
Performance and Tuning:
Basics

Adaptive Server® Enterprise

12.5.1

DOCUMENT ID: DC20020-01-1251-01

LAST REVISED: August 2003

Copyright © 1989-2003 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture,
Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server
Enterprise Replication, Adaptive Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, Anywhere Studio, Application
Manager, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Translator, APT-Library, AvantGo,
AvantGo Application Alerts, AvantGo Mobile Delivery, AvantGo Mobile Document Viewer, AvantGo Mobile Inspection, AvantGo
Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon Application Server,
AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BizTracker, ClearConnect, Client-Library,
Client Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer,
DataWindow, DB-Library, dbQueue, Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution Director, e-ADK,
E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway, ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise
Application Studio, Enterprise Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server
Manager, Enterprise Work Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA,
Financial Fusion, Financial Fusion Server, Gateway Manager, GlobalFIX, ImpactNow, Industry Warehouse Studio, InfoMaker,
Information Anywhere, Information Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, Mail
Anywhere Studio, MainframeConnect, Maintenance Express, Manage Anywhere Studio, M-Business Channel, M-Business Network,
M-Business Server, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, My AvantGo, My AvantGo Media Channel,
My AvantGo Mobile Marketing, MySupport, Net-Gateway, Net-Library, New Era of Networks, ObjectConnect, ObjectCycle,
OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open
Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC
Net Library, PocketBuilder, Pocket PowerBuilder, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class
Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft, PowerStage,
PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst,
Rapport, Report Workbench, Report-Execute, Replication Agent, Replication Driver, Replication Server, Replication Server Manager,
Replication Toolkit, Resource Manager, RW-DisplayLib, S-Designor, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian,
SKILS, smart.partners, smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL
Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART,
SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, S.W.I.F.T.
Message Format Libraries, Sybase Central, Sybase Client/Server Interfaces, Sybase Financial Server, Sybase Gateways, Sybase MPP,
Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financial,
SyberAssist, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, TradeForce, Transact-SQL,
Translation Toolkit, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual
Components, VisualSpeller, VisualWriter, VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse
WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup
SQL Server, XA-Library, XA-Server and XP Server are trademarks of Sybase, Inc. 03/03

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

Performance and Tuning: Basics iii

About This Book .. xv

CHAPTER 1 Introduction to Performance and Tuning 1

CHAPTER 2 Introduction to the Basics.. 3
Good performance ... 3

Response time .. 3
Throughput .. 4
Designing for performance .. 4

Tuning performance ... 4
Tuning levels ... 5

Configuration parameters... 10
Dynamic .. 11

Identifying system limits ... 12
Varying logical page sizes... 12
Number of columns and column size 12
Maximum length of expressions, variables, and stored procedure

arguments... 13
Number of logins ... 13
Performance implications for limits.. 14

Setting tuning goals.. 14
Analyzing performance .. 14

Normal Forms.. 15
Locking .. 16
Special Considerations.. 16

CHAPTER 3 Networks and Performance.. 19
Introduction .. 19
Potential performance problems .. 19

Basic questions on network performance 20
Techniques summary .. 20
Using sp_sysmon while changing network configuration 21

How Adaptive Server uses the network ... 21

Contents

iv Adaptive Server Enterprise

Managing Network Listeners.. 21
Network Listeners on UNIX ... 22
Managing listeners with sp_listener .. 23
Using the remaining parameter ... 24
Determining the status of listeners .. 24
Starting new listeners .. 25
Stopping listeners.. 26
Suspending listeners ... 26
Resume suspended listeners .. 27

Changing network packet sizes ... 27
Large versus default packet sizes for user connections 28

Number of packets is important... 28
Evaluation tools with Adaptive Server 29
Evaluation tools outside of Adaptive Server............................ 30
Server-based techniques for reducing network traffic 30

Impact of other server activities ... 31
Single user versus multiple users.. 32

Improving network performance... 32
Isolate heavy network users.. 32
Set tcp no delay on TCP networks .. 33
Configure multiple network listeners 34

CHAPTER 4 Using Engines and CPUs.. 35
Background concepts... 35

How Adaptive Server processes client requests 36
Client task implementation .. 37

Single-CPU process model .. 38
Scheduling engines to the CPU .. 38
Scheduling tasks to the engine ... 40
Execution task scheduling... 41

Adaptive Server SMP process model .. 43
Scheduling engines to CPUs... 44
Scheduling Adaptive Server tasks to engines 44
Multiple network engines... 45
Task priorities and run queues .. 45
Processing scenario .. 46

Asynchronous log service .. 47
Understanding the user log cache (ULC) architecture 48
When to use ALS .. 48
Using the ALS ... 49

Housekeeper task improves CPU utilization 50
Side effects of the housekeeper task 51
Configuring the housekeeper task... 51

Measuring CPU usage ... 53

Contents

Performance and Tuning: Basics v

Single-CPU machines ... 53
Determining when to configure additional engines.................. 54
Taking engines offline ... 55

Enabling engine-to-CPU affinity ... 55
Multiprocessor application design guidelines................................. 57

CHAPTER 5 Distributing Engine Resources.. 59
Algorithm for successfully distributing engine resources 59

Algorithm guidelines .. 62
Environment analysis and planning... 63
Performing benchmark tests ... 65
Setting goals.. 66
Results analysis and tuning... 66
Monitoring the environment over time 66

Manage preferred access to resources.. 67
Types of execution classes .. 67

Predefined execution classes.. 68
User-Defined execution classes.. 68

Execution class attributes .. 69
Base priority .. 69
Time slice .. 70
Task-to-engine affinity ... 70

Setting execution class attributes... 71
Assigning execution classes ... 72
Engine groups and establishing task-to-engine affinity 72
How execution class bindings affect scheduling 74

Setting attributes for a session only ... 76
Getting information... 76
Rules for determining precedence and scope................................ 77

Multiple execution objects and ECs .. 77
Resolving a precedence conflict.. 80
Examples: determining precedence .. 80

Example scenario using precedence rules 82
Planning .. 83
Configuration ... 84
Execution characteristics... 85

Considerations for Engine Resource Distribution 85
Client applications: OLTP and DSS .. 86
Adaptive Server logins: high-priority users.............................. 87
Stored procedures: “hot spots”.. 87

CHAPTER 6 Controlling Physical Data Placement.. 89
Object placement can improve performance 89

Contents

vi Adaptive Server Enterprise

Symptoms of poor object placement 90
Underlying problems ... 91
Using sp_sysmon while changing data placement.................. 91

Terminology and concepts ... 92
Guidelines for improving I/O performance 92

Spreading data across disks to avoid I/O contention 93
Isolating server-wide I/O from database I/O............................ 94
Keeping transaction logs on a separate disk........................... 94
Mirroring a device on a separate disk 95

Creating objects on segments.. 96
Using segments... 97
Separating tables and indexes .. 98
Splitting large tables across devices 98
Moving text storage to a separate device................................ 98

Partitioning tables for performance .. 99
User transparency ... 99
Partitioned tables and parallel query processing................... 100
Improving insert performance with partitions......................... 101
Restrictions on partitioned tables .. 102
Partition-related configuration parameters 102
How Adaptive Server distributes partitions on devices 102

Space planning for partitioned tables... 103
Read-only tables ... 104
Read-mostly tables.. 105
Tables with random data modification................................... 105

Commands for partitioning tables .. 106
alter table...partition syntax ... 106
alter table...unpartition Syntax... 107
Changing the number of partitions .. 107
Distributing data evenly across partitions.............................. 108
Using parallel bcp to copy data into partitions....................... 110
Getting information about partitions 111
Using bcp to correct partition balance 112
Checking data distribution on devices with sp_helpsegment 114
Updating partition statistics ... 115

Steps for partitioning tables.. 117
Backing up the database after partitioning tables 117
Table does not exist .. 117
Table exists elsewhere in the database 119
Table exists on the segment ... 119

Special procedures for difficult situations..................................... 124
Clustered indexes on large tables ... 124
Alternative for clustered indexes ... 125

Problems when devices for partitioned tables are full 128

Contents

Performance and Tuning: Basics vii

Adding disks when devices are full 128
Adding disks when devices are nearly full............................. 130

Maintenance issues and partitioned tables 131
Regular maintenance checks for partitioned tables 131

CHAPTER 7 Database Design ... 133
 Basic design.. 133

Physical database design for Adaptive Server...................... 134
Logical Page Sizes.. 134
Number of columns and column size 135

Normalization ... 135
Levels of normalization.. 136
Benefits of normalization ... 136
First Normal Form ... 137
Second Normal Form .. 138
Third Normal Form .. 139

Denormalizing for performance.. 141
Risks.. 142
Denormalization input.. 143
 Techniques... 144
Splitting tables ... 146
Managing denormalized data .. 148
Using triggers .. 149
Using application logic... 149
Batch reconciliation ... 150

CHAPTER 8 Data Storage.. 151
Performance gains through query optimization............................ 151

Query processing and page reads .. 152
Adaptive Server pages... 153

Page headers and page sizes... 154
Varying logical page sizes... 154
Data and index pages ... 155
Large Object (LOB) Pages .. 156
Extents .. 156

Pages that manage space allocation ... 157
Global allocation map pages ... 157
Allocation pages .. 158
Object allocation map pages ... 158
How OAM pages and allocation pages manage object storage 158
Page allocation keeps an object’s pages together 159
sysindexes table and data access... 160

Space overheads ... 160

Contents

viii Adaptive Server Enterprise

Number of columns and size... 161
Number of rows per data page.. 165
Maximum numbers.. 166

Heaps of data: tables without clustered indexes.......................... 167
Lock schemes and differences between heaps 167
Select operations on heaps... 168
Inserting data into an allpages-locked heap table 168
Inserting data into a data-only-locked heap table.................. 169
Deleting data from a heap table .. 170
Updating data on a heap table .. 171

How Adaptive Server performs I/O for heap operations 172
Sequential prefetch, or large I/O ... 173

Caches and object bindings ... 174
Heaps, I/O, and cache strategies .. 174
Select operations and caching .. 176
Data modification and caching .. 177

Asynchronous prefetch and I/O on heap tables 179
Heaps: pros and cons .. 180
Maintaining heaps .. 180

Methods... 180
Transaction log: a special heap table... 181

CHAPTER 9 Setting Space Management Properties 183
Reducing index maintenance... 183

Advantages of using fillfactor .. 184
Disadvantages of using fillfactor.. 184
Setting fillfactor values .. 185
fillfactor examples.. 185
Use of the sorted_data and fillfactor options 188

Reducing row forwarding ... 189
Default, minimum, and maximum values for exp_row_size .. 189
Specifying an expected row size with create table................ 190
Adding or changing an expected row size............................. 191
Setting a default expected row size server-wide 191
Displaying the expected row size for a table 192
Choosing an expected row size for a table 192
Conversion of max_rows_per_page to exp_row_size........... 193
Monitoring and managing tables that use expected row size 194

Leaving space for forwarded rows and inserts............................. 194
Extent allocation operations and reservepagegap 195
Specifying a reserve page gap with create table................... 196
Specifying a reserve page gap with create index.................. 197
Changing reservepagegap .. 197
reservepagegap examples .. 198

Contents

Performance and Tuning: Basics ix

Choosing a value for reservepagegap 199
Monitoring reservepagegap settings 199
reservepagegap and sorted_data options to create index 200

Using max_rows_per_page on allpages-locked tables................ 202
Reducing lock contention .. 203
Indexes and max_rows_per_page .. 203
select into and max_rows_per_page..................................... 204
Applying max_rows_per_page to existing data..................... 204

CHAPTER 10 Memory Use and Performance .. 205
How memory affects performance ... 205
How much memory to configure .. 206
Dynamic reconfiguration .. 209

Dynamic memory allocation .. 209
How memory is allocated .. 210

Caches in Adaptive Server... 211
CAche sizes and buffer pools.. 211

Procedure cache .. 212
Getting information about the procedure cache size............. 212
Procedure cache sizing ... 213
Estimating stored procedure size .. 214

Data cache ... 215
Default cache at installation time... 215
Page aging in data cache.. 215
Effect of data cache on retrievals .. 216
Effect of data modifications on the cache.............................. 217
Data cache performance ... 218
Testing data cache performance... 218

Configuring the data cache to improve performance 220
Commands to configure named data caches........................ 222
Tuning named caches ... 222
Cache configuration goals ... 223
Gather data, plan, and then implement 224
Evaluating cache needs .. 225
Large I/O and performance ... 225
Reducing spinlock contention with cache partitions 228
Cache replacement strategies and policies........................... 228

Named data cache recommendations ... 230
Sizing caches for special objects, tempdb, and transaction logs .

232
Basing data pool sizes on query plans and I/O 236
Configuring buffer wash size ... 238
Overhead of pool configuration and binding objects 239

Maintaining data cache performance for large I/O 240

Contents

x Adaptive Server Enterprise

Diagnosing excessive I/O Counts ... 241
Using sp_sysmon to check large I/O performance................ 241

Speed of recovery .. 242
Tuning the recovery interval .. 242
Effects of the housekeeper wash task on recovery time 243

Auditing and performance .. 243
Sizing the audit queue... 244
Auditing performance guidelines ... 245

Text and images pages.. 245

CHAPTER 11 Determining Sizes of Tables and Indexes 247
Why object sizes are important to query tuning 247
Tools for determining the sizes of tables and indexes 248
Effects of data modifications on object sizes 249
Using optdiag to display object sizes ... 249

Advantages of optdiag... 250
Disadvantages of optdiag.. 250

Using sp_spaceused to display object size.................................. 250
Advantages of sp_spaceused ... 251
Disadvantages of sp_spaceused .. 252

Using sp_estspace to estimate object size 252
Advantages of sp_estspace .. 253
Disadvantages of sp_estspace ... 254

Using formulas to estimate object size... 254
Factors that can affect storage size 254
Storage sizes for datatypes... 255
Tables and indexes used in the formulas.............................. 257
Calculating table and clustered index sizes for allpages-locked

tables .. 257
Calculating the sizes of data-only-locked tables 263
Other factors affecting object size ... 268
Very small rows ... 269
LOB pages .. 270
Advantages of using formulas to estimate object size 271
Disadvantages of using formulas to estimate object size...... 271

CHAPTER 12 How Indexes Work... 273
Types of indexes .. 274

Index pages... 274
Index Size.. 276

Clustered indexes on allpages-locked tables............................... 276
Clustered indexes and select operations 277
Clustered indexes and insert operations 278

Contents

Performance and Tuning: Basics xi

Page splitting on full data pages ... 279
Page splitting on index pages ... 281
Performance impacts of page splitting 281
Overflow pages ... 282
Clustered indexes and delete operations 283

Nonclustered indexes... 285
Leaf pages revisited .. 285
Nonclustered index structure... 286
Nonclustered indexes and select operations......................... 287
Nonclustered index performance .. 288
Nonclustered indexes and insert operations 289
Nonclustered indexes and delete operations 290
Clustered indexes on data-only-locked tables....................... 291

Index covering.. 291
Covering matching index scans .. 292
Covering nonmatching index scans 293

Indexes and caching .. 295
Using separate caches for data and index pages 295
Index trips through the cache .. 295

CHAPTER 13 Indexing for Performance .. 297
How indexes affect performance.. 297
Detecting indexing problems.. 298

Symptoms of poor indexing... 298
Fixing corrupted indexes .. 301

Repairing the system table index .. 301
Index limits and requirements .. 304
Choosing indexes... 305

Index keys and logical keys... 306
Guidelines for clustered indexes ... 306
Choosing clustered indexes .. 307
Candidates for nonclustered indexes 307
Index Selection.. 308
Other indexing guidelines.. 310
Choosing nonclustered indexes .. 311
Choosing composite indexes .. 312
Key order and performance in composite indexes 312
Advantages and disadvantages of composite indexes 314

Techniques for choosing indexes... 315
Choosing an index for a range query 315
Adding a point query with different indexing requirements.... 316

Index and statistics maintenance ... 317
Dropping indexes that hurt performance 318
Choosing space management properties for indexes 318

Contents

xii Adaptive Server Enterprise

Additional indexing tips .. 319
Creating artificial columns ... 319
Keeping index entries short and avoiding overhead 319
Dropping and rebuilding indexes... 320
Configure enough sort buffers... 320
Create the clustered index first.. 320
Configure large buffer pools .. 320

Asynchronous log service .. 320
Understanding the user log cache (ULC) architecture 322
When to use ALS .. 322
Using the ALS ... 323

CHAPTER 14 Cursors and Performance... 325
Definition .. 325

Set-oriented versus row-oriented programming 326
Example .. 327

Resources required at each stage ... 328
Memory use and execute cursors ... 330

Cursor modes... 331
Index use and requirements for cursors....................................... 331

Allpages-locked tables .. 331
Data-only-locked tables... 332

Comparing performance with and without cursors....................... 333
Sample stored procedure without a cursor............................ 333
Sample stored procedure with a cursor................................. 334
Cursor versus noncursor performance comparison 335

Locking with read-only cursors... 336
Isolation levels and cursors.. 338
Partitioned heap tables and cursors... 338
Optimizing tips for cursors.. 339

Optimizing for cursor selects using a cursor 339
Using union instead of or clauses or in lists 340
Declaring the cursor’s intent.. 340
Specifying column names in the for update clause 340
Using set cursor rows.. 341
Keeping cursors open across commits and rollbacks 342
Opening multiple cursors on a single connection.................. 342

CHAPTER 15 Maintenance Activities and Performance.................................. 343
Running reorg on tables and indexes .. 343
Creating and maintaining indexes.. 344

Configuring Adaptive Server to speed sorting....................... 344
Dumping the database after creating an index...................... 345

Performance and Tuning: Basics xiii

Creating an index on sorted data... 345
Maintaining index and column statistics 346
Rebuilding indexes .. 347

Creating or altering a database .. 348
Backup and recovery.. 350

Local backups.. 350
Remote backups.. 350
Online backups .. 351
Using thresholds to prevent running out of log space............ 351
Minimizing recovery time ... 351
Recovery order .. 351

Bulk copy .. 352
Parallel bulk copy... 352
Batches and bulk copy... 353
Slow bulk copy... 353
Improving bulk copy performance.. 353
Replacing the data in a large table .. 354
Adding large amounts of data to a table 354
Using partitions and multiple bulk copy processes 354
Impacts on other users .. 355

Database consistency checker... 355
Using dbcc tune (cleanup).. 355
Using dbcc tune on spinlocks ... 356

When not to use this command ... 356
Determining the space available for maintenance activities......... 356

Overview of space requirements ... 357
Tools for checking space usage and space available 358
Estimating the effects of space management properties....... 360
If there is not enough space .. 361

CHAPTER 16 Tuning Asynchronous Prefetch... 363
How asynchronous prefetch improves performance 363

Improving query performance by prefetching pages 364
Prefetching control mechanisms in a multiuser environment 365
Look-ahead set during recovery .. 366
Look-ahead set during sequential scans 366
Look-ahead set during nonclustered index access................ 367
Look-ahead set during dbcc checks 367
Look-ahead set minimum and maximum sizes...................... 368

When prefetch is automatically disabled 369
Flooding pools ... 370
I/O system overloads ... 370
Unnecessary reads.. 371

Tuning Goals for asynchronous prefetch...................................... 373

xiv Adaptive Server Enterprise

Commands for configuration.. 374
Other Adaptive Server performance features............................... 374

Large I/O.. 374
Fetch-and-discard (MRU) scans.. 376
Parallel scans and large I/Os... 376

Special settings for asynchronous prefetch limits......................... 377
Setting limits for recovery .. 377
Setting limits for dbcc... 378

Maintenance activities for high prefetch performance 378
Eliminating kinks in heap tables... 379
Eliminating kinks in clustered index tables 379
Eliminating kinks in nonclustered indexes 379

Performance monitoring and asynchronous prefetch................... 379

CHAPTER 17 tempdb Performance Issues.. 381
How management of tempdb affects performance....................... 381

Main solution areas for tempdb performance 382
Types and uses of temporary tables .. 382

Truly temporary tables ... 383
Regular user tables.. 383
Worktables... 384

Initial allocation of tempdb .. 384
Sizing the tempdb... 385
Placing tempdb... 386
Dropping the master device from tempdb segments.................... 386

Using multiple disks for parallel query performance 387
Binding tempdb to its own cache.. 387

Commands for cache binding .. 388
Temporary tables and locking .. 388
Minimizing logging in tempdb ... 389

 With select into ... 389
By using shorter rows .. 389

Optimizing temporary tables... 390
Creating indexes on temporary tables 391
Creating nested procedures with temporary tables 391
Breaking tempdb uses into multiple procedures.................... 392

Index.. 393

Performance and Tuning: Basics xv

About This Book

Audience This manual is intended for database administrators, database designers,
developers and system administrators.

Note You may want to use your own database for testing changes and
queries. Take a snapshot of the database in question and set it up on a test
machine.

How to use this book Chapter 1, “Introduction to Performance and Tuning” .

Chapter 2, “Introduction to the Basics” describes the major components
to be analyzed when addressing performance.

Chapter 3, “Networks and Performance” provides a brief description of
relational databases and good database design.

Chapter 4, “Using Engines and CPUs” describes how client processes are
scheduled on engines in Adaptive Server.

Chapter 5, “Distributing Engine Resources” describes how to assign
execution precedence to specific applications.

Chapter 6, “Controlling Physical Data Placement” describes the uses of
segments and partitions for controlling the physical placement of data on
storage devices.

Chapter 7, “Database Design” provides a brief description of relational
databases and good database design.

Chapter 8, “Data Storage” describes Adaptive Server page types, how
data is stored on pages, and how queries on heap tables are executed

Chapter 9, “Setting Space Management Properties” describes how space
management properties can be set for tables to improve performance and
reduce the frequency of maintenance operations on tables and indexes.

Chapter 10, “Memory Use and Performance” describes how Adaptive
Server uses memory for the procedure and data caches.

xvi Adaptive Server Enterprise

Chapter 11, “Determining Sizes of Tables and Indexes” describes different
methods for determining the current size of database objects and for estimating
their future size.

Chapter 15, “Maintenance Activities and Performance” describes the impact
of maintenance activities on performance, and how some activities, such as re-
creating indexes, can improve performance.

Related documents • The remaining manuals for the Performance and Tuning Series are:

• Performance and Tuning: Locking

• Performance and Tuning: Monitoring and Analyzing

• Performance and Tuning: Optimizer and Abstract Plans

• The release bulletin for your platform – contains last-minute information
that was too late to be included in the books.

A more recent version of the release bulletin may be available on the
World Wide Web. To check for critical product or document information
that was added after the release of the product CD, use the Sybase
Technical Library.

• The Installation Guide for your platform – describes installation, upgrade,
and configuration procedures for all Adaptive Server and related Sybase
products.

• Configuring Adaptive Server Enterprise for your platform – provides
instructions for performing specific configuration tasks for Adaptive
Server.

• What’s New in Adaptive Server Enterprise? – describes the new features
in Adaptive Server version 12.5, the system changes added to support
those features, and the changes that may affect your existing applications.

• Transact-SQL User’s Guide – documents Transact-SQL, Sybase’s
enhanced version of the relational database language. This manual serves
as a textbook for beginning users of the database management system.
This manual also contains descriptions of the pubs2 and pubs3 sample
databases.

• System Administration Guide – provides in-depth information about
administering servers and databases. This manual includes instructions
and guidelines for managing physical resources, security, user and system
databases, and specifying character conversion, international language,
and sort order settings.

 About This Book

Performance and Tuning: Basics xvii

• Reference Manual – contains detailed information about all Transact-SQL
commands, functions, procedures, and data types. This manual also
contains a list of the Transact-SQL reserved words and definitions of
system tables.

• The Utility Guide – documents the Adaptive Server utility programs, such
as isql and bcp, which are executed at the operating system level.

• The Quick Reference Guide – provides a comprehensive listing of the
names and syntax for commands, functions, system procedures, extended
system procedures, data types, and utilities in a pocket-sized book.
Available only in print version.

• The System Tables Diagram – illustrates system tables and their entity
relationships in a poster format. Available only in print version.

• Error Messages and Troubleshooting Guide – explains how to resolve
frequently occurring error messages and describes solutions to system
problems frequently encountered by users.

• Component Integration Services User’s Guide – explains how to use the
Adaptive Server Component Integration Services feature to connect
remote Sybase and non-Sybase databases.

• Java in Adaptive Server Enterprise – describes how to install and use Java
classes as data types, functions, and stored procedures in the Adaptive
Server database.

• XML Services in Adaptive Server Enterprise – describes the Sybase native
XML processor and the Sybase Java-based XML support, introduces
XML in the database, and documents the query and mapping functions
that comprise XML Services.

• Using Sybase Failover in a High Availability System – provides
instructions for using Sybase’s Failover to configure an Adaptive Server
as a companion server in a high availability system.

• Job Scheduler User’s Guide – provides instructions on how to create and
schedule jobs on a local or remote Adaptive Server using the command
line or a graphical user interface (GUI).

• Using Adaptive Server Distributed Transaction Management Features –
explains how to configure, use, and troubleshoot Adaptive Server DTM
features in distributed transaction processing environments.

• EJB Server User’s Guide – explains how to use EJB Server to deploy and
execute Enterprise JavaBeans in Adaptive Server.

xviii Adaptive Server Enterprise

• XA Interface Integration Guide for CICS, Encina, and TUXEDO –
provides instructions for using Sybase’s DTM XA interface with X/Open
XA transaction managers.

• Glossary – defines technical terms used in the Adaptive Server
documentation.

• Sybase jConnect for JDBC Programmer’s Reference – describes the
jConnect for JDBC product and explains how to use it to access data stored
in relational database management systems.

• Full-Text Search Specialty Data Store User’s Guide – describes how to use
the Full-Text Search feature with Verity to search Adaptive Server
Enterprise data.

• Historical Server User’s Guide –describes how to use Historical Server to
obtain performance information for SQL Server and Adaptive Server.

• Monitor Server User’s Guide – describes how to use Monitor Server to
obtain performance statistics from SQL Server and Adaptive Server.

• Monitor Client Library Programmer’s Guide – describes how to write
Monitor Client Library applications that access Adaptive Server
performance data.

Other sources of
information

Use the Sybase Technical Library CD and the Technical Library Product
Manuals Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the Technical Library CD. It is included with
your software. To read or print documents on the Getting Started CD you
need Adobe Acrobat Reader (downloadable at no charge from the Adobe
Web site, using a link provided on the CD).

• The Technical Library CD contains product manuals and is included with
your software. The DynaText reader (included on the Technical Library
CD) allows you to access technical information about your product in an
easy-to-use format.

Refer to the Technical Library Installation Guide in your documentation
package for instructions on installing and starting the Technical Library.

• The Technical Library Product Manuals Web site is an HTML version of
the Technical Library CD that you can access using a standard Web
browser. In addition to product manuals, you will find links to
EBFs/Updates, Technical Documents, Case Management, Solved Cases,
newsgroups, and the Sybase Developer Network.

 About This Book

Performance and Tuning: Basics xix

To access the Technical Library Product Manuals Web site, go to Product
Manuals at http://www.sybase.com/support/manuals/.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select Products from the navigation bar on the left.

3 Select a product name from the product list and click Go.

4 Select the Certification Report filter, specify a time frame, and click Go.

5 Click a Certification Report title to display the report.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software updates

❖ Finding the latest information on EBFs and software updates

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Updates. Enter user name and password information, if
prompted (for existing Web accounts) or create a new account (a free
service).

3 Select a product.

4 Specify a time frame and click Go.

5 Click the Info icon to display the EBF/Update report, or click the product
description to download the software.

Conventions This section describes conventions used in this manual.

xx Adaptive Server Enterprise

Formatting SQL
statements

SQL is a free-form language. There are no rules about the number of words you
can put on a line or where you must break a line. However, for readability, all
examples and syntax statements in this manual are formatted so that each
clause of a statement begins on a new line. Clauses that have more than one part
extend to additional lines, which are indented.

Font and syntax
conventions

The font and syntax conventions used in this manual are shown in Table 1.0:

Table 1: Font and syntax conventions in this manual

Element Example

Command names, command option names, utility
names, utility flags, and other keywords are bold.

select
sp_configure

Database names, datatypes, file names and path
names are in italics.

master database

Variables, or words that stand for values that you
fill in, are in italics.

select

column_name

from

table_name

where

search_conditions

Parentheses are to be typed as part of the command. compute

row_aggregate

 (

column_name

)

Curly braces indicate that you must choose at least
one of the enclosed options. Do not type the braces.

{cash, check, credit}

Brackets mean choosing one or more of the
enclosed options is optional. Do not type the
brackets.

[anchovies]

The vertical bar means you may select only one of
the options shown.

{die_on_your_feet | live_on_your_knees
| live_on_your_feet}

The comma means you may choose as many of the
options shown as you like, separating your choices
with commas to be typed as part of the command.

[extra_cheese, avocados, sour_cream]

 About This Book

Performance and Tuning: Basics xxi

• Syntax statements (displaying the syntax and all options for a command)
appear as follows:
sp_dropdevice [device_name]

or, for a command with more options:

select column_name

from table_name

where search_conditions

In syntax statements, keywords (commands) are in normal font and identifiers
are in lowercase: normal font for keywords, italics for user-supplied words.

• Examples of output from the computer appear as follows:

0736 New Age Books Boston MA

0877 Binnet & Hardley Washington DC

1389 Algodata Infosystems Berkeley CA

Case In this manual, most of the examples are in lowercase. However, you can
disregard case when typing Transact-SQL keywords. For example, SELECT,
Select, and select are the same. Note that Adaptive Server’s sensitivity to the
case of database objects, such as table names, depends on the sort order
installed on Adaptive Server. You can change case sensitivity for single-byte
character sets by reconfiguring the Adaptive Server sort order.

See in the System Administration Guide for more information.

Expressions Adaptive Server syntax statements use the following types of expressions:

An ellipsis (...) means that you can repeat the last
unit as many times as you like.

buy thing = price [cash | check |
credit]
 [, thing = price [cash | check |
credit]]...

You must buy at least one thing and give its price. You
may choose a method of payment: one of the items
enclosed in square brackets. You may also choose to buy
additional things: as many of them as you like. For each
thing you buy, give its name, its price, and (optionally) a
method of payment.

Element Example

xxii Adaptive Server Enterprise

Table 2: Types of expressions used in syntax statements

Examples Many of the examples in this manual are based on a database called pubtune.
The database schema is the same as the pubs2 database, but the tables used in
the examples have more rows: titles has 5000, authors has 5000, and titleauthor
has 6250. Different indexes are generated to show different features for many
examples, and these indexes are described in the text.

The pubtune database is not provided with Adaptive Server. Since most of the
examples show the results of commands such as set showplan and set statistics
io, running the queries in this manual on pubs2 tables will not produce the same
I/O results, and in many cases, will not produce the same query plans as those
shown here.

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

Usage Definition

expression Can include constants, literals, functions, column identifiers, variables, or
parameters

logical expression An expression that returns TRUE, FALSE, or UNKNOWN

constant expression An expression that always returns the same value, such as “5+3” or “ABCDE”

float_expr Any floating-point expression or expression that implicitly converts to a floating
value

integer_expr Any integer expression, or an expression that implicitly converts to an integer value

numeric_expr Any numeric expression that returns a single value

char_expr Any expression that returns a single character-type value

binary_expression An expression that returns a single binary or varbinary value

Performance and Tuning: Basics 1

C H A P T E R 1 Introduction to Performance and
Tuning

Tuning Adaptive Server Enterprise for performance can involve several
processes in analyzing the “Why?” of slow performance, contention,
optimizing and usage.

.This manual covers the basics for understanding and investigating
performance questions in Adaptive Server. It guides you in how to look
for the places that may be impeding performance.

The remaining manuals for the Performance and Tuning Series are:

Performance and Tuning: Locking

Adaptive Server locks the tables, data pages, or data rows currently
used by active transactions by locking them. Locking is a
concurrency control mechanism: it ensures the consistency of data
within and across transactions. Locking is needed in a multiuser
environment, since several users may be working with the same data
at the same time.

Carefully considered indexes, built on top of a good database design,
are the foundation of a high-performance Adaptive Server
installation. However, adding indexes without proper analysis can
reduce the overall performance of your system. Insert, update, and
delete operations can take longer when a large number of indexes
need to be updated.

• Performance and Tuning: Optimizer and Abstract Plans

The Optimizer in the Adaptive Server takes a query and finds the best
way to execute it. The optimization is done based on the statistics for
a database or table. The optimized plan stays in effect until the
statistics are updated or the query changes. You can update the
statistics on the entire table or by sampling on a percentage of the
data.

2 Adaptive Server Enterprise

Adaptive Server can generate an abstract plan for a query, and save the text
and its associated abstract plan in the sysqueryplanssystem table. Abstract
plans provide an alternative to options that must be specified in the batch
or query in order to influence optimizer decisions. Using abstract plans,
you can influence the optimization of a SQL statement without having to
modify the statement syntax.

• Performance and Tuning: Monitoring and Analyzing

Adaptive Server employs reports for monitoring the server. This manual
explains how statistics are obtained and used for monitoring and
optimizing. The stored procedure sp_sysmon produces a large report that
shows the performance in Adaptive Server.

You can also use the Sybase Monitor in Sybase Central for realtime
information on the status of the server.

Each of the manuals has been set up to cover specific information that may be
used by the system administrator and the database administrator.

Performance and Tuning: Basics 3

C H A P T E R 2 Introduction to the Basics

Good performance
Performance is the measure of efficiency for an application or multiple
applications running in the same environment. Performance is usually
measured in response time and throughput.

Response time
Response time is the time that a single task takes to complete. The
response time can be shortened by:

• Reducing contention and wait times, particularly disk I/O wait times

• Using faster components

• Reducing the amount of time the resources are needed

In some cases, Adaptive Server is optimized to reduce initial response
time, that is, the time it takes to return the first row to the user.

This is especially useful in applications where a user may retrieve several
rows with a query and then browse through them slowly with a front-end
tool.

Topic Page
Good performance 3

Tuning performance 4

Identifying system limits 12

Setting tuning goals 14

Analyzing performance 14

Tuning performance

4 Adaptive Server Enterprise

Throughput
Throughput refers to the volume of work completed in a fixed time period.
There are two ways of thinking of throughput:

• As a single transaction, for example, 5 UpdateTitle transactions per
minute, or

• As the entire Adaptive Server, for example, 50 or 500 server-wide
transactions per minute

Throughput is commonly measured in transactions per second (tps), but it can
also be measured per minute, per hour, per day, and so on.

When you set the various limits for Adaptive Server it means that the server
may have to handle large volumes of data for a single query, DML operation,
or command. For example, if you use a data-only-locked (DOL) table with a
char(2000) column, Adaptive Server must allocate memory to perform column
copying while scanning the table. Increased memory requests during the life of
a query or command means a potential reduction in throughput

Designing for performance
Most of the gains in performance derive from good database design, thorough
query analysis, and appropriate indexing. The largest performance gains can be
realized by establishing a good database design and by learning to work with
the Adaptive Server query optimizer as you develop your applications.

Other considerations, such as hardware and network analysis, can locate
performance bottlenecks in your installation.

Tuning performance
Tuning is optimizing performance. A system model of Adaptive Server and its
environment can be used to identify performance problems at each layer.

CHAPTER 2 Introduction to the Basics

Performance and Tuning: Basics 5

Figure 2-1: Adaptive Server system model

A major part of tuning is reducing the contention for system resources. As the
number of users increases, contention for resources such as data and procedure
caches, spinlocks on system resources, and the CPU(s) increases. The
probability of locking data pages also increases.

Tuning levels
Adaptive Server and its environment and applications can be broken into
components, or tuning layers, to isolate certain components of the system for
analysis. In many cases, two or more layers must be tuned so that they work
optimally together.

In some cases, removing a resource bottleneck at one layer can reveal another
problem area. On a more optimistic note, resolving one problem can sometimes
alleviate other problems.

For example, if physical I/O rates are high for queries, and you add more
memory to speed response time and increase your cache hit ratio, you may ease
problems with disk contention.

The following information is on the tuning layers for Adaptive Server.

Application code
Open Client

N
et

w
or

k
in

te
rfa

ce

Response
Request

RPC

Data

Procedure

sql compiler

SQL executive

cache

Transaction Indexes

Data tables

System
procedures

cache

Shared memory

log

Access Manager

Tuning performance

6 Adaptive Server Enterprise

Application layer

Most performance gains come from query tuning, based on good database
design. This guide is devoted to an explanation of Adaptive Server internals
with query processing techniques and tools to maintain high performance.

Issues at the application layer include the following:

• Decision Support System (DSS) and online transaction processing (OLTP)
require different performance strategies.

• Transaction design can reduce performance, since long-running
transactions hold locks, and reduce the access of other users to data.

• Relational integrity requires joins for data modification.

• Indexing to support selects increases time to modify data.

• Auditing for security purposes can limit performance.

Options to address these issues include:

• Using remote or replicated processing to move decision support off the
OLTP machine

• Using stored procedures to reduce compilation time and network usage

• Using the minimum locking level that meets your application needs

Database layer

Applications share resources at the database layer, including disks, the
transaction log, and data cache.

One database may have 2^31 (2,147,483,648) logical pages. These logical
pages are divided among the various devices, up to the limit available on each
device. Therefore, the maximum possible size of a database depends on the
number and size of available devices.

The "overhead" is space reserved to the server, not available for

any user database. It is:

• size of the master database,

• plus size of the model database,

• plus size of tempdb

• (12.0 and beyond) plus size of sybsystemdb,

• plus 8k bytes for the server's configuration area.

CHAPTER 2 Introduction to the Basics

Performance and Tuning: Basics 7

Issues at the database layer include:

• Developing a backup and recovery scheme

• Distributing data across devices

• Auditing affects performance; audit only what you need

• Scheduling maintenance activities that can slow performance and lock
users out of tables

Options to address these issues include:

• Using transaction log thresholds to automate log dumps and avoid running
out of space

• Using thresholds for space monitoring in data segments

• Using partitions to speed loading of data

• Placing objects on devices to avoid disk contention or to take advantage of
I/O parallel.

• Caching for high availability of critical tables and indexes

Adaptive Server layer

At the server layer, there are many shared resources, including the data and
procedure caches, locks, and CPUs.

Issues at the Adaptive Server layer are as follows:

• The application types to be supported: OLTP, DSS, or a mix.

• The number of users to be supported can affect tuning decisions—as the
number of users increases, contention for resources can shift.

• Network loads.

• Replication Server® or other distributed processing can be an issue when
the number of users and transaction rate reach high levels.

Options to address these issues include:

• Tuning memory (the most critical configuration parameter) and other
parameters.

• Deciding on client vs. server processing—can some processing take place
at the client side?

• Configuring cache sizes and I/O sizes.

Tuning performance

8 Adaptive Server Enterprise

• Adding multiple CPUs.

• Scheduling batch jobs and reporting for off-hours.

• Reconfiguring certain parameters for shifting workload patterns.

• Determining whether it is possible to move DSS to another Adaptive
Server.

Devices layer

This layer is for the disk and controllers that store your data. Adaptive Server
can manage up to 256 devices.

Issues at the devices layer include:

• You mirror the master device, the devices that hold the user database, or
the database logs?

• How do you distribute system databases, user databases, and database logs
across the devices?

• Do you need partitions for parallel query performance or high insert
performance on heap tables?

Options to address these issues include:

• Using more medium-sized devices and controllers may provide better I/O
throughput than a few large devices

• Distributing databases, tables, and indexes to create even I/O load across
devices

• Using segments and partitions for I/O performance on large tables used in
parallel queries

Network layer

This layer has the network or networks that connect users to Adaptive Server.

Virtually all users of Adaptive Server access their data via the network. Major
issues with the network layer are:

• The amount of network traffic

• Network bottlenecks

• Network speed

Options to address these issues include:

CHAPTER 2 Introduction to the Basics

Performance and Tuning: Basics 9

• Configuring packet sizes to match application needs

• Configuring subnets

• Isolating heavy network uses

• Moving to a higher-capacity network

• Configuring for multiple network engines

• Designing applications to limit the amount of network traffic required

Hardware layer

This layer concerns the CPUs available.

Issues at the hardware layer include:

• CPU throughput

• Disk access: controllers as well as disks

• Disk backup

• Memory usage

Options to address these issues include:

• Adding CPUs to match workload

• Configuring the housekeeper task to improve CPU utilization

• Following multiprocessor application design guidelines to reduce
contention

• Configuring multiple data caches

Operating – system layer

Ideally, Adaptive Server is the only major application on a machine, and must
share CPU, memory, and other resources only with the operating system, and
other Sybase software such as Backup Server™ and Adaptive Server
Monitor™.

At the operating system layer, the major issues are:

• The file systems available to Adaptive Server

• Memory management – accurately estimating operating system overhead
and other program memory use

Configuration parameters

10 Adaptive Server Enterprise

• CPU availability and allocation to Adaptive Server

Options include:

• Network interface

• Choosing between files and raw partitions

• Increasing the memory size

• Moving client operations and batch processing to other machines

• Multiple CPU utilization for Adaptive Server

Configuration parameters
Table 2-1 summarizes the configuration parameters.

Table 2-1: Configuration parameters

Parameter Function

allocate max shared memory Determines whether Adaptive Server allocates all the memory specified by
max memory at start-up or only the amount of memory the configuration
parameter requires.

cis bulk insert array size Controls the size of the array when performing a bulk transfer of data from
one Adaptive Server to another. During the transfer, CIS buffers rows
internally, and asks the Open Client bulk library to transfer them as a block.

dynamic allocation on demand Determines when memory is allocated for changes to dynamic memory
configuration parameters.

enable enterprise java beans Enables or disables the EJB Server.

enable file access Enables or disables access through proxy tables to the External File
System. Requires a license for ASE_XFS.

enable full-text search Enables or disables Enhances Full-Text Search services. Requires a
license for ASE_EFTS.

enable row level access control Enables or disables row level access control.

enable ssl Enables or disables Secure Sockets Layer session-based security

enable surrogate processing Enables or disables the processing and maintains the integrity of
surrogate pairs in Unicode data.

enable unicode normalization Enables or disables Unilib character normalization.
heap memory per user Specifies the heap memory per user for Adaptive Server.

max memory Specifies the maximum amount of total logical memory that you can
configure Adaptive Server to allocate.

CHAPTER 2 Introduction to the Basics

Performance and Tuning: Basics 11

Dynamic
Table 2-2: Dynamic configuration parameters

number of engines at startup Specifies the number of engines that are brought online at startup. This
replaces the minimum online engines parameter.

number of java sockets Specifies the maximum amount of total physical memory that you can
configure Adaptive Server to allocate.

procedure cache size Specifies the size of the procedure cache in 2K pages.
total logical memory Specifies the amount memory that Adaptive Server is configured to use.

total physical memory Displays the amount of memory that is being used by Adaptive Server at a
given moment in time.

total memory Displays the total logical memory for the current configuration of Adaptive
Server

size of process object heap Now a server-wide setting and not assigned to a specific task.

Parameter Function

Configuration parameter Configuration parameter

addition network memory number of pre-allocated extents

audit queue size number of user connections

cpu grace time number of worker processes

deadlock pipe max messages open index hash spinlock ratio

default database size open index spinlock ratio

default fill factor percent open object spinlock ratio

disk i/o structures partition groups

errorlog pipe max messages partition spinlock ratio

max cis remore connections permission cache entries

memory per worker process plan text pipe max messages

number of alarms print recovery information

number of aux scan descriptors process wait events

number of devices size of global fixed heap

number of dtx participants size of process object heap

number of java sockets size of shared class heap

number of large i/o buffers size of unilib cache

number of locks sql text pipe max messages

number of mailboxes statement pipe max messages

number of messages tape retention in days

number of open databases time slice

number of open indexes user log cache spinlock ratio

Identifying system limits

12 Adaptive Server Enterprise

Identifying system limits
There are limits to maximum performance. The physical limits of the CPU,
disk subsystems, and networks impose limits. Some of these can be overcome
by adding memory, using faster disk drives, switching to higher bandwidth
networks, and adding CPUs.

Given a set of components, any individual query has a minimum response time.
Given a set of system limitations, the physical subsystems impose saturation
points.

Varying logical page sizes
Adaptive Server version 12.5 does not use the buildmaster binary to build the
master device. Instead, Sybase has incorporated the buildmaster functionality
in the dataserver binary.

The dataserver command allows you to create master devices and databases
with logical pages of size 2K, 4K, 8K, or 16K. Larger logical pages allow you
to create larger rows, which can improve your performance because Adaptive
Server accesses more data each time it reads a page. For example, a 16K page
can hold 8 times the amount of data as a 2K page, an 8K page holds 4 times as
much data as a 2K page, and so on, for all the sizes for logical pages.

Number of columns and column size
The maximum number of columns you can create in a table is:

• 1024 for fixed-length columns in both all-pages-locked (APL) and data-
only-locked (DOL) tables

• 254 for variable-length columns in an APL table

• 1024 for variable-length columns in an DOL table

The maximum size of a column depends on:

number of open objects

Configuration parameter Configuration parameter

CHAPTER 2 Introduction to the Basics

Performance and Tuning: Basics 13

• Whether the table includes any variable- or fixed-length columns.

• The logical page size of the database. For example, in a database with 2K
logical pages, the maximum size of a column in an APL table can be as
large as a single row, about 1962 bytes, less the row format overheads.
Similarly, for a 4K page, the maximum size of a column in a APL table can
be as large as 4010 bytes, less the row format overheads. See Table 2-3 for
more information.

Maximum length of expressions, variables, and stored procedure
arguments

The maximum size for expressions, variables, and arguments passed to stored
procedures is 16384 (16K) bytes, for any page size. This can be either character
or binary data. You can insert variables and literals up to this maximum size
into text columns without using the writetext command.

Number of logins
Table 2-3 lists the limits for the number of logins, users, and groups for
Adaptive Server.

Table 2-3: Limits for number of logins, users, and groups

Item
Version 12.0
limit Version 12.5 limit New range

Number of logins per
server (SUID)

64K 2 billion plus 32K -32768 to 2 billion

Number of users per
database

48K 2 billion less 1032193 -32768 to16383;
1048577 to 2 Billion

Number of groups per
database

16K 1032193 16384 to 1048576

Setting tuning goals

14 Adaptive Server Enterprise

Performance implications for limits
The limits set for Adaptive Server mean that the server may have to handle
large volumes of data for a single query, DML operation, or command. For
example, if you use a data-only-locked (DOL) table with a char(2000) column,
Adaptive Server must allocate memory to perform column copying while
scanning the table. Increased memory requests during the life of a query or
command means a potential reduction in throughput

Setting tuning goals
For many systems, a performance specification developed early in the
application life cycle sets out the expected response time for specific types of
queries and the expected throughput for the system as a whole.

Analyzing performance
When there are performance problems, you need to determine the sources of
the problems and your goals in resolving them. The steps for analyzing
performance problems are:

1 Collect performance data to get baseline measurements. For example, you
might use one or more of the following tools:

• Benchmark tests developed in-house or industry-standard third-party
tests.

• sp_sysmon, a system procedure that monitors Adaptive Server
performance and provides statistical output describing the behavior of
your Adaptive Server system.

See Performance and Tuning Guide: Monitoring and Analyzing for
Performance for information on using sp_sysmon.

• Adaptive Server Monitor provides graphical performance and tuning
tools and object-level information on I/O and locks.

• Any other appropriate tools.

CHAPTER 2 Introduction to the Basics

Performance and Tuning: Basics 15

2 Analyze the data to understand the system and any performance problems.
Create and answer a list of questions to analyze your Adaptive Server
environment. The list might include questions such as:

• What are the symptoms of the problem?

• What components of the system model affect the problem?

• Does the problem affect all users or only users of certain applications?

• Is the problem intermittent or constant?

3 Define system requirements and performance goals:

• How often is this query executed?

• What response time is required?

4 Define the Adaptive Server environment–know the configuration and
limitations at all layers.

5 Analyze application design – examine tables, indexes, and transactions.

6 Formulate a hypothesis about possible causes of the performance problem
and possible solutions, based on performance data.

7 Test the hypothesis by implementing the solutions from the last step:

• Adjust configuration parameters.

• Redesign tables.

• Add or redistribute memory resources.

8 Use the same tests used to collect baseline data in step 1 to determine the
effects of tuning. Performance tuning is usually a repetitive process.

If the actions taken based on step 7 do not meet the performance
requirements and goals set in step 3, or if adjustments made in one
area cause new performance problems, repeat this analysis starting
with step 2. You might need to reevaluate system requirements and
performance goals.

9 If testing shows that your hypothesis is correct, implement the solution in
your development environment.

Normal Forms
Usually, several techniques are used to reorganize a database to minimize and
avoid inconsistency and redundancy, such as Normal Forms.

Analyzing performance

16 Adaptive Server Enterprise

Using the different levels of Normal Forms organizes the information in such
a way that it promotes efficient maintenance, storage and updating. It
simplifies query and update management, including the security and integrity
of the database. However, such normalization usually creates a larger number
of tables which may in turn increase the size of the database.

Database Administrators must decide the various techniques best suited their
environment.

Use the Adaptive Server Reference Manual as a guide in setting up databases.

Locking
Adaptive Server protects the tables, data pages, or data rows currently used by
active transactions by locking them. Locking is needed in a multiuser
environment, since several users may be working with the same data at the
same time.

Locking affects performance when one process holds locks that prevent
another process from accessing needed data. The process that is blocked by the
lock sleeps until the lock is released. This is called lock contention.

A more serious locking impact on performance arises from deadlocks. A
deadlock occurs when two user processes each have a lock on a separate page
or table and each wants to acquire a lock on the same page or table held by the
other process. The transaction with the least accumulated CPU time is killed
and all of its work is rolled back.

Understanding the types of locks in Adaptive Server can help you reduce lock
contention and avoid or minimize deadlocks.

Locking for performance is discussed in the Performance and Tuning:
Locking, manual see the chapters on Configuring and Tuning, Using Locking
Commands and Reports on Locking.

Special Considerations
Databases are allocated among the devices in fragments called "disk pieces",
where each disk piece is represented by one entry in master.dbo.sysusages.
Each disk piece:

• Represents a contiguous fragment of one device, up to the size of the
device.

CHAPTER 2 Introduction to the Basics

Performance and Tuning: Basics 17

• Is an even multiple of 256 logical pages.

One device may be divided among many different databases. Many fragments
of one device may be apportioned to one single database as different disk
pieces.

There is no practical limit on the number of disk pieces in one database, except
that the Adaptive Server's configured memory must be large enough to
accommodate its in-memory representation.

Because disk pieces are multiples of 256 logical pages, portions of odd-sized
devices may remain unused. For example, if a device has 83 Mb and the server
uses a 16k page size, 256 logical pages is 256 * 16k = 4 Mb. The final 3 Mb
of that device will not be used by any database because it's too small to make
a group of 256 logical pages.

The master device sets aside its first 8k bytes as a configuration area. Thus, to
avoid any wasted space, a correctly-sized master device should be an even
number of 256 logical pages *plus* 8 kb.

Analyzing performance

18 Adaptive Server Enterprise

Performance and Tuning: Basics 19

C H A P T E R 3 Networks and Performance

This chapter discusses the role that the network plays in performance of
applications using Adaptive Server.

Introduction
Usually, the System Administrator is the first to recognize a problem on
the network or in performance, including such things as:

• Process response times vary significantly for no apparent reason.

• Queries that return a large number of rows take longer than expected.

• Operating system processing slows down during normal Adaptive
Server processing periods.

• Adaptive Server processing slows down during certain operating
system processing periods.

• A particular client process seems to slow all other processes.

Potential performance problems
Some of the underlying problems that can be caused by networks are:

• Adaptive Server uses network services poorly.

Topic Page
Introduction 19

Potential performance problems 19

How Adaptive Server uses the network 21

Changing network packet sizes 27

Impact of other server activities 31

Improving network performance 32

Potential performance problems

20 Adaptive Server Enterprise

• The physical limits of the network have been reached.

• Processes are retrieving unnecessary data values, increasing network
traffic unnecessarily.

• Processes are opening and closing connections too often, increasing
network load.

• Processes are frequently submitting the same SQL transaction, causing
excessive and redundant network traffic.

• Adaptive Server does not have enough network memory.

• Adaptive Server’s network packet sizes are not big enough to handle the
type of processing needed by certain clients.

Basic questions on network performance
When looking at problems that you think might be network-related, ask
yourself these questions:

• Which processes usually retrieve a large amount of data?

• Are a large number of network errors occurring?

• What is the overall performance of the network?

• What is the mix of transactions being performed using SQL and stored
procedures?

• Are a large number of processes using the two-phase commit protocol?

• Are replication services being performed on the network?

• How much of the network is being used by the operating system?

Techniques summary
Once you have gathered the data, you can take advantage of several techniques
that should improve network performance. These techniques include:

• Using small packets for most database activity

• Using larger packet sizes for tasks that perform large data transfers

• Using stored procedures to reduce overall traffic

• Filtering data to avoid large transfers

CHAPTER 3 Networks and Performance

Performance and Tuning: Basics 21

• Isolating heavy network users from ordinary users

• Using client control mechanisms for special cases

Using sp_sysmon while changing network configuration
Use sp_sysmon while making network configuration changes to observe the
effects on performance. Use Adaptive Server Monitor to pinpoint network
contention on a particular database object.

For more information about using sp_sysmon, see Chapter 8, “Monitoring
Performance with sp_sysmon,” in Performance and Tuning Guide:
Monitoring and Analyzing.

How Adaptive Server uses the network
All client/server communication occurs over a network via packets. Packets
contain a header and routing information, as well as the data they carry.

Adaptive Server was one of the first database systems to be built on a network-
based client/server architecture. Clients initiate a connection to the server. The
connection sends client requests and server responses. Applications can have
as many connections open concurrently as they need to perform the required
task.

The protocol used between the client and server is known as the Tabular Data
Stream™ (TDS), which forms the basis of communication for many Sybase
products.

Managing Network Listeners
A network listener is a system task that listens on a given network port for
incoming client connections, and creates one DBMS task for each client
connection. Adaptive Server creates one listener task for each network port on
which Adaptive Server listens for incoming client connection requests.
Initially these ports consist of the master entries in the interfaces file.

Managing Network Listeners

22 Adaptive Server Enterprise

The initial number of network listener tasks is equal to the number of master
entries in the interfaces file. The maximum number of network listeners
(including those created at startup) is 32. For example, if there are two master
entries in the interfaces file under the server name at startup, you can create 30
more listener tasks.

Each additional listener task that you create consumes resources equal to a user
connection. So, after creating a network listener, Adaptive Server can accept
one less user connection. The number of user connections configuration
parameter includes both the number of network listeners and the number of
additional listener ports.

The number of listener ports is determined at startup by the number of master
entries in the interfaces file. The interfaces file entry is in the form:

SYBSRV1
master tli tcp /dev/tcp \x00020abc123456780000000000000000
query tli tcp /dev/tcp \x00020abc123456780000000000000000
master tli tcp /dev/tcp \x00020abd123456780000000000000000

This interfaces file entry includes two listener ports. For more information
about the interfaces file, see Connecting to Adaptive Server in the System
Administration Guide.

Network Listeners on UNIX
Network listeners run on UNIX slightly differently than they do on Windows
NT because on UNIX each Adaptive Server engine is a separate process, but
on Windows NT, Adaptive Server is a single process.

The following are true of network listeners on UNIX:

• Adaptive Server uses one listener task per port. Each listener task
functions as multiple logical listeners by switching from engine to engine,
attempting to balance the load. For example, a 64-engine Adaptive Server
with two master ports has two listener tasks, but these two listener tasks
act as 128 logical listener tasks, so the server has two physical and 128
logical listeners. Starting a listener on engine 3 does not result in Adaptive
Server spawning a new listener task unless the port does not already have
a listener

• A listener task accepts connections on engines on which it is enabled. So
a single listener task corresponds to many logical listeners. On Windows
NT, logical listeners and listener tasks are a one to one correspondence.

CHAPTER 3 Networks and Performance

Performance and Tuning: Basics 23

• Stopping a listener on a specific engine terminates the logical listener for
this engine since the listener task no longer switches to that engine.
Adaptive Server terminates the listener task in case this was the last engine
on which it was allowed to operate.

Managing listeners with sp_listener
You can manage listeners with the sp_listener system procedure. sp_listener
allows you to:

• Start additional listeners (the maximum number of listeners is 32)

• Stop listeners

• Suspend listeners

• Resume suspended listeners

The syntax for sp_listener is:

sp_listener “command”, “server_name”, engine | remaining

or

sp_listener “command”, “[protocol:]machine:port”, engine | remaining

The maximum number of listeners you can add in addition to the listeners
created at startup is 32. The semantics for sp_listener is atomic: if a command
cannot be completed successfully, it is aborted.

Where command is can be start, stop, suspend, resume, or status, server_name
is the name of Adaptive Server, engine specifies the number of the engine
affected by this command (this parameter is ignored by Windows NT, engine
can be a single-engine number in quotes ("2"), a list ("3,5,6"), a range ("2-5"),
or mix of all ("2,3-5,7”)), remaining specifies that the command is to take effect
on all engines on which it can be meaningfully applied (that is, where the
listener is in a state in which the command is can take effect), protocol is the
protocol used (tcp, tli, ssltcp, ssltli, winsock, sslnlwnsck, or sslwinsock), and
machine:port is the machine name and port number (as specified in the
interfaces file) to which the listener listens.

The first syntax description above is intended for all master ports listed in the
interfaces file. This syntax allows you to start, stop, suspend, or resume activity
simultaneously on all master entries under the server name in the interfaces
file. The second syntax description allows you to manage listeners not listed in
the interfaces file.

Managing Network Listeners

24 Adaptive Server Enterprise

Both syntaxes are dynamic, that is you do not have to restart Adaptive Server
to implement the change.

Note Stopping a listener that is listed in the interfaces file does not remove this
entry from the interfaces file.

The examples in this chapter use an Adaptive Server named “ASE1251”
running on a host named “spartacus.” The examples using the first syntax for
sp_listener apply only to the master ports registered in the interfaces file under
Adpative Server ASE1251. Commands using the second syntax for sp_listener
(in the form tcp:spartacus:4556) apply only to the single master port
specified (4556 in this example). A master port is unambiguously determined
by a network protocol, a hostname and a port number.

Using the remaining parameter
The remaining parameter specifies that, for the command you are running (start,
stop, resume, and so on), the command runs successfully for all listeners that
are in a state that allow the change (for example, from start to stop). For
example, if you attempt to start listeners on engines one through six, but
engines one, four, and five are unavailable, sp_listener...remaining starts
listeners on engines two, three, and six, disregarding the offline engines.

Without the remaining parameter, an sp_listener command fails if the entire
command cannot succeed for all listeners. If you do not include the remaining
parameter in the example above, the command fails even though it could have
started listeners on engines two, three, and six.

Determining the status of listeners
sp_listener...”status” reports on the state of the listeners. The state is one of
active, stopped, or suspended. You can query about a specific listener by
indicating the machine, port, or engine number, or you can query about the
status of all listeners by not including any parameters.

The following queries the status of all listeners:

sp_listener “status”

The following queries the status of those listeners on engine three of Adaptive
Server ASE1251 which are registered in the interfaces file:

CHAPTER 3 Networks and Performance

Performance and Tuning: Basics 25

sp_listener “status”, ASE1251, “3”

The following queries the status of the tli listener on port 4556 of the current
Adaptive Server running on machine spartacus:

sp_listener “status” “tli:spartacus:4556”

Starting new listeners
sp_listener...start starts additional listeners. These are listeners in addition to
those listed in the interfaces file. You can specify that the listener start on a
specific range of engines.

The command will not fail when you use the remaining parameter, in case the
listener is already enabled on some engines. If you explicitly include an engine
list, and the listener is running on one of the specified engines, the command
fails.

For example, the following specifies that a listener starts for server ASE1251
on engine number three:

sp_listener “start”, ASE1251, “3”

Or you can specify that the listener start on a certain machine and port number
using a certain protocol. This example specifies that a listener start on port
4556 using the tli protocol on the IP address of machine spartacus on all
engines for which this listener is not already running:

sp_listener “start”, “tli:ASE1251:4556”

You can also specify a range of engine numbers. For example, the following
specifies that listeners start on engines three through six, corresponding to all
master ports registered in the interfaces file under server name ASE1251:

sp_listener “start”, “ASE1251”, “3-6”

The following starts listeners corresponding to master ports registered under
server name ASE1251 in the interfaces file on all engines on which the
corresponding listener is not already active:

sp_listener “start”, “ASE1251”, “3-6”, “remaining”

Managing Network Listeners

26 Adaptive Server Enterprise

Stopping listeners
The stop command terminates the specified listeners. If you specify non-
existent listeners in the syntax, sp_listener fails without affecting the other
listeners. sp_listener...stop also fails if you are trying to stop the last active
listener on the server.

Note sp_listener does not run if you are attempt to stop all active listeners with
the stop parameter.

The following command stops the listener corresponding to the specified tli
address for all engines on which it is active:

sp_listener “stop”, “tli:ASE1251:4556”

This command stops all listeners registered in the interfaces file for server
ASE1251 for the specified range of engines:

sp_listener “stop”, “ASE1251”, “3-6”

(Windows NT only) To stop all listeners on engines three through six that are
in a state that will allow the change:

sp_listener “stop”, “ASE1251”, “remaining”

Suspending listeners
The suspend parameter prevents the listener from accepting any more
connections. sp_listener...suspend is less drastic than sp_listener...stop because
it does not close the listener port on the given engine. It only informs the
listener to stop accepting connections on the given engine until further notice.
sp_listener...suspend is helpful for temporarily preventing a listener from
accepting connections. The listener can resume listening with the resume
parameter. sp_listener...suspend fails if it is suspending the last active listener
on the system.

sp_listener...suspend only affects future connections; it does not affect the
connections that are active.

To suspend a listener on engine three of Adaptive Server ASE1251:

sp_listener “suspend”, ASE1251, 3

The following suspends the listener corresponding to the specified tli address
for all engines on which it is not already running:

CHAPTER 3 Networks and Performance

Performance and Tuning: Basics 27

sp_listener “suspend”, “tli:ASE1251:4556”

To suspend all listeners on engines three through six that are in a state that will
allow the change (assuming the server has seven engines):

sp_listener “suspend”, “ASE1251”, “remaining

Resume suspended listeners
sp_listener...resume instructs suspended listeners to resume listening and to
accept new connections. For example, the following reactivates the listener on
engine three of Adaptive Server ASE1251, above:

sp_listener “resume”, ASE1251, 3

To reactivate listeners on port 4556 of Adaptive Server ASE1251:

sp_listener “resume”, “tli:ASE1251:4556”

To reactivate all listeners on engines three through six that are in a state that
will allow the change:

sp_listener “resume”, “ASE1251”, “remaining

Changing network packet sizes
By default, all connections to Adaptive Server use a default packet size of 512
bytes. This works well for clients sending short queries and receiving small
result sets. However, some applications may benefit from an increased packet
size.

Typically, OLTP sends and receives large numbers of packets that contain very
little data. A typical insert statement or update statement may be only 100 or
200 bytes. A data retrieval, even one that joins several tables, may bring back
only one or two rows of data, and still not completely fill a packet. Applications
using stored procedures and cursors also typically send and receive small
packets.

Decision support applications often include large batches of Transact-SQL and
return larger result sets.

In both OLTP and DSS environments, there may be special needs such as batch
data loads or text processing that can benefit from larger packets.

Changing network packet sizes

28 Adaptive Server Enterprise

The System Administration Guide describes how to change these configuration
parameters:

• The default network packet size, if most of your applications are performing
large reads and writes

• The max network packet size and additional network memory, which
provides additional memory space for large packet connections

Only a System Administrator can change these configuration parameters.

Large versus default packet sizes for user connections
Adaptive Server reserves enough space for all configured user connections to
log in at the default packet size. Large network packets cannot use that space.
Connections that use the default network packet size always have three buffers
reserved for the connection.

Connections that request large packet sizes acquire the space for their network
I/O buffers from the additional network memory region. If there is not enough
space in this region to allocate three buffers at the large packet size,
connections use the default packet size instead.

Number of packets is important
Generally, the number of packets being transferred is more important than the
size of the packets. “Network” performance also includes the time needed by
the CPU and operating system to process a network packet. This per-packet
overhead affects performance the most. Larger packets reduce the overall
overhead costs and achieve higher physical throughput, provided that you have
enough data to be sent.

The following big transfer sources may benefit from large packet sizes:

• Bulk copy

• readtext and writetext commands

• select statements with large result sets

CHAPTER 3 Networks and Performance

Performance and Tuning: Basics 29

There is always a point at which increasing the packet size will not improve
performance, and may in fact decrease performance, because the packets are
not always full. Although there are analytical methods for predicting that point,
it is more common to vary the size experimentally and plot the results. If you
conduct such experiments over a period of time and conditions, you can
determine a packet size that works well for a lot of processes. However, since
the packet size can be customized for every connection, specific experiments
for specific processes can be beneficial.

The results can be significantly different between applications. Bulk copy
might work best at one packet size, while large image data retrievals might
perform better at a different packet size.

If testing shows that some specific applications can achieve better performance
with larger packet sizes, but that most applications send and receive small
packets, clients need to request the larger packet size.

Evaluation tools with Adaptive Server
The sp_monitor system procedure reports on packet activity. This report shows
only the packet-related output:

...
packets received packets sent packet err
---------------- ------------ ----------
10866(10580) 19991(19748) 0(0)
...

You can also use these global variables:

• @@pack_sent – Number of packets sent by Adaptive Server

• @@pack_received – Number of packets received

• @@packet_errors – Number of errors

These SQL statements show how the counters can be used:

select "before" = @@pack_sent
select * from titles
select "after" = @@pack_sent

Both sp_monitor and the global variables report all packet activity for all users
since the last restart of Adaptive Server.

Changing network packet sizes

30 Adaptive Server Enterprise

See Performance and Tuning Guide: Monitoring and Analyzing for
Performance for more information about sp_monitor and these global
variables.

Evaluation tools outside of Adaptive Server
Operating system commands also provide information about packet transfers.
See the documentation for your operating system for more information about
these commands.

Server-based techniques for reducing network traffic
Using stored procedures, views, and triggers can reduce network traffic. These
Transact-SQL tools can store large chunks of code on the server so that only
short commands need to be sent across the network. If your applications send
large batches of Transact-SQL commands to Adaptive Server, converting them
to use stored procedures can reduce network traffic.

• Stored procedures

Applications that send large batches of Transact-SQL can place less load
on the network if the SQL is converted to stored procedures. Views can
also help reduce the amount of network traffic.

You may be able to reduce network overhead by turning off “doneinproc”
packets.

See Performance and Tuning: Monitoring and Analyzing for Performance
for more information.

• Ask for only the information you need

Applications should request only the rows and columns they need,
filtering as much data as possible at the server to reduce the number of
packets that need to be sent. In many cases, this can also reduce the disk
I/O load.

• Large transfers

Large transfers simultaneously decrease overall throughput and increase
the average response time. If possible, large transfers should be done
during off-hours. If large transfers are common, consider acquiring
network hardware that is suitable for such transfers. Table 3-1 shows the
characteristics of some network types.

CHAPTER 3 Networks and Performance

Performance and Tuning: Basics 31

Table 3-1: Network options

• Network overload

Overloaded networks are becoming increasingly common as more and
more computers, printers, and peripherals are network equipped. Network
managers rarely detect problems before database users start complaining
to their System Administrator

Be prepared to provide local network managers with your predicted or
actual network requirements when they are considering the adding
resources. You should also keep an eye on the network and try to anticipate
problems that result from newly added equipment or application
requirements.

Impact of other server activities
You should be aware of the impact of other server activity and maintenance on
network activity, especially:

• Two-phase commit protocol

• Replication processing

• Backup processing

These activities, especially replication processing and the two-phase commit
protocol, involve network communication. Systems that make extensive use of
these activities may see network-related problems. Accordingly, these
activities should be done only as necessary. Try to restrict backup activity to
times when other network activity is low.

Type Characteristics

Token ring Token ring hardware responds better than Ethernet hardware
during periods of heavy use.

Fiber optic Fiber-optic hardware provides very high bandwidth, but is
usually too expensive to use throughout an entire network.

Separate
network

A separate network can be used to handle network traffic
between the highest volume workstations and Adaptive Server.

Improving network performance

32 Adaptive Server Enterprise

Single user versus multiple users
You must take the presence of other users into consideration before trying to
solve a database problem, especially if those users are using the same network.

Since most networks can transfer only one packet at a time, many users may be
delayed while a large transfer is in progress. Such a delay may cause locks to
be held longer, which causes even more delays.

When response time is “abnormally” high, and normal tests indicate no
problem, it could be due to other users on the same network. In such cases, ask
the user when the process was being run, if the operating system was generally
sluggish, if other users were doing large transfers, and so on.

In general, consider multiuser impacts, such as the delay caused by a long
transaction, before digging more deeply into the database system to solve an
abnormal response time problem.

Improving network performance

Isolate heavy network users
Isolate heavy network users from ordinary network users by placing them on a
separate network, as shown in Figure 3-1.

CHAPTER 3 Networks and Performance

Performance and Tuning: Basics 33

Figure 3-1: Isolating heavy network users

In the “Before” diagram, clients accessing two different Adaptive Servers use
one network card. Clients accessing Servers A and B have to compete over the
network and past the network card.

In the “After” diagram, clients accessing Server A use one network card and
clients accessing Server B use another.

Set tcp no delay on TCP networks
By default, the configuration parameter tcp no delay is set to “off,” meaning
that the network performs packet batching. It briefly delays sending partial
packets over the network.

While this improves network performance in terminal-emulation
environments, it can slow performance for Adaptive Server applications that
send and receive small batches. To disable packet batching, a System
Administrator can set the tcp no delay configuration parameter to 1.

Client accessing
Server A

Clients accessing
Server B

Before

After

A B

A B

Clients accessing
Server B

Client accessing
Server A

Single
network
card

Two
network
cards

Improving network performance

34 Adaptive Server Enterprise

Configure multiple network listeners
Use two (or more) ports listening for a single Adaptive Server. Front-end
software may be directed to any configured network ports by setting the
DSQUERY environment variable.

Using multiple network ports spreads out the network load and eliminates or
reduces network bottlenecks, thus increasing Adaptive Server throughput.

See the Adaptive Server configuration guide for your platform for information
on configuring multiple network listeners.

Performance and Tuning: Basics 35

C H A P T E R 4 Using Engines and CPUs

Adaptive Server’s multithreaded architecture is designed for high
performance in both uniprocessor and multiprocessor systems. This
chapter describes how Adaptive Server uses engines and CPUs to fulfill
client requests and manage internal operations. It introduces Adaptive
Server’s use of CPU resources, describes the Adaptive Server Symmetric
MultiProcessing (SMP) model, and illustrates task scheduling with a
processing scenario.

This chapter also gives guidelines for multiprocessor application design
and describes how to measure and tune CPU- and engine-related features.

Background concepts
This section provides an overview of how Adaptive Server processes
client requests. It also reviews threading and other related fundamentals.

Like an operating - system, a relational database must be able to respond
to the requests of many concurrent users. Adaptive Server is based on a
multithreaded, single-process architecture that allows it to manage
thousands of client connections and multiple concurrent client requests
without overburdening the operating - system.

Topic Page
Background concepts 35

Single-CPU process model 38

Adaptive Server SMP process model 43

Asynchronous log service 47

Housekeeper task improves CPU utilization 50

Measuring CPU usage 53

Enabling engine-to-CPU affinity 55

Multiprocessor application design guidelines 57

Background concepts

36 Adaptive Server Enterprise

In a system with multiple CPUs, you can enhance performance by configuring
Adaptive Server to run using multiple Adaptive Server engines. Each engine is
a single operating - system process that yields high performance when you
configure one engine per CPU.

All engines are peers that communicate through shared memory as they act
upon common user databases and internal structures such as data caches and
lock chains. Adaptive Server engines service client requests. They perform all
database functions, including searching data caches, issuing disk I/O read and
write requests, requesting and releasing locks, updating, and logging.

Adaptive Server manages the way in which CPU resources are shared between
the engines that process client requests. It also manages system services (such
as database locking, disk I/O, and network I/O) that impact processing
resources.

How Adaptive Server processes client requests
Adaptive Server creates a new client task for every new connection. It fulfills
a client request as outlined in the following steps:

1 The client program establishes a network socket connection to Adaptive
Server.

2 Adaptive Server assigns a task from the pool of tasks, which are allocated
at start-up time. The task is identified by the Adaptive Server process
identifier, or spid, which is tracked in the sysprocesses system table.

3 Adaptive Server transfers the context of the client request, including
information such as permissions and the current database, to the task.

4 Adaptive Server parses, optimizes, and compiles the request.

5 If parallel query execution is enabled, Adaptive Server allocates subtasks
to help perform the parallel query execution. The subtasks are called
worker processes, which are discussed in the Performance & Tuning:
Optimizer.

6 Adaptive Server executes the task. If the query was executed in parallel,
the task merges the results of the subtasks.

7 The task returns the results to the client, using TDS packets.

For each new user connection, Adaptive Server allocates a private data storage
area, a dedicated stack, and other internal data structures.

CHAPTER 4 Using Engines and CPUs

Performance and Tuning: Basics 37

It uses the stack to keep track of each client task’s state during processing, and
it uses synchronization mechanisms such as queueing, locking, semaphores,
and spinlocks to ensure that only one task at a time has access to any common,
modifiable data structures. These mechanisms are necessary because Adaptive
Server processes multiple queries concurrently. Without these mechanisms, if
two or more queries were to access the same data, data integrity would be
sacrificed.

The data structures require minimal memory resources and minimal system
resources for context-switching overhead. Some of these data structures are
connection-oriented and contain static information about the client.

Other data structures are command-oriented. For example, when a client sends
a command to Adaptive Server, the executable query plan is stored in an
internal data structure.

Client task implementation
Adaptive Server client tasks are implemented as subprocesses, or “lightweight
processes,” instead of operating - system processes, as subprocesses use only a
small fraction of the resources that processes use.

Multiple processes executing concurrently require more memory and CPU
time than multiple subprocesses. Processes also require operating – system
resources to switch context (time-share) from one process to the next.

The use of subprocesses eliminates most of the overhead of paging, context
switching, locking, and other operating - system functions associated with a
one process-per-connection architecture. Subprocesses require no operating –
system resources after they are launched, and they can share many system
resources and structures.

Figure 4-1 illustrates the difference in system resources required by client
connections implemented as processes and client connections implemented as
subprocesses. Subprocesses exist and operate within a single instance of the
executing program process and its address space in shared memory.

Single-CPU process model

38 Adaptive Server Enterprise

Figure 4-1: Process versus subprocess architecture

To give Adaptive Server the maximum amount of processing power, run only
essential non-Adaptive Server processes on the database machine.

Single-CPU process model
In a single-CPU system, Adaptive Server runs as a single process, sharing CPU
time with other processes, as scheduled by the operating - system. This section
is an overview of how an Adaptive Server system with a single CPU uses the
CPU to process client requests.

“Adaptive Server SMP process model” on page 43 expands on this discussion
to show how an Adaptive Server system with multiple CPUs processes client
requests.

Scheduling engines to the CPU
Figure 4-2 shows a run queue for a single-CPU environment in which process
8 (proc 8) is running on the CPU and processes 6, 1, 7, and 4 are in the
operating - system run queue waiting for CPU time. Process 7 is an Adaptive
Server process; the others can be any operating - system process.

Client applications

Server process

Server process

Server process

 Process-based Subprocess-based

Server process

Shared
memory

client implementation client implementation

CHAPTER 4 Using Engines and CPUs

Performance and Tuning: Basics 39

Figure 4-2: Processes queued in the run queue for a single CPU

In a multitasking environment, multiple processes or subprocesses execute
concurrently, alternately sharing CPU resources.

Figure 4-3 shows three subprocesses in a multitasking environment. The
subprocesses are represented by the thick, dark arrows pointing down. The
subprocesses share a single CPU by switching onto and off the engine over
time. They are using CPU time when they are solid – near the arrowhead. They
are in the run queue waiting to execute or sleeping while waiting for resources
when they are represented by broken lines.

Note that, at any one time, only one process is executing. The others sleep in
various stages of progress.

Figure 4-3: Multithreaded processing

CPU

proc 8

Operating - system

Run queue

proc 6 proc 1 proc 7 proc 4

Subprocess 1 Subprocess 2 Subprocess 3

Time

Legend:
context switching

sleeping

 executing

Single-CPU process model

40 Adaptive Server Enterprise

Scheduling tasks to the engine
Figure 4-4 shows tasks (or worker processes) queued up for an Adaptive
Server engine in a single-CPU environment. This figure switches from
Adaptive Server in the operating - system context (as shown in Figure 4-2 on
page 39) to Adaptive Server internal task processing. Adaptive Server, not the
operating - system, dynamically schedules client tasks from the run queue onto
the engine. When the engine finishes processing one task, it executes the task
at the head of the run queue.

After a task begins running on the engine, the engine continues processing it
until one of the following events occurs:

• The task needs a resource such as a page that is locked by another task, or
it needs to perform a slow job such as disk I/O or network I/O. The task is
put to sleep, waiting for the resource.

• The task runs for a configurable period of time and reaches a yield point.
Then the task relinquishes the engine, and the next process in the queue
starts to run. “Scheduling client task processing time” on page 42
discusses in more detail how this works.

When you execute sp_who on a single-CPU system with multiple active tasks,
the sp_who output shows only a single task as “running”—it is the sp_who task
itself. All other tasks in the run queue have the status “runnable.” The sp_who
output also shows the cause for any sleeping tasks.

Figure 4-4 also shows the sleep queue with two sleeping tasks, as well as other
objects in shared memory. Tasks are put to sleep while they are waiting for
resources or for the results of a disk I/O operation.

CHAPTER 4 Using Engines and CPUs

Performance and Tuning: Basics 41

Figure 4-4: Tasks queue up for the Adaptive Server engine

Execution task scheduling
The scheduler manages processing time for client tasks and internal
housekeeping.

Sleep queueRun queue Adaptive Server

 Disk I/O

Lock sleep

Data cache

Procedure

 cache

Index cache

 7task 7

 7task 4

 7task 3

 7task 8

 7task 2

 7task 6

Adaptive Server Engine

Operating- system

RUNNING

 7task 5

Shared memory

 Adaptive Server structures

Pending I/Os

D
I
S
K

N
E
T

Single-CPU process model

42 Adaptive Server Enterprise

Scheduling client task processing time

The time slice configuration parameter prevents executing tasks from
monopolizing engines during execution. The scheduler allows a task to execute
on an Adaptive Server engine for a maximum amount of time that is equal to
the time slice and cpu grace time values combined, using default times for time
slice (100 milliseconds, 1/10 of a second, or equivalent to one clock tick) and
cpu grace time (500 clock ticks, or 50 seconds).

Adaptive Server’s scheduler does not force tasks off an Adaptive Server
engine. Tasks voluntarily relinquish the engine at a yield point, when the task
does not hold a vital resource such as a spinlock.

Each time the task comes to a yield point, it checks to see if time slice has been
exceeded. If it has not, the task continues to execute. If execution time does
exceed time slice, the task voluntarily relinquishes the engine within the cpu
grace time interval and the next task in the run queue begins executing.

The default value for the time slice parameter is 100 clock milliseconds, and
there is seldom any reason to change it. The default value for cpu grace time is
500 clock ticks. If time slice is set too low, an engine may spend too much time
switching between tasks, which tends to increase response time.

If time slice is set too high, CPU-intensive processes may monopolize the CPU,
which can increase response time for short tasks. If your applications encounter
time slice errors, adjust cpu grace time, not time slice.

 See Chapter 5, “Distributing Engine Resources,” for more information.

Use sp_sysmon to determine how many times tasks yield voluntarily.

If you want to increase the amount of time that CPU-intensive applications run
on an engine before yielding, you can assign execution attributes to specific
logins, applications, or stored procedures.

If the task has to relinquish the engine before fulfilling the client request, it
goes to the end of the run queue, unless there are no other tasks in the run
queue. If no tasks are in the run queue when an executing task reaches a yield
point during grace time, Adaptive Server grants the task another processing
interval.

If no other tasks are in the run queue, and the engine still has CPU time,
Adaptive Server continues to grant time slice intervals to the task until it
completes.

CHAPTER 4 Using Engines and CPUs

Performance and Tuning: Basics 43

Normally, tasks relinquish the engine at yield points prior to completion of the
cpu grace time interval. It is possible for a task not to encounter a yield point
and to exceed the time slice interval. When the cpu grace time ends, Adaptive
Server terminates the task with a time slice error. If you receive a time slice
error, try increasing the time up to four times the current time for cpu grace
time. If the problem persists, call Sybase Technical Support.

Maintaining CPU availability during idle time

When Adaptive Server has no tasks to run, it loops (holds the CPU), looking
for executable tasks. The configuration parameter runnable process search
count controls the number of times that Adaptive Server loops.

With the default value of 2000, Adaptive Server loops 2000 times, looking for
incoming client requests, completed disk I/Os, and new tasks in the run queue.
If there is no activity for the duration of runnable process search count,
Adaptive Server relinquishes the CPU to the operating - system.

Note If you are having performance problems, try setting runnable process
search count to 3.

The default for runnable process search count generally provides good
response time, if the operating - system is not running clients other than
Adaptive Server.

Use sp_sysmon to determine how runnable process search count affects
Adaptive Server’s use of CPU cycles, engine yields to the operating - system,
and blocking network checks.

See Performance and Tuning Guide: Monitoring and Analyzing for
Performance on using the sp_sysmon.

Adaptive Server SMP process model
Adaptive Server’s Symmetric MultiProcessing (SMP) implementation extends
the performance benefits of Adaptive Server’s multithreaded architecture to
multiprocessor systems. In the SMP environment, multiple CPUs cooperate to
perform work faster than a single processor can.

 SMP is intended for machines with the following features:

Adaptive Server SMP process model

44 Adaptive Server Enterprise

• A symmetric multiprocessing operating - system

• Shared memory over a common bus

• Two to 128 processors

• Very high throughput

Scheduling engines to CPUs
In a system with multiple CPUs, multiple processes can run concurrently.
Figure 4-5 represents Adaptive Server engines as the nonshaded ovals waiting
in the operating - system run queue for processing time on one of three CPUs.
It shows two Adaptive Server engines, proc 3 and proc 8, being processed
simultaneously.

Figure 4-5: Processes queued in the OS run queue for multiple CPUs

The symmetric aspect of SMP is a lack of affinity between processes and
CPUs—processes are not attached to a specific CPU. Without CPU affinity, the
operating - system schedules engines to CPUs in the same way as it schedules
non-Adaptive Server processes to CPUs. If an Adaptive Server engine does not
find any runnable tasks, it can either relinquish the CPU to the operating -
system or continue to look for a task to run by looping for the number of times
set in the runnable process search count configuration parameter.

Scheduling Adaptive Server tasks to engines
Scheduling Adaptive Server tasks to engines in the SMP environment is similar
to scheduling tasks in the single-CPU environment, as described in
“Scheduling tasks to the engine” on page 40. The difference is that in the SMP
environment:

CPU

proc 8

CPU

proc 2

CPU

proc 3

Operating - system

Run queue

proc 6 proc 1 proc 7 proc 4

CHAPTER 4 Using Engines and CPUs

Performance and Tuning: Basics 45

• Each engine has a run queue. Tasks have soft affinities to engines. When
a task runs on an engine, it creates an affinity to the engine. If a task yields
the engine and then is queued again, it tends to be queued on the same
engine’s run queue.

• Any engine can process the tasks in the global run queue (unless logical
process management has been used to assign the task to a particular engine
or set of engines).

Multiple network engines
Each Adaptive Server engine handles the network I/O for its connections.
Engines are numbered sequentially, starting with engine 0.

When a user logs in to Adaptive Server, the task is assigned in round-robin
fashion to one of the engines that will serve as its network engine. This engine
handles the login to establish packet size, language, character set, and other
login settings. All network I/O for a task is managed by its network engine until
the task logs out.

Task priorities and run queues
At certain times, Adaptive Server increases the priority of some tasks,
especially if they are holding an important resource or have had to wait for a
resource. In addition, logical process management allows you to assign
priorities to logins, procedures, or applications using sp_bindexeclass and
related system procedures.

See Chapter 5, “Distributing Engine Resources,” for more information on
performance tuning and task priorities.

Each task has a priority assigned to it; the priority can change over the life of
the task. When an engine looks for a task to run, it first scans its own high-
priority queue and then the high-priority global run queue.

If there are no high-priority tasks, it looks for tasks at medium priority, then at
low priority. If it finds no tasks to run on its own run queues or the global run
queues, it can examine the run queues for another engine, and steal a task from
another engine. This combination of priorities, local and global queues, and the
ability to move tasks between engines when workload is uneven provides load
balancing.

Adaptive Server SMP process model

46 Adaptive Server Enterprise

Tasks in the global or engine run queues are all in a runnable state. Output from
sp_who lists tasks as “runnable” when the task is in any run queue.

Processing scenario
The following steps describe how a task is scheduled in the SMP environment.
The execution cycle for single-processor systems is very similar. A single-
processor system handles task switching, putting tasks to sleep while they wait
for disk or network I/O, and checking queues in the same way.

1 Assigning a network engine during login

When a connection logs in to Adaptive Server, it is assigned to an engine
that will manage its network I/O. This engine then handles the login.

The engine assigns a task structure and establishes packet size, language,
character set, and other login settings. A task sleeps while waiting for the
client to send a request.

2 Checking for client requests

Another engine checks for incoming client requests once every clock tick.

When this engine finds a command (or query) from the connection for a
task, it wakes up the task and places it on the end of its run queue.

3 Fulfilling a client request

When a task becomes first in the queue, the engine parses, compiles, and
begins executing the steps defined in the task’s query plan

4 Performing disk I/O

If the task needs to access a page locked by another user, it is put to sleep
until the page is available. After such a wait, the task’s priority is
increased, and it is placed in the global run queue so that any engine can
run it

5 Performing network I/O

When the task needs to return results to the user, the engine on which it is
executing issues the network I/O request, and puts the tasks to sleep on a
network write.

The engine checks once each clock tick to determine whether the network
I/O has completed. When the I/O has completed, the task is placed on the
run queue for the engine to which it is affiliated, or the global run queue.

CHAPTER 4 Using Engines and CPUs

Performance and Tuning: Basics 47

Asynchronous log service
Asynchronous log service, or ALS, enables great scalability in Adaptive
Server, providing higher throughput in logging subsystems for high-end
symmetric multiprocessor systems.

You cannot use ALS if you have fewer than 4 engines. If you try to enable ALS
with fewer than 4 online engines an error message appears.

Enabling ALS You can enable, disable, or configure ALS using the sp_dboption stored
procedure.

sp_dboption <db Name>, "async log service",
"true|false"

Issuing a checkpoint After issuing sp_dboption, you must issue a checkpoint in the database for
which you are setting the ALS option:

sp_dboption "mydb", "async log service", "true"
use mydb
checkpoint

You can use the checkpoint to identify the one or more databasess or use an all
clause.

checkpoint [all | [dbname[, dbname[, dbname.....]]]

Disabling ALS Before you disable ALS, make sure there are no active users in the database. If
there are, you receive an error message when you issue the checkpoint:

sp_dboption "mydb", "async log service", "false"
use mydb
checkpoint

Error 3647: Cannot put database in single-user mode.
Wait until all users have logged out of the database and
issue a CHECKPOINT to disable "async log service".

If there are no active users in the database, this example disables ALS:

sp_dboption "mydb", "async log service", "false"
use mydb
checkpoint

Displaying ALS You can see whether ALS is enabled in a specified database by checking
sp_helpdb.

sp_helpdb "mydb"

mydb 3.0 MB sa 2

Asynchronous log service

48 Adaptive Server Enterprise

July 09, 2002
select into/bulkcopy/pllsort, trunc log on chkpt,

async log service

Understanding the user log cache (ULC) architecture
Adaptive Server’s logging architecture features the user log cache, or ULC, by
which each task owns its own log cache. No other task can write to this cache,
and the task continues writing to the user log cache whenever a transaction
generates a log record. When the transaction commits or aborts, or the user log
cache is full, the user log cache is flushed to the common log cache, shared by
all the current tasks, which is then written to the disk.

Flushing the ULC is the first part of a commit or abort operation. It requires the
following steps, each of which can cause delay or increase contention:

1 Obtaining a lock on the last log page.

2 Allocating new log pages if necessary.

3 Copying the log records from the ULC to the log cache.

The processes in steps 2 and 3 require you to hold a lock on the last log
page, which prevents any other tasks from writing to the log cache or
performing commit or abort operations.

4 Flush the log cache to disk.

Step 4 requires repeated scanning of the log cache to issue write commands
on dirty buffers.

Repeated scanning can cause contention on the buffer cache spinlock to
which the log is bound. Under a large transaction load, contention on this
spinlock can be significant.

When to use ALS
You can enable ALS on any specified database that has at least one of the
following performance issues, so long as your systems runs 4 or more online
engines:

• Heavy contention on the last log page.

CHAPTER 4 Using Engines and CPUs

Performance and Tuning: Basics 49

You can tell that the last log page is under contention when the sp_sysmon
output in the Task Management Report section shows a significantly high
value. For example:

Table 4-1: Log page under contention

• Heavy contention on the cache manager spinlock for the log cache.

You can tell that the cache manager spinlock is under contention when the
sp_sysmon output in the Data Cache Management Report section for the
database transaction log cache shows a high value in the Spinlock
Contention section. For example:

Table 4-2:

• Underutilized bandwidth in the log device.

Note You should use ALS only when you identify a single database with high
transaction requirements, since setting ALS for multiple databases may cause
unexpected variations in throughput and response times. If you want to
configure ALS on multiple databases, first check that your throughput and
response times are satisfactory.

Using the ALS
Two threads scan the dirty buffers (buffers full of data not yet written to the
disk), copy the data, and write it to the log. These threads are:

• The User Log Cache (ULC) flusher

• The Log Writer.

Task
Management per sec per xact count % of total

Log Semaphore
Contention

58.0 0.3 34801 73.1

Cache c_log per sec per xact count % of total

Spinlock
Contention

n/a n/a n/a 40.0%

Housekeeper task improves CPU utilization

50 Adaptive Server Enterprise

ULC flusher

The ULC flusher is a system task thread that is dedicated to flushing the user
log cache of a task into the general log cache. When a task is ready to commit,
the user enters a commit request into the flusher queue. Each entry has a
handle, by which the ULC flusher can access the ULC of the task that queued
the request. The ULC flusher task continuously monitors the flusher queue,
removing requests from the queue and servicing them by flushing ULC pages
into the log cache.

Log writer

Once the ULC flusher has finished flushing the ULC pages into the log cache,
it queues the task request into a wakeup queue. The log writer patrols the dirty
buffer chain in the log cache, issuing a write command if it finds dirty buffers,
and monitors the wakeup queue for tasks whose pages are all written to disk.
Since the log writer patrols the dirty buffer chain, it knows when a buffer is
ready to write to disk.

Changes in stored procedures

Asynchronous log service changes the stored procedures sp_dboption and
sp_helpdb:

• sp_dboption adds an option that enables and disables ALS.

• sp_helpdb adds a column to display ALS.

For more information on sp_helpdb and sp_dboption, see the Reference
Manual.

Housekeeper task improves CPU utilization
When Adaptive Server has no user tasks to process, the housekeeper wash task
and the housekeeper chores task automatically begin writing dirty buffers to
disk and performing other maintenance tasks. These writes are done only by
the housekeeper wash task during the server’s idle cycles, and are known as
free writes. They result in improved CPU utilization and a decreased need for
buffer washing during transaction processing. They also reduce the number
and duration of checkpoint spikes (times when the checkpoint process causes
a short, sharp rise in disk writes).

CHAPTER 4 Using Engines and CPUs

Performance and Tuning: Basics 51

Another housekeeper task is housekeeper garbage collection, which operates at
the priority level of the ordinary user. It cleans up data that was logically
deleted and resets the rows so the tables have space again.

Side effects of the housekeeper task
If the housekeeper wash task can flush all active buffer pools in all configured
caches, it wakes up the checkpoint task.

The checkpoint task determines whether it can checkpoint the database. If it
can, it writes a checkpoint log record indicating that all dirty pages have been
written to disk. The additional checkpoints that occur as a result of the
housekeeper wash task may improve recovery speed for the database.

In applications that repeatedly update the same database page, the housekeeper
wash may initiate some database writes that are not necessary. Although these
writes occur only during the server’s idle cycles, they may be unacceptable on
systems with overloaded disks.

Configuring the housekeeper task
System Administrators can use the housekeeper free write percent
configuration parameter to control the side effects of the housekeeper task.
This parameter specifies the maximum percentage by which the housekeeper
wash task can increase database writes. Valid values range from 0 to 100.

By default, the housekeeper free write percent parameter is set to 1. This allows
the housekeeper wash task to continue to wash buffers as long as the database
writes do not increase by more than 1 percent. The work done by the
housekeeper wash task at the default parameter setting results in improved
performance and recovery speed on most systems. However, setting
housekeeper free write percent too high can degrade performance. If you want
to increase the value, increase by only 1 or 2 percent each time.

A dbcc tune option, deviochar, controls the size of batches that the housekeeper
can write to disk at one time.

See Monitoring Performance with sp_sysmon in the Performance and Tuning:
Monitoring and Analyzing for Performance manual.

Housekeeper task improves CPU utilization

52 Adaptive Server Enterprise

Changing the percentage by which writes can be increased

Use sp_configure to change the percentage by which database writes can be
increased as a result of the housekeeper wash task:

sp_configure "housekeeper free write percent", value

For example, issue the following command to stop the housekeeper wash task
from working when the frequency of database writes reaches 2 percent above
normal:

sp_configure "housekeeper free write percent", 2

Disabling the housekeeper task

You may want to disable the housekeeper wash and the housekeeper chores
task to establish a controlled environment in which only specified user tasks
are running. To disable these housekeeper tasks, set the value of the
housekeeper free write percent parameter to 0:

sp_configure "housekeeper free write percent", 0

 Warning! In addition to buffer washing, the housekeeper periodically flushes
statistics to system tables. These statistics are used for query optimization, and
incorrect statistics can severely reduce query performance. Do not set the
housekeeper free write percent to 0 on a system where data modification
commands may be affecting the number of rows and pages in tables and
indexes.

Allowing the housekeeper task to work continuously

To allow the housekeeper task to work whenever there are idle CPU cycles,
regardless of the percentage of additional database writes, set the value of the
housekeeper free write percent parameter to 100:

sp_configure "housekeeper free write percent", 100

The“Recovery management” on page 99 in the Performance and Tuning:
Monitoring and Analyzing for Performance manual section of sp_sysmon
shows checkpoint information to help you determine the effectiveness of the
housekeeper.

CHAPTER 4 Using Engines and CPUs

Performance and Tuning: Basics 53

Measuring CPU usage
This section describes how to measure CPU usage on machines with a single
processor and on those with multiple processors.

Single-CPU machines
There is no correspondence between your operating - system’s reports on CPU
usage and Adaptive Server’s internal “CPU busy” information. It is normal for
an Adaptive Server to exhibit very high CPU usage while performing an I/O-
bound task.

A multithreaded database engine is not allowed to block on I/O. While the
asynchronous disk I/O is being performed, Adaptive Server services other user
tasks that are waiting to be processed. If there are no tasks to perform, it enters
a busy-wait loop, waiting for completion of the asynchronous disk I/O. This
low-priority busy-wait loop can result in very high CPU usage, but because of
its low priority, it is harmless.

Using sp_monitor to measure CPU usage

Use sp_monitor to see the percentage of time Adaptive Server uses the CPU
during an elapsed time interval:

last_run current_run seconds
-------------------------- -------------------------- -----------
 Jul 28 1999 5:25PM Jul 28 1999 5:31PM 360

cpu_busy io_busy idle
----------------------- ---------------------- -----------------
5531(359)-99% 0(0)-0% 178302(0)-0%

packets_received packets_sent packet_errors
----------------------- ---------------------- ------------------
57650(3599) 60893(7252) 0(0)

total_read total_write total_errors connections
----------------- ---------------- --------------- --------------
190284(14095) 160023(6396) 0(0) 178(1)

For more information about sp_monitor, see the Adaptive Server Enterprise
Reference Manual .

Measuring CPU usage

54 Adaptive Server Enterprise

Using sp_sysmon to measure CPU usage

sp_sysmon gives more detailed information than sp_monitor. The “Kernel
Utilization” section of the sp_sysmon report displays how busy the engine was
during the sample run. The percentage in this output is based on the time that
CPU was allocated to Adaptive Server; it is not a percentage of the total sample
interval.

The “CPU Yields by engine” section displays information about how often the
engine yielded to the operating - system during the interval.

See Monitoring Performance with sp_sysmon in the Performance and Tuning:
Monitoring and Analyzing book for more information about sp_sysmon.

Operating - system commands and CPU usage

Operating - system commands for displaying CPU usage are documented in the
Adaptive Server installation and configuration guides.

If your operating - system tools show that CPU usage is more than 85 percent
most of the time, consider using a multi-CPU environment or off-loading some
work to another Adaptive Server.

Determining when to configure additional engines
When you are determining whether to add additional engines, the major factors
to consider are the:

• Load on existing engines

• Contention for resources such as locks on tables, disks, and cache
spinlocks

• Response time

If the load on existing engines is more than 80 percent, adding an engine should
improve response time, unless contention for resources is high or the additional
engine causes contention.

Before configuring more engines, use sp_sysmon to establish a baseline. Look
at the sp_sysmon output for the following sections in Monitoring Performance
with sp_sysmon in the Performance and Tuning: Monitoring and Analyzing
manual.

CHAPTER 4 Using Engines and CPUs

Performance and Tuning: Basics 55

In particular, study the lines or sections in the output that may reveal points of
contention in the book Performance and Tuning: Monitoring and Analyzing for
Performance:

• “Logical lock contention” on page 32.

• “Address lock contention” on page 33.

• “ULC semaphore requests” on page 57.

• “Log semaphore requests” on page 58.

• “Page splits” on page 63.

• “Lock summary” on page 76.

• “Cache spinlock contention” on page 89.

• “I/Os delayed by” on page 103.

After increasing the number of engines, run sp_sysmon again under similar
load conditions, and check the “Engine Busy Utilization” section in the report
along with the possible points of contention listed above.

Taking engines offline
dbcc (engine) can be used to take engines offline. The syntax is:

dbcc engine(offline, [enginenum])

dbcc engine(“online”)

If enginenum is not specified, the highest-numbered engine is taken offline. For
more information, see the System Administration Guide.

Enabling engine-to-CPU affinity
By default, there is no affinity between CPUs and engines in Adaptive Server.
You may see slight performance gains in high-throughput environments by
establishing affinity of engines to CPUs.

Enabling engine-to-CPU affinity

56 Adaptive Server Enterprise

Not all operating - systems support CPU affinity. The dbcc tune command is
silently ignored on systems that do not support engine-to-CPU affinity. The
dbcc tune command must be reissued each time Adaptive Server is restarted.
Each time CPU affinity is turned on or off, Adaptive Server prints a message
in the error log indicating the engine and CPU numbers affected:

Engine 1, cpu affinity set to cpu 4.
Engine 1, cpu affinity removed.

The syntax is:

dbcc tune(cpuaffinity, start_cpu [, on | off])

start_cpu specifies the CPU to which engine 0 is to be bound. Engine 1 is
bound to the CPU numbered (start_cpu + 1). The formula for determining the
binding for engine n is:

((start_cpu + n) % number_of_cpus

CPU numbers range from 0 through the number of CPUs minus 1.

On a four-CPU machine (with CPUs numbered 0–3) and a four-engine
Adaptive Server, this command:

dbcc tune(cpuaffinity, 2, "on")

The command gives this result:

On the same machine, with a three-engine Adaptive Server, the same command
causes the following affinity:

In this example, CPU 1 is not used by Adaptive Server.

To disable CPU affinity, use -1 in place of start_cpu, and specify off for the
setting:

dbcc tune(cpuaffinity, -1, "off")

Engine CPU

0 2 (the start_cpu number specified)

1 3

2 0

3 1

Engine CPU

0 2

1 3

2 0

CHAPTER 4 Using Engines and CPUs

Performance and Tuning: Basics 57

You can enable CPU affinity without changing the value of start_cpu by using
-1 and on for the setting:

dbcc tune(cpuaffinity, -1, "on")

The default value for start_cpu is 1 if CPU affinity has not been previously set.

To specify a new value of start_cpu without changing the on/off setting, use:

dbcc tune (cpuaffinity, start_cpu)

If CPU affinity is currently enabled, and the new start_cpu is different from its
previous value, Adaptive Server changes the affinity for each engine.

If CPU affinity is off, Adaptive Server notes the new start_cpu value, and the
new affinity takes effect the next time CPU affinity is turned on.

To see the current value and whether affinity is enabled, use:

dbcc tune(cpuaffinity, -1)

This command only prints current settings to the error log and does not change
the affinity or the settings.

Multiprocessor application design guidelines
If you are moving applications from a single-CPU environment to an SMP
environment, this section offers some issues to consider.

Increased throughput on multiprocessor Adaptive Servers makes it more likely
that multiple processes may try to access a data page simultaneously. It is
especially important to adhere to the principles of good database design to
avoid contention. Following are some of the application design considerations
that are especially important in an SMP environment.

• Multiple indexes

The increased throughput of SMP may result in increased lock contention
when allpages-locked tables with multiple indexes are updated. Allow no
more than two or three indexes on any table that will be updated often.

For information about the effects of index maintenance on performance,
see “Index management” on page 60 in the Performance and Tuning:
Monitoring and Analyzing for Performance book.

• Managing disks

Multiprocessor application design guidelines

58 Adaptive Server Enterprise

The additional processing power of SMP may increase demands on the
disks. Therefore, it is best to spread data across multiple devices for
heavily used databases.

See “Disk I/O management” on page 102 for information about
sp_sysmon reports on disk utilization.

• Adjusting the fillfactor for create index commands

You may need to adjust the fillfactor in create index commands. Because of
the added throughput with multiple processors, setting a lower fillfactor
may temporarily reduce contention for the data and index pages.

• Transaction length

Transactions that include many statements or take a long time to run may
result in increased lock contention. Keep transactions as short as possible,
and avoid holding locks – especially exclusive or update locks – while
waiting for user interaction

• Temporary tables

Temporary tables (tables in tempdb) do not cause contention, because they
are associated with individual users and are not shared. However, if
multiple user processes use tempdb for temporary objects, there can be
some contention on the system tables in tempdb.

See “Temporary tables and locking” on page 388 for information on ways
to reduce contention.

Performance and Tuning: Basics 59

C H A P T E R 5 Distributing Engine Resources

This chapter explains how to assign execution attributes, how Adaptive
Server interprets combinations of execution attributes, and how to help
you predict the impact of various execution attribute assignments on the
system.

Understanding how Adaptive Server uses CPU resources is a prerequisite
for understanding this chapter.

For more information, see Chapter 4, “Using Engines and CPUs.”

Algorithm for successfully distributing engine
resources

This section gives an approach for successful tuning on the task level.

The interactions among execution objects in an Adaptive Server
environment are complex. Furthermore, every environment is different:
Each involves its own mix of client applications, logins, and stored
procedures and is characterized by the interdependencies between these
entities.

Implementing execution precedence without having studied the
environment and the possible implications can lead to unexpected (and
negative) results.

Topic Page
Algorithm for successfully distributing engine resources 59

Manage preferred access to resources 67

Types of execution classes 67

Setting execution class attributes 71

Rules for determining precedence and scope 77

Example scenario using precedence rules 82

Considerations for Engine Resource Distribution 85

Algorithm for successfully distributing engine resources

60 Adaptive Server Enterprise

For example, say you have identified a critical execution object and you want
to raise its execution attributes to improve performance either permanently or
on a per-session basis (“on the fly”). If this execution object accesses the same
set of tables as one or more other execution objects, raising its execution
priority can lead to performance degradation due to lock contention among
tasks at different priority levels.

Because of the unique nature of every Adaptive Server environment, it is
impossible to provide a detailed procedure for assigning execution precedence
that makes sense for all systems. However, this section provides guidelines
with a progression of steps to use and to discuss the issues commonly related
to each step.

The steps involved with assigning execution attributes are illustrated in
Figure 5-1. A discussion of the steps follows the figure.

CHAPTER 5 Distributing Engine Resources

Performance and Tuning: Basics 61

Figure 5-1: Process for assigning execution precedence

Analyze the environment, perform

Understand concepts well enough
to predict possible consequences.

Assign performance attributes to
establish an execution hierarchy.

Goals
accomplished

?

benchmark tests, and set goals.

Yes

No

Is
performance
satisfactory

No

?

Yes

1

2

3

4

6

Does it
makes sense to

continue using resources
for tuning

End

No

Yes

?

5 Monitor and

Start

analyze results.

Algorithm for successfully distributing engine resources

62 Adaptive Server Enterprise

Algorithm guidelines
1 Study the Adaptive Server environment.

See “Environment analysis and planning” on page 63 for details.

• Analyze the behavior of all execution objects and categorize them as
well as possible.

• Understand interdependencies and interactions between execution
objects.

• Perform benchmark tests to use as a baseline for comparison after
establishing precedence.

• Think about how to distribute processing in a multiprocessor
environment.

• Identify the critical execution objects for which you will enhance
performance.

• Identify the noncritical execution objects that can afford decreased
performance.

• Establish a set of quantifiable performance goals for the execution
objects identified in the last two items.

2 Understand the effects of using execution classes.

See “Execution class attributes” on page 69 for details.

• Understand the basic concepts associated with execution class
assignments.

• Decide whether you need to create one or more user defined-
execution classes.

• Understand the implications of different class level assignments—
how do assignments affect the environment in terms of performance
gains, losses, and interdependencies?

3 Assign execution classes and any independent engine affinity attributes.

4 After making execution precedence assignments. analyze the running
Adaptive Server environment.

See “Results analysis and tuning” on page 66 for details.

• Run the benchmark tests you used in step 1 and compare the results.

• If the results are not what you expect, take a closer look at the
interactions between execution objects, as outlined in step 1.

CHAPTER 5 Distributing Engine Resources

Performance and Tuning: Basics 63

• Investigate dependencies that you might have missed.

5 Fine tune the results by repeating steps 3 and 4 as many times as necessary.

6 Monitor the environment over time.

Environment analysis and planning
This section elaborates on step 1 of “Algorithm for successfully distributing
engine resources” on page 59.

Environment analysis and planning involves the following actions:

• Analyzing the environment

• Performing benchmark tests to use as a baseline

• Setting performance goals

Analyzing

The degree to which your execution attribute assignments enhance an
execution object’s performance is a function of the execution object’s
characteristics and its interactions with other objects in the Adaptive Server
environment. It is essential to study and understand the Adaptive Server
environment in detail so that you can make decisions about how to achieve the
performance goals you set.

Where to start

Analysis involves these two phases:

• Phase 1 – analyze the behavior of each execution object.

• Phase 2 – use the results from the object analysis to make predictions
about interactions between execution objects within the Adaptive Server
system.

First, make a list containing every execution object that can run in the
environment. Then, classify each execution object and its characteristics.
Categorize the execution objects with respect to each other in terms of
importance. For each, decide which one of the following applies:

• It is a highly critical execution object needing enhanced response time,

• It is an execution object of medium importance, or

Algorithm for successfully distributing engine resources

64 Adaptive Server Enterprise

• It is a noncritical execution object that can afford slower response time.

Example: phase 1 – execution object behavior

Typical classifications include intrusive/unintrusive, I/O-intensive, and CPU-
intensive. For example, identify each object as intrusive or unintrusive, I/O
intensive or not, and CPU intensive or not. You will probably need to identify
additional issues specific to the environment to gain useful insight.

Intrusive and unintrusive

Two or more execution objects running on the same Adaptive Server are
intrusive when they use or access a common set of resources.

If the applications in the Adaptive Server environment use different resources,
they are unintrusive.

I/O-intensive and CPU-intensive execution objects

When an execution object is I/O intensive, it might help to give it EC1
attributes and, at the same time, assign EC3 attributes to any compute-bound
execution objects. This can help because an object performing I/O will not
normally use an entire time quantum, and will give up the CPU before waiting
for I/O to complete.

Intrusive applications

Effect of
assigning
attributes

Assigning high execution attributes to intrusive applications might degrade performance.

Example Consider a situation in which a noncritical application is ready to release a resource, but
becomes blocked when a highly-critical application starts executing. If a second critical
application needs to use the blocked resource, then execution of this second critical
application is also blocked

Unintrusive applications

Effect of
assigning
attributes

You can expect enhanced performance when you assign preferred execution attributes to
an unintrusive application.

Example Simultaneous distinct operations on tables in different databases are unintrusive. Two
operations are also unintrusive if one is compute bound and the other is I/O bound.

CHAPTER 5 Distributing Engine Resources

Performance and Tuning: Basics 65

By giving preference to I/O-bound Adaptive Server tasks, Adaptive Server
ensures that these tasks are runnable as soon as the I/O is finished. By letting
the I/O take place first, the CPU should be able to accommodate both types of
applications and logins.

Example: phase 2 – the environment as a whole

Follow up on phase 1, in which you identified the behavior of the execution
objects, by thinking about how applications will interact.

Typically, a single application behaves differently at different times; that is, it
might be alternately intrusive and unintrusive, I/O bound, and CPU intensive.
This makes it difficult to predict how applications will interact, but you can
look for trends.

Organize the results of the analysis so that you understand as much as possible
about each execution object with respect to the others. For example, you might
create a table that identifies the objects and their behavior trends.

Using Adaptive Server monitoring tools is one of the best ways to understand
how execution objects affect the environment.

Performing benchmark tests
Perform benchmark tests before assigning any execution attributes so that you
have the results to use as a baseline after making adjustments.

Two tools that can help you understand system and application behavior are:

• Adaptive Server Monitor provides a comprehensive set of performance
statistics. It offers graphical displays through which you can isolate
performance problems.

• sp_sysmon is a system procedure that monitors system performance for a
specified time interval and then prints out an ASCII text-based report.

For information on using sp_sysmon see Performance and Tuning Guide:
Monitoring and Analyzing for Performance. In particular, see
“Application management” on page 37.

Algorithm for successfully distributing engine resources

66 Adaptive Server Enterprise

Setting goals
Establish a set of quantifiable performance goals. These should be specific
numbers based on the benchmark results and your expectations for improving
performance. You can use these goals to direct you while assigning execution
attributes.

Results analysis and tuning
Here are some suggestions for analyzing the running Adaptive Server
environment after you configure the execution hierarchy:

1 Run the same benchmark tests you ran before assigning the execution
attributes, and compare the results to the baseline results. See
“Environment analysis and planning” on page 63.

2 Ensure that there is good distribution across all the available engines using
Adaptive Server Monitor or sp_sysmon. Check the “Kernel Utilization”
section of the sp_sysmon report.

Also see “Application management” on page 37 in the Performance and
Tuning: Monitoring and Analyzing for Performance

3 If the results are not what you expected, take a closer look at the
interactions between execution objects.

As described in “Environment analysis and planning” on page 63, look for
inappropriate assumptions and dependencies that you might have missed.

4 Make adjustments to the performance attributes.

5 Finetune the results by repeating these steps as many times as necessary.

Monitoring the environment over time
Adaptive Server has several stored procedures for example sp_sysmon,
optdiag, sp_spaceused, that are used to monitor performance and will give
valid information on the status of the system.

See Performance and Tuning Guide: Tools for Monitoring and Analyzing for
Performance for information on monitoring the system.

CHAPTER 5 Distributing Engine Resources

Performance and Tuning: Basics 67

Manage preferred access to resources
Most performance-tuning techniques give you control either at the system level
or the specific query level. Adaptive Server also gives you control over the
relative performance of simultaneously running tasks.

Unless you have unlimited resources, the need for control at the task level is
greater in parallel execution environments because there is more competition
for limited resources.

You can use system procedures to assign execution attributes that indicate
which tasks should be given preferred access to resources. The Logical Process
Manager uses the execution attributes when it assigns priorities to tasks and
tasks to engines.

Execution attributes also affect how long a process can use an engine each time
the process runs. In effect, assigning execution attributes lets you suggest to
Adaptive Server how to distribute engine resources between client
applications, logins, and stored procedures in a mixed workload environment.

Each client application or login can initiate many Adaptive Server tasks. In a
single-application environment, you can distribute resources at the login and
task levels to enhance performance for chosen connections or sessions. In a
multiple-application environment, you can distribute resources to improve
performance for selected applications and for chosen connections or sessions.

 Warning! Assign execution attributes with caution.

Arbitrary changes in the execution attributes of one client application, login, or
stored procedure can adversely affect the performance of others.

Types of execution classes
An execution class is a specific combination of execution attributes that specify
values for task priority, time slice, and task-to-engine affinity. You can bind an
execution class to one or more execution objects, which are client applications,
logins, and stored procedures.

There are two types of execution classes – predefined and user-defined.
Adaptive Server provides three predefined execution classes. You can create
user-defined execution classes by combining execution attributes.

Types of execution classes

68 Adaptive Server Enterprise

Predefined execution classes
Adaptive Server provides the following predefined execution classes:

• EC1 – has the most preferred attributes.

• EC2 – has average values of attributes.

• EC3 – has non-preferred values of attributes.

Objects associated with EC2 are given average preference for engine resources.
If an execution object is associated with EC1, Adaptive Server considers it to
be critical and tries to give it preferred access to engine resources.

Any execution object associated with EC3 is considered to be least critical and
does not receive engine resources until execution objects associated with EC1
and EC2 are executed. By default, execution objects have EC2 attributes.

To change an execution object’s execution class from the EC2 default, use
sp_bindexeclass, described in “Assigning execution classes” on page 72.

User-Defined execution classes
In addition to the predefined execution classes, you can define your own
execution classes. Reasons for doing this include:

• EC1, EC2, and EC3 do not accommodate all combinations of attributes that
might be useful.

• Associating execution objects with a particular group of engines would
improve performance.

The system procedure sp_addexeclass creates a user-defined execution class
with a name and attributes that you choose. For example, the following
statement defines a new execution class called DS with a low– priority value
and allows it to run on any engine:

sp_addexeclass DS, LOW, 0, ANYENGINE

You associate a user-defined execution class with an execution object using
sp_bindexeclass just as you would with a predefined execution class.

CHAPTER 5 Distributing Engine Resources

Performance and Tuning: Basics 69

Execution class attributes
Each predefined or user-defined execution class is composed of a combination
of three attributes: base priority, time slice, and an engine affinity. These
attributes determine performance characteristics during execution.

The attributes for the predefined execution classes, EC1, EC2, and EC3, are
fixed, as shown in Table 5-1. You specify the mix of attribute values for user-
defined execution classes when you create them, using sp_addexeclass.

Table 5-1: Fixed-attribute composition of predefined execution classes

See “Base priority” on page 69, “Time slice” on page 70 and “Task-to-engine
affinity” on page 70 for more information.

By default, a task on Adaptive Server operates with the same attributes as EC2:
its base priority is medium, its time slice is set to one tick, and it can run on any
engine.

Base priority
Base priority is the priority you assign to a task when you create it. The values
are “high,” “medium,” and “low.” There is a run queue for each priority for
each engine, and the global run queue also has a queue for each priority.

When an engine looks for a task to run, it first checks its own high-priority run
queue, then the high-priority global run queue, then its own medium-priority
run queue, and so on. The effect is that runnable tasks in the high-priority run
queues are scheduled onto engines more quickly, than tasks in the other queues.

During execution, Adaptive Server can temporarily change a task’s priority if
it needs to. It can be greater than or equal to, but never lower than, its base
priority.

When you create a user-defined execution class, you can assign the values
high, medium or low to the task.

Execution class
level

Base priority
attribute*

Time slice
attribute **

Engine affinity
attribute***

EC1 High Time slice > t None

EC2 Medium Time slice = t None

EC3 Low Time slice < t Engine with the highest
engine ID number

Execution class attributes

70 Adaptive Server Enterprise

Time slice
Adaptive Server handles several processes concurrently by switching between
them, allowing one process to run for a fixed period of time (a time slice)
before it lets the next process run.

As shown in Table 5-1 on page 69, the time slice attribute is different for each
predefined execution class. EC1 has the longest time slice value, EC3 has the
shortest time slice value, and EC2 has a time slice value that is between the
values for EC1 and EC3.

More precisely, the time period that each task is allowed to run is based on the
value for the time slice configuration parameter, as described in “Scheduling
client task processing time” on page 42. Using default values for configuration
parameters, EC1 execution objects may run for double the time slice value; the
time slice of an EC2 execution object is equivalent to the configured value; and
an EC3 execution object yields at the first yield point it encounters, often not
running for an entire time slice.

If tasks do not yield the engine for other reasons (such as needing to perform
I/O or being blocked by a lock) the effect is that EC1 clients run longer and
yield the engine fewer times over the life of a given task. EC3 execution objects
run for very short periods of time when they have access to the engine, so they
yield much more often over the life of the task. EC2 tasks fall between EC1 and
EC3 in runtime and yields.

Currently, you cannot assign time slice values when you create user-defined
execution classes with sp_addexeclass. Adaptive Server assigns the EC1, EC2,
and EC3 time slice values for high, medium, and low priority tasks,
respectively.

Task-to-engine affinity
In a multiengine environment, any available engine can process the next task
in the global run queue. The engine affinity attribute lets you assign a task to
an engine or to a group of engines. There are two ways to use task-to-engine
affinity:

• Associate less critical execution objects with a defined group of engines to
restrict the object to a subset of the total number of engines. This reduces
processor availability for those objects. The more critical execution
objects can execute on any Adaptive Server engine, so performance for
them improves because they have the benefit of the resources that the less
critical ones are deprived of.

CHAPTER 5 Distributing Engine Resources

Performance and Tuning: Basics 71

• Associate more critical execution objects with a defined group of engines
to which less critical objects do not have access. This ensures that the
critical execution objects have access to a known amount of processing
power.

EC1 and EC2 do not set engine affinity for the execution object; however, EC3
sets affinity to the Adaptive Server engine with the highest engine number in
the current configuration.

You can create engine groups with sp_addengine and bind execution objects to
an engine group with sp_addexeclass. If you do not want to assign engine
affinity for a user-defined execution class, using ANYENGINE as the engine
group parameter allows the task to run on any engine.

Note The engine affinity attribute is not used for stored procedures.

Setting execution class attributes
You implement and manage execution hierarchy for client applications, logins,
and stored procedures using the five categories of system procedures listed in
the following table.

Table 5-2: System procedures for managing execution object
precedence

Category Description System procedures

User-defined execution
class

Create and drop a user-defined class with
custom attributes or change the attributes
of an existing class.

• sp_addexeclass

• sp_dropexeclass

Execution class binding Bind and unbind predefined or user-
defined classes to client applications and
logins.

• sp_bindexeclass

• sp_unbindexeclass

For the session only
(“on the fly”)

Set and clear attributes of an active session
only.

• sp_setpsexe

• sp_clearpsexe

Engines Add engines to and drop engines from
engine groups; create and drop engine
groups.

• sp_addengine

• sp_dropengine

Reporting Report on engine group assignments,
application bindings, execution class
attributes.

• sp_showcontrolinfo

• sp_showexeclass

• sp_showpsexe

Setting execution class attributes

72 Adaptive Server Enterprise

See the Adaptive Server Enterprise Reference Manualfor complete
descriptions of the system procedures in Table 5-2.

Assigning execution classes
The following example illustrates how to assign preferred access to resources
to an execution object by associating it with EC1. In this case, the execution
object is a combination of application and login.

The syntax for the sp_bindexeclass is:

sp_bindexeclass object_name, object_type,
scope, class_name

Suppose you decide that the “sa” login must get results from isql as fast as
possible. You can tell Adaptive Server to give execution preference to login
“sa” when it executes isql by issuing sp_bindexeclass with the preferred
execution class EC1. For example:

sp_bindexeclass sa, LG, isql, EC1

This statement stipulates that whenever a login (LG) called “sa” executes the
isql application, the “sa” login task executes with EC1 attributes. Adaptive
Server improves response time for the “sa” login by:

• Placing it in a high-priority run queue, so it is assigned to an engine more
quickly

• Allowing it to run for a longer period of time than the default value for
time slice, so it accomplishes more work when it has access to the engine

Engine groups and establishing task-to-engine affinity
The following steps illustrate how you can use system procedures to create an
engine group associated with a user-defined execution class and bind that
execution class to user sessions. In this example, the server is used by technical
support staff, who must respond as quickly as possible to customer needs, and
by managers who are usually compiling reports, and can afford slower
response time.

The example uses sp_addengine and sp_addexeclass.

You create engine groups and add engines to existing groups with
sp_addengine. The syntax is:

CHAPTER 5 Distributing Engine Resources

Performance and Tuning: Basics 73

sp_addengine engine_number, engine_group

You set the attributes for user-defined execution classes using sp_addexeclass.
The syntax is:

sp_addexeclass class_name, base_priority,
 time_slice, engine_group

The steps are:

1 Create an engine group using sp_addengine. This statement creates a
group called DS_GROUP, consisting of engine 3:

sp_addengine 3, DS_GROUP

To expand the group so that it also includes engines 4 and 5, execute
sp_addengine two more times for those engine numbers:

sp_addengine 4, DS_GROUP
sp_addengine 5, DS_GROUP

2 Create a user-defined execution class and associate it with the DS_GROUP
engine group using sp_addexeclass.

This statement defines a new execution class called DS with a priority
value of “LOW” and associates it with the engine group DS_GROUP:

sp_addexeclass DS, LOW, 0, DS_GROUP

3 Bind the less critical execution objects to the new execution class using
sp_bindexeclass.

For example, you can bind the manager logins, “mgr1”, “mgr2”, and
“mgr3”, to the DS execution class using sp_bindexeclass three times:

sp_bindexeclass mgr1, LG, NULL, DS
sp_bindexeclass mgr2, LG, NULL, DS
sp_bindexeclass mgr3, LG, NULL, DS

The second parameter, “LG”, indicates that the first parameter is a login
name. The third parameter, NULL, indicates that the association applies to
any application that the login might be running. The fourth parameter, DS,
indicates that the login is bound to the DS execution class.

The result of this example is that the technical support group (not bound to an
engine group) is given access to more immediate processing resources than the
managers.

Figure 5-2 illustrates the associations in this scenario:

• Logins “mgr1”, “mgr2”, and “mgr3” have affinity to the DS engine group
consisting of engines 3, 4, and 5.

Setting execution class attributes

74 Adaptive Server Enterprise

• Logins “ts1”, “ts2”, “ts3”, and “ts4” can use all six Adaptive Server
engines.

Figure 5-2: An example of engine affinity

How execution class bindings affect scheduling
You can use logical process management to increase the priority of specific
logins, of specific applications, or of specific logins executing specific
applications. This example looks at:

• An order_entry application, an OLTP application critical to taking
customer orders.

• A sales_report application, that can prepare various reports. Some
managers run this application with default characteristics, but other
managers run the report at lower priority.

• Other users, who are running various other applications at default
priorities (no assignment of execution classes or priorities).

Execution class bindings

The following statement binds order_entry with EC1 attributes, giving higher
priority to the tasks running it:

sp_bindexeclass order_entry, AP, NULL, EC1

Engine 2

mgr1

ts1 ts2 ts3 ts4

mgr2 mgr3

Engine 3 Engine 4 Engine 5Engine 1Engine 0

DS class, with affinity to DS_GROUP engines

Tasks without execution attributes can run on any engine

CHAPTER 5 Distributing Engine Resources

Performance and Tuning: Basics 75

The following sp_bindexeclass statement specifies EC3 when “mgr” runs the
sales_report application:

sp_bindexeclass mgr, LG, sales_report, EC3

This task can execute only when tasks with EC1 and EC2 attributes are idle or
in a sleep state.

Figure 5-3 shows four execution objects running tasks. Several users are
running the order_entry and sales_report applications. Two other logins are
active, “mgr” (logged in once using the sales_report application, and twice
using isql) and “cs3” (not using the affected applications).

Figure 5-3: Execution objects and their tasks

When the “mgr” login uses isql (tasks 1 and 2), the task runs with default
attributes. But when the “mgr” login uses sales_report, the task runs at EC3.
Other managers running sales_report (tasks 6 and 7) run with the default
attributes. All tasks running order_entry run at high priority, with EC1 attributes
(tasks 3, 4 and 8). “cs3” runs with default attributes.

 Engine affinity can affect scheduling

Each execution class is associated with a different priority:

• Tasks assigned to EC1 are placed in a high-priority run queue.

• Tasks assigned to EC2 are placed in a medium-priority run queue.

• Tasks assigned to EC3 are place in a low-priority run queue.

1

6 7 8

2 3

5
sales_report

mgr

order_entry

4

9

cs3

H H

H DDD

D D

L

Priority:
H High
L Low
D Default

Setting execution class attributes

76 Adaptive Server Enterprise

An engine looking for a task to run first looks in its own high-priority run
queues, then in the high-priority global run queue. If there are no high-priority
tasks, it checks for medium-priority tasks in its own run queue, then in the
medium-priority global run queue, and finally for low-priority tasks.

What happens if a task has affinity to a particular engine? Assume that task 7
in Figure 5-3 on page 75, a high-priority task in the global run queue, has a
user-defined execution class with high priority and affinity to engine 2. Engine
2 currently has high-priority tasks queued and is running another task.

If engine 1 has no high-priority tasks queued when it finishes processing task
8 in Figure 5-3 on page 75, it checks the global run queue, but cannot process
task 7 due to the engine binding. Engine 1 then checks its own medium-priority
queue, and runs task 15. Although a System Administrator assigned the
preferred execution class EC1, engine affinity temporarily lowered task 7’s
execution precedence to below that of a task with EC2.

This effect might be highly undesirable or it might be what the performance
tuner intended. You can assign engine affinity and execution classes in such a
way that task priority is not what you intended. You can also make assignments
in such a way that tasks with low priority might not ever run, or might wait for
extremely long times – another reason to plan and test thoroughly when
assigning execution classes and engine affinity.

Setting attributes for a session only
If you need to change any attribute value temporarily for an active session, you
can do so using sp_setpsexe.

The change in attributes is valid only for the specified spid and is in effect only
for the duration of the session, whether it ends naturally or is terminated.
Setting attributes using sp_setpsexe neither alters the definition of the
execution class for any other process nor does it apply to the next invocation of
the active process on which you use it.

To clear attributes set for a session, use sp_clearpsexe.

Getting information
Adaptive Server stores the information about execution class assignments in
the system tables sysattributes and sysprocesses and supports several system
procedures for determining what assignments have been made.

CHAPTER 5 Distributing Engine Resources

Performance and Tuning: Basics 77

You can use sp_showcontrolinfo to display information about the execution
objects bound to execution classes, the Adaptive Server engines in an engine
group, and session-level attribute bindings. If you do not specify parameters,
sp_showcontrolinfo displays the complete set of bindings and the composition
of all engine groups.

sp_showexeclass displays the attribute values of an execution class or all
execution classes.

You can also use sp_showpsexe to see the attributes of all running processes.

Rules for determining precedence and scope
Determining the ultimate execution hierarchy between two or more execution
objects can be complicated. What happens when a combination of dependent
execution objects with various execution attributes makes the execution order
unclear?

For example, an EC3 client application can invoke an EC1 stored procedure.
Do both execution objects take EC3 attributes, EC1 attributes, or EC2
attributes?

Understanding how Adaptive Server determines execution precedence is
important for getting what you want out of your execution class assignments.
Two fundamental rules, the precedence rule and the scope rule, can help you
determine execution order.

Multiple execution objects and ECs
Adaptive Server uses precedence and scope rules to determine which
specification, among multiple conflicting ones, to apply.

Use the rules in this order:

1 Use the precedence rule when the process involves multiple execution
object types.

2 Use the scope rule when there are multiple execution class definitions for
the same execution object.

Rules for determining precedence and scope

78 Adaptive Server Enterprise

Precedence rule

The precedence rule sorts out execution precedence when an execution object
belonging to one execution class invokes an execution object of another
execution class.

The precedence rule states that the execution class of a stored procedure
overrides that of a login, which, in turn, overrides that of a client application.

If a stored procedure has a more preferred execution class than that of the client
application process invoking it, the precedence of the client process is
temporarily raised to that of the stored procedure for the period of time during
which the stored procedure runs. This also applies to nested stored procedures.

Note Exception to the precedence rule: If an execution object invokes a stored
procedure with a less preferred execution class than its own, the execution
object’s priority is not temporarily lowered.

Precedence Rule
Example

This example illustrates the use of the precedence rule. Suppose there is an EC2
login, an EC3 client application, and an EC1 stored procedure.

The login’s attributes override those of the client application, so the login is
given preference for processing. If the stored procedure has a higher base
priority than the login, the base priority of the Adaptive Server process
executing the stored procedure goes up temporarily for the duration of the
stored procedure’s execution. Figure 5-4 shows how the precedence rule is
applied.

Figure 5-4: Use of the precedence rule

What happens when a login with EC2 invokes a client application with EC1 and
the client application calls a stored procedure with EC3? The stored procedure
executes with the attributes of EC2 because the execution class of a login
precedes that of a client application.

login
Stored Client

Application Procedure
EC2 EC1EC3

Stored procedure runs with EC2

CHAPTER 5 Distributing Engine Resources

Performance and Tuning: Basics 79

Scope rule

In addition to specifying the execution attributes for an object, you can define
its scope when you use sp_bindexeclass. The scope specifies the entities for
which the execution class bindings will be effective. The syntax is:

sp_bindexeclass object_name, object_type,
 scope, class_name

For example, you can specify that an isql client application run with EC1
attributes, but only when it is executed by an “sa” login. This statement sets the
scope of the EC1 binding to the isql client application as the “sa” login:

sp_bindexeclass isql, AP, sa, EC1

Conversely, you can specify that the “sa” login run with EC1 attributes, but
only when it executes the isql client application. In this case, the scope of the
EC1 binding to the “sa” login is the isql client application:

sp_bindexeclass sa, LG, isql, EC1

The execution object’s execution attributes apply to all of its interactions if the
scope is NULL.

When a client application has no scope, the execution attributes bound to it
apply to any login that invokes the client application.

When a login has no scope, the attributes apply to the login for any process that
the login invokes.

The following command specifies that Transact-SQL applications execute
with EC3 attributes for any login that invokes isql, unless the login is bound to
a higher execution class:

sp_bindexeclass isql, AP, NULL, EC3

Combined with the bindings above that grant the “sa” user of isql EC1
execution attributes, and using the precedence rule, an isql request from the
“sa” login executes with EC1 attributes. Other processes servicing isql requests
from non-“sa” logins execute with EC3 attributes.

The scope rule states that when a client application, login, or stored procedure
is assigned multiple execution class levels, the one with the narrowest scope
has precedence. Using the scope rule, you can get the same result if you use this
command:

sp_bindexeclass isql, AP, sa, EC1

Rules for determining precedence and scope

80 Adaptive Server Enterprise

Resolving a precedence conflict
Adaptive Server uses the following rules to resolve conflicting precedence
when multiple execution objects and execution classes have the same scope.

• Execution objects not bound to a specific execution class are assigned
these default values:

• An execution object for which an execution class is assigned has higher
precedence than defaults. (An assigned EC3 has precedence over an
unassigned EC2).

• If a client application and a login have different execution classes, the
login has higher execution precedence than the client application (from the
precedence rule).

• If a stored procedure and a client application or login have different
execution classes, Adaptive Server uses the one with the higher execution
class to derive the precedence when it executes the stored procedure (from
the precedence rule).

• If there are multiple definitions for the same execution object, the one with
a narrower scope has the highest priority (from the scope rule). For
example, the first statement gives precedence to the “sa” login running isql
over “sa” logins running any other task:

sp_bindexeclass sa, LG, isql, EC1
sp_bindexeclass sa, LG, NULL, EC2

Examples: determining precedence

Each row in Table 5-3 contains a combination of execution objects and their
conflicting execution attributes.

The “Execution Class Attributes” columns show execution class values
assigned to a process application “AP” belonging to login “LG”.

The remaining columns show how Adaptive Server resolves precedence.

Entity type Attribute name Default value

Client application Execution class EC2

Login Execution class EC2

Stored procedure Execution class EC2

CHAPTER 5 Distributing Engine Resources

Performance and Tuning: Basics 81

Table 5-3: Conflicting attribute values and Adaptive Server assigned
values

To test your understanding of the rules of precedence and scope, cover the
“Adaptive Server-Assigned Values” columns in Table 5-3, and predict the
values in those columns. Following is a description of the scenario in the first
row, to help get you started:

• Column 1 – certain client application, AP, is specified as EC1.

• Column 2 – particular login, “LG”, is specified as EC2.

• Column 3 – stored procedure, sp_ec, is specified as EC1.

At run time:

• Column 4 – task belonging to the login,” LG”, executing the client
application AP, uses EC2 attributes because the class for a login precedes
that of an application (precedence rule).

• Column 5 – value of column 5 implies a medium base priority for the
login.

• Column 6 – execution priority of the stored procedure sp_ec is raised to
high from medium (because it is EC1).

Execution class attributes Adaptive Server-assigned values

Application
(AP)

Login
(LG)

Stored
procedure
(sp_ec) Application

Login
base
priority

Stored
procedure
base priority

EC1 EC2 EC1

(EC3)

EC2 Medium High

(Medium)

EC1 EC3 EC1

(EC2)

EC3 Low High

(Medium)

EC2 EC1 EC2

(EC3)

EC1 High High

(High)

EC2 EC3 EC1

(EC2)

EC3 Low High

(Medium)

EC3 EC1 EC2

(EC3)

EC1 High High

(High)

EC3 EC2 EC1

(EC3)

EC2 Medium High

(Medium)

Example scenario using precedence rules

82 Adaptive Server Enterprise

If the stored procedure is assigned EC3 (as shown in parentheses in
column 3), then the execution priority of the stored procedure is medium
(as shown in parentheses in column 6) because Adaptive Server uses the
highest execution priority of the client application or login and stored
procedure.

Example scenario using precedence rules
This section presents an example that illustrates how Adaptive Server
interprets the execution class attributes.

Figure 5-5 shows two client applications, OLTP and isql, and three Adaptive
Server logins, “L1”, “sa”, and “L2”.

sp_xyz is a stored procedure that both the OLTP application and the isql
application need to execute.

CHAPTER 5 Distributing Engine Resources

Performance and Tuning: Basics 83

Figure 5-5: Conflict resolution

The rest of this section describes one way to implement the steps discussed in
Algorithm Guidelines.

Planning
The System Administrator performs the analysis described in steps 1 and 2 of
the algorithm in “Algorithm for successfully distributing engine resources” on
page 59 and decides on the following hierarchy plan:

• The OLTP application is an EC1 application and the isql application is an
EC3 application.

sp_xyz

L1 SA L2

OLTP isql

Adaptive Server Environment

Example scenario using precedence rules

84 Adaptive Server Enterprise

• Login “L1” can run different client applications at different times and has
no special performance requirements.

• Login “L2” is a less critical user and should always run with low
performance characteristics.

• Login “sa” must always run as a critical user.

• Stored procedure sp_xyz should always run with high performance
characteristics. Because the isql client application can execute the stored
procedure, giving sp_xyz a high-performance characteristics is an attempt
to avoid a bottleneck in the path of the OLTP client application.

Table 5-1 summarizes the analysis and specifies the execution class to be
assigned by the System Administrator. Notice that the tuning granularity gets
finer as you descend the table. Applications have the greatest granularity, or the
largest scope. The stored procedure has the finest granularity, or the narrowest
scope.

Table 5-4: Example analysis of an Adaptive Server environment

Configuration
The System Administrator executes the following system procedures to assign
execution classes (algorithm step 3):

sp_bindexeclass OLTP, AP, NULL, EC1
sp_bindexeclass ISQL, AP, NULL, EC3
sp_bindexeclass L2, LG, NULL, EC3
sp_bindexeclass sa, LG, NULL, EC1
sp_bindexeclass SP_XYZ, PR, sp_owner, EC1

Identifier Interactions and comments
Execution
class

OLTP • Same tables as isql

• Highly critical

EC1

isql • Same tables as OLTP

• Low priority

EC3

L1 • No priority assignment None

sa • Highly critical EC1

L2 • Not critical EC3

sp_xyz • Avoid “hot spots” EC1

CHAPTER 5 Distributing Engine Resources

Performance and Tuning: Basics 85

Execution characteristics
Following is a series of events that could take place in an Adaptive Server
environment with the configuration described in this example:

1 A client logs in to Adaptive Server as “L1” using OLTP.

• Adaptive Server determines that OLTP is EC1.

• “L1”does not have an execution class, so Adaptive Server assigns the
default class EC2. “L1”gets the characteristics defined by EC1 when
it invokes OLTP.

• If “L1”executes stored procedure sp_xyz, its priority remains
unchanged while sp_xyz executes. During execution, “L1”has EC1
attributes throughout.

2 A client logs in to Adaptive Server as “L1” using isql.

• Because isql is EC3, and the “L1”execution class is undefined,
“L1”executes with EC3 characteristics. This means it runs at low
priority and has affinity with the highest numbered engine (as long as
there are multiple engines).

• When “L1”executes sp_xyz, its priority is raised to high because the
stored procedure is EC1.

3 A client logs in to Adaptive Server as “sa” using isql.

• Adaptive Server determines the execution classes for both isql and the
“sa”, using the precedence rule. Adaptive Server runs the System
Administrator’s instance of isql with EC1 attributes. When the System
Administrator executes sp_xyz, the priority does not change.

4 A client logs in to Adaptive Server as “L2” using isql.

• Because both the application and login are EC3, there is no conflict.
“L2” executes sp_xyz at high priority.

Considerations for Engine Resource Distribution
Making execution class assignments indiscriminately does not usually yield
what you expect. Certain conditions yield better performance for each
execution object type. Table 5-5 indicates when assigning an execution
precedence might be advantageous for each type of execution object.

Considerations for Engine Resource Distribution

86 Adaptive Server Enterprise

Table 5-5: When assigning execution precedence is useful

It is more effective to lower the execution class of less-critical execution
objects than to raise the execution class of a highly critical execution object.
The sections that follow give more specific consideration to improving
performance for the different types of execution objects.

Client applications: OLTP and DSS
Assigning higher execution preference to client applications can be
particularly useful when there is little contention for non-CPU resources
among client applications.

For example, if an OLTP application and a DSS application execute
concurrently, you might be willing to sacrifice DSS application performance if
that results in faster execution for the OLTP application. You can assign non-
preferred execution attributes to the DSS application so that it gets CPU time
only after OLTP tasks are executed.

Unintrusive client applications

Inter-application lock contention is not a problem for an unintrusive
application that uses or accesses tables that are not used by any other
applications on the system.

Assigning a preferred execution class to such an application ensures that
whenever there is a runnable task from this application, it is first in the queue
for CPU time.

I/O-bound client applications

If a highly-critical application is I/O bound and the other applications are
compute bound, the compute-bound process can use the CPU for the full time
quantum if it is not blocked for some other reason.

Execution
object Description

Client application There is little contention for non-CPU resources among client applications.

Adaptive Server login One login should have priority over other logins for CPU resources.

Stored procedure There are well-defined stored procedure “hot spots.”

CHAPTER 5 Distributing Engine Resources

Performance and Tuning: Basics 87

An I/O-bound process, on the other hand, gives up the CPU each time it
performs an I/O operation. Assigning a non-preferred execution class to the
compute-bound application enables Adaptive Server to run the I/O-bound
process sooner.

Highly critical applications

If there are one or two critical execution objects among several noncritical
ones, try setting engine affinity to a specific engine or group of engines for the
less critical applications. This can result in better throughput for the highly
critical applications.

Adaptive Server logins: high-priority users
If you assign preferred execution attributes to a critical user and maintain
default attributes for other users, Adaptive Server does what it can to execute
all tasks associated with the high-priority user first.

Stored procedures: “hot spots”
Performance issues associated with stored procedures arise when a stored
procedure is heavily used by one or more applications. When this happens, the
stored procedure is characterized as a hot spot in the path of an application.

Usually, the execution priority of the applications executing the stored
procedure is in the medium to low range, so assigning more preferred
execution attributes to the stored procedure might improve performance for the
application that calls it.

Considerations for Engine Resource Distribution

88 Adaptive Server Enterprise

Performance and Tuning: Basics 89

C H A P T E R 6 Controlling Physical Data
Placement

This describes how controlling the location of tables and indexes can
improve performance.

Object placement can improve performance
Adaptive Server allows you to control the placement of databases, tables,
and indexes across your physical storage devices. This can improve
performance by equalizing the reads and writes to disk across many
devices and controllers. For example, you can:

• Place a database‘s data segments on a specific device or devices,
storing the database’s log on a separate physical device. This way,
reads and writes to the database’s log do not interfere with data access

• Spread large, heavily used tables across several devices.

• Place specific tables or nonclustered indexes on specific devices. For
example, you might place a table on a segment that spans several
devices and its nonclustered indexes on a separate segment.

Topic Page
Object placement can improve performance 89

Terminology and concepts 92

Guidelines for improving I/O performance 92

Using serial mode 96

Creating objects on segments 96

Partitioning tables for performance 99

Space planning for partitioned tables 103

Commands for partitioning tables 106

Steps for partitioning tables 117

Special procedures for difficult situations 124

Maintenance issues and partitioned tables 131

Object placement can improve performance

90 Adaptive Server Enterprise

• Place the text and image page chain for a table on a separate device from
the table itself. The table stores a pointer to the actual data value in the
separate database structure, so each access to a text or image column
requires at least two I/Os.

• Distribute tables evenly across partitions on separate physical disks to
provide optimum parallel query performance.

For multiuser systems and multi-CPU systems that perform a lot of disk I/O,
pay special attention to physical and logical device issues and the distribution
of I/O across devices:

• Plan balanced separation of objects across logical and physical devices.

• Use enough physical devices, including disk controllers, to ensure
physical bandwidth.

• Use an increased number of logical devices to ensure minimal contention
for internal I/O queues.

• Use a number of partitions that will allow parallel scans, to meet query
performance goals.

• Make use of the ability of create database to perform parallel I/O on as
many as six devices at a time, to gain a significant performance leap for
creating multi gigabyte databases.

Symptoms of poor object placement
The following symptoms may indicate that your system could benefit from
attention to object placement:

• Single-user performance is satisfactory, but response time increases
significantly when multiple processes are executed.

• Access to a mirrored disk takes twice as long as access to an unmirrored
disk.

• Query performance degrades as system table activity increases.

• Maintenance activities seem to take a long time.

• Stored procedures seem to slow down as they create temporary tables.

• Insert performance is poor on heavily used tables.

CHAPTER 6 Controlling Physical Data Placement

Performance and Tuning: Basics 91

• Queries that run in parallel perform poorly, due to an imbalance of data
pages on partitions or devices, or they run in serial, due to extreme
imbalance.

Underlying problems
If you are experiencing problems due to disk contention and other problems
related to object placement, check for these underlying problems:

• Random-access (I/O for data and indexes) and serial-access (log I/O)
processes are using the same disks.

• Database processes and operating system processes are using the same
disks.

• Serial disk mirroring is being used because of functional requirements.

• Database maintenance activity (logging or auditing) is taking place on the
same disks as data storage.

• tempdb activity is on the same disk as heavily used tables.

Using sp_sysmon while changing data placement
Use sp_sysmon to determine whether data placement across physical devices
is causing performance problems. Check the entire sp_sysmon output during
tuning to verify how the changes affect all performance categories.

For more information about using sp_sysmon, see Chapter 8, “Monitoring
Performance with sp_sysmon.” in the Performance and Tuning: Monitoring
and Analyzing for Performance book.

Pay special attention to the output associated with the discussions:

• I/O device contentions

• APL heap tables

• Last page locks on heaps

• Disk I.O management

Adaptive Server Monitor can also help pinpoint problems.

Terminology and concepts

92 Adaptive Server Enterprise

Terminology and concepts
You should understand the following distinctions between logical or database
devices and physical devices:

• The physical disk or physical device is the actual hardware that stores the
data.

• A database device or logical device is a piece of a physical disk that has
been initialized (with the disk init command) for use by Adaptive Server.
A database device can be an operating system file, an entire disk, or a disk
partition.

See the Adaptive Server installation and configuration guides for
information about specific operating system constraints on disk and file
usage.

• A segment is a named collection of database devices used by a database.
The database devices that make up a segment can be located on separate
physical devices.

• A partition is block of storage for a table. Partitioning a table splits it so
that multiple tasks can access it simultaneously. When partitioned tables
are placed on segments with a matching number of devices, each partition
starts on a separate database device.

Use sp_helpdevice to get information about devices, sp_helpsegment to get
information about segments, and sp_helpartition to get information about
partitions.

Guidelines for improving I/O performance
The major guidelines for improving I/O performance in Adaptive Server are as
follows:

• Spreading data across disks to avoid I/O contention.

• Isolating server-wide I/O from database I/O.

• Separating data storage and log storage for frequently updated databases.

• Keeping random disk I/O away from sequential disk I/O.

• Mirroring devices on separate physical disks.

• Partitioning tables to match the number of physical devices in a segment.

CHAPTER 6 Controlling Physical Data Placement

Performance and Tuning: Basics 93

Spreading data across disks to avoid I/O contention
You can avoid bottlenecks by spreading data storage across multiple disks and
multiple disk controllers:

• Put databases with critical performance requirements on separate devices.
If possible, also use separate controllers from those used by other
databases. Use segments as needed for critical tables and partitions as
needed for parallel queries.

• Put heavily used tables on separate disks.

• Put frequently joined tables on separate disks.

• Use segments to place tables and indexes on their own disks.

Avoiding physical contention in parallel join queries

The example in Figure 6-1 illustrates a join of two partitioned tables, orders_tbl
and stock_tbl. There are ten worker process available: orders_tbl has ten
partitions on ten different physical devices and is the outer table in the join;
stock_tbl is nonpartitioned. The worker processes will not have a problem with
access contention on orders_tbl, but each worker process must scan stock_tbl.
There could be a problem with physical I/O contention if the entire table does
not fit into a cache. In the worst case, ten worker processes attempt to access
the physical device on which stock_tbl resides. You can avoid physical I/O
contention by creating a named cache that contains the entire table stock_tbl.

Another way to reduce or eliminate physical I/O contention is to partition both
orders_tbl and stock_tbl and distribute those partitions on different physical
devices.

Figure 6-1: Joining tables on different physical devices

orders_tbl stock_tbl

Guidelines for improving I/O performance

94 Adaptive Server Enterprise

Isolating server-wide I/O from database I/O
Place system databases with heavy I/O requirements on separate physical disks
and controllers than your application databases.

Where to place tempdb

tempdb is automatically installed on the master device. If more space is needed,
tempdb can be expanded to other devices. If tempdb is expected to be quite
active, place it on a disk that is not used for other important database activity.
Use the fastest disk available for tempdb. It is a heavily used database that
affects all processes on the server.

On some UNIX systems, I/O to operating system files is significantly faster
than I/O to raw devices. Since tempdb is always re-created, rather than
recovered, after a shutdown, you may be able to improve performance by
altering tempdb onto an operating system file instead of a raw device. You
should test this on your own system.

See Chapter 17, “tempdb Performance Issues,” for more placement issues and
performance tips for tempdb.

Where to place sybsecurity

If you use auditing on your Adaptive Server, the auditing system performs
frequent I/O to the sysaudits table in the sybsecurity database. If your
applications perform a significant amount of auditing, place sybsecurity on a
disk that is not used for tables where fast response time is critical. Placing
sybsecurity on its own device is optimal.

Also, use the threshold manager to monitor its free space to avoid suspending
user transactions if the audit database fills up.

Keeping transaction logs on a separate disk
You can limit the size of the transaction logs by placing them on a separate
segment, this keeps it from competing with other objects for disk space.
Placing the log on a separate physical disk:

• Improves performance by reducing I/O contention

• Ensures full recovery in the event of hard disk crashes on the data device

CHAPTER 6 Controlling Physical Data Placement

Performance and Tuning: Basics 95

• Speeds recovery, since simultaneous asynchronous prefetch requests can
read ahead on both the log device and the data device without contention

Placing the transaction log on the same device as the data itself causes such a
dangerous reliability problem that both create database and alter database
require the use of the with override option to put the transaction log on the same
device as the data itself.

The log device can experience significant I/O on systems with heavy update
activity. Adaptive Server writes log pages to disk when transactions commit
and may need to read log pages into memory for deferred updates or
transaction rollbacks.

If your log and data are on the same database devices, the extents allocated to
store log pages are not contiguous; log extents and data extents are mixed.
When the log is on its own device, the extents tend to be allocated sequentially,
reducing disk head travel and seeks, thereby maintaining a higher I/O rate.

Also, if log and data are on separate devices, Adaptive Server buffers log
records for each user in a user log cache, reducing contention for writing to the
log page in memory. If log and data are on the same devices, user log cache
buffering is disabled, which results in serious performance penalty on SMP
systems.

If you have created a database without its log on a separate device, see the
System Administration Guide.

Mirroring a device on a separate disk
If you mirror data, put the mirror on a separate physical disk Thanthe device
that it mirrors. Disk hardware failure often results in whole physical disks
being lost or unavailable. Mirroring on separate disks also minimizes the
performance impact of mirroring.

Device mirroring performance issues

Disk mirroring is a secure and high availability feature that allows Adaptive
Server to duplicate the contents of an entire database device.

See the System Administration Guide for more information on mirroring.

If you do not use mirroring, or use operating system mirroring, set the
configuration parameter disable disk mirroring to 1. This may yield slight
performance improvements.

Creating objects on segments

96 Adaptive Server Enterprise

Mirroring can slow the time taken to complete disk writes, since writes go to
both disks, either serially or simultaneously. Reads always come from the
primary side. Disk mirroring has no effect on the time required to read data.

Mirrored devices use one of two modes for disk writes:

• Nonserial mode can require more time to complete a write than an
unmirrored write requires. In nonserial mode, both writes are started at the
same time, and Adaptive Server waits for both to complete. The time to
complete nonserial writes is max(W1 ,W2) – the greater of the two I/O
times.

• Serial mode increases the time required to write data even more than
nonserial mode. Adaptive Server starts the first write and waits for it to
complete before starting the second write. The time required is W1+W2 –
the sum of the two I/O times.

Using serial mode

Despite its performance impact, serial mode is important for reliability. In fact,
serial mode is the default, because it guards against failures that occur while a
write is taking place.

Since serial mode waits until the first write is complete before starting the
second write, it is impossible for a single failure to affect both disks. Specifying
nonserial mode improves performance, but you risk losing data if a failure
occurs that affects both writes.

 Warning! Unless you are sure that your mirrored database system does not
need to be absolutely reliable, do not use nonserial mode.

Creating objects on segments
A segment is a label that points to one or more database devices.

Each database can use up to 32 segments, including the 3 segments that are
created by the system (system, log segment, and default) when a database is
created. Segments label space on one or more logical devices.

CHAPTER 6 Controlling Physical Data Placement

Performance and Tuning: Basics 97

Tables and indexes are stored on segments. If no segment is named in the create
table or create index statement, then the objects are stored on the default
segment for the database. Naming a segment in either of these commands
creates the object on the segment. The sp_placeobject system procedure causes
all future space allocations to take place on a specified segment, so tables can
span multiple segments.

A System Administrator must initialize the device with disk init, and the disk
must be allocated to the database by the System Administrator or the Database
Owner with create database or alter database.

Once the devices are available to the database, the database owner or object
owners can create segments and place objects on the devices.

If you create a user-defined segment, you can place tables or indexes on that
segment with the create table or create index commands:

create table tableA(...) on seg1
create nonclustered index myix on tableB(...)
 on seg2

By controlling the location of critical tables, you can arrange for these tables
and indexes to be spread across disks.

Using segments
Segments can improve throughput by:

• Splitting large tables across disks, including tables that are partitioned for
parallel query performance

• Separating tables and their nonclustered indexes across disks

• Placing the text and image page chain on a separate disk from the table
itself, where the pointers to the text values are stored

In addition, segments can control space usage, as follows:

• A table can never grow larger than its segment allocation; You can use
segments to limit table size.

• Tables on other segments cannot impinge on the space allocated to objects
on another segment.

• The threshold manager can monitor space usage.

Creating objects on segments

98 Adaptive Server Enterprise

Separating tables and indexes
Use segments to isolate tables on one set of disks and nonclustered indexes on
another set of disks. You cannot place a clustered index on a separate segment
than its data pages. When you create a clustered index, using the on
segment_name clause, the entire table is moved to the specified segment, and
the clustered index tree is built there.

You can improve performance by placing nonclustered indexes on a separate
segment.

Splitting large tables across devices
Segments can span multiple devices, so they can be used to spread data across
one or more disks. For large, extremely busy tables, this can help balance the
I/O load. For parallel queries, creating segments that include multiple devices
is essential for I/O parallelism during partitioned-based scans.

See the System Administration Guide for more information.

Moving text storage to a separate device
When a table includes a text, image, or Java off-row datatype, the table itself
stores a pointer to the data value. The actual data is stored on a separate linked
list of pages called a LOB (large object) chain.

Writing or reading a LOB value requires at least two disk accesses, one to read
or write the pointer and one for subsequent reads or writes for the data. If your
application frequently reads or writes these values, you can improve
performance by placing the LOB chain on a separate physical device. Isolate
LOB chains on disks that are not busy with other application-related table or
index access.

When you create a table with LOB columns, Adaptive Server creates a row in
sysindexes for the object that stores the LOB data. The value in the name
column is the table name prefixed with a “t”; the indid is always 255. Note that
if you have multiple LOB columns in a single table, there is only one object
used to store the data. By default, this object is placed on the same segment as
the table.

You can use sp_placeobject to move all future allocations for the LOB columns
to a separate segment.

CHAPTER 6 Controlling Physical Data Placement

Performance and Tuning: Basics 99

See the System Administraton Guide for more information.

Partitioning tables for performance
Partitioning a table can improve performance for several types of processes.
The reasons for partitioning a table are:

• Partitioning allows parallel query processing to access each partition of the
table. Each worker process in a partitioned-based scan reads a separate
partition.

• Partitioning makes it possible to load a table in parallel with bulk copy.

For more information on parallel bcp, see the Utility Programs manual.

• Partitioning makes it possible to distribute a table’s I/O over multiple
database devices.

• Partitioning provides multiple insertion points for a heap table.

The tables you choose to partition depend on the performance issues you
encounter and the performance goals for the queries on the tables.

The following sections explain the commands needed to partition tables and to
maintain partitioned tables, and outline the steps for different situations.

See “Guidelines for parallel query configuration” on page 164 in the
Performance and Tuning: Optimizer book for more information and examples
of partitioning to meet specific performance goals.

User transparency
Adaptive Server’s management of partitioned tables is transparent to users and
applications. Partitioned tables do not appear different from nonpartitioned
tables when queried or viewed with most utilities. Exceptions are:

• If queries do not include order by or other commands that require a sort,
data returned by a parallel query may not in the same order as data returned
by serial queries.

• The dbcc checktable and dbcc checkdb commands list the number of data
pages in each partition.

See the System Administration Guide for information about dbcc.

Partitioning tables for performance

100 Adaptive Server Enterprise

• sp_helpartition lists information about a table’s partitions.

• showplan output displays messages indicating the number of worker
processes uses for queries that are executed in parallel, and the statistics io
“Scan count” shows the number of scans performed by worker processes.

• Parallel bulk copy allows you to copy to a particular partition of a heap
table.

Partitioned tables and parallel query processing
Parallel query processing on partitioned tables can potentially produce
dramatic improvements in query performance. Partitions increase
simultaneous access by worker processes. When enough worker processes are
available, and the value for the max parallel degree configuration parameter is
set equal to or greater than the number of partitions, one worker process scans
each of the table’s partitions.

When the partitions are distributed across physical disks, the reduced I/O
contention further speeds parallel query processing and achieves a high level
of parallelism.

The optimizer can choose to use parallel query processing for a query against
a partitioned table when parallel query processing is enabled. The optimizer
considers a parallel partition scan for a query when the base table for the query
is partitioned, and it considers a parallel index scan for a useful index.

See Chapter 8, “Parallel Query Optimization,” in the Performance and
Tuning: Optimizer book for more information on how parallel queries are
optimized.

Distributing data across partitions

Creating a clustered index on a partitioned table redistributes the table’s data
evenly over the partitions. Adaptive Server determines the index key ranges for
each partition so that it can distribute the rows equally in the partition. Each
partition is assigned at least one exclusive device if the number of devices in
the segment is equal to or greater than the number of partitions.

If you create the clustered index on an empty partitioned table, Adaptive Server
prints a warning advising you to re-create the clustered index after loading data
into the table, as all the data will be inserted into the first partition until you re-
create the clustered index.

CHAPTER 6 Controlling Physical Data Placement

Performance and Tuning: Basics 101

If you partition a table that already has a clustered index, all pages in the table
are assigned to the first partition. The alter table...partition command succeeds
and prints a warning. You must drop and recreate the index to redistribute the
data.

Improving insert performance with partitions
All insert commands on an allpages-locked heap table attempt to insert the
rows on the last page of the table. If multiple users insert data simultaneously,
each new insert transaction must wait for the previous transaction to complete
in order to proceed.

Partitioning an allpages-locked heap table improves the performance of
concurrent inserts by reducing contention for the last page of a page chain.

For data-only-locked tables, Adaptive Server stores one or more hints that
point to a page where an insert was recently performed. Blocking during inserts
on data-only-locked tables occurs only with high rates of inserts.

Partitioning data-only-locked heap tables increases the number of hints, and
can help if inserts are blocking.

How partitions address page contention

When a transaction inserts data into a partitioned heap table, Adaptive Server
randomly assigns the transaction to one of the table’s partitions. Concurrent
inserts are less likely to block, since multiple last pages are available for
inserts.

Selecting heap tables to partition

Allpages-locked heap tables that have large amounts of concurrent insert
activity will benefit from partitioning. Insert rates must be very high before
significant blocking takes place on data-only-locked tables. If you are not sure
whether the tables in your database system might benefit from partitioning:

• Use sp_sysmon to look for last page locks on heap tables.

See “Lock management” on page 73 in the Performance and Tuning:
Monitoring and Analyzing for Performance book.

• Use sp_object_stats to report on lock contention.

Partitioning tables for performance

102 Adaptive Server Enterprise

See “Identifying tables where concurrency is a problem” on page 88 in the
Performance and Tuning: Locking book.

Restrictions on partitioned tables
You cannot partition Adaptive Server system tables or tables that are already
partitioned. Once you have partitioned a table, you cannot use any of the
following Transact-SQL commands on the table until you unpartition it:

• sp_placeobject

• truncate table

• alter table table_name partition n

See “alter table...unpartition Syntax” on page 107 for more information.

Partition-related configuration parameters
If you require a large number of partitions, you may want to change the default
values for the partition groups and partition spinlock ratio configuration
parameters.

See the System Administration Guide for more information.

How Adaptive Server distributes partitions on devices
When you issue an alter table...partition command, Adaptive Server creates the
specified number of partitions in the table and distributes those partitions over
the database devices in the table’s segment. Adaptive Server assigns partitions
to devices so that they are distributed evenly across the devices in the segment.

Table 6-1 illustrates how Adaptive Server assigns 5 partitions to 3, 5, and 12
devices, respectively.

CHAPTER 6 Controlling Physical Data Placement

Performance and Tuning: Basics 103

Table 6-1: Assigning partitions to segments

Matching the number of partitions to the number of devices in the segment
provides the best I/O performance for parallel queries.

You can partition tables that use the text, image, or Java off-row data types.
However, the columns themselves are not partitioned—they remain on a single
page chain.

RAID devices and partitioned tables

Table 6-1 and other statements in this chapter describe the Adaptive Server
logical devices that map to a single physical device.

A striped RAID device may contain multiple physical disks, but it appears to
Adaptive Server as a single logical device. For a striped RAID device, you can
use multiple partitions on the single logical device and achieve good parallel
query performance.

To determine the optimum number of partitions for your application mix, start
with one partition for each device in the stripe set. Use your operating system
utilities (vmstat, sar, and iostat on UNIX; Performance Monitor on Windows
NT) to check utilization and latency.

To check maximum device throughput, use select count(*), using the (index
table_name) clause to force a table scan if a nonclustered index exists. This
command requires minimal CPU effort and creates very little contention for
other resources.

Space planning for partitioned tables
When planning for partitioned tables, the two major issues are:

Partition ID Device (D) Assignments for Segment With

3 Devices 5 Devices 12 Devices

Partition 1 D1 D1 D1, D6, D11

Partition 2 D2 D2 D2, D7, D12

Partition 3 D3 D3 D3, D8, D11

Partition 4 D1 D4 D4, D9, D12

Partition 5 D2 D5 D5, D10, D11

Space planning for partitioned tables

104 Adaptive Server Enterprise

• Maintaining load balance across the disk for partition-based scan
performance and for I/O parallelism

• Maintaining clustered indexes requires approximately 120% of the space
occupied by the table to drop and re-create the index or to run reorg rebuild

How you make these decisions depends on:

• The availability of disk resources for storing tables

• The nature of your application mix

You need to estimate how often your partitioned tables need maintenance:
some applications need frequent index re-creation to maintain balance, while
others need little maintenance.

For those applications that need frequent load balancing for performance,
having space to re-create a clustered index or run reorg rebuild provides the
speediest and easiest method. However, since creating clustered indexes
requires copying the data pages, the space available on the segment must be
equal to approximately 120% of the space occupied by the table.

See “Determining the space available for maintenance activities” on page 356
for more information.

The following descriptions of read-only, read-mostly, and random data
modification provide a general picture of the issues involved in object
placement and in maintaining partitioned tables.

See “Steps for partitioning tables” on page 117 for more information about the
specific tasks required during maintenance.

Read-only tables
Tables that are read only, or that are rarely changed, can completely fill the
space available on a segment, and do not require maintenance. If a table does
not require a clustered index, you can use parallel bulk copy to completely fill
the space on the segment.

If a clustered index is needed, the table’s data pages can occupy up to 80% of
the space in the segment. The clustered index tree requires about 20% of the
space used by the table.

This size varies, depending on the length of the key. Loading the data into the
table initially and creating the clustered index requires several steps, but once
you have performed these steps, maintenance is minimal.

CHAPTER 6 Controlling Physical Data Placement

Performance and Tuning: Basics 105

Read-mostly tables
The guidelines above for read-only tables also apply to read-mostly tables with
very few inserts. The only exceptions are as follows:

• If there are inserts to the table, and the clustered index key does not
balance new space allocations evenly across the partitions, the disks
underlying some partitions may become full, and new extent allocations
will be made to a different physical disk. This process is called extent
stealing.

In huge tables spread across many disks, a small percentage of allocations
to other devices is not a problem. Extent stealing can be detected by using
sp_helpsegment to check for devices that have no space available and by
using sp_helpartition to check for partitions that have disproportionate
numbers of pages.

If the imbalance in partition size leads to degradation in parallel query
response times or optimization, you may want to balance the distribution
by using one of the methods described in “Steps for partitioning tables”
on page 117.

• If the table is a heap, the random nature of heap table inserts should keep
partitions balanced.

Take care with large bulk copy in operations. You can use parallel bulk
copy to send rows to the partition with the smallest number of pages to
balance the data across the partitions. See “Using bcp to correct partition
balance” on page 112.

Tables with random data modification
Tables with clustered indexes that experience many inserts, updates, and
deletes over time tend to lead to data pages that are approximately 70 to 75%
full. This can lead to performance degradation in several ways:

• More pages must be read to access a given number of rows, requiring
additional I/O and wasting data cache space.

• On tables that use allpages locking, the performance of large I/O and
asynchronous prefetch suffers because the page chain crosses extents and
allocation units.

Buffers brought in by large I/O may be flushed from cache before all of
the pages are read. The asynchronous prefetch look-ahead set size is
reduced by cross-allocation unit hops while following the page chain.

Commands for partitioning tables

106 Adaptive Server Enterprise

Once the fragmentation starts to take its toll on application performance, you
need to perform maintenance. If that requires dropping and re-creating the
clustered index, you need 120% of the space occupied by the table.

IF space is unavailable, maintenance becomes more complex and takes longer.
The best, and often cheapest, solution is to add enough disk capacity to provide
room for the index creation.

Commands for partitioning tables
Creating and maintaining partitioned tables involves using a mix of the
following types of commands:

• Commands to partition and unpartition the table

• Commands to drop and re-create clustered indexes to maintain data
distribution on the partitions and/or on the underlying physical devices

• Parallel bulk copy commands to load data into specific partitions

• Commands to display information about data distribution on partitions and
devices

• Commands to update partition statistics

This section presents the syntax and examples for the commands you use to
create and maintain partitioned tables.

For different scenarios that require different combinations of these commands,
see “Steps for partitioning tables” on page 117.

Use the alter table command to partition and unpartition a table.

alter table...partition syntax
The syntax for using the partition clause to alter table is:

alter table table_name partition n

where table_name is the name of the table and n is the number of partitions you
are creating.

CHAPTER 6 Controlling Physical Data Placement

Performance and Tuning: Basics 107

Any data that is in the table before you invoke alter table remains in the first
partition. Partitioning a table does not move the table’s data – it will still
occupy the same space on the physical devices.

If you are creating partitioned tables for parallel queries, you may need to
redistribute the data, either by creating a clustered index or by copying the data
out, truncating the table, and then copying the data back in.

You cannot include the alter table...partition command in a user-defined
transaction.

The following command creates 10 partitions for a table named historytab:

alter table historytab partition 10

alter table...unpartition Syntax
Unpartitioning a table concatenates the table’s multiple partitions into a single
partition. Unpartitioning a table does not change the location of the data.

The syntax for using the unpartition clause to alter table is:

alter table table_name unpartition

For example, to unpartition a table named historytab, enter:

alter table historytab unpartition

Changing the number of partitions
To change the number of partitions in a table, first unpartition the table using
alter table...unpartition.

Then use alter table...partition, specifying the new number of partitions. This
does not move the existing data in the table.

You cannot use the partition clause with a table that is already partitioned.

For example, if a table named historytab contains 10 partitions, and you want
the table to have 20 partitions, enter these commands:

alter table historytab unpartition
alter table historytab partition 20

Commands for partitioning tables

108 Adaptive Server Enterprise

Distributing data evenly across partitions
Good parallel performance depends on a fairly even distribution of data on a
table’s partitions. The two major methods to achieve this distribution are:

• Creating a clustered index on a partitioned table. The data should already
be in the table.

• Using parallel bulk copy, specifying the partitions where the data is to be
loaded.

sp_helpartition tablename reports the number of pages on each partition in a
table.

Commands to create and drop clustered indexes

You can create a clustered index using the create clustered index command or
by creating a primary or foreign key constraint with alter table...add constraint.
The steps to drop and re-create it are slightly different, depending on which
method you used to create the existing clustered index.

Creating a clustered index on a partitioned table requires a parallel sort. Set
configuration parameters and set options as shown before you issue the
command to create the index:

• Set number of worker processes and max parallel degree to at least the
number of partitions in the table, plus 1.

• Execute sp_dboption "select into/bulkcopy/pllsort", true, and run checkpoint
in the database.

For more information on configuring Adaptive Server to allow parallel
execution, see “Controlling the degree of parallelism” on page 154 in the
Performance and Tuning: Optimizer book.

See Chapter 9, “Parallel Sorting,” in the Performance and Tuning: Optimizer
book for additional information on parallel sorting.

If your queries do not use the clustered index, you can drop the index without
affecting the distribution of data. Even if you do not plan to retain the clustered
index, be sure to create it on a key that has a very high number of data values.
For example, a column such as “sex”, which has only the values “M” and “F”,
will not provide a good distribution of pages across partitions.

Creating an index using parallel sort is a minimally logged operation and is not
recoverable. You should dump the database when the command completes.

CHAPTER 6 Controlling Physical Data Placement

Performance and Tuning: Basics 109

Using reorg rebuild on data-only-locked tables

The reorg rebuild command copies data rows in data-only-locked tables to new
data pages. If there is a clustered index, rows are copied in clustered key order.

Running reorg rebuild redistributes data evenly on partitions. The clustered
index and any nonclustered indexes are rebuilt. To run reorg rebuild on the
table, provide only the table name:

reorg rebuild titles

Using drop index and create clustered index

If the index on the table was created with create index:

1 Drop the index:

drop index huge_tab.cix

2 Create the clustered index, specifying the segment:

create clustered index cix
 on huge_tab(key_col)
 on big_demo_seg

Using constraints and alter table

If the index on the table was created using a constraint, follow these steps to re-
create a clustered index:

1 Drop the constraint:

alter table huge_tab drop constraint prim_key

2 Re-create the constraint, thereby re-creating the index:

alter table huge_tab add constraint prim_key
 primary key clustered (key_col)
 on big_demo_seg

Special concerns for partitioned tables and clustered indexes

Creating a clustered index on a partitioned table is the only way to redistribute
data on partitions without reloading the data by copying it out and back into the
table.

When you are working with partitioned tables and clustered indexes, there are
two special concerns:

Commands for partitioning tables

110 Adaptive Server Enterprise

• Remember that the data in a clustered index “follows” the index, and that
if you do not specify a segment in create index or alter table, the default
segment is used as the target segment.

• You can use the with sorted_data clause to avoid sorting and copying data
while you are creating a clustered index. This saves time when the data is
already in clustered key order. However, when you need to create a
clustered index to load balance the data on partitions, do not use the
sorted_data clause.

See “Creating an index on sorted data” on page 345 for options.

Using parallel bcp to copy data into partitions
Loading data into a partitioned table using parallel bcp lets you direct the data
to a particular partition in the table.

• Before you run parallel bulk copy, the table should be located on the
segment, and it should be partitioned.

• You should drop all indexes, so that you do not experience failures due to
index deadlocks.

• Use alter table...disable trigger so that fast, minimally-logged bulk copy is
used, instead of slow bulk copy, which is completely logged.

• You may also want to set the database option trunc log on chkpt to keep the
log from filling up during large loads.

• You can use operating system commands to split the file into separate files,
and then copy each file, or use the -F (first row) and -L (last row)
command-line flags for bcp.

Whichever method you choose, be sure that the number of rows sent to each
partition is approximately the same.

Here is an example using separate files:

bcp mydb..huge_tab:1 in bigfile1
bcp mydb..huge_tab:2 in bigfile2
...
bcp mydb..huge_tab:10 in bigfile10

This example uses the first row and last row command-line arguments on a
single file:

bcp mydb..huge_tab:1 in bigfile -F1 -L100000
bcp mydb..huge_tab:2 in bigfile -F100001 -L200000

CHAPTER 6 Controlling Physical Data Placement

Performance and Tuning: Basics 111

...
bcp mydb..huge_tab:10 in bigfile -F900001 -L1000000

If you have space to split the file into multiple files, copying from separate files
is much faster than using the first row and last row command-line arguments,
since bcp needs to parse each line of the input file when using -F and -L. This
parsing process can be very slow, almost negating the benefits from parallel
copying.

Parallel copy and locks

Starting many current parallel bcp sessions may cause Adaptive Server to run
out of locks.

When you copy in to a table, bcp acquires an exclusive intent lock on the table,
and either page or row locks, depending on the locking scheme. If you are
copying in very large tables, and especially if you are performing simultaneous
copies into a partitioned table, this can require a very large number of locks.

To avoid running out of locks:

• Set the number of locks configuration parameter high enough, or

• Use the -b batchsize bcp flag to copy smaller batches. If you do not use the
-b flag, the entire copy operation is treated as a single batch.

For more information on bcp, see the Utility Programs manual.

Getting information about partitions
sp_helpartition prints information about table partitions. For partitioned tables,
it shows the number of data pages in the partition and summary information
about data distribution. Issue sp_helpartition, giving the table name. This
example shows data distribution immediately after creating a clustered index:

sp_helpartition sales
partitionid firstpage controlpage ptn_data_pages

 ----------- ----------- ----------- --------------
 1 6601 6600 2782
 2 13673 13672 2588
 3 21465 21464 2754
 4 29153 29152 2746
 5 36737 36736 2705
 6 44425 44424 2732
 7 52097 52096 2708

Commands for partitioning tables

112 Adaptive Server Enterprise

 8 59865 59864 2755
 9 67721 67720 2851

(9 rows affected)
 Partitions Average Pages Maximum Pages Minimum Pages Ratio (Max/Avg)
 ----------- ------------- ------------- ------------- -----------------
 9 2735 2851 2588 1.042413

sp_helpartition shows how evenly data is distributed between partitions. The
final column in the last row shows the ratio of the average column size to the
maximum column size. This ratio is used to determine whether a query can be
run in parallel. If the maximum is twice as large as the average, the optimizer
does not choose a parallel plan.

Uneven distribution of data across partitions is called partition skew.

If a table is not partitioned, sp_helpartition prints the message “Object is not
partitioned.” When used without a table name, sp_helpartition prints the names
of all user tables in the database and the number of partitions for each table.
sp_help calls sp_helpartition when used with a table name.

Using bcp to correct partition balance
If you need to load additional data into a partitioned table that does not have
clustered indexes, and sp_helpartition shows that some partitions contain many
more pages than others, you can use the bulk copy session to help balance
number of rows on each partition.

The following example shows that the table has only 487 pages on one
partition, and 917 on another:

partitionid firstpage controlpage ptn_data_pages
----------- ----------- ----------- --------------
 1 189825 189824 812
 2 204601 204600 487
 3 189689 189688 917

(3 rows affected)
Partitions Average Pages Maximum Pages Minimum Pages Ratio (Max/Avg)
---------- ------------- ------------- ------------- ---------------
 3 738 917 487 1.242547

The number of rows to add to each partition can be computed by:

CHAPTER 6 Controlling Physical Data Placement

Performance and Tuning: Basics 113

• Determining the average number of rows that would be in each partition if
they were evenly balanced, that is, the sum of the current rows and the
rows to be added, divided by the number of partitions

• Estimating the current number of rows on each partition, and subtracting
that from the target average

The formula can be summarized as:

Rows to add = (total_old_rows + total_new_rows)/#_of_partitions
 - rows_in_this_partition

This sample procedure uses values stored in systabstats and syspartitions to
perform the calculations:

create procedure help_skew @object_name varchar(30), @newrows int
as
declare @rows int, @pages int, @rowsperpage int,
 @num_parts int
select @rows = rowcnt, @pages = pagecnt
 from systabstats
 where id = object_id(@object_name) and indid in (0,1)
select @rowsperpage = floor(@rows/@pages)
select @num_parts = count(*) from syspartitions
 where id = object_id(@object_name)

select partitionid, (@rows + @newrows)/@num_parts -
 ptn_data_pgs(id, partitionid)*@rowsperpage as rows_to_add
 from syspartitions
 where id = object_id (@object_name)

Use this procedure to determine how many rows to add to each partition in the
customer table, such as when 18,000 rows need to be copied in. The results are
shown below the syntax.

help_skew customer, 18000
partitionid rows_to_add------------------
 1 5255
 2 9155
 3 3995

Note If the partition skew is large, and the number of rows to be added is
small, this procedure returns negative numbers for those rows that contain
more than the average number of final rows.

Query results are more accurate if you run update statistics and update partition
statistics so that table and partition statistics are current.

Commands for partitioning tables

114 Adaptive Server Enterprise

With the results from help_skew, you can then split the file containing the data
to be loaded into separate files of that length, or use the -F (first) and -L (last)
flags to bcp.

See “Using bcp to correct partition balance” on page 112.

Checking data distribution on devices with sp_helpsegment
At times, the number of data pages in a partition can be balanced, while the
number of data pages on the devices in a segment becomes unbalanced.

You can check the free space on devices with sp_helpsegment. This portion of
the sp_helpsegment report for the same table shown in the sp_helpartition
example above shows that the distribution of pages on the devices remains
balanced:

device size free_pages
---------------------- --------------- -----------
pubtune_detail01 15.0MB 4480
pubtune_detail02 15.0MB 4872
pubtune_detail03 15.0MB 4760
pubtune_detail04 15.0MB 4864
pubtune_detail05 15.0MB 4696
pubtune_detail06 15.0MB 4752
pubtune_detail07 15.0MB 4752
pubtune_detail08 15.0MB 4816
pubtune_detail09 15.0MB 4928

Effects of imbalance of data on segments and partitions

An imbalance of pages in partitions usually occurs when partitions have run
out of space on the device, and extents have been allocated on another physical
device. This is called extent stealing.

Extent stealing can take place when data is being inserted into the table with
insert commands or bulk copy and while clustered indexes are being created.

The effects of an imbalance of pages in table partitions is:

• The partition statistics used by the optimizer are based on the statistics
displayed by sp_helpartition.

CHAPTER 6 Controlling Physical Data Placement

Performance and Tuning: Basics 115

As long as data distribution is balanced across the partitions, parallel query
optimization will not be affected. The optimizer chooses a partition scan
as long as the number of pages on the largest partition is less than twice
the average number of pages per partition.

• I/O parallelism may be reduced, with additional I/Os to some of the
physical devices where extent stealing placed data.

• Re-creating a clustered index may not produce the desired rebalancing
across partitions when some partitions are nearly or completely full.

See “Problems when devices for partitioned tables are full” on page 128
for more information.

Determining the number of pages in a partition

You can use the ptn_data_pgs function or the dbcc checktable and dbcc checkdb
commands to determine the number of data pages in a table’s partitions.

See the System Administration Guide for information about dbcc.

The ptn_data_pgs function returns the number of data pages on a partition. Its
syntax is:

ptn_data_pgs(object_id, partition_id)

This example prints the number of pages in each partition of the sales table:

select partitionid,
ptn_data_pgs(object_id("sales"), partitionid) Pages
from syspartitions
where id = object_id("sales")

For a complete description of ptn_data_pgs, see the Adaptive Server Reference
Manual.

The value returned by ptn_data_pgs may be inaccurate. If you suspect that the
value is incorrect, run update partition statistics, dbcc checktable, dbcc checkdb,
or dbcc checkalloc first, and then use ptn_data_pgs.

Updating partition statistics
Adaptive Server keeps statistics about the distribution of pages within a
partitioned table and uses these statistics when considering whether to use a
parallel scan in query processing. When you partition a table, Adaptive Server
stores information about the data pages in each partition in the control page.

Commands for partitioning tables

116 Adaptive Server Enterprise

The statistics for a partitioned table may become inaccurate if any of the
following occurs:

• The table is unpartitioned and then immediately repartitioned.

• A large number of rows are deleted.

• A large number of rows are updated, and the updates are not in-place
updates.

• A large number of rows are bulk copied into some of the partitions using
parallel bulk copy.

• Inserts are frequently rolled back.

If you suspect that query plans may be less than optimal due to incorrect
statistics, run the update partition statistics command to update the information
in the control page.

The update partition statistics command updates information about the number
of pages in each partition for a partitioned table.

The update all statistics command also updates partition statistics.

Re-creating the clustered index or running reorg rebuild automatically
redistributes the data within partitions and updates the partition statistics. dbcc
checktable, dbcc checkdb, and dbcc checkalloc also update partition statistics as
they perform checks.

Syntax for update partition statistics

Its syntax is:

update partition statistics table_name
[partition_number]

Use sp_helpartition to see the partition numbers for a table.

For a complete description of update partition statistics, see the Adaptive Server
Reference Manual.

CHAPTER 6 Controlling Physical Data Placement

Performance and Tuning: Basics 117

Steps for partitioning tables
You should plan the number of devices for the table’s segment to balance I/O
performance. For best performance, use dedicated physical disks, rather than
portions of disks, as database devices, and make sure that no other objects share
the devices with the partitioned table.

See the System Administration Guide for guidelines for creating segments.

The steps to follow for partitioning a table depends on where the table is when
you start. This section provides examples for the following situations:

• The table has not been created and populated yet.

• The table exists, but it is not on the database segment where you want the
table to reside.

• The table exists on the segment where you want it to reside, and you want
to redistribute the data to improve performance, or you want to add
devices to the segment.

Note The following sections provide procedures for a number of
situations, including those in which severe space limitations in the
database make partitioning and creating clustered indexes very difficult.
These complex procedures are needed only in special cases. If you have
ample room on your database devices, the process of partitioning and
maintaining partitioned table performance requires only a few simple
steps.

Backing up the database after partitioning tables
Using fast bulk copy and creating indexes in parallel both make minimally
logged changes to the database, and require a full database dump.

If you change the segment mapping while you are working with partitioned
tables, you should also dump the master database, since segment mapping
information is stored in sysusages.

Table does not exist
To create a new partitioned table and load the data with bcp:

Steps for partitioning tables

118 Adaptive Server Enterprise

1 Create the table on the segment, using the on segment_name clause. For
information on creating segments, see “Creating objects on segments” on
page 96.

2 Partition the table, with one partition for each physical device in the
segment.

 See “alter table...partition syntax” on page 106.

Note If the input data file is not in clustered key order, and the table will
occupy more than 40% of the space on the segment, and you need a
clustered index.

See “Special procedures for difficult situations” on page 124.

3 Copy the data into the table using parallel bulk copy.

See “Using parallel bcp to copy data into partitions” on page 110 for
examples using bcp.

4 If you do not need a clustered index, use sp_helpartition to verify that the
data is distributed evenly on the partitions.

See “Getting information about partitions” on page 111.

If you need a clustered index, the next step depends on whether the data is
already in sorted order and whether the data is well balanced on your
partitions.

If the input data file is in index key order and the distribution of data across
the partitions is satisfactory, you can use the sorted_data option and the
segment name when you create the index. This combination of options
runs in serial, checking the order of the keys, and simultaneously building
the index tree. It does not need to copy the data into key order, so it does
not perform load balancing. If you do not need referential integrity
constraints, you can use create index.

See “Using drop index and create clustered index” on page 109.

To create a clustered index with referential integrity constraints, use alter
table...add constraint.

See “Using constraints and alter table” on page 109.

If your data was not in index key order when it was copied in, verify that
there is enough room to create the clustered index while copying the data.

CHAPTER 6 Controlling Physical Data Placement

Performance and Tuning: Basics 119

Use sp_spaceused to see the size of the table and sp_helpsegment to see
the size of the segment. Creating a clustered index requires approximately
120% of the space occupied by the table.

If there is not enough space, follow the steps in “If there is not enough
space to re-create the clustered index” on page 121.

5 Create any nonclustered indexes.

6 Dump the database.

Table exists elsewhere in the database
If the table exists on the default segment or some other segment in the database,
follow these steps to move the data to the partition and distribute it evenly:

1 If the table is already partitioned, but has a different number of partitions
than the number of devices on the target segment, unpartition the table.

See “alter table...unpartition Syntax” on page 107.

2 Partition the table, matching the number of devices on the target segment.

See “alter table...partition syntax” on page 106.

3 If a clustered index exists, drop the index. Depending on how your index
was created, use either drop index or alter table...drop constraint.

See “Using drop index and create clustered index” on page 109 or alter
table...drop constraint and “Using constraints and alter table” on page 109.

4 Create or re-create the clustered index with the on segment_name clause.
When the segment name is different from the current segment where the
table is stored, creating the clustered index performs a parallel sort and
distributes the data evenly on the partitions as it copies the rows to match
the index order. This step re-creates the nonclustered indexes on the table.

See “Distributing data evenly across partitions” on page 108.

5 If you do not need the clustered index, you can drop it.

6 Dump the database.

Table exists on the segment
If the table exists on the segment, you may need to:

Steps for partitioning tables

120 Adaptive Server Enterprise

• Redistribute the data by re-creating a clustered index or by using bulk
copy, or

• Increase the number of devices in the segment.

Redistributing data

If you need to redistribute data on partitions, your choice of method depends
on how much space the data occupies on the partition. If the space the table
occupies is less than 40 to 45% of the space in the segment, you can create a
clustered index to redistribute the data.

If the table occupies more than 40 to 45% of the space on the segment, you
need to bulk copy the data out, truncate the table, and copy the data in again.
The steps you take depend on whether you need a clustered index and whether
the data is already in clustered key order.

Use sp_helpsegment and sp_spaceused to see if there is room to create a
clustered index on the segment.

If there is enough space to create or re-create the clustered index

If there is enough space, see “Distributing data evenly across partitions” on
page 108 for the steps to follow. If you do not need the clustered index, you can
drop it without affecting the data distribution.

Dump the database after creating the clustered index.

If there is not enough space on the segment, but space exists elsewhere on the server

If there is enough space for a copy of the table, you can copy the table to
another location and then re-create the clustered index to copy the data back to
the target segment.

The steps vary, depending on the location of the temporary storage space:

• On the default segment of the database or in tempdb

• On other segments in the database

Using the default segment or tempdb

1 Use select into to copy the table to the default segment or to tempdb.

select * into temp_sales from sales

or

CHAPTER 6 Controlling Physical Data Placement

Performance and Tuning: Basics 121

select * into tempdb..temp_sales from sales

2 Drop the original table.

3 Partition the copy of the table.

4 Create the clustered index on the segment where you want the table to
reside.

5 Use sp_rename to change the table’s name back to the original name.

6 Dump the database.

Using space on another segment

If there is space available on another segment:

1 Create a clustered index, specifying the segment where the space exists.
This moves the table to that location.

2 Drop the index.

3 Re-create the clustered index, specifying the segment where you want the
data to reside.

4 Dump the database.

If there is not enough space to re-create the clustered index

If there is not enough space, and you need a to re-create a clustered index on
the tables:

1 Copy out the data using bulk copy.

2 Unpartition the table.

See “alter table...unpartition Syntax” on page 107.

3 Truncate the table with truncate table.

4 Drop the clustered index using drop index or alter table...drop constraint.

Then, drop nonclustered indexes, to avoid deadlocking during the parallel
bulk copy sessions.

See “Distributing data evenly across partitions” on page 108.

5 Repartition the table.

See “alter table...partition syntax” on page 106.

Steps for partitioning tables

122 Adaptive Server Enterprise

6 Copy the data into the table using parallel bulk copy. You must take care
to copy the data to each segment in index key order, and specify the
number of rows for each partition to get good distribution.

See “Using parallel bcp to copy data into partitions” on page 110.

7 Re-create the index using the with sorted_data and on segment_name
clauses. This command performs a serial scan of the table and builds the
index tree, but does not copy the data.

Do not specify any of the clauses that require data copying (fillfactor,
ignore_dup_row, and max_rows_per_page).

8 Re-create any nonclustered indexes.

9 Dump the database.

If there is not enough space, and no clustered index is required

If there is no clustered index, and you do not need to create one:

1 Copy the data out using bulk copy.

2 Unpartition the table.

See “alter table...unpartition Syntax” on page 107.

3 Truncate the table with truncate table.

4 Drop nonclustered indexes, to avoid deadlocking during the parallel bulk
copy in sessions.

5 Repartition the table.

See “alter table...partition syntax” on page 106.

6 Copy the data in using parallel bulk copy.

See “Using parallel bcp to copy data into partitions” on page 110.

7 Re-create any nonclustered indexes.

8 Dump the database.

If there is no clustered index, not enough space, and a clustered index is needed

To change index keys on the clustered index of a partitioned table, or if you
want to create an index on a table that has been stored as a heap, performing an
operating system level sort can speed the process.

CHAPTER 6 Controlling Physical Data Placement

Performance and Tuning: Basics 123

Creating a clustered index requires 120% of the space used by the table to
create a copy of the data and build the index tree.

If you have access to a sort utility at the operating system level:

1 Copy the data out using bulk copy.

2 Unpartition the table.

See “alter table...unpartition Syntax” on page 107.

3 Truncate the table with truncate table.

4 Drop nonclustered indexes, to avoid deadlocking during the parallel bulk
copy in sessions.

5 Repartition the table.

See “alter table...partition syntax” on page 106.

6 Perform an operating system sort on the file.

7 Copy the data in using parallel bulk copy.

See “Using parallel bcp to copy data into partitions” on page 110.

8 Re-create the index using the sorted_data and on segment_name clauses.
This command performs a serial scan of the table and builds the index tree,
but does not copy the data.

Do not specify any of the clauses that require data copying (fillfactor,
ignore_dup_row, and max_rows_per_page).

9 Re-create any nonclustered indexes.

10 Dump the database.

Adding devices to a segment

To add a device to a segment, follow these steps:

1 Use sp_helpsegment to check the amount of free space available on the
devices in the segment with.

If space on any device is extremely low, see “Problems when devices for
partitioned tables are full” on page 128.

You may need to copy the data out and back in again to get good data
distribution.

2 Initialize each device with disk init, and make it available to the database
with alter database.

Special procedures for difficult situations

124 Adaptive Server Enterprise

3 Use sp_extendsegment segment_name, device_name to extend the
segment to each device. Drop the default and system segment from each
device.

4 Unpartition the table.

See “alter table...unpartition Syntax” on page 107.

5 Repartition the table, specifying the new number of devices in the
segment.

 See “alter table...partition syntax” on page 106.

6 If a clustered index exists, drop and re-create it. Do not use the sorted_data
option.

See “Distributing data evenly across partitions” on page 108.

7 Dump the database.

Special procedures for difficult situations
These techniques are more complex than those presented earlier in the chapter.

Clustered indexes on large tables
To create a clustered index on a table that will fill more than 40 to 45% of the
segment, and the input data file is not in order by clustered index key, these
steps yield good data distribution, as long as the data that you copy in during
step 6 contains a representative sample of the data.

1 Copy the data out.

2 Unpartition the table.

See “alter table...unpartition Syntax” on page 107.

3 Truncate the table.

4 Repartition the table.

See “alter table...partition syntax” on page 106.

5 Drop the clustered index and any nonclustered indexes. Depending on
how your index was created, use either drop index.

CHAPTER 6 Controlling Physical Data Placement

Performance and Tuning: Basics 125

See “Using drop index and create clustered index” on page 109) or alter
table...drop constraint and “Using constraints and alter table” on page 109.

6 Use parallel bulk copy to copy in enough data to fill approximately 40%
of the segment. This must be a representative sample of the values in the
key column(s) of the clustered index.

Copying in 40% of the data is much more likely to yield good results than
smaller amounts of data, you can perform this portion of the bulk copy can
be performed in parallel; you must use nonparallel bcp for the second buld
copy operation.

See “Using parallel bcp to copy data into partitions” on page 110.

7 Create the clustered index on the segment, do not use the sorted_data
clause.

8 Use nonparallel bcp, in a single session, to copy in the rest of the data. The
clustered index directs the rows to the correct partitions.

9 Use sp_helppartition to check the distribution of data pages on partitions
and sp_helpsegment to check the distribution of pages on the segment.

10 Create any nonclustered indexes.

11 Dump the database.

One drawback of this method is that once the clustered index exists, the second
bulk copy operation can cause page splitting on the data pages, taking slightly
more room in the database. However, once the clustered index exists, and all
the data is loaded, future maintenance activities can use simpler and faster
methods.

Alternative for clustered indexes
This set of steps may be useful when:

• The table data occupies more than 40 to 45% of the segment.

• The table data is not in clustered key order, and you need to create a
clustered index.

• You do not get satisfactory results trying to load a representative sample
of the data, as explained in “Clustered indexes on large tables” on page
124.

This set of steps successfully distributes the data in almost all cases, but
requires careful attention:

Special procedures for difficult situations

126 Adaptive Server Enterprise

1 Find the minimum value for the key column for the clustered index:

select min(order_id) from orders

2 If the clustered index exists, drop it. Drop any nonclustered indexes.

See “Using drop index and create clustered index” on page 109 or “Using
constraints and alter table” on page 109.

3 Execute the command:

set sort_resources on

This command disables create index commands. Subsequent create index
commands print information about how the sort will be performed, but do
not create the index.

4 Issue the command to create the clustered index, and record the partition
numbers and values in the output. This example shows the values for a
table on four partitions:

create clustered index order_cix
 on orders(order_id)
The Create Index is done using Parallel Sort
Sort buffer size: 1500
Parallel degree: 25
Number of output devices: 3
Number of producer threads: 4
Number of consumer threads: 4
The distribution map contains 3 element(s) for 4
partitions.
Partition Element: 1

450977
Partition Element: 2

903269
Partition Element: 3

1356032
Number of sampled records: 2449

These values, together with the minimum value from step 1, are the key
values that the sort uses as diameters when assigning rows to each
partition.

5 Bulk copy the data out, using character mode.

6 Unpartition the table.

CHAPTER 6 Controlling Physical Data Placement

Performance and Tuning: Basics 127

 See “alter table...unpartition Syntax” on page 107.

7 Truncate the table.

8 Repartition the table.

 See “alter table...partition syntax” on page 106.

9 In the resulting output data file, locate the minimum key value and each of
the key values identified in step 4. Copy these values out to another file,
and delete them from the output file.

10 Copy into the table, using parallel bulk copy to place them on the correct
segment. For the values shown above, the file might contain:

1 Jones ...
450977 Smith ...
903269 Harris ...
1356032 Wilder ...

The bcp commands look like this:

bcp testdb..orders:1 in keyrows -F1 -L1
bcp testdb..orders:2 in keyrows -F2 -L2
bcp testdb..orders:3 in keyrows -F3 -L3
bcp testdb..orders:4 in keyrows -F4 -L4

At the end of this operation, you will have one row on the first page of each
partition – the same row that creating the index would have allocated to
that position.

11 Turn set sort_resources off, and create the clustered index on the segment,
using the with sorted_data option.

Do not include any clauses that force the index creation to copy the data
rows.

12 Use bulk copy to copy the data into the table.

Use a single, nonparallel session. You cannot specify a partition for bulk
copy when the table has a clustered index, and running multiple sessions
runs the risk of deadlocking.

The clustered index forces the pages to the correct partition.

13 Use sp_helpartition to check the balance of data pages on the partitions and
sp_helpsegment to balance of pages on the segments.

14 Create any nonclustered indexes.

Problems when devices for partitioned tables are full

128 Adaptive Server Enterprise

15 Dump the database.

While this method can successfully make use of nearly all of the pages in a
partition, it has some disadvantages:

• The entire table must be copied by a single, slow bulk copy

• The clustered index is likely to lead to page splitting on the data pages if
the table uses allpages locking, so more space might be required.

Problems when devices for partitioned tables are full
Simply adding disks and re-creating indexes when partitions are full may not
solve load-balancing problems. If a physical device that underlies a partition
becomes completely full, the data-copy stage of re-creating an index cannot
copy data to that physical device.

If a physical device is almost completely full, re-creating the clustered index
does not always succeed in establishing a good load balance.

Adding disks when devices are full
The result of creating a clustered index when a physical device is completely
full is that two partitions are created on one of the other physical devices.
Figure 6-2 and Figure 6-3 show one such situation.

Devices 2 and 3 are completely full, as shown in Figure 6-2.

CHAPTER 6 Controlling Physical Data Placement

Performance and Tuning: Basics 129

Figure 6-2: A table with 3 partitions on 3 devices

Adding two devices, repartitioning the table to use five partitions, and dropping
and re-creating the clustered index produces the following results:

Figure 6-3 shows these results.

Figure 6-3: Devices and partitions after create index

The only solution, once a device becomes completely full, is to bulk copy the
data out, truncate the table, and copy the data into the table again.

Device 1 One partition, approximately 40% full.

Devices 2 and 3 Empty. These devices had no free space when create index
started, so a partition for the copy of the index could not be
created on the device.

Devices 4 and 5 Each device has two partitions, and each is 100% full.

Data

Empty

device1 device2 device3

device1 device2 device3 device4 device5

Data

Empty

Problems when devices for partitioned tables are full

130 Adaptive Server Enterprise

Adding disks when devices are nearly full
If a device is nearly full, re-creating a clustered index does not balance data
across devices. Instead, the device that is nearly full stores a small portion of
the partition, and the other space allocations for the partition steals extents on
other devices. Figure 6-4 shows a table with nearly full data devices.

Figure 6-4: Partitions almost completely fill the devices

After adding devices and re-creating the clustered index, the result might be
similar to the results shown in Figure 6-5.

Figure 6-5: Extent stealing and unbalanced data distribution

Once the partitions on device2 and device3 use the small amount of space
available, they start stealing extents from device4 and device5.

In this case, a second index re-creation step might lead to a more balanced
distribution. However, if one of the devices is nearly filled by extent stealing,
another index creation does not solve the problem.

Using bulk copy to copy the data out and back in again is the only sure solution
to this form of imbalance.

To avoid situations such as these, monitor space usage on the devices, and add
space early.

Data

Empty

device1 device2 device3

Data

Empty

device1 device2 device3 device4 device5

Stolen
pages

CHAPTER 6 Controlling Physical Data Placement

Performance and Tuning: Basics 131

Maintenance issues and partitioned tables
Partitioned table maintenance activity requirements depend on the frequency
and type of updates performed on the table.

Partitioned tables that require little maintenance include:

• Tables that are read-only or that experience very few updates. In the
second case, only periodic checks for balance are required

• Tables where inserts are well-distributed across the partitions. Random
inserts to partitioned heap tables and inserts that are evenly distributed due
to a clustered index key that places rows on different partitions do not
develop skewed distribution of pages.

If data modifications lead to space fragmentation and partially filled data
pages, you may need to re-create the clustered index.

• Heap tables where inserts are performed by bulk copy. You can use
parallel bulk copy to direct the new data to specific partitions to maintain
load balancing.

Partitioned tables that require frequent monitoring and maintenance include
tables with clustered indexes that tend to direct new rows to a subset of the
partitions. An ascending key index is likely to require more frequent
maintenance.

Regular maintenance checks for partitioned tables
Routine monitoring for partitioned tables should include the following types of
checks, in addition to routine database consistency checks:

• Use sp_helpartition to check the balance on partitions.

If some partitions are significantly larger or smaller than the average, re-
create the clustered index to redistribute data.

• Use sp_helpsegment to check the balance of space on underlying disks.

• If you re-create the clustered index to redistribute data for parallel query
performance, check for devices that are nearing 50% full.

Adding space before devices become too full avoids the complicated
procedures described earlier in this chapter.

• Use sp_helpsegment to check the space available as free pages on each
device, or sp_helpdb for free kilobytes.

Maintenance issues and partitioned tables

132 Adaptive Server Enterprise

In addition, run update partition statistics, if partitioned tables undergo the types
of activities described in “Updating partition statistics” on page 115.

You might need to re-create the clustered index on partitioned tables because:

• Your index key tends to assign inserts to a subset of the partitions.

• Delete activity tends to remove data from a subset of the partitions, leading
to I/O imbalance and partition-based scan imbalances.

• The table has many inserts, updates, and deletes, leading to many partially
filled data pages. This condition leads to wasted space, both on disk and in
the cache, and increases I/O because more pages need to read for many
queries.

Performance and Tuning: Basics 133

C H A P T E R 7 Database Design

This covers some basic information on database design that database
administrators and designers would find useful as a resource. It also
covers the Normal Forms for database normalization and
denormalization.

There are some major database design concepts and other tips in moving
from the logical database design to the physical design for Adaptive
Server.

 Basic design
Database design is the process of moving from real-world business
models and requirements to a database model that meets these
requirements.

Normalization in a relational database, is an approach to structuring
information in order to avoid redundancy and inconsistency and to
promote efficient maintenance, storage, and updating. Several “rules” or
levels of normalization are accepted, each a refinement of the preceding
one.

Of these, three forms are commonly used: first normal, second normal,
and third normal. First normal forms, the least structured, are groups of
records in which each field (column) contains unique and nonrepeating
information. Second and third normal forms break down first normal
forms, separating them into different tables by defining successively finer
interrelationships between fields.

For relational databases such as Adaptive Server, the standard design
creates tables in Third Normal Form.

Topic Page
Basic design 133

Normalization 135

Denormalizing for performance 141

Basic design

134 Adaptive Server Enterprise

When you translate an Entity-Relationship model in Third Normal Form (3NF)
to a relational model:

• Relations become tables.

• Attributes become columns.

• Relationships become data references (primary and foreign key
references).

Physical database design for Adaptive Server
Based on access requirements and constraints, implement your physical
database design as follows:

• Denormalize where appropriate

• Partition tables where appropriate

• Group tables into databases where appropriate

• Determine use of segments

• Determine use of devices

• Implement referential integrity of constraints

Logical Page Sizes
Adaptive Server does not use the buildmaster binary to build the master device.
Instead, Sybase has incorporated the buildmaster functionality in the dataserver
binary.

The dataserver command allows you to create master devices and databases
with logical pages of size 2K, 4K, 8K, or 16K. Larger logical pages allow you
to create larger rows, which can improve your performance because Adaptive
Server accesses more data each time it reads a page. For example, a 16K page
can hold 8 times the amount of data as a 2K page, an 8K page holds 4 times as
much data as a 2K page, and so on, for all the sizes for logical pages.

You have to exercise caution when setting the page sizes.

There are hazards in using larger devices on a 2Gb-limit platform. If you
attempt to configure a logical device larger than 2Gb where Adaptive Server
does not support large devices, you may experience the following problems:

CHAPTER 7 Database Design

Performance and Tuning: Basics 135

• Data corruption on databases (some releases give no error message).

• Inability to dump or load data from the database

Number of columns and column size
The maximum number of columns you can create in a table is:

• 1024 for fixed-length columns in both all-pages-locked (APL) and data-
only-locked (DOL) tables

• 254 for variable-length columns in an APL table

• 1024 for variable-length columns in an DOL table

The maximum size of a column depends on:

• Whether the table includes any variable- or fixed-length columns.

• The logical page size of the database. For example, in a database with 2K
logical pages, the maximum size of a column in an APL table can be as
large as a single row, about 1962 bytes, less the row format overheads.
Similarly, for a 4K page, the maximum size of a column in a APL table can
be as large as 4010 bytes, less the row format overheads.

Table 7-1: Limits for number of logins, users, and groups

Normalization
When a table is normalized, the non-key columns depend on the key used.

From a relational model point of view, it is standard to have tables that are in
Third Normal Form. Normalized physical design provides the greatest ease of
maintenance, and databases in this form are clearly understood by developers.

Item
Version 12.0
limit Version 12.5 limit New range

Number of logins per
server (SUID)

64K 2 billion plus 32K -32768 to 2 billion

Number of users per
database

48K 2 billion less 1032193 -32768 to16383;
1048577 to 2 Billion

Number of groups per
database

16K 1032193 16384 to 1048576

Normalization

136 Adaptive Server Enterprise

However, a fully normalized design may not always yield the best
performance. Sybase recommends that you design databases for Third Normal
Form, however, if performance issues arise, you may have to denormalize to
solve them.

Levels of normalization
Each level of normalization relies on the previous level. For example, to
conform toSecond Normal Form, entities must be in first Normal Form.

You may have to look closely at the tables within a database to verify if the
database is normalized. You may have to change the way the normalization was
done by going through a denormalization on given data before you can apply a
different setup for normalization.

Use the following information to verify whether or not a database was
normalized, and then use it to set up the Normal Forms you may want to use.

Benefits of normalization
Normalization produces smaller tables with smaller rows:

• More rows per page (less logical I/O)

• More rows per I/O (more efficient)

• More rows fit in cache (less physical I/O)

The benefits of normalization include:

• Searching, sorting, and creating indexes is faster, since tables are
narrower, and more rows fit on a data page.

• You usually have more tables.

You can have more clustered indexes (one per table), so you get more
flexibility in tuning queries.

• Index searching is often faster, since indexes tend to be narrower and
shorter.

• More tables allow better use of segments to control physical placement of
data.

• You usually have fewer indexes per table, so data modification commands
are faster.

CHAPTER 7 Database Design

Performance and Tuning: Basics 137

• Fewer null values and less redundant data, making your database more
compact.

• Triggers execute more quickly if you are not maintaining redundant data.

• Data modification anomalies are reduced.

• Normalization is conceptually cleaner and easier to maintain and change
as your needs change.

While fully normalized databases require more joins, joins are generally very
fast if indexes are available on the join columns.

Adaptive Server is optimized to keep higher levels of the index in cache, so
each join performs only one or two physical I/Os for each matching row.

The cost of finding rows already in the data cache is extremely low.

First Normal Form
The rules for First Normal Form are:

• Every column must be atomic. It cannot be decomposed into two or more
subcolumns.

• You cannot have multivalued columns or repeating groups.

• Each row and column position can have only one value.

The table in Figure 7-1 violates First Normal Form, since the dept_no column
contains a repeating group:

Figure 7-1: A table that violates first Normal Form

Normalization creates two tables and moves dept_no to the second table:

Employee (emp_num, emp_lname, dept__no)

Employee

emp_num emp_lname dept_no

10052 Jones A10 C66

10101 Sims D60

Repeating

Normalization

138 Adaptive Server Enterprise

Figure 7-2: Correcting First Normal Form violations by creating two
tables

Second Normal Form
For a table to be in Second Normal Form, every non-key field must depend on
the entire primary key, not on part of a composite primary key. If a database has
only single-field primary keys, it is automatically in Second Normal Form.

In Figure 7-3, the primary key is a composite key on emp_num and dept_no.
But the value of dept_name depends only on dept_no, not on the entire primary
key.

Figure 7-3: A table that violates Second Normal Form

To normalize this table, move dept_name to a second table, as shown in
Figure 7-4.

Employee (emp_num, emp_lname)

Employee

emp_num emp_lname

10052 Jones

10101 Sims

Emp_dept

emp_num dept_no

10052 A10

10052 C66

10101 D60

Emp_dept (emp_num, dept_no)

Emp_dept

emp_num dept_no dept_name

10052 A10 accounting

10074 A10 accounting

10074 D60 development

Emp_dept (emp_num, dept_no, dept_name)
Depends on
part of primary

Primary key

CHAPTER 7 Database Design

Performance and Tuning: Basics 139

Figure 7-4: Correcting Second Normal Form violations by creating two
tables

Third Normal Form
For a table to be in Third Normal Form, a non-key field cannot depend on
another non-key field.

The table in Figure 7-5 violates Third Normal Form because the mgr_lname
field depends on the mgr_emp_num field, which is not a key field.

Emp_dept

emp_num dept_no

10052 A10

10074 A10

10074 D60

Emp_dept (emp_num, dept_no)

Primary

Dept

dept_no dept_name

A10 accounting

D60 development

Dept (dept_no, dept_name)

Primary

Normalization

140 Adaptive Server Enterprise

Figure 7-5: A table that violates Third Normal Form

The solution is to split the Dept table into two tables, as shown in Figure 7-6.
In this case, the Employees table, already stores this information, so removing
the mgr_lname field from Dept brings the table into Third Normal Form.

Dept

dept_no dept_name mgr_emp_num mgr_lname

A10 accounting 10073 Johnson

D60 development 10089 White

M80 marketing 10035 Dumont

Dept (dept_no, dept_name, mgr_emp_num, mgr_lname)

Primary key

Depend on
primary key

Depends on
non-key

CHAPTER 7 Database Design

Performance and Tuning: Basics 141

Figure 7-6: Correcting Third Normal Form violations by creating two
tables

Denormalizing for performance
Once you have normalized your database, you can run benchmark tests to
verify performance. You may have to denormalize for specific queries and/or
applications.

Denormalizing:

• Can be done with tables or columns

• Assumes prior normalization

• Requires a thorough knowledge of how the data is being used

You may want to denormalize if:

• All or nearly all of the most frequent queries require access to the full set
of joined data.

Dept

dept_no dept_name mgr_emp_num

A10 accounting 10073

D60 development 10089

M80 marketing 10035

Dept (dept_no, dept_name, mgr_emp_num)

Primary

Primary

Employee (emp_num, emp_lname)

Employee

emp_num emp_lname

10073 Johnson

10089 White

10035 Dumont

Denormalizing for performance

142 Adaptive Server Enterprise

• A majority of applications perform table scans when joining tables.

• Computational complexity of derived columns requires temporary tables
or excessively complex queries.

Risks
To denormalize you should have a thorough knowledge of the application.
Additionally, you should denormalize only if performance issues indicate that
it is needed.

For example, the ytd_sales column in the titles table of the pubs2 database is a
denormalized column that is maintained by a trigger on the salesdetail table.
You can obtain the same values using this query:

select title_id, sum(qty)
 from salesdetail
 group by title_id

Obtaining the summary values and the document title requires a join with the
titles table:

select title, sum(qty)
 from titles t, salesdetail sd
 where t.title_id = sd.title_id
 group by title

If you run this query frequently, it makes sense to denormalize this table. But
there is a price to pay: you must create an insert/update/delete trigger on the
salesdetail table to maintain the aggregate values in the titles table.

Executing the trigger and performing the changes to titles adds processing cost
to each data modification of the qty column value in salesdetail.

This situation is a good example of the tension between decision support
applications, which frequently need summaries of large amounts of data, and
transaction processing applications, which perform discrete data
modifications.

Denormalization usually favors one form of processing at a cost to others.

Any form of denormalization has the potential for data integrity problems that
you must document carefully and address in application design.

CHAPTER 7 Database Design

Performance and Tuning: Basics 143

Disadvantages

Denormalization has these disadvantages:

• It usually speeds retrieval but can slow data modification.

• It is always application-specific and must be reevaluated if the application
changes.

• It can increase the size of tables.

• In some instances, it simplifies coding; in others, it makes coding more
complex.

Performance advantages

Denormalization can improve performance by:

• Minimizing the need for joins

• Reducing the number of foreign keys on tables

• Reducing the number of indexes, saving storage space, and reducing data
modification time

• Precomputing aggregate values, that is, computing them at data
modification time rather than at select time

• Reducing the number of tables (in some cases)

Denormalization input
When deciding whether to denormalize, you need to analyze the data access
requirements of the applications in your environment and their actual
performance characteristics.

Often, good indexing and other solutions solve many performance problems
rather than denormalizing.

Some of the issues to examine when considering denormalization include:

• What are the critical transactions, and what is the expected response time?

• How often are the transactions executed?

• What tables or columns do the critical transactions use? How many rows
do they access each time?

• What is the mix of transaction types: select, insert, update, and delete?

Denormalizing for performance

144 Adaptive Server Enterprise

• What is the usual sort order?

• What are the concurrency expectations?

• How big are the most frequently accessed tables?

• Do any processes compute summaries?

• Where is the data physically located?

 Techniques
The most prevalent denormalization techniques are:

• Adding redundant columns

• Adding derived columns

• Collapsing tables

In addition, you can duplicate or split tables to improve performance. While
these are not denormalization techniques, they achieve the same purposes and
require the same safeguards.

Adding redundant columns

You can add redundant columns to eliminate frequent joins.

For example, if you are performing frequent joins on the titleauthor and authors
tables to retrieve the author’s last name, you can add the au_lname column to
titleauthor.

Adding redundant columns eliminates joins for many queries. The problems
with this solution are that it:

• Requires maintenance of new columns. you must make changes to two
tables, and possibly to many rows in one of the tables.

• Requires more disk space, since au_lname is duplicated.

Adding derived columns

Adding derived columns can eliminate some joins and reduce the time needed
to produce aggregate values. The total_sales column in the titles table of the
pubs2 database provides one example of a derived column used to reduce
aggregate value processing time.

CHAPTER 7 Database Design

Performance and Tuning: Basics 145

The example in Figure 7-7 shows both benefits. Frequent joins are needed
between the titleauthor and titles tables to provide the total advance for a
particular book title.

Figure 7-7: Denormalizing by adding derived columns

You can create and maintain a derived data column in the titles table,
eliminating both the join and the aggregate at runtime. This increases storage
needs, and requires maintenance of the derived column whenever changes are
made to the titles table.

Collapsing tables

If most users need to see the full set of joined data from two tables, collapsing
the two tables into one can improve performance by eliminating the join.

For example, users frequently need to see the author name, author ID, and the
blurbs copy data at the same time. The solution is to collapse the two tables into
one. The data from the two tables must be in a one-to-one relationship to
collapse tables.

title_id advance
titleauthor

title_id title
 titles

select title, sum(advance)
from titleauthor ta, titles t
where ta.title_id = t.title_id
group by title_id

title_id title sum_adv
titles

select title, sum_adv from titles

title_id advance
titleauthor

join columns

Denormalizing for performance

146 Adaptive Server Enterprise

Collapsing the tables eliminates the join, but loses the conceptual separation of
the data. If some users still need access to just the pairs of data from the two
tables, this access can be restored by using queries that select only the needed
columns or by using views.

Duplicating tables

If a group of users regularly needs only a subset of data, you can duplicate the
critical table subset for that group.

Figure 7-8: Denormalizing by duplicating tables

The kind of split shown in Figure 7-8 minimizes contention, but requires that
you manage redundancy. There may be issues of latency for the group of users
who see only the copied data.

Splitting tables
Sometimes splitting normalized tables can improve performance. You can split
tables in two ways:

• Horizontally, by placing rows in two separate tables, depending on data
values in one or more columns

• Vertically, by placing the primary key and some columns in one table, and
placing other columns and the primary key in another table

newauthors

au_id copy
 blurbsnewauthors

au_id au_lname copy

au_id au_lname copy

CHAPTER 7 Database Design

Performance and Tuning: Basics 147

Keep in mind that splitting tables, either horizontally or vertically, adds
complexity to your applications.

Horizontal splitting

Use horizontal splitting if:

• A table is large, and reducing its size reduces the number of index pages
read in a query.

B-tree indexes, however, are generally very flat, and you can add large
numbers of rows to a table with small index keys before the
B-tree requires more levels.

An excessive number of index levels may be an issue with tables that have
very large keys.

• The table split corresponds to a natural separation of the rows, such as
different geographical sites or historical versus current data.

You might choose horizontal splitting if you have a table that stores huge
amounts of rarely used historical data, and your applications have high
performance needs for current data in the same table.

• Table splitting distributes data over the physical media, however, there are
other ways to accomplish this goal.

Generally, horizontal splitting requires different table names in queries,
depending on values in the tables. In most database applications this
complexity usually far outweighs the advantages of table splitting .

As long as the index keys are short and indexes are used for queries on the
table, doubling or tripling the number of rows in the table may increase the
number of disk reads required for a query by only one index level. If many
queries perform table scans, horizontal splitting may improve performance
enough to be worth the extra maintenance effort.

Figure 7-9 shows how you might split the authors table to separate active and
inactive authors:

Denormalizing for performance

148 Adaptive Server Enterprise

Figure 7-9: Horizontal partitioning of active and inactive data

Vertical splitting

Use vertical splitting if:

• Some columns are accessed more frequently than other columns.

• The table has wide rows, and splitting the table reduces the number of
pages that need to be read.

Vertical table splitting makes even more sense when both of the above
conditions are true. When a table contains very long columns that are accessed
infrequently, placing them in a separate table can greatly speed the retrieval of
the more frequently used columns. With shorter rows, more data rows fit on a
data page, so for many queries, fewer pages can be accessed.

Managing denormalized data
Whatever denormalization techniques you use, you need to ensure data
integrity by using:

• Triggers, which can update derived or duplicated data anytime the base
data changes

active
Authors

inactive
active

active
inactive

Inactive_Authors

inactive

Active_Authors

Problem: Usually only
active records are accessed

Solution: Partition horizontally into active and inactive data

CHAPTER 7 Database Design

Performance and Tuning: Basics 149

• Application logic, using transactions in each application that update
denormalized data, to ensure that changes are atomic

• Batch reconciliation, run at appropriate intervals, to bring the
denormalized data back into agreement

From an integrity point of view, triggers provide the best solution, although
they can be costly in terms of performance.

Using triggers
In Figure 7-10, the sum_adv column in the titles table stores denormalized data.
A trigger updates the sum_adv column whenever the advance column in
titleauthor changes.

Figure 7-10: Using triggers to maintain normalized data

Using application logic
If your application has to ensure data integrity, it must ensure that the inserts,
deletes, or updates to both tables occur in a single transaction.

If you use application logic, be very sure that the data integrity requirements
are well documented and well known to all application developers and to those
who must maintain applications.

Note Using application logic to manage denormalized data is risky. The same
logic must be used and maintained in all applications that modify the data.

title_id sum_adv
 titles

title_id au_id advance
titleauthor

Denormalizing for performance

150 Adaptive Server Enterprise

Batch reconciliation
If 100 percent consistency is not required at all times, you can run a batch job
or stored procedure during off-hours to reconcile duplicate or derived data.

Performance and Tuning: Basics 151

C H A P T E R 8 Data Storage

This chapter explains how Adaptive Server stores data rows on pages and
how those pages are used in select and data modification statements, when
there are no indexes.

It lays the foundation for understanding how to improve Adaptive Server’s
performance by creating indexes, tuning your queries, and addressing
object storage issues.

Performance gains through query optimization
The Adaptive Server optimizer attempts to find the most efficient access
path to your data for each table in the query, by estimating the cost of the
physical I/O needed to access the data, and the number of times each page
needs to be read while in the data cache.

In most database applications, there are many tables in the database, and
each table has one or more indexes. Depending on whether you have
created indexes, and what kind of indexes you have created, the
optimizer’s access method options include:

Topic Page
Performance gains through query optimization 151

Adaptive Server pages 153

Pages that manage space allocation 157

Space overheads 160

Heaps of data: tables without clustered indexes 167

How Adaptive Server performs I/O for heap operations 172

Caches and object bindings 174

Asynchronous prefetch and I/O on heap tables 179

Heaps: pros and cons 180

Maintaining heaps 180

Transaction log: a special heap table 181

Performance gains through query optimization

152 Adaptive Server Enterprise

• A table scan – reading all the table’s data pages, sometimes hundreds or
thousands of pages.

• Index access – using the index to find only the data pages needed,
sometimes as few as three or four page reads in all.

• Index covering – using only a non clustered index to return data, without
reading the actual data rows, requiring only a fraction of the page reads
required for a table scan.

Having the proper set of indexes on your tables should allow most of your
queries to access the data they need with a minimum number of page reads.

Query processing and page reads
Most of a query’s execution time is spent reading data pages from disk.
Therefore, most of your performance improvement — more than 80%,
according to many performance and tuning experts — comes from reducing the
number of disk reads needed for each query.

When a query performs a table scan, Adaptive Server reads every page in the
table because no useful indexes are available to help it retrieve the data. The
individual query may have poor response time, because disk reads take time.
Queries that incur costly table scans also affect the performance of other
queries on your server.

Table scans can increase the time other users have to wait for a response, since
they consume system resources such as CPU time, disk I/O, and network
capacity.

Table scans use a large number of disk reads (I/Os) for a given query. When
you have become familiar with the access methods, tuning tools, the size and
structure of your tables, and the queries in your applications, you should be
able to estimate the number of I/O operations a given join or select operation
will perform, given the indexes that are available.

If you know what the indexed columns on your tables are, along with the table
and index sizes, you can often look at a query and predict its behavior. For
different queries on the same table, you might be able to draw these
conclusions:

• This point query returns a single row or a small number of rows that match
the where clause condition.

The condition in the where clause is indexed; it should perform two to four
I/Os on the index and one more to read the correct data page.

CHAPTER 8 Data Storage

Performance and Tuning: Basics 153

• All columns in the select list and where clause for this query are included
in a non clustered index. This query will probably perform a scan on the
leaf level of the index, about 600 pages.

Adding an unindexed column to the select list, would force the query to
scan the table, which would require 5000 disk reads.

• No useful indexes are available for this query; it is going to do a table scan,
requiring at least 5000 disk reads.

This chapter describes how tables are stored, and how access to data rows takes
place when indexes are not being used.

Chapter 12, “How Indexes Work,” describes access methods for indexes.
Other chapters explain how to determine which access method is being used
for a query, the size of the tables and indexes, and the amount of I/O a query
performs. These chapters provide a basis for understanding how the optimizer
models the cost of accessing the data for your queries.

Adaptive Server pages
The basic unit of storage for Adaptive Server is a page. Page sizes can be 2K,
4K, 8K to 16K. The server’s page size is established when you first build the
source. Once the server is built the value cannot be changed. These types of
pages store database objects:

• Data pages – store the data rows for a table.

• Index pages – store the index rows for all levels of an index.

• Large object (LOB) pages – store the data for text and image columns, and
for Java off-row columns.

Adaptive Server version 12.5 does not use the buildmaster binary to build the
master device. Instead, Sybase has incorporated the buildmaster functionality
in the dataserver binary.

The dataserver command allows you to create master devices and databases
with logical pages of size 2K, 4K, 8K, or 16K. Larger logical pages allow you
to create larger rows, which can improve your performance because Adaptive
Server accesses more data each time it reads a page. For example, a 16K page
can hold 8 times the amount of data as a 2K page, an 8K page holds 4 times as
much data as a 2K page, and so on, for all the sizes for logical pages.

Adaptive Server pages

154 Adaptive Server Enterprise

Adaptive Server may have to handle large volumes of data for a single query,
DML operation, or command. For example, if you use a data-only-locked
(DOL) table with a char(2000) column, Adaptive Server must allocate memory
to perform column copying while scanning the table. Increased memory
requests during the life of a query or command means a potential reduction in
throughput.

The size of Adaptive Server‘s logical pages (2K, 4K, 8K, or 16K) determines
the server’s space allocation. Each allocation page, object allocation map
(OAM) page, data page, index page, text page, and so on are built on a logical
page. For example, if the logical page size of Adaptive Server is 8K, each of
these page types are 8K in size. All of these pages consume the entire size
specified by the size of the logical page. OAM pages have a greater number of
OAM entries for larger logical pages (for example, 8K) than for smaller pages
(2K).

Page headers and page sizes
All pages have a header that stores information such as the object ID that the
page belongs to and other information used to manage space on the page. Table
8-1 shows the number of bytes of overhead and usable space on data and index
pages.

Table 8-1: Overhead and user data space on data and index pages

The rest of the page is available to store data and index rows.

For information on how text, image, and Java columns are stored, see “Large
Object (LOB) Pages” on page 156.

Varying logical page sizes
Adaptive Server version 12.5 does not use the buildmaster binary to build the
master device. Instead, Sybase has incorporated the buildmaster functionality
in the dataserver binary.

Locking Scheme Overhead Bytes for User Data

Allpages 32 2016

Data-only 46 2002

CHAPTER 8 Data Storage

Performance and Tuning: Basics 155

The dataserver command allows you to create master devices and databases
with logical pages of size 2K, 4K, 8K, or 16K. Larger logical pages allow you
to create larger rows, which can improve your performance because Adaptive
Server accesses more data each time it reads a page. For example, a 16K page
can hold 8 times the amount of data as a 2K page, an 8K page holds 4 times as
much data as a 2K page, and so on, for all the sizes for logical pages.

The logical page size is a server-wide setting; you cannot have databases with
varying size logical pages within the same server. All tables are appropriately
sized so that the row size is no greater than the current page size of the server.
That is, rows cannot span multiple pages.

See the Utilities Guide for specific information about using the dataserver
command to build your master device.

Data and index pages
Data pages and index pages on data-only-locked tables have a row offset table
that stores pointers to the starting byte for each row on the page. Each pointer
takes 2 bytes.

Data and index rows are inserted on a page starting just after the page header,
and fill in contiguously down the page. For all tables and indexes on data-only-
locked tables, the row offset table begins at the last byte on the page, and grows
upward.

The information stored for each row consists of the actual column data plus
information such as the row number and the number of variable-length and null
columns in the row. Index pages for allpages-locked tables do not have a row
offset table.

Rows cannot cross page boundaries, except for text, image, and Java off-row
columns. Each data row has at least 4 bytes of overhead; rows that contain
variable-length data have additional overhead.

See Chapter 11, “Determining Sizes of Tables and Indexes,” for more
information on data and index row sizes and overhead.

The row offset table stores pointers to the starting location for each data row
on the page.

Adaptive Server pages

156 Adaptive Server Enterprise

Large Object (LOB) Pages
text, image, and Java off-row columns (LOB columns) for a table are stored as
a separate data structure, consisting of a set of pages. Each table with a text or
image column has one of these structures. If a table has multiple LOB columns,
it still has only one of these separate data structures.

The table itself stores a 16-byte pointer to the first page of the value for the row.
Additional pages for the value are linked by next and previous pointers. Each
value is stored in its own, separate page chain. The first page stores the number
of bytes in the text value. The last page in the chain for a value is terminated
with a null next-page pointer.

Reading or writing a LOB value requires at least two page reads or writes:

• One for the pointer

• One for the actual location of the text in the text object

Each LOB page stores up to 1800 bytes. Every non-null value uses at least one
full page.

LOB structures are listed separately in sysindexes. The ID for the LOB
structure is the same as the table’s ID. The index ID column is indid and is
always 255, and the name is the table name, prefixed with the letter “t”.

Extents
Adaptive Server pages are always allocated to a table, index, or LOB structure.
A block of 8 pages is called an extent. The size of an extent depends on the
page size the server uses. The extent size on a 2K server is 16K where on an
8K it is 64K, etc. The smallest amount of space that a table or index can occupy
is 1 extent, or 8 pages. Extents are deallocated only when all the pages in an
extent are empty.

The use of extents in Adaptive Server is transparent to the user except when
examining reports on space usage.

For example, reports from sp_spaceused display the space allocated (the
reserved column) and the space used by data and indexes. The unused column
displays the amount of space in extents that are allocated to an object, but not
yet used to store data.

sp_spaceused titles
name rowtotal reserved data index_size unused
------ -------- -------- ------- ---------- ------

CHAPTER 8 Data Storage

Performance and Tuning: Basics 157

titles 5000 1392 KB 1250 KB 94 KB 48 KB

In this report, the titles table and its indexes have 1392K reserved on various
extents, including 48K (24 data pages) unallocated in those extents.

Pages that manage space allocation
In addition to data, index, and LOB pages used for data storage, Adaptive
Server uses other types of pages to manage storage, track space allocation, and
locate database objects. The sysindexes table also stores pointers that are used
during data access.

The pages that manage space allocation and the sysindexes pointers are used to:

• Speed the process of finding objects in the database

• Speed the process of allocating and deallocating space for objects.

• Provide a means for Adaptive Server to allocate additional space for an
object that is near the space already used by the object. This helps
performance by reducing disk-head travel.

The following types of pages track the disk space use by database objects:

• Global allocation map (GAM) pages contain allocation bitmaps for an
entire database.

• Allocation pages track space usage and objects within groups of 256
pages, or 1/2MB.

• Object allocation map (OAM) pages contain information about the extents
used for an object. Each table and index has at least one OAM page that
tracks where pages for the object are stored in the database.

• Control pages manage space allocation for partitioned tables. Each
partition has one control page.

Global allocation map pages
Each database has a Global Allocation Map Pages (GAM). It stores a bitmap
for all allocation units of a database, with 1 bit per allocation unit. When an
allocation unit has no free extents available to store objects, its corresponding
bit in the GAM is set to 1.

Pages that manage space allocation

158 Adaptive Server Enterprise

This mechanism expedites allocating new space for objects. Users cannot view
the GAM page; it appears in the system catalogs as the sysgams table.

Allocation pages
When you create a database or add space to a database, the space is divided into
allocation units of 256 data pages. The first page in each allocation unit is the
allocation page. Page 0 and all pages that are multiples of 256 are allocation
pages.

The allocation page tracks space in each extent on the allocation unit by
recording the object ID and index ID for the object that is stored on the extent,
and the number of used and free pages. The allocation page also stores the page
ID for the table or index’s OAM page.

Object allocation map pages
Each table, index, and text chain has one or more Object Allocation Map
(OAM) pages stored on pages allocated to the table or index. If a table has more
than one OAM page, the pages are linked in a chain. OAM pages store pointers
to the allocation units that contain pages for the object.

The first page in the chain stores allocation hints, indicating which OAM page
in the chain has information about allocation units with free space. This
provides a fast way to allocate additional space for an object and to keep the
new space close to pages already used by the object.

How OAM pages and allocation pages manage object storage
Figure 8-1 shows how allocation units, extents, and objects are managed by
OAM pages and allocation pages.

• Two allocation units are shown, one starting at page 0 and one at page 256.
The first page of each is the allocation page.

• A table is stored on four extents, starting at pages 1 and 24 on the first
allocation unit and pages 272 and 504 on the second unit.

• The first page of the table is the table’s OAM page. It points to the
allocation page for each allocation unit where the object uses pages, so it
points to pages 0 and 256.

CHAPTER 8 Data Storage

Performance and Tuning: Basics 159

• Allocation pages 0 and 256 store the table’s object ID and information
about the extents and pages used on the extent. So, allocation page 0 points
to page 1 and 24 for the table, and allocation page 256 points to pages 272
and 504.

Figure 8-1: OAM page and allocation page pointers

Page allocation keeps an object’s pages together
Adaptive Server tries to keep the page allocations close together for objects. In
most cases:

• If there is an unallocated page in the current extent, that page is assigned
to the object.

• If there is no free page in the current extent, but there is an unallocated
page on another of the object’s extents, that extent is used.

• If all the object’s extents are full, but there are free extents on the allocation
unit, the new extent is allocated in a unit already used by the object.

27 2824 25 26 29 30 31

750 1 2 3 4 6

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

248 249 250 251 252 253 254 255

283

511

279

..

274

256 257 258 259 260 261 262 263

264 265 266 267 268 269 270 271

272 273 275 276 277 278

280 281 282 284 285 286 287

.
504 505 506 507 508 509 510

Pages used by

Other

Allocation

OAM
Page
0
256

...

Space overheads

160 Adaptive Server Enterprise

sysindexes table and data access
The sysindexes table stores information about indexed and unindexed tables.
sysindexes has one row for each:

• Allpages-locked table, the indid column is 0 if the table does not have a
clustered index, and 1 if the table does have a clustered index.

• Data-only-locked tables, the indid is always 0 for the table.

• Nonclustered index, and for each clustered index on a data-only-locked
table.

• Table with one or more LOB columns, the index ID is always 255 for the
LOB structure.

Each row in sysindexes stores pointers to a table or index to speed access to
objects. Table 8-2 shows how these pointers are used during data access.

Table 8-2: Use of sysindexes pointers in data access

Space overheads
Regardless of the logical page size it is configured for, Adaptive Server
allocates space for objects (tables, indexes, text page chains) in extents, each
of which is eight logical pages. That is, if a server is configured for 2K logical
pages, it allocates one extent, 16K, for each of these objects; if a server is
configured for 16K logical pages, it allocates one extent, 128K, for each of
these objects.

This is also true for system tables. If your server has many small tables, space
consumption can be quite large if the server uses larger logical pages.

Column Use for table access Use for index access

root If indid is 0 and the table is a partitioned
allpages-locked table, root points to the
last page of the heap.

Used to find the root page of the index
tree.

first Points to the first data page in the page
chain for allpages-locked tables.

Points to the first leaf-level page in a
non clustered index or a clustered index
on a data-only-locked table.

doampg Points to the first OAM page for the
table.

ioampg Points to the first OAM page for an
index.

CHAPTER 8 Data Storage

Performance and Tuning: Basics 161

For example, for a server configured for 2K logical pages, systypes – with
approximately 31 short rows, a clustered and a non-clustered index – reserves
3 extents, or 48K of memory. If you migrate the server to use 8K pages, the
space reserved for systypes is still 3 extents, 192K of memory.

For a server configured for 16K, systypes requires 384K of disk space. For
small tables, the space unused in the last extent can become significant on
servers using larger logical page sizes.

Databases are also affected by larger page sizes. Each database includes the
system catalogs and their indexes. If you migrate from a smaller to larger
logical page size, you must account for the amount of disk space each database
requires.

Number of columns and size
The maximum number of columns you can create in a table is:

• 1024 for fixed-length columns in both all-pages-locked (APL) and data-
only- locked (DOL) tables

• 254 for variable-length columns in an APL table

• 1024 for variable-length columns in an DOL table

The maximum size of a column depends on:

• Whether the table includes any variable- or fixed-length columns.

• The logical page size of the database. For example, in a database with 2K
logical pages, the maximum size of a column in an APL table can be as
large as a single row, about 1962 bytes, less the row format overheads.
Similarly, for a 4K page, the maximum size of a column in a APL table can
be as large as 4010 bytes, less the row format overheads. See Table 0-1 for
more information.

• If you attempt to create a table with a fixed-length column that is greater
than the limits of the logical page size, create table issues an error message.

Space overheads

162 Adaptive Server Enterprise

Table 8-3: Maximum row and column length - APL & DOL

The maximum size of a fixed-length column in a DOL table with a 16K logical
page size depends on whether the table contains variable-length columns. The
maximum possible starting offset of a variable-length column is 8191. If the
table has any variable-length columns, the sum of the fixed-length portion of
the row, plus overheads, cannot exceed 8191 bytes, and the maximum possible
size of all the fixed-length columns is restricted to 8183 bytes, when the table
contains any variable-length columns.

Variable-length columns in APL tables

APL tables that contain one variable-length column (for example, varchar,
varbinary and so on) have the following minimum overhead for each row:

• Two bytes for the initial row overhead.

• Two bytes for the row length.

• Two bytes for the column-offset table at the end of the row. This is always
n+1 bytes, where n is the number of variable-length columns in the row.

Locking scheme Page size
Maximum row
length

Maximum column
length

2K (2048 bytes) 1962 1960 bytes

4K (4096 bytes) 4010 4008 bytes

APL tables 8K (8192 bytes) 8106 8104 bytes

16K (16384 bytes) 16298 16296 bytes

2K (2048 bytes) 1964 1958 bytes

4K (4096 bytes) 4012 4006 bytes

DOL tables 8K (8192 bytes) 8108 8102 bytes

16K (16384 bytes) 16300 16294 bytes
if table does not
include any variable
length columns

16K (16384 bytes) 16300
(subject to a max start
offset of varlen =
8191)

8191-6-2 = 8183 bytes
if table includes at
least on variable
length column.*

* This size includes six bytes for the row overhead and two bytes for
the row length field

CHAPTER 8 Data Storage

Performance and Tuning: Basics 163

A single-column table has an overhead of at least six bytes, plus additional
overhead for the adjust table. The maximum column size, after all the overhead
is taken into consideration, is less than or equal to the column length + number
of bytes for adjust table + six-byte overhead.

Table 8-4: Maximum size for variable-length columns in an APL table

Variable-length columns that exceed the logical page size

If your table uses 2K logical pages, you can create some variable-length
columns whose total row-length exceeds the maximum row-length for a 2K
page size. This allows you to create tables where some, but not all, variable-
length columns contain the maximum possible size. However, when you issue
create table, you receive a warning message that says the resulting row size
may exceed the maximum possible row size, and cause a future insert or update
to fail.

For example, if you create a table that uses a 2K page size, and contains a
variable-length column with a length of 1975 bytes, Adaptive Server creates
the table but issues a warning message. However, an insert fails if you attempt
to insert data that exceeds the maximum length of the row (1962 bytes).

Variable length columns in DOL tables

For a single, variable-length column in a DOL table, the minimum overhead
for each row is:

• Six bytes for the initial row overhead.

• Two bytes for the row length.

• Two bytes for the column offset table at the end of the row. Each column
offset entry is two bytes. There are n such entries, where n is the number
of variable-length columns in the row.

The total overhead is 10 bytes. There is no adjust table for DOL rows. The
actual variable-length column size is:

column length + 10 bytes overhead

Page size
Maximum row
length

Maximum column
length

2K (2048 bytes) 1962 1948

4K (4096 bytes) 4010 3988

8K (8192 bytes) 8096 8058

16K (16384 bytes) 16298 16228

Space overheads

164 Adaptive Server Enterprise

Table 8-5: Maximum size for variable-length columns in an DOL table

DOL tables with variable-length columns must have an offset of less than 8191
bytes for all inserts to succeed. For example, this insert fails because the offset
totals more than 8191 bytes:

create table t1(

c1 int not null,

c2 varchar(5000) not null

c3 varchar(4000) not null

c4 varchar(10) not null

... more fixed length columns)

cvarlen varchar(nnn)) lock datarows

The offset for columns c2, c3, and c4 is 9010, so the entire insert fails.

Restrictions for converting locking schemes or using select into

The following restrictions apply whether you are using alter table to change a
locking scheme or using select into to copy data into a new table.

For servers that use page sizes other than 16K pages, the maximum length of a
variable length column in an APL table is less than that for a DOL table, so you
can convert the locking scheme of an APL table with a maximum sized
variable length column to DOL. Conversion of a DOL table containing at least
one maximum sized variable length column to allpages modeis restricted.
Adaptive Server raises an error message and the operation is aborted.

On servers that use 16K pages, APL tables can store substantially larger sized
variable length columns than can be stored in DOL tables.You can convert
tables from DOL to APL, but lock scheme conversion from APL to DOL is
restricted. Adaptive Server raises an error message and the operation is
aborted.

Page size
Maximum row
length

Maximum column
length

2K (2048 bytes) 1964 1954

4K (4096 bytes) 4012 4002

8K (8192 bytes) 8108 7998

16K (16384 bytes) 16300 162290

CHAPTER 8 Data Storage

Performance and Tuning: Basics 165

Note that these restrictions on lock scheme conversions occur only if there is
data in the source table that goes beyond the limits of the target table. If this
occurs, Adaptive Server raises an error message while transforming the row
format from one locking scheme to the other. If the table is empty, no such data
transformation is required, and the lock change operation succeeds. But, then,
on a subsequent insert or update of the table, users might run into errors due to
limitations on the column or row-size for the target schema of the altered table.

Organizing columns in DOL tables by size of variable-length columns

For DOL tables that use variable-length columns, arrange the columns so the
longest columns are placed toward the end of the table definition. This allows
you to create tables with much larger rows than if the large columns appear at
the beginning of the table definition. For instance, in a 16K page server, the
following table definition is acceptable:

create table t1 (

c1 int not null,

c2 varchar(1000) null,

c3 varchar(4000) null,

c4 varchar(9000) null) lock datarows

However, the following table definition typically is unacceptable for future
inserts. The potential start offset for column c2 is greater than the 8192-byte
limit because of the proceeding 9000-byte c4 column:

create table t2 (

c1 int not null,

c4 varchar(9000) null,

c3 varchar(4000) null,

c2 varchar(1000) null) lock datarows

The table is created, but future inserts may fail.

Number of rows per data page
The number of rows allowed for a DOL data page is determined by:

• The page size.

Space overheads

166 Adaptive Server Enterprise

• A 10 – byte overhead for the row ID, which specifies a row-forwarding
address.

Table 8-6 displays the maximum number of datarows that can fit on a DOL
data page:

Table 8-6: Maximum number of data rows for a DOL data page

APL data pages can have a maximum of 256 rows. Because each page requires
a one-byte row number specifier, large pages with short rows incur some
unused space.

For example, if Adaptive Server is configured with 8K logical pages and rows
that are 25 bytes long, the page will have 1275 bytes of unused space, after
accounting for the row-offset table, and the page header.

Maximum numbers

Arguments for stored procedures

The maximum number of arguments for stored procedures is 2048. See the
Transact - SQL User’s Guide for more information.

Retrieving data with enhanced limits

Adaptive Server version 12.5 and later can store data that has different limits
than data stored in previous versions. Clients also must be able to handle the
new limits the data can use. If you are using older versions of Open Client and
Open Server, they cannot process the data if you:

• Upgrade to Adaptive Server version 12.5.

• Drop and re-create the tables with wide columns.

• Insert wide data.

See the Open Client section in this guide for more information.

Page Size Maximum number of rows

2K 166

4K 337

8K 678

16K 1361

CHAPTER 8 Data Storage

Performance and Tuning: Basics 167

Heaps of data: tables without clustered indexes
If you create a table on Adaptive Server, but do not create a clustered index, the
table is stored as a heap. The data rows are not stored in any particular order.
This section describes how select, insert, delete, and update operations perform
on heaps when there is no “useful” index to aid in retrieving data.

The phrase “no useful index” is important in describing the optimizer’s
decision to perform a table scan. Sometimes, an index exists on the columns
named in a where clause, but the optimizer determines that it would be more
costly to use the index than to perform a table scan.

Other chapters in this book describe how the optimizer costs queries using
indexes and how you can get more information about why the optimizer makes
these choices.

Table scans are always used when you select all rows in a table. The only
exception is when the query includes only columns that are keys in a
nonclustered index.

For more information, see “Index covering” on page 291.

The following sections describe how Adaptive Server locates rows when a
table has no useful index.

Lock schemes and differences between heaps
The data pages in an allpages-locked table are linked into a doubly-linked list
of pages by pointers on each page. Pages in data-only-locked tables are not
linked into a page chain.

In an allpages-locked table, each page stores a pointer to the next page in the
chain and to the previous page in the chain. When new pages need to be
inserted, the pointers on the two adjacent pages change to point to the new
page. When Adaptive Server scans an allpages-locked table, it reads the pages
in order, following these page pointers.

Pages are also doubly-linked at each index level of allpages-locked tables, and
the leaf level of indexes on data-only-locked tables. If an allpages-locked table
is partitioned, there is one page chain for each partition.

Another difference between allpages-locked tables and data-only-locked tables
is that data-only-locked tables use fixed row IDs. This means that row IDs (a
combination of the page number and the row number on the page) do not
change in a data-only-locked table during normal query processing.

Heaps of data: tables without clustered indexes

168 Adaptive Server Enterprise

Row IDs change only when one of the operations that require data-row copying
is performed, for example, during reorg rebuild or while creating a clustered
index.

For information on how fixed row IDs affect heap operations, see “Deleting
from a data-only locked heap table” on page 170 and “Data-only-locked heap
tables” on page 172.

Select operations on heaps
When you issue a select query on a heap, and there is no useful nonclustered
index, Adaptive Server must scan every data page in the table to find every row
that satisfies the conditions in the query. There may be one row, many rows, or
no rows that match.

Allpages-locked heap tables

For allpages-locked tables, Adaptive Server reads the first column in
sysindexes for the table, reads the first page into cache, and follows the next
page pointers until it finds the last page of the table.

Data-only locked heap tables

Since the pages of data-only-locked tables are not linked in a page chain, a
select query on a heap table uses the table’s OAM and the allocation pages to
locate all the rows in the table. The OAM page points to the allocation pages,
which point to the extents and pages for the table.

Inserting data into an allpages-locked heap table
When you insert data into an allpages-locked heap table, the data row is always
added to the last page of the table. If there is no clustered index on a table, and
the table is not partitioned, the sysindexes.root entry for the heap table stores a
pointer to the last page of the heap to locate the page where the data needs to
be inserted.

If the last page is full, a new page is allocated in the current extent and linked
onto the chain. If the extent is full, Adaptive Server looks for empty pages on
other extents being used by the table. If no pages are available, a new extent is
allocated to the table.

CHAPTER 8 Data Storage

Performance and Tuning: Basics 169

Conflicts during heap inserts

One of the severe performance limits on heap tables that use allpages locking
is that the page must be locked when the row is added, and that lock is held until
the transaction completes. If many users are trying to insert into an allpages-
locked heap table at the same time, each insert must wait for the preceding
transaction to complete.

This problem of last-page conflicts on heaps is true for:

• Single row inserts using insert

• Multiple row inserts using select into or insert...select, or several insert
statements in a batch

• Bulk copy into the table

Some workarounds for last-page conflicts on heaps include:

• Switching to datapages or datarows locking

• Creating a clustered index that directs the inserts to different pages

• Partitioning the table, which creates multiple insert points for the table,
giving you multiple “last pages” in an allpages-locked table

Other guidelines that apply to all transactions where there may be lock
conflicts include:

• Keeping transactions short

• Avoiding network activity and user interaction whenever possible, once a
transaction acquires locks

Inserting data into a data-only-locked heap table
When users insert data into a data-only-locked heap table, Adaptive Server
tracks page numbers where the inserts have recently occurred, and keeps the
page number as a hint for future tasks that need space. Subsequent inserts to the
table are directed to one of these pages. If the page is full, Adaptive Server
allocates a new page and replaces the old hint with the new page number.

Blocking while many users are simultaneously inserting data is much less
likely to occur during inserts to data-only-locked heap tables. When blocking
occurs, Adaptive Server allocates a small number of empty pages and directs
new inserts to those pages using these newly allocated pages as hints.

Heaps of data: tables without clustered indexes

170 Adaptive Server Enterprise

For datarows-locked tables, blocking occurs only while the actual changes to
the data page are being written; although row locks are held for the duration of
the transaction, other rows can be inserted on the page. The row-level locks
allow multiple transaction to hold locks on the page.

There may be slight blocking on data-only-locked tables, because Adaptive
Server allows a small amount of blocking after many pages have just been
allocated, so that the newly allocated pages are filled before additional pages
are allocated.

If conflicts occur during heap inserts

Conflicts during inserts to heap tables are greatly reduced for data-only-locked
tables, but can still take place. If these conflicts slow inserts, some
workarounds can be used, including:

• Switching to datarows locking, if the table uses datapages locking

• Using a clustered index to spread data inserts

• Partitioning the table, which provides additional hints and allows new
pages to be allocated on each partition when blocking takes place

Deleting data from a heap table
When you delete rows from a heap table, and there is no useful index, Adaptive
Server scans the data rows in the table to find the rows to delete. It has no way
of knowing how many rows match the conditions in the query without
examining every row.

Deleting from an allpages-locked heap table

When a data row is deleted from a page in an allpages-locked table, the rows
that follow it on the page move up so that the data on the page remains
contiguous.

Deleting from a data-only locked heap table

When you delete rows from a data-only-locked heap table, a table scan is
required if there is no useful index. The OAM and allocation pages are used to
locate the pages.

CHAPTER 8 Data Storage

Performance and Tuning: Basics 171

The space on the page is not recovered immediately. Rows in data-only-locked
tables must maintain fixed row IDs, and need to be reinserted in the same place
if the transaction is rolled back.

After a delete transaction completes, one of the following processes shifts rows
on the page to make the space usage contiguous:

• The housekeeper garbage collection process

• An insert that needs to find space on the page

• The reorg reclaim_space command

Deleting the last row on a page

If you delete the last row on a page, the page is deallocated. If other pages on
the extent are still in use by the table, the page can be used again by the table
when a page is needed.

If all other pages on the extent are empty, the entire extent is deallocated. It can
be allocated to other objects in the database. The first data page for a table or
an index is never deallocated.

Updating data on a heap table
Like other operations on heaps, an update that has no useful index on the
columns in the where clause performs a table scan to locate the rows that need
to be changed.

Allpages-locked heap tables

Updates on allpages-locked heap tables can be performed in several ways:

• If the length of the row does not change, the updated row replaces the
existing row, and no data moves on the page.

• If the length of the row changes, and there is enough free space on the
page, the row remains in the same place on the page, but other rows move
up or down to keep the rows contiguous on the page.

The row offset pointers at the end of the page are adjusted to point to the
changed row locations.

• If the row does not fit on the page, the row is deleted from its current page,
and the “new” row is inserted on the last page of the table.

How Adaptive Server performs I/O for heap operations

172 Adaptive Server Enterprise

This type of update can cause a conflict on the last page of the heap, just
as inserts do. If there are any nonclustered indexes on the table, all index
references to the row need to be updated.

Data-only-locked heap tables

One of the requirements for data-only-locked tables is that the row ID of a data
row never changes (except during intentional rebuilds of the table). Therefore,
updates to data-only-locked tables can be performed by the first two methods
described above, as long as the row fits on the page.

But when a row in a data-only-locked table is updated so that it no longer fits
on the page, a process called row forwarding performs the following steps:

• The row is inserted onto a different page, and

• A pointer to the row ID on the new page is stored in the original location
for the row.

Indexes do not need to be modified when rows are forwarded. All indexes still
point to the original row ID.

If the row needs to be forwarded a second time, the original location is updated
to point to the new page—the forwarded row is never more than one hop away
from its original location.

Row forwarding increases concurrency during update operations because
indexes do not have to be updated. It can slow data retrieval, however, because
a task needs to read the page at the original location and then read the page
where the forwarded data is stored.

Forwarded rows can be cleared from a table using the reorg command.

For more information on updates, see “How update operations are performed”
on page 94 in the Performance and Tuning: Optimizer book.

How Adaptive Server performs I/O for heap operations
When a query needs a data page, Adaptive Server first checks to see if the page
is available in a data cache. If the page is not available, then it must be read
from disk. A newly installed Adaptive Server has a single data cache
configured for 2K I/O. Each I/O operation reads or writes a single Adaptive
Server data page. A System Administrator can:

CHAPTER 8 Data Storage

Performance and Tuning: Basics 173

• Configure multiple caches

• Bind tables, indexes, or text chains to the caches

• Configure data caches to perform I/O in page-sized multiples, up to eight
data pages (one extent)

To use these caches most efficiently, and reduce I/O operations, the Adaptive
Server optimizer can:

• Choose to prefetch up to eight data pages at a time

• Choose between different caching strategies

Sequential prefetch, or large I/O
Adaptive Server‘s data caches can be configured by a System Administrator to
allow large I/Os. When a cache is configured to allow large I/Os, Adaptive
Server can choose to prefetch data pages.

Caches have buffer pools that depend on the logical page sizes, allowing
Adaptive Server to read up to an entire extent (eight data pages) in a single I/O
operation.

Since much of the time required to perform I/O operations is taken up in
seeking and positioning, reading eight pages in a 16K I/O performs nearly eight
times as fast as a single-page, 2K I/O, so queries that table scan should perform
much better using large I/O.

When several pages are read into cache with a single I/O, they are treated as a
unit: they age in cache together, and if any page in the unit has been changed
while the buffer was in cache, all pages are written to disk as a unit.

For more information on configuring memory caches for large I/O, see Chapter
10, “Memory Use and Performance.”

Note Reference to Large I/Os are on a 2K logical page size server. If you have
an 8K page size server, the basic unit for the I/O is 8K. If you have a 16K page
size server, the basic unit for the I/O is 16K.

Caches and object bindings

174 Adaptive Server Enterprise

Caches and object bindings
A table can be bound to a specific cache. If a table is not bound to a specific
cache, but its database is bound to a cache, all of its I/O takes place in that
cache.

Otherwise, its I/O takes place in the default data cache. The default data cache
can be configured for large I/O. If your applications include some heap tables,
they will probably perform best when they use a cache configured for 16K I/O.

Heaps, I/O, and cache strategies
Each Adaptive Server data cache is managed as an MRU/LRU (most recently
used/least recently used) chain of buffers. As buffers age in the cache, they
move from the MRU end toward the LRU end.

When changed pages in the cache pass a point called the wash marker, on the
MRU/LRU chain, Adaptive Server initiates an asynchronous write on any
pages that changed while they were in cache. This helps ensure that when the
pages reach the LRU end of the cache, they are clean and can be reused.

Overview of cache strategies

Adaptive Server has two major strategies for using its data cache efficiently:

• LRU replacement strategy, usually used for pages that a query needs to
access more than once or pages that must be updated

• MRU, or fetch-and-discard replacement strategy, used for pages that a
query needs to read only once

LRU replacement strategy

LRU replacement strategy reads the data pages sequentially into the cache,
replacing a “least recently used” buffer. The buffer is placed on the MRU end
of the data buffer chain. It moves toward the LRU end as more pages are read
into the cache.

CHAPTER 8 Data Storage

Performance and Tuning: Basics 175

Figure 8-2: LRU strategy takes a clean page from the LRU end of the
cache

When LRU strategy is used

Adaptive Server uses LRU strategy for:

• Statements that modify data on pages

• Pages that are needed more than once by a single query

• OAM pages

• Most index pages

• Any query where LRU strategy is specified

MRU replacement strategy

MRU (fetch-and-discard) replacement strategy is used for table scanning on
heaps. This strategy places pages into the cache just before the wash marker, as
shown in Figure 8-3.

Clean buffer

To disk

MRU

Wash marker

Clean page Dirty page

LRU

Caches and object bindings

176 Adaptive Server Enterprise

Figure 8-3: MRU strategy places pages just before the wash marker

Fetch-and-discard is most often used for queries where a page is needed only
once by the query. This includes:

• Most table scans in queries that do not use joins

• One or more tables in a join query

Placing the pages needed only once at the wash marker means that they do not
push other pages out of the cache.

The fetch-and-discard strategy is used only on pages actually read from the
disk for the query. If a page is already in cache due to earlier activity on the
table, the page is placed at the MRU end of the cache.

Figure 8-4: Finding a needed page in cache

Select operations and caching
Under most conditions, single-table select operations on a heap use:

• The largest I/O available to the table and

• Fetch-and-discard (MRU) replacement strategy

For heaps, select operations performing large I/O can be very effective.
Adaptive Server can read sequentially through all the extents in a table.

Clean page

MRU LRU

Wash marker

MRU LRUWash marker

CHAPTER 8 Data Storage

Performance and Tuning: Basics 177

Unless the heap is being scanned as the inner table of a nested-loop join, the
data pages are needed only once for the query, so MRU replacement strategy
reads and discards the pages from cache.

Note Large I/O on allpages-locked heaps is effective only when the page
chains are not fragmented.

See “Maintaining heaps” on page 180 for information on maintaining heaps.

Data modification and caching
Adaptive Server tries to minimize disk writes by keeping changed pages in
cache. Many users can make changes to a data page while it resides in the
cache. The changes are logged in the transaction log, but the changed data and
index pages are not written to disk immediately.

Caching and inserts on heaps

For inserts to heap tables, the insert takes place:

• On the last page of a table that uses allpages locking

• On a page that was recently used for a successful insert, on a table that uses
data-only-locking

If an insert is the first row on a new page for the table, a clean data buffer is
allocated to store the data page, as shown in Figure 8-5. This page starts to
move down the MRU/LRU chain in the data cache as other processes read
pages into memory.

If a second insert to the page takes place while the page is still in memory, the
page is located in cache, and moves back to the top of the MRU/LRU chain.

Caches and object bindings

178 Adaptive Server Enterprise

Figure 8-5: Inserts to a heap page in the data cache

The changed data page remains in cache until it reaches the LRU end of the
chain of pages. The page may be changed or referenced many times while it is
in the cache, but it is written to disk only when one of the following takes place:

• The page moves past the wash marker.

• A checkpoint or the housekeeper wash task writes it to disk.

“Data cache” on page 215 explains more about these processes.

Caching, update and delete operations on heaps

When you update or delete a row from a heap table, the effects on the data
cache are similar to the process for inserts. If a page is already in the cache, the
row is changed and then the whole buffer (a single page or more, depending on
the I/O size) is placed on the MRU end of the chain.

If the page is not in cache, it is read from disk into cache and examined to
determine whether the rows on the page match query clauses. Its placement on
the MRU/LRU chain depends on whether data on the page needs to be
changed:

• If data on the page needs to be changed, the buffer is placed on the MRU
end. It remains in cache, where it can be updated repeatedly or read by
other users before being flushed to disk.

MRU LRU

Clean page

First insert on a page takes a clean
page from the LRU and puts it on the

Second insert on a page finds the page in
cache, and puts in back at the MRU

Wash marker

CHAPTER 8 Data Storage

Performance and Tuning: Basics 179

• If data on the page does not need to be changed, the buffer is placed just
before the wash marker in the cache.

Asynchronous prefetch and I/O on heap tables
Asynchronous prefetch helps speed the performance of queries that perform
table scans. Any task that needs to perform a physical I/O relinquishes the
server’s engine (CPU) while it waits for the I/O to complete.

If a table scan needs to read 1000 pages, and none of those pages are in cache,
performing 2K I/O with no asynchronous prefetch means that the task would
make 1000 loops, executing on the engine, and then sleeping to wait for I/O.
Using 16K I/O would required only 125 such loops.

Asynchronous prefetch can request all of the pages on an allocation unit that
belong to a table when the task fetches the first page from the allocation unit.
If the 1000-page table resides on just 4 allocation units, the task requires many
fewer cycles through the execution and sleep loops.

Actual performance depends on cache size and other activity in the data cache.

For more information on asynchronous prefetching, see Chapter 16, “Tuning
Asynchronous Prefetch.”

Type of I/O Loops Steps in each loop

2K I/O
no prefetch

1000 Request a page.
Sleep until the page has been read from disk.
Wait for a turn to run on the Adaptive Server engine
(CPU).
Read the rows on the page.

16K I/O
no prefetch

125 Request an extent.
Sleep until the extent has been read from disk.
Wait for a turn to run on the Adaptive Server engine
(CPU).
Read the rows on the 8 pages.

Prefetch 4 Request all the pages in an allocation unit.
Sleep until the first page has been read from disk.
Wait for a turn to run on the Adaptive Server engine
(CPU).
Read all the rows on all the pages in cache.

Heaps: pros and cons

180 Adaptive Server Enterprise

Heaps: pros and cons
Sequential disk access is efficient, especially with large I/O and asynchronous
prefetch. However, the entire table must always be scanned to find any value,
having a potentially large impact in the data cache and other queries.

Batch inserts can do efficient sequential I/O. However, there is a potential
bottleneck on the last page if multiple processes try to insert data concurrently.

Heaps work well for small tables and tables where changes are infrequent, but
they do not work well for most large tables for queries that need to return a
subset of the rows.

Heaps can be useful for tables that:

• Are fairly small and use only a few pages

• Do not require direct access to a single, random row

• Do not require ordering of result sets

Partitioned heaps are useful for tables with frequent, large volumes of batch
inserts where the overhead of dropping and creating clustered indexes is
unacceptable. With this exception, there are very few justifications for heap
tables. Most applications perform better with clustered indexes on the tables.

Maintaining heaps
Over time, I/O on heaps can become inefficient as storage becomes
fragmented. Deletes and updates can result in:

• Many partially filled pages

• Inefficient large I/O, since extents may contain many empty pages

• Forwarded rows in data-only-locked tables

Methods
After deletes and updates have left empty space on pages or have left empty
pages on extents, use one of the following techniques to reclaim space in heap
tables:

• Use the reorg rebuild command (data-only-locked tables only).

CHAPTER 8 Data Storage

Performance and Tuning: Basics 181

• Create and then drop a clustered index.

• Use bcp (the bulk copy utility) and truncate table.

Using reorg rebuild to reclaim space

reorg rebuild copies all data rows to new pages and rebuilds any nonclustered
indexes on the heap table. reorg rebuild can be used only on data-only-locked
tables.

Reclaiming space by creating a clustered index

You can create and drop a clustered index on a heap table to reclaim space if
updates and deletes have created many partially full pages in the table. To
create a clustered index, you must have free space in the database of at least
120% of the table size.

See “Determining the space available for maintenance activities” on page 356
for more information.

Reclaiming space using bcp

To reclaim space with bcp:

1 Copy the table out to a file using bcp.

2 Truncate the table with the truncate table command.

3 Copy the table back in again with bcp.

See “Steps for partitioning tables” on page 117 for procedures for working
with partitioned tables.

For more information on bcp, see the Utility Guide manual for your platform.

Transaction log: a special heap table
Adaptive Server’s transaction log is a special heap table that stores information
about data modifications in the database. The transaction log is always a heap
table; each new transaction record is appended to the end of the log. The
transaction log does not have any indexes.

Transaction log: a special heap table

182 Adaptive Server Enterprise

Other chapters in this book describe ways to enhance the performance of the
transaction log. The most important technique is to use the log on clause to
create database to place your transaction log on a separate device from your
data.

See the System Administration Guide for more information on creating
databases.

Transaction log writes occur frequently. Do not let them contend with other I/O
in the database, which usually happens at scattered locations on the data pages.

Place logs on separate physical devices from the data and index pages. Since
the log is sequential, the disk head on the log device rarely needs to perform
seeks, and you can maintain a high I/O rate to the log.

Besides recovery, these kinds of operations require reading the transaction log:

• Any data modification that is performed in deferred mode.

• Triggers that contain references to the inserted and deleted tables. These
tables are built from transaction log records when the tables are queried.

• Transaction rollbacks.

In most cases, the transaction log pages for these kinds of queries are still
available in the data cache when Adaptive Server needs to read them, and disk
I/O is not required.

Performance and Tuning: Basics 183

C H A P T E R 9 Setting Space Management
Properties

Setting space management properties can help reduce the amount of
maintenance work required to maintain high performance for tables and
indexes.

Reducing index maintenance
By default, Adaptive Server creates indexes that are completely full at the
leaf level and leaves growth room for two rows on the intermediate pages.

The fillfactor option for the create index command allows you to specify
how full to make index pages and the data pages of clustered indexes.
When you use fillfactor, except for a fillfactor value of 100 percent, data
and index rows use more disk space than the default setting requires.

If you are creating indexes for tables that will grow in size, you can reduce
the impact of page splitting on your tables and indexes by using the
fillfactor option for create index.

The fillfactor is used only when you create the index; it is not maintained
over time.

When you issue create index, the fillfactor value specified as part of the
command is applied as follows:

• Clustered index:

• On an allpages-locked table, the fillfactor is applied to the data
pages.

Topic Page
Reducing index maintenance 183

Reducing row forwarding 189

Leaving space for forwarded rows and inserts 194

Using max_rows_per_page on allpages-locked tables 202

Reducing index maintenance

184 Adaptive Server Enterprise

• On a data-only-locked table, the fillfactor is applied to the leaf pages of
the index, and the data pages are fully packed (unless sp_chgattribute
has been used to store a fillfactor for the table).

• Nonclustered index – the fillfactor value is applied to the leaf pages of the
index.

fillfactor values specified with create index are applied at the time the index is
created. They are not saved in sysindexes, and the fullness of the data or index
pages is not maintained over time.

You can also use sp_chgattribute to store values for fillfactor that are used when
reorg rebuild is run on a table.

See “Setting fillfactor values” on page 185 for more information.

Advantages of using fillfactor
Setting fillfactor to a low value provides a temporary performance enhancement.
Its benefits fade as inserts to the database increase the amount of space used on
data or index pages.

A lower fillfactor provides these benefits:

• It reduces page splits on the leaf-level of indexes, and the data pages of
allpages-locked tables.

• It improves data-row clustering on data-only-locked tables with clustered
indexes that experience inserts.

• It can reduce lock contention for tables that use page-level locking, since
it reduces the likelihood that two processes will need the same data or
index page simultaneously.

• It can help maintain large I/O efficiency for the data pages and for the leaf
levels of nonclustered indexes, since page splits occur less frequently. This
means that eight pages on an extent are likely to be sequential.

Disadvantages of using fillfactor
If you use fillfactor, especially a very low fillfactor, you may notice these effects
on queries and maintenance activities:

• More pages must be read for each query that does a table scan or leaf-level
scan on a nonclustered index.

CHAPTER 9 Setting Space Management Properties

Performance and Tuning: Basics 185

In some cases, it may also add a level to an index’s B-tree structure, since
there will be more pages at the data level and possibly more pages at each
index level.

• dbcc commands need to check more pages, so dbcc commands take more
time.

• dump database time increases, because more pages need to be dumped.
dump database copies all pages that store data, but does not dump pages
that are not yet in use.

Your dumps and loads will take longer to complete and may use more
tapes.

• Fillfactors fade away over time. If you use fillfactor to reduce the
performance impact of page splits, you need to monitor your system and
re-create indexes when page splitting begins to hurt performance.

Setting fillfactor values
sp_chgattribute allows you to store a fillfactor percentage for each index and for
the table. The fillfactor you set with sp_chgattribute is applied when you:

• Run reorg rebuild to restore the cluster ratios of data-only-locked tables and
indexes.

• Use alter table...lock to change the locking scheme for a table or you use an
alter table...add/modify command that requires copying the table.

• Run create clustered index and there is a value stored for the table.

The stored fillfactor is not applied when nonclustered indexes are rebuilt as a
result of a create clustered index command:

• If a fillfactor value is specified with create clustered index, that value is
applied to each nonclustered index.

• If no fillfactor value is specified with create clustered index, the server-wide
default value (set with the default fill factor percent configuration
parameter) is applied to all indexes.

fillfactor examples
The following examples show the application of fillfactor values.

Reducing index maintenance

186 Adaptive Server Enterprise

No stored fillfactor values

With no fillfactor values stored in sysindexes, the fillfactor specified in
commands “create index”are applied as shown in Table 9-1.

create clustered index title_id_ix
on titles (title_id)
with fillfactor = 80

Table 9-1: fillfactor values applied with no table-level saved value

The nonclustered indexes use the fillfactor specified in the create clustered index
command.

If no fillfactor is specified in create clustered index, the nonclustered indexes
always use the server-wide default; they never use a value from sysindexes.

Values used for alter table...lock and reorg rebuild

When no fillfactor values are stored, both alter table...lock and reorg rebuild apply
the server-wide default value, set by the default fill factor percentage
configuration parameter. The default fillfactor is applied as shown in Table 9-2.

Table 9-2: fillfactor values applied with during rebuilds

Table-level or clustered index fillfactor value stored

This command stores a fillfactor value of 50 for the table:

sp_chgattribute titles, "fillfactor", 50

With 50 as the stored table-level value for fillfactor, the following create
clustered index command applies the fillfactor values shown in Table 9-3.

create clustered index title_id_ix
on titles (title_id)
with fillfactor = 80

Command Allpages-locked table Data-only-locked table

create clustered
index

Data pages: 80 Data pages: fully packed
Leaf pages: 80

Nonclustered index rebuilds Leaf pages: 80 Leaf pages: 80

Command Allpages-locked table Data-only-locked table

Clustered index rebuild Data pages: default value Data pages: fully packed
Leaf pages: default value

Nonclustered index rebuilds Leaf pages: default Leaf pages: default

CHAPTER 9 Setting Space Management Properties

Performance and Tuning: Basics 187

Table 9-3: Using stored fillfactor values for clustered indexes

Note When a create clustered index command is run, any table-level fillfactor
value stored in sysindexes is reset to 0.

To affect the filling of data-only-locked data pages during a create clustered
index or reorg command, you must first issue sp_chgattribute.

Effects of alter table...lock when values are stored

Stored values for fillfactor are used when an alter table...lock command copies
tables and rebuilds indexes.

Tables with clustered indexes

In an allpages-locked table, the table and the clustered index share the
sysindexes row, so only one value for fillfactor can be stored and used for the
table and clustered index. You can set the fillfactor value for the data pages by
providing either the table name or the clustered index name. This command
saves the value 50:

sp_chgattribute titles, "fillfactor", 50

This command saves the value 80, overwriting the value of 50 set by the
previous command:

sp_chgattribute "titles.clust_ix", "fillfactor", 80

If you alter the titles table to use data-only locking after issuing the
sp_chgattribute commands above, the stored value fillfactor of 80 is used for
both the data pages and the leaf pages of the clustered index.

In a data-only-locked table, information about the clustered index is stored in
a separate row in sysindexes. The fillfactor value you specify for the table
applies to the data pages and the fillfactor value you specify for the clustered
index applies to the leaf level of the clustered index.

When a data-only-locked table is altered to use allpages locking, the fillfactor
stored for the table is used for the data pages. The fillfactor stored for the
clustered index is ignored.

Command Allpages-Locked Table Data-Only-Locked Table

create clustered index Data pages: 80 Data pages: 50
Leaf pages: 80

Nonclustered index rebuilds Leaf pages: 80 Leaf pages: 80

Reducing index maintenance

188 Adaptive Server Enterprise

Table 9-4 shows the fillfactors used on data and index pages by an alter
table...lock command, executed after the sp_chgattribute commands above have
been run.

Table 9-4: Effects of stored fillfactor values during alter table

Note alter table...lock sets all stored fillfactor values for a table to 0.

fillfactor values stored for nonclustered indexes

Each nonclustered index is represented by a separate sysindexes row. These
commands store different values for two nonclustered indexes:

sp_chgattribute "titles.ncl_ix", "fillfactor", 90
sp_chgattribute "titles.pubid_ix", "fillfactor", 75

Table 9-5 shows the effects of a reorg rebuild command on a data-only-locked
table when the sp_chgattribute commands above are used to store fillfactor
values.

Table 9-5: Effect of stored fillfactor values during reorg rebuild

Use of the sorted_data and fillfactor options
The sorted_data option for create index is used when the data to be sorted is
already in order by the index key. This allows create clustered index to skip the
copy step while creating a clustered index.

For example, if data that is bulk copied into a table is already in order by the
clustered index key, creating an index with the sorted_data option creates the
index without performing a sort. If the data does not need to be copied to new
pages, the fillfactor is not applied. However, the use of other create index options
might still require copying.

For more information, see“Creating an index on sorted data” on page 345.

alter table...lock No clustered index Clustered index

From allpages locking to
data-only locking

Data pages: 80 Data pages: 80
Leaf pages: 80

From data-only locking to
allpages locking

Data pages: 80 Data pages: 80

reorg rebuild No clustered index Clustered index Nonclustered indexes

Data-only-locked table Data pages: 80 Data pages: 50
Leaf pages: 80

ncl_ix leaf pages: 90
pubid_ix leaf pages: 75

CHAPTER 9 Setting Space Management Properties

Performance and Tuning: Basics 189

Reducing row forwarding
Specifying an expected row size for a data-only-locked table is useful when an
application allows rows that contain null values or short variable-length
character fields to be inserted, and these rows grow in length with subsequent
updates. The major purpose of setting an expected row size is to reduce row
forwarding.

For example, the titles table in the pubs2 database has many varchar columns
and columns that allow null values. The maximum row size for this table is 331
bytes, and the average row size (as reported by optdiag) is 184 bytes, but it is
possible to insert a row with less than 40 bytes, since many columns allow null
values. In a data-only-locked table, inserting short rows and then updating
them can result in row forwarding.

See “Data-only locked heap tables” on page 168 for more information.

You can set the expected row size for tables with variable-length columns,
using:

• exp_row_size parameter, in a create table statement.

• sp_chgattribute, for an existing table.

• A server-wide default value, using the configuration parameter default
exp_row_size percent. This value is applied to all tables with variable-
length columns, unless create table or sp_chgattribute is used to set a row
size explicitly or to indicate that rows should be fully packed on data
pages.

If you specify an expected row size value for an allpages-locked table, the
value is stored in sysindexes, but the value is not applied during inserts and
updates.

If the table is later converted to data-only locking, the exp_row_size is applied
during the conversion process, and to all subsequent inserts and updates.

Default, minimum, and maximum values for exp_row_size
Table 9-6 shows the minimum and maximum values for expected row size and
the meaning of the special values 0 and 1.

Reducing row forwarding

190 Adaptive Server Enterprise

Table 9-6: Valid values for expected row size

You cannot specify an expected row size for tables that have fixed-length
columns only. Columns that accept null values are by definition variable-
length, since they are zero-length when null.

Default value

If you do not specify an expected row size or a value of 0 when you create a
data-only-locked table with variable-length columns, Adaptive Server uses the
amount of space specified by the configuration parameter default exp_row_size
percent for any table that has variable-length columns.

See “Setting a default expected row size server-wide” on page 191 for
information on how this parameter affects space on data pages. Use sp_help to
see the defined length of the columns in the table.

Specifying an expected row size with create table
This create table statement specifies an expected row size of 200 bytes:

create table new_titles (
 title_id tid,
 title varchar(80) not null,
 type char(12),
 pub_id char(4) null,
 price money null,
 advance money null,
 total_sales int null,
 notes varchar(200) null,
 pubdate datetime,
 contract bit)
lock datapages
with exp_row_size = 200

exp_row_size values Minimum, maximum, and special values

Minimum The greater of:

• 2 bytes

• The sum of all fixed-length columns

Maximum Maximum data row length

0 Use server-wide default value

1 Fully pack all pages; do not reserve room for expanding rows

CHAPTER 9 Setting Space Management Properties

Performance and Tuning: Basics 191

Adding or changing an expected row size
To add or change the expected row size for a table, us sp_chgattribute. This sets
the expected row size to 190 for the new_titles table:

sp_chgattribute new_titles, "exp_row_size", 190

If you want a table to switch to the default exp_row_size percent instead of a
current, explicit value, enter:

sp_chgattribute new_titles, "exp_row_size", 0

To fully pack the pages, rather than saving space for expanding rows, set the
value to 1.

Changing the expected row size with sp_chgattribute does not immediately
affect the storage of existing data. The new value is applied:

• When a clustered index on the table is created or reorg rebuild is run on the
table. The expected row size is applied as rows are copied to new data
pages.

If you increase exp_row_size, and re-create the clustered index or run reorg
rebuild, the new copy of the table may require more storage space.

• The next time a page is affected by data modifications.

Setting a default expected row size server-wide
default exp_row_size percent reserves a percentage of the page size to set aside
for expanding updates. The default value, 5, sets aside 5% of the space
available per data page for all data-only-locked tables that include variable-
length columns. Since there are 2002 bytes available on data pages in data-
only-locked tables, the default value sets aside 100 bytes for row expansion.
This command sets the default value to 10%:

sp_configure "default exp_row_size percent", 10

Setting default exp_row_size percent to 0 means that no space is reserved for
expanding updates for any tables where the expected row size is not explicitly
set with create table or sp_chgattribute.

If an expected row size for a table is specified with create table or
sp_chgattribute, that value takes precedence over the server-wide setting.

Reducing row forwarding

192 Adaptive Server Enterprise

Displaying the expected row size for a table
Use sp_help to display the expected row size for a table:

sp_help titles

If the value is 0, and the table has nullable or variable-length columns, use
sp_configure to display the server-wide default value:

sp_configure "default exp_row_size percent"

This query displays the value of the exp_rowsize column for all user tables in a
database:

select object_name(id), exp_rowsize
from sysindexes
where id > 100 and (indid = 0 or indid = 1)

Choosing an expected row size for a table
Setting an expected row size helps reduce the number of forwarded rows only
if the rows expand after they are first inserted into the table. Setting the
expected row size correctly means that:

• Your application results in a small percentage of forwarded rows.

• You do not waste too much space on data pages due to over-configuring
the expected row size value.

Using optdiag to check for forwarded rows

For tables that already contain data, use optdiag to display statistics for the
table. The “Data row size” shows the average data row length, including the
row overhead. This sample optdiag output for the titles table shows 12
forwarded rows and an average data row size of 184 bytes:

Statistics for table: "titles"

 Data page count: 655
 Empty data page count: 5
 Data row count: 4959.000000000
 Forwarded row count: 12.000000000
 Deleted row count: 84.000000000
 Data page CR count: 0.000000000
 OAM + allocation page count: 6
 Pages in allocation extent: 1
 Data row size: 184.000000000

CHAPTER 9 Setting Space Management Properties

Performance and Tuning: Basics 193

You can also use optdiag to check the number of forwarded rows for a table to
determine whether your setting for exp_row_size is reducing the number of
forwarded rows generated by your applications.

For more information on optdiag, see Chapter 6, “Statistics Tables and
Displaying Statistics with optdiag.” in the Performance and Tuning:
Monitoring and Analyzing for Performance.

Querying systabstats to check for forwarded rows

You can check the forwrowcnt column in the systabstats table to see the number
of forwarded rows for a table. This query checks the number of forwarded rows
for all user tables (those with object IDs greater than 100):

select object_name(id) , forwrowcnt
from systabstats
where id > 100 and (indid = 0 or indid = 1)

Note Forwarded row counts are updated in memory, and the housekeeper
periodically flushes them to disk.

If you need to query the systabstats table using SQL, use sp_flushstats first to
ensure that the most recent statistics are available. optdiag flushes statistics to
disk before displaying values.

Conversion of max_rows_per_page to exp_row_size
If a max_rows_per_page value is set for an allpages-locked table, the value is
used to compute an expected row size during the alter table...lock command.
The formula is shown in Table 9-7.

Table 9-7: Conversion of max_rows_per_page to exp_row_size

For example, if max_rows_per_page is set to 10 for an allpages-locked table
with a maximum defined row size of 300 bytes, the exp_row_size value will be
200 (2002/10) after the table is altered to use data-only locking.

Value of max_rows_per_page Value of exp_row_size

0 Percentage value set by default exp_row_size percent

1-254 The smaller of:

• Maximum row size

• 2002/max_rows_per_page value

Leaving space for forwarded rows and inserts

194 Adaptive Server Enterprise

If max_rows_per_page is set to 10, but the maximum defined row size is only
150, the expected row size value will be set to 150.

Monitoring and managing tables that use expected row size
After setting an expected row size for a table, use optdiag or queries on
systabstats to check the number of forwarded rows still being generated by
your applications. Run reorg forwarded_rows if you feel that the number of
forwarded rows is high enough to affect application performance. reorg
forwarded_rows uses short transactions and is very nonintrusive, so you can run
it while applications are active.

See the System Administration Guide for more information.

If the application still results in a large number of forwarded rows, you may
want to use sp_chgattribute to increase the expected row size for the table.

You may want to allow a certain percentage of forwarded rows. If running reorg
to clear forwarded rows does not cause concurrency problems for your
applications, or if you can run reorg at non-peak times, allowing a small
percentage of forwarded rows does not cause a serious performance problem.

Setting the expected row size for a table increases the amount of storage space
and the number of I/Os needed to read a set of rows. If the increase in the
number of I/Os due to increased storage space is high, then allowing rows to
be forwarded and occasionally running reorg may have less overall
performance impact.

Leaving space for forwarded rows and inserts
Setting a reservepagegap value can reduce the frequency of maintenance
activities such as running reorg rebuild and re-creating indexes for some tables
to maintain high performance. Good performance on data-only-locked tables
requires good data clustering on the pages, extents, and allocation units used
by the table.

The clustering of data and index pages in physical storage stays high as long as
there is space nearby for storing forwarded rows and rows that are inserted in
index key order. The reservepagegap space management property is used to
reserve empty pages for expansion when additional pages need to be allocated.

CHAPTER 9 Setting Space Management Properties

Performance and Tuning: Basics 195

Row and page cluster ratios are usually 1.0, or very close to 1.0, immediately
after a clustered index is created on a table or immediately after reorg rebuild is
run. However, future data modifications can cause row forwarding and can
require allocation of additional data and index pages to store inserted rows.

Setting a reserve page gap can reduce storage fragmentation and reduce the
frequency with which you need to re-create indexes or run reorg rebuild on the
table.

Extent allocation operations and reservepagegap
Commands that allocate many data pages perform extent allocation to allocate
eight pages at a time, rather than allocating just one page at a time. Extent
allocation reduces logging, since it writes one log record instead of eight.

Commands that perform extent allocation are: select into, create index, reorg
rebuild, bcp, alter table...lock, and the alter table...unique and primary key
constraint options, since these constraints create indexes. alter table commands
that add, drop, or modify columns sometimes require a table-copy operation
also. All of these commands allocate an extent, and, unless a reserve page gap
value is in effect, fill all eight pages.

You specify the reservepagegap in pages, indicating a ratio of empty pages to
filled pages. For example, if you specify a reservepagegap of 8, an operation
doing extent allocation fills seven pages and leaves the eighth page empty.

These empty pages can be used to store forwarded rows and for maintaining
the clustering of data rows in index key order, for data-only-locked tables with
clustered indexes.

Since extent allocation operations must allocate entire extents, they do not use
the first page on each allocation unit, because it stores the allocation page. For
example, if you create a clustered index on a large table and do not specify a
reserve page gap, each allocation unit has 7 empty, unallocated pages, 248 used
pages, and the allocation page. These 7 pages can be used for row forwarding
and inserts to the table, which helps keep forwarded rows and inserts with
clustered indexes on the same allocation unit. Using reservepagegap leaves
additional empty pages on each allocation unit.

Figure 9-1shows how an allocation unit might look after a clustered index is
created with a reservepagegap value of 16 on the table. The pages that share
the first extent with the allocation unit are not used and are not allocated to the
table. Pages 279, 295, and 311 are the unused pages on extents that are
allocated to the table.

Leaving space for forwarded rows and inserts

196 Adaptive Server Enterprise

Figure 9-1: Reserved pages after creating a clustered index

Specifying a reserve page gap with create table
This create table command specifies a reservepagegap value of 16:

create table more_titles (
 title_id tid,
 title varchar(80) not null,
 type char(12),
 pub_id char(4) null,
 price money null,
 advance money null,
 total_sales int null,
 notes varchar(200) null,
 pubdate datetime,
 contract bit
)
lock datarows
with reservepagegap = 16

Any operation that performs extent allocation on the more_titles table leaves 1
empty page for each 15 filled pages.

295

283

279

..

274

256 257 258 259 260 261 262 263

264 265 266 267 268 269 270 271

272 273 275 276 277 278

280 281 282 284 285 286 287

.
504 505 506 507 508 509 510

291288 288 290 291 293 294

299296 297 298 300 301 302 303

307304 305 306 308 309 310 311

Pages used by object

Reserved pages

Allocation page

Unallocated pages

511

CHAPTER 9 Setting Space Management Properties

Performance and Tuning: Basics 197

The default value for reservepagegap is 0, meaning that no space is reserved.
You can have more than 255 bytes, use pattern strings for LIKE more thatn 255
bytes and LIKE can also operate on wider columns.

Specifying a reserve page gap with create index
This command specifies a reservepagegap of 10 for the nonclustered index
pages:

create index type_price_ix
on more_titles(type, price)
with reservepagegap = 10

You can also specify a reservepagegap value with the alter table...constraint
options, primary key and unique, that create indexes. This example creates a
unique constraint:

alter table more_titles
add constraint uniq_id unique (title_id)
with reservepagegap = 20

Changing reservepagegap
The following command uses sp_chgattribute to change the reserve page gap
for the titles table to 20:

sp_chgattribute more_titles, "reservepagegap", 20

This command sets the reserve page gap for the index title_ix to 10:

sp_chgattribute "titles.title_ix",
 "reservepagegap", 10

sp_chgattribute changes only values in system tables; data is not moved on data
pages as a result of running the procedure. Changing reservepagegap for a table
affects future storage as follows:

• When data is bulk-copied into the table, the reserve page gap is applied to
all newly allocated space, but the storage of existing pages is not affected.

• When the reorg rebuild command is run on the table, the reserve page gap
is applied as the table is copied to new data pages.

• When a clustered index is created, the reserve page gap value stored for
the table is applied to the data pages.

Leaving space for forwarded rows and inserts

198 Adaptive Server Enterprise

The reserve page gap is applied to index pages during:

• alter table...lock, while rebuilding indexes for the table

• reorg rebuild commands that affect indexes

• create clustered index and alter table commands that create a clustered
index, as nonclustered indexes are rebuilt

reservepagegap examples
These examples show how reservepagegap is applied during alter table and
reorg rebuild commands.

reservepagegap specified only for the table

The following commands specify a reservepagegap for the table, but do not
specify a value in the create index commands:

sp_chgattribute titles, "reservepagegap", 16
create clustered index title_ix on titles(title_id)
create index type_price on titles(type, price)

Table 9-8 shows the values applied when running reorg rebuild or dropping and
creating a clustered index.

Table 9-8: reservepagegap values applied with table-level saved value

The reservepagegap for the table is applied to both the data and index pages for
an allpages-locked table with a clustered index. For a data-only-locked table,
the table’s reservepagegap is applied to the data pages, but not to the clustered
index pages.

reservepagegap specified for a clustered index

These commands specify different reservepagegap values for the table and the
clustered index, and a value for the nonclustered type_price index:

sp_chgattribute titles, "reservepagegap", 16

Command Allpages-locked table Data-only-locked table

create clustered
index or clustered index rebuild
due to reorg rebuild

Data and index pages: 16 Data pages: 16
Index pages: 0 (filled extents)

Nonclustered index rebuild Index pages: 0 (filled extents) Index pages: 0 (filled extents)

CHAPTER 9 Setting Space Management Properties

Performance and Tuning: Basics 199

create clustered index title_ix on titles(title)
 with reservepagegap = 20
create index type_price on titles(type, price)
 with reservepagegap = 24

Table 9-9 shows the effects of this sequence of commands.

Table 9-9: reservepagegap values applied with for index pages

For allpages-locked tables, the reservepagegap specified with create clustered
index applies to both data and index pages. For data-only-locked tables, the
reservepagegap specified with create clustered index applies only to the index
pages. If there is a stored reservepagegap value for the table, that value is
applied to the data pages.

Choosing a value for reservepagegap
Choosing a value for reservepagegap depends on:

• Whether the table has a clustered index,

• The rate of inserts to the table,

• The number of forwarded rows that occur in the table, and

• How often you re-create the clustered index or run the reorg rebuild
command.

When reservepagegap is configured correctly, enough pages are left for
allocation of new pages to tables and indexes so that the cluster ratios for the
table, clustered index, and nonclustered leaf-level pages remain high during the
intervals between regular index maintenance tasks.

Monitoring reservepagegap settings
You can use optdiag to check the cluster ratio and the number of forwarded
rows in tables. Declines in cluster ratios can also indicate that running reorg
commands could improve performance:

Command Allpages-locked table Data-only-locked table

create clustered
index or clustered index rebuild due to
reorg rebuild

Data and index pages: 20 Data pages: 16
Index pages: 20

Nonclustered index rebuilds Index pages: 24 Index pages: 24

Leaving space for forwarded rows and inserts

200 Adaptive Server Enterprise

• If the data page cluster ratio for a clustered index is low, run reorg rebuild
or drop and re-create the clustered index.

• If the index page cluster ratio is low, drop and re-create the non-clustered
index.

To reduce the frequency with which you run reorg commands to maintain
cluster ratios, increase the reservepagegap slightly before running reorg rebuild.

See Chapter 6, “Statistics Tables and Displaying Statistics with optdiag,” in
the book Performance and Tuning: Monitoring and Analyzing for
Performance for more information on optdiag.

reservepagegap and sorted_data options to create index
When you create a clustered index on a table that is already stored on the data
pages in index key order, the sorted_data option suppresses the step of copying
the data pages in key order for unpartitioned tables. The reservepagegap option
can be specified in create clustered index commands, to leave empty pages on
the extents used by the table, leaving room for later expansion. There are rules
that determine which option takes effect. You cannot use sp_chgattribute to
change the reservepagegap value and get the benefits of both of these options.

If you specify both with create clustered index:

• On unpartitioned, allpages-locked tables, if the reservepagegap value
specified with create clustered index matches the values already stored in
sysindexes, the sorted_data option takes precedence. Data pages are not
copied, so the reservepagegap is not applied. If the reservepagegap value
specified in the create clustered index command is different from the
values stored in sysindexes, the data pages are copied, and the
reservepagegap value specified in the command is applied to the copied
pages.

• On data-only-locked tables, the reservepagegap value specified with
create clustered index applies only to the index pages. Data pages are not
copied.

Background on the sorted_data option

Besides reservepagegap, other options to create clustered index may require a
sort, which causes the sorted_data option to be ignored.

For more information, see “Creating an index on sorted data” on page 345.

CHAPTER 9 Setting Space Management Properties

Performance and Tuning: Basics 201

In particular, the following comments relate to the use of reservepagegap:

• On partitioned tables, any create clustered index command that requires
copying data pages performs a parallel sort and then copies the data pages
in sorted order, applying the reservepagegap values as the pages are copied
to new extents.

• Whenever the sorted_data option is not superseded by other create
clustered index options, the table is scanned to determine whether the data
is stored in key order. The index is built during the scan, without a sort
being performed.

Table 9-10 shows how these rules apply.

Table 9-10: reservepagegap and sorted_data options

Matching options and goals

If you want to redistribute the data pages of a table, leaving room for later
expansion:

• For allpages-locked tables, drop and re-create the clustered index without
using the sorted_data option. Specify the desired reservepagegap value in
the create clustered index command, if the value stored in sysindexes is not
the value you want.

• For data-only-locked tables, use sp_chgattribute to set the reservepagegap
for the table to the desired value and then drop and re-create the clustered
index, without using the sorted_data option. The reservepagegap stored
for the table applies to the data pages. If reservepagegap is specified in the
create clustered index command, it applies only to the index pages.

To create a clustered index without copying data pages:

Partitioned table Unpartitioned table

Allpages-Locked Table

create index with sorted_data
and matching reservepagegap
value

Does not copy data pages; builds the
index as pages are scanned.

Does not copy data pages; builds the
index as pages are scanned.

create index with sorted_data
and different reservepagegap
value

Performs parallel sort, applying
reservepagegap as pages are stored
in new locations in sorted order.

Copies data pages, applying
reservepagegap and building the
index as pages are copied; no sort is
performed.

Data-Only-Locked Table

create index with sorted_data
and any reservepagegap value

reservepagegap applies to index
pages only; does not copy data
pages.

reservepagegap applies to index
pages only; does not copy data
pages.

Using max_rows_per_page on allpages-locked tables

202 Adaptive Server Enterprise

• For allpages-locked tables, use the sorted_data option, but do not specify
a reservepagegap with the create clustered index command. Alternatively,
you can specify a value that matches the value stored in sysindexes.

• For data-only-locked tables, use the sorted_data option. If a
reservepagegap value is specified in the create clustered index command,
it applies only to the index pages and does not cause data page copying.

If you plan to use the sorted_data option following a bulk copy operation, a
select into command, or another command that uses extent allocation, set the
reservepagegap value that you want for the data pages before copying the data
or specify it in the select into command. Once the data pages have been
allocated and filled, the following command applies reservepagegap to the
index pages only, since the data pages do not need to be copied:

create clustered index title_ix
on titles(title_id)
with sorted_data, reservepagegap = 32

Using max_rows_per_page on allpages-locked tables
Setting a maximum number of rows per pages can reduce contention for
allpages-locked tables and indexes. In most cases, it is preferable to convert the
tables to use a data-only-locking scheme. If there is some reason that you
cannot change the locking scheme and contention is a problem on an allpages-
locked table or index, setting a max_rows_per_page value may help
performance.

When there are fewer rows on the index and data pages, the chances of lock
contention are reduced. As the keys are spread out over more pages, it becomes
more likely that the page you want is not the page someone else needs. To
change the number of rows per page, adjust the fillfactor or max_rows_per_page
values of your tables and indexes.

fillfactor (defined by either sp_configure or create index) determines how full
Adaptive Server makes each data page when it creates a new index on existing
data. Since fillfactor helps reduce page splits, exclusive locks are also
minimized on the index, improving performance. However, the fillfactor value
is not maintained by subsequent changes to the data. max_rows_per_page
(defined by sp_chgattribute, create index, create table, or alter table) is similar
to fillfactor, except that Adaptive Server maintains the max_rows_per_page
value as the data changes.

CHAPTER 9 Setting Space Management Properties

Performance and Tuning: Basics 203

The costs associated with decreasing the number of rows per page using
fillfactor or max_rows_per_page include more I/O to read the same number of
data pages, more memory for the same performance from the data cache, and
more locks. In addition, a low value for max_rows_per_page for a table may
increase page splits when data is inserted into the table.

Reducing lock contention
The max_rows_per_page value specified in a create table, create index, or alter
table command restricts the number of rows allowed on a data page, a clustered
index leaf page, or a nonclustered index leaf page. This reduces lock contention
and improves concurrency for frequently accessed tables.

max_rows_per_page applies to the data pages of a heap table or the leaf pages
of an index. Unlike fillfactor, which is not maintained after creating a table or
index, Adaptive Server retains the max_rows_per_page value when adding or
deleting rows.

The following command creates the sales table and limits the maximum rows
per page to four:

create table sales
 (stor_id char(4) not null,
 ord_num varchar(20) not null,
 date datetime not null)
 with max_rows_per_page = 4

If you create a table with a max_rows_per_page value, and then create a
clustered index on the table without specifying max_rows_per_page, the
clustered index inherits the max_rows_per_page value from the create table
statement. Creating a clustered index with max_rows_per_page changes the
value for the table’s data pages.

Indexes and max_rows_per_page
The default value for max_rows_per_page is 0, which creates clustered indexes
with full data pages, creates nonclustered indexes with full leaf pages, and
leaves a comfortable amount of space within the index B-tree in both the
clustered and nonclustered indexes.

For heap tables and clustered indexes, the range for max_rows_per_page is 0–
256.

Using max_rows_per_page on allpages-locked tables

204 Adaptive Server Enterprise

For nonclustered indexes, the maximum value for max_rows_per_page is the
number of index rows that fit on the leaf page, without exceeding 256. To
determine the maximum value, subtract 32 (the size of the page header) from
the page size and divide the difference by the index key size. The following
statement calculates the maximum value of max_rows_per_page for a
nonclustered index:

select (@@pagesize - 32)/minlen
 from sysindexes
 where name = "indexname"

select into and max_rows_per_page
select into does not carry over the base table’s max_rows_per_page value, but
creates the new table with a max_rows_per_page value of 0. Use
sp_chgattribute to set the max_rows_per_page value on the target table.

Applying max_rows_per_page to existing data
sp_chgattribute configures the max_rows_per_page of a table or an index.
sp_chgattribute affects all future operations; it does not change existing pages.
For example, to change the max_rows_per_page value of the authors table to 1,
enter:

sp_chgattribute authors, "max_rows_per_page", 1

There are two ways to apply a max_rows_per_page value to existing data:

• If the table has a clustered index, drop and re-create the index with a
max_rows_per_page value.

• Use the bcp utility as follows:

a Copy out the table data.

b Truncate the table.

c Set the max_rows_per_page value with sp_chgattribute.

d Copy the data back in.

Performance and Tuning: Basics 205

C H A P T E R 1 0 Memory Use and Performance

This chapter describes how Adaptive Server uses the data and procedure
caches and other issues affected by memory configuration. In general, the
more memory available, the faster Adaptive Server’s response time.

The System Administration Guide describes how to determine the best
memory configuration values for Adaptive Server, and the memory needs
of other server configuration options.

How memory affects performance
Having ample memory reduces disk I/O, which improves performance,
since memory access is much faster than disk access. When a user issues
a query, the data and index pages must be in memory, or read into memory,
in order to examine the values on them. If the pages already reside in
memory, Adaptive Server does not need to perform disk I/O.

Adding more memory is cheap and easy, but developing around memory
problems is expensive. Give Adaptive Server as much memory as
possible.

Memory conditions that can cause poor performance are:

Topic Page
How memory affects performance 205

How much memory to configure 206

Caches in Adaptive Server 211

Procedure cache 212

Data cache 215

Configuring the data cache to improve performance 220

Named data cache recommendations 230

Maintaining data cache performance for large I/O 240

Speed of recovery 242

Auditing and performance 243

How much memory to configure

206 Adaptive Server Enterprise

• Total data cache size is too small.

• Procedure cache size is too small.

• Only the default cache is configured on an SMP system with several active
CPUs, leading to contention for the data cache.

• User-configured data cache sizes are not appropriate for specific user
applications.

• Configured I/O sizes are not appropriate for specific queries.

• Audit queue size is not appropriate if auditing feature is installed.

How much memory to configure
Memory is the most important consideration when you are configuring
Adaptive Server. Memory is consumed by various configuration parameters,
procedure cache and data caches. Setting the values of the various
configuration parameters and the caches correctly is critical to good system
performance.

The total memory allocated during boot-time is the sum of memory required
for all the configuration needs of Adaptive Server. This value can be obtained
from the read-only configuration parameter 'total logical memory'. This value
is calculated by Adaptive Server. The configuration parameter 'max memory'
must be greater than or equal to 'total logical memory'. 'max memory' indicates
the amount of memory you will allow for Adaptive Server needs.

During boot-time, by default, Adaptive Server allocates memory based on the
value of 'total logical memory'. However, if the configuration parameter
'allocate max shared memory' has been set, then the memory allocated will be
based on the value of 'max memory'. The configuration parameter 'allocate max
shared memory' will enable a system administrator to allocate, the maximum
memory that is allowed to be used by Adaptive Server, during boot-time.

The key points for memory configuration are:

• The system administrator should determine the size of shared memory
available to Adaptive Server and set 'max memory' to this value.

CHAPTER 10 Memory Use and Performance

Performance and Tuning: Basics 207

• The configuration parameter 'allocate max shared memory' can be turned
on during boot-time and run-time to allocate all the shared memory up to
'max memory' with the least number of shared memory segments. Large
number of shared memory segments has the disadvantage of some
performance degradation on certain platforms. Please check your
operating system documentation to determine the optimal number of
shared memory segments. Note that once a shared memory segment is
allocated, it cannot be released until the next server reboot.

• Configure the different configuration parameters, if the defaults are not
sufficient.

• Now the difference between 'max memory' and 'total logical memory' is
additional memory available for procedure, data caches or for other
configuration parameters.

The amount of memory to be allocated by Adaptive Server during boot-
time, is determined by either 'total logical memory' or 'max memory'. If
this value too high:

• Adaptive Server may not start, if the physical resources on your
machine does is not sufficient.

• If it does start, the operating system page fault rates may rise
significantly and the operating system may need to re configured to
compensate.

The System Administration Guide provides a thorough discussion of:

• How to configure the total amount of memory used by Adaptive Server

• Configurable parameters that use memory, which affects the amount of
memory left for processing queries

• Handling wider character literals requires Adaptive Server to allocate
memory for string user data. Also, rather than statically allocating buffers
of the maximum possible size, Adaptive Server allocates memory
dynamically. That is, it allocates memory for local buffers as it needs it,
always allocating the maximum size for these buffers, even if large buffers
are unnecessary. These memory management requests may cause
Adaptive Server to have a marginal loss in performance when handling
wide-character data.

How much memory to configure

208 Adaptive Server Enterprise

• If you require Adaptive Server to handle more than 1000 columns from a
single table, or process over 10000 arguments to stored procedures, the
server must set up and allocate memory for various internal data structures
for these objects. An increase in the number of small tasks that are
performed repeatedly may cause performance degradation for queries that
deal with larger numbers of such items. This performance hit increases as
the number of columns and stored procedure arguments increases.

• Memory that is allocated dynamically (as opposed to rebooting Adaptive
Server to allocate the memory) slightly degrades the server’s performance.

• When Adaptive Server uses larger logical page sizes, all disk I/Os are done
in terms of the larger logical page sizes. For example, if Adaptive Server
uses an 8K logical page size, it retrieves data from the disk in 8K blocks.
This should result in an increased I/O throughput, although the amount of
throughput is eventually limited by the controller’s I/O bandwidth.

What remains after all other memory needs have been met is available for the
procedure cache and the data cache. Figure 10-1 shows how memory is
divided.

CHAPTER 10 Memory Use and Performance

Performance and Tuning: Basics 209

Figure 10-1: How Adaptive Server uses memory

Dynamic reconfiguration

Dynamic memory allocation
Adaptive Server allows you to allocate total physical memory dynamically.
Many of the configuration parameters that consume memory were static in pre-
12.5 versions of Adaptive Server, and the server needed to be restarted when
more memory was required. For example, when you changed the number of
user connections, you had to restart the server for this to take effect. Many of
the configuration parameter that effect memory are now dynamic, and the
server does not have to be restarted for them to take effect. For a full list of the
configuration parameters that have changed from static to dynamic, see Table
10-1.

OS and other programs

Procedure cache
Adaptive

Server

Physical
memory

Cache

Internal
structures

Adaptive Server Executable

Static overhead

Kernel and
server structures

Data cache

Data cache overheadTotal
logical
memory

Total physical memory

Ma
xim

um
 me

mo
ry

Dynamic reconfiguration

210 Adaptive Server Enterprise

Table 10-1: Dynamic configuration parameters

How memory is allocated
In earlier versions of Adaptive Server, the size of the procedure cache was
based on a percentage of the available memory. After you configured the data
cache, whatever was left over was allocated to the procedure cache. For
Adaptive Server 12.5 and higher, both the data cache and the procedure cache
are specified as absolute values. The sizes of the caches do not change until you
reconfigure them.

You use the configuration parameter, max memory, which allows you to
establish a maximum setting, beyond which you cannot configure Adaptive
Server’s total physical memory.

Configuration parameter Configuration parameter

addition network memory number of pre-allocated extents

audit queue size number of user connections

cpu grace time number of worker processes

deadlock pipe max messages open index hash spinlock ratio

default database size open index spinlock ratio

default fill factor percent open object spinlock ratio

disk i/o structures partition groups

errorlog pipe max messages partition spinlock ratio

max cis remore connections permission cache entries

memory per worker process plan text pipe max messages

number of alarms print recovery information

number of aux scan descriptors process wait events

number of devices size of global fixed heap

number of dtx participants size of process object heap

number of java sockets size of shared class heap

number of large i/o buffers size of unilib cache

number of locks sql text pipe max messages

number of mailboxes statement pipe max messages

number of messages tape retention in days

number of open databases time slice

number of open indexes user log cache spinlock ratio

number of open objects

CHAPTER 10 Memory Use and Performance

Performance and Tuning: Basics 211

If you upgrade to release 12.5 Adaptive Server or higher, pre-12.5 Adaptive
Server configuration values are used to calculate the new values for the
procedure cache size. Adaptive Server computes the size of the default data
cache during the upgrade and writes this value to the configuration file. If the
computed sizes of the data cache or procedure cache are less than the default
sizes, they are reset to the default. During the upgrade, max memory is set to the
value of total logical memory specified in the configuration file.

Caches in Adaptive Server
Once the procedure cache and the data cache are configured there is no division
or left over memory.

• The procedure cache – used for stored procedures and triggers and for
short-term memory needs such as statistics and query plans for parallel
queries.

• The data cache – used for data, index, and log pages. The data cache can
be divided into separate, named caches, with specific databases or
database objects bound to specific caches.

Set the procedure cache size to an absolute value using sp_configure. See the
System Administration Guide for more information.

CAche sizes and buffer pools
Memory page sizes are in multiples of 2K (i.e. max memory, total logical
memory, and so on), procedure cache is in terms of 2K pages. Buffer cache is
in terms of logical page size units.

Large I/O is scaled in terms of an extent I/O. This means that with an 8K logical
page size, a large I/O means a 64k read/write.

If you boot Adaptive Server where the caches are defined with buffer pools that
are not valid for the current logical page size, all memory for such inapplicable
buffer pools is reallocated when configuring caches to the default buffer pool
in each named cache.

You have to be careful in how you set up the logical page sizes and what you
allow for in the buffer pool sizes.

Procedure cache

212 Adaptive Server Enterprise

Procedure cache
Adaptive Server maintains an MRU/LRU (most recently used/least recently
used) chain of stored procedure query plans. As users execute stored
procedures, Adaptive Server looks in the procedure cache for a query plan to
use. If a query plan is available, it is placed on the MRU end of the chain, and
execution begins.

If no plan is in memory, or if all copies are in use, the query tree for the
procedure is read from the sysprocedures table. It is then optimized, using the
parameters provided to the procedure, and put on the MRU end of the chain,
and execution begins. Plans at the LRU end of the page chain that are not in use
are aged out of the cache.

The memory allocated for the procedure cache holds the optimized query plans
(and occasionally trees) for all batches, including any triggers.

If more than one user uses a procedure or trigger simultaneously, there will be
multiple copies of it in cache. If the procedure cache is too small, a user trying
to execute stored procedures or queries that fire triggers receives an error
message and must resubmit the query. Space becomes available when unused
plans age out of the cache.

When you first install Adaptive Server, the default procedure cache size is
3271 memory pages. The optimum value for the procedure cache varies from
application to application, and it may also vary as usage patterns change. The
configuration parameter to set the size, procedure cache size, is documented in
the System Administration Guide.

Getting information about the procedure cache size
When you start Adaptive Server, the error log states how much procedure
cache is available.

Logical page size Possible buffer pool sizes

2K 2K, 4K, 16K

4K 4K, 8K, 16K, 32K

8K 8K, 16K, 32K, 64K

16K 16K, 32K, 64K, 128K

CHAPTER 10 Memory Use and Performance

Performance and Tuning: Basics 213

proc buffers

Represents the maximum number of compiled procedural objects that can
reside in the procedure cache at one time.

proc headers

Represents the number of pages dedicated to the procedure cache. Each object
in cache requires at least 1 page.

Monitoring procedure cache performance

sp_sysmon reports on stored procedure executions and the number of times
that stored procedures need to be read from disk.

For more information, see “Procedure cache management” on page 96 in the
book Performance and Tuning: Monitoring and Analyzing for Performance.

Procedure cache errors

If there is not enough memory to load another query tree or plan or the
maximum number of compiled objects is already in use, Adaptive Server
reports Error 701.

Procedure cache sizing
On a production server, you want to minimize the procedure reads from disk.
When a user needs to execute a procedure, Adaptive Server should be able to
find an unused tree or plan in the procedure cache for the most common
procedures. The percentage of times the server finds an available plan in cache
is called the cache hit ratio. Keeping a high cache hit ratio for procedures in
cache improves performance.

The formulas in Figure 10-2 suggest a good starting point.

Procedure cache

214 Adaptive Server Enterprise

Figure 10-2: Formulas for sizing the procedure cache

If you have nested stored procedures (for example, A, B and C)—procedure A
calls procedure B, which calls procedure C—all of them need to be in the cache
at the same time. Add the sizes for nested procedures, and use the largest sum
in place of “Size of largest plan” in the formula in Figure 10-2.

The minimum procedure cache size is the smallest amount of memory that
allows at least one copy of each frequently used compiled object to reside in
cache. However, the procedure cache can also be used as additional memory at
execution time, such as when an ad hoc query uses the distinct keyword which
uses the internal lmlink function that will dynamically allocate memory from
the procedure cache. Then the create index will also use the procedure cache
memory and can generate the 701 error though no stored procedure is involved.

For additional information on sizing the procedure cache see“Using
sp_monitor to measure CPU usage” on page 53.

Estimating stored procedure size
To get a rough estimate of the size of a single stored procedure, view, or trigger,
use:

select(count(*) / 8) +1
 from sysprocedures
where id = object_id("procedure_name")

For example, to find the size of the titleid_proc in pubs2:

select(count(*) / 8) +1
 from sysprocedures
where id = object_id("titleid_proc")

 3

=

Procedure
cache size

Minimum procedure
cache size needed

(Max # of concurrent users) *
(4 + Size of largest plan) * 1.25=

(# of main procedures) *
(Average plan size)

CHAPTER 10 Memory Use and Performance

Performance and Tuning: Basics 215

Data cache
Default data cache and other caches are configured as absolute values. The data
cache contains pages from recently accessed objects, typically:

• sysobjects, sysindexes, and other system tables for each database

• Active log pages for each database

• The higher levels and parts of the lower levels of frequently used indexes

• Recently accessed data pages

Default cache at installation time
When you first install Adaptive Server, it has a single data cache that is used
by all Adaptive Server processes and objects for data, index, and log pages.
The default size is 8MB.

The following pages describe the way this single data cache is used.
“Configuring the data cache to improve performance” on page 220 describes
how to improve performance by dividing the data cache into named caches and
how to bind particular objects to these named caches.

Most of the concepts on aging, buffer washing, and caching strategies apply to
both the user-defined data caches and the default data cache.

Page aging in data cache
The Adaptive Server data cache is managed on a most recently used/least
recently used (MRU/LRU) basis. As pages in the cache age, they enter a wash
area, where any dirty pages (pages that have been modified while in memory)
are written to disk. There are some exceptions to this:

• Caches configured with relaxed LRU replacement policy use the wash
section as described above, but are not maintained on an MRU/LRU basis.

Typically, pages in the wash section are clean, i.e. the I/O on these pages
have been completed. When a task or query wants to grab a page from
LRU end it expects the page to be clean. If not, the query has to wait for
the I/O to complete on the page before it can be grabbed which impairs
performance.

Data cache

216 Adaptive Server Enterprise

• A special strategy ages out index pages and OAM pages more slowly than
data pages. These pages are accessed frequently in certain applications and
keeping them in cache can significantly reduce disk reads.

See the System Administration Guide for more information.

• Adaptive Server may choose to use the LRU cache replacement strategy
that does not flush other pages out of the cache with pages that are used
only once for an entire query.

• The checkpoint process ensures that if Adaptive Server needs to be
restarted, the recovery process can be completed in a reasonable period of
time.

When the checkpoint process estimates that the number of changes to a
database will take longer to recover than the configured value of the
recovery interval configuration parameter, it traverses the cache, writing
dirty pages to disk.

• Recovery uses only the default data cache making it faster.

• The housekeeper wash task writes dirty pages to disk when idle time is
available between user processes.

Effect of data cache on retrievals
Figure 10-3 shows the effect of data caching on a series of random select
statements that are executed over a period of time. If the cache is empty
initially, the first select statement is guaranteed to require disk I/O. You have to
be sure to adequately size the data cache for the number of transactions you
expect against the database.

As more queries are executed and the cache is being filled, there is an
increasing probability that one or more page requests can be satisfied by the
cache, thereby reducing the average response time of the set of retrievals.

Once the cache is filled, there is a fixed probability of finding a desired page in
the cache from that point forward.

CHAPTER 10 Memory Use and Performance

Performance and Tuning: Basics 217

Figure 10-3: Effects of random selects on the data cache

If the cache is smaller than the total number of pages that are being accessed in
all databases, there is a chance that a given statement will have to perform some
disk I/O. A cache does not reduce the maximum possible response time—some
query may still need to perform physical I/O for all of the pages it needs. But
caching decreases the likelihood that the maximum delay will be suffered by a
particular query—more queries are likely to find at least some of the required
pages in cache.

Effect of data modifications on the cache
The behavior of the cache in the presence of update transactions is more
complicated than for retrievals.

There is still an initial period during which the cache fills. Then, because cache
pages are being modified, there is a point at which the cache must begin writing
those pages to disk before it can load other pages. Over time, the amount of
writing and reading stabilizes, and subsequent transactions have a given
probability of requiring a disk read and another probability of causing a disk
write.

The steady-state period is interrupted by checkpoints, which cause the cache to
write all dirty pages to disk.

Fill
cache

Av
er

ag
e

re
sp

on
se

 ti
m

e

Random selects over time

Steady
state

Data cache

218 Adaptive Server Enterprise

Data cache performance
You can observe data cache performance by examining the cache hit ratio, the
percentage of page requests that are serviced by the cache.

One hundred percent is outstanding, but implies that your data cache is as large
as the data or at least large enough to contain all the pages of your frequently
used tables and indexes.

A low percentage of cache hits indicates that the cache may be too small for the
current application load. Very large tables with random page access generally
show a low cache hit ratio.

Testing data cache performance
Consider the behavior of the data and procedure caches when you measure the
performance of a system. When a test begins, the cache can be in any one of
the following states:

• Empty

• Fully randomized

• Partially randomized

• Deterministic

An empty or fully randomized cache yields repeatable test results because the
cache is in the same state from one test run to another.

A partially randomized or deterministic cache contains pages left by
transactions that were just executed. Such pages could be the result of a
previous test run. In these cases, if the next test steps request those pages, then
no disk I/O will be needed.

Such a situation can bias the results away from a purely random test and lead
to inaccurate performance estimates.

The best testing strategy is to start with an empty cache or to make sure that all
test steps access random parts of the database. For more precise testing,
execute a mix of queries that is consistent with the planned mix of user queries
on your system.

CHAPTER 10 Memory Use and Performance

Performance and Tuning: Basics 219

Cache hit ratio for a single query

To see the cache hit ratio for a single query, use set statistics io on to see the
number of logical and physical reads, and set showplan on to see the I/O size
used by the query.

To compute the cache hit ratio, use this formula:

Figure 10-4:

With statistics io, physical reads are reported in I/O-size units. If a query uses
16K I/O, it reads 8 pages with each I/O operation.

If statistics io reports 50 physical reads, it has read 400 pages. Use showplan to
see the I/O size used by a query.

Cache hit ratio information from sp_sysmon

sp_sysmon reports on cache hits and misses for:

• All caches on Adaptive Server

• The default data cache

• Any user-configured caches

The server-wide report provides the total number of cache searches and the
percentage of cache hits and cache misses.

See “Cache statistics summary (all caches)” on page 84 in the book
Performance and Tuning: Monitoring and Analyzing for Performance.

For each cache, the report contains the number of cache searches, cache hits
and cache misses, and the number of times that a needed buffer was found in
the wash section.

See “Cache management by cache” on page 89 in the book Performance and
Tuning: Monitoring and Analyzing for Performance.

Cache hit ratio
Logical reads - (Physical reads * Pages

Logical reads

Configuring the data cache to improve performance

220 Adaptive Server Enterprise

Configuring the data cache to improve performance
When you install Adaptive Server, it has single default data cache, with a 2K
memory pool, one cache partition and a single spinlock.

To improve performance you can add data caches and bind databases or
database objects to them:

1 To reduce contention on the default data cache spinlock, divide the cache
into n where n is 1, 2, 4, 8,16, 32 or 64. If you have contention on the
spinlock with 1 cache partition, the contention is expected to reduce x/n
where n is the number of partitions.

2 When a particular cache partition spinlock is hot, consider splitting the
default cache into named caches.

3 If there is still contention, consider splitting the named cache into named
cache partitions.

You can configure 4K, 8K, and 16K buffer pools from the logical page size in
both user-defined data caches and the default data caches, allowing Adaptive
Server to perform large I/O. In addition, caches that are sized to completely
hold tables or indexes can use relaxed LRU cache policy to reduce overhead.

You can also split the default data cache or a named cache into partitions to
reduce spinlock contention.

Configuring the data cache can improve performance in the following ways:

• You can configure named data caches large enough to hold critical tables
and indexes.

This keeps other server activity from contending for cache space and
speeds up queries using these tables, since the needed pages are always
found in cache.

You can configure these caches to use relaxed LRU replacement policy,
which reduces the cache overhead.

• You can bind a “hot” table—a table in high demand by user applications—
to one cache and the indexes on the table to other caches to increase
concurrency.

• You can create a named data cache large enough to hold the “hot pages”
of a table where a high percentage of the queries reference only a portion
of the table.

CHAPTER 10 Memory Use and Performance

Performance and Tuning: Basics 221

For example, if a table contains data for a year, but 75% of the queries
reference data from the most recent month (about 8% of the table),
configuring a cache of about 10% of the table size provides room to keep
the most frequently used pages in cache and leaves some space for the less
frequently used pages.

• You can assign tables or databases used in decision support systems (DSS)
to specific caches with large I/O configured.

This keeps DSS applications from contending for cache space with online
transaction processing (OLTP) applications. DSS applications typically
access large numbers of sequential pages, and OLTP applications typically
access relatively few random pages.

• You can bind tempdb to its own cache to keep it from contending with
other user processes.

Proper sizing of the tempdb cache can keep most tempdb activity in
memory for many applications. If this cache is large enough, tempdb
activity can avoid performing I/O.

• Text pages can be bound to named caches to improve the performance on
text access.

• You can bind a database’s log to a cache, again reducing contention for
cache space and access to the cache.

• When changes are made to a cache by a user process, a spinlock denies all
other processes access to the cache.

Although spinlocks are held for extremely brief durations, they can slow
performance in multiprocessor systems with high transaction rates. When
you configure multiple caches, each cache is controlled by a separate
spinlock, increasing concurrency on systems with multiple CPUs.

Within a single cache, adding cache partitions creates multiple spinlocks
to further reduce contention. Spinlock contention is not an issue on single-
engine servers.

Most of these possible uses for named data caches have the greatest impact on
multiprocessor systems with high transaction rates or with frequent DSS
queries and multiple users. Some of them can increase performance on single
CPU systems when they lead to improved utilization of memory and reduce
I/O.

Configuring the data cache to improve performance

222 Adaptive Server Enterprise

Commands to configure named data caches
The commands used to configure caches and pools are shown in Table 10-2

Table 10-2: Commands used to configure caches

For a full description of configuring named caches and binding objects to
caches, see the System Administration Guide. Only a System Administrator can
configure named caches and bind database objects to them.

Tuning named caches
Creating named data caches and memory pools, and binding databases and
database objects to the caches, can dramatically hurt or improve Adaptive
Server performance. For example:

• A cache that is poorly used hurts performance.

If you allocate 25% of your data cache to a database that services a very
small percentage of the query activity on your server, I/O increases in
other caches.

• A pool that is unused hurts performance.

If you add a 16K pool, but none of your queries use it, you have taken
space away from the 2K pool. The 2K pool’s cache hit ratio is reduced, and
I/O is increased.

• A pool that is overused hurts performance.

Command Function

sp_cacheconfig Creates or drops named caches and set the size, cache type, cache policy
and local cache partition number. Reports on sizes of caches and pools.

sp_poolconfig Creates and drops I/O pools and changes their size, wash size, and
asynchronous prefetch limit.

sp_bindcache Binds databases or database objects to a cache.

sp_unbindcache Unbinds the specified database or database object from a cache.

sp_unbindcache_all Unbinds all databases and objects bound to a specified cache.

sp_helpcache Reports summary information about data caches and lists the databases
and database objects that are bound to a cache. Also reports on the
amount of overhead required by a cache.

sp_sysmon Reports statistics useful for tuning cache configuration, including cache
spinlock contention, cache utilization, and disk I/O patterns.

CHAPTER 10 Memory Use and Performance

Performance and Tuning: Basics 223

If you configure a small 16K pool, and virtually all of your queries use it,
I/O rates are increased. The 2K cache will be under-used, while pages are
rapidly cycled through the 16K pool. The cache hit ratio in the 16K pool
will be very poor.

• When you balance your pool utilization within a cache, performance can
increase dramatically.

Both 16K and 2K queries experience improved cache hit ratios. The large
number of pages often used by queries that perform 16K I/O do not flush
2K pages from disk. Queries using 16K will perform approximately one-
eighth the number of I/Os required by 2K I/O.

When tuning named caches, always measure current performance, make your
configuration changes, and measure the effects of the changes with similar
workload.

Cache configuration goals
Goals for configuring caches are:

• Reduced contention for spinlocks on multiple engine servers.

• Improved cache hit ratios and/or reduced disk I/O. As a bonus, improving
cache hit ratios for queries can reduce lock contention, since queries that
do not need to perform physical I/O usually hold locks for shorter periods
of time.

• Fewer physical reads, due to the effective use of large I/O.

• Fewer physical writes, because recently modified pages are not being
flushed from cache by other processes.

• Reduced cache overhead and reduced CPU bus latency on SMP systems,
when relaxed LRU policy is appropriately used.

• Reduced cache spinlock contention on SMP systems, when cache
partitions are used.

In addition to commands such as showplan and statistics io that help tune on a
per-query basis, you need to use a performance monitoring tool such as
sp_sysmon to look at the complex picture of how multiple queries and multiple
applications share cache space when they are run simultaneously.

Configuring the data cache to improve performance

224 Adaptive Server Enterprise

Gather data, plan, and then implement
The first step in developing a plan for cache usage is to provide as much
memory as possible for the data cache:

• Determine the maximum amount of memory you can allocate to Adaptive
Server. Set 'max memory' configuration parameter to that value.

• Once all the configuration parameters that use Adaptive Server memory
have been configured, the difference between the 'max memory' and run
value of 'total logical memory' is the memory available for additional
configuration and/or for data/procedure caches. If you have sufficiently
configured all the other configuration parameters, you can choose to
allocate this additional memory to data caches. Most changes to the data
cache are dynamic and do not require a reboot.

• Note that if you allocate all the additional memory to data caches, there
may not be any memory available for reconfiguration of other
configuration parameters. However, if there is additional memory
available in your system, 'max memory' value can be increased
dynamically and other dynamic configuration parameters like 'procedure
cache size', 'user connections, etc., can be increased.

• Use your performance monitoring tools to establish baseline performance,
and to establish your tuning goals.

Determine the size of memory you can allocate to data caches as mentioned in
the above steps. Include the size of already configured cache(s), like the default
data cache and any named cache(s).

Decide the data caches's size by looking at existing objects and applications.
Note that addition of new caches or increase in configuration parameters that
consume memory does not reduce the size of the default data cache. Once you
have decided the memory available for data caches and size of each individual
cache, add new caches and increase or decrease size of existing data caches.

• Evaluate cache needs by analyzing I/O patterns, and evaluate pool needs
by analyzing query plans and I/O statistics.

• Configure the easiest choices that will gain the most performance first:

• Choose a size for a tempdb cache.

• Choose a size for any log caches, and tune the log I/O size.

• Choose a size for the specific tables or indexes that you want to keep
entirely in cache.

• Add large I/O pools for index or data caches, as appropriate.

CHAPTER 10 Memory Use and Performance

Performance and Tuning: Basics 225

• Once these sizes are determined, examine remaining I/O patterns, cache
contention, and query performance. Configure caches proportional to I/O
usage for objects and databases.

Keep your performance goals in mind as you configure caches:

• If your major goal in configuring caches is to reduce spinlock contention,
increasing the number of cache partitions for heavily-used caches may be
the only step.

Moving a few high-I/O objects to separate caches also reduces the
spinlock contention and improves performance.

• If your major goal is to improve response time by improving cache hit
ratios for particular queries or applications, creating caches for the tables
and indexes used by those queries should be guided by a thorough
understanding of the access methods and I/O requirements.

Evaluating cache needs
Generally, your goal is to configure caches in proportion to the number of times
that the pages in the caches will be accessed by your queries and to configure
pools within caches in proportion to the number of pages used by queries that
choose I/O of that pool’s size.

If your databases and their logs are on separate logical devices, you can
estimate cache proportions using sp_sysmon or operating system commands to
examine physical I/O by device.

See “Disk I/O management” on page 102 in the book Performance and
Tuning: Monitoring and Analyzing for Performance for information about the
sp_sysmon output showing disk I/O.

Large I/O and performance
You can configure the default cache and any named caches you create for large
I/O by splitting a cache into pools. The default I/O size is 2K, one Adaptive
Server data page.

Note Reference to Large I/Os are on a 2K logical page size server. If you have
an 8K page size server, the basic unit for the I/O is 8K. If you have a 16K page
size server, the basic unit for the I/O is 16K.

Configuring the data cache to improve performance

226 Adaptive Server Enterprise

For queries where pages are stored and accessed sequentially, Adaptive Server
reads up to eight data pages in a single I/O. Since the majority of I/O time is
spent doing physical positioning and seeking on the disk, large I/O can greatly
reduce disk access time. In most cases, you want to configure a 16K pool in the
default data cache.

Certain types of Adaptive Server queries are likely to benefit from large I/O.
Identifying these types of queries can help you determine the correct size for
data caches and memory pools.

In the following examples, either the database or the specific table, index or
LOB page change (used for, text, image, and Java off-row columns) must be
bound to a named data cache that has large memory pools, or the default data
cache must have large I/O pools. Types of queries that can benefit from large
I/O include:

• Queries that scan entire tables. For example:

select title_id, price from titles
select count(*) from authors
 where state = "CA" /* no index on state */

• Range queries on tables with clustered indexes. For example:

where indexed_colname >= value

• Queries that scan the leaf level of an index, both matching and non-
matching scans. If there is a nonclustered index on type, price, this query
could use large I/O on the leaf level of the index, since all the columns used
in the query are contained in the index:

select type, sum(price)
 from titles
 group by type

• Queries that join entire tables, or large portions of tables. Different I/O
sizes may be used on different tables in a join.

• Queries that select text or image or Java off-row columns. For example:

select au_id, copy from blurbs

• Queries that generate Cartesian products. For example:

select title, au_lname
from titles, authors

This query needs to scan all of one table, and scan the other table
completely for each row from the first table. Caching strategies for these
queries follow the same principles as for joins.

CHAPTER 10 Memory Use and Performance

Performance and Tuning: Basics 227

• Queries such as select into that allocate large numbers of pages.

Note Adaptive Server version 12.5.03 or later enables large-page
allocation in select into. It allocates pages by extent rather than by
individual page, thus issuing fewer logging requests for the target table.

If you configure Adaptive Server with large buffer pools, it uses large I/O
buffer pools when writing the target table pages to disk.

• create index commands.

• Bulk copy operations on heaps—both copy in and copy out.

• The update statistics, dbcc checktable, and dbcc checkdb commands.

The optimizer and cache choices

If the cache for a table or index has a 16K pool, the optimizer decides on the
I/O size to use for data and leaf-level index pages based on the number of pages
that need to be read and the cluster ratios for the table or index.

The optimizer’s knowledge is limited to the single query it is analyzing and to
statistics about the table and cache. It does not have information about how
many other queries are simultaneously using the same data cache. It also has
no statistics on whether table storage is fragmented in such a way that large
I/Os or asynchronous prefetch would be less effective.

In some cases, this combination of factors can lead to excessive I/O. For
example, users may experience higher I/O and poor performance if
simultaneous queries with large result sets are using a very small memory pool.

Choosing the right mix of I/O sizes for a cache

You can configure up to four pools in any data cache, but, in most cases, caches
for individual objects perform best with only a 2K pool and a 16K pool. A
cache for a database where the log is not bound to a separate cache should also
have a pool configured to match the log I/O size configured for the database;
often the best log I/O size is 4K.

Configuring the data cache to improve performance

228 Adaptive Server Enterprise

Reducing spinlock contention with cache partitions
As the number of engines and tasks running on an SMP system increases,
contention for the spinlock on the data cache can also increase. Any time a task
needs to access the cache to find a page in cache or to relink a page on the
LRU/MRU chain, it holds the cache spinlock to prevent other tasks from
modifying the cache at the same time.

With multiple engines and users, tasks wind up waiting for access to the cache.
Adding cache partitions separates the cache into partitions that are each
protected by its own spinlock. When a page needs to be read into cache or
located, a hash function is applied to the database ID and page ID to identify
which partition holds the page.

The number of cache partitions is always a power of 2. Each time you increase
the number of partitions, you reduce the spinlock contention by approximately
1/2. If spinlock contention is greater than 10 to 15%, consider increasing the
number of partitions for the cache. This example creates 4 partitions in the
default data cache:

sp_cacheconfig "default data cache",
"cache_partition=4"

You must reboot the server for changes in cache partitioning to take effect.

For more information on configuring cache partitions, see the System
Administration Guide.

For information on monitoring cache spinlock contention with sp_sysmon, see
“Cache spinlock contention” on page 89 in the book Performance and Tuning:
Monitoring and Analyzing for Performance.

Each pool in the cache is partitioned into a separate LRU/MRU chain of pages,
with its own wash marker.

Cache replacement strategies and policies
The Adaptive Server optimizer uses two cache replacement strategies to keep
frequently used pages in cache while flushing the less frequently used pages.
For some caches, you may want to consider setting the cache replacement
policy to reduce cache overhead.

CHAPTER 10 Memory Use and Performance

Performance and Tuning: Basics 229

Strategies

Replacement strategies determine where the page is placed in cache when it is
read from disk. The optimizer decides on the cache replacement strategy to be
used for each query. The two strategies are:

• Fetch-and-discard, or MRU replacement, strategy links the newly read
buffers at the wash marker in the pool.

• LRU replacement strategy links newly read buffers at the most-recently
used end of the pool.

Cache replacement strategies can affect the cache hit ratio for your query mix:

• Pages that are read into cache with the fetch-and-discard strategy remain
in cache a much shorter time than queries read in at the MRU end of the
cache. If such a page is needed again (for example, if the same query is run
again very soon), the pages will probably need to be read from disk again.

• Pages that are read into cache with the fetch-and-discard strategy do not
displace pages that already reside in cache before the wash marker. This
means that the pages already in cache before the wash marker will not be
flushed out of cache by pages that are needed only once by a query.

See “Specifying the cache strategy” on page 45 and “Controlling large I/O and
cache strategies” on page 47 in the book Performance and Tuning: Optimizer
for information on specifying the cache strategy in queries or setting values for
tables.

Policies

A System Administrator can specify whether a cache is going to be maintained
as an MRU/LRU-linked list of pages (strict) or whether relaxed LRU
replacement policy can be used. The two replacement policies are:

• Strict replacement policy replaces the least recently used page in the pool,
linking the newly read page(s) at the beginning (MRU end) of the page
chain in the pool.

• Relaxed replacement policy attempts to avoid replacing a recently used
page, but without the overhead of keeping buffers in LRU/MRU order.

The default cache replacement policy is strict replacement. Relaxed
replacement policy should be used only when both of these conditions are true:

• There is little or no replacement of buffers in the cache.

• The data is not updated or is updated infrequently.

Named data cache recommendations

230 Adaptive Server Enterprise

Relaxed LRU policy saves the overhead of maintaining the cache in
MRU/LRU order. On SMP systems, where copies of cached pages may reside
in hardware caches on the CPUs themselves, relaxed LRU policy can reduce
bandwidth on the bus that connects the CPUs.

If you have created a cache to hold all, or most of, certain objects, and the cache
hit rate is above 95%, using relaxed cache replacement policy for the cache can
improve performance slightly.

See the System Administration Guide for more information.

Configuring relaxed LRU Replacement for database logs

Log pages are filled with log records and are immediately written to disk.
When applications include triggers, deferred updates or transaction rollbacks,
some log pages may be read, but usually they are very recently used pages,
which are still in the cache.

Since accessing these pages in cache moves them to the MRU end of a strict-
replacement policy cache, log caches may perform better with relaxed LRU
replacement.

Relaxed LRU replacement for lookup tables and indexes

User-defined caches that are sized to hold indexes and frequently used lookup
tables are good candidates for relaxed LRU replacement. If a cache is a good
candidate, but you find that the cache hit ratio is slightly lower than the
performance guideline of 95%, determine whether slightly increasing the size
of the cache can provide enough space to completely hold the table or index.

Named data cache recommendations
These cache recommendations can improve performance on both single and
multiprocessor servers:

• Adaptive Server writes log pages according to the size of the logical page
size. Larger log pages potentially reduce the rate of commit-sharing writes
for log pages.

CHAPTER 10 Memory Use and Performance

Performance and Tuning: Basics 231

Commit-sharing occurs when, instead of performing many individual
commits, Adaptive Server waits until it can perform a batch of commits at
one time. Per-process user log caches are sized according to the logical
page size and the user log cache size configuration parameter. The default
size of the user log cache is one logical page.

For transactions generating many log records, the time required to flush
the user log cache is slightly higher for larger logical page sizes. However,
because the log-cache sizes are also larger, Adaptive Server does not need
to perform as many log-cache flushes to the log page for long transactions.

See the System Administration Guide for specific information.

• Create a named cache for tempdb and configure the cache for 16K I/O for
use by select into queries and sorts.

• Create a named cache for the logs for your high-use databases. Configure
pools in this cache to match the log I/O size set with sp_logiosize.

See “Choosing the I/O size for the transaction log” on page 234.

• If a table or its index is small and constantly in use, create a cache for just
that object or for a few objects.

• For caches with cache hit ratios of more than 95%, configure relaxed LRU
cache replacement policy if you are using multiple engines.

• Keep cache sizes and pool sizes proportional to the cache utilization
objects and queries:

• If 75% of the work on your server is performed in one database, that
database should be allocated approximately 75% of the data cache, in
a cache created specifically for the database, in caches created for its
busiest tables and indexes, or in the default data cache.

• If approximately 50% of the work in your database can use large I/O,
configure about 50% of the cache in a 16K memory pool.

• It is better to view the cache as a shared resource than to try to
micromanage the caching needs of every table and index.

Start cache analysis and testing at the database level, concentrating on
particular tables and objects with high I/O needs or high application
priorities and those with special uses, such as tempdb and transaction logs.

• On SMP servers, use multiple caches to avoid contention for the cache
spinlock:

Named data cache recommendations

232 Adaptive Server Enterprise

• Use a separate cache for the transaction log for busy databases, and
use separate caches for some of the tables and indexes that are
accessed frequently.

• If spinlock contention is greater than 10% on a cache, split it into
multiple caches or use cache partitions.

Use sp_sysmon periodically during high-usage periods to check for
cache contention.

See “Cache spinlock contention” on page 89 in the book
Performance and Tuning: Monitoring and Analyzing for
Performance.

• Set relaxed LRU cache policy on caches with cache hit ratios of more
than 95%, such as those configured to hold an entire table or index.

Sizing caches for special objects, tempdb, and transaction logs
Creating caches for tempdb, the transaction logs, and for a few tables or indexes
that you want to keep completely in cache can reduce cache spinlock
contention and improve cache hit ratios.

Determining cache sizes for special tables or indexes

You can use sp_spaceused to determine the size of the tables or indexes that
you want to keep entirely in cache. If you know how fast these tables increase
in size, allow some extra cache space for their growth. To see the size of all the
indexes for a table, use:

sp_spaceused table_name, 1

Examining cache needs for tempdb

Look at your use of tempdb:

• Estimate the size of the temporary tables and worktables generated by
your queries.

Look at the number of pages generated by select into queries.

These queries can use 16K I/O, so you can use this information to help you
size a 16K pool for the tempdb cache.

CHAPTER 10 Memory Use and Performance

Performance and Tuning: Basics 233

• Estimate the duration (in wall-clock time) of the temporary tables and
worktables.

• Estimate how often queries that create temporary tables and worktables
are executed.

Try to estimate the number of simultaneous users, especially for queries
that generate very large result sets in tempdb.

With this information, you can a form a rough estimate of the amount of
simultaneous I/O activity in tempdb. Depending on your other cache needs,
you can choose to size tempdb so that virtually all tempdb activity takes place
in cache, and few temporary tables are actually written to disk.

In most cases, the first 2MB of tempdb are stored on the master device, with
additional space on another logical device. You can use sp_sysmon to check
those devices to help determine physical I/O rates.

Examining cache needs for transaction logs

On SMP systems with high transaction rates, binding the transaction log to its
own cache can greatly reduce cache spinlock contention in the default data
cache. In many cases, the log cache can be very small.

The current page of the transaction log is written to disk when transactions
commit, so your objective in sizing the cache or pool for the transaction log is
not to avoid writes. Instead, you should try to size the log to reduce the number
of times that processes that need to reread log pages must go to disk because
the pages have been flushed from the cache.

Adaptive Server processes that need to read log pages are:

• Triggers that use the inserted and deleted tables, which are built from the
transaction log when the trigger queries the tables

• Deferred updates, deletes, and inserts, since these require rereading the log
to apply changes to tables or indexes

• Transactions that are rolled back, since log pages must be accessed to roll
back the changes

When sizing a cache for a transaction log:

• Examine the duration of processes that need to reread log pages.

Estimate how long the longest triggers and deferred updates last.

If some of your long-running transactions are rolled back, check the length
of time they ran.

Named data cache recommendations

234 Adaptive Server Enterprise

• Estimate the rate of growth of the log during this time period.

You can check your transaction log size with sp_spaceused at regular
intervals to estimate how fast the log grows.

Use this log growth estimate and the time estimate to size the log cache. For
example, if the longest deferred update takes 5 minutes, and the transaction log
for the database grows at 125 pages per minute, 625 pages are allocated for the
log while this transaction executes.

If a few transactions or queries are especially long-running, you may want to
size the log for the average, rather than the maximum, length of time.

Choosing the I/O size for the transaction log

When a user performs operations that require logging, log records are first
stored in a “user log cache” until certain events flush the user’s log records to
the current transaction log page in cache. Log records are flushed:

• When a transaction ends

• When the user log cache is full

• When the transaction changes tables in another database

• When another process needs to write a page referenced in the user log
cache

• At certain system events

To economize on disk writes, Adaptive Server holds partially filled transaction
log pages for a very brief span of time so that records of several transactions
can be written to disk simultaneously. This process is called group commit.

In environments with high transaction rates or transactions that create large log
records, the 2K transaction log pages fill quickly, and a large proportion of log
writes are due to full log pages, rather than group commits.

Creating a 4K pool for the transaction log can greatly reduce the number of log
writes in these environments.

sp_sysmon reports on the ratio of transaction log writes to transaction log
allocations. You should try using 4K log I/O if all of these conditions are true:

• Your database is using 2K log I/O.

• The number of log writes per second is high.

• The average number of writes per log page is slightly above one.

CHAPTER 10 Memory Use and Performance

Performance and Tuning: Basics 235

Here is some sample output showing that a larger log I/O size might help
performance:

 per sec per xact count % of total
Transaction Log Writes 22.5 458.0 1374 n/a
Transaction Log Alloc 20.8 423.0 1269 n/a
Avg # Writes per Log Page n/a n/a 1.08274 n/a

See “Transaction log writes” on page 59 in the book Performance and Tuning:
Monitoring and Analyzing for Performance for more information.

Configuring for large log I/O size

The log I/O size for each database is reported in the server’s error log when
Adaptive Server starts. You can also use sp_logiosize.

To see the size for the current database, execute sp_logiosize with no
parameters. To see the size for all databases on the server and the cache in use
by the log, use:

sp_logiosize "all"

To set the log I/O size for a database to 4K, the default, you must be using the
database. This command sets the size to 4K:

sp_logiosize "default"

By default, Adaptive Server sets the log I/O size for user databases to 4K. If no
4K pool is available in the cache used by the log, 2K I/O is used instead.

If a database is bound to a cache, all objects not explicitly bound to other caches
use the database’s cache. This includes the syslogs table.

To bind syslogs to another cache, you must first put the database in single-user
mode, with sp_dboption, and then use the database and execute sp_bindcache.
Here is an example:

sp_bindcache pubs_log, pubtune, syslogs

Additional tuning tips for log caches

For further tuning after configuring a cache for the log, check sp_sysmon
output. Look at the output for:

• The cache used by the log

• The disk the log is stored on

• The average number of writes per log page

Named data cache recommendations

236 Adaptive Server Enterprise

When looking at the log cache section, check “Cache Hits” and “Cache
Misses” to determine whether most of the pages needed for deferred
operations, triggers, and rollbacks are being found in cache.

In the “Disk Activity Detail” section, look at the number of “Reads” performed
to see how many times tasks that need to reread the log had to access the disk.

Basing data pool sizes on query plans and I/O
Divide a cache into pools based on the proportion of the I/O performed by your
queries that use the corresponding I/O sizes. If most of your queries can benefit
from 16K I/O, and you configure a very small 16K cache, you may see worse
performance.

Most of the space in the 2K pool remains unused, and the 16K pool experiences
high turnover. The cache hit ratio is significantly reduced.

The problem is most severe with nested-loop join queries that have to
repeatedly reread the inner table from disk.

Making a good choice about pool sizes requires:

• Knowledge of the application mix and the I/O size your queries can use

• Careful study and tuning, using monitoring tools to check cache
utilization, cache hit rates, and disk I/O

Checking I/O size for queries

You can examine query plans and I/O statistics to determine which queries are
likely to perform large I/O and the amount of I/O those queries perform. This
information can form the basis for estimating the amount of 16K I/O the
queries should perform with a 16K memory pool. I/Os are done in terms of
logical page sizes, if it uses the 2K page it retrieves in 2K sizes, if 8K it
retrieves in the 8K size, as shown:

Another example, a query that scans a table and performs 800 physical I/Os
using a 2K pool should perform about 100 8K I/Os.

Logical page size Memory pool

2K 16K

4K 64K

8K 128K

16K 256K

CHAPTER 10 Memory Use and Performance

Performance and Tuning: Basics 237

See “Large I/O and performance” on page 225 for a list of query types.

To test your estimates, you need to actually configure the pools and run the
individual queries and your target mix of queries to determine optimum pool
sizes. Choosing a good initial size for your first test using 16K I/O depends on
a good sense of the types of queries in your application mix.

This estimate is especially important if you are configuring a 16K pool for the
first time on an active production server. Make the best possible estimate of
simultaneous uses of the cache.

Some guidelines:

• If most I/O occurs in point queries using indexes to access a small number
of rows, make the 16K pool relatively small, say about 10 to 20% of the
cache size.

• If you estimate that a large percentage of the I/Os will use the 16K pool,
configure 50 to 75% of the cache for 16K I/O.

Queries that use 16K I/O include any query that scans a table, uses the
clustered index for range searches and order by, and queries that perform
matching or nonmatching scans on covering nonclustered indexes.

• If you are not sure about the I/O size that will be used by your queries,
configure about 20% of your cache space in a 16K pool, and use showplan
and statistics i/o while you run your queries.

Examine the showplan output for the “Using 16K I/O” message. Check
statistics i/o output to see how much I/O is performed.

• If you think that your typical application mix uses both 16K I/O and 2K
I/O simultaneously, configure 30 to 40% of your cache space for 16K I/O.

Your optimum may be higher or lower, depending on the actual mix and
the I/O sizes chosen by the query.

If many tables are accessed by both 2K I/O and 16K I/O, Adaptive Server
cannot use 16K I/O, if any page from the extent is in the 2K cache. It
performs 2K I/O on the other pages in the extent that are needed by the
query. This adds to the I/O in the 2K cache.

After configuring for 16K I/O, check cache usage and monitor the I/O for the
affected devices, using sp_sysmon or Adaptive Server Monitor. Also, use
showplan and statistics io to observe your queries.

• Look for nested-loop join queries where an inner table would use 16K I/O,
and the table is repeatedly scanned using the fetch-and-discard (MRU)
strategy.

Named data cache recommendations

238 Adaptive Server Enterprise

This can occur when neither table fits completely in cache. If increasing
the size of the 16K pool allows the inner table to fit completely in cache,
I/O can be significantly reduced. You might also consider binding the two
tables to separate caches.

• Look for excessive 16K I/O, when compared to table size in pages.

For example, if you have an 8000-page table, and a 16K I/O table scan
performs significantly more than 1000 I/Os to read this table, you may see
improvement by re-creating the clustered index on this table.

• Look for times when large I/O is denied. Many times, this is because pages
are already in the 2K pool, so the 2K pool will be used for the rest of the
I/O for the query.

For a complete list of the reasons that large I/O cannot be used, see “When
prefetch specification is not followed” on page 44 in the book
Performance and Tuning: Optimizer.

Configuring buffer wash size
You can configure the wash area for each pool in each cache. If you set the
wash size is set too high, Adaptive Server may perform unnecessary writes. If
you set the wash area too small, Adaptive Server may not be able to find a clean
buffer at the end of the buffer chain and may have to wait for I/O to complete
before it can proceed. Generally, wash size defaults are correct and need to be
adjusted only in large pools that have very high rates of data modification.

Adaptive Server allocates buffer pools in units of logical pages. For example,
on a server using 2K logical pages, 8MB are allocated to the default data cache.
By default this constitutes approximately 4096 buffers.

If you allocated the same 8MB for the default data cache on a server using a
16K logical page size, the default data cache is approximately 512 buffers. On
a busy system, this small number of buffers might result in a buffer always
being in the wash region, causing a slowdown for tasks requesting clean
buffers.

In general, to obtain the same buffer management characteristics on larger page
sizes as with 2K logical page sizes, you should scale the size of the caches to
the larger page size. In other words, if you increase your logical page size by
four times, your cache and pool sizes should be about four times larger as well.

CHAPTER 10 Memory Use and Performance

Performance and Tuning: Basics 239

Queries performing large I/O, extent- based reads and writes, and so on, benefit
from the use of larger logical page sizes. However, as catalogs continue to be
page-locked, there is greater contention and blocking at the page level on
system catalogs.

Row and column copying for DOL tables will result in a greater slowdown
when used for wide columns. Memory allocation to support wide rows and
wide columns will marginally slow the server.

See the System Administration Guide for more information.

Overhead of pool configuration and binding objects
Configuring memory pools and binding objects to caches can affect users on a
production system, so these activities are best performed during off-hours.

Pool configuration overhead

When a pool is created, deleted, or changed, the plans of all stored procedures
and triggers that use objects bound to the cache are recompiled the next time
they are run. If a database is bound to the cache, this affects all of the objects
in a database.

There is a slight amount of overhead involved in moving buffers between
pools.

Cache binding overhead

When you bind or unbind an object, all the object’s pages that are currently in
the cache are flushed to disk (if dirty) or dropped from the cache (if clean)
during the binding process.

The next time the pages are needed by user queries, they must be read from the
disk again, slowing the performance of the queries.

Maintaining data cache performance for large I/O

240 Adaptive Server Enterprise

Adaptive Server acquires an exclusive lock on the table or index while the
cache is being cleared, so binding can slow access to the object by other users.
The binding process may have to wait until transactions complete to acquire
the lock.

Note The fact that binding and unbinding objects from caches removes them
from memory can be useful when tuning queries during development and
testing.

If you need to check physical I/O for a particular table, and earlier tuning
efforts have brought pages into cache, you can unbind and rebind the object.
The next time the table is accessed, all pages used by the query must be read
into the cache.

The plans of all stored procedures and triggers using the bound objects are
recompiled the next time they are run. If a database is bound to the cache, this
affects all the objects in the database.

Maintaining data cache performance for large I/O
When heap tables, clustered indexes, or nonclustered indexes have just been
created, they show optimal performance when large I/O is being used. Over
time, the effects of deletes, page splits, and page deallocation and reallocation
can increase the cost of I/O. optdiag reports a statistic called “Large I/O
efficiency” for tables and indexes.

When this value is 1, or close to 1, large I/O is very efficient. As the value
drops, more I/O is required to access data pages needed for a query, and large
I/O may be bringing pages into cache that are not needed by the query.

You need to consider rebuilding indexes when large I/O efficiency drops or
activity in the pool increases due to increased 16K I/O.

When large I/O efficiency drops, you can:

• Run reorg rebuild on tables that use data-only-locking. You can also use
reorg rebuild on the index of data-only-locked tables.

• For allpages-locked tables, drop and re-create the indexes.

For more information, see “Running reorg on tables and indexes” on page 343.

CHAPTER 10 Memory Use and Performance

Performance and Tuning: Basics 241

Diagnosing excessive I/O Counts
There are several reasons why a query that performs large I/O might require
more reads than you anticipate:

• The cache used by the query has a 2K cache and other processes have
brought pages from the table into the 2K cache.

If Adaptive Server finds that one of the pages it would read using 16K I/Os
already in the 2K cache, it performs 2K I/O on the other pages in the extent
that are required by the query.

• The first extent on each allocation unit stores the allocation page, so if a
query needs to access all the pages on the extent, it must perform 2K I/O
on the 7 pages that share the extent with the allocation page.

The other 31 extents can be read using 16K I/O. So, the minimum number
of reads for an entire allocation unit is always 38, not 32.

• In nonclustered indexes and clustered indexes on data-only-locked tables,
an extent may store both leaf-level pages and pages from higher levels of
the index. 2K I/O is performed on the higher levels of indexes, and for
leaf-level pages when few pages are needed by a query.

When a covering leaf-level scan performs 16K I/O, it is likely that some
of the pages from some extents will be in the 2K cache. The rest of the
pages in the extent will be read using 2K I/O.

Using sp_sysmon to check large I/O performance
The sp_sysmon output for each data cache includes information that can help
you determine the effectiveness for large I/Os in the Performance and Tuning:
Monitoring and Analyzing for Performance book:

• “Large I/O usage” on page 85 reports the number of large I/Os performed
and denied and provides summary statistics.

• “Large I/O detail” on page 95 reports the total number of pages that were
read into the cache by a large I/O and the number of pages that were
actually accessed while they were in the cache.

Speed of recovery

242 Adaptive Server Enterprise

Speed of recovery
As users modify data in Adaptive Server, only the transaction log is written to
disk immediately, to ensure that given data or transactions can be recovered.
The changed or “dirty” data and index pages stay in the data cache until one of
these events causes them to be written to disk:

• The checkpoint process wakes up, determines that the changed data and
index pages for a particular database need to be written to disk, and writes
out all the dirty pages in each cache used by the database.

The combination of the setting for recovery interval and the rate of data
modifications on your server determine how often the checkpoint process
writes changed pages to disk.

• As pages move into the buffer wash area of the cache, dirty pages are
automatically written to disk.

• Adaptive Server has spare CPU cycles and disk I/O capacity between user
transactions, and the housekeeper wash task uses this time to write dirty
buffers to disk.

• Recovery happens only on the default data cache.

• A user issues a checkpoint command.

You can use the checkpoint to identify one or more databasess or use an all
clause.

checkpoint [all | [dbname[, dbname[, dbname.....]]]

The combination of checkpoints, the housekeeper, and writes started at the
wash marker has these benefits:

• Many transactions may change a page in the cache or read the page in the
cache, but only one physical write is performed.

• Adaptive Server performs many physical writes at times when the I/O
does not cause contention with user processes.

Tuning the recovery interval
The default recovery interval in Adaptive Server is five minutes per database.
Changing the recovery interval can affect performance because it can impact
the number of times Adaptive Server writes pages to disk.

CHAPTER 10 Memory Use and Performance

Performance and Tuning: Basics 243

Table 10-3 shows the effects of changing the recovery interval from its current
setting on your system.

Table 10-3: Effects of recovery interval on performance and recovery
time

See the System Administration Guide for information on setting the recovery
interval. sp_sysmon reports the number and duration of checkpoints.

See “Recovery management” on page 99 in the book Performance and
Tuning: Monitoring and Analyzing for Performance.

Effects of the housekeeper wash task on recovery time
Adaptive Server’s housekeeper wash task automatically begins cleaning dirty
buffers during the server’s idle cycles. If the task is able to flush all active
buffer pools in all configured caches, it wakes up the checkpoint process. This
may result in faster checkpoints and shorter database recovery time.

System Administrators can use the housekeeper free write percent
configuration parameter to tune or disable the housekeeper wash task. This
parameter specifies the maximum percentage by which the housekeeper task
can increase database writes.

For more information on tuning the housekeeper and the recovery interval, see
“Recovery management” on page 99 in the book Performance and Tuning:
Monitoring and Analyzing for Performance.

Auditing and performance
Heavy auditing can affect performance as follows:

Setting Effects on performance Effects on recovery

Lower May cause more reads and writes and may lower
throughput. Adaptive Server will write dirty
pages to the disk more often. Any checkpoint I/O
“spikes” will be smaller.

Recovery period will be very short.

Higher Minimizes writes and improves system
throughput. Checkpoint I/O spikes will be
higher.

Automatic recovery may take more time
on start-up. Adaptive Server may have
to reapply a large number of transaction
log records to the data pages.

Auditing and performance

244 Adaptive Server Enterprise

• Audit records are written first to a queue in memory and then to the
sybsecurity database. If the database shares a disk used by other busy
databases, it can slow performance.

• If the in-memory audit queue fills up, the user processes that generate
audit records sleep. See Figure 10-5 on page 245.

Sizing the audit queue
The size of the audit queue can be set by a System Security Officer. The default
configuration is as follows:

• A single audit record requires a minimum of 32 bytes, up to a maximum
of 424 bytes.

This means that a single data page stores between 4 and 80 records.

• The default size of the audit queue is 100 records, requiring approximately
42K.

The minimum size of the queue is 1 record; the maximum size is 65,335
records.

There are trade-offs in sizing the audit queue, as shown in Figure 10-5.

If the audit queue is large, so that you do not risk having user processes sleep,
you run the risk of losing any audit records in memory if there is a system
failure. The maximum number of records that can be lost is the maximum
number of records that can be stored in the audit queue.

If security is your chief concern, keep the queue small. If you can risk the loss
of more audit records, and you require high performance, make the queue
larger.

Increasing the size of the in-memory audit queue takes memory from the total
memory allocated to the data cache.

CHAPTER 10 Memory Use and Performance

Performance and Tuning: Basics 245

Figure 10-5: Trade-offs in auditing and performance

Auditing performance guidelines
• Heavy auditing slows overall system performance. Audit only the events

you need to track.

• If possible, place the sysaudits database on its own device. If that is not
possible, place it on a device that is not used for your most critical
applications.

Text and images pages
Text and image pages can use large portions of memory and are commonly
known as space wastage. They exist as long as a parent data row points to the
text and image pages. These pages come into existence when a null update is
done against the columns.

Find the current status for the table:

sp_help<table name>

The text and image pages can be deallocated to open the space they occupy. Use
the sp_chgattribute:

sp_chgattribute <table name>, “deallocate_first_txtpg”,1

Audit

Audit queue size

If the system crashes,

If the audit queue is full,

sysaudits

record

this process will sleep until
space is available

these records are lost

Text and images pages

246 Adaptive Server Enterprise

This switches the deallocation on. To switch the deallocation off:

sp_chgattribute <table name>, “deallocate_first_txtpg”,0

Performance and Tuning: Basics 247

C H A P T E R 1 1 Determining Sizes of Tables and
Indexes

This chapter explains how to determine the current sizes of tables and
indexes and how to estimate table size for space planning.

It contains the following sections:

Why object sizes are important to query tuning
Knowing the sizes of your tables and indexes is important to
understanding query and system behavior. At several stages of tuning
work, you need size data to:

• Understand statistics io reports for a specific query plan. Chapter 3,
“Using Statistics to Improve Performance,” in the book Performance
and Tuning: Monitoring and Analyzing for Performance describes
how to use statistics io to examine the I/O performed.

• Understand the optimizer’s choice of query plan. Adaptive Server’s
cost-based optimizer estimates the physical and logical I/O required
for each possible access method and chooses the cheapest method. If
you think a particular query plan is unusual, you can used dbcc
traceon(302) to determine why the optimizer made the decision. This
output includes page number estimates.

Topic Page
Why object sizes are important to query tuning 247

Tools for determining the sizes of tables and indexes 248

Effects of data modifications on object sizes 249

Using optdiag to display object sizes 249

Using sp_spaceused to display object size 250

Using sp_estspace to estimate object size 252

Using formulas to estimate object size 254

Tools for determining the sizes of tables and indexes

248 Adaptive Server Enterprise

• Determine object placement, based on the sizes of database objects and the
expected I/O patterns on the objects. You can improve performance by
distributing database objects across physical devices so that reads and
writes to disk are evenly distributed. Object placement is described in
Chapter 6, “Controlling Physical Data Placement.”

• Understand changes in performance. If objects grow, their performance
characteristics can change. One example is a table that is heavily used and
is usually 100 percent cached. If that table grows too large for its cache,
queries that access the table can suddenly suffer poor performance. This is
particularly true for joins requiring multiple scans.

• Do capacity planning. Whether you are designing a new system or
planning for growth of an existing system, you need to know the space
requirements in order to plan for physical disks and memory needs.

• Understand output from Adaptive Server Monitor and from sp_sysmon
reports on physical I/O.

Tools for determining the sizes of tables and indexes
Adaptive Server includes several tools that provide information on the current
sizes of tables or indexes or that can predict future sizes:

• The utility program optdiag displays the sizes and many other statistics for
tables and indexes. For information on using optdiag, see Chapter 6,
“Statistics Tables and Displaying Statistics with optdiag.” in the book
Performance and Tuning: Monitoring and Analyzing for Performance.

• The system procedure sp_spaceused reports on the current size of an
existing table and any indexes.

• The system procedure sp_estspace can predict the size of a table and its
indexes, given a number of rows as a parameter.

You can also compute table and index size using formulas provided in this
chapter. The sp_spaceused and optdiag commands report actual space usage.
The other methods presented in this chapter provide size estimates. For
partitioned tables, the system procedure sp_helpartition reports on the number
of pages stored on each partition of the table. See “Getting information about
partitions” on page 111 for information.

CHAPTER 11 Determining Sizes of Tables and Indexes

Performance and Tuning: Basics 249

Effects of data modifications on object sizes
Over time, the effects of randomly distributed data modifications on a set of
tables tends to produce data pages and index pages that average approximately
75 percent full. The major factors are:

• When you insert a row that needs to be placed on a page of an allpages-
locked table with a clustered index, and there is no room on the page for
that row, the page is split, leaving two pages that are about 50 percent full.

• When you delete rows from heaps or from tables with clustered indexes,
the space used on the page decreases. You can have pages that contain very
few rows or even a single row.

• After some deletes or page splits have occurred, inserting rows into tables
with clustered indexes tends to fill up pages that have been split or pages
where rows have been deleted.

Page splits also take place when rows need to be inserted into full index pages,
so index pages also tend to average approximately 75% full, unless you drop
and recreate them periodically.

Using optdiag to display object sizes
The optdiag command displays statistics for tables, indexes, and columns,
including the size of tables and indexes. If you are engaged in query tuning,
optdiag provides the best tool for viewing all the statistics that you need. Here
is a sample report for the titles table in the pubtune database:

Table owner: "dbo"

Statistics for table: "titles"

 Data page count: 662
 Empty data page count: 10
 Data row count: 4986.0000000000000000
 Forwarded row count: 18.0000000000000000
 Deleted row count: 87.0000000000000000
 Data page CR count: 86.0000000000000000
 OAM + allocation page count: 5
 First extent data pages: 3
 Data row size: 238.8634175691937287

Using sp_spaceused to display object size

250 Adaptive Server Enterprise

See Chapter 6, “Statistics Tables and Displaying Statistics with optdiag,” in
the book Performance and Tuning: Monitoring and Analyzing for
Performance for more information.

Advantages of optdiag
The advantages of optdiag are:

• optdiag can display statistics for all tables in a database, or for a single
table.

• optdiag output contains addition information useful for understanding
query costs, such as index height and the average row length.

• optdiag is frequently used for other tuning tasks, so you should have these
reports on hand.

Disadvantages of optdiag
The disadvantages of optdiag are:

• It produces a lot of output, so if you need only a single piece of
information, such as the number of pages in the table, other methods are
faster and have lower system overhead.

Using sp_spaceused to display object size
The system procedure sp_spaceused reads values stored on an object’s OAM
page to provide a quick report on the space used by the object.

sp_spaceused titles
name rowtotal reserved data index_size unused
------------ -------- ---------- --------- ----------- --------
titles 5000 1756 KB 1242 KB 440 KB 74 KB

The rowtotal value may be inaccurate at times; not all Adaptive Server
processes update this value on the OAM page. The commands update statistics,
dbcc checktable, and dbcc checkdb correct the rowtotal value on the OAM page.
Table 11-1 explains the headings in sp_spaceused output.

CHAPTER 11 Determining Sizes of Tables and Indexes

Performance and Tuning: Basics 251

Table 11-1: sp_spaceused output

To report index sizes separately, use:

sp_spaceused titles, 1
 index_name size reserved unused
 -------------------- ---------- ---------- ----------
 title_id_cix 14 KB 1294 KB 38 KB
 title_ix 256 KB 272 KB 16 KB
 type_price_ix 170 KB 190 KB 20 KB

name rowtotal reserved data index_size unused
------------ -------- ---------- --------- ----------- --------
titles 5000 1756 KB 1242 KB 440 KB 74 KB

For clustered indexes on allpages-locked tables, the size value represents the
space used for the root and intermediate index pages. The reserved value
includes the index size and the reserved and used data pages.

The “1” in the sp_spaceused syntax indicates that detailed index information
should be printed. It has no relation to index IDs or other information.

Advantages of sp_spaceused
The advantages of sp_spaceused are:

• It provides quick reports without excessive I/O and locking, since it uses
only values in the table and index OAM pages to return results.

Column Meaning

rowtotal Reports an estimate of the number of rows. The value is
read from the OAM page. Though not always exact, this
estimate is much quicker and leads to less contention than
select count(*).

reserved Reports pages reserved for use by the table and its indexes.
It includes both the used and unused pages in extents
allocated to the objects. It is the sum of data, index_size,
and unused.

data Reports the kilobytes on pages used by the table.

index_size Reports the total kilobytes on pages used by the indexes.

unused Reports the kilobytes of unused pages in extents allocated
to the object, including the unused pages for the object’s
indexes.

Using sp_estspace to estimate object size

252 Adaptive Server Enterprise

• It shows the amount of space that is reserved for expansion of the object,
but not currently used to store data.

• It provides detailed reports on the size of indexes and of text and image,
and Java off-row column storage.

Disadvantages of sp_spaceused
The disadvantages of sp_spaceused are:

• It may report inaccurate counts for row total and space usage.

• Output is in kilobytes, while most query-tuning activities use pages as a
unit of measure.

Using sp_estspace to estimate object size
sp_spaceused and optdiag report on actual space usage. sp_estspace can help
you plan for future growth of your tables and indexes. This procedure uses
information in the system tables (sysobjects, syscolumns, and sysindexes) to
determine the length of data and index rows. You provide a table name, and the
number of rows you expect to have in the table, and sp_estspace estimates the
size for the table and for any indexes that exist. It does not look at the actual
size of the data in the tables.

 To use sp_estspace:

• Create the table, if it does not exist.

• Create any indexes on the table.

• Execute the procedure, estimating the number of rows that the table will
hold.

The output reports the number of pages and bytes for the table and for each
level of the index.

The following example estimates the size of the titles table with 500,000 rows,
a clustered index, and two nonclustered indexes:

sp_estspace titles, 500000
name type idx_level Pages Kbytes
--------------------- ------------ --------- -------- --------
titles data 0 50002 100004

CHAPTER 11 Determining Sizes of Tables and Indexes

Performance and Tuning: Basics 253

title_id_cix clustered 0 302 604
title_id_cix clustered 1 3 6
title_id_cix clustered 2 1 2
title_ix nonclustered 0 13890 27780
title_ix nonclustered 1 410 819
title_ix nonclustered 2 13 26
title_ix nonclustered 3 1 2
type_price_ix nonclustered 0 6099 12197
type_price_ix nonclustered 1 88 176
type_price_ix nonclustered 2 2 5
type_price_ix nonclustered 3 1 2

Total_Mbytes

 138.30

name type total_pages time_mins
--------------------- ------------ ------------ ------------
title_id_cix clustered 50308 250
title_ix nonclustered 14314 91
type_price_ix nonclustered 6190 55

sp_estspace also allows you to specify a fillfactor, the average size of variable-
length fields and text fields, and the I/O speed. For more information, see in the
Adaptive Server Reference Manual.

Note The index creation times printed by sp_estspace do not factor in the
effects of parallel sorting.

Advantages of sp_estspace
The advantages of using sp_estspace to estimate the sizes of objects are:

• sp_estspace provides a quick, easy way to perform initial capacity
planning and to plan for table and index growth.

• sp_estspace helps you estimate the number of index levels.

• sp_estspace can be used to estimate future disk space, cache space, and
memory requirements.

Using formulas to estimate object size

254 Adaptive Server Enterprise

Disadvantages of sp_estspace
The disadvantages of using sp_estspace to estimate the sizes of objects are:

• Returned sizes are only estimates and may differ from actual sizes due to
fillfactors, page splitting, actual size of variable-length fields, and other
factors.

• Index creation times can vary widely, depending on disk speed, the use of
extent I/O buffers, and system load.

Using formulas to estimate object size
Use the formulas in this section to help you estimate the future sizes of the
tables and indexes in your database. The amount of overhead in each row for
tables and indexes that contain variable-length fields is greater than tables that
contain only fixed-length fields, so two sets of formulas are required.

The process involves calculating the number of bytes of data and overhead for
each row, and dividing that number into the number of bytes available on a data
page. Each page requires some overhead, which limits the number of bytes
available for data:

• For allpages-locked tables, page overhead is 32 bytes, leaving 2016 bytes
available for data on a 2K page.

• For data-only-locked tables, 46 bytes, leaving 2002 bytes available for
data.

For the most accurate estimate, round down divisions that calculate the number
of rows per page (rows are never split across pages), and round up divisions
that calculate the number of pages.

Factors that can affect storage size
Using space management properties can increase the space needed for a table
or an index. See “Effects of space management properties” on page 268, and
“max_rows_per_page” on page 269.

The formulas in this section use the maximum size for variable-length
character and binary data.To use the average size instead of the maximum size,
see “Using average sizes for variable fields” on page 269.

CHAPTER 11 Determining Sizes of Tables and Indexes

Performance and Tuning: Basics 255

If your table includes text or image datatypes or Java off-row columns, use 16
(the size of the text pointer that is stored in the row) in your calculations. Then
see “LOB pages” on page 270 to see how to calculate the storage space
required for the actual text or image data.

Indexes on data-only-locked tables may be smaller than the formulas predict
due to two factors:

• Duplicate keys are stored only once, followed by a list of row IDs for the
key.

• Compression of keys on non-leaf levels; only enough of the key to
differentiate from the neighboring keys is stored. This is especially
effective in reducing the size when long character keys are used.

If the configuration parameter page utilization percent is set to less than 100,
Adaptive Server may allocate new extents before filling all pages on the
allocated extents. This does not change the number of pages used by an object,
but leaves empty pages in the extents allocated to the object. See in the System
Administration Guide.

Storage sizes for datatypes
The storage sizes for datatypes are shown in Table 11-2:

Using formulas to estimate object size

256 Adaptive Server Enterprise

Table 11-2: Storage sizes for Adaptive Server datatypes

The storage size for a numeric or decimal column depends on its precision. The
minimum storage requirement is 2 bytes for a 1- or 2-digit column. Storage size
increases by 1 byte for each additional 2 digits of precision, up to a maximum
of 17 bytes.

Any columns defined as NULL are considered variable-length columns, since
they involve the overhead associated with variable-length columns.

All calculations in the examples that follow are based on the maximum size for
varchar, univarchar, nvarchar, and varbinary data—the defined size of the
columns. They also assume that the columns were defined as NOT NULL. If
you want to use average values instead, see “Using average sizes for variable
fields” on page 269.

Datatype Size

char Defined size

nchar Defined size * @@ncharsize

unichar n*@@unicharsize (@@unicharsize equals 2)

univarchar the actual number of characters*@@unicharsize

varchar Actual number of characters

nvarchar Actual number of characters * @@ncharsize

binary Defined size

varbinary Data size

int 4

smallint 2

tinyint 1

float 4 or 8, depending on precision

double precision 8

real 4

numeric 2–17, depending on precision and scale

decimal 2–17, depending on precision and scale

money 8

smallmoney 4

datetime 8

smalldatetime 4

bit 1

text 16 bytes + 2K * number of pages used

image 16 bytes + 2K * number of pages used

timestamp 8

CHAPTER 11 Determining Sizes of Tables and Indexes

Performance and Tuning: Basics 257

Tables and indexes used in the formulas
The example illustrates the computations on a table that contains 9,000,000
rows:

• The sum of fixed-length column sizes is 100 bytes.

• The sum of variable-length column sizes is 50 bytes; there are 2 variable-
length columns.

The table has two indexes:

• A clustered index, on a fixed-length column, of 4 bytes

• A composite nonclustered index with these columns:

• A fixed length column, of 4 bytes

• A variable length column, of 20 bytes

Different formulas are needed for allpages-locked and data-only-locked tables,
since they have different amounts of overhead on the page and per row:

• See “Calculating table and clustered index sizes for allpages-locked
tables” on page 257 for tables that use allpages-locking.

• See “Calculating the sizes of data-only-locked tables” on page 263 for the
formulas to use if tables that use data-only locking.

Calculating table and clustered index sizes for allpages-locked
tables

The formulas and examples for allpages-locked tables are divided into two sets
of steps:

• Steps 1–6 outline the calculations for an allpages-locked table with a
clustered index, giving the table size and the size of the index tree.

• Steps 7–12 outline the calculations for computing the space required by
nonclustered indexes.

These formulas show how to calculate the sizes of tables and clustered indexes.
If your table does not have clustered indexes, skip steps 3, 4, and 5. Once you
compute the number of data pages in step 2, go to step 6 to add the number of
OAM pages.

Using formulas to estimate object size

258 Adaptive Server Enterprise

Step 1: Calculate the data row size

Rows that store variable-length data require more overhead than rows that
contain only fixed-length data, so there are two separate formulas for
computing the size of a data row.

Fixed-length columns only

Use this formula if the table contains only fixed-length columns, and all are
defined as NOT NULL.

Some variable-length columns

Use this formula if the table contains any variable-length columns or columns
that allow null values.

The table in the example contains variable-length columns, so the
computations are shown in the right column.

Step 2: Compute the number of data pages

Formula

4 (Overhead)

+ Sum of bytes in all fixed-length columns

= Data row size

Formula Example

4 (Overhead) 4

+ Sum of bytes in all fixed-length columns + 100

+ Sum of bytes in all variable-length columns + 50

= Subtotal 154

+ (Subtotal / 256) + 1 (Overhead) 1

+ Number of variable-length columns + 1 3

+ 2 (Overhead) 2

= Data row size 160

Formula

2016 / Data row size = Number of data rows per page

Number of rows / Rows per page = Number of data pages required

CHAPTER 11 Determining Sizes of Tables and Indexes

Performance and Tuning: Basics 259

Step 3: Compute the size of clustered index rows

Index rows containing variable-length columns require more overhead than
index rows containing only fixed-length values. Use the first formula if all the
keys are fixed length. Use the second formula if the keys include variable-
length columns or allow null values.

Fixed-length columns only

The clustered index in the example has only fixed length keys.

Some variable-length columns

The results of the division (Subtotal / 256) are rounded down.

Step 4: Compute the number of clustered index pages

Example

2016 / 160 = 12 data rows per page

9,000,000 / 12 = 750,000 data pages

Formula Example

5 (Overhead) 5

+ Sum of bytes in the fixed-length index keys + 4

= Clustered row size 9

5 (Overhead)

+ Sum of bytes in the fixed-length index keys

+ Sum of bytes in variable-length index keys

= Subtotal

+ (Subtotal / 256) + 1 (Overhead)

+ Number of variable-length columns + 1

+ 2 (Overhead)

= Clustered index row size

Formula Example

(2016 / Clustered row size) - 2 = No. of clustered index
rows per page

(2016 / 9) - 2 = 222

Using formulas to estimate object size

260 Adaptive Server Enterprise

If the result for the “number of index pages at the next level” is greater than 1,
repeat the following division step, using the quotient as the next dividend, until
the quotient equals 1, which means that you have reached the root level of the
index:

Step 5: Compute the total number of index pages

Add the number of pages at each level to determine the total number of pages
in the index:

Step 6: Calculate allocation overhead and total pages

Each table and each index on a table has an object allocation map (OAM). A
single OAM page holds allocation mapping for between 2,000 and 63,750 data
pages or index pages. In most cases, the number of OAM pages required is
close to the minimum value. To calculate the number of OAM pages for the
table, use:

To calculate the number of OAM pages for the index, use:

No. of rows / No. of CI rows per page = No. of index pages at next
level

750,000 / 222 = 3379

Formula Example

Formula

No. of index pages
at last level

/ No. of clustered index
rows per page

= No. of index pages at
next level

Example

3379 / 222 = 16 index pages (Level 1)

16 / 222 = 1 index page (Level 2)

Formula Example

Index Levels Pages Pages Rows

2 1 16

1 + + 16 3379

0 + + 3379 750000

Total number of index pages 3396

Formula Example

Number of reserved data pages / 63,750 = Minimum OAM pages 750,000 / 63,750 = 12

Number of reserved data pages / 2000 = Maximum OAM pages 750,000 / 2000 = 376

CHAPTER 11 Determining Sizes of Tables and Indexes

Performance and Tuning: Basics 261

Total pages needed

Finally, add the number of OAM pages to the earlier totals to determine the
total number of pages required:

Step 7: Calculate the size of the leaf index row

Index rows containing variable-length columns require more overhead than
index rows containing only fixed-length values.

Fixed-length keys only Use this formula if the index contains only fixed-length keys and are defined
as NOT NULL:

Some variable-length
keys

Use this formula if the index contains any variable-length keys or columns
defined as NULL:

Formula Example

Number of reserved index pages / 63,750 = Minimum OAM pages 3396/ 63,750 = 1

Number of reserved index pages / 2000 = Maximum OAM pages 3396 / 2000 = 2

Formula Example

Minimum Maximum Minimum Maximum

Clustered index pages 3396 3379

OAM pages + + 1 2

Data pages + + 750000 750000

OAM pages + + 12 376

Total 753409 753773

Formula

7 (Overhead)

+ Sum of fixed-length keys

= Size of leaf index row

Formula Example

9 (Overhead) 9

+ Sum of length of fixed-length keys + 4

+ Sum of length of variable-length keys + 20

+ Number of variable-length keys + 1 + 2

= Subtotal 35

+ (Subtotal / 256) + 1 (overhead) + 1

= Size of leaf index row 36

Using formulas to estimate object size

262 Adaptive Server Enterprise

Step 8: Calculate the number of leaf pages in the index

Step 9: Calculate the size of the non-leaf rows

Step 10: Calculate the number of non-leaf pages

If the number of leaf pages from step 8 is greater than 1, repeat the following
division step, using the quotient as the next dividend, until the quotient equals
1, which means that you have reached the root level of the index:

Step 11: Calculate the total number of non-leaf index pages

Add the number of pages at each level to determine the total number of pages
in the index:

Formula Example

(2016 / leaf row size) = No. of leaf index rows per
page

2016 / 36 = 56

No. of table rows / No. of leaf rows per page = No. of index pages at next
level

9,000,000 / 56 = 160,715

Formula Example

Size of leaf index row 36

+ 4 Overhead + 4

= Size of non-leaf row 40

Formula Example

(2016 / Size of non-leaf row) - 2 = No. of non-leaf index rows per page (2016 / 40) - 2 = 48

Formula

No. of index pages at previous level / No. of non-leaf index rows per page = No. of index pages at next level

Example

160715 / 48 = 3349 Index pages, level 1

3349 / 48 = 70 Index pages, level 2

 70 / 48 = 2 Index pages, level 3

2 / 48 = 1 Index page, level 4 (root level)

Index Levels Pages Pages Rows

4 1 2

CHAPTER 11 Determining Sizes of Tables and Indexes

Performance and Tuning: Basics 263

Step 12: Calculate allocation overhead and total pages

Total Pages Needed Add the number of OAM pages to the total in step 11 to determine the total
number of index pages:

Calculating the sizes of data-only-locked tables
The formulas and examples that follow show how to calculate the sizes of
tables and indexes. This example uses the same columns sizes and index as the
previous example. See “Tables and indexes used in the formulas” on page 257
for the specifications.

The formulas for data-only-locked tables are divided into two sets of steps:

• Steps 1–3 outline the calculations for a data-only-locked table. The
example that follows Step 3 illustrates the computations on a table that has
9,000,000 rows.

• Steps 4–8 outline the calculations for computing the space required by an
index, followed by an example using the 9,000,000-row table.

3 + + 2 70

2 + + 70 3348

1 + + 3349 160715

0 + + 160715 9000000

Total number of 2K data pages used 164137

Index Levels Pages Pages Rows

Formula Example

Number of index pages / 63,750 = Minimum OAM pages 164137 / 63,750 = 3

Number of index pages / 2000 = Maximum OAM pages 164137 / 2000 = 83

Formula Example

Minimum Maximum Minimum Maximum

Nonclustered index pages 164137 164137

OAM pages + + 3 83

Total 164140 164220

Using formulas to estimate object size

264 Adaptive Server Enterprise

Step 1: Calculate the data row size

Rows that store variable-length data require more overhead than rows that
contain only fixed-length data, so there are two separate formulas for
computing the size of a data row.

Fixed-length columns only

Use this formula if the table contains only fixed-length columns defined as
NOT NULL:

Note Data-only locked tables must allow room for each row to store a 6-byte
forwarded row ID. If a data-only-locked table has rows shorter than 10 bytes,
each row is padded to 10 bytes when it is inserted. This affects only data pages,
and not indexes, and does not affect allpages-locked tables.

Some variable-length columns

Use this formula if the table contains variable-length columns or columns that
allow null values:

Step 2: Compute the number of data pages

In the first part of this step, the number of rows per page is rounded down:

6 (Overhead)

+ Sum of bytes in all fixed-length columns

Data row size

Formula Example

8 (Overhead) 8

+ Sum of bytes in all fixed-length columns + 100

+ Sum of bytes in all variable-length columns + 50

+ Number of variable-length columns * 2 + 4

 Data row size 162

Formula

2002 / Data row size = Number of data rows per page

Number of rows / Rows per page = Number of data pages required

CHAPTER 11 Determining Sizes of Tables and Indexes

Performance and Tuning: Basics 265

Step 3: Calculate allocation overhead and total pages

Allocation overhead

Each table and each index on a table has an object allocation map (OAM). The
OAM is stored on pages allocated to the table or index. A single OAM page
holds allocation mapping for between 2,000 and 63,750 data pages or index
pages. In most cases, the number of OAM pages required is close to the
minimum value. To calculate the number of OAM pages for the table, use:

Total pages needed

Add the number of OAM pages to the earlier totals to determine the total
number of pages required:

Step 4: Calculate the size of the index row

Use these formulas for clustered and nonclustered indexes on data-only-length
tables.

Index rows containing variable-length columns require more overhead than
index rows containing only fixed-length values.

Fixed-length keys only Use this formula if the index contains only fixed-length keys defined as NOT
NULL:

Example

2002 / 162 = 12 data rows per page

9,000,000 / 12 = 750,000 data pages

Formula Example

Number of reserved data pages / 63,750 = Minimum OAM pages 750,000 / 63,750 = 12

Number of reserved data pages / 2000 = Maximum OAM pages 750,000 / 2000 = 375

Formula Example

Minimum Maximum Minimum Maximum

Data pages + + 750000 750000

OAM pages + + 12 375

Total 750012 750375

9 (Overhead)

Using formulas to estimate object size

266 Adaptive Server Enterprise

Some variable-length
keys

Use this formula if the index contains any variable-length keys or columns that
allow null values:

Step 5: Calculate the number of leaf pages in the index

Step 6: Calculate the number of non-leaf pages in the index

If the number of index pages at the next level above is greater than 1, repeat the
following division step, using the quotient as the next dividend, until the
quotient equals 1, which means that you have reached the root level of the
index:

+ Sum of fixed-length keys

Size of index row

Formula Example

9 (Overhead) 9

+ Sum of length of fixed-length keys + 4

+ Sum of length of variable-length keys + 20

+ Number of variable-length keys * 2 + 2

 Size of index row 35

Formula

2002 / Size of index row = No. of rows per page

No. of rows in table / No. of rows per page = No. of leaf pages

Example

2002 / 35 = 57 Nonclustered index rows per page

9,000,000 / 57 = 157,895 leaf pages

Formula

No. of leaf pages / No. of index rows per page = No. of pages at next level

Formula

No. of index pages at previous level / No. of non-leaf index rows per page = No. of index pages at next level

Example

157895/57 = 2771 Index pages, level 1

CHAPTER 11 Determining Sizes of Tables and Indexes

Performance and Tuning: Basics 267

Step 7: Calculate the total number of non-leaf index pages

Add the number of pages at each level to determine the total number of pages
in the index:

Step 8: Calculate allocation overhead and total pages

Total pages needed Add the number of OAM pages to the total in step 8 to determine the total
number of index pages:

2770 / 57 = 49 Index pages, level 2

48 / 57 =1 Index pages, level 3

Example

Formula Example

Index Levels Pages Pages Rows

3 1 49

2 + 49 2771

1 + 2771 157895

0 + 157895 9000000

Total number of 2K pages used 160716

Formula

Number of index pages / 63,750 = Minimum OAM pages

Number of index pages / 2000 = Maximum OAM pages

Example

160713 / 63,750 = 3 (minimum)

160713 / 2000 = 81 (maximum)

Formula Example

Minimum Maximum Minimum Maximum

Nonclustered index pages 160716 160716

OAM pages + + 3 81

Total 160719 160797

Using formulas to estimate object size

268 Adaptive Server Enterprise

Other factors affecting object size
In addition to the effects of data modifications that occur over time, other
factors can affect object size and size estimates:

• The space management properties

• Whether computations used average row size or maximum row size

• Very small text rows

• Use of text and image data

Effects of space management properties

Values for fillfactor, exp_row_size, reservepagegap and max_rows_per_page
can affect object size.

fillfactor

The fillfactor you specify for create index is applied when the index is created.
The fillfactor is not maintained during inserts to the table. If a fillfactor has been
stored for an index using sp_chgattribute, this value is used when indexes are
re-created with alter table...lock commands and reorg rebuild. The main function
of fillfactor is to allow space on the index pages, to reduce page splits. Very
small fillfactor values can cause the storage space required for a table or an index
to be significantly greater.

With the default fillfactor of 0, the index management process leaves room for
two additional rows on each index page when you create a new index. When
you set fillfactor to 100 percent, it no longer leaves room for these rows. The
only effect that fillfactor has on size calculations is when calculating the number
of clustered index pages and when calculating the number of non-leaf pages.
Both of these calculations subtract 2 from the number of rows per page.
Eliminate the -2 from these calculations.

Other values for fillfactor reduce the number of rows per page on data pages and
leaf index pages. To compute the correct values when using fillfactor, multiply
the size of the available data page (2016) by the fillfactor. For example, if your
fillfactor is 75 percent, your data page would hold 1471 bytes. Use this value in
place of 2016 when you calculate the number of rows per page. For these
calculations, see “Step 2: Compute the number of data pages” on page 258 and
“Step 8: Calculate the number of leaf pages in the index” on page 262.

CHAPTER 11 Determining Sizes of Tables and Indexes

Performance and Tuning: Basics 269

exp_row_size

Setting an expected row size for a table can increase the amount of storage
required. If your tables have many rows that are shorter than the expected row
size, setting this value and running reorg rebuild or changing the locking
scheme increases the storage space required for the table. However, the space
usage for tables that formerly used max_rows_per_page should remain
approximately the same.

reservepagegap

Setting a reservepagegap for a table or an index leaves empty pages on extents
that are allocated to the object when commands that perform extent allocation
are executed. Setting reservepagegap to a low value increases the number of
empty pages and spreads the data across more extents, so the additional space
required is greatest immediately after a command such as create index or reorg
rebuild. Row forwarding and inserts into the table fill in the reserved pages. For
more information, see “Leaving space for forwarded rows and inserts” on page
194.

max_rows_per_page

The max_rows_per_page value (specified by create index, create table, alter
table, or sp_chgattribute) limits the number of rows on a data page.

To compute the correct values when using max_rows_per_page, use the
max_rows_per_page value or the computed number of data rows per page,
whichever is smaller, in“Step 2: Compute the number of data pages” on page
258 and “Step 8: Calculate the number of leaf pages in the index” on page 262.

Using average sizes for variable fields

All of the formulas use the maximum size of the variable-length fields.

optdiag output includes the average length of data rows and index rows. You
can use these values for the data and index row lengths, if you want to use
average lengths instead.

Very small rows
Adaptive Server cannot store more than 256 data or index rows on a page. Even
if your rows are extremely short, the minimum number of data pages is:

Using formulas to estimate object size

270 Adaptive Server Enterprise

LOB pages
Each text or image or Java off-row column stores a 16-byte pointer in the data
row with the datatype varbinary(16). Each column that is initialized requires at
least 2K (one data page) of storage space.

Columns store implicit null values, meaning that the text pointer in the data row
remains null and no text page is initialized for the value, saving 2K of storage
space.

If a LOB column is defined to allow null values, and the row is created with an
insert statement that includes NULL for the column, the column is not
initialized, and the storage is not allocated.

If a LOB column is changed in any way with update, then the text page is
allocated. Of course, inserts or updates that place actual data in a column
initialize the page. If the column is subsequently set to NULL, a single page
remains allocated.

Each LOB page stores approximately 1800 bytes of data. To estimate the
number of pages that a particular entry will use, use this formula:

The result should be rounded up in all cases; that is, a data length of 1801 bytes
requires two 2K pages.

The total space required for the data may be slightly larger than the calculated
value, because some LOB pages store pointer information for other page
chains in the column. Adaptive Server uses this pointer information to perform
random access and prefetch data when accessing LOB columns. The additional
space required to store pointer information depends on the total size and type
of the data stored in the column. Use the information in Table 11-3 to estimate
the additional pages required to store pointer information for data in LOB
columns.

Number of Rows / 256 = Number of data pages required

Data length / 1800 = Number of 2K pages

CHAPTER 11 Determining Sizes of Tables and Indexes

Performance and Tuning: Basics 271

Table 11-3: Estimated additional pages for pointer information in LOB
columns

Advantages of using formulas to estimate object size
The advantages of using the formulas are:

• You learn more details of the internals of data and index storage.

• The formulas provide flexibility for specifying averages sizes for
character or binary columns.

• While computing the index size, you see how many levels each index has,
which helps estimate performance.

Disadvantages of using formulas to estimate object size
The disadvantages of using the formulas are:

• The estimates are only as good as your estimates of average size for
variable-length columns.

• The multistep calculations are complex, and skipping steps may lead to
errors.

• The actual size of an object may be different from the calculations, based
on use.

Data Size and Type
Additional Pages Required for Pointer
Information

400K image 0 to 1 page

700K image 0 to 2 pages

5MB image 1 to 11 pages

400K of multibyte text 1 to 2 pages

700K of multibyte text 1 to 3 pages

5MB of multibyte text 2 to 22 pages

Using formulas to estimate object size

272 Adaptive Server Enterprise

Performance and Tuning: Basics 273

C H A P T E R 1 2 How Indexes Work

This chapter describes how Adaptive Server stores indexes and how it
uses indexes to speed data retrieval for select, update, delete, and insert
operations.

Indexes are the most important physical design element in improving
database performance:

• Indexes help prevent table scans. Instead of reading hundreds of data
pages, a few index pages and data pages can satisfy many queries.

• For some queries, data can be retrieved from a nonclustered index
without ever accessing the data rows.

• Clustered indexes can randomize data inserts, avoiding insert “hot
spots” on the last page of a table.

• Indexes can help avoid sorts, if the index order matches the order of
columns in an order by clause.

In addition to their performance benefits, indexes can enforce the
uniqueness of data.

Indexes are database objects that can be created for a table to speed direct
access to specific data rows. Indexes store the values of the key(s) that
were named when the index was created, and logical pointers to the data
pages or to other index pages.

Although indexes speed data retrieval, they can slow down data
modifications, since most changes to the data also require updating the
indexes. Optimal indexing demands:

Topic Page
Types of indexes 274

Clustered indexes on allpages-locked tables 276

Nonclustered indexes 285

Index covering 291

Indexes and caching 295

Types of indexes

274 Adaptive Server Enterprise

• An understanding of the behavior of queries that access unindexed heap
tables, tables with clustered indexes, and tables with nonclustered indexes

• An understanding of the mix of queries that run on your server

• An understanding of the Adaptive Server optimizer

Types of indexes
Adaptive Server provides two types of indexes:

• Clustered indexes, where the table data is physically stored in the order of
the keys on the index:

• For allpages-locked tables, rows are stored in key order on pages, and
pages are linked in key order.

• For data-only-locked tables, indexes are used to direct the storage of
data on rows and pages, but strict key ordering is not maintained.

• Nonclustered indexes, where the storage order of data in the table is not
related to index keys

You can create only one clustered index on a table because there is only one
possible physical ordering of the data rows. You can create up to 249
nonclustered indexes per table.

A table that has no clustered index is called a heap. The rows in the table are in
no particular order, and all new rows are added to the end of the table. Chapter
8, “Data Storage,” discusses heaps and SQL operations on heaps.

Index pages
Index entries are stored as rows on index pages in a format similar to the format
used for data rows on data pages. Index entries store the key values and
pointers to lower levels of the index, to the data pages, or to individual data
rows.

Adaptive Server uses B-tree indexing, so each node in the index structure can
have multiple children.

CHAPTER 12 How Indexes Work

Performance and Tuning: Basics 275

Index entries are usually much smaller than a data row in a data page, and index
pages are much more densely populated than data pages. If a data row has 200
bytes (including row overhead), there are 10 rows per page.

An index on a 15-byte field has about 100 rows per index page (the pointers
require 4–9 bytes per row, depending on the type of index and the index level).

Indexes can have multiple levels:

• Root level

• Leaf level

• Intermediate level

Root level

The root level is the highest level of the index. There is only one root page. If
an allpages-locked table is very small, so that the entire index fits on a single
page, there are no intermediate or leaf levels, and the root page stores pointers
to the data pages.

Data-only-locked tables always have a leaf level between the root page and the
data pages.

For larger tables, the root page stores pointers to the intermediate level index
pages or to leaf-level pages.

Leaf level

The lowest level of the index is the leaf level. At the leaf level, the index
contains a key value for each row in the table, and the rows are stored in sorted
order by the index key:

• For clustered indexes on allpages-locked tables, the leaf level is the data.
No other level of the index contains one index row for each data row.

• For nonclustered indexes and clustered indexes on data-only-locked
tables, the leaf level contains the index key value for each row, a pointer
to the page where the row is stored, and a pointer to the rows on the data
page.

The leaf level is the level just above the data; it contains one index row for
each data row. Index rows on the index page are stored in key value order.

Clustered indexes on allpages-locked tables

276 Adaptive Server Enterprise

Intermediate level

All levels between the root and leaf levels are intermediate levels. An index on
a large table or an index using long keys may have many intermediate levels.
A very small allpages-locked table may not have an intermediate level at all;
the root pages point directly to the leaf level.

Index Size
Table 12-1 describes the new limits for index size for APL and DOL tables:

Table 12-1: Index row-size limit

Because you can create tables with columns wider than the limit for the index
key, these columns become non-indexable. For example, if you perform the
following on a 2K page server, then try to create an index on c3, the command
fails and Adaptive Server issues an error message because column c3 is larger
than the index row-size limit (600 bytes).

create table t1 (

c1 int

c2 int

c3 char(700))

“Non-indexable” does not mean that you cannot use these columns in search
clauses. Even though a column is non-indexable (as in c3, above), you can still
create statistics for it. Also, if you include the column in a where clause, it will
be evaluated during optimization.

Clustered indexes on allpages-locked tables
In clustered indexes on allpages-locked tables, leaf-level pages are also the
data pages, and all rows are kept in physical order by the keys.

Page size
User-visible index row-size
limit

Internal index row-
size limit

2K (2048 bytes) 600 650

4K (4096bytes) 1250 1310

8K (8192 bytes) 2600 2670

16K (16384 bytes) 5300 5390

CHAPTER 12 How Indexes Work

Performance and Tuning: Basics 277

Physical ordering means that:

• All entries on a data page are in index key order.

• By following the “next page” pointers on the data pages, Adaptive Server
reads the entire table in index key order.

On the root and intermediate pages, each entry points to a page on the next
level.

Clustered indexes and select operations
To select a particular last name using a clustered index, Adaptive Server first
uses sysindexes to find the root page. It examines the values on the root page
and then follows page pointers, performing a binary search on each page it
accesses as it traverses the index. See Figure 12-1 below.

Figure 12-1: Selecting a row using a clustered index, allpages-locked
table

Page 1007
Bennet 1132
Greane 1133
Hunter 1127

Page 1009
Karsen 1315

Page 1132
Bennet
Chan
Dull
Edwards

Page 1133
Greane
Green
Greene

Page 1127
Hunter
Jenkins

Page 1001
Bennet 1007
Karsen 1009
Smith 1062

Root page Data pages Intermediate

Key Pointer

Key Pointer

select *
from employees
where lname = "Green"

Clustered indexes on allpages-locked tables

278 Adaptive Server Enterprise

On the root level page, “Green” is greater than “Bennet,” but less than Karsen,
so the pointer for “Bennet” is followed to page 1007. On page 1007, “Green”
is greater than “Greane,” but less than “Hunter,” so the pointer to page 1133 is
followed to the data page, where the row is located and returned to the user.

This retrieval via the clustered index requires:

• One read for the root level of the index

• One read for the intermediate level

• One read for the data page

These reads may come either from cache (called a logical read) or from disk
(called a physical read). On tables that are frequently used, the higher levels
of the indexes are often found in cache, with lower levels and data pages being
read from disk.

Clustered indexes and insert operations
When you insert a row into an allpages-locked table with a clustered index, the
data row must be placed in physical order according to the key value on the
table.

Other rows on the data page move down on the page, as needed, to make room
for the new value. As long as there is room for the new row on the page, the
insert does not affect any other pages in the database.

The clustered index is used to find the location for the new row.

Figure 12-2 shows a simple case where there is room on an existing data page
for the new row. In this case, the key values in the index do not need to change.

CHAPTER 12 How Indexes Work

Performance and Tuning: Basics 279

Figure 12-2: Inserting a row into an allpages-locked table with a
clustered index

Page splitting on full data pages
If there is not enough room on the data page for the new row, a page split must
be performed.

• A new data page is allocated on an extent already in use by the table. If
there is no free page available, a new extent is allocated.

• The next and previous page pointers on adjacent pages are changed to
incorporate the new page in the page chain. This requires reading those
pages into memory and locking them.

• Approximately half of the rows are moved to the new page, with the new
row inserted in order.

• The higher levels of the clustered index change to point to the new page.

• If the table also has nonclustered indexes, all pointers to the affected data
rows must be changed to point to the new page and row locations.

In some cases, page splitting is handled slightly differently.

Page 1001
Bennet 1007
Karsen 1009
Smith 1062

Page 1132
Bennet
Chan
Dull
Edwards

Page 1133
Greane
Greco
Green
Greene

Page 1127
Hunter
Jenkins

Page 1007
Bennet 1132
Greane 1133
Hunter 1127

Page 1009
Karsen 1315

Root page Data pages Intermediate

Key Pointer

Key Pointer

insert employees (lname)
values ("Greco")

Clustered indexes on allpages-locked tables

280 Adaptive Server Enterprise

See “Exceptions to page splitting” on page 280.

In Figure 12-3, the page split requires adding a new row to an existing index
page, page 1007.

Figure 12-3: Page splitting in an allpages-locked table with a clustered
index

Exceptions to page splitting

There are exceptions to 50-50 page splits:

• If you insert a huge row that cannot fit on either the page before or the page
after the page that requires splitting, two new pages are allocated, one for
the huge row and one for the rows that follow it.

Page 1144
Green
Greene

Page 1133
Greane
Greco
Green
Greene

Page 1132
Bennet
Chan
Dull
Edwards

Page 1133
Greane
Greaves
Greco

Page 1127
Hunter
Jenkins

Page 1007
Bennet 1132
Greane 1133
Green 1144
Hunter 1127

Page 1009
Karsen 1315

Page 1001
Bennet 1007
Karsen 1009
Smith 1062

Root page Data pages Intermediate

Key Pointer

Key Pointer
insert employees (lname)
values ("Greaves")

Before

CHAPTER 12 How Indexes Work

Performance and Tuning: Basics 281

• If possible, Adaptive Server keeps duplicate values together when it splits
pages.

• If Adaptive Server detects that all inserts are taking place at the end of the
page, due to a increasing key value, the page is not split when it is time to
insert a new row that does not fit at the bottom of the page. Instead, a new
page is allocated, and the row is placed on the new page.

• If Adaptive Server detects that inserts are taking place in order at other
locations on the page, the page is split at the insertion point.

Page splitting on index pages
If a new row needs to be added to a full index page, the page split process on
the index page is similar to the data page split.

A new page is allocated, and half of the index rows are moved to the new page.

A new row is inserted at the next highest level of the index to point to the new
index page.

Performance impacts of page splitting
Page splits are expensive operations. In addition to the actual work of moving
rows, allocating pages, and logging the operations, the cost is increased by:

• Updating the clustered index itself

• Updating the page pointers on adjacent pages to maintain page linkage

• Updating all nonclustered index entries that point to the rows affected by
the split

When you create a clustered index for a table that will grow over time, you may
want to use fillfactor to leave room on data pages and index pages. This reduces
the number of page splits for a time.

See “Choosing space management properties for indexes” on page 318.

Clustered indexes on allpages-locked tables

282 Adaptive Server Enterprise

Overflow pages
Special overflow pages are created for nonunique clustered indexes on
allpages-locked tables when a newly inserted row has the same key as the last
row on a full data page. A new data page is allocated and linked into the page
chain, and the newly inserted row is placed on the new page (see Figure 12-4).

Figure 12-4: Adding an overflow page to a clustered index, allpages-
locked table

The only rows that will be placed on this overflow page are additional rows
with the same key value. In a nonunique clustered index with many duplicate
key values, there can be numerous overflow pages for the same value.

The clustered index does not contain pointers directly to overflow pages.
Instead, the next page pointers are used to follow the chain of overflow pages
until a value is found that does not match the search value.

insert employees (lname)
values("Greene")

Page 1133
Greane
Greco
Green
Greene

Data pages

Before insert

Overflow data
pagePage 1134

Gresham
Gridley

Page 1133
Greane
Greco
Green
Greene

Page 1156
Greene

Page 1134
Gresham
Gridley

After insert

CHAPTER 12 How Indexes Work

Performance and Tuning: Basics 283

Clustered indexes and delete operations
When you delete a row from an allpages-locked table that has a clustered
index, other rows on the page move up to fill the empty space so that the data
remains contiguous on the page.

Figure 12-5 shows a page that has four rows before a delete operation removes
the second row on the page. The two rows that follow the deleted row are
moved up.

Figure 12-5: Deleting a row from a table with a clustered index

Page 1132
Bennet
Chan
Dull
Edwards

Page 1133
Greane
Greco
Greene

Page 1127
Hunter
Jenkins

Page 1001
Bennet 1007
Karsen 1009
Smith 1062

delete
from employees
where lname = "Green"

Page 1007
Bennet 1132
Greane 1133
Hunter 1127

Page 1009
Karsen 1315

Root page Data pages Intermediate

Key Pointer

Key Pointer

G
reen

Page 1133
Greane
Green
Greco
Greene

Before delete
Data to be
deleted

Clustered indexes on allpages-locked tables

284 Adaptive Server Enterprise

Deleting the last row on a page

If you delete the last row on a data page, the page is deallocated and the next
and previous page pointers on the adjacent pages are changed.

The rows that point to that page in the leaf and intermediate levels of the index
are removed.

If the deallocated data page is on the same extent as other pages belonging to
the table, it can be used again when that table needs an additional page.

If the deallocated data page is the last page on the extent that belongs to the
table, the extent is also deallocated and becomes available for the expansion of
other objects in the database.

In Figure 12-6, which shows the table after the deletion, the pointer to the
deleted page has been removed from index page 1007 and the following index
rows on the page have been moved up to keep the used space contiguous.

Figure 12-6: Deleting the last row on a page (after the delete)

G
ridley

Page R1007
Bennet 1132
Greane 1133
Hunter 1127

Page 1009
Karsen 1315

Page 1134

Page 1001
Bennet 1007
Karsen 1009
Smith 1062

delete
from employees
where lname = "Gridley"

Root page Data pages Intermediate

Key Pointer

Key Pointer

Empty page
available for
reallocation

G
ridley

Page 1133
Greane
Green
Greane

Page 1127
Hunter
Jenkins

CHAPTER 12 How Indexes Work

Performance and Tuning: Basics 285

Index page merges

If you delete a pointer from an index page, leaving only one row on that page,
the row is moved onto an adjacent page, and the empty page is deallocated. The
pointers on the parent page are updated to reflect the changes.

Nonclustered indexes
The B-tree works much the same for nonclustered indexes as it does for
clustered indexes, but there are some differences. In nonclustered indexes:

• The leaf pages are not the same as the data pages.

• The leaf level stores one key-pointer pair for each row in the table.

• The leaf-level pages store the index keys and page pointers, plus a pointer
to the row offset table on the data page. This combination of page pointer
plus the row offset number is called the row ID.

• The root and intermediate levels store index keys and page pointers to
other index pages. They also store the row ID of the key’s data row.

With keys of the same size, nonclustered indexes require more space than
clustered indexes.

Leaf pages revisited
The leaf page of an index is the lowest level of the index where all of the keys
for the index appear in sorted order.

In clustered indexes on allpages-locked tables, the data rows are stored in order
by the index keys, so by definition, the data level is the leaf level. There is no
other level of the clustered index that contains one index row for each data row.
Clustered indexes on allpages-locked tables are sparse indexes.

The level above the data contains one pointer for every data page, not data row.

In nonclustered indexes and clustered indexes on data-only-locked tables, the
level just above the data is the leaf level: it contains a key-pointer pair for each
data row. These indexes are dense. At the level above the data, they contain one
index row for each data row.

Nonclustered indexes

286 Adaptive Server Enterprise

Nonclustered index structure
The table in Figure 12-7 shows a nonclustered index on lname. The data rows
at the far right show pages in ascending order by employee_id (10, 11, 12, and
so on) because there is a clustered index on that column.

The root and intermediate pages store:

• The key value

• The row ID

• The pointer to the next level of the index

The leaf level stores:

• The key value

• The row ID

The row ID in higher levels of the index is used for indexes that allow duplicate
keys. If a data modification changes the index key or deletes a row, the row ID
positively identifies all occurrences of the key at all index levels.

CHAPTER 12 How Indexes Work

Performance and Tuning: Basics 287

Figure 12-7: Nonclustered index structure

Nonclustered indexes and select operations
When you select a row using a nonclustered index, the search starts at the root
level. sysindexes.root stores the page number for the root page of the
nonclustered index.

In Figure 12-8, “Green” is greater than “Bennet,” but less than “Karsen,” so the
pointer to page 1007 is followed.

“Green” is greater than “Greane,” but less than “Hunter,” so the pointer to page
1133 is followed. Page 1133 is the leaf page, showing that the row for “Green”
is row 2 on page 1421. This page is fetched, the “2” byte in the offset table is
checked, and the row is returned from the byte position on the data page.

Page 1132
Bennet 1421,1
Chan 1129,3
Dull 1409,1
Edwards 1018,5

Page 1007
Bennet 1421,1 1132
Greane 1307,4 1133
Hunter 1307,1 1127

Page 1242
10 O’Leary
11 Ringer
12 White
13 Jenkins

Root page Data pages Intermediate

Key RowID Pointer

Key Pointer

Page 1307
14 Hunter
15 Smith
16 Ringer
17 Greane

Page 1421
18 Bennet
19 Green
20 Yokomoto

Page 1409
21 Dull
22 Greene
23 White

Page 1133
Greane 1307,4
Green 1421,2
Greene 1409,2

Page 1127
Hunter 1307,1
Jenkins 1242,4

Page 1009
Karsen 1411,3 1315

Page 1001
Bennet 1421,1 1007
Karsen 1411,3 1009
Smith 1307,2 1062

Leaf pages

Key RowID Pointer

Nonclustered indexes

288 Adaptive Server Enterprise

Figure 12-8: Selecting rows using a nonclustered index

Nonclustered index performance
The query in Figure 12-8 requires the following I/O:

• One read for the root level page

• One read for the intermediate level page

• One read for the leaf-level page

• One read for the data page

If your applications use a particular nonclustered index frequently, the root and
intermediate pages will probably be in cache, so only one or two physical disk
I/Os need to be performed.

Page 1007
Bennet 1421,1 1132
Greane 1307,4 1133
Hunter 1307,1 1127

Page 1009
Karsen 1411,3 1315

Page 1132
Bennet 1421,1
Chan 1129,3
Dull 1409,1
Edwards 1018,5

Page 1133
Greane 1307,4
Green 1421,2
Greene 1409,2

Page 1127
Hunter 1307,1
Jenkins 1242,4

Page 1001
Bennet 1421,1 1007
Karsen 1411,3 1009
Smith 1307,2 1062

Root page Data pages Intermediate

Key RowID Pointer

Key Pointer

Leaf pages

Key RowID Pointer

select *
from employee
where lname = "Green"

Page 1242
Ray O’Leary
Ron Ringer
Lisa White
Bob Jenkins

Page 1307
Tim Hunter
Liv Smith
Ann Ringer
Jo Greane

Page 1421
Ian Bennet
Andy Green
Les Yokomoto

Page 1409
Chad Dull
Eddy Greene
Gabe White
Kip Greco

CHAPTER 12 How Indexes Work

Performance and Tuning: Basics 289

Nonclustered indexes and insert operations
When you insert rows into a heap that has a nonclustered index and no
clustered index, the insert goes to the last page of the table.

If the heap is partitioned, the insert goes to the last page on one of the partitions.
Then, the nonclustered index is updated to include the new row.

If the table has a clustered index, it is used to find the location for the row. The
clustered index is updated, if necessary, and each nonclustered index is updated
to include the new row.

Figure 12-9 shows an insert into a heap table with a nonclustered index. The
row is placed at the end of the table. A row containing the new key value and
the row ID is also inserted into the leaf level of the nonclustered index.

Figure 12-9: An insert into a heap table with a nonclustered index

Page 1242
Ray O’Leary
Ron Ringer
Lisa White
Bob Jenkins

Page 1307
Tim Hunter
Liv Smith
Ann Ringer
Jo Greane

Page 1421
Ian Bennet
Andy Green
Les Yokomoto

Page 1409
Chad Dull
Edi Greene
Gabe White
Kip Greco

Page 1132
Bennet 1421,1
Chan 1129,3
Dull 1409,1
Edwards 1018,5

Page 1133
Greane 1307,4
Greco 1409,4
Green 1421,2
Greene 1409,2

Page 1127
Hunter 1307,1
Jenkins 1242,4

Page 1007
Bennet 1421,1 1132
Greane 1307,4 1133
Hunter 1307,1 1127

Page 1009
Karsen 1411,3 1315

Page 1001
Bennet 1421,1 1007
Karsen 1411,3 1009
Smith 1307,2 1062

Root page Data pages Intermediate

Key RowID Pointer

Key Pointer

Leaf pages

Key RowID Pointer

insert employees
(empid, lname)
values(24, "Greco")

Nonclustered indexes

290 Adaptive Server Enterprise

Nonclustered indexes and delete operations
When you delete a row from a table, the query can use a nonclustered index on
the columns in the where clause to locate the data row to delete, as shown in
Figure 12-10.

The row in the leaf level of the nonclustered index that points to the data row
is also removed. If there are other nonclustered indexes on the table, the rows
on the leaf level of those indexes are also deleted.

Figure 12-10: Deleting a row from a table with a nonclustered index

If the delete operation removes the last row on the data page, the page is
deallocated and the adjacent page pointers are adjusted in allpages-locked
tables. Any references to the page are also deleted in higher levels of the index.

If the delete operation leaves only a single row on an index intermediate page,
index pages may be merged, as with clustered indexes.

Page 1242
Ray O’Leary
Ron Ringer
Lisa White
Bob Jenkins

Page 1307
Tim Hunter
Liv Smith
Ann Ringer
Jo Greane

Page 1421
Ian Bennet
Andy Green
Les Yokomoto

Page 1409
Chad Dull
Eddy Greene
Gabe White
Kip Greco

Page 1133
Greane 1307,4
Greco 1409,4
Green 1421,2
Greene 1409,2

Page 1127
Hunter 1307,1
Jenkins 1242,4

Page 1001
Bennet 1421,1 1007
Karsen 1411,3 1009
Smith 1307,2 1062

Page 1007
Bennet 1421,1 1132
Greane 1307,4 1133
Hunter 1307,1 1127

Page 1009
Karsen 1411,3 1315

G
reen

Root page Data pages Intermediate

Key RowID Pointer

Key Pointer

Leaf pages

Key RowID Pointer

delete employees
where lname = "Green"

G
reen

Page 1132
Bennet 1421,1
Chan 1129,3
Dull 1409,1
Edwards 1018,5

CHAPTER 12 How Indexes Work

Performance and Tuning: Basics 291

See “Index page merges” on page 285.

There is no automatic page merging on data pages, so if your applications make
many random deletes, you may end up with data pages that have only a single
row, or a few rows, on a page.

Clustered indexes on data-only-locked tables
Clustered indexes on data-only-locked tables are structured like nonclustered
indexes. They have a leaf level above the data pages. The leaf level contains
the key values and row ID for each row in the table.

Unlike clustered indexes on allpages-locked tables, the data rows in a data-
only-locked table are not necessarily maintained in exact order by the key.
Instead, the index directs the placement of rows to pages that have adjacent or
nearby keys.

When a row needs to be inserted in a data-only-locked table with a clustered
index, the insert uses the clustered index key just before the value to be
inserted. The index pointers are used to find that page, and the row is inserted
on the page if there is room. If there is not room, the row is inserted on a page
in the same allocation unit, or on another allocation unit already used by the
table.

To provide nearby space for maintaining data clustering during inserts and
updates to data-only-locked tables, you can set space management properties
to provide space on pages (using fillfactor and exp_row_size) or on allocation
units (using reservepagegap).

See Chapter 9, “Setting Space Management Properties.”

Index covering
Index covering can produce dramatic performance improvements when all
columns needed by the query are included in the index.

You can create indexes on more than one key. These are called composite
indexes. Composite indexes can have up to 31 columns adding up to a
maximum 600 bytes.

Index covering

292 Adaptive Server Enterprise

If you create a composite nonclustered index on each column referenced in the
query’s select list and in any where, having, group by, and order by clauses, the
query can be satisfied by accessing only the index.

Since the leaf level of a nonclustered index or a clustered index on a data-only-
locked table contains the key values for each row in a table, queries that access
only the key values can retrieve the information by using the leaf level of the
nonclustered index as if it were the actual table data. This is called index
covering.

There are two types of index scans that can use an index that covers the query:

• The matching index scan

• The nonmatching index scan

For both types of covered queries, the index keys must contain all the columns
named in the query. Matching scans have additional requirements.

“Choosing composite indexes” on page 312 describes query types that make
good use of covering indexes.

Covering matching index scans
Lets you skip the last read for each row returned by the query, the read that
fetches the data page.

For point queries that return only a single row, the performance gain is slight
— just one page.

For range queries, the performance gain is larger, since the covering index
saves one read for each row returned by the query.

For a covering matching index scan to be used, the index must contain all
columns named in the query. In addition, the columns in the where clauses of
the query must include the leading column of the columns in the index.

For example, for an index on columns A, B, C, and D, the following sets can
perform matching scans: A, AB, ABC, AC, ACD, ABD, AD, and ABCD. The
columns B, BC, BCD, BD, C, CD, or D do not include the leading column and
can be used only for nonmatching scans.

When doing a matching index scan, Adaptive Server uses standard index
access methods to move from the root of the index to the nonclustered leaf page
that contains the first row.

CHAPTER 12 How Indexes Work

Performance and Tuning: Basics 293

In Figure 12-11, the nonclustered index on lname, fname covers the query. The
where clause includes the leading column, and all columns in the select list are
included in the index, so the data page need not be accessed.

Figure 12-11: Matching index access does not have to read the data row

Covering nonmatching index scans
When the columns specified in the where clause do not include the leading
column in the index, but all columns named in the select list and other query
clauses (such as group by or having) are included in the index, Adaptive Server
saves I/O by scanning the entire leaf level of the index, rather than scanning the
table.

It cannot perform a matching scan because the first column of the index is not
specified.

Page 1560
Bennet,Sam 1580,1
Chan,Sandra 1129,3
Dull,Normal 1409,1
Edwards,Linda 1018,5

Page 1561
Greane,Grey 1307,4
Greco,Del 1409,4
Green,Rita 1421,2
Greene,Cindy 1703,2

Page 1843
Hunter,Hugh 1307,1
Jenkins,Ray 1242,4

Page 1544
Bennet,Sam 1580,1 1560
Greane,Grey 1649,4 1561
Hunter,Hugh 1649,1 1843

Root page Data pages Intermediate

Key Pointer

Leaf pages

Key RowID Pointer

select fname, lname
from employees
where lname = "Greene"

Page 1647
10 O’Leary
11 Ringer
12 White
13 Jenkins

Page 1649
14 Hunter
15 Smith
16 Ringer
17 Greane

Page 1580
18 Bennet
20 Yokomoto

Page 1703
21 Dull
22 Greene
23 White
24 Greco

Index covering

294 Adaptive Server Enterprise

The query in Figure 12-12 shows a nonmatching index scan. This query does
not use the leading columns on the index, but all columns required in the query
are in the nonclustered index on lname, fname, emp_id.

The nonmatching scan must examine all rows on the leaf level. It scans all leaf
level index pages, starting from the first page. It has no way of knowing how
many rows might match the query conditions, so it must examine every row in
the index. Since it must begin at the first page of the leaf level, it can use the
pointer in sysindexes.first rather than descending the index.

Figure 12-12: A nonmatching index scan

Page 1544
Bennet,Sam,409... 1580,1 1560
Greane,Grey,486... 1649,4 1561
Hunter,Hugh,457... 1649,1 1843

Page 1561
Greane,Grey,486... 1307,4
Greco,Del,672... 1409,4
Green,Rita,398... 1421,2
Greene,Cindy,127... 1703,2

Page 1843
Hunter,Hugh,457... 1307,1
Jenkins,Ray,723... 1242,4

Page 1560
Bennet,Sam,409... 1580,1
Chan,Sandra,817... 1129,3
Dull,Normal,415... 1409,1
Edwards,Linda,238... 1018,5

Root page Data pages Intermediate

Key Pointer

Leaf pages

Key RowI Pointer

select lname, emp_id
from employees
where fname = "Rita"

Page 1647
10 O’Leary
11 Ringer
12 White
13 Jenkins

Page 1649
14 Hunter
15 Smith
16 Ringer
17 Greane

Page 1580
18 Bennet
20 Yokomoto

Page 1703
21 Dull
22 Greene
23 White
24 Greco

sysindexes.first

CHAPTER 12 How Indexes Work

Performance and Tuning: Basics 295

Indexes and caching
“How Adaptive Server performs I/O for heap operations” on page 172
introduces the basic concepts of the Adaptive Server data cache, and shows
how caches are used when reading heap tables.

Index pages get special handling in the data cache, as follows:

• Root and intermediate index pages always use LRU strategy.

• Index pages can use one cache while the data pages use a different cache,
if the index is bound to a different cache.

• Covering index scans can use fetch-and-discard strategy.

• Index pages can cycle through the cache many times, if number of index
trips is configured.

When a query that uses an index is executed, the root, intermediate, leaf, and
data pages are read in that order. If these pages are not in cache, they are read
into the MRU end of the cache and are moved toward the LRU end as
additional pages are read in.

Each time a page is found in cache, it is moved to the MRU end of the page
chain, so the root page and higher levels of the index tend to stay in the cache.

Using separate caches for data and index pages
Indexes and the tables they index can use different caches. A System
Administrator or table owner can bind a clustered or nonclustered index to one
cache and its table to another.

Index trips through the cache
A special strategy keeps index pages in cache. Data pages make only a single
trip through the cache: they are read in at the MRU end of the cache or placed
just before the wash marker, depending on the cache strategy chosen for the
query.

Once the pages reach the LRU end of the cache, the buffer for that page is
reused when another page needs to be read into cache.

For index pages, a counter controls the number of trips that an index page can
make through the cache.

Indexes and caching

296 Adaptive Server Enterprise

When the counter is greater than 0 for an index page, and it reaches the LRU
end of the page chain, the counter is decremented by 1, and the page is placed
at the MRU end again.

By default, the number of trips that an index page makes through the cache is
set to 0. To change the default, a System Administrator can set the number of
index trips configuration parameter

For more information, see the System Administration Guide.

Performance and Tuning: Basics 297

C H A P T E R 1 3 Indexing for Performance

This chapter introduces the basic query analysis tools that can help you
choose appropriate indexes and discusses index selection criteria for point
queries, range queries, and joins.

How indexes affect performance
Carefully considered indexes, built on top of a good database design, are
the foundation of a high-performance Adaptive Server installation.
However, adding indexes without proper analysis can reduce the overall
performance of your system. Insert, update, and delete operations can take
longer when a large number of indexes need to be updated.

Analyze your application workload and create indexes as necessary to
improve the performance of the most critical processes.

The Adaptive Server query optimizer uses a probabilistic costing model.
It analyzes the costs of possible query plans and chooses the plan that has
the lowest estimated cost. Since much of the cost of executing a query
consists of disk I/O, creating the correct indexes for your applications
means that the optimizer can use indexes to:

• Avoid table scans when accessing data

Topic Page
How indexes affect performance 297

Symptoms of poor indexing 298

Detecting indexing problems 298

Fixing corrupted indexes 301

Index limits and requirements 304

Choosing indexes 305

Techniques for choosing indexes 315

Index and statistics maintenance 317

Additional indexing tips 319

Detecting indexing problems

298 Adaptive Server Enterprise

• Target specific data pages that contain specific values in a point query

• Establish upper and lower bounds for reading data in a range query

• Avoid data page access completely, when an index covers a query

• Use ordered data to avoid sorts or to favor merge joins over nested-loop
joins

In addition, you can create indexes to enforce the uniqueness of data and to
randomize the storage location of inserts.

Detecting indexing problems
Some of the major indicationsof insufficient or incorrect indexing include:

• A select statement takes too long.

• A join between two or more tables takes an extremely long time.

• Select operations perform well, but data modification processes perform
poorly.

• Point queries (for example, “where colvalue = 3”) perform well, but range
queries (for example, “where colvalue > 3 and colvalue < 30”) perform
poorly.

These underlying problems are described in the following sections.

Symptoms of poor indexing
A primary goal of improving performance with indexes is avoiding table scans.
In a table scan, every page of the table must be read from disk.

A query searching for a unique value in a table that has 600 data pages requires
600 physical and logical reads. If an index points to the data value, the same
query can be satisfied with 2 or 3 reads, a performance improvement of 200 to
300 percent.

On a system with a 12-ms. disk, this is a difference of several seconds
compared to less than a second. Heavy disk I/O by a single query has a negative
impact on overall throughput.

CHAPTER 13 Indexing for Performance

Performance and Tuning: Basics 299

Lack of indexes is causing table scans

If select operations and joins take too long, it probably indicates that either an
appropriate index does not exist or, it exists, but is not being used by the
optimizer.

showplan output reports whether the table is being accessed via a table scan or
index. If you think that an index should be used, but showplan reports a table
scan, dbcc traceon(302) output can help you determine the reason. It displays
the costing computations for all optimizing query clauses.

If there is no clause is included in dbcc traceon(302) output, there may be
problems with the way the clause is written. If a clause that you think should
limit the scan is included in dbcc traceon(302) output, look carefully at its
costing, and that of the chosen plan reported with dbcc traceon(310).

Index is not selective enough

An index is selective if it helps the optimizer find a particular row or a set of
rows. An index on a unique identifier such as a Social Security Number is
highly selective, since it lets the optimizer pinpoint a single row. An index on
a nonunique entry such as sex (M, F) is not very selective, and the optimizer
would use such an index only in very special cases.

Index does not support range queries

Generally, clustered indexes and covering indexes provide good performance
for range queries and for search arguments (SARG) that match many rows.
Range queries that reference the keys of noncovering indexes use the index for
ranges that return a limited number of rows.

As the number of rows the query returns increases, however, using a
nonclustered index or a clustered index on a data-only-locked table can cost
more than a table scan.

Too many indexes slow data modification

If data modification performance is poor, you may have too many
indexes.While indexes favor select operations, they slow down data
modifications.

Every insert or delete operation affects the leaf level, (and sometimes higher
levels) of a clustered index on a data-only-locked table, and each nonclustered
index, for any locking scheme.

Detecting indexing problems

300 Adaptive Server Enterprise

Updates to clustered index keys on allpages-locked tables can move the rows
to different pages, requiring an update of every nonclustered index. Analyze
the requirements for each index and try to eliminate those that are unnecessary
or rarely used.

Index entries are too large

Try to keep index entries as small as possible. You can create indexes with keys
up to 600 bytes, but those indexes can store very few rows per index page,
which increases the amount of disk I/O needed during queries. The index has
more levels, and each level has more pages.

The following example uses values reported by sp_estspace to demonstrate
how the number of index pages and leaf levels required increases with key size.
It creates nonclustered indexes using 10-, 20, and 40-character keys.

create table demotable (c10 char(10),
c20 char(20),
c40 char(40))

create index t10 on demotable(c10)
create index t20 on demotable(c20)
create index t40 on demotable(c40)
sp_estspace demotable, 500000

Table 13-1 shows the results.

Table 13-1: Effects of key size on index size and levels

The output shows that the indexes for the 10-column and 20-column keys each
have three levels, while the 40-column key requires a fourth level.

The number of pages required is more than 50 percent higher at each level.

Exception for wide data rows and wide index rows

Indexes with wide rows may be useful when:

• The table has very wide rows, resulting in very few rows per data page.

• The set of queries run on the table provides logical choices for a covering
index.

Index, key size Leaf-level pages Index levels

t10, 10 bytes 4311 3

t20, 20 bytes 6946 3

t40, 40 bytes 12501 4

CHAPTER 13 Indexing for Performance

Performance and Tuning: Basics 301

• Queries return a sufficiently large number of rows.

For example, if a table has very long rows, and only one row per page, a query
that needs to return 100 rows needs to access 100 data pages. An index that
covers this query, even with long index rows, can improve performance.

For example, if the index rows were 240 bytes, the index would store 8 rows
per page, and the query would need to access only 12 index pages.

Fixing corrupted indexes
If the index on one of your system tables has been corrupted, you can use the
sp_fixindex system procedure to repair the index. For syntax information, see
the entry for sp_fixindex in “System Procedures” in the Adaptive Server
Reference Manual.

Repairing the system table index
Repairing a corrupted system table index requires the following steps:

❖ Repairing the system table index with sp_fixindex

1 Get the object_name, object_ID, and index_ID of the corrupted index. If
you only have a page number and you need to find the object_name, see
the Adaptive Server Troubleshooting and Error Messages Guide for
instructions.

2 If the corrupted index is on a system table in the master database, put
Adaptive Server in single-user mode. See the Adaptive Server
Troubleshooting and Error Messages Guide for instructions.

3 If the corrupted index is on a system table in a user database, put the
database in single-user mode and reconfigure to allow updates to system
tables:

1> use master
2> go
1> sp_dboption database_name, "single user", true
2> go
1> sp_configure "allow updates", 1
2> go

4 Issue the sp_fixindex command:

Fixing corrupted indexes

302 Adaptive Server Enterprise

1> use database_name
2> go

1> checkpoint
2> go

1> sp_fixindex database_name, object_name, index_ID
2> go

You can use the checkpoint to identify the one or more databasess or use
an all clause.

checkpoint [all | [dbname[, dbname[, dbname.....]]]

Note You must possess sa_role permissions to run sp_fixindex.

5 Run dbcc checktable to verify that the corrupted index is now fixed.

6 Disallow updates to system tables:

1> use master
2> go

1> sp_configure "allow updates", 0
2> go

7 Turn off single-user mode:

1> sp_dboption database_name, "single user", false
2> go

1> use database_name
2> go

1> checkpoint
2> go

You can use the checkpoint to identify the one or more databasess or use
an all clause, which means you do not have to issue the use database
command.

checkpoint [all | [dbname[, dbname[, dbname.....]]]

Repairing a nonclustered index

Running sp_fixindex to repair a nonclustered index on sysobjects requires
several additional steps.

CHAPTER 13 Indexing for Performance

Performance and Tuning: Basics 303

❖ Repairing a nonclustered index on sysobjects

1 Perform steps 1-3, as described in “Repairing the system table index with
sp_fixindex,” above.

2 Issue the following Transact-SQL query:

1> use database_name
2> go

1> checkpoint
2> go

1> select sysstat from sysobjects
2> where id = 1
3> go

You can use the checkpoint to identify the one or more databasess or use
an all clause.

checkpoint [all | [dbname[, dbname[, dbname.....]]]

3 Save the original sysstat value.

4 Change the sysstat column to the value required by sp_fixindex:

1> update sysobjects
2> set sysstat = sysstat | 4096
3> where id = 1
4> go

5 Run sp_fixindex:

1> sp_fixindex database_name, sysobjects, 2
2> go

6 Restore the original sysstat value:

1> update sysobjects
2> set sysstat = sysstat_ORIGINAL
3> where id = object_ID
4> go

7 Run dbcc checktable to verify that the corrupted index is now fixed.

8 Disallow updates to system tables:

1> sp_configure "allow updates", 0
2> go

9 Turn off single-user mode:

1> sp_dboption database_name, "single user", false
2> go

Index limits and requirements

304 Adaptive Server Enterprise

1> use database_name
2> go

1> checkpoint
2> go

You can use the checkpoint to identify the one or more databasess or use
an all clause.

checkpoint [all | [dbname[, dbname[, dbname.....]]]

Index limits and requirements
The following limits apply to indexes in Adaptive Server:

• You can create only one clustered index per table, since the data for a
clustered index is ordered by index key.

• You can create a maximum of 249 nonclustered indexes per table.

• A key can be made up of as many as 31 columns. The maximum number
of bytes per index key is 600.

• When you create a clustered index, Adaptive Server requires empty free
space to copy the rows in the table and allocate space for the clustered
index pages. It also requires space to re-create any nonclustered indexes
on the table.

The amount of space required can vary, depending on how full the table’s
pages are when you begin and what space management properties are
applied to the table and index pages.

See “Determining the space available for maintenance activities” on page
356 for more information.

• The referential integrity constraints unique and primary key create unique
indexes to enforce their restrictions on the keys. By default, unique
constraints create nonclustered indexes and primary key constraints create
clustered indexes.

CHAPTER 13 Indexing for Performance

Performance and Tuning: Basics 305

Choosing indexes
When you are working with index selection you may want to ask these
questions:

• What indexes are associated currently with a given table?

• What are the most important processes that make use of the table?

• What is the ratio of select operations to data modifications performed on
the table?

• Has a clustered index been created for the table?

• Can the clustered index be replaced by a nonclustered index?

• Do any of the indexes cover one or more of the critical queries?

• Is a composite index required to enforce the uniqueness of a compound
primary key?

• What indexes can be defined as unique?

• What are the major sorting requirements?

• Do some queries use descending ordering of result sets?

• Do the indexes support joins and referential integrity checks?

• Does indexing affect update types (direct versus deferred)?

• What indexes are needed for cursor positioning?

• If dirty reads are required, are there unique indexes to support the scan?

• Should IDENTITY columns be added to tables and indexes to generate
unique indexes? Unique indexes are required for updatable cursors and
dirty reads.

When deciding how many indexes to use, consider:

• Space constraints

• Access paths to table

• Percentage of data modifications versus select operations

• Performance requirements of reports versus OLTP

• Performance impacts of index changes

• How often you can use update statistics

Choosing indexes

306 Adaptive Server Enterprise

Index keys and logical keys
Index keys need to be differentiated from logical keys. Logical keys are part of
the database design, defining the relationships between tables: primary keys,
foreign keys, and common keys.

When you optimize your queries by creating indexes, the logical keys may or
may not be used as the physical keys for creating indexes. You can create
indexes on columns that are not logical keys, and you may have logical keys
that are not used as index keys.

Choose index keys for performance reasons. Create indexes on columns that
support the joins, search arguments, and ordering requirements in queries.

A common error is to create the clustered index for a table on the primary key,
even though it is never used for range queries or ordering result sets.

Guidelines for clustered indexes
These are general guidelines for clustered indexes:

• Most allpages-locked tables should have clustered indexes or use
partitions to reduce contention on the last page of heaps.

In a high-transaction environment, the locking on the last page severely
limits throughput.

• If your environment requires a lot of inserts, do not place the clustered
index key on a steadily increasing value such as an IDENTITY column.

Choose a key that places inserts on random pages to minimize lock
contention while remaining useful in many queries. Often, the primary key
does not meet this condition.

This problem is less severe on data-only-locked tables, but is a major
source of lock contention on allpages-locked tables.

• Clustered indexes provide very good performance when the key matches
the search argument in range queries, such as:

where colvalue >= 5 and colvalue < 10

In allpages-locked tables, rows are maintained in key order and pages are
linked in order, providing very fast performance for queries using a
clustered index.

In data-only-locked tables, rows are in key order after the index is created,
but the clustering can decline over time.

CHAPTER 13 Indexing for Performance

Performance and Tuning: Basics 307

• Other good choices for clustered index keys are columns used in order by
clauses and in joins.

• If possible, do not include frequently updated columns as keys in clustered
indexes on allpages-locked tables.

When the keys are updated, the rows must be moved from the current
location to a new page. Also, if the index is clustered, but not unique,
updates are done in deferred mode.

Choosing clustered indexes
Choose indexes based on the kinds of where clauses or joins you perform.
Choices for clustered indexes are:

• The primary key, if it is used for where clauses and if it randomizes inserts

• Columns that are accessed by range, such as:

col1 between 100 and 200
col12 > 62 and < 70

• Columns used by order by

• Columns that are not frequently changed

• Columns used in joins

If there are several possible choices, choose the most commonly needed
physical order as a first choice.

As a second choice, look for range queries. During performance testing, check
for “hot spots” due to lock contention.

Candidates for nonclustered indexes
When choosing columns for nonclustered indexes, consider all the uses that
were not satisfied by your clustered index choice. In addition, look at columns
that can provide performance gains through index covering.

On data-only-locked tables, clustered indexes can perform index covering,
since they have a leaf level above the data level.

On allpages-locked tables, noncovered range queries work well for clustered
indexes, but may or may not be supported by nonclustered indexes, depending
on the size of the range.

Choosing indexes

308 Adaptive Server Enterprise

Consider using composite indexes to cover critical queries and to support less
frequent queries:

• The most critical queries should be able to perform point queries and
matching scans.

• Other queries should be able to perform nonmatching scans using the
index, which avoids table scans.

Index Selection
Index selection allows you to determine which indexes are actively being used
and those that are rarely used.

This section assumes that the monitoring tables feature is already set up, see
Performance and Tuning: Monitoring and Analyzing for Performance, and
includes the following steps:

• Add a 'loopback' server definition.

• Run installmontables to install the monitoring tables.

• Grant mon_role to all users who need to perform monitoring.

• Set the monitoring configuration parameters. For more information, see
Performance and Tuning: Monitoring and Analyzing for Performance.

You can use sp_monitorconfig to track whether number of open objects or
number of open indexes are sufficiently configured.

Index selection-usage uses the following five columns of the monitoring
access table, monOpenObjectActivity:

• IndexID – unique identifier for the index.

• OptSelectCount – reports the number of times that the corresponding
object (such as a table or index) was used as the access method by the
optimizer.

• LastOptSelectDate – reports the last time OptSelectCount was incremented

• UsedCount – reports the number of times that the corresponding object
(such as a table or index) was used as an access method when a query
executed.

• LastUsedDate – reports the last time UsedCount was incremented.

CHAPTER 13 Indexing for Performance

Performance and Tuning: Basics 309

If a plan has already been compiled and cached, OptSelectCount is not
incremented each time the plan is executed. However, UsedCount is
incremented when a plan is executed. If no exec is on, OptSelectCount value
is 3incremented, but the UsedCount value does not.

Monitoring data is nonpersistent. That is, when you restart the server, the
monitoring data is reset. Monitoring data is reported only for active objects.
For example, monitoring data does not exist for objects that have not been
opened since there are no active object descriptors for such objects. For
systems that are inadequately configured and have reused object descriptors,
monitoring data for these object descriptors is reinitialized and the data for the
previous object is lost. When the old object is reopened, its monitoring data is
reset.

Examples of using the index selection

The following example queries the monitoring tables for the last time all
indexes for a specific object were selected by the optimizer as well as the last
time they were actually used during execution, and reports the counts in each
case:

select DBID, ObjectID, IndexID, OptSelectCount, LastOptSelectDate, UsedCount,
LastUsedDate
from monOpenObjectActivity
where DBID = db_id("financials_db") and ObjectID = object_id(’expenses’)
order by UsedCount

This exmaple displays all indexes that are not currently used in an application
or server:

select DBID , ObjectID, IndexID , object_name(ObjectID, DBID)
from monOpenObjectActivity
where DBID = db_id("financials_db") and OptSelectCount = 0

This example displays all indexes that are not currently used in an application,
and also provides a sample output:

select DBID , ObjectID, IndexID , object_name(ObjectID, DBID)
from monOpenObjectActivity
where DBID = db_id("financials_db") and OptSelectCount = 0
ObjectName id IndexName OptCtLast OptSelectDate
UsedCount LastUsedDate
---------- --- --------------------- ------------ -----------------
----- --------------------------
customer 2 ci_nkey_ckey 3 Sep 27 2002 4:05PM
20 Sep 27 2002 4:05PM
customer 0 customer_x 3 Sep 27 2002 4:08PM

Choosing indexes

310 Adaptive Server Enterprise

5 Sep 27 2002 4:08PM
customer 1 customer_x 1 Sep 27 2002 4:06PM
5 Sep 27 2002 4:07PM
customer 3 ci_ckey_nkey 1 Sep 27 2002 4:04PM
5 Sep 27 2002 4:05PM
customer 4 customer_nation 0 Jan 1 1900 12:00AM
0 Jan 1 1900 12:00AM

In this example, the customer_nation index has not been used, which results in
the date “Jan 1 1900 12:00AM”.

Other indexing guidelines
Here are some other considerations for choosing indexes:

• If an index key is unique, define it as unique so the optimizer knows
immediately that only one row matches a search argument or a join on the
key.

• If your database design uses referential integrity (the references keyword
or the foreign key...references keywords in the create table statement), the
referenced columns must have a unique index, or the attempt to create the
referential integrity constraint fails.

However, Adaptive Server does not automatically create an index on the
referencing column. If your application updates primary keys or deletes
rows from primary key tables, you may want to create an index on the
referencing column so that these lookups do not perform a table scan.

• If your applications use cursors, see “Index use and requirements for
cursors” on page 331.

• If you are creating an index on a table where there will be a lot of insert
activity, use fillfactor to temporarily minimize page splits and improve
concurrency and minimize deadlocking.

• If you are creating an index on a read-only table, use a fillfactor of 100 to
make the table or index as compact as possible.

• Keep the size of the key as small as possible. Your index trees remain
flatter, accelerating tree traversals.

• Use small datatypes whenever it fits your design.

• Numerics compare slightly faster than strings internally.

CHAPTER 13 Indexing for Performance

Performance and Tuning: Basics 311

• Variable-length character and binary types require more row overhead
than fixed-length types, so if there is little difference between the
average length of a column and the defined length, use fixed length.
Character and binary types that accept null values are variable-length
by definition.

• Whenever possible, use fixed-length, non-null types for short
columns that will be used as index keys.

• Be sure that the datatypes of the join columns in different tables are
compatible. If Adaptive Server has to convert a datatype on one side of a
join, it may not use an index for that table.

See“Datatype mismatches and query optimization” on page 24 in
Performance and Tuning: Optimizer for more information.

Choosing nonclustered indexes
When you consider adding nonclustered indexes, you must weigh the
improvement in retrieval time against the increase in data modification time. In
addition, you need to consider these questions:

• How much space will the indexes use?

• How volatile is the candidate column?

• How selective are the index keys? Would a scan be better?

• Are there a lot of duplicate values?

Because of data modification overhead, add nonclustered indexes only when
your testing shows that they are helpful.

Performance price for data modification

Each nonclustered index needs to be updated, for all locking schemes:

• For each insert into the table

• For each delete from the table

An update to the table that changes part of an index’s key requires updating just
that index.

For tables that use allpages locking, all indexes need to be updated:

Choosing indexes

312 Adaptive Server Enterprise

• For any update that changes the location of a row by updating a clustered
index key so that the row moves to another page

• For every row affected by a data page split

For allpages-locked tables, exclusive locks are held on affected index pages for
the duration of the transaction, increasing lock contention as well as processing
overhead.

Some applications experience unacceptable performance impacts with only
three or four indexes on tables that experience heavy data modification. Other
applications can perform well with many more tables.

Choosing composite indexes
If your analysis shows that more than one column is a good candidate for a
clustered index key, you may be able to provide clustered-like access with a
composite index that covers a particular query or set of queries. These include:

• Range queries.

• Vector (grouped) aggregates, if both the grouped and grouping columns
are included. Any search arguments must also be included in the index.

• Queries that return a high number of duplicates.

• Queries that include order by.

• Queries that table scan, but use a small subset of the columns on the table.

Tables that are read-only or read-mostly can be heavily indexed, as long as your
database has enough space available. If there is little update activity and high
select activity, you should provide indexes for all of your frequent queries. Be
sure to test the performance benefits of index covering.

Key order and performance in composite indexes
Covered queries can provide excellent response time for specific queries when
the leading columns are used.

With the composite nonclustered index on au_lname, au_fname, au_id, this
query runs very quickly:

select au_id
 from authors
where au_fname = "Eliot" and au_lname = "Wilk"

CHAPTER 13 Indexing for Performance

Performance and Tuning: Basics 313

This covered point query needs to read only the upper levels of the index and
a single page in the leaf-level row in the nonclustered index of a 5000-row
table.

This similar-looking query (using the same index) does not perform quite as
well. This query is still covered, but searches on au_id:

select au_fname, au_lname
 from authors
where au_id = "A1714224678"

Since this query does not include the leading column of the index, it has to scan
the entire leaf level of the index, about 95 reads.

Adding a column to the select list in the query above, which may seem like a
minor change, makes the performance even worse:

select au_fname, au_lname, phone
 from authors
where au_id = "A1714224678"

This query performs a table scan, reading 222 pages. In this case, the
performance is noticeably worse. For any search argument that is not the
leading column, Adaptive Server has only two possible access methods: a table
scan, or a covered index scan.

It does not scan the leaf level of the index for a non-leading search argument
and then access the data pages. A composite index can be used only when it
covers the query or when the first column appears in the where clause.

For a query that includes the leading column of the composite index, adding a
column that is not included in the index adds only a single data page read. This
query must read the data page to find the phone number:

select au_id, phone
 from authors
where au_fname = "Eliot" and au_lname = "Wilk"

Table 13-2 shows the performance characteristics of different where clauses
with a nonclustered index on au_lname, au_fname, au_id and no other indexes
on the table.

Table 13-2: Composite nonclustered index ordering and performance

Columns in the where clause
Performance with the indexed
columns in the select list

Performance with other
columns in the select list

au_lname

or au_lname, au_fname

or au_lname, au_fname, au_id

Good; index used to descend tree; data
level is not accessed

Good; index used to descend tree;
data is accessed (one more page
read per row)

Choosing indexes

314 Adaptive Server Enterprise

Choose the ordering of the composite index so that most queries form a prefix
subset.

Advantages and disadvantages of composite indexes
Composite indexes have these advantages:

• A composite index provides opportunities for index covering.

• If queries provide search arguments on each of the keys, the composite
index requires fewer I/Os than the same query using an index on any single
attribute.

• A composite index is a good way to enforce the uniqueness of multiple
attributes.

Good choices for composite indexes are:

• Lookup tables

• Columns that are frequently accessed together

• Columns used for vector aggregates

• Columns that make a frequently used subset from a table with very wide
rows

The disadvantages of composite indexes are:

• Composite indexes tend to have large entries. This means fewer
index entries per index page and more index pages to read.

• An update to any attribute of a composite index causes the index to be
modified. The columns you choose should not be those that are updated
often.

Poor choices are:

• Indexes that are nearly as wide as the table

• Composite indexes where only a minor key is used in the where clause

au_fname

or au_id

or au_fname, au_id

Moderate; index is scanned to return
values

Poor; index not used, table scan

Columns in the where clause
Performance with the indexed
columns in the select list

Performance with other
columns in the select list

CHAPTER 13 Indexing for Performance

Performance and Tuning: Basics 315

Techniques for choosing indexes
This section presents a study of two queries that must access a single table, and
the indexing choices for these two queries. The two queries are:

• A range query that returns a large number of rows

• A point query that returns only one or two rows

Choosing an index for a range query
Assume that you need to improve the performance of the following query:

select title
from titles
where price between $20.00 and $30.00

Some basic statistics on the table are:

• The table has 1,000,000 rows, and uses allpages locking.

• There are 10 rows per page; pages are 75 percent full, so the table has
approximately 135,000 pages.

• 190,000 (19%) of the titles are priced between $20 and $30.

With no index, the query would scan all 135,000 pages.

With a clustered index on price, the query would find the first $20 book and
begin reading sequentially until it gets to the last $30 book. With pages about
75 percent full, the average number of rows per page is 7.5. To read 190,000
matching rows, the query would read approximately 25,300 pages, plus 3 or 4
index pages.

With a nonclustered index on price and random distribution of price values,
using the index to find the rows for this query requires reading about 19 percent
of the leaf level of the index, about 1,500 pages.

If the price values are randomly distributed, the number of data pages that must
be read is likely to be high, perhaps as many data pages as there are qualifying
rows, 190,000. Since a table scan requires only 135,000 pages, you would not
want to use this nonclustered.

Techniques for choosing indexes

316 Adaptive Server Enterprise

Another choice is a nonclustered index on price, title. The query can perform a
matching index scan, using the index to find the first page with a price of $20,
and then scanning forward on the leaf level until it finds a price of more than
$30. This index requires about 35,700 leaf pages, so to scan the matching leaf
pages requires reading about 19 percent of the pages of this index, or about
6,800 reads.

For this query, the covering nonclustered index on price, title is best.

Adding a point query with different indexing requirements
The index choice for the range query on price produced a clear performance
choice when all possibly useful indexes were considered. Now, assume this
query also needs to run against titles:

select price
from titles
where title = "Looking at Leeks"

You know that there are very few duplicate titles, so this query returns only one
or two rows.

Considering both this query and the previous query, Table 13-3 shows four
possible indexing strategies and estimate costs of using each index. The
estimates for the numbers of index and data pages were generated using a
fillfactor of 75 percent with sp_estspace:

sp_estspace titles, 1000000, 75

The values were rounded for easier comparison.

Table 13-3: Comparing index strategies for two queries

Possible index choice Index pages Range query on price Point query on title

1 Nonclustered on title
Clustered on price

36,800
650

Clustered index, about 26,600
pages (135,000 *.19)

With 16K I/O: 3,125 I/Os

Nonclustered index, 6 I/Os

2 Clustered on title
Nonclustered on price

3,770
6,076

Table scan, 135,000 pages

With 16K I/O: 17,500 I/Os

Clustered index, 6 I/Os

3 Nonclustered on title,
price

36,835 Nonmatching index scan,
about 35,700 pages

With 16K I/O: 4,500 I/Os

Nonclustered index,
5 I/Os

4 Nonclustered on price,
title

36,835 Matching index scan, about
6,800 pages (35,700 *.19)

With 16K I/O: 850 I/Os

Nonmatching index scan,
about 35,700 pages

With 16K I/O: 4,500 I/Os

CHAPTER 13 Indexing for Performance

Performance and Tuning: Basics 317

Examining the figures in Table 13-3 shows that:

• For the range query on price, choice 4 is best; choices 1 and 3 are
acceptable with 16K I/O.

• For the point query on titles, indexing choices 1, 2, and 3 are excellent.

The best indexing strategy for a combination of these two queries is to use two
indexes:

• Choice 4, for range queries on price.

• Choice 2, for point queries on title, since the clustered index requires very
little space.

You may need additional information to help you determine which indexing
strategy to use to support multiple queries. Typical considerations are:

• What is the frequency of each query? How many times per day or per hour
is the query run?

• What are the response time requirements? Is one of them especially time
critical?

• What are the response time requirements for updates? Does creating more
than one index slow updates?

• Is the range of values typical? Is a wider or narrower range of prices, such
as $20 to $50, often used? How do different ranges affect index choice?

• Is there a large data cache? Are these queries critical enough to provide a
35,000-page cache for the nonclustered composite indexes in index choice
3 or 4? Binding this index to its own cache would provide very fast
performance.

• What other queries and what other search arguments are used? Is this table
frequently joined with other tables?

Index and statistics maintenance
To ensure that indexes evolve with your system:

• Monitor queries to determine if indexes are still appropriate for your
applications.

Index and statistics maintenance

318 Adaptive Server Enterprise

Periodically, check the query plans, as described in Chapter 5, “Using set
showplan,” in the Performance and Tuning: Monitoring and Analyzing for
Performance book and the I/O statistics for your most frequent user
queries. Pay special attention to noncovering indexes that support range
queries. They are most likely to switch to table scans if the data
distribution changes

• Drop and rebuild indexes that hurt performance.

• Keep index statistics up to date.

• Use space management properties to reduce page splits and to reduce the
frequency of maintenance operations.

Dropping indexes that hurt performance
Drop indexes that hurt performance. If an application performs data
modifications during the day and generates reports at night, you may want to
drop some indexes in the morning and re-create them at night.

Many system designers create numerous indexes that are rarely, if ever,
actually used by the query optimizer. Make sure that you base indexes on the
current transactions and processes that are being run, not on the original
database design.

Check query plans to determine whether your indexes are being used.

Foe more information on maintaining indexes see “Maintaining index and
column statistics” on page 346 and “Rebuilding indexes” on page 347.

Choosing space management properties for indexes
Space management properties can help reduce the frequency of index
maintenance. In particular, fillfactor can reduce the number of page splits on
leaf pages of nonclustered indexes and on the data pages of allpages-locked
tables with clustered indexes.

See Chapter 9, “Setting Space Management Properties,” for more information
on choosing fillfactor values for indexes.

CHAPTER 13 Indexing for Performance

Performance and Tuning: Basics 319

Additional indexing tips
Here are some additional suggestions that can lead to improved performance
when you are creating and using indexes:

• Modify the logical design to make use of an artificial column and a lookup
table for tables that require a large index entry.

• Reduce the size of an index entry for a frequently used index.

• Drop indexes during periods when frequent updates occur and rebuild
them before periods when frequent selects occur.

• If you do frequent index maintenance, configure your server to speed up
the sorting.

See “Configuring Adaptive Server to speed sorting” on page 344 for
information about configuration parameters that enable faster sorting.

Creating artificial columns
When indexes become too large, especially composite indexes, it is beneficial
to create an artificial column that is assigned to a row, with a secondary lookup
table that is used to translate between the internal ID and the original columns.

This may increase response time for certain queries, but the overall
performance gain due to a more compact index and shorter data rows is usually
worth the effort.

Keeping index entries short and avoiding overhead
Avoid storing purely numeric IDs as character data. Use integer or numeric IDs
whenever possible to:

• Save storage space on the data pages

• Make index entries more compact

• Improve performance, since internal comparisons are faster

Index entries on varchar columns require more overhead than entries on char
columns. For short index keys, especially those with little variation in length in
the column data, use char for more compact index entries.

Asynchronous log service

320 Adaptive Server Enterprise

Dropping and rebuilding indexes
You might drop nonclustered indexes prior to a major set of inserts, and then
rebuild them afterwards. In that way, the inserts and bulk copies go faster, since
the nonclustered indexes do not have to be updated with every insert.

For more information, see “Rebuilding indexes” on page 347.

Configure enough sort buffers
The sort buffers decides how many pages of data you can sort in each run. That
is the basis for the logrithmic function on calculating the number of runs
needed to finish the sort.

For example, if you have 500 buffers, then the number of runs is calculated
with "log (number of pages in table) with 500 as the log base".

Also note that the number of sort buffers is shared by threads in the parallel
sort, if you do not have enough sort buffers, the parallel sort may not work as
fast as it should.

Create the clustered index first
Do not create nonclustered indexes, then clustered indexes. When you create
the clustered index all previous nonclustered indexes are rebuilt.

Configure large buffer pools
To set up for larger O/Os, configure large buffers pools in a named cache and
bind the cache to the table.

Asynchronous log service
Asynchronous log service, or ALS, enables great scalability in Adaptive
Server, providing higher throughput in logging subsystems for high-end
symmetric multiprocessor systems.

CHAPTER 13 Indexing for Performance

Performance and Tuning: Basics 321

You cannot use ALS if you have fewer than 4 engines. If you try to enable ALS
with fewer than 4 online engines an error message appears.

Enabling ALS You can enable, disable, or configure ALS using the sp_dboption stored
procedure.

sp_dboption <db Name>, "async log service",
"true|false"

Issuing a checkpoint After issuing sp_dboption, you must issue a checkpoint in the database for
which you are setting the ALS option:

sp_dboption "mydb", "async log service", "true"
use mydb
checkpoint

You can use the checkpoint to identify the one or more databasess or use an all
clause.

checkpoint [all | [dbname[, dbname[, dbname.....]]]

Disabling ALS Before you disable ALS, make sure there are no active users in the database. If
there are, you receive an error message when you issue the checkpoint:

sp_dboption "mydb", "async log service", "false"
use mydb
checkpoint

Error 3647: Cannot put database in single-user mode.
Wait until all users have logged out of the database and
issue a CHECKPOINT to disable "async log service".

If there are no active users in the database, this example disables ALS:

sp_dboption "mydb", "async log service", "false"
use mydb
checkpoint

Displaying ALS You can see whether ALS is enabled in a specified database by checking
sp_helpdb.

sp_helpdb "mydb"

mydb 3.0 MB sa 2

July 09, 2002
select into/bulkcopy/pllsort, trunc log on chkpt,

async log service

Asynchronous log service

322 Adaptive Server Enterprise

Understanding the user log cache (ULC) architecture
Adaptive Server’s logging architecture features the user log cache, or ULC, by
which each task owns its own log cache. No other task can write to this cache,
and the task continues writing to the user log cache whenever a transaction
generates a log record. When the transaction commits or aborts, or the user log
cache is full, the user log cache is flushed to the common log cache, shared by
all the current tasks, which is then written to the disk.

Flushing the ULC is the first part of a commit or abort operation. It requires the
following steps, each of which can cause delay or increase contention:

1 Obtaining a lock on the last log page.

2 Allocating new log pages if necessary.

3 Copying the log records from the ULC to the log cache.

The processes in steps 2 and 3 require you to hold a lock on the last log
page, which prevents any other tasks from writing to the log cache or
performing commit or abort operations.

4 Flush the log cache to disk.

Step 4 requires repeated scanning of the log cache to issue write commands
on dirty buffers.

Repeated scanning can cause contention on the buffer cache spinlock to
which the log is bound. Under a large transaction load, contention on this
spinlock can be significant.

When to use ALS
You can enable ALS on any specified database that has at least one of the
following performance issues, so long as your systems runs 4 or more online
engines:

• Heavy contention on the last log page.

You can tell that the last log page is under contention when the sp_sysmon
output in the Task Management Report section shows a significantly high
value. For example:

CHAPTER 13 Indexing for Performance

Performance and Tuning: Basics 323

Table 13-4: Log page under contention

• Heavy contention on the cache manager spinlock for the log cache.

You can tell that the cache manager spinlock is under contention when the
sp_sysmon output in the Data Cache Management Report section for the
database transaction log cache shows a high value in the Spinlock
Contention section. For example:

Table 13-5:

• Underutilized bandwidth in the log device.

Note You should use ALS only when you identify a single database with high
transaction requirements, since setting ALS for multiple databases may cause
unexpected variations in throughput and response times. If you want to
configure ALS on multiple databases, first check that your throughput and
response times are satisfactory.

Using the ALS
Two threads scan the dirty buffers (buffers full of data not yet written to the
disk), copy the data, and write it to the log. These threads are:

• The User Log Cache (ULC) flusher

• The Log Writer.

Task
Management per sec per xact count % of total

Log Semaphore
Contention

58.0 0.3 34801 73.1

Cache c_log per sec per xact count % of total

Spinlock
Contention

n/a n/a n/a 40.0%

Asynchronous log service

324 Adaptive Server Enterprise

ULC flusher

The ULC flusher is a system task thread that is dedicated to flushing the user
log cache of a task into the general log cache. When a task is ready to commit,
the user enters a commit request into the flusher queue. Each entry has a
handle, by which the ULC flusher can access the ULC of the task that queued
the request. The ULC flusher task continuously monitors the flusher queue,
removing requests from the queue and servicing them by flushing ULC pages
into the log cache.

Log writer

Once the ULC flusher has finished flushing the ULC pages into the log cache,
it queues the task request into a wakeup queue. The log writer patrols the dirty
buffer chain in the log cache, issuing a write command if it finds dirty buffers,
and monitors the wakeup queue for tasks whose pages are all written to disk.
Since the log writer patrols the dirty buffer chain, it knows when a buffer is
ready to write to disk.

Changes in stored procedures

Asynchronous log service changes the stored procedures sp_dboption and
sp_helpdb:

• sp_dboption adds an option that enables and disables ALS.

• sp_helpdb adds a column to display ALS.

For more information on sp_helpdb and sp_dboption, see the Reference
Manual.

Performance and Tuning: Basics 325

C H A P T E R 1 4 Cursors and Performance

This chapter discusses performance issues related to cursors. Cursors are
a mechanism for accessing the results of a SQL select statement one row
at a time (or several rows, if you use set cursors rows). Since cursors use
a different model from ordinary set-oriented SQL, the way cursors use
memory and hold locks has performance implications for your
applications. In particular, cursor performance issues includes locking at
the page and at the table level, network resources, and overhead of
processing instructions.

Definition
A cursor is a symbolic name that is associated with a select statement. It
enables you to access the results of a select statement one row at a time.
Figure 14-1 shows a cursor accessing the authors table.

Topic Page
Definition 325

Resources required at each stage 328

Cursor modes 331

Index use and requirements for cursors 331

Comparing performance with and without cursors 333

Locking with read-only cursors 336

Isolation levels and cursors 338

Partitioned heap tables and cursors 338

Optimizing tips for cursors 339

Definition

326 Adaptive Server Enterprise

Figure 14-1: Cursor example

You can think of a cursor as a “handle” on the result set of a select statement.
It enables you to examine and possibly manipulate one row at a time.

Set-oriented versus row-oriented programming
SQL was conceived as a set-oriented language. Adaptive Server is extremely
efficient when it works in set-oriented mode. Cursors are required by ANSI
SQL standards; when they are needed, they are very powerful. However, they
can have a negative effect on performance.

For example, this query performs the identical action on all rows that match the
condition in the where clause:

update titles
 set contract = 1
where type = ’business’

The optimizer finds the most efficient way to perform the update. In contrast,
a cursor would examine each row and perform single-row updates if the
conditions were met. The application declares a cursor for a select statement,
opens the cursor, fetches a row, processes it, goes to the next row, and so forth.
The application may perform quite different operations depending on the
values in the current row, and the server’s overall use of resources for the cursor
application may be less efficient than the server’s set level operations.
However, cursors can provide more flexibility than set-oriented programming.

Figure 14-2 shows the steps involved in using cursors. The function of cursors
is to get to the middle box, where the user or application code examines a row
and decides what to do, based on its values.

Result setCursor with select * from authors
where state = ’KY’

Programming can:
- Examine a row
- Take an action based on row values

 A978606525 Marcello Duncan KY

 A937406538 Carton Nita KY

 A1525070956 Porczyk Howard KY

 A913907285 Bier Lane KY

CHAPTER 14 Cursors and Performance

Performance and Tuning: Basics 327

Figure 14-2: Cursor flowchart

Example
Here is a simple example of a cursor with the “Process Rows” step shown
above in pseudocode:

declare biz_book cursor
 for select * from titles
 where type = ’business’
go
open biz_book
go
fetch biz_book
go
/* Look at each row in turn and perform
** various tasks based on values,

Declare cursor

Open cursor

Fetch row

Process row
(Examine/Update/Delete)

No

Yes

Close cursor

Deallocate cursor

Get next
row?

Resources required at each stage

328 Adaptive Server Enterprise

** and repeat fetches, until
** there are no more rows
*/
close biz_book
go
deallocate cursor biz_book
go

Depending on the content of the row, the user might delete the current row:

delete titles where current of biz_book

or update the current row:

update titles set title="The Rich
 Executive’s Database Guide"
where current of biz_book

Resources required at each stage
Cursors use memory and require locks on tables, data pages, and index pages.
When you open a cursor, memory is allocated to the cursor and to store the
query plan that is generated. While the cursor is open, Adaptive Server holds
intent table locks and sometimes row or page locks. Figure 14-3 shows the
duration of locks during cursor operations.

CHAPTER 14 Cursors and Performance

Performance and Tuning: Basics 329

Figure 14-3: Resource use by cursor statement

The memory resource descriptions in Figure 14-3 and Table 14-1 refer to ad
hoc cursors for queries sent by isql or Client-Library™. For other kinds of
cursors, the locks are the same, but the memory allocation and deallocation
differ somewhat depending on the type of cursor being used, as described in
“Memory use and execute cursors” on page 330.

page
locks

Memory

Declare cursor

Open cursor

Fetch row

Process row
(Examine/Update/Delete)

No

Yes

Close cursor

Deallocate cursor

Get next
row?

Table
locks
(intent);
some
row or

locks
page

Row
or

Resources required at each stage

330 Adaptive Server Enterprise

Table 14-1: Locks and memory use for isql and Client-Library client
cursors

Memory use and execute cursors
The descriptions of declare cursor and deallocate cursor in Table 14-1 refer to
ad hoc cursors that are sent by isql or Client-Library. Other kinds of cursors
allocate memory differently:

• For cursors that are declared on stored procedures, only a small amount of
memory is allocated at declare cursor time. Cursors declared on stored
procedures are sent using Client-Library or the precompiler and are known
as execute cursors.

• For cursors declared within a stored procedure, memory is already
available for the stored procedure, and the declare statement does not
require additional memory.

Cursor
command Resource use

declare cursor When you declare a cursor, Adaptive Server uses only
enough memory to store the query text.

open When you open a cursor, Adaptive Server allocates
memory to the cursor and to store the query plan that is
generated. The server optimizes the query, traverses
indexes, and sets up memory variables. The server does not
access rows yet, unless it needs to build worktables.
However, it does set up the required table-level locks (intent
locks). Row and page locking behavior depends on the
isolation level, server configuration, and query type.

See System Administration Guide for more information.

fetch When you execute a fetch, Adaptive Server gets the row(s)
required and reads specified values into the cursor variables
or sends the row to the client. If the cursor needs to hold
lock on rows or pages, the locks are held until a fetch moves
the cursor off the row or page or until the cursor is closed.
The lock is either a shared or an update lock, depending on
how the cursor is written.

close When you close a cursor, Adaptive Server releases the locks
and some of the memory allocation. You can open the
cursor again, if necessary.

deallocate cursor When you deallocate a cursor, Adaptive Server releases the
rest of the memory resources used by the cursor. To reuse
the cursor, you must declare it again.

CHAPTER 14 Cursors and Performance

Performance and Tuning: Basics 331

Cursor modes
There are two cursor modes: read-only and update. As the names suggest, read-
only cursors can only display data from a select statement; update cursors can
be used to perform positioned updates and deletes.

Read-only mode uses shared page or row locks. If read committed with lock is
set to 0, and the query runs at isolation level 1, it uses instant duration locks,
and does not hold the page or row locks until the next fetch.

Read-only mode is in effect when you specify for read only or when the cursor’s
select statement uses distinct, group by, union, or aggregate functions, and in
some cases, an order by clause.

Update mode uses update page or row locks. It is in effect when:

• You specify for update.

• The select statement does not include distinct, group by, union, a subquery,
aggregate functions, or the at isolation read uncommitted clause.

• You specify shared.

If column_name_list is specified, only those columns are updatable.

For more information on locking during cursor processing, see System
Administration Guide.

Specify the cursor mode when you declare the cursor. If the select statement
includes certain options, the cursor is not updatable even if you declare it for
update.

Index use and requirements for cursors
When a query is used in a cursor, it may require or choose different indexes
than the same query used outside of a cursor.

Allpages-locked tables
For read-only cursors, queries at isolation level 0 (dirty reads) require a unique
index. Read-only cursors at isolation level 1 or 3 should produce the same
query plan as the select statement outside of a cursor.

Index use and requirements for cursors

332 Adaptive Server Enterprise

The index requirements for updatable cursors mean that updatable cursors may
use different query plans than read-only cursors. Update cursors have these
indexing requirements:

• If the cursor is not declared for update, a unique index is preferred over a
table scan or a nonunique index.

• If the cursor is declared for update without a for update of list, a unique
index is required on allpages-locked tables. An error is raised if no unique
index exists.

• If the cursor is declared for update with a for update of list, then only a
unique index without any columns from the list can be chosen on an
allpages-locked table. An error is raised if no unique index qualifies.

When cursors are involved, an index that contains an IDENTITY column is
considered unique, even if the index is not declared unique. In some cases,
IDENTITY columns must be added to indexes to make them unique, or the
optimizer might be forced to choose a suboptimal query plan for a cursor query.

Data-only-locked tables
In data-only-locked tables, fixed row IDs are used to position cursor scans, so
unique indexes are not required for dirty reads or updatable cursors. The only
cause for different query plans in updatable cursors is that table scans are used
if columns from only useful indexes are included in the for update of list.

Table scans to avoid the Halloween problem

The Halloween problem is an update anomaly that can occur when a client
using a cursor updates a column of the cursor result-set row, and that column
defines the order in which the rows are returned from the table. For example,
if a cursor was to use an index on last_name, first_name, and update one of
these columns, the row could appear in the result set a second time.

To avoid the Halloween problem on data-only-locked tables, Adaptive Server
chooses a table scan when the columns from an otherwise useful index are
included in the column list of a for update clause.

For implicitly updatable cursors declared without a for update clause, and for
cursors where the column list in the for update clause is empty, cursors that
update a column in the index used by the cursor may encounter the Halloween
problem.

CHAPTER 14 Cursors and Performance

Performance and Tuning: Basics 333

Comparing performance with and without cursors
This section examines the performance of a stored procedure written two
different ways:

• Without a cursor – this procedure scans the table three times, changing the
price of each book.

• With a cursor – this procedure makes only one pass through the table.

In both examples, there is a unique index on titles(title_id).

Sample stored procedure without a cursor
This is an example of a stored procedure without cursors:

/* Increase the prices of books in the
** titles table as follows:
**
** If current price is <= $30, increase it by 20%
** If current price is > $30 and <= $60, increase
** it by 10%
** If current price is > $60, increase it by 5%
**
** All price changes must take effect, so this is
** done in a single transaction.
*/

create procedure increase_price
as

 /* start the transaction */
 begin transaction
 /* first update prices > $60 */
 update titles
 set price = price * 1.05
 where price > $60

 /* next, prices between $30 and $60 */
 update titles
 set price = price * 1.10
 where price > $30 and price <= $60

 /* and finally prices <= $30 */
 update titles
 set price = price * 1.20

Comparing performance with and without cursors

334 Adaptive Server Enterprise

 where price <= $30

 /* commit the transaction */
 commit transaction

return

Sample stored procedure with a cursor
This procedure performs the same changes to the underlying table as the
procedure written without a cursor, but it uses cursors instead of set-oriented
programming. As each row is fetched, examined, and updated, a lock is held
on the appropriate data page. Also, as the comments indicate, each update
commits as it is made, since there is no explicit transaction.

/* Same as previous example, this time using a
** cursor. Each update commits as it is made.
*/
create procedure increase_price_cursor
as
declare @price money

/* declare a cursor for the select from titles */
declare curs cursor for
 select price
 from titles
 for update of price

/* open the cursor */
open curs

/* fetch the first row */
fetch curs into @price

/* now loop, processing all the rows
** @@sqlstatus = 0 means successful fetch
** @@sqlstatus = 1 means error on previous fetch
** @@sqlstatus = 2 means end of result set reached
*/
while (@@sqlstatus != 2)
begin
 /* check for errors */
 if (@@sqlstatus = 1)
 begin
 print "Error in increase_price"

CHAPTER 14 Cursors and Performance

Performance and Tuning: Basics 335

 return
 end

 /* next adjust the price according to the
 ** criteria
 */
 if @price > $60
 select @price = @price * 1.05
 else
 if @price > $30 and @price <= $60
 select @price = @price * 1.10
 else
 if @price <= $30
 select @price = @price * 1.20

 /* now, update the row */
 update titles
 set price = @price
 where current of curs

 /* fetch the next row */
 fetch curs into @price
end

/* close the cursor and return */
close curs
return

Which procedure do you think will have better performance, one that performs
three table scans or one that performs a single scan via a cursor?

Cursor versus noncursor performance comparison
Table 14-2 shows statistics gathered against a 5000-row table. The cursor code
takes over 4 times longer, even though it scans the table only once.

Locking with read-only cursors

336 Adaptive Server Enterprise

Table 14-2: Sample execution times against a 5000-row table

Results from tests like these can vary widely. They are most pronounced on
systems that have busy networks, a large number of active database users, and
multiple users accessing the same table.

In addition to locking, cursors involve more network activity than set
operations and incur the overhead of processing instructions. The application
program needs to communicate with Adaptive Server regarding every result
row of the query. This is why the cursor code took much longer to complete
than the code that scanned the table three times.

Cursor performance issues include:

• Locking at the page and table level

• Network resources

• Overhead of processing instructions

If there is a set-level programming equivalent, it may be preferable, even if it
involves multiple table scans.

Locking with read-only cursors
Here is a piece of cursor code you can use to display the locks that are set up at
each point in the life of a cursor. The following example uses an allpages-
locked table. Execute the code in Figure 14-4, and pause at the arrows to
execute sp_lock and examine the locks that are in place.

Procedure Access method Time

increase_price Uses three table scans 28 seconds

increase_price_cursor Uses cursor, single table
scan

125 seconds

CHAPTER 14 Cursors and Performance

Performance and Tuning: Basics 337

Figure 14-4: Read-only cursors and locking experiment input

Table 14-3 shows the results.

Table 14-3: Locks held on data and index pages by cursors

If you issue another fetch command after the last row of the result set has been
fetched, the locks on the last page are released, so there will be no cursor-
related locks.

With a data-only-locked table:

• If the cursor query runs at isolation level 1, and read committed with lock is
set to 0, you do not see any page or row locks. The values are copied from
the page or row, and the lock is immediately released.

• If read committed with lock is set to 1 or if the query runs at isolation level
2 or 3, you see either shared page or shared row locks at the point that
Table 14-3 indicates shared page locks. If the table uses datarows locking,
the sp_lock report includes the row ID of the fetched row.

Event Data page

After declare No cursor-related locks.

After open Shared intent lock on authors.

After first fetch Shared intent lock on authors and shared page lock on
a page in authors.

After 100 fetches Shared intent lock on authors and shared page lock on
a different page in authors.

After close No cursor-related locks.

declare curs1 cursor for
select au_id, au_lname, au_fname
 from authors
 where au_id like ’15%’
 for read only
go
open curs1
go
fetch curs1
go
fetch curs1
go 100
close curs1
go
deallocate cursor curs1
go

Isolation levels and cursors

338 Adaptive Server Enterprise

Isolation levels and cursors
The query plan for a cursor is compiled and optimized when the cursor is
opened. You cannot open a cursor and then use set transaction isolation level to
change the isolation level at which the cursor operates.

Since cursors using isolation level 0 are compiled differently from those using
other isolation levels, you cannot open a cursor at isolation level 0 and open or
fetch from it at level 1 or 3. Similarly, you cannot open a cursor at level 1 or 3
and then fetch from it at level 0. Attempts to fetch from a cursor at an
incompatible level result in an error message.

Once the cursor has been opened at a particular isolation level, you must
deallocate the cursor before changing isolation levels. The effects of changing
isolation levels while the cursor is open are as follows:

• Attempting to close and reopen the cursor at another isolation level fails
with an error message.

• Attempting to change isolation levels without closing and reopening the
cursor has no effect on the isolation level in use and does not produce an
error message.

You can include an at isolation clause in the cursor to specify an isolation level.
The cursor in the example below can be declared at level 1 and fetched from
level 0 because the query plan is compatible with the isolation level:

declare cprice cursor for
select title_id, price
 from titles
 where type = "business"
 at isolation read uncommitted

Partitioned heap tables and cursors
A cursor scan of an unpartitioned heap table can read all data up to and
including the final insertion made to that table, even if insertions took place
after the cursor scan started.

CHAPTER 14 Cursors and Performance

Performance and Tuning: Basics 339

If a heap table is partitioned, data can be inserted into one of the many page
chains. The physical insertion point may be before or after the current position
of a cursor scan. This means that a cursor scan against a partitioned table is not
guaranteed to scan the final insertions made to that table.

Note If your cursor operations require all inserts to be made at the end of a
single page chain, do not partition the table used in the cursor scan.

Optimizing tips for cursors
Here are several optimizing tips for cursors:

• Optimize cursor selects using the cursor, not an ad hoc query.

• Use union or union all instead of or clauses or in lists.

• Declare the cursor’s intent.

• Specify column names in the for update clause.

• Fetch more than one row if you are returning rows to the client.

• Keep cursors open across commits and rollbacks.

• Open multiple cursors on a single connection.

Optimizing for cursor selects using a cursor
A standalone select statement may be optimized very differently than the same
select statement in an implicitly or explicitly updatable cursor. When you are
developing applications that use cursors, always check your query plans and
I/O statistics using the cursor, rather than using a standalone select. In
particular, index restrictions of updatable cursors require very different access
methods.

Optimizing tips for cursors

340 Adaptive Server Enterprise

Using union instead of or clauses or in lists
Cursors cannot use the dynamic index of row IDs generated by the OR strategy.
Queries that use the OR strategy in standalone select statements usually
perform table scans using read-only cursors. Updatable cursors may need to
use a unique index and still require access to each data row, in sequence, in
order to evaluate the query clauses.

See “Access Methods and Costing for or and in Clauses” on page 87 in the
book Performance and Tuning: Optimizer for more information.

A read-only cursor using union creates a worktable when the cursor is declared,
and sorts it to remove duplicates. Fetches are performed on the worktable. A
cursor using union all can return duplicates and does not require a worktable.

Declaring the cursor’s intent
Always declare a cursor’s intent: read-only or updatable. This gives you greater
control over concurrency implications. If you do not specify the intent,
Adaptive Server decides for you, and very often it chooses updatable cursors.
Updatable cursors use update locks, thereby preventing other update locks or
exclusive locks. If the update changes an indexed column, the optimizer may
need to choose a table scan for the query, resulting in potentially difficult
concurrency problems. Be sure to examine the query plans for queries that use
updatable cursors.

Specifying column names in the for update clause
Adaptive Server acquires update locks on the pages or rows of all tables that
have columns listed in the for update clause of the cursor select statement. If the
for update clause is not included in the cursor declaration, all tables referenced
in the from clause acquire update locks.

The following query includes the name of the column in the for update clause,
but acquires update locks only on the titles table, since price is mentioned in the
for update clause. The table uses allpages locking. The locks on authors and
titleauthor are shared page locks:

declare curs3 cursor
for
select au_lname, au_fname, price
 from titles t, authors a,
 titleauthor ta

CHAPTER 14 Cursors and Performance

Performance and Tuning: Basics 341

where advance <= $1000
 and t.title_id = ta.title_id
 and a.au_id = ta.au_id
for update of price

Table 14-4 shows the effects of:

• Omitting the for update clause entirely—no shared clause

• Omitting the column name from the for update clause

• Including the name of the column to be updated in the for update clause

• Adding shared after the name of the titles table while using for update of
price

In this table, the additional locks, or more restrictive locks for the two versions
of the for update clause are emphasized.

Table 14-4: Effects of for update clause and shared on cursor locking

Using set cursor rows
The SQL standard specifies a one-row fetch for cursors, which wastes network
bandwidth. Using the set cursor rows query option and Open Client’s
transparent buffering of fetches, you can improve performance:

ct_cursor(CT_CURSOR_ROWS)

Be careful when you choose the number of rows returned for frequently
executed applications using cursors—tune them to the network.

See “Changing network packet sizes” on page 27 for an explanation of this
process.

Clause titles authors titleauthor

None

sh_page on data

sh_page on index

sh_page on data sh_page on data

for update updpage on index

updpage on data

updpage on index

updpage on data updpage on data

for update of
price updpage on data

sh_page on index

sh_page on data sh_page on data

for update of
price
+ shared

sh_page on data

sh_page on index

sh_page on data sh_page on data

Optimizing tips for cursors

342 Adaptive Server Enterprise

Keeping cursors open across commits and rollbacks
ANSI closes cursors at the conclusion of each transaction. Transact- SQL
provides the set option close on endtran for applications that must meet ANSI
behavior. By default, however, this option is turned off. Unless you must meet
ANSI requirements, leave this option off to maintain concurrency and
throughput.

If you must be ANSI-compliant, decide how to handle the effects on Adaptive
Server. Should you perform a lot of updates or deletes in a single transaction?
Or should you keep the transactions short?

If you choose to keep transactions short, closing and opening the cursor can
affect throughput, since Adaptive Server needs to rematerialize the result set
each time the cursor is opened. Choosing to perform more work in each
transaction, this can cause concurrency problems, since the query holds locks.

Opening multiple cursors on a single connection
Some developers simulate cursors by using two or more connections from DB-
Library™. One connection performs a select and the other performs updates or
deletes on the same tables. This has very high potential to create application
deadlocks. For example:

• Connection A holds a shared lock on a page. As long as there are rows
pending from Adaptive Server, a shared lock is kept on the current page.

• Connection B requests an exclusive lock on the same pages and then waits.

• The application waits for Connection B to succeed before invoking
whatever logic is needed to remove the shared lock. But this never
happens.

Since Connection A never requests a lock that is held by Connection B, this is
not a server-side deadlock.

Performance and Tuning: Basics 343

C H A P T E R 1 5 Maintenance Activities and
Performance

This chapter explains both how maintenance activities can affect the
performance of other Adaptive Server activities, and how to improve the
performance of maintenance tasks.

Maintenance activities include such tasks as dropping and re-creating
indexes, performing dbcc checks, and updating index statistics. All of
these activities can compete with other processing work on the server.

Whenever possible,perform maintenance tasks when your Adaptive
Server usage is low. This chapter can help you determine what kind of
performance impacts these maintenance activities have on applications
and on overall Adaptive Server performance.

Running reorg on tables and indexes
The reorg command can improve performance for data-only-locked tables
by improving the space utilization for tables and indexes. The reorg
subcommands and their uses are:

• reclaim_space – cears committed deletes and space left when updates
shorten the length of data rows.

Topic Page
Running reorg on tables and indexes 343

Creating and maintaining indexes 344

Creating or altering a database 348

Backup and recovery 350

Bulk copy 352

Database consistency checker 355

Using dbcc tune (cleanup) 355

Using dbcc tune on spinlocks 356

Determining the space available for maintenance activities 356

Creating and maintaining indexes

344 Adaptive Server Enterprise

• forwarded_rows – returns forwarded rows to home pages.

• compact – performs both of the operations above.

• rebuild – rebuilds an entire table or index.

When you run reorg rebuild on a table, it locks the table for the entire time it
takes to rebuild the table and its indexes. This means that you should schedule
the reorg rebuild command on a table when users do not need access to the table.

All of the other reorg commands, including reorg rebuild on an index, lock a
small number of pages at a time, and use short, independent transactions to
perform their work. You can run these commands at any time. The only
negative effects might be on systems that are very I/O bound.

For more information on running reorg commands, see the System
Administration Guide.

Creating and maintaining indexes
Creating indexes affects performance by locking other users out of a table. The
type of lock depends on the index type:

• Creating a clustered index requires an exclusive table lock, locking out all
table activity. Since rows in a clustered index are arranged in order by the
index key, create clustered index reorders data pages.

• Creating a nonclustered index requires a shared table lock, locking out
update activity.

Configuring Adaptive Server to speed sorting
A configuration parameter configures how many buffers can be used in cache
to hold pages from the input tables. In addition, parallel sorting can benefit
from large I/O in the cache used to perform the sort.

See “Configuring resources for parallel sorting” on page 218 in the
Performance and Tuning: Optimizer book for more information.

CHAPTER 15 Maintenance Activities and Performance

Performance and Tuning: Basics 345

Dumping the database after creating an index
When you create an index, Adaptive Server writes the create index transaction
and the page allocations to the transaction log, but does not log the actual
changes to the data and index pages. To recover a database that you have not
dumped since you created the index, the entire create index process is executed
again while loading transaction log dumps.

If you perform routine index re-creations (for example, to maintain the fillfactor
in the index), you may want to schedule these operations to run shortly before
a routine database dump.

Creating an index on sorted data
If you need to re-create a clustered index or create one on data that was bulk
copied into the server in index key order, use the sorted_data option to create
index to shorten index creation time.

Since the data rows must be arranged in key order for clustered indexes,
creating a clustered index without sorted_data requires that you rewrite the data
rows to a complete new set of data pages. Adaptive Server can skip sorting
and/or copying the table’s data rows in some cases. Factors include table
partitioning and on clauses used in the create index statement.

When creating an index on a nonpartitioned table, sorted_data and the use of
any of the following clauses requires that you copy the data, but does not
require a sort:

• ignore_dup_row

• fillfactor

• The on segment_name clause, specifying a different segment from the
segment where the table data is located

• The max_rows_per_page clause, specifying a value that is different from
the value associated with the table

When these options and sorted_data are included in a create index on a
partitioned table, the sort step is performed and the data is copied, distributing
the data pages evenly on the table’s partitions.

Table 15-1: Using options for creating a clustered index

Options Partitioned table Unpartitioned table

No options specified Parallel sort; copies data, distributing
evenly on partitions; creates index tree.

Either parallel or nonparallel sort;
copies data, creates index tree.

Creating and maintaining indexes

346 Adaptive Server Enterprise

In the simplest case, using sorted_data and no other options on a nonpartitioned
table, the order of the table rows is checked and the index tree is built during
this single scan.

If the data rows must be copied, but no sort needs to be performed, a single
table scan checks the order of rows, builds the index tree, and copies the data
pages to the new location in a single table scan.

For large tables that require numerous passes to build the index, saving the sort
time reduces I/O and CPU utilization considerably.

Whenever creating a clustered index copies the data rows, the space available
must be approximately 120 percent of the table size to copy the data and store
the index pages.

Maintaining index and column statistics
The histogram and density values for an index are not maintained as data rows
are added and deleted. The database owner must issue an update statistics
command to ensure that statistics are current. Run update statistics:

• After deleting or inserting rows that change the skew of key values in the
index

• After adding rows to a table whose rows were previously deleted with
truncate table

• After updating values in index columns

Run update statistics after inserts to any index that includes an IDENTITY
column or any increasing key value. Date columns often have regularly
increasing keys.

with sorted_data only
or
with sorted_data on
same_segment

Creates index tree only. Does not
perform the sort or copy data. Does not
run in parallel.

Creates index tree only. Does not
perform the sort or copy data. Does
not run in parallel.

with sorted_data and
ignore_dup_row
or fillfactor
or on other_segment
or max_rows_per_page

Parallel sort; copies data, distributing
evenly on partitions; creates index tree.

Copies data and creates the index
tree. Does not perform the sort. Does
not run in parallel.

Options Partitioned table Unpartitioned table

CHAPTER 15 Maintenance Activities and Performance

Performance and Tuning: Basics 347

Running update statistics on these types of indexes is especially important if the
IDENTITY column or other increasing key is the leading column in the index.
After a number of rows have been inserted past the last key in the table when
the index was created, all that the optimizer can tell is that the search value lies
beyond the last row in the distribution page.

It cannot accurately determine how many rows match a given value.

Note Failure to update statistics can severely hurt performance.

See Chapter 3, “Using Statistics to Improve Performance,” in the Performance
and Tuning: Monitoring and Analyzing for Performance book for more
information.

Rebuilding indexes
Rebuilding indexes reclaims space in the B-trees. As pages are split and rows
are deleted, indexes may contain many pages that contain only a few rows.
Also, if your application performs scans on covering nonclustered indexes and
large I/O, rebuilding the nonclustered index maintains the effectiveness of
large I/O by reducing fragmentation.

You can rebuild indexes by dropping and re-creating the index. If the table uses
data-only locking, you can run the reorg rebuild command on the table or on an
individual index.

Re-create or rebuild indexes when:

• Data and usage patterns have changed significantly.

• A period of heavy inserts is expected, or has just been completed.

• The sort order has changed.

• Queries that use large I/O require more disk reads than expected, or optdiag
reports lower cluster ratios than usual.

• Space usage exceeds estimates because heavy data modification has left
many data and index pages partially full.

• Space for expansion provided by the space management properties
(fillfactor, expected row size, and reserve page gap) has been filled by
inserts and updates, resulting in page splits, forwarded rows, and
fragmentation.

Creating or altering a database

348 Adaptive Server Enterprise

• dbcc has identified errors in the index.

If you re-create a clustered index or run reorg rebuild on a data-only-locked
table, all nonclustered indexes are re-created, since creating the clustered index
moves rows to different pages.

You must re-create nonclustered indexes to point to the correct pages.

In many database systems, there are well-defined peak periods and off-hours.
You can use off-hours to your advantage for example to:

• Delete all indexes to allow more efficient bulk inserts.

• Create a new group of indexes to help generate a set of reports.

See “Creating and maintaining indexes” on page 344 for information about
configuration parameters that increase the speed of creating indexes.

Speeding index creation with sorted_data

If data is already sorted, you can use the sorted_data option for the create index
command to save index creation time. You can use this option for both
clustered and nonclustered indexes.

See “Creating an index on sorted data” on page 345 for more information.

Creating or altering a database
Creating or altering a database is I/O-intensive; consequently, other I/O-
intensive operations may suffer. When you create a database, Adaptive Server
copies the model database to the new database and then initializes all the
allocation pages and clears database pages.

The following procedures can speed database creation or minimize its impact
on other processes:

• Use the for load option to create database if you are restoring a database,
that is, if you are getting ready to issue a load database command.

When you create a database without for load, it copies model and then
initializes all of the allocation units.

When you use for load, it postpones zeroing the allocation units until the
load is complete. Then it initializes only the untouched allocation units. If
you are loading a very large database dump, this can save a lot of time.

CHAPTER 15 Maintenance Activities and Performance

Performance and Tuning: Basics 349

• Create databases during off-hours if possible.

create database and alter database perform concurrent parallel I/O when
clearing database pages. The number of devices is limited by the number of
large i/o buffers configuration parameter. The default value for this parameter is
6, allowing parallel I/O on 6 devices at once.

A single create database and alter database command can use up to 32 of these
buffers at once. These buffers are also used by load database, disk mirroring,
and some dbcc commands.

Using the default value of 6, if you specify more than 6 devices, the first 6
writes are immediately started. As the I/O to each device completes, the 16K
buffers are used for remaining devices listed in the command. The following
example names 10 separate devices:

create database hugedb
 on dev1 = 100,
 dev2 = 100,
 dev3 = 100,
 dev4 = 100,
 dev5 = 100,
 dev6 = 100,
 dev7 = 100,
 dev8 = 100
log on logdev1 = 100,
 logdev2 = 100

During operations that use these buffers, a message is sent to the log when the
number of buffers is exceeded. This information for the create database
command above shows that create database started clearing devices on the first
6 disks, using all of the large I/O buffers, and then waited for them to complete
before clearing the pages on other devices:

CREATE DATABASE: allocating 51200 pages on disk ’dev1’
CREATE DATABASE: allocating 51200 pages on disk ’dev2’
CREATE DATABASE: allocating 51200 pages on disk ’dev3’
CREATE DATABASE: allocating 51200 pages on disk ’dev4’
CREATE DATABASE: allocating 51200 pages on disk ’dev5’
CREATE DATABASE: allocating 51200 pages on disk ’dev6’
01:00000:00013:1999/07/26 15:36:17.54 server No disk i/o buffers
are available for this operation. The total number of buffers is
controlled by the configuration parameter ’number of large i/o
buffers’.
CREATE DATABASE: allocating 51200 pages on disk ’dev7’
CREATE DATABASE: allocating 51200 pages on disk ’dev8’
CREATE DATABASE: allocating 51200 pages on disk ’logdev1’
CREATE DATABASE: allocating 51200 pages on disk ’logdev2’

Backup and recovery

350 Adaptive Server Enterprise

When create database copies model, it uses 2K I/O.

Note In Adaptive Server version 12.5.03 and above, the size of the large I/O
buffers used by create database, alter database, load database, and dbcc
checkalloc is now one allocation (256 pp), not one extent (8 pp). The server thus
requires more memory allocation for large buffers. For example, a disk buffer
that required memory for 8 pages in earlier versions now requires memory for
256 pages.

See the System Administration Guide.

Backup and recovery
All Adaptive Server backups are performed by a backup server. The backup
architecture uses a client/server paradigm, with Adaptive Servers as clients to
a backup server.

Local backups
Adaptive Server sends the local Backup Server instructions, via remote
procedure calls, telling the Backup Server which pages to dump or load, which
backup devices to use, and other options. Backup server performs all the disk
I/O.

Adaptive Server does not read or send dump and load data, it sends only
instructions.

Remote backups
backup server also supports backups to remote machines. For remote dumps
and loads, a local backup server performs the disk I/O related to the database
device and sends the data over the network to the remote backup server, which
stores it on the dump device.

CHAPTER 15 Maintenance Activities and Performance

Performance and Tuning: Basics 351

Online backups
You can perform backups while a database is active. Clearly, such processing
affects other transactions, but you should not hesitate to back up critical
databases as often as necessary to satisfy the reliability requirements of the
system.

See the System Administration Guide for a complete discussion of backup and
recovery strategies.

Using thresholds to prevent running out of log space
If your database has limited log space, and you occasionally hit the last-chance
threshold, install a second threshold that provides ample time to perform a
transaction log dump. Running out of log space has severe performance
impacts. Users cannot execute any data modification commands until log space
has been freed.

Minimizing recovery time
You can help minimize recovery time, by changing the recovery interval
configuration parameter. The default value of 5 minutes per database works for
most installations. Reduce this value only if functional requirements dictate a
faster recovery period. It can increase the amount of I/O required.

See “Tuning the recovery interval” on page 242.

Recovery speed may also be affected by the value of the housekeeper free write
percent configuration parameter. The default value of this parameter allows the
server’s housekeeper wash task to write dirty buffers to disk during the server’s
idle cycles, as long as disk I/O is not increased by more than 20 percent.

Recovery order
During recovery, system databases are recovered first. Then, user databases are
recovered in order by database ID.

Bulk copy

352 Adaptive Server Enterprise

Bulk copy
Bulk copying into a table on Adaptive Server runs fastest when there are no
indexes or active triggers on the table. When you are running fast bulk copy,
Adaptive Server performs reduced logging.

It does not log the actual changes to the database, only the allocation of pages.
And, since there are no indexes to update, it saves all the time it would
otherwise take to update indexes for each data insert and to log the changes to
the index pages.

To use fast bulk copy:

• Drop any indexes; re-create them when the bulk copy completes.

• Use alter table...disable trigger to deactivate triggers during the copy; use
alter table...enable trigger after the copy completes.

• Set the select into/bulkcopy/pllsort option with sp_dboption. Remember to
turn the option off after the bulk copy operation completes.

During fast bulk copy, rules are not enforced, but defaults are enforced.

Since changes to the data are not logged, you should perform a dump database
soon after a fast bulk copy operation. Performing a fast bulk copy in a database
blocks the use of dump transaction, since the unlogged data changes cannot be
recovered from the transaction log dump.

Parallel bulk copy
For fastest performance, you can use fast bulk copy to copy data into
partitioned tables. For each bulk copy session, you specify the partition on
which the data should reside.

If your input file is already in sorted order, you can bulk copy data into
partitions in order, and avoid the sorting step while creating clustered indexes.

See “Steps for partitioning tables” on page 117 for step-by-step procedures.

CHAPTER 15 Maintenance Activities and Performance

Performance and Tuning: Basics 353

Batches and bulk copy
If you specify a batch size during a fast bulk copy, each new batch must start
on a new data page, since only the page allocations, and not the data changes,
are logged during a fast bulk copy. Copying 1000 rows with a batch size of 1
requires 1000 data pages and 1000 allocation records in the transaction log.

If you are using a small batch size to help detect errors in the input file, you
may want to choose a batch size that corresponds to the numbers of rows that
fit on a data page.

Slow bulk copy
If a table has indexes or triggers, a slower version of bulk copy is automatically
used. For slow bulk copy:

• You do not have to set the select into/bulkcopy.

• Rules are not enforced and triggers are not fired, but defaults are enforced.

• All data changes are logged, as well as the page allocations.

• Indexes are updated as rows are copied in, and index changes are logged.

Improving bulk copy performance
Other ways to increase bulk copy performance are:

• Set the trunc log on chkpt option to keep the transaction log from filling up.
If your database has a threshold procedure that automatically dumps the
log when it fills, you will save the transaction dump time.

Remember that each batch is a separate transaction, so if you are not
specifying a batch size, setting trunc log on chkpt will not help.

• Set the number of pre allocated extents configuration parameter high if you
perform many large bulk copies.

See the System Administration Guide.

• Find the optimal network packet size.

See Chapter 3, “Networks and Performance,”.

Bulk copy

354 Adaptive Server Enterprise

Replacing the data in a large table
If you are replacing all the data in a large table, use the truncate table command
instead of the delete command. truncate table performs reduced logging. Only
the page deallocations are logged.

delete is completely logged, that is, all the changes to the data are logged.

The steps are:

1 Truncate the table. If the table is partitioned, you must unpartition before
you can truncate it.

2 Drop all indexes on the table.

3 Load the data.

4 Re-create the indexes.

See “Steps for partitioning tables” on page 117 for more information on using
bulk copy with partitioned tables.

Adding large amounts of data to a table
When you are adding 10 to 20 percent or more to a large table, drop the
nonclustered indexes, load the data, and then re-create nonclustered indexes.

For very large tables, you may need to leave the clustered index in place due to
space constraints. Adaptive Server must make a copy of the table when it
creates a clustered index. In many cases, once tables become very large, the
time required to perform a slow bulk copy with the index in place is less than
the time to perform a fast bulk copy and re-create the clustered index.

Using partitions and multiple bulk copy processes
If you are loading data into a table without indexes, you can create partitions
on the table and use one bcp session for each partition.

See “Using parallel bcp to copy data into partitions” on page 110.

CHAPTER 15 Maintenance Activities and Performance

Performance and Tuning: Basics 355

Impacts on other users
Bulk copying large tables in or out may affect other users’ response time. If
possible:

• Schedule bulk copy operations for off-hours.

• Use fast bulk copy, since it does less logging and less I/O.

Database consistency checker
It is important to run database consistency checks periodically with dbcc. If you
back up a corrupt database, the backup is useless. But dbcc affects
performance, since dbcc must acquire locks on the objects it checks.

See the System Administration Guide for information about dbcc and locking,
with additional information about how to minimize the effects of dbcc on user
applications.

Using dbcc tune (cleanup)
Adaptive Server performs redundant memory cleanup checking as a final
integrity check after processing each task. In very high throughput
environments, a slight performance improvement may be realized by skipping
this cleanup error check. To turn off error checking, enter:

dbcc tune(cleanup,1)

The final cleanup frees up any memory a task might hold. If you turn the error
checking off, but you get memory errors, reenable the checking by entering:

dbcc tune(cleanup,0)

Using dbcc tune on spinlocks

356 Adaptive Server Enterprise

Using dbcc tune on spinlocks
When you see a scaling problem due to a spinlock contention on the "des
manager" you can use the des_bind command to improve the scalability of the
server where object descriptors are reserved for hot objects. The descriptors for
these hot objects are never scavenged.

dbcc tune(des_bind, <dbid>, <objname>)

To remove the binding use:

dbcc tune(des_unbind, <dbid>, <objname>)

Note To unbind an object from the database, the database has to be in "single
user mode"

When not to use this command
There are instances where this command cannot be used:

• On objects in system databases such as master and tempdb

• On system tables.

Since this bind command is not persistent, it has to be re-instantiated during
startup.

Determining the space available for maintenance
activities

Several maintenance operations require room to make a copy of the data pages
of a table:

• create clustered index

• alter table...lock

• Some alter table commands that add or modify columns

• reorg rebuild on a table

CHAPTER 15 Maintenance Activities and Performance

Performance and Tuning: Basics 357

In most cases, these commands also require space to re-create any indexes, so
you need to determine:

• The size of the table and its indexes

• The amount of space available on the segment where the table is stored

• The space management properties set for the table and its indexes

The following sections describe tools that provide information on space usage
and space availability.

Overview of space requirements
Any command that copies a table’s rows also re-creates all of the indexes on
the table. You need space for a complete copy of the table and copies of all
indexes.

These commands do not estimate how much space is needed. They stop with
an error message if they run out of space on any segment used by the table or
its indexes. For large tables, this could occur minutes or even hours after the
command starts.

You need free space on the segments used by the table and its indexes, as
follows:

• Free space on the table’s segment must be at least equal to:

• The size of the table, plus

• Approximately 20 percent of the table size, if the table has a clustered
index and you are changing from allpages locking to data-only
locking

.

• Free space on the segments used by nonclustered indexes must be at least
equal to the size of the indexes.

Clustered indexes for data-only-locked tables have a leaf level above the data
pages. If you are altering a table with a clustered index from allpages locking
to data-only locking, the resulting clustered index requires more space. The
additional space required depends on the size of the index keys.

Determining the space available for maintenance activities

358 Adaptive Server Enterprise

Tools for checking space usage and space available
As a simple guideline, copying a table and its indexes requires space equal to
the current space used by the table and its indexes, plus about 20% additional
room. However:

• If data modifications have created many partially-full pages, space
required for the copy of the table can be smaller than the current size.

• If space-management properties for the table have changed, or if space
required by fillfactor or reservepagegap has been filled by data
modifications, the size required for the copy of the table can be larger.

• Adding columns or modifying columns to larger datatypes requires more
space for the copy.

Log space is also required.

Checking space used for tables and indexes

To see the size of a table and its indexes, use:

sp_spaceused titles, 1

See “Calculating the sizes of data-only-locked tables” on page 263 for
information on estimating the size of the clustered index.

Checking space on segments

Tables are always copied to free space on the segment where they are currently
stored, and indexes are re-created on the segment where they are currently
stored. Commands that create clustered indexes can specify a segment. The
copy of the table and the clustered index are created on the target segment.

To determine the number of pages available on a segment, use sp_helpsegment.
The last line of sp_helpsegment shows the total number of free pages available
on a segment.

The following command prints segment information for the default segment,
where objects are stored when no segment was explicitly specified:

sp_helpsegment "default"

sp_helpsegment reports the names of indexes on the segment. If you do not
know the segment name for a table, use sp_help and the table name. The
segment names for indexes are also reported by sp_help.

CHAPTER 15 Maintenance Activities and Performance

Performance and Tuning: Basics 359

Checking space requirements for space management properties

If you make significant changes to space management property values, the
table copy can be considerably larger or smaller than the original table. Settings
for space management properties are stored in the sysindexes tables, and are
displayed by sp_help and sp_helpindex. This output shows the space
management properties for the titles table:

exp_row_size reservepagegap fillfactor max_rows_per_page
------------ -------------- ---------- -----------------
 190 16 90 0

sp_helpindex produces this report:

index_name index_description
 index_keys
 index_max_rows_per_page index_fillfactor index_reservepagegap
 ----------------------- ---------------- --------------------
title_id_ix nonclustered located on default
 title_id
 0 75 0
title_ix nonclustered located on default
 title
 0 80 16
type_price nonclustered located on default
 type, price
 0 90 0

Space management properties applied to the table

During the copy step, the space management properties for the table are used
as follows:

• If an expected row size value is specified for the table, and the locking
scheme is being changed from allpages locking to data-only locking, the
expected row size is applied to the data rows as they are copied.

If no expected row size is set, but there is a max_rows_per_page value for
the table, an expected row size is computed, and that value is used.

Otherwise, the default value specified with the configuration parameter
default exp_row_size percent is used for each page allocated for the table.

• The reservepagegap is applied as extents are allocated to the table.

• If sp_chgattribute has been used to save a fillfactor value for the table, it is
applied to the new data pages as the rows are copied.

Determining the space available for maintenance activities

360 Adaptive Server Enterprise

Space management properties applied to the index

When the indexes are rebuilt, space management properties for the indexes are
applied, as follows:

• If sp_chgattribute has been used to save fillfactor values for indexes, these
values are applied when the indexes are re-created.

• If reservepagegap values are set for indexes, these values are applied when
the indexes are re-created.

Estimating the effects of space management properties
Table 15-2 shows how to estimate the effects of setting space management
properties.

Table 15-2: Effects of space management properties on space use

For more information, see Chapter 9, “Setting Space Management
Properties,”.

If a table has max_rows_per_page set, and the table is converted from allpages
locking to data-only locking, the value is converted to an exp_row_size value
before the alter table...lock command copies the table to its new location.

The exp_row_size is enforced during the copy. Table 15-3 shows how the
values are converted.

Property Formula Example

fillfactor Requires
(100/fillfactor) * num_pages if pages are
currently fully packed

fillfactor of 75 requires 1.33 times current
number of pages; a table of 1,000 pages
grows to 1,333 pages.

reservepagegap Increases space by
1/reservepagegap if extents are currently
filled

reservepagegap of 10 increase space used
by 10%; a table of 1,000 pages grows to
1,100 pages.

max_rows_per_page Converted to exp_row_size when
converting to data-only-locking

See Table 15-3 on page 361.

exp_row_size Increase depends on number of rows
smaller than exp_rowsize, and the average
length of those rows

If exp_row_size is 100, and 1,000 rows
have a length of 60, the increase in space
is:

(100 - 60) * 1000 or 40,000 bytes;
approximately 20 additional pages.

CHAPTER 15 Maintenance Activities and Performance

Performance and Tuning: Basics 361

Table 15-3: Converting max_rows_per_page to exp_row_size

If there is not enough space
If there is not enough space to copy the table and re-create all the indexes,
determine whether dropping the nonclustered indexes on the table leaves
enough room to create a copy of the table. Without any nonclustered indexes,
the copy operation requires space just for the table and the clustered index.

Do not drop the clustered index, since it is used to order the copied rows, and
attempting to re-create it later may require space to make a copy of the table.
Re-create the nonclustered indexes after the command completes.

If max_rows_per_page is set to Set exp_row_size to

0 Percentage value set by default exp_row_size percent

1–254 The smaller of:

• maximum row size

• 2002/max_rows_per_page value

Determining the space available for maintenance activities

362 Adaptive Server Enterprise

Performance and Tuning: Basics 363

C H A P T E R 1 6 Tuning Asynchronous Prefetch

This chapter explains how asynchronous prefetch improves I/O
performance for many types of queries by reading data and index pages
into cache before they are needed by the query.

How asynchronous prefetch improves performance
Asynchronous prefetch improves performance by anticipating the pages
required for certain well-defined classes of database activities whose
access patterns are predictable. The I/O requests for these pages are issued
before the query needs them so that most pages are in cache by the time
query processing needs to access the page. Asynchronous prefetch can
improve performance for:

• Sequential scans, such as table scans, clustered index scans, and
covered nonclustered index scans

• Access via nonclustered indexes

• Some dbcc checks and update statistics

• Recovery

Asynchronous prefetch can improve the performance of queries that
access large numbers of pages, such as decision support applications, as
long as the I/O subsystems on the machine are not saturated.

Topic Page
How asynchronous prefetch improves performance 363

When prefetch is automatically disabled 369

Tuning Goals for asynchronous prefetch 373

Other Adaptive Server performance features 374

Special settings for asynchronous prefetch limits 377

Maintenance activities for high prefetch performance 378

Performance monitoring and asynchronous prefetch 379

How asynchronous prefetch improves performance

364 Adaptive Server Enterprise

Asynchronous prefetch cannot help (or may help only slightly) when the
I/O subsystem is already saturated or when Adaptive Server is CPU-
bound. It may be used in some OLTP applications, but to a much lesser
degree, since OLTP queries generally perform fewer I/O operations.

When a query in Adaptive Server needs to perform a table scan, it:

• Examines the rows on a page and the values in the rows.

• Checks the cache for the next page to be read from a table. If that page
is in cache, the task continues processing. If the page is not in cache,
the task issues an I/O request and sleeps until the I/O completes.

• When the I/O completes, the task moves from the sleep queue to the
run queue. When the task is scheduled on an engine, Adaptive Server
examines rows on the newly fetched page.

This cycle of executing and stalling for disk reads continues until the table
scan completes. In a similar way, queries that use a nonclustered index
process a data page, issue the I/O for the next page referenced by the index,
and sleep until the I/O completes, if the page is not in cache.

This pattern of executing and then waiting for I/O slows performance for
queries that issue physical I/Os for large number of pages. In addition to
the waiting time for the physical I/Os to complete, the task switches on and
off the engine repeatedly. This task switching adds overhead to processing.

Improving query performance by prefetching pages
Asynchronous prefetch issues I/O requests for pages before the query
needs them so that most pages are in cache by the time query processing
needs to access the page. If required pages are already in cache, the query
does not yield the engine to wait for the physical read. (It may still yield
for other reasons, but it yields less frequently.)

Based on the type of query being executed, asynchronous prefetch builds
a look-ahead set of pages that it predicts will be needed very soon.
Adaptive Server defines different look-ahead sets for each processing type
where asynchronous prefetch is used.

CHAPTER 16 Tuning Asynchronous Prefetch

Performance and Tuning: Basics 365

In some cases, look-ahead sets are extremely precise; in others, some
assumptions and speculation may lead to pages being fetched that are
never read. When only a small percentage of unneeded pages are read into
cache, the performance gains of asynchronous prefetch far outweigh the
penalty for the wasted reads. If the number of unused pages becomes large,
Adaptive Server detects this condition and either reduces the size of the
look-ahead set or temporarily disables prefetching.

Prefetching control mechanisms in a multiuser environment
When many simultaneous queries are prefetching large numbers of pages
into a buffer pool, there is a risk that the buffers fetched for one query
could be flushed from the pool before they are used.

Adaptive Server tracks the buffers brought into each pool by asynchronous
prefetch and the number that are used. It maintains a per-pool count of
prefetched but unused buffers. By default, Adaptive Server sets an
asynchronous prefetch limit of 10 percent of each pool. In addition, the
limit on the number of prefetched but unused buffers is configurable on a
per-pool basis.

The pool limits and usage statistics act like a governor on asynchronous
prefetch to keep the cache-hit ratio high and reduce unneeded I/O. Overall,
the effect is to ensure that most queries experience a high cache-hit ratio
and few stalls due to disk I/O sleeps.

The following sections describe how the look-ahead set is constructed for
the activities and query types that use asynchronous prefetch. In some
asynchronous prefetch optimizations, allocation pages are used to build
the look-ahead set.

For information on how allocation pages record information about object
storage, see “Allocation pages” on page 158.

How asynchronous prefetch improves performance

366 Adaptive Server Enterprise

Look-ahead set during recovery
During recovery, Adaptive Server reads each log page that includes
records for a transaction and then reads all the data and index pages
referenced by that transaction, to verify timestamps and to roll transactions
back or forward. Then, it performs the same work for the next completed
transaction, until all transactions for a database have been processed. Two
separate asynchronous prefetch activities speed recovery: asynchronous
prefetch on the log pages themselves and asynchronous prefetch on the
referenced data and index pages.

Prefetching log pages

The transaction log is stored sequentially on disk, filling extents in each
allocation unit. Each time the recovery process reads a log page from a
new allocation unit, it prefetches all the pages on that allocation unit that
are in use by the log.

In databases that do not have a separate log segment, log and data extents
may be mixed on the same allocation unit. Asynchronous prefetch still
fetches all the log pages on the allocation unit, but the look-ahead sets may
be smaller.

Prefetching data and index pages

For each transaction, Adaptive Server scans the log, building the look-
ahead set from each referenced data and index page. While one
transaction’s log records are being processed, asynchronous prefetch
issues requests for the data and index pages referenced by subsequent
transactions in the log, reading the pages for transactions ahead of the
current transaction.

Note Recovery uses only the pool in the default data cache. See “Setting
limits for recovery” on page 377 for more information.

Look-ahead set during sequential scans
Sequential scans include table scans, clustered index scans, and covered
nonclustered index scans.

CHAPTER 16 Tuning Asynchronous Prefetch

Performance and Tuning: Basics 367

During table scans and clustered index scans, asynchronous prefetch uses
allocation page information about the pages used by the object to construct
the look-ahead set. Each time a page is fetched from a new allocation unit,
the look-ahead set is built from all the pages on that allocation unit that are
used by the object.

The number of times a sequential scan hops between allocation units is
kept to measure fragmentation of the page chain. This value is used to
adapt the size of the look-ahead set so that large numbers of pages are
prefetched when fragmentation is low, and smaller numbers of pages are
fetched when fragmentation is high. For more information, see “Page
chain fragmentation” on page 371.

Look-ahead set during nonclustered index access
When using a nonclustered index to access rows, asynchronous prefetch
finds the page numbers for all qualified index values on a nonclustered
index leaf page. It builds the look-ahead set from the unique list of all the
pages that are needed.

Asynchronous prefetch is used only if two or more rows qualify.

If a nonclustered index access requires several leaf-level pages,
asynchronous prefetch requests are also issued on the leaf pages.

Look-ahead set during dbcc checks
Asynchronous prefetch is used during the following dbcc checks:

• dbcc checkalloc, which checks allocation for all tables and indexes in
a database, and the corresponding object-level commands, dbcc
tablealloc and dbcc indexalloc

• dbcc checkdb, which checks all tables and index links in a database,
and dbcc checktable, which checks individual tables and their indexes

How asynchronous prefetch improves performance

368 Adaptive Server Enterprise

Allocation checking

The dbcc commands checkalloc, tablealloc and indexalloc, which check
page allocations validate information on the allocation page. The look-
ahead set for the dbcc operations that check allocation is similar to the
look-ahead set for other sequential scans. When the scan enters a different
allocation unit for the object, the look-ahead set is built from all the pages
on the allocation unit that are used by the object.

checkdb and checktable

The dbcc checkdb and dbcc checktable commands check the page chains
for a table, building the look-ahead set in the same way as other sequential
scans.

If the table being checked has nonclustered indexes, they are scanned
recursively, starting at the root page and following all pointers to the data
pages. When checking the pointers from the leaf pages to the data pages,
the dbcc commands use asynchronous prefetch in a way that is similar to
nonclustered index scans. When a leaf-level index page is accessed, the
look-ahead set is built from the page IDs of all the pages referenced on the
leaf-level index page.

Look-ahead set minimum and maximum sizes
The size of a look-ahead set for a query at a given point in time is
determined by several factors:

• The type of query, such as a sequential scan or a nonclustered index
scan

• The size of the pools used by the objects that are referenced by the
query and the prefetch limit set on each pool

• The fragmentation of tables or indexes, in the case of operations that
perform scans

• The recent success rate of asynchronous prefetch requests and
overload conditions on I/O queues and server I/O limits

Table 16-1 summarizes the minimum and maximum sizes for different
type of asynchronous prefetch usage.

CHAPTER 16 Tuning Asynchronous Prefetch

Performance and Tuning: Basics 369

Table 16-1: Look-ahead set sizes

When prefetch is automatically disabled
Asynchronous prefetch attempts to fetch needed pages into buffer pools
without flooding the pools or the I/O subsystem and without reading
unneeded pages. If Adaptive Server detects that prefetched pages are
being read into cache but not used, it temporarily limits or discontinues
asynchronous prefetch.

Access type Action Look-ahead set sizes

Table scan
Clustered index scan
Covered leaf level scan

Reading a page from a
new allocation unit

Minimum is 8 pages needed by the query

Maximum is the smaller of:

• The number of pages on an allocation unit that
belong to an object.

• The pool prefetch limits

Nonclustered index scan Locating qualified
rows on the leaf page
and preparing to
access data pages

Minimum is 2 qualified rows

Maximum is the smaller of:

• The number of unique page numbers on
qualified rows on the leaf index page

• The pool’s prefetch limit

Recovery Recovering a
transaction

Maximum is the smaller of:

• All of the data and index pages touched by a
transaction undergoing recovery

• The prefetch limit of the pool in the default
data cache

Scanning the
transaction log

Maximum is all pages on an allocation unit
belonging to the log

dbcc tablealloc, indexalloc, and
checkalloc

Scanning the page
chain

Same as table scan

dbcc checktable and checkdb Scanning the page
chain

Checking
nonclustered index
links to data pages

Same as table scan

All of the data pages referenced on a leaf level
page.

When prefetch is automatically disabled

370 Adaptive Server Enterprise

Flooding pools
For each pool in the data caches, a configurable percentage of buffers can
be read in by asynchronous prefetch and held until their first use. For
example, if a 2K pool has 4000 buffers, and the limit for the pool is 10
percent, then, at most, 400 buffers can be read in by asynchronous prefetch
and remain unused in the pool. If the number of nonaccessed prefetched
buffers in the pool reaches 400, Adaptive Server temporarily discontinues
asynchronous prefetch for that pool.

As the pages in the pool are accessed by queries, the count of unused
buffers in the pool drops, and asynchronous prefetch resumes operation. If
the number of available buffers is smaller than the number of buffers in the
look-ahead set, only that many asynchronous prefetches are issued. For
example, if 350 unused buffers are in a pool that allows 400, and a query’s
look-ahead set is 100 pages, only the first 50 asynchronous prefetches are
issued.

This keeps multiple asynchronous prefetch requests from flooding the
pool with requests that flush pages out of cache before they can be read.
The number of asynchronous I/Os that cannot be issued due to the per-pool
limits is reported by sp_sysmon.

I/O system overloads
Adaptive Server and the operating system place limits on the number of
outstanding I/Os for the server as a whole and for each engine. The
configuration parameters max async i/os per server and max async i/os per
engine control these limits for Adaptive Server. See your operating system
documentation for more information on configuring them for your
hardware.

The configuration parameter disk i/o structures controls the number of disk
control blocks that Adaptive Server reserves. Each physical I/O (each
buffer read or written) requires one control block while it is in the I/O
queue.

See the System Administration Guide.

CHAPTER 16 Tuning Asynchronous Prefetch

Performance and Tuning: Basics 371

If Adaptive Server tries to issue asynchronous prefetch requests that would
exceed max async i/os per server, max async i/os per engine, or disk i/o
structures, it issues enough requests to reach the limit and discards the
remaining requests. For example, if only 50 disk I/O structures are
available, and the server attempts to prefetch 80 pages, 50 requests are
issued, and the other 30 are discarded.

sp_sysmon reports the number of times these limits are exceeded by
asynchronous prefetch requests. See “Asynchronous prefetch activity
report” on page 86 in the book Performance and Tuning: Monitoring and
Analyzing for Performance.

Unnecessary reads
Asynchronous prefetch tries to avoid unnecessary physical reads. During
recovery and during nonclustered index scans, look-ahead sets are exact,
fetching only the pages referenced by page number in the transaction log
or on index pages.

Look-ahead sets for table scans, clustered index scans, and dbcc checks are
more speculative and may lead to unnecessary reads. During sequential
scans, unnecessary I/O can take place due to:

• Page chain fragmentation on allpages-locked tables

• Heavy cache utilization by multiple users

Page chain fragmentation

Adaptive Server’s page allocation mechanism strives to keep pages that
belong to the same object close to each other in physical storage by
allocating new pages on an extent already allocated to the object and by
allocating new extents on allocation units already used by the object.

However, as pages are allocated and deallocated, page chains on data-
only-locked tables can develop kinks. Figure 16-1 shows an example of a
kinked page chain between extents in two allocation units.

When prefetch is automatically disabled

372 Adaptive Server Enterprise

Figure 16-1: A kink in a page chain crossing allocation units

In Figure 16-1, when a scan first needs to access a page from allocation
unit 0, it checks the allocation page and issues asynchronous I/Os for all
the pages used by the object it is scanning, up to the limit set on the pool.
As the pages become available in cache, the query processes them in order
by following the page chain. When the scan reaches page 10, the next page
in the page chain, page 273, belongs to allocation unit 256.

When page 273 is needed, allocation page 256 is checked, and
asynchronous prefetch requests are issued for all the pages in that
allocation unit that belong to the object.

When the page chain points back to a page in allocation unit 0, there are
two possibilities:

• The prefetched pages from allocation unit 0 are still in cache, and the
query continues processing with no unneeded physical I/Os.

283

511

279

..

274

256 257 258 259 260 261 262 263

264 265 266 267 268 269 270 271

272 273 275 276 277 278

280 281 282 284 285 286 287

.
504 505 506 507 508 509 510

27 2824 25 26 29 30 31

750 1 2 3 4 6

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

248 249 250 251 252 253 254 255 OAM page

Pages used by object

Other pages

Allocation page

...

CHAPTER 16 Tuning Asynchronous Prefetch

Performance and Tuning: Basics 373

• The prefetch pages from allocation unit 0 have been flushed from the
cache by the reads from allocation unit 256 and other I/Os taking
place by other queries that use the pool. The query must reissue the
prefetch requests. This condition is detected in two ways:

• Adaptive Server’s count of the hops between allocation pages
now equals two. It uses the ratio between the count of hops and
the prefetched pages to reduce the size of the look-ahead set, so
fewer I/Os are issued.

• The count of prefetched but unused pages in the pool is likely to
be high, so asynchronous prefetch may be temporarily
discontinued or reduced, based on the pool’s limit.

Tuning Goals for asynchronous prefetch
Choosing optimal pool sizes and prefetch percentages for buffer pools can
be key to achieving improved performance with asynchronous prefetch.
When multiple applications are running concurrently, a well-tuned
prefetching system balances pool sizes and prefetch limits to accomplish
these goals:

• Improved system throughput

• Better performance by applications that use asynchronous prefetch

• No performance degradation in applications that do not use
asynchronous prefetch

Configuration changes to pool sizes and the prefetch limits for pools are
dynamic, allowing you to make changes to meet the needs of varying
workloads. For example, you can configure asynchronous prefetch for
good performance during recovery or dbcc checking and reconfigure
afterward without needing to restart Adaptive Server.

See “Setting limits for recovery” on page 377 and “Setting limits for
dbcc” on page 378 for more information.

Other Adaptive Server performance features

374 Adaptive Server Enterprise

Commands for configuration
Asynchronous prefetch limits are configured as a percentage of the pool in
which prefetched but unused pages can be stored. There are two
configuration levels:

• The server-wide default, set with the configuration parameter global
async prefetch limit. When you first install, the default value for global
async prefetch limit is 10 (percent).

For more information, see of the System Administration Guide.

• A per-pool override, set with sp_poolconfig. To see the limits set for
each pool, use sp_cacheconfig.

For more information, see of the System Administration Guide.

Changing asynchronous prefetch limits takes effect immediately, and does
not require a reboot. Both the global and per-pool limits can also be
configured in the configuration file.

Other Adaptive Server performance features
This section covers the interaction of asynchronous prefetch with other
Adaptive Server performance features.

Large I/O
The combination of large I/O and asynchronous prefetch can provide rapid
query processing with low I/O overhead for queries performing table scans
and for dbcc operations.

When large I/O prefetches all the pages on an allocation unit, the minimum
number of I/Os for the entire allocation unit is:

• 31 16K I/Os

CHAPTER 16 Tuning Asynchronous Prefetch

Performance and Tuning: Basics 375

• 7 2K I/Os, for the pages that share an extent with the allocation page

Note Reference to Large I/Os are on a 2K logical page size server. If you
have an 8K page size server, the basic unit for the I/O is 8K. If you have a
16K page size server, the basic unit for the I/O is 16K.

Sizing and limits for the 16k pool

Performing 31 16K prefetches with the default asynchronous prefetch
limit of 10 percent of the buffers in the pool requires a pool with at least
310 16K buffers. If the pool is smaller, or if the limit is lower, some
prefetch requests will be denied. To allow more asynchronous prefetch
activity in the pool, you can configure a larger pool or a larger prefetch
limit for the pool.

If multiple overlapping queries perform table scans using the same pool,
the number of unused, prefetched pages allowed in the poll needs to be
higher. The queries are probably issuing prefetch requests at slightly
staggered times and are at different stages in reading the accessed pages.
For example, one query may have just prefetched 31 pages, and have 31
unused pages in the pool, while an earlier query has only 2 or 3 unused
pages left. To start your tuning efforts for these queries, assume one-half
the number of pages for a prefetch request multiplied by the number of
active queries in the pool.

Limits for the 2K pool

Queries using large I/O during sequential scans may still need to perform
2K I/O:

• When a scan enters a new allocation unit, it performs 2K I/O on the 7
pages in the unit that share space with the allocation page.

• If pages from the allocation unit already reside in the 2K pool when
the prefetch requests are issued, the pages that share that extent must
be read into the 2K pool.

If the 2K pool has its asynchronous prefetch limit set to 0, the first 7 reads
are performed by normal asynchronous I/O, and the query sleeps on each
read if the pages are not in cache. Set the limits on the 2K pool high enough
that it does not slow prefetching performance.

Other Adaptive Server performance features

376 Adaptive Server Enterprise

Fetch-and-discard (MRU) scans
When a scan uses MRU replacement policy, buffers are handled in a
special manner when they are read into the cache by asynchronous
prefetch. First, pages are linked at the MRU end of the chain, rather than
at the wash marker. When the query accesses the page, the buffers are re
linked into the pool at the wash marker. This strategy helps to avoid cases
where heavy use of a cache flushes prefetched buffers linked at the wash
marker before they can be used. It has little impact on performance, unless
large numbers of unneeded pages are being prefetched. In this case, the
prefetched pages are more likely to flush other pages from cache.

Parallel scans and large I/Os
The demand on buffer pools can become higher with parallel queries. With
serial queries operating on the same pools, it is safe to assume that queries
are issued at slightly different times and that the queries are in different
stages of execution: some are accessing pages are already in cache, and
others are waiting on I/O.

Parallel execution places different demands on buffer pools, depending on
the type of scan and the degree of parallelism. Some parallel queries are
likely to issue a large number of prefetch requests simultaneously.

Hash-based table scans

Hash-based table scans on allpages-locked tables have multiple worker
processes accessing the same page chain. Each worker process checks the
page ID of each page in the table, but examines only the rows on those
pages where page ID matches the hash value for the worker process.

The first worker process that needs a page from a new allocation unit
issues a prefetch request for all pages from that unit. When the scans of
other worker processes also need pages from that allocation unit, they will
either find that the pages they need are already in I/O or already in cache.
As the first scan to complete enters the next unit, the process is repeated.

As long as one worker process in the family performing a hash-based scan
does not become stalled (waiting for a lock, for example), the hash-based
table scans do not place higher demands on the pools than they place on
serial processes. Since the multiple processes may read the pages much
more quickly than a serial process does, they change the status of the pages
from unused to used more quickly.

CHAPTER 16 Tuning Asynchronous Prefetch

Performance and Tuning: Basics 377

Partition-based scans

Partition-based scans are more likely to create additional demands on
pools, since multiple worker processes may be performing asynchronous
prefetching on different allocation units. On partitioned tables on multiple
devices, the per-server and per-engine I/O limits are less likely to be
reached, but the per-pool limits are more likely to limit prefetching.

Once a parallel query is parsed and compiled, it launches its worker
processes. If a table with 4 partitions is being scanned by 4 worker
processes, each worker process attempts to prefetch all the pages in its first
allocation unit. For the performance of this single query, the most
desirable outcome is that the size and limits on the 16K pool are
sufficiently large to allow 124 (31*4) asynchronous prefetch requests, so
all of the requests succeed. Each of the worker processes scans the pages
in cache quickly, moving onto new allocation units and issuing more
prefetch requests for large numbers of pages.

Special settings for asynchronous prefetch limits
You may want to change asynchronous prefetch configuration temporarily
for specific purposes, including:

• Recovery

• dbcc operations that use asynchronous prefetch

Setting limits for recovery
During recovery, Adaptive Server uses only the 2K pool of the default data
cache. If you shut down the server using shutdown with nowait, or if the
server goes down due to power failure or machine failure, the number of
log records to be recovered may be quite large.

To speed recovery, you can edit the configuration file to do one or both of
the following:

• Increase the size of the 2K pool in the default data cache by reducing
the size of other pools in the cache

• Increase the prefetch limit for the 2K pool

Maintenance activities for high prefetch performance

378 Adaptive Server Enterprise

Both of these configuration changes are dynamic, so you can use
sp_poolconfig to restore the original values after recovery completes,
without restarting Adaptive Server. The recovery process allows users to
log into the server as soon as recovery of the master database is complete.
Databases are recovered one at a time and users can begin using a
particular database as soon as it is recovered. There may be some
contention if recovery is still taking place on some databases, and user
activity in the 2K pool of the default data cache is heavy.

Setting limits for dbcc
If you are performing database consistency checking at a time when other
activity on the server is low, configuring high asynchronous prefetch
limits on the pools used by dbcc can speed consistency checking.

dbcc checkalloc can use special internal 16K buffers if there is no 16K pool
in the cache for the appropriate database. If you have a 2K pool for a
database, and no 16K pool, set the local prefetch limit to 0 for the pool
while executing dbcc checkalloc. Use of the 2K pool instead of the 16K
internal buffers may actually hurt performance.

Maintenance activities for high prefetch performance
Page chains for all pages-locked tables and the leaf levels of indexes
develop kinks as data modifications take place on the table. In general,
newly created tables have few kinks. Tables where updates, deletes, and
inserts that have caused page splits, new page allocations, and page
deallocations are likely to have cross-allocation unit page chain kinks. If
more than 10 to 20 percent of the original rows in a table have been
modified, you should determine if kinked page chains are reducing
asynchronous prefetch effectiveness. If you suspect that page chain kinks
are reducing asynchronous prefetch performance, you may need to re-
create indexes or reload tables to reduce kinks.

CHAPTER 16 Tuning Asynchronous Prefetch

Performance and Tuning: Basics 379

Eliminating kinks in heap tables
For allpages-locked heaps, page allocation is generally sequential, unless
pages are deallocated by deletes that remove all rows from a page. These
pages may be reused when additional space is allocated to the object. You
can create a clustered index (and drop it, if you want the table stored as a
heap) or bulk copy the data out, truncate the table, and copy the data in
again. Both activities compress the space used by the table and eliminate
page-chain kinks.

Eliminating kinks in clustered index tables
For clustered indexes, page splits and page deallocations can cause page
chain kinks. Rebuilding clustered indexes does not necessarily eliminate
all cross-allocation page linkages. Use fillfactor for clustered indexes where
you expect growth, to reduce the number of kinks resulting from data
modifications.

Eliminating kinks in nonclustered indexes
If your query mix uses covered index scans, dropping and re-creating
nonclustered indexes can improve asynchronous prefetch performance,
once the leaf-level page chain becomes fragmented.

Performance monitoring and asynchronous prefetch
The output of statistics io reports the number physical reads performed by
asynchronous prefetch and the number of reads performed by normal
asynchronous I/O. In addition, statistics io reports the number of times that
a search for a page in cache was found by the asynchronous prefetch
without holding the cache spinlock.

See “Reporting physical and logical I/O statistics” on page 63 in the
Performance and Tuning: Monitoring and Analyzing for Performance
book for more information.

Performance monitoring and asynchronous prefetch

380 Adaptive Server Enterprise

sp_sysmon report contains information on asynchronous prefetch in both
the “Data Cache Management” section and the “Disk I/O Management”
section.

If you are using sp_sysmon to evaluate asynchronous prefetch
performance, you may see improvements in other performance areas, such
as:

• Much higher cache hit ratios in the pools where asynchronous
prefetch is effective

• A corresponding reduction in context switches due to cache misses,
with voluntary yields increasing

• A possible reduction in lock contention. Tasks keep pages locked
during the time it takes for perform I/O for the next page needed by
the query. If this time is reduced because asynchronous prefetch
increases cache hits, locks will be held for a shorter time.

See “Data cache management” on page 82 and “Disk I/O management”
on page 102 in the Performance and Tuning: Monitoring and Analyzing
for Performance book for more information.

Performance and Tuning: Basics 381

C H A P T E R 1 7 tempdb Performance Issues

This chapter discusses the performance issues associated with using the
tempdb database. tempdb is used by Adaptive Server users. Anyone can
create objects in tempdb. Many processes use it silently. It is a server-wide
resource that is used primarily for internal sorts processing, creating
worktables, reformatting, and for storing temporary tables and indexes
created by users.

Many applications use stored procedures that create tables in tempdb to
expedite complex joins or to perform other complex data analysis that is
not easily performed in a single step.

How management of tempdb affects performance
Good management of tempdb is critical to the overall performance of
Adaptive Server. tempdb cannot be overlooked or left in a default state. It
is the most dynamic database on many servers and should receive special
attention.

If planned for in advance, most problems related to tempdb can be
avoided. These are the kinds of things that can go wrong if tempdb is not
sized or placed properly:

Topic Page
How management of tempdb affects performance 381

Types and uses of temporary tables 382

Initial allocation of tempdb 384

Sizing the tempdb 385

Placing tempdb 386

Dropping the master device from tempdb segments 386

Binding tempdb to its own cache 387

Temporary tables and locking 388

Minimizing logging in tempdb 389

Optimizing temporary tables 390

Types and uses of temporary tables

382 Adaptive Server Enterprise

• tempdb fills up frequently, generating error messages to users, who must
then resubmit their queries when space becomes available.

• Sorting is slow, and users do not understand why their queries have such
uneven performance.

• User queries are temporarily locked from creating temporary tables
because of locks on system tables.

• Heavy use of tempdb objects flushes other pages out of the data cache.

Main solution areas for tempdb performance
These main areas can be addressed easily:

• Sizing tempdb correctly for all Adaptive Server activity

• Placing tempdb optimally to minimize contention

• Binding tempdb to its own data cache

• Minimizing the locking of resources within tempdb

Types and uses of temporary tables
The use or misuse of user-defined temporary tables can greatly affect the
overall performance of Adaptive Server and your applications.

Temporary tables can be quite useful, often reducing the work the server has to
do. However, temporary tables can add to the size requirement of tempdb.
Some temporary tables are truly temporary, and others are permanent.

tempdb is used for three types of tables:

• Truly temporary tables

• Regular user tables

• Worktables

CHAPTER 17 tempdb Performance Issues

Performance and Tuning: Basics 383

Truly temporary tables
You can create truly temporary tables by using “#” as the first character of the
table name:

create table #temptable (...)

or:

select select_list
 into #temptable ...

Temporary tables:

• Exist only for the duration of the user session or for the scope of the
procedure that creates them

• Cannot be shared between user connections

• Are automatically dropped at the end of the session or procedure (or can
be dropped manually)

When you create indexes on temporary tables, the indexes are stored in tempdb:

create index tempix on #temptable(col1)

Regular user tables
You can create regular user tables in tempdb by specifying the database name
in the command that creates the table:

create table tempdb..temptable (...)

or:

select select_list
 into tempdb..temptable

Regular user tables in tempdb:

• Can persist across sessions

• Can be used by bulk copy operations

• Can be shared by granting permissions on them

• Must be explicitly dropped by the owner (otherwise, they are removed
when Adaptive Server is restarted)

You can create indexes in tempdb on permanent temporary tables:

create index tempix on tempdb..temptable(col1)

Initial allocation of tempdb

384 Adaptive Server Enterprise

Worktables
Worktables are automatically created in tempdb by Adaptive Server for merge
joins, sorts, and other internal server processes. These tables:

• Are never shared

• Disappear as soon as the command completes

Initial allocation of tempdb
When you install Adaptive Server, tempdb is 2MB, and is located completely
on the master device, as shown in Figure 17-1. This is typically the first
database that a System Administrator needs to make larger. The more users on
the server, the larger it needs to be. It can be altered onto the master device or
other devices. Depending on your needs, you may want to stripe tempdb across
several devices.

Figure 17-1: tempdb default allocation

Use sp_helpdb to see the size and status of tempdb. The following example
shows tempdb defaults at installation time:

sp_helpdb tempdb
name db_size owner dbid created status
--------- -------- ------ ------ ----------- --------------------
tempdb 2.0 MB sa 2 May 22, 1999 select into/bulkcopy

device_frag size usage free kbytes
------------ -------- ------------ ---------
master 2.0 MB data and log 1248

d_master

tempdb

(2MB)
data and log

CHAPTER 17 tempdb Performance Issues

Performance and Tuning: Basics 385

Sizing the tempdb
tempdb needs to be big enough to handle the following processes for every
concurrent Adaptive Server user:

• Worktables for merge joins

• Worktables that are created for distinct, group by, and order by, for
reformatting, and for the OR strategy, and for materializing some views
and subqueries

• Temporary tables (those created with “#” as the first character of their
names)

• Indexes on temporary tables

• Regular user tables in tempdb

• Procedures built by dynamic SQL

Some applications may perform better if you use temporary tables to split up
multitable joins. This strategy is often used for:

• Cases where the optimizer does not choose a good query plan for a query
that joins more than four tables

• Queries that join a very large number of tables

• Very complex queries

• Applications that need to filter data as an intermediate step

You might also use tempdb to:

• Denormalize several tables into a few temporary tables

• Normalize a denormalized table to do aggregate processing

For most applications, make tempdb 20 to 25% of the size of your user
databases to provide enough space for these uses.

Placing tempdb

386 Adaptive Server Enterprise

Placing tempdb
Keep tempdb on separate physical disks from your critical application
databases. Use the fastest disks available. If your platform supports solid state
devices and your tempdb use is a bottleneck for your applications, use those
devices. After you expand tempdb onto additional devices, drop the master
device from the system, default, and logsegment segments.

Although you can expand tempdb on the same device as the master
database,Sybase suggests that you use separate devices. Also, remember that
logical devices, but not databases, are mirrored using Adaptive Server
mirroring. If you mirror the master device, you create a mirror of all portions
of the databases that reside on the master device. If the mirror uses serial writes,
this can have a serious performance impact if your tempdb database is heavily
used.

Dropping the master device from tempdb segments
By default, the system, default, and logsegment segments for tempdb include its
2MB allocation on the master device. When you allocate new devices to
tempdb, they automatically become part of all three segments. Once you
allocate a second device to tempdb, you can drop the master device from the
default and logsegment segments. This way, you can be sure that the worktables
and other temporary tables in tempdb do not contend with other uses on the
master device.

To drop the master device from the segments:

1 Alter tempdb onto another device, if you have not already done so. For
example:

alter database tempdb on tune3 = 20

2 Issue a use tempdb command, and then drop the master device from the
segments:

sp_dropsegment "default", tempdb, master
sp_dropdegment system, tempdb, master
sp_dropdegment logsegment, tempdb, master

3 To verify that the default segment no longer includes the master device,
issue this command:

select dbid, name, segmap

CHAPTER 17 tempdb Performance Issues

Performance and Tuning: Basics 387

from sysusages, sysdevices
where sysdevices.low <= sysusages.size + vstart
 and sysdevices.high >= sysusages.size + vstart -1
 and dbid = 2
 and (status = 2 or status = 3)

The segmap column should report “1” for any allocations on the master
device, indicating that only the system segment still uses the device:

 dbid name segmap
 ------ --------------- -----------
 2 master 1
 2 tune3 7

Using multiple disks for parallel query performance
If tempdb spans multiple devices, as shown in Figure 17-2, you can take
advantage of parallel query performance for some temporary tables or
worktables.

Figure 17-2: tempdb spanning disks

Binding tempdb to its own cache
Under normal Adaptive Server use, tempdb makes heavy use of the data cache
as temporary tables are created, populated, and then dropped.

Assigning tempdb to its own data cache:

disk_2 disk_3

d_master

disk_1

tempdbtempdb

Temporary tables and locking

388 Adaptive Server Enterprise

• Keeps the activity on temporary objects from flushing other objects out of
the default data cache

• Helps spread I/O between multiple caches

See “Examining cache needs for tempdb” on page 232 for more information.

Commands for cache binding
Use sp_cacheconfig and sp_poolconfig to create named data caches and to
configure pools of a given size for large I/O. Only a System Administrator can
configure caches and pools.

Note Reference to Large I/Os are on a 2K logical page size server. If you have
an 8K page size server, the basic unit for the I/O is 8K. If you have a 16K page
size server, the basic unit for the I/O is 16K.

For instructions on configuring named caches and pools, see the System
Administration Guide.

Once the caches have been configured, and the server has been restarted, you
can bind tempdb to the new cache:

sp_bindcache "tempdb_cache", tempdb

Temporary tables and locking
Creating or dropping temporary tables and their indexes can cause lock
contention on the system tables in tempdb. When users create tables in tempdb,
information about the tables must be stored in system tables such as sysobjects,
syscolumns, and sysindexes. If multiple user processes are creating and
dropping tables in tempdb, heavy contention can occur on the system tables.
Worktables created internally do not store information in system tables.

If contention for tempdb system tables is a problem with applications that must
repeatedly create and drop the same set of temporary tables, try creating the
tables at the start of the application. Then use insert...select to populate them,
and truncate table to remove all the data rows. Although insert...select requires
logging and is slower than select into, it can provide a solution to the locking
problem.

CHAPTER 17 tempdb Performance Issues

Performance and Tuning: Basics 389

Minimizing logging in tempdb
Even though the trunc log on checkpoint database option is turned on in tempdb,
changes to tempdb are still written to the transaction log. You can reduce log
activity in tempdb by:

• Using select into instead of create table and insert

• Selecting only the columns you need into the temporary tables

 With select into
When you create and populate temporary tables in tempdb, use the select into
command, rather than create table and insert...select, whenever possible. The
select into/bulkcopy database option is turned on by default in tempdb to enable
this behavior.

select into operations are faster because they are only minimally logged. Only
the allocation of data pages is tracked, not the actual changes for each data row.
Each data insert in an insert...select query is fully logged, resulting in more
overhead.

By using shorter rows
If the application creating tables in tempdb uses only a few columns of a table,
you can minimize the number and size of log records by:

• Selecting just the columns you need for the application, rather than using
select * in queries that insert data into the tables

• Limiting the rows selected to just the rows that the applications requires

Both of these suggestions also keep the size of the tables themselves smaller.

Optimizing temporary tables

390 Adaptive Server Enterprise

Optimizing temporary tables
Many uses of temporary tables are simple and brief and require little
optimization. But if your applications require multiple accesses to tables in
tempdb, you should examine them for possible optimization strategies.
Usually, this involves splitting out the creation and indexing of the table from
the access to it by using more than one procedure or batch.

When you create a table in the same stored procedure or batch where it is used,
the query optimizer cannot determine how large the table is, the table has not
yet been created when the query is optimized, as shown in Figure 17-3. This
applies to both temporary tables and regular user tables.

Figure 17-3: Optimizing and creating temporary tables

The optimizer assumes that any such table has 10 data pages and 100 rows. If
the table is really large, this assumption can lead the optimizer to choose a
suboptimal query plan.

These two techniques can improve the optimization of temporary tables:

• Creating indexes on temporary tables

Query optimized here

Table created here

Compile

Optimize

Parse and
Normalize

Query

Results

Execute

Optimize

Compile

CHAPTER 17 tempdb Performance Issues

Performance and Tuning: Basics 391

• Breaking complex use of temporary tables into multiple batches or
procedures to provide information for the optimizer

Creating indexes on temporary tables
You can define indexes on temporary tables. In many cases, these indexes can
improve the performance of queries that use tempdb. The optimizer uses these
indexes just like indexes on ordinary user tables. The only requirements are:

• The table must contain data when the index is created. If you create the
temporary table and create the index on an empty table, Adaptive Server
does not create column statistics such as histograms and densities. If you
insert data rows after creating the index, the optimizer has incomplete
statistics.

• The index must exist while the query using it is optimized. You cannot
create an index and then use it in a query in the same batch or procedure.

• The optimizer may choose a suboptimal plan if rows have been added or
deleted since the index was created or since update statistics was run.

Providing an index for the optimizer can greatly increase performance,
especially in complex procedures that create temporary tables and then
perform numerous operations on them.

Creating nested procedures with temporary tables
You need to take an extra step to create the procedures described above. You
cannot create base_proc until select_proc exists, and you cannot create
select_proc until the temporary table exists. Here are the steps:

1 Create the temporary table outside the procedure. It can be empty; it just
needs to exist and to have columns that are compatible with select_proc:

select * into #huge_result from ... where 1 = 2

2 Create the procedure select_proc, as shown above.

3 Drop #huge_result.

4 Create the procedure base_proc.

Optimizing temporary tables

392 Adaptive Server Enterprise

Breaking tempdb uses into multiple procedures
For example, this query causes optimization problems with #huge_result:

create proc base_proc
as
 select *
 into #huge_result
 from ...
 select *
 from tab,
 #huge_result where ...

You can achieve better performance by using two procedures. When the
base_proc procedure calls the select_proc procedure, the optimizer can
determine the size of the table:

create proc select_proc
as
 select *
 from tab, #huge_result where ...
create proc base_proc
as
 select *
 into #huge_result
 from ...
 exec select_proc

If the processing for #huge_result requires multiple accesses, joins, or other
processes, such as looping with while, creating an index on #huge_result may
improve performance. Create the index in base_proc so that it is available when
select_proc is optimized.

Perfromance and Tuning: Basics 393

Symbols
(pound sign)

temporary table identifier prefix 383

Numerics
4K memory pool, transaction log and 234

A
access

index 152
memory and disk speeds 205
optimizer methods 151

Adaptive Server
column size 12, 135
logical page sizes 12, 134, 153, 154
number of groups 13, 135
number of logins 13, 135
number of users 13, 135

affinity
CPU 44, 56
engine example 76

aggregate functions
denormalization and performance 144
denormalization and temporary tables 385

aging
data cache 216
procedure cache 212

algorithm 59
guidelines 62

allocating memory 210
allocation

dynamic allocation 209
allocation map. See Object Allocation Map (OAM)

pages
allocation pages 158

allocation units 156, 158
database creation and 348

ALS
log writer 50, 324
user log cache 48, 322
when to use 48, 322

ALS, see Asynchronous Log Service 47, 320
alter table command

lock option and fillfactor and 188
partition clause 106
reservepagegap for indexes 197
unpartition 107

APL tables. See all pages locking
application design

cursors and 342
denormalization for 143
DSS and OLTP 221
managing denormalized data with 149
network packet size and 29
primary keys and 310
procedure cache sizing 213
SMP servers 57
temporary tables in 385

application execution precedence 67, 85–87
environment analysis 65
scheduling and 75
system procedures 71

application queues. See application execution
precedence

architecture
multithreaded 35

artificial columns 319
assigning execution precedence 67
asynchronous prefetch 363, 374

dbcc and 367, 378
during recovery 366
fragmentation and 371
hash-based scans and 376
large I/O and 374
look-ahead set 364

Index

Index

394 Adaptive Server Enterprise

maintenance for 378
MRU replacement strategy and 376
nonclustered indexes and 367
page chain fragmentation and 371
page chain kinks and 371, 378
parallel query processing and 376
partition-based scans and 377
performance monitoring 380
pool limits and 370
recovery and 377
sequential scans and 366
tuning goals 373

@@pack_received global variable 29
@@pack_sent global variable 29
@@packet_errors global variable 29
attributes

execution classes 69
auditing

disk contention and 91
performance effects 243
queue, size of 245

B
Backup Server 350
backups

network activity from 31
planning 7

base priority 69
batch processing

bulk copy and 353
managing denormalized data with 150
temporary tables and 391

bcp (bulk copy utility) 352
heap tables and 169
large I/O for 227
parallel 110
partitioned tables and 110
reclaiming space with 181
temporary tables 383

binary expressions xxii
binding

caches 220, 239
objects to data caches 174
tempdb 221, 388

transaction logs 221
B-trees, index

nonclustered indexes 285
buffers

allocation and caching 177
chain of 174
procedure (“proc”) 213

bulk copying. See bcp (bulk copy utility)
business models and logical database design 133

C
cache hit ratio

cache replacement policy and 231
data cache 218
procedure cache 213

cache replacement policy 229
defined 229
indexes 230
lookup tables 230
transaction logs 230

cache replacement strategy 174–179, 229
cache, procedure

cache hit ratio 213
errors 213
query plans in 212
size report 212
sizing 213

caches, data 215–241
aging in 174
binding objects to 174
cache hit ratio 218
data modification and 177, 217
deletes on heaps and 178
guidelines for named 230
hot spots bound to 220
I/O configuration 173, 227
inserts to heaps and 177
joins and 176
large I/O and 225
MRU replacement strategy 175
named 220–240
page aging in 215
pools in 173, 227
spinlocks on 221

Index

Perfromance and Tuning: Basics 395

strategies chosen by optimizer 228
tempdb bound to own 221, 388
transaction log bound to own 221
updates to heaps and 178
wash marker 174

chain of buffers (data cache) 174
chains of pages

overflow pages and 282
placement 90
unpartitioning 107

character expressions xxii
checkpoint process 216

housekeeper task and 51
client

connections 35
packet size specification 29
task 36

client/server architecture 21
close command

memory and 330
close on endtran option, set 342
cluster ratio

reservepagegap and 194, 199
clustered indexes 274

asynchronous prefetch and scans 366
computing number of data pages 264
computing number of pages 258
computing size of rows 259
delete operations 283
estimating size of 257, 263
exp_row_size and row forwarding 189–194
fillfactor effect on 268
guidelines for choosing 306
insert operations and 278
order of key values 277
overflow pages and 282
overhead 180
page reads 278
partitioned tables and 108
performance and 180
reclaiming space with 181
reducing forwarded rows 189–194
scans and asynchronous prefetch 366
segments and 98
select operations and 277
size of 251, 260

structure of 276
collapsing tables 145
column size 12, 135
columns

artificial 319
datatype sizes and 258, 264
derived 144
fixed- and variable-length 258
fixed-length 264
redundant in database design 144
splitting tables 148
unindexed 153
values in, and normalization 137
variable-length 264

commands for configuration 374
compiled objects 213

data cache size and 214
composite indexes 312

advantages of 314
concurrency

SMP environment 57
configuration (Server)

memory 206
configuration (server)

housekeeper task 51
I/O 225
named data caches 220
network packet size 27
number of rows per page 204

connections
client 35
cursors and 342
packet size 27

consistency
data and performance 150

constants xxii
constraints

primary key 304
unique 304

contention
avoiding with clustered indexes 273
data cache 232
disk I/O 93, 242
I/O device 93
logical devices and 90
max_rows_per_page and 203

Index

396 Adaptive Server Enterprise

partitions to avoid 99
SMP servers and 57
spinlock 232
system tables in tempdb 388
transaction log writes 182
underlying problems 91

control pages for partitioned tables
updating statistics on 116

controller, device 93
conventions

used in manuals xix
covered queries

index covering 152
covering nonclustered indexes

asynchronous prefetch and 366
configuring I/O size for 237
rebuilding 347

CPU
affinity 56

cpu grace time configuration parameter
CPU yields and 43

CPU usage
housekeeper task and 50
monitoring 53
sp_monitor system procedure 53

cpuaffinity (dbcc tune parameter) 56
create clustered index command

sorted_data and fillfactor interaction 188
sorted_data and reservepagegap interaction 200–

202
create database command

parallel I/O 90
create index command

distributing data with 108
fillfactor and 183–188
locks acquired by 344
parallel configuration and 108
parallel sort and 108
reservepagegap option 197
segments and 345
sorted_data option 345

create table command
exp_row_size option 190
reservepagegap option 196
space management properties 190

cursor rows option, set 341

cursors
execute 330
Halloween problem 332
indexes and 331
isolation levels and 338
locking and 328
modes 331
multiple 342
read-only 331
stored procedures and 330
updatable 331

D
data

consistency 150
little-used 147
max_rows_per_page and storage 203
storage 93, 151–182
uniqueness 273

data caches 215–241
aging in 174
binding objects to 174
cache hit ratio 218
data modification and 177, 217
deletes on heaps and 178
fetch-and-discard strategy 175
guidelines for named 230
hot spots bound to 220
inserts to heaps and 177
joins and 176
large I/O and 225
named 220–240
page aging in 215
sizing 222–238
spinlocks on 221
strategies chosen by optimizer 228
tempdb bound to own 221, 387, 388
transaction log bound to own 221
updates to heaps and 178
wash marker 174

data integrity
application logic for 149
denormalization effect on 142
managing 148

Index

Perfromance and Tuning: Basics 397

data modification
data caches and 177, 217
heap tables and 168
log space and 351
nonclustered indexes and 311
number of indexes and 299
recovery interval and 242
transaction log and 181

data pages 153–181
clustered indexes and 276
computing number of 258, 264
fillfactor effect on 268
full, and insert operations 279
limiting number of rows on 203
linking 167
partially full 180
text and image 156

database design 133–150
collapsing tables 145
column redundancy 144
indexing based on 317
logical keys and index keys 306
normalization 135

database devices 92
parallel queries and 93
sybsecurity 94
tempdb 94

database objects
binding to caches 174
placement 89–132
placement on segments 89
storage 151–182

databases
See also database design
creation speed 348
devices and 93
placement 89

datatypes
choosing 310, 319
numeric compared to character 319

dbcc (database c+onsistency checker)
configuring asynchronous prefetch for 378

dbcc (database consistency checker)
asynchronous prefetch and 367
large I/O for 227

dbcc (engine) command 55

dbcc tune
cleanup 355
cpuaffinity 56
des _bind 356

deallocate cursor command
memory and 330

decision support system (DSS) applications
execution preference 86
named data caches for 221
network packet size for 27

declare cursor command
memory and 330

default exp_row_size percent configuration parameter
191

default fill factor percentage configuration parameter
186

default settings
audit queue size 245
auditing 244
max_rows_per_page 203
network packet size 27

delete operations
clustered indexes 283
heap tables 170
nonclustered indexes 290
object size and 249

denormalization 141
application design and 149
batch reconciliation and 150
derived columns 144
disadvantages of 143
duplicating tables and 146
management after 148
performance benefits of 143
processing costs and 142
redundant columns 144
techniques for 144
temporary tables and 385

derived columns 144
devices

adding for partitioned tables 123, 128
object placement on 89
partitioned tables and 128
RAID 103
throughput, measuring 103
using separate 58

Index

398 Adaptive Server Enterprise

dirty pages
checkpoint process and 216
wash area and 215

disk devices
performance and 89–132

disk I/O
performing 46

disk i/o structures configuration parameter
asynchronous prefetch and 370

disk mirroring
device placement 95
performance and 90

DSS applications
 See Decision Support Systems

duplication
tables 146

dynamic memory allocation 209

E
EC

attributes 69
engine affinity, task 69, 71

example 72
engine resources

results analysis and tuning 66
engine resources, distribution 59
engines 36

CPU affinity 56
defined 36
functions and scheduling 44
network 45
scheduling 44
taking offline 55

environment analysis 65
I/O-intensive and CPU-intensive execution objects 64
intrusive and unintrusive 64

environment analysis and planning 63
error logs

procedure cache size in 212
error messages

procedure cache 213
errors

packet 29
procedure cache 212

exceed logical page size 163
execute cursors

memory use of 330
execution 46

attributes 67
mixed workload precedence 86
precedence and users 87
ranking applications for 67
stored procedure precedence 87
system procedures for 71

execution class 67
attributes 69
predefined 68
user-defined 68

execution objects 67
behavior 64
performance hierarchy 67
scope 77

execution precedence
among applications 72
assigning 67
scheduling and 75

exp_row_size option 189–194
create table 190
default value 190
server-wide default 191
setting before alter table...lock 360
sp_chgattribute 191
storage required by 269

expected row size. See exp_row_size option
expressions, maximum length 13
extents

allocation and reservepagegap 195
partitioned tables and extent stealing 114
space allocation and 156

F
fetch-and-discard cache strategy 175
fetching cursors

memory and 330
fillfactor

advantages of 184
disadvantages of 184
index creation and 183, 310

Index

Perfromance and Tuning: Basics 399

index page size and 268
locking and 202
max_rows_per_page compared to 203
page splits and 184

fillfactor option
See also fillfactor values
create index 183
sorted_data option and 188

fillfactor values
See also fillfactor option
alter table...lock 186
applied to data pages 187
applied to index pages 187
clustered index creation and 186
nonclustered index rebuilds 186
reorg rebuild 186
table-level 186

first normal form 137
See also normalization

first page
allocation page 158
text pointer 156

fixed-length columns
calculating space for 254
data row size of 258, 264
for index keys 311
index row size and 259
overhead 311

floating-point data xxii
for load option

performance and 348
for update option, declare cursor

optimizing and 341
foreign keys

denormalization and 143
formulas

cache hit ratio 219
table or index sizes 254–271

forwarded rows
query on systabstats 193
reserve page gap and 194

fragmentation, data
effects on asynchronous prefetch 371
page chain 371

fragmentation, reserve page gap and 195
free writes 50

G
global allocation map (GAM) pages 157
groups, number of for 12.5 13, 135

H
Halloween problem

cursors and 332
hardware

network 30
ports 34
terminology 92

hash-based scans
asynchronous prefetch and 376
joins and 93

header information
data pages 154
packet 21
“proc headers” 213

heap tables 167–182
bcp (bulk copy utility) and 354
delete operations 170
deletes and pages in cache 178
guidelines for using 180
I/O and 172
I/O inefficiency and 180
insert operations on 168
inserts and pages in cache 177
locking 169
maintaining 180
performance limits 169
select operations on 168, 176
updates and pages in cache 178
updates on 171

high priority users 87
historical data 147
horizontal table splitting 147
hot spots 87

binding caches to 220
housekeeper free write percent configuration

parameter 51
housekeeper task 50–52

recovery time and 243

Index

400 Adaptive Server Enterprise

I
I/O

access problems and 91
asynchronous prefetch 363, ??–380
balancing load with segments 98
bcp (bulk copy utility) and 355
buffer pools and 220
CPU and 53
create database and 349
default caches and 174
devices and 90
disk 46
efficiency on heap tables 180
expected row size and 194
heap tables and 172
increasing size of 173
memory and 205
named caches and 220
network 45
parallel for create database 90
performance and 92
recovery interval and 351
select operations on heap tables and 176
server-wide and database 94
sp_spaceused and 251
spreading between caches 388
transaction log and 182

IDENTITY columns
cursors and 332
indexing and performance 306

image datatype
page size for storage 156
storage on separate device 98, 156

index covering
definition 152

index keys, logical keys and 306
index pages

fillfactor effect on 185, 268
limiting number of rows on 203
page splits for 281
storage on 274

index selection 308
indexes 273–296

access through 152, 273
bulk copy and 352
cache replacement policy for 230

choosing 152
computing number of pages 259
creating 344
cursors using 331
denormalization and 143
design considerations 297
dropping infrequently used 318
fillfactor and 183
guidelines for 310
intermediate level 276
leaf level 275
leaf pages 285
max_rows_per_page and 203
number allowed 304
performance and 273–296
rebuilding 347
recovery and creation 345
root level 275
selectivity 299
size of 248
size of entries and performance 300
SMP environment and multiple 57
sort order changes 347
sp_spaceused size report 251
temporary tables and 383, 391
types of 274
usefulness of 167

indexing
configure large buffer pools 320
create a claustered index first 320

information (sp_sysmon)
CPU usage 53

initializing
text or image pages 270

insert operations
clustered indexes 278
heap tables and 168
logging and 389
nonclustered indexes 289
page split exceptions and 280
partitions and 99
performance of 90
rebuilding indexes after many 347

integer data
in SQL xxii

intermediate levels of indexes 276

Index

Perfromance and Tuning: Basics 401

isolation levels
cursors 338

J
joins

choosing indexes for 307
data cache and 176
datatype compatibility in 311
denormalization and 141
derived columns instead of 144
hash-based scan and 93
normalization and 137
temporary tables for 385

K
key values

index storage 273
order for clustered indexes 277
overflow pages and 282

keys, index
choosing columns for 306
clustered and nonclustered indexes and 274
composite 312
logical keys and 306
monotonically increasing 281
size and performance 310
size of 304
unique 310

L
large I/O

asynchronous prefetch and 374
named data caches and 225

large object (LOB) 98
leaf levels of indexes 275

fillfactor and number of rows 268
queries on 153
row size calculation 261, 265

leaf pages 285
calculating number in index 262, 266

limiting number of rows on 203
levels

indexes 275
tuning 5–10

lightweight process 37
listeners, network 34
load balancing for partitioned tables 114

maintaining 131
local backups 350
locking 16–??

create index and 344
heap tables and inserts 169
last page inserts and 306
tempdb and 388
worktables and 388

log I/O size
matching 227
tuning 224
using large 235

logging
bulk copy and 352
minimizing in tempdb 389

logical database design 133, 150
logical device name 92
logical expressions xxii
logical keys, index keys and 306
logical page sizes 12, 134, 153, 154
logical process manager 67
logins 45

number of for 12.5 13, 135
look-ahead set 364

dbcc and 367
during recovery 366
nonclustered indexes and 367
sequential scans and 366

lookup tables, cache replacement policy for 230
LRU replacement strategy 174

M
maintenance tasks 343–355

performance and 90
managing denormalized data 148
map, object allocation. See object allocation map (OAM)

pages

Index

402 Adaptive Server Enterprise

matching index scans 292
max async i/os per engine configuration parameter

asynchronous prefetch and 370
max async i/os per server configuration parameter

asynchronous prefetch and 370
max_rows_per_page option

fillfactor compared to 203
locking and 202
select into effects 204

memory
cursors and 328
how to allocate 210
I/O and 205
named data caches and 220
network packets and 28
performance and 205–245
shared 44

messages
See also errors

mixed workload execution priorities 86
model, SMP process 43
modes of disk mirroring 96
monitoring

CPU usage 53
data cache performance 218
index usage 318
network activity 29
performance 5

monitoring environment 66
Monitoring indexes

examples of 309
using sp_monitorconfig 308

monitoring indexes ??–310
MRU replacement strategy 174

asynchronous prefetch and 376
multicolumn index. See composite indexes
multiple network engines 45
multiple network listeners 34
multitasking 39
multithreading 35

N
nesting

temporary tables and 391

network engines 45
network I/O 45
network packets

global variables 29
sp_monitor system procedure 29, 53

networks 19
cursor activity of 336
hardware for 30
multiple listeners 34
performance and 19–34
ports 34
reducing traffic on 30, 355
server based techniques 30

nonclustered indexes 274
asynchronous prefetch and 367
definition of 285
delete operations 290
estimating size of 261–263
guidelines for 307
insert operations 289
number allowed 304
select operations 287
size of 251, 261, 265, 285
structure 286

nonleaf rows 262
nonmatching index scans 293–294
normal forms 15
normalization 135

first normal form 137
joins and 137
second normal form 138
temporary tables and 385
third normal form 139

null columns
storage of rows 155
storage size 256
variable-length 310

null values
datatypes allowing 310
text and image columns 270

number (quantity of)
bytes per index key 304
clustered indexes 274
cursor rows 341
indexes per table 304
nonclustered indexes 274

Index

Perfromance and Tuning: Basics 403

OAM pages 263, 267
packet errors 29
procedure (“proc”) buffers 213
processes 38
rows (rowtotal), estimated 250
rows on a page 203

number of columns and sizes 161
number of groups 13, 135
number of logins 13, 135
number of sort buffers 320
number of users 13, 135
numbers

row offset 285
numeric expressions xxii

O
object allocation map (OAM) pages 158

overhead calculation and 260, 265
object allocation mapp (OAM) pages

LRU strategy in data cache 175
object size

viewing with optdiag 249
offset table

nonclustered index selects and 287
row IDs and 285
size of 155

online backups 351
online transaction processing (OLTP)

execution preference assignments 86
named data caches for 221
network packet size for 27

open command
memory and 330

optdiag utility command
object sizes and 249

optimization
cursors 330

optimizer
cache strategies and 228
dropping indexes not used by 318
indexes and 297
nonunique entries and 299
temporary tables and 390

OR strategy

cursors and 340
order

composite indexes and 312
data and index storage 274
index key values 277
presorted data and index creation 345
recovery of databases 351
result sets and performance 180

order by clause
indexes and 273

output
sp_estspace 300
sp_spaceused 250

overflow pages 282
key values and 282

overhead
calculation (space allocation) 263, 267
clustered indexes and 180
cursors 336
datatypes and 310, 319
network packets and 28
nonclustered indexes 311
object size calculations 254
pool configuration 239
row and page 254
single process 37
space allocation calculation 260, 265
variable-length and null columns 256
variable-length columns 311

overheads 160

P
@@pack_received global variable 29
@@pack_sent global variable 29
packet size 27
@@packet_errors global variable 29
packets

default 28
number 28
size specification 29

packets, network 21
size, configuring 27

page chain kinks
asynchronous prefetch and 371, 378

Index

404 Adaptive Server Enterprise

clustered indexes and 379
defined 371
heap tables and 379
nonclustered indexes and 379

page chains
overflow pages and 282
placement 90
text or image data 270
unpartitioning 107

page splits
data pages 279
fillfactor effect on 184
index pages and 281
max_rows_per_page setting and 203
nonclustered indexes, effect on 279
object size and 249
performance impact of 281
reducing 184

page utilization percent configuration parameter
object size estimation and 255

pages
global allocation map (GAM) 157
overflow 282

pages, control
updating statistics on 115

pages, data 153–181
bulk copy and allocations 352
calculating number of 258, 264
fillfactor effect on 268
fillfactor for SMP systems 58
linking 167
size 153
splitting 279

pages, index
aging in data cache 216
calculating number of 259
calculating number of non-leaf 266
fillfactor effect on 185, 268
fillfactor for SMP systems 58
leaf level 285
storage on 274

pages, OAM (Object Allocation Map)
number of 263

pages, OAM (object allocation map) 158
aging in data cache 216
number of 260, 265, 267

parallel query processing
asynchronous prefetch and 376
object placement and 90
performance of 91

parrellel sort
configure enough sort buffers 320

partition clause, alter table command 106
partition-based scans

asynchronous prefetch and 377
partitioned tables 99

bcp (bulk copy utility) and 110, 354
changing the number of partitions 107
command summary 106
configuration parameters for 102
configuration parameters for indexing 108
create index and 108
creating new 117
data distribution in 111
devices and 114, 123, 128
distributing data across 108, 120
extent stealing and 114
information on 111
load balancing and 114
loading with bcp 110
maintaining 116, 131
moving with on segmentname 119
read-mostly 105
read-only 104
segment distribution of 102
size of 111, 115
sorted data option and 118
space planning for 103
statistics 116
statistics updates 115
unpartitioning 107
updates and 105
updating statistics 116

partitioning tables 106
partitions

ratio of sizes 111
size of 111, 115

performance 3
analysis 14
backups and 351
bcp (bulk copy utility) and 353
cache hit ratio 218

Index

Perfromance and Tuning: Basics 405

clustered indexes and 180
designing 4
indexes and 297
networks 19
number of indexes and 299
problems 19
techniques 20
tempdb and 381–391

performing benchmark tests 65
performing disk I/O 46
physical device name 92
point query 152
pointers

index 274
last page, for heap tables 168
page chain 167
text and image page 156

pools, data cache
configuring for operations on heap tables 173
large I/Os and 225
overhead 239

ports, multiple 34
precedence

rule (execution hierarchy) 77
precedence rule, execution hierarchy 78
precision, datatype

size and 256
predefined execution class 68
prefetch

asynchronous 363–??
sequential 173

primary key constraint
index created by 304

primary keys
normalization and 138
splitting tables and 146

priority 69
application 67
assigning 68
precedence rule 78
run queues 75
task 67

“proc headers” 213
procedure (“proc”) buffers 213
procedure cache

cache hit ratio 213

errors 213
query plans in 212
size report 212
sizing 213

procedure cache sizing configuration parameter 211
process model 43
processes (server tasks) 39

identifier (PID) 38
lightweight 37
number of 38
overhead 37
run queue 39

ptn_data_pgs system function 115

Q
queries

point 152
range 299
unindexed columns in 153

query plans
procedure cache storage 212
unused and procedure cache 212
updatable cursors and 340

query processing
large I/O for 227

queues
run 46
scheduling and 40
sleep 40

R
RAID devices

partitioned tables and 103
range queries 299
read-only cursors 331

indexes and 331
locking and 336

reads
clustered indexes and 278
disk mirroring and 96
image values 156
named data caches and 241

Index

406 Adaptive Server Enterprise

text values 156
recompilation

cache binding and 240
recovery

asynchronous prefetch and 366
configuring asynchronous prefetch for 377
housekeeper task and 51
index creation and 345
log placement and speed 95

recovery interval in minutes configuration parameter
216, 242

I/O and 351
re-creating

indexes 108, 345
referential integrity

references and unique index requirements 310
relaxed LRU replacement policy

indexes 230
lookup tables 230
transaction logs 230

remote backups 350
replacement policy. See cache replacement policy
replacement strategy. See LRU replacement strategy; MRU

replacement strategy
replication

network activity from 31
tuning levels and 6

reports
procedure cache size 212
sp_estspace 252

reserved pages, sp_spaceused report on 252
reservepagegap option 195–200

cluster ratios 194, 199
create index 197
create table 196
extent allocation and 195
forwarded rows and 194
sp_chgattribute 197
space usage and 194
storage required by 269

response time
definition of 3
other users affecting 32
table scans and 152

risks of denormalization 142
root level of indexes 275

rounding
object size calculation and 254

row ID (RID) 285
row offset number 285
rows per data page 165
rows, index

size of leaf 261, 265
size of non-leaf 262

rows, table
splitting 148

run queue 38, 39, 46

S
scans, table

avoiding 273
performance issues 152

scheduling, Server
engines 44
tasks 40

scope rule 77, 79
search conditions

clustered indexes and 306
second normal form 138

See also normalization
segments 92

changing table locking schemes 358
clustered indexes on 98
database object placement on 93, 98
free pages in 114
moving tables between 119
nonclustered indexes on 98
partition distribution over 102
tempdb 386

select * command
logging of 389

select command
optimizing 299

select into command
heap tables and 169
large I/O for 227

select operations
clustered indexes and 277
heaps 168
nonclustered indexes 287

Index

Perfromance and Tuning: Basics 407

sequential prefetch 173, 225
server

other tools 30
servers

scheduler 42
uniprocessor and SMP 57

set theory operations
compared to row-oriented programming 326

shared keyword
cursors and 331

shared locks
read-only cursors 331

single CPU 38
single-process overhead 37
size

data pages 153
datatypes with precisions 256
formulas for tables or indexes 254–271
I/O 173, 225
indexes 248
nonclustered and clustered indexes 285
object (sp_spaceused) 250
partitions 111
predicting tables and indexes 257–271
procedure cache 212, 213
sp_spaceused estimation 252
stored procedure 214
tables 248
tempdb database 384
triggers 214
views 214

skew in partitioned tables
information on 111

sleep queue 40
SMP (symmetric multiprocessing) systems

application design in 57
architecture 43
disk management in 58
named data caches for 222
temporary tables and 58

sort operations (order by)
improving performance of 344
indexing to avoid 273
performance problems 382

sort order
rebuilding indexes after changing 347

sorted data, reindexing 345, 348
sorted_data option

fillfactor and 188
reservepagegap and 200

sorted_data option, create index
partitioned tables and 118
sort suppression and 345

sp_addengine system procedure 73
sp_addexeclass system procedure 68
sp_bindexeclass system procedure 68
sp_chgattribute system procedure

exp_row_size 191
fillfactor 185–188
reservepagegap 197

sp_estspace system procedure
advantages of 253
disadvantages of 254
planning future growth with 252

sp_help system procedure
displaying expected row size 192

sp_helpartition system procedure 111
sp_helpsegment system procedure

checking data distribution 114
sp_logiosize system procedure 235
sp_monitor system procedure 53

network packets 29
sp_spaceused system procedure 250

row total estimate reported 250
space 160, 161

clustered compared to nonclustered indexes 285
estimating table and index size 257–271
extents 156
for text or image storage 156
reclaiming 180
unused 156

space allocation
clustered index creation 304
contiguous 159
deallocation of index pages 285
deletes and 171
extents 156
index page splits 281
monotonically increasing key values and 281
object allocation map (OAM) pages 260, 265
overhead calculation 260, 263, 265, 267
page splits and 279

Index

408 Adaptive Server Enterprise

predicting tables and indexes 257–271
procedure cache 213
sp_spaceused 252
tempdb 387
unused space within 156

space management properties 183–204
object size and 268
reserve page gap 195–200
space usage 360

speed (server)
memory compared to disk 205
select into 389
sort operations 344

spinlocks
contention 232
data caches and 221

splitting
data pages on inserts 279
horizontal 147
tables 146
vertical 148

SQL standards
cursors and 326

steps
problem analysis 14

storage management
collapsed tables effect on 145
delete operations and 170
I/O contention avoidance 93
page proximity 159
row storage 155
space deallocation and 284

store procedures, maximum length 13
stored procedures

cursors within 334
hot spots and 87
performance and 90
procedure cache and 212
size estimation 214
temporary tables and 392

striping tempdb 384
subprocesses 39

switching context 39
sybsecurity database

audit queue and 244
placement 94

symbols
in SQL statements xx

Symmetric Multi Processing System. See SMP 44
sysgams table 157
sysindexes table

data access and 160
text objects listed in 156

sysprocedures table
query plans in 212

system tables
data access and 160
performance and 90

T
table scans

asynchronous prefetch and 366
avoiding 273
performance issues 152

tables
collapsing 145
denormalizing by splitting 146
designing 135
duplicating 146
estimating size of 254
heap 167–182
moving with on segmentname 119
normal in tempdb 383
normalization 135
partitioning 99, 106
secondary 319
size of 248
size with a clustered index 257, 263
unpartitioning 107

tabular data stream 21
tabular data stream (TDS) protocol 21
task level tuning

algorithm 59
tasks

client 36
execution 46
queued 40
scheduling 40

TDS. See Tabular Data Stream
tempdb database

Index

Perfromance and Tuning: Basics 409

data caches 387
logging in 389
named caches and 221
performance and 381–391
placement 94, 386
segments 386
in SMP environment 58
space allocation 387
striping 384

temporary tables
denormalization and 385
indexing 391
nesting procedures and 391
normalization and 385
optimizing 390
performance considerations 90, 382
permanent 383
SMP systems 58

testing
data cache performance 218
“hot spots” 307
nonclustered indexes 311

text datatype
chain of text pages 270
page size for storage 156
storage on separate device 98, 156
sysindexes table and 156

third normal form. See normalization
thresholds

bulk copy and 353
database dumps and 351

throughput 4
measuring for devices 103

time interval
recovery 242
since sp_monitor last run 53

time slice 69
configuration parameter 42

time slice configuration parameter
CPU yields and 43

tools
packet monitoring with sp_monitor 29

transaction length 58
transaction logs

cache replacement policy for 230
log I/O size and 234

named cache binding 221
placing on separate segment 94
on same device 95
storage as heap 181

transactions
logging and 389

triggers
managing denormalized data with 149
procedure cache and 212
size estimation 214

truncate table command
not allowed on partitioned tables 102

tuning
Adaptive Server layer 7
application layer 6
asynchronous prefetch 373
database layer 6
definition of 4
devices layer 8
hardware layer 9
levels 5–10
network layer 8
operating system layer 9
recovery interval 242

two-phase commit
network activity from 31

U
union operator

cursors and 340
uniprocessor system 38
unique constraints

index created by 304
unique indexes 273

optimizing 310
units, allocation. See allocation units
unpartition clause, alter table 107
unpartitioning tables 107
unused space

allocations and 156
update command

image data and 270
text data and 270

update cursors 331

Index

410 Adaptive Server Enterprise

update locks
cursors and 331

update operations
heap tables and 171
index updates and 311

update partition statistics command 115, 116
update statistics command

large I/O for 227
user connections

network packets and 28
user log cache (ULC)

log size and 234
user log cache, in ALS 48, 322
user-defined execution class 68
users

assigning execution priority 87
login information 45

users, number of for 12.5 13, 135
Using Asynchronous log service 47, 320
Using Asynchronous log service, ALS 47, 320

V
variable-length 163
variable-length columns

index overhead and 319
variables, maximum length 13
vertical table splitting 148
views

collapsing tables and 146
size estimation 214

W
wash area 215

configuring 238
wash marker 174
when to use ALS 48, 322
where clause

creating indexes for 307
table scans and 167

worker processes 36
worktables

locking and 388

tempdb and 384
write operations

disk mirroring and 96
free 50
housekeeper process and 52
image values 156
serial mode of disk mirroring 96
text values 156

Y
yields, CPU

cpu grace time configuration parameter 43
time slice configuration parameter 43
yield points 42

	Performance and Tuning: Basics
	About This Book
	CHAPTER 1 Introduction to Performance and Tuning
	CHAPTER 2 Introduction to the Basics
	Good performance
	Response time
	Throughput
	Designing for performance

	Tuning performance
	Tuning levels
	Application layer
	Database layer
	Adaptive Server layer
	Devices layer
	Network layer
	Hardware layer
	Operating - system layer

	Configuration parameters
	Dynamic

	Identifying system limits
	Varying logical page sizes
	Number of columns and column size
	Maximum length of expressions, variables, and stored procedure arguments
	Number of logins
	Performance implications for limits

	Setting tuning goals
	Analyzing performance
	Normal Forms
	Locking
	Special Considerations

	CHAPTER 3 Networks and Performance
	Introduction
	Potential performance problems
	Basic questions on network performance
	Techniques summary
	Using sp_sysmon while changing network configuration

	How Adaptive Server uses the network
	Managing Network Listeners
	Network Listeners on UNIX
	Managing listeners with sp_listener
	Using the remaining parameter
	Determining the status of listeners
	Starting new listeners
	Stopping listeners
	Suspending listeners
	Resume suspended listeners

	Changing network packet sizes
	Large versus default packet sizes for user connections
	Number of packets is important
	Evaluation tools with Adaptive Server
	Evaluation tools outside of Adaptive Server
	Server-based techniques for reducing network traffic

	Impact of other server activities
	Single user versus multiple users

	Improving network performance
	Isolate heavy network users
	Set tcp no delay on TCP networks
	Configure multiple network listeners

	CHAPTER 4 Using Engines and CPUs
	Background concepts
	How Adaptive Server processes client requests
	Client task implementation

	Single-CPU process model
	Scheduling engines to the CPU
	Scheduling tasks to the engine
	Execution task scheduling
	Scheduling client task processing time
	Maintaining CPU availability during idle time

	Adaptive Server SMP process model
	Scheduling engines to CPUs
	Scheduling Adaptive Server tasks to engines
	Multiple network engines
	Task priorities and run queues
	Processing scenario

	Asynchronous log service
	Understanding the user log cache (ULC) architecture
	When to use ALS
	Using the ALS
	ULC flusher
	Log writer
	Changes in stored procedures

	Housekeeper task improves CPU utilization
	Side effects of the housekeeper task
	Configuring the housekeeper task
	Changing the percentage by which writes can be increased
	Disabling the housekeeper task
	Allowing the housekeeper task to work continuously

	Measuring CPU usage
	Single-CPU machines
	Using sp_monitor to measure CPU usage
	Using sp_sysmon to measure CPU usage
	Operating - system commands and CPU usage

	Determining when to configure additional engines
	Taking engines offline

	Enabling engine-to-CPU affinity
	Multiprocessor application design guidelines

	CHAPTER 5 Distributing Engine Resources
	Algorithm for successfully distributing engine resources
	Algorithm guidelines
	Environment analysis and planning
	Analyzing
	Example: phase 1 - execution object behavior
	Example: phase 2 - the environment as a whole

	Performing benchmark tests
	Setting goals
	Results analysis and tuning
	Monitoring the environment over time

	Manage preferred access to resources
	Types of execution classes
	Predefined execution classes
	User-Defined execution classes

	Execution class attributes
	Base priority
	Time slice
	Task-to-engine affinity

	Setting execution class attributes
	Assigning execution classes
	Engine groups and establishing task-to-engine affinity
	How execution class bindings affect scheduling
	Execution class bindings
	Engine affinity can affect scheduling

	Setting attributes for a session only
	Getting information

	Rules for determining precedence and scope
	Multiple execution objects and ECs
	Precedence rule
	Scope rule

	Resolving a precedence conflict
	Examples: determining precedence

	Example scenario using precedence rules
	Planning
	Configuration
	Execution characteristics

	Considerations for Engine Resource Distribution
	Client applications: OLTP and DSS
	Unintrusive client applications
	I/O-bound client applications
	Highly critical applications

	Adaptive Server logins: high-priority users
	Stored procedures: “hot spots”

	CHAPTER 6 Controlling Physical Data Placement
	Object placement can improve performance
	Symptoms of poor object placement
	Underlying problems
	Using sp_sysmon while changing data placement

	Terminology and concepts
	Guidelines for improving I/O performance
	Spreading data across disks to avoid I/O contention
	Avoiding physical contention in parallel join queries

	Isolating server-wide I/O from database I/O
	Where to place tempdb
	Where to place sybsecurity

	Keeping transaction logs on a separate disk
	Mirroring a device on a separate disk
	Device mirroring performance issues
	Using serial mode

	Creating objects on segments
	Using segments
	Separating tables and indexes
	Splitting large tables across devices
	Moving text storage to a separate device

	Partitioning tables for performance
	User transparency
	Partitioned tables and parallel query processing
	Distributing data across partitions

	Improving insert performance with partitions
	How partitions address page contention
	Selecting heap tables to partition

	Restrictions on partitioned tables
	Partition-related configuration parameters
	How Adaptive Server distributes partitions on devices
	RAID devices and partitioned tables

	Space planning for partitioned tables
	Read-only tables
	Read-mostly tables
	Tables with random data modification

	Commands for partitioning tables
	alter table...partition syntax
	alter table...unpartition Syntax
	Changing the number of partitions
	Distributing data evenly across partitions
	Commands to create and drop clustered indexes
	Using reorg rebuild on data-only-locked tables
	Using drop index and create clustered index
	Using constraints and alter table
	Special concerns for partitioned tables and clustered indexes

	Using parallel bcp to copy data into partitions
	Parallel copy and locks

	Getting information about partitions
	Using bcp to correct partition balance
	Checking data distribution on devices with sp_helpsegment
	Effects of imbalance of data on segments and partitions
	Determining the number of pages in a partition

	Updating partition statistics
	Syntax for update partition statistics

	Steps for partitioning tables
	Backing up the database after partitioning tables
	Table does not exist
	Table exists elsewhere in the database
	Table exists on the segment
	Redistributing data
	Adding devices to a segment

	Special procedures for difficult situations
	Clustered indexes on large tables
	Alternative for clustered indexes

	Problems when devices for partitioned tables are full
	Adding disks when devices are full
	Adding disks when devices are nearly full

	Maintenance issues and partitioned tables
	Regular maintenance checks for partitioned tables

	CHAPTER 7 Database Design
	Basic design
	Physical database design for Adaptive Server
	Logical Page Sizes
	Number of columns and column size

	Normalization
	Levels of normalization
	Benefits of normalization
	First Normal Form
	Second Normal Form
	Third Normal Form

	Denormalizing for performance
	Risks
	Disadvantages
	Performance advantages

	Denormalization input
	Techniques
	Adding redundant columns
	Adding derived columns
	Collapsing tables
	Duplicating tables

	Splitting tables
	Horizontal splitting
	Vertical splitting

	Managing denormalized data
	Using triggers
	Using application logic
	Batch reconciliation

	CHAPTER 8 Data Storage
	Performance gains through query optimization
	Query processing and page reads

	Adaptive Server pages
	Page headers and page sizes
	Varying logical page sizes
	Data and index pages
	Large Object (LOB) Pages
	Extents

	Pages that manage space allocation
	Global allocation map pages
	Allocation pages
	Object allocation map pages
	How OAM pages and allocation pages manage object storage
	Page allocation keeps an object’s pages together
	sysindexes table and data access

	Space overheads
	Number of columns and size
	Variable-length columns in APL tables
	Variable length columns in DOL tables

	Number of rows per data page
	Maximum numbers
	Arguments for stored procedures
	Retrieving data with enhanced limits

	Heaps of data: tables without clustered indexes
	Lock schemes and differences between heaps
	Select operations on heaps
	Allpages-locked heap tables
	Data-only locked heap tables

	Inserting data into an allpages-locked heap table
	Conflicts during heap inserts

	Inserting data into a data-only-locked heap table
	If conflicts occur during heap inserts

	Deleting data from a heap table
	Deleting from an allpages-locked heap table
	Deleting from a data-only locked heap table
	Deleting the last row on a page

	Updating data on a heap table
	Allpages-locked heap tables
	Data-only-locked heap tables

	How Adaptive Server performs I/O for heap operations
	Sequential prefetch, or large I/O

	Caches and object bindings
	Heaps, I/O, and cache strategies
	Overview of cache strategies
	LRU replacement strategy
	When LRU strategy is used
	MRU replacement strategy

	Select operations and caching
	Data modification and caching
	Caching and inserts on heaps
	Caching, update and delete operations on heaps

	Asynchronous prefetch and I/O on heap tables
	Heaps: pros and cons
	Maintaining heaps
	Methods
	Using reorg rebuild to reclaim space
	Reclaiming space by creating a clustered index
	Reclaiming space using bcp

	Transaction log: a special heap table

	CHAPTER 9 Setting Space Management Properties
	Reducing index maintenance
	Advantages of using fillfactor
	Disadvantages of using fillfactor
	Setting fillfactor values
	fillfactor examples
	No stored fillfactor values
	Table-level or clustered index fillfactor value stored

	Use of the sorted_data and fillfactor options

	Reducing row forwarding
	Default, minimum, and maximum values for exp_row_size
	Default value

	Specifying an expected row size with create table
	Adding or changing an expected row size
	Setting a default expected row size server-wide
	Displaying the expected row size for a table
	Choosing an expected row size for a table
	Using optdiag to check for forwarded rows
	Querying systabstats to check for forwarded rows

	Conversion of max_rows_per_page to exp_row_size
	Monitoring and managing tables that use expected row size

	Leaving space for forwarded rows and inserts
	Extent allocation operations and reservepagegap
	Specifying a reserve page gap with create table
	Specifying a reserve page gap with create index
	Changing reservepagegap
	reservepagegap examples
	reservepagegap specified only for the table
	reservepagegap specified for a clustered index

	Choosing a value for reservepagegap
	Monitoring reservepagegap settings
	reservepagegap and sorted_data options to create index
	Background on the sorted_data option
	Matching options and goals

	Using max_rows_per_page on allpages-locked tables
	Reducing lock contention
	Indexes and max_rows_per_page
	select into and max_rows_per_page
	Applying max_rows_per_page to existing data

	CHAPTER 10 Memory Use and Performance
	How memory affects performance
	How much memory to configure
	Dynamic reconfiguration
	Dynamic memory allocation
	How memory is allocated

	Caches in Adaptive Server
	CAche sizes and buffer pools

	Procedure cache
	Getting information about the procedure cache size
	proc buffers
	proc headers
	Monitoring procedure cache performance
	Procedure cache errors

	Procedure cache sizing
	Estimating stored procedure size

	Data cache
	Default cache at installation time
	Page aging in data cache
	Effect of data cache on retrievals
	Effect of data modifications on the cache
	Data cache performance
	Testing data cache performance
	Cache hit ratio for a single query
	Cache hit ratio information from sp_sysmon

	Configuring the data cache to improve performance
	Commands to configure named data caches
	Tuning named caches
	Cache configuration goals
	Gather data, plan, and then implement
	Evaluating cache needs
	Large I/O and performance
	The optimizer and cache choices
	Choosing the right mix of I/O sizes for a cache

	Reducing spinlock contention with cache partitions
	Cache replacement strategies and policies
	Strategies
	Policies

	Named data cache recommendations
	Sizing caches for special objects, tempdb, and transaction logs
	Determining cache sizes for special tables or indexes
	Examining cache needs for tempdb
	Examining cache needs for transaction logs
	Choosing the I/O size for the transaction log
	Configuring for large log I/O size
	Additional tuning tips for log caches

	Basing data pool sizes on query plans and I/O
	Checking I/O size for queries

	Configuring buffer wash size
	Overhead of pool configuration and binding objects
	Pool configuration overhead
	Cache binding overhead

	Maintaining data cache performance for large I/O
	Diagnosing excessive I/O Counts
	Using sp_sysmon to check large I/O performance

	Speed of recovery
	Tuning the recovery interval
	Effects of the housekeeper wash task on recovery time

	Auditing and performance
	Sizing the audit queue
	Auditing performance guidelines

	Text and images pages

	CHAPTER 11 Determining Sizes of Tables and Indexes
	Why object sizes are important to query tuning
	Tools for determining the sizes of tables and indexes
	Effects of data modifications on object sizes
	Using optdiag to display object sizes
	Advantages of optdiag
	Disadvantages of optdiag

	Using sp_spaceused to display object size
	Advantages of sp_spaceused
	Disadvantages of sp_spaceused

	Using sp_estspace to estimate object size
	Advantages of sp_estspace
	Disadvantages of sp_estspace

	Using formulas to estimate object size
	Factors that can affect storage size
	Storage sizes for datatypes
	Tables and indexes used in the formulas
	Calculating table and clustered index sizes for allpages-locked tables
	Step 1: Calculate the data row size
	Step 2: Compute the number of data pages
	Step 3: Compute the size of clustered index rows
	Step 4: Compute the number of clustered index pages
	Step 5: Compute the total number of index pages
	Step 6: Calculate allocation overhead and total pages
	Step 7: Calculate the size of the leaf index row
	Step 8: Calculate the number of leaf pages in the index
	Step 9: Calculate the size of the non-leaf rows
	Step 10: Calculate the number of non-leaf pages
	Step 11: Calculate the total number of non-leaf index pages
	Step 12: Calculate allocation overhead and total pages

	Calculating the sizes of data-only-locked tables
	Step 1: Calculate the data row size
	Step 2: Compute the number of data pages
	Step 3: Calculate allocation overhead and total pages
	Step 4: Calculate the size of the index row
	Step 5: Calculate the number of leaf pages in the index
	Step 6: Calculate the number of non-leaf pages in the index
	Step 7: Calculate the total number of non-leaf index pages
	Step 8: Calculate allocation overhead and total pages

	Other factors affecting object size
	Effects of space management properties
	Using average sizes for variable fields

	Very small rows
	LOB pages
	Advantages of using formulas to estimate object size
	Disadvantages of using formulas to estimate object size

	CHAPTER 12 How Indexes Work
	Types of indexes
	Index pages
	Root level
	Leaf level
	Intermediate level

	Index Size

	Clustered indexes on allpages-locked tables
	Clustered indexes and select operations
	Clustered indexes and insert operations
	Page splitting on full data pages
	Exceptions to page splitting

	Page splitting on index pages
	Performance impacts of page splitting
	Overflow pages
	Clustered indexes and delete operations
	Deleting the last row on a page
	Index page merges

	Nonclustered indexes
	Leaf pages revisited
	Nonclustered index structure
	Nonclustered indexes and select operations
	Nonclustered index performance
	Nonclustered indexes and insert operations
	Nonclustered indexes and delete operations
	Clustered indexes on data-only-locked tables

	Index covering
	Covering matching index scans
	Covering nonmatching index scans

	Indexes and caching
	Using separate caches for data and index pages
	Index trips through the cache

	CHAPTER 13 Indexing for Performance
	How indexes affect performance
	Detecting indexing problems
	Symptoms of poor indexing
	Lack of indexes is causing table scans
	Index is not selective enough
	Index does not support range queries
	Too many indexes slow data modification
	Index entries are too large
	Exception for wide data rows and wide index rows

	Fixing corrupted indexes
	Repairing the system table index
	Repairing a nonclustered index

	Index limits and requirements
	Choosing indexes
	Index keys and logical keys
	Guidelines for clustered indexes
	Choosing clustered indexes
	Candidates for nonclustered indexes
	Index Selection
	Examples of using the index selection

	Other indexing guidelines
	Choosing nonclustered indexes
	Performance price for data modification

	Choosing composite indexes
	Key order and performance in composite indexes
	Advantages and disadvantages of composite indexes

	Techniques for choosing indexes
	Choosing an index for a range query
	Adding a point query with different indexing requirements

	Index and statistics maintenance
	Dropping indexes that hurt performance
	Choosing space management properties for indexes

	Additional indexing tips
	Creating artificial columns
	Keeping index entries short and avoiding overhead
	Dropping and rebuilding indexes
	Configure enough sort buffers
	Create the clustered index first
	Configure large buffer pools

	Asynchronous log service
	Understanding the user log cache (ULC) architecture
	When to use ALS
	Using the ALS
	ULC flusher
	Log writer
	Changes in stored procedures

	CHAPTER 14 Cursors and Performance
	Definition
	Set-oriented versus row-oriented programming
	Example

	Resources required at each stage
	Memory use and execute cursors

	Cursor modes
	Index use and requirements for cursors
	Allpages-locked tables
	Data-only-locked tables
	Table scans to avoid the Halloween problem

	Comparing performance with and without cursors
	Sample stored procedure without a cursor
	Sample stored procedure with a cursor
	Cursor versus noncursor performance comparison

	Locking with read-only cursors
	Isolation levels and cursors
	Partitioned heap tables and cursors
	Optimizing tips for cursors
	Optimizing for cursor selects using a cursor
	Using union instead of or clauses or in lists
	Declaring the cursor’s intent
	Specifying column names in the for update clause
	Using set cursor rows
	Keeping cursors open across commits and rollbacks
	Opening multiple cursors on a single connection

	CHAPTER 15 Maintenance Activities and Performance
	Running reorg on tables and indexes
	Creating and maintaining indexes
	Configuring Adaptive Server to speed sorting
	Dumping the database after creating an index
	Creating an index on sorted data
	Maintaining index and column statistics
	Rebuilding indexes
	Speeding index creation with sorted_data

	Creating or altering a database
	Backup and recovery
	Local backups
	Remote backups
	Online backups
	Using thresholds to prevent running out of log space
	Minimizing recovery time
	Recovery order

	Bulk copy
	Parallel bulk copy
	Batches and bulk copy
	Slow bulk copy
	Improving bulk copy performance
	Replacing the data in a large table
	Adding large amounts of data to a table
	Using partitions and multiple bulk copy processes
	Impacts on other users

	Database consistency checker
	Using dbcc tune (cleanup)
	Using dbcc tune on spinlocks
	When not to use this command

	Determining the space available for maintenance activities
	Overview of space requirements
	Tools for checking space usage and space available
	Checking space used for tables and indexes
	Checking space on segments
	Checking space requirements for space management properties
	Space management properties applied to the table
	Space management properties applied to the index

	Estimating the effects of space management properties
	If there is not enough space

	CHAPTER 16 Tuning Asynchronous Prefetch
	How asynchronous prefetch improves performance
	Improving query performance by prefetching pages
	Prefetching control mechanisms in a multiuser environment
	Look-ahead set during recovery
	Prefetching log pages
	Prefetching data and index pages

	Look-ahead set during sequential scans
	Look-ahead set during nonclustered index access
	Look-ahead set during dbcc checks
	Allocation checking
	checkdb and checktable

	Look-ahead set minimum and maximum sizes

	When prefetch is automatically disabled
	Flooding pools
	I/O system overloads
	Unnecessary reads
	Page chain fragmentation

	Tuning Goals for asynchronous prefetch
	Commands for configuration

	Other Adaptive Server performance features
	Large I/O
	Sizing and limits for the 16k pool
	Limits for the 2K pool

	Fetch-and-discard (MRU) scans
	Parallel scans and large I/Os
	Hash-based table scans
	Partition-based scans

	Special settings for asynchronous prefetch limits
	Setting limits for recovery
	Setting limits for dbcc

	Maintenance activities for high prefetch performance
	Eliminating kinks in heap tables
	Eliminating kinks in clustered index tables
	Eliminating kinks in nonclustered indexes

	Performance monitoring and asynchronous prefetch

	CHAPTER 17 tempdb Performance Issues
	How management of tempdb affects performance
	Main solution areas for tempdb performance

	Types and uses of temporary tables
	Truly temporary tables
	Regular user tables
	Worktables

	Initial allocation of tempdb
	Sizing the tempdb
	Placing tempdb
	Dropping the master device from tempdb segments
	Using multiple disks for parallel query performance

	Binding tempdb to its own cache
	Commands for cache binding

	Temporary tables and locking
	Minimizing logging in tempdb
	With select into
	By using shorter rows

	Optimizing temporary tables
	Creating indexes on temporary tables
	Creating nested procedures with temporary tables
	Breaking tempdb uses into multiple procedures

	Index

