S SYBASE

Performance and Tuning:
Basics

Adaptive Server® Enterprise

12.5.1



DOCUMENT ID: DC20020-01-1251-01
LAST REVISED: August 2003

Copyright © 1989-2003 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in thisdocument is subject to change without notice. The software described herein is furnished under alicense agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customersin other countries with a U.S. license agreement may contact Customer Fulfillment viathe above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software rel ease dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture,
Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server
Enterprise Replication, Adaptive Server Everywhere, Adaptive Server 1Q, Adaptive Warehouse, Anywhere Studio, Application
Manager, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Trandlator, APT-Library, AvantGo,
AvantGo Application Alerts, AvantGo Mobile Delivery, AvantGo Mobile Document Viewer, AvantGo Mobile Inspection, AvantGo
Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon Application Server,
AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BizTracker, ClearConnect, Client-Library,
Client Services, Convoy/DM, Copernicus, DataPipeline, DataWorkbench, DataArchitect, Database Analyzer, DataExpress, DataServer,
Datawindow, DB-Library, doQueue, Devel opers Workbench, Direct Connect Anywhere, DirectConnect, Distribution Director, eeADK,
E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway, ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise
Application Studio, Enterprise Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server
Manager, Enterprise Work Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA,
Financial Fusion, Financia Fusion Server, Gateway Manager, GlobalFI X, ImpactNow, |ndustry Warehouse Studio, InfoMaker,
Information Anywhere, Information Everywhere, |nformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, Mail
Anywhere Studio, MainframeConnect, Maintenance Express, Manage Anywhere Studio, M-Business Channel, M-Business Network,
M-Business Server, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, My AvantGo, My AvantGo MediaChannel,
My AvantGo Mobile Marketing, MySupport, Net-Gateway, Net-Library, New Era of Networks, ObjectConnect, ObjectCycle,
OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open
Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC
Net Library, PocketBuilder, Pocket PowerBuilder, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class
Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft, PowerStage,
PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst,
Rapport, Report Workbench, Report-Execute, Replication Agent, Replication Driver, Replication Server, Replication Server Manager,
Replication Toolkit, Resource Manager, RW-DisplayLib, S-Designor, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian,
SKILS, smart.partners, smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL
Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART,
SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, SW.I.F.T.
Message Format Libraries, Sybase Central, Sybase Client/Server Interfaces, Sybase Financial Server, Sybase Gateways, Sybase MPP,
Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financial,
SyberAssist, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, TradeForce, Transact-SQL,
Trang ation Toolkit, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visua
Components, Visual Speller, VisualWriter, VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse
WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup
SQL Server, XA-Library, XA-Server and XP Server are trademarks of Sybase, Inc. 03/03

Unicode and the Unicode L ogo are registered trademarks of Unicode, Inc.
All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.



Contents

About This Book
CHAPTER 1

CHAPTER 2

CHAPTER 3

..................................................................................................................... XV
Introduction to Performance and TuNiNg ......cccoeeeeeviiiieicinnninnnne, 1
INtroduction t0 the BASICS ...uuiiiiiiiiiieiiiiiieiee st 3

GO0Od PEIfOIMANCE ... .eeiiiiieie ettt e e e eeeeee e 3
RESPONSE TIME ...t e e e e 3
TRrOUGNPUL ...t 4
Designing for performance .......ccccccoovcvvveeeie i 4

TUNING PEMOIMANCE ...eviiiiiiiiiiiie e 4
TUNING EVEIS ... 5

Configuration ParamMEterS.........coiiiiiiiiiiee e 10
DYNGIMIC ©evviiiiiiiiiiiecee e ene s 11

Identifying system lImits ..........ccovvieeeeiiiiie e 12
Varying logical page SIZeS........ccccvveiiiieeiiiiee e 12
Number of columns and column Size ..........cccoceeiiiienenninnn. 12
Maximum length of expressions, variables, and stored procedure

ANGUMENTS ...t 13
NUMDBEr Of [0QINS ....oooiiiiieieiiee e 13
Performance implications for limitS...........cccccoeevviviiieeiiiniinnnnn. 14

Setting tuNiNg gOalS........ccoviiiiiiiiiiiiiiie e 14

Analyzing performance ... 14
NOIMAl FOIMS ...t 15
LOCKING -ttt 16
Special CoNSIErationS.........cccuvvveeiieiiiiiiiieiee e 16

Networks and PerformancCe........occveveeiiiiiiiiiiiiiie e 19

INEFOTUCTION .ot 19

Potential performance problems ............ccccciiiiiieiiie e, 19
Basic questions on network performance .............cccccceeenneen. 20
TechniQUES SUMMAIY ......ueiieiiiiei et 20
Using sp_sysmon while changing network configuration......... 21

How Adaptive Server uses the network ............ccoccocveeiieeniiinenns 21

Performance and Tuning: Basics iii



Contents

CHAPTER 4

Managing Network LIiStENErS........cccccvvviiiiiiiiiieeiiiiiiicee e 21
Network Listeners on UNIDX .......cccooviiiiiiiiiiienieeceee e 22
Managing listeners with sp_listener ..........cccceeceeeiiiiiiiiennnnn, 23
Using the remaining parameter ...........cccoocceveeiiieeeeiiieee s 24
Determining the status of listeners...........ccccovvvveeeeeeiciiieeennn. 24
Starting NeW lIStENEIS .......oouiiii e 25
StoOPPING lISTENEIS....co i 26
Suspending lIStENEIS ........ooueiiiiiieie e 26
Resume suspended liIStENers..........cccvvveeeeeeiiciiieieee e 27

Changing network packet SIiZes ........ccccccviviiiiieiiiiiie s 27

Large versus default packet sizes for user connections ................ 28
Number of packets is important............ccccccovvvviiienie e, 28
Evaluation tools with Adaptive Server..........cccccccviiiiiieenneennn, 29
Evaluation tools outside of Adaptive Server............ccccveeereenn. 30
Server-based techniques for reducing network traffic............. 30

Impact of other server activities ...........ccccceiiiiiiiii e 31
Single user versus multiple USers.........cccoooeeeiiiiee e 32

Improving network performance............ccccoviieiiiie e 32
Isolate heavy NetWOrk USErS.........ccooruieiriiieieeiiiee e 32
Set tcp no delay on TCP nNetworks .........cooceeeeiiiiieeiiiiee e, 33
Configure multiple network listeners ..........cccccoevveeiiiieeinenen. 34

Using Engines and CPUS ... 35

Background CONCEPLS......uuviiiiiiiiiiiiiee st 35
How Adaptive Server processes client requests..........cccco...... 36
Client task implementation ............cccvvveeieeiniiiiieeee e, 37

Single-CPU process MOdel .........uuvveiveiiiiiiiiiiiiie i 38
Scheduling engines to the CPU ........cccccceviiiiiiiiiiee e, 38
Scheduling tasks to the engine ..........cccccceeevieiiiiiiieee e 40
Execution task scheduling...........cccoovvvieeiiiiiiiiiiee e, 41

Adaptive Server SMP process model .........ccccoviiiiiiiiiiiiineeee 43
Scheduling engines to CPUS..........cooiiiiiiiiiiee e 44
Scheduling Adaptive Server tasks to engines...............cc...... 44
Multiple network engines...........cccceeiiiiieeiiie e 45
Task priorities and run QUEUES ..........ccevivereriiiieeeciieeeeeiieee e 45
Processing SCENATO .......uuvviiieiiiiiiiiiiiiie e 46

ASYNChIroNOUS 10Q SEIVICE ....cviiiiiiiiiiiiiiie et 47
Understanding the user log cache (ULC) architecture ............ 48
When t0 USE ALS .....oiiiiiiiieee e 48
USING the ALS ..ot 49

Housekeeper task improves CPU utilization...........ccccccoeevviivvnnennn. 50
Side effects of the housekeeper task ..........cccooveiiiinennnnen. 51
Configuring the housekeeper task..........cccocveiiiiiiiiiee i, 51

MeasUrNg CPU USAQJE .......coiiuuieeiiieiaeaiieeeeaiieeeaaieee e eeeeeeennneeeaans 53

Adaptive Server Enterprise



Contents

Single-CPU MacChineS .......coccuvviieeie e 53
Determining when to configure additional engines.................. 54
Taking engines offline ..o 55
Enabling engine-to-CPU affinity .........ccoecviieeiiiiiiiiiiie i, 55
Multiprocessor application design guidelines...........ccccccevviiivineenn. 57
CHAPTER 5 Distributing ENgine RESOUICES........ccuviiiiiiiiiiieie e 59
Algorithm for successfully distributing engine resources ............... 59
Algorithm guUIdeliNeS .......c.oooviiiiiiiiiie e 62
Environment analysis and planning.........cccccooeevvveiieeesiiniinnnn. 63
Performing benchmark tests ..........ccccvvveeiiiiiiiiiiii e, 65
SettiNg QOAIS......oiiiiiie e 66
Results analysis and tuning.........c..cccoeceeieiiieieiiiee e 66
Monitoring the environment over time ..........ccoccoeeevieee e, 66
Manage preferred access t0 reSOUICES..........ueeeeeeeiivriereeeeeseiiennens 67
Types of eXeCUtiON CIASSES .......ccueviiiiiieeeee e 67
Predefined execution Classes.........cccoocveiiiiiei e 68
User-Defined execution ClassSes..........ccccovvvveeiiieieeiiiiee e, 68
Execution class attributes ...........ccccvveiiieiii e 69
BaSE PrIOMILY woveeeiiiiiiiiie et 69
TIME SHICE . 70
Task-to-engine affinity .......ccccccooviviiiiiiii 70
Setting execution class attributes...........cccoovvviiveee s 71
AsSigNiNg eXeCULioN ClAaSSES ........ceeviiirieiiiiieeiiee e 72
Engine groups and establishing task-to-engine affinity ........... 72
How execution class bindings affect scheduling ..................... 74
Setting attributes for a Session only .........ccccoviieeiiiiennieee e, 76
Getting INfOrMation ..........ooueiiiii e 76
Rules for determining precedence and SCOpE.........cccccvveeeeeecnnnnnn. 77
Multiple execution objects and ECS ...........ccoccvviverieenniiiiviinenn. 77
Resolving a precedence conflict.........cccccceeiiiiiiiiiiiin e, 80
Examples: determining preCedence ..........ccooevvvvvevieeeeseniivnnn, 80
Example scenario using precedence rules ..........ccccvvevieeeniiniiinnn, 82
PIANNING ©.viiiiiiii e 83
CoNfIQUIALION ....oooiiiiiiie e 84
Execution characteristiCs............ocvvveviiieiiiiiiei e 85
Considerations for Engine Resource Distribution .......................... 85
Client applications: OLTP and DSS .........cccocveiiiieieinieeee e 86
Adaptive Server logins: high-priority users...........ccccceviceens 87
Stored procedures: “hot SPOLS”........cccoiieieriiiiieeiieee e 87
CHAPTER 6 Controlling Physical Data Placement...........ccceeeiiiiiiiiiciiiiineenn, 89
Object placement can improve performance ...........cccceeeeeeennnen. 89

Performance and Tuning: Basics \



Contents

Symptoms of poor object placement............ccccvvvveviieeiiiniiinnn, 90
Underlying problems ... 91
Using sp_sysmon while changing data placement.................. 91
Terminology and CONCEPLS ......coveiieiiiiiee e 92
Guidelines for improving I/O performance ..........cccococcvevvieeeennnen. 92
Spreading data across disks to avoid I/O contention .............. 93
Isolating server-wide I/O from database 1/O.............ccccvveee.. 94
Keeping transaction logs on a separate disK...............ccvveeee... 94
Mirroring a device on a separate disK ...........ccccecveercrieriiennnnnn. 95
Creating objects 0N SEgMENLS..........uvevviiiiiiiiiiiien e 96
USING SEOMENTS....ciiiieiiiiiiiiiiee e eeiiirerree e e e s ree e e e s s ninnreeee s 97
Separating tables and iNndexes..........ccccccee i, 98
Splitting large tables across deviCes .........ccccovvvivivieeeeeiniiinnnne, 98
Moving text storage to a separate deviCe...........ccccovvvvvvveeennnn. 98
Partitioning tables for performance ...........cccccceviiiiiiee e, 99
0 LYY 1 = 1 1] o F= 1= o 99
Partitioned tables and parallel query processing................... 100
Improving insert performance with partitions......................... 101
Restrictions on partitioned tables ............cccccoviiieiiiieeninen. 102
Partition-related configuration parameters ..............ccceeeueeen. 102
How Adaptive Server distributes partitions on devices ......... 102
Space planning for partitioned tables............ccccccceeiiiiiiiiiennnen, 103
Read-only tables ... 104
Read-mostly tables.........cccccveiiiiiiiii 105
Tables with random data modification.............cccccccveviiinnenns 105
Commands for partitioning tables ........cc.ccccovvviiieiiiiiiieen 106
alter table...partition SYNtaX .......ccccceveeiniiiiiiienee e 106
alter table...unpartition Syntax.........cccoocoeeeiiineiniie e 107
Changing the number of partitions ............ccccceeviiieiiiieeene 107
Distributing data evenly across partitions...............cccceeeeeeen. 108
Using parallel bcp to copy data into partitions....................... 110
Getting information about partitions ............ccccecveiiiiiieenne 111
Using bcp to correct partition balance.............cccccoeeiieeeneee. 112
Checking data distribution on devices with sp_helpsegment 114
Updating partition StatiStiCS .........ccccvvveerieiiiiiiiiiieeee e 115
Steps for partitioning tables.........ccccoce i 117
Backing up the database after partitioning tables ................. 117
Table dOES NOL EXISt........eviiiiiiieiiiiie e 117
Table exists elsewhere in the database ..............cccccceviieeene 119
Table exists on the segment .........ccccoeevviiviieee e 119
Special procedures for difficult situations.............c..ccccvvvvveeeeiinnnns 124
Clustered indexes on large tables........ccccccoeevviviiiieee e, 124
Alternative for clustered indexes ..........cccccvevvieeeniiieeeinieenn, 125
Problems when devices for partitioned tables are full.................. 128

Vi Adaptive Server Enterprise



Contents

Adding disks when devices are full .............ccocooeiiiiiiiinneen. 128
Adding disks when devices are nearly full............................. 130
Maintenance issues and partitioned tables...........ccccccoecivieiinenen. 131
Regular maintenance checks for partitioned tables .............. 131
CHAPTER 7 Database DeSIQN ....ccuuvieieiiiiiee et 133
BaSIC A@SION ...eiiiiiiiiiiiiiiie e 133
Physical database design for Adaptive Server...................... 134
Logical Page SizZeS........cccuvvieiiiiiiiiiiiiiiiiie e 134
Number of columns and column Size ..........ccccecvveeiiiiiieenne 135
NOrMANIZALION ... e 135
Levels of normalization.............cccceeiiiiiiiieee e 136
Benefits of normalization .............ccccoiiiiiiii e 136
First Normal FOrM .......coooiiiiiiiieee e 137
Second NOrmal FOMM ........oooiiiiiiiie e 138
Third Normal FOrM ........ovviieieeiieeee e 139
Denormalizing for performance..........ccoccvvviieece e, 141
RISKS ..ttt 142
Denormalization iNPUL..........c.eviiieiie e 143
TECHNIQUES .....vviiiiii i 144
SPIttiNG tabIES ..o 146
Managing denormalized data...........ccccvvvveeeeiiiiiiiiiienee s 148
USING tHQQEIS 1ottt ettt e e neeeeees 149
Using application 10giC........ooueriiiiiieieiiie e 149
Batch reconciliation ............ccccveee i, 150
CHAPTER 8 Data StOMage . uv ittt 151
Performance gains through query optimization..............c..cc......... 151
Query processing and page reads ........ccccveeeeeeeiciiniereeeesannns 152
Adaptive SEIVEr PAGES ... cociiieeeeiitiieaeitieeeeaiee e e eiee e e areeee e aeeeee e 153
Page headers and page SizeS.......cccoceeeiiiiiieiniiiee e 154
Varying logical page SiZeS.......cccccevivieieiiieiie e 154
Data and iNndex PAgEeSs .......cccvvvveeiieeiiiiiiiiee e 155
Large Object (LOB) PAges .......ccvvviviiiiiiiiiiieeiiiiiiiiee e 156
EXEENLS ..o 156
Pages that manage space allocation .............cccooecvvivveiieeiiiniinnnn. 157
Global allocation Map PAGES .....uvvvveeeeiriiiiiiiiieee e iiiiieee e 157
AllOCALION PAGES ..ottt 158
Object allocation Map PAGES -...ceevvereeeiiiieeeeiiiee e eeeieeee e 158
How OAM pages and allocation pages manage object storage 158
Page allocation keeps an object’s pages together................ 159
sysindexes table and data acCess...........ccccvvvveeeeiiiciiiiennennn. 160
SPace OVEINEAAS ......ccoo it 160

Performance and Tuning: Basics Vii



Contents

CHAPTER 9

viii

Number of columns and Size..........ccccveeviiiiieiniiieceee e, 161
Number of rows per data page........ccccceeeeviiiiiieeniee i, 165
MaximumM NUMDBDEIS ........coiiiiiiiiiiiee e 166
Heaps of data: tables without clustered indexes................cc........ 167
Lock schemes and differences between heaps .................... 167
Select operations 0N heaps.........ccccveviiiereiiiiie e 168
Inserting data into an allpages-locked heap table.................. 168
Inserting data into a data-only-locked heap table.................. 169
Deleting data from a heap table .............ccooovvieeeeeeiiiciinee. 170
Updating data on a heap table ...........cccccooviiiiiiiiniiiie, 171
How Adaptive Server performs I/O for heap operations .............. 172
Sequential prefetch, or large I/O ..o, 173
Caches and object biNdiNGS .......ccvvveiiieiiiiiie e 174
Heaps, I/0, and cache strategies...........cccvvvvvveeeiiiiiiinnenennn. 174
Select operations and caching .........cccccvvveeieiiiiiiiiiienee s 176
Data modification and caching ..........cccccccovviiiieeee i, 177
Asynchronous prefetch and 1/0 on heap tables............ccccveeee. 179
Heaps: Pros and CONS .........oiiiiiiieiiiiee e e e 180
Maintaining hEaPS ........uvviiii i 180
Y11 o o OSSP 180
Transaction log: a special heap table............cccocoiiiiiiiniies 181
Setting Space Management Properties .........ccocccceveevniieeeennnne. 183
Reducing index maintenancCe ..........cccccovvvvvviiieie i 183
Advantages of using fillfactor ..........cccccoevviiiiiiiiiiiiiieeen 184
Disadvantages of using fillfactor.............cccccvvviiveiiiniiiinennn. 184
Setting fillfactor values ..........cccccviiiiiiiiii e, 185
fillfactor eXamplesS.......ccoviiiiiii 185
Use of the sorted_data and fillfactor options..............ccccee..... 188
Reducing row forwarding ........ccccooeceeeeaiiiiee e 189
Default, minimum, and maximum values for exp_row_size .. 189
Specifying an expected row size with create table................ 190
Adding or changing an expected row Size............ccccvvveeeeenn. 191
Setting a default expected row size server-wide................... 191
Displaying the expected row size for a table........................ 192
Choosing an expected row size for atable ...........ccccoeuvneeee. 192
Conversion of max_rows_per_page to exp_row_size........... 193
Monitoring and managing tables that use expected row size 194
Leaving space for forwarded rows and inserts............cccceeevevvvnen. 194
Extent allocation operations and reservepagegap ................ 195
Specifying a reserve page gap with create table................... 196
Specifying a reserve page gap with create index.................. 197
Changing resServepagegap ... ..cccooveeeeaueeeeeieeeeeaaieeeeaneeeaeanes 197
reservepagegap eXamples .......ccccccovvcvvriieeeeeeiiiiiieee e 198

Adaptive Server Enterprise



Contents

Choosing a value for reservepagegap ... ....cccceeereeeeriineeennns 199
Monitoring reservepagegap Settings .........ccccevrieeeeiiieeennnnn. 199
reservepagegap and sorted_data options to create index .... 200
Using max_rows_per_page on allpages-locked tables................ 202
Reducing lock contention ..........cccccoovviiiieniee i 203
Indexes and Max_rOWS_Per_Page .......coouvvrrrrreeeesissiernneeeeeens 203
select into and Max_rows_per_Page......cccccceeeeevivvrreeeeeesnnnnns 204
Applying max_rows_per_page to existing data.................... 204
CHAPTER 10 Memory Use and Performance ........ccccccceveveeeee v 205
How memory affects performance ..........ccccccceviiiiiiiniiee i, 205
How much memory to configure ..........ccocoeeviiiiiiie e, 206
Dynamic reconfiguration ............ccocccoeeiiiiiie e 209
Dynamic memory allocation ...........cccooceeeeviieieniiee e 209
How memory is allocated ..........ccccovevvivieeeeeciiiiieee e 210
Caches in AJaptive SEIVET.........ccccuviiieee e 211
CAche sizes and buffer pools..........cccoocoeiiiiiiiieee 211
Procedure CaChe .........coooiiiiiiiieie e 212
Getting information about the procedure cache size............. 212
Procedure cache Sizing ........ccccceveeiiiiiiiiiiei e 213
Estimating stored procedure Size .......ccccccvvvviiiiiiiieensiniiinnnn, 214
Data CaCNE ... 215
Default cache at installation time...........cccocoove i iiieeeene 215
Page aging in data cache............ccccoiiiiiiiii e, 215
Effect of data cache on retrievals...........ccocooeiiiiiiiiiieeee 216
Effect of data modifications on the cache.................cccc....... 217
Data cache performance .........cccooceveeiiiiee i 218
Testing data cache performance...........cccceeieieiiiiee e 218
Configuring the data cache to improve performance ................... 220
Commands to configure named data caches........................ 222
Tuning NAmMed CACNES ......coiviiiiiiiiiiiiiee e 222
Cache configuration goals..........cccceeeeiiiiiiiiieniee e 223
Gather data, plan, and then implement.............cccccevvveeeennns 224
Evaluating cache Needs .........cccceeeviiiiiiiieniee e 225
Large 1/0 and performance .......c.ccccoocvvvieeieee i 225
Reducing spinlock contention with cache partitions............... 228
Cache replacement strategies and policies............cccecceeenne 228
Named data cache recommendations .............cccoeceeeiiineeinneen. 230
Sizing caches for special objects, tempdb, and transaction logs .
232

Basing data pool sizes on query plans and I/O...................... 236
Configuring buffer wash Size ..........ccccoviiiiiiiiiie 238
Overhead of pool configuration and binding objects ............. 239
Maintaining data cache performance for large /O .............c......... 240

Performance and Tuning: Basics iX



Contents

Diagnosing excessive I/O COUNES .........coocvvvviiieeniiiiiiiieneeennn 241
Using sp_sysmon to check large I/O performance................ 241
SPEEd Of FECOVETY ..oiiiiiiiiiiie et 242
Tuning the recovery interval ...........ccccoocviiiiiiii e 242
Effects of the housekeeper wash task on recovery time........ 243
Auditing and performance .........cccceeveeeiiiiiee e 243
Sizing the audit QUEUE ...........ooiiiiiei e 244
Auditing performance guidelines............ccccovviiiniienneenn, 245
Text and iIMAgES PAGES .....cuuvieeeeieciiiiieee e e e e e e e e e e e e eaaree e e 245
CHAPTER 11 Determining Sizes of Tables and Indexes ..........cccocvveveiiiinnnen. 247
Why object sizes are important to query tuning ...........ccccvvveeeeennn. 247
Tools for determining the sizes of tables and indexes ................. 248
Effects of data modifications on object sizes .........cccccceevviiiinnnn. 249
Using optdiag to display object Sizes .........cccccceeeiiiiiiiiiiniieiins 249
Advantages of optdiag.....c..cccovvevireiiiieiiiiiiiiiie e 250
Disadvantages of optdiag..........cooecvvvvieriieiiiniiiiiieiee e 250
Using sp_spaceused to display object size..........ccccccevveeeiiinnnnen, 250
Advantages of Sp_SpPaceuSEed ..........ccccovvvvrriieeeeeeiiiiiiieeeeeenn 251
Disadvantages of sp_spaceused ...........ccccceeviieeeiiiieeeenninnnn. 252
Using sp_estspace to estimate object Size .........ccccovvvvveeeiiicinnnen, 252
Advantages of Sp_eSISPACE ......cc.vvveeeeeeiiiiiiiiee e 253
Disadvantages of Sp_eStSPace .........ccccevivereeiiieeeeicieee e 254
Using formulas to estimate object Size........ccccccvvvviiiiiiiieeeiiiiinns 254
Factors that can affect storage Size .........cccocvvvveeiiiiiiniennnn. 254
Storage sizes for datatypes......cccceevvviviiiieiee i 255
Tables and indexes used in the formulas.............cccccovieeene 257
Calculating table and clustered index sizes for allpages-locked
TADIES .. 257
Calculating the sizes of data-only-locked tables ................... 263
Other factors affecting object Size.........cccoooeiiiiiiiiiiee 268
Very SMall FOWS .....couviiiiiiiie e e e 269
(@] = o = 1o =1 PP 270
Advantages of using formulas to estimate object size .......... 271
Disadvantages of using formulas to estimate object size...... 271
CHAPTER 12 HOW INAEXES WOTK ..ot 273
TYPES OF INABXES ...vvvveeiiie it 274
INAEX PAGES ... evviiiiee ettt ee e s 274
INAEX SIZE....eeiiiiiiiee e 276
Clustered indexes on allpages-locked tables............cccccvvieeiiinns 276
Clustered indexes and select operations .........ccccccceeevviivnnen. 277
Clustered indexes and insert operations..........cccccceeeevivnnee. 278

X Adaptive Server Enterprise



Contents

Page splitting on full data pages ........cccccoveeeeiviiee e 279
Page splitting on index pages ........ccccccvveeeeiiiiiiiereee e 281
Performance impacts of page splitting ...........ccccovvveeeeeeiiinnns 281
OVErflOW PAGES ...ooieeiiiie ettt 282
Clustered indexes and delete operations............ccccccvveeeiinnns 283
NoNclustered INAEXES..........coiiiieiiiiiie e 285
Leaf pages revisited ........cccvviiieiiiiiiiiii e 285
Nonclustered iNdeX StrUCTUIe............eeeiiieieeriiee e 286
Nonclustered indexes and select operations......................... 287
Nonclustered index performance ...........ccocccceeeviieeeencieeeeee 288
Nonclustered indexes and insert operations .............c.cc........ 289
Nonclustered indexes and delete operations ........................ 290
Clustered indexes on data-only-locked tables....................... 291
INAEX COVEIING -..eieiitieee it ettt et e e et e e e eneeeeeaaes 291
Covering matching index SCans ..........cccceeiiieieeiniiiee e 292
Covering nonmatching index SCans .......cccccccovvvviviiieiieeeninnns 293
Indexes and CACNING ....c..ooviiiiiiiiee e 295
Using separate caches for data and index pages.................. 295
Index trips through the cache...........cccccooivii e, 295
CHAPTER 13 Indexing for Performance ..........cccoviiiiiiiiniiiieeeee e 297
How indexes affect performance...........ccoccvvveevieiiiiiiiiiieniee s 297
Detecting indexing problems..........cccccciiiiiii s 298
Symptoms of POOr INAEXING .....ccoeiiueiieiiiiieeeie e 298
Fixing corrupted iNdEXES ........cueiieiiiieeeeie e 301
Repairing the system table index ...........cocooveiiiieiiiineeee 301
Index limits and requUIreMeNts ........ccooeiiieeeeiiiee e 304
ChOOSING INAEXES....cccci it 305
Index keys and logical Keys..........cccooiiiieiiiiiiinieie e 306
Guidelines for clustered INAEXES .........ccceevvireeeiiiiee e 306
Choosing clustered INAEXES .........cevvveiiiiiiiiiiiiiee e 307
Candidates for nonclustered iNdexes ..........ccocevviieieniineeennne 307
INdEX SEIECHON .....eeiiiiiie it 308
Other indexing guidelines...........cccvveeiiiiiiiiien e 310
Choosing nonclustered iNAeXEeS .........ccvvveviieeeiiiiiiiiiiiee e 311
Choosing cOmMpOSIte INAEXES .......ccvveeviiiiiiiiiiieee e 312
Key order and performance in composite indexes................ 312
Advantages and disadvantages of composite indexes ......... 314
Techniques for choosing iNdexes...........ccooceeiiiiiie e 315
Choosing an index for a range query ..........ccccceevieeeeiieeenne 315
Adding a point query with different indexing requirements.... 316
Index and statistics MainteNanCe ..........ccccevvveeeeiiiieee e 317
Dropping indexes that hurt performance..............ccccccovvivneee. 318
Choosing space management properties for indexes........... 318

Performance and Tuning: Basics Xi



Contents

CHAPTER 14

CHAPTER 15

Xii

Additional iINdexing tiPS ...ccvveeiiiiiiiiii e 319
Creating artificial COlUMNS ........ccooeiiiiiiiiiiiiee e 319
Keeping index entries short and avoiding overhead ............. 319
Dropping and rebuilding iNndeXes.........cccccevvvvieeeeeeeecciieeenn. 320
Configure enough sort buffers.........cccoccociiiiiiiiiee 320
Create the clustered index first...........ccccceiiiiiiiiii e 320
Configure large buffer pools .........cccccoviiiiiiie i 320

AsSYNChronous 10g SEIVICE ........ccoiuiiieiiiiiee e 320
Understanding the user log cache (ULC) architecture .......... 322
When to USE ALS .....ooiiiiieie et 322
USING the ALS ...oiiiiiiiiice e 323

Cursors and PerformancCe.........cccceevveieeeiii e 325

DEfiNItION ....oeeiiiee e 325
Set-oriented versus row-oriented programming.................... 326
EXAMPIE oo 327

Resources required at each stage ..........oocvvveeviieiiiiiiiiiie s 328
Memory use and eXECULE CUISOIS ........ccccuereeiiieeeeaieeeeaaneeens 330

LU =T gl 2o o L= SR SR 331

Index use and requirements for CUrSOrS..........ccccvvvveeeeeeeccivneenennn. 331
Allpages-locked tables ...........ccccoiiiiiiiiiiii e 331
Data-only-locked tables...........ccooeiiiiieiiiiiee e 332

Comparing performance with and without cursors...................... 333
Sample stored procedure without @ CUrsOr........ccccceevvivvvnnen. 333
Sample stored procedure with & CUISOr.........cccvvvvveeeeiiniivnnnen. 334
Cursor versus noncursor performance comparison .............. 335

Locking with read-0only CUISOIS........ccvveiiiiiiiiieiiee e 336

Isolation levels and CUISOrS.........ccvviiiiiiieiiiiee e 338

Partitioned heap tables and CUrSOrS.........ccccveeeeeeeniiiiiieeee e 338

Optimizing tips fOr CUISOIS.....ccuuiieiiiiiie e 339
Optimizing for cursor selects using a Cursor .............ccceeeu..e. 339
Using union instead of or clauses or in lists ............ccccceeeeee. 340
Declaring the cursor's intent..........ccocooeeviiiee e 340
Specifying column names in the for update clause................ 340
USING SEL CUISOT FTOWS ... .uuviieeeeeeeiiieiireeeeeaeiiineeeaeeseennnnnneeaaeens 341
Keeping cursors open across commits and rollbacks ........... 342
Opening multiple cursors on a single connection.................. 342

Maintenance Activities and Performance.........cccccccciiiiiiiiinns 343

Running reorg on tables and iNdeXes .........ccccccovvviiviiiiee e, 343

Creating and maintaining iINAEXES ..........ccccovviiiiiiieee e 344
Configuring Adaptive Server to speed sOrting...................... 344
Dumping the database after creating an index...................... 345

Adaptive Server Enterprise



Creating an index on sorted data...........cccccceeeeviiieeeicieee e 345

Maintaining index and column statistics ...........ccccecoeeeinneenn. 346
Rebuilding iINdEXES ......c..vvviiiiee e 347
Creating or altering a database ........cccccccovvvviiiiiie i 348
Backup and rECOVEIY .....ccoiiiiiiiiiiie i 350
Local BaCkuPS.......coviiiiiiiiii 350
ReEMOtE DACKUPS.....cci ittt 350
ONIINE DACKUPS ... vvveviie ettt 351
Using thresholds to prevent running out of log space............ 351
MiniMIzing recovery timMe .........oociviiiiee e 351
RECOVEIY OFAEN ...vviieee ettt aa e 351
BUIK COPY -ttt ettt ettt e e e e e 352
Parallel BUIK COPY......cueiiiiiiie e 352
Batches and bulk COPY........cuuveiiiiiiiiiiiieeeeeeceee e 353
SIOW BUIK COPY ..o 353
Improving bulk copy performance...........ccoccvvviiieeiiiiiiiiennnn. 353
Replacing the data in a large table ...........cccocceeeiiiiiiiiiennnnn, 354
Adding large amounts of data to atable ..............coccvvveeennenn, 354
Using partitions and multiple bulk copy processes................ 354
IMPACES 0N OtNEr USEIS ....uvvviiiiieiiiciiiiiee e 355
Database consistency checker..........cccovvvieiiiiiiiiii i, 355
Using dbcc tune (Cleanup) ........eeeeeeeeeeiiiiiee e 355
Using dbcc tune on spinlocks ...........cooviiiiiiiiiiiic e 356
When not to use this command .............cccccevviieenieie e, 356
Determining the space available for maintenance activities......... 356
Overview of space requiremMents ..........ccccocceeeeiiieeeeeeeee e 357
Tools for checking space usage and space available ........... 358
Estimating the effects of space management properties....... 360

If there is not enough SPacCe .........cccvvvveeiieiiiiiiii e, 361
CHAPTER 16 Tuning Asynchronous PrefetCh.......cccoooviiii e, 363
How asynchronous prefetch improves performance..................... 363
Improving query performance by prefetching pages ............. 364
Prefetching control mechanisms in a multiuser environment 365
Look-ahead set during reCOVEIY ........cuveeviiiiiiiiieeeeiiiiiieeeeen 366
Look-ahead set during sequential SCaNSs ........cccccoovvvvvvveeennnn. 366
Look-ahead set during nonclustered index access................ 367
Look-ahead set during dbcc checks ..........cccooiiiiiiienneen. 367
Look-ahead set minimum and maximum sizes...................... 368
When prefetch is automatically disabled .............c.ccccovevieiiiennn. 369
FIOOdING POOIS ... 370

1/O system oVerloads ..........ccceeeviieeiiiiieeee e 370
UNNECESSArY MEAUS .......utiiiiiieeeiiiiiiiiiiee e e et e e e siiraeeeee s 371
Tuning Goals for asynchronous prefetch...........cccccooviiiiiinnnnnnns 373

Performance and Tuning: Basics Xiii



Commands for configuration............cccoccveeiieeeniciee e 374

Other Adaptive Server performance features............cccococeeeenneenn. 374
= 4 [ 1 RSP 374
Fetch-and-discard (MRU) SCaNS........ccccccevvinviiieeieeesnniiieen, 376
Parallel scans and large 1/OS.........ccccccevieiviiiiiieeie e, 376

Special settings for asynchronous prefetch limits...............cc........ 377
Setting [imits fOr reCOVENY ........uvvviiiiiiiiiiiieiee s 377
Setting limits for dbBCC........cuvvvviiiiiii 378

Maintenance activities for high prefetch performance................... 378
Eliminating kinks in heap tables..........ccccccooviiiiiiee e, 379
Eliminating kinks in clustered index tables ..............c.ccc.c...... 379
Eliminating kinks in nonclustered indexes .............ccccceeevneen. 379

Performance monitoring and asynchronous prefetch................... 379

CHAPTER 17 tempdb Performance ISSUES .......uuvvievieeeeee i 381

How management of tempdb affects performance....................... 381
Main solution areas for tempdb performance ........................ 382

Types and uses of temporary tables ...........cccvvveevieiiiiiiieneeen 382
Truly temporary tables ... 383
Regular user tables..........cccccoeiiiiiiiii e, 383
WOTKEBDIES ... 384

Initial allocation of tempdb ..........cccoovviiiiiiiii 384

Sizing the temPAD.........uviiiii 385

Placing tempab..........ovviiiiiiiecc e 386

Dropping the master device from tempdb segments................... 386
Using multiple disks for parallel query performance............... 387

Binding tempdb to its own cache..........ccccccceeeeiiiii e, 387
Commands for cache binding..........ccccvvveeeeeeiiiiee s 388

Temporary tables and 10CKiNG ..........cccceiiiieiiiiee e, 388

Minimizing logging in tempdb ..., 389
WIith SEIECEINTO ....eeiiiiie i 389
By USING SNOMEI FOWS ....evviiiiie et 389

Optimizing temporary tables..........cccccooviiiiiiii e, 390
Creating indexes on temporary tables............ccccccceeeviniinnen, 391
Creating nested procedures with temporary tables................ 391
Breaking tempdb uses into multiple procedures.................... 392

1o Lo L= PP PP PTPPPUPRPPPPPPP 393

Xiv Adaptive Server Enterprise



About This Book

Audience

How to use this book

Thismanual isintended for database administrators, database designers,
developers and system administrators.

Note You may want to use your own database for testing changes and
queries. Take a snapshot of the database in question and set it up on atest
machine.

Chapter 1, “Introduction to Performance and Tuning” .

Chapter 2, “Introduction to the Basics’ describes the major components
to be analyzed when addressing performance.

Chapter 3, “Networks and Performance” provides a brief description of
relational databases and good database design.

Chapter 4, “Using Enginesand CPUS’ describes how client processesare
scheduled on engines in Adaptive Server.

Chapter 5, “Distributing Engine Resources’ describes how to assign
execution precedence to specific applications.

Chapter 6, “Controlling Physical Data Placement” describes the uses of
segments and partitions for controlling the physical placement of dataon
storage devices.

Chapter 7, “ Database Design” provides a brief description of relational
databases and good database design.

Chapter 8, “Data Storage” describes Adaptive Server page types, how
datais stored on pages, and how queries on heap tables are executed

Chapter 9, “ Setting Space Management Properties’ describes how space
management properties can be set for tables to improve performance and
reduce the frequency of maintenance operations on tables and indexes.

Chapter 10, “Memory Use and Performance” describes how Adaptive
Server uses memory for the procedure and data caches.

Performance and Tuning: Basics XV



Related documents

XVi

Chapter 11, “Determining Sizes of Tables and Indexes’ describes different
methods for determining the current size of database objects and for estimating
their future size.

Chapter 15, “Maintenance Activities and Performance” describes the impact
of maintenance activities on performance, and how some activities, such asre-
creating indexes, can improve performance.

e Theremaining manuals for the Performance and Tuning Series are;
e Performance and Tuning: Locking
e Performance and Tuning: Monitoring and Analyzing
e Performance and Tuning: Optimizer and Abstract Plans

e Therelease bulletin for your platform — contains last-minute information
that was too late to be included in the books.

A more recent version of the release bulletin may be available on the
World Wide Web. To check for critical product or document information
that was added after the release of the product CD, use the Sybase
Technical Library.

e Thelnstallation Guidefor your platform —describesinstal lation, upgrade,
and configuration procedures for all Adaptive Server and related Sybase
products.

e Configuring Adaptive Server Enterprise for your platform — provides
instructions for performing specific configuration tasks for Adaptive
Server.

e What's New in Adaptive Server Enterprise? — describes the new features
in Adaptive Server version 12.5, the system changes added to support
those features, and the changes that may affect your existing applications.

e Transact-SQL User’s Guide — documents Transact-SQL, Sybase's
enhanced version of the relational database language. This manual serves
as a textbook for beginning users of the database management system.
This manual also contains descriptions of the pubs2 and pubs3 sample
databases.

e System Administration Guide — provides in-depth information about
administering servers and databases. This manual includes instructions
and guidelines for managing physical resources, security, user and system
databases, and specifying character conversion, international language,
and sort order settings.

Adaptive Server Enterprise



About This Book

*  Reference Manual — contains detailed information about all Transact-SQL
commands, functions, procedures, and data types. This manual also
contains alist of the Transact-SQL reserved words and definitions of
system tables.

e The Utility Guide—documentsthe Adaptive Server utility programs, such
asisgl and bcp, which are executed at the operating system level.

e The Quick Reference Guide — provides a comprehensive listing of the
names and syntax for commands, functions, system procedures, extended
system procedures, datatypes, and utilities in a pocket-sized book.
Available only in print version.

e The System Tables Diagram — illustrates system tables and their entity
relationships in a poster format. Available only in print version.

e Error Messages and Troubleshooting Guide — explains how to resolve
frequently occurring error messages and describes solutions to system
problems frequently encountered by users.

e Component Integration Services User’s Guide — explains how to use the
Adaptive Server Component Integration Services feature to connect
remote Sybase and non-Sybase databases.

e Javain Adaptive Server Enterprise—describeshow toinstall and use Java
classes as data types, functions, and stored procedures in the Adaptive
Server database.

e XML Servicesin Adaptive Server Enterprise—describesthe Sybase native
XML processor and the Sybase Java-based XML support, introduces
XML in the database, and documents the query and mapping functions
that comprise XML Services.

e Using Sybase Failover in a High Availability System — provides
instructions for using Sybase's Failover to configure an Adaptive Server
as acompanion server in ahigh availability system.

e Job Scheduler User’s Guide — provides instructions on how to create and
schedule jobs on alocal or remote Adaptive Server using the command
line or agraphical user interface (GUI).

e Using Adaptive Server Distributed Transaction Management Features —
explains how to configure, use, and troubleshoot Adaptive Server DTM
features in distributed transaction processing environments.

e EJB Server User’s Guide — explains how to use EJB Server to deploy and
execute Enterprise JavaBeans in Adaptive Server.

Performance and Tuning: Basics XVii



Other sources of
information

XViil

XA Interface Integration Guide for CICS, Encina, and TUXEDO —
providesinstructions for using Sybase’'s DTM XA interface with X/Open
XA transaction managers.

Glossary — defines technical terms used in the Adaptive Server
documentation.

Sybase jConnect for JDBC Programmer’s Reference — describes the
jConnect for JDBC product and explainshow to useit to access data stored
in relational database management systems.

Full-Text Search Specialty Data Sore User’s Guide— describes how to use
the Full-Text Search feature with Verity to search Adaptive Server
Enterprise data.

Historical Server User’s Guide —describes how to use Historical Server to
obtain performance information for SQL Server and Adaptive Server.

Monitor Server User’s Guide — describes how to use Monitor Server to
obtain performance statistics from SQL Server and Adaptive Server.

Monitor Client Library Programmer’s Guide — describes how to write
Monitor Client Library applications that access Adaptive Server
performance data.

Use the Sybase Technical Library CD and the Technical Library Product
Manuals Web site to learn more about your product:

The Getting Started CD contains rel ease bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the Technical Library CD. Itisincluded with
your software. To read or print documents on the Getting Started CD you
need Adobe Acrobat Reader (downloadable at no charge from the Adobe
Web site, using alink provided on the CD).

The Technical Library CD contains product manuals and is included with
your software. The DynaText reader (included on the Technical Library
CD) allows you to access technical information about your product in an
easy-to-use format.

Refer to the Technical Library Installation Guide in your documentation
package for instructions on installing and starting the Technical Library.

The Technical Library Product Manuals Web siteisan HTML version of
the Technical Library CD that you can access using a standard Web
browser. In addition to product manuals, you will find linksto
EBFs/Updates, Technical Documents, Case Management, Solved Cases,
newsgroups, and the Sybase Developer Network.

Adaptive Server Enterprise



About This Book

Sybasecertifications
on the Web

Sybase EBFs and
software updates

Conventions

To access the Technical Library Product Manuals Web site, go to Product
Manuals at http://www.sybase.com/support/manuals/.

Technical documentation at the Sybase Web site is updated frequently.

Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

Select Products from the navigation bar on the left.
Select a product name from the product list and click Go.

Select the Certification Report filter, specify atime frame, and click Go.

a b W DN

Click a Certification Report title to display the report.

Creating a personalized view of the Sybase Web site (including support
pages)

Set up aMySybase profile. MySybaseisafree service that allowsyouto create
apersonalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Finding the latest information on EBFs and software updates

1 Point your Web browser to the Sybase Support Page at
http://lwww.sybase.com/support.

2 Select EBFs/Updates. Enter user name and password information, if
prompted (for existing Web accounts) or create a new account (afree
service).

Select a product.
4  Specify atime frame and click Go.

Click the Infoicon to display the EBF/Update report, or click the product
description to download the software.

This section describes conventions used in this manual.

Performance and Tuning: Basics XiX



Formatting SQL SQL isafree-formlanguage. There are no rules about the number of wordsyou

statements can put on aline or where you must break a line. However, for readability, all
examples and syntax statements in this manual are formatted so that each
clause of astatement beginson anew line. Clausesthat have morethan one part
extend to additional lines, which are indented.

Font and syntax The font and syntax conventions used in this manual are shown in Table 1.0:

conventions

Table 1: Font and syntax conventions in this manual

Element

Example

Command names, command option names, utility
names, utility flags, and other keywords are bold.

select
sp_configure

Database names, datatypes, file names and path
names are in italics.

master database

Variables, or words that stand for values that you
fill in, areinitalics.

sel ect
column_name

from
table_name

wher e
search_conditions

Parentheses areto betyped as part of the command.

conput e

row_aggr egat e
(

col umm_nane

)

Curly braces indicate that you must choose at least
one of the enclosed options. Do not type the braces.

{cash, check, credit}

Brackets mean choosing one or more of the
enclosed options is optional. Do not type the
brackets.

[anchovi es]

The vertical bar means you may select only one of
the options shown.

{die_on_your_feet | live_on_your_knees
| live_on_your_feet}

The commameans you may choose as many of the
options shown asyou like, separating your choices
with commasto be typed as part of the command.

XX

[extra_cheese, avocados, sour_creani

Adaptive Server Enterprise



About This Book

Element

Example

An élipsis(...) means that you can repeat the last buy t hi ng

price [cash | check |

unit as many times asyou like. credit]

[, thing = price [cash | check |
credit]]...

You must buy at least one thing and give its price. You
may choose a method of payment: one of the items
enclosed in sguare brackets. You may a so choose to buy
additional things: as many of them asyou like. For each
thing you buy, give its name, its price, and (optionally) a
method of payment.

Case

Expressions

e Syntax statements (displaying the syntax and all options for a command)
appear asfollows:
sp_dropdevi ce [ devi ce_nane]

or, for acommand with more options:
sel ect col um_nane
fromtabl e_nane
where search_conditions

In syntax statements, keywords (commands) arein normal font and identifiers
arein lowercase: normal font for keywords, italics for user-supplied words.

e Examples of output from the computer appear as follows:
0736 New Age Books Boston MA
0877 Bi nnet & Hardl ey Washi ngton DC
1389 Al godata I nfosystens Berkel ey CA

In this manual, most of the examples are in lowercase. However, you can
disregard case when typing Transact-SQL keywords. For example, SELECT,
Select, and select are the same. Note that Adaptive Server’s sensitivity to the
case of database objects, such as table names, depends on the sort order
installed on Adaptive Server. You can change case sensitivity for single-byte
character sets by reconfiguring the Adaptive Server sort order.

See in the System Administration Guide for more information.

Adaptive Server syntax statements use the following types of expressions:

Performance and Tuning: Basics XXi



Table 2: Types of expressions used in syntax statements

Usage Definition
expression Can include constants, literals, functions, column identifiers, variables, or

parameters

logical expression

An expression that returns TRUE, FALSE, or UNKNOWN

constant expression

An expression that always returns the same value, such as“5+3" or “ABCDE”

float_expr Any floating-point expression or expression that implicitly convertsto afloating
value

integer_expr Any integer expression, or an expression that implicitly convertsto an integer value

numeric_expr Any numeric expression that returns asingle value

char_expr Any expression that returns a single character-type value

binary_expression

An expression that returns asingle binary or varbinary value

Examples

If you need help

XXii

Many of the examplesin this manual are based on a database called pubtune.
The database schema is the same as the pubs2 database, but the tables used in
the examples have more rows: titles has 5000, authors has 5000, and titleauthor
has 6250. Different indexes are generated to show different features for many
examples, and these indexes are described in the text.

The pubtune database is not provided with Adaptive Server. Since most of the
exampl es show the results of commands such as set showplan and set statistics
io0, running the queriesin thismanual on pubs2 tableswill not produce the same
1/O results, and in many cases, will not produce the same query plans as those
shown here.

Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manual s or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
inyour area

Adaptive Server Enterprise



CHAPTER 1 Introduction to Performance and
Tuning

Tuning Adaptive Server Enterprise for performance can involve several
processes in analyzing the “Why?" of slow performance, contention,
optimizing and usage.

.Thismanual coversthe basics for understanding and investigating
performance questions in Adaptive Server. It guides you in how to look
for the places that may be impeding performance.

The remaining manuals for the Performance and Tuning Series are:

Performance and Tuning: Locking

Performance and Tuning: Basics

Adaptive Server locks the tables, data pages, or data rows currently
used by active transactions by locking them. Locking isa
concurrency control mechanism: it ensures the consistency of data
within and across transactions. Locking is needed in a multiuser
environment, since several users may be working with the same data
a the sametime.

Carefully considered indexes, built on top of agood database design,
are the foundation of a high-performance Adaptive Server
installation. However, adding indexes without proper analysis can
reduce the overall performance of your system. Insert, update, and
del ete operations can take longer when alarge number of indexes
need to be updated.

Performance and Tuning: Optimizer and Abstract Plans

The Optimizer inthe Adaptive Server takes aquery and findsthe best
waly to execute it. The optimization is done based on the statistics for
adatabase or table. The optimized plan stays in effect until the
statistics are updated or the query changes. You can update the
statistics on the entire table or by sampling on a percentage of the
data.



Adaptive Server can generate an abstract plan for aquery, and savethetext
and its associated abstract plan inthe sysqueryplanssystemtable. Abstract
plans provide an alternative to options that must be specified in the batch
or query in order to influence optimizer decisions. Using abstract plans,
you can influence the optimization of a SQL statement without having to
modify the statement syntax.

e Performance and Tuning: Monitoring and Analyzing

Adaptive Server employs reports for monitoring the server. This manual
explains how statistics are obtained and used for monitoring and
optimizing. The stored procedure sp_sysmon produces a large report that
shows the performance in Adaptive Server.

You can also use the Sybase Monitor in Sybase Central for realtime
information on the status of the server.

Each of the manuals has been set up to cover specific information that may be
used by the system administrator and the database administrator.

Adaptive Server Enterprise



CHAPTER 2

Introduction to the Basics

Topic Page
Good performance 3
Tuning performance 4
Identifying system limits 12
Setting tuning goals 14
Analyzing performance 14

Good performance

Response time

Performance is the measure of efficiency for an application or multiple
applications running in the same environment. Performance is usually
measured in response time and throughput.

Response time is the time that a single task takes to complete. The
response time can be shortened by:

¢ Reducing contention and wait times, particularly disk 1/0 wait times
e Using faster components
¢ Reducing the amount of time the resources are needed

In some cases, Adaptive Server is optimized to reduce initial response
time, that is, the time it takes to return the first row to the user.

Thisisespecially useful in applications where auser may retrieve several
rows with a query and then browse through them slowly with afront-end
tool.

Performance and Tuning: Basics 3



Tuning performance

Throughput

Throughput refers to the volume of work completed in afixed time period.
There are two ways of thinking of throughpuit:

e Asasingletransaction, for example, 5 UpdateTitle transactions per
minute, or

« Astheentire Adaptive Server, for example, 50 or 500 server-wide
transactions per minute

Throughput is commonly measured in transactions per second (tps), but it can
also be measured per minute, per hour, per day, and so on.

When you set the various limits for Adaptive Server it means that the server
may have to handle large volumes of data for asingle query, DML operation,
or command. For example, if you use a data-only-locked (DOL) table with a
char(2000) column, Adaptive Server must all ocate memory to perform column
copying while scanning thetable. Increased memory requests during thelife of
aquery or command means a potential reduction in throughput

Designing for performance

Most of the gainsin performance derive from good database design, thorough
guery analysis, and appropriateindexing. Thelargest performance gains can be
realized by establishing a good database design and by learning to work with
the Adaptive Server query optimizer as you develop your applications.

Other considerations, such as hardware and network analysis, can locate
performance bottlenecks in your installation.

Tuning performance

Tuning is optimizing performance. A system model of Adaptive Server and its
environment can be used to identify performance problems at each layer.

Adaptive Server Enterprise



CHAPTER 2 Introduction to the Basics

Figure 2-1: Adaptive Server system model

Tuning levels

[5)
(&)
Application code g !
Open Client g Shared memory),
Request i I
S [
Response | €
P 2| (Access Managerl Data |
cache ,
i
<l \ PrOﬁedure !
cache |

Data tables

% Ind exesTranf(?gCt'o /
on O ’

LOG

System

A major part of tuning is reducing the contention for system resources. As the
number of usersincreases, contention for resources such as data and procedure
caches, spinlocks on system resources, and the CPU(S) increases. The

probability of locking data pages also increases.

Adaptive Server and its environment and applications can be broken into
components, or tuning layers, to isolate certain components of the system for

analysis. In many cases, two or more layers must be tuned so that they work
optimally together.

In some cases, removing a resource bottleneck at one layer can revea another
problem area. On amore optimistic note, resolving one problem can sometimes
aleviate other problems.

For example, if physical 1/0 rates are high for queries, and you add more
memory to speed response time and increase your cache hit ratio, you may ease

problems with disk contention.
The following information is on the tuning layers for Adaptive Server.

Performance and Tuning: Basics



Tuning performance

Application layer

Database layer

Most performance gains come from query tuning, based on good database
design. This guide is devoted to an explanation of Adaptive Server internals
with query processing techniques and tools to maintain high performance.

Issues at the application layer include the following:

»  Decision Support System (DSS) and onlinetransaction processing (OLTP)
require different performance strategies.

»  Transaction design can reduce performance, since long-running
transactions hold locks, and reduce the access of other usersto data.

* Relational integrity requiresjoins for data modification.

* Indexing to support selects increases time to modify data.
* Auditing for security purposes can limit performance.
Options to address these issues include:

» Using remote or replicated processing to move decision support off the
OLTP machine

» Using stored procedures to reduce compilation time and network usage

*  Using the minimum locking level that meets your application needs

Applications share resources at the database layer, including disks, the
transaction log, and data cache.

One database may have 231 (2,147,483,648) logical pages. These logical
pages are divided among the various devices, up to the limit available on each
device. Therefore, the maximum possible size of a database depends on the
number and size of available devices.

The "overhead" is space reserved to the server, not available for
any user database. Itis:

+ sizeof the master database,

e plussize of the model database,

e plussize of tempdb

e (12.0 and beyond) plus size of sybsystemdb,

» plus 8k bytesfor the server's configuration area.

Adaptive Server Enterprise



CHAPTER 2 Introduction to the Basics

Issues at the database layer include:

Developing a backup and recovery scheme
Distributing data across devices
Auditing affects performance; audit only what you need

Scheduling maintenance activities that can slow performance and lock
users out of tables

Options to address these issues include:

Adaptive Server layer

Using transaction log thresholdsto automate |og dumps and avoid running
out of space

Using thresholds for space monitoring in data segments
Using partitions to speed loading of data

Placing objects on devicesto avoid disk contention or to take advantage of
1/O parallel.

Caching for high availability of critical tables and indexes

At the server layer, there are many shared resources, including the data and
procedure caches, locks, and CPUs.

I ssues at the Adaptive Server layer are as follows:

The application types to be supported: OLTPR, DSS, or a mix.

The number of users to be supported can affect tuning decisions—as the
number of users increases, contention for resources can shift.

Network |oads.

Replication Server® or other distributed processing can be an issue when
the number of users and transaction rate reach high levels.

Options to address these issues include:

Tuning memory (the most critical configuration parameter) and other
parameters.

Deciding on client vs. server processing—can some processing take place
at the client side?

Configuring cache sizesand 1/0 sizes.

Performance and Tuning: Basics 7



Tuning performance

Devices layer

Network layer

e Adding multiple CPUs.
e Scheduling batch jobs and reporting for off-hours.
»  Reconfiguring certain parameters for shifting workload patterns.

e Determining whether it is possible to move DSS to another Adaptive
Server.

Thislayer isfor the disk and controllers that store your data. Adaptive Server
can manage up to 256 devices.

Issues at the devices layer include:

*  You mirror the master device, the devices that hold the user database, or
the database logs?

*  How doyou distribute system databases, user databases, and database logs
across the devices?

» Do you need partitions for parallel query performance or high insert
performance on heap tables?

Options to address these issues include:

*  Using more medium-sized devices and controllers may provide better |/O
throughput than afew large devices

» Distributing databases, tables, and indexes to create even 1/0 load across
devices

» Using segmentsand partitionsfor I/O performance on large tablesused in
parallel queries

This layer has the network or networks that connect usersto Adaptive Server.

Virtually all users of Adaptive Server accesstheir data viathe network. Major
issues with the network layer are;

e Theamount of network traffic
*  Network bottlenecks
e Network speed

Options to address these issues include:

Adaptive Server Enterprise



CHAPTER 2 Introduction to the Basics

e Configuring packet sizes to match application needs
e Configuring subnets

e |solating heavy network uses

¢ Moving to a higher-capacity network

e Configuring for multiple network engines

« Designing applicationsto limit the amount of network traffic required

Hardware layer
This layer concerns the CPUs available.

Issues at the hardware layer include:

e CPU throughput

e Disk access. controllers aswell as disks

e Disk backup

*  Memory usage

Options to address these issues include;

e Adding CPUsto match workload

e Configuring the housekeeper task to improve CPU utilization

*  Following multiprocessor application design guidelines to reduce
contention

e Configuring multiple data caches

Operating — system layer

Ideally, Adaptive Server is the only major application on a machine, and must
share CPU, memory, and other resources only with the operating system, and
other Sybase software such as Backup Server™ and Adaptive Server
Monitor™,

At the operating system layer, the major issues are:
e Thefile systems available to Adaptive Server

«  Memory management — accurately estimating operating system overhead
and other program memory use

Performance and Tuning: Basics 9



Configuration parameters

e CPU availability and allocation to Adaptive Server
Optionsinclude:

*  Network interface

e Choosing between files and raw partitions

e Increasing the memory size

e Moving client operations and batch processing to other machines
e Multiple CPU utilization for Adaptive Server

Configuration parameters

Table 2-1 summarizes the configuration parameters.

Table 2-1: Configuration parameters

Parameter

Function

allocate max shared memory

Determineswhether Adaptive Server all ocates all the memory specified by
max memory at start-up or only the amount of memory the configuration
parameter requires.

cis bulk insert array size

Controlsthe size of the array when performing abulk transfer of datafrom
one Adaptive Server to another. During the transfer, CIS buffers rows
internally, and asksthe Open Client bulk library to transfer them asablock.

dynamic allocation on demand

Determines when memory is allocated for changes to dynamic memory
configuration parameters.

enable enterprise java beans

Enables or disables the EJB Server.

enable file access

Enables or disables access through proxy tablesto the External File
System. Requires alicense for ASE_XFS.

enable full-text search

Enables or disables Enhances Full-Text Search services. Requires a
licensefor ASE_EFTS.

enable row level access control

Enables or disables row level access control.

enable ssl

Enables or disables Secure Sockets Layer session-based security

enable surrogate processing

Enables or disables the processing and maintains the integrity of
surrogate pairs in Unicode data.

enable unicode normalization

Enables or disables Unilib character normalization.

heap memory per user

Specifies the heap memory per user for Adaptive Server.

max memory

10

Specifies the maximum amount of total logical memory that you can
configure Adaptive Server to alocate.

Adaptive Server Enterprise



CHAPTER 2 Introduction to the Basics

Parameter

Function

number of engines at startup

Specifies the number of engines that are brought online at startup. This

replaces the minimum online engines parameter.

number of java sockets

Specifies the maximum amount of total physical memory that you can

configure Adaptive Server to alocate.

procedure cache size

Specifies the size of the procedure cache in 2K pages.

total logical memory

Specifies the amount memory that Adaptive Server is configured to use.

total physical memory

Displaysthe amount of memory that is being used by Adaptive Server at a

given moment in time.

total memory

Displaysthetotal logical memory for the current configuration of Adaptive

Server

size of process object heap

Dynamic

Now a server-wide setting and not assigned to a specific task.

Table 2-2: Dynamic configuration parameters

Configuration parameter

Configuration parameter

addition network memory

number of pre-allocated extents

audit queue size

number of user connections

cpu grace time

number of worker processes

deadlock pipe max messages

open index hash spinlock ratio

default database size

open index spinlock ratio

default fill factor percent

open object spinlock ratio

disk i/o structures

partition groups

errorlog pipe max messages

partition spinlock ratio

max cis remore connections

permission cache entries

memory per worker process

plan text pipe max messages

number of alarms

print recovery information

number of aux scan descriptors

process wait events

number of devices

size of global fixed heap

number of dtx participants

size of process object heap

number of java sockets

size of shared class heap

number of large i/o buffers

size of unilib cache

number of locks

sql text pipe max messages

number of mailboxes

statement pipe max messages

number of messages

tape retention in days

number of open databases

time slice

number of open indexes

Performance and Tuning: Basics

user log cache spinlock ratio

11



Identifying system limits

Configuration parameter | Configuration parameter

number of open objects |

Identifying system limits

There are limits to maximum performance. The physical limits of the CPU,
disk subsystems, and networks impose limits. Some of these can be overcome
by adding memory, using faster disk drives, switching to higher bandwidth
networks, and adding CPUs.

Given aset of components, any individual query hasaminimum responsetime.
Given aset of system limitations, the physical subsystems impose saturation
points.

Varying logical page sizes

Adaptive Server version 12.5 does not use the buildmaster binary to build the
master device. Instead, Sybase has incorporated the buildmaster functionality
in the dataserver binary.

The dataserver command allows you to create master devices and databases
with logical pagesof size 2K, 4K, 8K, or 16K. Larger logical pagesallow you
to create larger rows, which can improve your performance because Adaptive
Server accesses more data each time it reads a page. For example, a 16K page
can hold 8 times the amount of dataasa 2K page, an 8K page holds 4 times as
much data as a 2K page, and so on, for all the sizesfor logical pages.

Number of columns and column size
The maximum number of columnsyou can createin atableis:

e 1024 for fixed-length columnsin both all-pages-locked (APL) and data-
only-locked (DOL) tables

o 254 for variable-length columnsin an APL table
* 1024 for variable-length columnsin an DOL table

The maximum size of a column depends on:

12 Adaptive Server Enterprise



CHAPTER 2 Introduction to the Basics

e Whether the table includes any variable- or fixed-length columns.

e Thelogica page size of the database. For example, in a database with 2K
logical pages, the maximum size of acolumnin an APL table can be as
large as a single row, about 1962 bytes, less the row format overheads.
Similarly, for adK page, the maximum size of acolumninaAPL tablecan
beaslarge as4010 bytes, lessthe row format overheads. See Table 2-3 for
more information.

Maximum length of expressions, variables, and stored procedure
arguments

The maximum size for expressions, variables, and arguments passed to stored
proceduresis 16384 (16K) bytes, for any page size. Thiscan be either character
or binary data. You can insert variables and literals up to this maximum size
into text columns without using the writetext command.

Number of logins

Table 2-3 lists the limits for the number of logins, users, and groups for

Adaptive Server.
Table 2-3: Limits for number of logins, users, and groups
Version 12.0
Item limit Version 12.5 limit New range
Number of logins per 64K 2 billion plus 32K -32768 to 2 billion
server (SUID)
Number of users per 48K 2 hillion less 1032193 -32768 t016383;
database 1048577 to 2 Billion
Number of groups per 16K 1032193 16384 to 1048576
database

Performance and Tuning: Basics 13



Setting tuning goals

Performance implications for limits

The limits set for Adaptive Server mean that the server may have to handle
large volumes of datafor a single query, DML operation, or command. For
example, if you use adata-only-locked (DOL) table with a char(2000) column,
Adaptive Server must allocate memory to perform column copying while
scanning the table. Increased memory requests during the life of aquery or
command means a potential reduction in throughput

Setting tuning goals

For many systems, a performance specification developed early in the
application life cycle sets out the expected response time for specific types of
queries and the expected throughput for the system as awhole.

Analyzing performance

When there are performance problems, you need to determine the sources of
the problems and your goals in resolving them. The steps for analyzing
performance problems are:

1 Collect performance datato get baseline measurements. For example, you
might use one or more of the following tools:

»  Benchmark tests developed in-house or industry-standard third-party
tests.

e  sp_sysmon, asystem procedure that monitors Adaptive Server
performance and provides statistical output describing the behavior of
your Adaptive Server system.

See Performance and Tuning Guide: Monitoring and Analyzing for
Performance for information on using sp_sysmon.

*  Adaptive Server Monitor provides graphical performance and tuning
tools and object-level information on 1/0 and locks.

*  Any other appropriate tools.

14 Adaptive Server Enterprise



CHAPTER 2 Introduction to the Basics

2 Analyzethe datato understand the system and any performance problems.
Create and answer alist of questions to analyze your Adaptive Server
environment. The list might include questions such as:

e What are the symptoms of the problem?
¢ What components of the system model affect the problem?
e Doestheproblem affect all usersor only usersof certain applications?
e Isthe problem intermittent or constant?
3 Define system requirements and performance goals:
*  How often isthis query executed?
e What responsetimeis required?

4  Define the Adaptive Server environment—know the configuration and
limitations at all layers.

5 Analyze application design — examine tables, indexes, and transactions.

6 Formulate ahypothesisabout possible causes of the performance problem
and possible solutions, based on performance data.

7  Test the hypothesis by implementing the solutions from the last step:
e Adjust configuration parameters.
¢ Redesigntables.
e Add or redistribute memory resources.

8 Usethe same tests used to collect basdline datain step 1 to determine the
effects of tuning. Performance tuning is usually a repetitive process.

If the actions taken based on step 7 do not meet the performance
requirements and goals set in step 3, or if adjustments made in one
area cause new performance problems, repeat this analysis starting
with step 2. You might need to reeval uate system requirements and
performance goals.

9 If testing showsthat your hypothesisis correct, implement the solution in
your development environment.

Normal Forms

Usually, several techniques are used to reorganize a database to minimize and
avoid inconsistency and redundancy, such as Normal Forms.

Performance and Tuning: Basics 15



Analyzing performance

Locking

Using the different levels of Normal Forms organizes the information in such
away that it promotes efficient maintenance, storage and updating. It
simplifies query and update management, including the security and integrity
of the database. However, such normalization usually creates alarger number
of tables which may in turn increase the size of the database.

Database Administrators must decide the various techniques best suited their
environment.

Use the Adaptive Server Reference Manual as aguide in setting up databases.

Adaptive Server protects the tables, data pages, or datarows currently used by
active transactions by locking them. Locking is needed in a multiuser
environment, since several users may be working with the same data at the
sametime.

Locking affects performance when one process holds locks that prevent
another process from accessing needed data. The processthat isblocked by the
lock deeps until thelock isreleased. Thisis called lock contention.

A more serious locking impact on performance arises from deadlocks. A
deadlock occurs when two user processes each have alock on a separate page
or table and each wants to acquire alock on the same page or table held by the
other process. The transaction with the least accumulated CPU time iskilled
and al of itswork is rolled back.

Understanding the types of locksin Adaptive Server can help you reduce lock
contention and avoid or minimize deadlocks.

Locking for performance is discussed in the Performance and Tuning:
Locking, manual see the chapters on Configuring and Tuning, Using Locking
Commands and Reports on Locking.

Special Considerations

16

Databases are allocated among the devicesin fragments called "disk pieces’,
where each disk piece isrepresented by one entry in master.dbo.sysusages.
Each disk piece:

*  Represents a contiguous fragment of one device, up to the size of the
device.

Adaptive Server Enterprise



CHAPTER 2 Introduction to the Basics

e Isaneven multiple of 256 logical pages.

One device may be divided among many different databases. Many fragments
of one device may be apportioned to one single database as different disk
pieces.

Thereisno practical limit on the number of disk piecesin one database, except
that the Adaptive Server's configured memory must be large enough to
accommodate its in-memory representation.

Because disk pieces are multiples of 256 logical pages, portions of odd-sized
devicesmay remain unused. For example, if adevice has83 Mb and the server
uses a 16k page size, 256 logical pagesis 256 * 16k =4 Mb. Thefinal 3Mb
of that device will not be used by any database because it's too small to make
agroup of 256 logical pages.

The master device setsasideitsfirst 8k bytes asaconfiguration area. Thus, to
avoid any wasted space, a correctly-sized master device should be an even
number of 256 logical pages * plus* 8 kb.

Performance and Tuning: Basics 17



Analyzing performance

18 Adaptive Server Enterprise



CHAPTER 3

Introduction

Networks and Performance

This chapter discusses the role that the network playsin performance of
applications using Adaptive Server.

Topic Page
Introduction 19
Potential performance problems 19
How Adaptive Server uses the network 21
Changing network packet sizes 27
Impact of other server activities 31
Improving network performance 32

Usualy, the System Administrator isthe first to recognize a problem on

the network or in performance, including such things as:

Process response times vary significantly for no apparent reason.

Queriesthat return alarge number of rows take longer than expected.

Operating system processing slows down during normal Adaptive

Server processing periods.

Adaptive Server processing slows down during certain operating

system processing periods.

A particular client process seemsto slow all other processes.

Potential performance problems

Performance and Tuning: Basics

Some of the underlying problems that can be caused by networks are:

Adaptive Server uses network services poorly.

19



Potential performance problems

e Thephysical limits of the network have been reached.

*  Processes are retrieving unnecessary data values, increasing network
traffic unnecessarily.

e Processes are opening and closing connections too often, increasing
network |oad.

*  Processes are frequently submitting the same SQL transaction, causing
excessive and redundant network traffic.

e Adaptive Server does not have enough network memory.

e Adaptive Server's network packet sizes are not big enough to handle the
type of processing needed by certain clients.

Basic questions on network performance

When looking at problems that you think might be network-related, ask
yourself these questions:

*  Which processes usually retrieve alarge amount of data?
» Arealarge number of network errors occurring?
*  What isthe overall performance of the network?

*  What isthe mix of transactions being performed using SQL and stored
procedures?

» Arealarge number of processes using the two-phase commit protocol ?
*  Arereplication services being performed on the network?

*  How much of the network is being used by the operating system?

Techniques summary

Once you have gathered the data, you can take advantage of several techniques
that should improve network performance. These techniques include:

e Using small packets for most database activity
e Using larger packet sizes for tasks that perform large data transfers
e Using stored procedures to reduce overall traffic

e Filtering datato avoid large transfers

20 Adaptive Server Enterprise



CHAPTER 3 Networks and Performance

e Isolating heavy network users from ordinary users

e Using client control mechanisms for special cases

Using sp_sysmon while changing network configuration

Use sp_sysmon while making network configuration changes to observe the
effects on performance. Use Adaptive Server Monitor to pinpoint network
contention on a particul ar database object.

For more information about using sp_sysmon, see Chapter 8, “Monitoring
Performance with sp_sysmon,” in Performance and Tuning Guide:
Monitoring and Analyzing.

How Adaptive Server uses the network

All client/server communication occurs over a network via packets. Packets
contain a header and routing information, as well asthe data they carry.

Adaptive Server was one of the first database systemsto be built on a network-
based client/server architecture. Clientsinitiate a connection to the server. The
connection sends client requests and server responses. Applications can have
as many connections open concurrently as they need to perform the required
task.

The protocol used between the client and server is known as the Tabular Data
Stream™ (TDS), which forms the basis of communication for many Sybase
products.

Managing Network Listeners

A network listener is a system task that listens on a given network port for
incoming client connections, and creates one DBM S task for each client
connection. Adaptive Server creates one listener task for each network port on
which Adaptive Server listens for incoming client connection requests.
Initially these ports consist of the master entriesin the interfacesfile.

Performance and Tuning: Basics 21



Managing Network Listeners

SYBSRV1
master tli

master tli

Theinitia number of network listener tasks is equa to the number of master
entriesin the interfaces file. The maximum number of network listeners
(including those created at startup) is 32. For example, if there are two master
entriesin theinterfacesfile under the server name at startup, you can create 30
more listener tasks.

Each additional listener task that you create consumes resources equal to auser
connection. So, after creating a network listener, Adaptive Server can accept
one less user connection. The number of user connections configuration
parameter includes both the number of network listeners and the number of
additional listener ports.

The number of listener portsis determined at startup by the number of master
entriesin the interfaces file. The interfacesfile entry isin the form:

tcp /dev/tcp \ x00020abc123456780000000000000000
tcp /dev/tcp \ x00020abc123456780000000000000000
tcp /dev/tcp \x00020abd123456780000000000000000

Thisinterfaces file entry includes two listener ports. For more information
about the interfaces file, see Connecting to Adaptive Server in the System
Administration Guide.

Network Listeners on UNIX

22

Network listenersrun on UNIX slightly differently than they do on Windows
NT because on UNIX each Adaptive Server engine is a separate process, but
on Windows NT, Adaptive Server isasingle process.

The following are true of network listeners on UNIX:

e Adaptive Server uses one listener task per port. Each listener task
functions as multiple logical listeners by switching from engineto engine,
attempting to balance the load. For example, a 64-engine Adaptive Server
with two master ports has two listener tasks, but these two listener tasks
act as 128 logical listener tasks, so the server has two physical and 128
logical listeners. Starting alistener on engine 3 does not result in Adaptive
Server spawning anew listener task unless the port does not already have
alistener

« A listener task accepts connections on engines on which it is enabled. So
asingle listener task corresponds to many logical listeners. On Windows
NT, logical listeners and listener tasks are a one to one correspondence.

Adaptive Server Enterprise



CHAPTER 3 Networks and Performance

e Stopping alistener on a specific engine terminates the logical listener for
this engine since the listener task no longer switches to that engine.
Adaptive Server terminatesthelistener task in case thiswasthelast engine
on which it was allowed to operate.

Managing listeners with sp_listener

You can manage listeners with the sp_listener system procedure. sp_listener
allows you to:

e Start additional listeners (the maximum number of listenersis 32)
e Stop listeners

e Suspend listeners

¢ Resume suspended listeners

The syntax for sp_listener is:

sp_listener “command”, “server_name”, engine | remaining

or
sp_listener “command”, “[protocol:]machine:port”, engine | remaining

The maximum number of listeners you can add in addition to the listeners
created at startup is 32. The semanticsfor sp_listener isatomic: if acommand
cannot be completed successfully, it is aborted.

Where command is can be start, stop, suspend, resume, OF status, Server_name
is the name of Adaptive Server, engine specifies the number of the engine
affected by this command (this parameter isignored by Windows NT, engine
can be asingle-engine number in quotes ("2"), alist (*3,5,6"), arange ("2-5"),
or mix of al ("2,3-5,7")), remaining specifiesthat the command isto take effect
on all engines on which it can be meaningfully applied (that is, where the
listener isin a state in which the command is can take effect), protocol isthe
protocol used (tcp, tli, sdtcp, ssltli, winsock, ssinlwnsck, or sslwinsock), and
machine: port is the machine name and port number (as specified in the
interfacesfile) to which the listener listens.

Thefirst syntax description aboveisintended for all master ports listed in the
interfacesfile. Thissyntax allowsyou to start, stop, suspend, or resume activity
simultaneously on all master entries under the server name in the interfaces
file. The second syntax description allowsyou to managelistenersnot listed in
the interfacesfile.

Performance and Tuning: Basics 23



Managing Network Listeners

Both syntaxes are dynamic, that is you do not have to restart Adaptive Server
to implement the change.

Note Stopping alistener that islisted intheinterfacesfile doesnot removethis
entry from the interfaces file.

The examplesin this chapter use an Adaptive Server named “ASE1251"
running on a host named “ spartacus.” The examples using the first syntax for
sp_listener apply only to the master portsregistered in the interfaces file under
Adpative Server ASE1251. Commands using the second syntax for sp_listener
(intheformt cp: spart acus: 4556) apply only to the single master port
specified (4556 in this example). A master port is unambiguously determined
by a network protocol, a hostname and a port number.

Using the remaining parameter

Theremaining parameter specifiesthat, for the command you arerunning (start,
stop, resume, and so on), the command runs successfully for all listeners that
arein a state that allow the change (for example, from start to stop). For
example, if you attempt to start listeners on engines one through six, but
engines one, four, and five are unavailable, sp_listener...remaining starts
listeners on engines two, three, and six, disregarding the offline engines.

Without the remaining parameter, an sp_listener command failsif the entire
command cannot succeed for all listeners. If you do not include the remaining
parameter in the example above, the command fails even though it could have
started listeners on engines two, three, and six.

Determining the status of listeners

24

sp_listener...”status” reports on the state of the listeners. The state is one of
active, stopped, or suspended. You can query about a specific listener by
indicating the machine, port, or engine number, or you can query about the
status of all listeners by not including any parameters.

The following queries the status of all listeners:
sp_listener “status”

The following queries the status of those listeners on engine three of Adaptive
Server ASE1251 which areregistered in the interfaces file:

Adaptive Server Enterprise



CHAPTER 3 Networks and Performance

sp_listener “status”, ASE1251, “3”

The following queries the status of the tli listener on port 4556 of the current
Adaptive Server running on machine spartacus:

sp_listener “status” “tli:spartacus: 4556”

Starting new listeners

sp_listener...start starts additional listeners. These are listenersin addition to
those listed in the interfaces file. You can specify that the listener start on a
specific range of engines.

The command will not fail when you use the remaining parameter, in case the
listener isalready enabled on some engines. If you explicitly include an engine
list, and the listener is running on one of the specified engines, the command
falls.

For example, the following specifies that alistener starts for server ASE1251
on engine number three:

sp_listener “start”, ASE1251, *“3”

Or you can specify that the listener start on a certain machine and port number
using a certain protocol. This example specifiesthat a listener start on port
4556 using the tli protocol on the IP address of machine spartacus on all
engines for which this listener is not already running:

sp_listener “start”, “tli:ASE1251: 4556”

You can also specify arange of engine numbers. For example, the following
specifies that listeners start on engines three through six, corresponding to all
master ports registered in the interfaces file under server name ASE1251.:

sp_listener “start”, “ASE1251", “3-6"

The following starts listeners corresponding to master ports registered under
server name ASE1251 in the interfaces file on all engines on which the
corresponding listener is not already active:

sp_listener “start”, “ASE1251", “3-6", “renaining”

Performance and Tuning: Basics 25



Managing Network Listeners

Stopping listeners

The stop command terminates the specified listeners. If you specify non-
existent listenersin the syntax, sp_listener fails without affecting the other
listeners. sp_listener...stop aso failsif you are trying to stop the last active
listener on the server.

Note sp_listener does not run if you are attempt to stop all active listenerswith
the stop parameter.

The following command stops the listener corresponding to the specified tli
address for all engines on which it is active:

sp_listener “stop”, “tli:ASE1251: 4556”

This command stops all listeners registered in the interfaces file for server
ASE1251 for the specified range of engines:

sp_listener “stop”, “ASE1251", “3-6"

(Windows NT only) To stop al listeners on engines three through six that are
in astate that will allow the change:

sp_listener “stop”, “ASE1251", “renai ning”

Suspending listeners

26

The suspend parameter prevents the listener from accepting any more
connections. sp_listener...suspend isless drastic than sp_listener...stop because
it does not close the listener port on the given engine. It only informs the
listener to stop accepting connections on the given engine until further notice.
sp_listener...suspend is helpful for temporarily preventing alistener from
accepting connections. The listener can resume listening with the resume
parameter. sp_listener...suspend failsiif it is suspending the last active listener
on the system.

sp_listener...suspend only affects future connections; it does not affect the
connections that are active.

To suspend alistener on engine three of Adaptive Server ASE1251.:
sp_listener “suspend”, ASE1251, 3

The following suspends the listener corresponding to the specified tli address
for all engines on which it is not already running:

Adaptive Server Enterprise



CHAPTER 3 Networks and Performance

sp_listener “suspend”, “tli:ASE1251: 4556"

To suspend all listeners on engines three through six that arein a state that will
allow the change (assuming the server has seven engines):

sp_listener “suspend”, “ASE1251", “renmi ning

Resume suspended listeners

sp_listener...resume instructs suspended listeners to resume listening and to
accept new connections. For example, the following reactivatesthe listener on
engine three of Adaptive Server ASE1251, above:

sp_listener “resune”, ASE1251, 3
To reactivate listeners on port 4556 of Adaptive Server ASE1251.:
sp_listener “resunme”, “tli:ASE1251: 4556”

To reactivate all listeners on engines three through six that are in a state that
will allow the change:

sp_listener “resune”, “ASE1251", “remaining

Changing network packet sizes

By default, all connectionsto Adaptive Server use adefault packet size of 512
bytes. This workswell for clients sending short queries and receiving small
result sets. However, some applications may benefit from an increased packet
size.

Typically, OLTP sendsand receiveslarge numbers of packetsthat contain very
little data. A typical insert statement or update statement may be only 100 or
200 bytes. A dataretrieval, even one that joins several tables, may bring back
only one or two rows of data, and still not completely fill apacket. Applications
using stored procedures and cursors also typically send and receive small
packets.

Decision support applications often include large batches of Transact-SQL and
return larger result sets.

Inboth OLTP and DSS environments, there may be special needs such asbatch
data loads or text processing that can benefit from larger packets.

Performance and Tuning: Basics 27



Changing network packet sizes

The System Admini stration Guide describes how to change these configuration
parameters:

e Thedefault network packet size, if most of your applicationsare performing
large reads and writes

*  The max network packet size and additional network memory, which
provides additional memory space for large packet connections

Only a System Administrator can change these configuration parameters.

Large versus default packet sizes for user connections

Adaptive Server reserves enough space for all configured user connections to
log in at the default packet size. Large network packets cannot use that space.
Connectionsthat use the default network packet size always have three buffers
reserved for the connection.

Connectionsthat request large packet sizes acquire the space for their network
I/O buffers from the additional network memory region. If thereis not enough
space in this region to allocate three buffers at the large packet size,
connections use the default packet size instead.

Number of packets is important

28

Generally, the number of packets being transferred is more important than the
size of the packets. “Network” performance al so includes the time needed by
the CPU and operating system to process a network packet. This per-packet
overhead affects performance the most. Larger packets reduce the overall
overhead costs and achieve higher physical throughput, provided that you have
enough data to be sent.

The following big transfer sources may benefit from large packet sizes:
e Bulk copy
e readtext and writetext commands

e select statements with large result sets

Adaptive Server Enterprise



CHAPTER 3 Networks and Performance

Thereis always a point at which increasing the packet size will not improve
performance, and may in fact decrease performance, because the packets are
not alwaysfull. Although there are analytical methodsfor predicting that point,
it is more common to vary the size experimentally and plot the results. If you
conduct such experiments over a period of time and conditions, you can
determine a packet size that works well for alot of processes. However, since
the packet size can be customized for every connection, specific experiments
for specific processes can be beneficial.

The results can be significantly different between applications. Bulk copy
might work best at one packet size, while large image data retrievals might
perform better at a different packet size.

If testing showsthat some specific applications can achieve better performance
with larger packet sizes, but that most applications send and receive small
packets, clients need to request the larger packet size.

Evaluation tools with Adaptive Server

The sp_monitor system procedure reports on packet activity. Thisreport shows
only the packet-related output:

packets received packets sent packet err

10866( 10580) 19991(19748) 0(0)

You can also use these global variables:

e @@pack_sent — Number of packets sent by Adaptive Server
*  @@pack received — Number of packets received

e @@packet_errors— Number of errors

These SQL statements show how the counters can be used:

sel ect "before" = @ack_sent
select * fromtitles
select "after" = @@ack_sent

Both sp_monitor and the global variablesreport all packet activity for all users
since the last restart of Adaptive Server.

Performance and Tuning: Basics 29



Changing network packet sizes

See Performance and Tuning Guide: Monitoring and Analyzing for
Performance for more information about sp_monitor and these global
variables.

Evaluation tools outside of Adaptive Server

Operating system commands also provide information about packet transfers.
See the documentation for your operating system for more information about
these commands.

Server-based techniques for reducing network traffic

Using stored procedures, views, and triggers can reduce network traffic. These
Transact-SQL tools can store large chunks of code on the server so that only
short commands need to be sent across the network. If your applications send
large batches of Transact-SQL commandsto Adaptive Server, converting them
to use stored procedures can reduce network traffic.

30

Stored procedures

Applications that send large batches of Transact-SQL can place less load
on the network if the SQL is converted to stored procedures. Views can
also help reduce the amount of network traffic.

You may be able to reduce network overhead by turning off “doneinproc”
packets.

See Performance and Tuning: Monitoring and Analyzing for Performance
for more information.

Ask for only the information you need

Applications should request only the rows and columns they need,
filtering as much data as possible at the server to reduce the number of
packets that need to be sent. In many cases, this can also reduce the disk
1/0O load.

Large transfers

Large transfers simultaneously decrease overall throughput and increase
the average response time. If possible, large transfers should be done
during off-hours. If large transfers are common, consider acquiring
network hardware that is suitable for such transfers. Table 3-1 shows the
characteristics of some network types.

Adaptive Server Enterprise



CHAPTER 3 Networks and Performance

Table 3-1: Network options

Type Characteristics

Token ring Token ring hardware responds better than Ethernet hardware
during periods of heavy use.

Fiber optic Fiber-optic hardware provides very high bandwidth, but is
usually too expensive to use throughout an entire network.

Separate A separate network can be used to handle network traffic
network between the highest volume workstations and Adaptive Server.

*  Network overload

Overloaded networks are becoming increasingly common as more and
more computers, printers, and peripheral s are network equipped. Network
managers rarely detect problems before database users start complaining
to their System Administrator

Be prepared to provide local network managers with your predicted or
actual network requirements when they are considering the adding
resources. You should also keep an eye on the network and try to anticipate
problems that result from newly added equipment or application
requirements.

Impact of other server activities

You should be aware of theimpact of other server activity and maintenance on
network activity, especialy:

e Two-phase commit protocol
e Replication processing
e Backup processing

These activities, especialy replication processing and the two-phase commit
protocol, involve network communication. Systemsthat make extensive use of
these activities may see network-related problems. Accordingly, these
activities should be done only as necessary. Try to restrict backup activity to
times when other network activity islow.

Performance and Tuning: Basics 31



Improving network performance

Single user versus multiple users

You must take the presence of other usersinto consideration before trying to
solve adatabase problem, especially if those users are using the same network.

Since most networks can transfer only one packet at atime, many users may be
delayed while alarge transfer is in progress. Such a delay may cause locks to
be held longer, which causes even more delays.

When response timeis “abnormally” high, and normal tests indicate no
problem, it could be due to other users on the same network. In such cases, ask
the user when the process was being run, if the operating system was generally
sluggish, if other users were doing large transfers, and so on.

In general, consider multiuser impacts, such as the delay caused by along
transaction, before digging more deeply into the database system to solve an
abnormal response time problem.

Improving network performance

Isolate heavy network users

| solate heavy network users from ordinary network usersby placing themon a
separate network, as shown in Figure 3-1.

32 Adaptive Server Enterprise



CHAPTER 3 Networks and Performance

Figure 3-1: Isolating heavy network users

Before
Single

network . .
@ @ Client accessing
y'4 card < ServerA
Clients accessing
< ServerB
A B | Two
network . .
Client accessing
@ @ y's cards <4 ServerA
/ Clients accessing
<% ServerB

Inthe “Before” diagram, clients accessing two different Adaptive Servers use
one network card. Clients accessing Servers A and B have to compete over the
network and past the network card.

In the “After” diagram, clients accessing Server A use one network card and
clients accessing Server B use another.

Set tcp no delay on TCP networks

By default, the configuration parameter tcp no delay is set to “off,” meaning
that the network performs packet batching. It briefly delays sending partial
packets over the network.

While this improves network performance in terminal-emulation
environments, it can low performance for Adaptive Server applications that
send and receive small batches. To disable packet batching, a System
Administrator can set the tcp no delay configuration parameter to 1.

Performance and Tuning: Basics 33



Improving network performance

Configure multiple network listeners

34

Use two (or more) ports listening for a single Adaptive Server. Front-end
software may be directed to any configured network ports by setting the
DSQUERY environment variable.

Using multiple network ports spreads out the network load and eliminates or
reduces network bottlenecks, thus increasing Adaptive Server throughput.

See the Adaptive Server configuration guide for your platform for information
on configuring multiple network listeners.

Adaptive Server Enterprise



CHAPTER 4 Using Engines and CPUs

Adaptive Server's multithreaded architecture is designed for high
performance in both uniprocessor and multiprocessor systems. This
chapter describes how Adaptive Server uses engines and CPUs to fulfill
client requests and manage internal operations. It introduces Adaptive
Server'suse of CPU resources, describes the Adaptive Server Symmetric
MultiProcessing (SMP) model, and illustrates task scheduling with a
processing scenario.

This chapter also gives guidelines for multiprocessor application design
and describes how to measure and tune CPU- and engine-related features.

Topic Page
Background concepts 35
Single-CPU process model 38
Adaptive Server SMP process model 43
Asynchronous log service 47
Housekeeper task improves CPU utilization 50
Measuring CPU usage 53
Enabling engine-to-CPU affinity 55
Multiprocessor application design guidelines 57

Background concepts

This section provides an overview of how Adaptive Server processes
client requests. It also reviews threading and other related fundamentals.

Like an operating - system, arelational database must be able to respond
to the requests of many concurrent users. Adaptive Server isbased on a
multithreaded, single-process architecture that allowsit to manage
thousands of client connections and multiple concurrent client requests
without overburdening the operating - system.

Performance and Tuning: Basics 35



Background concepts

In asystem with multiple CPUs, you can enhance performance by configuring
Adaptive Server to run using multiple Adaptive Server engines. Each engineis
asingle operating - system process that yields high performance when you
configure one engine per CPU.

All engines are peers that communicate through shared memory as they act
upon common user databases and internal structures such as data caches and
lock chains. Adaptive Server engines service client requests. They perform all
database functions, including searching data caches, issuing disk 1/0O read and
write requests, requesting and releasing locks, updating, and logging.

Adaptive Server manages the way in which CPU resources are shared between
the engines that process client requests. It also manages system services (such
as database locking, disk I/0, and network |/O) that impact processing
resources.

How Adaptive Server processes client requests

36

Adaptive Server creates anew client task for every new connection. It fulfills
aclient request as outlined in the following steps:

1 Theclient program establishes a network socket connection to Adaptive
Server.

2 Adaptive Server assigns atask from the pool of tasks, which are allocated
at start-up time. The task is identified by the Adaptive Server process
identifier, or spid, which is tracked in the sysprocesses system table.

3 Adaptive Server transfers the context of the client request, including
information such as permissions and the current database, to the task.

4 Adaptive Server parses, optimizes, and compiles the request.

5 If paralel query execution is enabled, Adaptive Server allocates subtasks
to help perform the parallel query execution. The subtasks are called
worker processes, which are discussed in the Performance & Tuning:
Optimizer.

6 Adaptive Server executes the task. If the query was executed in parallel,
the task merges the results of the subtasks.

7 Thetask returnsthe results to the client, using TDS packets.

For each new user connection, Adaptive Server allocates a private data storage
area, a dedicated stack, and other internal data structures.

Adaptive Server Enterprise



CHAPTER 4 Using Engines and CPUs

It uses the stack to keep track of each client task’s state during processing, and
it uses synchronization mechanisms such as queueing, locking, semaphores,
and spinlocksto ensure that only one task at atime has access to any common,
maodifiable data structures. These mechanisms are necessary because Adaptive
Server processes multiple queries concurrently. Without these mechanisms, if
two or more queries were to access the same data, data integrity would be
sacrificed.

The data structures require minimal memory resources and minimal system
resources for context-switching overhead. Some of these data structures are
connection-oriented and contain static information about the client.

Other data structures are command-oriented. For example, when aclient sends
acommand to Adaptive Server, the executable query planis stored in an
interna data structure.

Client task implementation

Adaptive Server client tasks areimplemented as subprocesses, or “lightweight
processes,” instead of operating - system processes, as subprocesses use only a
small fraction of the resources that processes use.

Multiple processes executing concurrently require more memory and CPU
time than multiple subprocesses. Processes al so require operating — system
resources to switch context (time-share) from one process to the next.

The use of subprocesses eliminates most of the overhead of paging, context
switching, locking, and other operating - system functions associated with a
one process-per-connection architecture. Subprocesses require no operating —
system resources after they are launched, and they can share many system
resources and structures.

Figure 4-1 illustrates the difference in system resources required by client
connectionsimplemented as processes and client connections implemented as
subprocesses. Subprocesses exist and operate within a single instance of the
executing program process and its address space in shared memory.

Performance and Tuning: Basics 37



Single-CPU process model

Figure 4-1: Process versus subprocess architecture

Process-based
client implementation

Server process

Server process

Client applications

Subprocess-based
client implementation

gerver process

Server process

Shared
memory

To give Adaptive Server the maximum amount of processing power, run only
essential non-Adaptive Server processes on the database machine.

Single-CPU process model

Inasingle-CPU system, Adaptive Server runsasasingle process, sharing CPU
time with other processes, as scheduled by the operating - system. This section
isan overview of how an Adaptive Server system with asingle CPU uses the
CPU to process client requests.

“Adaptive Server SMP process model” on page 43 expands on this discussion
to show how an Adaptive Server system with multiple CPUs processes client
requests.

Scheduling engines to the CPU

38

Figure 4-2 shows a run queue for asingle-CPU environment in which process
8 (proc 8) isrunning on the CPU and processes 6, 1, 7, and 4 are in the
operating - system run queue waiting for CPU time. Process 7 is an Adaptive
Server process; the others can be any operating - system process.

Adaptive Server Enterprise



CHAPTER 4 Using Engines and CPUs

Figure 4-2: Processes queued in the run queue for a single CPU

CPU Operating - system

Run queue

In a multitasking environment, multiple processes or subprocesses execute
concurrently, alternately sharing CPU resources.

Figure 4-3 shows three subprocesses in a multitasking environment. The
subprocesses are represented by the thick, dark arrows pointing down. The
subprocesses share a single CPU by switching onto and off the engine over
time. They are using CPU timewhen they are solid — near the arrowhead. They
arein the run queue waiting to execute or sleeping while waiting for resources
when they are represented by broken lines.

Note that, at any one time, only one process is executing. The others leep in
various stages of progress.

Figure 4-3: Multithreaded processing

@ Subpr$essl Subprocess 2 Subprocess 3

Time

[

]

L

Legend: executing *
context switching —» v
sleeping E

<

T

Performance and Tuning: Basics 39



Single-CPU process model

Scheduling tasks to the engine

40

Figure 4-4 shows tasks (or worker processes) queued up for an Adaptive
Server enginein asingle-CPU environment. This figure switches from
Adaptive Server in the operating - system context (as shown in Figure 4-2 on
page 39) to Adaptive Server internal task processing. Adaptive Server, not the
operating - system, dynamically schedulesclient tasksfrom the run queue onto
the engine. When the engine finishes processing one task, it executes the task
at the head of the run queue.

After atask begins running on the engine, the engine continues processing it
until one of the following events occurs:

e Thetask needs aresource such as apage that islocked by another task, or
it needsto perform aslow job such as disk I/O or network I/O. Thetask is
put to sleep, waiting for the resource.

e Thetask runsfor a configurable period of time and reaches ayield point.
Then the task relinquishes the engine, and the next process in the queue
starts to run. “ Scheduling client task processing time” on page 42
discussesin more detail how this works.

When you execute sp_who on asingle-CPU system with multiple active tasks,
the sp_who output shows only asingletask as*“running”—it isthesp_who task
itself. All other tasksin the run queue have the status “runnable.” The sp_who
output also shows the cause for any sleeping tasks.

Figure 4-4 a so shows the sleep queue with two sleeping tasks, aswell as other
objects in shared memory. Tasks are put to sleep while they are waiting for
resources or for the results of adisk I/O operation.

Adaptive Server Enterprise



CHAPTER 4 Using Engines and CPUs

Figure 4-4: Tasks queue up for the Adaptive Server engine

Adaptive Server Engine

)
c
=
=
=
@

Operating- system

Run queue

Sleep queue Adaptive Server

— R

a0 M-

et 5=

= 500

o800 L3

a0 =

oo Procedure

- cache

i

Eﬂlﬁ 5 Eﬂ—ﬁl

= S

Data cache o
Index cache

ol

Disk I/0O

Lock sleep

Shared memory

Pending I/Os

[xo—0O]

IR

=858
&=

E
=

Adaptive Server structures

. IT I

Execution task scheduling

The scheduler manages processing time for client tasks and internal
housekeeping.

Performance and Tuning: Basics

41



Single-CPU process model

Scheduling client task processing time

42

The time slice configuration parameter prevents executing tasks from
monopolizing enginesduring execution. The schedul er allowsatask to execute
on an Adaptive Server engine for amaximum amount of time that is equal to
the time slice and cpu grace time values combined, using default timesfor time
slice (100 milliseconds, 1/10 of a second, or equivalent to one clock tick) and
cpu grace time (500 clock ticks, or 50 seconds).

Adaptive Server’'s scheduler does not force tasks off an Adaptive Server
engine. Tasks voluntarily relinquish the engine at a yield point, when the task
does not hold a vital resource such as a spinlock.

Each time the task comesto ayield point, it checksto seeif time slice has been
exceeded. If it has not, the task continues to execute. If execution time does
exceed time slice, the task voluntarily relinquishes the engine within the cpu
grace time interval and the next task in the run queue begins executing.

The default value for the time slice parameter is 100 clock milliseconds, and
there is seldom any reason to changeit. The default value for cpu grace time is
500 clock ticks. If time slice is Set too low, an engine may spend too much time
switching between tasks, which tends to increase response time.

If time slice is set too high, CPU-intensive processes may monopolizethe CPU,
which canincreaseresponsetimefor short tasks. If your applications encounter
time slice errors, adjust cpu grace time, not time slice.

See Chapter 5, “Distributing Engine Resources,” for more information.
Use sp_sysmon to determine how many times tasks yield voluntarily.

If you want to increase the amount of time that CPU-intensive applications run
on an engine before yielding, you can assign execution attributes to specific
logins, applications, or stored procedures.

If the task has to relinquish the engine before fulfilling the client request, it
goes to the end of the run queue, unless there are no other tasks in the run
queue. If no tasks are in the run queue when an executing task reaches ayield
point during grace time, Adaptive Server grants the task another processing
interval.

If no other tasks are in the run queue, and the engine still has CPU time,
Adaptive Server continues to grant time slice interval s to the task until it
compl etes.

Adaptive Server Enterprise



CHAPTER 4 Using Engines and CPUs

Normally, tasks relinquish the engine at yield points prior to completion of the
cpu grace time interval. It is possible for atask not to encounter ayield point
and to exceed the time slice interval. When the cpu grace time ends, Adaptive
Server terminates the task with atime slice error. If you receive atime dice
error, try increasing the time up to four times the current time for cpu grace
time. If the problem persists, call Sybase Technical Support.

Maintaining CPU availability during idle time

When Adaptive Server has no tasks to run, it loops (holds the CPU), looking
for executable tasks. The configuration parameter runnable process search
count controls the number of times that Adaptive Server loops.

With the default value of 2000, Adaptive Server loops 2000 times, looking for
incoming client requests, completed disk 1/0s, and new tasksin the run queue.
If thereis no activity for the duration of runnable process search count,
Adaptive Server relinquishes the CPU to the operating - system.

Note If you are having performance problems, try setting runnable process
search count to 3.

The default for runnable process search count generally provides good
response time, if the operating - system is not running clients other than
Adaptive Server.

Use sp_sysmon to determine how runnable process search count affects
Adaptive Server's use of CPU cycles, engine yieldsto the operating - system,
and blocking network checks.

See Performance and Tuning Guide: Monitoring and Analyzing for
Performance on using the sp_sysmon.

Adaptive Server SMP process model

Adaptive Server's Symmetric MultiProcessing (SM P) implementati on extends
the performance benefits of Adaptive Server’s multithreaded architecture to
multiprocessor systems. In the SMP environment, multiple CPUs cooperate to
perform work faster than a single processor can.

SMP isintended for machines with the following features:

Performance and Tuning: Basics 43



Adaptive Server SMP process model

e A symmetric multiprocessing operating - system
e Shared memory over acommon bus
e Two to 128 processors

e Very high throughput

Scheduling engines to CPUs

In a system with multiple CPUs, multiple processes can run concurrently.
Figure 4-5 represents Adaptive Server engines as the nonshaded ovalswaiting
in the operating - system run queue for processing time on one of three CPUs.
It shows two Adaptive Server engines, proc 3 and proc 8, being processed
simultaneously.

Figure 4-5: Processes queued in the OS run queue for multiple CPUs

Operating - system

SEEEET

Run queue

The symmetric aspect of SMPisalack of affinity between processes and
CPUs—processesare not attached to aspecific CPU. Without CPU affinity, the
operating - system schedul es engines to CPUs in the same way as it schedules
non-Adaptive Server processesto CPUSs. If an Adaptive Server engine does not
find any runnable tasks, it can either relinquish the CPU to the operating -
system or continue to look for atask to run by looping for the number of times
set in the runnable process search count configuration parameter.

Scheduling Adaptive Server tasks to engines

44

Scheduling Adaptive Server tasksto enginesin the SMP environment issimilar
to scheduling tasks in the single-CPU environment, as described in
“Scheduling tasksto the engine” on page 40. The differenceisthat in the SMP
environment:

Adaptive Server Enterprise



CHAPTER 4 Using Engines and CPUs

e Each engine has arun queue. Tasks have soft affinities to engines. When
atask runson an engine, it creates an affinity to the engine. If atask yields
the engine and then is queued again, it tends to be queued on the same
engine's run queue.

«  Any engine can process the tasks in the global run queue (unlesslogical
process management has been used to assign the task to aparticular engine
or set of engines).

Multiple network engines

Each Adaptive Server engine handles the network /O for its connections.
Engines are numbered sequentially, starting with engine O.

When auser logsin to Adaptive Server, the task is assigned in round-robin
fashion to one of the engines that will serve asits network engine. Thisengine
handles the login to establish packet size, language, character set, and other
login settings. All network 1/O for atask ismanaged by itsnetwork engine until
the task logs out.

Task priorities and run queues

At certain times, Adaptive Server increases the priority of some tasks,
especidly if they are holding an important resource or have had to wait for a
resource. In addition, logical process management allows you to assign
prioritiesto logins, procedures, or applications using sp_bindexeclass and
related system procedures.

See Chapter 5, “Distributing Engine Resources,” for more information on
performance tuning and task priorities.

Each task has a priority assigned to it; the priority can change over thelife of
the task. When an engine looks for atask to run, it first scans its own high-
priority queue and then the high-priority global run queue.

If there are no high-priority tasks, it looks for tasks at medium priority, then at
low priority. If it finds no tasks to run on its own run queues or the global run
queues, it can examine the run queues for another engine, and steal atask from
another engine. Thiscombination of priorities, local and global queues, and the
ability to move tasks between engines when workload is uneven provides load
balancing.

Performance and Tuning: Basics 45



Adaptive Server SMP process model

Tasksintheglobal or enginerun queuesareal in arunnable state. Output from
sp_who liststasks as “runnable” when the task isin any run queue.

Processing scenario

Thefollowing steps describe how atask is scheduled in the SM P environment.
The execution cycle for single-processor systemsisvery similar. A single-
processor system handlestask switching, putting tasksto sleep while they wait
for disk or network 1/0, and checking queues in the same way.

46

1

Assigning a network engine during login

When a connection logsin to Adaptive Server, it isassigned to an engine
that will manage its network /0. This engine then handles the login.

The engine assigns atask structure and establishes packet size, language,
character set, and other login settings. A task sleeps while waiting for the
client to send arequest.

Checking for client requests
Another engine checksfor incoming client requests once every clock tick.

When this engine finds a command (or query) from the connection for a
task, it wakes up the task and placesit on the end of its run queue.

Fulfilling a client request

When atask becomesfirst in the queue, the engine parses, compiles, and
begins executing the steps defined in the task’s query plan

Performing disk I/O

If the task needs to access a page locked by another user, it is put to sleep
until the page is available. After such await, the task’s priority is
increased, and it is placed in the global run queue so that any engine can
runit

Performing network 1/0

When the task needs to return results to the user, the engine on whichiitis
executing issues the network 1/0 request, and puts the tasks to sleep on a
network write.

The engine checks once each clock tick to determine whether the network
1/0 has completed. When the 1/0 has completed, the task is placed on the
run queue for the engine to which it is affiliated, or the global run queue.

Adaptive Server Enterprise



CHAPTER 4 Using Engines and CPUs

Asynchronous log service

Enabling ALS

Issuing a checkpoint

Disabling ALS

Displaying ALS

Asynchronouslog service, or ALS, enables great scalability in Adaptive
Server, providing higher throughput in logging subsystems for high-end
symmetric multiprocessor systems.

You cannot use AL Sif you have fewer than 4 engines. If you try to enable ALS
with fewer than 4 online engines an error message appears.

You can enable, disable, or configure ALS using the sp_dboption stored
procedure.

sp_dbopti on <db Nane>, "async |og service",
"true|fal se”

After issuing sp_dboption, you must issue a checkpoint in the database for
which you are setting the ALS option:

sp_dboption "nydb", "async |og service", "true"
use mydb
checkpoi nt

You can use the checkpoint to identify the one or more databasess or use an al
clause.

checkpoint [all | [dbname[, dbname][, dbname.....]]]

Beforeyou disable AL S, make sure there are no active usersin the database. I
there are, you receive an error message when you issue the checkpoint:

sp_dboption "nydb", "async |og service", "false"

use mydb

checkpoi nt

Error 3647: Cannot put database in single-user node.
Wait until all users have | ogged out of the database and
i ssue a CHECKPO NT to disable "async | og service".

If there are no active users in the database, this example disables ALS:

sp_dboption "nydb", "async |og service", "false"
use mydb
checkpoi nt

You can see whether ALS is enabled in a specified database by checking
sp_helpdb.
sp_hel pdb "nydb"

nmydb 3.0 MB sa 2

Performance and Tuning: Basics a7



Asynchronous log service

July 09, 2002
sel ect into/bul kcopy/pllsort, trunc | og on chkpt,
async | og service

Understanding the user log cache (ULC) architecture

When to use ALS

48

Adaptive Server’slogging architecture features the user log cache, or ULC, by
which each task ownsits own log cache. No other task can write to this cache,
and the task continues writing to the user log cache whenever atransaction
generates alog record. When the transaction commits or aborts, or the user log
cacheisfull, the user log cacheis flushed to the common log cache, shared by
all the current tasks, which is then written to the disk.

Flushingthe UL C isthefirst part of acommit or abort operation. It requiresthe
following steps, each of which can cause delay or increase contention:;

1 Obtaining alock on thelast log page.
2 Allocating new log pages if necessary.
3 Copying the log records from the UL C to the log cache.

The processesin steps 2 and 3 require you to hold alock on the last log
page, which prevents any other tasks from writing to the log cache or
performing commit or abort operations.

4 Flush thelog cache to disk.

Step 4 requires repeated scanning of thelog cache to i ssuewrite commands
on dirty buffers.

Repeated scanning can cause contention on the buffer cache spinlock to
which thelog is bound. Under alarge transaction |oad, contention on this
spinlock can be significant.

You can enable ALS on any specified database that has at least one of the
following performance issues, so long as your systems runs 4 or more online
engines:

*  Heavy contention on the last log page.

Adaptive Server Enterprise



CHAPTER 4 Using Engines and CPUs

You can tell that the last log pageisunder contention when the sp_sysmon
output in the Task Management Report section shows asignificantly high
value. For example:

Table 4-1: Log page under contention

Task
Management per sec per xact count % of total
Log Semaphore 58.0 0.3 34801 73.1
Contention
«  Heavy contention on the cache manager spinlock for the log cache.
You can tell that the cache manager spinlock isunder contention when the
sp_sysmon output in the Data Cache Management Report section for the
database transaction log cache shows a high value in the Spinlock
Contention section. For example:
Table 4-2:
Cache c_log ‘ per sec ‘ per xact | count | % of total
Spinlock n/a na n/a 40.0%
Contention

Underutilized bandwidth in the log device.

Note You should use AL S only when you identify asingle database with high
transaction requirements, since setting AL S for multiple databases may cause
unexpected variations in throughput and response times. If you want to
configure ALS on multiple databases, first check that your throughput and
response times are satisfactory.

Using the ALS

Two threads scan the dirty buffers (buffers full of data not yet written to the
disk), copy the data, and write it to the log. These threads are:

Performance and Tuning: Basics

The User Log Cache (ULC) flusher
The Log Writer.

49



Housekeeper task improves CPU utilization

ULC flusher

Log writer

The ULC flusher is a system task thread that is dedicated to flushing the user
log cache of atask into the general log cache. When atask isready to commit,
the user enters acommit request into the flusher queue. Each entry has a
handle, by which the ULC flusher can accessthe ULC of the task that queued
the request. The UL C flusher task continuously monitors the flusher queue,
removing requests from the queue and servicing them by flushing ULC pages
into the log cache.

Once the UL C flusher has finished flushing the ULC pages into the log cache,
it queues the task request into awakeup queue. Thelog writer patrolsthe dirty
buffer chainin the log cache, issuing awrite command if it finds dirty buffers,
and monitors the wakeup queue for tasks whose pages are all written to disk.
Since the log writer patrols the dirty buffer chain, it knows when a buffer is
ready to write to disk.

Changes in stored procedures

Asynchronous log service changes the stored procedures sp_dboption and
sp_helpdb:

»  sp_dboption adds an option that enables and disables ALS.
*  sp_helpdb adds acolumn to display ALS.

For more information on sp_helpdb and sp_dboption, see the Reference
Manual.

Housekeeper task improves CPU utilization

50

When Adaptive Server has no user tasksto process, the housekeeper wash task
and the housekeeper chores task automatically begin writing dirty buffersto
disk and performing other maintenance tasks. These writes are done only by
the housekeeper wash task during the server’sidle cycles, and are known as
freewrites. They result inimproved CPU utilization and a decreased need for
buffer washing during transaction processing. They also reduce the number
and duration of checkpoint spikes (times when the checkpoint process causes
ashort, sharp rise in disk writes).

Adaptive Server Enterprise



CHAPTER 4 Using Engines and CPUs

Another housekeeper task ishousekeeper garbage collection, which operates at
the priority level of the ordinary user. It cleans up data that was logically
deleted and resets the rows so the tables have space again.

Side effects of the housekeeper task

If the housekeeper wash task can flush all active buffer poolsin al configured
caches, it wakes up the checkpoint task.

The checkpoint task determines whether it can checkpoint the database. If it
can, it writes a checkpoint log record indicating that all dirty pages have been
written to disk. The additional checkpoints that occur as aresult of the
housekeeper wash task may improve recovery speed for the database.

In applicationsthat repeatedly update the same database page, the housekeeper
wash may initiate some database writes that are not necessary. Although these
writes occur only during the server’sidle cycles, they may be unacceptable on
systems with overloaded disks.

Configuring the housekeeper task

System Administrators can use the housekeeper free write percent
configuration parameter to control the side effects of the housekeeper task.
This parameter specifies the maximum percentage by which the housekeeper
wash task can increase database writes. Valid values range from 0 to 100.

By default, the housekeeper free write percent parameter isset to 1. Thisallows
the housekeeper wash task to continue to wash buffers as long as the database
writes do not increase by more than 1 percent. The work done by the
housekeeper wash task at the default parameter setting results in improved
performance and recovery speed on most systems. However, setting
housekeeper free write percent too high can degrade performance. If you want
to increase the value, increase by only 1 or 2 percent each time.

A dbcc tune option, deviochar, controlsthe size of batches that the housekeeper
can write to disk at onetime.

See Monitoring Performance with sp_sysmon in the Performance and Tuning:
Monitoring and Analyzing for Performance manual.

Performance and Tuning: Basics 51



Housekeeper task improves CPU utilization

Changing the percentage by which writes can be increased

Use sp_configure to change the percentage by which database writes can be
increased as aresult of the housekeeper wash task:

sp_configure "housekeeper free wite percent”, val ue

For example, issue the following command to stop the housekeeper wash task
from working when the frequency of database writes reaches 2 percent above
normal:

sp_configure "housekeeper free wite percent", 2

Disabling the housekeeper task

You may want to disable the housekeeper wash and the housekeeper chores
task to establish a controlled environment in which only specified user tasks
are running. To disable these housekeeper tasks, set the value of the
housekeeper free write percent parameter to O:

sp_configure "housekeeper free wite percent", 0

Warning! In addition to buffer washing, the housekeeper periodically flushes
statistics to system tables. These statistics are used for query optimization, and
incorrect statistics can severely reduce query performance. Do not set the
housekeeper free write percent to 0 on a system where data modification
commands may be affecting the number of rows and pagesin tables and
indexes.

Allowing the housekeeper task to work continuously

To allow the housekeeper task to work whenever there areidle CPU cycles,
regardless of the percentage of additional database writes, set the value of the
housekeeper free write percent parameter to 100:

sp_configure "housekeeper free wite percent", 100

The" Recovery management” on page 99 in the Performance and Tuning:
Monitoring and Analyzing for Performance manual section of sp_sysmon
shows checkpoint information to help you determine the effectiveness of the
housekeeper.

52 Adaptive Server Enterprise



CHAPTER 4 Using Engines and CPUs

Measuring CPU usage

This section describes how to measure CPU usage on machines with asingle
processor and on those with multiple processors.

Single-CPU machines

Thereisno correspondence between your operating - system'’s reports on CPU
usage and Adaptive Server’sinternal “CPU busy” information. It isnormal for
an Adaptive Server to exhibit very high CPU usage while performing an 1/O-
bound task.

A multithreaded database engine is not allowed to block on I/0. While the
asynchronous disk 1/0 is being performed, Adaptive Server services other user
tasksthat are waiting to be processed. If there are no tasksto perform, it enters
abusy-wait loop, waiting for completion of the asynchronous disk 1/O. This
low-priority busy-wait loop can result in very high CPU usage, but because of
itslow priority, it is harmless.

Using sp_monitor to measure CPU usage

Use sp_monitor to see the percentage of time Adaptive Server uses the CPU
during an elapsed timeinterval:

last_run current _run seconds
- Jul 28 1999 5:25PM Jul 28 1999 5:31PM 360
cpu_busy i 0_busy idle
5531(359)-99% 0(0)-0%  178302(0)-0%
packets_received packets_sent packet _errors
57650(3599) 60803(7252) o)
total read total _wite total errors connecti ons
100284(14095)  160023(63%6)  0(0) 178()

For more information about sp_monitor, see the Adaptive Server Enterprise
Reference Manual .

Performance and Tuning: Basics 53



Measuring CPU usage

Using sp_sysmon to measure CPU usage

sp_sysmon gives more detailed information than sp_monitor. The “Kernel
Utilization” section of the sp_sysmon report displays how busy the engine was
during the sample run. The percentage in this output is based on the time that
CPU was allocated to Adaptive Server; it isnot apercentage of thetotal sample
interval.

The“CPU Yieldsby engine” section displaysinformation about how often the
engine yielded to the operating - system during the interval.

See Monitoring Performance with sp_sysmon in the Performance and Tuning:
Monitoring and Analyzing book for more information about sp_sysmon.

Operating - system commands and CPU usage

Operating - system commandsfor displaying CPU usage aredocumentedinthe
Adaptive Server installation and configuration guides.

If your operating - system tools show that CPU usage is more than 85 percent
most of thetime, consider using amulti-CPU environment or off-loading some
work to another Adaptive Server.

Determining when to configure additional engines

54

When you are determining whether to add additional engines, the major factors

to consider are the:

e Load on existing engines

e Contention for resources such as locks on tables, disks, and cache
spinlocks

e Responsetime

If theload on existing enginesis morethan 80 percent, adding an engine should
improve responsetime, unless contention for resourcesishigh or the additional
engine causes contention.

Before configuring more engines, use sp_sysmon to establish abaseline. Look
at the sp_sysmon output for the following sectionsin Monitoring Performance
with sp_sysmon in the Performance and Tuning: Monitoring and Analyzing
manual.

Adaptive Server Enterprise



CHAPTER 4 Using Engines and CPUs

In particular, study the lines or sections in the output that may reveal points of
contention inthe book Performance and Tuning: Monitoring and Analyzing for
Performance:

“Logical lock contention” on page 32.
“Address lock contention” on page 33.
“UL C semaphore requests’ on page 57.
“Log semaphore requests’ on page 58.
“Page splits” on page 63.

“Lock summary” on page 76.

“Cache spinlock contention” on page 89.
“1/0s delayed by” on page 103.

After increasing the number of engines, run sp_sysmon again under similar
load conditions, and check the “ Engine Busy Utilization” section in the report
along with the possible points of contention listed above.

Taking engines offline
dbcc (engine) can be used to take engines offline. The syntax is:

dbcc engine(offline, [enginenum])

dbcc engine(“online”)

If enginenumis not specified, the highest-numbered engineistaken offline. For
more information, see the System Administration Guide.

Enabling engine-to-CPU affinity

By default, thereis no affinity between CPUs and enginesin Adaptive Server.
You may see dlight performance gains in high-throughput environments by
establishing affinity of enginesto CPUs.

Performance and Tuning: Basics 55



Enabling engine-to-CPU affinity

56

Not all operating - systems support CPU affinity. The dbcc tune command is
silently ignored on systems that do not support engine-to-CPU affinity. The
dbcc tune command must be reissued each time Adaptive Server isrestarted.
Each time CPU affinity isturned on or off, Adaptive Server prints a message
in the error log indicating the engine and CPU numbers affected:

Engine 1, cpu affinity set to cpu 4.
Engine 1, cpu affinity renoved.

The syntax is:
dbcc tune(cpuaffinity, start_cpu [, on | off])

start_cpu specifies the CPU to which engine O is to be bound. Engine 1 is
bound to the CPU numbered (start_cpu + 1). The formulafor determining the
binding for enginenis:

((start_cpu + n) % nunber _of _cpus
CPU numbers range from 0 through the number of CPUs minus 1.

On afour-CPU machine (with CPUs numbered 0-3) and a four-engine
Adaptive Server, this command:

dbcc tune(cpuaffinity, 2, "on")

The command gives this result:

Engine CPU
0

(the start_cpu number specified)

2
1 3
2 0
3 1

On the same machine, with athree-engine Adaptive Server, the same command
causes the following affinity:

Engine CPU
0 2
1 3
2 0

In this example, CPU 1 is not used by Adaptive Server.

To disable CPU affinity, use -1 in place of start_cpu, and specify off for the
Setting:

dbcc tune(cpuaffinity, -1, "off")

Adaptive Server Enterprise



CHAPTER 4 Using Engines and CPUs

You can enable CPU affinity without changing the value of start_cpu by using
-1 and on for the setting:

dbcc tune(cpuaffinity, -1, "on")
The default valuefor start_cpuis 1 if CPU affinity has not been previously set.
To specify anew value of start_cpu without changing the on/off setting, use:
dbcc tune (cpuaffinity, start_cpu)

If CPU affinity iscurrently enabled, and the new start_cpuisdifferent fromits
previous value, Adaptive Server changes the affinity for each engine.

If CPU affinity is off, Adaptive Server notes the new start_cpu value, and the
new affinity takes effect the next time CPU affinity is turned on.

To see the current value and whether affinity is enabled, use:
dbcc tune(cpuaffinity, -1)

This command only prints current settingsto the error log and does not change
the affinity or the settings.

Multiprocessor application design guidelines

If you are moving applications from a single-CPU environment to an SMP
environment, this section offers some issues to consider.

Increased throughput on multiprocessor Adaptive Servers makesit morelikely
that multiple processes may try to access a data page simultaneously. It is
especially important to adhere to the principles of good database design to
avoid contention. Following are some of the application design considerations
that are especially important in an SMP environment.

e Multipleindexes

Theincreased throughput of SMP may result inincreased lock contention
when allpages-locked tables with multiple indexes are updated. Allow no
more than two or three indexes on any table that will be updated often.

For information about the effects of index maintenance on performance,
see “Index management” on page 60 in the Performance and Tuning:
Monitoring and Analyzing for Performance book.

e Managing disks

Performance and Tuning: Basics 57



Multiprocessor application design guidelines

58

The additional processing power of SMP may increase demands on the
disks. Therefore, it is best to spread data across multiple devices for
heavily used databases.

See “Disk 1/0 management” on page 102 for information about
sp_sysmon reports on disk utilization.

Adjusting the fillfactor for create index commands

You may need to adjust thefillfactor in create index commands. Because of
the added throughput with multiple processors, setting a lower fillfactor
may temporarily reduce contention for the data and index pages.

Transaction length

Transactions that include many statements or take along time to run may
result inincreased lock contention. Keep transactions as short as possible,
and avoid holding locks — especially exclusive or update locks —while
waiting for user interaction

Temporary tables

Temporary tables (tablesin tempdb) do not cause contention, because they
are associated with individual users and are not shared. However, if
multiple user processes use tempdb for temporary objects, there can be
some contention on the system tables in tempdb.

See“ Temporary tablesand locking” on page 388 for information on ways
to reduce contention.

Adaptive Server Enterprise



CHAPTER 5

Distributing Engine Resources

This chapter explains how to assign execution attributes, how Adaptive
Server interprets combinations of execution attributes, and how to help
you predict the impact of various execution attribute assignments on the
system.

Understanding how Adaptive Server uses CPU resourcesisaprerequisite
for understanding this chapter.

For more information, see Chapter 4, “Using Engines and CPUSs.”

Topic Page
Algorithm for successfully distributing engine resources 59
Manage preferred access to resources 67
Types of execution classes 67
Setting execution class attributes 71
Rules for determining precedence and scope 77
Example scenario using precedence rules 82
Considerations for Engine Resource Distribution 85

Algorithm for successfully distributing engine

resources

This section gives an approach for successful tuning on the task level.

The interactions among execution objects in an Adaptive Server
environment are complex. Furthermore, every environment is different:
Each involvesits own mix of client applications, logins, and stored
procedures and is characterized by the interdependencies between these
entities.

Implementing execution precedence without having studied the
environment and the possible implications can lead to unexpected (and
negative) results.

Performance and Tuning: Basics 59



Algorithm for successfully distributing engine resources

For example, say you have identified a critical execution object and you want
to raise its execution attributes to improve performance either permanently or
on aper-session basis (“on the fly”). If this execution object accesses the same
set of tables as one or more other execution objects, raising its execution
priority can lead to performance degradation due to lock contention among
tasks at different priority levels.

Because of the unique nature of every Adaptive Server environment, it is
impossibleto provide adetailed procedure for assigning execution precedence
that makes sense for all systems. However, this section provides guidelines
with aprogression of steps to use and to discuss the issues commonly related
to each step.

The stepsinvolved with assigning execution attributes areillustrated in
Figure 5-1. A discussion of the steps follows the figure.

60 Adaptive Server Enterprise



CHAPTER 5 Distributing Engine Resources

Figure 5-1: Process for assigning execution precedence

Analyze the environment, perform
benchmark tests, and set goals.

Understand concepts well enough
to predict possible consequences.

Assign performance attributes to
establish an execution hierarchy.

onitor and

analyze results.
Goals
accomplished

Does it
makes sense to
continue using resources

for tuning
?

performance

satisfactory
?

Performance and Tuning: Basics

61



Algorithm for successfully distributing engine resources

Algorithm guidelines

62

1

Study the Adaptive Server environment.

See “Environment analysis and planning” on page 63 for details.

Analyze the behavior of all execution objects and categorize them as
well as possible.

Understand interdependencies and interactions between execution
objects.

Perform benchmark tests to use as a baseline for comparison after
establishing precedence.

Think about how to distribute processing in a multiprocessor
environment.

Identify the critical execution objects for which you will enhance
performance.

Identify the noncritical execution objects that can afford decreased
performance.

Establish a set of quantifiable performance goals for the execution
objects identified in the last two items.

Understand the effects of using execution classes.

See “Execution class attributes’ on page 69 for details.

Understand the basic concepts associated with execution class
assignments.

Decide whether you need to create one or more user defined-
execution classes.

Understand the implications of different class level assignments—
how do assignments affect the environment in terms of performance
gains, losses, and interdependencies?

Assign execution classes and any independent engine affinity attributes.

After making execution precedence assignments. analyze the running
Adaptive Server environment.

See “Results analysis and tuning” on page 66 for details.

Run the benchmark tests you used in step 1 and compare the results.

If the results are not what you expect, take a closer look at the
interactions between execution objects, as outlined in step 1.

Adaptive Server Enterprise



CHAPTER 5 Distributing Engine Resources

* Investigate dependencies that you might have missed.
5 Finetunetheresultsby repeating steps 3 and 4 as many times as necessary.

6 Monitor the environment over time.

Environment analysis and planning

Analyzing

Where to start

This section elaborates on step 1 of “ Algorithm for successfully distributing
engine resources’ on page 59.

Environment analysis and planning involves the following actions:
e Analyzing the environment
e Performing benchmark teststo use as a baseline

e Setting performance goals

The degree to which your execution attribute assignments enhance an
execution object’s performanceis a function of the execution object’s
characteristics and its interactions with other objectsin the Adaptive Server
environment. It is essential to study and understand the Adaptive Server
environment in detail so that you can make decisions about how to achieve the
performance goals you set.

Analysisinvolves these two phases:
e Phase 1 —analyze the behavior of each execution object.

¢ Phase 2 —use the results from the object analysis to make predictions
about interactions between execution objects within the Adaptive Server
system.

First, make alist containing every execution object that can runin the
environment. Then, classify each execution object and its characteristics.
Categorize the execution objects with respect to each other in terms of
importance. For each, decide which one of the following applies:

e Itisahighly critical execution object needing enhanced response time,

e Itisan execution object of medium importance, or

Performance and Tuning: Basics 63



Algorithm for successfully distributing engine resources

e Itisanoncritical execution object that can afford dlower response time.

Example: phase 1 — execution object behavior

Typica classificationsinclude intrusive/unintrusive, I/O-intensive, and CPU-
intensive. For example, identify each object as intrusive or unintrusive, I/0
intensive or not, and CPU intensive or not. You will probably need to identify
additional issues specific to the environment to gain useful insight.

Intrusive and unintrusive

Two or more execution objects running on the same Adaptive Server are
intrusive when they use or access a common set of resources.

Intrusive applications

Effect of Assigning high execution attributes to intrusive applications might degrade performance.
assigning

attributes

Example Consider a situation in which anoncritical application is ready to release aresource, but

becomes blocked when a highly-critical application starts executing. If a second critical
application needs to use the blocked resource, then execution of this second critical
application is also blocked

If the applicationsin the Adaptive Server environment use different resources,
they are unintrusive.

Unintrusive applications

Effect of You can expect enhanced performance when you assign preferred execution attributes to
assigning an unintrusive application.

attributes

Example Simultaneous distinct operations on tables in different databases are unintrusive. Two

operations are also unintrusive if one is compute bound and the other is 1/0 bound.

I/O-intensive and CPU-intensive execution objects

64

When an execution object is I/O intensive, it might help to give it EC1
attributes and, at the same time, assign EC3 attributes to any compute-bound
execution objects. This can help because an object performing I/0 will not
normally use an entire time quantum, and will give up the CPU before waiting
for 1/0O to complete.

Adaptive Server Enterprise



CHAPTER 5 Distributing Engine Resources

By giving preference to 1/0-bound Adaptive Server tasks, Adaptive Server
ensures that these tasks are runnable as soon as the 1/0 is finished. By letting
the 1/0 take place first, the CPU should be able to accommodate both types of
applications and logins.

Example: phase 2 —the environment as a whole

Follow up on phase 1, in which you identified the behavior of the execution
objects, by thinking about how applications will interact.

Typicaly, asingle application behaves differently at different times; that is, it
might be aternately intrusive and unintrusive, 1/0 bound, and CPU intensive.
This makesit difficult to predict how applications will interact, but you can
look for trends.

Organize the results of the analysis so that you understand as much as possible
about each execution object with respect to the others. For example, you might
create atable that identifies the objects and their behavior trends.

Using Adaptive Server monitoring toolsis one of the best ways to understand
how execution objects affect the environment.

Performing benchmark tests

Perform benchmark tests before assigning any execution attributes so that you
have the results to use as a baseline after making adjustments.

Two tools that can help you understand system and application behavior are:

e Adaptive Server Monitor provides a comprehensive set of performance
statistics. It offers graphical displays through which you can isolate
performance problems.

e sp_sysmon isasystem procedure that monitors system performance for a
specified time interval and then prints out an ASCI| text-based report.

For information on using sp_sysmon see Performance and Tuning Guide;
Monitoring and Analyzing for Performance. In particular, see
“ Application management” on page 37.

Performance and Tuning: Basics 65



Algorithm for successfully distributing engine resources

Setting goals

Establish a set of quantifiable performance goals. These should be specific
numbers based on the benchmark results and your expectations for improving
performance. You can use these goals to direct you while assigning execution
attributes.

Results analysis and tuning

Here are some suggestions for analyzing the running Adaptive Server
environment after you configure the execution hierarchy:

1

Run the same benchmark tests you ran before assigning the execution
attributes, and compare the results to the baseline results. See
“Environment analysis and planning” on page 63.

Ensurethat thereisgood distribution acrossall the avail able enginesusing
Adaptive Server Monitor or sp_sysmon. Check the “Kernel Utilization”
section of the sp_sysmon report.

Also see “ Application management” on page 37 in the Performance and
Tuning: Monitoring and Analyzing for Performance

If the results are not what you expected, take a closer look at the
interactions between execution objects.

Asdescribedin“ Environment analysisand planning” on page 63, 1ook for
inappropriate assumptions and dependencies that you might have missed.

Make adjustments to the performance attributes.

Finetune the results by repeating these steps as many times as necessary.

Monitoring the environment over time

66

Adaptive Server has severa stored procedures for example sp_sysmon,

optdiag, sp_spaceused, that are used to monitor performance and will give

valid information on the status of the system.

See Performance and Tuning Guide: Tools for Monitoring and Analyzing for
Performance for information on monitoring the system.

Adaptive Server Enterprise



CHAPTER 5 Distributing Engine Resources

Manage preferred access to resources

M ost performance-tuning techniquesgiveyou control either at the system level
or the specific query level. Adaptive Server also gives you control over the
relative performance of simultaneously running tasks.

Unless you have unlimited resources, the need for control at thetask level is
greater in parallel execution environments because there is more competition
for limited resources.

You can use system procedures to assign execution attributes that indicate
which tasks should be given preferred accessto resources. The Logical Process
Manager uses the execution attributes when it assigns priorities to tasks and
tasks to engines.

Execution attributes al so affect how long a process can use an engine each time
the process runs. In effect, assigning execution attributes lets you suggest to
Adaptive Server how to distribute engine resources between client
applications, logins, and stored procedures in a mixed workload environment.

Each client application or login can initiate many Adaptive Server tasks. Ina
single-application environment, you can distribute resources at the login and
task levelsto enhance performance for chosen connections or sessions. In a
multiple-application environment, you can distribute resources to improve
performance for selected applications and for chosen connections or sessions.

Warning! Assign execution attributes with caution.

Arbitrary changesin the execution attributes of one client application, login, or
stored procedure can adversely affect the performance of others.

Types of execution classes

An execution classisaspecific combination of execution attributesthat specify
valuesfor task priority, time slice, and task-to-engine affinity. You can bind an
execution classto one or more execution objects, which are client applications,
logins, and stored procedures.

There are two types of execution classes — predefined and user-defined.
Adaptive Server provides three predefined execution classes. You can creste
user-defined execution classes by combining execution attributes.

Performance and Tuning: Basics 67



Types of execution classes

Predefined execution classes

Adaptive Server provides the following predefined execution classes:
e EC1—hasthe most preferred attributes.

e EC2—hasaverage values of attributes.

e EC3 —hasnon-preferred values of attributes.

Objectsassociated with EC2 are given average preference for engineresources.
If an execution object is associated with EC1, Adaptive Server considersit to
be critical and triesto give it preferred access to engine resources.

Any execution object associated with EC3 is considered to be least critical and
does not receive engine resources until execution objects associated with EC1
and EC2 are executed. By default, execution objects have EC2 attributes.

To change an execution object’s execution class from the EC2 default, use
sp_bindexeclass, described in “ Assigning execution classes’ on page 72.

User-Defined execution classes

68

In addition to the predefined execution classes, you can define your own
execution classes. Reasons for doing thisinclude:

e EC1,EC2,andEC3 donot accommodate all combinations of attributesthat
might be useful.

»  Associating execution objects with a particular group of engines would
improve performance.

The system procedure sp_addexeclass creates a user-defined execution class
with aname and attributes that you choose. For example, the following
statement defines a new execution class called DS with alow— priority value
and alowsit to run on any engine:

sp_addexecl ass DS, LON 0, ANYENG NE

You associate a user-defined execution class with an execution object using
sp_bindexeclass just as you would with a predefined execution class.

Adaptive Server Enterprise



CHAPTER 5 Distributing Engine Resources

Execution class attributes

Each predefined or user-defined execution classis composed of acombination
of three attributes: base priority, time dice, and an engine affinity. These
attributes determine performance characteristics during execution.

The attributes for the predefined execution classes, EC1, EC2, and EC3, are
fixed, as shown in Table 5-1. You specify the mix of attribute values for user-
defined execution classes when you create them, using sp_addexeclass.

Table 5-1: Fixed-attribute composition of predefined execution classes

Execution class Base priority Time slice Engine affinity

level attribute* attribute ** attribute***

EC1 High Timeslice >t None

EC2 Medium Timedlice=t None

EC3 Low Timedlice<t Engine with the highest

Base priority

engine |D number

See “Base priority” on page 69, “Time slice” on page 70 and “ Task-to-engine
affinity” on page 70 for more information.

By default, atask on Adaptive Server operateswith the same attributesas EC2:
itsbase priority ismedium, itstime sliceis set to onetick, and it can run on any
engine.

Base priority isthe priority you assign to atask when you create it. The values
are “high,” “medium,” and “low.” Thereis arun queue for each priority for
each engine, and the global run queue also has a queue for each priority.

When an enginelooksfor atask to run, it first checksits own high-priority run
queue, then the high-priority global run queue, then its own medium-priority

run queue, and so on. The effect is that runnable tasks in the high-priority run
queues are schedul ed onto engines more quickly, than tasksin the other queues.

During execution, Adaptive Server can temporarily change atask’s priority if
it needs to. It can be greater than or equal to, but never lower than, its base
priority.

When you create a user-defined execution class, you can assign the values
high, medium or low to the task.

Performance and Tuning: Basics 69



Execution class attributes

Time slice

Adaptive Server handles several processes concurrently by switching between
them, allowing one process to run for a fixed period of time (atime slice)
before it lets the next process run.

Asshown in Table 5-1 on page 69, the time slice attribute is different for each
predefined execution class. EC1 has the longest time slice value, EC3 has the
shortest time slice value, and EC2 has atime slice value that is between the
valuesfor EC1 and EC3.

More precisely, the time period that each task is allowed to run is based on the
value for the time slice configuration parameter, as described in “ Scheduling
client task processing time” on page 42. Using default valuesfor configuration
parameters, EC1 execution objects may run for double the time slice value; the
time dlice of an EC2 execution object is equivalent to the configured value; and
an EC3 execution object yields at the first yield point it encounters, often not
running for an entire time slice.

If tasks do not yield the engine for other reasons (such as needing to perform
1/0 or being blocked by alock) the effect isthat EC1 clients run longer and
yieldtheenginefewer timesover thelife of agiven task. EC3 execution objects
run for very short periods of time when they have accessto the engine, so they
yield much more often over thelife of thetask. EC2 tasksfall between EC1 and
EC3in runtime and yields.

Currently, you cannot assign time slice values when you create user-defined
execution classeswith sp_addexeclass. Adaptive Server assignsthe EC1, EC2,
and EC3 time slice values for high, medium, and low priority tasks,
respectively.

Task-to-engine affinity

70

In a multiengine environment, any available engine can process the next task
in the global run queue. The engine affinity attribute lets you assign atask to
an engine or to agroup of engines. There are two ways to use task-to-engine
affinity:

» Associatelesscritical execution objectswith adefined group of enginesto
restrict the object to a subset of the total number of engines. This reduces
processor availability for those objects. The more critical execution
objects can execute on any Adaptive Server engine, so performance for
them improves because they have the benefit of the resourcesthat the less
critical ones are deprived of.

Adaptive Server Enterprise



CHAPTER 5 Distributing Engine Resources

e Associate more critical execution objects with a defined group of engines
to which less critical objects do not have access. This ensures that the
critical execution objects have access to a known amount of processing

power.

EC1 and EC2 do not set engine affinity for the execution object; however, EC3
sets affinity to the Adaptive Server engine with the highest engine number in

the current configuration.

You can create engine groups with sp_addengine and bind execution objectsto
an engine group with sp_addexeclass. If you do not want to assign engine
affinity for a user-defined execution class, using ANY ENGINE as the engine
group parameter allows the task to run on any engine.

Note The engine affinity attributeis not used for stored procedures.

Setting execution class attributes

You implement and manage execution hierarchy for client applications, logins,
and stored procedures using the five categories of system procedures listed in

the following table.

Table 5-2: System procedures for managing execution object

precedence

Category

Description

System procedures

User-defined execution
class

Create and drop a user-defined class with
custom attributes or change the attributes
of an existing class.

* sp_addexeclass

* sp_dropexeclass

Execution class binding

Bind and unbind predefined or user-
defined classesto client applications and
logins.

* sp_bindexeclass

* sp_unbindexeclass

For the session only

Set and clear attributes of an active session

* sp_setpsexe

(“onthefly”) only. « sp_clearpsexe

Engines Add engines to and drop engines from * sp_addengine
engine groups, create and drop engine « sp_dropengine
groups. -

Reporting Report on engine group assignments, * sp_showcontrolinfo

application bindings, execution class
attributes.

* sp_showexeclass

* sp_showpsexe

Performance and Tuning: Basics

71



Setting execution class attributes

See the Adaptive Server Enterprise Reference Manualfor complete
descriptions of the system proceduresin Table 5-2.

Assigning execution classes

The following exampleillustrates how to assign preferred access to resources
to an execution object by associating it with EC1. In this case, the execution
object is a combination of application and login.

The syntax for the sp_bindexeclass is:

sp_bindexeclass object_name, object_type,
scope, class_name

Suppose you decide that the “sa’ login must get results from isql as fast as
possible. You can tell Adaptive Server to give execution preference to login
“sa” when it executesisql by issuing sp_bindexeclass with the preferred
execution class EC1. For example:

sp_bi ndexecl ass sa, LG isql, ECl

This statement stipul ates that whenever alogin (LG) called “sa”’ executes the
isql application, the “sa” login task executes with EC1 attributes. Adaptive
Server improves response time for the “sa’ login by:

* Placingitinahigh-priority run queue, so it isassigned to an engine more
quickly

* Allowing it to run for alonger period of time than the default value for
time dlice, so it accomplishes more work when it has access to the engine

Engine groups and establishing task-to-engine affinity

72

Thefollowing stepsillustrate how you can use system procedures to create an
engine group associated with a user-defined execution class and bind that
execution classto user sessions. In thisexample, the server isused by technical
support staff, who must respond as quickly as possible to customer needs, and
by managers who are usually compiling reports, and can afford slower
response time.

The example uses sp_addengine and sp_addexeclass.

You create engine groups and add engines to existing groups with
sp_addengine. The syntax is:

Adaptive Server Enterprise



CHAPTER 5 Distributing Engine Resources

sp_addengine engine_number, engine_group

You set the attributes for user-defined execution classes using sp_addexeclass.
The syntax is:

sp_addexeclass class_name, base_priority,
time_slice, engine_group

The steps are:

1 Create an engine group using sp_addengine. This statement creates a
group called DS_GROUP, consisting of engine 3:

sp_addengi ne 3, DS_GROUP

To expand the group so that it also includes engines 4 and 5, execute
sp_addengine two more times for those engine numbers:

sp_addengi ne 4, DS_GROUP
sp_addengi ne 5, DS_GROUP

2 Createauser-defined execution classand associateit withthe DS_GROUP
engine group using sp_addexeclass.

This statement defines a new execution class called DS with a priority
value of “LOW” and associates it with the engine group DS_GROUP:;

sp_addexecl ass DS, LON 0, DS _GROUP

3 Bindthelesscritical execution objects to the new execution class using
sp_bindexeclass.

For example, you can bind the manager logins, “mgrl”, “mgr2”, and
“mgr3”, to the DS execution class using sp_bindexeclass three times:;

sp_bi ndexecl ass ngrl, LG NULL, DS
sp_bi ndexecl ass ngr2, LG NULL, DS
sp_bi ndexecl ass ngr3, LG NULL, DS

The second parameter, “ LG” , indicates that the first parameter isalogin
name. Thethird parameter, NULL, indicatesthat the association appliesto
any application that thelogin might be running. Thefourth parameter, DS,
indicates that the login is bound to the DS execution class.

Theresult of this exampleisthat the technical support group (not bound to an
engine group) is given accessto moreimmediate processing resourcesthan the
managers.

Figure 5-2 illustrates the associations in this scenario:

e Logins“mgrl”, “mgr2”, and “mgr3” have affinity to the DS engine group
consisting of engines 3, 4, and 5.

Performance and Tuning: Basics 73



Setting execution class attributes

e Logins“tsl”, “ts2”, “ts3”, and “ts4” can use al six Adaptive Server
engines.
Figure 5-2: An example of engine affinity

DS class, with affinity to DS_GROUP engines
N

Engine 4 Engine 5 )

Tasks without execution attributes can run on any engine

How execution class bindings affect scheduling

You can use logical process management to increase the priority of specific
logins, of specific applications, or of specific logins executing specific
applications. This example looks at:

e Anorder_entry application, an OLTP application critical to taking
customer orders.

e A sales_report application, that can prepare various reports. Some
managers run this application with default characteristics, but other
managers run the report at lower priority.

e Other users, who are running various other applications at default
priorities (no assignment of execution classes or priorities).

Execution class bindings

The following statement binds order_entry with EC1 attributes, giving higher
priority to the tasks running it:

sp_bi ndexecl ass order_entry, AP, NULL, EC1

74 Adaptive Server Enterprise



CHAPTER 5 Distributing Engine Resources

The following sp_bindexeclass statement specifies EC3 when “mgr” runsthe
sales_report application:

sp_bi ndexecl ass ngr, LG sales_report, EC3

Thistask can execute only when tasks with EC1 and EC2 attributes areidle or
in adeep state.

Figure 5-3 shows four execution objects running tasks. Several users are
running the order_entry and sales_report applications. Two other logins are
active, “mgr” (logged in once using the sales_report application, and twice
using isql) and “cs3” (not using the affected applications).

Figure 5-3: Execution objects and their tasks

order_entry

2
>% PN
Priority:
H High
L Low
D Default

When the “mgr” login usesisql (tasks 1 and 2), the task runs with default
attributes. But when the “mgr” login uses sales_report, the task runs at EC3.
Other managers running sales_report (tasks 6 and 7) run with the default
attributes. All tasksrunning order_entry run at high priority, with EC1 attributes
(tasks 3, 4 and 8). “cs3” runs with default attributes.

Engine affinity can affect scheduling
Each execution class is associated with a different priority:
e Tasksassigned to EC1 are placed in a high-priority run queue.
e Tasksassigned to EC2 are placed in a medium-priority run queue.

e Tasksassigned to EC3 are placein alow-priority run queue.

Performance and Tuning: Basics 75



Setting execution class attributes

An engine looking for atask to run first looksin its own high-priority run
gueues, then in the high-priority global run queue. If there are no high-priority
tasks, it checks for medium-priority tasksin its own run queue, then in the
medium-priority global run queue, and finally for low-priority tasks.

What happens if atask has affinity to a particular engine? Assume that task 7
in Figure 5-3 on page 75, a high-priority task in the global run queue, has a
user-defined execution classwith high priority and affinity to engine 2. Engine
2 currently has high-priority tasks queued and is running another task.

If engine 1 has no high-priority tasks queued when it finishes processing task
8in Figure 5-3 on page 75, it checks the global run queue, but cannot process
task 7 dueto the engine binding. Engine 1 then checksits own medium-priority
gueue, and runstask 15. Although a System Administrator assigned the
preferred execution class EC1, engine affinity temporarily lowered task 7's
execution precedence to below that of atask with EC2.

This effect might be highly undesirable or it might be what the performance
tuner intended. You can assign engine affinity and execution classesin such a
way that task priority isnot what you intended. You can also make assignments
in such away that tasks with low priority might not ever run, or might wait for
extremely long times — another reason to plan and test thoroughly when
assigning execution classes and engine affinity.

Setting attributes for a session only

If you need to change any attribute value temporarily for an active session, you
can do so using sp_setpsexe.

Thechangein attributesisvalid only for the specified spid and isin effect only
for the duration of the session, whether it ends naturally or is terminated.
Setting attributes using sp_setpsexe neither aters the definition of the
execution classfor any other processnor doesit apply to the next invocation of
the active process on which you useiit.

To clear attributes set for a session, use sp_clearpsexe.

Getting information

76

Adaptive Server stores the information about execution class assignmentsin
the system tables sysattributes and sysprocesses and supports several system
procedures for determining what assignments have been made.

Adaptive Server Enterprise



CHAPTER 5 Distributing Engine Resources

You can use sp_showcontrolinfo to display information about the execution
objects bound to execution classes, the Adaptive Server enginesin an engine
group, and session-level attribute bindings. If you do not specify parameters,
sp_showcontrolinfo displays the complete set of bindings and the composition
of all engine groups.

sp_showexeclass displays the attribute values of an execution class or all
execution classes.

You can also use sp_showpsexe to see the attributes of all running processes.

Rules for determining precedence and scope

Determining the ultimate execution hierarchy between two or more execution
objects can be complicated. What happens when a combination of dependent
execution objects with various execution attributes makes the execution order
unclear?

For example, an EC3 client application can invoke an EC1 stored procedure.
Do both execution objects take EC3 attributes, EC1 attributes, or EC2
attributes?

Understanding how Adaptive Server determines execution precedenceis
important for getting what you want out of your execution class assignments.
Two fundamental rules, the precedence rule and the scope rule, can help you
determine execution order.

Multiple execution objects and ECs

Adaptive Server uses precedence and scope rules to determine which
specification, among multiple conflicting ones, to apply.

Use the rulesin this order:

1 Usethe precedence rule when the process involves multiple execution
object types.

2 Usethe scope rule when there are multiple execution class definitions for
the same execution object.

Performance and Tuning: Basics 77



Rules for determining precedence and scope

Precedence rule

Precedence Rule
Example

78

The precedence rule sorts out execution precedence when an execution object
belonging to one execution class invokes an execution object of another
execution class.

The precedence rule states that the execution class of a stored procedure
overrides that of alogin, which, in turn, overrides that of a client application.

If astored procedure hasamore preferred execution classthan that of the client
application process invoking it, the precedence of the client processis

temporarily raised to that of the stored procedure for the period of time during
which the stored procedure runs. This also appliesto nested stored procedures.

Note Exception tothe precedencerule: If an execution object invokesastored
procedure with aless preferred execution class than its own, the execution
object’s priority is not temporarily lowered.

Thisexampleillustratesthe use of the precedencerule. Supposethereisan EC2
login, an EC3 client application, and an EC1 stored procedure.

Thelogin’'s attributes override those of the client application, so theloginis
given preference for processing. If the stored procedure has a higher base
priority than the login, the base priority of the Adaptive Server process
executing the stored procedure goes up temporarily for the duration of the
stored procedure’s execution. Figure 5-4 shows how the precedenceruleis
applied.

Figure 5-4: Use of the precedence rule

. Client Stored
login Application Procedure
EC2 EC3 EC1

Stored procedure runs with EC2

What happenswhen aloginwith EC2 invokesaclient applicationwithEC1 and
the client application calls astored procedure with EC3? The stored procedure
executes with the attributes of EC2 because the execution class of alogin
precedes that of aclient application.

Adaptive Server Enterprise



CHAPTER 5 Distributing Engine Resources

Scoperule

In addition to specifying the execution attributes for an object, you can define
its scope when you use sp_bindexeclass. The scope specifies the entities for
which the execution class bindings will be effective. The syntax is:

sp_bindexeclass object_name, object_type,
scope, class_name

For example, you can specify that anisql client application run with EC1
attributes, but only when it isexecuted by an“sa’ login. This statement setsthe
scope of the EC1 hinding to theisql client application asthe “sa’ login:

sp_bi ndexecl ass isqgl, AP, sa, ECl

Conversely, you can specify that the “sa”’ login run with EC1 attributes, but
only when it executes theisg client application. In this case, the scope of the
EC1 binding to the “sa’ login istheisql client application:

sp_bi ndexecl ass sa, LG isql, ECl

The execution object’s execution attributes apply to al of itsinteractionsif the
scopeisNULL.

When aclient application has no scope, the execution attributes bound to it
apply to any login that invokes the client application.

When alogin has no scope, the attributes apply to thelogin for any process that
the login invokes.

The following command specifies that Transact-SQL applications execute
with EC3 attributesfor any login that invokesisgl, unlessthe login is bound to
a higher execution class:

sp_bi ndexecl ass isql, AP, NULL, EC3

Combined with the bindings above that grant the “sa” user of isgl EC1
execution attributes, and using the precedence rule, an isql request from the
“sd’ login executeswith EC1 attributes. Other processes servicing isql requests
from non-“sa’ logins execute with EC3 attributes.

The scope rule states that when a client application, login, or stored procedure
is assigned multiple execution class levels, the one with the narrowest scope
has precedence. Using the scoperule, you can get the sameresult if you usethis
command:

sp_bi ndexecl ass isqgl, AP, sa, ECl

Performance and Tuning: Basics 79



Rules for determining precedence and scope

Resolving a precedence conflict

Adaptive Server uses the following rules to resolve conflicting precedence
when multiple execution objects and execution classes have the same scope.

Execution objects not bound to a specific execution class are assigned
these default values:

Entity type Attribute name Default value
Client application Execution class EC2
Login Execution class EC2
Stored procedure Execution class EC2

An execution object for which an execution classis assigned has higher
precedence than defaults. (An assigned EC3 has precedence over an
unassigned EC2).

If aclient application and alogin have different execution classes, the
login has higher execution precedence than the client application (from the
precedence rule).

If a stored procedure and a client application or login have different
execution classes, Adaptive Server usesthe one with the higher execution
classto derive the precedence when it executes the stored procedure (from
the precedence rule).

If there are multiple definitionsfor the same execution object, theonewith
anarrower scope has the highest priority (from the scope rule). For
exampl e, thefirst statement gives precedencetothe“sa’ login runningisqgl
over “sa’ logins running any other task:

sp_bi ndexecl ass sa, LG isql, ECl
sp_bi ndexecl ass sa, LG NULL, EC2

Examples: determining precedence

80

Each row in Table 5-3 contains a combination of execution objects and their

conflicting execution attributes.

The “Execution Class Attributes’ columns show execution class values
assigned to a process application “AP” belonging to login “LG”.

The remaining columns show how Adaptive Server resolves precedence.

Adaptive Server Enterprise



CHAPTER 5 Distributing Engine Resources

Table 5-3: Conflicting attribute values and Adaptive Server assigned
values

Execution class attributes Adaptive Server-assigned values

Stored Login Stored
Application Login procedure base procedure
(AP) (LG) (sp_ec) Application priority base priority
EC1 EC2 EC1l EC2 Medium High

(EC3) (Medium)
EC1 EC3 EC1 EC3 Low High

(EC2) (Medium)
EC2 EC1 EC2 EC1 High High

(EC3) (High)
EC2 EC3 EC1 EC3 Low High

(EC2) (Medium)
EC3 EC1 EC2 EC1 High High

(EC3) (High)
EC3 EC2 EC1 EC2 Medium High

(EC3) (Medium)

To test your understanding of the rules of precedence and scope, cover the
“Adaptive Server-Assigned Values’ columnsin Table 5-3, and predict the
values in those columns. Following is a description of the scenario in the first
row, to help get you started:

e Column 1 - certain client application, AP, is specified asEC1.
e Column 2 —particular login, “LG", is specified asEC2.

e Column 3 — stored procedure, sp_ec, is specified asECL1.

At runtime:

e Column 4 —task belonging to the login,” LG”, executing the client
application AP, uses EC2 attributes because the class for alogin precedes
that of an application (precedence rule).

e Column5-value of column 5 implies a medium base priority for the
login.

e Column 6 — execution priority of the stored procedure sp_ec israised to
high from medium (because it isEC1).

Performance and Tuning: Basics 81



Example scenario using precedence rules

If the stored procedure is assigned EC3 (as shown in parentheses in
column 3), then the execution priority of the stored procedure is medium
(as shown in parentheses in column 6) because Adaptive Server usesthe
highest execution priority of the client application or login and stored
procedure.

Example scenario using precedence rules

82

This section presents an example that illustrates how Adaptive Server
interprets the execution class attributes.

Figure 5-5 shows two client applications, OLTP and isg|, and three Adaptive
Server logins, “L1", “sa’, and “L2".

sp_xyz isastored procedure that both the OLTP application and the isql
application need to execute.

Adaptive Server Enterprise



CHAPTER 5 Distributing Engine Resources

Figure 5-5: Conflict resolution

Therest of this section describes one way to implement the steps discussed in
Algorithm Guidelines.

Planning

The System Administrator performs the analysis described in steps 1 and 2 of
thealgorithmin “ Algorithm for successfully distributing engine resources’ on
page 59 and decides on the following hierarchy plan:

e TheOLTP application isan EC1 application and the isgl application is an
EC3 application.

Performance and Tuning: Basics 83



Example scenario using precedence rules

Login“L1” can run different client applications at different timesand has
no special performance requirements.

Login“L2" isaless critical user and should always run with low
performance characteristics.

Login“sa’ must always run as acritical user.

Stored procedure sp_xyz should always run with high performance
characteristics. Because the isql client application can execute the stored
procedure, giving sp_xyz ahigh-performance characteristicsis an attempt
to avoid a bottleneck in the path of the OLTP client application.

Table 5-1 summarizes the analysis and specifies the execution class to be

assigned by the System Administrator. Notice that the tuning granularity gets
finer asyou descend thetable. Applications havethe greatest granul arity, or the
largest scope. The stored procedure has the finest granularity, or the narrowest

scope.
Table 5-4: Example analysis of an Adaptive Server environment
Execution
Identifier Interactions and comments class
OLTP » Sametablesasisql EC1
» Highly critica
isql e Sametablesas OLTP EC3
* Low priority
L1 * No priority assignment None
sa » Highly critica EC1
L2 * Not critical EC3
Sp_xyz » Avoid “hot spots’ EC1

Configuration

The System Administrator executes the following system proceduresto assign
execution classes (algorithm step 3):

sp_bi ndexecl ass OLTP, AP, NULL, EC1

sp_bi ndexecl ass | SQ., AP, NULL, EC3

sp_bi ndexecl ass L2, LG NULL, EC3

sp_bi ndexecl ass sa, LG NULL, EC1

sp_bi ndexecl ass SP_XYZ, PR, sp_owner, ECl

84

Adaptive Server Enterprise



CHAPTER 5 Distributing Engine Resources

Execution characteristics

Following is a series of eventsthat could take place in an Adaptive Server
environment with the configuration described in this example:

1 Aclientlogsinto Adaptive Server as“L1" using OLTP.

Adaptive Server determines that OLTP iSEC1.

“L 1" does not have an execution class, so Adaptive Server assignsthe
default class EC2. “L 1" gets the characteristics defined by EC1 when
it invokes OLTP.

If “L 1" executes stored procedure sp_xyz, its priority remains
unchanged while sp_xyz executes. During execution, “L1"hasEC1
attributes throughout.

2 Aclientlogsinto Adaptive Server as“L1" using isql.

Becauseisgl is EC3, and the “L 1" execution class is undefined,

“L 1" executes with EC3 characteristics. Thismeansit runs at low
priority and has affinity with the highest numbered engine (aslong as
there are multiple engines).

When “L1"executes sp_xyz, itspriority is raised to high because the
stored procedure isEC1.

3 Adclientlogsinto Adaptive Server as“sa’ using isql.

Adaptive Server determinesthe execution classesfor bothisgl and the
“sa’, using the precedence rule. Adaptive Server runs the System
Administrator’sinstance of isql with EC1 attributes. When the System
Administrator executes sp_xyz, the priority does not change.

4 Aclientlogsinto Adaptive Server as“L2" usingisq|.

Because both the application and login are EC3, thereis no conflict.
“L2" executes sp_xyz at high priority.

Considerations for Engine Resource Distribution

Making execution class assignments indiscriminately does not usually yield
what you expect. Certain conditions yield better performance for each
execution object type. Table 5-5 indicates when assigning an execution
precedence might be advantageous for each type of execution object.

Performance and Tuning: Basics

85



Considerations for Engine Resource Distribution

Table 5-5: When assigning execution precedence is useful

Execution
object

Description

Client application

Thereis little contention for non-CPU resources among client applications.

Adaptive Server login

One login should have priority over other logins for CPU resources.

Stored procedure

There are well-defined stored procedure “hot spots.”

It is more effective to lower the execution class of less-critical execution
objects than to raise the execution class of ahighly critical execution object.
The sections that follow give more specific consideration to improving
performance for the different types of execution objects.

Client applications: OLTP and DSS

Assigning higher execution preference to client applications can be
particularly useful when thereis little contention for non-CPU resources
among client applications.

For example, if an OLTP application and a DSS application execute
concurrently, you might be willing to sacrifice DSS application performanceif
that resultsin faster execution for the OLTP application. You can assign non-
preferred execution attributes to the DSS application so that it gets CPU time
only after OLTP tasks are executed.

Unintrusive client applications

Inter-application lock contention is not a problem for an unintrusive
application that uses or accesses tables that are not used by any other
applications on the system.

Assigning a preferred execution class to such an application ensures that
whenever there is arunnable task from this application, it isfirst in the queue
for CPU time.

I/0-bound client applications

86

If ahighly-critical applicationis I/O bound and the other applications are
compute bound, the compute-bound process can use the CPU for the full time
quantum if it is not blocked for some other reason.

Adaptive Server Enterprise



CHAPTER 5 Distributing Engine Resources

An 1/O-bound process, on the other hand, gives up the CPU each time it
performs an 1/O operation. Assigning a non-preferred execution class to the
compute-bound application enables Adaptive Server to run the 1/0-bound
process sooner.

Highly critical applications

If there are one or two critical execution objects among several noncritical
ones, try setting engine affinity to a specific engine or group of enginesfor the
less critical applications. This can result in better throughput for the highly
critical applications.

Adaptive Server logins: high-priority users

If you assign preferred execution attributes to a critical user and maintain
default attributes for other users, Adaptive Server does what it can to execute
all tasks associated with the high-priority user first.

Stored procedures: “hot spots”

Performance issues associated with stored procedures arise when a stored
procedure is heavily used by one or more applications. When this happens, the
stored procedure is characterized as a hot spot in the path of an application.

Usually, the execution priority of the applications executing the stored
procedure is in the medium to low range, so assigning more preferred
execution attributesto the stored procedure might improve performancefor the
application that callsit.

Performance and Tuning: Basics 87



Considerations for Engine Resource Distribution

88 Adaptive Server Enterprise



CHAPTER 6 Controlling Physical Data
Placement

This describes how controlling the location of tables and indexes can

improve performance.

Topic Page
Object placement can improve performance 89
Terminology and concepts 92
Guidelines for improving I/O performance 92
Using serial mode 96
Creating objects on segments 96
Partitioning tables for performance 99
Space planning for partitioned tables 103
Commands for partitioning tables 106
Steps for partitioning tables 117
Special procedures for difficult situations 124
Maintenance issues and partitioned tables 131

Object placement can improve performance

Adaptive Server allowsyou to control the placement of databases, tables,
and indexes across your physical storage devices. This can improve
performance by equalizing the reads and writes to disk across many
devices and controllers. For example, you can;

* Place adatabase's data segments on a specific device or devices,
storing the database’s log on a separate physical device. Thisway,
reads and writesto the database’slog do not interfere with data access

e Spread large, heavily used tables across several devices.

*  Place specific tables or nonclustered indexes on specific devices. For
example, you might place atable on a segment that spans several
devices and its nonclustered indexes on a separate segment.

Performance and Tuning: Basics 89



Object placement can improve performance

Place the text and image page chain for atable on a separate device from
the table itself. The table stores a pointer to the actual datavalueinthe
separate database structure, so each access to atext or image column
requires at least two 1/Os.

Distribute tables evenly across partitions on separate physical disksto
provide optimum parallel query performance.

For multiuser systems and multi-CPU systems that perform alot of disk 1/O,
pay special attention to physical and logical device issues and the distribution
of 1/O across devices:

Plan balanced separation of objects across logical and physical devices.

Use enough physical devices, including disk controllers, to ensure
physical bandwidth.

Use an increased number of logical devicesto ensure minimal contention
for internal 1/0 queues.

Use anumber of partitions that will allow parallel scans, to meet query
performance goals.

Make use of the ahility of create database to perform parallel 1/0 on as
many as six devices at atime, to gain asignificant performance leap for
creating multi gigabyte databases.

Symptoms of poor object placement

The following symptoms may indicate that your system could benefit from
attention to object placement:

90

Single-user performance is satisfactory, but response time increases
significantly when multiple processes are executed.

Accessto amirrored disk takes twice aslong as access to an unmirrored
disk.

Query performance degrades as system table activity increases.
Maintenance activities seem to take along time.
Stored procedures seem to slow down asthey create temporary tables.

Insert performance is poor on heavily used tables.

Adaptive Server Enterprise



CHAPTER 6 Controlling Physical Data Placement

Queriesthat run in parallel perform poorly, due to an imbalance of data
pages on partitions or devices, or they run in serial, due to extreme
imbalance.

Underlying problems

If you are experiencing problems due to disk contention and other problems
related to object placement, check for these underlying problems:

Random-access (1/O for data and indexes) and serial-access (log 1/0)
processes are using the same disks.

Database processes and operating system processes are using the same
disks.

Serial disk mirroring is being used because of functional reguirements.

Database maintenance activity (logging or auditing) istaking place on the
same disks as data storage.

tempdb activity ison the same disk as heavily used tables.

Using sp_sysmon while changing data placement

Use sp_sysmon to determine whether data placement across physical devices
is causing performance problems. Check the entire sp_sysmon output during
tuning to verify how the changes affect all performance categories.

For more information about using sp_sysmon, see Chapter 8, “Monitoring
Performance with sp_sysmon.” in the Performance and Tuning: Monitoring
and Analyzing for Performance book.

Pay special attention to the output associated with the discussions:

1/O device contentions
APL heap tables

Last page locks on heaps
Disk I.O management

Adaptive Server Monitor can also help pinpoint problems.

Performance and Tuning: Basics 91



Terminology and concepts

Terminology and concepts

You should understand the following distinctions between logical or database
devices and physical devices:

*  Thephysical disk or physical deviceisthe actual hardware that storesthe
data.

» A database device or logical device isa piece of aphysical disk that has
been initialized (with the disk init command) for use by Adaptive Server.
A database device can be an operating system file, an entire disk, or adisk
partition.

See the Adaptive Server installation and configuration guides for
information about specific operating system constraints on disk and file
usage.

* A segment is anamed collection of database devices used by a database.
The database devices that make up a segment can be located on separate
physical devices.

* A partitionisblock of storage for atable. Partitioning a table splitsit so
that multiple tasks can access it simultaneoudly. When partitioned tables
are placed on segments with amatching number of devices, each partition
starts on a separate database device.

Use sp_helpdevice to get information about devices, sp_helpsegment to get
information about segments, and sp_helpartition to get information about
partitions.

Guidelines for improving I/O performance

92

The major guidelinesfor improving I/O performancein Adaptive Server areas
follows:

*  Spreading data across disks to avoid I/O contention.

* Isolating server-wide I/O from database I/0.

»  Separating data storage and log storage for frequently updated databases.
*  Keeping random disk 1/0O away from sequential disk /0.

*  Mirroring devices on separate physical disks.

»  Partitioning tables to match the number of physical devicesin a segment.

Adaptive Server Enterprise



CHAPTER 6 Controlling Physical Data Placement

Spreading data across disks to avoid 1/0O contention

You can avoid bottlenecks by spreading data storage across multiple disks and
multiple disk contrallers:

e Put databaseswith critical performance requirements on separate devices.
If possible, also use separate controllers from those used by other
databases. Use segments as needed for critical tables and partitions as
needed for parallel queries.

e Put heavily used tables on separate disks.
e Put frequently joined tables on separate disks.

e Use segmentsto place tables and indexes on their own disks.

Avoiding physical contention in parallel join queries

Theexamplein Figure 6-1illustratesajoin of two partitioned tables, orders_thl
and stock_tbl. There are ten worker process available: orders_tbl hasten
partitions on ten different physical devices and isthe outer tablein thejoin;
stock_tbl isnonpartitioned. Theworker processes will not have a problem with
access contention on orders_tbl, but each worker process must scan stock_tbl.
There could be a problem with physical 1/0 contention if the entire table does
not fit into a cache. In the worst case, ten worker processes attempt to access
the physical device on which stock_thl resides. You can avoid physical 1/0
contention by creating a named cache that contains the entire table stock_tbl.

Another way to reduce or eliminate physical 1/0O contention isto partition both
orders_tbl and stock_tbl and distribute those partitions on different physical
devices.

Figure 6-1: Joining tables on different physical devices

orders_tbl stock_tbl

(1 — B

e S—— N

Performance and Tuning: Basics 93



Guidelines for improving 1/O performance

Isolating server-wide I/O from database I/O

Place system databaseswith heavy 1/0 regquirements on separate physical disks
and controllers than your application databases.

Where to place tempdb

tempdb isautomatically installed on the master device. If more spaceis needed,
tempdb can be expanded to other devices. If tempdb is expected to be quite
active, placeit on adisk that is not used for other important database activity.
Use the fastest disk available for tempdb. It is a heavily used database that
affects all processes on the server.

On some UNIX systems, 1/O to operating system filesis significantly faster
than 1/O to raw devices. Since tempdb is always re-created, rather than
recovered, after a shutdown, you may be able to improve performance by
altering tempdb onto an operating system file instead of araw device. You
should test this on your own system.

See Chapter 17, “tempdb Performance Issues,” for more placement issues and
performance tips for tempdb.

Where to place sybsecurity

If you use auditing on your Adaptive Server, the auditing system performs
frequent 1/0 to the sysaudits table in the sybsecurity database. If your
applications perform a significant amount of auditing, place sybsecurity on a
disk that is not used for tables where fast response timeiis critical. Placing
sybsecurity on its own deviceis optimal.

Also, use the threshold manager to monitor its free space to avoid suspending
user transactionsiif the audit database fills up.

Keeping transaction logs on a separate disk

94

You can limit the size of the transaction logs by placing them on a separate
segment, this keeps it from competing with other objects for disk space.
Placing the log on a separate physical disk:

*  Improves performance by reducing 1/0 contention

»  Ensuresfull recovery in the event of hard disk crashes on the data device

Adaptive Server Enterprise



CHAPTER 6 Controlling Physical Data Placement

e Speeds recovery, since simultaneous asynchronous prefetch requests can
read ahead on both the log device and the data device without contention

Placing the transaction log on the same device as the data itself causes such a
dangerous reliability problem that both create database and alter database
require the use of the with override option to put the transaction log on the same
device as the data itself.

The log device can experience significant 1/0 on systems with heavy update
activity. Adaptive Server writes log pages to disk when transactions commit
and may need to read log pages into memory for deferred updates or
transaction rollbacks.

If your log and data are on the same database devices, the extents allocated to
store log pages are not contiguous; log extents and data extents are mixed.
When thelog ison itsown device, the extents tend to be allocated sequentially,
reducing disk head travel and seeks, thereby maintaining a higher 1/O rate.

Also, if log and data are on separate devices, Adaptive Server buffers log
records for each user in a user log cache, reducing contention for writing to the
log page in memory. If log and data are on the same devices, user log cache
buffering is disabled, which resultsin serious performance penalty on SMP
systems.

If you have created a database without its log on a separate device, see the
System Administration Guide.

Mirroring a device on a separate disk

If you mirror data, put the mirror on a separate physical disk Thanthe device
that it mirrors. Disk hardware failure often results in whole physical disks
being lost or unavailable. Mirroring on separate disks also minimizes the
performance impact of mirroring.

Device mirroring performance issues

Disk mirroring is a secure and high availability feature that allows Adaptive
Server to duplicate the contents of an entire database device.

See the System Administration Guide for more information on mirroring.

If you do not use mirroring, or use operating system mirroring, set the
configuration parameter disable disk mirroring to 1. Thismay yield dight
performance improvements.

Performance and Tuning: Basics 95



Creating objects on segments

Using serial mode

Mirroring can slow the time taken to complete disk writes, since writes go to
both disks, either serialy or simultaneously. Reads always come from the
primary side. Disk mirroring has no effect on the time required to read data.

Mirrored devices use one of two modes for disk writes:

* Nonserial mode can require more time to complete awrite than an
unmirrored write requires. In nonserial mode, both writesare started at the
same time, and Adaptive Server waits for both to complete. The time to
complete nonserial writesis max(W1 ,W2) — the greater of thetwo I/O
times.

e Serial modeincreases the time required to write data even more than
nonserial mode. Adaptive Server starts the first write and waits for it to
compl ete before starting the second write. The time required is W1+W2 —
the sum of the two /O times.

Despiteits performanceimpact, serial modeisimportant for reliability. Infact,
serial mode isthe default, because it guards against failures that occur while a
write istaking place.

Since serial mode waits until the first write is complete before starting the
second write, itisimpossiblefor asinglefailureto affect both disks. Specifying
nonserial mode improves performance, but you risk losing dataif afailure
occurs that affects both writes.

Warning! Unless you are sure that your mirrored database system does not
need to be absolutely reliable, do not use nonserial mode.

Creating objects on segments

96

A segment is alabel that points to one or more database devices.

Each database can use up to 32 segments, including the 3 segments that are
created by the system (system, log segment, and default) when a database is
created. Segments label space on one or more logical devices.

Adaptive Server Enterprise



CHAPTER 6 Controlling Physical Data Placement

Using segments

Tablesand indexes are stored on segments. If no segment isnamed inthe create
table or create index statement, then the objects are stored on the default
segment for the database. Naming a segment in either of these commands
creates the object on the segment. The sp_placeobject System procedure causes
all future space allocations to take place on a specified segment, so tables can
span multiple segments.

A System Administrator must initialize the device with disk init, and the disk
must be allocated to the database by the System Administrator or the Database
Owner with create database or alter database.

Once the devices are available to the database, the database owner or object
owners can create segments and place objects on the devices.

If you create a user-defined segment, you can place tables or indexes on that
segment with the create table or create index commands:

create table tableA(...) on segl
create nonclustered index nyix on tableB(...)
on seg2

By controlling the location of critical tables, you can arrange for these tables
and indexes to be spread across disks.

Segments can improve throughput by:

e Splitting large tables across disks, including tables that are partitioned for
paralle query performance

e Separating tables and their nonclustered indexes across disks

e Placing the text and image page chain on a separate disk from the table
itself, where the pointers to the text values are stored

In addition, segments can control space usage, as follows:

e A table can never grow larger than its segment allocation; You can use
segments to limit table size.

e Tableson other segments cannot impinge on the space all ocated to objects
on another segment.

e Thethreshold manager can monitor space usage.

Performance and Tuning: Basics 97



Creating objects on segments

Separating tables and indexes

Use segmentsto isolate tables on one set of disks and nonclustered indexes on
another set of disks. You cannot place a clustered index on a separate segment
than its data pages. When you create a clustered index, using the on
segment_name clause, the entire table is moved to the specified segment, and
the clustered index treeis built there.

You can improve performance by placing nonclustered indexes on a separate
segment.

Splitting large tables across devices

Segments can span multiple devices, so they can be used to spread data across
one or more disks. For large, extremely busy tables, this can help balance the
1/O load. For paralel queries, creating segments that include multiple devices
isessential for 1/0O parallelism during partitioned-based scans.

See the System Administration Guide for more information.

Moving text storage to a separate device

98

When atable includes atext, image, or Java off-row datatype, the table itself
stores a pointer to the datavalue. The actual datais stored on a separate linked
list of pages called aL OB (large object) chain.

Writing or reading aLOB valuerequires at |east two disk accesses, oneto read
or write the pointer and one for subsequent reads or writes for the data. If your
application frequently reads or writes these values, you can improve
performance by placing the LOB chain on a separate physical device. Isolate
LOB chains on disks that are not busy with other application-related table or
index access.

When you create atable with LOB columns, Adaptive Server createsarow in
sysindexes for the object that stores the LOB data. The value in the name
column isthe table name prefixed with a“t”; theindid isalways 255. Note that
if you have multiple LOB columnsin asingletable, thereis only one object
used to store the data. By default, this object is placed on the same segment as
the table.

You can usesp_placeobject to moveall future alocationsfor the LOB columns
to a separate segment.

Adaptive Server Enterprise



CHAPTER 6 Controlling Physical Data Placement

See the System Administraton Guide for more information.

Partitioning tables for performance

Partitioning atable can improve performance for several types of processes.
The reasons for partitioning atable are:

e Partitioning allows parallel query processing to access each partition of the
table. Each worker processin a partitioned-based scan reads a separate
partition.

e Partitioning makesit possible to load atablein parallel with bulk copy.
For more information on parallel bep, see the Utility Programs manual.

e Partitioning makes it possible to distribute atable's 1/0O over multiple
database devices.

e Partitioning provides multiple insertion points for a heap table.

The tables you choose to partition depend on the performance issues you
encounter and the performance goals for the queries on the tables.

The following sections explain the commands needed to partition tables and to
maintain partitioned tables, and outline the steps for different situations.

See “Guidelines for parallel query configuration” on page 164 in the
Performance and Tuning: Optimizer book for moreinformation and examples
of partitioning to meet specific performance goals.

User transparency

Adaptive Server’'smanagement of partitioned tablesistransparent to usersand
applications. Partitioned tables do not appear different from nonpartitioned
tables when queried or viewed with most utilities. Exceptions are:

e If queries do not include order by or other commands that require a sort,
datareturned by aparallel query may not inthe same order asdatareturned
by seria queries.

¢ Thedbcc checktable and dbce checkdb commands list the number of data
pages in each partition.

See the System Administration Guide for information about dbcc.

Performance and Tuning: Basics 99



Partitioning tables for performance

e sp_helpartition lists information about a tabl€e’s partitions.

»  showplan output displays messages indicating the number of worker
processes uses for queries that are executed in parallel, and the statistics io
“Scan count” shows the number of scans performed by worker processes.

e Pardléel bulk copy allows you to copy to aparticular partition of aheap
table.

Partitioned tables and parallel query processing

Parallel query processing on partitioned tables can potentially produce
dramatic improvementsin query performance. Partitions increase
simultaneous access by worker processes. When enough worker processes are
available, and the value for the max parallel degree configuration parameter is
set equal to or greater than the number of partitions, one worker process scans
each of the table’s partitions.

When the partitions are distributed across physical disks, the reduced 1/0
contention further speeds parallel query processing and achieves a high level
of parallelism.

The optimizer can choose to use parallel query processing for a query against
a partitioned table when parallel query processing is enabled. The optimizer
considersaparallel partition scan for aquery when the base table for the query
is partitioned, and it considers a parallel index scan for a useful index.

See Chapter 8, “Paralel Query Optimization,” in the Performance and
Tuning: Optimizer book for more information on how parallel queries are
optimized.

Distributing data across partitions

100

Creating a clustered index on a partitioned table redistributes the table's data
evenly over the partitions. Adaptive Server determinestheindex key rangesfor
each partition so that it can distribute the rows equally in the partition. Each
partition is assigned at least one exclusive device if the number of devicesin
the segment is equal to or greater than the number of partitions.

If you createthe clustered index on an empty partitioned table, Adaptive Server
printsawarning advising you to re-create the clustered index after loading data
into thetable, as all the datawill be inserted into thefirst partition until you re-
create the clustered index.

Adaptive Server Enterprise



CHAPTER 6 Controlling Physical Data Placement

If you partition atable that already has a clustered index, all pagesin thetable
are assigned to the first partition. The alter table...partition command succeeds
and prints awarning. You must drop and recreate the index to redistribute the
data.

Improving insert performance with partitions

All insert commands on an allpages-locked heap table attempt to insert the
rows on the last page of the table. If multiple usersinsert data simultaneously,
each new insert transaction must wait for the previous transaction to complete
in order to proceed.

Partitioning an allpages-locked heap table improves the performance of
concurrent inserts by reducing contention for the last page of a page chain.

For data-only-locked tables, Adaptive Server stores one or more hints that
point to apage wherean insert wasrecently performed. Blocking during inserts
on data-only-locked tables occurs only with high rates of inserts.

Partitioning data-only-locked heap tables increases the number of hints, and
can help if inserts are blocking.

How partitions address page contention

When atransaction inserts data into a partitioned heap table, Adaptive Server
randomly assigns the transaction to one of the table’s partitions. Concurrent
inserts are less likely to block, since multiple last pages are available for
inserts.

Selecting heap tables to partition

Allpages-locked heap tables that have large amounts of concurrent insert
activity will benefit from partitioning. Insert rates must be very high before
significant blocking takes place on data-only-locked tables. If you are not sure
whether the tables in your database system might benefit from partitioning:

e Usesp_sysmon to look for last page locks on heap tables.

See “Lock management” on page 73 in the Performance and Tuning:
Monitoring and Analyzing for Performance book.

e Usesp_object_stats to report on lock contention.

Performance and Tuning: Basics 101



Partitioning tables for performance

See"ldentifying tableswhere concurrency isaproblem” on page88inthe
Performance and Tuning: Locking book.

Restrictions on partitioned tables

You cannot partition Adaptive Server system tables or tables that are already
partitioned. Once you have partitioned a table, you cannot use any of the
following Transact-SQL commands on the table until you unpartition it:

* sp_placeobject
* truncate table
e alter table table_name partition n

See “dlter table...unpartition Syntax” on page 107 for more information.

Partition-related configuration parameters

If you require alarge number of partitions, you may want to change the default
values for the partition groups and partition spinlock ratio configuration
parameters.

See the System Administration Guide for more information.

How Adaptive Server distributes partitions on devices

When you issue an alter table...partition command, Adaptive Server creates the
specified number of partitionsin the table and distributes those partitions over
the database devices in the table's segment. Adaptive Server assigns partitions
to devices so that they are distributed evenly across the devicesin the segment.

Table 6-1 illustrates how Adaptive Server assigns 5 partitions to 3, 5, and 12
devices, respectively.

102 Adaptive Server Enterprise



CHAPTER 6 Controlling Physical Data Placement

Table 6-1: Assigning partitions to segments

Partition ID Device (D) Assignments for Segment With

3 Devices 5 Devices 12 Devices
Partition 1 D1 D1 D1, D6, D11
Partition 2 D2 D2 D2,D7,D12
Partition 3 D3 D3 D3, D8, D11
Partition 4 D1 D4 D4, D9, D12
Partition 5 D2 D5 D5, D10, D11

Matching the number of partitions to the number of devicesin the segment
provides the best 1/0 performance for parallel queries.

You can partition tables that use the text, image, or Java off-row data types.
However, the columnsthemselves are not partitioned—they remain on asingle
page chain.

RAID devices and partitioned tables

Table 6-1 and other statements in this chapter describe the Adaptive Server
logical devicesthat map to asingle physical device.

A striped RAID device may contain multiple physical disks, but it appearsto
Adaptive Server asasinglelogical device. For astriped RAID device, you can
use multiple partitions on the single logical device and achieve good parallel
query performance.

To determine the optimum number of partitions for your application mix, start
with one partition for each device in the stripe set. Use your operating system
utilities (vmstat, sar, and iostat on UNIX; Performance Monitor on Windows

NT) to check utilization and latency.

To check maximum device throughput, use select count(*), using the (index
table_name) clause to force atable scan if a nonclustered index exists. This
command requires minimal CPU effort and creates very little contention for
other resources.

Space planning for partitioned tables

When planning for partitioned tables, the two major issues are:

Performance and Tuning: Basics 103



Space planning for partitioned tables

Read-only tables

104

e Maintaining load balance across the disk for partition-based scan
performance and for 1/O parallelism

e Maintaining clustered indexes requires approximately 120% of the space
occupied by the table to drop and re-create the index or to run reorg rebuild

How you make these decisions depends on:
e Theavailability of disk resources for storing tables
e The nature of your application mix

You need to estimate how often your partitioned tables need maintenance:
some applications need frequent index re-creation to maintain balance, while
others need little maintenance.

For those applications that need frequent |oad balancing for performance,
having space to re-create a clustered index or run reorg rebuild provides the
speediest and easiest method. However, since creating clustered indexes
requires copying the data pages, the space available on the segment must be
equal to approximately 120% of the space occupied by the table.

See* Determining the space available for maintenance activities’ on page 356
for more information.

The following descriptions of read-only, read-mostly, and random data
modification provide a general picture of the issues involved in object
placement and in maintaining partitioned tables.

See“ Stepsfor partitioning tables” on page 117 for moreinformation about the
specific tasks required during maintenance.

Tables that are read only, or that are rarely changed, can completely fill the
space available on a segment, and do not require maintenance. If atable does
not require a clustered index, you can use parallel bulk copy to completely fill
the space on the segment.

If aclustered index is needed, the table's data pages can occupy up to 80% of
the space in the segment. The clustered index tree requires about 20% of the
space used by thetable.

This size varies, depending on the length of the key. Loading the data into the
tableinitially and creating the clustered index requires several steps, but once
you have performed these steps, maintenance is minimal.

Adaptive Server Enterprise



CHAPTER 6 Controlling Physical Data Placement

Read-mostly tables

The guidelinesabovefor read-only tablesalso apply to read-mostly tableswith
very few inserts. The only exceptions are as follows:

If there are inserts to the table, and the clustered index key does not
balance new space allocations evenly across the partitions, the disks
underlying some partitions may become full, and new extent allocations
will be made to a different physical disk. This processis called extent
stealing.

In huge tables spread across many disks, asmall percentage of allocations
to other devicesis not a problem. Extent stealing can be detected by using
sp_helpsegment to check for devices that have no space available and by
using sp_helpartition to check for partitions that have disproportionate
numbers of pages.

If the imbalance in partition size leads to degradation in parallel query
response times or optimization, you may want to balance the distribution
by using one of the methods described in “ Steps for partitioning tables”
on page 117.

If the table is a heap, the random nature of heap table inserts should keep
partitions balanced.

Take care with large bulk copy in operations. You can use parallel bulk
copy to send rows to the partition with the smallest number of pagesto
balance the data across the partitions. See “ Using bcp to correct partition
balance” on page 112.

Tables with random data modification

Tables with clustered indexes that experience many inserts, updates, and
deletes over time tend to lead to data pages that are approximately 70 to 75%
full. This can lead to performance degradation in several ways:

More pages must be read to access a given number of rows, requiring
additional 1/O and wasting data cache space.

On tables that use allpages locking, the performance of large I/O and
asynchronous prefetch suffers because the page chain crosses extents and
allocation units.

Buffers brought in by large I/O may be flushed from cache before all of
the pages are read. The asynchronous prefetch look-ahead set sizeis
reduced by cross-allocation unit hops while following the page chain.

Performance and Tuning: Basics 105



Commands for partitioning tables

Once the fragmentation starts to take its toll on application performance, you
need to perform maintenance. If that requires dropping and re-creating the
clustered index, you need 120% of the space occupied by the table.

| F spaceis unavailable, maintenance becomes more complex and takes longer.
The best, and often cheapest, solutionisto add enough disk capacity to provide
room for the index creation.

Commands for partitioning tables

Creating and maintaining partitioned tables involves using amix of the
following types of commands:

*  Commandsto partition and unpartition the table

»  Commands to drop and re-create clustered indexes to maintain data
distribution on the partitions and/or on the underlying physical devices

*  Paralel bulk copy commands to load data into specific partitions

»  Commandsto display information about datadistribution on partitionsand
devices

e Commands to update partition statistics

This section presents the syntax and examples for the commands you use to
create and maintain partitioned tables.

For different scenariosthat require different combinations of these commands,
see “ Steps for partitioning tables’ on page 117.

Use the alter table command to partition and unpartition a table.

alter table...partition syntax
The syntax for using the partition clause to alter table is:
alter table table_name partition n

wheretable_nameisthe name of thetable and nisthe number of partitionsyou
are creating.

106 Adaptive Server Enterprise



CHAPTER 6 Controlling Physical Data Placement

Any datathat isin the table before you invoke alter table remainsin the first
partition. Partitioning a table does not move the table's data— it will still
occupy the same space on the physical devices.

If you are creating partitioned tables for parallel queries, you may need to
redistribute the data, either by creating aclustered index or by copying the data
out, truncating the table, and then copying the data back in.

You cannot include the alter table...partition command in a user-defined
transaction.

The following command creates 10 partitions for a table named historytab:

alter table historytab partition 10

alter table...unpartition Syntax

Unpartitioning atable concatenates the table’s multiple partitionsinto asingle
partition. Unpartitioning a table does not change the location of the data.

The syntax for using the unpartition clause to alter table is:
alter table table_name unpartition
For example, to unpartition atable named historytab, enter:

alter table historytab unpartition

Changing the number of partitions

To change the number of partitionsin atable, first unpartition the table using
alter table...unpartition.

Then use alter table...partition, specifying the new number of partitions. This
does not move the existing datain the table.

You cannot use the partition clause with atable that is already partitioned.

For example, if atable named historytab contains 10 partitions, and you want
the table to have 20 partitions, enter these commands:

alter table historytab unpartition
alter table historytab partition 20

Performance and Tuning: Basics 107



Commands for partitioning tables

Distributing data evenly across partitions

Good parallel performance depends on afairly even distribution of dataon a
table's partitions. The two major methods to achieve this distribution are:

e Creating aclustered index on a partitioned table. The data should already
be in the table.

e Using parallel bulk copy, specifying the partitions where the datais to be
loaded.

sp_helpartition tablename reports the number of pages on each partitionin a
table.

Commands to create and drop clustered indexes

108

You can create a clustered index using the create clustered index command or
by creating a primary or foreign key constraint with alter table...add constraint.
The steps to drop and re-create it are slightly different, depending on which
method you used to create the existing clustered index.

Creating a clustered index on a partitioned table requires a parallel sort. Set
configuration parameters and set options as shown before you issue the
command to create the index:

e Set number of worker processes and max parallel degree to at least the
number of partitionsin the table, plus 1.

»  Execute sp_dboption "select into/bulkcopy/plisort”, true, and run checkpoint
in the database.

For more information on configuring Adaptive Server to allow parallel
execution, see “ Controlling the degree of parallelism” on page 154 in the
Performance and Tuning: Optimizer book.

See Chapter 9, “Parallel Sorting,” in the Performance and Tuning: Optimizer
book for additional information on parallel sorting.

If your queries do not use the clustered index, you can drop the index without
affecting the distribution of data. Evenif you do not plan to retain the clustered
index, be sure to create it on akey that has a very high number of data values.
For example, acolumn such as*“sex”, which has only the values“M” and “F”,
will not provide agood distribution of pages across partitions.

Creating anindex using parallel sort isaminimally logged operation and isnot
recoverable. You should dump the database when the command completes.

Adaptive Server Enterprise



CHAPTER 6 Controlling Physical Data Placement

Using reorg rebuild on data-only-locked tables

The reorg rebuild command copies datarowsin data-only-locked tablesto new
data pages. If thereisa clustered index, rows are copied in clustered key order.

Running reorg rebuild redistributes data evenly on partitions. The clustered
index and any nonclustered indexes are rebuilt. To run reorg rebuild on the
table, provide only the table name:

reorg rebuild titles

Using drop index and create clustered index
If the index on the table was created with create index:
1 Drop theindex:
drop i ndex huge_tab. cix
2 Createthe clustered index, specifying the segment:

create clustered index cix
on huge_t ab(key_col)
on bi g _denp_seg

Using constraints and alter table

If theindex on the table was created using aconstraint, follow these stepsto re-
create a clustered index:

1 Drop the constraint:
alter table huge_tab drop constraint primkey
2 Re-create the constraint, thereby re-creating the index:

alter table huge_tab add constraint primkey
primary key clustered (key_col)
on bi g_deno_seg

Special concerns for partitioned tables and clustered indexes

Creating a clustered index on a partitioned tableis the only way to redistribute
data on partitionswithout rel oading the databy copying it out and back into the
table.

When you are working with partitioned tables and clustered indexes, there are
two special concerns:

Performance and Tuning: Basics 109



Commands for partitioning tables

Remember that the datain a clustered index “follows” the index, and that
if you do not specify a segment in create index or alter table, the default
segment is used as the target segment.

You can use the with sorted_data clause to avoid sorting and copying data
while you are creating a clustered index. This savestime when the datais
already in clustered key order. However, when you need to create a
clustered index to load balance the data on partitions, do not use the
sorted_data clause.

See “Creating an index on sorted data” on page 345 for options.

Using parallel bcp to copy data into partitions

Loading datainto a partitioned table using parallel bep lets you direct the data
to a particular partition in the table.

Before you run parallel bulk copy, the table should be located on the
segment, and it should be partitioned.

You should drop all indexes, so that you do not experience failures due to
index deadlocks.

Use alter table...disable trigger so that fast, minimally-logged bulk copy is
used, instead of slow bulk copy, which is completely logged.

You may also want to set the database option trunc log on chkpt to keep the
log from filling up during large loads.

You can use operating system commandsto split thefileinto separatefiles,
and then copy each file, or use the -F (first row) and -L (last row)
command-line flags for bep.

Whichever method you choose, be sure that the number of rows sent to each
partition is approximately the same.

Here is an example using separate files:

bcp nydb..huge_tab:1 in bigfilel
bcp nydb. . huge_tab:2 in bigfile2

bcp nydb. . huge_tab: 10 in bigfilel0

This example uses the first row and last row command-line arguments on a
singlefile:

110

bcp nydb. . huge_tab:1 in bigfile -F1 -L100000
bcp nydb..huge_tab:2 in bigfile -F100001 -L200000

Adaptive Server Enterprise



CHAPTER 6 Controlling Physical Data Placement

bcp nmydb. . huge_tab:10 in bigfile -F900001 -L1000000

If you have spaceto split thefileinto multiplefiles, copying from separatefiles
is much faster than using the first row and last row command-line arguments,
since bep needs to parse each line of theinput file when using -F and -L. This
parsing process can be very slow, aimost negating the benefits from parallel

copying.

Parallel copy and locks

Starting many current parallel bcp sessions may cause Adaptive Server to run
out of locks.

When you copy into atable, bep acquires an exclusive intent lock on the table,
and either page or row locks, depending on the locking scheme. If you are
copyinginvery largetables, and especialy if you are performing simultaneous
copiesinto a partitioned table, this can require avery large number of locks.

To avoid running out of locks:
e Set the number of locks configuration parameter high enough, or

e Usethe-b batchsize bep flag to copy smaller batches. If you do not use the
-b flag, the entire copy operation is treated as a single batch.

For more information on bcp, see the Utility Programs manual .

Getting information about partitions

sp_helpartition printsinformation about table partitions. For partitioned tables,
it shows the number of data pages in the partition and summary information
about data distribution. Issue sp_helpartition, giving the table name. This
example shows data distribution immediately after creating a clustered index:

sp_hel partition sales

partitionid firstpage control page ptn_data_pages

6601 6600 2782
13673 13672 2588
21465 21464 2754
29153 29152 2746
36737 36736 2705
44425 44424 2732
52097 52096 2708

Performance and Tuning: Basics 111



Commands for partitioning tables

8 59865 59864 2755
9 67721 67720 2851

(9 rows affected)
Partitions Average Pages Maxi mum Pages M ni num Pages Rati o ( Max/ Avg)

9 2735 2851 2588 1. 042413

sp_helpartition shows how evenly datais distributed between partitions. The
final column in the last row shows the ratio of the average column size to the
maximum column size. Thisratio is used to determine whether a query can be
run in parallel. If the maximum istwice as large as the average, the optimizer
does not choose a parallel plan.

Uneven distribution of data across partitionsis called partition skew.

If atableisnot partitioned, sp_helpartition prints the message “ Object is not
partitioned.” When used without atable name, sp_helpartition prints the names
of al user tables in the database and the number of partitions for each table.
sp_help calls sp_helpartition when used with atable name.

Using bcp to correct partition balance

If you need to load additional datainto a partitioned table that does not have
clustered indexes, and sp_helpartition shows that some partitions contain many
more pages than others, you can use the bulk copy session to help balance
number of rows on each partition.

The following example shows that the table has only 487 pages on one
partition, and 917 on another:

partitionid firstpage control page ptn_data_pages

1 189825 189824 812
2 204601 204600 487
3 189689 189688 917

(3 rows affected)
Partitions Average Pages Maxi mum Pages M ni num Pages Rati o (Max/ Avg)

3 738 917 487 1. 242547

The number of rows to add to each partition can be computed by:

112 Adaptive Server Enterprise



CHAPTER 6 Controlling Physical Data Placement

e Determining the average number of rowsthat would bein each partition if
they were evenly balanced, that is, the sum of the current rows and the
rows to be added, divided by the number of partitions

e Estimating the current number of rows on each partition, and subtracting
that from the target average

The formula can be summarized as;

Rows to add = (total _old rows + total _new rows)/# of partitions
- rows_in_this partition

This sample procedure uses values stored in systabstats and syspartitions to
perform the calculations:

create procedure hel p_skew @bj ect _nanme varchar (30), @ew ows int
as
declare @ows int, @ages int, @ owsperpage int,
@um parts int

select @ows = rowcnt, @ages = pagecnt

from systabstats

where id = object_id(@bject _nanme) and indid in (0,1)
sel ect @owsperpage = fl oor (@ ows/ @ages)
sel ect @umparts = count(*) from syspartitions

where id = object_id(@bject_nane)

select partitionid, (@ows + @ew ows)/ @um parts -
ptn_data pgs(id, partitionid)*@owsperpage as rows_to_add
fromsyspartitions
where id = object_id (@bject_nane)

Use this procedure to determine how many rows to add to each partition in the
customer table, such as when 18,000 rows need to be copied in. Theresultsare
shown below the syntax.

hel p_skew custoner, 18000
partitionid rows_to_add------------------

1 5255
2 9155
3 3995

Note If the partition skew islarge, and the number of rowsto be added is
small, this procedure returns negative numbers for those rows that contain
more than the average number of final rows.

Query results are more accurate if you run update statistics and update partition
statistics so that table and partition statistics are current.

Performance and Tuning: Basics 113



Commands for partitioning tables

With the results from help_skew, you can then split the file containing the data
to be loaded into separate files of that length, or use the -F (first) and -L (last)
flagsto bcp.

See “Using bep to correct partition balance” on page 112.

Checking data distribution on devices with sp_helpsegment

At times, the number of data pagesin a partition can be balanced, while the
number of data pages on the devicesin a segment becomes unbalanced.

You can check the free space on devices with sp_helpsegment. This portion of
the sp_helpsegment report for the same table shown in the sp_helpartition
example above shows that the distribution of pages on the devices remains
balanced:

devi ce si ze free_pages
pubt une_detai | 01 15. OMB 4480
pubt une_det ai | 02 15. OMB 4872
pubt une_det ai | 03 15. OMB 4760
pubt une_det ai | 04 15. OMB 4864
pubt une_det ai | 05 15. OMB 4696
pubt une_det ai | 06 15. OMB 4752
pubt une_det ai | 07 15. OMB 4752
pubt une_det ai | 08 15. OMB 4816
pubt une_det ai | 09 15. OMB 4928

Effects of imbalance of data on segments and partitions

114

An imbalance of pages in partitions usually occurs when partitions have run
out of space on the device, and extents have been all ocated on another physical
device. Thisis called extent stealing.

Extent stealing can take place when datais being inserted into the table with
insert commands or bulk copy and while clustered indexes are being created.

The effects of an imbalance of pagesin table partitionsis:

e The partition statistics used by the optimizer are based on the statistics
displayed by sp_helpartition.

Adaptive Server Enterprise



CHAPTER 6 Controlling Physical Data Placement

Aslong asdatadistributionisbalanced acrossthe partitions, parallel query
optimization will not be affected. The optimizer chooses a partition scan
as long as the number of pages on the largest partition is less than twice
the average number of pages per partition.

e |/O paralelism may be reduced, with additional 1/0Os to some of the
physical devices where extent stealing placed data.

¢ Re-creating aclustered index may not produce the desired rebalancing
across partitions when some partitions are nearly or completely full.

See “Problems when devices for partitioned tables are full” on page 128
for more information.

Determining the number of pages in a partition

You can usethe ptn_data_pgs function or the dbcc checktable and dbcc checkdb
commands to determine the number of data pages in atable's partitions.

See the System Administration Guide for information about dbcc.

The ptn_data_pgs function returns the number of data pages on a partition. Its
syntax is.

ptn_data_pgs(object_id, partition_id)

This example prints the number of pagesin each partition of the sales table;
sel ect partitionid,
ptn_data_pgs(object _id("sales"), partitionid) Pages

fromsyspartitions
where id = object_id("sal es")

For acomplete description of ptn_data_pgs, see the Adaptive Server Reference
Manual.

The value returned by ptn_data_pgs may be inaccurate. If you suspect that the
valueisincorrect, run update partition statistics, dbcc checktable, dbcc checkdb,
or dbcce checkalloc first, and then use ptn_data_pgs.

Updating partition statistics

Adaptive Server keeps statistics about the distribution of pages within a
partitioned table and uses these statistics when considering whether to use a
paralléd scanin query processing. When you partition atable, Adaptive Server
stores information about the data pages in each partition in the control page.

Performance and Tuning: Basics 115



Commands for partitioning tables

The statistics for a partitioned table may become inaccurate if any of the
following occurs:

e Thetableisunpartitioned and then immediately repartitioned.
e A large number of rows are deleted.

e A large number of rows are updated, and the updates are not in-place
updates.

e A large number of rows are bulk copied into some of the partitions using
parallel bulk copy.

e Insertsare frequently rolled back.

If you suspect that query plans may be less than optimal due to incorrect
statistics, run the update partition statistics command to update the information
in the control page.

The update partition statistics command updates information about the number
of pagesin each partition for a partitioned table.

The update all statistics command al so updates partition statistics.

Re-creating the clustered index or running reorg rebuild automatically
redistributes the data within partitions and updates the partition statistics. dbcc
checktable, dbcc checkdb, and dbce checkalloc also update partition statistics as
they perform checks.

Syntax for update partition statistics

116

Its syntax is:

update partition statistics table_name
[partition_number]

Use sp_helpartition to see the partition numbers for atable.

For acomplete description of update partition statistics, see the Adaptive Server
Reference Manual.

Adaptive Server Enterprise



CHAPTER 6 Controlling Physical Data Placement

Steps for partitioning tables

You should plan the number of devices for the table’'s segment to balance I/0
performance. For best performance, use dedicated physical disks, rather than

portionsof disks, asdatabase devices, and make sure that no other objectsshare
the devices with the partitioned table.

See the System Administration Guide for guidelines for creating segments.

The stepsto follow for partitioning a table depends on where the table iswhen
you start. This section provides examples for the following situations:

¢ Thetable has not been created and popul ated yet.

e Thetableexists, but it is not on the database segment where you want the
table to reside.

e Thetable exists on the segment where you want it to reside, and you want
to redistribute the data to improve performance, or you want to add
devices to the segment.

Note The following sections provide procedures for a number of
situations, including those in which severe space limitations in the
database make partitioning and creating clustered indexes very difficult.
These complex procedures are needed only in specia cases. If you have
ample room on your database devices, the process of partitioning and
maintaining partitioned table performance requires only afew simple

steps.

Backing up the database after partitioning tables

Using fast bulk copy and creating indexes in parallel both make minimally
logged changes to the database, and require afull database dump.

If you change the segment mapping while you are working with partitioned
tables, you should also dump the master database, since segment mapping
information is stored in sysusages.

Table does not exist
To create a new partitioned table and load the data with bcp:

Performance and Tuning: Basics 117



Steps for partitioning tables

118

Create the table on the segment, using the on segment_name clause. For
information on creating segments, see “ Creating objects on segments” on

page 96.

Partition the table, with one partition for each physical deviceinthe
segment.

See “alter table...partition syntax” on page 106.

Note If theinput datafileisnot in clustered key order, and the table will
occupy more than 40% of the space on the segment, and you need a
clustered index.

See “ Special procedures for difficult situations’ on page 124.

Copy the datainto the table using parallel bulk copy.

See “Using parallel bep to copy datainto partitions’ on page 110 for
examples using bep.

If you do not need a clustered index, use sp_helpartition to verify that the
datais distributed evenly on the partitions.

See “ Getting information about partitions” on page 111.

If you need a clustered index, the next step depends on whether the datais
already in sorted order and whether the datais well balanced on your
partitions.

If theinput datafileisinindex key order and the distribution of dataacross
the partitions is satisfactory, you can use the sorted_data option and the
segment name when you create the index. This combination of options
runsin serial, checking the order of the keys, and simultaneously building
the index tree. It does not need to copy the datainto key order, so it does
not perform load balancing. If you do not need referential integrity
constraints, you can use create index.

See“Using drop index and create clustered index” on page 109.

To create a clustered index with referential integrity constraints, use alter
table...add constraint.

See “Using constraints and alter table” on page 1009.

If your datawas not in index key order when it was copied in, verify that
there is enough room to create the clustered index while copying the data.

Adaptive Server Enterprise



CHAPTER 6 Controlling Physical Data Placement

5
6

Use sp_spaceused to see the size of the table and sp_helpsegment to see
the size of the segment. Creating a clustered index requires approximately
120% of the space occupied by the table.

If thereis not enough space, follow the stepsin “If there is not enough
space to re-create the clustered index” on page 121.

Create any nonclustered indexes.

Dump the database.

Table exists elsewhere in the database

If thetable existson the default segment or some other segment in the database,
follow these steps to move the data to the partition and distribute it evenly:

1

If the table is already partitioned, but has a different number of partitions
than the number of devices on the target segment, unpartition the table.

See “dlter table...unpartition Syntax” on page 107.
Partition the table, matching the number of devices on the target segment.
See“dlter table...partition syntax” on page 106.

If aclustered index exists, drop the index. Depending on how your index
was created, use either drop index oOr alter table...drop constraint.

See“Using drop index and create clustered index” on page 109 or alter
table...drop constraint and “ Using constraints and alter table’ on page 109.

Create or re-create the clustered index with the on segment_name clause.
When the segment name is different from the current segment where the
table is stored, creating the clustered index performs a parallel sort and
distributes the data evenly on the partitions as it copies the rows to match
the index order. This step re-creates the nonclustered indexes on the table.

See “Distributing data evenly across partitions’ on page 108.
If you do not need the clustered index, you can drop it.
Dump the database.

Table exists on the segment
If the table exists on the segment, you may need to:

Performance and Tuning: Basics 119



Steps for partitioning tables

Redistributing data

» Redistribute the data by re-creating a clustered index or by using bulk
copy, or

e Increase the number of devicesin the segment.

If you need to redistribute data on partitions, your choice of method depends
on how much space the data occupies on the partition. If the space the table
occupiesis less than 40 to 45% of the space in the segment, you can create a
clustered index to redistribute the data.

If the table occupies more than 40 to 45% of the space on the segment, you
need to bulk copy the data out, truncate the table, and copy the datain again.
The steps you take depend on whether you need a clustered index and whether
the datais already in clustered key order.

Use sp_helpsegment and sp_spaceused to seeif thereisroom to create a
clustered index on the segment.

If there is enough space to create or re-create the clustered index

If there is enough space, see “Distributing data evenly across partitions” on
page 108 for the stepsto follow. If you do not need the clustered index, you can
drop it without affecting the data distribution.

Dump the database after creating the clustered index.

If there is not enough space on the segment, but space exists elsewhere on the server

If there is enough space for a copy of the table, you can copy the table to
another location and then re-create the clustered index to copy the data back to
the target segment.

The steps vary, depending on the location of the temporary storage space:
*  On the default segment of the database or in tempdb
*  On other segmentsin the database

Using the default segment or tempdb

120

1 Useselect into to copy the table to the default segment or to tempdb.
select * into tenp_sales from sales

or

Adaptive Server Enterprise



CHAPTER 6 Controlling Physical Data Placement

select * into tenpdb..tenp_sales from sal es
Drop the original table.
Partition the copy of the table.

Create the clustered index on the segment where you want the table to
reside.

Use sp_rename to change the table's name back to the original name.
Dump the database.

Using space on another segment
If there is space available on another segment;

1

Create a clustered index, specifying the segment where the space exists.
This moves the table to that location.

Drop the index.

Re-create the clustered index, specifying the ssgment where you want the
datato reside.

Dump the database.

If there is not enough space to re-create the clustered index

If thereis not enough space, and you need ato re-create a clustered index on

the tables:

1 Copy out the data using bulk copy.

2 Unpartition thetable.

See“dlter table...unpartition Syntax” on page 107.
Truncate the table with truncate table.

4  Drop the clustered index using drop index Or alter table...drop constraint.
Then, drop nonclustered indexes, to avoid deadlocking during the parallel
bulk copy sessions.

See “Distributing data evenly across partitions’ on page 108.

5 Repartition thetable.

See“dlter table...partition syntax” on page 106.

Performance and Tuning: Basics 121



Steps for partitioning tables

8
9

Copy the datainto the table using parallel bulk copy. You must take care
to copy the data to each segment in index key order, and specify the
number of rows for each partition to get good distribution.

See “Using parallel bcp to copy data into partitions” on page 110.

Re-create the index using the with sorted_data and on segment_name
clauses. This command performs a serial scan of the table and builds the
index tree, but does not copy the data.

Do not specify any of the clauses that require data copying (fillfactor,
ignore_dup_row, and max_rows_per_page).

Re-create any nonclustered indexes.
Dump the database.

If there is not enough space, and no clustered index is required
If there is no clustered index, and you do not need to create one:

1
2

Copy the data out using bulk copy.

Unpartition the table.

See “dlter table...unpartition Syntax” on page 107.
Truncate the table with truncate table.

Drop nonclustered indexes, to avoid deadlocking during the parallel bulk
copy in sessions.

Repartition the table.

See “dlter table...partition syntax” on page 106.

Copy the dataiin using parallel bulk copy.

See “Using parallel bcp to copy data into partitions’” on page 110.
Re-create any nonclustered indexes.

Dump the database.

If there is no clustered index, not enough space, and a clustered index is needed

To change index keys on the clustered index of a partitioned table, or if you
want to create an index on atable that has been stored as a heap, performing an
operating system level sort can speed the process.

122

Adaptive Server Enterprise



CHAPTER 6 Controlling Physical Data Placement

Creating a clustered index requires 120% of the space used by the table to
create a copy of the data and build the index tree.

If you have access to a sort utility at the operating system level:

1
2

9

Copy the data out using bulk copy.

Unpartition the table.

See “alter table...unpartition Syntax” on page 107.
Truncate the table with truncate table.

Drop nonclustered indexes, to avoid deadlocking during the parallel bulk
copy in sessions.

Repartition the table.

See “alter table...partition syntax” on page 106.

Perform an operating system sort on thefile.

Copy the datain using parallel bulk copy.

See “Using parallel bcp to copy datainto partitions’ on page 110.

Re-create the index using the sorted_data and on segment_name clauses.
Thiscommand performsaserial scan of thetableand buildstheindex tree,
but does not copy the data.

Do not specify any of the clauses that require data copying (fillfactor,
ignore_dup_row, and max_rows_per_page).

Re-create any nonclustered indexes.

10 Dump the database.

Adding devices to a segment
To add a device to a segment, follow these steps:

1

Use sp_helpsegment to check the amount of free space available on the
devices in the segment with.

If space on any deviceis extremely low, see* Problems when devices for
partitioned tables are full” on page 128.

You may need to copy the data out and back in again to get good data
distribution.

Initialize each device with disk init, and make it available to the database
with alter database.

Performance and Tuning: Basics 123



Special procedures for difficult situations

Use sp_extendsegment segment_name, device_name to extend the
segment to each device. Drop the default and system segment from each
device.

Unpartition the table.
See “alter table...unpartition Syntax” on page 107.

Repartition the table, specifying the new number of devicesin the
segment.

See “alter table...partition syntax” on page 106.

If aclustered index exists, drop and re-createit. Do not use the sorted_data
option.

See “Distributing data evenly across partitions’ on page 108.
Dump the database.

Special procedures for difficult situations

These techniques are more complex than those presented earlier in the chapter.

Clustered indexes on large tables

To create a clustered index on atable that will fill more than 40 to 45% of the
segment, and the input datafileis not in order by clustered index key, these
steps yield good data distribution, as long as the data that you copy in during
step 6 contains a representative sample of the data.

124

1
2

Copy the data out.

Unpartition the table.

See “dlter table...unpartition Syntax” on page 107.
Truncate the table.

Repartition the table.

See “dlter table...partition syntax” on page 106.

Drop the clustered index and any nonclustered indexes. Depending on
how your index was created, use either drop index.

Adaptive Server Enterprise



CHAPTER 6 Controlling Physical Data Placement

See “Using drop index and create clustered index” on page 109) or alter
table...drop constraint and “ Using constraints and alter table’ on page 109.

Use paralldl bulk copy to copy in enough datato fill approximately 40%
of the segment. This must be a representative sample of the valuesin the
key column(s) of the clustered index.

Copying in 40% of the datais much morelikely to yield good results than
smaller amounts of data, you can perform this portion of the bulk copy can
be performed in parallel; you must use nonparallel bep for the second buld
copy operation.

See “Using parallel bcp to copy datainto partitions’ on page 110.

Create the clustered index on the segment, do not use the sorted_data
clause.

Use nonparallel bep, inasingle session, to copy intherest of thedata. The
clustered index directs the rows to the correct partitions.

Use sp_helppartition to check the distribution of data pages on partitions
and sp_helpsegment to check the distribution of pages on the segment.

10 Create any nonclustered indexes.

11 Dump the database.

Onedrawback of thismethod isthat once the clustered index exists, the second
bulk copy operation can cause page splitting on the data pages, taking slightly
more room in the database. However, once the clustered index exists, and all
the datais loaded, future maintenance activities can use smpler and faster
methods.

Alternative for clustered indexes
This set of steps may be useful when:

The table data occupies more than 40 to 45% of the segment.

Thetable datais not in clustered key order, and you need to create a
clustered index.

You do not get satisfactory results trying to load a representative sample
of the data, as explained in “Clustered indexes on large tables’ on page
124,

This set of steps successfully distributes the datain almost all cases, but
requires careful attention:

Performance and Tuning: Basics 125



Special procedures for difficult situations

126

1

Find the minimum value for the key column for the clustered index:
select min(order_id) fromorders
If the clustered index exists, drop it. Drop any nonclustered indexes.

See“Using drop index and create clustered index” on page 109 or “Using
constraints and alter table” on page 109.

Execute the command:
set sort _resources on

This command disables create index commands. Subsequent create index
commands print information about how the sort will be performed, but do
not create the index.

I ssue the command to create the clustered index, and record the partition
numbers and values in the output. This example shows the values for a
table on four partitions:

create clustered index order_cix
on orders(order_id)
The Create Index is done using Parallel Sort
Sort buffer size: 1500
Paral |l el degree: 25
Nurmber of output devices: 3
Nurmber of producer threads: 4
Nurmber of consumer threads: 4
The distribution map contains 3 elenent(s) for 4
partitions.
Partition Element: 1

450977
Partition El ement: 2

903269
Partition Elenent: 3

1356032
Nurmber of sanpl ed records: 2449

These values, together with the minimum value from step 1, are the key
values that the sort uses as diameters when assigning rows to each
partition.

5 Bulk copy the data out, using character mode.

6 Unpartition the table.

Adaptive Server Enterprise



CHAPTER 6 Controlling Physical Data Placement

See “alter table...unpartition Syntax” on page 107.
7 Truncatethetable.
8 Repartition the table.

See “alter table...partition syntax” on page 106.

9 Intheresulting output datafile, locate the minimum key value and each of
the key values identified in step 4. Copy these values out to another file,
and del ete them from the output file.

10 Copy into the table, using parallel bulk copy to place them on the correct
segment. For the values shown above, the file might contain:

1 Jones
450977 Snmith
903269 Harris
1356032 W | der

The becp commands look like this:

bcp testdb..orders:1 in keyrows -F1 -L1
bcp testdb..orders:2 in keyrows -F2 -L2
bcp testdb..orders:3 in keyrows -F3 -L3
bcp testdb..orders:4 in keyrows -F4 -L4

At theend of thisoperation, you will have onerow onthefirst page of each
partition — the same row that creating the index would have allocated to
that position.

11 Turnsetsort_resources off, and create the clustered index on the segment,
using the with sorted_data option.

Do not include any clauses that force the index creation to copy the data
rows.

12 Use bulk copy to copy the data into the table.

Use asingle, nonparallel session. You cannot specify a partition for bulk
copy when the table has a clustered index, and running multiple sessions
runs the risk of deadlocking.

The clustered index forces the pages to the correct partition.

13 Usesp_helpartition to check the balance of data pages on the partitionsand
sp_helpsegment to balance of pages on the segments.

14 Create any nonclustered indexes.

Performance and Tuning: Basics 127



Problems when devices for partitioned tables are full

15 Dump the database.

While this method can successfully make use of nearly al of the pagesin a
partition, it has some disadvantages:

e Theentiretable must be copied by asingle, slow bulk copy

e Theclustered index islikely to lead to page splitting on the data pages if
the table uses allpages locking, so more space might be required.

Problems when devices for partitioned tables are full

Simply adding disks and re-creating indexes when partitions are full may not
solve load-balancing problems. If a physical device that underlies a partition
becomes completely full, the data-copy stage of re-creating an index cannot
copy datato that physical device.

If aphysical deviceisamost completely full, re-creating the clustered index
does not always succeed in establishing a good load balance.

Adding disks when devices are full

Theresult of creating a clustered index when a physical deviceis completely
full isthat two partitions are created on one of the other physical devices.
Figure 6-2 and Figure 6-3 show one such situation.

Devices 2 and 3 are completely full, as shown in Figure 6-2.

128 Adaptive Server Enterprise



CHAPTER 6 Controlling Physical Data Placement

Figure 6-2: A table with 3 partitions on 3 devices

devicel device2 device3

- Data
[ | Empty

Adding two devices, repartitioning the tabl e to usefive partitions, and dropping
and re-creating the clustered index produces the following results:

Device 1 One partition, approximately 40% full.

Devices2 and 3 Empty. These devices had no free space when create index
started, so a partition for the copy of theindex could not be
created on the device.

Devices4 and 5 Each device has two partitions, and each is 100% full.

Figure 6-3 shows these results.

Figure 6-3: Devices and partitions after create index

devicel device2 device3 device4 deviceb

[ pata
[ Empty

The only solution, once a device becomes completely full, isto bulk copy the
data out, truncate the table, and copy the data into the table again.

Performance and Tuning: Basics 129



Problems when devices for partitioned tables are full

Adding disks when devices are nearly full

130

If adeviceisnearly full, re-creating a clustered index does not balance data
across devices. Instead, the device that is nearly full stores a small portion of
the partition, and the other space allocations for the partition steals extents on
other devices. Figure 6-4 shows a table with nearly full data devices.

Figure 6-4: Partitions almost completely fill the devices

devicel device? device3

- Data
[ empyy

After adding devices and re-creating the clustered index, the result might be
similar to the results shown in Figure 6-5.

Figure 6-5: Extent stealing and unbalanced data distribution

devicel device2 device3 device4 deviceb

- Data

|:| Empty
Stolen
pages

Once the partitions on device2 and device3 use the small amount of space
available, they start stealing extents from device4 and devices.

In this case, a second index re-creation step might lead to a more balanced
distribution. However, if one of the devicesis nearly filled by extent stealing,
another index creation does not solve the problem.

Using bulk copy to copy the data out and back in again isthe only sure solution
to this form of imbalance.

To avoid situations such as these, monitor space usage on the devices, and add
space early.

Adaptive Server Enterprise



CHAPTER 6 Controlling Physical Data Placement

Maintenance issues and partitioned tables

Partitioned table maintenance activity requirements depend on the frequency
and type of updates performed on thetable.

Partitioned tables that require little maintenance include:

Tablesthat are read-only or that experience very few updates. In the
second case, only periodic checks for balance are required

Tables where inserts are well-distributed across the partitions. Random
insertsto partitioned heap tables and insertsthat are evenly distributed due
to aclustered index key that places rows on different partitions do not
develop skewed distribution of pages.

If data modifications lead to space fragmentation and partially filled data
pages, you may need to re-create the clustered index.

Heap tables where inserts are performed by bulk copy. You can use
parallel bulk copy to direct the new datato specific partitions to maintain
load balancing.

Partitioned tables that require frequent monitoring and maintenance include
tables with clustered indexes that tend to direct new rows to a subset of the
partitions. An ascending key index is likely to require more frequent

mai ntenance.

Regular maintenance checks for partitioned tables

Routine monitoring for partitioned tables should include the following types of
checks, in addition to routine database consistency checks:

Use sp_helpartition to check the balance on partitions.

If some partitions are significantly larger or smaller than the average, re-
create the clustered index to redistribute data.

Use sp_helpsegment to check the balance of space on underlying disks.

If you re-create the clustered index to redistribute data for parallel query
performance, check for devices that are nearing 50% full.

Adding space before devices become too full avoids the complicated
procedures described earlier in this chapter.

Use sp_helpsegment to check the space available as free pages on each
device, or sp_helpdb for free kilobytes.

Performance and Tuning: Basics 131



Maintenance issues and partitioned tables

In addition, run update partition statistics, if partitioned tables undergo the types
of activities described in “Updating partition statistics’ on page 115.

You might need to re-create the clustered index on partitioned tables because:
e Your index key tends to assign inserts to a subset of the partitions.

« Deleteactivity tendsto remove datafrom asubset of the partitions, leading
to I/O imbalance and partition-based scan imbalances.

e Thetable hasmany inserts, updates, and deletes, leading to many partialy
filled datapages. This condition leadsto wasted space, both ondisk andin
the cache, and increases 1/O because more pages need to read for many
queries.

132 Adaptive Server Enterprise



CHAPTER 7

Basic design

Database Design

This covers some basic information on database design that database
administrators and designers would find useful as aresource. It also
covers the Normal Forms for database normalization and
denormalization.

There are some major database design concepts and other tipsin moving
from the logical database design to the physical design for Adaptive
Server.

Topic Page
Basic design 133
Normalization 135
Denormalizing for performance 141

Database design is the process of moving from real-world business
models and requirements to a database model that meets these
requirements.

Normalization in arelational database, is an approach to structuring
information in order to avoid redundancy and inconsistency and to
promote efficient maintenance, storage, and updating. Several “rules’ or
levels of normalization are accepted, each arefinement of the preceding
one.

Of these, three forms are commonly used: first normal, second normal,
and third normal. First normal forms, the least structured, are groups of
records in which each field (column) contains unique and nonrepeating
information. Second and third normal forms break down first normal
forms, separating them into different tables by defining successively finer
interrelationships between fields.

For relational databases such as Adaptive Server, the standard design
createstablesin Third Normal Form.

Performance and Tuning: Basics 133



Basic design

When you translate an Entity-Rel ationship model in Third Normal Form (3NF)
to arelational model:

» Relations become tables.
»  Attributes become columns.

» Relationships become data references (primary and foreign key
references).

Physical database design for Adaptive Server

Based on access requirements and constraints, implement your physical
database design as follows:

»  Denormalize where appropriate

»  Partition tables where appropriate

»  Group tablesinto databases where appropriate
»  Determine use of segments

*  Determine use of devices

* Implement referential integrity of constraints

Logical Page Sizes

Adaptive Server does not use the buildmaster binary to build the master device.
Instead, Sybase hasincorporated the buildmaster functionality in the dataserver
binary.

The dataserver command allows you to create master devices and databases
with logical pagesof size 2K, 4K, 8K, or 16K. Larger logical pagesallow you
to create larger rows, which can improve your performance because Adaptive
Server accesses more data each time it reads a page. For example, a 16K page
can hold 8 times the amount of dataasa 2K page, an 8K page holds 4 times as
much data as a 2K page, and so on, for all the sizesfor logical pages.

You have to exercise caution when setting the page sizes.

There are hazardsin using larger devices on a 2Gb-limit platform. If you
attempt to configure alogical device larger than 2Gb where Adaptive Server
does not support large devices, you may experience the following problems:

134 Adaptive Server Enterprise



CHAPTER 7 Database Design

«  Data corruption on databases (some rel eases give no error message).

e Inability to dump or load data from the database

Number of columns and column size

The maximum number of columnsyou can createin atableis:

e 1024 for fixed-length columns in both all-pages-locked (APL) and data-
only-locked (DOL) tables

e 254 for variable-length columnsin an APL table

e 1024 for variable-length columnsin an DOL table

The maximum size of a column depends on:

e Whether the table includes any variable- or fixed-length columns.

« Thelogica page size of the database. For example, in a database with 2K
logical pages, the maximum size of a column in an APL table can be as
large as a single row, about 1962 bytes, less the row format overheads.
Similarly, for a4K page, the maximum size of acolumninaAPL tablecan
be as large as 4010 bytes, less the row format overheads.

Table 7-1: Limits for number of logins, users, and groups

Version 12.0
Item limit Version 12.5 limit New range
Number of logins per 64K 2 billion plus 32K -32768 to 2 billion
server (SUID)
Number of users per 48K 2 hillion less 1032193 -32768 t016383;
database 1048577 to 2 Billion
Number of groups per 16K 1032193 16384 to 1048576
database

Normalization

When atable is normalized, the non-key columns depend on the key used.

From arelational model point of view, it is standard to have tables that arein
Third Normal Form. Normalized physical design providesthe greatest ease of
maintenance, and databases in this form are clearly understood by developers.

Performance and Tuning: Basics

135



Normalization

However, afully normalized design may not always yield the best
performance. Sybase recommendsthat you design databases for Third Normal
Form, however, if performance issues arise, you may have to denormalize to
solve them.

Levels of normalization

Each level of normalization relies on the previous level. For example, to
conform toSecond Normal Form, entities must bein first Normal Form.

You may haveto look closely at the tables within a database to verify if the
databaseisnormalized. You may haveto changethe way the normalization was
done by going through a denormalization on given data before you can apply a
different setup for normalization.

Use the following information to verify whether or not a database was
normalized, and then use it to set up the Normal Forms you may want to use.

Benefits of normalization

136

Normalization produces smaller tables with smaller rows:
e Morerows per page (lesslogical 1/0)

e Morerows per |/O (more efficient)

e Morerowsfit in cache (less physical 1/0)

The benefits of normalization include:

e Searching, sorting, and creating indexes is faster, since tables are
narrower, and more rows fit on a data page.

e You usualy have more tables.

You can have more clustered indexes (one per table), so you get more
flexibility in tuning queries.

e Index searching is often faster, since indexes tend to be narrower and
shorter.

e Moretablesallow better use of segmentsto control physical placement of
data.

e Youusualy have fewer indexes per table, so data modification commands
are faster.

Adaptive Server Enterprise



CHAPTER 7 Database Design

e Fewer null values and less redundant data, making your database more

compact.

e Triggers execute more quickly if you are not maintaining redundant data.

+ Datamodification anomalies are reduced.

* Normalization is conceptually cleaner and easier to maintain and change
as your needs change.

While fully normalized databases require more joins, joins are generally very
fast if indexes are available on the join columns.

Adaptive Server is optimized to keep higher levels of the index in cache, so
each join performs only one or two physical 1/0Os for each matching row.

The cost of finding rows already in the data cache is extremely low.

First Normal Form

Therulesfor First Normal Form are:

e Every column must be atomic. It cannot be decomposed into two or more

subcolumns.

e You cannot have multivalued columns or repeating groups.

e Eachrow and column position can have only one value.

Thetablein Figure 7-1 violates First Normal Form, since the dept_no column
contains a repeating group:

Figure 7-1: A table that violates first Normal Form

Employee (emp_num, emp_Iname, dept__no)

Repeating

Employee

emp_num emp_Iname dept{/g
10052 Jones A10 C66
10101 Sims D60

Normalization creates two tables and moves dept_no to the second table;

Performance and Tuning: Basics

137



Normalization

Figure 7-2: Correcting First Normal Form violations by creating two

tables

Employee (emp_num, emp_Iname)

Emp_dept (emp_num, dept_no)

Employee Emp_dept
emp_num emp_Iname emp_num dept_no
10052 Jones 10052 A10
10101 Sims 10052 C66
10101 D60

Second Normal Form

For atable to be in Second Normal Form, every non-key field must depend on
the entire primary key, not on part of acomposite primary key. If adatabase has
only single-field primary keys, it is automatically in Second Normal Form.

In Figure 7-3, the primary key is a composite key on emp_num and dept_no.
But the value of dept_name depends only on dept_no, not on the entire primary
key.

Figure 7-3: A table that violates Second Normal Form

Emp_dept (emp_num, dept_no, dept_name)

Depends on

Emp_ dept part of primary

emp_num dept_no dept_ne\(e

10052 Al10 accounting

10074 Al10 accounting

10074 D60 development
Ne——~—

Primary key

To normalize this table, move dept_name to a second table, as shownin
Figure 7-4.

138 Adaptive Server Enterprise



CHAPTER 7 Database Design

Figure 7-4: Correcting Second Normal Form violations by creating two
tables

Emp_dept (emp_num, dept_no) Dept (dept_no, dept_name)

Emp_dept Dept
emp_num dept_no dept_no dept_name
10052 A10 Al0 accounting
10074 A10 D60 development
\10074/-\,— D60 / Primary
Primary

Third Normal Form

For atableto bein Third Normal Form, a non-key field cannot depend on
another non-key field.

Thetable in Figure 7-5 violates Third Normal Form because the mgr_Iname
field depends on the mgr_emp_num field, which is not akey field.

Performance and Tuning: Basics 139



Normalization

Figure 7-5: A table that violates Third Normal Form
Dept (dept_no, dept_name, mgr_emp_num, mgr_Iname)

Dept
dept_no dept_name mgr_emp_num mgr_Iname
A10 accounting 10073 Johnson
D60 development | 10089 White
marketing 10035 Dumont
S S A
Depends on
Depend on non-key
primary key

The solution is to split the Dept table into two tables, as shown in Figure 7-6.
In this case, the Employees table, already storesthisinformation, so removing
the mgr_Iname field from Dept brings the table into Third Normal Form.

140 Adaptive Server Enterprise



CHAPTER 7 Database Design

Figure 7-6: Correcting Third Normal Form violations by creating two

tables

Dept (dept_no, dept_name, mgr_emp_num)

Dept
dept_no dept_name mgr_emp_num
Al10 accounting 10073
D60 development | 10089
M80 marketing 10035
\-,/V\-/ Employee (emp_num, emp_Iname)
Primary
Employee
emp_num emp_lname
10073 Johnson
10089 White
10035 Dumont
N~/
Primary

Denormalizing for performance

Once you have normalized your database, you can run benchmark tests to
verify performance. You may have to denormalize for specific queries and/or
applications.

Denormalizing:

*  Can be done with tables or columns

e Assumes prior normalization

* Requires athorough knowledge of how the datais being used
You may want to denormalize if:

e All or nearly al of the most frequent queries require accessto the full set
of joined data.

Performance and Tuning: Basics 141



Denormalizing for performance

Risks

142

e A magority of applications perform table scans when joining tables.

e Computational complexity of derived columns requires temporary tables
or excessively complex queries.

To denormalize you should have a thorough knowledge of the application.
Additionally, you should denormalize only if performance issuesindicate that
it is needed.

For example, the ytd_sales column in the titles table of the pubs2 database isa
denormalized column that is maintained by atrigger on the salesdetail table.
You can obtain the same values using this query:

select title_id, sum(qty)
from sal esdet ai |
group by title_id

Obtaining the summary values and the document title requires ajoin with the
titles table:

select title, sum(qty)
fromtitles t, salesdetail sd
where t.title_id = sd.title_id
group by title

If you run this query frequently, it makes sense to denormalize this table. But
thereisapriceto pay: you must create an insert/update/del ete trigger on the
salesdetail table to maintain the aggregate values in the titles table.

Executing the trigger and performing the changes to titles adds processing cost
to each data modification of the gty column value in salesdetail.

This situation is a good example of the tension between decision support
applications, which frequently need summaries of large amounts of data, and
transaction processing applications, which perform discrete data
modifications.

Denormalization usually favors one form of processing at a cost to others.

Any form of denormalization has the potential for dataintegrity problems that
you must document carefully and address in application design.

Adaptive Server Enterprise



CHAPTER 7 Database Design

Disadvantages

Denormalization has these disadvantages:

It usually speeds retrieval but can slow data modification.

It isalways application-specific and must be reevaluated if the application
changes.

It can increase the size of tables.

In some instances, it simplifies coding; in others, it makes coding more
complex.

Performance advantages
Denormalization can improve performance by:

Minimizing the need for joins
Reducing the number of foreign keys on tables

Reducing the number of indexes, saving storage space, and reducing data
modification time

Precomputing aggregate values, that is, computing them at data
modification time rather than at select time

Reducing the number of tables (in some cases)

Denormalization input

When deciding whether to denormalize, you need to analyze the data access
requirements of the applicationsin your environment and their actual
performance characteristics.

Often, good indexing and other solutions solve many performance problems
rather than denormalizing.

Some of the issues to examine when considering denormalization include:

What are the critical transactions, and what is the expected response time?
How often are the transactions executed?

What tables or columns do the critical transactions use? How many rows
do they access each time?

What isthe mix of transaction types: select, insert, update, and delete?

Performance and Tuning: Basics 143



Denormalizing for performance

Techniques

*  What isthe usual sort order?

e What are the concurrency expectations?

e How big are the most frequently accessed tables?
» Do any processes compute summaries?

e Whereisthe dataphysicaly located?

The most prevalent denormalization techniques are:
*  Adding redundant columns

*  Adding derived columns

* Collapsing tables

In addition, you can duplicate or split tables to improve performance. While
these are not denormalization techniques, they achieve the same purposes and
require the same safeguards.

Adding redundant columns

You can add redundant columns to eliminate frequent joins.

For example, if you are performing frequent joins on the titleauthor and authors
tables to retrieve the author’s last name, you can add the au_Iname column to
titleauthor.

Adding redundant columns eliminates joins for many queries. The problems
with this solution are that it:

e Requires maintenance of new columns. you must make changesto two
tables, and possibly to many rows in one of the tables.

*  Requires more disk space, since au_Iname is duplicated.

Adding derived columns

144

Adding derived columns can eliminate some joins and reduce the time needed
to produce aggregate values. The total_sales column in thetitles table of the
pubs2 database provides one example of a derived column used to reduce
aggregate value processing time.

Adaptive Server Enterprise



CHAPTER 7 Database Design

The example in Figure 7-7 shows both benefits. Frequent joins are needed
between the titleauthor and titles tables to provide the total advance for a
particular book title.

Figure 7-7: Denormalizing by adding derived columns

select title, sum(advance)

from titleauthor ta, titles t

where ta.title_id = t.title_id
group by title_id

titleauthor titles
file_id [advance fitle_id [ fitle

+ join columns *

select title, sum_adv from titles

titles titleauthor
title 1d | title Jum adv title 1d [ advance

You can create and maintain aderived data column in thetitles table,
eliminating both the join and the aggregate at runtime. Thisincreases storage
needs, and requires maintenance of the derived column whenever changes are
made to the titles table.

Collapsing tables

If most users need to see the full set of joined data from two tables, collapsing
the two tables into one can improve performance by eliminating the join.

For example, users frequently need to see the author name, author ID, and the
blurbs copy dataat the sametime. The solution isto collapse thetwo tablesinto
one. The data from the two tables must be in a one-to-one rel ationship to
collapse tables.

Performance and Tuning: Basics 145



Denormalizing for performance

Duplicating tables

Splitting tables

146

Collapsing the tables eliminates thejoin, but loses the conceptual separation of
the data. If some users still need access to just the pairs of data from the two
tables, this access can be restored by using queries that select only the needed
columns or by using views.

If agroup of usersregularly needs only a subset of data, you can duplicate the
critical table subset for that group.

Figure 7-8: Denormalizing by duplicating tables

newauthors
/lau_id [au_Iname | copy |,
/ \
/ \
/
/ \/\/ - \
/ - - ~ ~ \
— ~ \
newauthors blurbs
au_id [au_Iname[copy au_id | copy

The kind of split shown in Figure 7-8 minimizes contention, but requires that
you manage redundancy. There may be issues of latency for the group of users
who see only the copied data.

Sometimes splitting normalized tables can improve performance. You can split
tablesin two ways:

» Horizontally, by placing rows in two separate tables, depending on data
valuesin one or more columns

*  Verticaly, by placing the primary key and some columnsin onetable, and
placing other columns and the primary key in another table

Adaptive Server Enterprise



CHAPTER 7 Database Design

Horizontal splitting

Performance and Tuning: Basics

Keep in mind that splitting tables, either horizontally or vertically, adds
complexity to your applications.

Use horizontal splitting if:

A tableislarge, and reducing its size reduces the number of index pages
read in aquery.

B-tree indexes, however, are generaly very flat, and you can add large
numbers of rowsto atable with small index keys before the
B-tree requires more levels.

An excessive number of index levels may be an issue with tablesthat have
very large keys.

The table split corresponds to a natural separation of the rows, such as
different geographical sites or historical versus current data.

You might choose horizontal splitting if you have atable that stores huge
amounts of rarely used historical data, and your applications have high
performance needs for current datain the same table.

Table splitting distributes data over the physical media, however, thereare
other ways to accomplish this goal.

Generdly, horizontal splitting reguires different table namesin queries,
depending on values in the tables. In most database applications this
complexity usually far outweighs the advantages of table splitting .

Aslong as the index keys are short and indexes are used for queries on the
table, doubling or tripling the number of rows in the table may increase the
number of disk reads required for a query by only oneindex level. If many
queries perform table scans, horizontal splitting may improve performance
enough to be worth the extra maintenance effort.

Figure 7-9 shows how you might split the authors table to separate active and
inactive authors:

147



Denormalizing for performance

Vertical splitting

Figure 7-9: Horizontal partitioning of active and inactive data

Authors

Problem: Usually only active
active records are accessed active
inactive
active
inactive
inactive

Solution: Partition horizontally into active and inactive data

Inactive_Authors Active_Authors

Use vertical splitting if:
e Some columns are accessed more frequently than other columns.

e Thetable has wide rows, and splitting the table reduces the number of
pages that need to be read.

Vertical table splitting makes even more sense when both of the above
conditions aretrue. When atable contains very long columnsthat are accessed
infrequently, placing them in a separate table can greatly speed theretrieval of
the more frequently used columns. With shorter rows, more data rows fit on a
data page, so for many queries, fewer pages can be accessed.

Managing denormalized data

148

Whatever denormalization techniques you use, you need to ensure data
integrity by using:

e Triggers, which can update derived or duplicated data anytime the base
data changes

Adaptive Server Enterprise



CHAPTER 7 Database Design

« Application logic, using transactions in each application that update
denormalized data, to ensure that changes are atomic

e Batchreconciliation, run at appropriate intervals, to bring the
denormalized data back into agreement

From an integrity point of view, triggers provide the best solution, although
they can be costly in terms of performance.

Using triggers

InFigure 7-10, the sum_adv columnin thetitles table stores denormalized data.
A trigger updates the sum_adv column whenever the advance column in
titleauthor changes.

Figure 7-10: Using triggers to maintain normalized data

titleauthor titles
title_id [au_id advance title_1d [sum_adv

~_

Using application logic
If your application has to ensure data integrity, it must ensure that the inserts,
deletes, or updates to both tables occur in a single transaction.

If you use application logic, be very sure that the data integrity requirements
arewell documented and well known to all application devel opers and to those
who must maintain applications.

Note Using application logic to manage denormalized dataisrisky. The same
logic must be used and maintained in all applications that modify the data.

Performance and Tuning: Basics 149



Denormalizing for performance

Batch reconciliation

If 100 percent consistency is not required at all times, you can run a batch job
or stored procedure during off-hours to reconcile duplicate or derived data.

150 Adaptive Server Enterprise



CHAPTER 8 Data Storage

This chapter explains how Adaptive Server stores datarows on pages and
how those pagesare used in select and datamodification statements, when
there are no indexes.

It laysthe foundation for understanding how to improve Adaptive Server’'s
performance by creating indexes, tuning your queries, and addressing
object storage issues.

Topic Page
Performance gains through query optimization 151
Adaptive Server pages 153
Pages that manage space allocation 157
Space overheads 160
Heaps of data: tables without clustered indexes 167
How Adaptive Server performs /O for heap operations 172
Caches and object bindings 174
Asynchronous prefetch and 1/O on heap tables 179
Heaps: pros and cons 180
Maintaining heaps 180
Transaction log: a special heap table 181

Performance gains through query optimization

The Adaptive Server optimizer attempts to find the most efficient access
path to your data for each table in the query, by estimating the cost of the
physical 1/0 needed to access the data, and the number of times each page
needs to be read whilein the data cache.

In most database applications, there are many tables in the database, and
each table has one or more indexes. Depending on whether you have
created indexes, and what kind of indexes you have created, the
optimizer’s access method options include:

Performance and Tuning: Basics 151



Performance gains through query optimization

e A table scan —reading all the table's data pages, sometimes hundreds or
thousands of pages.

e Index access — using the index to find only the data pages needed,
sometimes as few as three or four page readsin all.

» Index covering — using only a non clustered index to return data, without
reading the actual data rows, requiring only afraction of the page reads
required for atable scan.

Having the proper set of indexes on your tables should allow most of your
queries to access the data they need with a minimum number of page reads.

Query processing and page reads

152

Most of aquery’s execution time is spent reading data pages from disk.
Therefore, most of your performance improvement — more than 80%,
according to many performance and tuning experts— comes from reducing the
number of disk reads needed for each query.

When a query performs a table scan, Adaptive Server reads every page in the
table because no useful indexes are available to help it retrieve the data. The
individual query may have poor response time, because disk reads take time.
Queries that incur costly table scans also affect the performance of other
gueries on your Server.

Table scans can increase the time other users have to wait for aresponse, since
they consume system resources such as CPU time, disk /O, and network

capacity.

Table scans use a large number of disk reads (1/0s) for a given query. When
you have become familiar with the access methods, tuning tools, the size and
structure of your tables, and the queriesin your applications, you should be
able to estimate the number of 1/0O operations a given join or select operation
will perform, given the indexesthat are available.

If you know what the indexed columns on your tables are, along with the table
and index sizes, you can often look at a query and predict its behavior. For
different queries on the same table, you might be able to draw these
conclusions:

»  Thispoint query returnsasinglerow or asmall number of rowsthat match
the where clause condition.

The conditioninthewhere clauseisindexed; it should perform twoto four
I/Os on the index and one more to read the correct data page.

Adaptive Server Enterprise



CHAPTER 8 Data Storage

e All columnsin the select list and where clause for this query are included
in anon clustered index. This query will probably perform a scan on the
leaf level of the index, about 600 pages.

Adding an unindexed column to the select list, would force the query to
scan the table, which would require 5000 disk reads.

¢ Nouseful indexesareavailablefor thisquery; it isgoing to do atable scan,
requiring at least 5000 disk reads.

Thischapter describeshow tablesare stored, and how accessto datarowstakes
place when indexes are not being used.

Chapter 12, “How Indexes Work,” describes access methods for indexes.
Other chapters explain how to determine which access method is being used
for aquery, the size of the tables and indexes, and the amount of 1/0 a query
performs. These chapters provide a basis for understanding how the optimizer
models the cost of accessing the data for your queries.

Adaptive Server pages

The basic unit of storage for Adaptive Server isapage. Page sizes can be 2K,
4K, 8K to 16K. The server’s page size is established when you first build the
source. Once the server is built the value cannot be changed. These types of
pages store database objects:

e Data pages— store the datarows for atable.
e Index pages— store the index rows for all levels of anindex.

e Largeobject (LOB) pages—store the datafor text and image columns, and
for Java off-row columns.

Adaptive Server version 12.5 does not use the buildmaster binary to build the
master device. Instead, Sybase has incorporated the buildmaster functionality
in the dataserver binary.

The dataserver command allows you to create master devices and databases
with logical pages of size 2K, 4K, 8K, or 16K. Larger logical pagesallow you
to create larger rows, which can improve your performance because Adaptive
Server accesses more data each time it reads a page. For example, a 16K page
can hold 8 times the amount of dataas a 2K page, an 8K page holds 4 times as
much data as a 2K page, and so on, for al the sizesfor logical pages.

Performance and Tuning: Basics 153



Adaptive Server pages

Adaptive Server may have to handle large volumes of data for a single query,
DML operation, or command. For example, if you use a data-only-locked
(DOL) tablewith achar(2000) column, Adaptive Server must allocate memory
to perform column copying while scanning the table. Increased memory
requests during the life of a query or command means a potential reduction in
throughput.

The size of Adaptive Server‘slogical pages (2K, 4K, 8K, or 16K) determines
the server’s space allocation. Each allocation page, object allocation map
(OAM) page, data page, index page, text page, and so on are built on alogical
page. For example, if the logical page size of Adaptive Server is 8K, each of
these page types are 8K in size. All of these pages consume the entire size
specified by the size of thelogical page. OAM pages have agreater number of
OAM entriesfor larger logical pages (for example, 8K) than for smaller pages
(2K).

Page headers and page sizes

All pages have a header that storesinformation such as the object ID that the
page belongsto and other information used to manage space on the page. Table
8-1 showsthe number of bytes of overhead and usable space on data and index

pages.
Table 8-1: Overhead and user data space on data and index pages
Locking Scheme Overhead Bytes for User Data
Allpages 32 2016
Data-only 46 2002

Therest of the page is available to store data and index rows.

For information on how text, image, and Java columns are stored, see “Large
Object (LOB) Pages’ on page 156.

Varying logical page sizes

Adaptive Server version 12.5 does not use the buildmaster binary to build the
master device. Instead, Sybase has incorporated the buildmaster functionality
in the dataserver binary.

154 Adaptive Server Enterprise



CHAPTER 8 Data Storage

The dataserver command allows you to create master devices and databases
with logical pages of size 2K, 4K, 8K, or 16K. Larger logical pagesallow you
to create larger rows, which can improve your performance because Adaptive
Server accesses more data each time it reads a page. For example, a 16K page
can hold 8 times the amount of dataas a 2K page, an 8K page holds 4 times as
much data as a 2K page, and so on, for all the sizesfor logical pages.

Thelogical page sizeis a server-wide setting; you cannot have databases with
varying size logical pages within the same server. All tables are appropriately
sized so that therow size is no greater than the current page size of the server.
That is, rows cannot span multiple pages.

See the Utilities Guide for specific information about using the dataserver
command to build your master device.

Data and index pages

Data pages and index pages on data-only-locked tables have arow offset table
that stores pointers to the starting byte for each row on the page. Each pointer
takes 2 bytes.

Data and index rows are inserted on a page starting just after the page header,
and fill in contiguously down the page. For all tables and indexes on data-only-
locked tables, the row offset table begins at the last byte on the page, and grows
upward.

Theinformation stored for each row consists of the actual column data plus
information such asthe row number and the number of variable-length and null
columns in the row. Index pages for allpages-locked tables do not have arow
offset table.

Rows cannot cross page boundaries, except for text, image, and Java off-row
columns. Each data row has at least 4 bytes of overhead; rows that contain
variable-length data have additional overhead.

See Chapter 11, “Determining Sizes of Tables and Indexes,” for more
information on data and index row sizes and overhead.

The row offset table stores pointersto the starting location for each data row
on the page.

Performance and Tuning: Basics 155



Adaptive Server pages

Large Object (LOB) Pages

Extents

156

text, image, and Java off-row columns (LOB columns) for atable are stored as
a separate data structure, consisting of a set of pages. Each table with atext or
image column has one of these structures. If atable hasmultiple LOB columns,
it till has only one of these separate data structures.

Thetableitself storesa16-byte pointer to thefirst page of thevaluefor therow.
Additional pages for the value are linked by next and previous pointers. Each
valueisstored initsown, separate page chain. Thefirst page storesthe number
of bytesin the text value. The last page in the chain for avalue isterminated
with anull next-page pointer.

Reading or writing aLOB value requires at least two page reads or writes:
e Onefor the pointer
e Onefor the actual location of the text in the text object

Each LOB page stores up to 1800 bytes. Every non-null value uses at least one
full page.

LOB structures are listed separately in sysindexes. The ID for the LOB
structure is the same as the table's ID. Theindex ID column isindid and is
always 255, and the name is the table name, prefixed with the letter “t”.

Adaptive Server pages are always allocated to atable, index, or LOB structure.
A block of 8 pagesis called an extent. The size of an extent depends on the
page size the server uses. The extent size on a 2K server is 16K where on an
8K itis64K, etc. The smallest amount of spacethat atable or index can occupy
is 1 extent, or 8 pages. Extents are deallocated only when all the pagesin an
extent are empty.

The use of extentsin Adaptive Server istransparent to the user except when
examining reports on space usage.

For example, reports from sp_spaceused display the space allocated (the
reserved column) and the space used by data and indexes. The unused column
displays the amount of space in extents that are allocated to an object, but not
yet used to store data.

sp_spaceused titles
name rowtotal reserved data i ndex_si ze unused

Adaptive Server Enterprise



CHAPTER 8 Data Storage

titles 5000 1392 KB 1250 KB 94 KB 48 KB

In this report, the titles table and its indexes have 1392K reserved on various
extents, including 48K (24 data pages) unallocated in those extents.

Pages that manage space allocation

Global allocation

In addition to data, index, and LOB pages used for data storage, Adaptive
Server uses other types of pages to manage storage, track space allocation, and
|ocate database objects. The sysindexes table also stores pointers that are used
during data access.

The pagesthat manage space all ocation and the sysindexes pointers are used to:
e Speed the process of finding objects in the database
¢ Speed the process of alocating and deallocating space for objects.

*  Provide ameans for Adaptive Server to allocate additional space for an
object that is near the space already used by the object. This helps
performance by reducing disk-head travel.

The following types of pages track the disk space use by database objects:

e Globa allocation map (GAM) pages contain allocation bitmaps for an
entire database.

*  Allocation pages track space usage and objects within groups of 256
pages, or 1/2MB.

*  Object dlocation map (OAM) pages contain information about the extents
used for an object. Each table and index has at least one OAM page that
tracks where pages for the object are stored in the database.

«  Control pages manage space allocation for partitioned tables. Each
partition has one control page.

map pages
Each database has a Global Allocation Map Pages (GAM). It stores a bitmap
for all alocation units of adatabase, with 1 bit per allocation unit. When an

alocation unit has no free extents availabl e to store objects, its corresponding
bitin the GAM isset to 1.

Performance and Tuning: Basics 157



Pages that manage space allocation

Allocation pages

Object allocation

This mechanism expedites all ocating new spacefor objects. Users cannot view
the GAM page; it appears in the system catal ogs as the sysgams table.

When you create adatabase or add spaceto adatabase, the spaceisdivided into
allocation units of 256 data pages. Thefirst page in each allocation unit isthe
allocation page. Page 0 and all pages that are multiples of 256 are allocation

pages.

The allocation page tracks space in each extent on the allocation unit by
recording the object ID and index 1D for the object that is stored on the extent,
and the number of used and free pages. The allocation page al so storesthe page
ID for the table or index’s OAM page.

map pages

Each table, index, and text chain has one or more Object Allocation Map
(OAM) pages stored on pages all ocated to thetable or index. If atable hasmore
than one OAM page, the pages arelinked in achain. OAM pages store pointers
to the allocation units that contain pages for the object.

Thefirst pagein the chain stores allocation hints, indicating which OAM page
in the chain has information about allocation units with free space. This
provides afast way to allocate additional space for an object and to keep the
new space close to pages already used by the object.

How OAM pages and allocation pages manage object storage

158

Figure 8-1 shows how allocation units, extents, and objects are managed by
OAM pages and allocation pages.

e Twoallocation unitsare shown, one starting at page 0 and one at page 256.
The first page of each isthe allocation page.

« Atableisstored on four extents, starting at pages 1 and 24 on the first
allocation unit and pages 272 and 504 on the second unit.

e Thefirst page of the tableis the table’s OAM page. It points to the
allocation page for each allocation unit where the object uses pages, so it
points to pages 0 and 256.

Adaptive Server Enterprise



CHAPTER 8 Data Storage

Figure 8-1: OAM page and allocation page pointers

Allocation pages 0 and 256 store the table's object ID and information
about the extentsand pages used on the extent. So, allocation page 0 points
to page 1 and 24 for the table, and all ocation page 256 pointsto pages 272

and 504.

OAM

Page

2

3

4

5

6

7

R G

0
256

819

10

1

12

13

14

15

16 | 17

18

19

20

21

22

23

24125

26

27

28

29

30

31

248|249

250

251

252

253

254

255

258

259

260

261

262

263

266

267

268

269

270

271

274

275

276

277

278

279

282

283

284

285

286

287

256|257
4264 265
272|273
280|281

504|505

506

507

508

509

510

511

Page allocation keeps an object’s pages together

Adaptive Server triesto keep the page all ocati ons close together for objects. In
most cases:

Pages used by
Allocation

Other

If thereis an unallocated page in the current extent, that page is assigned

to the object.

If there is no free page in the current extent, but there is an unallocated
page on another of the object’s extents, that extent is used.

If all theobject’sextentsarefull, but there are free extentson theall ocation
unit, the new extent is allocated in aunit already used by the object.

Performance and Tuning: Basics

159



Space overheads

sysindexes table and data access

The sysindexes table stores information about indexed and unindexed tables.
sysindexes has one row for each:

Allpages-locked table, the indid column is 0 if the table does not have a
clustered index, and 1 if the table does have a clustered index.

Data-only-locked tables, the indid is always O for the table.

Nonclustered index, and for each clustered index on a data-only-locked

table.

Table with one or more LOB columns, theindex ID is aways 255 for the

LOB structure.

Each row in sysindexes stores pointers to atable or index to speed access to
objects. Table 8-2 shows how these pointers are used during data access.

Table 8-2: Use of sysindexes pointers in data access

Column Use for table access Use for index access

root If indid is 0 and the tableisapartitioned  Used to find the root page of the index
alpages-locked table, root pointstothe  tree.
last page of the heap.

first Pointsto thefirst datapageinthepage  Pointsto thefirst leaf-level pageina
chain for allpages-locked tables. non clustered index or aclustered index

on adata-only-locked table.

doampg Points to the first OAM page for the
table.

ioampg Points to the first OAM page for an

index.

Space overheads

Regardless of the logical page sizeit is configured for, Adaptive Server
allocates space for objects (tables, indexes, text page chains) in extents, each
of whichiseight logical pages. That is, if aserver isconfigured for 2K logical
pages, it allocates one extent, 16K, for each of these objects; if aserver is
configured for 16K logical pages, it allocates one extent, 128K, for each of
these objects.

160

Thisisalso true for system tables. If your server has many small tables, space
consumption can be quite large if the server uses larger logical pages.

Adaptive Server Enterprise



CHAPTER 8 Data Storage

For example, for aserver configured for 2K logical pages, systypes—with
approximately 31 short rows, a clustered and a non-clustered index — reserves
3 extents, or 48K of memory. If you migrate the server to use 8K pages, the
space reserved for systypesis still 3 extents, 192K of memory.

For a server configured for 16K, systypes requires 384K of disk space. For
small tables, the space unused in the last extent can become significant on
servers using larger logical page sizes.

Databases are also affected by larger page sizes. Each database includes the
system catalogs and their indexes. If you migrate from a smaller to larger
logical page size, you must account for the amount of disk space each database
requires.

Number of columns and size
The maximum number of columnsyou can createin atableis:

e 1024 for fixed-length columns in both all-pages-locked (APL) and data-
only- locked (DOL) tables

e 254 for variable-length columnsin an APL table

e 1024 for variable-length columnsin an DOL table

The maximum size of a column depends on:

e Whether the table includes any variable- or fixed-length columns.

e Thelogica page size of the database. For example, in adatabase with 2K
logical pages, the maximum size of a column in an APL table can be as
large as a single row, about 1962 bytes, less the row format overheads.
Similarly, for a4K page, the maximum size of acolumninaAPL tablecan
be aslarge as 4010 bytes, lessthe row format overheads. See Table 0-1 for
more information.

« If you attempt to create a table with afixed-length column that is greater
than thelimits of thelogical page size, createtableissuesan error message.

Performance and Tuning: Basics 161



Space overheads

Table 8-3: Maximum row and column length - APL & DOL

Maximum row

Maximum column

* Thissizeincludes six bytesfor the row overhead and two bytesfor
the row length field

Locking scheme | Page size length length
2K (2048 bytes) 1962 1960 bytes
4K (4096 bytes) 4010 4008 bytes
APL tables 8K (8192 bytes) 8106 8104 bytes
16K (16384 bytes) 16298 16296 bytes
2K (2048 bytes) 1964 1958 hytes
4K (4096 bytes) 4012 4006 bytes
DOL tables 8K (8192 bytes) 8108 8102 bytes
16K (16384 bytes) 16300 16294 bytes
if table does not
include any variable
length columns
16K (16384 bytes) 16300 8191-6-2 = 8183 bytes

(subject to amax start
offset of varlen =
8191)

if table includes at
least on variable
length column.*

The maximum size of afixed-length columninaDOL table with a16K logical
page size depends on whether the table contains variable-length columns. The
maximum possible starting offset of a variable-length column is 8191. If the

table has any variable-length columns, the sum of the fixed-length portion of

therow, plusoverheads, cannot exceed 8191 bytes, and the maximum possible
size of al the fixed-length columns s restricted to 8183 bytes, when the table
contains any variable-length columns.

Variable-length columns in APL tables

APL tablesthat contain one variable-length column (for example, varchar,
varbinary and so on) have the following minimum overhead for each row:

*  Two bytesfor theinitial row overhead.

*  Two bytesfor the row length.

*  Two bytesfor the column-offset table at the end of therow. Thisisaways
n+ 1 bytes, where n is the number of variable-length columnsin the row.

162

Adaptive Server Enterprise



CHAPTER 8 Data Storage

A single-column table has an overhead of at least six bytes, plus additional
overhead for the adjust table. The maximum column size, after all the overhead
istaken into consideration, islessthan or equal to the column length + number
of bytesfor adjust table + six-byte overhead.

Table 8-4: Maximum size for variable-length columns in an APL table

Maximum row Maximum column
Page size length length
2K (2048 bytes) 1962 1948
4K (4096 bytes) 4010 3988
8K (8192 bytes) 8096 8058
16K (16384 bytes) 16298 16228

Variable-length columns that exceed the logical page size

If your table uses 2K logical pages, you can create some variable-length
columns whose total row-length exceeds the maximum row-length for a 2K
page size. This allows you to create tables where some, but not all, variable-
length columns contain the maximum possible size. However, when you issue
create table, you receive awarning message that says the resulting row size
may exceed the maximum possible row size, and cause afutureinsert or update
to fail.

For example, if you create atable that uses a 2K page size, and contains a
variable-length column with alength of 1975 bytes, Adaptive Server creates
the table but issues awarning message. However, an insert failsif you attempt
to insert data that exceeds the maximum length of the row (1962 bytes).

Variable length columns in DOL tables

For asingle, variable-length column in a DOL table, the minimum overhead
for each row is:

e Six bytesfor theinitial row overhead.
e Two bytesfor the row length.

e Two bytesfor the column offset table at the end of the row. Each column
offset entry is two bytes. There are n such entries, where n is the number
of variable-length columnsin the row.

Thetotal overhead is 10 bytes. There is no adjust table for DOL rows. The
actual variable-length column size is:

colum length + 10 bytes overhead

Performance and Tuning: Basics 163



Space overheads

Table 8-5: Maximum size for variable-length columns in an DOL table

Maximum row Maximum column
Page size length length
2K (2048 bytes) 1964 1954
4K (4096 bytes) 4012 4002
8K (8192 bytes) 8108 7998
16K (16384 bytes) 16300 162290

DOL tableswith variable-length columns must have an offset of lessthan 8191
bytesfor all insertsto succeed. For example, thisinsert fails because the offset
totals more than 8191 bytes:

create table t1(
cl int not null,
c2 varchar (5000) not null
c¢3 varchar (4000) not null
c4 varchar(10) not null
nmore fixed | ength col ums)
cvarl en varchar(nnn)) | ock datarows

The offset for columns c2, ¢3, and ¢4 is 9010, so the entire insert fails.

Restrictions for converting locking schemes or using select into

164

The following restrictions apply whether you are using alter table to change a
locking scheme or using select into to copy datainto a new table.

For serversthat use page sizes other than 16K pages, the maximum length of a
variablelength columnin an APL tableislessthan that for aDOL table, so you
can convert the locking scheme of an APL table with a maximum sized
variable length column to DOL. Conversion of aDOL table containing at |east
one maximum sized variable length column to allpages modeis restricted.
Adaptive Server raises an error message and the operation is aborted.

On servers that use 16K pages, APL tables can store substantially larger sized
variable length columns than can be stored in DOL tables.You can convert
tablesfrom DOL to APL, but lock scheme conversion from APL to DOL is
restricted. Adaptive Server raises an error message and the operation is
aborted.

Adaptive Server Enterprise



CHAPTER 8 Data Storage

Note that these restrictions on lock scheme conversions occur only if thereis
datain the source table that goes beyond the limits of the target table. If this
occurs, Adaptive Server raises an error message while transforming the row
format from onelocking schemeto the other. If the table is empty, no such data
transformation is required, and the lock change operation succeeds. But, then,
on a subsequent insert or update of the table, users might runinto errors due to
limitations on the column or row-size for the target schema of the altered table.

Organizing columns in DOL tables by size of variable-length columns

For DOL tablesthat use variable-length columns, arrange the columns so the
longest columns are placed toward the end of the table definition. This allows
you to create tables with much larger rows than if the large columns appear at
the beginning of the table definition. For instance, in a 16K page server, the
following table definition is acceptable;

create table t1 (
cl int not null,
c2 varchar (1000) null,
c¢3 varchar (4000) null,
c4 varchar (9000) null) |ock datarows

However, the following table definition typically is unacceptable for future
inserts. The potential start offset for column c2 is greater than the 8192-byte
limit because of the proceeding 9000-byte c4 column:

create table t2 (
cl int not null,
c4 varchar (9000) null,
c3 varchar (4000) null,
c2 varchar (1000) null) |ock datarows

The table is created, but future inserts may fail.

Number of rows per data page
The number of rows allowed for aDOL data page is determined by:

e Thepagesize.

Performance and Tuning: Basics 165



Space overheads

e A 10— byte overhead for the row ID, which specifies arow-forwarding
address.

Table 8-6 displays the maximum number of datarows that can fit on a DOL
data page:

Table 8-6: Maximum number of data rows for a DOL data page
Page Size Maximum number of rows

2K 166
4K 337
8K 678
16K 1361

APL data pages can have amaximum of 256 rows. Because each page requires
aone-byte row number specifier, large pages with short rowsincur some
unused space.

For example, if Adaptive Server is configured with 8K logical pagesand rows
that are 25 bytes long, the page will have 1275 bytes of unused space, after
accounting for the row-offset table, and the page header.

Maximum numbers

Arguments for stored procedures

The maximum number of arguments for stored proceduresis 2048. See the
Transact - SQL User’s Guide for more information.

Retrieving data with enhanced limits

166

Adaptive Server version 12.5 and later can store data that has different limits
than data stored in previous versions. Clients also must be able to handle the

new limitsthe data can use. If you are using older versions of Open Client and
Open Server, they cannot process the dataiif you:

»  Upgrade to Adaptive Server version 12.5.
*  Drop and re-create the tables with wide columns.
* Insert wide data.

See the Open Client section in this guide for more information.

Adaptive Server Enterprise



CHAPTER 8 Data Storage

Heaps of data: tables without clustered indexes

If you create atable on Adaptive Server, but do not create aclustered index, the
table is stored as a heap. The data rows are not stored in any particular order.
Thissection describeshow select, insert, delete, and update operations perform
on heaps when thereisno “useful” index to aid in retrieving data.

The phrase “no useful index” isimportant in describing the optimizer’s
decision to perform atable scan. Sometimes, an index exists on the columns
named in awhere clause, but the optimizer determines that it would be more
costly to use the index than to perform a table scan.

Other chaptersin this book describe how the optimizer costs queries using
indexes and how you can get more information about why the optimizer makes
these choices.

Table scans are aways used when you select all rowsin atable. The only
exception is when the query includes only columnsthat are keysin a
nonclustered index.

For more information, see “Index covering” on page 291.

The following sections describe how Adaptive Server [ocates rows when a
table has no useful index.

Lock schemes and differences between heaps

The data pagesin an allpages-locked table are linked into a doubly-linked list
of pages by pointers on each page. Pages in data-only-locked tables are not
linked into a page chain.

In an alpages-locked table, each page stores a pointer to the next page in the
chain and to the previous page in the chain. When new pages need to be
inserted, the pointers on the two adjacent pages change to point to the new
page. When Adaptive Server scans an allpages-locked table, it reads the pages
in order, following these page pointers.

Pages are also doubly-linked at each index level of allpages-locked tables, and
the leaf level of indexes on data-only-locked tables. If an allpages-locked table
is partitioned, there is one page chain for each partition.

Another difference between all pages-locked tablesand data-only-locked tables
is that data-only-locked tables use fixed row IDs. This meansthat row IDs (a
combination of the page number and the row number on the page) do not
change in a data-only-locked table during normal query processing.

Performance and Tuning: Basics 167



Heaps of data: tables without clustered indexes

Row I Dschange only when one of the operationsthat require data-row copying

is performed, for example, during reorg rebuild or while creating a clustered
index.

For information on how fixed row 1Ds affect heap operations, see “ Deleting
from adata-only locked heap table” on page 170 and “ Data-only-locked heap
tables’ on page 172.

Select operations on heaps

When you issue a select query on a heap, and there is no useful nonclustered
index, Adaptive Server must scan every datapageinthetableto find every row
that satisfiesthe conditionsin the query. There may be one row, many rows, or
no rows that match.

Allpages-locked heap tables

For allpages-locked tables, Adaptive Server reads the first column in
sysindexes for the table, reads the first page into cache, and follows the next
page pointers until it finds the last page of the table.

Data-only locked heap tables

Since the pages of data-only-locked tables are not linked in a page chain, a
select query on a heap table uses the table's OAM and the all ocation pages to
locate all the rows in the table. The OAM page points to the allocation pages,
which point to the extents and pages for the table.

Inserting data into an allpages-locked heap table

168

When you insert datainto an alpages-locked heap table, the datarow isalways
added to the last page of thetable. If thereisno clustered index on atable, and
the table is not partitioned, the sysindexes.root entry for the heap table stores a

pointer to the last page of the heap to locate the page where the data needs to
be inserted.

If thelast pageisfull, anew pageis allocated in the current extent and linked
onto the chain. If the extent is full, Adaptive Server |ooks for empty pages on
other extents being used by thetable. If no pages are available, anew extentis
allocated to the table.

Adaptive Server Enterprise



CHAPTER 8 Data Storage

Conflicts during heap inserts

One of the severe performance limits on heap tables that use allpages locking
isthat the page must belocked when therow isadded, and that lock isheld until
the transaction completes. If many users are trying to insert into an allpages-
locked heap table at the same time, each insert must wait for the preceding
transaction to complete.

This problem of |ast-page conflicts on heapsis true for:
e Singlerow inserts using insert

e Multiple row inserts using select into Or insert...select, or severa insert
statements in a batch

e Bulk copy into the table

Some workarounds for last-page conflicts on heaps include:

e Switching to datapages or datarows locking

e Creating aclustered index that directs the inserts to different pages

e Partitioning the table, which creates multiple insert points for the table,
giving you multiple “last pages’ in an allpages-locked table

Other guidelines that apply to all transactions where there may be lock
conflictsinclude:

*  Keeping transactions short

*  Avoiding network activity and user interaction whenever possible, once a
transaction acquires locks

Inserting data into a data-only-locked heap table

When usersinsert datainto a data-only-locked heap table, Adaptive Server
tracks page numbers where the inserts have recently occurred, and keeps the
page number asahint for future tasksthat need space. Subsequent insertsto the
table are directed to one of these pages. If the pageisfull, Adaptive Server
allocates a new page and replaces the old hint with the new page number.

Blocking while many users are simultaneously inserting data is much less
likely to occur during inserts to data-only-locked heap tables. When blocking
occurs, Adaptive Server allocates a small number of empty pages and directs
new inserts to those pages using these newly allocated pages as hints.

Performance and Tuning: Basics 169



Heaps of data: tables without clustered indexes

For datarows-locked tables, blocking occurs only while the actual changesto
the data page are being written; although row locks are held for the duration of
the transaction, other rows can be inserted on the page. The row-level locks
allow multiple transaction to hold locks on the page.

There may be slight blocking on data-only-locked tables, because Adaptive
Server allows a small amount of blocking after many pages have just been
allocated, so that the newly allocated pages are filled before additional pages
are dlocated.

If conflicts occur during heap inserts

Conflictsduring insertsto heap tables are greatly reduced for data-only-locked
tables, but can still take place. If these conflicts dow inserts, some
workarounds can be used, including:

»  Switching to datarows locking, if the table uses datapages locking
» Using aclustered index to spread data inserts

*  Partitioning the table, which provides additional hints and allows new
pages to be alocated on each partition when blocking takes place

Deleting data from a heap table

When you delete rows from aheap table, and thereisno useful index, Adaptive
Server scans the data rows in the table to find the rows to delete. It has no way
of knowing how many rows match the conditions in the query without
examining every row.

Deleting from an allpages-locked heap table

When adatarow is deleted from apage in an allpages-locked table, the rows
that follow it on the page move up so that the data on the page remains
contiguous.

Deleting from a data-only locked heap table

When you delete rows from a data-only-locked heap table, atable scanis
required if thereisno useful index. The OAM and all ocation pages are used to
locate the pages.

170 Adaptive Server Enterprise



CHAPTER 8 Data Storage

The space on the pageis not recovered immediately. Rowsin data-only-locked
tables must maintain fixed row | Ds, and need to be reinserted in the same place
if the transaction is rolled back.

After adeletetransaction completes, one of thefollowing processes shiftsrows
on the page to make the space usage contiguous:

e The housekeeper garbage collection process
« Aninsert that needsto find space on the page

¢ Thereorg reclaim_space command

Deleting the last row on a page

If you delete the last row on a page, the page is deallocated. If other pages on
the extent are till in use by the table, the page can be used again by the table
when a page is needed.

If al other pages on the extent are empty, the entire extent is deall ocated. It can
be alocated to other objects in the database. The first data page for atable or
an index is never deallocated.

Updating data on a heap table

Like other operations on heaps, an update that has no useful index on the
columns in the where clause performs atable scan to locate the rows that need
to be changed.

Allpages-locked heap tables
Updates on allpages-locked heap tables can be performed in several ways:

< If thelength of the row does not change, the updated row replaces the
existing row, and no data moves on the page.

« If thelength of the row changes, and there is enough free space on the
page, the row remains in the same place on the page, but other rows move
up or down to keep the rows contiguous on the page.

The row offset pointers at the end of the page are adjusted to point to the
changed row locations.

« If therow doesnot fit on the page, the row is deleted from its current page,
and the “new” row isinserted on the last page of the table.

Performance and Tuning: Basics 171



How Adaptive Server performs 1/O for heap operations

This type of update can cause a conflict on the last page of the heap, just
asinserts do. If there are any nonclustered indexes on the table, all index
references to the row need to be updated.

Data-only-locked heap tables

One of the requirementsfor data-only-locked tablesisthat therow ID of adata
row never changes (except during intentional rebuilds of the table). Therefore,
updates to data-only-locked tables can be performed by the first two methods
described above, aslong as the row fits on the page.

But when arow in a data-only-locked table is updated so that it no longer fits
on the page, a process called row forwar ding performs the following steps:

» Therow isinserted onto a different page, and

* A pointer to the row ID on the new page is stored in the original location
for the row.

Indexes do not need to be modified when rows are forwarded. All indexes still
point to the original row ID.

If the row needsto beforwarded a second time, the original location is updated
to point to the new page—the forwarded row is never more than one hop away
from its original location.

Row forwarding increases concurrency during update operations because
indexes do not have to be updated. It can slow dataretrieval, however, because
atask needs to read the page at the original location and then read the page
where the forwarded datais stored.

Forwarded rows can be cleared from atable using the reorg command.

For moreinformation on updates, see“How update operations are performed”
on page 94 in the Performance and Tuning: Optimizer book.

How Adaptive Server performs I/O for heap operations

172

When aquery needs adata page, Adaptive Server first checksto seeif the page
isavailablein adata cache. If the pageis not available, then it must be read
from disk. A newly installed Adaptive Server has a single data cache
configured for 2K 1/O. Each 1/0O operation reads or writes a single Adaptive
Server datapage. A System Administrator can:

Adaptive Server Enterprise



CHAPTER 8 Data Storage

e Configure multiple caches
* Bindtables, indexes, or text chains to the caches

e Configure data caches to perform I/O in page-sized multiples, up to eight
data pages (one extent)

To use these caches most efficiently, and reduce 1/O operations, the Adaptive
Server optimizer can:

e Choose to prefetch up to eight data pages at atime

e Choose between different caching strategies

Sequential prefetch, or large I/O

Adaptive Server'sdata caches can be configured by a System Administrator to
allow large I/Os. When a cache is configured to allow large I/Os, Adaptive
Server can choose to prefetch data pages.

Caches have buffer pools that depend on the logical page sizes, alowing
Adaptive Server to read up to an entire extent (eight data pages) inasingle |/O
operation.

Since much of the time required to perform /O operationsis taken up in
seeking and positioning, reading eight pagesina 16K /O performsnearly eight
timesasfast asasingle-page, 2K 1/0, so queriesthat table scan should perform
much better using large /0.

When several pages are read into cache with asingle I/O, they aretreated asa
unit: they agein cache together, and if any page in the unit has been changed
while the buffer was in cache, al pages are written to disk as a unit.

For moreinformation on configuring memory cachesfor large /O, see Chapter
10, “Memory Use and Performance.”

Note ReferencetolLargel/Osareona2kK logical pagesize server. If you have
an 8K page size server, the basic unit for the 1/O is 8K. If you have a 16K page
size server, the basic unit for the 1/O is 16K.

Performance and Tuning: Basics 173



Caches and object bindings

Caches and object bindings

A table can be bound to a specific cache. If atableis not bound to a specific
cache, but its database is bound to a cache, al of its I/O takes place in that
cache.

Otherwise, its1/0 takes place in the default data cache. The default data cache
can be configured for large I/O. If your applicationsinclude some heap tables,
they will probably perform best when they use acache configured for 16K 1/0O.

Heaps, I/0, and cache strategies

Each Adaptive Server data cache is managed as an MRU/LRU (most recently
used/least recently used) chain of buffers. As buffers age in the cache, they
move from the MRU end toward the LRU end.

When changed pages in the cache pass a point called the wash marker, on the
MRU/LRU chain, Adaptive Server initiates an asynchronous write on any
pages that changed while they were in cache. This helps ensure that when the
pages reach the LRU end of the cache, they are clean and can be reused.

Overview of cache strategies

Adaptive Server has two major strategies for using its data cache efficiently:

e LRU replacement strategy, usually used for pages that a query needs to
access more than once or pages that must be updated

MRU, or fetch-and-discard replacement strategy, used for pagesthat a
guery needs to read only once

LRU replacement strategy

174

LRU replacement strategy reads the data pages sequentialy into the cache,
replacing a“least recently used” buffer. The buffer is placed on the MRU end
of the data buffer chain. It moves toward the LRU end as more pages are read
into the cache.

Adaptive Server Enterprise



CHAPTER 8 Data Storage

Figure 8-2: LRU strategy takes a clean page from the LRU end of the
cache

L ‘>

- I I I l N

Clean buffer /

Wash marker
D Clean page I Dirty page

When LRU strategy is used
Adaptive Server uses LRU strategy for:

To disk

e Statements that modify data on pages

¢ Pagesthat are needed more than once by a single query
e OAM pages

¢ Most index pages

e Any query where LRU strategy is specified

MRU replacement strategy

MRU (fetch-and-discard) replacement strategy is used for table scanning on
heaps. Thisstrategy places pagesinto the cachejust before the wash marker, as
shown in Figure 8-3.

Performance and Tuning: Basics 175



Caches and object bindings

Figure 8-3: MRU strategy places pages just before the wash marker

Wash marker

MRU I I I LRU

Clean page

Fetch-and-discard is most often used for queries where a page is needed only
once by the query. Thisincludes:

* Most table scans in queries that do not use joins
* Oneor moretablesin ajoin query

Placing the pages needed only once at the wash marker meansthat they do not
push other pages out of the cache.

The fetch-and-discard strategy is used only on pages actually read from the
disk for the query. If apageisalready in cache dueto earlier activity on the
table, the page is placed at the MRU end of the cache.

Figure 8-4: Finding a needed page in cache

MRU Wash marker LRU

i
N

Select operations and caching

176

Under most conditions, single-table select operations on a heap use:
e Thelargest I/O available to the table and
e Fetch-and-discard (MRU) replacement strategy

For heaps, select operations performing large 1/0 can be very effective.
Adaptive Server can read sequentially through al the extentsin atable.

Adaptive Server Enterprise



CHAPTER 8 Data Storage

Unless the heap is being scanned as the inner table of a nested-loop join, the
data pages are needed only once for the query, so MRU replacement strategy
reads and discards the pages from cache.

Note Large|/O on allpages-locked heapsis effective only when the page
chains are not fragmented.

See “Maintaining heaps’ on page 180 for information on maintaining heaps.

Data modification and caching

Adaptive Server tries to minimize disk writes by keeping changed pagesin
cache. Many users can make changes to a data page while it resides in the
cache. The changes are logged in the transaction log, but the changed data and
index pages are not written to disk immediately.

Caching and inserts on heaps
For inserts to heap tables, the insert takes place:
* Onthelast page of atable that uses allpages locking

*  Onapagethat wasrecently used for asuccessful insert, on atablethat uses
data-only-locking

If an insert isthe first row on a new page for the table, a clean data buffer is
allocated to store the data page, as shown in Figure 8-5. This page startsto
move down the MRU/LRU chain in the data cache as other processes read
pages into memory.

If asecond insert to the page takes place while the page is still in memory, the
pageis located in cache, and moves back to the top of the MRU/LRU chain.

Performance and Tuning: Basics 177



Caches and object bindings

Figure 8-5: Inserts to a heap page in the data cache

First insert on a page takes a clean
page from the LRU and puts it on the

MRU Wash n;arker LRU

\\ Clean page //

Second insert on a page finds the page in
cache, and puts in back at the MRU

The changed data page remains in cache until it reaches the LRU end of the
chain of pages. The page may be changed or referenced many timeswhileitis
inthecache, but it iswritten to disk only when one of the following takes place:

»  The page moves past the wash marker.
* A checkpoint or the housekeeper wash task writesit to disk.

“Data cache” on page 215 explains more about these processes.

Caching, update and delete operations on heaps

When you update or delete arow from a heap table, the effects on the data
cache are similar to the processfor inserts. If apageisalready in the cache, the
row is changed and then the whole buffer (asingle page or more, depending on
the 1/0O size) is placed on the MRU end of the chain.

If the pageisnot in cache, it isread from disk into cache and examined to
determine whether the rows on the page match query clauses. Its placement on
the MRU/LRU chain depends on whether data on the page needs to be
changed:

« |f data on the page needs to be changed, the buffer is placed on the MRU
end. It remainsin cache, where it can be updated repeatedly or read by
other users before being flushed to disk.

178 Adaptive Server Enterprise



CHAPTER 8 Data Storage

e |f data on the page does not need to be changed, the buffer is placed just
before the wash marker in the cache.

Asynchronous prefetch and 1/0 on heap tables

Asynchronous prefetch hel ps speed the performance of queries that perform
table scans. Any task that needs to perform a physical 1/0O relinquishes the
server’'s engine (CPU) while it waits for the 1/O to complete.

If atable scan needs to read 1000 pages, and none of those pages are in cache,
performing 2K 1/0 with no asynchronous prefetch means that the task would
make 1000 loops, executing on the engine, and then sleeping to wait for /0.

Using 16K 1/0 would required only 125 such loops.

Asynchronous prefetch can request all of the pages on an allocation unit that
belong to atable when the task fetches the first page from the alocation unit.
If the 1000-page table resides on just 4 allocation units, the task requires many
fewer cycles through the execution and sleep loops.

Type of /O Loops Stepsin each loop

2K 1/0 1000 Request a page.

no prefetch Sleep until the page has been read from disk.
Wait for aturn to run on the Adaptive Server engine
(CPU).
Read the rows on the page.

16K I/0 125 Request an extent.

no prefetch Sleep until the extent has been read from disk.
Wait for aturn to run on the Adaptive Server engine
(CPU).
Read the rows on the 8 pages.

Prefetch 4 Request all the pages in an allocation unit.

Sleep until the first page has been read from disk.
Wait for aturn to run on the Adaptive Server engine
(CPU).

Read all the rows on al the pages in cache.

Actua performance depends on cache size and other activity in the data cache.

For more information on asynchronous prefetching, see Chapter 16, “ Tuning
Asynchronous Prefetch.”

Performance and Tuning: Basics 179



Heaps: pros and cons

Heaps: pros and cons

Sequential disk accessisefficient, especially with large I/O and asynchronous
prefetch. However, the entire table must always be scanned to find any value,
having a potentially large impact in the data cache and other queries.

Batch inserts can do efficient sequential 1/0. However, there is a potential
bottleneck on thelast page if multiple processestry to insert data concurrently.

Heaps work well for small tables and tables where changes are infrequent, but
they do not work well for most large tables for queries that need to return a
subset of the rows.

Heaps can be useful for tables that:

o Arefairly small and use only afew pages

» Do not require direct accessto asingle, random row
» Do not require ordering of result sets

Partitioned heaps are useful for tables with frequent, large volumes of batch
inserts where the overhead of dropping and creating clustered indexesis
unacceptable. With this exception, there are very few justifications for heap
tables. Most applications perform better with clustered indexes on the tables.

Maintaining heaps

Methods

180

Over time, 1/0O on heaps can become inefficient as storage becomes
fragmented. Deletes and updates can result in:

o Many partidly filled pages
» Inefficient large I/O, since extents may contain many empty pages

»  Forwarded rows in data-only-locked tables

After deletes and updates have left empty space on pages or have left empty
pages on extents, use one of the following techniques to reclaim space in heap
tables:

e Usethereorg rebuild command (data-only-locked tables only).

Adaptive Server Enterprise



CHAPTER 8 Data Storage

e Create and then drop a clustered index.
e Usebcp (the bulk copy utility) and truncate table.

Using reorg rebuild to reclaim space

reorg rebuild copies all data rows to new pages and rebuilds any nonclustered
indexes on the heap table. reorg rebuild can be used only on data-only-locked
tables.

Reclaiming space by creating a clustered index

You can create and drop a clustered index on a heap table to reclaim space if
updates and deletes have created many partially full pagesin thetable. To
create a clustered index, you must have free space in the database of at |east
120% of the table size.

See “ Determining the space available for maintenance activities’ on page 356
for more information.

Reclaiming space using bcp
To reclaim space with bep:
1 Copy thetable out to afile using bep.
2  Truncate the table with the truncate table command.
3 Copy thetable back in again with bcp.

See “ Steps for partitioning tables’” on page 117 for procedures for working
with partitioned tables.

For more information on bep, see the Utility Guide manual for your platform.

Transaction log: a special heap table

Adaptive Server’'stransaction logisaspecial heap tablethat storesinformation
about data modifications in the database. The transaction log is always a heap
table; each new transaction record is appended to the end of thelog. The
transaction log does not have any indexes.

Performance and Tuning: Basics 181



Transaction log: a special heap table

Other chaptersin this book describe ways to enhance the performance of the
transaction log. The most important technique is to use the log on clause to
create database to place your transaction log on a separate device from your
data.

See the System Administration Guide for more information on creating
databases.

Transaction log writes occur frequently. Do not | et them contend with other 1/0O
in the database, which usually happens at scattered locations on the data pages.

Place logs on separate physical devices from the data and index pages. Since
the log is sequential, the disk head on the log device rarely needs to perform
seeks, and you can maintain ahigh /O rate to the log.

Besides recovery, these kinds of operations require reading the transaction log:
e Any datamodification that is performed in deferred mode.

e Triggersthat contain references to the inserted and del eted tables. These
tables are built from transaction log records when the tables are queried.

*  Transaction rollbacks.

In most cases, the transaction log pages for these kinds of queries are still
available in the data cache when A daptive Server needsto read them, and disk
I/Oisnot required.

182 Adaptive Server Enterprise



CHAPTER 9

Setting Space Management
Properties

Setting space management properties can help reduce the amount of
maintenance work required to maintain high performance for tables and
indexes.

Topic Page
Reducing index maintenance 183
Reducing row forwarding 189
L eaving space for forwarded rows and inserts 194
Using max_rows_per_page on allpages-locked tables 202

Reducing index maintenance

By default, Adaptive Server createsindexesthat are completely full at the
leaf level and leaves growth room for two rows on the intermediate pages.

The fillfactor option for the create index command allows you to specify
how full to make index pages and the data pages of clustered indexes.
When you use fillfactor, except for afillfactor value of 100 percent, data
and index rows use more disk space than the default setting requires.

If you are creating indexesfor tablesthat will grow in size, you can reduce
the impact of page splitting on your tables and indexes by using the
fillfactor option for create index.

Thefillfactor is used only when you create the index; it is not maintained
over time.

When you issue create index, the fillfactor value specified as part of the
command is applied as follows:

¢ Clustered index:

e Onan alpages-locked table, the fillfactor is applied to the data
pages.

Performance and Tuning: Basics 183



Reducing index maintenance

e Onadata-only-locked table, thefillfactor is applied to the leaf pages of
the index, and the data pages are fully packed (unless sp_chgattribute
has been used to store afillfactor for the table).

e Nonclustered index — the fillfactor value is applied to the leaf pages of the
index.

fillfactor values specified with create index are applied at thetime the index is
created. They are not saved in sysindexes, and the fullness of the data or index
pages is not maintained over time.

You can also use sp_chgattribute to store values for fillfactor that are used when
reorg rebuild isrun on atable.

See “ Setting fillfactor values’ on page 185 for more information.

Advantages of using fillfactor

Setting fillfactor to alow value provides atemporary performance enhancement.
Its benefits fade asinserts to the database increase the amount of space used on
data or index pages.

A lower fillfactor provides these benefits:

» It reduces page splits on the leaf-level of indexes, and the data pages of
allpages-locked tables.

* Itimprovesdata-row clustering on data-only-locked tables with clustered
indexes that experience inserts.

» It canreduce lock contention for tables that use page-level locking, since
it reduces the likelihood that two processes will need the same data or
index page smultaneoudly.

* Itcanhelp maintainlarge /O efficiency for the data pages and for the | eaf
level sof nonclustered indexes, since page splitsoccur lessfrequently. This
means that eight pages on an extent are likely to be sequential.

Disadvantages of using fillfactor

If you usefillfactor, especially avery low fillfactor, you may notice these effects
on queries and maintenance activities:

»  Morepagesmust beread for each query that does atable scan or leaf-level
scan on a nonclustered index.

184 Adaptive Server Enterprise



CHAPTER 9 Setting Space Management Properties

In some cases, it may also add alevel to an index’s B-tree structure, since
there will be more pages at the datalevel and possibly more pages at each
index level.

¢ dbcc commands need to check more pages, so docc commands take more
time.

« dump database time increases, because more pages need to be dumped.
dump database copies all pages that store data, but does not dump pages
that are not yet in use.

Your dumps and loads will take longer to complete and may use more
tapes.

«  Fillfactors fade away over time. If you usefillfactor to reduce the
performance impact of page splits, you need to monitor your system and
re-create indexes when page splitting begins to hurt performance.

Setting fillfactor values

sp_chgattribute allowsyou to store afillfactor percentage for each index and for
the table. The fillfactor you set with sp_chgattribute is applied when you:

¢ Runreorg rebuild to restorethe cluster ratios of data-only-locked tablesand
indexes.

e Usealter table...lock to change the locking scheme for atable or you use an
alter table...add/modify command that requires copying the table.

*  Run create clustered index and there is avalue stored for the table.

The stored fillfactor is not applied when nonclustered indexes are rebuilt as a
result of acreate clustered index command:

e If afilifactor valueis specified with create clustered index, that valueis
applied to each nonclustered index.

* If nofillfactor valueis specified with create clustered index, the server-wide
default value (set with the default fill factor percent configuration
parameter) is applied to al indexes.

fillfactor examples
The following examples show the application of fillfactor values.

Performance and Tuning: Basics 185



Reducing index maintenance

No stored fillfactor values

With no fillfactor values stored in sysindexes, thefillfactor specified in
commands “ create index” are applied as shown in Table 9-1.

create clustered index title_id_ix
ontitles (title_id)
with fillfactor = 80

Table 9-1: fillfactor values applied with no table-level saved value

Command Allpages-locked table Data-only-locked table
create clustered Data pages. 80 Data pages: fully packed
index Leaf pages: 80
Nonclustered index rebuilds Leaf pages: 80 Leaf pages: 80

The nonclustered indexes use thefillfactor specified in the create clustered index
command.

If no fillfactor is specified in create clustered index, the nonclustered indexes
always use the server-wide default; they never use avalue from sysindexes.

Values used for alter table...lock and reorg rebuild

When nofillfactor val ues are stored, both alter table...lock and reorg rebuild apply
the server-wide default value, set by the default fill factor percentage
configuration parameter. The default fillfactor is applied as shown in Table 9-2.

Table 9-2: fillfactor values applied with during rebuilds
Command Allpages-locked table Data-only-locked table
Clustered index rebuild Data pages: default value Data pages: fully packed
Leaf pages: default value
Leaf pages: default

Nonclustered index rebuilds Leaf pages: default

Table-level or clustered index fillfactor value stored
This command stores afillfactor value of 50 for the table:
sp_chgattribute titles, "fillfactor", 50

With 50 as the stored table-level value for fillfactor, the following create
clustered index command applies the fillfactor values shown in Table 9-3.
create clustered index title_id_ix
ontitles (title_id)
with fillfactor = 80

186 Adaptive Server Enterprise



CHAPTER 9 Setting Space Management Properties

Table 9-3: Using stored fillfactor values for clustered indexes

Command Allpages-Locked Table Data-Only-Locked Table
create clustered index Data pages: 80 Data pages: 50

Leaf pages: 80
Nonclustered index rebuilds Leaf pages: 80 Leaf pages: 80

Note When acreate clustered index command is run, any table-leve fillfactor
value stored in sysindexes isreset to 0.

To affect thefilling of data-only-locked data pages during a create clustered
index or reorg command, you must first issue sp_chgattribute.

Effects of alter table...lock when values are stored

Stored values for fillfactor are used when an alter table...lock command copies
tables and rebuilds indexes.

Tables with clustered indexes

In an allpages-locked table, the table and the clustered index share the
sysindexes row, so only one value for fillfactor can be stored and used for the
table and clustered index. You can set the fillfactor value for the data pages by
providing either the table name or the clustered index name. This command
saves the value 50:

sp_chgattribute titles, "fillfactor", 50

This command saves the value 80, overwriting the value of 50 set by the
previous command:

sp_chgattribute "titles.clust_ix", "fillfactor", 80

If you alter the titles table to use data-only locking after issuing the
sp_chgattribute commands above, the stored val ue fillfactor of 80 is used for
both the data pages and the leaf pages of the clustered index.

In a data-only-locked table, information about the clustered index is stored in
a separate row in sysindexes. Thefillfactor value you specify for the table
applies to the data pages and the fillfactor value you specify for the clustered
index appliesto the leaf level of the clustered index.

When a data-only-locked table is altered to use allpages locking, the fillfactor
stored for the table is used for the data pages. Thefillfactor stored for the
clustered index isignored.

Performance and Tuning: Basics 187



Reducing index maintenance

Table 9-4 shows the fillfactors used on data and index pages by an alter
table...lock command, executed after thesp_chgattribute commands above have

been run.
Table 9-4: Effects of stored fillfactor values during alter table
alter table...lock No clustered index Clustered index
From allpages locking to Data pages: 80 Data pages. 80
data-only locking Leaf pages: 80
From data-only locking to Data pages: 80 Data pages. 80
alpages locking

Note alter table...lock sets all stored fillfactor values for atable to 0.

fillfactor values stored for nonclustered indexes

Each nonclustered index is represented by a separate sysindexes row. These
commands store different values for two nonclustered indexes:

sp_chgattribute "titles.ncl _ix", "fillfactor", 90
sp_chgattribute "titles.pubid_ix", "fillfactor", 75

Table 9-5 shows the effects of areorg rebuild command on a data-only-locked
table when the sp_chgattribute commands above are used to store fillfactor

values.

Table 9-5: Effect of stored fillfactor values during reorg rebuild
reorg rebuild No clustered index Clustered index Nonclustered indexes
Data-only-locked table Data pages. 80 Data pages. 50 ncl_ix leaf pages. 90

Leaf pages: 80 pubid_ix leaf pages: 75

Use of the sorted_data and fillfactor options

The sorted_data option for create index is used when the data to be sorted is
already in order by theindex key. Thisallows create clustered index to skip the
copy step while creating a clustered index.

For example, if datathat is bulk copied into atableis already in order by the
clustered index key, creating an index with the sorted_data option creates the
index without performing a sort. If the data does not need to be copied to new

pages, thefillfactor is not applied. However, the use of other create index options
might still require copying.

For more information, see” Creating an index on sorted data” on page 345.

188 Adaptive Server Enterprise



CHAPTER 9 Setting Space Management Properties

Reducing row forwarding

Specifying an expected row size for adata-only-locked tableis useful when an
application allows rows that contain null values or short variable-length
character fields to beinserted, and these rows grow in length with subsequent
updates. The major purpose of setting an expected row size isto reduce row
forwarding.

For example, the titles table in the pubs2 database has many varchar columns
and columnsthat allow null values. The maximum row sizefor thistableis 331
bytes, and the average row size (as reported by optdiag) is 184 bytes, but it is
possibletoinsert arow with lessthan 40 bytes, since many columnsallow null
values. In adata-only-locked table, inserting short rows and then updating
them can result in row forwarding.

See “ Data-only locked heap tables’” on page 168 for more information.

You can set the expected row size for tables with variable-length columns,
using:

e exp_row_size parameter, in acreate table statement.

e sp_chgattribute, for an existing table.

* A server-wide default value, using the configuration parameter default
exp_row_size percent. Thisvalueis applied to all tables with variable-
length columns, unless create table or sp_chgattribute is used to set arow
size explicitly or to indicate that rows should be fully packed on data

pages.

If you specify an expected row size value for an allpages-locked table, the
valueis stored in sysindexes, but the value is not applied during inserts and
updates.

If thetableislater converted to data-only locking, the exp_row_size is applied
during the conversion process, and to all subsequent inserts and updates.

Default, minimum, and maximum values for exp_row_size

Table 9-6 shows the minimum and maximum val ues for expected row size and
the meaning of the special values0 and 1.

Performance and Tuning: Basics 189



Reducing row forwarding

Table 9-6: Valid values for expected row size

exp_row_size values Minimum, maximum, and special values
Minimum The greater of:
e 2bytes
» Thesum of al fixed-length columns
Maximum Maximum data row length
0 Use server-wide default value
1 Fully pack all pages; do not reserve room for expanding rows

You cannot specify an expected row size for tables that have fixed-length
columns only. Columns that accept null values are by definition variable-
length, since they are zero-length when null.

Default value

If you do not specify an expected row size or avalue of 0 when you create a
data-only-locked table with variable-length columns, Adaptive Server usesthe
amount of space specified by the configuration parameter default exp_row_size
percent for any table that has variable-length columns.

See “ Setting a default expected row size server-wide” on page 191 for
information on how this parameter affects space on data pages. Use sp_help to
see the defined length of the columnsin the table.

Specifying an expected row size with create table
This create table statement specifies an expected row size of 200 bytes:

create table new titles (
title_id tid,

title var char (80) not null,

type char (12),

pub_id char(4) null,

price nmoney nul |,

advance nmoney nul |,

total _sales int null,

not es var char (200) nul I,

pubdat e dat eti ne,

contract bi t )

| ock dat apages
with exp_row size = 200

190 Adaptive Server Enterprise



CHAPTER 9 Setting Space Management Properties

Adding or changing an expected row size

To add or change the expected row sizefor atable, ussp_chgattribute. This sets
the expected row size to 190 for the new _titles table;

sp_chgattribute new titles, "exp_row size", 190

If you want atable to switch to the default exp_row_size percent instead of a
current, explicit value, enter:

sp_chgattribute new titles, "exp_row size", 0

To fully pack the pages, rather than saving space for expanding rows, set the
valueto 1.

Changing the expected row size with sp_chgattribute does not immediately
affect the storage of existing data. The new valueis applied:

*  Whenaclustered index on thetableis created or reorg rebuild isrun on the
table. The expected row sizeis applied as rows are copied to new data

pages.

If youincreaseexp_row_size, and re-createthe clustered index or runreorg
rebuild, the new copy of the table may require more storage space.

e Thenext time apage is affected by data modifications.

Setting a default expected row size server-wide

default exp_row_size percent reserves a percentage of the page sizeto set aside
for expanding updates. The default value, 5, sets aside 5% of the space
available per data page for all data-only-locked tables that include variable-
length columns. Since there are 2002 bytes available on data pages in data-
only-locked tables, the default value sets aside 100 bytes for row expansion.
This command sets the default value to 10%:

sp_configure "default exp_row size percent"”, 10

Setting default exp_row_size percent to O means that no space is reserved for
expanding updates for any tables where the expected row sizeis not explicitly
set with create table or sp_chgattribute.

If an expected row size for atable is specified with create table or
sp_chgattribute, that value takes precedence over the server-wide setting.

Performance and Tuning: Basics 191



Reducing row forwarding

Displaying the expected row size for atable
Use sp_help to display the expected row size for atable:
sp_help titles

If the value is 0, and the table has nullable or variable-length columns, use
sp_configure to display the server-wide default value:

sp_configure "default exp_row size percent”

This query displaysthe value of the exp_rowsize column for all user tablesina
database:

sel ect object_nane(id), exp_rowsize
from sysi ndexes
where id > 100 and (indid = 0 or indid = 1)

Choosing an expected row size for a table

Setting an expected row size hel ps reduce the number of forwarded rows only
if the rows expand after they are first inserted into the table. Setting the
expected row size correctly means that:

e Your application resultsin asmall percentage of forwarded rows.

e You do not waste too much space on data pages due to over-configuring
the expected row size value.

Using optdiag to check for forwarded rows

For tables that already contain data, use optdiag to display statistics for the
table. The “Datarow size” shows the average data row length, including the
row overhead. This sample optdiag output for the titles table shows 12
forwarded rows and an average datarow size of 184 bytes:

Statistics for table: "titles"
Dat a page count: 655
Enpty data page count: 5
Data row count: 4959. 000000000
Forwar ded row count: 12. 000000000
Del eted row count: 84. 000000000
Dat a page CR count: 0. 000000000
OAM + al |l ocation page count: 6
Pages in allocation extent: 1
Data row si ze: 184. 000000000

192 Adaptive Server Enterprise



CHAPTER 9 Setting Space Management Properties

You can also use optdiag to check the number of forwarded rows for atable to
determine whether your setting for exp_row_size is reducing the number of
forwarded rows generated by your applications.

For more information on optdiag, see Chapter 6, “ Statistics Tables and
Displaying Statistics with optdiag.” in the Performance and Tuning:
Monitoring and Analyzing for Performance.

Querying systabstats to check for forwarded rows

You can check the forwrowcent column in the systabstats table to see the number
of forwarded rowsfor atable. Thisquery checksthe number of forwarded rows
for all user tables (those with object IDs greater than 100):

sel ect object_nane(id) , forwownt
from systabstats
where id > 100 and (indid = 0 or indid = 1)

Note Forwarded row counts are updated in memory, and the housekeeper
periodically flushes them to disk.

If you need to query the systabstats table using SQL, use sp_flushstats first to
ensure that the most recent statistics are available. optdiag flushes statistics to
disk before displaying values.

Conversion of max_rows_per_page to exp_row_size

If amax_rows_per_page valueis set for an allpages-locked table, the value is
used to compute an expected row size during the alter table...lock command.
The formulais shown in Table 9-7.

Table 9-7: Conversion of max_rows_per_page to exp_row_size

Value of max_rows_per_page Value of exp_row_size

0 Percentage value set by default exp_row_size percent
1-254 The smaller of:
* Maximum row size

e 2002/max_rows_per_page value

For example, if max_rows_per_page is set to 10 for an allpages-locked table
with amaximum defined row size of 300 bytes, the exp_row_size valuewill be
200 (2002/10) after the table is altered to use data-only locking.

Performance and Tuning: Basics 193



Leaving space for forwarded rows and inserts

If max_rows_per_page is set to 10, but the maximum defined row sizeis only
150, the expected row size value will be set to 150.

Monitoring and managing tables that use expected row size

After setting an expected row size for atable, use optdiag or querieson
systabstats to check the number of forwarded rows still being generated by
your applications. Run reorg forwarded_rows if you feel that the number of
forwarded rows is high enough to affect application performance. reorg
forwarded_rows uses short transactions and isvery nonintrusive, o you canrun
it while applications are active.

See the System Administration Guide for more information.

If the application still resultsin alarge number of forwarded rows, you may
want to use sp_chgattribute to increase the expected row size for the table.

You may want to allow acertain percentage of forwarded rows. If runningreorg
to clear forwarded rows does not cause concurrency problems for your
applications, or if you can run reorg at non-peak times, allowing a small
percentage of forwarded rows does not cause a serious performance problem.

Setting the expected row size for atable increases the amount of storage space
and the number of 1/0Os needed to read a set of rows. If theincrease in the
number of 1/Os due to increased storage space is high, then allowing rows to
be forwarded and occasionally running reorg may have less overall
performance impact.

Leaving space for forwarded rows and inserts

194

Setting areservepagegap value can reduce the frequency of maintenance
activities such as running reorg rebuild and re-creating indexes for some tables
to maintain high performance. Good performance on data-only-locked tables
requires good data clustering on the pages, extents, and allocation units used
by thetable.

The clustering of dataand index pagesin physical storage stayshigh aslong as
there is space nearby for storing forwarded rows and rows that are inserted in
index key order. The reservepagegap space management property is used to

reserve empty pages for expansion when additional pages need to be allocated.

Adaptive Server Enterprise



CHAPTER 9 Setting Space Management Properties

Extent allocation

Row and page cluster ratios are usually 1.0, or very closeto 1.0, immediately
after aclustered index is created on atable or immediately after reorg rebuild is
run. However, future data modifications can cause row forwarding and can
require allocation of additional data and index pages to store inserted rows.

Setting a reserve page gap can reduce storage fragmentation and reduce the
frequency with which you need to re-create indexes or run reorg rebuild on the
table.

operations and reservepagegap

Commandsthat allocate many data pages perform extent allocation to alocate
eight pages at atime, rather than allocating just one page at atime. Extent
alocation reduces logging, since it writes one log record instead of eight.

Commands that perform extent allocation are: select into, create index, reorg
rebuild, bcp, alter table...lock, and the alter table...unique and primary key
constraint options, since these constraints create indexes. alter table commands
that add, drop, or modify columns sometimes require a table-copy operation
aso. All of these commands all ocate an extent, and, unless areserve page gap
valueisin effect, fill al eight pages.

You specify the reservepagegap in pages, indicating aratio of empty pagesto
filled pages. For example, if you specify areservepagegap of 8, an operation
doing extent allocation fills seven pages and leaves the eighth page empty.

These empty pages can be used to store forwarded rows and for maintaining
the clustering of datarowsinindex key order, for data-only-locked tables with
clustered indexes.

Since extent allocation operations must alocate entire extents, they do not use
the first page on each allocation unit, because it stores the allocation page. For
example, if you create a clustered index on a large table and do not specify a
reserve page gap, each all ocation unit has 7 empty, unall ocated pages, 248 used
pages, and the allocation page. These 7 pages can be used for row forwarding
and inserts to the table, which helps keep forwarded rows and inserts with
clustered indexes on the same allocation unit. Using reservepagegap leaves
additional empty pages on each allocation unit.

Figure 9-1shows how an allocation unit might look after a clustered index is
created with areservepagegap value of 16 on the table. The pages that share
the first extent with the allocation unit are not used and are not allocated to the
table. Pages 279, 295, and 311 are the unused pages on extents that are
alocated to the table.

Performance and Tuning: Basics 195



Leaving space for forwarded rows and inserts

Figure 9-1: Reserved pages after creating a clustered index

256|257(258|259|260(261|262|263
264|265|266|267|268|269(270|271

272|273|274|275|276|277| 278279 Allocation page
280(281(282 283|284 285|286 | 287 pages used by abject
288|288(290 (291|291 |293|294)295
296(297(298|299|300(301|302|303 J Reserved pages

304 (305|306 [307|308|309|310]311 Unallocated pages
504 505|506 [507|508 509 510|511

Specifying areserve page gap with create table
This create table command specifies areservepagegap value of 16:

create table nore_titles (
title_id
title
type

pub_id
price

| ock dat ar ows

)

advance
total _sal es

not es

pubdat e

contract

tid,

var char (80) not null,
char(12),

char(4) null,

nmoney nul |,

money nul |,

int null

var char (200) nul |

dat eti ne,

bi t

with reservepagegap = 16

Any operation that performs extent allocation on the more_titles table leaves 1
empty page for each 15 filled pages.

196

Adaptive Server Enterprise



CHAPTER 9 Setting Space Management Properties

The default value for reservepagegap is 0, meaning that no space isreserved.
You can have more than 255 bytes, use pattern stringsfor LIKE more thatn 255
bytes and LIKE can also operate on wider columns.

Specifying areserve page gap with create index
This command specifies areservepagegap of 10 for the nonclustered index
pages.

create index type_price_ix
on nore_titles(type, price)
with reservepagegap = 10

You can also specify areservepagegap value with the alter table...constraint
options, primary key and unique, that create indexes. This example creates a
unique constraint:

alter table nore_titles
add constraint unig_id unique (title_id)
with reservepagegap = 20

Changing reservepagegap

The following command uses sp_chgattribute to change the reserve page gap
for the titles table to 20:

sp_chgattribute nore_titles, "reservepagegap", 20
This command sets the reserve page gap for the index title_ix to 10:

sp_chgattribute "titles.title_ix",
"reservepagegap", 10

sp_chgattribute changesonly valuesin system tables; datais not moved on data
pagesasaresult of running the procedure. Changing reservepagegap for atable
affects future storage as follows:

¢ When dataisbulk-copied into the table, the reserve page gap is applied to
al newly allocated space, but the storage of existing pagesis not affected.

¢ When thereorg rebuild command is run on the table, the reserve page gap
isapplied asthetable is copied to new data pages.

*  When aclustered index is created, the reserve page gap value stored for
the tableis applied to the data pages.

Performance and Tuning: Basics 197



Leaving space for forwarded rows and inserts

The reserve page gap is applied to index pages during:
e alter table...lock, while rebuilding indexes for the table
*  reorg rebuild commands that affect indexes

» create clustered index and alter table commands that create a clustered
index, as nonclustered indexes are rebuilt

reservepagegap examples

These examples show how reservepagegap is applied during alter table and
reorg rebuild commands.

reservepagegap specified only for the table

The following commands specify areservepagegap for the table, but do not
specify avaluein the create index commands:

sp_chgattribute titles, "reservepagegap", 16
create clustered index title_ix on titles(title_id)
create index type_price on titles(type, price)

Table 9-8 showsthe values applied when running reorg rebuild or dropping and
creating a clustered index.

Table 9-8: reservepagegap values applied with table-level saved value

Command Allpages-locked table Data-only-locked table
create clustered Data and index pages: 16 Data pages: 16

index or clustered index rebuild Index pages: O (filled extents)
due to reorg rebuild

Nonclustered index rebuild Index pages: O (filled extents) Index pages: O (filled extents)

Thereservepagegap for thetableisapplied to both the dataand index pagesfor
an allpages-locked table with a clustered index. For a data-only-locked table,
the table'sreservepagegap is applied to the data pages, but not to the clustered
index pages.

reservepagegap specified for a clustered index

These commands specify different reservepagegap valuesfor the table and the
clustered index, and a value for the nonclustered type_price index:

sp_chgattribute titles, "reservepagegap", 16

198 Adaptive Server Enterprise



CHAPTER 9 Setting Space Management Properties

create clustered index title_ix on titles(title)
with reservepagegap = 20

create index type_price on titles(type, price)
with reservepagegap = 24

Table 9-9 shows the effects of this sequence of commands.

Table 9-9: reservepagegap values applied with for index pages

Command Allpages-locked table Data-only-locked table
create clustered Data and index pages: 20 Data pages. 16

index or clustered index rebuild due to Index pages: 20

reorg rebuild

Nonclustered index rebuilds Index pages. 24 Index pages. 24

For allpages-locked tables, the reservepagegap specified with create clustered
index appliesto both data and index pages. For data-only-locked tables, the
reservepagegap specified with create clustered index applies only to the index
pages. If there is a stored reservepagegap value for the table, that value is
applied to the data pages.

Choosing a value for reservepagegap
Choosing a value for reservepagegap depends on:
*  Whether the table has a clustered index,
* Therate of insertsto the table,
e The number of forwarded rows that occur in the table, and

* How often you re-create the clustered index or run the reorg rebuild
command.

When reservepagegap is configured correctly, enough pages are left for
alocation of new pages to tables and indexes so that the cluster ratios for the
table, clustered index, and nonclustered | eaf-level pagesremain high during the
interval's between regular index maintenance tasks.

Monitoring reservepagegap settings

You can use optdiag to check the cluster ratio and the number of forwarded
rowsin tables. Declines in cluster ratios can also indicate that running reorg
commands could improve performance;

Performance and Tuning: Basics 199



Leaving space for forwarded rows and inserts

e |f the data page cluster ratio for aclustered index islow, run reorg rebuild
or drop and re-create the clustered index.

» |If theindex page cluster ratio islow, drop and re-create the non-clustered
index.

To reduce the frequency with which you run reorg commands to maintain
cluster ratios, increasethereservepagegap dightly before running reorg rebuild.

See Chapter 6, “ Statistics Tables and Displaying Statistics with optdiag,” in
the book Performance and Tuning: Monitoring and Analyzing for
Performance for more information on optdiag.

reservepagegap and sorted_data options to create index

When you create aclustered index on atable that is already stored on the data
pagesin index key order, the sorted_data option suppresses the step of copying
the datapagesin key order for unpartitioned tables. Thereservepagegap option
can be specified in create clustered index commands, to |eave empty pages on
the extents used by the table, leaving room for later expansion. There arerules
that determine which option takes effect. You cannot use sp_chgattribute to

change the reservepagegap value and get the benefits of both of these options.

If you specify both with create clustered index:

*  Onunpartitioned, allpages-locked tables, if the reservepagegap value
specified with create clustered index matches the values already stored in
sysindexes, the sorted_data option takes precedence. Data pages are not
copied, so the reservepagegap is not applied. If the reservepagegap value
specified in the create clustered index command is different from the
values stored in sysindexes, the data pages are copied, and the
reservepagegap value specified in the command is applied to the copied

pages.

*  Ondata-only-locked tables, the reservepagegap value specified with
create clustered index applies only to the index pages. Data pages are not
copied.

Background on the sorted_data option

Besides reservepagegap, other optionsto create clustered index may require a
sort, which causes the sorted_data option to be ignored.

For more information, see “ Creating an index on sorted data” on page 345.

200 Adaptive Server Enterprise



CHAPTER 9 Setting Space Management Properties

In particular, the following comments relate to the use of reservepagegap:

e On partitioned tables, any create clustered index command that requires
copying data pages performs aparallel sort and then copies the data pages
in sorted order, applying thereservepagegap val ues asthe pagesare copied
to new extents.

e Whenever the sorted_data option is not superseded by other create
clustered index options, the table is scanned to determine whether the data
is stored in key order. The index is built during the scan, without a sort
being performed.

Table 9-10 shows how these rules apply.

Table 9-10: reservepagegap and sorted_data options
Partitioned table Unpartitioned table

Allpages-L ocked Table
create index with sorted_data ~ Does not copy data pages; buildsthe  Does not copy data pages; buildsthe

and matching reservepagegap  index as pages are scanned. index as pages are scanned.
value
create index with sorted_data ~ Performs parallel sort, applying Copies data pages, applying
and different reservepagegap  reservepagegap as pages are stored  reservepagegap and building the
value in new locations in sorted order. index as pages are copied; no sort is
performed.
Data-Only-L ocked Table
create index with sorted_data  reservepagegap appliesto index reservepagegap applies to index
and any reservepagegap value pagesonly; does not copy data pages only; does not copy data
pages. pages.

Matching options and goals

If you want to redistribute the data pages of atable, leaving room for later
expansion:

«  For alpages-locked tables, drop and re-create the clustered index without
using the sorted_data option. Specify the desired reservepagegap valuein
the create clustered index command, if the value stored in sysindexes isnot
the value you want.

«  For data-only-locked tables, use sp_chgattribute to set the reservepagegap
for the table to the desired value and then drop and re-create the clustered
index, without using the sorted_data option. The reservepagegap stored
for the table appliesto the data pages. If reservepagegap is specifiedin the
create clustered index command, it applies only to the index pages.

To create a clustered index without copying data pages:

Performance and Tuning: Basics 201



Using max_rows_per_page on allpages-locked tables

»  For alpages-locked tables, use the sorted_data option, but do not specify
areservepagegap With the create clustered index command. Alternatively,
you can specify avalue that matches the value stored in sysindexes.

e For data-only-locked tables, use the sorted_data option. If a
reservepagegap value is specified in the create clustered index command,
it applies only to the index pages and does not cause data page copying.

If you plan to use the sorted_data option following a bulk copy operation, a
select into command, or another command that uses extent allocation, set the
reservepagegap value that you want for the data pages before copying the data
or specify it in the select into command. Once the data pages have been
allocated and filled, the following command applies reservepagegap to the
index pages only, since the data pages do not need to be copied:

create clustered index title_ix
ontitles(title_id)
with sorted_data, reservepagegap = 32

Using max_rows_per_page on allpages-locked tables

202

Setting a maximum number of rows per pages can reduce contention for
allpages-locked tables and indexes. In most cases, it is preferable to convert the
tables to use a data-only-locking scheme. If there is some reason that you
cannot change the locking scheme and contention is a problem on an allpages-
locked table or index, setting amax_rows_per_page value may help
performance.

When there are fewer rows on the index and data pages, the chances of lock
contention arereduced. Asthe keysare spread out over more pages, it becomes
more likely that the page you want is not the page someone else needs. To
change the number of rows per page, adjust thefillfactor or max_rows_per_page
values of your tables and indexes.

fillfactor (defined by either sp_configure or create index) determines how full
Adaptive Server makes each data page when it creates a new index on existing
data. Since fillfactor helps reduce page splits, exclusive locks are also
minimized on the index, improving performance. However, the fillfactor value
is not maintained by subsequent changes to the data. max_rows_per_page
(defined by sp_chgattribute, create index, create table, or alter table) is similar
to fillfactor, except that Adaptive Server maintains the max_rows_per_page
value as the data changes.

Adaptive Server Enterprise



CHAPTER 9 Setting Space Management Properties

The costs associated with decreasing the number of rows per page using
fillfactor or max_rows_per_page include more |/O to read the same number of
data pages, more memory for the same performance from the data cache, and
more locks. In addition, alow value for max_rows_per_page for atable may
increase page splits when datais inserted into the table.

Reducing lock contention

The max_rows_per_page value specified in acreate table, create index, Or alter
table command restrictsthe number of rows allowed on a data page, aclustered
index leaf page, or anonclustered index |leaf page. Thisreduceslock contention
and improves concurrency for frequently accessed tables.

max_rows_per_page applies to the data pages of a heap table or the leaf pages
of anindex. Unlike fillfactor, which is not maintained after creating atable or
index, Adaptive Server retains the max_rows_per_page value when adding or

deleting rows.
The following command creates the sales table and limits the maximum rows
per page to four:
create table sales
(stor_id char (4) not null,
ord_num varchar (20) not null,
date datetime not null)

with max_rows_per_page = 4

If you create atable with amax_rows_per_page value, and then create a
clustered index on the table without specifying max_rows_per_page, the
clustered index inherits the max_rows_per_page value from the create table
statement. Creating a clustered index with max_rows_per_page changes the
value for the table's data pages.

Indexes and max_rows_per_page

Thedefault valuefor max_rows_per_page is0, which creates clustered indexes
with full data pages, creates nonclustered indexes with full leaf pages, and
leaves a comfortable amount of space within the index B-tree in both the
clustered and nonclustered indexes.

For heap tables and clustered indexes, the range for max_rows_per_page is 0—
256.

Performance and Tuning: Basics 203



Using max_rows_per_page on allpages-locked tables

For nonclustered indexes, the maximum value for max_rows_per_page isthe
number of index rows that fit on the leaf page, without exceeding 256. To
determine the maximum value, subtract 32 (the size of the page header) from
the page size and divide the difference by the index key size. The following
statement cal cul ates the maximum value of max_rows_per_page for a
nonclustered index:

sel ect (@@agesize - 32)/ mnlen
from sysi ndexes
where nane = "indexnane"

select into and max_rows_per_page

select into does not carry over the base table’'s max_rows_per_page value, but
creates the new table with amax_rows_per_page value of 0. Use
sp_chgattribute to set the max_rows_per_page value on the target table.

Applying max_rows_per_page to existing data

204

sp_chgattribute configures the max_rows_per_page of atable or an index.
sp_chgattribute affects all future operations; it does not change existing pages.
For example, to change the max_rows_per_page value of the authors tableto 1,
enter:

sp_chgattribute authors, "max_rows_per_page", 1
There are two ways to apply amax_rows_per_page va ue to existing data:

» |f thetable has a clustered index, drop and re-create the index with a
max_rows_per_page value.

*  Usethebcp utility asfollows:
a Copy out the table data.
b  Truncate the table.
C Setthemax rows_per_page value with sp_chgattribute.

d Copy the databack in.

Adaptive Server Enterprise



cuapTeErR 10 Memory Use and Performance

This chapter describes how Adaptive Server uses the data and procedure
caches and other issues affected by memory configuration. In general, the
more memory available, the faster Adaptive Server’s response time.

Topic Page
How memory affects performance 205
How much memory to configure 206
Cachesin Adaptive Server 211
Procedure cache 212
Data cache 215
Configuring the data cache to improve performance 220
Named data cache recommendations 230
Maintaining data cache performance for large 1/0 240
Speed of recovery 242
Auditing and performance 243

The System Administration Guide describes how to determine the best
memory configuration valuesfor Adaptive Server, and the memory needs
of other server configuration options.

How memory affects performance

Having ample memory reduces disk 1/0, which improves performance,
since memory access is much faster than disk access. When a user issues
aquery, thedataand index pages must bein memory, or read into memory,
in order to examine the values on them. If the pages already reside in
memory, Adaptive Server does not need to perform disk 1/0O.

Adding more memory is cheap and easy, but developing around memory
problems is expensive. Give Adaptive Server as much memory as
possible.

Memory conditions that can cause poor performance are:

Performance and Tuning: Basics 205



How much memory to configure

» Total datacache sizeistoo small.

*  Procedure cache sizeistoo small.

e Onlythedefault cacheisconfigured on an SMP system with several active
CPUs, leading to contention for the data cache.

e User-configured data cache sizes are not appropriate for specific user
applications.

e Configured I/O sizes are not appropriate for specific queries.

e Audit queue size is not appropriate if auditing feature isinstalled.

How much memory to configure

206

Memory is the most important consideration when you are configuring
Adaptive Server. Memory is consumed by various configuration parameters,
procedure cache and data caches. Setting the values of the various
configuration parameters and the caches correctly is critical to good system
performance.

The total memory allocated during boot-time is the sum of memory required
for all the configuration needs of Adaptive Server. This value can be obtained
from the read-only configuration parameter ‘total logical memory'. Thisvalue
is calculated by Adaptive Server. The configuration parameter ‘max memory'
must be greater than or equal to 'total logical memory'. 'max memory' indicates
the amount of memory you will allow for Adaptive Server needs.

During boot-time, by default, Adaptive Server allocates memory based on the
value of 'total logical memory'. However, if the configuration parameter
‘allocate max shared memory' has been set, then the memory allocated will be
based on thevalue of 'max memory'. The configuration parameter 'allocate max
shared memory' will enable a system administrator to allocate, the maximum
memory that is allowed to be used by Adaptive Server, during boot-time.

The key points for memory configuration are:

*  Thesystem administrator should determine the size of shared memory
available to Adaptive Server and set 'max memory' to this value.

Adaptive Server Enterprise



CHAPTER 10 Memory Use and Performance

e The configuration parameter 'allocate max shared memory' can be turned
on during boot-time and run-time to allocate al the shared memory up to
'max memory' with the least number of shared memory segments. Large
number of shared memory segments has the disadvantage of some
performance degradation on certain platforms. Please check your
operating system documentation to determine the optimal number of
shared memory segments. Note that once a shared memory segment is
allocated, it cannot be released until the next server reboot.

e Configure the different configuration parameters, if the defaults are not
sufficient.

*  Now the difference between 'max memory' and 'total logical memory' is
additional memory available for procedure, data caches or for other
configuration parameters.

The amount of memory to be allocated by Adaptive Server during boot-
time, is determined by either 'total logical memory' or 'max memory'. If
this value too high:

e Adaptive Server may not start, if the physical resources on your
machine does is not sufficient.

e | it does start, the operating system page fault rates may rise
significantly and the operating system may need to re configured to
compensate.

The System Administration Guide provides a thorough discussion of:
«  How to configure the total amount of memory used by Adaptive Server

e Configurable parameters that use memory, which affects the amount of
memory left for processing queries

e Handling wider character literals requires Adaptive Server to allocate
memory for string user data. Also, rather than statically all ocating buffers
of the maximum possible size, Adaptive Server allocates memory
dynamically. That is, it allocates memory for local buffers asit needsit,
awaysallocating the maximum size for these buffers, even if large buffers
are unnecessary. These memory management requests may cause
Adaptive Server to have amarginal loss in performance when handling
wide-character data.

Performance and Tuning: Basics 207



How much memory to configure

208

e If you require Adaptive Server to handle more than 1000 columnsfrom a

single table, or process over 10000 arguments to stored procedures, the
server must set up and allocate memory for variousinternal data structures
for these objects. An increase in the number of small tasksthat are
performed repeatedly may cause performance degradation for queriesthat
deal with larger numbers of such items. This performance hit increases as
the number of columns and stored procedure arguments increases.

e Memory that is alocated dynamically (as opposed to rebooting Adaptive
Server to allocate the memory) dightly degradesthe server’s performance.

e When Adaptive Server useslarger logical pagesizes, al disk I/Osaredone
in terms of the larger logical page sizes. For example, if Adaptive Server
uses an 8K logical page size, it retrieves data from the disk in 8K blocks.
This should result in an increased 1/0 throughput, although the amount of
throughput is eventually limited by the controller’s 1/O bandwidth.

What remains after all other memory needs have been met is available for the
procedure cache and the data cache. Figure 10-1 shows how memory is
divided.

Adaptive Server Enterprise



CHAPTER 10 Memory Use and Performance

Figure 10-1: How Adaptive Server uses memory

b 0S and other programs
. Adaptive Server Executable | A
. A
Physical Static overhead
memory | Internal
Kernel and structures !
server structures .
| .
Adaptive f =
Server Procedure cache =
D
= .
Total Data cache overhead Cache E
¢ =
logical E=3
memary Data cache = .
=
Yoo a
| ‘ Total physical memory l
e v

Dynamic reconfiguration

Dynamic memory allocation

Adaptive Server alows you to allocate total physica memory dynamically.
Many of the configuration parametersthat consume memory were static in pre-
12.5 versions of Adaptive Server, and the server needed to be restarted when
more memory was required. For example, when you changed the number of
user connections, you had to restart the server for thisto take effect. Many of
the configuration parameter that effect memory are now dynamic, and the
server does not have to be restarted for them to take effect. For afull list of the
configuration parameters that have changed from static to dynamic, see Table
10-1.

Performance and Tuning: Basics 209



Dynamic reconfiguration

Table 10-1: Dynamic configuration parameters

Configuration parameter

Configuration parameter

addition network memory

number of pre-allocated extents

audit queue size

number of user connections

cpu grace time

number of worker processes

deadlock pipe max messages

open index hash spinlock ratio

default database size

open index spinlock ratio

default fill factor percent

open object spinlock ratio

disk i/o structures

partition groups

errorlog pipe max messages

partition spinlock ratio

max cis remore connections

permission cache entries

memory per worker process

plan text pipe max messages

number of alarms

print recovery information

number of aux scan descriptors

process wait events

number of devices

size of global fixed heap

number of dtx participants

size of process object heap

number of java sockets

size of shared class heap

number of large i/o buffers

size of unilib cache

number of locks

sql text pipe max messages

number of mailboxes

statement pipe max messages

number of messages

tape retention in days

number of open databases

time slice

number of open indexes

user log cache spinlock ratio

number of open objects

How memory is allocated

In earlier versions of Adaptive Server, the size of the procedure cache was
based on a percentage of the available memory. After you configured the data
cache, whatever was left over was all ocated to the procedure cache. For
Adaptive Server 12.5 and higher, both the data cache and the procedure cache
are specified as absol ute values. The sizes of the caches do not change until you

210

reconfigure them.

You use the configuration parameter, max memory, which allows you to
establish a maximum setting, beyond which you cannot configure Adaptive

Server’'stotal physical memory.

Adaptive Server Enterprise



CHAPTER 10 Memory Use and Performance

If you upgrade to release 12.5 Adaptive Server or higher, pre-12.5 Adaptive
Server configuration values are used to calculate the new values for the
procedure cache size. Adaptive Server computes the size of the default data
cache during the upgrade and writes this value to the configuration file. If the
computed sizes of the data cache or procedure cache are less than the default
sizes, they arereset to the default. During the upgrade, max memory isset tothe
value of total logical memory specified in the configuration file.

Caches in Adaptive Server

Oncethe procedure cache and the data.cache are configured thereisno division
or left over memory.

e Theprocedure cache — used for stored procedures and triggers and for
short-term memory needs such as statistics and query plans for parallel
queries.

« Thedata cache—used for data, index, and log pages. The data cache can
be divided into separate, named caches, with specific databases or
database objects bound to specific caches.

Set the procedure cache size to an absol ute value using sp_configure. See the
System Administration Guide for more information.

CAche sizes and buffer pools

Memory page sizes are in multiples of 2K (i.e. max memory, total logical
memory, and so on), procedure cacheisin terms of 2K pages. Buffer cacheis
in terms of logical page size units.

Largel/Oisscaledintermsof an extent I/O. Thismeansthat with an 8K logical
page size, alarge I/0 means a 64k read/write.

If you boot Adaptive Server where the caches are defined with buffer pool sthat
arenot valid for the current logical page size, all memory for such inapplicable
buffer poolsis reallocated when configuring caches to the default buffer pool
in each named cache.

You have to be careful in how you set up the logical page sizes and what you
allow for in the buffer pool sizes.

Performance and Tuning: Basics 211



Procedure cache

Logical page size Possible buffer pool sizes
2K 2K, 4K, 16K

4K 4K, 8K, 16K, 32K

8K 8K, 16K, 32K, 64K

16K 16K, 32K, 64K, 128K

Procedure cache

Adaptive Server maintains an MRU/LRU (most recently used/least recently
used) chain of stored procedure query plans. As users execute stored
procedures, Adaptive Server looksin the procedure cache for a query plan to
use. If aquery planisavailable, it is placed on the MRU end of the chain, and
execution begins.

If no planisin memory, or if all copies arein use, the query tree for the
procedure isread from the sysprocedures table. It is then optimized, using the
parameters provided to the procedure, and put on the MRU end of the chain,
and execution begins. Plans at the L RU end of the page chain that are not in use
are aged out of the cache.

Thememory allocated for the procedure cache hol dsthe optimized query plans
(and occasionally trees) for al batches, including any triggers.

If more than one user uses a procedure or trigger simultaneously, there will be
multiple copies of it in cache. If the procedure cache istoo small, auser trying
to execute stored procedures or queries that fire triggers receives an error
message and must resubmit the query. Space becomes available when unused
plans age out of the cache.

When you first install Adaptive Server, the default procedure cache sizeis
3271 memory pages. The optimum value for the procedure cache varies from
application to application, and it may also vary as usage patterns change. The
configuration parameter to set the size, procedure cache size, isdocumented in
the System Administration Guide.

Getting information about the procedure cache size

212

When you start Adaptive Server, the error log states how much procedure
cacheisavailable.

Adaptive Server Enterprise



CHAPTER 10 Memory Use and Performance

proc buffers

proc headers

Represents the maximum number of compiled procedural objects that can
reside in the procedure cache at onetime.

Represents the number of pages dedicated to the procedure cache. Each object
in cache requires at least 1 page.

Monitoring procedure cache performance

sp_sysmon reports on stored procedure executions and the number of times
that stored procedures need to be read from disk.

For more information, see “Procedure cache management” on page 96 in the
book Performance and Tuning: Monitoring and Analyzing for Performance.

Procedure cache errors

If there is not enough memory to load another query tree or plan or the
maximum number of compiled objectsis already in use, Adaptive Server
reports Error 701.

Procedure cache sizing

On a production server, you want to minimize the procedure reads from disk.
When a user needs to execute a procedure, Adaptive Server should be ableto
find an unused tree or plan in the procedure cache for the most common
procedures. The percentage of times the server finds an available plan in cache
is called the cache hit ratio. Keeping a high cache hit ratio for proceduresin
cache improves performance.

The formulas in Figure 10-2 suggest a good starting point.

Performance and Tuning: Basics 213



Procedure cache

Figure 10-2: Formulas for sizing the procedure cache

Procedure (Max # of concurrent users) *
cache size = (4 + Size of largest plan) * 1.25

Minimum procedure (# of main procedures) *
cache size needed = (Average plan size)

If you have nested stored procedures (for example, A, B and C)—procedure A
callsprocedure B, which calls procedure C—all of them need to bein the cache
at the same time. Add the sizes for nested procedures, and use the largest sum
in place of “Size of largest plan” in the formulain Figure 10-2.

The minimum procedure cache size is the smallest amount of memory that
allows at least one copy of each frequently used compiled object to reside in
cache. However, the procedure cache can also be used as additional memory at
execution time, such as when an ad hoc query uses the distinct keyword which
uses theinternal Imlink function that will dynamically allocate memory from
the procedure cache. Then the create index will aso use the procedure cache
memory and can generate the 701 error though no stored procedureisinvolved.

For additional information on sizing the procedure cache see“ Using
sp_monitor to measure CPU usage” on page 53.

Estimating stored procedure size
To get arough estimate of the size of asingle stored procedure, view, or trigger,
use:

select(count(*) / 8) +1
from sysprocedures
where id = object_id("procedure_nanme")

For example, to find the size of thetitleid_proc in pubs2:

sel ect(count(*) / 8) +1
from sysprocedures
where id = object_id("titleid_proc")

214 Adaptive Server Enterprise



CHAPTER 10 Memory Use and Performance

Data cache

Default datacache and other cachesare configured as absolutevalues. Thedata
cache contains pages from recently accessed objects, typically:

e sysobjects, sysindexes, and other system tables for each database
* Activelog pages for each database
e Thehigher levelsand parts of the lower levels of frequently used indexes

¢ Recently accessed data pages

Default cache at installation time

When you first install Adaptive Server, it has a single data cache that is used
by all Adaptive Server processes and objects for data, index, and log pages.
The default sizeis8MB.

The following pages describe the way this single data cache is used.
“Configuring the data cache to improve performance” on page 220 describes
how to improve performance by dividing the data cache into named cachesand
how to bind particular objects to these named caches.

Most of the concepts on aging, buffer washing, and caching strategies apply to
both the user-defined data caches and the default data cache.

Page aging in data cache

The Adaptive Server data cache is managed on a most recently used/least
recently used (MRU/LRU) basis. As pagesin the cache age, they enter awash
area, where any dirty pages (pages that have been modified while in memory)
are written to disk. There are some exceptions to this:

e Caches configured with relaxed LRU replacement policy use the wash
section as described above, but are not maintained on an MRU/LRU basis.

Typically, pagesin the wash section are clean, i.e. the I/O on these pages
have been completed. When atask or query wants to grab a page from
LRU end it expects the page to be clean. If not, the query hasto wait for
the 1/0O to compl ete on the page before it can be grabbed which impairs
performance.

Performance and Tuning: Basics 215



Data cache

A special strategy agesout index pagesand OAM pages more slowly than
data pages. These pages are accessed frequently in certain applications and
keeping them in cache can significantly reduce disk reads.

See the System Administration Guide for more information.

Adaptive Server may choose to use the LRU cache replacement strategy
that does not flush other pages out of the cache with pages that are used
only once for an entire query.

The checkpoint process ensures that if Adaptive Server needsto be
restarted, the recovery process can be completed in areasonable period of
time.

When the checkpoint process estimates that the number of changesto a
database will take longer to recover than the configured value of the
recovery interval configuration parameter, it traverses the cache, writing
dirty pagesto disk.

Recovery uses only the default data cache making it faster.

The housekeeper wash task writes dirty pagesto disk when idletimeis
available between user processes.

Effect of data cache on retrievals

216

Figure 10-3 shows the effect of data caching on a series of random select
statements that are executed over a period of time. If the cache is empty
initially, thefirst select statement is guaranteed to require disk 1/O. You haveto
be sure to adequately size the data cache for the number of transactions you
expect against the database.

As more queries are executed and the cache is being filled, there isan
increasing probability that one or more page requests can be satisfied by the
cache, thereby reducing the average response time of the set of retrievals.

Oncethe cacheisfilled, thereisafixed probability of finding adesired pagein
the cache from that point forward.

Adaptive Server Enterprise



CHAPTER 10 Memory Use and Performance

Figure 10-3: Effects of random selects on the data cache

Fill

l cache

—>

<—— Steady —p
state

Average response time

Random selects over time

If the cacheis smaller than the total number of pagesthat are being accessed in
al databases, thereisachancethat agiven statement will haveto perform some
disk 1/0. A cache does not reduce the maximum possi ble response time—some
query may still need to perform physical I/O for all of the pagesit needs. But
caching decreases the likelihood that the maximum delay will be suffered by a
particular query—more queries are likely to find at least some of the required
pages in cache.

Effect of data modifications on the cache

The behavior of the cache in the presence of update transactionsis more
complicated than for retrievals.

Thereisstill aninitial period during which the cachefills. Then, because cache
pages are being modified, thereisapoint at which the cache must beginwriting
those pages to disk before it can load other pages. Over time, the amount of
writing and reading stabilizes, and subsequent transactions have a given
probability of requiring adisk read and another probability of causing a disk
write.

The steady-state period isinterrupted by checkpoints, which cause the cacheto
write all dirty pagesto disk.

Performance and Tuning: Basics 217



Data cache

Data cache performance

You can observe data cache performance by examining the cache hit ratio, the
percentage of page requests that are serviced by the cache.

One hundred percent is outstanding, but impliesthat your datacacheisaslarge
asthe data or at least large enough to contain all the pages of your frequently
used tables and indexes.

A low percentage of cache hitsindicatesthat the cache may betoo small for the
current application load. Very large tables with random page access generally
show alow cache hit ratio.

Testing data cache performance

218

Consider the behavior of the data and procedure caches when you measure the
performance of a system. When atest begins, the cache can bein any one of
the following states:

«  Empty

*  Fully randomized

*  Partialy randomized
o Deterministic

An empty or fully randomized cache yields repeatable test results because the
cache isin the same state from one test run to another.

A partially randomized or deterministic cache contains pages left by
transactions that were just executed. Such pages could be the result of a
previoustest run. Inthese cases, if the next test steps request those pages, then
no disk 1/0 will be needed.

Such a situation can bias the results away from a purely random test and lead
to inaccurate performance estimates.

The best testing strategy isto start with an empty cache or to make surethat all
test steps access random parts of the database. For more precise testing,
execute amix of queriesthat is consistent with the planned mix of user queries
on your system.

Adaptive Server Enterprise



CHAPTER 10 Memory Use and Performance

Cache hit ratio for a single query

To see the cache hit ratio for asingle query, use set statistics io on to see the
number of logical and physical reads, and set showplan on to seethe 1/O size
used by the query.

To compute the cache hit ratio, use this formula:
Figure 10-4:

. ) . .
Cache hit ratio Logical reads - (Physical reads * Pages

Logical reads

With statisticsio, physical reads are reported in 1/0O-size units. If aquery uses
16K 1/0O, it reads 8 pages with each I/O operation.

If statistics io reports 50 physical reads, it has read 400 pages. Use showplan to
seethe /O size used by aquery.

Cache hit ratio information from sp_sysmon
sp_sysmon reports on cache hits and misses for:
¢ All caches on Adaptive Server
e Thedefault data cache
e Any user-configured caches

The server-wide report provides the total number of cache searches and the
percentage of cache hits and cache misses.

See “Cache statistics summary (all caches)” on page 84 in the book
Performance and Tuning: Monitoring and Analyzing for Performance.

For each cache, the report contains the number of cache searches, cache hits
and cache misses, and the number of times that a needed buffer was found in
the wash section.

See “Cache management by cache” on page 89 in the book Performance and
Tuning: Monitoring and Analyzing for Performance.

Performance and Tuning: Basics 219



Configuring the data cache to improve performance

Configuring the data cache to improve performance

220

When you install Adaptive Server, it has single default data cache, with a 2K
memory pool, one cache partition and a single spinlock.

To improve performance you can add data caches and bind databases or
database objects to them:

1 Toreduce contention on the default data cache spinlock, divide the cache
intonwherenisl, 2, 4, 8,16, 32 or 64. If you have contention on the
spinlock with 1 cache partition, the contention is expected to reduce x/n
where n isthe number of partitions.

2 When aparticular cache partition spinlock is hot, consider splitting the
default cache into named caches.

3 If thereis till contention, consider splitting the named cache into named
cache partitions.

You can configure 4K, 8K, and 16K buffer pools from the logical page sizein
both user-defined data caches and the default data caches, allowing Adaptive
Server to perform large 1/O. In addition, caches that are sized to completely

hold tables or indexes can use relaxed LRU cache policy to reduce overhead.

You can also split the default data cache or a named cache into partitions to
reduce spinlock contention.

Configuring the data cache can improve performance in the following ways:

*  You can configure named data caches large enough to hold critical tables
and indexes.

This keeps other server activity from contending for cache space and
speeds up queries using these tables, since the needed pages are always
found in cache.

You can configure these caches to use relaxed LRU replacement policy,
which reduces the cache overhead.

*  Youcanhinda“hot” table—atablein high demand by user applications—
to one cache and the indexes on the table to other caches to increase
concurrency.

*  You can create anamed data cache large enough to hold the “hot pages’
of atable where ahigh percentage of the queries reference only a portion
of thetable.

Adaptive Server Enterprise



CHAPTER 10 Memory Use and Performance

For example, if atable contains datafor ayear, but 75% of the queries
reference data from the most recent month (about 8% of the table),
configuring a cache of about 10% of the table size provides room to keep
the most frequently used pagesin cache and leaves some space for the less
frequently used pages.

e Youcanassigntablesor databases used in decision support systems (DSS)
to specific caches with large I/O configured.

Thiskeeps DSS applications from contending for cache space with online
transaction processing (OLTP) applications. DSS applications typically
accesslarge numbers of sequential pages, and OLTP applicationstypically
access relatively few random pages.

e You can bind tempdb to its own cache to keep it from contending with
other user processes.

Proper sizing of the tempdb cache can keep most tempdb activity in
memory for many applications. If this cache is large enough, tempdb
activity can avoid performing 1/0.

e Text pages can be bound to named caches to improve the performance on
text access.

e You can bind a database's |og to a cache, again reducing contention for
cache space and access to the cache.

¢ When changes are made to acache by auser process, aspinlock deniesall
other processes access to the cache.

Although spinlocks are held for extremely brief durations, they can slow
performance in multiprocessor systems with high transaction rates. When
you configure multiple caches, each cache is controlled by a separate
spinlock, increasing concurrency on systems with multiple CPUs.

Within a single cache, adding cache partitions creates multiple spinlocks
to further reduce contention. Spinlock contention isnot an issue on single-
engine servers.

Most of these possible uses for named data caches have the greatest impact on
multiprocessor systems with high transaction rates or with frequent DSS
queries and multiple users. Some of them can increase performance on single
CPU systems when they lead to improved utilization of memory and reduce
1/0.

Performance and Tuning: Basics 221



Configuring the data cache to improve performance

Commands to configure named data caches

The commands used to configure caches and pools are shown in Table 10-2

Table 10-2: Commands used to configure caches

Command

Function

sp_cacheconfig

Creates or drops named caches and set the size, cache type, cache policy
and local cache partition number. Reports on sizes of caches and pools.

sp_poolconfig

Creates and drops I/O pools and changes their size, wash size, and
asynchronous prefetch limit.

sp_bindcache

Binds databases or database objects to a cache.

sp_unbindcache

Unbinds the specified database or database object from a cache.

sp_unbindcache_all

Unbinds all databases and objects bound to a specified cache.

sp_helpcache

Reports summary information about data caches and lists the databases
and database objects that are bound to a cache. Also reports on the
amount of overhead required by a cache.

Sp_sysmon

Reports statistics useful for tuning cache configuration, including cache
spinlock contention, cache utilization, and disk 1/O patterns.

For afull description of configuring named caches and binding objects to
caches, seethe System Administration Guide. Only aSystem Administrator can
configure named caches and bind database objects to them.

Tuning named caches

Creating named data caches and memory pools, and binding databases and
database objects to the caches, can dramatically hurt or improve Adaptive
Server performance. For example:

222

A cache that is poorly used hurts performance.

If you allocate 25% of your data cache to a database that services avery
small percentage of the query activity on your server, I/O increasesin
other caches.

A pool that is unused hurts performance.

If you add a 16K pool, but none of your queries use it, you have taken
spaceaway fromthe 2K pool. The 2K pool’s cache hit ratio isreduced, and
I/Oisincreased.

A pool that is overused hurts performance.

Adaptive Server Enterprise



CHAPTER 10 Memory Use and Performance

If you configure asmall 16K pool, and virtually all of your queries use it,
1/O ratesareincreased. The 2K cache will be under-used, while pages are
rapidly cycled through the 16K pool. The cache hit ratio in the 16K pool

will be very poor.

When you balance your pool utilization within a cache, performance can
increase dramatically.

Both 16K and 2K queries experience improved cache hit ratios. The large
number of pages often used by queries that perform 16K /O do not flush
2K pages from disk. Queries using 16K will perform approximately one-
eighth the number of 1/Os required by 2K 1/O.

When tuning named caches, always measure current performance, make your
configuration changes, and measure the effects of the changes with similar
workload.

Cache configuration goals
Goalsfor configuring caches are:

Reduced contention for spinlocks on multiple engine servers.

Improved cache hit ratios and/or reduced disk 1/0. Asabonus, improving
cache hit ratios for queries can reduce lock contention, since queries that
do not need to perform physical 1/0 usually hold locksfor shorter periods
of time.

Fewer physical reads, due to the effective use of large /0.

Fewer physical writes, because recently modified pages are not being
flushed from cache by other processes.

Reduced cache overhead and reduced CPU bus latency on SMP systems,
when relaxed LRU policy is appropriately used.

Reduced cache spinlock contention on SMP systems, when cache
partitions are used.

In addition to commands such as showplan and statistics io that help tune on a
per-query basis, you need to use a performance monitoring tool such as
sp_sysmon to look at the complex picture of how multiple queriesand multiple
applications share cache space when they are run simultaneously.

Performance and Tuning: Basics 223



Configuring the data cache to improve performance

Gather data, plan, and then implement

Thefirst step in developing a plan for cache usage isto provide as much
memory as possible for the data cache;

224

Determine the maximum amount of memory you can allocate to Adaptive
Server. Set 'max memory' configuration parameter to that value.

Once all the configuration parameters that use Adaptive Server memory
have been configured, the difference between the 'max memory' and run
value of 'total logical memory' is the memory available for additional
configuration and/or for data/procedure caches. If you have sufficiently
configured all the other configuration parameters, you can choose to
allocate this additional memory to data caches. Most changes to the data
cache are dynamic and do not require a reboot.

Notethat if you allocate all the additional memory to data caches, there
may not be any memory available for reconfiguration of other
configuration parameters. However, if there is additional memory
available in your system, 'max memory' value can be increased
dynamically and other dynamic configuration parameters like 'procedure
cache siz€, 'user connections, etc., can be increased.

Use your performance monitoring toolsto establish baseline performance,
and to establish your tuning goals.

Determine the size of memory you can allocate to data caches as mentioned in
the above steps. Includethe size of already configured cache(s), like the default
data cache and any named cache(s).

Decide the data caches's size by looking at existing objects and applications.
Note that addition of new caches or increase in configuration parameters that
consume memory does not reduce the size of the default data cache. Onceyou
have decided the memory available for data caches and size of each individual
cache, add new caches and increase or decrease size of existing data caches.

Evaluate cache needs by analyzing /O patterns, and eval uate pool needs
by analyzing query plans and 1/0 statistics.

Configure the easiest choices that will gain the most performance first:
* Chooseasizefor atempdb cache.
e Choose asizefor any log caches, and tune thelog 1/0 size.

e Choose asize for the specific tables or indexes that you want to keep
entirely in cache.

e Addlarge I/O poalsfor index or data caches, as appropriate.

Adaptive Server Enterprise



CHAPTER 10 Memory Use and Performance

e Once these sizes are determined, examine remaining |/O patterns, cache
contention, and query performance. Configure caches proportional to 1/0
usage for objects and databases.

Keep your performance goalsin mind as you configure caches:

e If your mgjor goal in configuring cachesisto reduce spinlock contention,
increasing the number of cache partitionsfor heavily-used caches may be
the only step.

Moving afew high-1/0 objects to separate caches al so reduces the
spinlock contention and improves performance.

e If your major goal isto improve response time by improving cache hit
ratios for particular queries or applications, creating caches for the tables
and indexes used by those queries should be guided by athorough
understanding of the access methods and 1/0 requirements.

Evaluating cache needs

Generally, your goal isto configure cachesin proportion to the number of times
that the pages in the caches will be accessed by your queries and to configure
pools within cachesin proportion to the number of pages used by queries that
choose 1/0 of that pool’s size.

If your databases and their logs are on separate logical devices, you can
estimate cache proportions using sp_sysmon or operating system commandsto
examine physical 1/0 by device.

See “Disk 1/0 management” on page 102 in the book Performance and
Tuning: Monitoring and Analyzing for Performance for information about the
sp_sysmon output showing disk |/O.

Large I/O and performance

You can configure the default cache and any named cachesyou createfor large
1/0 by splitting a cache into pools. The default I/0 sizeis 2K, one Adaptive
Server data page.

Note ReferencetolLargel/Osareona2kK logical pagesize server. If you have
an 8K page size server, the basic unit for the 1/Ois 8K. If you have a 16K page
size server, the basic unit for the 1/O is 16K.

Performance and Tuning: Basics 225



Configuring the data cache to improve performance

226

For querieswhere pages are stored and accessed sequentially, Adaptive Server
reads up to eight data pagesin asingle 1/O. Since the majority of I/O timeis
spent doing physical positioning and seeking on the disk, large I/O can greatly
reduce disk accesstime. In most cases, you want to configurea 16K pool inthe
default data cache.

Certain types of Adaptive Server queries are likely to benefit from large 1/0.
Identifying these types of queries can help you determine the correct size for
data caches and memory pools.

In the following examples, either the database or the specific table, index or
LOB page change (used for, text, image, and Java off-row columns) must be
bound to a named data cache that has large memory pools, or the default data
cache must have large 1/0 pools. Types of queries that can benefit from large
1/O include:

e Queriesthat scan entire tables. For example:

select title_id, price fromtitles
sel ect count(*) from authors
where state = "CA" /* no index on state */

» Range queries on tables with clustered indexes. For example:
wher e i ndexed_col name >= val ue

e Queriesthat scan the leaf level of an index, both matching and non-
matching scans. If there is a nonclustered index on type, price, this query
could uselarge /O ontheleaf level of theindex, sinceall the columns used
in the query are contained in the index:

sel ect type, sum(price)
fromtitles

group by type

*  Queriesthat join entire tables, or large portions of tables. Different 1/O
sizes may be used on different tablesin ajoin.

*  Queriesthat select text or image or Java off-row columns. For example:
sel ect au_id, copy from bl urbs
*  Queriesthat generate Cartesian products. For example:

select title, au_l nane
fromtitles, authors

This query needs to scan all of one table, and scan the other table
completely for each row from the first table. Caching strategies for these
queries follow the same principles asfor joins.

Adaptive Server Enterprise



CHAPTER 10 Memory Use and Performance

e Queriessuch as select into that allocate large numbers of pages.

Note Adaptive Server version 12.5.03 or later enables large-page
alocation in select into. It allocates pages by extent rather than by
individual page, thusissuing fewer logging requests for the target table.

If you configure Adaptive Server with large buffer pools, it useslarge|/O
buffer pools when writing the target table pages to disk.

e create index commands.
¢ Bulk copy operations on heaps—both copy in and copy out.

e Theupdate statistics, dbcc checktable, and dbcc checkdb commands.

The optimizer and cache choices

If the cache for atable or index has a 16K pool, the optimizer decides on the
1/0 sizeto usefor dataand leaf-level index pages based on the number of pages
that need to be read and the cluster ratios for the table or index.

The optimizer’s knowledge is limited to the single query it isanalyzing and to
statistics about the table and cache. It does not have information about how
many other queries are simultaneously using the same data cache. It al'so has
no statistics on whether table storage is fragmented in such away that large
1/Os or asynchronous prefetch would be less effective.

In some cases, this combination of factors can lead to excessive /0. For
example, users may experience higher 1/0 and poor performance if
simultaneous querieswith large result setsare using avery small memory pool.

Choosing the right mix of 1/O sizes for a cache

You can configure up to four poolsin any datacache, but, in most cases, caches
for individual objects perform best with only a 2K pool and a 16K pool. A
cache for a database where the log is not bound to a separate cache should also
have a pool configured to match the log 1/O size configured for the database;
often the best log 1/0 sizeis 4K.

Performance and Tuning: Basics 227



Configuring the data cache to improve performance

Reducing spinlock contention with cache partitions

As the number of engines and tasks running on an SMP system increases,
contention for the spinlock on the data cache can also increase. Any time atask
needs to access the cache to find a page in cache or to relink a page on the
LRU/MRU chain, it holds the cache spinlock to prevent other tasks from
modifying the cache at the same time.

With multiple engines and users, tasks wind up waiting for accessto the cache.
Adding cache partitions separates the cache into partitions that are each
protected by its own spinlock. When a page needs to be read into cache or
located, a hash function is applied to the database ID and page ID to identify
which partition holds the page.

The number of cache partitionsis always apower of 2. Each time you increase
the number of partitions, you reduce the spinlock contention by approximately
1/2. If spinlock contention is greater than 10 to 15%, consider increasing the
number of partitions for the cache. This example creates 4 partitionsin the
default data cache:

sp_cacheconfig "default data cache",
"cache_partition=4"

You must reboot the server for changes in cache partitioning to take effect.

For more information on configuring cache partitions, see the System
Administration Guide.

For information on monitoring cache spinlock contention with sp_sysmon, see
“Cache spinlock contention” on page 89 in the book Performance and Tuning:
Monitoring and Analyzing for Performance.

Each pool inthe cacheis partitioned into aseparate LRU/MRU chain of pages,
with its own wash marker.

Cache replacement strategies and policies

228

The Adaptive Server optimizer uses two cache replacement strategies to keep
frequently used pagesin cache while flushing the less frequently used pages.
For some caches, you may want to consider setting the cache replacement
policy to reduce cache overhead.

Adaptive Server Enterprise



CHAPTER 10 Memory Use and Performance

Strategies

Policies

Replacement strategies determine where the page is placed in cachewhen itis
read from disk. The optimizer decides on the cache replacement strategy to be
used for each query. The two strategies are:

e Fetch-and-discard, or MRU replacement, strategy links the newly read
buffers at the wash marker in the pool.

¢ LRU replacement strategy links newly read buffers at the most-recently
used end of the pool.

Cache replacement strategies can affect the cache hit ratio for your query mix:

*  Pagesthat are read into cache with the fetch-and-discard strategy remain
in cache a much shorter time than queries read in at the MRU end of the
cache. If suchapageisneeded again (for example, if the same query isrun
again very soon), the pages will probably need to be read from disk again.

e Pagesthat are read into cache with the fetch-and-discard strategy do not
displace pages that already reside in cache before the wash marker. This
means that the pages already in cache before the wash marker will not be
flushed out of cache by pages that are needed only once by a query.

See " Specifying the cache strategy” on page 45 and “ Controlling large /O and
cache strategies’ on page 47 in the book Performance and Tuning: Optimizer
for information on specifying the cache strategy in queries or setting valuesfor
tables.

A System Administrator can specify whether a cache is going to be maintained
as an MRU/LRU-linked list of pages (strict) or whether relaxed LRU
replacement policy can be used. The two replacement policies are:

e Strict replacement policy replacesthe least recently used pagein the poal,
linking the newly read page(s) at the beginning (MRU end) of the page
chain in the poal.

« Relaxed replacement policy attempts to avoid replacing a recently used
page, but without the overhead of keeping buffersin LRU/MRU order.

The default cache replacement policy is strict replacement. Relaxed
replacement policy should be used only when both of these conditions aretrue:

e Thereislittle or no replacement of buffersin the cache.

e Thedatais not updated or is updated infrequently.

Performance and Tuning: Basics 229



Named data cache recommendations

Relaxed LRU policy saves the overhead of maintaining the cachein
MRU/LRU order. On SMP systems, where copies of cached pages may reside
in hardware caches on the CPUs themselves, relaxed LRU policy can reduce
bandwidth on the bus that connects the CPUs.

If you have created acacheto hold all, or most of, certain objects, and the cache
hit rateis above 95%, using relaxed cache replacement policy for the cache can
improve performance dightly.

See the System Administration Guide for more information.

Configuring relaxed LRU Replacement for database logs

Log pages are filled with log records and are immediately written to disk.
When applicationsinclude triggers, deferred updates or transaction rollbacks,
some log pages may be read, but usually they are very recently used pages,
which are still in the cache.

Since accessing these pages in cache moves them to the MRU end of a strict-
replacement policy cache, log caches may perform better with relaxed LRU
replacement.

Relaxed LRU replacement for lookup tables and indexes

User-defined caches that are sized to hold indexes and frequently used lookup
tables are good candidates for relaxed LRU replacement. If a cacheis a good
candidate, but you find that the cache hit ratio is dightly lower than the
performance guideline of 95%, determine whether slightly increasing the size
of the cache can provide enough space to completely hold the table or index.

Named data cache recommendations

230

These cache recommendations can improve performance on both single and
multiprocessor servers:

»  Adaptive Server writeslog pages according to the size of the logical page
size. Larger log pages potentially reduce the rate of commit-sharing writes
for log pages.

Adaptive Server Enterprise



CHAPTER 10 Memory Use and Performance

Commit-sharing occurs when, instead of performing many individual
commits, Adaptive Server waitsuntil it can perform abatch of commits at
one time. Per-process user log caches are sized according to the logical
page size and the user log cache size configuration parameter. The default
size of the user log cache is one logical page.

For transactions generating many log records, the time required to flush

the user log cacheisslightly higher for larger logical page sizes. However,
because the log-cache sizesare also larger, Adaptive Server does not need
to perform as many log-cache flushesto the log page for long transactions.

See the System Administration Guide for specific information.

e Create anamed cache for tempdb and configure the cachefor 16K /O for
use by select into queries and sorts.

«  Create anamed cachefor thelogsfor your high-use databases. Configure
poolsin this cache to match the log 1/0 size set with sp_logiosize.

See “Choosing the I/O size for the transaction log” on page 234.

e If atableoritsindex issmall and constantly in use, create acache for just
that object or for afew objects.

«  For cacheswith cache hit ratios of more than 95%, configurerelaxed LRU
cache replacement policy if you are using multiple engines.

e Keep cache sizes and pool sizes proportional to the cache utilization
objects and queries:

e If 75% of the work on your server is performed in one database, that
database should be all ocated approximately 75% of the datacache, in
acache created specifically for the database, in caches created for its
busiest tables and indexes, or in the default data cache.

e |f approximately 50% of the work in your database can use large I/O,
configure about 50% of the cache in a 16K memory pool.

e Itisbetter to view the cache as a shared resource than to try to
micromanage the caching needs of every table and index.

Start cache analysis and testing at the database level, concentrating on
particular tables and objects with high 1/0 needs or high application
priorities and those with special uses, such astempdb and transaction logs.

e On SMP servers, use multiple caches to avoid contention for the cache
spinlock:

Performance and Tuning: Basics 231



Named data cache recommendations

e Useaseparate cache for the transaction log for busy databases, and
use separate caches for some of the tables and indexes that are
accessed frequently.

e |If spinlock contention is greater than 10% on a cache, split it into
multiple caches or use cache partitions.

Use sp_sysmon periodically during high-usage periods to check for
cache contention.

See “Cache spinlock contention” on page 89 in the book
Performance and Tuning: Monitoring and Analyzing for
Performance.

e Setrelaxed LRU cache policy on cacheswith cache hit ratios of more
than 95%, such as those configured to hold an entire table or index.

Sizing caches for special objects, tempdb, and transaction logs

Creating cachesfor tempdb, the transaction logs, and for afew tablesor indexes
that you want to keep completely in cache can reduce cache spinlock
contention and improve cache hit ratios.

Determining cache sizes for special tables or indexes

You can use sp_spaceused to determine the size of the tables or indexes that
you want to keep entirely in cache. If you know how fast these tablesincrease
in size, allow some extra cache space for their growth. To seethe size of all the
indexes for atable, use:

sp_spaceused tabl e_nane, 1

Examining cache needs for tempdb
Look at your use of tempdb:

» Estimate the size of the temporary tables and worktables generated by
your queries.

Look at the number of pages generated by select into queries.

These queries can use 16K 1/0, so you can use thisinformation to help you
size a 16K pool for the tempdb cache.

232 Adaptive Server Enterprise



CHAPTER 10 Memory Use and Performance

e Estimate the duration (in wall-clock time) of the temporary tables and
worktables.

e Estimate how often queries that create temporary tables and worktables
are executed.

Try to estimate the number of simultaneous users, especialy for queries
that generate very large result setsin tempdb.

With thisinformation, you can aform arough estimate of the amount of
simultaneous 1/0 activity in tempdb. Depending on your other cache needs,
you can choose to size tempdb so that virtually all tempdb activity takes place
in cache, and few temporary tables are actually written to disk.

In most cases, the first 2MB of tempdb are stored on the master device, with
additional space on another logical device. You can use sp_sysmon to check
those devices to help determine physical /0 rates.

Examining cache needs for transaction logs

On SMP systems with high transaction rates, binding the transaction log to its
own cache can greatly reduce cache spinlock contention in the default data
cache. In many cases, the log cache can be very small.

The current page of the transaction log is written to disk when transactions
commit, so your objective in sizing the cache or pool for the transaction log is
not to avoid writes. Instead, you should try to size thelog to reduce the number
of times that processes that need to reread log pages must go to disk because
the pages have been flushed from the cache.

Adaptive Server processes that need to read log pages are:

e Triggersthat use theinserted and deleted tables, which are built from the
transaction log when the trigger queries the tables

»  Deferred updates, deletes, and inserts, since theserequirerereading thelog
to apply changesto tables or indexes

e Transactionsthat arerolled back, sincelog pages must be accessed to roll
back the changes

When sizing a cache for atransaction log:
«  Examinethe duration of processes that need to reread log pages.
Estimate how long the longest triggers and deferred updates last.

If some of your long-running transactions arerolled back, check thelength
of timethey ran.

Performance and Tuning: Basics 233



Named data cache recommendations

e Estimate the rate of growth of the log during this time period.

You can check your transaction log size with sp_spaceused at regular
intervals to estimate how fast the log grows.

Use thislog growth estimate and the time estimate to size the log cache. For
example, if thelongest deferred update takes 5 minutes, and the transaction log
for the database grows at 125 pages per minute, 625 pages are allocated for the
log while this transaction executes.

If afew transactions or queries are especially long-running, you may want to
size thelog for the average, rather than the maximum, length of time.

Choosing the I/O size for the transaction log

234

When a user performs operations that require logging, log records are first
stored in a*“user log cache” until certain events flush the user’s log records to
the current transaction log page in cache. Log records are flushed:

*  When atransaction ends
*  When the user log cacheisfull
*  When the transaction changes tables in another database

»  When another process needs to write a page referenced in the user log
cache

» At certain system events

To economize on disk writes, Adaptive Server holds partialy filled transaction
log pages for avery brief span of time so that records of several transactions
can be written to disk simultaneously. This processis called group commit.

In environments with high transaction rates or transactionsthat create largelog
records, the 2K transaction log pagesfill quickly, and alarge proportion of log
writes are due to full log pages, rather than group commits.

Creating a4K pool for the transaction log can greatly reduce the number of log
writesin these environments.

sp_sysmon reports on the ratio of transaction log writes to transaction log
allocations. You should try using 4K log /O if al of these conditions are true:

*  Your databaseisusing 2K log I/O.
*  Thenumber of log writes per second is high.

»  Theaverage number of writes per log page is slightly above one.

Adaptive Server Enterprise



CHAPTER 10 Memory Use and Performance

Here is some sample output showing that alarger log 1/0 size might help

performance:
per sec per xact count % of total
Transaction Log Wites 22.5 458. 0 1374 n/ a
Transaction Log Al oc 20. 8 423.0 1269 n/ a
Avg # Wites per Log Page n/ a nfa 1.08274 n/ a

See“ Transaction log writes’ on page 59 in the book Performance and Tuning;:
Monitoring and Analyzing for Performance for more information.

Configuring for large log 1/O size

The log 1/0 size for each database is reported in the server’s error log when
Adaptive Server starts. You can also use sp_logiosize.

To see the size for the current database, execute sp_logiosize with no
parameters. To seethe size for al databases on the server and the cache in use
by the log, use:

sp_l ogi osi ze "al I "

To set thelog 1/0O size for a database to 4K, the default, you must be using the
database. This command sets the size to 4K:

sp_l ogi osi ze "defaul t"

By default, Adaptive Server setsthelog 1/0 size for user databasesto 4K. If no
4K pool isavailable in the cache used by thelog, 2K 1/O is used instead.

If adatabaseisbound to acache, al objectsnot explicitly bound to other caches
use the database's cache. Thisincludes the syslogs table.

To bind syslogs to another cache, you must first put the database in single-user
mode, with sp_dboption, and then use the database and execute sp_bindcache.
Hereisan example:

sp_bi ndcache pubs_l og, pubtune, syslogs

Additional tuning tips for log caches

For further tuning after configuring a cache for the log, check sp_sysmon
output. Look at the output for:

e The cache used by thelog
e Thedisk thelog isstored on

e Theaverage number of writes per log page

Performance and Tuning: Basics 235



Named data cache recommendations

Basing data pool

When looking at the log cache section, check “ Cache Hits’ and “ Cache
Misses’ to determine whether most of the pages needed for deferred
operations, triggers, and rollbacks are being found in cache.

Inthe“Disk Activity Detail” section, ook at the number of “ Reads” performed
to see how many times tasks that need to reread the log had to access the disk.

sizes on query plans and 1/O

Divide a cacheinto pools based on the proportion of the I/O performed by your
gueriesthat usethe corresponding 1/0 sizes. If most of your queries can benefit
from 16K 1/O, and you configure avery small 16K cache, you may see worse
performance.

Most of the spacein the 2K pool remains unused, and the 16K pool experiences
high turnover. The cache hit ratio is significantly reduced.

The problem is most severe with nested-loop join queries that have to
repeatedly reread the inner table from disk.

Making a good choice about pool sizes requires:
*  Knowledge of the application mix and the 1/O size your queries can use

e Careful study and tuning, using monitoring toolsto check cache
utilization, cache hit rates, and disk 1/0

Checking I/O size for queries

236

You can examine query plans and I/O statistics to determine which queries are
likely to perform large I/O and the amount of 1/0 those queries perform. This
information can form the basis for estimating the amount of 16K 1/O the
queries should perform with a 16K memory pool. I/Os are done in terms of
logical page sizes, if it usesthe 2K pageit retrievesin 2K sizes, if 8K it
retrieves in the 8K size, as shown:

Logical page size Memory pool
2K 16K

4K 64K

8K 128K

16K 256K

Another example, a query that scans a table and performs 800 physical 1/0s
using a 2K pool should perform about 100 8K 1/Os.

Adaptive Server Enterprise



CHAPTER 10 Memory Use and Performance

See “Large I/0 and performance” on page 225 for alist of query types.

To test your estimates, you need to actually configure the pools and run the
individual queries and your target mix of queries to determine optimum pool
sizes. Choosing agood initial size for your first test using 16K 1/0O dependson
agood sense of the types of queriesin your application mix.

Thisestimateis especially important if you are configuring a 16K pool for the
first time on an active production server. Make the best possible estimate of
simultaneous uses of the cache.

Some guidelines:

e If most I/O occursin point queries using indexes to access asmall number
of rows, make the 16K pool relatively small, say about 10 to 20% of the
cachesize.

e If you estimate that alarge percentage of the I/Os will use the 16K pooal,
configure 50 to 75% of the cache for 16K /0.

Queriesthat use 16K 1/0O include any query that scans atable, usesthe
clustered index for range searches and order by, and queries that perform
matching or nonmatching scans on covering nonclustered indexes.

e If you are not sure about the 1/0O size that will be used by your queries,
configure about 20% of your cache space in a16K pool, and use showplan
and statistics i/o while you run your queries.

Examine the showplan output for the “Using 16K 1/0” message. Check
statistics i/o output to see how much 1/O is performed.

e If youthink that your typical application mix uses both 16K 1/0 and 2K
1/0 simultaneously, configure 30 to 40% of your cache space for 16K /0.

Your optimum may be higher or lower, depending on the actual mix and
the /0O sizes chosen by the query.

If many tables are accessed by both 2K 1/0O and 16K 1/O, Adaptive Server
cannot use 16K 1/0, if any page from the extent isin the 2K cache. It
performs 2K 1/O on the other pages in the extent that are needed by the
query. Thisaddsto the I/O in the 2K cache.

After configuring for 16K 1/0O, check cache usage and monitor the I/O for the
affected devices, using sp_sysmon or Adaptive Server Monitor. Also, use
showplan and statistics io to observe your queries.

e Look for nested-loop join querieswhere an inner tablewould use 16K 1/0,
and the table is repeatedly scanned using the fetch-and-discard (MRU)

strategy.

Performance and Tuning: Basics 237



Named data cache recommendations

This can occur when neither table fits completely in cache. If increasing
the size of the 16K pool allows the inner table to fit completely in cache,
I/O can be significantly reduced. You might also consider binding the two
tables to separate caches.

e Look for excessive 16K 1/0O, when compared to table size in pages.

For example, if you have an 8000-page table, and a 16K /0 table scan
performs significantly more than 1000 I/Osto read this table, you may see
improvement by re-creating the clustered index on this table.

e Look for timeswhenlargel/Oisdenied. Many times, thisisbecause pages
are aready in the 2K pooal, so the 2K pool will be used for the rest of the
I/O for the query.

For acompletelist of thereasonsthat large 1/0O cannot be used, see“When
prefetch specification is not followed” on page 44 in the book
Performance and Tuning: Optimizer.

Configuring buffer wash size

238

You can configure the wash area for each pool in each cache. If you set the
wash sizeis set too high, Adaptive Server may perform unnecessary writes. If
you set the wash areatoo small, Adaptive Server may not beabletofind aclean
buffer at the end of the buffer chain and may have to wait for 1/0 to complete
before it can proceed. Generally, wash size defaults are correct and need to be
adjusted only in large pools that have very high rates of data modification.

Adaptive Server alocates buffer poolsin units of logical pages. For example,
onaserver using 2K logical pages, 8V B are allocated to the default data cache.
By default this constitutes approximately 4096 buffers.

If you allocated the same 8MB for the default data cache on aserver using a
16K logical page size, the default data cache is approximately 512 buffers. On
abusy system, this small number of buffers might result in a buffer always
being in the wash region, causing a slowdown for tasks requesting clean
buffers.

In general, to obtain the same buffer management characteristicson larger page
sizes as with 2K logical page sizes, you should scale the size of the cachesto
the larger page size. In other words, if you increase your logical page size by
four times, your cache and pool sizes should be about four times larger aswell.

Adaptive Server Enterprise



CHAPTER 10 Memory Use and Performance

Queriesperforming large /O, extent- based reads and writes, and so on, benefit
from the use of larger logical page sizes. However, as catalogs continue to be
page-locked, there is greater contention and blocking at the page level on
system catal ogs.

Row and column copying for DOL tables will result in a greater slowdown
when used for wide columns. Memory allocation to support wide rows and
wide columns will marginally slow the server.

See the System Administration Guide for more information.

Overhead of pool configuration and binding objects

Configuring memory pools and binding objects to caches can affect userson a
production system, so these activities are best performed during off-hours.

Pool configuration overhead

When apool is created, deleted, or changed, the plans of all stored procedures
and triggers that use objects bound to the cache are recompiled the next time

they are run. If adatabase is bound to the cache, this affects all of the objects
in adatabase.

Thereis aslight amount of overhead involved in moving buffers between
pools.

Cache binding overhead

When you bind or unbind an object, all the object’s pages that are currently in
the cache are flushed to disk (if dirty) or dropped from the cache (if clean)
during the binding process.

The next time the pages are needed by user queries, they must be read from the
disk again, slowing the performance of the queries.

Performance and Tuning: Basics 239



Maintaining data cache performance for large 1/0

Adaptive Server acquires an exclusive lock on the table or index while the
cacheisbeing cleared, so binding can slow access to the object by other users.
The binding process may have to wait until transactions complete to acquire
the lock.

Note The fact that binding and unbinding objects from caches removes them
from memory can be useful when tuning queries during development and
testing.

If you need to check physical 1/O for a particular table, and earlier tuning
efforts have brought pagesinto cache, you can unbind and rebind the object.
The next time the table is accessed, all pages used by the query must be read
into the cache.

The plans of all stored procedures and triggers using the bound objects are
recompiled the next time they are run. If adatabase is bound to the cache, this
affects all the objectsin the database.

Maintaining data cache performance for large 1/0O

240

When heap tables, clustered indexes, or nonclustered indexes have just been
created, they show optimal performance when large I/O is being used. Over
time, the effects of deletes, page splits, and page deallocation and reallocation
can increase the cost of 1/0O. optdiag reports a statistic called “Large 1/O
efficiency” for tables and indexes.

When thisvalueis 1, or closeto 1, large 1/O is very efficient. Asthe value
drops, more /O is required to access data pages needed for a query, and large
1/0 may be bringing pages into cache that are not needed by the query.

You need to consider rebuilding indexes when large 1/0 efficiency drops or
activity in the pool increases due to increased 16K 1/O.

When large 1/0 efficiency drops, you can:

* Runreorg rebuild on tables that use data-only-locking. You can also use
reorg rebuild on the index of data-only-locked tables.

»  For alpages-locked tables, drop and re-create the indexes.

For moreinformation, see* Running reorg on tablesand indexes” on page 343.

Adaptive Server Enterprise



CHAPTER 10 Memory Use and Performance

Diagnosing excessive I/O Counts

There are several reasons why a query that performs large 1/0 might require
more reads than you anticipate;

e The cache used by the query has a 2K cache and other processes have
brought pages from the table into the 2K cache.

If Adaptive Server findsthat one of the pagesit would read using 16K 1/Os
aready inthe 2K cache, it performs 2K 1/O on the other pagesin the extent
that are required by the query.

« Thefirst extent on each allocation unit stores the allocation page, so if a
query needs to access all the pages on the extent, it must perform 2K 1/0O
on the 7 pages that share the extent with the allocation page.

The other 31 extents can be read using 16K 1/0. So, the minimum number
of reads for an entire allocation unit is always 38, not 32.

e Innonclustered indexes and clustered indexes on data-only-locked tables,
an extent may store both leaf-level pages and pages from higher levels of
theindex. 2K 1/O is performed on the higher levels of indexes, and for
|eaf-level pages when few pages are needed by a query.

When a covering leaf-level scan performs 16K 1/0, it islikely that some
of the pages from some extents will bein the 2K cache. The rest of the
pages in the extent will be read using 2K 1/0.

Using sp_sysmon to check large I/0O performance

The sp_sysmon output for each data cache includes information that can help
you determine the effectivenessfor large |/Osin the Performance and Tuning:
Monitoring and Analyzing for Performance book:

e “Largel/O usage” on page 85 reportsthe number of large 1/Os performed
and denied and provides summary statistics.

e “Largel/O detail” on page 95 reports the total number of pagesthat were
read into the cache by alarge 1/0 and the number of pages that were
actually accessed while they were in the cache.

Performance and Tuning: Basics 241



Speed of recovery

Speed of recovery

Asusers modify datain Adaptive Server, only the transaction log is written to
disk immediately, to ensure that given data or transactions can be recovered.
The changed or “dirty” dataand index pages stay in the data cache until one of
these events causes them to be written to disk:

The checkpoint process wakes up, determines that the changed data and
index pages for a particular database need to be written to disk, and writes
out all the dirty pagesin each cache used by the database.

The combination of the setting for recovery interval and the rate of data
modifications on your server determine how often the checkpoint process
writes changed pages to disk.

As pages move into the buffer wash area of the cache, dirty pages are
automatically written to disk.

Adaptive Server has spare CPU cyclesand disk I/O capacity between user
transactions, and the housekeeper wash task uses this time to write dirty
buffersto disk.

Recovery happens only on the default data cache.
A user issues a checkpoint command.

You can use the checkpoint to identify one or more databasess or use an al
clause.

checkpoint [all | [dbname[, dbname[, dbname.....]]]

The combination of checkpoints, the housekeeper, and writes started at the
wash marker has these benefits:

Many transactions may change a page in the cache or read the pagein the
cache, but only one physical write is performed.

Adaptive Server performs many physical writes at times when the |/O
does not cause contention with user processes.

Tuning the recovery interval

The default recovery interval in Adaptive Server isfive minutes per database.
Changing the recovery interval can affect performance because it can impact
the number of times Adaptive Server writes pages to disk.

242

Adaptive Server Enterprise



CHAPTER 10 Memory Use and Performance

Table 10-3 showsthe effects of changing the recovery interval fromits current

setting on your system.
Table 10-3: Effects of recovery interval on performance and recovery
time
Setting Effects on performance Effects on recovery
Lower May cause morereadsand writesand may lower  Recovery period will be very short.

throughput. Adaptive Server will write dirty
pagesto the disk moreoften. Any checkpoint I/0
“spikes” will be smaller.

Higher Minimizes writes and improves system Automatic recovery may take moretime
throughput. Checkpoint 1/O spikes will be on start-up. Adaptive Server may have
higher. to respply alarge number of transaction

log records to the data pages.

See the System Administration Guide for information on setting the recovery
interval. sp_sysmon reports the number and duration of checkpoints.

See “Recovery management” on page 99 in the book Performance and
Tuning: Monitoring and Analyzing for Performance.

Effects of the housekeeper wash task on recovery time

Adaptive Server’s housekeeper wash task automatically begins cleaning dirty
buffers during the server’'sidle cycles. If thetask is ableto flush al active
buffer poolsin all configured caches, it wakes up the checkpoint process. This
may result in faster checkpoints and shorter database recovery time.

System Administrators can use the housekeeper free write percent
configuration parameter to tune or disable the housekeeper wash task. This
parameter specifies the maximum percentage by which the housekeeper task
can increase database writes.

For more information on tuning the housekeeper and the recovery interval, see
“Recovery management” on page 99 in the book Performance and Tuning:
Monitoring and Analyzing for Performance.

Auditing and performance

Heavy auditing can affect performance as follows:

Performance and Tuning: Basics 243



Auditing and performance

e Audit records are written first to a queue in memory and then to the
sybsecurity database. If the database shares a disk used by other busy
databases, it can slow performance.

e |If thein-memory audit queue fills up, the user processes that generate
audit records sleep. See Figure 10-5 on page 245.

Sizing the audit queue

244

The size of the audit queue can be set by a System Security Officer. The default
configuration is as follows:

* A single audit record requires a minimum of 32 bytes, up to a maximum
of 424 bytes.

This means that a single data page stores between 4 and 80 records.

»  Thedefault size of the audit queueis 100 records, requiring approximately
42K.

The minimum size of the queue is 1 record; the maximum size is 65,335
records.

There are trade-offs in sizing the audit queue, as shown in Figure 10-5.

If the audit queueislarge, so that you do not risk having user processes sleep,
you run the risk of losing any audit records in memory if there is a system
failure. The maximum number of records that can be lost is the maximum
number of records that can be stored in the audit queue.

If security isyour chief concern, keep the queue small. If you can risk the loss
of more audit records, and you require high performance, make the queue
larger.

Increasing the size of the in-memory audit queue takes memory from the total
memory allocated to the data cache.

Adaptive Server Enterprise



CHAPTER 10 Memory Use and Performance

Figure 10-5: Trade-offs in auditing and performance

If the audit queue is full,
’— this process will sleep until

space is available
} If the system crashes,

f- these records are lost

Audit | |
record

Audit queue size

sysaudits

Auditing performance guidelines

e Heavy auditing slows overall system performance. Audit only the events
you need to track.

e If possible, place the sysaudits database on its own device. If that is not
possible, placeit on adevice that is not used for your most critical
applications.

Text and images pages

Text and image pages can use large portions of memory and are commonly
known as space wastage. They exist aslong as a parent data row pointsto the
text and image pages. These pages come into existence when a null update is
done against the columns.

Find the current status for the table:
sp_hel p<t abl e nanme>

Thetext and image pages can be deall ocated to open the space they occupy. Use
the sp_chgattribute:

sp_chgattribute <table nanme>, “deallocate_first_txtpg”,1

Performance and Tuning: Basics 245



Text and images pages

This switches the deall ocation on. To switch the deallocation off:

sp_chgattribute <table nane>, “deallocate first_txtpg”,0

246 Adaptive Server Enterprise



cuarTeErR 11 Determining Sizes of Tables and
Indexes

This chapter explains how to determine the current sizes of tables and
indexes and how to estimate table size for space planning.

It contains the following sections:

Why object sizes

Topic Page
Why object sizes are important to query tuning 247
Tools for determining the sizes of tables and indexes 248
Effects of data modifications on object sizes 249
Using optdiag to display object sizes 249
Using sp_spaceused to display object size 250
Using sp_estspace to estimate object size 252
Using formulas to estimate object size 254

are important to query tuning

Knowing the sizes of your tables and indexes is important to
understanding query and system behavior. At several stages of tuning
work, you need size datato:

Performance and Tuning: Basics

Understand statistics io reports for a specific query plan. Chapter 3,
“Using Statisticsto Improve Performance,” in the book Performance
and Tuning: Monitoring and Analyzing for Performance describes
how to use statistics io to examine the I/O performed.

Understand the optimizer’s choice of query plan. Adaptive Server's
cost-based optimizer estimates the physical and logical 1/0 required
for each possible access method and chooses the cheapest method. If
you think aparticular query plan is unusual, you can used dbcc
traceon(302) to determine why the optimizer made the decision. This
output includes page number estimates.

247



Tools for determining the sizes of tables and indexes

Determine object placement, based on the sizes of database objectsand the
expected /O patterns on the objects. You can improve performance by
distributing database objects across physical devices so that reads and
writes to disk are evenly distributed. Object placement is described in
Chapter 6, “ Controlling Physical Data Placement.”

Understand changes in performance. If objects grow, their performance
characteristics can change. One exampleisatablethat is heavily used and
isusually 100 percent cached. If that table grows too large for its cache,
queriesthat accessthe table can suddenly suffer poor performance. Thisis
particularly true for joins requiring multiple scans.

Do capacity planning. Whether you are designing a new system or
planning for growth of an existing system, you need to know the space
requirements in order to plan for physical disks and memory needs.

Understand output from Adaptive Server Monitor and from sp_sysmon
reports on physical I/0.

Tools for determining the sizes of tables and indexes

Adaptive Server includes several tools that provide information on the current
sizes of tables or indexes or that can predict future sizes:

248

The utility program optdiag displaysthe sizes and many other statisticsfor
tables and indexes. For information on using optdiag, see Chapter 6,

“ Statistics Tables and Displaying Statistics with optdiag.” in the book
Performance and Tuning: Monitoring and Analyzing for Performance.

The system procedure sp_spaceused reports on the current size of an
existing table and any indexes.

The system procedure sp_estspace can predict the size of atable and its
indexes, given anumber of rows as a parameter.

You can also compute table and index size using formulas provided in this
chapter. The sp_spaceused and optdiag commands report actual space usage.
The other methods presented in this chapter provide size estimates. For
partitioned tables, the system procedure sp_helpartition reports on the number
of pages stored on each partition of the table. See “ Getting information about
partitions’ on page 111 for information.

Adaptive Server Enterprise



CHAPTER 11 Determining Sizes of Tables and Indexes

Effects of data modifications on object sizes

Over time, the effects of randomly distributed data modifications on a set of
tablestendsto produce data pages and index pages that average approximately
75 percent full. The major factors are:

*  Whenyou insert arow that needs to be placed on a page of an allpages-
locked table with a clustered index, and there is no room on the page for
that row, the pageis split, leaving two pages that are about 50 percent full.

*  When you delete rows from heaps or from tables with clustered indexes,
the space used on the page decreases. You can have pagesthat contain very
few rows or even a single row.

»  After some deletes or page splits have occurred, inserting rows into tables
with clustered indexes tends to fill up pages that have been split or pages
where rows have been deleted.

Page splits also take place when rows need to be inserted into full index pages,
so index pages also tend to average approximately 75% full, unless you drop
and recreate them periodically.

Using optdiag to display object sizes

The optdiag command displays statistics for tables, indexes, and columns,
including the size of tables and indexes. If you are engaged in query tuning,
optdiag provides the best tool for viewing all the statistics that you need. Here
isasample report for the titles table in the pubtune database:

Tabl e owner: "dbo"

Statistics for table: "titles"
Dat a page count: 662
Enpty data page count: 10
Data row count: 4986. 0000000000000000
Forwar ded row count: 18. 0000000000000000
Del eted row count: 87. 0000000000000000
Dat a page CR count: 86. 0000000000000000
OAM + al |l ocati on page count: 5
First extent data pages: 3
Data row si ze: 238.8634175691937287

Performance and Tuning: Basics 249



Using sp_spaceused to display object size

See Chapter 6, “ Statistics Tables and Displaying Statistics with optdiag,” in
the book Performance and Tuning: Monitoring and Analyzing for
Performance for more information.

Advantages of optdiag
The advantages of optdiag are:

» optdiag can display statistics for al tablesin a database, or for asingle
table.

»  optdiag output contains addition information useful for understanding
guery costs, such asindex height and the average row length.

»  optdiag isfrequently used for other tuning tasks, so you should have these
reports on hand.

Disadvantages of optdiag
The disadvantages of optdiag are:

e It producesalot of output, so if you need only a single piece of
information, such as the number of pagesin the table, other methods are
faster and have lower system overhead.

Using sp_spaceused to display object size

The system procedure sp_spaceused reads values stored on an object’'s OAM
page to provide a quick report on the space used by the object.

sp_spaceused titles
name rowtotal reserved dat a i ndex_si ze unused

titles 5000 1756 KB 1242 KB 440 KB 74 KB

The rowtotal value may be inaccurate at times; not al Adaptive Server
processes update thisvalue onthe OAM page. The commands update statistics,
dbcce checktable, and dbcc checkdb correct the rowtotal value on the OAM page.
Table 11-1 explains the headings in sp_spaceused output.

250 Adaptive Server Enterprise



CHAPTER 11 Determining Sizes of Tables and Indexes

Table 11-1: sp_spaceused output

Column

Meaning

rowtotal

Reports an estimate of the number of rows. The valueis
read from the OAM page. Though not always exact, this
estimate is much quicker and leads to less contention than
select count(*).

reserved

Reports pages reserved for use by the table and itsindexes.
It includes both the used and unused pagesin extents
alocated to the objects. It is the sum of data, index_size,
and unused.

data

Reports the kilobytes on pages used by the table.

index_size

Reports the total kilobytes on pages used by the indexes.

unused

Reports the kilobytes of unused pagesin extents allocated
to the object, including the unused pages for the object’s
indexes.

To report index sizes separately, use:

sp_spaceused titles, 1

i ndex_nane si ze
title_id_cix 14 KB
title_ix 256 KB
type_price_iXx 170 KB
name row otal reserved
titles 5000 1756 KB

reserved unused

1294 KB 38 KB

272 KB 16 KB
190 KB 20 KB
dat a i ndex_si ze unused

1242 KB 440 KB 74 KB

For clustered indexes on allpages-locked tables, the size value represents the
space used for the root and intermediate index pages. The reserved value
includes the index size and the reserved and used data pages.

The“1” inthe sp_spaceused syntax indicates that detailed index information
should be printed. It has no relation to index IDs or other information.

Advantages of sp_spaceused

The advantages of sp_spaceused are;

e It provides quick reports without excessive 1/0O and locking, sinceit uses
only valuesin the table and index OAM pages to return results.

Performance and Tuning: Basics

251



Using sp_estspace to estimate object size

e |t showsthe amount of spacethat isreserved for expansion of the object,
but not currently used to store data.

e It provides detailed reports on the size of indexes and of text and image,
and Java off-row column storage.

Disadvantages of sp_spaceused

The disadvantages of sp_spaceused are:
* It may report inaccurate counts for row total and space usage.

*  Output isin kilobytes, while most query-tuning activities use pages as a
unit of measure.

Using sp_estspace to estimate object size

titles

252

sp_spaceused and optdiag report on actual space usage. sp_estspace can help
you plan for future growth of your tables and indexes. This procedure uses
information in the system tables (sysobjects, syscolumns, and sysindexes) to
determinethe length of dataand index rows. You provide atable name, and the
number of rows you expect to havein the table, and sp_estspace estimatesthe
size for the table and for any indexes that exist. It does not ook at the actual
size of the datain the tables.

To use sp_estspace:
e Createthetable, if it does not exist.
»  Create any indexes on the table.

*  Execute the procedure, estimating the number of rows that the table will
hold.

The output reports the number of pages and bytes for the table and for each
level of the index.

The following exampl e estimates the size of thetitles table with 500,000 rows,
aclustered index, and two nonclustered indexes:

sp_estspace titles, 500000
type i dx_| evel Pages Kbyt es

dat a 0 50002 100004

Adaptive Server Enterprise



CHAPTER 11 Determining Sizes of Tables and Indexes

title_id cix
title_id cix
title_id_cix

title_ix
title_ix
title_ix
title_ix

type_price_ix
type_price_ix
type_price_ix
type_price_ix

title_id cix
title_ix
type_price_ix

clustered 0 302 604
clustered 1 3 6
clustered 2 1 2
noncl ust er ed 0 13890 27780
noncl ust er ed 1 410 819
noncl ust er ed 2 13 26
noncl ust er ed 3 1 2
noncl ust er ed 0 6099 12197
noncl ust er ed 1 88 176
noncl ust er ed 2 2 5
noncl ust er ed 3 1 2
type total _pages tinme_mns
clustered 50308 250
noncl ust er ed 14314 91
noncl ust er ed 6190 55

sp_estspace also allowsyou to specify afillfactor, the average size of variable-
length fields and text fields, and the 1/O speed. For moreinformation, seeinthe
Adaptive Server Reference Manual.

Note Theindex creation times printed by sp_estspace do not factor in the
effects of parallel sorting.

Advantages of sp_estspace

The advantages of using sp_estspace to estimate the sizes of objects are;

e sp_estspace provides aquick, easy way to perform initial capacity
planning and to plan for table and index growth.

e sp_estspace helpsyou estimate the number of index levels.

e sp_estspace can be used to estimate future disk space, cache space, and
memory requirements.

Performance and Tuning: Basics 253



Using formulas to estimate object size

Disadvantages of sp_estspace

The disadvantages of using sp_estspace to estimate the sizes of objects are:

e Returned sizes are only estimates and may differ from actual sizesdueto
fillfactors, page splitting, actual size of variable-length fields, and other
factors.

e Index creation times can vary widely, depending on disk speed, the use of
extent 1/0 buffers, and system load.

Using formulas to estimate object size

Use the formulas in this section to help you estimate the future sizes of the
tables and indexes in your database. The amount of overhead in each row for
tables and indexes that contain variable-length fieldsis greater than tables that
contain only fixed-length fields, so two sets of formulas are required.

The processinvolves cal culating the number of bytes of data and overhead for
each row, and dividing that number into the number of bytesavailable on adata
page. Each page requires some overhead, which limits the number of bytes
available for data:

»  For alpages-locked tables, page overhead is 32 bytes, leaving 2016 bytes
available for dataon a 2K page.

»  For data-only-locked tables, 46 bytes, |leaving 2002 bytes available for
data.

For the most accurate estimate, round down divisionsthat cal culate the number
of rows per page (rows are never split across pages), and round up divisions
that calculate the number of pages.

Factors that can affect storage size

254

Using space management properties can increase the space needed for atable
or an index. See “Effects of space management properties’ on page 268, and
“max_rows_per_page”’ on page 269.

The formulasin this section use the maximum size for variable-length
character and binary data. To usethe average size instead of the maximum size,
see “Using average sizes for variable fields’ on page 269.

Adaptive Server Enterprise



CHAPTER 11 Determining Sizes of Tables and Indexes

If your table includes text or image datatypes or Java off-row columns, use 16
(the size of the text pointer that is stored in the row) in your calculations. Then
see “L OB pages’ on page 270 to see how to cal cul ate the storage space
required for the actual text or image data.

Indexes on data-only-locked tables may be smaller than the formulas predict
due to two factors:

«  Duplicate keys are stored only once, followed by alist of row IDsfor the
key.
e Compression of keyson non-leaf levels; only enough of the key to

differentiate from the neighboring keysis stored. Thisis especially
effective in reducing the size when long character keys are used.

If the configuration parameter page utilization percent is set to less than 100,
Adaptive Server may allocate new extents before filling all pages on the
allocated extents. This does not change the number of pages used by an object,
but leaves empty pagesin the extents allocated to the object. Seein the System
Administration Guide.

Storage sizes for datatypes
The storage sizes for datatypes are shown in Table 11-2:

Performance and Tuning: Basics 255



Using formulas to estimate object size

256

Table 11-2: Storage sizes for Adaptive Server datatypes

Datatype Size

char Defined size

nchar Defined size* @@ncharsize

unichar n* @@unicharsize (@@unicharsize equals 2)
univarchar the actual number of characters* @@unicharsize
varchar Actual number of characters

nvarchar Actual number of characters* @@ncharsize
binary Defined size

varbinary Datasize

int 4

smallint 2

tinyint 1

float 4 or 8, depending on precision

double precision 8

real 4

numeric 2-17, depending on precision and scale
decimal 2-17, depending on precision and scale
money

smallmoney

datetime

smalldatetime

bit

Ll - e o N N - e o}

text

16 bytes + 2K * number of pages used

image

16 bytes + 2K * number of pages used

timestamp

8

The storage size for anumeric or decimal column depends on its precision. The
minimum storage requirement is 2 bytesfor al- or 2-digit column. Storagesize
increases by 1 byte for each additional 2 digits of precision, up to a maximum
of 17 bytes.

Any columns defined as NULL are considered variable-length columns, since
they involve the overhead associated with variable-length columns.

All calculationsin the examplesthat follow are based on the maximum size for
varchar, univarchar, nvarchar, and varbinary data—the defined size of the
columns. They aso assume that the columns were defined as NOT NULL. If
you want to use average values instead, see “ Using average sizes for variable
fields’ on page 269.

Adaptive Server Enterprise



CHAPTER 11 Determining Sizes of Tables and Indexes

Tables and indexes used in the formulas

The example illustrates the computations on atable that contains 9,000,000
rows:

e Thesum of fixed-length column sizesis 100 bytes.

e Thesum of variable-length column sizesis 50 bytes; there are 2 variable-
length columns.

The table has two indexes:
e A clustered index, on afixed-length column, of 4 bytes
* A composite nonclustered index with these columns:

e A fixed length column, of 4 bytes

e A variable length column, of 20 bytes

Different formulas are needed for all pages-locked and data-only-locked tables,
since they have different amounts of overhead on the page and per row:

e See“Cadlculating table and clustered index sizes for allpages-locked
tables’ on page 257 for tables that use allpages-locking.

e See“Calculating the sizes of data-only-locked tables’ on page 263 for the
formulas to use if tables that use data-only locking.

Calculating table and clustered index sizes for allpages-locked

tables

Theformulas and examplesfor all pages-locked tables are divided into two sets
of steps:

e Steps 1-6 outline the calculations for an allpages-locked table with a
clustered index, giving the table size and the size of the index tree.

e Steps 7-12 outline the calculations for computing the space required by
nonclustered indexes.

Theseformulas show how to cal culate the sizes of tablesand clustered indexes.
If your table does not have clustered indexes, skip steps 3, 4, and 5. Once you
compute the number of data pagesin step 2, go to step 6 to add the number of
OAM pages.

Performance and Tuning: Basics 257



Using formulas to estimate object size

Step 1: Calculate the data row size

Rows that store variable-length data require more overhead than rows that
contain only fixed-length data, so there are two separate formulas for
computing the size of a data row.

Fixed-length columns only

Use thisformulaif the table contains only fixed-length columns, and all are
defined as NOT NULL.

Formula
4 (Overhead)
+ Sum of bytesin al fixed-length columns
= Datarow size

Some variable-length columns
Use thisformulaif the table contains any variable-length columns or columns
that allow null values.

The table in the example contains variable-length columns, so the
computations are shown in the right column.

Formula Example
4 (Overhead) 4
+ Sum of bytesin all fixed-length columns + 100
Sum of bytesin all variable-length columns + 50
= Subtotal T 154
(Subtotal / 256) + 1 (Overhead) 1
Number of variable-length columns + 1
2 (Overhead) 2
= Datarow size 160

Step 2: Compute the number of data pages

Formula
2016 / Datarow size = Number of data rows per page
Number of rows/ Rows per page = Number of data pages required

258 Adaptive Server Enterprise



CHAPTER 11 Determining Sizes of Tables and Indexes

Example
2016/ 160 = 12 datarows per page
9,000,000/ 12 = 750,000 data pages

Step 3: Compute the size of clustered index rows

Index rows containing variable-length columns require more overhead than
index rows containing only fixed-length values. Use thefirst formulaif all the
keys are fixed length. Use the second formulaiif the keys include variable-
length columns or allow null values.

Fixed-length columns only
The clustered index in the example has only fixed length keys.

Formula Example
5 (Overhead) 5
+ Sum of bytesin the fixed-length index keys + 4
= Clustered row size 9

Some variable-length columns
5 (Overhead)
Sum of bytesin the fixed-length index keys
Sum of bytesin variable-length index keys
= Subtotal

+ (Subtotal / 256) + 1 (Overhead)
Number of variable-length columns + 1
2 (Overhead)
= Clustered index row size

The results of the division (Subtotal / 256) are rounded down.

Step 4: Compute the number of clustered index pages

Formula Example

(2016 / Clustered row size) - 2 = No. of clustered index (2016/9) -2
rows per page

222

Performance and Tuning: Basics 259



Using formulas to estimate object size

Formula

Example

No. of rows/ No. of Cl rowsper page = No. of index pagesat next 750,000/ 222 = 3379

level

If the result for the “number of index pages at the next level” is greater than 1,
repeat the following division step, using the quotient as the next dividend, until
the quotient equals 1, which means that you have reached the root level of the
index:

Formula

No. of index pages / No. of clusteredindex = No. of index pages at
at last level rows per page next level

Example

3379/ 222 = 16index pages(Level 1)

16/ 222 = 1lindex page (Level 2)

Step 5. Compute the total number of index pages

Add the number of pages at each level to determine the total number of pages
in the index:

Formula Example

Index Levels Pages Pages Rows

2 1 16

1 + + 16 3379

0 + + 3379 750000
Total number of index pages 3396

Step 6: Calculate allocation overhead and total pages

Formula

Number of reserved data pages/ 63,750
Number of reserved data pages/ 2000

260

Each table and each index on atable has an object allocation map (OAM). A
single OAM page holds all ocation mapping for between 2,000 and 63,750 data
pages or index pages. In most cases, the number of OAM pages required is
close to the minimum value. To calculate the number of OAM pages for the
table, use:

Example
= Minimum OAM pages 750,000/ 63,750 = 12
= Maximum OAM pages 750,000/ 2000 = 376

To calculate the number of OAM pages for the index, use:

Adaptive Server Enterprise



CHAPTER 11 Determining Sizes of Tables and Indexes

Formula Example
Number of reserved index pages/ 63,750 Minimum OAM pages 3396/ 63,750
Number of reserved index pages/ 2000 Maximum OAM pages 3396 / 2000

1
N -

Total pages needed

Finally, add the number of OAM pages to the earlier totals to determine the
total number of pages required:

Formula Example

Minimum Maximum Minimum Maximum
Clustered index pages 3396 3379
OAM pages + + 1 2
Data pages + + 750000 750000
OAM pages + + 12 376
Total 753409 753773

Step 7: Calculate the size of the leaf index row

Index rows containing variable-length columns require more overhead than
index rows containing only fixed-length values.

Fixed-length keys only Use thisformulaif the index contains only fixed-length keys and are defined
asNOT NULL:

Formula
7 (Overhead)
+ Sum of fixed-length keys
= Size of leaf index row

Some variable-length Use thisformulaif the index contains any variable-length keys or columns
keys defined as NULL:
Formula Example
9 (Overhead) 9
Sum of length of fixed-length keys + 4
Sum of length of variable-length keys + 20
Number of variable-length keys + 1 + 2
= Subtotal 35
+ (Subtotal / 256) + 1 (overhead) + 1
= Size of leaf index row 36

Performance and Tuning: Basics 261



Using formulas to estimate object size

Step 8: Calculate the number of leaf pages in the index

Formula Example

(2016 / leaf row size) = No. of leaf index rowsper 2016/ 36 = 56
page

No. of tablerows/ No. of leaf rowsper page = No. of index pagesat next 9,000,000/ 56 = 160,715
level

Step 9: Calculate the size of the non-leaf rows

Formula Example
Size of |leaf index row 36

+ 4 Overhead + 4
= Size of non-leaf row 40

Step 10: Calculate the number of non-leaf pages

Formula Example
(2016/ Size of non-leaf row) -2 = No. of non-leaf index rows per page (2016/40)-2=48

If the number of leaf pages from step 8 is greater than 1, repeat the following
division step, using the quotient as the next dividend, until the quotient equals
1, which means that you have reached the root level of the index:

Formula
No. of index pages at previouslevel / No. of non-leaf index rowsper page = No. of index pagesat next level

Example

160715/ 48 = 3349 Index pages, level 1
3349/48=70 Index pages, level 2
70/48=2 Index pages, level 3
2/48=1 Index page, level 4 (root level)

Step 11: Calculate the total number of non-leaf index pages

Add the number of pages at each level to determine the total number of pages
in the index:

Index Levels Pages Pages Rows
4 1 2

262 Adaptive Server Enterprise



CHAPTER 11 Determining Sizes of Tables and Indexes

Index Levels Pages Pages Rows

3 + + 2 70

2 + + 70 3348

1 + + 3349 160715

0 + + 160715 9000000
Total number of 2K data pages used 164137

Step 12: Calculate allocation overhead and total pages

Formula Example
Number of index pages/ 63,750 = Minimum OAM pages 164137/ 63,750 = 3
Number of index pages/ 2000 = Maximum OAM pages 164137/ 2000 = 83
Total Pages Needed Add the number of OAM pages to the total in step 11 to determine the total
number of index pages:
Formula Example
Minimum Maximum Minimum Maximum
Nonclustered index pages 164137 164137
OAM pages + + 3 83
Total 164140 164220

Calculating the sizes of data-only-locked tables

The formulas and examples that follow show how to calcul ate the sizes of
tables and indexes. This example usesthe same columns sizes and index asthe
previous example. See* Tables and indexes used in the formulas’ on page 257
for the specifications.

The formulas for data-only-locked tables are divided into two sets of steps:

e Steps 1-3 outline the calculations for a data-only-locked table. The
examplethat follows Step 3 illustrates the computations on atable that has
9,000,000 rows.

e Steps4-8 outline the calculations for computing the space required by an
index, followed by an example using the 9,000,000-row table.

Performance and Tuning: Basics 263



Using formulas to estimate object size

Step 1: Calculate the data row size
Rows that store variable-length data require more overhead than rows that
contain only fixed-length data, so there are two separate formulas for
computing the size of a data row.

Fixed-length columns only
Use thisformulaif the table contains only fixed-length columns defined as

NOT NULL:
6 (Overhead)
+ Sum of bytesin al fixed-length columns
Datarow size

Note Data-only locked tables must allow room for each row to store a 6-byte
forwarded row ID. If a data-only-locked table has rows shorter than 10 bytes,
each row ispadded to 10 byteswhenit isinserted. This affectsonly data pages,
and not indexes, and does not affect allpages-locked tables.

Some variable-length columns
Usethisformulaif the table contains variable-length columns or columns that

alow null values:

Formula Example
8 (Overhead) 8

Sum of bytesin al fixed-length columns + 100

Sum of bytesin all variable-length columns + 50

Number of variable-length columns* 2 + 4

162

Datarow size

Step 2: Compute the number of data pages

Formula
2002 / Datarow size = Number of data rows per page

Number of rows/ Rows per page = Number of data pages required

In thefirst part of this step, the number of rows per page is rounded down:

264 Adaptive Server Enterprise



CHAPTER 11 Determining Sizes of Tables and Indexes

Example
2002/ 162 = 12 datarows per page
9,000,000/ 12 = 750,000 data pages

Step 3: Calculate allocation overhead and total pages

Allocation overhead

Each table and each index on atable has an object allocation map (OAM). The
OAM is stored on pages allocated to the table or index. A single OAM page
holds allocation mapping for between 2,000 and 63,750 data pages or index
pages. In most cases, the number of OAM pages required is close to the
minimum value. To calculate the number of OAM pages for the table, use:

Formula Example
Number of reserved data pages/ 63,750 = Minimum OAM pages 750,000/ 63,750 = 12
Number of reserved data pages/ 2000 = Maximum OAM pages 750,000/ 2000 = 375

Total pages needed

Add the number of OAM pages to the earlier totals to determine the total

number of pages required:
Formula Example
Minimum Maximum Minimum  Maximum
Data pages + + 750000 750000
OAM pages + + 12 375
Total 750012 750375

Step 4: Calculate the size of the index row

Usethese formulasfor clustered and nonclustered indexes on data-only-length
tables.

Index rows containing variable-length columns require more overhead than
index rows containing only fixed-length values.

Fixed-length keys only Use this formulaif the index contains only fixed-length keys defined as NOT
NULL:

9 (Overhead)

Performance and Tuning: Basics 265



Using formulas to estimate object size

+ Sum of fixed-length keys
Size of index row

Some variable-length Usethisformulaif theindex contains any variable-length keysor columnsthat
keys alow null values:
Formula Example
9 (Overhead) 9
Sum of length of fixed-length keys + 4
Sum of length of variable-length keys + 20
Number of variable-length keys* 2 + 2
Size of index row - 3%

Step 5: Calculate the number of leaf pages in the index

Formula
2002 / Size of index row = No. of rows per page
No. of rowsin table/ No. of rows per page = No. of leaf pages

Example
2002 / 35 = 57 Nonclustered index rows per page
9,000,000/ 57 = 157,895 leaf pages

Step 6: Calculate the number of non-leaf pages in the index

Formula
No. of leaf pages / No. of index rows per page = No. of pagesat next level

If the number of index pages at the next level aboveisgreater than 1, repeat the
following division step, using the quotient as the next dividend, until the
quotient equals 1, which means that you have reached the root level of the
index:

Formula

No. of index pages at previouslevel / No. of non-leaf index rows per page = No. of index pages at next level

Example
157895/57 = 2771 Index pages, level 1

266 Adaptive Server Enterprise



CHAPTER 11 Determining Sizes of Tables and Indexes

Example
2770/ 57 =49 Index pages, level 2
48/57 =1 Index pages, level 3

Step 7: Calculate the total number of non-leaf index pages
Add the number of pages at each level to determine the total number of pages

in theindex:
Formula Example
Index Levels Pages Pages Rows
3 1 49
2 + 49 2771
1 + 2771 157895
0 157895 9000000

Total number of 2K pagesused 160716

Step 8: Calculate allocation overhead and total pages

Formula
Number of index pages/ 63,750 = Minimum OAM pages
Number of index pages/ 2000 = Maximum OAM pages

Example
160713/ 63,750 = 3 (minimum)
160713/ 2000 = 81 (maximum)

Total pages needed Add the number of OAM pages to the total in step 8 to determine the total
number of index pages:
Formula Example
Minimum Maximum Minimum Maximum
Nonclustered index pages 160716 160716
OAM pages + + 3 8l
Total 160719 160797

Performance and Tuning: Basics 267



Using formulas to estimate object size

Other factors affecting object size

In addition to the effects of data modifications that occur over time, other
factors can affect object size and size estimates:

»  The space management properties
e Whether computations used average row size or maximum row size
e Very small text rows

e Useof text and image data

Effects of space management properties

fillfactor

268

Values for fillfactor, exp_row_size, reservepagegap and max_rows_per_page
can affect object size.

The fillfactor you specify for create index is applied when the index is created.
Thefillfactor is not maintained during inserts to the table. If afillfactor has been
stored for an index using sp_chgattribute, this value is used when indexes are
re-created with alter table...lock commands and reorg rebuild. The main function
of fillfactor is to allow space on the index pages, to reduce page splits. Very
small fillfactor val ues can cause the storage spacerequired for atable or anindex
to be significantly greater.

With the default fillfactor of 0, the index management process leaves room for
two additional rows on each index page when you create a new index. When
you set fillfactor to 100 percent, it no longer leaves room for these rows. The
only effect that fillfactor has on size cal culationsis when cal cul ating the number
of clustered index pages and when calculating the number of non-leaf pages.
Both of these calculations subtract 2 from the number of rows per page.
Eliminate the -2 from these calculations.

Other valuesfor fillfactor reduce the number of rows per page on data pages and
leaf index pages. To compute the correct values when using fillfactor, multiply
the size of the available data page (2016) by the fillfactor. For example, if your
fillfactor is 75 percent, your data page would hold 1471 bytes. Usethisvaluein
place of 2016 when you cal cul ate the number of rows per page. For these
calculations, see" Step 2; Compute the number of datapages’ on page 258 and
“Step 8: Calculate the number of leaf pagesin the index” on page 262.

Adaptive Server Enterprise



CHAPTER 11 Determining Sizes of Tables and Indexes

exp_row_size

reservepagegap

max_rows_per_page

Using average sizes

Very small rows

Setting an expected row size for atable can increase the amount of storage
required. If your tables have many rowsthat are shorter than the expected row
Size, setting this value and running reorg rebuild or changing the locking
scheme increases the storage space required for the table. However, the space
usage for tables that formerly used max_rows_per_page should remain
approximately the same.

Setting areservepagegap for atable or an index |leaves empty pages on extents
that are allocated to the object when commands that perform extent allocation
are executed. Setting reservepagegap to alow value increases the number of
empty pages and spreads the data across more extents, so the additional space
required is greatest immediately after acommand such as create index Or reorg
rebuild. Row forwarding and insertsinto thetablefill in the reserved pages. For
moreinformation, see” L eaving spacefor forwarded rowsand inserts’ on page
194.

The max_rows_per_page value (specified by create index, create table, alter
table, or sp_chgattribute) limits the number of rows on a data page.

To compute the correct values when using max_rows_per_page, use the
max_rows_per_page Value or the computed number of data rows per page,
whichever is smaller, in“ Step 2: Compute the number of data pages’ on page
258 and “ Step 8: Cal culate the number of leaf pagesin theindex” on page 262.

for variable fields
All of the formulas use the maximum size of the variable-length fields.
optdiag output includes the average length of data rows and index rows. You

can use these values for the data and index row lengths, if you want to use
average lengths instead.

Adaptive Server cannot store more than 256 data or index rowson apage. Even
if your rows are extremely short, the minimum number of data pagesis:

Performance and Tuning: Basics 269



Using formulas to estimate object size

LOB pages

270

Number of Rows/ 256 = Number of data pages required

Each text or image or Java off-row column stores a 16-byte pointer in the data
row with the datatype varbinary(16). Each column that isinitialized requires at
least 2K (one data page) of storage space.

columnsstoreimplicit null values, meaning that the text pointer in the datarow
remains null and no text page isinitialized for the value, saving 2K of storage
space.

If aLOB columnisdefined to allow null values, and the row is created with an
insert statement that includes NULL for the column, the column is not
initialized, and the storage is not allocated.

If aLOB column is changed in any way with update, then the text pageis
allocated. Of course, inserts or updates that place actual datain acolumn
initialize the page. If the column is subsequently set to NULL, asingle page
remains allocated.

Each LOB page stores approximately 1800 bytes of data. To estimate the
number of pages that a particular entry will use, use this formula:

Data length / 1800 = Number of 2K pages

The result should berounded up in all cases; that is, adatalength of 1801 bytes
requires two 2K pages.

Thetotal space required for the data may be dightly larger than the cal culated
value, because some L OB pages store pointer information for other page
chainsinthe column. Adaptive Server uses this pointer information to perform
random access and prefetch datawhen accessing LOB columns. The additional
space required to store pointer information depends on the total size and type
of the data stored in the column. Use the information in Table 11-3 to estimate
the additional pages required to store pointer information for datain LOB
columns.

Adaptive Server Enterprise



CHAPTER 11 Determining Sizes of Tables and Indexes

Table 11-3: Estimated additional pages for pointer information in LOB

columns
Additional Pages Required for Pointer
Data Size and Type Information
400K image Oto 1 page
700K image 0to 2 pages
5MB image 1to 11 pages
400K of multibyte text 1to 2 pages
700K of multibyte text 1to 3 pages
5MB of multibyte text 210 22 pages

Advantages of using formulas to estimate object size
The advantages of using the formulas are:
¢ You learn more details of the internals of data and index storage.

e Theformulas provide flexibility for specifying averages sizes for
character or binary columns.

e While computing theindex size, you see how many levels each index has,
which helps estimate performance.

Disadvantages of using formulas to estimate object size
The disadvantages of using the formulas are:

¢ Theesgtimates are only as good as your estimates of average size for
variable-length columns.

«  The multistep calculations are complex, and skipping steps may lead to
errors.

e Theactual size of an object may be different from the cal culations, based
on use.

Performance and Tuning: Basics 271



Using formulas to estimate object size

272 Adaptive Server Enterprise



CHAPTER 12 How Indexes Work

This chapter describes how Adaptive Server storesindexes and how it
uses indexes to speed dataretrieval for select, update, delete, and insert

operations.
Topic Page
Types of indexes 274
Clustered indexes on allpages-locked tables 276
Nonclustered indexes 285
Index covering 291
Indexes and caching 295

Indexes are the most important physical design element in improving
database performance:

* Indexes help prevent table scans. Instead of reading hundreds of data
pages, afew index pages and data pages can satisfy many queries.

*  For some queries, data can be retrieved from a nonclustered index
without ever accessing the data rows.

e Clustered indexes can randomize data inserts, avoiding insert “ hot
spots’ on the last page of atable.

e Indexes can help avoid sorts, if the index order matches the order of
columnsin an order by clause.

In addition to their performance benefits, indexes can enforce the
unigueness of data

Indexes are database objects that can be created for atable to speed direct
access to specific data rows. Indexes store the values of the key(s) that
were named when the index was created, and logical pointers to the data
pages or to other index pages.

Although indexes speed data retrieval, they can slow down data
modifications, since most changes to the data also require updating the
indexes. Optimal indexing demands:

Performance and Tuning: Basics 273



Types of indexes

e Anunderstanding of the behavior of queries that access unindexed heap
tables, tables with clustered indexes, and tables with nonclustered indexes

e Anunderstanding of the mix of queriesthat run on your server

e Anunderstanding of the Adaptive Server optimizer

Types of indexes

Index pages

274

Adaptive Server provides two types of indexes:

*  Clustered indexes, wherethetable datais physically stored in the order of
the keys on the index:

»  For allpages-locked tables, rows are stored in key order on pages, and
pages are linked in key order.

*  For data-only-locked tables, indexes are used to direct the storage of
data on rows and pages, but strict key ordering is not maintained.

* Nonclustered indexes, where the storage order of datain the table is not
related to index keys

You can create only one clustered index on atable because thereis only one
possible physical ordering of the data rows. You can create up to 249
nonclustered indexes per table.

A tablethat hasno clustered index is called aheap. Therowsin thetablearein
no particular order, and all new rows are added to the end of the table. Chapter
8, “Data Storage,” discusses heaps and SQL operations on heaps.

Index entriesare stored asrows onindex pagesin aformat similar to the format
used for data rows on data pages. Index entries store the key values and
pointersto lower levels of the index, to the data pages, or to individual data
rows.

Adaptive Server uses B-tree indexing, so each node in the index structure can
have multiple children.

Adaptive Server Enterprise



CHAPTER 12 How Indexes Work

Root level

Leaf level

Index entriesare usually much smaller than adatarow in adatapage, and index
pages are much more densely populated than data pages. If adatarow has 200
bytes (including row overhead), there are 10 rows per page.

Anindex on a 15-byte field has about 100 rows per index page (the pointers
require 4-9 bytes per row, depending on the type of index and theindex level).

Indexes can have multiple levels:
e Root level
e Leaf level

* Intermediate level

Theroot level isthe highest level of the index. Thereis only one root page. If
an allpages-locked table is very small, so that the entire index fitson asingle
page, there are no intermediate or leaf levels, and the root page stores pointers
to the data pages.

Data-only-locked tables always have aleaf level between the root page and the
data pages.

For larger tables, the root page stores pointers to the intermediate level index
pages or to leaf-level pages.

The lowest level of theindex isthe leaf level. At the leaf level, the index
contains akey value for each row inthetable, and the rows are stored in sorted
order by the index key:

e For clustered indexes on allpages-locked tables, the leaf level isthe data.
No other level of theindex contains one index row for each data row.

e For nonclustered indexes and clustered indexes on data-only-locked
tables, the leaf level contains the index key value for each row, a pointer
to the page where the row is stored, and a pointer to the rows on the data

page.

Theleaf level isthelevel just above the data; it contains oneindex row for
each datarow. Index rows on the index page are stored in key value order.

Performance and Tuning: Basics 275



Clustered indexes on allpages-locked tables

Intermediate level

Index Size

All levels between theroot and leaf levelsareintermediate levels. Anindex on
alarge table or an index using long keys may have many intermediate levels.
A very small alpages-locked table may not have an intermediate level at all;

the root pages point directly to the leaf level.

Table 12-1 describes the new limits for index size for APL and DOL tables:

Table 12-1: Index row-size limit

User-visible index row-size Internal index row-
Page size limit size limit
2K (2048 bytes) 600 650
4K (4096bytes) 1250 1310
8K (8192 bytes) 2600 2670
16K (16384 bytes) | 5300 5390

Because you can create tables with columns wider than the limit for the index
key, these columns become non-indexable. For example, if you perform the
following on a2K page server, then try to create an index on c3, the command
fails and Adaptive Server issues an error message because column c3is larger
than the index row-size limit (600 bytes).

create table t1 (
cl int

c2 int

c3 char (700))

“Non-indexable” does not mean that you cannot use these columnsin search
clauses. Even though a column is non-indexable (asin c3, above), you can still
create statisticsfor it. Also, if you include the column in awhere clause, it will
be evaluated during optimization.

Clustered indexes on allpages-locked tables

276

In clustered indexes on alpages-locked tables, leaf-level pages are also the
data pages, and all rows are kept in physical order by the keys.

Adaptive Server Enterprise



CHAPTER 12 How Indexes Work

Physical ordering means that:
e All entries on adata page are in index key order.

« By following the “next page” pointers on the data pages, Adaptive Server
reads the entire table in index key order.

On the root and intermediate pages, each entry points to a page on the next
level.

Clustered indexes and select operations

To select a particular last name using a clustered index, Adaptive Server first
uses sysindexes to find the root page. It examines the values on the root page
and then follows page pointers, performing a binary search on each page it
accesses as it traverses the index. See Figure 12-1 below.

Figure 12-1: Selecting a row using a clustered index, allpages-locked

table
select *
from employeeﬁ ) ' Page 1137
where Iname = "Green Key Pointer Bennet
Page 1007 Chan
Bennet 1132 Dull
Key Pointer Greane 1133 Edwards
Page T00T Hunter 1127 Page T133
Bennet 1007 Greane
Karsen 1009 Page 1009 Green
Smith 1062 Karsen 1315 Greene
Page 1127
Hunter
Jenkins
Root page Intermediate Data pages

Performance and Tuning: Basics 277



Clustered indexes on allpages-locked tables

Ontheroot level page, “ Green” isgreater than “Bennet,” but lessthan Karsen,
so the pointer for “Bennet” isfollowed to page 1007. On page 1007, “ Green”
isgreater than “Greane,” but lessthan “Hunter,” so the pointer to page 1133 is
followed to the data page, where the row islocated and returned to the user.

Thisretrieval viathe clustered index requires:
* Oneread for theroot level of the index

*  Oneread for the intermediate level

e Oneread for the data page

These reads may come either from cache (called alogical read) or from disk
(called aphysical read). On tables that are frequently used, the higher levels
of theindexes are often found in cache, with lower levels and data pages being
read from disk.

Clustered indexes and insert operations

Whenyou insert arow into an allpages-locked table with aclustered index, the
data row must be placed in physical order according to the key value on the
table.

Other rows on the data page move down on the page, as needed, to make room
for the new value. Aslong as there isroom for the new row on the page, the
insert does not affect any other pages in the database.

The clustered index is used to find the location for the new row.

Figure 12-2 shows a simple case where there is room on an existing data page
for the new row. Inthis case, the key valuesin the index do not need to change.

278 Adaptive Server Enterprise



CHAPTER 12 How Indexes Work

Figure 12-2: Inserting a row into an allpages-locked table with a
clustered index

insert employees (Iname) Page 1132
values ("Greco") Bennet
. Chan
Key Pointer Dull
Edwards
Page 1007
Bennet 1132
Key Pointer Page 1133
Greane 1133 | Greane
Page 1001 Hunter 1127 Greco
Bennet 1007 Green
Karsen 1009 Greene
Smith 1062 Page 1009
\ Karsen 1315
Page 1127
Hunter
Jenkins
Root page Intermediate Data pages

Page splitting on full data pages

If there is not enough room on the data page for the new row, a page split must
be performed.

* A new datapageis allocated on an extent already in use by thetable. If
there is no free page available, anew extent is allocated.

e The next and previous page pointers on adjacent pages are changed to
incorporate the new page in the page chain. Thisrequires reading those
pages into memory and locking them.

e Approximately half of the rows are moved to the new page, with the new
row inserted in order.

« The higher levels of the clustered index change to point to the new page.

e If thetable also has nonclustered indexes, al pointersto the affected data
rows must be changed to point to the new page and row locations.

In some cases, page splitting is handled slightly differently.

Performance and Tuning: Basics 279



Clustered indexes on allpages-locked tables

See “Exceptions to page splitting” on page 280.

In Figure 12-3, the page split requires adding a new row to an existing index
page, page 1007.

Figure 12-3: Page splitting in an allpages-locked table with a clustered
index

Page 1133
Greane Before
Greco Page 1132
Green Bennet
Greene Chan
Dull
Edwards
insert employees (Iname)
values ("Greaves") Key Pointer Page 1133
Greane
Page 1007 Greaves
Bennet 1132 Greco
: Greane 1133
Key Pointer Green 1124
Page 1001 Hunter 1127
Bennet 1007 Page 1144
Karsen 1009 Page 1009 Green
Smith 1062 Karsen 1315 Greene
Page 1127
Hunter
Jenkins
Root page Intermediate Data pages

Exceptions to page splitting
There are exceptions to 50-50 page splits:

« If youinsert ahugerow that cannot fit on either the page before or the page
after the page that requires splitting, two new pages are allocated, one for
the huge row and one for the rows that follow it.

280 Adaptive Server Enterprise



CHAPTER 12 How Indexes Work

If possible, Adaptive Server keeps duplicate values together when it splits
pages.

If Adaptive Server detectsthat all inserts are taking place at the end of the
page, due to aincreasing key value, the pageis not split when itistimeto
insert anew row that does not fit at the bottom of the page. Instead, a new
page is allocated, and the row is placed on the new page.

If Adaptive Server detects that inserts are taking place in order at other
locations on the page, the page is split at the insertion point.

Page splitting on index pages

If anew row needs to be added to afull index page, the page split process on
the index page is similar to the data page split.

A new pageisallocated, and half of the index rows are moved to the new page.

A new row isinserted at the next highest level of the index to point to the new
index page.

Performance impacts of page splitting

Page splits are expensive operations. In addition to the actual work of moving
rows, allocating pages, and logging the operations, the cost isincreased by:

Updating the clustered index itself
Updating the page pointers on adjacent pages to maintain page linkage

Updating all nonclustered index entries that point to the rows affected by
the split

When you create aclustered index for atablethat will grow over time, you may
want to usefillfactor to |eave room on data pages and index pages. Thisreduces
the number of page splitsfor atime.

See “Choosing space management properties for indexes” on page 318.

Performance and Tuning: Basics 281



Clustered indexes on allpages-locked tables

Overflow pages

Special overflow pages are created for nonunique clustered indexes on

allpages-locked tables when a newly inserted row has the same key asthe last
row on afull data page. A new data page is allocated and linked into the page
chain, and the newly inserted row is placed on the new page (see Figure 12-4).

Figure 12-4: Adding an overflow page to a clustered index, allpages-
locked table

insert employees (Iname)
values("Greene")

After insert

Before insert

Page 1133
Greane
Page 1133 Greco
Greane Green
Greco Greene
Green
Greene Overflow data | Page 1156
Greene
Page 1134 page
Gresham
Gridley
Page 1134
Gresham
Gridley
Data pages

The only rows that will be placed on this overflow page are additional rows
with the same key value. In a nonunique clustered index with many duplicate
key values, there can be numerous overflow pages for the same value.

The clustered index does not contain pointers directly to overflow pages.
Instead, the next page pointers are used to follow the chain of overflow pages
until avalueis found that does not match the search value.

282 Adaptive Server Enterprise



CHAPTER 12 How Indexes Work

Clustered indexes and delete operations

When you delete arow from an allpages-locked table that has a clustered
index, other rows on the page move up to fill the empty space so that the data
remains contiguous on the page.

Figure 12-5 shows a page that has four rows before a del ete operation removes
the second row on the page. The two rows that follow the deleted row are

moved up.

Figure 12-5: Deleting a row from a table with a clustered index

Before delete Page 1133
Greane
Green
Greco
Greene
delete Page 1132
from employees Bennet
where Iname = "Green" ] Chan
Key Pointer Dull
Page 1007 Edwards
Bennet 1132
. Greane 1133
Key Pointer Hunter 1127
Page 1001 rage 1133
Bennet 1007 greane
Karsen 1009 Page 1009 reco
Smith 1062 T Karsen 1315 Greene
Page 1127
Hunter
Jenkins
Root page Intermediate Data pages

Performance and Tuning: Basics

Data to be
deleted

283



Clustered indexes on allpages-locked tables

Deleting the last row on a page
If you delete the last row on a data page, the page is deallocated and the next
and previous page pointers on the adjacent pages are changed.

The rowsthat point to that pagein theleaf and intermediate levels of theindex
are removed.

If the deallocated data page is on the same extent as other pages belonging to
the table, it can be used again when that table needs an additional page.

If the deallocated data page is the last page on the extent that belongs to the
table, the extent is also deall ocated and becomes avail able for the expansion of
other objects in the database.

In Figure 12-6, which shows the table after the deletion, the pointer to the
deleted page has been removed from index page 1007 and the following index
rows on the page have been moved up to keep the used space contiguous.

Figure 12-6: Deleting the last row on a page (after the delete)

delete
from employees Page 1133
where Iname = "Gridley" Greane Page T3
Key Pointer gz::e
Page R1007
Bennet 1132
Key  Pointer Greane 1133
Page 1001 /'Hunter 1127 —\[ Empty page
Bennet 1007 available for
Karsen 1009 reallocation
Smith 1062 Page 1009
Karsen 1315
Page 1127
Hunter
Jenkins
Root page Intermediate Data pages

284 Adaptive Server Enterprise



CHAPTER 12 How Indexes Work

Index page merges

If you delete a pointer from an index page, leaving only one row on that page,
therow ismoved onto an adjacent page, and the empty pageisdeallocated. The
pointers on the parent page are updated to reflect the changes.

Nonclustered indexes

The B-tree works much the same for nonclustered indexes as it does for
clustered indexes, but there are some differences. In nonclustered indexes:

e Theleaf pages are not the same as the data pages.
e Theleaf level storesone key-pointer pair for each row in the table.

* Theleaf-level pages store theindex keys and page pointers, plus a pointer
to the row offset table on the data page. This combination of page pointer
plus the row offset number is called therow ID.

« Theroot and intermediate levels store index keys and page pointers to
other index pages. They aso store the row 1D of the key’s data row.

With keys of the same size, nonclustered indexes require more space than
clustered indexes.

Leaf pages revisited

The leaf page of an index isthe lowest level of the index where al of the keys
for the index appear in sorted order.

In clustered indexes on al | pages-locked tables, the datarows are stored in order
by the index keys, so by definition, the datalevel isthe leaf level. Thereisno
other level of the clustered index that contains oneindex row for each datarow.
Clustered indexes on allpages-locked tables are sparse indexes.

Thelevel above the data contains one pointer for every datapage, not datarow.

In nonclustered indexes and clustered indexes on data-only-locked tables, the
level just abovethe dataistheleaf level: it contains akey-pointer pair for each
datarow. Theseindexesaredense. At thelevel abovethe data, they contain one
index row for each data row.

Performance and Tuning: Basics 285



Nonclustered indexes

Nonclustered index structure

286

Thetable in Figure 12-7 shows anonclustered index on Iname. The datarows
at the far right show pagesin ascending order by employee_id (10, 11, 12, and
so on) because there is a clustered index on that column.

The root and intermediate pages store:

e Thekey value

+ TherowID

e The pointer to the next level of the index
The leaf level stores:

e Thekey value

 TherowID

Therow ID in higher levelsof theindex isused for indexesthat allow duplicate
keys. If adatamodification changes the index key or deletesarow, the row 1D
positively identifies al occurrences of the key at al index levels.

Adaptive Server Enterprise



CHAPTER 12 How Indexes Work

Key

RowlD Pointer

Bennet
Karsen
Smith

Page 1001
4211
14113 10
307,2

1007

1062

Root page

Figure 12-7: Nonclustered index structure

Page 1247
Key Pointer 10 O'Leary
11 Ringer
. Page 1132 12 White
Key RowlD Pointer (Bennet 14211 13 | Jenkins
e/ | e
Bennet  [1421,1  |1132 E;‘ i hoss Page 1307
Greane  |13074  [1133 wards ’ 14| Hunter
Hunter  [1307,1  [1127 15 | Smith
Page 1133 16 Ringer
A\Greane 1B07,4 17 Greane
Green 1421,2
Page 1009 Greene 1409,2 Page 14721
Karsen 1411,3 131p 18 Bennet
19 Green
Page 1127 Yokomoto
Hunter  1B07,1
Jenkins 1p42,4
22 Greene
23 White
Intermediate Leaf pages Data pages

Nonclustered indexes and select operations

When you select arow using anonclustered index, the search starts at the root
level. sysindexes.root stores the page number for the root page of the
nonclustered index.

InFigure 12-8, “ Green” isgreater than“Bennet,” but lessthan“Karsen,” sothe
pointer to page 1007 isfollowed.

“Green” isgreater than “ Greane,” but lessthan “Hunter,” so the pointer to page
1133 isfollowed. Page 1133 istheleaf page, showing that the row for “ Green”
isrow 2 on page 1421. This page is fetched, the “2” byte in the offset table is
checked, and the row is returned from the byte position on the data page.

Performance and Tuning: Basics 287



Nonclustered indexes

Figure 12-8: Selecting rows using a nonclustered index

select *
from employee Key Pointer PagE T2A2
where Iname = "Green" Ray | O'Leary
BennPeaige lliiﬂ 1 Ron | - Ringer
Key  RowID Pointer Chan 1129’3 Lisa | White
' Bob | Jenkins
Page T007 Dull 1409,1
, Bennet [1421,1 [1132 Edwards | 1018,5 ~ Page 1307
Key  RowlD Pointer Greane [1307.4 |[1133 T!m Hur_1ter
Page 1001 Hunter |1307,1 |1127 \ Page TT33 Liv | Smith
Bennet |1421,1 |1007 Greane 1307.4 Ann | Ringer
Karsen |[1411,3 |1009 Green 14212 Jo Greane
Smith 1307,2 11062 Page TO09 Greene 1409,2 Page Ta2T
Karsen [1411,3 |1315 lan Bennet
Andy| Green
Page 1127 Les | Yokomoto
Hunter 1307,1
Jenkins 12424 Page 1409
Chad| Dull
Eddy| Greene
Gabe| White
Kip Greco
Root page Intermediate Leaf pages Data pages

Nonclustered index performance
The query in Figure 12-8 requires the following 1/O:
» Oneread for the root level page
»  Oneread for the intermediate level page
* Oneread for the leaf-level page
»  Oneread for the data page

If your applications use a particular nonclustered index frequently, the root and
intermediate pages will probably be in cache, so only one or two physical disk
I/0s need to be performed.

288 Adaptive Server Enterprise



CHAPTER 12 How Indexes Work

Nonclustered indexes and insert operations

When you insert rows into a heap that has a nonclustered index and no
clustered index, the insert goes to the last page of the table.

If the heapispartitioned, theinsert goesto the last page on one of the partitions.
Then, the nonclustered index is updated to include the new row.

If the table has a clustered index, it is used to find the location for the row. The
clustered index isupdated, if necessary, and each nonclustered index is updated
to include the new row.

Figure 12-9 shows an insert into a heap table with a nonclustered index. The
row is placed at the end of the table. A row containing the new key value and
therow ID isaso inserted into the leaf level of the nonclustered index.

Figure 12-9: An insert into a heap table with a nonclustered index

insert employees
(empid, Iname)

Page 1247

values(24, "Greco") Key  Pointer Ray | O'Leary
Page 1132 Ron | Ringer
. Bennet 1421,1 Lisa | White
Key RowlD Pointer | cpap 11203 Bob | Jenkins
e B T et
Key RowlD Pointer Bennet [1421,1 |1132 wards ; Tim | Hunter
Page T00T Greane (13074 1133 Liv Smith
Bennet  [1421.1 007 Hunter  [1307,1 1127 . Page 1133 Ann Ringer
Karsen [1411,3 1009 reane _|1307.4 Jo | Greane
Smith  [13072 1062 Loy | st
’ Page 1009 Green 1421,2 Page 1421
Karsen [1411,3 [1315 Greene | 1409,2 lan | Bennet
Andy| Green
Page 1127 Les Yokomoto
Hunter 1307,1
Jenkins 12424 Page 1409
Chad| Dull
Edi Greene
Gabe| White
Kip Greco
Root page Intermediate Leaf pages Data pages

Performance and Tuning: Basics 289



Nonclustered indexes

Nonclustered indexes and delete operations

When you delete arow from atable, the query can use a nonclustered index on
the columnsin the where clause to locate the data row to delete, as shown in
Figure 12-10.

Therow in the leaf level of the nonclustered index that points to the data row
is also removed. If there are other nonclustered indexes on the table, the rows
on the leaf level of those indexes are also deleted.

Figure 12-10: Deleting arow from a table with a nonclustered index

delete employees Page,lz4z
where Iname = "Green" . Ray | O'Leary
Key Pointer Ron | Ringer
Lisa | White
Page 1132 Bob | Jenkins
Key RowlD Pointer Bennet | 1421,1
Chan 1129,3
Page 1007 Dull 1409,1 _ Page 1307
Bennet |1421,1 |1132 Edwards | 10185 Tim | Hunter
Key RowlD Pointer Greane |1307,4 |1133 Liv | Smith
Hunter |1307,1 |1127 \ Ann | Ringer
Page 1001 Page 1133 Jo Greane
Bennet |1421,1 |1007 Greane 1307,4
Karsen |1411,3 |1009 Greco 1409,4
Smith | 1307.2 | 1062 Page 1009 Green | 14212 Page 1421
Karsen |[1411,3 |1315 Greene | 14092 \laﬂ Bennet
' Mndy | Green
Les Yokomoto
Page 1127
Hunter 1307,1
Jenkins 12424
Page 1409
Chad| Dull
Eddy | Greene
Gabe | White
%\é\} Kip Greco
Root page Intermediate Leaf pages |"| Data pages

If the delete operation removes the last row on the data page, the page is
deallocated and the adjacent page pointers are adjusted in allpages-locked
tables. Any referencesto the page are also deleted in higher levels of the index.

If the del ete operation leaves only a single row on an index intermediate page,
index pages may be merged, as with clustered indexes.

290 Adaptive Server Enterprise



CHAPTER 12 How Indexes Work

See “Index page merges’ on page 285.

Thereisno automatic page merging on data pages, so if your applications make
many random deletes, you may end up with data pages that have only asingle
row, or afew rows, on a page.

Clustered indexes on data-only-locked tables

Clustered indexes on data-only-locked tables are structured like nonclustered
indexes. They have aleaf level above the data pages. The leaf level contains
the key values and row ID for each row in the table.

Unlike clustered indexes on all pages-locked tables, the datarowsin a data-
only-locked table are not necessarily maintained in exact order by the key.
Instead, the index directs the placement of rows to pages that have adjacent or
nearby keys.

When arow needs to be inserted in a data-only-locked table with a clustered
index, the insert uses the clustered index key just before the value to be
inserted. The index pointers are used to find that page, and the row isinserted
on the pageif thereisroom. If thereis not room, the row isinserted on apage
in the same allocation unit, or on another allocation unit already used by the
table.

To provide nearby space for maintaining data clustering during inserts and
updates to data-only-locked tables, you can set space management properties
to provide space on pages (using fillfactor and exp_row_size) or on alocation
units (using reservepagegap).

See Chapter 9, “ Setting Space Management Properties.”

Index covering

Index covering can produce dramatic performance improvements when all
columns needed by the query are included in the index.

You can create indexes on more than one key. These are called composite
indexes. Composite indexes can have up to 31 columns adding up to a
maximum 600 bytes.

Performance and Tuning: Basics 291



Index covering

If you create a composite nonclustered index on each column referenced in the
query’s select list and in any where, having, group by, and order by clauses, the
query can be satisfied by accessing only the index.

Sincetheleaf level of anonclustered index or a clustered index on adata-only-
locked table contains the key valuesfor each row in atable, queriesthat access
only the key values can retrieve the information by using the leaf level of the
nonclustered index asif it were the actual table data. Thisiscalled index
covering.

There are two types of index scansthat can use an index that covers the query:
e The matching index scan
e The nonmatching index scan

For both types of covered queries, theindex keys must contain all the columns
named in the query. Matching scans have additional requirements.

“Choosing composite indexes’ on page 312 describes query types that make
good use of covering indexes.

Covering matching index scans

292

Letsyou skip the last read for each row returned by the query, the read that
fetches the data page.

For point queries that return only a single row, the performance gain is slight
— just one page.

For range queries, the performance gain is larger, since the covering index
saves one read for each row returned by the query.

For a covering matching index scan to be used, the index must contain all
columns named in the query. In addition, the columns in the where clauses of
the query must include the leading column of the columns in the index.

For example, for an index on columns A, B, C, and D, the following sets can
perform matching scans: A, AB, ABC, AC, ACD, ABD, AD, and ABCD. The
columns B, BC, BCD, BD, C, CD, or D do not include the leading column and
can be used only for nonmatching scans.

When doing a matching index scan, Adaptive Server uses standard index
access methodsto move from theroot of theindex to the nonclustered leaf page
that contains the first row.

Adaptive Server Enterprise



CHAPTER 12 How Indexes Work

In Figure 12-11, the nonclustered index on Iname, fname coversthe query. The
where clause includes the leading column, and al columnsin the select list are
included in the index, so the data page need not be accessed.

Figure 12-11: Matching index access does not have to read the data row

select fname, Iname

from employees . Page 1647
where Iname = "Greene" Key Pointer 10 olLeary
Page 1560 111 Ringer
Bennet,Sam 1580,1 12 Wh't?
Chan,Sandra 1129,3 13 Jenkins
Dull,Normal 1409,1
Edwards,Linda | 1018,5 14 Paga ulr?:egr
Key RowlID Pointer 15 Smith
Page 1544 Page 1561 16 Ringer
Bennet,Sam 1580,1 1560 Greane,Grey 13074 17 Greane
Greane,Grey | 16494 1561 Greco,Del 14094
HunterHugh | 1649,1 1843 \ GreenRita 1421,2 Page 1580
Greene,Cindy 1703,2 18 Bennet
20 Yokomoto
Page 1843
Hunter,Hugh 1307,1
Jenkins,Ray 1242,4
Page 1703
21 Dull
22 Greene
23 White
24 Greco
Root page Intermediate Leaf pages Data pages

Covering nonmatching index scans

When the columns specified in the where clause do not include the leading
column in the index, but all columns named in the select list and other query
clauses (such as group by or having) areincluded in the index, Adaptive Server
saves|/O by scanning the entireleaf level of theindex, rather than scanning the
table.

It cannot perform a matching scan because the first column of theindex is not
specified.

Performance and Tuning: Basics 293



Index covering

The query in Figure 12-12 shows a nonmatching index scan. This query does
not use the leading columns on theindex, but all columnsrequired in the query
are in the nonclustered index on Iname, fname, emp_id.

The nonmatching scan must examine all rowson theleaf level. It scansall |eaf
level index pages, starting from the first page. It has no way of knowing how
many rows might match the query conditions, so it must examine every row in
the index. Since it must begin at the first page of the leaf level, it can use the
pointer in sysindexes.first rather than descending the index.

Figure 12-12: A nonmatching index scan

select Iname, emp_id

from employees . Page 1647
where fname = "Rita" Key Pointer 10 OjLeary
Page 1560 11} Ringer
sysindexesfist ——— | |BennetSam409.. | 15801 12| White
Chan,Sandra817.. | 11293 13 | Jenkins
Dull,Normal,415... 1409,1
: " : Page 1649
' Edwards,Linda,238... | 1018,5 14 Hunter
Key Rowl Pointer 15 Smith
Page 1544 16 Ringer
Page 1561
Bennet,Sam,409... [1580,1 [1560 Greane,Grey,486... 13074 17 Greane
Greane,Grey,486... [1649,4 |1561
H Hugh 457 16491 1843 GreCO,Del,G?Z... 1409,4 Page 1580
unter,Hugh,4s... | 1649, Green,Rita,398... 1421,2 18 | Bennet
Greene,Cindy,127... | 1703,2 20 Yokomoto
Page 1843
Hunter,Hugh,457... 1307,1
Jenkins,Ray,723... 12424 Page 1703
21 Dull
v 22 Greene
23 White
24 Greco
Root page Intermediate Leaf pages Data pages

294 Adaptive Server Enterprise



CHAPTER 12 How Indexes Work

Indexes and caching

“How Adaptive Server performs 1/O for heap operations’ on page 172
introduces the basic concepts of the Adaptive Server data cache, and shows
how caches are used when reading heap tables.

Index pages get special handling in the data cache, as follows:
¢ Root and intermediate index pages always use LRU strategy.

* Index pages can use one cache while the data pages use a different cache,
if the index isbound to a different cache.

e Covering index scans can use fetch-and-discard strategy.

* Index pages can cycle through the cache many times, if number of index
trips is configured.

When a query that uses an index is executed, the root, intermediate, |eaf, and
data pages are read in that order. If these pages are not in cache, they are read
into the MRU end of the cache and are moved toward the LRU end as
additional pagesarereadin.

Each time a pageis found in cache, it is moved to the MRU end of the page
chain, so the root page and higher levels of the index tend to stay in the cache.

Using separate caches for data and index pages

Indexes and the tables they index can use different caches. A System
Administrator or table owner can bind aclustered or nonclustered index to one
cache and its table to another.

Index trips through the cache

A special strategy keepsindex pagesin cache. Data pages make only asingle
trip through the cache: they are read in at the MRU end of the cache or placed
just before the wash marker, depending on the cache strategy chosen for the
query.

Once the pages reach the LRU end of the cache, the buffer for that pageis
reused when another page needs to be read into cache.

For index pages, a counter controls the number of tripsthat an index page can
make through the cache.

Performance and Tuning: Basics 295



Indexes and caching

296

When the counter is greater than O for an index page, and it reaches the LRU
end of the page chain, the counter is decremented by 1, and the page is placed
at the MRU end again.

By default, the number of trips that an index page makes through the cache is
set to 0. To change the default, a System Administrator can set the number of
index trips configuration parameter

For more information, see the System Administration Guide.

Adaptive Server Enterprise



charTeEr 13 Indexing for Performance

This chapter introduces the basic query analysistools that can help you
choose appropriate indexes and discussesindex selection criteriafor point
queries, range queries, and joins.

Topic Page
How indexes affect performance 297
Symptoms of poor indexing 298
Detecting indexing problems 298
Fixing corrupted indexes 301
Index limits and requirements 304
Choosing indexes 305
Techniques for choosing indexes 315
Index and statistics maintenance 317
Additional indexing tips 319

How indexes affect performance

Carefully considered indexes, built on top of a good database design, are
the foundation of a high-performance Adaptive Server installation.
However, adding indexes without proper analysis can reduce the overall
performance of your system. Insert, update, and del ete operations can take
longer when alarge number of indexes need to be updated.

Analyze your application workload and create indexes as necessary to
improve the performance of the most critical processes.

The Adaptive Server query optimizer uses a probabilistic costing model.
It analyzesthe costs of possible query plans and chooses the plan that has
the lowest estimated cost. Since much of the cost of executing a query
consists of disk /O, creating the correct indexes for your applications
means that the optimizer can use indexes to:

« Avoid table scans when accessing data

Performance and Tuning: Basics 297



Detecting indexing problems

»  Target specific data pages that contain specific values in a point query

e Establish upper and lower bounds for reading datain a range query

« Avoid data page access completely, when an index covers a query

e Useordered datato avoid sorts or to favor merge joins over nested-loop
joins

In addition, you can create indexes to enforce the uniqueness of data and to

randomi ze the storage location of inserts.

Detecting indexing problems

Some of the major indicationsof insufficient or incorrect indexing include:
* A select statement takes too long.
* A join between two or more tables takes an extremely long time.

»  Select operations perform well, but data modification processes perform
poorly.

»  Point queries (for example, “where colvalue = 3") perform well, but range
queries (for example, “where colvalue > 3 and colvalue < 30") perform
poorly.

These underlying problems are described in the following sections.

Symptoms of poor indexing

298

A primary goal of improving performancewith indexesisavoiding table scans.
In atable scan, every page of the table must be read from disk.

A query searching for aunique value in atablethat has 600 data pages requires
600 physical and logical reads. If an index points to the data val ue, the same
guery can be satisfied with 2 or 3 reads, a performance improvement of 200 to
300 percent.

On a system with a 12-ms. disk, thisis a difference of several seconds
compared to lessthan asecond. Heavy disk I/O by asingle query hasanegative
impact on overall throughput.

Adaptive Server Enterprise



CHAPTER 13 Indexing for Performance

Lack of indexes is causing table scans

If select operations and joins take too long, it probably indicates that either an
appropriate index does not exist or, it exists, but is not being used by the
optimizer.

showplan output reports whether the table is being accessed via a table scan or
index. If you think that an index should be used, but showplan reports a table
scan, dbcc traceon(302) output can help you determine the reason. It displays
the costing computations for all optimizing query clauses.

If thereis no clauseisincluded in dbcc traceon(302) output, there may be
problems with the way the clause is written. If a clause that you think should
limit the scan isincluded in dbcc traceon(302) output, look carefully at its
costing, and that of the chosen plan reported with dbcc traceon(310).

Index is not selective enough

Anindex is selectiveif it helps the optimizer find a particular row or a set of
rows. Anindex on a unique identifier such as a Social Security Number is
highly selective, sinceit lets the optimizer pinpoint asingle row. Anindex on
anonunigue entry such as sex (M, F) is not very selective, and the optimizer
would use such an index only in very special cases.

Index does not support range queries

Generally, clustered indexes and covering indexes provide good performance
for range queries and for search arguments (SARG) that match many rows.
Range queriesthat reference the keys of noncovering indexes use theindex for
ranges that return alimited number of rows.

As the number of rows the query returns increases, however, using a
nonclustered index or a clustered index on a data-only-locked table can cost
more than a table scan.

Too many indexes slow data modification

If data modification performance is poor, you may have too many
indexes.While indexes favor select operations, they slow down data
modifications.

Every insert or delete operation affects the leaf level, (and sometimes higher
levels) of aclustered index on a data-only-locked table, and each nonclustered
index, for any locking scheme.

Performance and Tuning: Basics 299



Detecting indexing problems

Updates to clustered index keys on allpages-locked tables can move the rows
to different pages, requiring an update of every nonclustered index. Analyze
the requirements for each index and try to eliminate those that are unnecessary
or rarely used.

Index entries are too large

Try to keep index entriesas small aspossible. You can createindexeswith keys
up to 600 bytes, but those indexes can store very few rows per index page,
which increases the amount of disk 1/0 needed during queries. The index has
more levels, and each level has more pages.

The following example uses values reported by sp_estspace to demonstrate
how the number of index pagesand |l eaf level srequired increaseswith key size.
It creates nonclustered indexes using 10-, 20, and 40-character keys.

create tabl e denotable (cl10 char(10),
c20 char(20),
c40 char (40))
create index t10 on denotabl e(cl10)
create index t20 on denotabl e(c20)
create index t40 on denotabl e(c40)
sp_est space denot abl e, 500000

Table 13-1 shows the resullts.

Table 13-1: Effects of key size on index size and levels

Index, key size Leaf-level pages Index levels
t10, 10 bytes 4311 3
t20, 20 bytes 6946 3
t40, 40 bytes 12501 4

The output shows that the indexesfor the 10-column and 20-column keys each
have three levels, while the 40-column key requires a fourth level.

The number of pages required is more than 50 percent higher at each level.

Exception for wide data rows and wide index rows
Indexes with wide rows may be useful when:

» Thetable has very wide rows, resulting in very few rows per data page.

» Theset of queriesrun on the table provides logical choicesfor acovering
index.

300 Adaptive Server Enterprise



CHAPTER 13 Indexing for Performance

e Queriesreturn asufficiently large number of rows.

For example, if atable hasvery long rows, and only one row per page, aquery
that needs to return 100 rows needs to access 100 data pages. An index that
covers this query, even with long index rows, can improve performance.

For example, if the index rows were 240 bytes, the index would store 8 rows
per page, and the query would need to access only 12 index pages.

Fixing corrupted indexes

If the index on one of your system tables has been corrupted, you can use the
sp_fixindex system procedure to repair the index. For syntax information, see
the entry for sp_fixindex in “ System Procedures’ in the Adaptive Server
Reference Manual.

Repairing the system table index
Repairing a corrupted system table index requires the following steps:

0 Repairing the system table index with sp_fixindex

1 Get the object_name, object ID, and index_ID of the corrupted index. If
you only have a page number and you need to find the object_name, see
the Adaptive Server Troubleshooting and Error Messages Guide for
instructions.

2 If the corrupted index is on a system table in the master database, put
Adaptive Server in single-user mode. See the Adaptive Server
Troubleshooting and Error Messages Guide for instructions.

3 If thecorrupted index is on a system table in a user database, put the
database in single-user mode and reconfigure to alow updates to system
tables:

1> use naster

2> go

1> sp_dboption database_name, "single user", true
2> go

1> sp_configure "all ow updates", 1

2> go

4 Issuethesp_fixindex command:

Performance and Tuning: Basics 301



Fixing corrupted indexes

1>
2>

1>
2>

1>
2>

use dat abase_nane

go

checkpoi nt

go

sp_fixi ndex database_nane, object_name, index_ID
go

You can use the checkpoint to identify the one or more databasess or use
andl clause.

checkpoint [all | [dbname[, dbname[, dbname.....]]]

Note You must possess sa_role permissionsto run sp_fixindex.

5 Rundbcc checktable to verify that the corrupted index is now fixed.

6 Disallow updates to system tables:

1>
2>

1>
2>

7  Turn off single-user mode:

1>
2>

1>
2>

1>
2>

use naster

go

sp_configure "all ow updates”, 0

go

sp_dbopti on dat abase_nane, "single user", false
go

use dat abase_nane

go

checkpoi nt

go

You can use the checkpoint to identify the one or more databasess or use
an al clause, which means you do not have to issue the use database
command.

checkpoint [all | [dbname[, dbname[, dbname.....]]]

Repairing a nonclustered index

Running sp_fixindex to repair a nonclustered index on sysobjects requires
several additional steps.

302

Adaptive Server Enterprise



CHAPTER 13 Indexing for Performance

0 Repairing a nonclustered index on sysobjects

1 Perform steps 1-3, asdescribed in “ Repairing the system table index with
sp_fixindex,” above.

2 Issuethefollowing Transact-SQL query:

1> use dat abase_nane
2> go

1> checkpoi nt
2> go

1> sel ect sysstat from sysobjects
2> where id =1
3> go

You can use the checkpoint to identify the one or more databasess or use
an al clause.

checkpoint [all | [dbname[, dbname[, dbname.....]]]
3 Savetheoriginal sysstat value.
4 Change the sysstat column to the value required by sp_fixindex:

1> updat e sysobjects

2> set sysstat = sysstat | 4096
3> where id =1

4> go

5 Runsp_fixindex:

1> sp_fixi ndex database_nane, sysobjects, 2
2> go

6 Restorethe original sysstat value:

1> updat e sysobjects

2> set sysstat = sysstat_ ORI G NAL
3> where id = object_ID

4> go

7 Rundbcc checktable to verify that the corrupted index is now fixed.
8 Disalow updates to system tables:

1> sp_configure "all ow updates”, O
2> go

9 Turn off single-user mode:

1> sp_dboption database_nane, "single user", false
2> go

Performance and Tuning: Basics 303



Index limits and requirements

Index limits and
The

304

1> use dat abase_nane
2> go

1> checkpoi nt

2> go
You can use the checkpoint to identify the one or more databasess or use
andl clause.

checkpoint [all | [dbname[, dbname[, dbname.....]]]

requirements
following limits apply to indexesin Adaptive Server:

You can create only one clustered index per table, since the datafor a
clustered index is ordered by index key.

You can create a maximum of 249 nonclustered indexes per table.

A key can be made up of as many as 31 columns. The maximum number
of bytes per index key is600.

When you create a clustered index, Adaptive Server requires empty free
space to copy the rowsin the table and allocate space for the clustered
index pages. It aso requires space to re-create any nonclustered indexes
on thetable.

The amount of space required can vary, depending on how full thetable's
pages are when you begin and what space management properties are
applied to the table and index pages.

See* Determining the space available for maintenance activities’ on page
356 for more information.

The referential integrity constraints unique and primary key create unique
indexes to enforce their restrictions on the keys. By default, unique
constraints create nonclustered indexes and primary key constraints create
clustered indexes.

Adaptive Server Enterprise



CHAPTER 13 Indexing for Performance

Choosing indexes

When you are working with index selection you may want to ask these
questions:

¢ What indexes are associated currently with a given table?
e What are the most important processes that make use of the table?

e What istheratio of select operations to data modifications performed on
the table?

e Hasaclustered index been created for the table?
e Canthe clustered index be replaced by a nonclustered index?
* Do any of theindexes cover one or more of the critical queries?

* Isacompositeindex required to enforce the uniqueness of a compound
primary key?

¢ What indexes can be defined as unique?

e What are the major sorting requirements?

« Do some queries use descending ordering of result sets?

e Do theindexes support joins and referential integrity checks?

« Doesindexing affect update types (direct versus deferred)?

¢ What indexes are needed for cursor positioning?

e If dirty reads are required, are there unique indexes to support the scan?

e Should IDENTITY columns be added to tables and indexes to generate
unique indexes? Unique indexes are required for updatable cursors and
dirty reads.

When deciding how many indexes to use, consider:

e Space constraints

e Access pathsto table

*  Percentage of data modifications versus select operations
e Performance requirements of reports versus OLTP

*  Performance impacts of index changes

¢ How often you can use update statistics

Performance and Tuning: Basics 305



Choosing indexes

Index keys and logical keys

Index keys need to be differentiated from logical keys. Logical keysare part of
the database design, defining the relationships between tables: primary keys,
foreign keys, and common keys.

When you optimize your queries by creating indexes, the logical keys may or
may not be used as the physical keysfor creating indexes. You can create
indexes on columns that are not logical keys, and you may have logical keys
that are not used as index keys.

Choose index keys for performance reasons. Create indexes on columns that
support the joins, search arguments, and ordering requirementsin queries.

A common error isto create the clustered index for atable on the primary key,
even though it is never used for range queries or ordering result sets.

Guidelines for clustered indexes

306

These are general guidelines for clustered indexes:

*  Most alpages-locked tables should have clustered indexes or use
partitions to reduce contention on the last page of heaps.

In a high-transaction environment, the locking on the last page severely
limits throughput.

» If your environment reguires alot of inserts, do not place the clustered
index key on a steadily increasing value such asan IDENTITY column.

Choose a key that placesinserts on random pages to minimize lock
contention while remaining useful in many queries. Often, the primary key
does not meet this condition.

This problem is less severe on data-only-locked tables, but is amajor
source of lock contention on allpages-locked tables.

»  Clustered indexes provide very good performance when the key matches
the search argument in range queries, such as:

where col value >= 5 and col val ue < 10

In allpages-locked tables, rows are maintained in key order and pages are
linked in order, providing very fast performance for queries using a
clustered index.

In data-only-locked tables, rowsarein key order after theindex is created,
but the clustering can decline over time.

Adaptive Server Enterprise



CHAPTER 13 Indexing for Performance

e Other good choicesfor clustered index keys are columns used in order by
clausesandinjains.

e If possible, do not include frequently updated columnsaskeysin clustered
indexes on allpages-locked tables.

When the keys are updated, the rows must be moved from the current
location to a new page. Also, if the index is clustered, but not unique,
updates are done in deferred mode.

Choosing clustered indexes

Choose indexes based on the kinds of where clauses or joins you perform.
Choicesfor clustered indexes are:

e Theprimary key, if itis used for where clauses and if it randomizesinserts
¢ Columnsthat are accessed by range, such as:

col 1 between 100 and 200
col12 > 62 and < 70

e Columnsused by order by
e Columnsthat are not frequently changed
e Columnsusedinjoins

If there are several possible choices, choose the most commonly needed
physical order as afirst choice.

Asasecond choaice, look for range queries. During performance testing, check
for “hot spots’ due to lock contention.

Candidates for nonclustered indexes

When choosing columns for nonclustered indexes, consider all the uses that
were not satisfied by your clustered index choice. In addition, look at columns
that can provide performance gains through index covering.

On data-only-locked tables, clustered indexes can perform index covering,
since they have aleaf level above the datalevel.

On alpages-locked tables, noncovered range queries work well for clustered
indexes, but may or may not be supported by nonclustered indexes, depending
on the size of the range.

Performance and Tuning: Basics 307



Choosing indexes

Index Selection

308

Consider using composite indexes to cover critical queries and to support less
frequent queries:

The most critical queries should be able to perform point queries and
matching scans.

Other queries should be able to perform nonmatching scans using the
index, which avoids table scans.

Index selection allows you to determine which indexes are actively being used
and those that are rarely used.

This section assumes that the monitoring tables featureis already set up, see
Performance and Tuning: Monitoring and Analyzing for Performance, and
includes the following steps:

Add a'loopback' server definition.
Run installmontables to install the monitoring tables.
Grant mon_role to al users who need to perform monitoring.

Set the monitoring configuration parameters. For more information, see
Performance and Tuning: Monitoring and Analyzing for Performance.

You can use sp_monitorconfig to track whether number of open objects or
number of open indexes are sufficiently configured.

Index sel ection-usage uses the following five columns of the monitoring
access table, monOpenObjectActivity:

IndexID — unique identifier for the index.

OptSelectCount — reports the number of times that the corresponding
object (such as atable or index) was used as the access method by the
optimizer.

LastOptSelectDate — reports the last time OptSelectCount was incremented

UsedCount — reports the number of times that the corresponding object
(such as atable or index) was used as an access method when a query
executed.

LastUsedDate — reports the last time UsedCount was incremented.

Adaptive Server Enterprise



CHAPTER 13 Indexing for Performance

If aplan has aready been compiled and cached, OptSelectCount is not
incremented each time the plan is executed. However, UsedCount is
incremented when a plan is executed. If no exec ison, OptSelectCount value
is 3incremented, but the UsedCount value does not.

Monitoring data is nonpersistent. That is, when you restart the server, the
monitoring datais reset. Monitoring datais reported only for active objects.
For example, monitoring data does not exist for objects that have not been
opened since there are no active object descriptors for such objects. For
systems that are inadequately configured and have reused object descriptors,
monitoring data for these object descriptorsisreinitialized and the datafor the
previous object islost. When the old object is reopened, its monitoring datais
reset.

Examples of using the index selection

The following example queries the monitoring tables for the last time all
indexes for a specific object were selected by the optimizer aswell asthe last
time they were actually used during execution, and reports the countsin each
case:

sel ect DBID, ObjectlD, IndexlD, OptSelectCount, LastOptSel ectDate, UsedCount,
Last UsedDat e

from monOpenObj ect Activity

where DBID = db_id("financials_db") and CbjectlD = object _id(’ expenses’)
order by UsedCount

This exmaple displays all indexesthat are not currently used in an application
or server:

select DBID, njectID, IndexlD, object_name(CbjectlD, DBID)
from monOpenObj ect Activity
where DBID = db_id("financials_db") and Opt Sel ect Count = 0

Thisexample displays all indexesthat are not currently used in an application,
and al so provides a sample output:

select DBID, ObjectlD, IndexlD , object_nane(ObjectlD, DBID)
from nonCOpenChj ect Activity

where DBID = db_id("financials_db") and Opt Sel ect Count = 0

bj ect Nane id | ndexNane Opt Ct Last Opt Sel ect Dat e
UsedCount Last UsedDat e

cust oner 2 ci _nkey_ckey 3 Sep 27 2002 4:05PM
20 Sep 27 2002 4:05PM
cust oner 0 cust oner _x 3 Sep 27 2002 4: 08PM

Performance and Tuning: Basics 309



Choosing indexes

5
cust oner
5
cust oner
5
cust oner
0

Sep 27 2002 4:08PM

1 cust omer _x 1 Sep 27 2002 4. 06PM
Sep 27 2002 4:07PM

3 ci _ckey_nkey 1 Sep 27 2002 4:04PM
Sep 27 2002 4:05PM

4 cust omer _nation 0 Jan 1 1900 12: 00AM

Jan 1 1900 12: 00AM

In this example, the customer_nation index has not been used, which resultsin
the date “ Jan 1 1900 12:00AM”.

Other indexing guidelines

310

Here are some other considerations for choosing indexes:

* If anindex key is unique, define it as unique so the optimizer knows
immediately that only one row matches a search argument or ajoin on the

key.

* If your database design uses referential integrity (the references keyword
or the foreign key...references keywords in the create table statement), the
referenced columns must have aunique index, or the attempt to create the
referential integrity constraint fails.

However, Adaptive Server does not automatically create an index on the
referencing column. If your application updates primary keys or deletes
rows from primary key tables, you may want to create an index on the
referencing column so that these lookups do not perform atable scan.

* If your applications use cursors, see “Index use and requirements for
cursors’ on page 331.

» If you are creating an index on atable where there will be alot of insert
activity, use fillfactor to temporarily minimize page splits and improve
concurrency and minimize deadlocking.

» If you are creating an index on aread-only table, use afillfactor of 100 to
make the table or index as compact as possible.

»  Keepthesize of the key as small as possible. Your index trees remain
flatter, accelerating tree traversals.

e Usesmal datatypes whenever it fits your design.

*  Numerics compare slightly faster than strings internally.

Adaptive Server Enterprise



CHAPTER 13 Indexing for Performance

e Variable-length character and binary typesrequiremorerow overhead
than fixed-length types, so if there islittle difference between the
average length of a column and the defined length, use fixed length.
Character and binary types that accept null values are variable-length
by definition.

e Whenever possible, use fixed-length, non-null types for short
columns that will be used as index keys.

e Besurethat the datatypes of the join columnsin different tables are
compatible. If Adaptive Server has to convert a datatype on one side of a
join, it may not use an index for that table.

See" Datatype mismatches and query optimization” on page 24 in
Performance and Tuning: Optimizer for more information.

Choosing nonclustered indexes

When you consider adding nonclustered indexes, you must weigh the
improvement inretrieval time against theincreasein datamodificationtime. In
addition, you need to consider these questions:

e How much space will the indexes use?

¢ How volatileis the candidate column?

¢ How selective are the index keys? Would a scan be better?
e Aretherealot of duplicate values?

Because of data modification overhead, add nonclustered indexes only when
your testing shows that they are helpful.

Performance price for data modification
Each nonclustered index needs to be updated, for all locking schemes:

*  For eachinsert into the table
*  For each delete from the table

An updateto thetablethat changes part of anindex’skey requiresupdating just
that index.

For tables that use allpages locking, all indexes need to be updated:

Performance and Tuning: Basics 311



Choosing indexes

»  For any update that changes the location of arow by updating a clustered
index key so that the row moves to another page

«  For every row affected by a data page split

For allpages-locked tables, exclusive locks are held on affected index pagesfor
the duration of the transaction, increasing lock contention aswell as processing
overhead.

Some applications experience unacceptabl e performance i mpacts with only
three or four indexes on tables that experience heavy data modification. Other
applications can perform well with many more tables.

Choosing composite indexes

If your analysis shows that more than one column is a good candidate for a
clustered index key, you may be able to provide clustered-like access with a
composite index that covers a particular query or set of queries. Theseinclude:

* Range queries.

»  Vector (grouped) aggregates, if both the grouped and grouping columns
areincluded. Any search arguments must also be included in the index.

*  Queriesthat return a high number of duplicates.
*  Queriesthat include order by.
*  Queriesthat table scan, but use asmall subset of the columns on the table.

Tablesthat areread-only or read-mostly can be heavily indexed, aslong asyour
database has enough space available. If thereis little update activity and high
select activity, you should provideindexesfor all of your frequent queries. Be
sure to test the performance benefits of index covering.

Key order and performance in composite indexes

312

Covered queries can provide excellent response time for specific querieswhen
the leading columns are used.

With the composite nonclustered index on au_Iname, au_fname, au_id, this
query runs very quickly:

select au_id
from aut hors
where au_fname = "Eliot" and au_l name = "W k"

Adaptive Server Enterprise



CHAPTER 13 Indexing for Performance

This covered point query needs to read only the upper levels of the index and
asingle pagein the leaf-level row in the nonclustered index of a 5000-row
table.

This similar-looking query (using the same index) does not perform quite as
well. This query is still covered, but searcheson au_id:

sel ect au_fnane, au_l nane
from aut hors
where au_id = "Al714224678"

Sincethisquery does not include the leading column of theindex, it hasto scan
the entire leaf level of the index, about 95 reads.

Adding a column to the select list in the query above, which may seem like a
minor change, makes the performance even worse:

sel ect au_fnane, au_|l name, phone
from aut hors
where au_id = "Al1714224678"

This query performs a table scan, reading 222 pages. In this case, the
performance is noticeably worse. For any search argument that is not the
|eading column, Adaptive Server has only two possible access methods: atable
scan, or a covered index scan.

It does not scan the leaf level of theindex for a non-leading search argument
and then access the data pages. A composite index can be used only when it
covers the query or when the first column appearsin the where clause.

For a query that includes the leading column of the composite index, adding a
column that isnot included in the index adds only asingle data pageread. This
query must read the data page to find the phone number:

sel ect au_id, phone
from aut hors
where au_fnane = "Eliot" and au_l name = "W I k"

Table 13-2 shows the performance characteristics of different where clauses
with anonclustered index on au_Iname, au_fname, au_id and no other indexes
on the table.

Table 13-2: Composite nonclustered index ordering and performance

Performance with the indexed Performance with other

Columns in the where clause

columns in the select list

columns in the select list

au_lname
or au_Ilname, au_fname

or au_Ilname, au_fname, au_id

Performance and Tuning: Basics

Good; index used to descend tree; data
level is not accessed

Good; index used to descend tree;
datais accessed (one more page
read per row)

313



Choosing indexes

Performance with the indexed Performance with other

Columns in the where clause columns in the select list columns in the select list

au_fname
or au_id

or au_fname, au_id

Moderate; index is scanned to return ~ Poor; index not used, table scan
values

Choose the ordering of the composite index so that most queriesform a prefix
subset.

Advantages and disadvantages of composite indexes
Composite indexes have these advantages:

314

A composite index provides opportunities for index covering.

If queries provide search arguments on each of the keys, the composite
index requiresfewer I/Osthan the same query using anindex onany single
attribute.

A composite index is agood way to enforce the uniqueness of multiple
attributes.

Good choices for composite indexes are:

Lookup tables
Columns that are frequently accessed together
Columns used for vector aggregates

Columns that make a frequently used subset from a table with very wide
rows

The disadvantages of composite indexes are:

Composite indexes tend to have large entries. This means fewer
index entries per index page and more index pages to read.

An update to any attribute of a composite index causes the index to be
modified. The columns you choose should not be those that are updated
often.

Poor choices are:

Indexes that are nearly aswide as thetable

Composite indexes where only aminor key is used in the where clause

Adaptive Server Enterprise



CHAPTER 13 Indexing for Performance

Techniques for choosing indexes

This section presents a study of two queriesthat must accessasingletable, and
the indexing choices for these two queries. The two queries are:

e A range query that returns alarge number of rows

e A point query that returns only one or two rows

Choosing an index for arange query
Assume that you need to improve the performance of the following query:

select title
fromtitles
where price between $20.00 and $30. 00

Some basic statistics on the table are:
e Thetable has 1,000,000 rows, and uses allpages locking.

e Thereare 10 rows per page; pages are 75 percent full, so the table has
approximately 135,000 pages.

e 190,000 (19%) of thetitles are priced between $20 and $30.
With no index, the query would scan all 135,000 pages.

With a clustered index on price, the query would find the first $20 book and
begin reading sequentially until it gets to the last $30 book. With pages about
75 percent full, the average number of rows per pageis 7.5. To read 190,000
matching rows, the query would read approximately 25,300 pages, plus 3 or 4
index pages.

With a nonclustered index on price and random distribution of price values,
using theindex to find the rows for this query requiresreading about 19 percent
of the leaf level of the index, about 1,500 pages.

If the pricevalues are randomly distributed, the number of data pages that must
beread islikely to be high, perhaps as many data pages asthere are qualifying
rows, 190,000. Since atable scan requires only 135,000 pages, you would not
want to use this nonclustered.

Performance and Tuning: Basics 315



Techniques for choosing indexes

Another choice isanonclustered index on price, title. The query can perform a
matching index scan, using the index to find the first page with a price of $20,
and then scanning forward on the leaf level until it finds a price of more than
$30. Thisindex requires about 35,700 leaf pages, so to scan the matching leaf
pages requires reading about 19 percent of the pages of thisindex, or about
6,800 reads.

For this query, the covering nonclustered index on price, title is best.

Adding a point query with different indexing requirements

Theindex choice for the range query on price produced a clear performance
choice when all possibly useful indexes were considered. Now, assume this
guery also needs to run against titles:

sel ect price
fromtitles
where title = "Looking at Leeks"

You know that there are very few duplicatetitles, so thisquery returnsonly one
or two rows.

Considering both this query and the previous query, Table 13-3 shows four
possible indexing strategies and estimate costs of using each index. The
estimates for the numbers of index and data pages were generated using a
fillfactor of 75 percent with sp_estspace:

sp_estspace titles, 1000000, 75
The values were rounded for easier comparison.

Table 13-3: Comparing index strategies for two queries

Possible index choice Index pages Range query on price Point query on title
1 Nonclustered on title 36,800 Clustered index, about 26,600 Nonclustered index, 6 1/0s
Clustered on price 650 pages (135,000 *.19)
With 16K 1/0: 3,125 1/0s
2 Clustered ontitle 3,770 Table scan, 135,000 pages Clustered index, 6 1/0s
Nonclustered on price 6,076 With 16K 1/O: 17,500 I/Os
3 Nonclustered on title, 36,835 Nonmatching index scan, Nonclustered index,
price about 35,700 pages 51/0s
With 16K 1/0: 4,500 1/0s
4 Nonclustered on price, 36,835 Matching index scan, about Nonmatching index scan,
title 6,800 pages (35,700 *.19) about 35,700 pages
With 16K 1/0: 850 1/0s With 16K 1/0: 4,500 1/Os

316

Adaptive Server Enterprise



CHAPTER 13 Indexing for Performance

Examining the figuresin Table 13-3 shows that:

«  For therange query on price, choice 4 is best; choices 1 and 3 are
acceptable with 16K /0.

«  For the point query on titles, indexing choices 1, 2, and 3 are excellent.

The best indexing strategy for acombination of these two queriesisto usetwo
indexes:

e Choice 4, for range queries on price.

e Choice 2, for point queries on title, since the clustered index requiresvery
little space.

You may need additional information to help you determine which indexing
strategy to use to support multiple queries. Typical considerations are;

*  Whatisthefrequency of each query? How many times per day or per hour
isthe query run?

¢ What are the response time requirements? Is one of them especially time
critical?

¢ What arethe response time requirements for updates? Does creating more
than one index slow updates?

e Istherange of valuestypical ? Isawider or narrower range of prices, such
as $20 to $50, often used? How do different ranges affect index choice?

e Istherealarge data cache? Are these queries critical enough to providea
35,000-page cache for the nonclustered compositeindexesin index choice
3 or 4? Binding thisindex to its own cache would provide very fast
performance.

e What other queries and what other search arguments are used? Isthistable
frequently joined with other tables?

Index and statistics maintenance

To ensure that indexes evolve with your system:

« Monitor queries to determine if indexes are still appropriate for your
applications.

Performance and Tuning: Basics 317



Index and statistics maintenance

Periodically, check the query plans, as described in Chapter 5, “ Using set
showplan,” inthe Performance and Tuning: Monitoring and Analyzing for
Performance book and the /O statistics for your most frequent user
queries. Pay special attention to noncovering indexes that support range
queries. They are most likely to switch to table scansif the data
distribution changes

e Drop and rebuild indexes that hurt performance.

e Keepindex statistics up to date.

»  Use space management properties to reduce page splits and to reduce the
frequency of maintenance operations.

Dropping indexes that hurt performance

Drop indexes that hurt performance. If an application performs data
modifications during the day and generates reports at night, you may want to
drop some indexesin the morning and re-create them at night.

Many system designers create numerous indexes that are rarely, if ever,
actually used by the query optimizer. Make sure that you base indexes on the
current transactions and processes that are being run, not on the original
database design.

Check query plansto determine whether your indexes are being used.

Foe more information on maintaining indexes see “Maintaining index and
column statistics’ on page 346 and “ Rebuilding indexes’ on page 347.

Choosing space management properties for indexes

318

Space management properties can help reduce the frequency of index
maintenance. In particular, fillfactor can reduce the number of page splitson
leaf pages of nonclustered indexes and on the data pages of allpages-locked
tables with clustered indexes.

See Chapter 9, “ Setting Space Management Properties,” for moreinformation
on choosing fillfactor values for indexes.

Adaptive Server Enterprise



CHAPTER 13 Indexing for Performance

Additional indexing tips

Here are some additional suggestions that can lead to improved performance
when you are creating and using indexes:

e Modify thelogical designto make use of an artificial column and alookup
table for tables that require alarge index entry.

e Reducethe size of anindex entry for afrequently used index.

«  Drop indexes during periods when frequent updates occur and rebuild
them before periods when frequent selects occur.

< If you do frequent index maintenance, configure your server to speed up
the sorting.

See* Configuring Adaptive Server to speed sorting” on page 344 for
information about configuration parameters that enable faster sorting.

Creating artificial columns

When indexes become too large, especially composite indexes, it is beneficial
to create an artificial column that is assigned to arow, with a secondary lookup
table that is used to translate between the internal ID and the original columns.

This may increase response time for certain queries, but the overall
performance gain due to amore compact index and shorter datarowsisusually
worth the effort.

Keeping index entries short and avoiding overhead

Avoid storing purely numeric | Dsascharacter data. Useinteger or numeric IDs
whenever possible to:

e Save storage space on the data pages
e Makeindex entries more compact
e Improve performance, since internal comparisons are faster

Index entries on varchar columns require more overhead than entries on char
columns. For short index keys, especially thosewithlittlevariationin lengthin
the column data, use char for more compact index entries.

Performance and Tuning: Basics 319



Asynchronous log service

Dropping and rebuilding indexes

You might drop nonclustered indexes prior to a major set of inserts, and then
rebuild them afterwards. In that way, theinsertsand bulk copiesgo faster, since
the nonclustered indexes do not have to be updated with every insert.

For more information, see “ Rebuilding indexes’ on page 347.

Configure enough sort buffers

The sort buffers decides how many pages of datayou can sort in each run. That
isthe basis for the logrithmic function on calculating the number of runs
needed to finish the sort.

For example, if you have 500 buffers, then the number of runsis calculated
with "log (number of pagesin table) with 500 as the log base".

Also note that the number of sort buffersis shared by threads in the parallel
sort, if you do not have enough sort buffers, the parallel sort may not work as
fast asit should.

Create the clustered index first

Do not create nonclustered indexes, then clustered indexes. When you create
the clustered index all previous nonclustered indexes are rebuilt.

Configure large buffer pools

To set up for larger O/Os, configure large buffers poolsin a named cache and
bind the cache to the table.

Asynchronous log service

Asynchronous log service, or ALS, enables great scalability in Adaptive
Server, providing higher throughput in logging subsystems for high-end
symmetric multiprocessor systems.

320 Adaptive Server Enterprise



CHAPTER 13 Indexing for Performance

Enabling ALS

Issuing a checkpoint

Disabling ALS

Displaying ALS

You cannot use AL Sif you havefewer than 4 engines. If youtry to enable ALS
with fewer than 4 online engines an error message appears.

You can enable, disable, or configure ALS using the sp_dboption stored
procedure.

sp_dbopti on <db Nane>, "async |og service",
"true|fal se"

After issuing sp_dboption, you must issue a checkpoint in the database for
which you are setting the ALS option:

sp_dboption "nydb", "async |og service", "true"
use mydb
checkpoi nt

You can use the checkpoint to identify the one or more databasess or use an al
clause.

checkpoint [all | [dbname[, dbname][, dbname.....]]]

Beforeyou disable AL S, make sure there are no active usersin the database. I
there are, you receive an error message when you issue the checkpoint:

sp_dboption "nydb", "async |og service", "false"

use mydb

checkpoi nt

Error 3647: Cannot put database in single-user node.
Wait until all users have | ogged out of the database and
i ssue a CHECKPO NT to di sable "async | og service".

If there are no active users in the database, this example disables AL S:

sp_dboption "nydb", "async |og service", "false"
use mydb
checkpoi nt

You can see whether ALS is enabled in a specified database by checking
sp_helpdb.

sp_hel pdb "nydb"
nmydb 3.0 MB sa 2
July 09, 2002
sel ect into/bul kcopy/pllsort, trunc | og on chkpt,
async | og service

Performance and Tuning: Basics 321



Asynchronous log service

Understanding the user log cache (ULC) architecture

When to use ALS

322

Adaptive Server’slogging architecture features the user log cache, or ULC, by
which each task ownsits own log cache. No other task can write to this cache,
and the task continues writing to the user log cache whenever atransaction
generates alog record. When the transaction commits or aborts, or the user log
cacheisfull, the user log cacheis flushed to the common log cache, shared by
all the current tasks, which is then written to the disk.

Flushingthe UL C isthefirst part of acommit or abort operation. It requiresthe
following steps, each of which can cause delay or increase contention;

1 Obtaining alock on the last log page.
2 Allocating new log pages if necessary.
3 Copying the log records from the UL C to the log cache.

The processesin steps 2 and 3 require you to hold alock on the last log
page, which prevents any other tasks from writing to the log cache or
performing commit or abort operations.

4 Flush thelog cache to disk.

Step 4 requires repeated scanning of thelog cache to i ssuewrite commands
on dirty buffers.

Repeated scanning can cause contention on the buffer cache spinlock to
which thelog is bound. Under alarge transaction load, contention on this
spinlock can be significant.

You can enable ALS on any specified database that has at least one of the
following performance issues, so long as your systems runs 4 or more online
engines:

*  Heavy contention on the last log page.

You cantell that thelast log pageisunder contention when the sp_sysmon
output in the Task Management Report section shows asignificantly high
value. For example:

Adaptive Server Enterprise



CHAPTER 13 Indexing for Performance

Table 13-4: Log page under contention

Task
Management per sec per xact count % of total
Log Semaphore 58.0 0.3 34801 73.1
Contention
*  Heavy contention on the cache manager spinlock for the log cache.
You can tell that the cache manager spinlock isunder contention when the
sp_sysmon output in the Data Cache Management Report section for the
database transaction log cache shows a high value in the Spinlock
Contention section. For example:
Table 13-5:
Cache c_log ‘ per sec ‘ per xact | count | % of total
Spinlock n/a na n/a 40.0%
Contention

e Underutilized bandwidth in the log device.

Note You should use AL S only when you identify asingle database with high
transaction requirements, since setting AL S for multiple databases may cause
unexpected variations in throughput and response times. If you want to
configure ALS on multiple databases, first check that your throughput and
response times are satisfactory.

Using the ALS

Two threads scan the dirty buffers (buffers full of data not yet written to the
disk), copy the data, and write it to the log. These threads are:

¢ TheUser Log Cache (ULC) flusher
e Thelog Writer.

Performance and Tuning: Basics 323



Asynchronous log service

ULC flusher

The ULC flusher is a system task thread that is dedicated to flushing the user
log cache of atask into the general log cache. When atask isready to commit,
the user enters acommit request into the flusher queue. Each entry hasa
handle, by which the ULC flusher can accessthe ULC of the task that queued
the request. The UL C flusher task continuously monitors the flusher queue,
removing requests from the queue and servicing them by flushing ULC pages
into the log cache.

Log writer

Once the UL C flusher has finished flushing the ULC pages into the log cache,
it queues the task request into awakeup queue. Thelog writer patrolsthe dirty
buffer chainin the log cache, issuing awrite command if it finds dirty buffers,
and monitors the wakeup queue for tasks whose pages are all written to disk.
Since the log writer patrols the dirty buffer chain, it knows when a buffer is
ready to write to disk.

Changes in stored procedures

Asynchronous log service changes the stored procedures sp_dboption and
sp_helpdb:

»  sp_dboption adds an option that enables and disables ALS.
*  sp_helpdb adds acolumn to display ALS.

For more information on sp_helpdb and sp_dboption, see the Reference
Manual.

324 Adaptive Server Enterprise



CHAPTER 14 Cursors and Performance

This chapter discusses performance issues related to cursors. Cursors are
amechanism for accessing the results of a SQL select statement one row
at atime (or several rows, if you use set cursors rows). Since cursors use
adifferent model from ordinary set-oriented SQL, the way cursors use
memory and hold locks has performance implications for your
applications. In particular, cursor performance issues includes locking at
the page and at the table level, network resources, and overhead of
processing instructions.

Topic Page
Definition 325
Resources required at each stage 328
Cursor modes 331
Index use and requirements for cursors 331
Comparing performance with and without cursors 333
L ocking with read-only cursors 336
Isolation levels and cursors 338
Partitioned heap tables and cursors 338
Optimizing tips for cursors 339

Definition

A cursor isasymbolic name that is associated with a select statement. It
enables you to access the results of aselect statement one row at atime.
Figure 14-1 shows a cursor accessing the authors table.

Performance and Tuning: Basics 325



Definition

Cursor with select * from authors

where state = 'KY’

Programming can:
- Examine a row

Figure 14-1: Cursor example

Result set
= A978606525 Marcello Duncan KY

> A937406538  Carton Nita KY
- A1525070956 Porczyk  Howard KY

A913907285  Bier Lane KY

- Take an action based on row values

You can think of acursor asa“handle” on the result set of aselect statement.
It enables you to examine and possibly manipulate one row at atime.

Set-oriented versus row-oriented programming

326

SQL was conceived as a set-oriented language. Adaptive Server is extremely
efficient when it works in set-oriented mode. Cursors are required by ANSI
SQL standards; when they are needed, they are very powerful. However, they
can have a negative effect on performance.

For example, thisquery performstheidentical action on all rowsthat match the
condition in the where clause:

update titles
set contract =1
where type = 'business’

The optimizer finds the most efficient way to perform the update. In contrast,
acursor would examine each row and perform single-row updates if the
conditions were met. The application declares a cursor for aselect statement,
opensthe cursor, fetches arow, processesiit, goesto the next row, and so forth.
The application may perform quite different operations depending on the
valuesinthe current row, and the server’soverall use of resourcesfor the cursor
application may be less efficient than the server’s set level operations.
However, cursors can provide more flexibility than set-oriented programming.

Figure 14-2 showsthe stepsinvolved in using cursors. The function of cursors
isto get to the middle box, where the user or application code examines a row
and decides what to do, based on its values.

Adaptive Server Enterprise



CHAPTER 14 Cursors and Performance

Figure 14-2: Cursor flowchart

C Declare cursor )

. ( Open cursor )

Y

— 5 Fetch row )

Process row
(Examine/Update/Delete)

v

Yes

No

L Close cursor

C Deallocate cursor )

Example

Here is a simple example of a cursor with the “ Process Rows” step shown
above in pseudocode;

decl are bi z_book cursor
for select * fromtitles
where type = ' business’
go
open bi z_book
go
fetch biz_book
go
/* Look at each row in turn and perform
** various tasks based on val ues,

Performance and Tuning: Basics 327



Resources required at each stage

** and repeat fetches, until
** there are no nore rows

*/

cl ose bi z_book

go

deal | ocate cursor hiz_book
go

Depending on the content of the row, the user might delete the current row:
delete titles where current of biz_book
or update the current row:

update titles set title="The Ri ch
Executive' s Database Cui de"
where current of biz_book

Resources required at each stage

Cursors use memory and require locks on tables, data pages, and index pages.
When you open a cursor, memory is allocated to the cursor and to store the
query plan that is generated. While the cursor is open, Adaptive Server holds
intent table locks and sometimes row or page locks. Figure 14-3 shows the
duration of locks during cursor operations.

328 Adaptive Server Enterprise



CHAPTER 14 Cursors and Performance

Figure 14-3: Resource use by cursor statement

( Declare cursor )
— ( Open cursor )
—> ( Fetch row )
Process row
(Examine/Update/Delete) Table
Row locks
or (intent); Memory
Yes page Some
locks fow or
age
NO pag
locks
—( Close cursor

v

( Deallocate cursor )

The memory resource descriptionsin Figure 14-3 and Table 14-1 refer to ad
hoc cursors for queries sent by isql or Client-Library™. For other kinds of
cursors, the locks are the same, but the memory allocation and deallocation
differ somewhat depending on the type of cursor being used, as described in
“Memory use and execute cursors’ on page 330.

Performance and Tuning: Basics 329



Resources required at each stage

Table 14-1: Locks and memory use for isql and Client-Library client

cursors

Cursor
command

Resource use

declare cursor

When you declare a cursor, Adaptive Server uses only
enough memory to store the query text.

open

When you open a cursor, Adaptive Server alocates
memory to the cursor and to store the query plan that is
generated. The server optimizes the query, traverses
indexes, and sets up memory variables. The server does not
access rows yet, unless it needs to build worktables.
However, it does set up therequired table-level locks (intent
locks). Row and page locking behavior depends on the
isolation level, server configuration, and query type.

See System Administration Guide for more information.

fetch

When you execute afetch, Adaptive Server getsthe row(s)
required and reads specified valuesinto the cursor variables
or sends the row to the client. If the cursor needs to hold
lock on rowsor pages, the locksare held until afetch moves
the cursor off the row or page or until the cursor is closed.
Thelock is either ashared or an update lock, depending on
how the cursor is written.

close

When you closeacursor, Adaptive Server releasesthelocks
and some of the memory allocation. You can open the
cursor again, if necessary.

deallocate cursor

When you deallocate a cursor, Adaptive Server releasesthe
rest of the memory resources used by the cursor. To reuse
the cursor, you must declare it again.

Memory use and execute cursors

330

The descriptions of declare cursor and deallocate cursor in Table 14-1 refer to

ad hoc cursors that are sent by isql or Client-Library. Other kinds of cursors
allocate memory differently:

For cursorsthat are declared on stored procedures, only asmall amount of

memory is allocated at declare cursor time. Cursors declared on stored

proceduresare sent using Client-Library or the precompiler and are known

as execute cursors.

For cursors declared within a stored procedure, memory is already
available for the stored procedure, and the declare statement does not
require additional memory.

Adaptive Server Enterprise



CHAPTER 14 Cursors and Performance

Cursor modes

There are two cursor modes: read-only and update. Asthe names suggest, read-
only cursors can only display datafrom aselect statement; update cursors can
be used to perform positioned updates and deletes.

Read-only mode uses shared page or row locks. If read committed with lock is
set to 0, and the query runs at isolation level 1, it uses instant duration locks,
and does not hold the page or row locks until the next fetch.

Read-only modeisin effect when you specify for read only or when the cursor’s
select statement uses distinct, group by, union, or aggregate functions, and in
some cases, an order by clause.

Update mode uses update page or row locks. It isin effect when:
¢ You specify for update.

¢ Theselect statement does not include distinct, group by, union, asubquery,
aggregate functions, or the at isolation read uncommitted clause.

¢ You specify shared.
If column_name list is specified, only those columns are updatable.

For more information on locking during cursor processing, see System
Administration Guide.

Specify the cursor mode when you declare the cursor. If the select statement
includes certain options, the cursor is not updatable even if you declare it for
update.

Index use and requirements for cursors

When aquery is used in acursor, it may require or choose different indexes
than the same query used outside of a cursor.

Allpages-locked tables

For read-only cursors, queriesat isolation level O (dirty reads) require aunique
index. Read-only cursors at isolation level 1 or 3 should produce the same
query plan as the select statement outside of a cursor.

Performance and Tuning: Basics 331



Index use and requirements for cursors

Theindex requirementsfor updatabl e cursors mean that updatabl e cursors may
use different query plans than read-only cursors. Update cursors have these
indexing requirements:

e If thecursor is not declared for update, auniqueindex is preferred over a
table scan or a nonunique index.

e If thecursor is declared for update without a for update of list, a unique
index isrequired on allpages-locked tables. An error israised if no unique
index exists.

e If thecursor is declared for update with afor update of list, then only a
unique index without any columns from the list can be chosen on an
allpages-locked table. An error israised if no unique index qualifies.

When cursors are involved, an index that containsan IDENTITY columnis
considered unique, even if the index is not declared unique. In some cases,
IDENTITY columns must be added to indexes to make them unique, or the
optimizer might beforced to choose a suboptimal query plan for acursor query.

Data-only-locked tables

In data-only-locked tables, fixed row IDs are used to position cursor scans, so
unique indexes are not required for dirty reads or updatable cursors. The only
causefor different query plansin updatable cursorsisthat table scans are used
if columns from only useful indexes are included in the for update of list.

Table scans to avoid the Halloween problem

332

The Halloween problem is an update anomaly that can occur when a client
using a cursor updates a column of the cursor result-set row, and that column
defines the order in which the rows are returned from the table. For example,
if a cursor wasto use an index on last_name, first_name, and update one of
these columns, the row could appear in the result set a second time.

To avoid the Halloween problem on data-only-locked tables, Adaptive Server
chooses a table scan when the columns from an otherwise useful index are
included in the column list of afor update clause.

For implicitly updatable cursors declared without a for update clause, and for
cursors where the column list in the for update clause is empty, cursors that
update acolumn in the index used by the cursor may encounter the Halloween
problem.

Adaptive Server Enterprise



CHAPTER 14 Cursors and Performance

Comparing performance with and without cursors

This section examines the performance of a stored procedure written two
different ways:

*  Without acursor —this procedure scans the table three times, changing the
price of each book.

«  With acursor — this procedure makes only one pass through the table.

In both examples, there is a unique index on titles(title_id).

Sample stored procedure without a cursor
Thisisan example of a stored procedure without cursors:

/* Increase the prices of books in the

** titles table as follows:

* *

** |f current price is <= $30, increase it by 20%
** |f current price is > $30 and <= $60, increase
** it by 10%

** |f current price is > $60, increase it by 5%
* %

** Al price changes nust take effect, so this is
** done in a single transaction.

*/

create procedure increase_price
as

/* start the transaction */
begi n transaction
/* first update prices > $60 */
update titles
set price = price * 1.05
where price > $60

/* next, prices between $30 and $60 */
update titles

set price = price * 1.10
where price > $30 and price <= $60

/* and finally prices <= $30 */

update titles
set price = price * 1.20

Performance and Tuning: Basics 333



Comparing performance with and without cursors

where price <= $30

/* conmit the transaction */
commt transaction

return

Sample stored procedure with a cursor

334

This procedure performs the same changes to the underlying table as the
procedure written without a cursor, but it uses cursors instead of set-oriented
programming. As each row is fetched, examined, and updated, alock isheld
on the appropriate data page. Also, as the comments indicate, each update
commits asit is made, since thereisno explicit transaction.

/* Same as previous exanple, this time using a
** cursor. Each update commits as it is made.
*/

create procedure increase_price_cursor

as

declare @rice noney

/* declare a cursor for the select fromtitles */
decl are curs cursor for

sel ect price

fromtitles

for update of price

/* open the cursor */
open curs

/* fetch the first row */
fetch curs into @rice

/* now | oop, processing all the rows

** @msql status 0 nmeans successful fetch

** @&ql status 1 nmeans error on previous fetch
** @@&ql status 2 means end of result set reached

*/
while (@®ql status !'= 2)
begin

/* check for errors */
if (@qlstatus = 1)
begin
print "Error in increase_price"

Adaptive Server Enterprise



CHAPTER 14 Cursors and Performance

return
end

/* next adjust the price according to the
** criteria

*/

if @rice > $60

select @Q@rice = @rice * 1.05

el se

if @rice > $30 and @rice <= $60
select @rice = @rice * 1.10

el se

if @rice <= $30

select @Q@rice = @rice * 1.20

/* now, update the row */
update titles

set price = @rice

where current of curs

/* fetch the next row */
fetch curs into @rice
end

/* close the cursor and return */
close curs
return

Which procedure do you think will have better performance, onethat performs
three table scans or one that performs a single scan via a cursor?

Cursor versus noncursor performance comparison

Table 14-2 shows stati stics gathered against a5000-row table. The cursor code
takes over 4 times longer, even though it scans the table only once.

Performance and Tuning: Basics 335



Locking with read-only cursors

Table 14-2: Sample execution times against a 5000-row table

Procedure Access method Time

increase_price Uses three table scans 28 seconds

increase_price_cursor Uses cursor, single table 125 seconds
scan

Results from tests like these can vary widely. They are most pronounced on
systems that have busy networks, alarge number of active database users, and
multiple users accessing the same table.

In addition to locking, cursors involve more network activity than set
operations and incur the overhead of processing instructions. The application
program needs to communicate with Adaptive Server regarding every result
row of the query. Thisiswhy the cursor code took much longer to complete
than the code that scanned the table three times.

Cursor performance issues include:

* Locking at the page and table level

*  Network resources

*  Overhead of processing instructions

If thereis a set-level programming equivalent, it may be preferable, evenif it
involves multiple table scans.

Locking with read-only cursors

336

Hereisapiece of cursor code you can useto display thelocksthat are set up at
each point in thelife of a cursor. The following example uses an allpages-
locked table. Execute the code in Figure 14-4, and pause at the arrows to
execute sp_lock and examine the locks that are in place.

Adaptive Server Enterprise



CHAPTER 14 Cursors and Performance

Figure 14-4: Read-only cursors and locking experiment input

declare cursl cursor for

select au id, au_Iname, au_fname

from authors
where au_id like ' 15%'’

for read only
go —
open cursl
go S —
fetch cursl
go A —
fetch cursl
go 100 ==
close cursl
go ——

deallocate cursor cursl

go

Table 14-3 shows the results.

Table 14-3: Locks held on data and index pages by cursors

Event

Data page

After declare

No cursor-related locks.

After open

Shared intent lock on authors.

After first fetch

Shared intent lock on authors and shared page lock on

apagein authors.

After 100 fetches

Shared intent lock on authors and shared page lock on
adifferent page in authors.

After close

No cursor-related locks.

If you issue another fetch command after the last row of the result set has been

fetched, the locks on the last page are released, so there will be no cursor-

related locks.

With a data-only-locked table:

e If thecursor query runsat isolation level 1, and read committed with lock is
set to 0, you do not see any page or row locks. The values are copied from

the page or row, and the lock isimmediately released.

e If read committed with lock isset to 1 or if the query runs at isolation level
2 or 3, you see either shared page or shared row locks at the point that
Table 14-3 indicates shared page locks. If the table uses datarowslocking,

the sp_lock report includes the row 1D of the fetched row.

Performance and Tuning: Basics

337



Isolation levels and cursors

Isolation levels and cursors

The query plan for acursor is compiled and optimized when the cursor is
opened. You cannot open a cursor and then use set transaction isolation level to
change the isolation level at which the cursor operates.

Since cursors using isolation level 0 are compiled differently from those using
other isolation levels, you cannot open acursor at isolation level 0 and open or
fetch fromit at level 1 or 3. Similarly, you cannot open a cursor at level 1 or 3
and then fetch from it at level 0. Attempts to fetch from a cursor at an
incompatible level result in an error message.

Once the cursor has been opened at a particular isolation level, you must
deall ocate the cursor before changing isolation levels. The effects of changing
isolation levels while the cursor is open are as follows:

*  Attempting to close and reopen the cursor at another isolation level fails
with an error message.

*  Attempting to change isolation levels without closing and reopening the
cursor has no effect on the isolation level in use and does not produce an
error message.

You can include an at isolation clausein the cursor to specify anisolation level.
The cursor in the example below can be declared at level 1 and fetched from
level 0 because the query plan is compatible with theisolation level:

decl are cprice cursor for

select title_id, price
fromtitles
where type = "busi ness”
at isolation read unconmitted

Partitioned heap tables and cursors

A cursor scan of an unpartitioned heap table can read all data up to and
including the final insertion made to that table, even if insertions took place
after the cursor scan started.

338 Adaptive Server Enterprise



CHAPTER 14 Cursors and Performance

If aheap table is partitioned, data can be inserted into one of the many page
chains. The physical insertion point may be before or after the current position
of acursor scan. This meansthat a cursor scan against a partitioned tableisnot
guaranteed to scan the final insertions made to that table.

Note If your cursor operations require all inserts to be made at the end of a
single page chain, do not partition the table used in the cursor scan.

Optimizing tips for cursors

Here are severa optimizing tips for cursors:

e Optimize cursor selects using the cursor, not an ad hoc query.

e Use union or union all instead of or clausesor in lists.

e Declare the cursor’sintent.

e Specify column names in the for update clause.

e Fetch more than onerow if you are returning rows to the client.
e Keep cursors open across commits and rollbacks.

e Open multiple cursors on a single connection.

Optimizing for cursor selects using a cursor

A standalone select statement may be optimized very differently than the same
select statement in an implicitly or explicitly updatable cursor. When you are
devel oping applications that use cursors, aways check your query plans and
1/O statistics using the cursor, rather than using a standalone select. In
particular, index restrictions of updatable cursors require very different access
methods.

Performance and Tuning: Basics 339



Optimizing tips for cursors

Using union instead of or clauses or in lists

Cursors cannot use the dynamic index of row | Ds generated by the OR strategy.
Queriesthat use the OR strategy in standalone select statements usually
perform table scans using read-only cursors. Updatabl e cursors may need to
use aunique index and still require access to each data row, in sequence, in
order to evaluate the query clauses.

See “Access Methods and Costing for or and in Clauses’ on page 87 in the
book Performance and Tuning: Optimizer for more information.

A read-only cursor using union creates aworktablewhen the cursor isdeclared,
and sorts it to remove duplicates. Fetches are performed on the worktable. A
cursor using union all can return duplicates and does not require a worktable.

Declaring the cursor’s intent

Alwaysdeclareacursor’sintent: read-only or updatable. Thisgivesyou greater
control over concurrency implications. If you do not specify the intent,
Adaptive Server decides for you, and very often it chooses updatable cursors.
Updatable cursors use update locks, thereby preventing other update locks or
exclusive locks. If the update changes an indexed column, the optimizer may
need to choose a table scan for the query, resulting in potentially difficult
concurrency problems. Be sure to examine the query plansfor queriesthat use
updatable cursors.

Specifying column names in the for update clause

340

Adaptive Server acquires update locks on the pages or rows of all tables that
have columnslisted in thefor update clause of the cursor select statement. If the
for update clauseisnot included in the cursor declaration, all tables referenced
in the from clause acquire update locks.

The following query includes the name of the column in the for update clause,
but acquires updatelocks only on thetitles table, since price ismentioned inthe
for update clause. The table uses allpages locking. The locks on authors and
titleauthor are shared page locks:

decl are curs3 cursor
for
sel ect au_l nane, au_fnanme, price
fromtitles t, authors a,
titleauthor ta

Adaptive Server Enterprise



CHAPTER 14 Cursors and Performance

wher e advance <= $1000
and t.title_id =ta.title_id
and a.au_id = ta.au_id

for update of price

Table 14-4 shows the effects of:

e Omitting the for update clause entirely—no shared clause

e Omitting the column name from the for update clause

* Including the name of the column to be updated in the for update clause

e Adding shared after the name of thetitles table while using for update of
price

Inthistable, the additional locks, or more restrictive locks for the two versions
of the for update clause are emphasized.

Table 14-4: Effects of for update clause and shared on cursor locking

Clause titles authors titleauthor
None sh_page on index

sh pageondata sh pageondata sh_pageondata
for update updpage onindex updpage on index

updpageondata updpageondata  updpage on data
for update of sh_page on index
price updpageondata sh pageondata  sh pageon data
for update of sh_page on index
price sh pageondata  sh pageondata  sh_pageon data
+ shared

Using set cursor rows

The SQL standard specifiesaone-row fetch for cursors, which wastes network
bandwidth. Using the set cursor rows query option and Open Client’s
transparent buffering of fetches, you can improve performance:

ct _cursor (CT_CURSOR_ROWB)

Be careful when you choose the number of rows returned for frequently
executed applications using cursors—tune them to the network.

See “ Changing network packet sizes’ on page 27 for an explanation of this
process.

Performance and Tuning: Basics 341



Optimizing tips for cursors

Keeping cursors open across commits and rollbacks

ANSI closes cursors at the conclusion of each transaction. Transact- SQL
provides the set option close on endtran for applications that must meet ANSI
behavior. By default, however, this option isturned off. Unless you must mest
ANSI requirements, leave this option off to maintain concurrency and
throughput.

If you must be ANSI-compliant, decide how to handle the effects on Adaptive
Server. Should you perform alot of updates or deletesin a single transaction?
Or should you keep the transactions short?

If you choose to keep transactions short, closing and opening the cursor can
affect throughput, since Adaptive Server needs to rematerialize the result set
each time the cursor is opened. Choosing to perform more work in each
transaction, this can cause concurrency problems, since the query holds locks.

Opening multiple cursors on a single connection

Some devel opers simulate cursors by using two or more connections from DB-
Library™. One connection performs a select and the other performs updates or
deletes on the same tables. This has very high potential to create application
deadlocks. For example:

*  Connection A holds a shared lock on a page. Aslong asthere are rows
pending from Adaptive Server, a shared lock is kept on the current page.

»  Connection B requestsan exclusivelock on the same pages and then waits.

»  The application waits for Connection B to succeed before invoking
whatever logic is needed to remove the shared lock. But this never
happens.

Since Connection A never requests alock that is held by Connection B, thisis
not a server-side deadl ock.

342 Adaptive Server Enterprise



CHAPTER 15

Maintenance Activities and
Performance

This chapter explains both how maintenance activities can affect the
performance of other Adaptive Server activities, and how to improve the
performance of maintenance tasks.

Maintenance activities include such tasks as dropping and re-creating
indexes, performing dbcc checks, and updating index statistics. All of
these activities can compete with other processing work on the server.

Whenever possible,perform maintenance tasks when your Adaptive
Server usage islow. This chapter can help you determine what kind of
performance impacts these maintenance activities have on applications
and on overall Adaptive Server performance.

Topic Page
Running reorg on tables and indexes 343
Creating and maintaining indexes 344
Creating or atering a database 348
Backup and recovery 350
Bulk copy 352
Database consistency checker 355
Using dbcc tune (cleanup) 355
Using dbcc tune on spinlocks 356
Determining the space available for maintenance activities 356

Running reorg on tables and indexes

Thereorg command canimprove performance for data-only-locked tables
by improving the space utilization for tables and indexes. The reorg
subcommands and their uses are:

e reclaim_space — cears committed del etes and space |eft when updates
shorten the length of data rows.

Performance and Tuning: Basics 343



Creating and maintaining indexes

e forwarded_rows — returns forwarded rows to home pages.
e compact — performs both of the operations above.
*  rebuild —rebuilds an entire table or index.

When you run reorg rebuild on atable, it locks the table for the entire time it
takes to rebuild the table and itsindexes. This means that you should schedule
thereorg rebuild command on atable when users do not need accessto thetable.

All of the other reorg commands, including reorg rebuild on an index, lock a
small number of pages at atime, and use short, independent transactions to
perform their work. You can run these commands at any time. The only
negative effects might be on systems that are very 1/0 bound.

For more information on running reorg commands, see the System
Administration Guide.

Creating and maintaining indexes

Creating indexes affects performance by locking other users out of atable. The
type of lock depends on the index type:

»  Creating aclustered index requires an exclusive table lock, locking out all
table activity. Since rowsin aclustered index are arranged in order by the
index key, create clustered index reorders data pages.

»  Creating anonclustered index requires a shared table lock, locking out
update activity.

Configuring Adaptive Server to speed sorting

344

A configuration parameter configures how many buffers can be used in cache
to hold pages from the input tables. In addition, parallel sorting can benefit
from large I/O in the cache used to perform the sort.

See “Configuring resources for parallel sorting” on page 218 in the
Performance and Tuning: Optimizer book for more information.

Adaptive Server Enterprise



CHAPTER 15 Maintenance Activities and Performance

Dumping the database after creating an index

When you create an index, Adaptive Server writes the create index transaction
and the page allocations to the transaction log, but does not |og the actual
changes to the data and index pages. To recover a database that you have not
dumped since you created the index, the entire create index processis executed
again while loading transaction log dumps.

If you perform routine index re-creations (for example, to maintain thefillfactor
in the index), you may want to schedul e these operationsto run shortly before
a routine database dump.

Creating an index on sorted data

If you need to re-create a clustered index or create one on data that was bulk
copied into the server inindex key order, use the sorted_data option to create
index to shorten index creation time.

Since the data rows must be arranged in key order for clustered indexes,
creating aclustered index without sorted_data requiresthat you rewritethe data
rows to acomplete new set of data pages. Adaptive Server can skip sorting
and/or copying the table's data rows in some cases. Factors include table
partitioning and on clauses used in the create index statement.

When creating an index on a nonpartitioned table, sorted_data and the use of
any of the following clauses requires that you copy the data, but does not
require a sort:

* ignore_dup_row
e fillfactor

e Theon segment_name clause, specifying a different segment from the
segment where the table datais located

e Themax_rows_per_page clause, specifying avaue that is different from
the value associated with the table

When these options and sorted_data are included in acreate index on a
partitioned table, the sort step is performed and the datais copied, distributing
the data pages evenly on the table's partitions.

Table 15-1: Using options for creating a clustered index

Options

Partitioned table Unpartitioned table

No options specified

Parallel sort; copies data, distributing Either parallel or nonparallel sort;
evenly on partitions; createsindex tree.  copies data, createsindex tree.

Performance and Tuning: Basics 345



Creating and maintaining indexes

Options Partitioned table Unpartitioned table

with sorted_data only Creates index tree only. Does not Creates index tree only. Does not
or perform the sort or copy data. Doesnot  perform the sort or copy data. Does
with sorted_data on runin paralel. not run in paralel.

same_segment

with sorted_data and
ignore_dup_row

or fillfactor

or on other_segment
OF max_rows_per_page

Parallel sort; copies data, distributing Copies data and creates the index
evenly on partitions; createsindex tree.  tree. Does not perform the sort. Does
not run in paralel.

Inthe simplest case, using sorted_data and no other options on anonpartitioned
table, the order of the table rowsis checked and the index tree is built during
this single scan.

If the data rows must be copied, but no sort needs to be performed, asingle
table scan checks the order of rows, builds the index tree, and copies the data
pages to the new location in a single table scan.

For large tables that require numerous passesto build theindex, saving the sort
time reduces 1/0 and CPU utilization considerably.

Whenever creating a clustered index copies the data rows, the space available
must be approximately 120 percent of the table size to copy the data and store
the index pages.

Maintaining index and column statistics

346

The histogram and density valuesfor an index are not maintained as datarows
are added and del eted. The database owner must issue an update statistics
command to ensure that statistics are current. Run update statistics:

«  After deleting or inserting rows that change the skew of key valuesin the
index

«  After adding rows to a table whose rows were previously deleted with
truncate table

e After updating valuesin index columns

Run update statistics after inserts to any index that includes an IDENTITY
column or any increasing key value. Date columns often have regularly
increasing keys.

Adaptive Server Enterprise



CHAPTER 15 Maintenance Activities and Performance

Running update statistics on thesetypesof indexesisespecially important if the
IDENTITY column or other increasing key istheleading columnin theindex.
After anumber of rows have been inserted past the last key in the table when
theindex was created, all that the optimizer can tell isthat the search valuelies
beyond the last row in the distribution page.

It cannot accurately determine how many rows match a given value.

Note Failure to update statistics can severely hurt performance.

See Chapter 3, “ Using Statisticsto Improve Performance,” in the Performance
and Tuning: Monitoring and Analyzing for Performance book for more
information.

Rebuilding indexes

Rebuilding indexes reclaims space in the B-trees. As pages are split and rows
are deleted, indexes may contain many pages that contain only afew rows.
Also, if your application performs scans on covering nonclustered indexes and
large 1/O, rebuilding the nonclustered index maintains the effectiveness of
large 1/0 by reducing fragmentation.

You can rebuild indexes by dropping and re-creating theindex. If thetable uses
data-only locking, you can run the reorg rebuild command on the table or on an
individual index.

Re-create or rebuild indexes when:

»  Data and usage patterns have changed significantly.

« A period of heavy insertsis expected, or has just been completed.
e The sort order has changed.

¢ Queriesthat uselarge!/O require moredisk readsthan expected, or optdiag
reports lower cluster ratios than usual.

e Space usage exceeds estimates because heavy data modification has left
many data and index pages partially full.

e Spacefor expansion provided by the space management properties
(fillfactor, expected row size, and reserve page gap) has been filled by
inserts and updates, resulting in page splits, forwarded rows, and
fragmentation.

Performance and Tuning: Basics 347



Creating or altering a database

e dbce hasidentified errorsin the index.

If you re-create a clustered index or run reorg rebuild on a data-only-locked
table, al nonclustered indexes arere-created, since creating the clustered index
moves rows to different pages.

You must re-create nonclustered indexes to point to the correct pages.

In many database systems, there are well-defined peak periods and off-hours.
You can use off-hours to your advantage for example to:

» Deleteall indexesto alow more efficient bulk inserts.
e Create anew group of indexesto help generate a set of reports.

See “Creating and maintaining indexes” on page 344 for information about
configuration parameters that increase the speed of creating indexes.

Speeding index creation with sorted_data

If datais already sorted, you can use the sorted_data option for the create index
command to save index creation time. You can use this option for both
clustered and nonclustered indexes.

See “Creating an index on sorted data” on page 345 for more information.

Creating or altering a database

348

Creating or altering a database is I/O-intensive; consequently, other |/O-
intensive operations may suffer. When you create a database, Adaptive Server
copies the model database to the new database and then initializes all the
allocation pages and clears database pages.

The following procedures can speed database creation or minimize its impact
on other processes:

e Usethefor load option to create database if you are restoring a database,
that is, if you are getting ready to issue aload database command.

When you create a database without for load, it copies model and then
initializes al of the allocation units.

When you use for load, it postpones zeroing the allocation units until the
load is complete. Then it initializes only the untouched allocation units. If
you are loading avery large database dump, this can save alot of time.

Adaptive Server Enterprise



CHAPTER 15 Maintenance Activities and Performance

CREATE
CREATE
CREATE
CREATE
CREATE
CREATE

e Create databases during off-hoursif possible.

create database and alter database perform concurrent parallel 1/0 when
clearing database pages. The number of devicesis limited by the number of
large i/o buffers configuration parameter. The default valuefor thisparameter is
6, allowing parallel 1/0 on 6 devices at once.

A singlecreate database and alter database command can use up to 32 of these
buffers at once. These buffers are also used by load database, disk mirroring,
and some dbcc commands.

Using the default value of 6, if you specify more than 6 devices, the first 6
writes are immediately started. Asthe I/O to each device completes, the 16K
buffers are used for remaining devices listed in the command. The following
example names 10 separate devices:

create dat abase hugedb
on devl = 100,

dev2 = 100,
dev3 = 100,
dev4 = 100,
dev5 = 100,
dev6 = 100,
dev7 = 100,
dev8 = 100
| og on | ogdevl = 100,
| ogdev2 = 100

During operations that use these buffers, amessage is sent to the log when the
number of buffersis exceeded. This information for the create database
command above showsthat create database started clearing devicesonthefirst
6 disks, using all of thelarge 1/0 buffers, and then waited for them to complete
before clearing the pages on other devices:

DATABASE: al | ocating 51200 pages on di sk ’'devl’
DATABASE: al |l ocating 51200 pages on disk 'dev2
DATABASE: al |l ocating 51200 pages on disk 'dev3
DATABASE: al |l ocating 51200 pages on di sk 'dev4’
DATABASE: al l ocating 51200 pages on disk 'dev5’
DATABASE: al |l ocating 51200 pages on disk 'devé’

01: 00000: 00013: 1999/ 07/ 26 15:36: 17.54 server No disk i/o buffers
are available for this operation. The total nunber of buffers is
controlled by the configuration parameter 'nunber of large i/o
buffers’.

CREATE
CREATE
CREATE
CREATE

DATABASE: al | ocating 51200 pages on di sk 'dev?’
DATABASE: al |l ocating 51200 pages on disk 'dev8’
DATABASE: al | ocating 51200 pages on disk ’'|ogdevl’
DATABASE: al l ocating 51200 pages on disk '|ogdev2’

Performance and Tuning: Basics 349



Backup and recovery

When create database copies model, it uses 2K 1/O.

Note In Adaptive Server version 12.5.03 and above, the size of thelarge 1/0
buffers used by create database, alter database, load database, and dbcc
checkalloc isnow oneallocation (256 pp), not one extent (8 pp). Theserver thus
requires more memory allocation for large buffers. For example, adisk buffer
that required memory for 8 pagesin earlier versions now requires memory for
256 pages.

See the System Administration Guide.

Backup and recovery

Local backups

Remote backups

350

All Adaptive Server backups are performed by a backup server. The backup
architecture uses a client/server paradigm, with Adaptive Servers as clients to
abackup server.

Adaptive Server sendsthe local Backup Server instructions, viaremote
procedure calls, telling the Backup Server which pagesto dump or load, which
backup devicesto use, and other options. Backup server performs all the disk
1/0O.

Adaptive Server does not read or send dump and load data, it sends only
instructions.

backup server aso supports backups to remote machines. For remote dumps
and loads, alocal backup server performsthe disk I/O related to the database
device and sends the data over the network to the remote backup server, which
stores it on the dump device.

Adaptive Server Enterprise



CHAPTER 15 Maintenance Activities and Performance

Online backups

You can perform backups while a database is active. Clearly, such processing
affects other transactions, but you should not hesitate to back up critical
databases as often as necessary to satisfy the reliability requirements of the
system.

See the System Administration Guide for acompl ete discussion of backup and
recovery strategies.

Using thresholds to prevent running out of log space

If your database haslimited |og space, and you occasionally hit thelast-chance
threshold, install a second threshold that provides ample time to perform a
transaction log dump. Running out of log space has severe performance
impacts. Users cannot execute any data modification commands until log space
has been freed.

Minimizing recovery time

You can help minimize recovery time, by changing the recovery interval
configuration parameter. The default value of 5 minutes per database worksfor
most installations. Reduce this value only if functional requirements dictate a
faster recovery period. It can increase the amount of 1/0 required.

See “ Tuning the recovery interval” on page 242.

Recovery speed may also be affected by the value of the housekeeper free write
percent configuration parameter. The default val ue of this parameter allowsthe
server’shousekeeper wash task to write dirty buffersto disk during the server’s
idle cycles, aslong as disk 1/0 is not increased by more than 20 percent.

Recovery order

During recovery, system databasesarerecovered first. Then, user databasesare
recovered in order by database ID.

Performance and Tuning: Basics 351



Bulk copy

Bulk copy

Bulk copying into atable on Adaptive Server runs fastest when there are no
indexes or active triggers on the table. When you are running fast bulk copy,
Adaptive Server performs reduced logging.

It does not log the actual changesto the database, only the allocation of pages.
And, since there are no indexes to update, it saves all the time it would
otherwise take to update indexes for each datainsert and to log the changesto
the index pages.

To use fast bulk copy:
» Drop any indexes; re-create them when the bulk copy compl etes.

» Usealter table...disable trigger to deactivate triggers during the copy; use
alter table...enable trigger after the copy completes.

»  Set the select into/bulkcopy/plisort option with sp_dboption. Remember to
turn the option off after the bulk copy operation completes.

During fast bulk copy, rules are not enforced, but defaults are enforced.

Since changesto the data are not logged, you should perform adump database
soon after afast bulk copy operation. Performing afast bulk copy in adatabase
blocks the use of dump transaction, since the unlogged data changes cannot be
recovered from the transaction log dump.

Parallel bulk copy

352

For fastest performance, you can use fast bulk copy to copy datainto
partitioned tables. For each bulk copy session, you specify the partition on
which the data should reside.

If your input fileis already in sorted order, you can bulk copy datainto
partitionsin order, and avoid the sorting step while creating clustered indexes.

See “ Steps for partitioning tables’ on page 117 for step-by-step procedures.

Adaptive Server Enterprise



CHAPTER 15 Maintenance Activities and Performance

Batches and bulk copy

If you specify abatch size during a fast bulk copy, each new batch must start
on anew data page, since only the page all ocations, and not the data changes,
are logged during afast bulk copy. Copying 1000 rows with a batch size of 1
requires 1000 data pages and 1000 allocation records in the transaction log.

If you are using a small batch size to help detect errorsin the input file, you
may want to choose a batch size that corresponds to the numbers of rows that
fit on a data page.

Slow bulk copy

If atable hasindexesor triggers, aslower version of bulk copy isautomatically
used. For slow bulk copy:

¢ You do not have to set the select into/bulkcopy.
* Rulesarenot enforced and triggers are not fired, but defaults are enforced.
e All datachanges are logged, as well as the page allocations.

¢ Indexes are updated as rows are copied in, and index changes are logged.

Improving bulk copy performance
Other ways to increase bulk copy performance are:

e Setthetrunc log on chkpt option to keep the transaction log from filling up.
If your database has a threshold procedure that automatically dumps the
log when it fills, you will save the transaction dump time.

Remember that each batch is a separate transaction, so if you are not
specifying a batch size, setting trunc log on chkpt will not help.

e Setthenumber of pre allocated extents configuration parameter high if you
perform many large bulk copies.

See the System Administration Guide.
e Find the optimal network packet size.
See Chapter 3, “Networks and Performance,”.

Performance and Tuning: Basics 353



Bulk copy

Replacing the data in a large table

If you arereplacing al the datain alarge table, use the truncate table command
instead of the delete command. truncate table performs reduced logging. Only
the page deall ocations are logged.

delete is completely logged, that is, all the changesto the data are logged.
The steps are:

1 Truncate thetable. If the table is partitioned, you must unpartition before
you can truncate it.

2 Dropall indexes on the table.
3 Load the data.
4  Re-create the indexes.

See“ Stepsfor partitioning tables” on page 117 for more information on using
bulk copy with partitioned tables.

Adding large amounts of data to a table

When you are adding 10 to 20 percent or more to alarge table, drop the
nonclustered indexes, load the data, and then re-create nonclustered indexes.

For very large tables, you may need to leave the clustered index in place dueto
space constraints. Adaptive Server must make a copy of the table when it
creates a clustered index. In many cases, once tables become very large, the
time required to perform a slow bulk copy with theindex in placeislessthan
the time to perform afast bulk copy and re-create the clustered index.

Using partitions and multiple bulk copy processes

354

If you are loading datainto a table without indexes, you can cregate partitions
on the table and use one bep session for each partition.

See “Using parallel bep to copy data into partitions’” on page 110.

Adaptive Server Enterprise



CHAPTER 15 Maintenance Activities and Performance

Impacts on other users

Bulk copying large tablesin or out may affect other users' response time. If
possible:

e Schedule bulk copy operations for off-hours.
»  Usefast bulk copy, since it does lesslogging and less I/O.

Database consistency checker

It isimportant to run database consistency checks periodically with dbcc. If you
back up a corrupt database, the backup is useless. But dbcc affects
performance, since dbcc must acquire locks on the objects it checks.

See the System Administration Guide for information about dbcc and locking,
with additional information about how to minimize the effects of dbcc on user
applications.

Using dbcc tune (cleanup)

Adaptive Server performs redundant memory cleanup checking as a final
integrity check after processing each task. In very high throughput
environments, aslight performance improvement may be realized by skipping
this cleanup error check. To turn off error checking, enter:

dbcc tune(cl eanup, 1)

Thefinal cleanup frees up any memory atask might hold. If you turn the error
checking off, but you get memory errors, reenable the checking by entering:

dbcc tune(cl eanup, 0)

Performance and Tuning: Basics 355



Using dbcc tune on spinlocks

Using dbcc tune on spinlocks

When you see a scaling problem due to a spinlock contention on the "des
manager" you can usethe des_bind command to improve the scalability of the
server where obj ect descriptorsarereserved for hot objects. The descriptorsfor
these hot objects are never scavenged.

dbcc tune(des_bind, <dbid>, <objnanme>)
To remove the binding use:

dbcc tune(des_unbind, <dbid>, <objnane>)

Note To unbind an object from the database, the database has to bein "single
user mode"

When not to use this command

There are instances where this command cannot be used:
e Onobjectsin system databases such as master and tempdb
e Onsystemtables.

Since this bind command is not persistent, it has to be re-instantiated during
startup.

Determining the space available for maintenance

activities

356

Several maintenance operations require room to make a copy of the data pages
of atable:

e  create clustered index
e alter table...lock
*  Some alter table commands that add or modify columns

*  reorg rebuild on atable

Adaptive Server Enterprise



CHAPTER 15 Maintenance Activities and Performance

In most cases, these commands al so require space to re-create any indexes, so
you need to determine;

e Thesizeof thetable and itsindexes
e Theamount of space available on the segment where the tableis stored
e The space management properties set for the table and its indexes

Thefollowing sections describe tool s that provide information on space usage
and space availability.

Overview of space requirements

Any command that copies atable’s rows also re-creates all of the indexes on
the table. You need space for a complete copy of the table and copies of all
indexes.

These commands do not estimate how much spaceis needed. They stop with
an error message if they run out of space on any segment used by the table or
itsindexes. For large tables, this could occur minutes or even hours after the
command starts.

You need free space on the segments used by the table and its indexes, as
follows:

*  Free space on the table's segment must be at least equal to:
¢ Thesize of thetable, plus

e Approximately 20 percent of thetablesize, if the table hasaclustered
index and you are changing from allpages locking to data-only
locking

*  Free space on the segments used by nonclustered indexes must be at least
equal to the size of the indexes.

Clustered indexes for data-only-locked tables have a leaf level above the data
pages. If you are altering a table with a clustered index from allpages locking
to data-only locking, the resulting clustered index requires more space. The
additional space required depends on the size of the index keys.

Performance and Tuning: Basics 357



Determining the space available for maintenance activities

Tools for checking space usage and space available

Asasimple guideline, copying atable and its indexes requires space equal to
the current space used by the table and its indexes, plus about 20% additional
room. However:

« |f data modifications have created many partially-full pages, space
required for the copy of the table can be smaller than the current size.

» |If space-management properties for the table have changed, or if space
required by fillfactor or reservepagegap has been filled by data
modifications, the size required for the copy of the table can be larger.

e Adding columns or modifying columnsto larger datatypes requires more
space for the copy.

Log spaceisalso required.

Checking space used for tables and indexes

To seethe size of atable and its indexes, use:
sp_spaceused titles, 1

See “Calculating the sizes of data-only-locked tables’ on page 263 for
information on estimating the size of the clustered index.

Checking space on segments

358

Tables are always copied to free space on the segment where they are currently
stored, and indexes are re-created on the segment where they are currently
stored. Commands that create clustered indexes can specify a segment. The
copy of the table and the clustered index are created on the target segment.

To determine the number of pages available on asegment, usesp_helpsegment.
Thelast line of sp_helpsegment shows the total number of free pages available
on a segment.

The following command prints segment information for the default segment,
where objects are stored when no segment was explicitly specified:

sp_hel psegnent "defaul t"

sp_helpsegment reports the names of indexes on the segment. If you do not
know the segment name for atable, use sp_help and the table name. The
segment names for indexes are also reported by sp_help.

Adaptive Server Enterprise



CHAPTER 15 Maintenance Activities and Performance

Checking space requirements for space management properties

If you make significant changes to space management property values, the
table copy can be considerably larger or smaller thanthe original table. Settings
for space management properties are stored in the sysindexes tables, and are
displayed by sp_help and sp_helpindex. This output shows the space
management properties for the titles table:

exp_row si ze reservepagegap fillfactor max_rows_per_page

sp_helpindex produces this report:

i ndex_nane
i ndex_keys

i ndex_description

i ndex_max_rows_per _page index_fillfactor index_reservepagegap

title id_ ix
title_id

title_ix
title

type_price
type, price

noncl ustered | ocated on default

75 0

noncl ustered | ocated on default

80 16

noncl ustered | ocated on default

90 0

Space management properties applied to the table

During the copy step, the space management properties for the table are used

asfollows:

Performance and Tuning: Basics

If an expected row size value is specified for the table, and the locking
scheme is being changed from allpages locking to data-only locking, the
expected row size is applied to the data rows as they are copied.

If no expected row sizeis set, but thereisamax_rows_per_page value for
the table, an expected row size is computed, and that value is used.

Otherwise, the default val ue specified with the configuration parameter
default exp_row_size percent is used for each page allocated for the table.

The reservepagegap is applied as extents are allocated to the table.

If sp_chgattribute has been used to save afillfactor value for the table, it is
applied to the new data pages as the rows are copied.

359



Determining the space available for maintenance activities

Space management properties applied to the index

When the indexes are rebuilt, space management propertiesfor theindexesare
applied, asfollows:

» If sp_chgattribute has been used to save fillfactor values for indexes, these
values are applied when the indexes are re-created.

» If reservepagegap valuesare set for indexes, these values are applied when
the indexes are re-created.

Estimating the effects of space management properties
Table 15-2 shows how to estimate the effects of setting space management

properties.
Table 15-2: Effects of space management properties on space use

Property Formula Example

fillfactor Requires fillfactor of 75 requires 1.33 times current
(100filifactor) * num_pagesif pagesare  number of pages; atable of 1,000 pages
currently fully packed grows to 1,333 pages.

reservepagegap Increases space by reservepagegap of 10increase space used
Lreservepagegap if extentsare currently by 10%; atable of 1,000 pages grows to
filled 1,100 pages.

max_rows_per_page Converted to exp_row_size when See Table 15-3 on page 361.
converting to data-only-locking

exp_row_size Increase depends on number of rows If exp_row_size is 100, and 1,000 rows
smaller thanexp_rowsize, andtheaverage have alength of 60, the increase in space
length of those rows is:

(100 - 60) * 1000 or 40,000 bytes;
approximately 20 additional pages.

For more information, see Chapter 9, “ Setting Space Management
Properties,”.

If atable has max_rows_per_page set, and the table is converted from all pages
locking to data-only locking, the value is converted to an exp_row_size value
before the alter table...lock command copies the table to its new location.

The exp_row_size is enforced during the copy. Table 15-3 shows how the
values are converted.

360 Adaptive Server Enterprise



CHAPTER 15 Maintenance Activities and Performance

Table 15-3: Converting max_rows_per_page to exp_row_size

If max_rows_per_page is set to Set exp_row_size to
0 Percentage value set by default exp_row_size percent
1-254 The smaller of:

* maximum row size
» 2002/max_rows_per_page value

If there is not enough space

If there is not enough space to copy the table and re-create all the indexes,
determine whether dropping the nonclustered indexes on the table leaves
enough room to create a copy of the table. Without any nonclustered indexes,
the copy operation requires space just for the table and the clustered index.

Do not drop the clustered index, sinceit is used to order the copied rows, and
attempting to re-create it later may require space to make a copy of the table.
Re-create the nonclustered indexes after the command compl etes.

Performance and Tuning: Basics 361



Determining the space available for maintenance activities

362 Adaptive Server Enterprise



cHaPTER 16 lTuning Asynchronous Prefetch

This chapter explains how asynchronous prefetch improves 1/0
performance for many types of queries by reading data and index pages
into cache before they are needed by the query.

Topic Page
How asynchronous prefetch improves performance 363
When prefetch is automatically disabled 369
Tuning Goals for asynchronous prefetch 373
Other Adaptive Server performance features 374
Specia settings for asynchronous prefetch limits 377
Maintenance activities for high prefetch performance 378
Performance monitoring and asynchronous prefetch 379

How asynchronous prefetch improves performance

Asynchronous prefetch improves performance by anticipating the pages
required for certain well-defined classes of database activities whose
access patternsare predictable. The I/O requestsfor these pages areissued
before the query needs them so that most pages are in cache by the time
query processing needs to access the page. Asynchronous prefetch can
improve performance for:

e Sequential scans, such astable scans, clustered index scans, and
covered nonclustered index scans

¢ Access vianonclustered indexes
e Some dbce checks and update statistics
e Recovery

Asynchronous prefetch can improve the performance of queries that
access large numbers of pages, such as decision support applications, as
long as the 1/0 subsystems on the machine are not saturated.

Performance and Tuning: Basics 363



How asynchronous prefetch improves performance

Asynchronous prefetch cannot help (or may help only dightly) when the
I/0 subsystem is already saturated or when Adaptive Server is CPU-
bound. It may be used in some OLTP applications, but to a much lesser
degree, since OLTP queries generally perform fewer 1/0 operations.

When a query in Adaptive Server needs to perform atable scan, it:
e Examinesthe rows on a page and the values in the rows.

e Checksthe cachefor the next pageto beread from atable. If that page
isin cache, the task continues processing. If the page isnot in cache,
the task issues an /O request and sleeps until the 1/0 compl etes.

e When the I/O completes, the task moves from the slegp queue to the
run queue. When the task is scheduled on an engine, Adaptive Server
examines rows on the newly fetched page.

Thiscycle of executing and stalling for disk reads continues until the table
scan completes. In asimilar way, queries that use a nonclustered index
processadatapage, issuethe /O for the next pagereferenced by theindex,
and sleep until the I/0 completes, if the pageis not in cache.

This pattern of executing and then waiting for 1/0O slows performance for
queriesthat issue physical 1/Os for large number of pages. In addition to

thewaiting timefor the physical I/0Osto complete, thetask switcheson and
off the engine repeatedly. Thistask switching adds overhead to processing.

Improving query performance by prefetching pages

364

Asynchronous prefetch issues 1/0 requests for pages before the query
needs them so that most pages are in cache by the time query processing
needs to access the page. If required pages are aready in cache, the query
does not yield the engine to wait for the physical read. (It may still yield
for other reasons, but it yields less frequently.)

Based on the type of query being executed, asynchronous prefetch builds
alook-ahead set of pagesthat it predicts will be needed very soon.
Adaptive Server defines different look-ahead setsfor each processing type
where asynchronous prefetch is used.

Adaptive Server Enterprise



CHAPTER 16 Tuning Asynchronous Prefetch

In some cases, look-ahead sets are extremely precise; in others, some
assumptions and speculation may lead to pages being fetched that are
never read. When only asmall percentage of unneeded pages areread into
cache, the performance gains of asynchronous prefetch far outweigh the
penalty for thewasted reads. If the number of unused pagesbecomeslarge,
Adaptive Server detects this condition and either reduces the size of the
look-ahead set or temporarily disables prefetching.

Prefetching control mechanisms in a multiuser environment

When many simultaneous queries are prefetching large numbers of pages
into a buffer pool, there is arisk that the buffers fetched for one query
could be flushed from the pool before they are used.

Adaptive Server tracksthe buffersbrought into each pool by asynchronous
prefetch and the number that are used. It maintains a per-pool count of
prefetched but unused buffers. By default, Adaptive Server sets an
asynchronous prefetch limit of 10 percent of each pool. In addition, the
limit on the number of prefetched but unused buffersis configurable on a
per-pool basis.

The pooal limits and usage statistics act like a governor on asynchronous

prefetch to keep the cache-hit ratio high and reduce unneeded 1/0O. Overal,
the effect isto ensure that most queries experience a high cache-hit ratio
and few stalls dueto disk I/O sleeps.

The following sections describe how the look-ahead set is constructed for
the activities and query types that use asynchronous prefetch. In some
asynchronous prefetch optimizations, alocation pages are used to build
the look-ahead set.

For information on how allocation pages record information about object
storage, see “ Allocation pages’ on page 158.

Performance and Tuning: Basics 365



How asynchronous prefetch improves performance

Look-ahead set during recovery

During recovery, Adaptive Server reads each log page that includes
records for atransaction and then reads all the data and index pages
referenced by that transaction, to verify timestampsand to roll transactions
back or forward. Then, it performs the same work for the next completed
transaction, until al transactions for a database have been processed. Two
separate asynchronous prefetch activities speed recovery: asynchronous
prefetch on the log pages themselves and asynchronous prefetch on the
referenced data and index pages.

Prefetching log pages

The transaction log is stored sequentially on disk, filling extentsin each
allocation unit. Each time the recovery process reads alog page from a
new allocation unit, it prefetches all the pages on that allocation unit that
arein use by thelog.

In databases that do not have a separate log segment, log and data extents
may be mixed on the same alocation unit. Asynchronous prefetch still
fetchesall thelog pages on the all ocation unit, but the look-ahead sets may
be smaller.

Prefetching data and index pages

For each transaction, Adaptive Server scans the log, building the look-
ahead set from each referenced data and index page. While one
transaction’s log records are being processed, asynchronous prefetch
issues requests for the data and index pages referenced by subsequent
transactions in the log, reading the pages for transactions ahead of the
current transaction.

Note Recovery usesonly the pool in the default data cache. See “ Setting
limits for recovery” on page 377 for more information.

Look-ahead set during sequential scans

Sequentia scansinclude table scans, clustered index scans, and covered
nonclustered index scans.

366 Adaptive Server Enterprise



CHAPTER 16 Tuning Asynchronous Prefetch

During table scans and clustered index scans, asynchronous prefetch uses
all ocation pageinformation about the pages used by the object to construct
the look-ahead set. Each time apage isfetched from anew allocation unit,
thelook-ahead set isbuilt from all the pages on that allocation unit that are
used by the object.

The number of times a sequential scan hops between allocation unitsis
kept to measure fragmentation of the page chain. Thisvalueis used to
adapt the size of the look-ahead set so that large numbers of pages are
prefetched when fragmentation is low, and smaller numbers of pages are
fetched when fragmentation is high. For more information, see “ Page
chain fragmentation” on page 371.

Look-ahead set during nonclustered index access

When using a nonclustered index to access rows, asynchronous prefetch
finds the page numbers for al qualified index values on a nonclustered
index leaf page. It builds the look-ahead set from the uniquelist of al the
pages that are needed.

Asynchronous prefetch is used only if two or more rows qualify.

If anonclustered index access requires several leaf-level pages,
asynchronous prefetch requests are also issued on the leaf pages.

Look-ahead set during dbcc checks
Asynchronous prefetch is used during the following dbcc checks:

* dbcc checkalloc, which checks allocation for all tables and indexesin
adatabase, and the corresponding object-level commands, dbcc
tablealloc and dbcc indexalloc

e dbcc checkdb, which checks all tables and index links in a database,
and dbcc checktable, which checksindividual tables and their indexes

Performance and Tuning: Basics 367



How asynchronous prefetch improves performance

Allocation checking

The dbcc commands checkalloc, tablealloc and indexalloc, which check
page allocations validate information on the allocation page. The look-
ahead set for the dbcc operations that check allocation is similar to the
look-ahead set for other sequential scans. When the scan enters adifferent
allocation unit for the object, the look-ahead set is built from all the pages
on the allocation unit that are used by the object.

checkdb and checktable

The dbce checkdb and dbce checktable commands check the page chains
for atable, building the look-ahead set in the same way as other sequential
scans.

If the table being checked has nonclustered indexes, they are scanned
recursively, starting at the root page and following all pointersto the data
pages. When checking the pointers from the leaf pages to the data pages,
the dbcc commands use asynchronous prefetch in away that is similar to
nonclustered index scans. When aleaf-level index page is accessed, the
look-ahead set isbuilt from the page | Ds of all the pagesreferenced on the
leaf-level index page.

Look-ahead set minimum and maximum sizes

368

The size of alook-ahead set for aquery at agiven pointintimeis
determined by several factors:

e Thetype of query, such as a sequential scan or a nonclustered index
scan

e Thesize of the pools used by the objects that are referenced by the
query and the prefetch limit set on each pool

»  Thefragmentation of tables or indexes, in the case of operations that
perform scans

e Therecent success rate of asynchronous prefetch requests and
overload conditions on /O queues and server 1/0 limits

Table 16-1 summarizes the minimum and maximum sizes for different
type of asynchronous prefetch usage.

Adaptive Server Enterprise



CHAPTER 16 Tuning Asynchronous Prefetch

Table 16-1: Look-ahead set sizes

Access type

Action

Look-ahead set sizes

Table scan
Clustered index scan
Covered leaf level scan

Reading apagefroma
new allocation unit

Minimum is 8 pages needed by the query
Maximum is the smaller of:

*  Thenumber of pages on an allocation unit that
belong to an object.

e Thepool prefetch limits

Nonclustered index scan

Locating qualified
rows on the leaf page

Minimum is 2 qualified rows
Maximum is the smaller of:

ing t :
zgeleg:g;)%g(;s e The number of unique page numbers on
qualified rows on the leaf index page
* Thepool’s prefetch limit
Recovery Recovering a Maximum isthe smaller of:
transaction « All of the data and index pages touched by a
transaction undergoing recovery
* The prefetch limit of the pool in the default
data cache
Scanning the Maximum is all pages on an allocation unit
transaction log belonging to the log
dbcc tablealloc, indexalloc, and Scanning the page Same as table scan
checkalloc chain
dbcc checktable and checkdb Scanning the page Same as table scan
chain
Checking All of the data pages referenced on aleaf level
nonclustered index page.
links to data pages

When prefetch is automatically disabled

Asynchronous prefetch attempts to fetch needed pages into buffer pools
without flooding the pools or the 1/0O subsystem and without reading
unneeded pages. If Adaptive Server detects that prefetched pages are
being read into cache but not used, it temporarily limits or discontinues

asynchronous prefetch.

Performance and Tuning: Basics

369



When prefetch is automatically disabled

Flooding pools

For each poal in the data caches, a configurable percentage of buffers can
be read in by asynchronous prefetch and held until their first use. For
example, if a2K pool has 4000 buffers, and the limit for the pool is 10
percent, then, at most, 400 buffers can beread in by asynchronous prefetch
and remain unused in the poal. If the number of nonaccessed prefetched
buffersin the pool reaches 400, Adaptive Server temporarily discontinues
asynchronous prefetch for that pool.

Asthe pages in the pool are accessed by queries, the count of unused
buffersinthe pool drops, and asynchronous prefetch resumes operation. If
the number of available buffersissmaller than the number of buffersinthe
look-ahead set, only that many asynchronous prefetches are issued. For
example, if 350 unused buffersarein apool that allows 400, and aquery’s
look-ahead set is 100 pages, only thefirst 50 asynchronous prefetches are
issued.

This keeps multiple asynchronous prefetch requests from flooding the
pool with requests that flush pages out of cache before they can be read.
The number of asynchronous|/Osthat cannot beissued dueto the per-pool
limitsis reported by sp_sysmon.

I/O system overloads

370

Adaptive Server and the operating system place limits on the number of
outstanding I/Os for the server as awhole and for each engine. The
configuration parameters max async i/os per server and max async i/os per
engine control theselimitsfor Adaptive Server. See your operating system
documentation for more information on configuring them for your
hardware.

The configuration parameter disk i/o structures controlsthe number of disk
control blocks that Adaptive Server reserves. Each physical 1/0 (each
buffer read or written) requires one control block whileit isin the I/O
queue.

See the System Administration Guide.

Adaptive Server Enterprise



CHAPTER 16 Tuning Asynchronous Prefetch

Unnecessary reads

If Adaptive Server triestoissue asynchronous prefetch requeststhat would
exceed max async i/os per server, max async i/os per engine, or disk i/o
structures, it issues enough requests to reach the limit and discards the
remaining requests. For example, if only 50 disk 1/O structures are
available, and the server attempts to prefetch 80 pages, 50 requests are
issued, and the other 30 are discarded.

sp_sysmon reports the number of times these limits are exceeded by
asynchronous prefetch requests. See “ Asynchronous prefetch activity
report” on page 86 in the book Performance and Tuning: Monitoring and
Analyzing for Performance.

Asynchronous prefetch tries to avoid unnecessary physical reads. During
recovery and during nonclustered index scans, look-ahead sets are exact,
fetching only the pages referenced by page number in the transaction log
or on index pages.

L ook-ahead setsfor table scans, clustered index scans, and dbcc checksare
more speculative and may lead to unnecessary reads. During sequential
scans, unnecessary 1/0O can take place due to:

«  Page chain fragmentation on allpages-locked tables

*  Heavy cache utilization by multiple users

Page chain fragmentation

Adaptive Server’s page all ocation mechanism strives to keep pages that
belong to the same object close to each other in physical storage by
allocating new pages on an extent already allocated to the object and by
allocating new extents on allocation units already used by the object.

However, as pages are allocated and deall ocated, page chains on data-
only-locked tables can develop kinks. Figure 16-1 shows an example of a
kinked page chain between extents in two allocation units.

Performance and Tuning: Basics 371



When prefetch is automatically disabled

372

Figure 16-1: A kink in a page chain crossing allocation units

0.23456

8

o 10| B 13|14 15

16

17418 119 |20 | 21| 22 | 23

24

25/ 26 |27 [ 28 | 29| 30 | 31

/ . Pages used by object

248

21@ 250251 (252|253 |254|255 IIII OAM page

256

Allocation page

2#57 258(259(260|261|262|263

264

272

465 266 267|268|269 (270|271 Other pages
273|274|275|276|277|278|279

280

281(282|283|284|285|286|287

504

505|506 |507|508|509|510(511

In Figure 16-1, when a scan first needs to access a page from allocation
unit 0, it checks the allocation page and issues asynchronous 1/Os for all
the pages used by the object it is scanning, up to the limit set on the pool.
Asthe pages become availablein cache, the query processesthemin order
by following the page chain. When the scan reaches page 10, the next page
in the page chain, page 273, belongs to allocation unit 256.

When page 273 is needed, allocation page 256 is checked, and
asynchronous prefetch requests are issued for all the pagesin that
allocation unit that belong to the object.

When the page chain points back to a page in alocation unit O, there are
two possibilities:

»  The prefetched pages from allocation unit 0 are till in cache, and the
guery continues processing with no unneeded physical 1/0s.

Adaptive Server Enterprise



CHAPTER 16 Tuning Asynchronous Prefetch

*  The prefetch pagesfrom allocation unit 0 have been flushed from the
cache by the reads from allocation unit 256 and other |/Os taking
place by other queries that use the pool. The query must reissue the
prefetch requests. This condition is detected in two ways:

e Adaptive Server's count of the hops between all ocation pages
now equals two. It uses the ratio between the count of hops and
the prefetched pages to reduce the size of the look-ahead set, so
fewer 1/Os areissued.

e Thecount of prefetched but unused pagesin the pool islikely to
be high, so asynchronous prefetch may be temporarily
discontinued or reduced, based on the pool’s limit.

Tuning Goals for asynchronous prefetch

Choosing optimal pool sizesand prefetch percentages for buffer pools can
be key to achieving improved performance with asynchronous prefetch.
When multiple applications are running concurrently, a well-tuned
prefetching system balances pool sizes and prefetch limits to accomplish
these goals:

e Improved system throughput
*  Better performance by applications that use asynchronous prefetch

*  No performance degradation in applications that do not use
asynchronous prefetch

Configuration changes to pool sizes and the prefetch limits for pools are
dynamic, allowing you to make changes to meet the needs of varying
workloads. For example, you can configure asynchronous prefetch for
good performance during recovery or dbcc checking and reconfigure
afterward without needing to restart Adaptive Server.

See * Setting limits for recovery” on page 377 and “ Setting limits for
dbcc” on page 378 for more information.

Performance and Tuning: Basics 373



Other Adaptive Server performance features

Commands for configuration

Asynchronous prefetch limits are configured as a percentage of the pool in
which prefetched but unused pages can be stored. There are two
configuration levels:

e The server-wide default, set with the configuration parameter global
async prefetch limit. When you first install, the default value for global
async prefetch limit is 10 (percent).

For more information, see of the System Administration Guide.

e A per-pool override, set with sp_poolconfig. To see the limits set for
each pool, use sp_cacheconfig.

For more information, see of the System Administration Guide.

Changing asynchronous prefetch limitstakes effect immediately, and does
not require areboot. Both the global and per-pool limits can also be
configured in the configuration file.

Other Adaptive Server performance features

This section covers the interaction of asynchronous prefetch with other
Adaptive Server performance features.

Large I/O

The combination of large I/O and asynchronous prefetch can provide rapid
query processing with low 1/O overhead for queries performing table scans
and for dbcc operations.

Whenlargel/O prefetchesall the pages on an all ocation unit, the minimum
number of 1/Osfor the entire allocation unit is:

+ 3116K I/Os

374 Adaptive Server Enterprise



CHAPTER 16 Tuning Asynchronous Prefetch

e 72K 1/Os, for the pages that share an extent with the allocation page

Note ReferencetoLargel/Osareona?2K logical page size server. If you
have an 8K page size server, the basic unit for the 1/O is8K. If you havea
16K page size server, the basic unit for the I/0 is 16K.

Sizing and limits for the 16k pool

Performing 31 16K prefetches with the default asynchronous prefetch
limit of 10 percent of the buffersin the pool requires a pool with at least
310 16K buffers. If the pool issmaller, or if the limit islower, some
prefetch requests will be denied. To allow more asynchronous prefetch
activity in the pool, you can configure alarger pool or alarger prefetch
limit for the pool.

If multiple overlapping queries perform table scans using the same pool,
the number of unused, prefetched pages allowed in the poll needsto be
higher. The queries are probably issuing prefetch requests at dightly
staggered times and are at different stages in reading the accessed pages.
For example, one query may have just prefetched 31 pages, and have 31
unused pages in the pool, while an earlier query has only 2 or 3 unused
pages left. To start your tuning efforts for these queries, assume one-half
the number of pages for a prefetch request multiplied by the number of
active queriesin the pool.

Limits for the 2K pool

Queries using large 1/0 during sequential scans may still need to perform
2K 1/0:

e When ascan entersanew allocation unit, it performs 2K 1/0O onthe 7
pages in the unit that share space with the allocation page.

e If pagesfrom the allocation unit already reside in the 2K pool when
the prefetch requests are issued, the pages that share that extent must
be read into the 2K pool.

If the 2K poal hasits asynchronous prefetch limit set to 0, thefirst 7 reads
are performed by normal asynchronous I/0O, and the query sleeps on each
read if the pagesare not in cache. Set thelimitsonthe 2K pool high enough
that it does not slow prefetching performance.

Performance and Tuning: Basics 375



Other Adaptive Server performance features

Fetch-and-discard (MRU) scans

When a scan uses MRU replacement policy, buffersare handled in a
special manner when they are read into the cache by asynchronous
prefetch. First, pages are linked at the MRU end of the chain, rather than
at the wash marker. When the query accesses the page, the buffersare re
linked into the pool at the wash marker. This strategy helpsto avoid cases
where heavy use of acache flushes prefetched buffers linked at the wash
marker beforethey can be used. It haslittleimpact on performance, unless
large numbers of unneeded pages are being prefetched. In this case, the
prefetched pages are more likely to flush other pages from cache.

Parallel scans and large 1/Os

Hash-based table scans

376

The demand on buffer poolscan become higher with parallel queries. With
seria queries operating on the same poals, it is safe to assumethat queries
areissued at dlightly different times and that the queries are in different
stages of execution: some are accessing pages are already in cache, and
others are waiting on |/O.

Parallel execution places different demands on buffer pools, depending on
the type of scan and the degree of parallelism. Some parallel queries are
likely to issue alarge number of prefetch requests simultaneousdly.

Hash-based table scans on allpages-locked tables have multiple worker
processes access ng the same page chain. Each worker process checksthe
page ID of each page in the table, but examines only the rows on those
pages where page |D matches the hash value for the worker process.

The first worker process that needs a page from a new allocation unit
issues a prefetch request for all pages from that unit. When the scans of
other worker processes al so need pages from that all ocation unit, they will
either find that the pages they need are already in I/O or already in cache.
Asthefirst scan to complete enters the next unit, the process is repeated.

Aslong as oneworker processin the family performing a hash-based scan
does not become stalled (waiting for alock, for example), the hash-based
table scans do not place higher demands on the pools than they place on
serial processes. Since the multiple processes may read the pages much
more quickly than aserial processdoes, they changethe status of the pages
from unused to used more quickly.

Adaptive Server Enterprise



CHAPTER 16 Tuning Asynchronous Prefetch

Partition-based scans

Special settings

Partition-based scans are more likely to create additional demands on
pools, since multiple worker processes may be performing asynchronous
prefetching on different alocation units. On partitioned tables on multiple
devices, the per-server and per-engine 1/0 limits are less likely to be
reached, but the per-pool limits are more likely to limit prefetching.

Once a parallel query is parsed and compiled, it launches its worker
processes. If atable with 4 partitionsis being scanned by 4 worker
processes, each worker process attemptsto prefetch all the pagesin itsfirst
alocation unit. For the performance of this single query, the most
desirable outcome is that the size and limits on the 16K pool are
sufficiently large to allow 124 (31* 4) asynchronous prefetch requests, so
al of the requests succeed. Each of the worker processes scans the pages
in cache quickly, moving onto new allocation units and issuing more
prefetch requests for large numbers of pages.

for asynchronous prefetch limits

You may want to change asynchronous prefetch configuration temporarily
for specific purposes, including:

*  Recovery

¢ dbcc operations that use asynchronous prefetch

Setting limits for recovery

During recovery, Adaptive Server usesonly the 2K pool of thedefault data
cache. If you shut down the server using shutdown with nowait, or if the
server goes down due to power failure or machine failure, the number of
log records to be recovered may be quite large.

To speed recovery, you can edit the configuration file to do one or both of
the following:

e Increasethe size of the 2K pool in the default data cache by reducing
the size of other poolsin the cache

e Increasethe prefetch limit for the 2K pool

Performance and Tuning: Basics 377



Maintenance activities for high prefetch performance

Both of these configuration changes are dynamic, so you can use
sp_poolconfig to restore the original values after recovery completes,
without restarting Adaptive Server. The recovery process allows usersto
log into the server as soon as recovery of the master database is complete.
Databases are recovered one at atime and users can begin using a
particular database as soon asit is recovered. There may be some
contention if recovery is still taking place on some databases, and user
activity in the 2K pooal of the default data cache is heavy.

Setting limits for dbcc

If you are performing database consi stency checking at atime when other
activity on the server islow, configuring high asynchronous prefetch
limits on the pools used by dbcc can speed consistency checking.

dbcce checkalloc can use special internal 16K buffersif thereisno 16K pool
in the cache for the appropriate database. If you have a 2K pool for a
database, and no 16K pool, set the local prefetch limit to O for the pool
while executing dbcc checkalloc. Use of the 2K pool instead of the 16K
internal buffers may actually hurt performance.

Maintenance activities for high prefetch performance

378

Page chains for all pages-locked tables and the leaf levels of indexes
develop kinks as data modifications take place on the table. In general,
newly created tables have few kinks. Tables where updates, deletes, and
inserts that have caused page splits, new page allocations, and page
deallocations are likely to have cross-allocation unit page chain kinks. If
more than 10 to 20 percent of the origina rowsin atable have been
modified, you should determine if kinked page chains are reducing
asynchronous prefetch effectiveness. If you suspect that page chain kinks
are reducing asynchronous prefetch performance, you may need to re-
create indexes or reload tables to reduce kinks.

Adaptive Server Enterprise



CHAPTER 16 Tuning Asynchronous Prefetch

Eliminating kinks in

Eliminating kinks in

Eliminating kinks in

heap tables

For allpages-locked heaps, page allocation is generally sequential, unless
pages are deallocated by deletes that remove all rows from a page. These
pages may be reused when additional spaceisallocated to the object. You
can create a clustered index (and drop it, if you want the table stored as a
heap) or bulk copy the data out, truncate the table, and copy the datain
again. Both activities compress the space used by the table and eliminate
page-chain kinks.

clustered index tables

For clustered indexes, page splits and page deallocations can cause page
chain kinks. Rebuilding clustered indexes does not necessarily eliminate
all cross-allocation pagelinkages. Usefillfactor for clustered indexeswhere
you expect growth, to reduce the number of kinks resulting from data
modifications.

nonclustered indexes

If your query mix uses covered index scans, dropping and re-creating
nonclustered indexes can improve asynchronous prefetch performance,
once the leaf-level page chain becomes fragmented.

Performance monitoring and asynchronous prefetch

The output of statistics io reports the number physical reads performed by
asynchronous prefetch and the number of reads performed by normal
asynchronous 1/O. In addition, statistics io reports the number of timesthat
asearch for apagein cache was found by the asynchronous prefetch
without holding the cache spinlock.

See “Reporting physical and logical /O statistics’ on page 63 in the
Performance and Tuning: Monitoring and Analyzing for Performance
book for more information.

Performance and Tuning: Basics 379



Performance monitoring and asynchronous prefetch

sp_sysmon report contains information on asynchronous prefetch in both
the “Data Cache Management” section and the “Disk I/O Management”
section.

If you are using sp_sysmon to evaluate asynchronous prefetch
performance, you may seeimprovementsin other performance areas, such
as:

e Much higher cache hit ratios in the pools where asynchronous
prefetch is effective

« A corresponding reduction in context switches due to cache misses,
with voluntary yieldsincreasing

e A possible reduction in lock contention. Tasks keep pages |ocked
during the time it takes for perform 1/0O for the next page needed by
the query. If thistime is reduced because asynchronous prefetch
increases cache hits, locks will be held for a shorter time.

See “Data cache management” on page 82 and “Disk 1/0O management”
on page 102 in the Performance and Tuning: Monitoring and Analyzing
for Performance book for more information.

380 Adaptive Server Enterprise



charTer 17 tempdb Performance Issues

This chapter discusses the performance issues associated with using the
tempdb database. tempdb is used by Adaptive Server users. Anyone can
create objectsin tempdb. Many processesuseit silently. Itisaserver-wide
resource that is used primarily for internal sorts processing, cresting
worktables, reformatting, and for storing temporary tables and indexes
created by users.

Many applications use stored procedures that create tables in tempdb to
expedite complex joins or to perform other complex data analysis that is
not easily performed in asingle step.

Topic Page
How management of tempdb affects performance 381
Types and uses of temporary tables 382
Initial allocation of tempdb 384
Sizing the tempdb 385
Placing tempdb 386
Dropping the master device from tempdb segments 386
Binding tempdb to its own cache 387
Temporary tables and locking 388
Minimizing logging in tempdb 389
Optimizing temporary tables 390

How management of tempdb affects performance

Good management of tempdb is critical to the overall performance of
Adaptive Server. tempdb cannot be overlooked or left in a default state. It
isthe most dynamic database on many servers and should receive special
attention.

If planned for in advance, most problems related to tempdb can be
avoided. These are the kinds of things that can go wrong if tempdb is not
sized or placed properly:

Performance and Tuning: Basics 381



Types and uses of temporary tables

tempdb fills up frequently, generating error messages to users, who must
then resubmit their queries when space becomes available.

Sorting is slow, and users do not understand why their queries have such
uneven performance.

User queries are temporarily locked from creating temporary tables
because of locks on system tables.

Heavy use of tempdb objects flushes other pages out of the data cache.

Main solution areas for tempdb performance

These main areas can be addressed easily:

Sizing tempdb correctly for all Adaptive Server activity
Placing tempdb optimally to minimize contention
Binding tempdb to its own data cache

Minimizing the locking of resources within tempdb

Types and uses of temporary tables

382

The use or misuse of user-defined temporary tables can greatly affect the
overall performance of Adaptive Server and your applications.

Temporary tables can be quite useful, often reducing the work the server hasto
do. However, temporary tables can add to the size requirement of tempdb.
Some temporary tables are truly temporary, and others are permanent.

tempdb is used for three types of tables:

Truly temporary tables
Regular user tables
Worktables

Adaptive Server Enterprise



CHAPTER 17 tempdb Performance Issues

Truly temporary tables

You can create truly temporary tables by using “#” as the first character of the
table name:

create table #tenptable (...)
or:

sel ect select _list
into #tenptable ...

Temporary tables:

e Existonly for the duration of the user session or for the scope of the
procedure that creates them

¢ Cannot be shared between user connections

« Areautomatically dropped at the end of the session or procedure (or can
be dropped manually)

When you create indexes on temporary tables, theindexesare stored intempdb:

create index tenpix on #tenptabl e(col 1)

Regular user tables

You can create regular user tables in tempdb by specifying the database name
in the command that creates the table:

create table tempdb..tenptable (...)
or:

sel ect select _list
into tenpdb..tenptable

Regular user tables in tempdb:

e Can persist across sessions

e Can be used by bulk copy operations

¢ Can be shared by granting permissions on them

¢ Must be explicitly dropped by the owner (otherwise, they are removed
when Adaptive Server is restarted)

You can create indexesin tempdb on permanent temporary tables:

create index tenpix on tenpdb..tenptable(coll)

Performance and Tuning: Basics 383



Initial allocation of tempdb

Worktables

Worktables are automatically created in tempdb by Adaptive Server for merge
joins, sorts, and other internal server processes. These tables:

* Arenever shared

e Disappear as soon as the command completes

Initial allocation of tempdb

When you install Adaptive Server, tempdb is 2MB, and is located completely
on the master device, as shown in Figure 17-1. Thisistypically the first
database that a System Administrator needs to make larger. The more userson
the server, the larger it needs to be. It can be altered onto the master device or
other devices. Depending on your needs, you may want to stripetempdb across
several devices.

Figure 17-1: tempdb default allocation
tempdb

data and log
(2mB)

d_master

Use sp_helpdb to see the size and status of tempdb. The following example
shows tempdb defaults at installation time:

sp_hel pdb tenpdb

nane db_size owner dbid created status

t enpdb 2.0 MB sa 2 May 22, 1999 sel ect into/bul kcopy

devi ce_frag size usage free kbytes

mast er 2.0 MB data and | og 1248

384 Adaptive Server Enterprise



CHAPTER 17 tempdb Performance Issues

Sizing the tempdb

tempdb needs to be big enough to handl e the following processes for every
concurrent Adaptive Server user:

¢ Worktablesfor merge joins

e Worktablesthat are created for distinct, group by, and order by, for
reformatting, and for the OR strategy, and for materializing some views
and subqueries

e Temporary tables (those created with “#” as the first character of their
names)

¢ Indexes on temporary tables
e Regular user tablesin tempdb
e Procedures built by dynamic SQL

Some applications may perform better if you use temporary tables to split up
multitable joins. This strategy is often used for:

e Caseswhere the optimizer does not choose agood query plan for aquery
that joins more than four tables

¢ Queriesthat join avery large number of tables

e Very complex queries

e Applicationsthat need to filter data as an intermediate step
You might also use tempdb to:

« Denormalize several tablesinto afew temporary tables

* Normalize adenormalized table to do aggregate processing

For most applications, make tempdb 20 to 25% of the size of your user
databases to provide enough space for these uses.

Performance and Tuning: Basics 385



Placing tempdb

Placing tempdb

Keep tempdb on separate physical disks from your critical application
databases. Use the fastest disks available. If your platform supports solid state
devices and your tempdb use is a bottleneck for your applications, use those
devices. After you expand tempdb onto additional devices, drop the master
device from the system, default, and logsegment segments.

Although you can expand tempdb on the same device as the master

database, Sybase suggests that you use separate devices. Also, remember that
logical devices, but not databases, are mirrored using Adaptive Server
mirroring. If you mirror the master device, you create amirror of all portions
of the databasesthat reside on the master device. If themirror usesserial writes,
this can have a serious performance impact if your tempdb databaseis heavily
used.

Dropping the master device from tempdb segments

386

sel ect dbid,

By default, the system, default, and logsegment segments for tempdb includeits
2MB alocation on the master device. When you alocate new devicesto
tempdb, they automatically become part of all three segments. Once you
allocate a second device to tempdb, you can drop the master device from the
default and logsegment segments. Thisway, you can be surethat the worktables
and other temporary tablesin tempdb do not contend with other uses on the
master device.

To drop the master device from the segments:

1 Alter tempdb onto another device, if you have not already done so. For
example:

al ter database tenpdb on tune3 = 20

2 Issue ause tempdb command, and then drop the master device from the
segments:

sp_dropsegnent "default", tenpdb, naster
sp_dropdegnent system tenpdb, master
sp_dropdegnent | ogsegnent, tenpdb, naster

3 To verify that the default segment no longer includes the master device,
issue this command:

name, segnap

Adaptive Server Enterprise



CHAPTER 17 tempdb Performance Issues

from sysusages, sysdevices

wher e sysdevi ces. | ow <= sysusages. si ze + vstart
and sysdevi ces. hi gh >= sysusages.size + vstart -1
and dbid = 2
and (status = 2 or status = 3)

The segmap column should report “1” for any allocations on the master
device, indicating that only the system segment still uses the device:

dbi d nane segnap
2 master 1
2 tune3 7

Using multiple disks for parallel query performance

If tempdb spans multiple devices, as shown in Figure 17-2, you can take
advantage of parallel query performance for some temporary tables or
worktables.

Figure 17-2: tempdb spanning disks

| N |

d_master

tempdb tempdb

Binding tempdb to its own cache

Under normal Adaptive Server use, tempdb makes heavy use of the data cache
astemporary tables are created, populated, and then dropped.

Assigning tempdb to its own data cache:

Performance and Tuning: Basics 387



Temporary tables and locking

» Keepstheactivity ontemporary objects from flushing other objects out of
the default data cache

e Helps spread 1/0 between multiple caches

See “Examining cache needs for tempdb” on page 232 for more information.

Commands for cache binding

Use sp_cacheconfig and sp_poolconfig to create named data caches and to
configure pools of agiven sizefor large I/O. Only a System Administrator can
configure caches and pools.

Note ReferencetolLargel/Osareona2kK logical page size server. If you have
an 8K page size server, the basic unit for the /O is8K. If you have a 16K page
size server, the basic unit for the 1/0 is 16K.

For instructions on configuring named caches and pools, see the System
Administration Guide.

Once the caches have been configured, and the server has been restarted, you
can bind tempdb to the new cache:

sp_bi ndcache "tenpdb_cache", tenpdb

Temporary tables and locking

388

Creating or dropping temporary tables and their indexes can cause lock
contention on the system tablesin tempdb. When users create tablesin tempdb,
information about the tables must be stored in system tables such as sysobjects,
syscolumns, and sysindexes. |f multiple user processes are creating and
dropping tablesin tempdb, heavy contention can occur on the system tables.
Worktables created internally do not store information in system tables.

If contention for tempdb system tablesisa problem with applicationsthat must
repeatedly create and drop the same set of temporary tables, try creating the
tables at the start of the application. Then useinsert...select to popul ate them,
and truncate table to remove all the datarows. Although insert...select requires
logging and is slower than select into, it can provide a solution to the locking
problem.

Adaptive Server Enterprise



CHAPTER 17 tempdb Performance Issues

Minimizing logging in tempdb

With select into

By using shorter

Even though the trunc log on checkpoint database option isturned onin tempdb,
changes to tempdb are still written to the transaction log. You can reduce log
activity in tempdb by:

e Using select into instead of create table and insert

e Sdlecting only the columns you need into the temporary tables

When you create and popul ate temporary tablesin tempdb, use the select into
command, rather than create table and insert...select, whenever possible. The
select into/bulkcopy database option isturned on by default in tempdb to enable
this behavior.

select into operations are faster because they are only minimally logged. Only
the allocation of data pagesistracked, not the actual changesfor each datarow.
Each datainsert in an insert...select query is fully logged, resulting in more
overhead.

rows

If the application creating tables in tempdb uses only afew columns of atable,
you can minimize the number and size of log records by:

e Selecting just the columns you need for the application, rather than using
select * in queries that insert data into the tables

e Limiting the rows selected to just the rows that the applications requires
Both of these suggestions also keep the size of the tables themselves smaller.

Performance and Tuning: Basics 389



Optimizing temporary tables

Optimizing temporary tables

390

Many uses of temporary tables are simple and brief and require little
optimization. But if your applications require multiple accesses to tablesin
tempdb, you should examine them for possible optimization strategies.
Usually, thisinvolves splitting out the creation and indexing of the table from
the accessto it by using more than one procedure or batch.

When you create atablein the same stored procedure or batch whereit isused,
the query optimizer cannot determine how large the table is, the table has not
yet been created when the query is optimized, as shown in Figure 17-3. This
appliesto both temporary tables and regular user tables.

Figure 17-3: Optimizing and creating temporary tables

Parse and
Normalize

Query optimized here Optimize

Compile

Table created here Execute

The optimizer assumes that any such table has 10 data pages and 100 rows. If
thetableisreally large, this assumption can lead the optimizer to choose a
suboptimal query plan.

These two techniques can improve the optimization of temporary tables;

e Creating indexes on temporary tables

Adaptive Server Enterprise



CHAPTER 17 tempdb Performance Issues

Breaking complex use of temporary tables into multiple batches or
procedures to provide information for the optimizer

Creating indexes on temporary tables

You can define indexes on temporary tables. In many cases, these indexes can
improve the performance of queriesthat use tempdb. The optimizer usesthese
indexes just like indexes on ordinary user tables. The only requirements are:

The table must contain data when the index is created. If you create the
temporary table and create the index on an empty table, Adaptive Server
does not create column statistics such as histograms and densities. If you
insert data rows after creating the index, the optimizer has incomplete
statistics.

The index must exist while the query using it is optimized. You cannot
create an index and then use it in a query in the same batch or procedure.

The optimizer may choose a suboptimal plan if rows have been added or
deleted since the index was created or since update statistics was run.

Providing an index for the optimizer can greatly increase performance,
especially in complex procedures that create temporary tables and then
perform numerous operations on them.

Creating nested procedures with temporary tables

You need to take an extra step to create the procedures described above. You
cannot create base_proc until select_proc exists, and you cannot create
select_proc until the temporary table exists. Here are the steps:

1

Create the temporary table outside the procedure. It can be empty; it just
needs to exist and to have columns that are compatible with select_proc:

select * into #huge_result from... where 1 = 2
Create the procedure select_proc, as shown above.
Drop #huge_result.
Create the procedure base_proc.

Performance and Tuning: Basics 391



Optimizing temporary tables

Breaking tempdb uses into multiple procedures
For example, this query causes optimization problems with #huge_result:

create proc base_proc
as
sel ect *
into #huge_result
from...
sel ect *
fromtab,
#huge_result where ..

You can achieve better performance by using two procedures. When the
base_proc procedure calls the select_proc procedure, the optimizer can
determine the size of the table:

create proc sel ect_proc
as
sel ect *
fromtab, #huge_result where ..
create proc base_proc
as
sel ect *
i nto #huge_result
from...
exec sel ect_proc

If the processing for #huge_result requires multiple accesses, joins, or other
processes, such as looping with while, creating an index on #huge_result may
improve performance. Createtheindex inbase_proc sothat itisavailablewhen
select_proc is optimized.

392 Adaptive Server Enterprise



Index

Symbols
# (pound sign)
temporary table identifier prefix 383

Numerics
4K memory pool, transactionlogand 234

A

access
index 152
memory and disk speeds 205
optimizer methods 151
Adaptive Server
columnsize 12,135
logical pagesizes 12, 134, 153, 154
number of groups 13, 135
number of logins 13, 135
number of users 13, 135
affinity
CPU 44,56
engineexample 76
aggregate functions
denormalization and performance 144
denormalization and temporary tables 385
aging
datacache 216
procedure cache 212
agorithm 59
guidelines 62
allocating memory 210
allocation
dynamic allocation 209
alocation map. See Object Allocation Map (OAM)
pages
alocation pages 158

Perfromance and Tuning: Basics

dlocation units 156, 158
database creationand 348
ALS
log writer 50, 324
user log cache 48, 322
whentouse 48, 322
ALS, see Asynchronous Log Service 47, 320
alter table command
lock option and fillfactor and 188
partition clause 106
reservepagegap for indexes 197
unpartition 107
APL tables. See all pages locking
application design
cusorsand 342
denormalization for 143
DSSand OLTP 221
managing denormalized datawith 149
network packet sizeand 29
primary keysand 310
procedure cachesizing 213
SMPservers 57
temporary tablesin 385
application execution precedence 67, 85-87
environment analysis 65
schedulingand 75
system procedures 71
application queues. See application execution
precedence
architecture
multithreaded 35
artificial columns 319
assigning execution precedence 67
asynchronous prefetch 363, 374
dbcc and 367, 378
during recovery 366
fragmentationand 371
hash-based scansand 376
largel/Oand 374
look-ahead set 364

393



Index

maintenancefor 378

MRU replacement strategy and 376

nonclustered indexesand 367

page chain fragmentationand 371

page chain kinksand 371, 378

parallel query processingand 376

partition-based scansand 377

performance monitoring 380

pool limitsand 370

recovery and 377

sequential scansand 366

tuning goals 373
@@pack_received global variable 29
@@pack_sent global variable 29
@@packet_errorsglobal variable 29
attributes

execution classes 69
auditing

disk contentionand 91

performance effects 243

queue, sizeof 245

B

Backup Server 350
backups
network activity from 31
planning 7
base priority 69
batch processing
bulk copy and 353
managing denormalized datawith 150
temporary tablesand 391
bep (bulk copy utility) 352
heap tablesand 169
largel/Ofor 227
parallel 110
partitioned tablesand 110
reclaiming spacewith 181
temporary tables 383
binary expressions  xxii
binding
caches 220, 239
objectsto datacaches 174
tempdb 221, 388

394

transactionlogs 221

B-trees, index
nonclustered indexes 285
buffers
alocation and caching 177
chainof 174

procedure (“proc”’) 213
bulk copying. See bep (bulk copy utility)
business models and logical database design

C

cache hit ratio

cache replacement policy and 231
datacache 218

procedure cache 213
cachereplacement policy 229
defined 229

indexes 230

lookup tables 230
transactionlogs 230
cachereplacement strategy  174-179, 229
cache, procedure

cachehitratio 213

errors 213

query plansin 212
sizereport 212

sizing 213
caches, data 215-241

agingin 174

binding objectsto 174
cachehit ratio 218

data modificationand 177, 217
deleteson heapsand 178
guidelinesfor named 230
hot spotsboundto 220

I/O configuration 173, 227
insertsto heapsand 177
joinsand 176

largel/Oand 225

MRU replacement strategy 175
named 220-240
pageagingin 215

poolsin 173, 227
spinlockson 221

Adaptive Server Enterprise

133



strategies chosen by optimizer 228
tempdb bound toown 221, 388
transaction log bound to own 221
updatesto heapsand 178
wash marker 174
chain of buffers (datacache) 174
chains of pages
overflow pagesand 282
placement 90
unpartitioning 107
character expressions  xxii
checkpoint process 216
housekeeper task and 51
client
connections 35
packet size specification 29
task 36
client/server architecture 21
close command
memory and 330
close on endtran option, set 342
cluster ratio
reservepagegap and 194, 199
clustered indexes 274
asynchronous prefetch and scans 366
computing number of datapages 264
computing number of pages 258
computing size of rows 259
delete operations 283
estimating sizeof 257, 263
exp_row_size and row forwarding 189-194
fillfactor effecton 268
guidelinesfor choosing 306
insert operationsand 278
order of key values 277
overflow pagesand 282
overhead 180
pagereads 278
partitioned tablesand 108
performanceand 180
reclaiming spacewith 181
reducing forwarded rows  189-194
scans and asynchronous prefetch 366
segmentsand 98
select operationsand 277
sizeof 251, 260

Perfromance and Tuning: Basics

Index

structureof 276
collapsing tables 145
columnsize 12,135
columns
artificial 319
datatype sizesand 258, 264
derived 144
fixed- and variable-length 258
fixed-length 264
redundant in database design 144
splitting tables 148
unindexed 153
vauesin, and normalization 137
variable-length 264
commands for configuration 374
compiled objects 213
datacachesizeand 214
compositeindexes 312
advantagesof 314
concurrency
SMP environment 57
configuration (Server)
memory 206
configuration (server)
housekeeper task 51
/10 225
named datacaches 220
network packet size 27
number of rows per page 204

connections
client 35
cursorsand 342
packet size 27
consistency

dataand performance 150
constants  xxii
constraints
primary key 304
unique 304
contention
avoiding with clustered indexes 273
datacache 232
disk /O 93,242
/O device 93
logical devicesand 90
max_rows_per_page and 203

395



Index

partitionsto avoid 99
SMPserversand 57
spinlock 232
systemtablesintempdb 388
transaction log writes 182
underlying problems 91

control pages for partitioned tables
updating statisticson 116

controller, device 93

conventions
used in manuals  xix

covered queries
index covering 152

covering nonclustered indexes
asynchronous prefetchand 366
configuring /O sizefor 237
rebuilding 347

CPU
affinity 56

cpu grace time configuration parameter
CPUyieddsand 43

CPU usage
housekeeper task and 50
monitoring 53
sp_monitor system procedure 53

cpuaffinity (dbcc tune parameter) 56

create clustered index command
sorted_data and fillfactor interaction 188
sorted_data and reservepagegap interaction  200-

202
create database command
parallel /O 90

create index command
distributing datawith 108
fillfactor and  183-188
locksacquired by 344
parallel configurationand 108
parallel sortand 108
reservepagegap option 197
segmentsand 345
sorted_data option 345

create table command
exp_row_size option 190
reservepagegap option 196
space management properties 190

cursor rows option, set 341

396

Cursors
execute 330
Halloween problem 332
indexesand 331
isolation levelsand 338
lockingand 328
modes 331
multiple 342
read-only 331
stored proceduresand 330
updatable 331

data
consistency 150
little-used 147
max_rows_per_page and storage 203
storage 93, 151-182
unigueness 273

datacaches 215-241
agingin 174
binding objectsto 174
cachehitratio 218
datamodificationand 177, 217
deleteson heapsand 178
fetch-and-discard strategy 175
guidelinesfor named 230
hot spotsboundto 220
insertsto heapsand 177
joinsand 176
largel/Oand 225
named 220-240
pageagingin 215
sizing 222-238
spinlockson 221
strategies chosen by optimizer 228
tempdb bound to own 221, 387, 388
transaction log bound to own 221
updatesto heapsand 178
wash marker 174

dataintegrity
application logic for 149
denormalization effecton 142
managing 148

Adaptive Server Enterprise



data modification
datacachesand 177,217
heap tablesand 168
log spaceand 351
nonclustered indexesand 311
number of indexesand 299
recovery interval and 242
transactionlogand 181
datapages 153-181
clusteredindexesand 276
computing number of 258, 264
fillfactor effecton 268
full, and insert operations 279
limiting number of rowson 203
linking 167
partialy full 180
textandimage 156
database design  133-150
collapsing tables 145
column redundancy 144
indexing basedon 317
logical keysand index keys 306
normalization 135
database devices 92
parallel queriesand 93
sybsecurity 94
tempdb 94
database objects
binding to caches 174
placement 89-132
placement on segments 89
storage 151-182
databases
See also database design
creation speed 348
devicesand 93
placement 89
datatypes
choosing 310, 319
numeric compared to character 319
dbcc (database c+onsistency checker)
configuring asynchronous prefetch for 378
dbcc (database consistency checker)
asynchronous prefetchand 367
largel/Ofor 227
dbcc (engine) command 55

Perfromance and Tuning: Basics

Index

dbcc tune
cleanup 355
cpuaffinity 56
des _bind 356

deallocate cursor command
memory and 330

decision support system (DSS) applications
execution preference 86
named data cachesfor 221
network packet sizefor 27

declare cursor command
memory and 330

default exp_row_size percent configuration parameter

191
default fill factor percentage configuration parameter
186

default settings
audit queuesize 245
auditing 244
max_rows_per_page 203
network packet size 27

delete operations
clustered indexes 283
heap tables 170
nonclustered indexes 290
object sizeand 249

denormalization 141
applicationdesign and 149
batch reconciliationand 150
derived columns 144
disadvantagesof 143
duplicating tablesand 146
management after 148
performance benefitsof 143
processing costsand 142
redundant columns 144
techniquesfor 144
temporary tablesand 385

derived columns 144

devices
adding for partitioned tables 123, 128
object placementon 89
partitioned tablesand 128
RAID 103
throughput, measuring 103
using separate 58

397



Index

dirty pages
checkpoint processand 216
washareaand 215

disk devices
performanceand 89-132
disk I/0
performing 46

disk i/o structures configuration parameter
asynchronous prefetch and 370
disk mirroring
device placement 95
performanceand 90
DSS applications
See Decision Support Systems
duplication
tables 146
dynamic memory alocation 209

E

EC

attributes 69

engine affinity, task 69, 71
example 72

engine resources

resultsanalysisand tuning 66
engine resources, distribution 59
engines 36

CPU affinity 56

defined 36

functionsand scheduling 44

network 45

scheduling 44

taking offline 55
environment anaysis 65

I/O-intensive and CPU-intensive execution objects

intrusive and unintrusive 64
environment anaysisand planning 63
error logs

procedure cachesizein 212
€rror messages

procedure cache 213
errors

packet 29

procedure cache 212

398

64

exceed logical pagesize 163
execute cursors
memory useof 330
execution 46
attributes 67
mixed workload precedence 86
precedence and users 87
ranking applicationsfor 67
stored procedure precedence 87
system proceduresfor 71
execution class 67
attributes 69
predefined 68
user-defined 68
execution objects 67
behavior 64
performance hierarchy 67
scope 77
execution precedence
among applications 72
assigning 67
schedulingand 75
exp_row_size option
create table 190
default value 190
server-wide default 191
setting before alter table...lock 360
sp_chgattribute 191
storagerequired by 269
expected row size. See exp_row_size option
expressions, maximum length 13
extents
alocation and reservepagegap 195
partitioned tables and extent stealing 114
spacedlocationand 156

189-194

F

fetch-and-discard cache strategy 175
fetching cursors
memory and 330
fillfactor
advantagesof 184
disadvantagesof 184
index creationand 183, 310

Adaptive Server Enterprise



index pagesizeand 268
lockingand 202
max_rows_per_page comparedto 203
page splitsand 184
fillfactor option
See also fillfactor values
create index 183
sorted_data optionand 188
fillfactor values
See also fillfactor option
alter table...lock 186
applied to datapages 187
applied toindex pages 187
clustered index creationand 186
nonclustered index rebuilds 186
reorg rebuild 186
table-level 186
first normal form 137
See also normalization
first page
alocationpage 158
text pointer 156
fixed-length columns
caculating spacefor 254
datarow sizeof 258, 264
forindex keys 311
index row sizeand 259
overhead 311
floating-point data  xxii
for load option
performanceand 348
for update option, declare cursor
optimizingand 341
foreign keys
denormalizationand 143
formulas
cachehitratio 219
tableor index sizes  254-271
forwarded rows
query on systabstats 193
reservepagegap and 194
fragmentation, data
effects on asynchronous prefetch 371
page chain 371
fragmentation, reserve pagegapand 195
freewrites 50

Perfromance and Tuning: Basics

G

global alocation map (GAM) pages 157
groups, number of for 125 13,135

H

Halloween problem
cursorsand 332
hardware
network 30
ports 34
terminology 92
hash-based scans
asynchronous prefetchand 376
joinsand 93
header information
datapages 154
packet 21
“proc headers” 213
heap tables 167-182
bep (bulk copy utility) and 354
delete operations 170
deletesand pagesin cache 178
guidelinesfor using 180
[/Oand 172
/O inefficiency and 180
insert operationson 168
inserts and pagesin cache 177
locking 169
maintaining 180
performance limits 169
select operationson 168, 176
updates and pagesin cache 178
updateson 171
high priority users 87
historical data 147
horizontal table splitting 147
hot spots 87
binding cachesto 220
housekeeper free write percent configuration
parameter 51
housekeeper task  50-52
recovery timeand 243

Index

399



Index

1/0
accessproblemsand 91
asynchronous prefetch 363, 77-380
balancing load with segments 98
bep (bulk copy utility) and 355
buffer poolsand 220
CPUand 53
create database and 349
default cachesand 174
devicesand 90
disk 46
efficiency on heap tables 180
expected row sizeand 194
hesp tablesand 172
increasing sizeof 173
memory and 205
named cachesand 220
network 45
parallel for create database 90
performanceand 92
recovery interval and 351
select operations on heap tablesand 176
server-wide and database 94
sp_spaceused and 251
spreading between caches 388
transactionlogand 182
IDENTITY columns
cursorsand 332
indexing and performance 306
image datatype
page sizefor storage 156
storage on separate device 98, 156
index covering
definition 152
index keys, logical keysand 306
index pages
fillfactor effect on 185, 268
limiting number of rowson 203
page splitsfor 281
storageon 274
index selection 308
indexes 273-296
accessthrough 152, 273
bulk copy and 352
cache replacement policy for 230

400

choosing 152

computing number of pages 259
cregting 344

cursorsusing 331
denormalizationand 143

design considerations 297
dropping infrequently used 318
fillfactorand 183

guidelinesfor 310

intermediate level 276

leaf level 275

leaf pages 285
max_rows_per_page and 203
number allowed 304
performanceand 273-296
rebuilding 347

recovery and creation 345

root level 275

selectivity 299

sizeof 248

size of entries and performance 300
SMP environment and multiple 57
sort order changes 347
sp_spaceused Sizereport 251
temporary tablesand 383, 391
typesof 274

usefulnessof 167

indexing

configure large buffer pools 320
create aclaustered index first 320

information (sp_sysmon)

CPU usage 53

initializing

text or image pages 270

insert operations

clustered indexes 278

heap tablesand 168

loggingand 389

nonclustered indexes 289

page split exceptionsand 280
partitionsand 99

performanceof 90

rebuilding indexes after many 347

integer data

inSQL  xxii

intermediate levels of indexes 276

Adaptive Server Enterprise



isolation levels
cursors 338

J

joins
choosing indexesfor 307
datacacheand 176
datatype compatibility in 311
denormalizationand 141
derived columnsinstead of 144
hash-based scanand 93
normalizationand 137
temporary tablesfor 385

K

key values
index storage 273
order for clustered indexes 277
overflow pagesand 282

keys, index
choosing columnsfor 306
clustered and nonclustered indexesand 274
composite 312
logical keysand 306
monotonically increasing 281
size and performance 310

szeof 304
unique 310
L
large 1/O

asynchronous prefetchand 374
named datacachesand 225

large object (LOB) 98

leaf levelsof indexes 275
fillfactor and number of rows 268
querieson 153
row size calculation 261, 265

leaf pages 285
caculating number inindex 262, 266

Perfromance and Tuning: Basics

Index

limiting number of rowson 203

levels
indexes 275
tuning 5-10

lightweight process 37
listeners, network 34
load balancing for partitioned tables 114
maintaining 131
local backups 350
locking 16-??
create index and 344
heap tablesand inserts 169
last pageinsertsand 306

tempdband 388

worktablesand 388
log I/O size

matching 227

tuning 224

using large 235
logging

bulk copy and 352
minimizingintempdb 389
logical database design 133, 150
logical devicename 92
logical expressions  xxii
logical keys, index keysand 306
logical pagesizes 12,134, 153, 154
logical process manager 67
logins 45
number of for 12.5 13, 135
look-ahead set 364
dbcc and 367
during recovery 366
nonclustered indexesand 367
sequential scansand 366
lookup tables, cache replacement policy for 230
LRU replacement strategy 174

M

maintenancetasks  343-355
performanceand 90
managing denormalized data 148
map, object allocation. See object allocation map (OAM)

pages

401



Index

matching index scans 292
max async i/os per engine configuration parameter
asynchronous prefetch and 370
max async i/os per server configuration parameter
asynchronous prefetchand 370
max_rows_per_page option
fillfactor comparedto 203
lockingand 202
select into effects 204
memory
cursorsand 328
how to dlocate 210
/Oand 205
named data cachesand 220
network packetsand 28
performanceand 205245

shared 44
messages
See also errors

mixed workload execution priorities 86
model, SMP process 43
modes of disk mirroring 96
monitoring
CPU usage 53
data cache performance 218
index usage 318
network activity 29
performance 5
monitoring environment 66
Monitoring indexes
examplesof 309
using sp_monitorconfig 308
monitoring indexes  ?2-310
MRU replacement strategy 174
asynchronous prefetchand 376
multicolumn index. See composite indexes
multiple network engines 45
multiple network listeners 34
multitasking 39
multithreading 35

N
nesting
temporary tablesand 391

402

network engines 45
network 1/0 45
network packets
global variables 29
sp_monitor system procedure 29, 53
networks 19
cursor activity of 336
hardwarefor 30
multiplelisteners 34
performanceand 19-34
ports 34
reducing trafficon 30, 355
server based techniques 30
nonclustered indexes 274
asynchronous prefetch and 367
definition of 285
delete operations 290
estimating sizeof  261-263
guidelinesfor 307
insert operations 289
number alowed 304
select operations 287
sizeof 251, 261, 265, 285
structure 286
nonleaf rows 262
nonmatching index scans  293-294
norma forms 15
normalization 135
first normal form 137
joinsand 137
second normal form 138
temporary tablesand 385
third normal form 139
null columns
storage of rows 155
storagesize 256
variable-length 310
null values
datatypes allowing 310
text and image columns 270
number (quantity of)
bytes per index key 304
clustered indexes 274
cursor rows 341
indexes per table 304
nonclustered indexes 274

Adaptive Server Enterprise



OAM pages 263, 267
packet errors 29
procedure (“proc”) buffers 213
processes 38
rows (rowtotal), estimated 250
rowsonapage 203
number of columnsand sizes 161
number of groups 13, 135
number of logins 13, 135
number of sort buffers 320
number of users 13, 135
numbers
row offset 285
numeric expressions  xxii

O

object allocation map (OAM) pages 158
overhead calculationand 260, 265
object allocation mapp (OAM) pages
LRU strategy in datacache 175
object size
viewing with optdiag 249
offset table
nonclustered index selectsand 287
row IDsand 285
sizeof 155
online backups 351
online transaction processing (OLTP)
execution preference assignments 86
named data cachesfor 221
network packet sizefor 27
open command
memory and 330
optdiag utility command
object sizesand 249
optimization
cursors 330
optimizer
cache strategiesand 228
dropping indexesnot used by 318
indexesand 297
nonunique entriesand 299
temporary tablesand 390
OR strategy

Perfromance and Tuning: Basics

cursorsand 340
order
compositeindexesand 312
dataand index storage 274
index key values 277
presorted data and index creation 345
recovery of databases 351
result sets and performance 180
order by clause
indexesand 273
output
sp_estspace 300
sp_spaceused 250
overflow pages 282
key valuesand 282
overhead
calculation (space dlocation) 263, 267
clustered indexesand 180
cursors 336
datatypesand 310, 319
network packetsand 28
nonclustered indexes 311
object size calculations 254
pool configuration 239
row and page 254
singleprocess 37
space allocation calculation 260, 265
variable-length and null columns 256
variable-length columns 311
overheads 160

P

@@pack_received global variable 29
@@pack_sent global variable 29
packet size 27
@@packet_errorsglobal variable 29
packets

default 28

number 28

size specification 29
packets, network 21

size, configuring 27
page chain kinks

asynchronous prefetchand 371, 378

Index

403



Index

clustered indexesand 379
defined 371
heap tablesand 379
nonclustered indexesand 379

page chains
overflow pagesand 282
placement 90
text orimagedata 270
unpartitioning 107

page splits
datapages 279
fillfactor effecton 184
index pagesand 281
max_rows_per_page Settingand 203
nonclustered indexes, effecton 279
object sizeand 249
performance impact of 281
reducing 184

page utilization percent configuration parameter

object sizeestimationand 255

pages
global allocation map (GAM) 157
overflow 282

pages, control
updating statisticson 115

pages, data 153-181
bulk copy and alocations 352
calculating number of 258, 264
fillfactor effect on 268
fillfactor for SMP systems 58
linking 167
size 153
splitting 279

pages, index
aging in datacache 216
calculating number of 259
calculating number of non-leaf 266
fillfactor effect on 185, 268
fillfactor for SMP systems 58
leaf level 285
storageon 274

pages, OAM (Object Allocation Map)
number of 263

pages, OAM (object allocation map) 158
aging in datacache 216
number of 260, 265, 267

404

parallel query processing
asynchronous prefetchand 376
object placementand 90
performanceof 91
parrellel sort
configure enough sort buffers 320
partition clause, alter table command 106
partition-based scans
asynchronous prefetchand 377
partitioned tables 99
bep (bulk copy utility) and 110, 354
changing the number of partitions 107
command summary 106
configuration parametersfor 102
configuration parametersfor indexing 108
create index and 108
creatingnew 117
datadistributionin 111
devicesand 114, 123, 128
distributing dataacross 108, 120
extent stealingand 114
informationon 111
load balancingand 114
loading withbcp 110
maintaining 116, 131
moving with on segmentname 119
read-mostly 105
read-only 104
segment distribution of 102
sizeof 111,115
sorted data optionand 118
space planning for 103
statistics 116
statisticsupdates 115
unpartitioning 107
updatesand 105
updating statistics 116
partitioning tables 106
partitions
ratio of sizes 111
sizeof 111,115
performance 3
andysis 14
backupsand 351
bep (bulk copy utility) and 353
cachehit ratio 218

Adaptive Server Enterprise



clustered indexesand 180

designing 4

indexesand 297

networks 19

number of indexesand 299

problems 19

techniques 20

tempdband 381-391
performing benchmark tests 65
performing disk /O 46
physical devicename 92

point query 152
pointers
index 274

last page, for heap tables 168
page chain 167
text and image page 156
pools, data cache
configuring for operations on heap tables
largel/Osand 225

overhead 239
ports, multiple 34
precedence

rule (execution hierarchy) 77
precedence rule, execution hierarchy 78
precision, datatype

sizeand 256
predefined execution class 68
prefetch

asynchronous 363-7?

sequential 173
primary key constraint

index created by 304
primary keys

normalizationand 138

splitting tablesand 146

priority 69
application 67
assigning 68

precedencerule 78

run queues 75

task 67
“proc headers” 213
procedure (“proc”) buffers 213
procedure cache

cachehit ratio 213

Perfromance and Tuning: Basics

173

Index

errors 213

query plansin 212
sizereport 212

sizing 213

procedure cache sizing configuration parameter 211
processmodel 43

processes (server tasks) 39
identifier (PID) 38
lightweight 37

number of 38

overhead 37

runqueue 39

ptn_data_pgs system function 115

Q

queries
point 152
range 299
unindexed columnsin 153
query plans
procedure cache storage 212
unused and procedure cache 212
updatable cursorsand 340
guery processing
largel/Ofor 227
queues
run 46
schedulingand 40
deep 40

R

RAID devices
partitioned tablesand 103

range queries 299

read-only cursors 331
indexesand 331
lockingand 336

reads
clustered indexesand 278
disk mirroringand 96
imagevalues 156
named data cachesand 241

405



Index

text values 156 rounding
recompilation object size calculationand 254
cachebindingand 240 row ID (RID) 285
recovery row offset number 285
asynchronous prefetchand 366 rows per datapage 165
configuring asynchronous prefetch for 377 rows, index
housekeeper task and 51 sizeof leaf 261, 265
index creationand 345 sizeof non-leaf 262
log placement and speed 95 rows, table
recovery interval in minutes configuration parameter splitting 148
216, 242 run queue 38, 39, 46
[/lOand 351
re-creating
indexes 108, 345
referential integrity S
references and unique index requirements 310 scans, table
relaxed LRU replacement policy avoiding 273
indexes 230 performanceissues 152
lookup tables 230 scheduling, Server
transactionlogs 230 engines 44
remote backups 350 tasks 40
replacement policy. See cache replacement policy scoperule 77,79
replacement strategy. See LRU replacement strategy; MRU search conditions
replacement strategy clustered indexesand 306
replication second normal form 138
network activity from 31 See also normalization
tuning levelsand 6 segments 92
reports changing table locking schemes 358
procedure cachesize 212 clustered indexeson 98
sp_estspace 252 database object placement on 93, 98
reserved pages, sp_spaceused report on 252 freepagesin 114
reservepagegap option  195-200 moving tables between 119
cluster ratios 194, 199 nonclustered indexeson 98
create index 197 partition distribution over 102
create table 196 tempdb 386

extent allocationand 195
forwardedrowsand 194
sp_chgattribute 197
spaceusageand 194
storage required by 269

select * command
logging of 389

select command
optimizing 299

select into command

response time heap tablesand 169
definitionof 3 largel/Ofor 227
other users affecting 32 select operations
tablescansand 152 clusteredindexesand 277
risks of denormalization 142 heaps 168

root level of indexes 275

406

nonclustered indexes 287

Adaptive Server Enterprise



sequential prefetch 173, 225

server
other tools 30
servers
scheduler 42

uniprocessor and SMP 57
set theory operations

compared to row-oriented programming 326

shared keyword
cursorsand 331

shared locks
read-only cursors 331

singleCPU 38

single-processoverhead 37

size
datapages 153
datatypes with precisions 256
formulasfor tablesor indexes  254-271
/0 173,225
indexes 248
nonclustered and clustered indexes 285
object (sp_spaceused) 250
partitions 111
predicting tablesand indexes  257-271
procedure cache 212, 213
sp_spaceused estimation 252
stored procedure 214
tables 248
tempdb database 384
triggers 214
views 214

skew in partitioned tables
informationon 111

seep queue 40

SMP (symmetric multiprocessing) systems
application designin 57
architecture 43
disk management in 58
named data cachesfor 222
temporary tablesand 58

sort operations (order by)
improving performance of 344
indexing to avoid 273
performance problems 382

sort order
rebuilding indexes after changing 347

Perfromance and Tuning: Basics

sorted data, reindexing 345, 348
sorted_data option

fillfactor and 188

reservepagegap and 200
sorted_data option, create index

partitioned tablesand 118

sort suppressionand 345
sp_addengine system procedure 73
sp_addexeclass system procedure 68
sp_bindexeclass system procedure 68
sp_chgattribute system procedure

exp_row_size 191

fillfactor 185-188

reservepagegap 197
sp_estspace system procedure

advantagesof 253

disadvantagesof 254

planning future growth with 252
sp_help system procedure

displaying expected row size 192
sp_helpartition system procedure 111
sp_helpsegment system procedure

checking data distribution 114
sp_logiosize system procedure 235
sp_monitor system procedure 53

network packets 29
sp_spaceused System procedure 250

row total estimatereported 250
space 160, 161

clustered compared to nonclustered indexes

estimating tableand index size  257-271

extents 156

for text or image storage 156

reclaiming 180

unused 156
space allocation

clustered index creation 304

contiguous 159

deallocation of index pages 285

deletesand 171

extents 156

index page splits 281

Index

285

monotonically increasing key valuesand 281
object allocation map (OAM) pages 260, 265

overhead calculation 260, 263, 265, 267
page splitsand 279

407



Index

predicting tablesand indexes 257271
procedure cache 213
sp_spaceused 252
tempdb 387
unused space within 156
space management properties  183-204
object sizeand 268
reserve pagegap 195-200
Spaceusage 360
speed (server)
memory compared to disk 205
selectinto 389
sort operations 344
spinlocks
contention 232
datacachesand 221
splitting
datapagesoninserts 279
horizontal 147
tables 146
vertical 148
SQL standards
cursorsand 326
steps
problem analysis 14
storage management
collapsed tables effect on 145
delete operationsand 170
I/O contention avoidance 93
page proximity 159
row storage 155
space dedllocationand 284
store procedures, maximum length 13
stored procedures
cursorswithin -~ 334
hot spotsand 87
performanceand 90
procedure cacheand 212
sizeestimation 214
temporary tablesand 392
striping tempdb 384
subprocesses 39
switching context 39
sybsecurity database
audit queueand 244
placement 94

408

symbols

in SQL statements  xx
Symmetric Multi Processing System. See SMP
sysgamstable 157
sysindexes table

dataaccessand 160

text objectslisted in 156
sysprocedures table

query plansin 212
system tables

dataaccessand 160

performanceand 90

T

table scans
asynchronous prefetchand 366
avoiding 273
performanceissues 152
tables
collapsing 145
denormalizing by splitting 146
designing 135
duplicating 146
estimating sizeof 254
heap 167-182
moving with on segmentname 119
norma intempdb 383
normalization 135
partitioning 99, 106
secondary 319
sizeof 248
sizewith aclustered index 257, 263
unpartitioning 107
tabular datastream 21
tabular data stream (TDS) protocol 21
task level tuning
algorithm 59
tasks
client 36
execution 46
queued 40
scheduling 40
TDS. See Tabular Data Stream
tempdb database

Adaptive Server Enterprise

44



datacaches 387
loggingin 389
named cachesand 221
performanceand 381-391
placement 94, 386
segments 386
in SMP environment 58
spacedlocation 387
striping 384
temporary tables
denormalizationand 385
indexing 391
nesting proceduresand 391
normalizationand 385
optimizing 390
performance considerations 90, 382
permanent 383
SMPsystems 58
testing
data cache performance 218
“hot spots” 307
nonclustered indexes 311
text datatype
chain of text pages 270
pagesizefor storage 156
storage on separate device 98, 156
sysindexestableand 156
third normal form. See normalization
thresholds
bulk copy and 353
database dumpsand 351
throughput 4
measuring for devices 103
timeinterval
recovery 242
sincesp_monitor lastrun 53
time slice 69
configuration parameter 42
time slice configuration parameter
CPUyieldsand 43
tools
packet monitoring with sp_monitor 29
transaction length 58
transaction logs
cache replacement policy for 230
logl/Osizeand 234

Perfromance and Tuning: Basics

named cache binding 221
placing on separate segment 94
onsamedevice 95
storegeasheap 181
transactions
loggingand 389
triggers
managing denormalized datawith 149
procedure cacheand 212
sizeestimation 214
truncate table command
not allowed on partitioned tables 102
tuning
Adaptive Server layer 7
application layer 6
asynchronous prefetch 373
database layer 6
definitionof 4
deviceslayer 8
hardwarelayer 9
levels 5-10
network layer 8
operating system layer 9
recovery interval 242
two-phase commit
network activity from 31

U

union operator
cursorsand 340
uniprocessor system 38
unigue constraints
index created by 304
uniqueindexes 273
optimizing 310
units, allocation. See allocation units
unpartition clause, alter table 107
unpartitioning tables 107
unused space
alocationsand 156
update command
imagedataand 270
text dataand 270
update cursors 331

Index

409



Index

update locks
cursorsand 331
update operations
heap tablesand 171
index updatesand 311
update partition statistics command 115, 116
update statistics command
largel/Ofor 227
user connections
network packetsand 28
user log cache (ULC)
logsizeand 234
user log cache, in ALS 48, 322
user-defined execution class 68
users
assigning execution priority 87
logininformation 45
users, number of for 12.5 13, 135
Using Asynchronouslog service 47, 320
Using Asynchronous log service, ALS 47, 320

Vv

variable-length 163
variable-length columns

index overhead and 319
variables, maximum length 13
vertical table splitting 148
views

collapsing tablesand 146

sizeestimation 214

w

washarea 215

configuring 238
wash marker 174
whentouse ALS 48, 322
where clause

creating indexesfor 307

tablescansand 167
worker processes 36
worktables

lockingand 388

410

tempdband 384
write operations

disk mirroringand 96

free 50

housekeeper processand 52

imagevalues 156

serial mode of disk mirroring 96

text values 156

Y

yields, CPU

cpu grace time configuration parameter 43
time slice configuration parameter 43

yield points 42

Adaptive Server Enterprise



	Performance and Tuning: Basics
	About This Book
	CHAPTER 1 Introduction to Performance and Tuning
	CHAPTER 2 Introduction to the Basics
	Good performance
	Response time
	Throughput
	Designing for performance

	Tuning performance
	Tuning levels
	Application layer
	Database layer
	Adaptive Server layer
	Devices layer
	Network layer
	Hardware layer
	Operating - system layer


	Configuration parameters
	Dynamic

	Identifying system limits
	Varying logical page sizes
	Number of columns and column size
	Maximum length of expressions, variables, and stored procedure arguments
	Number of logins
	Performance implications for limits

	Setting tuning goals
	Analyzing performance
	Normal Forms
	Locking
	Special Considerations


	CHAPTER 3 Networks and Performance
	Introduction
	Potential performance problems
	Basic questions on network performance
	Techniques summary
	Using sp_sysmon while changing network configuration

	How Adaptive Server uses the network
	Managing Network Listeners
	Network Listeners on UNIX
	Managing listeners with sp_listener
	Using the remaining parameter
	Determining the status of listeners
	Starting new listeners
	Stopping listeners
	Suspending listeners
	Resume suspended listeners

	Changing network packet sizes
	Large versus default packet sizes for user connections
	Number of packets is important
	Evaluation tools with Adaptive Server
	Evaluation tools outside of Adaptive Server
	Server-based techniques for reducing network traffic

	Impact of other server activities
	Single user versus multiple users

	Improving network performance
	Isolate heavy network users
	Set tcp no delay on TCP networks
	Configure multiple network listeners


	CHAPTER 4 Using Engines and CPUs
	Background concepts
	How Adaptive Server processes client requests
	Client task implementation

	Single-CPU process model
	Scheduling engines to the CPU
	Scheduling tasks to the engine
	Execution task scheduling
	Scheduling client task processing time
	Maintaining CPU availability during idle time


	Adaptive Server SMP process model
	Scheduling engines to CPUs
	Scheduling Adaptive Server tasks to engines
	Multiple network engines
	Task priorities and run queues
	Processing scenario

	Asynchronous log service
	Understanding the user log cache (ULC) architecture
	When to use ALS
	Using the ALS
	ULC flusher
	Log writer
	Changes in stored procedures


	Housekeeper task improves CPU utilization
	Side effects of the housekeeper task
	Configuring the housekeeper task
	Changing the percentage by which writes can be increased
	Disabling the housekeeper task
	Allowing the housekeeper task to work continuously


	Measuring CPU usage
	Single-CPU machines
	Using sp_monitor to measure CPU usage
	Using sp_sysmon to measure CPU usage
	Operating - system commands and CPU usage

	Determining when to configure additional engines
	Taking engines offline

	Enabling engine-to-CPU affinity
	Multiprocessor application design guidelines

	CHAPTER 5 Distributing Engine Resources
	Algorithm for successfully distributing engine resources
	Algorithm guidelines
	Environment analysis and planning
	Analyzing
	Example: phase 1 - execution object behavior
	Example: phase 2 - the environment as a whole

	Performing benchmark tests
	Setting goals
	Results analysis and tuning
	Monitoring the environment over time

	Manage preferred access to resources
	Types of execution classes
	Predefined execution classes
	User-Defined execution classes

	Execution class attributes
	Base priority
	Time slice
	Task-to-engine affinity

	Setting execution class attributes
	Assigning execution classes
	Engine groups and establishing task-to-engine affinity
	How execution class bindings affect scheduling
	Execution class bindings
	Engine affinity can affect scheduling

	Setting attributes for a session only
	Getting information

	Rules for determining precedence and scope
	Multiple execution objects and ECs
	Precedence rule
	Scope rule

	Resolving a precedence conflict
	Examples: determining precedence


	Example scenario using precedence rules
	Planning
	Configuration
	Execution characteristics

	Considerations for Engine Resource Distribution
	Client applications: OLTP and DSS
	Unintrusive client applications
	I/O-bound client applications
	Highly critical applications

	Adaptive Server logins: high-priority users
	Stored procedures: “hot spots”


	CHAPTER 6 Controlling Physical Data Placement
	Object placement can improve performance
	Symptoms of poor object placement
	Underlying problems
	Using sp_sysmon while changing data placement

	Terminology and concepts
	Guidelines for improving I/O performance
	Spreading data across disks to avoid I/O contention
	Avoiding physical contention in parallel join queries

	Isolating server-wide I/O from database I/O
	Where to place tempdb
	Where to place sybsecurity

	Keeping transaction logs on a separate disk
	Mirroring a device on a separate disk
	Device mirroring performance issues
	Using serial mode


	Creating objects on segments
	Using segments
	Separating tables and indexes
	Splitting large tables across devices
	Moving text storage to a separate device

	Partitioning tables for performance
	User transparency
	Partitioned tables and parallel query processing
	Distributing data across partitions

	Improving insert performance with partitions
	How partitions address page contention
	Selecting heap tables to partition

	Restrictions on partitioned tables
	Partition-related configuration parameters
	How Adaptive Server distributes partitions on devices
	RAID devices and partitioned tables


	Space planning for partitioned tables
	Read-only tables
	Read-mostly tables
	Tables with random data modification

	Commands for partitioning tables
	alter table...partition syntax
	alter table...unpartition Syntax
	Changing the number of partitions
	Distributing data evenly across partitions
	Commands to create and drop clustered indexes
	Using reorg rebuild on data-only-locked tables
	Using drop index and create clustered index
	Using constraints and alter table
	Special concerns for partitioned tables and clustered indexes

	Using parallel bcp to copy data into partitions
	Parallel copy and locks

	Getting information about partitions
	Using bcp to correct partition balance
	Checking data distribution on devices with sp_helpsegment
	Effects of imbalance of data on segments and partitions
	Determining the number of pages in a partition

	Updating partition statistics
	Syntax for update partition statistics


	Steps for partitioning tables
	Backing up the database after partitioning tables
	Table does not exist
	Table exists elsewhere in the database
	Table exists on the segment
	Redistributing data
	Adding devices to a segment


	Special procedures for difficult situations
	Clustered indexes on large tables
	Alternative for clustered indexes

	Problems when devices for partitioned tables are full
	Adding disks when devices are full
	Adding disks when devices are nearly full

	Maintenance issues and partitioned tables
	Regular maintenance checks for partitioned tables


	CHAPTER 7 Database Design
	Basic design
	Physical database design for Adaptive Server
	Logical Page Sizes
	Number of columns and column size

	Normalization
	Levels of normalization
	Benefits of normalization
	First Normal Form
	Second Normal Form
	Third Normal Form

	Denormalizing for performance
	Risks
	Disadvantages
	Performance advantages

	Denormalization input
	Techniques
	Adding redundant columns
	Adding derived columns
	Collapsing tables
	Duplicating tables

	Splitting tables
	Horizontal splitting
	Vertical splitting

	Managing denormalized data
	Using triggers
	Using application logic
	Batch reconciliation


	CHAPTER 8 Data Storage
	Performance gains through query optimization
	Query processing and page reads

	Adaptive Server pages
	Page headers and page sizes
	Varying logical page sizes
	Data and index pages
	Large Object (LOB) Pages
	Extents

	Pages that manage space allocation
	Global allocation map pages
	Allocation pages
	Object allocation map pages
	How OAM pages and allocation pages manage object storage
	Page allocation keeps an object’s pages together
	sysindexes table and data access

	Space overheads
	Number of columns and size
	Variable-length columns in APL tables
	Variable length columns in DOL tables

	Number of rows per data page
	Maximum numbers
	Arguments for stored procedures
	Retrieving data with enhanced limits


	Heaps of data: tables without clustered indexes
	Lock schemes and differences between heaps
	Select operations on heaps
	Allpages-locked heap tables
	Data-only locked heap tables

	Inserting data into an allpages-locked heap table
	Conflicts during heap inserts

	Inserting data into a data-only-locked heap table
	If conflicts occur during heap inserts

	Deleting data from a heap table
	Deleting from an allpages-locked heap table
	Deleting from a data-only locked heap table
	Deleting the last row on a page

	Updating data on a heap table
	Allpages-locked heap tables
	Data-only-locked heap tables


	How Adaptive Server performs I/O for heap operations
	Sequential prefetch, or large I/O

	Caches and object bindings
	Heaps, I/O, and cache strategies
	Overview of cache strategies
	LRU replacement strategy
	When LRU strategy is used
	MRU replacement strategy

	Select operations and caching
	Data modification and caching
	Caching and inserts on heaps
	Caching, update and delete operations on heaps


	Asynchronous prefetch and I/O on heap tables
	Heaps: pros and cons
	Maintaining heaps
	Methods
	Using reorg rebuild to reclaim space
	Reclaiming space by creating a clustered index
	Reclaiming space using bcp


	Transaction log: a special heap table

	CHAPTER 9 Setting Space Management Properties
	Reducing index maintenance
	Advantages of using fillfactor
	Disadvantages of using fillfactor
	Setting fillfactor values
	fillfactor examples
	No stored fillfactor values
	Table-level or clustered index fillfactor value stored

	Use of the sorted_data and fillfactor options

	Reducing row forwarding
	Default, minimum, and maximum values for exp_row_size
	Default value

	Specifying an expected row size with create table
	Adding or changing an expected row size
	Setting a default expected row size server-wide
	Displaying the expected row size for a table
	Choosing an expected row size for a table
	Using optdiag to check for forwarded rows
	Querying systabstats to check for forwarded rows

	Conversion of max_rows_per_page to exp_row_size
	Monitoring and managing tables that use expected row size

	Leaving space for forwarded rows and inserts
	Extent allocation operations and reservepagegap
	Specifying a reserve page gap with create table
	Specifying a reserve page gap with create index
	Changing reservepagegap
	reservepagegap examples
	reservepagegap specified only for the table
	reservepagegap specified for a clustered index

	Choosing a value for reservepagegap
	Monitoring reservepagegap settings
	reservepagegap and sorted_data options to create index
	Background on the sorted_data option
	Matching options and goals


	Using max_rows_per_page on allpages-locked tables
	Reducing lock contention
	Indexes and max_rows_per_page
	select into and max_rows_per_page
	Applying max_rows_per_page to existing data


	CHAPTER 10 Memory Use and Performance
	How memory affects performance
	How much memory to configure
	Dynamic reconfiguration
	Dynamic memory allocation
	How memory is allocated

	Caches in Adaptive Server
	CAche sizes and buffer pools

	Procedure cache
	Getting information about the procedure cache size
	proc buffers
	proc headers
	Monitoring procedure cache performance
	Procedure cache errors

	Procedure cache sizing
	Estimating stored procedure size

	Data cache
	Default cache at installation time
	Page aging in data cache
	Effect of data cache on retrievals
	Effect of data modifications on the cache
	Data cache performance
	Testing data cache performance
	Cache hit ratio for a single query
	Cache hit ratio information from sp_sysmon


	Configuring the data cache to improve performance
	Commands to configure named data caches
	Tuning named caches
	Cache configuration goals
	Gather data, plan, and then implement
	Evaluating cache needs
	Large I/O and performance
	The optimizer and cache choices
	Choosing the right mix of I/O sizes for a cache

	Reducing spinlock contention with cache partitions
	Cache replacement strategies and policies
	Strategies
	Policies


	Named data cache recommendations
	Sizing caches for special objects, tempdb, and transaction logs
	Determining cache sizes for special tables or indexes
	Examining cache needs for tempdb
	Examining cache needs for transaction logs
	Choosing the I/O size for the transaction log
	Configuring for large log I/O size
	Additional tuning tips for log caches

	Basing data pool sizes on query plans and I/O
	Checking I/O size for queries

	Configuring buffer wash size
	Overhead of pool configuration and binding objects
	Pool configuration overhead
	Cache binding overhead


	Maintaining data cache performance for large I/O
	Diagnosing excessive I/O Counts
	Using sp_sysmon to check large I/O performance

	Speed of recovery
	Tuning the recovery interval
	Effects of the housekeeper wash task on recovery time

	Auditing and performance
	Sizing the audit queue
	Auditing performance guidelines

	Text and images pages

	CHAPTER 11 Determining Sizes of Tables and Indexes
	Why object sizes are important to query tuning
	Tools for determining the sizes of tables and indexes
	Effects of data modifications on object sizes
	Using optdiag to display object sizes
	Advantages of optdiag
	Disadvantages of optdiag

	Using sp_spaceused to display object size
	Advantages of sp_spaceused
	Disadvantages of sp_spaceused

	Using sp_estspace to estimate object size
	Advantages of sp_estspace
	Disadvantages of sp_estspace

	Using formulas to estimate object size
	Factors that can affect storage size
	Storage sizes for datatypes
	Tables and indexes used in the formulas
	Calculating table and clustered index sizes for allpages-locked tables
	Step 1: Calculate the data row size
	Step 2: Compute the number of data pages
	Step 3: Compute the size of clustered index rows
	Step 4: Compute the number of clustered index pages
	Step 5: Compute the total number of index pages
	Step 6: Calculate allocation overhead and total pages
	Step 7: Calculate the size of the leaf index row
	Step 8: Calculate the number of leaf pages in the index
	Step 9: Calculate the size of the non-leaf rows
	Step 10: Calculate the number of non-leaf pages
	Step 11: Calculate the total number of non-leaf index pages
	Step 12: Calculate allocation overhead and total pages

	Calculating the sizes of data-only-locked tables
	Step 1: Calculate the data row size
	Step 2: Compute the number of data pages
	Step 3: Calculate allocation overhead and total pages
	Step 4: Calculate the size of the index row
	Step 5: Calculate the number of leaf pages in the index
	Step 6: Calculate the number of non-leaf pages in the index
	Step 7: Calculate the total number of non-leaf index pages
	Step 8: Calculate allocation overhead and total pages

	Other factors affecting object size
	Effects of space management properties
	Using average sizes for variable fields

	Very small rows
	LOB pages
	Advantages of using formulas to estimate object size
	Disadvantages of using formulas to estimate object size


	CHAPTER 12 How Indexes Work
	Types of indexes
	Index pages
	Root level
	Leaf level
	Intermediate level

	Index Size

	Clustered indexes on allpages-locked tables
	Clustered indexes and select operations
	Clustered indexes and insert operations
	Page splitting on full data pages
	Exceptions to page splitting

	Page splitting on index pages
	Performance impacts of page splitting
	Overflow pages
	Clustered indexes and delete operations
	Deleting the last row on a page
	Index page merges


	Nonclustered indexes
	Leaf pages revisited
	Nonclustered index structure
	Nonclustered indexes and select operations
	Nonclustered index performance
	Nonclustered indexes and insert operations
	Nonclustered indexes and delete operations
	Clustered indexes on data-only-locked tables

	Index covering
	Covering matching index scans
	Covering nonmatching index scans

	Indexes and caching
	Using separate caches for data and index pages
	Index trips through the cache


	CHAPTER 13 Indexing for Performance
	How indexes affect performance
	Detecting indexing problems
	Symptoms of poor indexing
	Lack of indexes is causing table scans
	Index is not selective enough
	Index does not support range queries
	Too many indexes slow data modification
	Index entries are too large
	Exception for wide data rows and wide index rows


	Fixing corrupted indexes
	Repairing the system table index
	Repairing a nonclustered index


	Index limits and requirements
	Choosing indexes
	Index keys and logical keys
	Guidelines for clustered indexes
	Choosing clustered indexes
	Candidates for nonclustered indexes
	Index Selection
	Examples of using the index selection

	Other indexing guidelines
	Choosing nonclustered indexes
	Performance price for data modification

	Choosing composite indexes
	Key order and performance in composite indexes
	Advantages and disadvantages of composite indexes

	Techniques for choosing indexes
	Choosing an index for a range query
	Adding a point query with different indexing requirements

	Index and statistics maintenance
	Dropping indexes that hurt performance
	Choosing space management properties for indexes

	Additional indexing tips
	Creating artificial columns
	Keeping index entries short and avoiding overhead
	Dropping and rebuilding indexes
	Configure enough sort buffers
	Create the clustered index first
	Configure large buffer pools

	Asynchronous log service
	Understanding the user log cache (ULC) architecture
	When to use ALS
	Using the ALS
	ULC flusher
	Log writer
	Changes in stored procedures



	CHAPTER 14 Cursors and Performance
	Definition
	Set-oriented versus row-oriented programming
	Example

	Resources required at each stage
	Memory use and execute cursors

	Cursor modes
	Index use and requirements for cursors
	Allpages-locked tables
	Data-only-locked tables
	Table scans to avoid the Halloween problem


	Comparing performance with and without cursors
	Sample stored procedure without a cursor
	Sample stored procedure with a cursor
	Cursor versus noncursor performance comparison

	Locking with read-only cursors
	Isolation levels and cursors
	Partitioned heap tables and cursors
	Optimizing tips for cursors
	Optimizing for cursor selects using a cursor
	Using union instead of or clauses or in lists
	Declaring the cursor’s intent
	Specifying column names in the for update clause
	Using set cursor rows
	Keeping cursors open across commits and rollbacks
	Opening multiple cursors on a single connection


	CHAPTER 15 Maintenance Activities and Performance
	Running reorg on tables and indexes
	Creating and maintaining indexes
	Configuring Adaptive Server to speed sorting
	Dumping the database after creating an index
	Creating an index on sorted data
	Maintaining index and column statistics
	Rebuilding indexes
	Speeding index creation with sorted_data


	Creating or altering a database
	Backup and recovery
	Local backups
	Remote backups
	Online backups
	Using thresholds to prevent running out of log space
	Minimizing recovery time
	Recovery order

	Bulk copy
	Parallel bulk copy
	Batches and bulk copy
	Slow bulk copy
	Improving bulk copy performance
	Replacing the data in a large table
	Adding large amounts of data to a table
	Using partitions and multiple bulk copy processes
	Impacts on other users

	Database consistency checker
	Using dbcc tune (cleanup)
	Using dbcc tune on spinlocks
	When not to use this command

	Determining the space available for maintenance activities
	Overview of space requirements
	Tools for checking space usage and space available
	Checking space used for tables and indexes
	Checking space on segments
	Checking space requirements for space management properties
	Space management properties applied to the table
	Space management properties applied to the index

	Estimating the effects of space management properties
	If there is not enough space


	CHAPTER 16 Tuning Asynchronous Prefetch
	How asynchronous prefetch improves performance
	Improving query performance by prefetching pages
	Prefetching control mechanisms in a multiuser environment
	Look-ahead set during recovery
	Prefetching log pages
	Prefetching data and index pages

	Look-ahead set during sequential scans
	Look-ahead set during nonclustered index access
	Look-ahead set during dbcc checks
	Allocation checking
	checkdb and checktable

	Look-ahead set minimum and maximum sizes

	When prefetch is automatically disabled
	Flooding pools
	I/O system overloads
	Unnecessary reads
	Page chain fragmentation


	Tuning Goals for asynchronous prefetch
	Commands for configuration

	Other Adaptive Server performance features
	Large I/O
	Sizing and limits for the 16k pool
	Limits for the 2K pool

	Fetch-and-discard (MRU) scans
	Parallel scans and large I/Os
	Hash-based table scans
	Partition-based scans


	Special settings for asynchronous prefetch limits
	Setting limits for recovery
	Setting limits for dbcc

	Maintenance activities for high prefetch performance
	Eliminating kinks in heap tables
	Eliminating kinks in clustered index tables
	Eliminating kinks in nonclustered indexes

	Performance monitoring and asynchronous prefetch

	CHAPTER 17 tempdb Performance Issues
	How management of tempdb affects performance
	Main solution areas for tempdb performance

	Types and uses of temporary tables
	Truly temporary tables
	Regular user tables
	Worktables

	Initial allocation of tempdb
	Sizing the tempdb
	Placing tempdb
	Dropping the master device from tempdb segments
	Using multiple disks for parallel query performance

	Binding tempdb to its own cache
	Commands for cache binding

	Temporary tables and locking
	Minimizing logging in tempdb
	With select into
	By using shorter rows

	Optimizing temporary tables
	Creating indexes on temporary tables
	Creating nested procedures with temporary tables
	Breaking tempdb uses into multiple procedures


	Index


