
Performance and Tuning: Locking

Adaptive Server® Enterprise

12.5.1

DOCUMENT ID: DC20021-01-1251-01

LAST REVISED: August 2003

Copyright © 1989-2003 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture,
Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server
Enterprise Replication, Adaptive Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, Anywhere Studio, Application
Manager, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Translator, APT-Library, AvantGo,
AvantGo Application Alerts, AvantGo Mobile Delivery, AvantGo Mobile Document Viewer, AvantGo Mobile Inspection, AvantGo
Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon Application Server,
AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BizTracker, ClearConnect, Client-Library,
Client Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer,
DataWindow, DB-Library, dbQueue, Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution Director, e-ADK,
E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway, ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise
Application Studio, Enterprise Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server
Manager, Enterprise Work Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA,
Financial Fusion, Financial Fusion Server, Gateway Manager, GlobalFIX, ImpactNow, Industry Warehouse Studio, InfoMaker,
Information Anywhere, Information Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, Mail
Anywhere Studio, MainframeConnect, Maintenance Express, Manage Anywhere Studio, M-Business Channel, M-Business Network,
M-Business Server, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, My AvantGo, My AvantGo Media Channel,
My AvantGo Mobile Marketing, MySupport, Net-Gateway, Net-Library, New Era of Networks, ObjectConnect, ObjectCycle,
OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open
Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC
Net Library, PocketBuilder, Pocket PowerBuilder, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class
Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft, PowerStage,
PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst,
Rapport, Report Workbench, Report-Execute, Replication Agent, Replication Driver, Replication Server, Replication Server Manager,
Replication Toolkit, Resource Manager, RW-DisplayLib, S-Designor, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian,
SKILS, smart.partners, smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL
Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART,
SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, S.W.I.F.T.
Message Format Libraries, Sybase Central, Sybase Client/Server Interfaces, Sybase Financial Server, Sybase Gateways, Sybase MPP,
Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financial,
SyberAssist, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, TradeForce, Transact-SQL,
Translation Toolkit, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual
Components, VisualSpeller, VisualWriter, VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse
WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup
SQL Server, XA-Library, XA-Server and XP Server are trademarks of Sybase, Inc. 03/03

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

Performance & Tuning: Locking iii

About This Book .. vii

CHAPTER 1 Introduction to Performance and Tuning 1

CHAPTER 2 Locking Overview ... 3
How locking affects performance ... 4
Overview of locking .. 4
Granularity of locks and locking schemes.. 6

Allpages locking .. 6
Datapages locking... 8
Datarows locking ... 9

Types of locks in Adaptive Server .. 9
Page and row locks ... 10
Table locks .. 12
Demand locks.. 13
Range locking for serializable reads 17
Latches.. 17

Lock compatibility and lock sufficiency... 18
How isolation levels affect locking.. 19

Isolation Level 0, read uncommitted.. 20
Isolation Level 1, read committed.. 22
Isolation Level 2, repeatable read ... 23
Isolation Level 3, serializable reads .. 23
Adaptive Server default isolation level 25

Lock types and duration during query processing.......................... 26
Lock types during create index commands 29
Locking for select queries at isolation Level 1......................... 29
Table scans and isolation Levels 2 and 3 30
When update locks are not required 30
Locking during or processing .. 31
Skipping uncommitted inserts during selects 32
Using alternative predicates to skip nonqualifying rows.......... 33

Pseudo column-level locking.. 34

Contents

iv Adaptive Server Enterprise

Select queries that do not reference the updated column....... 34
Qualifying old and new values for uncommitted updates 35

Suggestions to reduce contention.. 36

CHAPTER 3 Locking Configuration and Tuning .. 39
Locking and performance... 39

Using sp_sysmon and sp_object_stats 40
Reducing lock contention .. 40
Additional locking guidelines ... 43

Configuring locks and lock promotion thresholds........................... 44
Configuring Adaptive Server’s lock limit 45
Configuring the lock hashtable (Lock Manager)...................... 47
Setting lock promotion thresholds ... 48

Choosing the locking scheme for a table 53
Analyzing existing applications.. 54
Choosing a locking scheme based on contention statistics 54
Monitoring and managing tables after conversion................... 56
Applications not likely to benefit from data-only locking 56

Optimistic index locking.. 58
Understanding optimistic index locking 58
Using optimistic index locking ... 58
Cautions and issues .. 59

CHAPTER 4 Using Locking Commands ... 61
Specifying the locking scheme for a table...................................... 61

Specifying a server-wide locking scheme 61
Specifying a locking scheme with create table........................ 62
Changing a locking scheme with alter table 63
Before and after changing locking schemes 63
Expense of switching to or from allpages locking.................... 65
Sort performance during alter table... 65
Specifying a locking scheme with select into 66

Controlling isolation levels.. 66
Setting isolation levels for a session 67
Syntax for query-level and table-level locking options 67
Using holdlock, noholdlock, or shared..................................... 68
Using the at isolation clause.. 69
Making locks more restrictive .. 69
Making locks less restrictive.. 70

Readpast locking.. 71
Cursors and locking ... 71

Using the shared keyword... 73
Additional locking commands... 74

Contents

Performance & Tuning: Locking v

lock table Command.. 74
Lock timeouts .. 75

CHAPTER 5 Locking Reports.. 77
Locking tools .. 77

Getting information about blocked processes 77
Viewing locks... 78
Viewing locks... 80
Intrafamily blocking during network buffer merges.................. 81

Deadlocks and concurrency... 81
Server-side versus application-side deadlocks 82
Server task deadlocks ... 82
Deadlocks and parallel queries ... 84
Printing deadlock information to the error log.......................... 85
Avoiding deadlocks ... 86

Identifying tables where concurrency is a problem 88
Lock management reporting .. 89

CHAPTER 6 Indexing for Performance .. 91
How indexes affect performance.. 91
Detecting indexing problems.. 92

Symptoms of poor indexing... 92
Fixing corrupted indexes .. 95

Repairing the system table index .. 95
Index limits and requirements .. 98
Choosing indexes... 98

Index keys and logical keys... 99
Guidelines for clustered indexes ... 100
Choosing clustered indexes .. 101
Candidates for nonclustered indexes 101
Index Selection.. 102
Other indexing guidelines.. 104
Choosing nonclustered indexes .. 105
Choosing composite indexes .. 106
Key order and performance in composite indexes 106
Advantages and disadvantages of composite indexes 108

Techniques for choosing indexes... 109
Choosing an index for a range query 109
Adding a point query with different indexing requirements.... 110

Index and statistics maintenance ... 112
Dropping indexes that hurt performance 112
Choosing space management properties for indexes 112

Additional indexing tips .. 113

vi Adaptive Server Enterprise

Creating artificial columns.. 113
Keeping index entries short and avoiding overhead.............. 113
Dropping and rebuilding indexes ... 114
Configure enough sort buffers ... 114
Create the clustered index first .. 114
Configure large buffer pools .. 114

Asynchronous log service... 115
Understanding the user log cache (ULC) architecture........... 116
When to use ALS... 116
Using the ALS.. 117

CHAPTER 7 How Indexes Work .. 119
Types of indexes .. 120

Index pages ... 120
Index Size.. 122

Clustered indexes on allpages-locked tables 122
Clustered indexes and select operations............................... 123
Clustered indexes and insert operations 124
Page splitting on full data pages.. 125
Page splitting on index pages.. 127
Performance impacts of page splitting................................... 127
Overflow pages.. 128
Clustered indexes and delete operations 129

Nonclustered indexes ... 131
Leaf pages revisited... 132
Nonclustered index structure ... 132
Nonclustered indexes and select operations 134
Nonclustered index performance... 135
Nonclustered indexes and insert operations.......................... 135
Nonclustered indexes and delete operations......................... 136
Clustered indexes on data-only-locked tables 138

Index covering .. 138
Covering matching index scans... 139
Covering nonmatching index scans....................................... 140

Indexes and caching... 141
Using separate caches for data and index pages.................. 142
Index trips through the cache .. 142

Index.. 145

Performance & Tuning:Locking vii

About This Book

Audience This manual is intended for database administrators, database designers,
developers and system administrators.

Note You may want to use your own database for testing changes and
queries. Take a snapshot of the database in question and set it up on a test
machine.

How to use this book Chapter 1, “Introduction to Performance and Tuning” gives a general
description of this manual and the other manuals within the Performance
and Tuning Series for Adaptive Server.

Chapter 2, “Locking Overview” describes the types of locks that Adaptive
Server uses and what types of locks are acquired during query processing.

Chapter 3, “Locking Configuration and Tuning” describes the impact of
locking on performance and describes the tools to analyze locking
problems and configure locking.

Chapter 4, “Using Locking Commands” describes the commands that set
locking schemes for tables and control isolation levels and other locking
behavior during query processing.

Chapter 5, “Locking Reports” describes the system procedures that report
on locks and lock contention.

Chapter 6, “Indexing for Performance” provides guidelines and examples
for choosing indexes.

Chapter 7, “How Indexes Work” provides information on how indexes are
used to resolve queries.

Related documents • The remaining manuals for the Performance and Tuning Series are:

• Performance and Tuning: Basics

• Performance and Tuning: Optimizer and Abstract Plans

• Performance and Tuning: Monitoring and Analyzing

• The release bulletin for your platform – contains last-minute
information that was too late to be included in the books.

viii Adaptive Server Enterprise

A more recent version of the release bulletin may be available on the
World Wide Web. To check for critical product or document information
that was added after the release of the product CD, use the Sybase
Technical Library.

• The Installation Guide for your platform – describes installation, upgrade,
and configuration procedures for all Adaptive Server and related Sybase
products.

• Configuring Adaptive Server Enterprise for your platform – provides
instructions for performing specific configuration tasks for Adaptive
Server.

• What’s New in Adaptive Server Enterprise? – describes the new features
in Adaptive Server version 12.5, the system changes added to support
those features, and the changes that may affect your existing applications.

• Transact-SQL User’s Guide – documents Transact-SQL, Sybase’s
enhanced version of the relational database language. This manual serves
as a textbook for beginning users of the database management system.
This manual also contains descriptions of the pubs2 and pubs3 sample
databases.

• System Administration Guide – provides in-depth information about
administering servers and databases. This manual includes instructions
and guidelines for managing physical resources, security, user and system
databases, and specifying character conversion, international language,
and sort order settings.

• Reference Manual – contains detailed information about all Transact-SQL
commands, functions, procedures, and data types. This manual also
contains a list of the Transact-SQL reserved words and definitions of
system tables.

• The Utility Guide – documents the Adaptive Server utility programs, such
as isql and bcp, which are executed at the operating system level.

• The Quick Reference Guide – provides a comprehensive listing of the
names and syntax for commands, functions, system procedures, extended
system procedures, data types, and utilities in a pocket-sized book.
Available only in print version.

• The System Tables Diagram – illustrates system tables and their entity
relationships in a poster format. Available only in print version.

 About This Book

Performance & Tuning:Locking ix

• Error Messages and Troubleshooting Guide – explains how to resolve
frequently occurring error messages and describes solutions to system
problems frequently encountered by users.

• Component Integration Services User’s Guide – explains how to use the
Adaptive Server Component Integration Services feature to connect
remote Sybase and non-Sybase databases.

• Java in Adaptive Server Enterprise – describes how to install and use Java
classes as data types, functions, and stored procedures in the Adaptive
Server database.

• XML Services in Adaptive Server Enterprise – describes the Sybase native
XML processor and the Sybase Java-based XML support, introduces
XML in the database, and documents the query and mapping functions
that comprise XML Services.

• Using Sybase Failover in a High Availability System – provides
instructions for using Sybase’s Failover to configure an Adaptive Server
as a companion server in a high availability system.

• Job Scheduler User’s Guide – provides instructions on how to create and
schedule jobs on a local or remote Adaptive Server using the command
line or a graphical user interface (GUI).

• Using Adaptive Server Distributed Transaction Management Features –
explains how to configure, use, and troubleshoot Adaptive Server DTM
features in distributed transaction processing environments.

• EJB Server User’s Guide – explains how to use EJB Server to deploy and
execute Enterprise JavaBeans in Adaptive Server.

• XA Interface Integration Guide for CICS, Encina, and TUXEDO –
provides instructions for using Sybase’s DTM XA interface with X/Open
XA transaction managers.

• Glossary – defines technical terms used in the Adaptive Server
documentation.

• Sybase jConnect for JDBC Programmer’s Reference – describes the
jConnect for JDBC product and explains how to use it to access data stored
in relational database management systems.

• Full-Text Search Specialty Data Store User’s Guide – describes how to use
the Full-Text Search feature with Verity to search Adaptive Server
Enterprise data.

x Adaptive Server Enterprise

• Historical Server User’s Guide –describes how to use Historical Server to
obtain performance information for SQL Server and Adaptive Server.

• Monitor Server User’s Guide – describes how to use Monitor Server to
obtain performance statistics from SQL Server and Adaptive Server.

• Monitor Client Library Programmer’s Guide – describes how to write
Monitor Client Library applications that access Adaptive Server
performance data.

Other sources of
information

Use the Sybase Technical Library CD and the Technical Library Product
Manuals Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the Technical Library CD. It is included with
your software. To read or print documents on the Getting Started CD you
need Adobe Acrobat Reader (downloadable at no charge from the Adobe
Web site, using a link provided on the CD).

• The Technical Library CD contains product manuals and is included with
your software. The DynaText reader (included on the Technical Library
CD) allows you to access technical information about your product in an
easy-to-use format.

Refer to the Technical Library Installation Guide in your documentation
package for instructions on installing and starting the Technical Library.

• The Technical Library Product Manuals Web site is an HTML version of
the Technical Library CD that you can access using a standard Web
browser. In addition to product manuals, you will find links to
EBFs/Updates, Technical Documents, Case Management, Solved Cases,
newsgroups, and the Sybase Developer Network.

To access the Technical Library Product Manuals Web site, go to Product
Manuals at http://www.sybase.com/support/manuals/.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select Products from the navigation bar on the left.

3 Select a product name from the product list and click Go.

4 Select the Certification Report filter, specify a time frame, and click Go.

http://www.sybase.com/support/manuals/
http://www.sybase.com/support/techdocs/

 About This Book

Performance & Tuning:Locking xi

5 Click a Certification Report title to display the report.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software updates

❖ Finding the latest information on EBFs and software updates

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Updates. Enter user name and password information, if
prompted (for existing Web accounts) or create a new account (a free
service).

3 Select a product.

4 Specify a time frame and click Go.

5 Click the Info icon to display the EBF/Update report, or click the product
description to download the software.

Conventions This section describes conventions used in this manual.

Formatting SQL
statements

SQL is a free-form language. There are no rules about the number of words you
can put on a line or where you must break a line. However, for readability, all
examples and syntax statements in this manual are formatted so that each
clause of a statement begins on a new line. Clauses that have more than one part
extend to additional lines, which are indented.

Font and syntax
conventions

The font and syntax conventions used in this manual are shown in Table 1.0:

Table 1: Font and syntax conventions in this manual

Element Example

Command names, command option names, utility
names, utility flags, and other keywords are bold.

select
sp_configure

Database names, datatypes, file names and path
names are in italics.

master database

http://www.sybase.com/support/techdocs/
http://www.sybase.com/support

xii Adaptive Server Enterprise

• Syntax statements (displaying the syntax and all options for a command)
appear as follows:
sp_dropdevice [device_name]

or, for a command with more options:

Variables, or words that stand for values that you
fill in, are in italics.

select

column_name

from

table_name

where

search_conditions

Parentheses are to be typed as part of the command. compute

row_aggregate

 (

column_name

)

Curly braces indicate that you must choose at least
one of the enclosed options. Do not type the braces.

{cash, check, credit}

Brackets mean choosing one or more of the
enclosed options is optional. Do not type the
brackets.

[anchovies]

The vertical bar means you may select only one of
the options shown.

{die_on_your_feet | live_on_your_knees
| live_on_your_feet}

The comma means you may choose as many of the
options shown as you like, separating your choices
with commas to be typed as part of the command.

[extra_cheese, avocados, sour_cream]

An ellipsis (...) means that you can repeat the last
unit as many times as you like.

buy thing = price [cash | check |
credit]
 [, thing = price [cash | check |
credit]]...

You must buy at least one thing and give its price. You
may choose a method of payment: one of the items
enclosed in square brackets. You may also choose to buy
additional things: as many of them as you like. For each
thing you buy, give its name, its price, and (optionally) a
method of payment.

Element Example

 About This Book

Performance & Tuning:Locking xiii

select column_name

from table_name

where search_conditions

In syntax statements, keywords (commands) are in normal font and identifiers
are in lowercase: normal font for keywords, italics for user-supplied words.

• Examples of output from the computer appear as follows:

0736 New Age Books Boston MA

0877 Binnet & Hardley Washington DC

1389 Algodata Infosystems Berkeley CA

Case In this manual, most of the examples are in lowercase. However, you can
disregard case when typing Transact-SQL keywords. For example, SELECT,
Select, and select are the same. Note that Adaptive Server’s sensitivity to the
case of database objects, such as table names, depends on the sort order
installed on Adaptive Server. You can change case sensitivity for single-byte
character sets by reconfiguring the Adaptive Server sort order.

See in the System Administration Guide for more information.

Expressions Adaptive Server syntax statements use the following types of expressions:

Table 2: Types of expressions used in syntax statements

Examples Many of the examples in this manual are based on a database called pubtune.
The database schema is the same as the pubs2 database, but the tables used in
the examples have more rows: titles has 5000, authors has 5000, and titleauthor
has 6250. Different indexes are generated to show different features for many
examples, and these indexes are described in the text.

Usage Definition

expression Can include constants, literals, functions, column identifiers, variables, or
parameters

logical expression An expression that returns TRUE, FALSE, or UNKNOWN

constant expression An expression that always returns the same value, such as “5+3” or “ABCDE”

float_expr Any floating-point expression or expression that implicitly converts to a floating
value

integer_expr Any integer expression, or an expression that implicitly converts to an integer value

numeric_expr Any numeric expression that returns a single value

char_expr Any expression that returns a single character-type value

binary_expression An expression that returns a single binary or varbinary value

xiv Adaptive Server Enterprise

The pubtune database is not provided with Adaptive Server. Since most of the
examples show the results of commands such as set showplan and set statistics
io, running the queries in this manual on pubs2 tables will not produce the same
I/O results, and in many cases, will not produce the same query plans as those
shown here.

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

Performance and Tuning: Locking 1

C H A P T E R 1 Introduction to Performance and
Tuning

Tuning Adaptive Server Enterprise for performance can involve several
processes in analyzing the “Why?” of slow performance, contention,
optimizing and usage.

This manual is for use in setting up databases with good locking schemes
and indexes.

Adaptive Server locks the tables, data pages, or data rows currently used
by active transactions by locking them. Locking is a concurrency control
mechanism: it ensures the consistency of data within and across
transactions. Locking is needed in a multiuser environment, since several
users may be working with the same data at the same time.

Carefully considered indexes, built on top of a good database design, are
the foundation of a high-performance Adaptive Server installation.
However, adding indexes without proper analysis can reduce the overall
performance of your system. Insert, update, and delete operations can take
longer when a large number of indexes need to be updated.

Analyze your application workload and create indexes as necessary to
improve the performance of the most critical processes.

The remaining manuals for the Performance and Tuning Series are:

• Performance and Tuning: Basics

This manual covers the basics for understanding and investigating
performance questions in Adaptive Server. It guides you in how to
look for the places that may be impeding performance.

• Performance and Tuning: Optimizer and Abstract Plans

The Optimizer in the Adaptive Server takes a query and finds the best
way to execute it. The optimization is done based on the statistics for
a database or table. The optimized plan stays in effect until the
statistics are updated or the query changes. You can update the
statistics on the entire table or by sampling on a percentage of the
data.

2 Adaptive Server Enterprise

• Performance and Tuning: Monitoring and Analyzing

Adaptive Server employs reports for monitoring the server. This manual
explains how statistics are obtained and used for monitoring and
optimizing. The stored procedure sp_sysmon produces a large report that
shows the performance in Adaptive Server.

You can also use the Sybase Monitor in Sybase Central for realtime
information on the status of the server.

Each of the manuals has been set up to cover specific information that may be
used by the system administrator and the database administrator.

Performance and Tuning: Locking 3

C H A P T E R 2 Locking Overview

This chapter discusses basic locking concepts and the locking schemes
and types of locks used for databases in Adaptive Server.

The following chapters provide more information on locking:

• Chapter 3, “Locking Configuration and Tuning,” describes
performance considerations and suggestions and configuration
parameters that affect locking.

• Chapter 4, “Using Locking Commands,”describes commands that
affect locking: specifying the locking scheme for tables, choosing an
isolation level for a session or query, the lock table command, and
server or session level lock time-outs periods.

• Chapter 5, “Locking Reports,” describes commands for reporting on
locks and locking behavior, including sp_who, sp_lock, and
sp_object_stats.

Topic Page
How locking affects performance 4

Overview of locking 4

Granularity of locks and locking schemes 6

Types of locks in Adaptive Server 9

Lock compatibility and lock sufficiency 18

How isolation levels affect locking 19

Lock types and duration during query processing 26

Pseudo column-level locking 34

How locking affects performance

4 Adaptive Server Enterprise

How locking affects performance
Adaptive Server protects the tables, data pages, or data rows currently used by
active transactions by locking them. Locking is a concurrency control
mechanism: it ensures the consistency of data within and across transactions.
Locking is needed in a multiuser environment, since several users may be
working with the same data at the same time.

Locking affects performance when one process holds locks that prevent
another process from accessing needed data. The process that is blocked by the
lock sleeps until the lock is released. This is called lock contention.

A more serious locking impact on performance arises from deadlocks. A
deadlock occurs when two user processes each have a lock on a separate page
or table and each wants to acquire a lock on the same page or table held by the
other process. The transaction with the least accumulated CPU time is killed
and all of its work is rolled back.

Understanding the types of locks in Adaptive Server can help you reduce lock
contention and avoid or minimize deadlocks.

Overview of locking
Consistency of data means that if multiple users repeatedly execute a series of
transactions, the results are correct for each transaction, each time.
Simultaneous retrievals and modifications of data do not interfere with each
other: the results of queries are consistent.

For example, in Table 2-1, transactions T1 and T2 are attempting to access data
at approximately the same time. T1 is updating values in a column, while T2
needs to report the sum of the values.

CHAPTER 2 Locking Overview

Performance and Tuning: Locking 5

Table 2-1: Consistency levels in transactions

If transaction T2 runs before T1 starts or after T1 completes, either execution
of T2 returns the correct value. But if T2 runs in the middle of transaction T1
(after the first update), the result for transaction T2 will be different by $100.
While such behavior may be acceptable in certain limited situations, most
database transactions need to return correct consistent results.

By default, Adaptive Server locks the data used in T1 until the transaction is
finished. Only then does it allow T2 to complete its query. T2 “sleeps,” or
pauses in execution, until the lock it needs it is released when T1 is completed.

The alternative, returning data from uncommitted transactions, is known as a
dirty read. If the results of T2 do not need to be exact, it can read the
uncommitted changes from T1, and return results immediately, without waiting
for the lock to be released.

Locking is handled automatically by Adaptive Server, with options that can be
set at the session and query level by the user. You must know how and when to
use transactions to preserve the consistency of your data, while maintaining
high performance and throughput.

T1 Event Sequence T2
begin transaction

update account
set balance = balance - 100
where acct_number = 25

update account
set balance = balance + 100
where acct_number = 45

commit transaction

T1 and T2 start.

T1 updates balance
for one account by
subtracting $100.

T2 queries the sum
balance, which is off
by $100 at this point
in time—should it
return results now, or
wait until T1 ends?

T1 updates balance of
the other account by
adding the $100.

T1 ends.

begin transaction

select sum(balance)
from account
where acct_number < 50

commit transaction

Granularity of locks and locking schemes

6 Adaptive Server Enterprise

Granularity of locks and locking schemes
The granularity of locks in a database refers to how much of the data is locked
at one time. In theory, a database server can lock as much as the entire database
or as little as one column of data. Such extremes affect the concurrency
(number of users that can access the data) and locking overhead (amount of
work to process lock requests) in the server. Adaptive Server supports locking
at the table, page, and row level.

By locking at higher levels of granularity, the amount of work required to
obtain and manage locks is reduced. If a query needs to read or update many
rows in a table:

• It can acquire just one table-level lock

• It can acquire a lock for each page that contained one of the required rows

• It can acquire a lock on each row

Less overall work is required to use a table-level lock, but large-scale locks can
degrade performance, by making other users wait until locks are released.
Decreasing the lock size makes more of the data accessible to other users.
However, finer granularity locks can also degrade performance, since more
work is necessary to maintain and coordinate the increased number of locks.
To achieve optimum performance, a locking scheme must balance the needs of
concurrency and overhead.

Adaptive Server provides these locking schemes:

• Allpages locking, which locks datapages and index pages

• Datapages locking, which locks only the data pages

• Datarows locking, which locks only the data rows

For each locking scheme, Adaptive Server can choose to lock the entire table
for queries that acquire many page or row locks, or can lock only the affected
pages or rows.

Allpages locking
Allpages locking locks both data pages and index pages. When a query updates
a value in a row in an allpages-locked table, the data page is locked with an
exclusive lock. Any index pages affected by the update are also locked with
exclusive locks. These locks are transactional, meaning that they are held until
the end of the transaction.

CHAPTER 2 Locking Overview

Performance and Tuning: Locking 7

Figure 2-1 shows the locks acquired on data pages and indexes while a new
row is being inserted into an allpages-locked table.

Figure 2-1: Locks held during allpages locking

In many cases, the concurrency problems that result from allpages locking
arise from the index page locks, rather than the locks on the data pages
themselves. Data pages have longer rows than indexes, and often have a small
number of rows per page. If index keys are short, an index page can store
between 100 and 200 keys. An exclusive lock on an index page can block other
users who need to access any of the rows referenced by the index page, a far
greater number of rows than on a locked data page.

Index on FirstName Index on LastName

Legend
Locked

Index Leaf

Mark 10,1

Index Leaf

Twain 10,1

Page 10

Mark Twain

Unlocked

insert authors values ("Mark", "Twain")

Granularity of locks and locking schemes

8 Adaptive Server Enterprise

Datapages locking
In datapages locking, entire data pages are still locked, but index pages are not
locked. When a row needs to be changed on a data page, that page is locked,
and the lock is held until the end of the transaction. The updates to the index
pages are performed using latches, which are non transactional. Latches are
held only as long as required to perform the physical changes to the page and
are then released immediately. Index page entries are implicitly locked by
locking the data page. No transactional locks are held on index pages. For more
information on latches, see “Latches” on page 17.

Figure 2-2 shows an insert into a datapages-locked table. Only the affected
data page is locked.

Figure 2-2: Locks held during datapages locking

Index on FirstName Index on LastName

Index Leaf

Mark 10,1

Index Leaf

Twain 10,1

Page 10

Mark Twain

Legend
Locked

Unlocked

insert authors values ("Mark", "Twain")

CHAPTER 2 Locking Overview

Performance and Tuning: Locking 9

Datarows locking
In datarows locking, row-level locks are acquired on individual rows on data
pages. Index rows and pages are not locked. When a row needs to be changed
on a data page, a non transactional latch is acquired on the page. The latch is
held while the physical change is made to the data page, and then the latch is
released. The lock on the data row is held until the end of the transaction. The
index rows are updated, using latches on the index page, but are not locked.
Index entries are implicitly locked by acquiring a lock on the data row.

Figure 2-3 shows an insert into a datarows-locked table. Only the affected data
row is locked.

Figure 2-3: Locks held during datarows locking

Types of locks in Adaptive Server
Adaptive Server has two levels of locking:

• For tables that use allpages locking or datapages locking, either page locks
or table locks.

• For tables that use datarows locking, either row locks or table locks

Index on FirstName Index on LastName

Index Leaf

Mark 10,1

Index Leaf

Twain 10,1

Page 10

Mark Twain

Legend
Locked
Unlocked

insert authors values ("Mark", "Twain")

Types of locks in Adaptive Server

10 Adaptive Server Enterprise

Page or row locks are less restrictive (or smaller) than table locks. A page lock
locks all the rows on data page or an index page; a table lock locks an entire
table. A row lock locks only a single row on a page. Adaptive Server uses page
or row locks whenever possible to reduce contention and to improve
concurrency.

Adaptive Server uses a table lock to provide more efficient locking when an
entire table or a large number of pages or rows will be accessed by a statement.
Locking strategy is directly tied to the query plan, so the query plan can be as
important for its locking strategies as for its I/O implications. If an update or
delete statement has no useful index, it performs a table scan and acquires a
table lock. For example, the following statement acquires a table lock:

update account set balance = balance * 1.05

If an update or delete statement uses an index, it begins by acquiring page or
row locks. It tries to acquire a table lock only when a large number of pages or
rows are affected. To avoid the overhead of managing hundreds of locks on a
table, Adaptive Server uses a lock promotion threshold setting. Once a scan
of a table accumulates more page or row locks than allowed by the lock
promotion threshold, Adaptive Server tries to issue a table lock. If it succeeds,
the page or row locks are no longer necessary and are released. See
“Configuring locks and lock promotion thresholds” on page 44 for more
information.

Adaptive Server chooses which type of lock to use after it determines the query
plan. The way you write a query or transaction can affect the type of lock the
server chooses. You can also force the server to make certain locks more or less
restrictive by specifying options for select queries or by changing the
transaction’s isolation level. See “Controlling isolation levels” on page 66 for
more information. Applications can explicitly request a table lock with the lock
table command.

Page and row locks
The following describes the types of page and row locks:

• Shared locks

CHAPTER 2 Locking Overview

Performance and Tuning: Locking 11

Adaptive Server applies shared locks for read operations. If a shared lock
has been applied to a data page or data row or to an index page, other
transactions can also acquire a shared lock, even when the first transaction
is active. However, no transaction can acquire an exclusive lock on the
page or row until all shared locks on the page or row are released. This
means that many transactions can simultaneously read the page or row, but
no transaction can change data on the page or row while a shared lock
exists. Transactions that need an exclusive lock wait or “block” for the
release of the shared locks before continuing.

By default, Adaptive Server releases shared locks after it finishes scanning
the page or row. It does not hold shared locks until the statement is
completed or until the end of the transaction unless requested to do so by
the user. For more details on how shared locks are applied, see “Locking
for select queries at isolation Level 1” on page 29.

• Exclusive locks

Adaptive Server applies an exclusive lock for a data modification
operation. When a transaction gets an exclusive lock, other transactions
cannot acquire a lock of any kind on the page or row until the exclusive
lock is released at the end of its transaction. The other transactions wait or
“block” until the exclusive lock is released.

• Update locks

Adaptive Server applies an update lock during the initial phase of an
update, delete, or fetch (for cursors declared for update) operation while the
page or row is being read. The update lock allows shared locks on the page
or row, but does not allow other update or exclusive locks. Update locks
help avoid deadlocks and lock contention. If the page or row needs to be
changed, the update lock is promoted to an exclusive lock as soon as no
other shared locks exist on the page or row.

In general, read operations acquire shared locks, and write operations acquire
exclusive locks. For operations that delete or update data, Adaptive Server
applies page-level or row-level exclusive and update locks only if the column
used in the search argument is part of an index. If no index exists on any of the
search arguments, Adaptive Server must acquire a table-level lock.

The examples in Table 2-2 show what kind of page or row locks Adaptive
Server uses for basic SQL statements. For these examples, there is an index
acct_number, but no index on balance.

Types of locks in Adaptive Server

12 Adaptive Server Enterprise

Table 2-2: Page locks and row locks

Table locks
The following describes the types of table locks.

• Intent lock

An intent lock indicates that page-level or row-level locks are currently
held on a table. Adaptive Server applies an intent table lock with each
shared or exclusive page or row lock, so an intent lock can be either an
exclusive lock or a shared lock. Setting an intent lock prevents other
transactions from subsequently acquiring conflicting table-level locks on
the table that contains that locked page. An intent lock is held as long as
page or row locks are in effect for the transaction.

• Shared lock

This lock is similar to a shared page or lock, except that it affects the entire
table. For example, Adaptive Server applies a shared table lock for a select
command with a holdlock clause if the command does not use an index. A
create nonclustered index command also acquires a shared table lock.

• Exclusive lock

This lock is similar to an exclusive page or row lock, except it affects the
entire table. For example, Adaptive Server applies an exclusive table lock
during a create clustered index command. update and delete statements
require exclusive table locks if their search arguments do not reference
indexed columns of the object.

Statement Allpages-Locked Table Datarows-Locked Table
select balance
from account
where acct_number = 25

Shared page lock Shared row lock

insert account values
(34, 500)

Exclusive page lock on data page
and exclusive page lock on leaf-
level index page

Exclusive row lock

delete account
where acct_number = 25

Update page locks followed by
exclusive page locks on data pages
and exclusive page locks on leaf-
level index pages

Update row locks followed by
exclusive row locks on each
affected row

update account
set balance = 0
where acct_number = 25

Update page lock on data page and
exclusive page lock on data page

Update row lock followed by
exclusive row lock

CHAPTER 2 Locking Overview

Performance and Tuning: Locking 13

The examples in Table 2-3 show the respective page, row, and table locks of
page or row locks Adaptive Server uses for basic SQL statements. For these
examples, there is an index acct_num.

Table 2-3: Table locks applied during query processing

Exclusive table locks are also applied to tables during select into operations,
including temporary tables created with tempdb..tablename syntax. Tables
created with #tablename are restricted to the sole use of the process that created
them, and are not locked.

Demand locks
Adaptive Server sets a demand lock to indicate that a transaction is next in the
queue to lock a table, page, or row. Since many readers can all hold shared
locks on a given page, row, or table, tasks that require exclusive locks are
queued after a task that already holds a shared lock. Adaptive Server allows up
to three readers’ tasks to skip over a queued update task.

After a write transaction has been skipped over by three tasks or families (in
the case of queries running in parallel) that acquire shared locks, Adaptive
Server gives a demand lock to the write transaction. Any subsequent requests
for shared locks are queued behind the demand lock, as shown in Figure 2-4.

Statement Allpages-Locked Table Datarows-Locked Table
select balance from account
where acct_number = 25

Intent shared table lock
Shared page lock

Intent shared table lock
Shared row lock

insert account values
(34, 500)

Intent exclusive table lock
Exclusive page lock on data page
Exclusive page lock on leaf index
pages

Intent exclusive table lock
Exclusive row lock

delete account
where acct_number = 25

Intent exclusive table lock
Update page locks followed by
exclusive page locks on data pages
and leaf-level index pages

Intent exclusive table lock
Update row locks followed by
exclusive row locks on data
rows

update account
set balance = 0
where acct_number = 25

With an index on acct_number,
intent exclusive table lock
Update page locks followed by
exclusive page locks on data pages
and leaf-level index pages

With no index, exclusive table lock

With an index on acct_number,
intent exclusive table lock
Update row locks followed by
exclusive row locks on data
rows

With no index, exclusive table
lock

Types of locks in Adaptive Server

14 Adaptive Server Enterprise

As soon as the readers queued ahead of the demand lock release their locks, the
write transaction acquires its lock and is allowed to proceed. The read
transactions queued behind the demand lock wait for the write transaction to
finish and release its exclusive lock.

Demand locking with serial execution

Figure 2-4 illustrates how the demand lock scheme works for serial query
execution. It shows four tasks with shared locks in the active lock position,
meaning that all four tasks are currently reading the page. These tasks can
access the same page simultaneously because they hold compatible locks. Two
other tasks are in the queue waiting for locks on the page. Here is a series of
events that could lead to the situation shown in Figure 2-4:

• Originally, task 2 holds a shared lock on the page.

• Task 6 makes an exclusive lock request, but must wait until the shared lock
is released because shared and exclusive locks are not compatible.

• Task 3 makes a shared lock request, which is immediately granted because
all shared locks are compatible.

• Tasks 1 and 4 make shared lock requests, which are also immediately
granted for the same reason.

• Task 6 has now been skipped three times, and is granted a demand lock.

• Task 5 makes a shared lock request. It is queued behind task 6’s exclusive
lock request because task 6 holds a demand lock. Task 5 is the fourth task
to make a shared page request.

• After tasks 1, 2, 3, and 4 finish their reads and release their shared locks,
task 6 is granted its exclusive lock.

• After task 6 finishes its write and releases its exclusive page lock, task 5 is
granted its shared page lock.

CHAPTER 2 Locking Overview

Performance and Tuning: Locking 15

Figure 2-4: Demand locking with serial query execution

Demand locking with parallel execution

When queries are running in parallel, demand locking treats all the shared locks
from a family of worker processes as if they were a single task. The demand
lock permits reads from three families (or a total of three serial tasks and
families combined) before granting the exclusive lock.

Figure 2-5 illustrates how the demand lock scheme works when parallel query
execution is enabled. The figure shows six worker processes from three
families with shared locks. A task waits for an exclusive lock, and a worker
process from a fourth family waits behind the task. Here is a series of events
that could lead to the situation shown in Figure 2-5:

• Originally, worker process 1:3 (worker process 3 from a family with
family ID 1) holds a shared lock on the page.

• Task 9 makes an exclusive lock request, but must wait until the shared lock
is released.

• Worker process 2:3 requests a shared lock, which is immediately granted
because shared locks are compatible. The skip count for task 9 is now 1.

Shared
page

Shared
page

2

3

1

6 5

Exclusive
page

Page

Active lock Demand lock Sleep wait

4

Types of locks in Adaptive Server

16 Adaptive Server Enterprise

• Worker processes 1:1, 2:1, 3:1, task 10, and worker processes 3:2 and 1:2
are consecutively granted shared lock requests. Since family ID 3 and task
10 have no prior locks queued, the skip count for task 9 is now 3, and task
9 is granted a demand lock.

• Finally, worker process 4:1 makes a shared lock request, but it is queued
behind task 9’s exclusive lock request.

• Any additional shared lock requests from family IDs 1, 2, and 3 and from
task 10 are queued ahead of task 9, but all requests from other tasks are
queued after it.

• After all the tasks in the active lock position release their shared locks, task
9 is granted its exclusive lock.

• After task 9 releases its exclusive page lock, task 4:1 is granted its shared
page lock.

Figure 2-5: Demand locking with parallel query execution

Shared
page

Shared
page

1:3

2:3

9 4:1

Exclusive
page

Page

Active lock Demand lock Sleep wait

1:1

3:2

2:1

10
3:1

1:2

CHAPTER 2 Locking Overview

Performance and Tuning: Locking 17

Range locking for serializable reads
Rows that can appear or disappear from a results set are called phantoms. Some
queries that require phantom protection (queries at isolation level 3) use range
locks.

Isolation level 3 requires serializable reads within the transaction. A query at
isolation level 3 that performs two read operations with the same query clauses
should return the same set of results each time. No other task can be allowed to:

• Modify one of the result rows so that it no longer qualifies for the
serializable read transaction, by updating or deleting the row

• Modify a row that is not included in the serializable read result set so that
the row now qualifies, or insert a row that would qualify for the result set

Adaptive Server uses range locks, infinity key locks, and next-key locks to
protect against phantoms on data-only-locked tables. Allpages-locked tables
protect against phantoms by holding locks on the index pages for the
serializable read transaction.

When a query at isolation level 3 (serializable read) performs a range scan
using an index, all the keys that satisfy the query clause are locked for the
duration of the transaction. Also, the key that immediately follows the range is
locked, to prevent new values from being added at the end of the range. If there
is no next value in the table, an infinity key lock is used as the next key, to
ensure that no rows are added after the last key in the table.

Range locks can be shared, update, or exclusive locks; depending on the
locking scheme, they are either row locks or page locks. sp_lock output shows
“Fam dur, Range” in the context column for range locks. For infinity key locks,
sp_lock shows a lock on a nonexistent row, row 0 of the root index page and
“Fam dur, Inf key” in the context column.

Every transaction that performs an insert or update to a data-only-locked table
checks for range locks.

Latches
Latches are non transactional synchronization mechanisms used to guarantee
the physical consistency of a page. While rows are being inserted, updated or
deleted, only one Adaptive Server process can have access to the page at the
same time. Latches are used for datapages and datarows locking but not for
allpages locking.

The most important distinction between a lock and a latch is the duration:

Lock compatibility and lock sufficiency

18 Adaptive Server Enterprise

• A lock can persist for a long period of time: while a page is being scanned,
while a disk read or network write takes place, for the duration of a
statement, or for the duration of a transaction.

• A latch is held only for the time required to insert or move a few bytes on
a data page, to copy pointers, columns or rows, or to acquire a latch on
another index page.

Lock compatibility and lock sufficiency
Two basic concepts underlie issues of locking and concurrency:

• Lock compatibility: if task holds a lock on a page or row, can another row
also hold a lock on the page or row?

• Lock sufficiency: for the current task, is the current lock held on a page or
row sufficient if the task needs to access the page again?

Lock compatibility affects performance when users needs to acquire a lock on
a row or page, and that row or page is already locked by another user with an
incompatible lock. The task that needs the lock waits, or blocks, until the
incompatible locks are released.

Lock sufficiency works with lock compatibility. If a lock is sufficient, the task
does not need to acquire a different type of lock. For example, if a task updates
a row in a transaction, it holds an exclusive lock. If the task then selects from
the row before committing the transaction, the exclusive lock on the row is
sufficient; the task does not need to make an additional lock request. The
opposite case is not true: if a task holds a shared lock on a page or row, and
wants to update the row, the task may need to wait to acquire its exclusive lock
if other tasks also hold shared locks on the page.

Table 2-4 summarizes the information about lock compatibility, showing when
locks can be acquired immediately.

Table 2-4: Lock compatibility

Can another process immediately acquire:

If one process has:
A Shared
Lock?

An Update
Lock?

An Exclusive
Lock?

A Shared
Intent Lock?

An Exclusive
Intent Lock?

A Shared Lock Yes Yes No Yes No

An Update Lock Yes No No N/A N/A

An Exclusive Lock No No No No No

CHAPTER 2 Locking Overview

Performance and Tuning: Locking 19

Table 2-5 shows the lock sufficiency matrix.

Table 2-5: Lock sufficiency

How isolation levels affect locking
The SQL standard defines four levels of isolation for SQL transactions. Each
isolation level specifies the kinds of interactions that are not permitted while
concurrent transactions are executing—that is, whether transactions are
isolated from each other, or if they can read or update information in use by
another transaction. Higher isolation levels include the restrictions imposed by
the lower levels.

The isolation levels are shown in Table 2-6, and described in more detail on the
following pages.

Table 2-6: Transaction isolation levels

A Shared Intent Lock Yes N/A No Yes Yes

An Exclusive Intent Lock No N/A No Yes Yes

Can another process immediately acquire:

If one process has:
A Shared
Lock?

An Update
Lock?

An Exclusive
Lock?

A Shared
Intent Lock?

An Exclusive
Intent Lock?

Is that lock sufficient if the task needs:

If a task has: A Shared Lock An Update Lock An Exclusive Lock

A Shared Lock Yes No No

An Update Lock Yes Yes No

An Exclusive Lock Yes Yes Yes

Number Name Description

0 read uncommitted The transaction is allowed to read uncommitted
changes to data.

1 read committed The transaction is allowed to read only committed
changes to data.

2 repeatable read The transaction can repeat the same query, and no
rows that have been read by the transaction will have
been updated or deleted.

3 serializable read The transaction can repeat the same query, and
receive exactly the same results. No rows can be
inserted that would appear in the result set.

How isolation levels affect locking

20 Adaptive Server Enterprise

You can choose the isolation level for all select queries during a session, or you
can choose the isolation level for a specific query or table in a transaction.

At all isolation levels, all updates acquire exclusive locks and hold them for the
duration of the transaction.

Note For tables that use the allpages locking scheme, requesting isolation level
2 also enforces isolation level 3.

Isolation Level 0, read uncommitted
Level 0, also known as read uncommitted, allows a task to read uncommitted
changes to data in the database. This is also known as a dirty read, since the
task can display results that are later rolled back. Table 2-7 shows a select query
performing a dirty read.

Table 2-7: Dirty reads in transactions

If transaction T4 queries the table after T3 updates it, but before it rolls back
the change, the amount calculated by T4 is off by $100.The update statement
in transaction T3 acquires an exclusive lock on account. However, transaction
T4 does not try to acquire a shared lock before querying account, so it is not
blocked by T3. The opposite is also true. If T4 begins to query accounts at
isolation level 0 before T3 starts, T3 could still acquire its exclusive lock on
accounts while T4’s query executes, because T4 does not hold any locks on the
pages it reads.

T3 Event Sequence T4
begin transaction

update account
set balance = balance - 100
where acct_number = 25

rollback transaction

T3 and T4 start.

T3 updates balance
for one account by
subtracting $100.

T4 queries current
sum of balance for
accounts.

T4 ends.

T3 rolls back,
invalidating the
results from T4.

begin transaction

select sum(balance)
from account
where acct_number < 50

commit transaction

CHAPTER 2 Locking Overview

Performance and Tuning: Locking 21

At isolation level 0, Adaptive Server performs dirty reads by:

• Allowing another task to read rows, pages, or tables that have exclusive
locks; that is, to read uncommitted changes to data.

• Not applying shared locks on rows, pages or tables being searched.

Any data modifications that are performed by T4 while the isolation level is set
to 0 acquire exclusive locks at the row, page, or table level, and block if the data
they need to change is locked.

If the table uses allpages locking, a unique index is required to perform an
isolation level 0 read, unless the database is read-only. The index is required to
restart the scan if an update by another process changes the query’s result set
by modifying the current row or page. Forcing the query to use a table scan or
a non unique index can lead to problems if there is significant update activity
on the underlying table, and is not recommended.

Applications that can use dirty reads may see better concurrency and reduced
deadlocks than when the same data is accessed at a higher isolation level. If
transaction T4 requires only an estimate of the current sum of account
balances, which probably changes frequently in a very active table, T4 should
query the table using isolation level 0. Other applications that require data
consistency, such as queries of deposits and withdrawals to specific accounts
in the table, should avoid using isolation level 0.

Isolation level 0 can improve performance for applications by reducing lock
contention, but can impose performance costs in two ways:

• Dirty reads make in-cache copies of dirty data that the isolation level 0
application needs to read.

• If a dirty read is active on a row, and the data changes so that the row is
moved or deleted, the scan must be restarted, which may incur additional
logical and physical I/O.

During deferred update of a data row, there can be a significant time interval
between the delete of the index row and the insert of the new index row. During
this interval, there is no index row corresponding to the data row. If a process
scans the index during this interval at isolation level 0, it will not return the old
or new value of the data row. See “Deferred updates” on page 97 in
Performance and Tuning: Optimizer.

sp_sysmon reports on these factors. See “Dirty read behavior” on page 88 in
Performance and Tuning: Monitoring and Analyzing.

How isolation levels affect locking

22 Adaptive Server Enterprise

Isolation Level 1, read committed
Level 1, also known as read committed, prevents dirty reads. Queries at level
1 can read only committed changes to data. At isolation level 1, if a transaction
needs to read a row that has been modified by an incomplete transaction in
another session, the transaction waits until the first transaction completes
(either commits or rolls back.)

For example, compare Table 2-8, showing a transaction executed at isolation
level 1, to Table 2-7, showing a dirty read transaction.

Table 2-8: Transaction isolation level 1 prevents dirty reads

When the update statement in transaction T5 executes, Adaptive Server applies
an exclusive lock (a row-level or page-level lock if acct_number is indexed;
otherwise, a table-level lock) on account.

If T5 holds an exclusive table lock, T6 blocks trying to acquire its shared intent
table lock. If T5 holds exclusive page or exclusive row locks, T6 can begin
executing, but is blocked when it tries to acquire a shared lock on a page or row
locked by T5. The query in T6 cannot execute (preventing the dirty read) until
the exclusive lock is released, when T5 ends with the rollback.

While the query in T6 holds its shared lock, other processes that need shared
locks can access the same data, and an update lock can also be granted (an
update lock indicates the read operation that precedes the exclusive-lock write
operation), but no exclusive locks are allowed until all shared locks have been
released.

T5 Event Sequence T6
begin transaction

update account
set balance = balance - 100
where acct_number = 25

rollback transaction

T5 and T6 start.

T5 updates account
after getting
exclusive lock.

T6 tries to get shared
lock to query account
but must wait until
T5 releases its lock.

T5 ends and releases
its exclusive lock.

T6 gets shared lock,
queries account, and
ends.

begin transaction

select sum(balance)
from account
where acct_number < 50

commit transaction

CHAPTER 2 Locking Overview

Performance and Tuning: Locking 23

Isolation Level 2, repeatable read
Level 2 prevents nonrepeatable reads. These occur when one transaction
reads a row and a second transaction modifies that row. If the second
transaction commits its change, subsequent reads by the first transaction yield
results that are different from the original read. Isolation level 2 is supported
only on data-only-locked tables. In a session at isolation level 2, isolation level
3 is also enforced on any tables that use the allpages locking scheme. Table 2-
9 shows a nonrepeatable read in a transaction at isolation level 1.

Table 2-9: Nonrepeatable reads in transactions

If transaction T8 modifies and commits the changes to the account table after
the first query in T7, but before the second one, the same two queries in T7
would produce different results. Isolation level 2 blocks transaction T8 from
executing. It would also block a transaction that attempted to delete the
selected row.

Isolation Level 3, serializable reads
Level 3 prevents phantoms. These occur when one transaction reads a set of
rows that satisfy a search condition, and then a second transaction modifies the
data (through an insert, delete, or update statement). If the first transaction
repeats the read with the same search conditions, it obtains a different set of
rows. In Table 2-10, transaction T9, operating at isolation level 1, sees a
phantom row in the second query.

T7 Event Sequence T8
begin transaction

select balance
from account
where acct_number = 25

select balance
from account
where acct_number = 25

commit transaction

T7 and T8 start.

T7 queries the balance
for one account.

T8 updates the balance
for that same account.

T8 ends.

T7 makes same query
as before and gets
different results.

T7 ends.

begin transaction

update account
set balance = balance - 100
where acct_number = 25

commit transaction

How isolation levels affect locking

24 Adaptive Server Enterprise

Table 2-10: Phantoms in transactions

If transaction T10 inserts rows into the table that satisfy T9’s search condition
after the T9 executes the first select, subsequent reads by T9 using the same
query result in a different set of rows.

Adaptive Server prevents phantoms by:

• Applying exclusive locks on rows, pages, or tables being changed. It holds
those locks until the end of the transaction.

• Applying shared locks on rows, pages, or tables being searched. It holds
those locks until the end of the transaction.

• Using range locks or infinity key locks for certain queries on data-only-
locked tables.

Holding the shared locks allows Adaptive Server to maintain the consistency
of the results at isolation level 3. However, holding the shared lock until the
transaction ends decreases Adaptive Server’s concurrency by preventing other
transactions from getting their exclusive locks on the data.

Compare the phantom, shown in Table 2-10, with the same transaction
executed at isolation level 3, as shown in Table 2-11.

T9 Event Sequence T10
begin transaction

select * from account
where acct_number < 25

select * from account
where acct_number < 25

commit transaction

T9 and T10 start.

T9 queries a certain set
of rows.

T10 inserts a row that
meets the criteria for
the query in T9.

T10 ends.

T9 makes the same
query and gets a
new row.

T9 ends.

begin transaction

insert into account
(acct_number, balance)
values (19, 500)

commit transaction

CHAPTER 2 Locking Overview

Performance and Tuning: Locking 25

Table 2-11: Avoiding phantoms in transactions

In transaction T11, Adaptive Server applies shared page locks (if an index
exists on the acct_number argument) or a shared table lock (if no index exists)
and holds the locks until the end of T11. The insert in T12 cannot get its
exclusive lock until T11 releases its shared locks. If T11 is a long transaction,
T12 (and other transactions) may wait for longer periods of time. As a result,
you should use level 3 only when required.

Adaptive Server default isolation level
Adaptive Server’s default isolation level is 1, which prevents dirty reads.
Adaptive Server enforces isolation level 1 by:

• Applying exclusive locks on pages or tables being changed. It holds those
locks until the end of the transaction. Only a process at isolation level 0
can read a page locked by an exclusive lock.

• Applying shared locks on pages being searched. It releases those locks
after processing the row, page or table.

T11 Event Sequence T12
begin transaction

select * from
account holdlock
where acct_number < 25

select * from
account holdlock
where acct_number < 25

commit transaction

T11 and T12 start.

T11 queries account
and holds acquired
shared locks.

T12 tries to insert row
but must wait until T11
releases its locks.

T11 makes same query
and gets same results.

T11 ends and releases
its shared locks.

T12 gets its exclusive
lock, inserts new row,
and ends.

begin transaction

insert into account
(acct_number, balance)
values (19, 500)

commit transaction

Lock types and duration during query processing

26 Adaptive Server Enterprise

Using exclusive and shared locks allows Adaptive Server to maintain the
consistency of the results at isolation level 1. Releasing the shared lock after
the scan moves off a page improves Adaptive Server’s concurrency by
allowing other transactions to get their exclusive locks on the data.

Lock types and duration during query processing
The types and the duration of locks acquired during query processing depend
on the type of command, the locking scheme of the table, and the isolation level
at which the command is run.

The lock duration depends on the isolation level and the type of query. Lock
duration can be one of the following:

• Scan duration – Locks are released when the scan moves off the row or
page, for row or page locks, or when the scan of the table completes, for
table locks.

• Statement duration – Locks are released when the statement execution
completes.

• Transaction duration – Locks are released when the transaction completes.

Table 2-12 shows the types of locks acquired by queries at different isolation
levels, for each locking scheme for queries that do not use cursors. Table 2-13
shows information for cursor-based queries.

CHAPTER 2 Locking Overview

Performance and Tuning: Locking 27

Table 2-12: Lock type and duration without cursors

Statement
Isolation
Level

Locking
Scheme

Table
Lock

Data
Page
Lock

Index
Page
Lock

Data
Row
Lock Duration

select
readtext
any type of
scan

0 allpages
datapages
datarows

-
-
-

-
-
-

-
-
-

-
-
-

No locks are acquired.

1
2 with
noholdlock
3 with
noholdlock

allpages
datapages
datarows

IS
IS
IS

S
*
-

S
-
-

-
-
*

* Depends on setting of read
committed with lock. See
“Locking for select queries at
isolation Level 1” on page 29.

2 allpages
datapages
datarows

IS
IS
IS

S
S
-

S
-
-

-
-
S

Locks are released at the end
of the transaction. See
“Isolation Level 2 and
Allpages-Locked tables” on
page 30.

select via
index scan

3
1 with holdlock
2 with holdlock

allpages
datapages
datarows

IS
IS
IS

S
S
-

S
-
-

-
-
S

Locks are released at the end
of the transaction.

select
via
table scan

3
1 with holdlock
2 with holdlock

allpages
datapages
datarows

IS
S
S

S
-
-

-
-
-

-
-
-

Locks are released at the end
of the transaction.

insert 0, 1, 2, 3 allpages
datapages
datarows

IX
IX
IX

X
X
-

X
-
-

-
-
X

Locks are released at the end
of the transaction.

writetext 0, 1, 2, 3 allpages
datapages
datarows

IX
IX
IX

X
X
-

-
-
-

-
-
X

Locks are held on first text
page or row; locks released at
the end of the transaction.

delete
update
any type of
scan

0, 1, 2 allpages
datapages
datarows

IX
IX
IX

U, X
U, X
-

U, X
-
-

-
-
U, X

“U” locks are released after
the statement completes.
“IX” and “X” locks are
released at the end of the
transaction.

delete
update
via index
scan

3 allpages
datapages
datarows

IX
IX
IX

U, X
U, X
-

U, X
-
-

-
-
U, X

“U” locks are released after
the statement completes. “IX”
and “X” locks are released at
the end of the transaction.

delete
update
via table
scan

3 allpages
datapages
datarows

IX
X
X

U, X
-
-

-
-
-

-
-
-

Locks are released at the end
of the transaction.

Key: IS intent shared, IX intent exclusive, S shared, U update, X exclusive

Lock types and duration during query processing

28 Adaptive Server Enterprise

Table 2-13: Lock type and duration with cursors

Statement
Isolation
Level

Locking
Scheme

Table
Lock

Data
Page
Lock

Index
Page
Lock

Data
Row
Lock Duration

select
(without for
clause)
select... for
read only

0 allpages
datapages
datarows

-
-
-

-
-
-

-
-
-

-
-
-

No locks are acquired.

1
2 with
noholdlock
3 with
noholdlock

allpages
datapages
datarows

IS
IS
IS

S
*
-

S
-
-

-
-
*

* Depends on setting of read
committed with lock. See
“Locking for select queries
at isolation Level 1” on page
29.

2, 3

1 with holdlock

2 with holdlock

allpages
datapages
datarows

IS
IS
IS

S
S
-

S
-
-

-
-
S

Locks become transactional
after the cursor moves out of
the page/row. Locks are
released at the end of the
transaction.

select...for
update

1 allpages
datapages
datarows

IX
IX
IX

U, X
U, X
-

X
-
-

-
-
U, X

“U” locks are released after
the cursor moves out of the
page/row. “IX” and “X”
locks are released at the end
of the transaction.

select...for
update with
shared

1 allpages
datapages
datarows

IX
IX
IX

S, X
S, X
-

X
-
-

-
-
S, X

“S” locks are released after
the cursor moves out of
page/row. “IX” and “X”
locks are released at the end
of the transaction.

select...for
update

2, 3, 1 holdlock

2, holdlock

allpages
datapages
datarows

IX
IX
IX

U, X
U, X
-

X
-
-

-
-
U, X

Locks become transactional
after the cursor moves out of
the page/row. Locks are
released at the end of the
transaction.

select...for
update with
shared

2, 3

1 with holdlock

2 with holdlock

allpages
datapages
datarows

IX
IX
IX

S, X
S, X
-

X
-
-

-
-
S, X

Locks become transactional
after the cursor moves out of
the page/row. Locks are
released at the end of the
transaction.

Key: IS intent shared, IX intent exclusive, S shared, U update, X exclusive

CHAPTER 2 Locking Overview

Performance and Tuning: Locking 29

Lock types during create index commands
Table 2-14 describes the types of locks applied by Adaptive Server for create
index statements:

Table 2-14: Summary of locks for insert and create index statements

Locking for select queries at isolation Level 1
When a select query on an allpages-locked table performs a table scan at
isolation level 1, it first acquires a shared intent lock on the table and then
acquires a shared lock on the first data page. It locks the next data page, and
drops the lock on the first page, so that the locks “walk through” the result set.
As soon as the query completes, the lock on the last data page is released, and
then the table-level lock is released. Similarly, during index scans on an
allpages-locked table, overlapping locks are held as the scan descends from the
index root page to the data page. Locks are also held on the outer table of a join
while matching rows from inner table are scanned.

select queries on data-only-locked tables first acquire a shared intent table lock.
Locking behavior on the data pages and data rows is configurable with the
parameter read committed with lock, as follows:

• If read committed with lock is set to 0 (the default) then select queries read
the column values with instant-duration page or row locks. The required
column values or pointers for the row are read into memory, and the lock
is released. Locks are not held on the outer tables of joins while rows from
the inner tables are accessed. This reduces deadlocking and improves
concurrency.

If a select query needs to read a row that is locked with an incompatible
lock, the query still blocks on that row until the incompatible lock is
released. Setting read committed with lock to 0 does not affect the isolation
level; only committed rows are returned to the user.

• If read committed with lock is set to 1, select queries acquire shared page
locks on datapages-locked tables and shared row locks on datarows-
locked tables. The lock on the first page or row is held, then the lock is
acquired on the second page or row and the lock on the first page or row
is dropped.

Statement Table Lock Data Page Lock

create clustered index X -

create nonclustered index S -

Key: IX = intent exclusive, S = shared, X = exclusive

Lock types and duration during query processing

30 Adaptive Server Enterprise

Cursors must be declared as read-only to avoid holding locks during scans
when read committed with lock is set to 0. Any implicitly or explicitly up datable
cursor on a data-only-locked table holds locks on the current page or row until
the cursor moves off the row or page. When read committed with lock is set to
1, read-only cursors hold a shared page or row lock on the row at the cursor
position.

read committed with lock does not affect locking behavior on allpages-locked
tables. For information on setting the configuration parameter, see in the
System Administration Guide.

Table scans and isolation Levels 2 and 3
This section describes special considerations for locking during table scans at
isolation levels 2 and 3.

Table scans and table locks at isolation Level 3

When a query performs a table scan at isolation level 3 on a data-only-locked
table, a shared or exclusive table lock provides phantom protection and reduces
the locking overhead of maintaining a large number of row or page locks. On
an allpages-locked table, an isolation level 3 scan first acquires a shared or
exclusive intent table lock and then acquires and holds page-level locks until
the transaction completes or until the lock promotion threshold is reached and
a table lock can be granted.

Isolation Level 2 and Allpages-Locked tables

On allpages-locked tables, Adaptive Server supports isolation level 2
(repeatable reads) by also enforcing isolation level 3 (serializable reads). If
transaction level 2 is set in a session, and an allpages-locked table is included
in a query, isolation level 3 will also be applied on the allpages-locked tables.
Transaction level 2 will be used on all data-only-locked tables in the session.

When update locks are not required
All update and delete commands on an allpages-locked table first acquire an
update lock on the data page and then change to an exclusive lock if the row
meets the qualifications in the query.

CHAPTER 2 Locking Overview

Performance and Tuning: Locking 31

Updates and delete commands on data-only-locked tables do not first acquire
update locks when:

• The query includes search arguments for every key in the index chosen by
the query, so that the index unambiguously qualifies the row, and

• The query does not contain an or clause.

Updates and deletes that meet these requirements immediately acquire an
exclusive lock on the data page or data row. This reduces lock overhead.

Locking during or processing
In some cases, queries using or clauses are processed as a union of more than
one query. Although some rows may match more than one of the or conditions,
each row must be returned only once. Different indexes can be used for each or
clause. If any of the clauses do not have a useful index, the query is performed
using a table scan.

The table’s locking scheme and the isolation level affect how or processing is
performed and the types and duration of locks that are held during the query.

Processing or queries for Allpages-Locked tables

If the or query uses the OR Strategy (different or clauses might match the same
rows), query processing retrieves the row IDs and matching key values from
the index and stores them in a worktable, holding shared locks on the index
pages containing the rows. When all row IDs have been retrieved, the
worktable is sorted to remove duplicate values. Then, the worktable is scanned,
and the row IDs are used to retrieve the data rows, acquiring shared locks on
the data pages. The index and data page locks are released at the end of the
statement (for isolation level 1) or at the end of the transaction (for isolation
levels 2 and 3).

If the or query has no possibility of returning duplicate rows, no worktable sort
is needed. At isolation level 1, locks on the data pages are released as soon as
the scan moves off the page.

Processing or queries for Data-Only-Locked tables

On data-only-locked tables, the type and duration of locks acquired for or
queries using the OR Strategy (when multiple clauses might match the same
rows) depend on the isolation level.

Lock types and duration during query processing

32 Adaptive Server Enterprise

Processing or queries at isolation Levels 1 and 2

No locks are acquired on the index pages or rows of data-only-locked tables
while row IDs are being retrieved from indexes and copied to a worktable.
After the worktable is sorted to remove duplicate values, the data rows are re-
qualified when the row IDs are used to read data from the table. If any rows
were deleted, they are not returned. If any rows were updated, they are re-
qualified by applying the full set of query clauses to them. The locks are
released when the row qualification completes, for isolation level 1, or at the
end of the transaction, for isolation level 2.

Processing or queries at isolation Level 3

Isolation level 3 requires serializable reads. At this isolation level, or queries
obtain locks on the data pages or data rows during the first phase of or
processing, as the worktable is being populated. These locks are held until the
transaction completes. Re-qualification of rows is not required.

Skipping uncommitted inserts during selects
select queries on data only locked tables do not block on uncommitted inserts
when the following conditions are true::

• The table uses datarow locking, and

• The isolation level is 1 or 2.

Under these conditions scans will skip such a row.

The only exception to this rule is if the transaction doing the uncommitted
insert was overwriting an uncommitted delete of the same row done earlier by
the same transaction. In this case, scans will block on the uncommitted inserted
row.

Skipping uncommitted inserts during deletes, updates and inserts

delete and update queries behave the same way as scans with regard to
uncommitted inserts. When the delete or update encounters an uncommitted
inserted row with the key value of interest, they will skip it without blocking.

The only exception to this rule is if the transaction doing the uncommitted
insert was overwriting an uncommitted delete of the same row done earlier by
the same transaction. In this case, updates and deletes will block on the
uncommitted inserted row.

CHAPTER 2 Locking Overview

Performance and Tuning: Locking 33

Insert queries, upon encountering an uncommitted inserted row with the same
key value, will raise a duplicate key error for if the index is unique.

Using alternative predicates to skip nonqualifying rows
When a select query includes multiple where clauses linked with and, Adaptive
Server can apply the qualification for any columns that have not been affected
by an uncommitted update of a row. If the row does not qualify because of one
of the clauses on an unmodified column, the row does not need to be returned,
so the query does not block.

If the row qualifies when the conditions on the unmodified columns have been
checked, and the conditions described in the next section, Qualifying old and
new values for uncommitted updates does not allow the query to proceed, then
the query blocks until the lock is released.

For example, transaction T15 in Table 2-15 updates balance, while transaction
T16 includes balance in the result set and in a search clause. However, T15
does not update the branch column, so T16 can apply that search argument.

Since the branch value in the row affected by T15 is not 77, the row does not
qualify, and the row is skipped, as shown. If T15 updated a row where branch
equals 77, a select query would block until T15 either commits or rolls back.

Table 2-15: Pseudo-column-level locking with multiple predicates

For select queries to avoid blocking when they reference columns in addition
to columns that are being updated, all of the following conditions must be met:

• The table must use datarows or datapages locking.

T15 Event Sequence T16
begin transaction

update accounts
set balance = 80
where acct_number = 20
and branch = 23

commit transaction

T15 and T16 start.

T15 updates accounts
and holds an exclusive
row lock.

T16 queries accounts,
but does not block
because the branch
qualification can be
applied.

begin transaction

select acct_number, balance
from accounts
where balance < 50
and branch = 77
commit tran

Pseudo column-level locking

34 Adaptive Server Enterprise

• At least one of the search clauses of the select query must be on a column
that among the first 32 columns of the table.

• The select query must run at isolation level 1 or 2.

• The configuration parameter read committed with lock must be set to 0, the
default value.

Pseudo column-level locking
During concurrent transactions that involve select queries and update
commands, pseudo column-level locking can allow some queries to return
values from locked rows, and can allow other queries to avoid blocking on
locked rows that do not qualify. Pseudo column-level locking can reduce
blocking:

• When the select query does not reference columns on which there is an
uncommitted update.

• When the where clause of a select query references one or more columns
affected by an uncommitted update, but the row does not qualify due to
conditions in other clauses.

• When neither the old nor new value of the updated column qualifies, and
an index containing the updated column is being used.

Select queries that do not reference the updated column
A select query on a datarows-locked table can return values without blocking,
even though a row is exclusively locked when:

• The query does not reference an updated column in the select list or any
clauses (where, having, group by, order by or compute), and

• The query does not use an index that includes the updated column

Transaction T14 in Table 2-16 requests information about a row that is locked
by T13. However, since T14 does not include the updated column in the result
set or as a search argument, T14 does not block on T13’s exclusive row lock.

CHAPTER 2 Locking Overview

Performance and Tuning: Locking 35

Table 2-16: Pseudo-column-level locking with mutually-exclusive
columns

If T14 uses an index that includes the updated column (for example,
acct_number, balance), the query blocks trying to read the index row.

For select queries to avoid blocking when they do not reference updated
columns, all of the following conditions must be met:

• The table must use datarows locking.

• The columns referenced in the select query must be among the first 32
columns of the table.

• The select query must run at isolation level 1.

• The select query must not use an index that contains the updated column.

• The configuration parameter read committed with lock must be set to 0, the
default value.

Qualifying old and new values for uncommitted updates
If a select query includes conditions on a column affected by an uncommitted
update, and the query uses an index on the updated column, the query can
examine both the old and new values for the column:

• If neither the old or new value meets the search criteria, the row can be
skipped, and the query does not block.

• If either the old or new value, or both of them qualify, the query blocks In
Table 2-17, if the original balance is $80, and the new balance is $90, the
row can be skipped, as shown. If either of the values is less than $50, T18
must wait until T17 completes.

T13 Event Sequence T14
begin transaction

update accounts
set balance = 50
where acct_number = 35

commit transaction

T13 and T14 start.

T13 updates accounts
and holds an exclusive
row lock.

T14 queries the same
row in accounts, but
does not access the
updated column. T14
does not block.

begin transaction

select lname, fname, phone
from accounts
where acct_number = 35
commit transaction

Suggestions to reduce contention

36 Adaptive Server Enterprise

Table 2-17: Checking old and new values for an uncommitted update

For select queries to avoid blocking when old and new values of uncommitted
updates do not qualify, all of the following conditions must be met:

• The table must use datarows or datapages locking.

• At least one of the search clauses of the select query must be on a column
that among the first 32 columns of the table.

• The select query must run at isolation level 1 or 2.

• The index used for the select query must include the updated column.

• The configuration parameter read committed with lock must be set to 0, the
default value.

Suggestions to reduce contention
To help reduce lock contention between update and select queries:

• Use datarows or datapages locking for tables with lock contention due to
updates and selects.

• If tables have more than 32 columns, make the first 32 columns the
columns that are most frequently used as search arguments and in other
query clauses.

T17 Event Sequence T18
begin transaction

update accounts
set balance = balance + 10
where acct_number = 20

commit transaction

T17 and T18 start.

T17 updates accounts
and holds an exclusive
row lock; the original
balance was 80, so the
new balance is 90.

T18 queries accounts
using an index that
includes balance. It
does not block since
balance does not
qualify

begin transaction

select acct_number, balance
from accounts
where balance < 50
commit tran

CHAPTER 2 Locking Overview

Performance and Tuning: Locking 37

• Select only needed columns. Avoid using select * when all columns are not
needed by the application.

• Use any available predicates for select queries. When a table uses
datapages locking, the information about updated columns is kept for the
entire page, so that if a transaction updates some columns in one row, and
other columns in another row on the same page, any select query that
needs to access that page must avoid using any of the updated columns.

Suggestions to reduce contention

38 Adaptive Server Enterprise

Performance and Tuning: Locking 39

C H A P T E R 3 Locking Configuration and
Tuning

This chapter discusses the types of locks used in Adaptive Server and the
commands that can affect locking. you can find an introduction to Locking
concepts in the Adaptive Server System Administration Guide.

Locking and performance
Locking affects performance of Adaptive Server by limiting concurrency.
An increase in the number of simultaneous users of a server may increase
lock contention, which decreases performance. Locks affect performance
when:

• Processes wait for locks to be released –

Any time a process waits for another process to complete its
transaction and release its locks, the overall response time and
throughput is affected.

• Transactions result in frequent deadlocks –

A deadlock causes one transaction to be aborted, and the transaction
must be restarted by the application. If deadlocks occur often, it
severely affects the throughput of applications.

Using datapages or datarows locking, or redesigning the way
transactions access the data can help reduce deadlock frequency.

• Creating indexes locks tables–

Topic Page
Locking and performance 39

Configuring locks and lock promotion thresholds 44

Choosing the locking scheme for a table 53

Optimistic index locking 58

Locking and performance

40 Adaptive Server Enterprise

Creating a clustered index locks all users out of the table until the index is
created;

Creating a nonclustered index locks out all updates until it is created.

Either way, you should create indexes when there is little activity on your
server.

• Turning off delayed deadlock detection causes spinlock contention –

Setting the deadlock checking period to 0 causes more frequent deadlock
checking. The deadlock detection process holds spinlocks on the lock
structures in memory while it looks for deadlocks.

In a high transaction production environment, do not set this parameter to
0 (zero).

Using sp_sysmon and sp_object_stats
Many of the following sections suggest that you change configuration
parameters to reduce lock contention.

Use sp_object_stats or sp_sysmon to determine if lock contention is a problem,
and then use it to determine how tuning to reduce lock contention affects the
system.

See “Identifying tables where concurrency is a problem” on page 88 for
information on using sp_object_stats.

See “Lock management” on page 73 in Performance and Tuning: Monitoring
and Analyzing for more information about using sp_sysmon to view lock
contention.

If lock contention is a problem, you can use Adaptive Server Monitor to
pinpoint locking problems by checking locks per object.

Reducing lock contention
Lock contention can impact Adaptive Server’s throughput and response time.
You need to consider locking during database design, and monitor locking
during application design.

Solutions include changing the locking scheme for tables with high contention,
or redesigning the application or tables that have the highest lock contention.
For example:

CHAPTER 3 Locking Configuration and Tuning

Performance and Tuning: Locking 41

• Add indexes to reduce contention, especially for deletes and updates.

• Keep transactions short to reduce the time that locks are held.

• Check for “hot spots,” especially for inserts on allpages-locked heap
tables.

Adding indexes to reduce contention

An update or delete statement that has no useful index on its search arguments
performs a table scan and holds an exclusive table lock for the entire scan time.
If the data modification task also updates other tables:

• It can be blocked by select queries or other updates.

• It may be blocked and have to wait while holding large numbers of locks.

• It can block or deadlock with other tasks.

Creating a useful index for the query allows the data modification statement to
use page or row locks, improving concurrent access to the table. If creating an
index for a lengthy update or delete transaction is not possible, you can perform
the operation in a cursor, with frequent commit transaction statements to reduce
the number of page locks.

Keeping transactions short

Any transaction that acquires locks should be kept as short as possible. In
particular, avoid transactions that need to wait for user interaction while
holding locks.

Table 3-1: Examples

With page-level locking With row-level locking
begin tran

select balance
from account holdlock
where acct_number = 25

Intent shared table lock
Shared page lock

Intent shared table lock
Shared row lock

If the user goes to lunch now, no
one can update rows on the page
that holds this row.

If the user goes to lunch now, no
one can update this row.

Locking and performance

42 Adaptive Server Enterprise

Avoid network traffic as much as possible within transactions. The network is
slower than Adaptive Server. The example below shows a transaction executed
from isql, sent as two packets.

Keeping transactions short is especially crucial for data modifications that
affect nonclustered index keys on allpages-locked tables.

Nonclustered indexes are dense: the level above the data level contains one row
for each row in the table. All inserts and deletes to the table, and any updates
to the key value affect at least one nonclustered index page (and adjoining
pages in the page chain, if a page split or page deallocation takes place).

While locking a data page may slow access for a small number of rows, locks
on frequently-used index pages can block access to a much larger set of rows.

Avoiding hot spots

Hot spots occur when all updates take place on a certain page, as in an allpages-
locked heap table, where all inserts happen on the last page of the page chain.

For example, an unindexed history table that is updated by everyone always
has lock contention on the last page. This sample output from sp_sysmon
shows that 11.9% of the inserts on a heap table need to wait for the lock:

Last Page Locks on Heaps
Granted 3.0 0.4 185 88.1 %

update account
set balance = balance + 50
where acct_number = 25

Intent exclusive table lock
Update page lock on data page
followed by
exclusive page lock on data
page

Intent exclusive table lock
Update row lock on data page
followed by
exclusive row lock on data page

No one can read rows on the
page that holds this row.

No one can read this row.

commit tran

With page-level locking With row-level locking

begin tran
update account
set balance = balance + 50
where acct_number = 25
go

isql batch sent to Adaptive Server
Locks held waiting for commit

update account
set balance = balance - 50
where acct_number = 45
commit tran
go

isql batch sent to Adaptive Server
Locks released

CHAPTER 3 Locking Configuration and Tuning

Performance and Tuning: Locking 43

Waited 0.4 0.0 25 11.9 %

Possible solutions are:

• Change the lock scheme to datapages or datarows locking.

Since these locking schemes do not have chained data pages, they can
allocate additional pages when blocking occurs for inserts.

• Partition the table. Partitioning a heap table creates multiple page chains
in the table, and, therefore, multiple last pages for inserts.

Concurrent inserts to the table are less likely to block one another, since
multiple last pages are available. Partitioning provides a way to improve
concurrency for heap tables without creating separate tables for different
groups of users.

See “Improving insert performance with partitions” on page 101 in
Performance and Tuning: General Information for information about
partitioning tables.

• Create a clustered index to distribute the updates across the data pages in
the table.

Like partitioning, this solution creates multiple insertion points for the
table. However, it also introduces overhead for maintaining the physical
order of the table’s rows.

Additional locking guidelines
These locking guidelines can help reduce lock contention and speed
performance:

• Use the lowest level of locking required by each application. Use isolation
level 2 or 3 only when necessary.

Updates by other transactions may be delayed until a transaction using
isolation level 3 releases any of its shared locks at the end of the
transaction.

Use isolation level 3 only when nonrepeatable reads or phantoms may
interfere with your desired results.

If only a few queries require level 3, use the holdlock keyword or at
isolation serializing clause in those queries instead of using set transaction
isolation level 3 for the entire transaction.

Configuring locks and lock promotion thresholds

44 Adaptive Server Enterprise

If most queries in the transaction require level 3, use set transaction
isolation level 3, but use noholdlock or at isolation read committed in the
remaining queries that can execute at isolation level 1.

• If you need to perform mass inserts, updates, or deletes on active tables,
you can reduce blocking by performing the operation inside a stored
procedure using a cursor, with frequent commits.

• If your application needs to return a row, provide for user interaction, and
then update the row, consider using timestamps and the tsequal function
rather than holdlock.

• If you are using third-party software, check the locking model in
applications carefully for concurrency problems.

Also, other tuning efforts can help reduce lock contention. For example, if a
process holds locks on a page, and must perform a physical I/O to read an
additional page, it holds the lock much longer than it would have if the
additional page had already been in cache.

Better cache utilization or using large I/O can reduce lock contention in this
case. Other tuning efforts that can pay off in reduced lock contention are
improved indexing and good distribution of physical I/O across disks.

Configuring locks and lock promotion thresholds
A System Administrator can configure:

• The total number of locks available to processes on Adaptive Server

• The size of the lock hash table and the number of spinlocks that protect the
page/row lock hashtable, table lock hashtable, and address lock hash table

• The server-wide lock timeout limit, and the lock timeout limit for
distributed transactions

• Lock promotion thresholds, server-wide, for a database or for particular
tables

• The number of locks available per engine and the number of locks
transferred between the global free lock list and the engines

See the Adaptive Server System Administration Guide for information on
these parameters.

CHAPTER 3 Locking Configuration and Tuning

Performance and Tuning: Locking 45

Configuring Adaptive Server’s lock limit
By default, Adaptive Server is configured with 5000 locks. System
administrators can use sp_configure to change this limit. For example:

sp_configure "number of locks", 25000

You may also need to adjust the sp_configure parameter total memory, since
each lock uses memory.

The number of locks required by a query can vary widely, depending on the
locking scheme and on the number of concurrent and parallel processes and the
types of actions performed by the transactions. Configuring the correct number
for your system is a matter of experience and familiarity with the system.

You can start with 20 locks for each active concurrent connection, plus 20 locks
for each worker process. Consider increasing the number of locks if:

• You change tables to use datarows locking

• Queries run at isolation level 2 or 3, or use serializable or holdlock

• You enable parallel query processing, especially for isolation level 2 or 3
queries

• You perform many multirow updates

• You increase lock promotion thresholds

Estimating number of locks for data-only-locked tables

Changing to data-only locking may require more locks or may reduce the
number of locks required:

• Tables using datapages locking require fewer locks than tables using
allpages locking, since queries on datapages-locked tables do not acquire
separate locks on index pages.

• Tables using datarows locking can require a large number of locks.
Although no locks are acquired on index pages for datarows-locked tables,
data modification commands that affect many rows may hold more locks.

Queries running at transaction isolation level 2 or 3 can acquire and hold
very large numbers of row locks.

Configuring locks and lock promotion thresholds

46 Adaptive Server Enterprise

Insert commands and locks

An insert with allpages locking requires N+1 locks, where N is the number of
indexes. The same insert on a data-only-locked table locks only the data page
or data row.

select queries and locks

Scans at transaction isolation level 1, with read committed with lock set to hold
locks (1), acquire overlapping locks that roll through the rows or pages, so they
hold, at most, two data page locks at a time.

However, transaction isolation level 2 and 3 scans, especially those using
datarows locking, can acquire and hold very large numbers of locks, especially
when running in parallel. Using datarows locking, and assuming no blocking
during lock promotion, the maximum number of locks that might be required
for a single table scan is:

row lock promotion HWM * parallel_degree

If lock contention from exclusive locks prevents scans from promoting to a
table lock, the scans can acquire a very large number of locks.

Instead of configuring the number of locks to meet the extremely high locking
demands for queries at isolation level 2 or 3, consider changing applications
that affect large numbers of rows to use the lock table command. This command
acquires a table lock without attempting to acquire individual page locks.

See “lock table Command” on page 74 for information on using lock table.

Data modification commands and locks

For tables that use the datarows locking scheme, data modification commands
can require many more locks than data modification on allpages or datapages-
locked tables.

For example, a transaction that performs a large number of inserts into a heap
table may acquire only a few page locks for an allpages-locked table, but
requires one lock for each inserted row in a datarows-locked table. Similarly,
transactions that update or delete large numbers of rows may acquire many
more locks with datarows locking.

CHAPTER 3 Locking Configuration and Tuning

Performance and Tuning: Locking 47

Configuring the lock hashtable (Lock Manager)
Table 3-2: lock hashtable size

The lock hashtable size parameter specifies the number of hash buckets in the
lock hash table. This table manages all row, page, and table locks and all lock
requests. Each time a task acquires a lock, the lock is assigned to a hash bucket,
and each lock request for that lock checks the same hash bucket. Setting this
value too low results in large numbers of locks in each hash bucket and slows
the searches.

On Adaptive Servers with multiple engines, setting this value too low can also
lead to increased spinlock contention. You should not set the value to less than
the default value, 2048. lock hashtable size must be a power of 2. If the value
you specify is not a power of 2, sp_configure rounds the value to the next
highest power of 2 and prints an informational message.

The optimal hash table size is a function of the number of distinct objects
(pages, tables, and rows) that will be locked concurrently. The optimal hash
table size is at least 20 percent of the number of distinct objects that need to be
locked concurrently. See “Lock management” on page 73 of the Performance
and Tuning: Monitoring and Analyzing for more information on configuring
the lock hash table size.

However, if you have a large number of users and have had to increase the
number of locks parameter to avoid running out of locks, you should check the
average hash chain length with sp_sysmon at peak periods. If the average
length of the hash chains exceeds 4 or 5, consider increased the value of lock
hashtable size to the next power of 2 from its current setting.

The hash chain length may be high during large insert batches, such as bulk
copy operations. This is expected behavior, and does not require that you reset
the lock hash table size.

Summary Information

Default value 2048

Range of values 1–2147483647

Status Static

Display Level Comprehensive

Required Role System Administrator

Configuring locks and lock promotion thresholds

48 Adaptive Server Enterprise

Setting lock promotion thresholds
The lock promotion thresholds set the number of page or row locks permitted
by a task or worker process before Adaptive Server attempts to escalate to a
table lock on the object. You can set lock promotion thresholds at the server-
wide level, at the database level, and for individual tables.

The default values provide good performance for a wide range of table sizes.
Configuring the thresholds higher reduces the chance of queries acquiring table
locks, especially for very large tables where queries lock hundreds of data
pages.

Note Lock promotion is always two-tiered: from page locks to table locks or
from row locks to table locks. Row locks are never promoted to page locks.

Lock promotion and scan sessions

Lock promotion occurs on a per-scan session basis.

A scan session is how Adaptive Server tracks scans of tables within a
transaction. A single transaction can have more than one scan session for the
following reasons:

• A table may be scanned more than once inside a single transaction in the
case of joins, subqueries, exists clauses, and so on.

Each scan of the table is a scan session.

• A query executed in parallel scans a table using multiple worker processes.

Each worker process has a scan session.

A table lock is more efficient than multiple page or row locks when an entire
table might eventually be needed. At first, a task acquires page or row locks,
then attempts to escalate to a table lock when a scan session acquires more page
or row locks than the value set by the lock promotion threshold.

Since lock escalation occurs on a per-scan session basis, the total number of
page or row locks for a single transaction can exceed the lock promotion
threshold, as long as no single scan session acquires more than the lock
promotion threshold number of locks. Locks may persist throughout a
transaction, so a transaction that includes multiple scan sessions can
accumulate a large number of locks.

CHAPTER 3 Locking Configuration and Tuning

Performance and Tuning: Locking 49

Lock promotion cannot occur if another task holds locks that conflict with the
type of table lock needed. For instance, if a task holds any exclusive page locks,
no other process can promote to a table lock until the exclusive page locks are
released.

When lock promotion is denied due to conflicting locks, a process can
accumulate page or row locks in excess of the lock promotion threshold and
may exhaust all available locks in Adaptive Server.

The lock promotion parameters are:

• For allpages-locked tables and datapages-locked tables, page lock
promotion HWM, page lock promotion LWM, and page lock promotion PCT.

• For datarows-locked tables, row lock promotion HWM, row lock promotion
LWM, and row lock promotion PCT.

The abbreviations in these parameters are:

• HWM, high water mark

• LWM, low water mark

• PCT, percent

Lock promotion high water mark

page lock promotion HWM and row lock promotion HWM set a maximum number
of page or row locks allowed on a table before Adaptive Server attempts to
escalate to a table lock. The default value is 200.

When the number of locks acquired during a scan session exceeds this number,
Adaptive Server attempts to acquire a table lock.

Setting the high water mark to a value greater than 200 reduces the chance of
any task or worker process acquiring a table lock on a particular table. For
example, if a process updates more than 200 rows of a very large table during
a transaction, setting the lock promotion high water mark higher keeps this
process from attempting to acquire a table lock.

Setting the high water mark to less than 200 increases the chances of a
particular task or worker process acquiring a table lock.

Configuring locks and lock promotion thresholds

50 Adaptive Server Enterprise

Lock promotion low water mark

page lock promotion LWM and row lock promotion LWM set a minimum number
of locks allowed on a table before Adaptive Server attempts to acquire a table
lock. The default value is 200. Adaptive Server never attempts to acquire a
table lock until the number of locks on a table is equal to the low water mark.

The low water mark must be less than or equal to the corresponding high water
mark.

Setting the low water mark to a very high value decreases the chance for a
particular task or worker process to acquire a table lock, which uses more locks
for the duration of the transaction, potentially exhausting all available locks in
Adaptive Server. This possibility is especially high with queries that update a
large number of rows in a datarows-locked table, or select large numbers of
rows from datarows-locked tables at isolation levels 2 or 3.

If conflicting locks prevent lock promotion, you may need to increase the value
of the number of locks configuration parameter.

Lock promotion percent

page lock promotion PCT and row lock promotion PCT set the percentage of
locked pages or rows (based on the table size) above which Adaptive Server
attempts to acquire a table lock when the number of locks is between the lock
promotion HWM and the lock promotion LWM.

The default value is 100.

Adaptive Server attempts to promote page locks to a table lock or row locks to
a table lock when the number of locks on the table exceeds:

(PCT * number of pages or rows in the table) / 100

Setting lock promotion PCT to a very low value increases the chance of a
particular user transaction acquiring a table lock. Figure 3-1 shows how
Adaptive Server determines whether to promote page locks on a table to a table
lock.

CHAPTER 3 Locking Configuration and Tuning

Performance and Tuning: Locking 51

Figure 3-1: Lock promotion logic

Setting server-wide lock promotion thresholds

The following command sets the server-wide page lock promotion LWM to 100,
the page lock promotion HWM to 2000, and the page lock promotion PCT to 50
for all datapages-locked and allpages-locked tables:

sp_setpglockpromote "server", null, 100, 2000, 50

In this example, the task does not attempt to promote to a table lock unless the
number of locks on the table is between 100 and 2000.

If a command requires more than 100 but less than 2000 locks, Adaptive Server
compares the number of locks to the percentage of locks on the table.

If the number of locks is greater than the number of pages resulting from the
percentage calculation, Adaptive Server attempts to issue a table lock.

sp_setrowlockpromote sets the configuration parameters for all datarows-
locked tables:

Promote to
table lock.

Do not promote
to table lock.

Does this scan session hold
lock promotion HWM number

of page or row or locks?

Does any other process hold
exclusive lock on object?

Yes

No

Yes

Does this scan session hold
lock promotion PCT

page or row locks?

Yes

No

No Do not promote
to table lock.

Does this scan session hold
lock promotion LWM number

of page or row locks?

Yes

No Do not promote
to table lock.

Configuring locks and lock promotion thresholds

52 Adaptive Server Enterprise

sp_setrowlockpromote "server", null, 300, 500, 50

The default values for lock promotion configuration parameters are likely to be
appropriate for most applications.

Setting the lock promotion threshold for a table or database

To configure lock promotion values for an individual table or database,
initialize all three lock promotion thresholds. For example:

sp_setpglockpromote "table", titles, 100, 2000, 50
sp_setrowlockpromote "table", authors, 300, 500, 50

After the values are initialized, you can change any individual value. For
example, to change the lock promotion PCT only, use the following command:

sp_setpglockpromote "table", titles, null, null, 70
sp_setrowlockpromote "table", authors, null, null,
50

To configure values for a database, use:

sp_setpglockpromote "database", pubs3, 1000, 1100,
45
sp_setrowlockpromote "database", pubs3, 1000, 1100,
45

Precedence of settings

You can change the lock promotion thresholds for any user database or an
individual table. Settings for an individual table override the database or
server-wide settings; settings for a database override the server-wide values.

Server-wide values for lock promotion apply to all user tables on the server,
unless the database or tables have lock promotion values configured for them.

Dropping database and table settings

To remove table or database lock promotion thresholds, use
sp_dropglockpromote or sp_droprowlockpromote. When you drop a database’s
lock promotion thresholds, tables that do not have lock promotion thresholds
configured use the server-wide values.

When you drop a table’s lock promotion thresholds, Adaptive Server uses the
database’s lock promotion thresholds, if they have been configured, or the
server-wide values, if the lock promotion thresholds have not been configured.
You cannot drop the server-wide lock promotion thresholds.

CHAPTER 3 Locking Configuration and Tuning

Performance and Tuning: Locking 53

Using sp_sysmon while tuning lock promotion thresholds

Use sp_sysmon to see how many times lock promotions take place and the
types of promotions they are.

See “Lock promotions” on page 80 in the Performance and Tuning:
Monitoring and Analyzing for more information.

If there is a problem, look for signs of lock contention in the “Granted” and
“Waited” data in the “Lock Detail” section of the sp_sysmon output.

See “Lock detail” on page 76 in the Performance and Tuning: Monitoring and
Analyzing for more information.

If lock contention is high and lock promotion is frequent, consider changing the
lock promotion thresholds for the tables involved.

Use Adaptive Server Monitor to see how changes to the lock promotion
threshold affect the system at the object level.

Choosing the locking scheme for a table
In general, choice of lock scheme for a new table should be determined by the
likelihood that applications will experience lock contention on the table. The
decision about whether to change the locking scheme for an existing table can
be based on contention measurements on the table, but also needs to take
application performance into account.

Here are some typical situations and general guidelines for choosing the
locking scheme:

• Applications require clustered access to the data rows due to range queries
or order by clauses

Allpages locking provides more efficient clustered access than data-only-
locking.

• A large number of applications access about 10 to 20% of the data rows,
with many updates and selects on the same data.

Use datarows or datapages locking to reduce contention, especially on the
tables with the highest contention.

• The table is a heap table that will have a high rate of inserts.

Choosing the locking scheme for a table

54 Adaptive Server Enterprise

Use datarows locking to avoid contention. If the number of rows inserted
per batch is high, datapages locking is also acceptable. Allpages locking
has more contention for the “last page” of heap tables.

• Applications need to maintain an extremely high transaction rate;
contention is likely to be low.

Use allpages locking; less locking and latching overhead yields improved
performance.

Analyzing existing applications
If your existing applications experience blocking and deadlock problems,
follow the steps below to analyze the problem:

1 Check for deadlocks and lock contention:

• Use sp_object_stats to determine the tables where blocking is a
problem.

• Identify the table(s) involved in the deadlock, either using
sp_object_stats or by enabling the print deadlock information
configuration parameter.

2 If the table uses allpages locking and has a clustered index, ensure that
performance of the modified clustered index structure on data-only-locked
tables will not hurt performance.

See “Tables where clustered index performance must remain high” on
page 56.

3 If the table uses allpages locking, convert the locking scheme to datapages
locking to determine whether it solves the concurrency problem.

4 Re-run your concurrency tests. If concurrency is still an issue, change the
locking scheme to datarows locking.

Choosing a locking scheme based on contention statistics
If the locking scheme for the table is allpages, the lock statistics reported by
sp_object_stats include both data page and index lock contention.

If lock contention totals 15% or more for all shared, update, and exclusive
locks, sp_object_stats recommends changing to datapages locking. You should
make the recommended change, and run sp_object_stats again.

CHAPTER 3 Locking Configuration and Tuning

Performance and Tuning: Locking 55

If contention using datapages locking is more than 15%, sp_object_stats
recommends changing to datarows locking. This two-phase approach is based
on these characteristics:

• Changing from allpages locking to either data-only-locking scheme is
time consuming and expensive, in terms of I/O cost, but changing between
the two data-only-locking schemes is fast and does not require copying the
table.

• Datarows locking requires more locks, and consumes more locking
overhead.

If your applications experience little contention after you convert high-
contending tables to use datapages locking, you do not need to incur the
locking overhead of datarows locking.

Note The number of locks available to all processes on the server is
limited by the number of locks configuration parameter.

Changing to datapages locking reduces the number of locks required,
since index pages are no longer locked.

Changing to datarows locking can increase the number of locks required,
since a lock is needed for each row.

See “Estimating number of locks for data-only-locked tables” on page 45
for more information.

When examining sp_object_stats output, look at tables that are used together in
transactions in your applications. Locking on tables that are used together in
queries and transactions can affect the locking contention of the other tables.

Reducing lock contention on one table could ease lock contention on other
tables as well, or it could increase lock contention on another table that was
masked by blocking on the first table in the application. For example:

• Lock contention is high for two tables that are updated in transactions
involving several tables. Applications first lock TableA, then attempt to
acquire locks on TableB, and block, holding locks on TableA.

Additional tasks running the same application block while trying to
acquire locks on TableA. Both tables show high contention and high wait
times.

Changing TableB to data-only locking may alleviate the contention on both
tables.

Choosing the locking scheme for a table

56 Adaptive Server Enterprise

• Contention for TableT is high, so its locking scheme is changed to a data-
only locking scheme.

Re-running sp_object_stats now shows contention on TableX, which had
shown very little lock contention. The contention on TableX was masked
by the blocking problem on TableT.

If your application uses many tables, you may want to convert your set of tables
to data-only locking gradually, by changing just those tables with the highest
lock contention. Then test the results of these changes by rerunning
sp_object_stats.

You should run your usual performance monitoring tests both before and after
you make the changes.

Monitoring and managing tables after conversion
After you have converted one or more tables in an application to a data-only-
locking scheme:

• Check query plans and I/O statistics, especially for those queries that use
clustered indexes.

• Monitor the tables to learn how changing the locking scheme affects:

• The cluster ratios, especially for tables with clustered indexes

• The number of forwarded rows in the table

Applications not likely to benefit from data-only locking
This section describes tables and application types that may get little benefit
from converting to data-only locking, or may require additional management
after the conversion.

Tables where clustered index performance must remain high

If queries with high performance requirements use clustered indexes to return
large numbers of rows in index order, you may see performance degradation if
you change these tables to use data-only locking. Clustered indexes on data-
only-locked tables are structurally the same as nonclustered indexes.

Placement algorithms keep newly inserted rows close to existing rows with
adjacent values, as long as space is available on nearby pages.

CHAPTER 3 Locking Configuration and Tuning

Performance and Tuning: Locking 57

Performance for a data-only-locked table with a clustered index should be
close to the performance of the same table with allpages locking immediately
after a create clustered index command or a reorg rebuild command, but
performance, especially with large I/O, declines if cluster ratios decline
because of inserts and forwarded rows.

Performance remains high for tables that do not experience a lot of inserts. On
tables that get a lot of inserts, a System Administrator may need to drop and re-
create the clustered index or run reorg rebuild more frequently.

Using space management properties such as fillfactor, exp_row_size, and
reservepagegap can help reduce the frequency of maintenance operations. In
some cases, using the allpages locking scheme for the table, even if there is
some contention, may provide better performance for queries performing
clustered index scans than using data-only locking for the tables.

Tables with maximum-length rows

Data-only-locked tables require more overhead per page and per row than
allpages-locked tables, so the maximum row size for a data-only-locked table
is slightly shorter than the maximum row size for an allpages-locked table.

For tables with fixed-length columns only, the maximum row size is 1958 bytes
of user data for data-only-locked tables. Allpages-locked tables allow a
maximum of 1960 bytes.

For tables with variable-length columns, subtract 2 bytes for each variable-
length column (this includes all columns that allow null values). For example,
the maximum user row size for a data-only-locked table with 4 variable-length
columns is 1950 bytes.

If you try to convert an allpages-locked table that has more than 1958 bytes in
fixed-length columns, the command fails as soon as it reads the table schema.

When you try to convert an allpages-locked table with variable-length
columns, and some rows exceed the maximum size for the data-only-locked
table, the alter table command fails at the first row that is too long to convert.

Optimistic index locking

58 Adaptive Server Enterprise

Optimistic index locking
Optimistic index locking can resolve increased contention on some important
resources, such as the spinlocks that guard address locks on the root page of an
index.

Applications where this amount of contention might occur are typically those
in which:

• Access to a specified index constitutes a significant portion of the
transaction profile, and many users are concurrently executing the same
workload.

• Different transactions, such as ad hoc and standardized queries, use the
same index concurrently.

Understanding optimistic index locking
Optimistic index locking does not acquire an address lock on the root page of
an index during normal data manipulation language operations (DML). If your
updates and inserts can cause modifications to the root page of the accessed
index, optimistic index locking restarts the search and acquires an exclusive
table lock, not an address lock.

Using optimistic index locking
You can use this feature when any or all of the following conditions are true:

• There is significant contention on the lock address hash bucket spinlock.

• None of the indexes on this table cause modifications to the root page.

• The number of index levels is high enough to cause no splitting or
shrinking of the root page.

• There are large numbers of concurrent accesses to read-only tables on
heavily trafficked index pages.

• A database is read-only.

CHAPTER 3 Locking Configuration and Tuning

Performance and Tuning: Locking 59

Cautions and issues
Since an exclusive table lock blocks all access by other tasks to the entire table,
you should thoroughly understand the user access patterns of your application
before enabling optimistic index locking.

The following circumstances require an exclusive table lock:

• Adding a new level to the root page

• Shrinking the root page

• Splitting or shrinking the immediate child of the root page, causing an
update on the root page

Do not use optimistic index locking when:

• You have small tables with index levels no higher than 3.

• You envision possible modifications to the root page of an index

Note An exclusive table lock is an expensive operation, since it blocks access
to the entire table. Use extreme caution in setting the optimistic index locking
property.

Two stored procedures are changed by optimistic index locking:

• sp_chgattribute adds an option that acquires an optimistic index lock on a
table.

• sp_help adds a column that displays optimistic index lock.

For more information on these stored procedures, see the Reference Manual.

Optimistic index locking

60 Adaptive Server Enterprise

Performance and Tuning: Locking 61

C H A P T E R 4 Using Locking Commands

This chapter discusses the types of locks used in Adaptive Server and the
commands that can affect locking.

Specifying the locking scheme for a table
The locking schemes in Adaptive Server provide you with the flexibility
to choose the best locking scheme for each table in your application and
to adapt the locking scheme for a table if contention or performance
requires a change. The tools for specifying locking schemes are:

• sp_configure, to specify a server-wide default locking scheme

• create table to specify the locking scheme for newly created tables

• alter table to change the locking scheme for a table to any other
locking scheme

• select into to specify the locking scheme for a table created by
selecting results from other tables

Specifying a server-wide locking scheme
The lock scheme configuration parameter sets the locking scheme to be
used for any new table, if the create table command does not specify the
lock scheme.

To see the current locking scheme, use:

Topic Topic
Specifying the locking scheme for a table 61

Controlling isolation levels 66

Readpast locking 71

Cursors and locking 71

Additional locking commands 74

Specifying the locking scheme for a table

62 Adaptive Server Enterprise

sp_configure "lock scheme"

Parameter Name Default Memory Used Config Value Run Value
---------------- ----------- ----------- ------------ -----------
lock scheme allpages 0 datarows datarows

The syntax for changing the locking scheme is:

sp_configure "lock scheme", 0,
 {allpages | datapages | datarows}

This command sets the default lock scheme for the server to datapages:

sp_configure "lock scheme", 0, datapages

When you first install Adaptive Server, lock scheme is set to allpages.

Specifying a locking scheme with create table
You can specify the locking scheme for a new table with the create table
command. The syntax is:

create table table_name (column_name_list)
[lock {datarows | datapages | allpages}]

If you do not specify the lock scheme for a table, the default value for your
server is used, as determined by the setting of the lock scheme configuration
parameter.

This command specifies datarows locking for the new_publishers table:

create table new_publishers
(pub_id char(4) not null,
 pub_name varchar(40) null,
 city varchar(20) null,
 state char(2) null)
lock datarows

Specifying the locking scheme with create table overrides the default server-
wide setting.

See “Specifying a server-wide locking scheme” on page 61 for more
information.

CHAPTER 4 Using Locking Commands

Performance and Tuning: Locking 63

Changing a locking scheme with alter table
Use the alter table command to change the locking scheme for a table. The
syntax is:

alter table table_name
lock {allpages | datapages | datarows}

This command changes the locking scheme for the titles table to datarows
locking:

alter table titles lock datarows

alter table supports changing from one locking scheme to any other locking
scheme. Changing from allpages locking to data-only locking requires copying
the data rows to new pages and re-creating any indexes on the table.

The operation takes several steps and requires sufficient space to make the
copy of the table and indexes. The time required depends on the size of the
table and the number of indexes.

Changing from datapages locking to datarows locking or vice versa does not
require copying data pages and rebuilding indexes. Switching between data-
only locking schemes only updates system tables, and completes in a few
seconds.

Note You cannot use data-only locking for tables that have rows that are at, or
near, the maximum length of 1962 (including the two bytes for the offset table).

For data-only-locked tables with only fixed-length columns, the maximum
user data row size is 1960 bytes (including the 2 bytes for the offset table).

Tables with variable-length columns require 2 additional bytes for each column
that is variable-length (this includes columns that allow nulls.)

See Chapter 11, “Determining Sizes of Tables and Indexes,” in the
Performance and Tuning: General Information for information on rows and
row overhead.

Before and after changing locking schemes
Before you change from allpages locking to data-only locking or vice versa, the
following steps are recommended:

Specifying the locking scheme for a table

64 Adaptive Server Enterprise

• If the table is partitioned, and update statistics has not been run since major
data modifications to the table, run update statistics on the table that you
plan to alter. alter table...lock performs better with accurate statistics for
partitioned tables.

Changing the locking scheme does not affect the distribution of data on
partitions; rows in partition 1 are copied to partition 1 in the copy of the
table.

• Perform a database dump.

• Set any space management properties that should be applied to the copy of
the table or its rebuilt indexes.

See Chapter 9, “Setting Space Management Properties,” in the
Performance and Tuning: General Information for more information.

• Determine if there is enough space.

See “Determining the space available for maintenance activities” on page
360 in the Performance and Tuning: General Information.

• If any of the tables in the database are partitioned and require a parallel
sort:

• Use sp_dboption to set the database option select into/bulkcopy/pllsort
to true and run checkpoint in the database.

• Set your configuration for optimum parallel sort performance.

After alter table completes

• Run dbcc checktable on the table and dbcc checkalloc on the database to
insure database consistency.

• Perform a database dump.

Note After you have changed the locking scheme from allpages locking
to data-only locking or vice versa, you cannot use the dump transaction to
back up the transaction log.

You must first perform a full database dump.

CHAPTER 4 Using Locking Commands

Performance and Tuning: Locking 65

Expense of switching to or from allpages locking
Switching from allpages locking to data-only locking or vice versa is an
expensive operation, in terms of I/O cost. The amount of time required depends
on the size of the table and the number of indexes that must be re-created. Most
of the cost comes from the I/O required to copy the tables and re-create the
indexes. Some logging is also required.

The alter table...lock command performs the following actions when moving
from allpages locking to data-only locking or from data-only locking to
allpages locking:

• Copies all rows in the table to new data pages, formatting rows according
to the new format. If you are changing to data-only locking, any data rows
of less than 10 bytes are padded to 10 bytes during this step. If you are
changing to allpages locking from data-only locking, extra padding is
stripped from rows of less than 10 bytes.

• Drops and re-creates all indexes on the table.

• Deletes the old set of table pages.

• Updates the system tables to indicate the new locking scheme.

• Updates a counter maintained for the table, to cause the recompilation of
query plans.

If a clustered index exists on the table, rows are copied in clustered index key
order onto the new data pages. If no clustered index exists, the rows are copied
in page-chain order for an allpages-locking to data-only-locking conversion.

The entire alter table...lock command is performed as a single transaction to
ensure recoverability. An exclusive table lock is held on the table for the
duration of the transaction.

Switching from datapages locking to datarows locking or vice versa does not
require that you copy pages or re-create indexes. It updates only the system
tables. You are not required to set sp_dboption "select into/bulkcopy/pllsort".

Sort performance during alter table
If the table being altered is partitioned, parallel sorting can be used while
rebuilding the indexes. alter table performance can be greatly improved if the
data cache and server are configured for optimal parallel sort performance.

Controlling isolation levels

66 Adaptive Server Enterprise

During alter table, the indexes are re-created one at a time. If your system has
enough engines, data cache, and I/O throughput to handle simultaneous create
index operations, you can reduce the overall time required to change locking
schemes by:

• Droping the nonclustered indexes

• Altering the locking scheme

• Configuring for best parallel sort performance

• Re-creating two or more nonclustered indexes at once

Specifying a locking scheme with select into
You can specify a locking scheme when you create a new table, using the select
into command. The syntax is:

select [all | distinct] select_list
into [[database.]owner.]table_name
lock {datarows | datapages | allpages}

from...

If you do not specify a locking scheme with select into, the new table uses the
server-wide default locking scheme, as defined by the configuration parameter
lock scheme.

This command specifies datarows locking for the table it creates:

select title_id, title, price
into bus_titles
lock datarows
from titles
where type = "business"

Temporary tables created with the #tablename form of naming are single-user
tables, so lock contention is not an issue. For temporary tables that can be
shared among multiple users, that is, tables created with tempdb..tablename,
any locking scheme can be used.

Controlling isolation levels
You can set the transaction isolation level used by select commands:

CHAPTER 4 Using Locking Commands

Performance and Tuning: Locking 67

• For all queries in the session, with the set transaction isolation level
command

• For an individual query, with the at isolation clause

• For specific tables in a query, with the holdlock, noholdlock, and shared
keywords

When choosing locking levels in your applications, use the minimum locking
level that is consistent with your business model. The combination of setting
the session level while providing control over locking behavior at the query
level allows concurrent transactions to achieve the results that are required with
the least blocking.

Note If you use transaction isolation level 2 (repeatable reads) on allpages-
locked tables, isolation level 3 (serializing reads) is also enforced.

For more information on isolation levels, see the System Administration Guide.

Setting isolation levels for a session
The SQL standard specifies a default isolation level of 3. To enforce this level,
Transact-SQL provides the set transaction isolation level command. For
example, you can make level 3 the default isolation level for your session as
follows:

set transaction isolation level 3

If the session has enforced isolation level 3, you can make the query operate at
level 1 using noholdlock, as described below.

If you are using the Adaptive Server default isolation level of 1, or if you have
used the set transaction isolation level command to specify level 0 or 2, you can
enforce level 3 by using the holdlock option to hold shared locks until the end
of a transaction.

The current isolation level for a session can be determined with the global
variable @@isolation.

Syntax for query-level and table-level locking options
The holdlock, noholdlock, and shared options can be specified for each table in
a select statement, with the at isolation clause applied to the entire query.

Controlling isolation levels

68 Adaptive Server Enterprise

select select_list
from table_name [holdlock | noholdlock] [shared]

[, table_name [[holdlock | noholdlock] [shared]
{where/group by/order by/compute clauses}
[at isolation {

[read uncommitted | 0] |
[read committed | 1] |
[repeatable read | 2]|
[serializable | 3]]

Here is the syntax for the readtext command:

readtext [[database.]owner.]table_name.column_name text_pointer
offset size

[holdlock | noholdlock] [readpast]
[using {bytes | chars | characters}]
[at isolation {

[read uncommitted | 0] |
[read committed | 1] |
[repeatable read | 2]|
[serializable | 3]}]

Using holdlock, noholdlock, or shared
You can override a session’s locking level by applying the holdlock, noholdlock,
and shared options to individual tables in select or readtext commands:

These keywords affect locking for the transaction: if you use holdlock, all locks
are held until the end of the transaction.

If you specify holdlock in a query while isolation level 0 is in effect for the
session, Adaptive Server issues a warning and ignores the holdlock clause, not
acquiring locks as the query executes.

If you specify holdlock and read uncommitted, Adaptive Server prints an error
message, and the query is not executed.

Level to use Keyword Effect

1 noholdlock Do not hold locks until the end of the
transaction; use from level 3 to enforce
level 1

2, 3 holdlock Hold shared locks until the transaction
completes; use from level 1 to enforce
level 3

N/A shared Applies shared rather than update locks
for select statements in cursors open for
update

CHAPTER 4 Using Locking Commands

Performance and Tuning: Locking 69

Using the at isolation clause
You can change the isolation level for all tables in the query by using the at
isolation clause with a select or readtext command. The options in the at
isolation clause are:

For example, the following statement queries the titles table at isolation level 0:

select *
from titles
at isolation read uncommitted

For more information about the transaction isolation level option and the at
isolation clause, see the Transact-SQL User’s Guide.

Making locks more restrictive
If isolation level 1 is sufficient for most of your work, but some queries require
higher levels of isolation, you can selectively enforce the higher isolation level
using clauses in the select statement:

• Use repeatable read to enforce level 2

• Use holdlock or at isolation serializable to enforce level 3

The holdlock keyword makes a shared page or table lock more restrictive. It
applies:

• To shared locks

• To the table or view for which it is specified

Level to use Option Effect

0 read
uncommitted

Reads uncommitted changes; use from
level 1, 2, or 3 queries to perform dirty
reads (level 0).

1 read committed Reads only committed changes; wait
for locks to be released; use from level
0 to read only committed changes, but
without holding locks.

2 repeatable read Holds shared locks until the transaction
completes; use from level 0 or level 1
queries to enforce level 2.

3 serializable Holds shared locks until the transaction
completes; use from level 1 or level 2
queries to enforce level 3.

Controlling isolation levels

70 Adaptive Server Enterprise

• For the duration of the statement or transaction containing the statement

The at isolation clause applies to all tables in the from clause, and is applied only
for the duration of the transaction. The locks are released when the transaction
completes.

In a transaction, holdlock instructs Adaptive Server to hold shared locks until
the completion of that transaction instead of releasing the lock as soon as the
required table, view, or data page is no longer needed. Adaptive Server always
holds exclusive locks until the end of a transaction.

The use of holdlock in the following example ensures that the two queries return
consistent results:

begin transaction
select branch, sum(balance)
 from account holdlock
 group by branch
select sum(balance) from account
commit transaction

The first query acquires a shared table lock on account so that no other
transaction can update the data before the second query runs. This lock is not
released until the transaction including the holdlock command completes.

Using read committed

If your session isolation level is 0, and you need to read only committed
changes to the database, you can use the at isolation level read committed clause.

Making locks less restrictive
In contrast to holdlock, the noholdlock keyword prevents Adaptive Server from
holding any shared locks acquired during the execution of the query, regardless
of the transaction isolation level currently in effect.

noholdlock is useful in situations where your transactions require a default
isolation level of 2 or 3. If any queries in those transactions do not need to hold
shared locks until the end of the transaction, you can specify noholdlock with
those queries to improve concurrency.

For example, if your transaction isolation level is set to 3, which would
normally cause a select query to hold locks until the end of the transaction, this
command releases the locks when the scan moves off the page or row:

CHAPTER 4 Using Locking Commands

Performance and Tuning: Locking 71

select balance from account noholdlock
 where acct_number < 100

Using read uncommitted

If your session isolation level is 1, 2, or 3, and you want to perform dirty reads,
you can use the at isolation level read uncommitted clause.

Using shared

The shared keyword instructs Adaptive Server to use a shared lock (instead of
an update lock) on a specified table or view in a cursor.

See “Using the shared keyword” on page 73 for more information.

Readpast locking
Readpast locking allows select and readtext queries to silently skip all rows or
pages locked with incompatible locks. The queries do not block, terminate, or
return error or advisory messages to the user. It is largely designed to be used
in queue-processing applications.

In general, these applications allow queries to return the first unlocked row that
meets query qualifications. An example might be an application tracking calls
for service: the query needs to find the row with the earliest timestamp that is
not locked by another repair representative.

For more information on readpast locking, see the Transact-SQL User’s Guide.

Cursors and locking
Cursor locking methods are similar to the other locking methods in Adaptive
Server. For cursors declared as read only or declared without the for update
clause, Adaptive Server uses a shared page lock on the data page that includes
the current cursor position.

Cursors and locking

72 Adaptive Server Enterprise

When additional rows for the cursor are fetched, Adaptive Server acquires a
lock on the next page, the cursor position is moved to that page, and the
previous page lock is released (unless you are operating at isolation level 3).

For cursors declared with for update, Adaptive Server uses update page locks
by default when scanning tables or views referenced with the for update clause
of the cursor.

If the for update list is empty, all tables and views referenced in the from clause
of the select statement receive update locks. An update lock is a special type of
read lock that indicates that the reader may modify the data soon. An update
lock allows other shared locks on the page, but does not allow other update or
exclusive locks.

If a row is updated or deleted through a cursor, the data modification
transaction acquires an exclusive lock. Any exclusive locks acquired by
updates through a cursor in a transaction are held until the end of that
transaction and are not affected by closing the cursor.

This is also true of shared or update locks for cursors that use the holdlock
keyword or isolation level 3.

The following describes the locking behavior for cursors at each isolation
level:

• At level 0, Adaptive Server uses no locks on any base table page that
contains a row representing a current cursor position. Cursors acquire no
read locks for their scans, so they do not block other applications from
accessing the same data.

However, cursors operating at this isolation level are not updatable, and
they require a unique index on the base table to ensure accuracy.

• At level 1, Adaptive Server uses shared or update locks on base table or
leaf-level index pages that contain a row representing a current cursor
position.

The page remains locked until the current cursor position moves off the
page as a result of fetch statements.

• At level 2 or 3, Adaptive Server uses shared or update locks on any base
table or leaf-level index pages that have been read in a transaction through
the cursor.

Adaptive Server holds the locks until the transaction ends; it does not
release the locks when the data page is no longer needed or when the
cursor is closed.

CHAPTER 4 Using Locking Commands

Performance and Tuning: Locking 73

If you do not set the close on endtran or chained options, a cursor remains open
past the end of the transaction, and its current page locks remain in effect. It
may also continue to acquire locks as it fetches additional rows.

Using the shared keyword
When declaring an updatable cursor using the for update clause, you can tell
Adaptive Server to use shared page locks (instead of update page locks) in the
declare cursor statement:

declare cursor_name cursor
for select select_list
from {table_name | view_name} shared
for update [of column_name_list]

This allows other users to obtain an update lock on the table or an underlying
table of the view.

You can use the holdlock keyword in conjunction with shared after each table
or view name. holdlock must precede shared in the select statement. For
example:

declare authors_crsr cursor
for select au_id, au_lname, au_fname
 from authors holdlock shared
 where state != ’CA’
 for update of au_lname, au_fname

These are the effects of specifying the holdlock or shared options when defining
an updatable cursor:

• If you do not specify either option, the cursor holds an update lock on the
row or on the page containing the current row.

Other users cannot update, through a cursor or otherwise, the row at the
cursor position (for datarows-locked tables) or any row on this page (for
allpages and datapages-locked tables).

Other users can declare a cursor on the same tables you use for your cursor,
and can read data, but they cannot get an update or exclusive lock on your
current row or page.

• If you specify the shared option, the cursor holds a shared lock on the
current row or on the page containing the currently fetched row.

Additional locking commands

74 Adaptive Server Enterprise

Other users cannot update, through a cursor or otherwise, the current row,
or the rows on this page. They can, however, read the row or rows on the
page.

• If you specify the holdlock option, you hold update locks on all the rows or
pages that have been fetched (if transactions are not being used) or only
the pages fetched since the last commit or rollback (if in a transaction).

Other users cannot update, through a cursor or otherwise, currently fetched
rows or pages.

Other users can declare a cursor on the same tables you use for your cursor,
but they cannot get an update lock on currently fetched rows or pages.

• If you specify both options, the cursor holds shared locks on all the rows
or pages fetched (if not using transactions) or on the rows or pages fetched
since the last commit or rollback.

Other users cannot update, through a cursor or otherwise, currently fetched
rows or pages.

Additional locking commands

lock table Command
In transactions, you can explicitly lock a table with the lock table command.

• To immediately lock the entire table, rather than waiting for lock
promotion to take effect.

• When the query or transactions uses multiple scans, and none of the scans
locks a sufficient number of pages or rows to trigger lock promotion, but
the total number of locks is very large.

• When large tables, especially those using datarows locking, need to be
accessed at transaction level 2 or 3, and lock promotion is likely to be
blocked by other tasks. Using lock table can prevent running out of locks.

The table locks are released at the end of the transaction.

lock table allows you to specify a wait period. If the table lock cannot be granted
within the wait period, an error message is printed, but the transaction is not
rolled back.

CHAPTER 4 Using Locking Commands

Performance and Tuning: Locking 75

See lock table in the Adaptive Server Reference Manual for an example of a
stored procedure that uses lock time-outs, and checks for an error message. The
procedure continues to execute if it was run by the System Administrator, and
returns an error message to other users.

Lock timeouts
You can specify the time that a task waits for a lock:

• At the server level, with the lock wait period configuration parameter

• For a session or in a stored procedure, with the set lock wait command

• For a lock table command

See the Transact-SQL Users’ Guide for more information on these commands.

Except for lock table, a task that attempts to acquire a lock and fails to acquire
it within the time period returns an error message and the transaction is rolled
back.

Using lock time-outs can be useful for removing tasks that acquire some locks,
and then wait for long periods of time blocking other users. However, since
transactions are rolled back, and users may simply resubmit their queries,
timing out a transaction means that the work needs to be repeated.

You can use sp_sysmon to monitor the number of tasks that exceed the time
limit while waiting for a lock.

See “Lock time-out information” on page 81 in the Performance and Tuning:
Monitoring and Analyzing.

Additional locking commands

76 Adaptive Server Enterprise

Performance and Tuning: Locking 77

C H A P T E R 5 Locking Reports

This chapter discusses the tools that report on locks and locking behavior.

Locking tools
sp_who, sp_lock, and sp_familylock report on locks held by users, and show
processes that are blocked by other transactions.

Getting information about blocked processes
sp_who reports on system processes. If a user’s command is being blocked
by locks held by another task or worker process, the status column shows
“lock sleep” to indicate that this task or worker process is waiting for an
existing lock to be released.

The blk_spid or block_xloid column shows the process ID of the task or
transaction holding the lock or locks.

You can add a user name parameter to get sp_who information about a
particular Adaptive Server user. If you do not provide a user name, sp_who
reports on all processes in Adaptive Server.

Note The sample output for sp_lock and sp_familylock in this chapter
omits the class column to increase readability. The class column reports
either the names of cursors that hold locks or “Non Cursor Lock.”

Topic Page
Locking tools 77

Deadlocks and concurrency 81

Identifying tables where concurrency is a problem 88

Lock management reporting 89

Locking tools

78 Adaptive Server Enterprise

Viewing locks
To get a report on the locks currently being held on Adaptive Server, use
sp_lock:

sp_lock
fid spid loid locktype table_id page row dbname context
--- ---- ---- ---------------- ---------- ----- --- -------- ----------------
 0 15 30 Ex_intent 208003772 0 0 sales Fam dur
 0 15 30 Ex_page 208003772 2400 0 sales Fam dur, Ind pg
 0 15 30 Ex_page 208003772 2404 0 sales Fam dur, Ind pg
 0 15 30 Ex_page-blk 208003772 946 0 sales Fam dur
 0 30 60 Ex_intent 208003772 0 0 sales Fam dur
 0 30 60 Ex_page 208003772 997 0 sales Fam dur
 0 30 60 Ex_page 208003772 2405 0 sales Fam dur, Ind pg
 0 30 60 Ex_page 208003772 2406 0 sales Fam dur, Ind pg
 0 35 70 Sh_intent 16003088 0 0 sales Fam dur
 0 35 70 Sh_page 16003088 1096 0 sales Fam dur, Inf key
 0 35 70 Sh_page 16003088 3102 0 sales Fam dur, Range
 0 35 70 Sh_page 16003088 3113 0 sales Fam dur, Range
 0 35 70 Sh_page 16003088 3365 0 sales Fam dur, Range
 0 35 70 Sh_page 16003088 3604 0 sales Fam dur, Range
 0 49 98 Sh_intent 464004684 0 0 master Fam dur
 0 50 100 Ex_intent 176003658 0 0 stock Fam dur
 0 50 100 Ex_row 176003658 36773 8 stock Fam dur
 0 50 100 Ex_intent 208003772 0 0 stock Fam dur
 0 50 100 Ex_row 208003772 70483 1 stock Fam dur
 0 50 100 Ex_row 208003772 70483 2 stock Fam dur
 0 50 100 Ex_row 208003772 70483 3 stock Fam dur
 0 50 100 Ex_row 208003772 70483 5 stock Fam dur
 0 50 100 Ex_row 208003772 70483 8 stock Fam dur
 0 50 100 Ex_row 208003772 70483 9 stock Fam dur
 32 13 64 Sh_page 240003886 17264 0 stock
 32 16 64 Sh_page 240003886 4376 0 stock
 32 17 64 Sh_page 240003886 7207 0 stock
 32 18 64 Sh_page 240003886 12766 0 stock
 32 18 64 Sh_page 240003886 12767 0 stock
 32 18 64 Sh_page 240003886 12808 0 stock
 32 19 64 Sh_page 240003886 22367 0 stock
 32 32 64 Sh_intent 16003088 0 0 stock Fam dur
 32 32 64 Sh_intent 48003202 0 0 stock Fam dur
 32 32 64 Sh_intent 80003316 0 0 stock Fam dur
 32 32 64 Sh_intent 112003430 0 0 stock Fam dur
 32 32 64 Sh_intent 176003658 0 0 stock Fam dur
 32 32 64 Sh_intent 208003772 0 0 stock Fam dur
 32 32 64 Sh_intent 240003886 0 0 stock Fam dur

CHAPTER 5 Locking Reports

Performance and Tuning: Locking 79

This example shows the lock status of serial processes and two parallel
processes:

• spid 15 hold an exclusive intent lock on a table, one data page lock, and
two index page locks. A “blk” suffix indicates that this process is blocking
another process that needs to acquire a lock; spid 15 is blocking another
process. As soon as the blocking process completes, the other processes
move forward.

• spid 30 holds an exclusive intent lock on a table, one lock on a data page,
and two locks on index pages.

• spid 35 is performing a range query at isolation level 3. It holds range locks
on several pages and an infinity key lock.

• spid 49 is the task that ran sp_lock; it holds a shared intent lock on the
spt_values table in master while it runs.

• spid 50 holds intent locks on two tables, and several row locks.

• fid 32 shows several spids holding locks: the parent process (spid 32) holds
shared intent locks on 7 tables, while the worker processes hold shared
page locks on one of the tables.

The lock type column indicates not only whether the lock is a shared lock (“Sh”
prefix), an exclusive lock (“Ex” prefix), or an “Update” lock, but also whether
it is held on a table (“table” or “intent”) or on a “page” or “row.”

A “demand” suffix indicates that the process will acquire an exclusive lock as
soon as all current shared locks are released.

See the System Administration Guide for more information on demand locks.

The context column consists of one or more of the following values:

• “Fam dur” means that the task will hold the lock until the query completes,
that is, for the duration of the family of worker processes. Shared intent
locks are an example of Fam dur locks.

For a parallel query, the coordinating process always acquires a shared
intent table lock that is held for the duration of the parallel query. If the
parallel query is part of a transaction, and earlier statements in the
transaction performed data modifications, the coordinating process holds
family duration locks on all of the changed data pages.

Worker processes can hold family duration locks when the query operates
at isolation level 3.

• “Ind pg” indicates locks on index pages (allpages-locked tables only).

Locking tools

80 Adaptive Server Enterprise

• “Inf key” indicates an infinity key lock, used on data-only-locked tables
for some range queries at transaction isolation level 3.

• “Range” indicates a range lock, used for some range queries at transaction
isolation level 3.

To see lock information about a particular login, give the spid for the process:

sp_lock 30

fid spid loid locktype table_id page row dbname context
--- ---- ---- ---------------- ---------- ----- --- -------- ----------------
 0 30 60 Ex_intent 208003772 0 0 sales Fam dur
 0 30 60 Ex_page 208003772 997 0 sales Fam dur
 0 30 60 Ex_page 208003772 2405 0 sales Fam dur, Ind pg
 0 30 60 Ex_page 208003772 2406 0 sales Fam dur, Ind pg

If the spid you specify is also the fid for a family of processes, sp_who prints
information for all of the processes.

You can also request information about locks on two spids:

sp_lock 30, 15
fid spid loid locktype table_id page row dbname context
--- ---- ---- ---------------- ---------- ----- --- -------- ----------------
 0 15 30 Ex_intent 208003772 0 0 sales Fam dur
 0 15 30 Ex_page 208003772 2400 0 sales Fam dur, Ind pg
 0 15 30 Ex_page 208003772 2404 0 sales Fam dur, Ind pg
 0 15 30 Ex_page-blk 208003772 946 0 sales Fam dur
 0 30 60 Ex_intent 208003772 0 0 sales Fam dur
 0 30 60 Ex_page 208003772 997 0 sales Fam dur
 0 30 60 Ex_page 208003772 2405 0 sales Fam dur, Ind pg
 0 30 60 Ex_page 208003772 2406 0 sales Fam dur, Ind pg

Viewing locks
sp_familylock displays the locks held by a family. This examples shows that the
coordinating process (fid 51, spid 51) holds a shared intent lock on each of four
tables and a worker process holds a shared page lock:

sp_familylock 51
fid spid loid locktype table_id page row dbname context
--- ---- ---- ---------------- ---------- ----- --- -------- ----------------
 51 23 102 Sh_page 208003772 945 0 sales
 51 51 102 Sh_intent 16003088 0 0 sales Fam dur

CHAPTER 5 Locking Reports

Performance and Tuning: Locking 81

 51 51 102 Sh_intent 48003202 0 0 sales Fam dur
 51 51 102 Sh_intent 176003658 0 0 sales Fam dur
 51 51 102 Sh_intent 208003772 0 0 sales Fam dur

You can also specify two IDs for sp_familylock.

Intrafamily blocking during network buffer merges
When many worker processes are returning query results, you may see
blocking between worker processes. This example shows five worker
processes blocking on the sixth worker process:

sp_who 11
fid spid status loginame origname hostname blk dbname cmd
--- ---- ---------- -------- -------- -------- --- ------ --------------
 11 11 sleeping diana diana olympus 0 sales SELECT
 11 16 lock sleep diana diana olympus 18 sales WORKER PROCESS
 11 17 lock sleep diana diana olympus 18 sales WORKER PROCESS
 11 18 send sleep diana diana olympus 0 sales WORKER PROCESS
 11 19 lock sleep diana diana olympus 18 sales WORKER PROCESS
 11 20 lock sleep diana diana olympus 18 sales WORKER PROCESS
 11 21 lock sleep diana diana olympus 18 sales WORKER PROCESS

Each worker process acquires an exclusive address lock on the network buffer
while writing results to it. When the buffer is full, it is sent to the client, and the
lock is held until the network write completes.

Deadlocks and concurrency
Simply stated, a deadlock occurs when two user processes each have a lock on
a separate data page, index page, or table and each wants to acquire a lock on
same page or table locked by the other process. When this happens, the first
process is waiting for the second release the lock, but the second process will
not release it until the lock on the first process’s object is released.

Deadlocks and concurrency

82 Adaptive Server Enterprise

Server-side versus application-side deadlocks
When tasks deadlock in Adaptive Server, a deadlock detection mechanism
rolls back one of the transactions, and sends messages to the user and to the
Adaptive Server error log. It is possible to induce application-side deadlock
situations in which a client opens multiple connections, and these client
connections wait for locks held by the other connection of the same
application.

These are not true server-side deadlocks and cannot be detected by Adaptive
Server deadlock detection mechanisms.

Application deadlock example

Some developers simulate cursors by using two or more connections from DB-
Library™. One connection performs a select and the other connection
performs updates or deletes on the same tables. This can create application
deadlocks. For example:

• Connection A holds a shared lock on a page. As long as there are rows
pending from Adaptive Server, a shared lock is kept on the current page.

• Connection B requests an exclusive lock on the same pages and then waits.

• The application waits for Connection B to succeed before invoking the
logic needed to remove the shared lock. But this never happens.

Since Connection A never requests a lock that is held by Connection B, this is
not a server-side deadlock.

Server task deadlocks
 Below is an example of a deadlock between two processes.

CHAPTER 5 Locking Reports

Performance and Tuning: Locking 83

If transactions T19 and T20 execute simultaneously, and both transactions
acquire exclusive locks with their initial update statements, they deadlock,
waiting for each other to release their locks, which will not happen.

Adaptive Server checks for deadlocks and chooses the user whose transaction
has accumulated the least amount of CPU time as the victim.

Adaptive Server rolls back that user’s transaction, notifies the application
program of this action with message number 1205, and allows the other process
to move forward.

The example above shows two data modification statements that deadlock;
deadlocks can also occur between a process holding and needing shared locks,
and one holding and needing exclusive locks.

In a multiuser situation, each application program should check every
transaction that modifies data for message 1205 if there is any chance of
deadlocking. It indicates that the user transaction was selected as the victim of
a deadlock and rolled back. The application program must restart that
transaction.

T19 Event sequence T20
begin transaction

update savings
set balance = balance - 250
where acct_number = 25

update checking
set balance = balance + 250
where acct_number = 45

commit transaction

T19 and T20 start.

T19 gets exclusive lock
on savings while T20
gets exclusive lock on
checking.

T19 waits for T20 to
release its lock while
T20 waits for T19 to
release its lock;
deadlock occurs.

begin transaction

update checking
set balance = balance - 75
where acct_number = 45

update savings
set balance = balance + 75
where acct_number = 25

commit transaction

Deadlocks and concurrency

84 Adaptive Server Enterprise

Deadlocks and parallel queries
Worker processes can acquire only shared locks, but they can still be involved
in deadlocks with processes that acquire exclusive locks. The locks they hold
meet one or more of these conditions:

• A coordinating process holds a table lock as part of a parallel query.

The coordinating process could hold exclusive locks on other tables as part
of a previous query in a transaction.

• A parallel query is running at transaction isolation level 3 or using holdlock
and holds locks.

• A parallel query is joining two or more tables while another process is
performing a sequence of updates to the same tables within a transaction.

A single worker process can be involved in a deadlock such as those between
two serial processes. For example, a worker process that is performing a join
between two tables can deadlock with a serial process that is updating the same
two tables.

In some cases, deadlocks between serial processes and families involve a level
of indirection.

For example, if a task holds an exclusive lock on tableA and needs a lock on
tableB, but a worker process holds a family-duration lock on tableB, the task
must wait until the transaction that the worker process is involved in completes.

If another worker process in the same family needs a lock on tableA, the result
is a deadlock. Figure 5-1 illustrates the following deadlock scenario:

• The family identified by fid 8 is doing a parallel query that involves a join
of stock_tbl and sales_tbl, at transaction level 3.

• The serial task identified by spid 17 (T17) is performing inserts to stock_tbl
and sales_tbl in a transaction.

These are the steps that lead to the deadlock:

• W8 9, a worker process with a fid of 8 and a spid of 9, holds a shared lock
on page 10862 of stock_tbl.

• T17 holds an exclusive lock on page 634 of sales_tbl. T17 needs an
exclusive lock on page 10862, which it cannot acquire until W8 9 releases
its shared lock.

• The worker process W8 10 needs a shared lock on page 634, which it
cannot acquire until T17 releases its exclusive lock.

CHAPTER 5 Locking Reports

Performance and Tuning: Locking 85

Figure 5-1: A deadlock involving a family of worker processes

Printing deadlock information to the error log
Server-side deadlocks are detected and reported to the application by Adaptive
Server and in the server’s error log. The error message sent to the application
is error 1205.

The message sent to the error log, by default, merely identifies that a deadlock
occurred. The numbering in the message indicates the number of deadlocks
since the last boot of the server.

03:00000:00029:1999/03/15 13:16:38.19 server Deadlock Id 11 detected

In this output, fid 0, spid 29 started the deadlock detection check, so its fid and
spid values are used as the second and third values in the deadlock message.
(The first value, 03, is the engine number.)

To get more information about the tasks that deadlock, set the print deadlock
information configuration parameter to 1. This setting sends more detailed
deadlock messages to the log and to the terminal session where the server
started.

However, setting print deadlock information to 1 can degrade Adaptive Server
performance. For this reason, you should use it only when you are trying to
determine the cause of deadlocks.

Page 10862

Page 634

stock_tbl

sales_tbl

W8 9

W8 10

T1 7

Shared
intent
lock

Exclusive
page
lock

Shared
page
lock

Worker
process

Legend: Lock held by

Needs lock

Worker
process(level 3)

Deadlocks and concurrency

86 Adaptive Server Enterprise

The deadlock messages contain detailed information, including:

• The family and server-process IDs of the tasks involved

• The commands and tables involved in deadlocks; if a stored procedure was
involved, the procedure name is shown

• The type of locks each task held, and the type of lock each task was trying
to acquire

• The server login IDs (suid values)

In the following report, spid 29 is deadlocked with a parallel task, fid 94, spid
38. The deadlock involves exclusive versus shared lock requests on the authors
table. spid 29 is chosen as the deadlock victim:

Deadlock Id 11: detected. 1 deadlock chain(s) involved.

Deadlock Id 11: Process (Familyid 94, 38) (suid 62) was executing a SELECT
command at line 1.
Deadlock Id 11: Process (Familyid 29, 29) (suid 56) was executing a INSERT
command at line 1.
SQL Text: insert authors (au_id, au_fname, au_lname) values (’A999999816’,
’Bill’, ’Dewart’)

Deadlock Id 11: Process (Familyid 0, Spid 29) was waiting for a ’exclusive page’
lock on page 1155 of the ’authors’ table in database 8 but process (Familyid
94, Spid 38) already held a ’shared page’ lock on it.
Deadlock Id 11: Process (Familyid 94, Spid 38) was waiting for a ’shared page’
lock on page 2336 of the ’authors’ table in database 8 but process (Familyid
29, Spid 29) already held a ’exclusive page’ lock on it.
Deadlock Id 11: Process (Familyid 0, 29) was chosen as the victim. End of
deadlock information.

Avoiding deadlocks
It is possible to encounter deadlocks when many long-running transactions are
executed at the same time in the same database. Deadlocks become more
common as the lock contention increases between those transactions, which
decreases concurrency.

Methods for reducing lock contention, such as changing the locking scheme,
avoiding table locks, and not holding shared locks, are described in Chapter 3,
“Locking Configuration and Tuning.”

CHAPTER 5 Locking Reports

Performance and Tuning: Locking 87

Acquire locks on objects in the same order

Well-designed applications can minimize deadlocks by always acquiring locks
in the same order. Updates to multiple tables should always be performed in the
same order.

For example, the transactions described in Figure 5-1 could have avoided their
deadlock by updating either the savings or checking table first in both
transactions. That way, one transaction gets the exclusive lock first and
proceeds while the other transaction waits to receive its exclusive lock on the
same table when the first transaction ends.

In applications with large numbers of tables and transactions that update
several tables, establish a locking order that can be shared by all application
developers.

Delaying deadlock checking

Adaptive Server performs deadlock checking after a minimum period of time
for any process waiting for a lock to be released (sleeping). This deadlock
checking is time-consuming overhead for applications that wait without a
deadlock.

If your applications deadlock infrequently, Adaptive Server can delay deadlock
checking and reduce the overhead cost. You can specify the minimum amount
of time (in milliseconds) that a process waits before it initiates a deadlock
check using the configuration parameter deadlock checking period.

Valid values are 0–2147483. The default value is 500. deadlock checking period
is a dynamic configuration value, so any change to it takes immediate effect.

If you set the value to 0, Adaptive Server initiates deadlock checking when the
process begins to wait for a lock. If you set the value to 600, Adaptive Server
initiates a deadlock check for the waiting process after at least 600 ms. For
example:

sp_configure "deadlock checking period", 600

Setting deadlock checking period to a higher value produces longer delays
before deadlocks are detected. However, since Adaptive Server grants most
lock requests before this time elapses, the deadlock checking overhead is
avoided for those lock requests.

Adaptive Server performs deadlock checking for all processes at fixed
intervals, determined by deadlock checking period. If Adaptive Server performs
a deadlock check while a process’s deadlock checking is delayed, the process
waits until the next interval.

Identifying tables where concurrency is a problem

88 Adaptive Server Enterprise

Therefore, a process may wait from the number of milliseconds set by deadlock
checking period to almost twice that value before deadlock checking is
performed. sp_sysmon can help you tune deadlock checking behavior.

See “Deadlock detection” on page 79 in the Performance and Tuning:
Monitoring and Analyzing.

Identifying tables where concurrency is a problem
sp_object_stats prints table-level information about lock contention. You can
use it to:

• Report on all tables that have the highest contention level

• Report contention on tables in a single database

• Report contention on individual tables

The syntax is:

sp_object_stats interval [, top_n [, dbname [, objname [, rpt_option
]]]]

To measure lock contention on all tables in all databases, specify only the
interval. This example monitors lock contention for 20 minutes, and reports
statistics on the ten tables with the highest levels of contention:

sp_object_stats "00:20:00"

Additional arguments to sp_object_stats are as follows:

• top_n – allows you to specify the number of tables to be included in the
report. Remember, the default is 10. To report on the top 20 high-
contention tables, for example, use:

sp_object_stats "00:20:00", 20

• dbname – prints statistics for the specified database.

• objname – measures contention for the specified table.

• rpt_option – specifies the report type:

• rpt_locks reports grants, waits, deadlocks, and wait times for the tables
with the highest contention. rpt_locks is the default.

• rpt_objlist reports only the names of the objects with the highest level
of lock activity.

CHAPTER 5 Locking Reports

Performance and Tuning: Locking 89

Here is sample output for titles, which uses datapages locking:

Object Name: pubtune..titles (dbid=7, objid=208003772,lockscheme=Datapages)

 Page Locks SH_PAGE UP_PAGE EX_PAGE
 ---------- ---------- ---------- ----------
 Grants: 94488 4052 4828
 Waits: 532 500 776
 Deadlocks: 4 0 24
 Wait-time: 20603764 ms 14265708 ms 2831556 ms
 Contention: 0.56% 10.98% 13.79%

 *** Consider altering pubtune..titles to Datarows locking.

Table 5-1 shows the meaning of the values.

Table 5-1: sp_object_stats output

sp_object_stats recommends changing the locking scheme when total
contention on a table is more than 15 percent, as follows:

• If the table uses allpages locking, it recommends changing to datapages
locking.

• If the table uses datapages locking, it recommends changing to datarows
locking.

Lock management reporting
Output from sp_sysmon gives statistics on locking and deadlocks discussed in
this chapter.

Use the statistics to determine whether the Adaptive Server system is
experiencing performance problems due to lock contention.

Output dow Value

Grants The number of times the lock was granted immediately.

Waits The number of times the task needing a lock had to wait.

Deadlocks The number of deadlocks that occurred.

Wait-times The total number of milliseconds that all tasks spent
waiting for a lock.

Contention The percentage of times that a task had to wait or
encountered a deadlock.

Lock management reporting

90 Adaptive Server Enterprise

For more information about sp_sysmon and lock statistics, see “Lock
management” on page 73 in the Performance and Tuning: Monitoring and
Analyzing.

Use Adaptive Server Monitor to pinpoint locking problems.

Performance and Tuning: Locking 91

C H A P T E R 6 Indexing for Performance

This chapter introduces the basic query analysis tools that can help you
choose appropriate indexes and discusses index selection criteria for point
queries, range queries, and joins.

How indexes affect performance
Carefully considered indexes, built on top of a good database design, are
the foundation of a high-performance Adaptive Server installation.
However, adding indexes without proper analysis can reduce the overall
performance of your system. Insert, update, and delete operations can take
longer when a large number of indexes need to be updated.

Analyze your application workload and create indexes as necessary to
improve the performance of the most critical processes.

The Adaptive Server query optimizer uses a probabilistic costing model.
It analyzes the costs of possible query plans and chooses the plan that has
the lowest estimated cost. Since much of the cost of executing a query
consists of disk I/O, creating the correct indexes for your applications
means that the optimizer can use indexes to:

• Avoid table scans when accessing data

Topic Page
How indexes affect performance 91

Symptoms of poor indexing 92

Detecting indexing problems 92

Fixing corrupted indexes 95

Index limits and requirements 98

Choosing indexes 98

Techniques for choosing indexes 109

Index and statistics maintenance 112

Additional indexing tips 113

Detecting indexing problems

92 Adaptive Server Enterprise

• Target specific data pages that contain specific values in a point query

• Establish upper and lower bounds for reading data in a range query

• Avoid data page access completely, when an index covers a query

• Use ordered data to avoid sorts or to favor merge joins over nested-
loop joins

In addition, you can create indexes to enforce the uniqueness of data and
to randomize the storage location of inserts.

Detecting indexing problems
Some of the major indicationsof insufficient or incorrect indexing include:

• A select statement takes too long.

• A join between two or more tables takes an extremely long time.

• Select operations perform well, but data modification processes
perform poorly.

• Point queries (for example, “where colvalue = 3”) perform well, but
range queries (for example, “where colvalue > 3 and colvalue < 30”)
perform poorly.

These underlying problems are described in the following sections.

Symptoms of poor indexing
A primary goal of improving performance with indexes is avoiding table
scans. In a table scan, every page of the table must be read from disk.

A query searching for a unique value in a table that has 600 data pages
requires 600 physical and logical reads. If an index points to the data value,
the same query can be satisfied with 2 or 3 reads, a performance
improvement of 200 to 300 percent.

On a system with a 12-ms. disk, this is a difference of several seconds
compared to less than a second. Heavy disk I/O by a single query has a
negative impact on overall throughput.

CHAPTER 6 Indexing for Performance

Performance and Tuning: Locking 93

Lack of indexes is causing table scans

If select operations and joins take too long, it probably indicates that either
an appropriate index does not exist or, it exists, but is not being used by the
optimizer.

showplan output reports whether the table is being accessed via a table
scan or index. If you think that an index should be used, but showplan
reports a table scan, dbcc traceon(302) output can help you determine the
reason. It displays the costing computations for all optimizing query
clauses.

If there is no clause is included in dbcc traceon(302) output, there may be
problems with the way the clause is written. If a clause that you think
should limit the scan is included in dbcc traceon(302) output, look
carefully at its costing, and that of the chosen plan reported with dbcc
traceon(310).

Index is not selective enough

An index is selective if it helps the optimizer find a particular row or a set
of rows. An index on a unique identifier such as a Social Security Number
is highly selective, since it lets the optimizer pinpoint a single row. An
index on a nonunique entry such as sex (M, F) is not very selective, and
the optimizer would use such an index only in very special cases.

Index does not support range queries

Generally, clustered indexes and covering indexes provide good
performance for range queries and for search arguments (SARG) that
match many rows. Range queries that reference the keys of noncovering
indexes use the index for ranges that return a limited number of rows.

As the number of rows the query returns increases, however, using a
nonclustered index or a clustered index on a data-only-locked table can
cost more than a table scan.

Too many indexes slow data modification

If data modification performance is poor, you may have too many
indexes.While indexes favor select operations, they slow down data
modifications.

Detecting indexing problems

94 Adaptive Server Enterprise

Every insert or delete operation affects the leaf level, (and sometimes
higher levels) of a clustered index on a data-only-locked table, and each
nonclustered index, for any locking scheme.

Updates to clustered index keys on allpages-locked tables can move the
rows to different pages, requiring an update of every nonclustered index.
Analyze the requirements for each index and try to eliminate those that are
unnecessary or rarely used.

Index entries are too large

Try to keep index entries as small as possible. You can create indexes with
keys up to 600 bytes, but those indexes can store very few rows per index
page, which increases the amount of disk I/O needed during queries. The
index has more levels, and each level has more pages.

The following example uses values reported by sp_estspace to
demonstrate how the number of index pages and leaf levels required
increases with key size. It creates nonclustered indexes using 10-, 20, and
40-character keys.

create table demotable (c10 char(10),
c20 char(20),
c40 char(40))

create index t10 on demotable(c10)
create index t20 on demotable(c20)
create index t40 on demotable(c40)
sp_estspace demotable, 500000

Table 6-1 shows the results.

Table 6-1: Effects of key size on index size and levels

The output shows that the indexes for the 10-column and 20-column keys
each have three levels, while the 40-column key requires a fourth level.

The number of pages required is more than 50 percent higher at each level.

Exception for wide data rows and wide index rows

Indexes with wide rows may be useful when:

Index, key size Leaf-level pages Index levels

t10, 10 bytes 4311 3

t20, 20 bytes 6946 3

t40, 40 bytes 12501 4

CHAPTER 6 Indexing for Performance

Performance and Tuning: Locking 95

• The table has very wide rows, resulting in very few rows per data
page.

• The set of queries run on the table provides logical choices for a
covering index.

• Queries return a sufficiently large number of rows.

For example, if a table has very long rows, and only one row per page, a
query that needs to return 100 rows needs to access 100 data pages. An
index that covers this query, even with long index rows, can improve
performance.

For example, if the index rows were 240 bytes, the index would store 8
rows per page, and the query would need to access only 12 index pages.

Fixing corrupted indexes
If the index on one of your system tables has been corrupted, you can use
the sp_fixindex system procedure to repair the index. For syntax
information, see the entry for sp_fixindex in “System Procedures” in the
Adaptive Server Reference Manual.

Repairing the system table index
Repairing a corrupted system table index requires the following steps:

❖ Repairing the system table index with sp_fixindex

1 Get the object_name, object_ID, and index_ID of the corrupted index.
If you only have a page number and you need to find the object_name,
see the Adaptive Server Troubleshooting and Error Messages Guide
for instructions.

2 If the corrupted index is on a system table in the master database, put
Adaptive Server in single-user mode. See the Adaptive Server
Troubleshooting and Error Messages Guide for instructions.

3 If the corrupted index is on a system table in a user database, put the
database in single-user mode and reconfigure to allow updates to
system tables:

1> use master

Fixing corrupted indexes

96 Adaptive Server Enterprise

2> go
1> sp_dboption database_name, "single user", true
2> go
1> sp_configure "allow updates", 1
2> go

4 Issue the sp_fixindex command:

1> use database_name
2> go

1> checkpoint
2> go

1> sp_fixindex database_name, object_name,
index_ID
2> go

Note You must possess sa_role permissions to run sp_fixindex.

5 Run dbcc checktable to verify that the corrupted index is now fixed.

6 Disallow updates to system tables:

1> use master
2> go

1> sp_configure "allow updates", 0
2> go

7 Turn off single-user mode:

1> sp_dboption database_name, "single user",
false
2> go

1> use database_name
2> go

1> checkpoint
2> go

Repairing a nonclustered index

Running sp_fixindex to repair a nonclustered index on sysobjects requires
several additional steps.

CHAPTER 6 Indexing for Performance

Performance and Tuning: Locking 97

❖ Repairing a nonclustered index on sysobjects

1 Perform steps 1-3, as described in “Repairing the system table index
with sp_fixindex,” above.

2 Issue the following Transact-SQL query:

1> use database_name
2> go

1> checkpoint
2> go

1> select sysstat from sysobjects
2> where id = 1
3> go

3 Save the original sysstat value.

4 Change the sysstat column to the value required by sp_fixindex:

1> update sysobjects
2> set sysstat = sysstat | 4096
3> where id = 1
4> go

5 Run sp_fixindex:

1> sp_fixindex database_name, sysobjects, 2
2> go

6 Restore the original sysstat value:

1> update sysobjects
2> set sysstat = sysstat_ORIGINAL
3> where id = object_ID
4> go

7 Run dbcc checktable to verify that the corrupted index is now fixed.

8 Disallow updates to system tables:

1> sp_configure "allow updates", 0
2> go

9 Turn off single-user mode:

1> sp_dboption database_name, "single user",
false
2> go

1> use database_name
2> go

Index limits and requirements

98 Adaptive Server Enterprise

1> checkpoint
2> go

Index limits and requirements
The following limits apply to indexes in Adaptive Server:

• You can create only one clustered index per table, since the data for a
clustered index is ordered by index key.

• You can create a maximum of 249 nonclustered indexes per table.

• A key can be made up of as many as 31 columns. The maximum
number of bytes per index key is 600.

• When you create a clustered index, Adaptive Server requires empty
free space to copy the rows in the table and allocate space for the
clustered index pages. It also requires space to re-create any
nonclustered indexes on the table.

The amount of space required can vary, depending on how full the
table’s pages are when you begin and what space management
properties are applied to the table and index pages.

See “Determining the space available for maintenance activities” on
page 360 for more information.

• The referential integrity constraints unique and primary key create
unique indexes to enforce their restrictions on the keys. By default,
unique constraints create nonclustered indexes and primary key
constraints create clustered indexes.

Choosing indexes
When you are working with index selection you may want to ask these
questions:

• What indexes are associated currently with a given table?

• What are the most important processes that make use of the table?

CHAPTER 6 Indexing for Performance

Performance and Tuning: Locking 99

• What is the ratio of select operations to data modifications performed
on the table?

• Has a clustered index been created for the table?

• Can the clustered index be replaced by a nonclustered index?

• Do any of the indexes cover one or more of the critical queries?

• Is a composite index required to enforce the uniqueness of a
compound primary key?

• What indexes can be defined as unique?

• What are the major sorting requirements?

• Do some queries use descending ordering of result sets?

• Do the indexes support joins and referential integrity checks?

• Does indexing affect update types (direct versus deferred)?

• What indexes are needed for cursor positioning?

• If dirty reads are required, are there unique indexes to support the
scan?

• Should IDENTITY columns be added to tables and indexes to
generate unique indexes? Unique indexes are required for updatable
cursors and dirty reads.

When deciding how many indexes to use, consider:

• Space constraints

• Access paths to table

• Percentage of data modifications versus select operations

• Performance requirements of reports versus OLTP

• Performance impacts of index changes

• How often you can use update statistics

Index keys and logical keys
Index keys need to be differentiated from logical keys. Logical keys are
part of the database design, defining the relationships between tables:
primary keys, foreign keys, and common keys.

Choosing indexes

100 Adaptive Server Enterprise

When you optimize your queries by creating indexes, the logical keys may
or may not be used as the physical keys for creating indexes. You can
create indexes on columns that are not logical keys, and you may have
logical keys that are not used as index keys.

Choose index keys for performance reasons. Create indexes on columns
that support the joins, search arguments, and ordering requirements in
queries.

A common error is to create the clustered index for a table on the primary
key, even though it is never used for range queries or ordering result sets.

Guidelines for clustered indexes
These are general guidelines for clustered indexes:

• Most allpages-locked tables should have clustered indexes or use
partitions to reduce contention on the last page of heaps.

In a high-transaction environment, the locking on the last page
severely limits throughput.

• If your environment requires a lot of inserts, do not place the clustered
index key on a steadily increasing value such as an IDENTITY
column.

Choose a key that places inserts on random pages to minimize lock
contention while remaining useful in many queries. Often, the
primary key does not meet this condition.

This problem is less severe on data-only-locked tables, but is a major
source of lock contention on allpages-locked tables.

• Clustered indexes provide very good performance when the key
matches the search argument in range queries, such as:

where colvalue >= 5 and colvalue < 10

In allpages-locked tables, rows are maintained in key order and pages
are linked in order, providing very fast performance for queries using
a clustered index.

In data-only-locked tables, rows are in key order after the index is
created, but the clustering can decline over time.

• Other good choices for clustered index keys are columns used in order
by clauses and in joins.

CHAPTER 6 Indexing for Performance

Performance and Tuning: Locking 101

• If possible, do not include frequently updated columns as keys in
clustered indexes on allpages-locked tables.

When the keys are updated, the rows must be moved from the current
location to a new page. Also, if the index is clustered, but not unique,
updates are done in deferred mode.

Choosing clustered indexes
Choose indexes based on the kinds of where clauses or joins you perform.
Choices for clustered indexes are:

• The primary key, if it is used for where clauses and if it randomizes
inserts

• Columns that are accessed by range, such as:

col1 between 100 and 200
col12 > 62 and < 70

• Columns used by order by

• Columns that are not frequently changed

• Columns used in joins

If there are several possible choices, choose the most commonly needed
physical order as a first choice.

As a second choice, look for range queries. During performance testing,
check for “hot spots” due to lock contention.

Candidates for nonclustered indexes
When choosing columns for nonclustered indexes, consider all the uses
that were not satisfied by your clustered index choice. In addition, look at
columns that can provide performance gains through index covering.

On data-only-locked tables, clustered indexes can perform index covering,
since they have a leaf level above the data level.

On allpages-locked tables, noncovered range queries work well for
clustered indexes, but may or may not be supported by nonclustered
indexes, depending on the size of the range.

Choosing indexes

102 Adaptive Server Enterprise

Consider using composite indexes to cover critical queries and to support
less frequent queries:

• The most critical queries should be able to perform point queries and
matching scans.

• Other queries should be able to perform nonmatching scans using the
index, which avoids table scans.

Index Selection
Index selection allows you to determine which indexes are actively being
used and those that are rarely used.

This section assumes that the monitoring tables feature is already set up,
see Performance and Tuning: Monitoring and Analyzing for Performance,
and includes the following steps:

• Add a 'loopback' server definition.

• Run installmontables to install the monitoring tables.

• Grant mon_role to all users who need to perform monitoring.

• Set the monitoring configuration parameters. For more information,
see Performance and Tuning: Monitoring and Analyzing for
Performance.

You can use sp_monitorconfig to track whether number of open objects
or number of open indexes are sufficiently configured.

Index selection-usage uses the following five columns of the
monitoring access table, monOpenObjectActivity:

• IndexID – unique identifier for the index.

• OptSelectCount – reports the number of times that the corresponding
object (such as a table or index) was used as the access method by the
optimizer.

• LastOptSelectDate – reports the last time OptSelectCount was
incremented

• UsedCount – reports the number of times that the corresponding
object (such as a table or index) was used as an access method when
a query executed.

• LastUsedDate – reports the last time UsedCount was incremented.

CHAPTER 6 Indexing for Performance

Performance and Tuning: Locking 103

If a plan has already been compiled and cached, OptSelectCount is not
incremented each time the plan is executed. However, UsedCount is
incremented when a plan is executed. If no exec is on, OptSelectCount
value is 3incremented, but the UsedCount value does not.

Monitoring data is nonpersistent. That is, when you restart the server, the
monitoring data is reset. Monitoring data is reported only for active
objects. For example, monitoring data does not exist for objects that have
not been opened since there are no active object descriptors for such
objects. For systems that are inadequately configured and have reused
object descriptors, monitoring data for these object descriptors is
reinitialized and the data for the previous object is lost. When the old
object is reopened, its monitoring data is reset.

Examples of using the index selection

The following example queries the monitoring tables for the last time all
indexes for a specific object were selected by the optimizer as well as the
last time they were actually used during execution, and reports the counts
in each case:

select DBID, ObjectID, IndexID, OptSelectCount, LastOptSelectDate, UsedCount,
LastUsedDate
from monOpenObjectActivity
where DBID = db_id("financials_db") and ObjectID = object_id(’expenses’)
order by UsedCount

This exmaple displays all indexes that are not currently used in an
application or server:

select DBID , ObjectID, IndexID , object_name(ObjectID, DBID)
from monOpenObjectActivity
where DBID = db_id("financials_db") and OptSelectCount = 0

This example displays all indexes that are not currently used in an
application, and also provides a sample output:

select DBID , ObjectID, IndexID , object_name(ObjectID, DBID)
from monOpenObjectActivity
where DBID = db_id("financials_db") and OptSelectCount = 0
ObjectName id IndexName OptCtLast OptSelectDate
UsedCount LastUsedDate
---------- --- --------------------- ------------ -----------------
----- --------------------------
customer 2 ci_nkey_ckey 3 Sep 27 2002 4:05PM
20 Sep 27 2002 4:05PM
customer 0 customer_x 3 Sep 27 2002 4:08PM

Choosing indexes

104 Adaptive Server Enterprise

5 Sep 27 2002 4:08PM
customer 1 customer_x 1 Sep 27 2002 4:06PM
5 Sep 27 2002 4:07PM
customer 3 ci_ckey_nkey 1 Sep 27 2002 4:04PM
5 Sep 27 2002 4:05PM
customer 4 customer_nation 0 Jan 1 1900 12:00AM
0 Jan 1 1900 12:00AM

In this example, the customer_nation index has not been used, which
results in the date “Jan 1 1900 12:00AM”.

Other indexing guidelines
Here are some other considerations for choosing indexes:

• If an index key is unique, define it as unique so the optimizer knows
immediately that only one row matches a search argument or a join on
the key.

• If your database design uses referential integrity (the references
keyword or the foreign key...references keywords in the create table
statement), the referenced columns must have a unique index, or the
attempt to create the referential integrity constraint fails.

However, Adaptive Server does not automatically create an index on
the referencing column. If your application updates primary keys or
deletes rows from primary key tables, you may want to create an
index on the referencing column so that these lookups do not perform
a table scan.

• If your applications use cursors, see “Index use and requirements for
cursors” on page 335.

• If you are creating an index on a table where there will be a lot of
insert activity, use fillfactor to temporarily minimize page splits and
improve concurrency and minimize deadlocking.

• If you are creating an index on a read-only table, use a fillfactor of 100
to make the table or index as compact as possible.

• Keep the size of the key as small as possible. Your index trees remain
flatter, accelerating tree traversals.

• Use small datatypes whenever it fits your design.

• Numerics compare slightly faster than strings internally.

CHAPTER 6 Indexing for Performance

Performance and Tuning: Locking 105

• Variable-length character and binary types require more row
overhead than fixed-length types, so if there is little difference
between the average length of a column and the defined length,
use fixed length. Character and binary types that accept null
values are variable-length by definition.

• Whenever possible, use fixed-length, non-null types for short
columns that will be used as index keys.

• Be sure that the datatypes of the join columns in different tables are
compatible. If Adaptive Server has to convert a datatype on one side
of a join, it may not use an index for that table.

See“Datatype mismatches and query optimization” on page 24 in
Performance and Tuning: Optimizer for more information.

Choosing nonclustered indexes
When you consider adding nonclustered indexes, you must weigh the
improvement in retrieval time against the increase in data modification
time. In addition, you need to consider these questions:

• How much space will the indexes use?

• How volatile is the candidate column?

• How selective are the index keys? Would a scan be better?

• Are there a lot of duplicate values?

Because of data modification overhead, add nonclustered indexes only
when your testing shows that they are helpful.

Performance price for data modification

Each nonclustered index needs to be updated, for all locking schemes:

• For each insert into the table

• For each delete from the table

An update to the table that changes part of an index’s key requires updating
just that index.

For tables that use allpages locking, all indexes need to be updated:

Choosing indexes

106 Adaptive Server Enterprise

• For any update that changes the location of a row by updating a
clustered index key so that the row moves to another page

• For every row affected by a data page split

For allpages-locked tables, exclusive locks are held on affected index
pages for the duration of the transaction, increasing lock contention as well
as processing overhead.

Some applications experience unacceptable performance impacts with
only three or four indexes on tables that experience heavy data
modification. Other applications can perform well with many more tables.

Choosing composite indexes
If your analysis shows that more than one column is a good candidate for
a clustered index key, you may be able to provide clustered-like access
with a composite index that covers a particular query or set of queries.
These include:

• Range queries.

• Vector (grouped) aggregates, if both the grouped and grouping
columns are included. Any search arguments must also be included in
the index.

• Queries that return a high number of duplicates.

• Queries that include order by.

• Queries that table scan, but use a small subset of the columns on the
table.

Tables that are read-only or read-mostly can be heavily indexed, as long as
your database has enough space available. If there is little update activity
and high select activity, you should provide indexes for all of your frequent
queries. Be sure to test the performance benefits of index covering.

Key order and performance in composite indexes
Covered queries can provide excellent response time for specific queries
when the leading columns are used.

With the composite nonclustered index on au_lname, au_fname, au_id, this
query runs very quickly:

CHAPTER 6 Indexing for Performance

Performance and Tuning: Locking 107

select au_id
 from authors
where au_fname = "Eliot" and au_lname = "Wilk"

This covered point query needs to read only the upper levels of the index
and a single page in the leaf-level row in the nonclustered index of a 5000-
row table.

This similar-looking query (using the same index) does not perform quite
as well. This query is still covered, but searches on au_id:

select au_fname, au_lname
 from authors
where au_id = "A1714224678"

Since this query does not include the leading column of the index, it has to
scan the entire leaf level of the index, about 95 reads.

Adding a column to the select list in the query above, which may seem like
a minor change, makes the performance even worse:

select au_fname, au_lname, phone
 from authors
where au_id = "A1714224678"

This query performs a table scan, reading 222 pages. In this case, the
performance is noticeably worse. For any search argument that is not the
leading column, Adaptive Server has only two possible access methods: a
table scan, or a covered index scan.

It does not scan the leaf level of the index for a non-leading search
argument and then access the data pages. A composite index can be used
only when it covers the query or when the first column appears in the
where clause.

For a query that includes the leading column of the composite index,
adding a column that is not included in the index adds only a single data
page read. This query must read the data page to find the phone number:

select au_id, phone
 from authors
where au_fname = "Eliot" and au_lname = "Wilk"

Table 6-2 shows the performance characteristics of different where clauses
with a nonclustered index on au_lname, au_fname, au_id and no other
indexes on the table.

Choosing indexes

108 Adaptive Server Enterprise

Table 6-2: Composite nonclustered index ordering and
performance

Choose the ordering of the composite index so that most queries form a
prefix subset.

Advantages and disadvantages of composite indexes
Composite indexes have these advantages:

• A composite index provides opportunities for index covering.

• If queries provide search arguments on each of the keys, the
composite index requires fewer I/Os than the same query using an
index on any single attribute.

• A composite index is a good way to enforce the uniqueness of
multiple attributes.

Good choices for composite indexes are:

• Lookup tables

• Columns that are frequently accessed together

• Columns used for vector aggregates

• Columns that make a frequently used subset from a table with very
wide rows

The disadvantages of composite indexes are:

• Composite indexes tend to have large entries. This means fewer
index entries per index page and more index pages to read.

• An update to any attribute of a composite index causes the index to be
modified. The columns you choose should not be those that are
updated often.

Columns in the where clause
Performance with the indexed
columns in the select list

Performance with other
columns in the select list

au_lname

or au_lname, au_fname

or au_lname, au_fname, au_id

Good; index used to descend tree; data
level is not accessed

Good; index used to descend tree;
data is accessed (one more page
read per row)

au_fname

or au_id

or au_fname, au_id

Moderate; index is scanned to return
values

Poor; index not used, table scan

CHAPTER 6 Indexing for Performance

Performance and Tuning: Locking 109

Poor choices are:

• Indexes that are nearly as wide as the table

• Composite indexes where only a minor key is used in the where clause

Techniques for choosing indexes
This section presents a study of two queries that must access a single table,
and the indexing choices for these two queries. The two queries are:

• A range query that returns a large number of rows

• A point query that returns only one or two rows

Choosing an index for a range query
Assume that you need to improve the performance of the following query:

select title
from titles
where price between $20.00 and $30.00

Some basic statistics on the table are:

• The table has 1,000,000 rows, and uses allpages locking.

• There are 10 rows per page; pages are 75 percent full, so the table has
approximately 135,000 pages.

• 190,000 (19%) of the titles are priced between $20 and $30.

With no index, the query would scan all 135,000 pages.

With a clustered index on price, the query would find the first $20 book
and begin reading sequentially until it gets to the last $30 book. With pages
about 75 percent full, the average number of rows per page is 7.5. To read
190,000 matching rows, the query would read approximately 25,300
pages, plus 3 or 4 index pages.

With a nonclustered index on price and random distribution of price values,
using the index to find the rows for this query requires reading about 19
percent of the leaf level of the index, about 1,500 pages.

Techniques for choosing indexes

110 Adaptive Server Enterprise

If the price values are randomly distributed, the number of data pages that
must be read is likely to be high, perhaps as many data pages as there are
qualifying rows, 190,000. Since a table scan requires only 135,000 pages,
you would not want to use this nonclustered.

Another choice is a nonclustered index on price, title. The query can
perform a matching index scan, using the index to find the first page with
a price of $20, and then scanning forward on the leaf level until it finds a
price of more than $30. This index requires about 35,700 leaf pages, so to
scan the matching leaf pages requires reading about 19 percent of the
pages of this index, or about 6,800 reads.

For this query, the covering nonclustered index on price, title is best.

Adding a point query with different indexing requirements
The index choice for the range query on price produced a clear
performance choice when all possibly useful indexes were considered.
Now, assume this query also needs to run against titles:

select price
from titles
where title = "Looking at Leeks"

You know that there are very few duplicate titles, so this query returns only
one or two rows.

Considering both this query and the previous query, Table 6-3 shows four
possible indexing strategies and estimate costs of using each index. The
estimates for the numbers of index and data pages were generated using a
fillfactor of 75 percent with sp_estspace:

sp_estspace titles, 1000000, 75

The values were rounded for easier comparison.

Table 6-3: Comparing index strategies for two queries

Possible index choice Index pages Range query on price Point query on title

1 Nonclustered on title
Clustered on price

36,800
650

Clustered index, about 26,600
pages (135,000 *.19)

With 16K I/O: 3,125 I/Os

Nonclustered index, 6 I/Os

2 Clustered on title
Nonclustered on price

3,770
6,076

Table scan, 135,000 pages

With 16K I/O: 17,500 I/Os

Clustered index, 6 I/Os

CHAPTER 6 Indexing for Performance

Performance and Tuning: Locking 111

Examining the figures in Table 6-3 shows that:

• For the range query on price, choice 4 is best; choices 1 and 3 are
acceptable with 16K I/O.

• For the point query on titles, indexing choices 1, 2, and 3 are excellent.

The best indexing strategy for a combination of these two queries is to use
two indexes:

• Choice 4, for range queries on price.

• Choice 2, for point queries on title, since the clustered index requires
very little space.

You may need additional information to help you determine which
indexing strategy to use to support multiple queries. Typical
considerations are:

• What is the frequency of each query? How many times per day or per
hour is the query run?

• What are the response time requirements? Is one of them especially
time critical?

• What are the response time requirements for updates? Does creating
more than one index slow updates?

• Is the range of values typical? Is a wider or narrower range of prices,
such as $20 to $50, often used? How do different ranges affect index
choice?

• Is there a large data cache? Are these queries critical enough to
provide a 35,000-page cache for the nonclustered composite indexes
in index choice 3 or 4? Binding this index to its own cache would
provide very fast performance.

• What other queries and what other search arguments are used? Is this
table frequently joined with other tables?

3 Nonclustered on title,
price

36,835 Nonmatching index scan,
about 35,700 pages

With 16K I/O: 4,500 I/Os

Nonclustered index,
5 I/Os

4 Nonclustered on price,
title

36,835 Matching index scan, about
6,800 pages (35,700 *.19)

With 16K I/O: 850 I/Os

Nonmatching index scan,
about 35,700 pages

With 16K I/O: 4,500 I/Os

Possible index choice Index pages Range query on price Point query on title

Index and statistics maintenance

112 Adaptive Server Enterprise

Index and statistics maintenance
To ensure that indexes evolve with your system:

• Monitor queries to determine if indexes are still appropriate for your
applications.

Periodically, check the query plans, as described in Chapter 5, “Using
set showplan,” in the Performance and Tuning: Monitoring and
Analyzing book and the I/O statistics for your most frequent user
queries. Pay special attention to noncovering indexes that support
range queries. They are most likely to switch to table scans if the data
distribution changes

• Drop and rebuild indexes that hurt performance.

• Keep index statistics up to date.

• Use space management properties to reduce page splits and to reduce
the frequency of maintenance operations.

Dropping indexes that hurt performance
Drop indexes that hurt performance. If an application performs data
modifications during the day and generates reports at night, you may want
to drop some indexes in the morning and re-create them at night.

Many system designers create numerous indexes that are rarely, if ever,
actually used by the query optimizer. Make sure that you base indexes on
the current transactions and processes that are being run, not on the
original database design.

Check query plans to determine whether your indexes are being used.

Foe more information on maintaining indexes see “Maintaining index and
column statistics” on page 350 and “Rebuilding indexes” on page 351.

Choosing space management properties for indexes
Space management properties can help reduce the frequency of index
maintenance. In particular, fillfactor can reduce the number of page splits
on leaf pages of nonclustered indexes and on the data pages of allpages-
locked tables with clustered indexes.

CHAPTER 6 Indexing for Performance

Performance and Tuning: Locking 113

See Chapter 9, “Setting Space Management Properties,” for more
information on choosing fillfactor values for indexes.

Additional indexing tips
Here are some additional suggestions that can lead to improved
performance when you are creating and using indexes:

• Modify the logical design to make use of an artificial column and a
lookup table for tables that require a large index entry.

• Reduce the size of an index entry for a frequently used index.

• Drop indexes during periods when frequent updates occur and rebuild
them before periods when frequent selects occur.

• If you do frequent index maintenance, configure your server to speed
up the sorting.

See “Configuring Adaptive Server to speed sorting” on page 348 for
information about configuration parameters that enable faster sorting.

Creating artificial columns
When indexes become too large, especially composite indexes, it is
beneficial to create an artificial column that is assigned to a row, with a
secondary lookup table that is used to translate between the internal ID and
the original columns.

This may increase response time for certain queries, but the overall
performance gain due to a more compact index and shorter data rows is
usually worth the effort.

Keeping index entries short and avoiding overhead
Avoid storing purely numeric IDs as character data. Use integer or
numeric IDs whenever possible to:

• Save storage space on the data pages

• Make index entries more compact

Additional indexing tips

114 Adaptive Server Enterprise

• Improve performance, since internal comparisons are faster

Index entries on varchar columns require more overhead than entries on
char columns. For short index keys, especially those with little variation in
length in the column data, use char for more compact index entries.

Dropping and rebuilding indexes
You might drop nonclustered indexes prior to a major set of inserts, and
then rebuild them afterwards. In that way, the inserts and bulk copies go
faster, since the nonclustered indexes do not have to be updated with every
insert.

For more information, see “Rebuilding indexes” on page 351.

Configure enough sort buffers
The sort buffers decides how many pages of data you can sort in each run.
That is the basis for the logrithmic function on calculating the number of
runs needed to finish the sort.

For example, if you have 500 buffers, then the number of runs is calculated
with "log (number of pages in table) with 500 as the log base".

Also note that the number of sort buffers is shared by threads in the parallel
sort, if you do not have enough sort buffers, the parallel sort may not work
as fast as it should.

Create the clustered index first
Do not create nonclustered indexes, then clustered indexes. When you
create the clustered index all previous nonclustered indexes are rebuilt.

Configure large buffer pools
To set up for larger O/Os, configure large buffers pools in a named cache
and bind the cache to the table.

CHAPTER 6 Indexing for Performance

Performance and Tuning: Locking 115

Asynchronous log service
Asynchronous log service, or ALS, enables great scalability in Adaptive
Server, providing higher throughput in logging subsystems for high-end
symmetric multiprocessor systems.

You cannot use ALS if you have fewer than 4 engines. If you try to enable
ALS with fewer than 4 online engines an error message appears.

Enabling ALS You can enable, disable, or configure ALS using the sp_dboption stored
procedure.

sp_dboption <db Name>, "async log service",
"true|false"

Issuing a checkpoint After issuing sp_dboption, you must issue a checkpoint in the database for
which you are setting the ALS option:

sp_dboption "mydb", "async log service", "true"
use mydb
checkpoint

Disabling ALS Before you disable ALS, make sure there are no active users in the
database. If there are, you receive an error message when you issue the
checkpoint:

sp_dboption "mydb", "async log service", "false"
use mydb
checkpoint

Error 3647: Cannot put database in single-user mode.
Wait until all users have logged out of the database
and issue a CHECKPOINT to disable "async log
service".

If there are no active users in the database, this example disables ALS:

sp_dboption "mydb", "async log service", "false"
use mydb
checkpoint

Displaying ALS You can see whether ALS is enabled in a specified database by checking
sp_helpdb.

sp_helpdb "mydb"

mydb 3.0 MB sa 2

July 09, 2002
select into/bulkcopy/pllsort, trunc log on

Asynchronous log service

116 Adaptive Server Enterprise

chkpt,
async log service

Understanding the user log cache (ULC) architecture
Adaptive Server’s logging architecture features the user log cache, or
ULC, by which each task owns its own log cache. No other task can write
to this cache, and the task continues writing to the user log cache whenever
a transaction generates a log record. When the transaction commits or
aborts, or the user log cache is full, the user log cache is flushed to the
common log cache, shared by all the current tasks, which is then written
to the disk.

Flushing the ULC is the first part of a commit or abort operation. It
requires the following steps, each of which can cause delay or increase
contention:

1 Obtaining a lock on the last log page.

2 Allocating new log pages if necessary.

3 Copying the log records from the ULC to the log cache.

The processes in steps 2 and 3 require you to hold a lock on the last
log page, which prevents any other tasks from writing to the log cache
or performing commit or abort operations.

4 Flush the log cache to disk.

Step 4 requires repeated scanning of the log cache to issue write
commands on dirty buffers.

Repeated scanning can cause contention on the buffer cache spinlock
to which the log is bound. Under a large transaction load, contention
on this spinlock can be significant.

When to use ALS
You can enable ALS on any specified database that has at least one of the
following performance issues, so long as your systems runs 4 or more
online engines:

• Heavy contention on the last log page.

CHAPTER 6 Indexing for Performance

Performance and Tuning: Locking 117

You can tell that the last log page is under contention when the
sp_sysmon output in the Task Management Report section shows a
significantly high value. For example:

Table 6-4: Log page under contention

• Heavy contention on the cache manager spinlock for the log cache.

You can tell that the cache manager spinlock is under contention when
the sp_sysmon output in the Data Cache Management Report section
for the database transaction log cache shows a high value in the
Spinlock Contention section. For example:

Table 6-5:

• Underutilized bandwidth in the log device.

Note You should use ALS only when you identify a single database with
high transaction requirements, since setting ALS for multiple databases
may cause unexpected variations in throughput and response times. If you
want to configure ALS on multiple databases, first check that your
throughput and response times are satisfactory.

Using the ALS
Two threads scan the dirty buffers (buffers full of data not yet written to
the disk), copy the data, and write it to the log. These threads are:

• The User Log Cache (ULC) flusher

• The Log Writer.

Task
Management per sec per xact count % of total

Log Semaphore
Contention

58.0 0.3 34801 73.1

Cache c_log per sec per xact count % of total

Spinlock
Contention

n/a n/a n/a 40.0%

Asynchronous log service

118 Adaptive Server Enterprise

ULC flusher

The ULC flusher is a system task thread that is dedicated to flushing the
user log cache of a task into the general log cache. When a task is ready to
commit, the user enters a commit request into the flusher queue. Each
entry has a handle, by which the ULC flusher can access the ULC of the
task that queued the request. The ULC flusher task continuously monitors
the flusher queue, removing requests from the queue and servicing them
by flushing ULC pages into the log cache.

Log writer

Once the ULC flusher has finished flushing the ULC pages into the log
cache, it queues the task request into a wakeup queue. The log writer
patrols the dirty buffer chain in the log cache, issuing a write command if
it finds dirty buffers, and monitors the wakeup queue for tasks whose
pages are all written to disk. Since the log writer patrols the dirty buffer
chain, it knows when a buffer is ready to write to disk.

Changes in stored procedures

Asynchronous log service changes the stored procedures sp_dboption and
sp_helpdb:

• sp_dboption adds an option that enables and disables ALS.

• sp_helpdb adds a column to display ALS.

For more information on sp_helpdb and sp_dboption, see the Reference
Manual.

Performance and Tuning: Locking 119

C H A P T E R 7 How Indexes Work

This chapter describes how Adaptive Server stores indexes and how it
uses indexes to speed data retrieval for select, update, delete, and insert
operations.

Indexes are the most important physical design element in improving
database performance:

• Indexes help prevent table scans. Instead of reading hundreds of data
pages, a few index pages and data pages can satisfy many queries.

• For some queries, data can be retrieved from a nonclustered index
without ever accessing the data rows.

• Clustered indexes can randomize data inserts, avoiding insert “hot
spots” on the last page of a table.

• Indexes can help avoid sorts, if the index order matches the order of
columns in an order by clause.

In addition to their performance benefits, indexes can enforce the
uniqueness of data.

Indexes are database objects that can be created for a table to speed direct
access to specific data rows. Indexes store the values of the key(s) that
were named when the index was created, and logical pointers to the data
pages or to other index pages.

Although indexes speed data retrieval, they can slow down data
modifications, since most changes to the data also require updating the
indexes. Optimal indexing demands:

Topic Page
Types of indexes 120

Clustered indexes on allpages-locked tables 122

Nonclustered indexes 131

Index covering 138

Indexes and caching 141

Types of indexes

120 Adaptive Server Enterprise

• An understanding of the behavior of queries that access unindexed
heap tables, tables with clustered indexes, and tables with
nonclustered indexes

• An understanding of the mix of queries that run on your server

• An understanding of the Adaptive Server optimizer

Types of indexes
Adaptive Server provides two types of indexes:

• Clustered indexes, where the table data is physically stored in the
order of the keys on the index:

• For allpages-locked tables, rows are stored in key order on pages,
and pages are linked in key order.

• For data-only-locked tables, indexes are used to direct the storage
of data on rows and pages, but strict key ordering is not
maintained.

• Nonclustered indexes, where the storage order of data in the table is
not related to index keys

You can create only one clustered index on a table because there is only
one possible physical ordering of the data rows. You can create up to 249
nonclustered indexes per table.

A table that has no clustered index is called a heap. The rows in the table
are in no particular order, and all new rows are added to the end of the
table. Chapter 8, “Data Storage,” discusses heaps and SQL operations on
heaps.

Index pages
Index entries are stored as rows on index pages in a format similar to the
format used for data rows on data pages. Index entries store the key values
and pointers to lower levels of the index, to the data pages, or to individual
data rows.

Adaptive Server uses B-tree indexing, so each node in the index structure
can have multiple children.

CHAPTER 7 How Indexes Work

Performance and Tuning: Locking 121

Index entries are usually much smaller than a data row in a data page, and
index pages are much more densely populated than data pages. If a data
row has 200 bytes (including row overhead), there are 10 rows per page.

An index on a 15-byte field has about 100 rows per index page (the
pointers require 4–9 bytes per row, depending on the type of index and the
index level).

Indexes can have multiple levels:

• Root level

• Leaf level

• Intermediate level

Root level

The root level is the highest level of the index. There is only one root page.
If an allpages-locked table is very small, so that the entire index fits on a
single page, there are no intermediate or leaf levels, and the root page
stores pointers to the data pages.

Data-only-locked tables always have a leaf level between the root page
and the data pages.

For larger tables, the root page stores pointers to the intermediate level
index pages or to leaf-level pages.

Leaf level

The lowest level of the index is the leaf level. At the leaf level, the index
contains a key value for each row in the table, and the rows are stored in
sorted order by the index key:

• For clustered indexes on allpages-locked tables, the leaf level is the
data. No other level of the index contains one index row for each data
row.

• For nonclustered indexes and clustered indexes on data-only-locked
tables, the leaf level contains the index key value for each row, a
pointer to the page where the row is stored, and a pointer to the rows
on the data page.

The leaf level is the level just above the data; it contains one index row
for each data row. Index rows on the index page are stored in key
value order.

Clustered indexes on allpages-locked tables

122 Adaptive Server Enterprise

Intermediate level

All levels between the root and leaf levels are intermediate levels. An
index on a large table or an index using long keys may have many
intermediate levels. A very small allpages-locked table may not have an
intermediate level at all; the root pages point directly to the leaf level.

Index Size
Table 7-1 describes the new limits for index size for APL and DOL tables:

Table 7-1: Index row-size limit

Because you can create tables with columns wider than the limit for the
index key, these columns become non-indexable. For example, if you
perform the following on a 2K page server, then try to create an index on
c3, the command fails and Adaptive Server issues an error message
because column c3 is larger than the index row-size limit (600 bytes).

create table t1 (

c1 int

c2 int

c3 char(700))

“Non-indexable” does not mean that you cannot use these columns in
search clauses. Even though a column is non-indexable (as in c3, above),
you can still create statistics for it. Also, if you include the column in a
where clause, it will be evaluated during optimization.

Clustered indexes on allpages-locked tables
In clustered indexes on allpages-locked tables, leaf-level pages are also the
data pages, and all rows are kept in physical order by the keys.

Page size
User-visible index row-size
limit

Internal index row-
size limit

2K (2048 bytes) 600 650

4K (4096bytes) 1250 1310

8K (8192 bytes) 2600 2670

16K (16384 bytes) 5300 5390

CHAPTER 7 How Indexes Work

Performance and Tuning: Locking 123

Physical ordering means that:

• All entries on a data page are in index key order.

• By following the “next page” pointers on the data pages, Adaptive
Server reads the entire table in index key order.

On the root and intermediate pages, each entry points to a page on the next
level.

Clustered indexes and select operations
To select a particular last name using a clustered index, Adaptive Server
first uses sysindexes to find the root page. It examines the values on the
root page and then follows page pointers, performing a binary search on
each page it accesses as it traverses the index. See Figure 7-1 below.

Figure 7-1: Selecting a row using a clustered index, allpages-
locked table

Page 1007
Bennet 1132
Greane 1133
Hunter 1127

Page 1009
Karsen 1315

Page 1132
Bennet
Chan
Dull
Edwards

Page 1133
Greane
Green
Greene

Page 1127
Hunter
Jenkins

Page 1001
Bennet 1007
Karsen 1009
Smith 1062

Root page Data pages Intermediate

Key Pointer

Key Pointer

select *
from employees
where lname = "Green"

Clustered indexes on allpages-locked tables

124 Adaptive Server Enterprise

On the root level page, “Green” is greater than “Bennet,” but less than
Karsen, so the pointer for “Bennet” is followed to page 1007. On page
1007, “Green” is greater than “Greane,” but less than “Hunter,” so the
pointer to page 1133 is followed to the data page, where the row is located
and returned to the user.

This retrieval via the clustered index requires:

• One read for the root level of the index

• One read for the intermediate level

• One read for the data page

These reads may come either from cache (called a logical read) or from
disk (called a physical read). On tables that are frequently used, the higher
levels of the indexes are often found in cache, with lower levels and data
pages being read from disk.

Clustered indexes and insert operations
When you insert a row into an allpages-locked table with a clustered
index, the data row must be placed in physical order according to the key
value on the table.

Other rows on the data page move down on the page, as needed, to make
room for the new value. As long as there is room for the new row on the
page, the insert does not affect any other pages in the database.

The clustered index is used to find the location for the new row.

Figure 7-2 shows a simple case where there is room on an existing data
page for the new row. In this case, the key values in the index do not need
to change.

CHAPTER 7 How Indexes Work

Performance and Tuning: Locking 125

Figure 7-2: Inserting a row into an allpages-locked table with a
clustered index

Page splitting on full data pages
If there is not enough room on the data page for the new row, a page split
must be performed.

• A new data page is allocated on an extent already in use by the table.
If there is no free page available, a new extent is allocated.

• The next and previous page pointers on adjacent pages are changed to
incorporate the new page in the page chain. This requires reading
those pages into memory and locking them.

• Approximately half of the rows are moved to the new page, with the
new row inserted in order.

• The higher levels of the clustered index change to point to the new
page.

• If the table also has nonclustered indexes, all pointers to the affected
data rows must be changed to point to the new page and row locations.

Page 1001
Bennet 1007
Karsen 1009
Smith 1062

Page 1132
Bennet
Chan
Dull
Edwards

Page 1133
Greane
Greco
Green
Greene

Page 1127
Hunter
Jenkins

Page 1007
Bennet 1132
Greane 1133
Hunter 1127

Page 1009
Karsen 1315

Root page Data pages Intermediate

Key Pointer

Key Pointer

insert employees (lname)
values ("Greco")

Clustered indexes on allpages-locked tables

126 Adaptive Server Enterprise

In some cases, page splitting is handled slightly differently.

See “Exceptions to page splitting” on page 126.

In Figure 7-3, the page split requires adding a new row to an existing index
page, page 1007.

Figure 7-3: Page splitting in an allpages-locked table with a
clustered index

Exceptions to page splitting

There are exceptions to 50-50 page splits:

• If you insert a huge row that cannot fit on either the page before or the
page after the page that requires splitting, two new pages are
allocated, one for the huge row and one for the rows that follow it.

Page 1144
Green
Greene

Page 1133
Greane
Greco
Green
Greene

Page 1132
Bennet
Chan
Dull
Edwards

Page 1133
Greane
Greaves
Greco

Page 1127
Hunter
Jenkins

Page 1007
Bennet 1132
Greane 1133
Green 1144
Hunter 1127

Page 1009
Karsen 1315

Page 1001
Bennet 1007
Karsen 1009
Smith 1062

Root page Data pages Intermediate

Key Pointer

Key Pointer
insert employees (lname)
values ("Greaves")

Before

CHAPTER 7 How Indexes Work

Performance and Tuning: Locking 127

• If possible, Adaptive Server keeps duplicate values together when it
splits pages.

• If Adaptive Server detects that all inserts are taking place at the end
of the page, due to a increasing key value, the page is not split when
it is time to insert a new row that does not fit at the bottom of the page.
Instead, a new page is allocated, and the row is placed on the new
page.

• If Adaptive Server detects that inserts are taking place in order at other
locations on the page, the page is split at the insertion point.

Page splitting on index pages
If a new row needs to be added to a full index page, the page split process
on the index page is similar to the data page split.

A new page is allocated, and half of the index rows are moved to the new
page.

A new row is inserted at the next highest level of the index to point to the
new index page.

Performance impacts of page splitting
Page splits are expensive operations. In addition to the actual work of
moving rows, allocating pages, and logging the operations, the cost is
increased by:

• Updating the clustered index itself

• Updating the page pointers on adjacent pages to maintain page
linkage

• Updating all nonclustered index entries that point to the rows affected
by the split

When you create a clustered index for a table that will grow over time, you
may want to use fillfactor to leave room on data pages and index pages. This
reduces the number of page splits for a time.

See “Choosing space management properties for indexes” on page 321.

Clustered indexes on allpages-locked tables

128 Adaptive Server Enterprise

Overflow pages
Special overflow pages are created for nonunique clustered indexes on
allpages-locked tables when a newly inserted row has the same key as the
last row on a full data page. A new data page is allocated and linked into
the page chain, and the newly inserted row is placed on the new page (see
Figure 7-4).

Figure 7-4: Adding an overflow page to a clustered index, allpages-
locked table

The only rows that will be placed on this overflow page are additional
rows with the same key value. In a nonunique clustered index with many
duplicate key values, there can be numerous overflow pages for the same
value.

The clustered index does not contain pointers directly to overflow pages.
Instead, the next page pointers are used to follow the chain of overflow
pages until a value is found that does not match the search value.

insert employees (lname)
values("Greene")

Page 1133
Greane
Greco
Green
Greene

Data pages

Before insert

Overflow data
pagePage 1134

Gresham
Gridley

Page 1133
Greane
Greco
Green
Greene

Page 1156
Greene

Page 1134
Gresham
Gridley

After insert

CHAPTER 7 How Indexes Work

Performance and Tuning: Locking 129

Clustered indexes and delete operations
When you delete a row from an allpages-locked table that has a clustered
index, other rows on the page move up to fill the empty space so that the
data remains contiguous on the page.

Figure 7-5 shows a page that has four rows before a delete operation
removes the second row on the page. The two rows that follow the deleted
row are moved up.

Figure 7-5: Deleting a row from a table with a clustered index

Page 1132
Bennet
Chan
Dull
Edwards

Page 1133
Greane
Greco
Greene

Page 1127
Hunter
Jenkins

Page 1001
Bennet 1007
Karsen 1009
Smith 1062

delete
from employees
where lname = "Green"

Page 1007
Bennet 1132
Greane 1133
Hunter 1127

Page 1009
Karsen 1315

Root page Data pages Intermediate

Key Pointer

Key Pointer

G
reen

Page 1133
Greane
Green
Greco
Greene

Before delete
Data to be
deleted

Clustered indexes on allpages-locked tables

130 Adaptive Server Enterprise

Deleting the last row on a page

If you delete the last row on a data page, the page is deallocated and the
next and previous page pointers on the adjacent pages are changed.

The rows that point to that page in the leaf and intermediate levels of the
index are removed.

If the deallocated data page is on the same extent as other pages belonging
to the table, it can be used again when that table needs an additional page.

If the deallocated data page is the last page on the extent that belongs to
the table, the extent is also deallocated and becomes available for the
expansion of other objects in the database.

In Figure 7-6, which shows the table after the deletion, the pointer to the
deleted page has been removed from index page 1007 and the following
index rows on the page have been moved up to keep the used space
contiguous.

CHAPTER 7 How Indexes Work

Performance and Tuning: Locking 131

Figure 7-6: Deleting the last row on a page (after the delete)

Index page merges

If you delete a pointer from an index page, leaving only one row on that
page, the row is moved onto an adjacent page, and the empty page is
deallocated. The pointers on the parent page are updated to reflect the
changes.

Nonclustered indexes
The B-tree works much the same for nonclustered indexes as it does for
clustered indexes, but there are some differences. In nonclustered indexes:

G
ridley

Page R1007
Bennet 1132
Greane 1133
Hunter 1127

Page 1009
Karsen 1315

Page 1134

Page 1001
Bennet 1007
Karsen 1009
Smith 1062

delete
from employees
where lname = "Gridley"

Root page Data pages Intermediate

Key Pointer

Key Pointer

Empty page
available for
reallocation

G
ridley

Page 1133
Greane
Green
Greane

Page 1127
Hunter
Jenkins

Nonclustered indexes

132 Adaptive Server Enterprise

• The leaf pages are not the same as the data pages.

• The leaf level stores one key-pointer pair for each row in the table.

• The leaf-level pages store the index keys and page pointers, plus a
pointer to the row offset table on the data page. This combination of
page pointer plus the row offset number is called the row ID.

• The root and intermediate levels store index keys and page pointers to
other index pages. They also store the row ID of the key’s data row.

With keys of the same size, nonclustered indexes require more space than
clustered indexes.

Leaf pages revisited
The leaf page of an index is the lowest level of the index where all of the
keys for the index appear in sorted order.

In clustered indexes on allpages-locked tables, the data rows are stored in
order by the index keys, so by definition, the data level is the leaf level.
There is no other level of the clustered index that contains one index row
for each data row. Clustered indexes on allpages-locked tables are sparse
indexes.

The level above the data contains one pointer for every data page, not data
row.

In nonclustered indexes and clustered indexes on data-only-locked tables,
the level just above the data is the leaf level: it contains a key-pointer pair
for each data row. These indexes are dense. At the level above the data,
they contain one index row for each data row.

Nonclustered index structure
The table in Figure 7-7 shows a nonclustered index on lname. The data
rows at the far right show pages in ascending order by employee_id (10,
11, 12, and so on) because there is a clustered index on that column.

The root and intermediate pages store:

• The key value

• The row ID

CHAPTER 7 How Indexes Work

Performance and Tuning: Locking 133

• The pointer to the next level of the index

The leaf level stores:

• The key value

• The row ID

The row ID in higher levels of the index is used for indexes that allow
duplicate keys. If a data modification changes the index key or deletes a
row, the row ID positively identifies all occurrences of the key at all index
levels.

Figure 7-7: Nonclustered index structure

Page 1132
Bennet 1421,1
Chan 1129,3
Dull 1409,1
Edwards 1018,5

Page 1007
Bennet 1421,1 1132
Greane 1307,4 1133
Hunter 1307,1 1127

Page 1242
10 O’Leary
11 Ringer
12 White
13 Jenkins

Root page Data pages Intermediate

Key RowID Pointer

Key Pointer

Page 1307
14 Hunter
15 Smith
16 Ringer
17 Greane

Page 1421
18 Bennet
19 Green
20 Yokomoto

Page 1409
21 Dull
22 Greene
23 White

Page 1133
Greane 1307,4
Green 1421,2
Greene 1409,2

Page 1127
Hunter 1307,1
Jenkins 1242,4

Page 1009
Karsen 1411,3 1315

Page 1001
Bennet 1421,1 1007
Karsen 1411,3 1009
Smith 1307,2 1062

Leaf pages

Key RowID Pointer

Nonclustered indexes

134 Adaptive Server Enterprise

Nonclustered indexes and select operations
When you select a row using a nonclustered index, the search starts at the
root level. sysindexes.root stores the page number for the root page of the
nonclustered index.

In Figure 7-8, “Green” is greater than “Bennet,” but less than “Karsen,” so
the pointer to page 1007 is followed.

“Green” is greater than “Greane,” but less than “Hunter,” so the pointer to
page 1133 is followed. Page 1133 is the leaf page, showing that the row
for “Green” is row 2 on page 1421. This page is fetched, the “2” byte in
the offset table is checked, and the row is returned from the byte position
on the data page.

Figure 7-8: Selecting rows using a nonclustered index

Page 1007
Bennet 1421,1 1132
Greane 1307,4 1133
Hunter 1307,1 1127

Page 1009
Karsen 1411,3 1315

Page 1132
Bennet 1421,1
Chan 1129,3
Dull 1409,1
Edwards 1018,5

Page 1133
Greane 1307,4
Green 1421,2
Greene 1409,2

Page 1127
Hunter 1307,1
Jenkins 1242,4

Page 1001
Bennet 1421,1 1007
Karsen 1411,3 1009
Smith 1307,2 1062

Root page Data pages Intermediate

Key RowID Pointer

Key Pointer

Leaf pages

Key RowID Pointer

select *
from employee
where lname = "Green"

Page 1242
Ray O’Leary
Ron Ringer
Lisa White
Bob Jenkins

Page 1307
Tim Hunter
Liv Smith
Ann Ringer
Jo Greane

Page 1421
Ian Bennet
Andy Green
Les Yokomoto

Page 1409
Chad Dull
Eddy Greene
Gabe White
Kip Greco

CHAPTER 7 How Indexes Work

Performance and Tuning: Locking 135

Nonclustered index performance
The query in Figure 7-8 requires the following I/O:

• One read for the root level page

• One read for the intermediate level page

• One read for the leaf-level page

• One read for the data page

If your applications use a particular nonclustered index frequently, the root
and intermediate pages will probably be in cache, so only one or two
physical disk I/Os need to be performed.

Nonclustered indexes and insert operations
When you insert rows into a heap that has a nonclustered index and no
clustered index, the insert goes to the last page of the table.

If the heap is partitioned, the insert goes to the last page on one of the
partitions. Then, the nonclustered index is updated to include the new row.

If the table has a clustered index, it is used to find the location for the row.
The clustered index is updated, if necessary, and each nonclustered index
is updated to include the new row.

Figure 7-9 shows an insert into a heap table with a nonclustered index. The
row is placed at the end of the table. A row containing the new key value
and the row ID is also inserted into the leaf level of the nonclustered index.

Nonclustered indexes

136 Adaptive Server Enterprise

Figure 7-9: An insert into a heap table with a nonclustered index

Nonclustered indexes and delete operations
When you delete a row from a table, the query can use a nonclustered
index on the columns in the where clause to locate the data row to delete,
as shown in Figure 7-10.

The row in the leaf level of the nonclustered index that points to the data
row is also removed. If there are other nonclustered indexes on the table,
the rows on the leaf level of those indexes are also deleted.

Page 1242
Ray O’Leary
Ron Ringer
Lisa White
Bob Jenkins

Page 1307
Tim Hunter
Liv Smith
Ann Ringer
Jo Greane

Page 1421
Ian Bennet
Andy Green
Les Yokomoto

Page 1409
Chad Dull
Edi Greene
Gabe White
Kip Greco

Page 1132
Bennet 1421,1
Chan 1129,3
Dull 1409,1
Edwards 1018,5

Page 1133
Greane 1307,4
Greco 1409,4
Green 1421,2
Greene 1409,2

Page 1127
Hunter 1307,1
Jenkins 1242,4

Page 1007
Bennet 1421,1 1132
Greane 1307,4 1133
Hunter 1307,1 1127

Page 1009
Karsen 1411,3 1315

Page 1001
Bennet 1421,1 1007
Karsen 1411,3 1009
Smith 1307,2 1062

Root page Data pages Intermediate

Key RowID Pointer

Key Pointer

Leaf pages

Key RowID Pointer

insert employees
(empid, lname)
values(24, "Greco")

CHAPTER 7 How Indexes Work

Performance and Tuning: Locking 137

Figure 7-10: Deleting a row from a table with a nonclustered index

If the delete operation removes the last row on the data page, the page is
deallocated and the adjacent page pointers are adjusted in allpages-locked
tables. Any references to the page are also deleted in higher levels of the
index.

If the delete operation leaves only a single row on an index intermediate
page, index pages may be merged, as with clustered indexes.

See “Index page merges” on page 131.

There is no automatic page merging on data pages, so if your applications
make many random deletes, you may end up with data pages that have
only a single row, or a few rows, on a page.

Page 1242
Ray O’Leary
Ron Ringer
Lisa White
Bob Jenkins

Page 1307
Tim Hunter
Liv Smith
Ann Ringer
Jo Greane

Page 1421
Ian Bennet
Andy Green
Les Yokomoto

Page 1409
Chad Dull
Eddy Greene
Gabe White
Kip Greco

Page 1133
Greane 1307,4
Greco 1409,4
Green 1421,2
Greene 1409,2

Page 1127
Hunter 1307,1
Jenkins 1242,4

Page 1001
Bennet 1421,1 1007
Karsen 1411,3 1009
Smith 1307,2 1062

Page 1007
Bennet 1421,1 1132
Greane 1307,4 1133
Hunter 1307,1 1127

Page 1009
Karsen 1411,3 1315

G
reen

Root page Data pages Intermediate

Key RowID Pointer

Key Pointer

Leaf pages

Key RowID Pointer

delete employees
where lname = "Green"

G
reen

Page 1132
Bennet 1421,1
Chan 1129,3
Dull 1409,1
Edwards 1018,5

Index covering

138 Adaptive Server Enterprise

Clustered indexes on data-only-locked tables
Clustered indexes on data-only-locked tables are structured like
nonclustered indexes. They have a leaf level above the data pages. The leaf
level contains the key values and row ID for each row in the table.

Unlike clustered indexes on allpages-locked tables, the data rows in a data-
only-locked table are not necessarily maintained in exact order by the key.
Instead, the index directs the placement of rows to pages that have
adjacent or nearby keys.

When a row needs to be inserted in a data-only-locked table with a
clustered index, the insert uses the clustered index key just before the
value to be inserted. The index pointers are used to find that page, and the
row is inserted on the page if there is room. If there is not room, the row is
inserted on a page in the same allocation unit, or on another allocation unit
already used by the table.

To provide nearby space for maintaining data clustering during inserts and
updates to data-only-locked tables, you can set space management
properties to provide space on pages (using fillfactor and exp_row_size) or
on allocation units (using reservepagegap).

See Chapter 9, “Setting Space Management Properties.”

Index covering
Index covering can produce dramatic performance improvements when
all columns needed by the query are included in the index.

You can create indexes on more than one key. These are called composite
indexes. Composite indexes can have up to 31 columns adding up to a
maximum 600 bytes.

If you create a composite nonclustered index on each column referenced
in the query’s select list and in any where, having, group by, and order by
clauses, the query can be satisfied by accessing only the index.

Since the leaf level of a nonclustered index or a clustered index on a data-
only-locked table contains the key values for each row in a table, queries
that access only the key values can retrieve the information by using the
leaf level of the nonclustered index as if it were the actual table data. This
is called index covering.

CHAPTER 7 How Indexes Work

Performance and Tuning: Locking 139

There are two types of index scans that can use an index that covers the
query:

• The matching index scan

• The nonmatching index scan

For both types of covered queries, the index keys must contain all the
columns named in the query. Matching scans have additional
requirements.

“Choosing composite indexes” on page 314 describes query types that
make good use of covering indexes.

Covering matching index scans
Lets you skip the last read for each row returned by the query, the read that
fetches the data page.

For point queries that return only a single row, the performance gain is
slight — just one page.

For range queries, the performance gain is larger, since the covering index
saves one read for each row returned by the query.

For a covering matching index scan to be used, the index must contain all
columns named in the query. In addition, the columns in the where clauses
of the query must include the leading column of the columns in the index.

For example, for an index on columns A, B, C, and D, the following sets
can perform matching scans: A, AB, ABC, AC, ACD, ABD, AD, and
ABCD. The columns B, BC, BCD, BD, C, CD, or D do not include the
leading column and can be used only for nonmatching scans.

When doing a matching index scan, Adaptive Server uses standard index
access methods to move from the root of the index to the nonclustered leaf
page that contains the first row.

In Figure 7-11, the nonclustered index on lname, fname covers the query.
The where clause includes the leading column, and all columns in the
select list are included in the index, so the data page need not be accessed.

Index covering

140 Adaptive Server Enterprise

Figure 7-11: Matching index access does not have to read the data
row

Covering nonmatching index scans
When the columns specified in the where clause do not include the leading
column in the index, but all columns named in the select list and other
query clauses (such as group by or having) are included in the index,
Adaptive Server saves I/O by scanning the entire leaf level of the index,
rather than scanning the table.

It cannot perform a matching scan because the first column of the index is
not specified.

The query in Figure 7-12 shows a nonmatching index scan. This query
does not use the leading columns on the index, but all columns required in
the query are in the nonclustered index on lname, fname, emp_id.

Page 1560
Bennet,Sam 1580,1
Chan,Sandra 1129,3
Dull,Normal 1409,1
Edwards,Linda 1018,5

Page 1561
Greane,Grey 1307,4
Greco,Del 1409,4
Green,Rita 1421,2
Greene,Cindy 1703,2

Page 1843
Hunter,Hugh 1307,1
Jenkins,Ray 1242,4

Page 1544
Bennet,Sam 1580,1 1560
Greane,Grey 1649,4 1561
Hunter,Hugh 1649,1 1843

Root page Data pages Intermediate

Key Pointer

Leaf pages

Key RowID Pointer

select fname, lname
from employees
where lname = "Greene"

Page 1647
10 O’Leary
11 Ringer
12 White
13 Jenkins

Page 1649
14 Hunter
15 Smith
16 Ringer
17 Greane

Page 1580
18 Bennet
20 Yokomoto

Page 1703
21 Dull
22 Greene
23 White
24 Greco

CHAPTER 7 How Indexes Work

Performance and Tuning: Locking 141

The nonmatching scan must examine all rows on the leaf level. It scans all
leaf level index pages, starting from the first page. It has no way of
knowing how many rows might match the query conditions, so it must
examine every row in the index. Since it must begin at the first page of the
leaf level, it can use the pointer in sysindexes.first rather than descending
the index.

Figure 7-12: A nonmatching index scan

Indexes and caching
“How Adaptive Server performs I/O for heap operations” on page 172
introduces the basic concepts of the Adaptive Server data cache, and
shows how caches are used when reading heap tables.

Page 1544
Bennet,Sam,409... 1580,1 1560
Greane,Grey,486... 1649,4 1561
Hunter,Hugh,457... 1649,1 1843

Page 1561
Greane,Grey,486... 1307,4
Greco,Del,672... 1409,4
Green,Rita,398... 1421,2
Greene,Cindy,127... 1703,2

Page 1843
Hunter,Hugh,457... 1307,1
Jenkins,Ray,723... 1242,4

Page 1560
Bennet,Sam,409... 1580,1
Chan,Sandra,817... 1129,3
Dull,Normal,415... 1409,1
Edwards,Linda,238... 1018,5

Root page Data pages Intermediate

Key Pointer

Leaf pages

Key RowI Pointer

select lname, emp_id
from employees
where fname = "Rita"

Page 1647
10 O’Leary
11 Ringer
12 White
13 Jenkins

Page 1649
14 Hunter
15 Smith
16 Ringer
17 Greane

Page 1580
18 Bennet
20 Yokomoto

Page 1703
21 Dull
22 Greene
23 White
24 Greco

sysindexes.first

Indexes and caching

142 Adaptive Server Enterprise

Index pages get special handling in the data cache, as follows:

• Root and intermediate index pages always use LRU strategy.

• Index pages can use one cache while the data pages use a different
cache, if the index is bound to a different cache.

• Covering index scans can use fetch-and-discard strategy.

• Index pages can cycle through the cache many times, if number of
index trips is configured.

When a query that uses an index is executed, the root, intermediate, leaf,
and data pages are read in that order. If these pages are not in cache, they
are read into the MRU end of the cache and are moved toward the LRU
end as additional pages are read in.

Each time a page is found in cache, it is moved to the MRU end of the page
chain, so the root page and higher levels of the index tend to stay in the
cache.

Using separate caches for data and index pages
Indexes and the tables they index can use different caches. A System
Administrator or table owner can bind a clustered or nonclustered index to
one cache and its table to another.

Index trips through the cache
A special strategy keeps index pages in cache. Data pages make only a
single trip through the cache: they are read in at the MRU end of the cache
or placed just before the wash marker, depending on the cache strategy
chosen for the query.

Once the pages reach the LRU end of the cache, the buffer for that page is
reused when another page needs to be read into cache.

For index pages, a counter controls the number of trips that an index page
can make through the cache.

When the counter is greater than 0 for an index page, and it reaches the
LRU end of the page chain, the counter is decremented by 1, and the page
is placed at the MRU end again.

CHAPTER 7 How Indexes Work

Performance and Tuning: Locking 143

By default, the number of trips that an index page makes through the cache
is set to 0. To change the default, a System Administrator can set the
number of index trips configuration parameter

For more information, see the System Administration Guide.

Indexes and caching

144 Adaptive Server Enterprise

Performance & Tuning:Locking 145

A
allpages locking 6

changing to with alter table 63
OR strategy 31
specifying with create table 62
specifying with select into 66
specifying with sp_configure 61

ALS
log writer 118
user log cache 116
when to use 116

ALS, see Asynchronous Log Service 115
alter table command

changing table locking scheme with 63–66
sp_dboption and changing lock scheme 64

alternative predicates
nonqualifying rows 33

application design
deadlock avoidance 87
deadlock detection in 83
delaying deadlock checking 87
isolation level 0 considerations 21
levels of locking 43
primary keys and 104
user interaction in transactions 41

artificial columns 113

B
batch processing

transactions and lock contention 42
binary expressions xiii
blocking 54
blocking process

avoiding during mass operations 44
sp_lock report on 79
sp_who report on 77

B-trees, index

nonclustered indexes 131

C
chains of pages

overflow pages and 128
character expressions xiii
clustered indexes 120

changing locking modes and 65
delete operations 129
guidelines for choosing 100
insert operations and 124
order of key values 123
overflow pages and 128
page reads 124
select operations and 123
structure of 122

column level locking
pseudo 34

columns
artificial 113

composite indexes 106
advantages of 108

concurrency
deadlocks and 81
locking and 6, 81

configuration (Server)
lock limit 45

consistency
transactions and 4

constants xiii
constraints

primary key 98
unique 98

contention
avoiding with clustered indexes 119
reducing 40

contention, lock
locking scheme and 55

Index

Index

146 Adaptive Server Enterprise

sp_object_stats report on 89
context column of sp_lock output 79
conventions

used in manuals xi
CPU usage

deadlocks and 83
create index command

locks acquired by 29
create table command

locking scheme specification 62
cursors

close on endtran option 73
isolation levels and 72
lock duration 28
lock type 28, 30
locking and 71–74
shared keyword in 73

D
data

consistency 4
uniqueness 119

data modification
nonclustered indexes and 105
number of indexes and 93

data pages
clustered indexes and 122
full, and insert operations 125

database design
indexing based on 112
logical keys and index keys 99

databases
lock promotion thresholds for 44

data-only locking
OR strategy and locking 31

data-only locking (DOL) tables
maximum row size 63

datapages locking
changing to with alter table 63
described 8
specifying with create table 62
specifying with select into 66
specifying with sp_configure 61

datarows locking

changing to with alter table 63
described 9
specifying with create table 62
specifying with select into 66
specifying with sp_configure 61

datatypes
choosing 104, 113
numeric compared to character 113

deadlock checking period configuration parameter
87

deadlocks 81–88, 89
application-generated 82
avoiding 86
defined 81
delaying checking 87
detection 83, 89
diagnosing 54
error messages 83
performance and 39
read committed with lock effects on 29
sp_object_stats report on 89
worker process example 84

delete
uncommitted 32

delete command
transaction isolation levels and 23

delete operations
clustered indexes 129
nonclustered indexes 136

demand locks 13
sp_lock report on 79

detecting deadlocks 89
dirty reads 5

preventing 22
transaction isolation levels and 20

duration of latches 18
duration of locks

read committed with lock and 29
read-only cursors 30
transaction isolation level and 26

E
error messages

deadlocks 83

Index

Performance & Tuning:Locking 147

escalation, lock 48
exclusive locks

page 11
sp_lock report on 79
table 12

F
fam dur locks 79
fetching cursors

locking and 73
fillfactor

index creation and 104
fixed-length columns

for index keys 105
overhead 105

floating-point data xiii

H
holdlock keyword

locking 69
shared keyword and 73

hot spots
avoiding 42

I
IDENTITY columns

indexing and performance 100
index keys, logical keys and 99
index pages

locks on 7
page splits for 127
storage on 120

index selection 102
indexes 119–143

access through 119
design considerations 91
dropping infrequently used 112
guidelines for 104
intermediate level 122
leaf level 121

leaf pages 132
locking with 11
number allowed 98
performance and 119–143
root level 121
selectivity 93
size of entries and performance 94
types of 120

indexing
configure large buffer pools 114
create a claustered index first 114

infinity key locks 17
insert command

contention and 43
transaction isolation levels and 23

insert operations
clustered indexes 124
nonclustered indexes 135
page split exceptions and 126

integer data
in SQL xiii

intent table locks 12
sp_lock report on 79

intermediate levels of indexes 122
isolation levels 19–26, 66–71

cursors 72
default 67
dirty reads 22
lock duration and 26, 27, 28
nonrepeatable reads 23
phantoms 23
serializable reads and locks 17
transactions 19

J
joins

choosing indexes for 101
datatype compatibility in 105

K
key values

index storage 119

Index

148 Adaptive Server Enterprise

order for clustered indexes 123
overflow pages and 128

keys, index
choosing columns for 100
clustered and nonclustered indexes and 120
composite 106
logical keys and 99
monotonically increasing 127
size and performance 104
size of 98
unique 104

L
latches 17
leaf levels of indexes 121
leaf pages 132
levels

indexes 121
locking 43

lock allpages option
alter table command 63
create table command 62
select into command 66

lock datapages option
alter table command 63
create table command 62
select into command 66

lock datarows option
alter table command 63
create table command 62
select into command 66

lock duration. See Duration of locks
lock promotion thresholds 44–53

database 52
default 52
dropping 52
precedence 52
promotion logic 51
server-wide 51
table 52

lock scheme configuration parameter 61
locking 4–45

allpages locking scheme 6
concurrency 6

contention, reducing 40–44
control over 5, 10
cursors and 71
datapages locking scheme 8
datarows locking scheme 9
deadlocks 81–88
entire table 10
for update clause 71
forcing a write 13
holdlock keyword 68
index pages 7
indexes used 11
isolation levels and 19–26, 66–71
last page inserts and 100
monitoring contention 56
noholdlock keyword 68
noholdlock keyword 70
overhead 6
page and table, controlling 19, 48
performance 39
read committed clause 69
read uncommitted clause 69, 71
reducing contention 40
serializable clause 69
shared keyword 68, 71
sp_lock report on 78
transactions and 5

locking commands 61–75
locking configuration 39
locking scheme 53–57

allpages 6
changing with alter table 63–66
clustered indexes and changing 65
create table and 62
datapages 8
datarows 9
lock types and 9
server-wide default 61
specifying with create table 62
specifying with select into 66

locks
blocking 77
command type and 27, 28
demand 13
escalation 48
exclusive page 11

Index

Performance & Tuning:Locking 149

exclusive table 12
fam dur 79
granularity 6
infinity key 17
intent table 12
isolation levels and 27, 28
latches and 17
limits 29
“lock sleep” status 77
or queries and 31
page 10
reporting on 77
shared page 10
shared table 12
size of 6
table 12
table versus page 48
table versus row 48
table, table scans and 30
types of 9, 79
update page 11
viewing 78
worker processes and 15

locks, number of
data-only-locking and 45

locktype column of sp_lock output 79
logical expressions xiii
logical keys, index keys and 99

M
matching index scans 139
messages

deadlock victim 83
monitoring

index usage 112
lock contention 56

Monitoring indexes
examples of 103
using sp_monitorconfig 102

monitoring indexes ??–104
multicolumn index. See composite indexes

N
noholdlock keyword, select 70
nonclustered indexes 120

definition of 131
delete operations 136
guidelines for 101
insert operations 135
number allowed 98
select operations 134
size of 132
structure 132

nonmatching index scans 140–141
nonrepeatable reads 23
null columns

variable-length 104
null values

datatypes allowing 104
number (quantity of)

bytes per index key 98
clustered indexes 120
indexes per table 98
locks in the system 45
locks on a table 49
nonclustered indexes 120

number of locks configuration parameter
data-only-locked tables and 45

number of sort buffers 114
numbers

row offset 132
numeric expressions xiii

O
observing deadlocks 89
offset table

nonclustered index selects and 134
row IDs and 132

optimistic index locking 58
added column by sp_help 59
added option in sp_chgattribute 59
cautions and issues 59
using 58

optimizer
dropping indexes not used by 112
indexes and 91

Index

150 Adaptive Server Enterprise

nonunique entries and 93
or queries

allpages-locked tables and 31
data-only-locked tables and 31
isolation levels and 32
locking and 31
row requalification and 32

order
composite indexes and 106
data and index storage 120
index key values 123

order by clause
indexes and 119

output
sp_estspace 94

overflow pages 128
key values and 128

overhead
datatypes and 104, 114
nonclustered indexes 105
variable-length columns 105

P
page chains

overflow pages and 128
page lock promotion HWM configuration parameter 49
page lock promotion LWM configuration parameter 50
page lock promotion PCT configuration parameter 50
page locks 9

sp_lock report on 79
table locks versus. 48
types of 10

page splits
data pages 125
index pages and 127
nonclustered indexes, effect on 125
performance impact of 127

pages
overflow 128

pages, data
splitting 125

pages, index
leaf level 132
storage on 120

parallel query processing
demand locks and 15

parrellel sort
configure enough sort buffers 114

performance
clustered indexes and 56
data-only-locked tables and 56
indexes and 91
locking and 39
number of indexes and 93

phantoms 17
serializable reads and 17

phantoms in transactions 23
pointers

index 120
precedence

lock promotion thresholds 52
primary key constraint

index created by 98
promotion, lock 48

Q
qualifying old and new values

uncommitted updates 35
queries

range 93

R
range queries 93
read committed with lock configuration parameter

deadlocks and 29
lock duration 29

reads
clustered indexes and 124

reduce contention
suggestions 36

referential integrity
references and unique index requirements 104

root level of indexes 121
row ID (RID) 132
row lock promotion HWM configuration parameter 49
row lock promotion LWM configuration parameter 50

Index

Performance & Tuning:Locking 151

row lock promotion PCT configuration parameter
50

row locks
sp_lock report on 79
table locks versus 48

row offset number 132
row-level locking. See Data-only locking

S
scan session 48
scanning

skipping uncommitted transactions 32
scans, table

avoiding 119
search conditions

clustered indexes and 100
locking 11

select
skipping uncommitted transactions 32

select command
optimizing 93

select operations
clustered indexes and 123
nonclustered indexes 134

selectqueries 34
serial query processing

demand locks and 14
serializable reads

phantoms and 17
set command

transaction isolation level 67
shared keyword

cursors and 73
locking and 73

shared locks
cursors and 73
holdlock keyword 70
page 10
sp_lock report on 79
table 12

size
nonclustered and clustered indexes 132

skip
nonqualifying rows 33

sleeping locks 77
sort operations (order by)

indexing to avoid 119
sp_chgattribute, added option for optimistic index

locking 59
sp_dropglockpromote system procedure 52
sp_droprowlockpromote system procedure 52
sp_help, adds column displaying optimistic index

locking 59
sp_lock system procedure 78
sp_object_stats system procedure 88–89
sp_setpglockpromote system procedure 51
sp_setrowlockpromote system procedure 51
sp_who system procedure

blocking process 77
space

clustered compared to nonclustered indexes 132
space allocation

clustered index creation 98
deallocation of index pages 131
index page splits 127
monotonically increasing key values and 127
page splits and 125

splitting
data pages on inserts 125

SQL standards
concurrency problems 44

storage management
space deallocation and 130

symbols
in SQL statements xii

T
table locks 9

controlling 19
page locks versus 48
row locks versus 48
sp_lock report on 79
types of 12

table scans
avoiding 119
locks and 30

tables
locks held on 19, 79

Index

152 Adaptive Server Enterprise

secondary 113
tasks

demand locks and 13
testing

“hot spots” 101
nonclustered indexes 105

time interval
deadlock checking 87

transaction isolation level option, set 67
transaction isolation levels

lock duration and 26
or processing and 32

transactions
close on endtran option 73
deadlock resolution 83
default isolation level 67
locking 5

tsequal system function
compared to holdlock 44

U
uncommitted

inserts during selects 32
uncommitted updates

qualifying old and new 35
unique constraints

index created by 98
unique indexes 119

optimizing 104
update command

transaction isolation levels and 23
update locks 11

sp_lock report on 79
update operations

hot spots 42
index updates and 105

user log cache, in ALS 116
Using Asynchronous log service 115
Using Asynchronous log service, ALS 115

V
variable-length columns

index overhead and 114

W
wait-times 89
when to use ALS 116
where clause

creating indexes for 101
worker processes

deadlock detection and 84
locking and 15

	Performance and Tuning: Locking
	About This Book
	CHAPTER 1 Introduction to Performance and Tuning
	CHAPTER 2 Locking Overview
	How locking affects performance
	Overview of locking
	Granularity of locks and locking schemes
	Allpages locking
	Datapages locking
	Datarows locking

	Types of locks in Adaptive Server
	Page and row locks
	Table locks
	Demand locks
	Demand locking with serial execution
	Demand locking with parallel execution

	Range locking for serializable reads
	Latches

	Lock compatibility and lock sufficiency
	How isolation levels affect locking
	Isolation Level 0, read uncommitted
	Isolation Level 1, read committed
	Isolation Level 2, repeatable read
	Isolation Level 3, serializable reads
	Adaptive Server default isolation level

	Lock types and duration during query processing
	Lock types during create index commands
	Locking for select queries at isolation Level 1
	Table scans and isolation Levels 2 and 3
	Table scans and table locks at isolation Level 3
	Isolation Level 2 and Allpages-Locked tables

	When update locks are not required
	Locking during or processing
	Processing or queries for Allpages-Locked tables
	Processing or queries for Data-Only-Locked tables

	Skipping uncommitted inserts during selects
	Skipping uncommitted inserts during deletes, updates and inserts

	Using alternative predicates to skip nonqualifying rows

	Pseudo column-level locking
	Select queries that do not reference the updated column
	Qualifying old and new values for uncommitted updates

	Suggestions to reduce contention

	CHAPTER 3 Locking Configuration and Tuning
	Locking and performance
	Using sp_sysmon and sp_object_stats
	Reducing lock contention
	Adding indexes to reduce contention
	Keeping transactions short
	Avoiding hot spots

	Additional locking guidelines

	Configuring locks and lock promotion thresholds
	Configuring Adaptive Server’s lock limit
	Estimating number of locks for data-only-locked tables

	Configuring the lock hashtable (Lock Manager)
	Setting lock promotion thresholds
	Lock promotion and scan sessions
	Lock promotion high water mark
	Lock promotion low water mark
	Lock promotion percent
	Setting server-wide lock promotion thresholds
	Setting the lock promotion threshold for a table or database
	Precedence of settings
	Dropping database and table settings
	Using sp_sysmon while tuning lock promotion thresholds

	Choosing the locking scheme for a table
	Analyzing existing applications
	Choosing a locking scheme based on contention statistics
	Monitoring and managing tables after conversion
	Applications not likely to benefit from data-only locking
	Tables where clustered index performance must remain high
	Tables with maximum-length rows

	Optimistic index locking
	Understanding optimistic index locking
	Using optimistic index locking
	Cautions and issues

	CHAPTER 4 Using Locking Commands
	Specifying the locking scheme for a table
	Specifying a server-wide locking scheme
	Specifying a locking scheme with create table
	Changing a locking scheme with alter table
	Before and after changing locking schemes
	After alter table completes

	Expense of switching to or from allpages locking
	Sort performance during alter table
	Specifying a locking scheme with select into

	Controlling isolation levels
	Setting isolation levels for a session
	Syntax for query-level and table-level locking options
	Using holdlock, noholdlock, or shared
	Using the at isolation clause
	Making locks more restrictive
	Using read committed

	Making locks less restrictive
	Using read uncommitted
	Using shared

	Readpast locking
	Cursors and locking
	Using the shared keyword

	Additional locking commands
	lock table Command
	Lock timeouts

	CHAPTER 5 Locking Reports
	Locking tools
	Getting information about blocked processes
	Viewing locks
	Viewing locks
	Intrafamily blocking during network buffer merges

	Deadlocks and concurrency
	Server-side versus application-side deadlocks
	Application deadlock example

	Server task deadlocks
	Deadlocks and parallel queries
	Printing deadlock information to the error log
	Avoiding deadlocks
	Acquire locks on objects in the same order
	Delaying deadlock checking

	Identifying tables where concurrency is a problem
	Lock management reporting

	CHAPTER 6 Indexing for Performance
	How indexes affect performance
	Detecting indexing problems
	Symptoms of poor indexing
	Lack of indexes is causing table scans
	Index is not selective enough
	Index does not support range queries
	Too many indexes slow data modification
	Index entries are too large
	Exception for wide data rows and wide index rows

	Fixing corrupted indexes
	Repairing the system table index
	Repairing a nonclustered index

	Index limits and requirements
	Choosing indexes
	Index keys and logical keys
	Guidelines for clustered indexes
	Choosing clustered indexes
	Candidates for nonclustered indexes
	Index Selection
	Examples of using the index selection

	Other indexing guidelines
	Choosing nonclustered indexes
	Performance price for data modification

	Choosing composite indexes
	Key order and performance in composite indexes
	Advantages and disadvantages of composite indexes

	Techniques for choosing indexes
	Choosing an index for a range query
	Adding a point query with different indexing requirements

	Index and statistics maintenance
	Dropping indexes that hurt performance
	Choosing space management properties for indexes

	Additional indexing tips
	Creating artificial columns
	Keeping index entries short and avoiding overhead
	Dropping and rebuilding indexes
	Configure enough sort buffers
	Create the clustered index first
	Configure large buffer pools

	Asynchronous log service
	Understanding the user log cache (ULC) architecture
	When to use ALS
	Using the ALS
	ULC flusher
	Log writer
	Changes in stored procedures

	CHAPTER 7 How Indexes Work
	Types of indexes
	Index pages
	Root level
	Leaf level
	Intermediate level

	Index Size

	Clustered indexes on allpages-locked tables
	Clustered indexes and select operations
	Clustered indexes and insert operations
	Page splitting on full data pages
	Exceptions to page splitting

	Page splitting on index pages
	Performance impacts of page splitting
	Overflow pages
	Clustered indexes and delete operations
	Deleting the last row on a page
	Index page merges

	Nonclustered indexes
	Leaf pages revisited
	Nonclustered index structure
	Nonclustered indexes and select operations
	Nonclustered index performance
	Nonclustered indexes and insert operations
	Nonclustered indexes and delete operations
	Clustered indexes on data-only-locked tables

	Index covering
	Covering matching index scans
	Covering nonmatching index scans

	Indexes and caching
	Using separate caches for data and index pages
	Index trips through the cache

	Index

