits for an interval of time
set by the configuration parameter deadlock checking period. When this period
elapses, it starts deadlock checking. If a search is already in process, the
process skips the search.

If you see some number of searches skipped, but some of the searches are
finding deadlocks, increase the parameter slightly. If you see a lot of searches
skipped, and no deadlocks, or very few, you can increase the parameter by a
larger amount.

See the System Administration Guide for more information.

Average deadlocks per search

“Avg Deadlocks per Search” reports the average number of deadlocks found
per search.

This category measures whether Adaptive Server is checking too frequently. If
your applications rarely deadlock, you can adjust the frequency with which
tasks search for deadlocks by increasing the value of the deadlock checking
period configuration parameter.

See the System Administration Guide for more information.

Lock promotions
“Lock Promotions” reports the number of times that the following escalations
took place:

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 277

• “Ex-Page to Ex-Table” – Exclusive page to exclusive table.

• “Sh-Page to Sh-Table” – Shared page to shared table.

• “Ex-Row to Ex-Table” – Exclusive row to exclusive table.

• “Sh-Row to Sh-Table – Shared row to shared table.

• “Sh-Next-Key to Sh-Table” – Shared next-key to shared table.

The “Total Lock Promotions” row reports the average number of lock
promotion types combined per second and per transaction.

If no lock promotions took place during the sample interval, only the total row
is printed.

If there are no lock promotions, sp_sysmon does not display the detail
information, as the example for this section shows.

“Lock Promotions” data can:

• Help you detect if lock promotion in your application to is a cause of lock
contention and deadlocks

• Be used before and after tuning lock promotion variables to determine the
effectiveness of the values.

Look at the “Granted” and “Waited” data above for signs of contention. If lock
contention is high and lock promotion is frequent, consider changing the lock
promotion thresholds for the tables involved.

You can configure the lock promotion threshold either server-wide or for
individual tables.

 See information on locking in the System Administration Guide.

Lock time-out information
The “Lock Time-outs by Lock Type” section reports on the number of times a
task was waiting for a lock and the transaction was rolled back due to a session-
level or server-level lock time-out. The detail rows that show the lock types are
printed only if lock time-outs occurred during the sample period. If no lock
time-outs occurred, the “Total Lock Time-outs” row is displayed with all
values equal to 0.

For more information on lock time-outs, see “Lock timeouts” on page 75
Performance and Tuning: Locking.

Data cache management

278 Adaptive Server Enterprise

Data cache management
sp_sysmon reports summary statistics for all caches followed by statistics for
each named cache.

sp_sysmon reports the following activities for the default data cache and for
each named cache:

• Spinlock contention

• Utilization

• Cache searches including hits and misses

• Pool turnover for all configured pools

• Buffer wash behavior, including buffers passed clean, buffers already in
I/O, and buffers washed dirty

• Prefetch requests performed and denied

• Dirty read page requests

You can use sp_cacheconfig and sp_helpcache output to help analyze the data
from this section of the report. sp_cacheconfig provides information about
caches and pools, and sp_helpcache provides information about objects bound
to caches.

See the System Administration Guide for information on how to use these
system procedures.

See “Configuring the data cache to improve performance” on page 220 in
Performance and Tuning: Basics for more information on performance issues
and named caches.

Sample output
The following sample shows sp_sysmon output for the “Data Cache
Management” categories. The first block of data, “Cache Statistics Summary,”
includes information for all caches. sp_sysmon reports a separate block of data
for each cache. These blocks are identified by the cache name. The sample
output shown here includes only the default data cache, although there were
more caches configured during the interval.

===

Data Cache Management

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 279

Cache Statistics Summary (All Caches)

per sec per xact count % of total
------------ ------------ ---------- ----------

Cache Search Summary
Total Cache Hits 0.1 3.8 15 100.0 %
Total Cache Misses 0.0 0.0 0 0.0 %

------------------------- ------------ ------------ ----------
Total Cache Searches 0.1 3.8 15

Cache Turnover
Buffers Grabbed 0.0 0.0 0 n/a

Cache Strategy Summary
Cached (LRU) Buffers 0.1 3.8 15 100.0 %
Discarded (MRU) Buffers 0.0 0.0 0 0.0 %

Large I/O Usage
0.0 0.0 0 n/a

Large I/O Effectiveness
Pages by Lrg I/O Cached 0.0 0.0 0 n/a

Asynchronous Prefetch Activity
0.0 0.0 0 n/a

Other Asynchronous Prefetch Statistics
APFs Used 0.0 0.0 0 n/a
APF Waits for I/O 0.0 0.0 0 n/a
APF Discards 0.0 0.0 0 n/a

Dirty Read Behavior
Page Requests 0.0 0.0 0 n/a

Cache: default data cache

per sec per xact count % of total
------------------------- ------------ ------------ ---------- ----------

Spinlock Contention n/a n/a n/a 0.0 %

Utilization n/a n/a n/a 100.0 %

Cache Searches
Cache Hits 0.1 3.8 15 100.0 %

Data cache management

280 Adaptive Server Enterprise

Found in Wash 0.1 3.3 13 86.7 %
Cache Misses 0.0 0.0 0 0.0 %

------------------------- ------------ ------------ ----------
Total Cache Searches 0.1 3.8 15

Pool Turnover 0.0 0.0 0 n/a

Buffer Wash Behavior
Statistics Not Available - No Buffers Entered Wash Section Yet

Cache Strategy
Cached (LRU) Buffers 0.1 3.8 15 100.0 %
Discarded (MRU) Buffers 0.0 0.0 0 0.0 %

Large I/O Usage
Total Large I/O Requests 0.0 0.0 0 n/a

Large I/O Detail
No Large Pool(s) In This Cache

Dirty Read Behavior
Page Requests 0.0 0.0 0 n/a

Cache statistics summary (all caches)
This section summarizes behavior for the default data cache and all named data
caches combined. Corresponding information is printed for each data cache.

See “Cache management by cache” on page 285.

Cache search summary

This section provides summary information about cache hits and misses. Use
this data to get an overview of how effective cache design is. A high number
of cache misses indicates that you should investigate statistics for each cache.

• “Total Cache Hits” reports the number of times that a needed page was
found in any cache. “% of total” reports the percentage of cache hits as a
percentage of the total number of cache searches.

• “Total Cache Misses” reports the number of times that a needed page was
not found in a cache and had to be read from disk. “% of total” reports the
percentage of times that the buffer was not found in the cache as a
percentage of all cache searches.

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 281

• “Total Cache Searches” reports the total number of cache searches,
including hits and misses for all caches combined.

Cache turnover

This section provides a summary of cache turnover:

• “Buffers Grabbed” reports the number of buffers that were replaced in all
of the caches. The “count” column represents the number of times that
Adaptive Server fetched a buffer from the LRU end of the cache, replacing
a database page. If the server was recently restarted, so that the buffers are
empty, reading a page into an empty buffer is not counted here.

• “Buffers Grabbed Dirty” reports the number of times that fetching a buffer
found a dirty page at the LRU end of the cache and had to wait while the
buffer was written to disk. If this value is nonzero, find out which caches
are affected. It represents a serious performance hit.

Cache strategy summary

This section provides a summary of the caching strategy used.

• “Cached (LRU) Buffers” reports the total number of buffers placed at the
head of the MRU/LRU chain in all caches.

• “Discarded (MRU) Buffers” reports the total number of buffers in all
caches following the fetch-and-discard strategy—the buffers placed at the
wash marker.

Large I/O usage

This section provides summary information about the large I/O requests in all
caches. If “Large I/Os Denied” is high, investigate individual caches to
determine the cause.

• “Large I/Os Performed” measures the number of times that the requested
large I/O was performed. “% of total” is the percentage of large I/O
requests performed as a percentage of the total number of I/O requests
made.

• “Large I/Os Denied” reports the number of times that large I/O could not
be performed. “% of total” reports the percentage of large I/O requests
denied as a percentage of the total number of requests made.

Data cache management

282 Adaptive Server Enterprise

• “Total Large I/O Requests” reports the number of all large I/O requests
(both granted and denied) for all caches.

Large I/O effectiveness

“Large I/O Effectiveness” helps you to determine the performance benefits of
large I/O. It compares the number of pages that were brought into cache by a
large I/O to the number of pages actually referenced while in the cache. If the
percentage for “Pages by Lrg I/O Used” is low, it means that few of the pages
brought into cache are being accessed by queries. Investigate the individual
caches to determine the source of the problem. Use optdiag to check the value
for “Large I/O Efficiency” for each table and index.

• “Pages by Lrg I/O Cached” reports the number of pages brought into all
caches by all large I/O operations that took place during the sample
interval. Low percentages could indicate one of the following:

• Allocation fragmentation in the table’s storage

• Inappropriate caching strategy

• “Pages by Lrg I/O Used” reports the total number of pages that were used
after being brought into cache by large I/O. sp_sysmon does not print
output for this category if there were no “Pages by Lrg I/O Cached.”

Asynchronous prefetch activity report

This section reports asynchronous prefetch activity for all caches.

For information on asynchronous prefetch for each database device, see “Disk
I/O management” on page 298.

“Total APFs Requested” reports the total number of pages eligible to be pre
fetched, that is, the sum of the look-ahead set sizes of all queries issued during
the sample interval. Other rows in “Asynchronous Prefetch Activity” provide
detail in the three following categories:

• Information about the pages that were pre fetched, “APFs Issued”

• Information about the reasons that prefetch was denied

• Information about how the page was found in the cache

APFs issued

“APFs Issued” reports the number of asynchronous prefetch requests issued by
the system during the sample interval.

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 283

APFs denied due to

This section reports the reasons that APFs were not issued:

• “APF I/O Overloads” reports the number of times APF usage was denied
because of a lack of disk I/O structures or because of disk semaphore
contention.

If this number is high, check the following information in the “Disk I/O
Management” section of the report:

• Check the value of the disk i/o structures configuration parameter.

See “Disk I/O structures” on page 300.

• Check values for contention for device semaphores for each database
device to determine the source of the problem.

See “Device semaphore granted and waited” on page 302 for more
information.

If the problem is due to a shortage of disk I/O structures, set the
configuration parameter higher, and repeat your tests. If the problem is due
to high disk semaphore contention, examine the physical placement of the
objects where high I/O takes place.

• “APF Limit Overloads” indicates that the percentage of buffer pools that
can be used for asynchronous prefetch was exceeded. This limit is set for
the server as a whole by the global async prefetch limit configuration
parameter. It can be tuned for each pool with sp_poolconfig.

• “APF Reused Overloads” indicates that APF usage was denied due to a
kinked page chain or because the buffers brought in by APF were swapped
out before they could be accessed.

APF buffers found in cache

This section reports how many buffers from APF look-ahead sets were found
in the data cache during the sample interval. Asynchronous prefetch tries to
find a page it needs to read in the data cache using a quick scan without holding
the cache spinlock. If that does not succeed, it then performs a thorough scan
holding the spinlock.

Other asynchronous prefetch statistics

Three additional asynchronous prefetch statistics are reported in this section:

Data cache management

284 Adaptive Server Enterprise

• “APFs Used” reports the number of pages that were brought into the cache
by asynchronous prefetch and used during the sample interval. The pages
counted for this report may have been brought into cache during the
sample interval or by asynchronous prefetch requests that were issued
before the sample interval started.

• “APF Waits for I/O” reports the number of times that a process had to wait
for an asynchronous prefetch to complete. This indicates that the prefetch
was not issued early enough for the pages to be in cache before the query
needed them. It is reasonable to expect some percentage of “APF Waits.”
Some reasons that tasks may have to wait are:

• The first asynchronous prefetch request for a query is generally
included in “APF Waits.”

• Each time a sequential scan moves to a new allocation unit and issues
prefetch requests, the query must wait until the first I/O completes.

• Each time a nonclustered index scan finds a set of qualified rows and
issues prefetch requests for the pages, it must wait for the first pages
to be returned.

Other factors that can affect “APF Waits for I/O” are the amount of
processing that needs to be done on each page and the speed of the I/O
subsystem.

• “APF Discards” indicates the number of pages that were read in by
asynchronous prefetch and discarded before they were used. A high value
for “APFs Discards” may indicate that increasing the size of the buffer
pools could help performance, or it may indicate that APF is bringing
pages into cache that are not needed by the query.

Dirty read behavior

This section provides information to help you analyze how dirty reads
(isolation level 0 reads) affect the system.

Page requests

“Page Requests” reports the average number of pages that were requested at
isolation level 0. The “% of total” column reports the percentage of dirty reads
with respect to the total number of page reads.

Dirty read page requests incur high overhead if they lead to many dirty read
restarts.

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 285

Dirty read re-starts

“Re-Starts” reports the number of dirty read restarts that took place. This
category is reported only for the server as a whole, and not for individual
caches. sp_sysmon does not print output for this category if there were no
“Dirty Read Page Requests,” as in the sample output.

A dirty read restart occurs when a dirty read is active on a page and another
process makes changes to the page that cause the page to be deallocated. The
scan for the level 0 must be restarted.

The “% of total” output is the percentage of dirty read restarts done with
isolation level 0 as a percentage of the total number of page reads.

If these values are high, you might take steps to reduce them through
application modifications because overhead associated with dirty reads and
resulting restarts is very expensive. Most applications should avoid restarts
because of the large overhead it incurs.

Cache management by cache
This sections reports cache utilization for each active cache on the server. The
sample output shows results for the default data cache. The following section
explains the per-cache statistics.

Cache spinlock contention

“Spinlock Contention” reports the number of times an engine encountered
spinlock contention on the cache, and had to wait, as a percentage of the total
spinlock requests for that cache. This is meaningful for SMP environments
only.

When a user task makes any changes to a cache, a spinlock denies all other
tasks access to the cache while the changes are being made. Although spinlocks
are held for extremely brief durations, they can slow performance in
multiprocessor systems with high transaction rates. If spinlock contention is
more than 10%, consider using named caches or adding cache partitions.

See “Configuring the data cache to improve performance” on page 220 for
information on adding caches, and “Reducing spinlock contention with cache
partitions” on page 228 in Performance and Tuning: Basics.

Data cache management

286 Adaptive Server Enterprise

Utilization

“Utilization” reports the percentage of searches using this cache as a
percentage of searches across all caches.You can compare this value for each
cache to determine if there are caches that are over- or under-utilized. If you
decide that a cache is not well utilized, you can:

• Change the cache bindings to balance utilization. For more information,
see “Caches and object bindings” on page 174 in Performance and
Tuning: Basics.

• Resize the cache to correspond more appropriately to its utilization.

For more information, see the System Administration Guide.

Cache search, hit, and miss information

This section displays the number hits and misses and the total number of
searches for this cache. Cache hits are roughly comparable to the logical reads
values reported by statistics io; cache misses are roughly equivalent to physical
reads. sp_sysmon always reports values that are higher than those shown by
statistics io, since sp_sysmon also reports the I/O for system tables, log pages,
OAM pages and other system overhead.

Interpreting cache hit data requires an understanding of how the application
uses each cache. In caches that are created to hold specific objects such as
indexes or look up tables, cache hit ratios may reach 100%. In caches used for
random point queries on huge tables, cache hit ratios may be quite low but still
represent effective cache use.

This data can also help you to determine if adding more memory would
improve performance. For example, if “Cache Hits” is high, adding memory
probably would not help much.

Cache hits

“Cache Hits” reports the number of times that a needed page was found in the
data cache. “% of total” reports the percentage of cache hits compared to the
total number of cache searches.

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 287

Found in wash

The number of times that the needed page was found in the wash section of the
cache. “% of total” reports the percentage of times that the buffer was found in
the wash area as a percentage of the total number of hits. If the data indicate a
large percentage of cache hits found in the wash section, it may mean the wash
area is too big. It is not a problem for caches that are read-only or that have a
low number of writes.

A large wash section might lead to increased physical I/O because Adaptive
Server initiates a write on all dirty pages as they cross the wash marker. If a
page in the wash area is written to disk, then updated a second time, I/O has
been wasted. Check to see whether a large number of buffers are being written
at the wash marker.

See “Buffer wash behavior” on page 289 for more information.

If queries on tables in the cache use “fetch-and-discard” strategy for a non-APF
I/O, the first cache hit for a page finds it in the wash. The buffers is moved to
the MRU end of the chain, so a second cache hit soon after the first cache hit
will find the buffer still outside the wash area.

See “Cache strategy” on page 290 for more information, and “Specifying the
cache strategy” on page 45 in Performance and Tuning: Optimizer for
information about controlling caching strategy.

If necessary, you can change the wash size. If you make the wash size smaller,
run sp_sysmon again under fully loaded conditions and check the output for
“Grabbed Dirty” values greater than 0

 See “Cache turnover” on page 281.

Cache misses

“Cache Misses” reports the number of times that a needed page was not found
in the cache and had to be read from disk. “% of total” is the percentage of
times that the buffer was not found in the cache as a percentage of the total
searches.

Total cache searches

This row summarizes cache search activity. Note that the “Found in Wash” data
is a subcategory of the “Cache Hits” number and it is not used in the summary
calculation.

Data cache management

288 Adaptive Server Enterprise

Pool turnover

“Pool Turnover” reports the number of times that a buffer is replaced from each
pool in a cache. Each cache can have up to 4 pools, with I/O sizes of 2K, 4K,
8K, and 16K. If there is any “Pool Turnover,” sp_sysmon prints the “LRU
Buffer Grab” and “Grabbed Dirty” information for each pool that is configured
and a total turnover figure for the entire cache. If there is no “Pool Turnover,”
sp_sysmon prints only a row of zeros for “Total Cache Turnover.”

This information helps you to determine if the pools and cache are the right
size.

LRU buffer grab

“LRU Buffer Grab” is incremented only when a page is replaced by another
page. If you have recently restarted Adaptive Server, or if you have just
unbound and rebound the object or database to the cache, turnover does not
count reading pages into empty buffers.

If memory pools are too small for the throughput, you may see high turnover
in the pools, reduced cache hit rates, and increased I/O rates. If turnover is high
in some pools and low in other pools, you might want to move space from the
less active pool to the more active pool, especially if it can improve the cache-
hit ratio.

If the pool has 1000 buffers, and Adaptive Server is replacing 100 buffers every
second, 10% of the buffers are being turned over every second. That might be
an indication that the buffers do not remain in cache for long enough for the
objects using that cache.

Grabbed dirty

“Grabbed Dirty” gives statistics for the number of dirty buffers that reached the
LRU before they could be written to disk. When Adaptive Server needs to grab
a buffer from the LRU end of the cache in order to fetch a page from disk, and
finds a dirty buffer instead of a clean one, it must wait for I/O on the dirty buffer
to complete. “% of total” reports the percentage of buffers grabbed dirty as a
percentage of the total number of buffers grabbed.

If “Grabbed Dirty” is a nonzero value, it indicates that the wash area of the pool
is too small for the throughput in the pool. Remedial actions depend on the pool
configuration and usage:

• If the pool is very small and has high turnover, consider increasing the size
of the pool and the wash area.

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 289

• If the pool is large, and it is used for a large number of data modification
operations, increase the size of the wash area.

• If several objects use the cache, moving some of them to another cache
could help.

• If the cache is being used by create index, the high I/O rate can cause dirty
buffer grabs, especially in a small 16K pool. In these cases, set the wash
size for the pool as high as possible, to 80% of the buffers in the pool.

• If the cache is partitioned, reduce the number of partitions.

• Check query plans and I/O statistics for objects that use the cache for
queries that perform a lot of physical I/O in the pool. Tune queries, if
possible, by adding indexes.

Check the “per second” values for “Buffers Already in I/O” and “Buffers
Washed Dirty” in the section “Buffer wash behavior” on page 289. The wash
area should be large enough to allow I/O to be completed on dirty buffers
before they reach the LRU. The time required to complete the I/O depends on
the actual number of physical writes per second achieved by your disk drives.

Also check “Disk I/O management” on page 298 to see if I/O contention is
slowing disk writes.

Also, it might help to increase the value of the housekeeper free write percent
configuration parameter. See the System Administration Guide.

Total cache turnover

This summary line provides the total number of buffers grabbed in all pools in
the cache.

Buffer wash behavior

This category reports information about the state of buffers when they reach the
pool’s wash marker. When a buffer reaches the wash marker it can be in one of
three states:

• “Buffers Passed Clean” reports the number of buffers that were clean
when they passed the wash marker. The buffer was not changed while it
was in the cache, or it was changed, and has already been written to disk
by the housekeeper or a checkpoint. “% of total” reports the percentage of
buffers passed clean as a percentage of the total number of buffers that
passed the wash marker.

Data cache management

290 Adaptive Server Enterprise

• “Buffers Already in I/O” reports the number of times that I/O was already
active on a buffer when it entered the wash area. The page was dirtied
while in the cache. The housekeeper or a checkpoint has started I/O on the
page, but the I/O has not completed. “% of total” reports the percentage of
buffers already in I/O as a percentage of the total number of buffers that
entered the wash area.

• “Buffers Washed Dirty” reports the number of times that a buffer entered
the wash area dirty and not already in I/O. The buffer was changed while
in the cache and has not been written to disk. An asynchronous I/O is
started on the page as it passes the wash marker. “% of total” reports the
percentage of buffers washed dirty as a percentage of the total number of
buffers that entered the wash area.

If no buffers pass the wash marker during the sample interval, sp_sysmon
prints:

Statistics Not Available - No Buffers Entered Wash Section Yet!

Cache strategy

This section reports the number of buffers placed in cache following the fetch-
and-discard (MRU) or normal (LRU) caching strategies:

• “Cached(LRU) Buffers” reports the number of buffers that used normal
cache strategy and were placed at the MRU end of the cache. This includes
all buffers read directly from disk and placed at the MRU end, and all
buffers that were found in cache. At the completion of the logical I/O, the
buffer was placed at the MRU end of the cache.

• “Discarded (MRU) Buffers” reports the number of buffers that were
placed at the wash marker, using the fetch-and-discard strategy.

If you expect an entire table to be cached, but you e see a high value for
“Discarded Buffers,” use showplan to see if the optimizer is generating the
fetch-and-discard strategy when it should be using the normal cache
strategy.

See “Specifying the cache strategy” on page 45 in Performance and
Tuning: Optimizer for more information.

Large I/O usage

This section provides data about Adaptive Server prefetch requests for large
I/O. It reports statistics on the numbers of large I/O requests performed and
denied.

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 291

Large I/Os performed

“Large I/Os Performed” measures the number of times that a requested large
I/O was performed. “% of total” reports the percentage of large I/O requests
performed as a percentage of the total number of requests made.

Large I/Os denied

“Large I/Os Denied” reports the number of times that large I/O could not be
performed. “% of total” reports the percentage of large I/O requests denied as
a percentage of the total number of requests made.

Adaptive Server cannot perform large I/O:

• If any page in a buffer already resides in another pool.

• When there are no buffers available in the requested pool.

• On the first extent of an allocation unit, since it contains the allocation
page, which is always read into the 2K pool.

If a high percentage of large I/Os were denied, it indicates that the use of the
larger pools might not be as effective as it could be. If a cache contains a large
I/O pool, and queries perform both 2K and 16K I/O on the same objects, there
will always be some percentage of large I/Os that cannot be performed because
pages are in the 2K pool.

If more than half of the large I/Os were denied, and you are using 16K I/O, try
moving all of the space from the 16K pool to the 8K pool. Re-run the test to see
if total I/O is reduced. Note that when a 16K I/O is denied, Adaptive Server
does not check for 8K or 4K pools, but uses the 2K pool.

You can use information from this category and “Pool Turnover” to help judge
the correct size for pools.

Total large I/O requests

“Total Large I/O Requests” provides summary statistics for large I/Os
performed and denied.

Large I/O detail

This section provides summary information for each pool individually. It
contains a block of information for each 4K, 8K, or 16K pool configured in
cache. It prints the pages brought in (“Pages Cached”) and pages referenced
(“Pages Used”) for each I/O size that is configured.

Procedure cache management

292 Adaptive Server Enterprise

For example, if a query performs a 16K I/O and reads a single data page, the
“Pages Cached” value is 8, and “Pages Used” value is 1.

• “Pages by Lrg I/O Cached” prints the total number of pages read into the
cache.

• “Pages by Lrg I/O Used” reports the number of pages used by a query
while in cache.

Dirty read behavior

“Page Requests” reports the average number of pages requested at isolation
level 0.

The “% of total” output for “Dirty Read Page Requests” shows the percentage
of dirty reads with respect to the total number of page reads.

Procedure cache management
“Procedure Cache Management” shows:

• Reporting on the number of times stored procedures are recompiled.

• Tracking the phase that triggered the recompilations: execution time,
recompilation, and so on.

• Reporting the cause of recompilation: table missing, permissions change,
and so on.

Sample output
Procedure Cache Management per sec per xact count % of total
--------------------------- ------------ ------------ ---------- ----------

Procedure Requests 6.6 3.7 33 n/a
Procedure Reads from Disk 1.0 0.6 5 15.2%
Procedure Writes to Disk 0.4 0.2 2 6.1%
Procedure Removals 2.6 1.4 13 n/a
Procedure Recompilations 0.8 0.4 4 n/a

Recompilations Requests:
Execution Phase 0.6 0.3 3 75.0%
Compilation Phase 0.2 0.1 1 25.0%

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 293

Execute Cursor Execution 0.0 0.0 0 0.0%
Redefinition Phase 0.0 0.0 0 0.0%

Recompilations Reasons:
Table Missing 0.6 0.3 3 n/a
Temporary Table Missing 0.2 0.1 1 n/a
Schema Change 0.0 0.0 0 n/a
Index Change 0.0 0.0 0 n/a
Isolation Level Change 0.2 0.1 1 n/a
Permissions Change 0.0 0.0 0 n/a
Cursor Permissions Change 0.0 0.0 0 n/a

Procedure requests
“Procedure Requests” reports the number of times stored procedures were
executed.

When a procedure is executed, these possibilities exist:

• An idle copy of the query plan in memory, so it is copied and used.

• No copy of the procedure is in memory, or all copies of the plan in memory
are in use, so the procedure must be read from disk.

Procedure reads from disk
“Procedure Reads from Disk” reports the number of times that stored
procedures were read from disk rather than found and copied in the procedure
cache.

“% of total” reports the percentage of procedure reads from disk as a
percentage of the total number of procedure requests. If this is a relatively high
number, it could indicate that the procedure cache is too small.

Procedure writes to disk
“Procedure Writes to Disk” reports the number of procedures created during
the interval. This can be significant if application programs generate stored
procedures.

Memory management

294 Adaptive Server Enterprise

Procedure removals
“Procedure Removals” reports the number of times that a procedure aged out
of cache.

Memory management
“Memory Management” reports the number of pages allocated and deallocated
during the sample interval.

Sample output
The following sample shows sp_sysmon output for the “Memory
Management” section.

===

Memory Management per sec per xact count % of total
------------------------- ------------ ------------ ---------- ----------

Pages Allocated 0.0 1.0 4 n/a
Pages Released 0.0 1.0 4 n/a

Pages allocated
“Pages Allocated” reports the number of times that a new page was allocated
in memory.

Pages released
“Pages Released” reports the number of times that a page was freed.

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 295

Recovery management
This data indicates the number of checkpoints caused by the normal checkpoint
process, the number of checkpoints initiated by the housekeeper task, and the
average length of time for each type. This information is helpful for setting the
recovery and housekeeper parameters correctly.

Note If you are using Adaptive Server 12.5.03 or later, internal benchmarks
indicate that the checkpoint task executes up to 200% faster than formerly,
causing significant gains in database recovery speeds. This increase in speed
requires no action on your part.

However, performance improvements depend on the effectiveness of your I/O
subsystem. You may not see these gains on a poor subsystem.

Sample output
The following sample shows sp_sysmon output for the “Recovery
Management” section.

===

Recovery Management

Checkpoints per sec per xact count % of total
------------------------- ------------ ------------ ---------- ----------
Total Checkpoints 0.0 0.0 0 n/a

Checkpoints
Checkpoints write dirty pages (pages that have been modified in memory, but
not written to disk) to the database device. Adaptive Server’s automatic
(normal) checkpoint mechanism works to maintain a minimum recovery
interval. By tracking the number of log records in the transaction log since the
last checkpoint was performed, it estimates whether the time required to
recover the transactions exceeds the recovery interval. If so, the checkpoint
process scans all data caches and writes out all changed data pages.

Recovery management

296 Adaptive Server Enterprise

When Adaptive Server has no user tasks to process, the housekeeper wash task
begins writing dirty buffers to disk. These writes are done during the server’s
idle cycles, so they are known as “free writes.” They result in improved CPU
utilization and a decreased need for buffer washing during transaction
processing.

If the housekeeper wash task finishes writing all dirty pages in all caches to
disk, it checks the number of rows in the transaction log since the last
checkpoint. If there are more than 100 log records, it issues a checkpoint. This
is called a “free checkpoint” because it requires very little overhead. In
addition, it reduces future overhead for normal checkpoints.

Number of normal checkpoints

“# of Normal Checkpoints” reports the number of checkpoints performed by
the normal checkpoint process.

If the normal checkpoint is doing most of the work, especially if the time
required is lengthy, it might make sense to increase the number of writes
performed by the housekeeper wash task.

See the System Administration Guide for information about changing the
number of normal checkpoints.

Number of free checkpoints

“# of Free Checkpoints” reports the number of checkpoints performed by the
housekeeper wash task. The housekeeper wash task performs checkpoints only
when it has cleared all dirty pages from all configured caches.

You can use the housekeeper free write percent parameter to configure the
maximum percentage by which the housekeeper wash task can increase
database writes. See the System Administration Guide.

Total checkpoints

“Total Checkpoints” reports the combined number of normal and free
checkpoints that occurred during the sample interval.

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 297

Average time per normal checkpoint
“Avg Time per Normal Chkpt” reports the average time that normal
checkpoints lasted.

Average time per free checkpoint
“Avg Time per Free Chkpt” reports the average time that free (or housekeeper)
checkpoints lasted.

Increasing the housekeeper batch limit
The housekeeper wash task has a built-in batch limit to avoid overloading disk
I/O for individual devices. By default, the batch size for housekeeper writes is
set to 3. As soon as the housekeeper detects that it has issued 3 I/Os to a single
device, it stops processing in the current buffer pool and begins checking for
dirty pages in another pool. If the writes from the next pool go to the same
device, it moves on to another pool. Once the housekeeper has checked all of
the pools, it waits until the last I/O it has issued has completed, and then begins
the cycle again.

The default batch limit is designed to provide good device I/O characteristics
for slow disks. You may get better performance by increasing the batch size for
fast disk drives. This limit can be set globally for all devices on the server or to
different values for disks with different speeds. You must reset the limits each
time Adaptive Server is restarted.

This command sets the batch size to 10 for a single device, using the virtual
device number from sysdevices:

dbcc tune(deviochar, 8, "10")

To see the device number, use sp_helpdevice or this query:

select name, low/16777216
from sysdevices
where status&2=2

To change the housekeeper’s batch size for all devices on the server, use -1 in
place of a device number:

dbcc tune(deviochar, -1, "5")

For very fast drives, setting the batch size as high as 50 has yielded
performance improvements during testing.

Disk I/O management

298 Adaptive Server Enterprise

You may want to try setting the batch size higher if:

• The average time for normal checkpoints is high

• There are no problems with exceeding I/O configuration limits or
contention on the semaphores for the devices

Disk I/O management
This section reports on disk I/O. It provides an overview of disk I/O activity for
the server as a whole and reports on reads, writes, and semaphore contention
for each logical device.

Sample output
The following sample shows sp_sysmon output for the “Disk I/O
Management” section.

===

Disk I/O Management

Max Outstanding I/Os per sec per xact count % of total
----------------------- ------------ ------------ ---------- ----------
Server n/a n/a 2 n/a
Engine 0 n/a n/a 2 n/a

I/Os Delayed by
Disk I/O Structures n/a n/a 0 n/a
Server Config Limit n/a n/a 0 n/a
Engine Config Limit n/a n/a 0 n/a
Operating System Limit n/a n/a 0 n/a

Total Requested Disk I/Os 0.0 0.5 2

Completed Disk I/O’s
Engine 0 0.0 0.5 2 100.0 %

------------------------- ------------ ------------ ----------
Total Completed I/Os 0.0 0.5 2

Device Activity Detail

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 299

Device:
/work/Devices/coffee.dat
master per sec per xact count % of total

------------------------- ------------ ------------ ---------- ----------
Reads
APF 0.0 0.0 0 0.0 %
Non-APF 0.0 0.0 0 0.0 %

Writes 0.0 0.5 2 100.0 %
------------------------- ------------ ------------ ---------- ----------
Total I/Os 0.0 0.5 2 100.0 %

Device:

/work/Devices/pubs2dat.dat
pubs2dat per sec per xact count % of total

------------------------- ------------ ------------ ---------- ----------
Total I/Os 0.0 0.0 0 n/a

------------------------- ------------ ------------ ---------- ----------
Total I/Os 0.0 0.0 0 0.0 %

Maximum outstanding I/Os
“Max Outstanding I/Os” reports the maximum number of I/Os pending for
Adaptive Server as a whole (the first line), and for each Adaptive Server engine
at any point during the sample interval.

This information can help configure I/O parameters at the server or operating
system level if any of the “I/Os Delayed By” values are nonzero.

I/Os delayed by
When the system experiences an I/O delay problem, it is likely that I/O is
blocked by one or more Adaptive Server or operating system limits.

Most operating systems have a kernel parameter that limits the number of
asynchronous I/Os that can take place.

Disk I/O management

300 Adaptive Server Enterprise

Disk I/O structures

“Disk I/O Structures” reports the number of I/Os delayed by reaching the limit
on disk I/O structures. When Adaptive Server exceeds the number of available
disk I/O control blocks, I/O is delayed because Adaptive Server requires that
tasks get a disk I/O control block before initiating an I/O request.

If the result is a nonzero value, try increasing the number of available disk I/O
control blocks by increasing the configuration parameter disk i/o structures. See
the System Administration Guide.

Server configuration limit

Adaptive Server can exceed its limit for the number of asynchronous disk I/O
requests that can be outstanding for the entire Adaptive Server at one time. You
can raise this limit using the max async i/os per server configuration parameter.
See the System Administration Guide.

Engine configuration limit

An engine can exceed its limit for outstanding asynchronous disk I/O requests.
You can change this limit with the max async i/os per engine configuration
parameter. See the System Administration Guide.

Operating system limit

“Operating System Limit” reports the number of times the operating system
limit on outstanding asynchronous I/Os was exceeded during the sample
interval. The operating system kernel limits the maximum number of
asynchronous I/Os that either a process or the entire system can have pending
at any one time. See the System Administration Guide; also see your operating
system documentation.

Requested and completed disk I/Os
This data shows the total number of disk I/Os requested and the number and
percentage of I/Os completed by each Adaptive Server engine.

“Total Requested Disk I/Os” and “Total Completed I/Os” should be the same
or very close. These values will be very different if requested I/Os are not
completing due to saturation.

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 301

The value for requested I/Os includes all requests that were initiated during the
sample interval, and it is possible that some of them completed after the sample
interval ended. These I/Os will not be included in “Total Completed I/Os”, and
will cause the percentage to be less than 100, when there are no saturation
problems.

The reverse is also true. If I/O requests were made before the sample interval
began and they completed during the period, you would see a “% of Total” for
“Total Completed I/Os” value that is more than 100%.

If the data indicates a large number of requested disk I/Os and a smaller number
of completed disk I/Os, there could be a bottleneck in the operating system that
is delaying I/Os.

Total requested disk I/Os

“Total Requested Disk I/Os” reports the number of times that Adaptive Server
requested disk I/Os.

Completed disk I/Os

“Total Completed Disk I/Os” reports the number of times that each engine
completed I/O. “% of total” reports the percentage of times each engine
completed I/Os as a percentage of the total number of I/Os completed by all
Adaptive Server engines combined.

You can also use this information to determine whether the operating system
can keep pace with the disk I/O requests made by all of the engines.

Device activity detail
“Device Activity Detail” reports activity on each logical device. It is useful for
checking that I/O is well balanced across the database devices and for finding
a device that might be delaying I/O. For example, if the “Task Context
Switches Due To” data indicates a heavy amount of device contention, you can
use “Device Activity Detail” to figure out which device(s) is causing the
problem.

This section prints the following information about I/O for each data device on
the server:

• The logical and physical device names

• The number of reads and writes and the total number of I/Os

Disk I/O management

302 Adaptive Server Enterprise

• The number of device semaphore requests immediately granted on the
device and the number of times a process had to wait for a device
semaphore

Reads and writes

“Reads” and “Writes” report the number of times that reads or writes to a
device took place. “Reads” reports the number of pages that were read by
asynchronous prefetch and those brought into cache by other I/O activity. The
“% of total” column reports the percentage of reads or writes as a percentage
of the total number of I/Os to the device.

Total I/Os

“Total I/Os” reports the combined number of reads and writes to a device. The
“% of total” column is the percentage of combined reads and writes for each
named device as a percentage of the number of reads and writes that went to all
devices.

You can use this information to check I/O distribution patterns over the disks
and to make object placement decisions that can help balance disk I/O across
devices. For example, does the data show that some disks are more heavily
used than others? If you see that a large percentage of all I/O went to a specific
named device, you can investigate the tables residing on the device and then
determine how to remedy the problem.

See “Creating objects on segments” on page 96 in Performance and Tuning:
Basics.

Device semaphore granted and waited

The “Device Semaphore Granted” and “Device Semaphore Waited” categories
report the number of times that a request for a device semaphore was granted
immediately and the number of times the semaphore was busy and the task had
to wait for the semaphore to be released. The “% of total” column is the
percentage of times the device the semaphore was granted (or the task had to
wait) as a percentage of the total number of device semaphores requested. This
data is meaningful for SMP environments only.

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 303

When Adaptive Server needs to perform a disk I/O, it gives the task the
semaphore for that device in order to acquire a block I/O structure. On SMP
systems, multiple engines can try to post I/Os to the same device
simultaneously. This creates contention for that semaphore, especially if there
are hot devices or if the data is not well distributed across devices.

A large percentage of I/O requests that waited could indicate a semaphore
contention issue. One solution might be to redistribute the data on the physical
devices.

Network I/O management
“Network I/O Management” reports the following network activities for each
Adaptive Server engine:

• Total requested network I/Os

• Network I/Os delayed

• Total TDS packets and bytes received and sent

• Average size of packets received and sent

This data is broken down by engine, because each engine does its own network
I/O. Imbalances are usually caused by one of the following condition:

• There are more engines than tasks, so the engines with no work to perform
report no I/O, or

• Most tasks are sending and receiving short packets, but another task is
performing heavy I/O, such as a bulk copy.

Sample output
The following sample shows sp_sysmon output for the “Network I/O
Management” categories.

===

Network I/O Management

Total Network I/O Requests 0.0 0.0 0 n/a

Network I/O management

304 Adaptive Server Enterprise

Total TDS Packets Received per sec per xact count % of total
------------------------- ------------ ------------ ---------- ----------
Total TDS Packets Rec’d 0.0 0.0 0 n/a

Total Bytes Received per sec per xact count % of total
------------------------- ------------ ------------ ---------- ----------
Total Bytes Rec’d 0.0 0.0 0 n/a

Total TDS Packets Sent per sec per xact count % of total
------------------------- ------------ ------------ ---------- ----------
Total TDS Packets Sent 0.0 0.0 0 n/a

Total Bytes Sent per sec per xact count % of total
------------------------- ------------ ------------ ---------- ----------
Total Bytes Sent 0.0 0.0 0 n/a

Total network I/Os requests
“Total Network I/O Requests” reports the total number of packets received and
sent.

If you know how many packets per second the network can handle, you can
determine whether Adaptive Server is challenging the network bandwidth.

The issues are the same whether the I/O is inbound or outbound. If Adaptive
Server receives a command that is larger than the packet size, Adaptive Server
waits to begin processing until it receives the full command. Therefore,
commands that require more than one packet are slower to execute and take up
more I/O resources.

If the average bytes per packet is near the default packet size configured for
your server, you may want to configure larger packet sizes for some
connections. You can configure the network packet size for all connections or
allow certain connections to log in using larger packet sizes.

See “Changing network packet sizes” on page 27 in the Performance and
Tuning: Basics.

CHAPTER 8 Monitoring Performance with sp_sysmon

Performance and Tuning; Monitoring and Analyzing 305

Network I/Os delayed
“Network I/Os Delayed” reports the number of times I/O was delayed. If this
number is consistently nonzero, consult with your network administrator.

Total TDS packets received
“Total TDS Packets Received” reports the number of TDS packets received per
engine. “Total TDS Packets Rec’d” reports the number of packets received
during the sample interval.

Total bytes received
“Total Bytes Received” reports the number of bytes received per engine. “Total
Bytes Rec’d” reports the total number of bytes received during the sample
interval.

Average bytes received per packet
“Average Bytes Rec’d per Packet” reports the average number of bytes for all
packets received during the sample interval.

Total TDS packets sent
“Total TDS Packets Sent” reports the number of packets sent by each engine,
and a total for the server as a whole.

Total bytes sent
“Total Bytes Sent” reports the number of bytes sent by each Adaptive Server
engine, and the server as a whole, during the sample interval.

Network I/O management

306 Adaptive Server Enterprise

Average bytes sent per packet
“Average Bytes Sent per Packet” reports the average number of bytes for all
packets sent during the sample interval.

Reducing packet overhead
If your applications use stored procedures, you may see improved throughput
by turning off certain TDS messages that are sent after each select statement
that is performed in a stored procedure. This message, called a “done in proc”
message, is used in some client products. In some cases, turning off “done in
proc” messages also turns off the “rows returned” messages. These messages
may be expected in certain Client-Library programs, but many clients simply
discard these results. Test the setting with your client products and Open Client
programs to determine whether it affects them before disabling this message on
a production system.

Turning off “done in proc” messages can increase throughput slightly in some
environments, especially those with slow or overloaded networks, but may
have virtually no effect in other environments. To turn the messages off, issue
the command:

dbcc tune (doneinproc, 0)

To turn the messages on, use:

dbcc tune (doneinproc, 1)

This command must be issued each time Adaptive Server is restarted.

Performance and Tuning: Monitoring and Analyzing 307

Symbols
< (less than)

in histograms 155
<= (less than or equals)

in histograms 152
(pound sign)

in optdiag output 168
= (equals sign) comparison operator

in histograms 155

Numerics
302 trace flag 171–195
310 trace flag 172
317 trace flag 189
3604 trace flag 172

A
access methods

showplan messages for 93–113
add index level, sp_sysmon report 264
address locks

contention 229
deadlocks reported by sp_sysmon 275
sp_sysmon report on 273

aggregate functions
ONCE AGGREGATE messages in showplan

129
showplan messages for 84

allocation pages
large I/O and 291

allocation units
table 139

alter table command
statistics and 168

appl_and_login

 234
application design 199

user connections and 226
application execution precedence

tuning with sp_sysmon 233
applications

CPU usage report 239
disk I/O report 240
I/O usage report 239
idle time report 239
network I/O report 240
priority changes 240
TDS messages and 306
yields (CPU) 239

ascending scan showplan message 101
ascinserts (dbcc tune parameter) 263
asynchronous I/O

buffer wash behavior and 290
sp_sysmon report on 299
statistics io report on 65

asynchronous prefetch
denied due to limits 283
sp_sysmon report on 302

auxiliary scan descriptors, showplan messages for 93
average disk I/Os returned, sp_sysmon report on 219
average lock contention, sp_sysmon report on 272

B
backward scans

sp_sysmon report on 265
batch processing

I/O pacing and 228
performance monitoring and 198

best access block 187
between operator selectivity

dbcc traceon(302) output 182
binary expressions xix
binary mode

Index

Index

308 Adaptive Server Enterprise

optdiag utility program 158–159
blocking network checks, sp_sysmon report on 217
buffers

grabbed statistics 281
statistics 281
wash behavior 289

buffers, configuring for monitoring tables 10

C
cache hit ratio

sp_sysmon report on 280, 286
cache wizard 202, 207
cache, procedure

sp_sysmon report on 292
task switching and 227

cached (LRU) buffers 281
caches, data

clearing pages from 71
hits found in wash 287
misses 287
strategies chosen by optimizer 290
task switching and 227
total searches 287
utilization 286

changing
configuration parameters 198

character expressions xix
checkpoint process 295

average time 296
CPU usage 215
I/O batch size 228
sp_sysmon and 295

client
TDS messages 306

client connections and monitoring tables 10
cluster ratio

data pages 144
data pages, optdiag output 144
data rows 145
dbcc traceon(302) report on 176
index pages 144
statistics 141, 143

clustered indexes
page splits and 259

showplan messages about 99
clustered table, sp_sysmon report on 247
column-level statistics

generating the update statistics 54
truncate table and 52
update statistics and 52

command syntax 61
committed transactions, sp_sysmon report on 244
composite indexes

density statistics 146
performance 150
selectivity statistics 146
statistics 150
update index statistics and 55

compute clause
showplan messages for 86

configuration (server)
performance monitoring and 199
sp_sysmon and 198

connections
opened (sp_sysmon report on) 225

constants xix
contention 199

address locks 229
data cache spinlock 285
device semaphore 302
disk devices 232
disk I/O 298
disk structures 232
disk writes 227
hash spinlock 268
I/O device 232
last page of heap tables 273
lock 228, 272, 274
log semaphore requests 230, 254
spinlock 285
yields and 227

context switches 226
conventions

used in manuals xvii
conversion

ticks to milliseconds, formula for 63
correlated subqueries

showplan messages for 127
cost

base cost 177

Index

Performance and Tuning: Monitoring and Analyzing 309

index scans output in dbcc traceon(302) 185
table scan 177

counters, internal 198
covering nonclustered indexes

showplan message for 104
CPU

checkpoint process and usage 215
processes and 206
server use while idle 214
sp_sysmon report and 204
ticks 63
time 63
yielding and overhead 218
yields by engine 216

CPU usage
applications, sp_sysmon report on 239
logins, sp_sysmon report on 239
lowering 215
sp_sysmon report on 214

create clustered index command
statistics and 168

create nonclustered index command
statistics and 169

create table command
statistics and 168

cursors
statistics io output for 66

D
data caches

contention 285
management, sp_sysmon report on 278
spinlocks on 285

data modification
showplan messages 79
update modes 79

data page cluster ratio
defined 144
optdiag output 144
statistics 141

data pages
count of 139
number of empty 139

data row cluster ratio

defined 144
statistics 144

data rows
size, optdiag output 140

database design
ULC flushes and 252

datatypes
mismatched 174

dbcc (database consistency checker)
trace flags 171

dbcc traceon(302) 171–195
simulated statistics and 167

dbcc traceon(310) 172
dbcc traceon(317) 189
dbcc traceon(3604) 172
dbcc tune

ascinserts 263
des_greedyalloc 229
deviochar 297
doneinproc 306
log_prealloc 255
maxwritedes 228

deadlock pipe active configuration parameter 13
deadlock pipe max messages configuration parameter

13
deadlocks

detection 275
percentage 272
searches 276
sp_sysmon report on 272
statistics 274

debugging aids
dbcc traceon(302) 171

deferred updates
showplan messages for 80

delete operations
index maintenance and 258

delete shared statistics command 167
delete statistic 59
delete statistics command

managing statistics and 59
system tables and 169

deleted rows
reported by optdiag 139

dense frequency counts 154
density statistics

Index

310 Adaptive Server Enterprise

joins and 149
range cell density 148, 149
total density 148, 149

descending scan showplan message 101
devices

activity detail 301
adding 199
semaphores 302

deviochar (dbcc tune parameter) 297
dirty reads

modify conflicts and 232
requests 292
restarts 285
sp_sysmon report on 284

discarded (MRU) buffers, sp_sysmon report on 281
disjoint qualifications

dbcc traceon(302) message 183
disk devices

adding 199
average I/Os 219
contention 232
I/O checks report (sp_sysmon) 219
I/O management report (sp_sysmon) 298
I/O structures 300
transaction log and performance 231
write operations 227

disk I/O
application statistics 240
sp_sysmon report on 298

disk i/o structures configuration parameter 300
distinct keyword

showplan messages for 89, 131
drop index command

statistics and 59, 169
drop table command

statistics and 169
dynamic indexes

showplan message for 107

E
enable monitoring configuration parameter 14
end transaction, ULC flushes and 252
engines

busy 214

“config limit” 300
connections and 225
CPU report and 215
monitoring performance 199
outstanding I/O 300
utilization 214

equality selectivity
dbcc traceon(302) output 181

equi-height histograms 152
errorlog pipe active configuration parameter 14
errorlog pipe max messages configuration parameter

14
estimated cost

I/O, reported by showplan 113
exclusive locks

intent deadlocks 274
page deadlocks 274
table deadlocks 274

execution
preventing with set noexec on 73
time statistics from set statistics time on 63

existence joins
showplan messages for 132

exists keyword
showplan messages for 132

expression subqueries
showplan messages for 129

expressions
optimization of queries using 181

extended stored procedures
sp_sysmon report on 240

extents 140, 143

F
filter selectivity 185
flattened subqueries

showplan messages for 120
floating-point data xix
forward scans

sp_sysmon report on 265
forwarded rows

optdiag output 139
fragmentation

optdiag cluster ratio output 141, 144

Index

Performance and Tuning: Monitoring and Analyzing 311

fragmentation, data
large I/O and 282

free checkpoints 297
frequency cell

defined 154
weights and query optimization 181

full ULC, log flushes and 252
functions

optimization of queries using 181

G
grabbed dirty, sp_sysmon report on 288
group by clause

showplan messages for 83, 85
group commit sleeps, sp_sysmon report on 231

H
hash spinlock

contention 268
heading, sp_sysmon report 206
heap tables

insert statistics 246
lock contention 273

histograms 146
dense frequency counts in 154
duplicated values 154
equi-height 152
null values and 153
optdiag output 152–157
sample output 151
sparse frequency counts in 155
steps, number of 55

housekeeper free write percent configuration
parameter 296

housekeeper task
batch write limit 297
buffer washing 242
checkpoints and 296
garbage collection 242
reclaiming space 242
sp_sysmon and 295
sp_sysmon report on 241

I
I/O

batch limit 228
checking 218
completed 300
CPU and 215
delays 299
device contention and 232
limits 299
limits, effect on asynchronous prefetch 283
maximum outstanding 299
optimizer estimates of 174
pacing 228
requested 300
server-wide and database 298
showplan messages for 112
statistics information 63
structures 300
total 302
total estimated cost showplan message 113

i/o polling process count configuration parameter
network checks and 218

idle CPU, sp_sysmon report on 216
in keyword

matching index scans and 106
in-between selectivity

changing with optdiag 159
dbcc traceon(302) output 182
query optimization and 159

index covering
showplan messages for 104

index descriptors, sp_sysmon report on 267
index height 187

optdiag report 140
statistics 143

index keys
showplan output 106

index pages
cluster ratio 144

index row size
statistics 143

indexes
add levels statistics 264
cost of access 185
dbcc traceon(302) report on 185
height statistics 140

Index

312 Adaptive Server Enterprise

maintenance statistics 257
management 256
optdiag output 142
update index statistics on 55
update statistics on 55

information (Server)
dbcc traceon(302) messages ??–195

information (server)
dbcc traceon(302) messages 171–??
I/O statistics 63

insert operations
clustered table statistics 247
heap table statistics 246
index maintenance and 258
total row statistics 247

Installing
monitoring tables 12

installmontables script 12
integer data

in SQL xix
optimizing queries on 174

J
join clauses

dbcc traceon(302) output 179
join order

dbcc traceon(317) output 189
joins

optimizing 173
scan counts for 68

K
kernel

engine busy utilization 214
utilization 214

keys, index
showplan messages for 104

L
large I/O

denied 281, 291
effectiveness 282
fragmentation and 282
pages used 292
performed 281, 291
pool detail 291
restrictions 291
total requests 282, 291
usage 281, 290

last log page writes in sp_sysmon report 231
last page locks on heaps in sp_sysmon report 273
leaf levels of indexes

average size 143
local variables

optimization of queries using 181
lock hash table

sp_sysmon report on 272
lock hashtable

lookups 274
lock hashtable size configuration parameter

sp_sysmon report on 272
lock promotion thresholds

sp_sysmon report on 276
lock timeouts

sp_sysmon report on 277
locking

contention and 228
sp_sysmon report on 272

locks
address 229
deadlock percentage 272
sp_sysmon report on 272
total requests 272

log I/O size
group commit sleeps and 231
tuning 231

log scan showplan message 111
log semaphore requests 254
logical expressions xix
loops

runnable process search count and 215, 216
showplan messages for nested iterations 95

LRU replacement strategy
buffer grab in sp_sysmon report 288
I/O and 70
showplan messages for 112

Index

Performance and Tuning: Monitoring and Analyzing 313

M
maintenance tasks

indexes and 258
matching index scans

showplan message 106
materialized subqueries

showplan messages for 124
max async i/os per engine configuration parameter

tuning 300
max async i/os per server configuration parameter

tuning 300
max SQL text monitored configuration parameter

15
maximum outstanding I/Os 299
maximum ULC size, sp_sysmon report on 253
maxwritedes (dbcc tune parameter) 228
memory

allocated 294
released 294
sp_sysmon report on 294
system procedures used for 268–269

messages
dbcc traceon(302) 171–195
showplan 73–133
turning off TDS 306

metadata caches
finding usage statistics 268

minor columns
update index statistics and 55

“Modify conflicts” in sp_sysmon report 232
mon_role 4, 5
monCachedObject table 31
monCachedProcedures table 44
monCachePool table 32
monDataCache table 24
monDeadLock table 28
monDeviceIO table 34
monEngine table 23
monErrorLog table 27
monIOQueue table 33
monitor tables

installmontables script 12
monitoring

performance 198
Monitoring tables

mon_role 4, 5

stateful historical monitoring tables 9–12
monitoring tables 3–45

CIS and, 5
client connections 10
configuration options 13
configuring buffers 10
examples 6–8
installing 12
transient data 11
using search arguments 8
Using Transact-SQL to monitor performance 4

monLocks table 27
monNetworkIO table 27
monOpenDatabases table 25
monOpenObjectActivity table 32
monProcedureCache table 24
monProcess table 35
monProcessActivity table 37
monProcessLookup table 36
monProcessNetIO table 38
monProcessObject table 39
monProcessProcedures table 45
monProcessSQLText table 41
monProcessStatement table 40
monProcessWaits table 39
monState table 22
monSysPlanText table 42
monSysSQLText table 44
monSysStatement table 42
monSysWaits table 34
monSysWorkerThread table 25
monTableColumns table 21
monTableParameters table 20
monTables table 20
monWaitClassInfo table 30
monWaitEventInfo table 31
MRU replacement strategy

showplan messages for 112
multidatabase transactions 245, 252

N
names

index, in showplan messages 100
nesting

Index

314 Adaptive Server Enterprise

showplan messages for 126
network I/O

application statistics 240
networks

blocking checks 217
delayed I/O 305
I/O management 303
i/o polling process count and 218
packets 232, 233
reducing traffic on 306
sp_sysmon report on 217
total I/O checks 218

nonblocking network checks, sp_sysmon report on 217
nonclustered indexes

maintenance report 257
number (quantity of)

checkpoints 296
data pages 139
data rows 139
deleted rows 139
empty data pages 139
forwarded rows 139
OAM and allocation pages 139
pages 139
pages in an extent 140, 143
rows 139

numbers
showplan output 74

numeric expressions xix

O
object Allocation Map (OAM) pages

number reported by optdiag 139
object lockwait timing configuration parameter 15
operating systems

monitoring server CPU usage 214
outstanding I/O limit 300

optdiag utility command
binary mode 158–159
simulate mode 162

optimizer
dbcc traceon(302) 171–195
dbcc traceon(310) 189
I/O estimates 174

join order 189
query plan output 171–195
reformatting strategy 108
understanding 171
viewing with trace flag 302 171

or keyword
matching index scans and 106
scan counts and 68

OR strategy
showplan messages for 103, 107
statistics io output for 68

order
tables in showplan messages 75

order by clause
showplan messages for 89
worktables for 91

output
showplan 73–133

overhead
CPU yields and 218
network packets and 306
sp_sysmon 198

P
packets, network

average size received 305
average size sent 306
received 305
sent 305
size, configuring 233

page allocation to transaction log 256
page requests, sp_sysmon report on 284
page splits 259

avoiding 259
disk write contention and 227
index maintenance and 259
retries and 263

pages, data
cluster ratio 141
number of 139

pages, index
shrinks, sp_sysmon report on 264

parameters, procedure
tuning with 173

Index

Performance and Tuning: Monitoring and Analyzing 315

parse and compile time 63
per object statistics active configuration parameter

16
per opject statistics active configuration parameter

15
performance

lock contention and 228
monitoring 203
optdiag and altering statistics 157
speed and 199

plan text pipe active configuration parameter 16
plan text pipe max messages configuration parameter

16
pools, data cache

sp_sysmon report on size 288
positioning showplan messages 102
prefix subset

density values for 146
statistics for 146

priority
changes, sp_sysmon report on 237, 240

procedure cache
management with sp_sysmon 292

process wait events configuration parameter 17
processes (server tasks)

CPUs and 206
profile, transaction 243

Q
quantified predicate subqueries

showplan messages for 127
queries

execution settings 73
query analysis

dbcc traceon(302) 171–195
set statistics io 63
showplan and 73–133

R
range cell density

query optimization and 181
statistics 148, 149

range selectivity
changing with optdiag 159
dbcc traceon(302) output 182
query optimization and 159

reads
disk 302
statistics for 69

reclaiming space
housekeeper task 242

recompilation
testing optimization and 173

recovery
sp_sysmon report on 295

reformatting
showplan messages for 108

reorg command
statistics and 169

resource limits
showplan messages for 113
sp_sysmon report on violations 240

response time
CPU utilization and 215
sp_sysmon report on 205

retries, page splits and 263
row ID (RID) 259

updates from clustered split 259
updates, index maintenance and 259

rows, data
number of 139
size of 140

rows, index
size of 143

run queue 231

S
sample interval, sp_sysmon 206
samplicing

use for updating statistics 50
sampling

statistics 50
scan selectivity 185
scanning, in showplan messages 103
scans, number of (statistics io) 67
scans, table

Index

316 Adaptive Server Enterprise

auxiliary scan descriptors 93
showplan message for 101

search arguments
dbcc traceon(302) list 178
optimizing 173

search arguments in monitoring tables 8
searches skipped, sp_sysmon report on 276
selectivity

changing with optdiag 159
dbcc traceon(302) output 180
default values 182

semaphores 254
disk device contention 302
log contention 230
user log cache requests 253

server config limit, in sp_sysmon report 300
servers

monitoring performance 198
set command

query plans 73–133
statistics io 65
statistics simulate 62
statistics time 62

shared locks
intent deadlocks 274
page deadlocks 275
table deadlocks 274

showplan messages
descending index scans 106
simulated statistics message 82

showplan option, set 73–133
access methods 93
caching strategies 93
clustered indexes and 99
compared to trace flag 302 171
I/O cost strategies 93
messages 74
query clauses 82
sorting messages 92
subquery messages 119
update modes and 79

simulated statistics
dbcc traceon(302) and 167
dropping 167
set noexec and 167
showplan message for 82

size
I/O, reported by showplan 112
transaction logs 256

sleeping CPU 217
SMP (symmetric multiprocessing) systems

log semaphore contention 230
sort operations (order by)

showplan messages for 101
sp_flushstats system procedure

statistics maintenance and 170
sp_monitor system procedure

sp_sysmon interaction 198
sp_monitorconfig system procedure 268
sp_sysmon system procedure 197–306

transaction management and 250
sparse frequency counts 155
special OR strategy

statistics io output for 68
spinlocks

contention 285
data caches and 285

SQL batch capture configuration parameter 19
sql text pipe active configuration parameter 17
sql text pipe max messages configuration parameter

17, 18
stateful monitoring tables 9–12
statement pipe active configuration parameter 18
statement pipe max messages configuration parameter

18
statement statistic active configuration parameter 19
statement statistics active configuration parameter

19
statistics

allocation pages 139
cache hits 280, 286
cluster ratios 143
column-level 51, 53, 54, 146–156
data page cluster ratio 141, 144
data page count 139
data row cluster ratio 144
data row size 140
deadlocks 272, 274
deleted rows 139
deleting table and column with delete statistics

59
displaying with optdiag 137–156

Index

Performance and Tuning: Monitoring and Analyzing 317

drop index and 52
empty data page count 139
forwarded rows 139
in between selectivity 148
index 142–??
index add levels 264
index height 140, 143
index maintenance 257
index maintenance and deletes 258
index row size 143
large I/O 281
locks 269, 272, 274
OAM pages 139
page shrinks 264
range cell density 148, 149
range selectivity 148
recovery management 295
row counts 139
sampling 50
spinlock 285
system tables and 135–137
total density 148, 149
transactions 246
truncate table and 52
update time stamp 148

statistics clause, create index command 52
steps

query plans 74
stored procedures

sp_sysmon report on 293
stress tests, sp_sysmon and 199
subqueries

showplan messages for 119–133
symbols

in SQL statements xviii
sysstatistics table 136
systabstats table 136

query processing and 170
system log record, ULC flushes and (in sp_sysmon

report) 252

T
table locks 276
table scans

showplan messages for 98
tabular data stream (TDS) protocol

network packets and 233
packets received 305
packets sent 305

tasks
context switches 226
sleeping 231

testing
caching and 70
performance monitoring and 199
statistics io and 70

throughput
adding engines and 215
CPU utilization and 215
group commit sleeps and 231
log I/O size and 231
monitoring 205
pool turnover and 288
TDS messages and 306

time interval
sp_sysmon 200

timeouts, lock
sp_sysmon report on 277

total cache hits in sp_sysmon report 280
total cache misses in sp_sysmon report on 280
total cache searches in sp_sysmon report 281
total density

equality search arguments and 149
joins and 149
query optimization and 181
statistics 148, 149

total disk I/O checks in sp_sysmon report 218
total lock requests in sp_sysmon report 272
total network I/O checks in sp_sysmon report 218
trace flag

302 171–195
310 189
317 189
3604 172

transaction logs
average writes 256
contention 230
I/O batch size 228
last page writes 231
page allocations 256

Index

318 Adaptive Server Enterprise

task switching and 231
writes 255

transactions
committed 244
log records 251, 253
management 250
monitoring 205
multidatabase 245, 252
performance and 205
profile (sp_sysmon report) 243
statistics 246

Transient (stateful) data and monitoring tables 11
triggers

showplan messages for 111
truncate table command

column-level statistics and 52
statistics and 169

tuning
advanced techniques for 171–195
monitoring performance 198

turnover, pools (sp_sysmon report on) 288
turnover, total (sp_sysmon report on) 289

U
ULC. See user log cache (ULC)
unknown values

total density and 149
update all statistics 53
update all statistics command 49, 51, 55
update index statistics 53, 55, 57
update index statistics command 51
update operations

checking types 248
index maintenance and 258

update page deadlocks, sp_sysmon report on 274
update partition statistics 58
update statistics command 51

column-level 54
column-level statistics 54
managing statistics and 52
with consumers clause 58

updating
statistics 48, 50

updating statistics

use sampling 50
user connections

application design and 226
sp_sysmon report on 225

user log cache (ULC)
log records 251, 253
maximum size 253
semaphore requests 253

user log cache size configuration parameter 253
increasing 252

utilization
cache 286
engines 214
kernel 214

V
variables

optimization of queries using 181

W
wait event timing configuration parameter 19, 20
where clause

optimizing 173
with statistics clause, create index command 52
worktable 91
worktables

distinct and 90
order by and 91
reads and writes on 70
showplan messages for 83

write operations
contention 227
disk 302
statistics for 69
transaction log 255

Y
yields, CPU

sp_sysmon report on 216

	Performance and Tuning: Monitoring and Analyzing
	About This Book
	CHAPTER 1 Introduction to Performance and Tuning
	CHAPTER 2 Monitoring Tables
	Monitoring system tables in Adaptive Server
	Using Transact-SQL to monitor performance

	The mon_role role
	Examples of querying the monitoring tables
	Processing information through search arguments
	Wrapping counter datatypes
	Stateful historical monitoring tables
	Transient monitoring data

	Installing the monitoring tables
	Adaptive Server configuration options
	deadlock pipe active
	deadlock pipe max messages
	enable monitoring
	errorlog pipe active
	errorlog pipe max messages
	max SQL text monitored
	object lockwait timing
	per object statistics active
	plan text pipe active
	plan text pipe max messages
	process wait events
	sql text pipe active
	sql text pipe max messages
	statement pipe active
	statement pipe max messages
	statement statistics active
	SQL batch capture
	wait event timing

	System tables for monitor tables
	monTables
	monTableParameters
	monTableColumns
	monState
	monEngine
	monDataCache
	monProcedureCache
	monOpenDatabases
	monSysWorkerThread
	monNetworkIO
	monErrorLog
	monLocks
	monDeadLock
	monWaitClassInfo
	monWaitEventInfo
	monCachedObject
	monCachePool
	monOpenObjectActivity
	monIOQueue
	monDeviceIO
	monSysWaits
	monProcess
	monProcessLookup
	monProcessActivity
	monProcessNetIO
	monProcessObject
	monProcessWaits
	monProcessStatement
	monProcessSQLText
	monSysPlanText
	monSysStatement
	monCachedProcedures
	monSysSQLText
	monProcessProcedures

	CHAPTER 3 Using Statistics to Improve Performance
	Importance of statistics
	Updating
	Adding statistics for unindexed columns

	update statistics commands
	Using sampling for update statistics

	Column statistics and statistics maintenance
	Creating and updating column statistics
	When additional statistics may be useful
	Adding statistics for a column with update statistics
	Adding statistics for minor columns with update index statistics
	Adding statistics for all columns with update all statistics

	Choosing step numbers for histograms
	Disadvantages of too many steps
	Choosing a step number

	Scan types, sort requirements, and locking
	Sorts for unindexed or non leading columns
	Locking, scans, and sorts during update index statistics
	Locking, scans and sorts during update all statistics
	Using the with consumers clause
	Reducing update statistics impact on concurrent processes

	Using the delete statistics command
	When row counts may be inaccurate

	CHAPTER 4 Using the set statistics Commands
	Command syntax
	Using simulated statistics
	Checking subquery cache performance
	Checking compile and execute time
	Converting ticks to milliseconds

	Reporting physical and logical I/O statistics
	Total actual I/O cost value
	Statistics for writes
	Statistics for reads
	Sample output with and without an index

	statistics io output for cursors
	Scan count
	Queries reporting a scan count of 1
	Queries reporting a scan count of more than 1
	Queries reporting scan count of 0

	Relationship between physical and logical reads
	Logical reads, physical reads, and 2K I/O
	Physical reads and large I/O
	Reads and writes on worktables
	Effects of caching on reads

	statistics io and merge joins

	CHAPTER 5 Using set showplan
	Using
	Basic showplan messages
	Query plan delimiter message
	Step message
	Query type message
	FROM TABLE message
	FROM TABLE and referential integrity

	TO TABLE message
	Update mode messages
	Direct update mode
	Deferred mode
	Deferred index and deferred varcol messages

	Optimized using messages
	Simulated statistics message
	Abstract plan messages

	showplan messages for query clauses
	GROUP BY message
	Selecting into a worktable
	Grouped aggregate message
	Grouped aggregates and group by

	compute by message
	Ungrouped aggregate message
	Ungrouped aggregates
	compute messages

	messages for order by and distinct
	Worktable message for distinct
	Worktable message for order by

	Sorting messages
	Step involves sorting message
	GETSORTED message
	Serial or parallel sort message

	Messages describing access methods, caching, and I/O cost
	Auxiliary scan descriptors message
	Nested iteration message
	Merge join messages
	Worktable message

	Table scan message
	Clustered index message
	Index name message
	Scan direction messages
	Positioning messages
	Scanning messages
	Index covering message
	Keys message
	Matching index scans message
	Dynamic index message (OR strategy)
	Reformatting Message
	Trigger Log Scan Message
	I/O Size Messages
	Cache strategy messages
	Total estimated I/O cost message

	showplan messages for parallel queries
	Executed in parallel messages
	Coordinating process message
	Worker processes message
	Scan type message
	Merge messages
	Data merge messages
	Runtime adjustment message

	showplan messages for subqueries
	Output for flattened or materialized subqueries
	Flattened queries
	Materialized queries

	Structure of subquery showplan output
	Subquery execution message
	Nesting level delimiter message
	Subquery plan start delimiter
	Subquery plan end delimiter
	Type of subquery
	Subquery predicates
	Internal subquery aggregates
	Quantified predicate subqueries and the ANY aggregate
	Expression subqueries and the ONCE aggregate
	Subqueries with distinct and the ONCE-UNIQUE aggregate

	Existence join message
	Subqueries that perform existence tests

	CHAPTER 6 Statistics Tables and Displaying Statistics with optdiag
	System tables that store statistics
	systabstats table
	sysstatistics table

	Viewing statistics with the optdiag utility
	optdiag syntax
	optdiag header information
	Table statistics
	Sample output for table statistics
	Data page CR count
	Table-level derived statistics
	Data page cluster ratio
	Space utilization
	Large I/O efficiency

	Index statistics
	Sample output for index statistics
	Index-level derived statistics
	Data page cluster ratio
	Index page cluster ratio
	Data row cluster ratio
	Space utilization for an index
	Large I/O efficiency for an index

	Column statistics
	Sample output for column statistics
	Range cell and total density values
	Range and in-between selectivity values

	Histogram displays
	Sample output for histograms
	Understanding histogram output
	Histograms for columns with highly duplicated values
	Choosing the number of steps for highly duplicated values

	Changing statistics with optdiag
	Using the optdiag binary mode
	When you must use binary mode

	Updating selectivities with optdiag input mode
	Editing histograms
	Adding frequency count cells to a histogram
	Skipping the load-time verification for step numbering
	Rules checked during histogram loading
	Re-creating indexes without losing statistics updates

	Using simulated statistics
	optdiag syntax for simulated statistics
	Simulated statistics output
	Requirements for loading and using simulated statistics
	Using simulated statistics in the original database
	Using simulated statistics in another database

	Dropping simulated statistics
	Running queries with simulated statistics
	showplan messages for simulated statistics

	Character data containing quotation marks
	Effects of SQL commands on statistics
	How query processing affects systabstats

	CHAPTER 7 Tuning with dbcc traceon
	Tuning with dbcc traceon(302)
	dbcc traceon(310)
	Invoking the dbcc trace facility
	General tips for tuning with dbcc traceon(302)
	Checking for join columns and search arguments
	Determining how the optimizer estimates I/O costs
	Structure of dbcc traceon(302) output
	Additional blocks and messages

	Table information block
	Identifying the table
	Basic table data
	Cluster ratio
	Partition information

	Base cost block
	Concurrency optimization message

	Clause block
	Search clause identification
	When search clauses are not optimizable
	Values unknown at optimize time

	Join clause identification
	Sort avert messages

	Column block
	Selectivities when statistics exist and values are known
	When the optimizer uses default values
	Unknown values
	If no statistics are available

	Out-of-range messages
	“Disjoint qualifications” message
	Forcing messages
	Unique index messages
	Other messages in the column block

	Index selection block
	Scan and filter selectivity values
	How scan and filter selectivity can differ

	Other information in the index selection block

	Best access block
	dbcc traceon(310) and final query plan costs
	Flattened subquery join order message
	Worker process information
	Final plan information
	Sort-merge costs

	CHAPTER 8 Monitoring Performance with sp_sysmon
	Using
	When to run

	Invoking
	Fixed time intervals
	Using begin_sample and end_sample
	Specifying report sections for output
	Specifying the application detail parameter
	Cache Wizard syntax
	Parameters

	Redirecting output to a file

	How to use the reports
	Reading output
	Rows
	Columns

	Interpreting the data
	Per second and per transaction data
	Percent of total and count data
	Per engine data
	Total or summary data

	Sample interval and time reporting
	Cache Wizard
	Preparing to run the cache wizard
	Output
	Sample output for Cache Wizard

	Kernel utilization
	Sample output
	Engine busy utilization
	CPU yields by engine
	Network checks
	Non-blocking
	Blocking
	Total network I/O checks
	Average network I/Os per check

	Disk I/O checks
	Total disk I/O checks
	Checks returning I/O
	Average disk I/Os returned

	Worker process management
	Sample output
	Worker process requests
	Worker process usage
	Memory requests for worker processes
	Avg mem ever used by a WP

	Parallel query management
	Sample output
	Parallel query usage
	Merge lock requests
	Sort buffer waits

	Task management
	Sample output
	Connections opened
	Task context switches by engine
	Task context switches due to
	Voluntary yields
	Cache search misses
	System disk writes
	I/O pacing
	Logical lock contention
	Address lock contention
	Latch contention
	Log semaphore contention
	PLC lock contention
	Group commit sleeps
	Last log page writes
	Modify conflicts
	I/O device contention
	Network packet received
	Network packet sent
	Other causes

	Application management
	Sample output
	Requesting detailed application information
	Sample output
	Application statistics summary (all applications)
	Priority changes
	Allotted slices exhausted
	Skipped tasks by engine
	Engine scope changes

	Per application or per application and login
	Application activity
	Application priority changes
	Application I/Os completed
	Resource limits violated

	ESP management
	Sample output
	ESP requests
	Avg. time to execute an ESP

	Housekeeper task activity
	Sample output
	Buffer cache washes
	Garbage collections
	Statistics updates

	Monitor access to executing SQL
	Sample output
	Waits on execution plans
	Number of SQL text overflows
	Maximum SQL text requested

	Transaction profile
	Sample output
	Transaction summary
	How to count multi database transactions

	Transaction detail
	Inserts
	APL heap tables
	APL clustered table
	Data only lock table
	Total rows inserted

	Updates and update detail sections
	Updates
	Data-only-locked updates

	Deletes
	Total rows deleted

	Transaction management
	Sample output
	ULC flushes to transaction log
	By full ULC
	By end transaction
	By change of database
	By system log record and by other

	Total ULC flushes
	ULC log records
	Maximum ULC size
	ULC semaphore requests
	Log semaphore requests
	Log semaphore contention and user log caches

	Transaction log writes
	Transaction log allocations
	Avg # writes per log page

	Index management
	Sample output
	Nonclustered maintenance
	Inserts and updates requiring maintenance to indexes
	Deletes requiring maintenance
	Row ID updates from clustered split
	Data-Only-Locked updates and deletes requiring maintenance

	Page splits
	Reducing page splits for ascending key inserts
	Default data page splitting
	Effects of ascending inserts
	Setting ascending inserts mode for a table
	Retries and deadlocks
	Add index level

	Page shrinks
	Index scans

	Metadata cache management
	Sample output
	Open object, index, and database usage
	Object Manager Spinlock Contention
	Object and index spinlock contention
	Hash spinlock contention
	Using sp_monitorconfig to find metadata cache usage statistics

	Lock management
	Sample output
	Lock summary
	Lock detail
	Address locks
	Last page locks on heaps

	Table lock hashtable
	Deadlocks by lock type
	Deadlock detection
	Deadlock searches
	Searches skipped
	Average deadlocks per search

	Lock promotions
	Lock time-out information

	Data cache management
	Sample output
	Cache statistics summary (all caches)
	Cache search summary
	Cache turnover
	Cache strategy summary
	Large I/O usage
	Large I/O effectiveness
	Asynchronous prefetch activity report
	Other asynchronous prefetch statistics
	Dirty read behavior

	Cache management by cache
	Cache spinlock contention
	Utilization
	Cache search, hit, and miss information
	Pool turnover
	Buffer wash behavior
	Cache strategy
	Large I/O usage
	Large I/O detail
	Dirty read behavior

	Procedure cache management
	Sample output
	Procedure requests
	Procedure reads from disk
	Procedure writes to disk
	Procedure removals

	Memory management
	Sample output
	Pages allocated
	Pages released

	Recovery management
	Sample output
	Checkpoints
	Number of normal checkpoints
	Number of free checkpoints
	Total checkpoints

	Average time per normal checkpoint
	Average time per free checkpoint
	Increasing the housekeeper batch limit

	Disk I/O management
	Sample output
	Maximum outstanding I/Os
	I/Os delayed by
	Disk I/O structures
	Server configuration limit
	Engine configuration limit
	Operating system limit

	Requested and completed disk I/Os
	Total requested disk I/Os
	Completed disk I/Os

	Device activity detail
	Reads and writes
	Total I/Os
	Device semaphore granted and waited

	Network I/O management
	Sample output
	Total network I/Os requests
	Network I/Os delayed
	Total TDS packets received
	Total bytes received
	Average bytes received per packet
	Total TDS packets sent
	Total bytes sent
	Average bytes sent per packet
	Reducing packet overhead

	Index

