
Sybase, Inc.
One Sybase Drive
Dublin, CA 94568
www.sybase.com

®

Sybase Avaki 
EII API Guide
Release 7.0

August 24, 2006



DOCUMENT ID: DC00576-01-0700-01

LAST REVISED: August 2006

Copyright © 2002 – 2006 Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes. Information in this document is subject 
to change without notice. The software described herein is furnished under a license agreement, and it may be used or copied only in accordance with the terms of that 
agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other international customers should contact their 
Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or 
translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, SYBASE (logo), ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive 
Server Enterprise Monitor, Adaptive Server Enterprise Replication, Adaptive Server Everywhere, Advantage Database Server, Afaria, Answers Anywhere, Applied Meta, Applied Metacomputing, 
AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Translator, APT-Library, ASEP, Avaki, Avaki (Arrow Design), Avaki Data Grid, AvantGo, Backup Server, BayCam, Beyond 
Connected, Bit-Wise, BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional Logo, ClearConnect, Client-Library, Client Services, CodeBank, 
Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Data Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer, DataWindow, 
DataWindow .NET, DB-Library, dbQueue, Dejima, Dejima Direct, Developers Workbench, DirectConnect Anywhere, DirectConnect, Distribution Director, Dynamic Mobility Model, e-ADK, 
E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway, ECMAP, ECRTP, eFulfillment Accelerator, EII Plus, Electronic Case Management, Embedded SQL, EMS, Enterprise Application Studio, 
Enterprise Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise Portal (logo), Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work 
Designer, Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works Together, EWA, ExtendedAssist, Extended Systems, ExtendedView, Financial 
Fusion, Financial Fusion (and design), Financial Fusion Server, Formula One, Fusion Powered e-Finance, Fusion Powered Financial Destinations, Fusion Powered STP, Gateway Manager, GeoPoint, 
GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, InstaHelp, Intelligent 
Self-Care, InternetBuilder, iremote, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Legion, Logical Memory Manager, lrLite, M2M Anywhere, Mach Desktop, Mail Anywhere Studio, 
Mainframe Connect, Maintenance Express, Manage Anywhere Studio, MAP, M-Business Anywhere, M-Business Channel, M-Business Network, M-Business Suite, MDI Access Server, MDI Database 
Gateway, media.splash, Message Anywhere Server, MetaWorks, MethodSet, mFolio, Mirror Activator, ML Query, MobiCATS, MobileQ, MySupport, Net-Gateway, Net-Library, New Era of Networks, 
Next Generation Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS logo, ObjectConnect, ObjectCycle, OmniConnect, OmniQ, OmniSQL Access Module, OmniSQL Toolkit, 
OneBridge, Open Biz, Open Business Interchange, Open Client, Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open 
Solutions, Optima++, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, Pharma Anywhere, PhysicalArchitect, Pocket PowerBuilder, PocketBuilder, Power++, Power 
Through Knowledge, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, Powering the New Economy, PowerScript, 
PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst, Pylon, Pylon 
Anywhere, Pylon Application Server, Pylon Conduit, Pylon PIM Server, Pylon Pro, QAnywhere, Rapport, Relational Beans, RemoteWare, RepConnector, Report Workbench, Report-Execute, Replication 
Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit, Resource Manager, RFID Anywhere, RW-DisplayLib, RW-Library, SAFE, SAFE/PRO, Sales Anywhere, 
Search Anywhere, SDF, Search Anywhere, Secure SQL Server, Secure SQL Toolset, Security Guardian, ShareLink, ShareSpool, SKILS, smart.partners, smart.parts, smart.script, SOA Anywhere 
Trademark,SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server 
Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL Station, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, S.W.I.F.T. 
Message Format Libraries, Sybase Central, Sybase Client/Server Interfaces, Sybase Development Framework, Sybase Financial Server, Sybase Gateways, Sybase Learning Connection, Sybase MPP, 
Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase Virtual Server Architecture, Sybase User Workbench, SybaseWare, Syber Financial, SyberAssist, 
SybFlex, SybMD, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, The Enterprise Client/Server Company, The Extensible Software Platform, The Future Is Wide 
Open, The Learning Connection, The Model For Client/Server Solutions, The Online Information Center, The Power of One, TotalFix, TradeForce, Transact-SQL, Translation Toolkit, Turning 
Imagination Into Reality, UltraLite, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viafone, Viewer, VisualWriter, VQL, WarehouseArchitect, Warehouse 
Control Center, Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, 
XA-Library, XA-Server, XcelleNet, XP Server, XTNDAccess and XTNDConnect are trademarks of Sybase, Inc. or its subsidiaries. 07/06

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013 for the DOD and as set forth in FAR 
52.227-19(a)-(d) for civilian agencies.

Set in Arial, Courier New, and Times New Roman. Stanley Morison, the creator of Times New Roman, said of it: “By the vice of Mammon and the misery of the machine, 
it is bigoted and narrow, mean and puritan.”

Credits
This product includes software developed by the Apache Software Foundation (http://www. apache.org). This product includes Hypersonic SQL and ANTLR. This product 
includes code licenses from RSA Security, Inc. Some portions licensed from IBM are available at http://oss.software.ibm.com/icu4j/. Contains IBM® 64-bit Runtime 
Environment for AIX™, Java™ 2 Technology Edition Version 1.4 Modules © Copyright IBM Corporation 1999, 2000 All Rights Reserved. Contains the SAXON XSLT 
Processor from Michael Kay, which is available at http://saxon.sourceforge.net. This product includes software developed by the Proxool Project 
(http://proxool.sourceforge.net).

Sybase Avaki EII API Guide
Written by Meryl R. Cohen, Beth Thoenen, and Cheryl Magadieu

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.



Table of contents

 Preface v
Organization vi
Related documentation vi
Conventions vii
How to contact Avaki support at Sybase, Inc. viii

Chapter 1 Using the web services API 1
Web services overview 3

The Avaki web services and their WSDL documents 3
Web service client considerations 5

Choose a web service development framework 5
Choose the appropriate WSDL document 5
Choose a grid server 6
Locate the WSDL 6

Edit the WSDL to add port and grid server information 6
Security with web services 8

Privacy and integrity 9
Authentication and authorization 9

 Web services client examples 10

Chapter 2 Web services API reference 11
Using this reference 12
Complex type descriptions 13

AdHocDBOPExecutionParams 13
AvakiPrincipal 14
DataCatalogAttribute 15
DataCatalogEntry 15
DataCatalogPermission 16
DataServiceExecutionParams 16
Sybase Avaki EII API Guide i



DBOPExecutionParams 17
SearchQuery 17
SearchResult 18

Data catalog operations 18
Client code sample 18

Using the data catalog API 18
accessiblePath 19
chmod 20
chown 20
fileRead 21
fileReadAttach 22
fileReadString 22
fileWrite 23
getAttributes 24
getSystemAttributes 24
getUserAttributes 25
listDomains 25
listSearches 26
ls 26
lsSize 27
mkdir 27
mkdirParents 28
mkdirParentsServer 28
mkdirServer 29
mv 30
permissions 30
removeAttribute 31
rm 31
search 32
setAttribute 33
tester 33
whoami 34

Data service operations 34
Client code sample 35

Using the data service API 35
accessibleDS 36
executeDS 37
getDSOutput 37
getDSOutputAttach 38
getDSOutputString 39
getDSParameters 39
ii Sybase Avaki EII API Guide



isDSAvakiXML 40
listDSs 40

Database operation operations 41
Client code sample 42

Using the database operations API 42
accessibleDBOp 43
executeAdHocDBOp 44
executeAdHocDBOpWithOutput 45
executeAdHocDBOpWithOutputAttach 46
executeAdHocDBOpWithOutputString 47
executeDBOp 49
executeDBOpBytesInput 49
executeDBOpGridFileInput 50
executeDBOpWithOutput 50
executeDBOpWithOutputAttach 52
executeDBOpWithOutputString 53
getDBOpOutput 54
getDBOpOutputAttach 55
getDBOpOutputString 56
getDBOpParameters 56
getDBOpSchema 57
getDBOpSchemaAttach 57
getDBOpSchemaString 58
getSQL 58
listDBConns 59
listDBOps 59
listDBOpsByDBConn 60

Chapter 3 Using JDBC drivers 61
Caching results of database operations 62
Prerequisites for using JDBC drivers 65

Checking your JRE version 65
Completing grid setup tasks 65
Choosing a JDBC driver 66

jConnect 66
Avaki JDBC driver 66

Configuring your classpath 67
For jConnect 67
For the Avaki JDBC driver 67
Sybase Avaki EII API Guide iii



Setting up your application to use a JDBC driver 68
Loading the JDBC driver 68
Connection properties 68

For jConnect 69
For the Avaki JDBC driver 69

Connection strings 71
For jConnect 71
For the Avaki JDBC driver 72

Data services 73
Database operations 73
Pass-through ad-hoc queries 74

JDBC support 75
DatabaseMetaData 75
Supported result set types 76
Error messages 76
Data types 76
Batch mode 77

JDBC driver code example 78
Using an ODBC driver 80

 Glossary 83
iv Sybase Avaki EII API Guide



Preface
This Sybase Avaki EII API Guide explains how to use Sybase Avaki EII development 
tools. The guide is intended for programmers who want to use Avaki web services or 
access or manipulate Avaki database data programmatically.

Users are expected to have:

• Basic Java and JDBC programming knowledge.

• Knowledge of the components, structure, and features of Avaki data grids. See the 
Sybase Avaki EII Overture and the Sybase Avaki EII Administration Guide for 
details.

Note This book and the product’s user interfaces refer to Sybase Avaki EII soft-
ware as Avaki or Avaki Data Grid.
Sybase Avaki EII API Guide v



Preface
Organization
This book is organized as follows: 

Related documentation
These manuals make up the Avaki documentation set:

• Sybase Avaki EII Overture

• Sybase Avaki EII Administration Guide (includes installation instructions)

• Data Integration with Sybase Avaki Studio

• Sybase Avaki EII Provisioning and Advanced Data Integration Guide

• Sybase Avaki EII API Guide

• Sybase Avaki EII Command Reference

The manuals are included, in PDF format, on the CD with the Avaki software. They are 
stored in the docs subdirectory of the Avaki installation directory.

To access the manuals via Avaki’s web user interface, log in to your Avaki domain and 
click the Help link at the top right corner of any page of the web UI.

Chapter 1
Using the web services API

Tells you how to use the web services application program-
ming interface to programmatically invoke data services, 
database operations, ad-hoc queries, and data catalog 
operations.

Chapter 2
Web services API reference

Describes the complex types, SOAP operations, data catalog 
operations, data service operations, and database operations of 
the web services API.

Chapter 3
Using JDBC drivers

Explains how to access and use the Avaki JDBC driver in Java 
applications.

Glossary Defines terms used in this guide
vi Sybase Avaki EII API Guide



Conventions
Conventions
This table describes conventions this book uses in examples of user input and system 
output. 

Convention Description Example

$ or C:> The command prompt $ or C:>

< > A placeholder; replace the content 
inside the brackets with an option or 
value

$ avaki ls 
<grid-path>

screen 
font

Text that appears on the screen sample text

bold 
screen 
font

User input—commands that you 
enter

$ avaki ls
Sybase Avaki EII API Guide vii



Preface
How to contact Avaki support at Sybase, Inc.
For general information about Sybase technical support, see the Customer Service Ref-
erence Guide at

http://www.sybase.com/support/aboutsupport/guide/csrg

Please contact us with any questions or difficulties you encounter. 

By telephone

In North America, call toll free: 1-800-8SYBASE

Outside North America, follow the link below to see a list of Sybase offices and phone 
numbers around the world.

http://www.sybase.com/contactus/support

On the web
If you are a designated contact for a technical support plan, you can log and track cases 
on the web using the Case Express application. At www.sybase.com, mouse over the 
Support and Services tab and select Case Management from the dropdown list. Use 
the email address and password for your mysybase account to log in.
viii Sybase Avaki EII API Guide

http://www.sybase.com/contactus/support
www.sybase.com
http://www.sybase.com/support/aboutsupport/guide/csrg


Chapter 1

Using the web services API
Avaki web services are a mechanism to access data in a data grid and use it in applica-
tions. Web services architectures allow different applications to interact in a lan-
guage-independent way. Using web services promotes ease of application 
programming and maintenance, as well as portability of the code.

Web services can be implemented in a variety of ways. Avaki supports the SOAP (sim-
ple object access protocol) over HTTP protocol. The Avaki WS API (web services API) 
provides server-side support and the information you need to write a client application.

Specifically, Avaki is implementation-compliant with SOAP version 1.1 and WSDL 
version 2.0. For the formal SOAP definition, see http://www.w3.org/TR/SOAP.

Chapter overview: This chapter describes general features of the Avaki WS API and 
provides information you need before beginning to implement your SOAP client. We 
cover the following topics:

• For a brief overview of Avaki’s WS API, see “Web services overview” on page 3.

• For information on aspects of web service client development with the WS API, see 
“Web service client considerations” on page 5.

• For examples of web service clients, see “Web services client examples” on 
page 10.

Chapter 2, “Web services API reference”, contains a reference for the WS API.
Sybase Avaki EII API Guide 1

http://www.w3.org/TR/SOAP


Using the web services API
Audience: We expect readers of this chapter to have experience with SOAP, to have 
knowledge of the programming language in which their web services client will be 
written, and to know how to use their SOAP client development environment (see 
“Choose a web service development framework” on page 5). If you do not have this 
background but would like to learn more about web services, here are some resources.

• This web page is useful as a starting point for general web service concepts, even if 
you are not using .NET. 
Understanding Distributed Technologies
http://msdn.microsoft.com/webservices/understanding/default.aspx

• This web page provides a good overview of SOAP. 
Understanding SOAP
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
dnsoap/html/understandsoap.asp

• The Soap Learning Guide is a web page with links to many SOAP resources.
http://searchwebservices.techtarget.com/originalContent/
1,289142,sid26_gci913069,00.html

• This web page is primarily an introduction to the Axis Java web services develop-
ment framework. Also provides some information on web services in general.
Axis User’s Guide
http://ws.apache.org/axis/java/user-guide.html

Avaki configuration: Your Avaki domain must already be deployed and provisioned 
with any data and services that your SOAP web service client will access before you 
can write and run your client. Access controls for data or services accessed by the cli-
ent must also be set appropriately. These tasks are described in the following manuals:

• The Sybase Avaki EII Administration Guide describes how to set up an Avaki 
domain, including how to create and import user accounts and groups, how to pro-
vision the domain with files shared from local file systems, and how to set access 
controls for objects in the domain.

• The Sybase Avaki EII Provisioning and Advanced Data Integration Guide describes 
how to use the web UI to provision an Avaki domain with database operations, data 
services, and SQL views. You can also use Avaki Studio to create database opera-
tions and data services—see Data Integration with Sybase Avaki Studio for instruc-
tions.
2 Sybase Avaki EII API Guide

http://msdn.microsoft.com/webservices/understanding/default.aspx
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsoap/html/understandsoap.asp
http://searchwebservices.techtarget.com/originalContent/0,289142,sid26_gci913069,00.html
http://ws.apache.org/axis/java/user-guide.html


Web services overview
Web services overview

The Avaki web services and their WSDL documents
The Avaki WS API facilitates data access using the SOAP protocol. The WS API is an 
interface for accessing data within a data grid to use in third-party applications. It is 
not a method for adding data to the grid or performing any administrative grid func-
tions. The operations that comprise the interface may be invoked in order to access 
grid data such as the results of a database operation, the contents of a grid directory, 
the results of a search, etc.

The WS API consists of four services, each of which is defined in a WSDL (web ser-
vices description language) document provided by Avaki. A WSDL document is a for-
mal statement of the contract between a SOAP client and a SOAP server. It is a 
platform- and language-independent XML document that describes the format of the 
SOAP requests expected by the server and the SOAP responses it generates. In addi-
tion, the WSDL specifies the name of the web service and the grid server and port 
where the service can be reached.

These are the Avaki web services and their WSDLs: 

Web service WSDL Description

Avaki API, 
rpc/encoded version

AvakiAPIRpcEnc.wsdl Defines the rpc/encoded versions of SOAP 
operations for Avaki web services.

Avaki API, 
document/literal version

AvakiAPIDocLit.wsdl Defines the document/literal versions of 
the same SOAP operations for Avaki web 
services. This version is recommended for 
.NET clients.

Avaki API with MIME 
attachments, 
rpc/encoded version

AvakiAPIWithMIMERpcEnc.wsdl Defines the rpc/encoded versions of the 
same SOAP operations for Avaki web ser-
vices as well as special methods that return 
results as MIME attachments.

Avaki API with MIME 
attachments, 
document/literal version

AvakiAPIWithMIMEDocLit.wsdl Defines the document/literal versions of 
the same SOAP operations for Avaki web 
services as well as special methods that 
return results as MIME attachments.
Sybase Avaki EII API Guide 3



Using the web services API
Note Along with the WSDL files, Avaki provides AvakiAPI.disco, which is a 
discovery file that .NET web service clients can use to discover WSDLs. A .NET 
client could browse through the discovery file to locate the WSDLs for Avaki ser-
vices. Alternatively, the .NET client may bypass the discovery file altogether and 
use the WSDLs directly.

The web services listed in the previous table are nearly identical functionally. The dif-
ferences between them can be summarized as follows:

• All four web services contain all operations provided by Avaki as part of the inter-
face for accessing a grid. 

• The Avaki API document/literal version and the rpc/encoded version are identical 
except that the style/usage for the operations is different.

• The Avaki API with MIME attachments versions are perfect supersets of the corre-
sponding basic versions. In addition, the versions with MIME attachments provide 
operations that permit accessing the bulk results from certain accesses as MIME 
attachments.

Each web service is composed of many SOAP operations. The SOAP operations in 
each service of the WS API mirror their web UI and CLI counterparts. For details about 
the web UI, refer to the Sybase Avaki EII Overture, the Sybase Avaki EII Provisioning 
and Advanced Data Integration Guide, and the Sybase Avaki EII Administration 
Guide. For details on the CLI commands, refer to the Sybase Avaki EII Command Ref-
erence. For details on the WS API operations provided in each of these categories, see 
Chapter 2, “Web services API reference”.
4 Sybase Avaki EII API Guide



Web service client considerations
Web service client considerations 

Before you begin developing your web service client, there are several topics to con-
sider and choices to make.

Choose a web service development framework 
While it is possible to write SOAP clients from scratch, most programmers use a devel-
opment framework to help with the task. Tools in such frameworks abstract the details 
of constructing a SOAP request and parsing the SOAP response when making a web 
service call. Development frameworks are language-specific and may generate a code 
framework with stubs based on the specifications in the WSDL document. Choose a 
web service development framework that meets your particular language and develop-
ment needs. There are many options available from third-party vendors, including the 
following, which have been tested against the Avaki WS API:

• Java: Apache Axis 1.3

• Perl: SOAP::Lite

• Microsoft Visual Studio 2003: VB .NET

All web service development frameworks generate their code by parsing the WSDL 
document that defines the SOAP interface for the service request and data returned.

Choose the appropriate WSDL document
Before developing your client, you must choose which web service to use. In effect, 
you choose the service by deciding which WSDL (from those listed in the table on 
page 3) to use for your client development since the WSDL defines the service. If you 
prefer document/literal web services, choose one of the WSDLs that supports such 
operations. If you require results returned as MIME attachments, choose a WSDL that 
contains operations that do return attachments. Typically, .NET clients will choose the 
AvakiAPIDocLit.wsdl WSDL file because .NET does not recognize MIME attachments 
and supports document/literal better. If you choose rpc/encoded services, beware that 
some operations (such as fileRead) return bulk data as base-64 encoded data that must 
be decoded on the client side. Those very operations in the document/literal versions 
return each byte enclosed in its own tag, thus reducing performance. Use the versions 
of the same operations that return strings or MIME attachments (fileReadString and 
fileReadAttach, for example).
Sybase Avaki EII API Guide 5



Using the web services API
Choose a grid server
All Avaki web services are accessible from any grid server. You might choose a partic-
ular grid server to balance the load across your deployment or because that server is 
closer to the application calling it. If you route your SOAP requests to a local grid 
server where caching is set up locally, the data grid’s internal communications will be 
more efficient across a wide area and you will take better advantage of caching capa-
bility. The grid server that the web service will use is specified in the service URL in 
the WSDL. The section “Edit the WSDL to add port and grid server information” on 
page 6 describes how to edit the WSDL and change the web service grid server.

Locate the WSDL
The WSDLs for each service can be found in two locations. The WSDLs in the two 
locations differ only in whether they contain information specific to the grid server 
(service URL and port number) regarding where the SOAP server can be found by the 
client. The two WSDL locations are as follows:

• All WSDL documents are linked into the WSDLs grid directory at the top level of 
the Avaki data catalog. These WSDLs contain the correct grid server and port infor-
mation:
/WSDLs/AvakiServices

• The WSDLs are also supplied in the following local file:
<Avaki-install-dir>/examples/axis/Avaki_ws_client.jar

You can use either the Jar or the WinZip utility to unpack the JAR file. To access the 
WSDLs in the JAR file, you must install Avaki software, but it is not necessary to 
have a grid server running. However, you must edit WSDLs from the JAR file to add 
grid server and port information.

Edit the WSDL to add port and grid server information
When you use a WSDL from the JAR file, you must modify the WSDL to replace the 
placeholder service URL with the DNS name or IP address of the grid server you want 
the web service to run on. The WSDL can point to any grid server; the server need not 
be a GDC.

You might also choose to change the grid server or port information in a WSDL from 
the WSDLs grid directory. (For example, suppose that network restrictions or perfor-
mance considerations force you to invoke your web service on a foreign grid server, or 
that you prefer HTTP to HTTPS, or vice versa.)
6 Sybase Avaki EII API Guide



Web service client considerations
Be sure to edit a copy of the WSDL, not the original in the JAR or the WSDLs grid 
directory.

The subsections that follow show how to edit the grid server and port information in a 
WSDL’s service URL.

Editing a WSDL from the JAR file. This example shows a fragment of a WSDL for a 
document/literal service.

<wsdl:service name="AvakiAPIDocLitService">
<wsdl:port binding="impl:AvakiAPIDocLitSoapBinding"

name="AvakiAPIDocLit">
<wsdlsoap:address

location="https://LOCAL_HOST:8443/axis/services
/AvakiAPIDocLit"/>

</wsdl:port>
</wsdl:service>

Step 1 (Required.) Change LOCAL_HOST to the DNS name or IP address of the grid server 
machine on which this web service will run. If you’re not sure what to enter, look in 
the grid server’s system.properties file for the property java.rmi.server.hostname. Use 
the value of java.rmi.server.hostname to replace LOCAL_HOST. If java.rmi.server.host-
name is not set in the system.properties file, simply use the name of the machine on 
which the grid server is running.

Step 2 If necessary, change the port number (here 8443) to match the actual HTTP or HTTPS 
port for your grid server. The default port that grid servers use for HTTP is 7080; for 
HTTPS it is port 8443. To determine what the HTTP and HTTPS ports are for a particu-
lar grid server, look in that server’s bindings.xml file.

Step 3 Make sure that the protocol indicator in the service URL is of the correct type for the 
port number. The service URL should begin with “http” if you’re using an HTTP port 
(such as 7080), or with “https” if you’re using an HTTPS port (such as 8443).
Sybase Avaki EII API Guide 7



Using the web services API
Editing a WSDL from the data grid. This example shows a fragment of a WSDL for 
a document/literal service. Notice that it includes the name of the GDC machine, 
MyGDC.MyCompany.com. It also includes the GDC’s actual HTTPS port number 
(which happens to be the default), 8443.

<wsdl:service name="AvakiAPIDocLitService">
<wsdl:port binding="impl:AvakiAPIDocLitSoapBinding"

name="AvakiAPIDocLit">
<wsdlsoap:address

location="https://MyGDC.MyCompany.com:8443/axis/
/services/AvakiAPIDocLit"/>

</wsdl:port>
</wsdl:service>

Step 1 If necessary, change the name of the grid server (here, MyGDC.MyCompany.com) to 
the DNS name or IP address of the grid server machine on which this web service will 
run. If you’re not sure what to enter, look in the grid server’s system.properties file for 
the value of the property java.rmi.server.hostname. If java.rmi.server.hostname is not 
set in the system.properties file, simply use the name of the machine on which the grid 
server is running.

Step 2 If necessary, change the port number (here 8443) to match the actual HTTP or HTTPS 
port for your grid server. The default port that grid servers use for HTTP is 7080; for 
HTTPS it is port 8443. To determine what the HTTP and HTTPS ports are for a particu-
lar grid server, look in that server’s bindings.xml file.

Step 3 Make sure that the protocol indicator in the service URL is of the correct type for the 
port number. The service URL should begin with “http” if you’re using an HTTP port 
(such as 7080), or with “https” if you’re using an HTTPS port (such as 8443).

For more information on ports and system properties, see the Sybase Avaki EII Admin-
istration Guide.

Security with web services
Security is an important consideration in any client/server application. There are sev-
eral aspects to a complete security solution: privacy and integrity, authentication, and 
authorization.
8 Sybase Avaki EII API Guide



Web service client considerations
Privacy and integrity
The privacy and integrity of the SOAP request/response transmission process is main-
tained primarily by encryption. Using HTTPS rather than HTTP for SOAP calls pro-
vides encryption and protection for your application. In order to use HTTPS, you must 
configure your SOAP client to trust the SSL certificate that is used by the grid server 
the client connects to (that is, the grid server on which the web service runs). For 
example, if your SOAP client is written in Java, you configure it by editing its cacerts 
file with the keytool utility. A sample file, configured to use the default Avaki-signed 
certificates, can be found in resources/cacerts in the following JAR file:
<Avaki-install-dir>/examples/axis/Avaki_ws_client.jar

JAR files can be unpacked using either the Jar or the WinZip utility.

SOAP clients of other types handle SSL certificates in different ways. For an explana-
tion of how Microsoft’s .NET framework handles SSL certificates, see:

http://support.microsoft.com/default.aspx?scid=kb;EN-US;Q823177

In addition, for a code example showing one way to handle certificates in a .NET 
environment, see:
<Avaki-install-dir>/examples/dotnet/AvakiPolicy.vb

Authentication and authorization
The WS API provides authentication and authorization in the same manner that the 
data grid generally handles these aspects of security: through login information and 
setting access controls. Login information is passed in as a parameter with every client 
SOAP call in a structure called the AvakiPrincipal. The Avaki Principal is 
described in detail in the section “AvakiPrincipal” on page 14. In order for the web 
service invocation to be successful, the data grid login account passed into the SOAP 
request as an Avaki Principal must have the correct access permissions for whatever 
operation is required. For example, a simple directory listing (ls) would only require 
read permission on that directory, while a database operation request would require at 
least read and execute permission.
Sybase Avaki EII API Guide 9

http://support.microsoft.com/default.aspx?scid=kb;EN-US;Q823177


Using the web services API
 Web services client examples
Avaki provides several sample web service clients written in Java, Perl and VB .NET. 
The client code examples are located as follows:

• Java examples are in the WS Java archive:
<Avaki-install-dir>/examples/Avaki_ws_client.jar

• Perl examples are in
<Avaki-install-dir>/examples/soaplite

• VB .NET examples are in
<Avaki-install-dir>/examples/dotnet

 

10 Sybase Avaki EII API Guide



Chapter 2

Web services API 
reference
The Avaki web services API (WS API) consists of several WSDL documents that for-
mally specify the legitimate operations, the parameters to the operations and their 
return values. Avaki provides four WSDL documents as part of the same API. These 
four WSDL documents are named:
• AvakiAPIDocLit.wsdl

• AvakiAPIRpcEnc.wsdl

• AvakiAPIWithMIMEDocLit.wsdl

• AvakiAPIWithMIMERpcEnc.wsdl

The underlying functionality represented by these WSDLs is nearly identical. The only 
differences are:
• The DocLit and RpcEnc WSDLs differ solely in the web services style and usage 

for accessing the services.

• The WithMIME WSDLs contain operations that return bulk results as MIME attach-
ments in addition to operations from the other WSDLs.

Accordingly, this chapter is divided into the following main sections, which are intro-
duced solely for presentation. The operations themselves, as described in the WSDLs 
and as implemented, belong to a single, monolithic API. 

• “Complex type descriptions” on page 13: Describes the complex types or data 
structures used in the WS API.
Sybase Avaki EII API Guide 11



Web services API reference
• “Data catalog operations” on page 18: Describes standard file and directory opera-
tions.

• “Data service operations” on page 34: Describes operations that allow you to exe-
cute any data service that has been defined in a grid. 

• “Database operation operations” on page 41: Describes operations that allow you to 
execute any database operation (DBOP) that has been defined in a grid.

Each of the operations above is present in each of the WSDLs listed above unless spe-
cifically noted otherwise. 

Using this reference
The data type and operation descriptions in this reference are independent of program-
ming language and are more easily readable than the formal XML specification in the 
WSDL documents. Such descriptions necessarily introduce some ambiguity. The 
WSDL for each service is the definitive authority for Avaki’s SOAP implementation.
12 Sybase Avaki EII API Guide



Complex type descriptions
Complex type descriptions
Complex types are the custom data structures defined in the WSDL. The WSDL defines 
array data structures for some of the complex types below. Array data structures are 
denoted by the suffix [] when used.
The entry for each complex type contains the following information:

Name: The name of the complex type as it appears in the WSDL.

Description: A description of the purpose and usage of the type.

Element sequence: When appropriate, a listing of the data elements, their types, 
and a description of each.

AdHocDBOPExecutionParams
The structure used to pass parameters to an ad-hoc query. Executing an ad-hoc query is 
similar to defining a database operation and then immediately using it. Thus, all the 
information to define a database operation must also be provided here.

Element sequence 

Element Type Description and Values

callable boolean Indicates whether the ad-hoc query is a stored procedure.

parameterTypes string Contains parameter specifications in standard JDBC format. for example: 
in:BIGINT;out:VARCHAR.

prepared boolean Indicates whether the ad-hoc query is a prepared statement.

sql string Contains the SQL statement for the ad-hoc query.

values string[] Contains the values for the ad-hoc query. The array should have as many ele-
ments as required by the SQL string.
Sybase Avaki EII API Guide 13



Web services API reference
AvakiPrincipal
The structure used to pass credential information from the client to the service. The 
contents of this structure mirror the information needed to log in through the CLI or the 
web interface. The client must have the permissions required for the requested opera-
tion. For example, only read permission is required to list directory contents, but read 
and execute permissions are required to execute a database operation.

Element sequence 

Element Type Description and Values

name string Login name; case is significant. Alternatively, supply <name>@
<authService>.<authServiceType>.<domain> in the name field and 
provide nil values for all fields except password.

password string Password; case is significant.

authService string Pathname of the authentication service; when a nil value is passed, Default-
AuthService will be used. Case is significant.

authServiceType string Values can be: Grid, Nis, or Ldap; when a nil value is passed, Grid will be 
used. Case is significant.

domain string Avaki domain name; when a nil value is passed, the server’s domain name will 
be used. Case is significant.
14 Sybase Avaki EII API Guide



Complex type descriptions
DataCatalogAttribute
The structure that represents a data catalog attribute. For more information on custom 
attributes and legal types see the Sybase Avaki EII Administration Guide.

Element sequence 

DataCatalogEntry
The structure that represents an entry in the data catalog.

Element sequence 

Element Type Description and Values

name string Name of the attribute.

value string Value of the attribute.

type string Type of the attribute. Legal types are: String, Integer, Float, Date, Time, 
and Timestamp.

Element Type Description and Values

basename string The target grid catalog entry name.

fullpath string The full pathname including the grid catalog entry name referenced by the base-
name.

type string Avaki directory entry types including: directory, file, share, directory and object.
Sybase Avaki EII API Guide 15



Web services API reference
DataCatalogPermission
The structure that represents a permission on an entry in the data catalog.

Element sequence 

DataServiceExecutionParams
The structure used to pass data service execution parameters. The two string arrays 
must be of equal length and have exactly the number of elements as the parameters 
required by the data service.

Element sequence 

Element Type Description and Values

subject string The user or group name for which the permission applies.

subjectGroup boolean An indicator of whether the subject is a group or not.

action string The action for which the permission applies. Legal values are read, write, 
execute and delete.

constraint string The constraint on the action. Legal values are allow and deny.

owner boolean An indicator of whether the subject is the owner of the entry for which this per-
mission applies.

groupOwner boolean An indicator of whether a group to which the subject belongs is the owner of the 
entry for which this permission applies.

Element Type Description and Values

names string[] Names of the parameters expected by the data service.

values string[] Values of the parameters expected by the data service.
16 Sybase Avaki EII API Guide



Complex type descriptions
DBOPExecutionParams
The structure used to pass database operation execution parameters. The number of 
elements in the array must match the number of parameters in the database operation.

Element sequence 

SearchQuery
The structure that represents a query to a search service. For information on custom 
attributes and legal types, see the Sybase Avaki EII Administration Guide.

Element sequence 

Element Type Description and Values

values string[] The parameter values expected by the database operation.

Element Type Description and Values

name string Name of the search term.

value string The optional value of the term to search.

expression string The optional expression to use for searching. Legal values are =, >, <, >=, <= 
and <>. The default is =.

valueType string The optional type of the term. Legal types are: String, Integer, Float, 
Date, Time, and Timestamp.

snippetType string The optional kind of the term. Currently, this value is unused because the search 
always searches on attributes.
Sybase Avaki EII API Guide 17



Web services API reference
SearchResult
The structure that represents the result of a query to a search service. For information 
on custom attributes and legal types see the Sybase Avaki EII Administration Guide.

Element sequence 

Data catalog operations
This section contains standard file and directory operations. Each operation is 
described below with its expected call signature and return value.
For more information on the data catalog, see the Sybase Avaki EII Overture.

Client code sample
This small example is written in Java. It assumes you are using Axis as your web ser-
vices infrastructure on the client side. Specifically, doing so assumes you have taken 
the Avaki WSDL, run Axis’s wsdl2java tool to generate stubs, and written your Java 
client using those stubs. In this example, we assume those stubs are in the package 
com.avaki.ws.stubs.

Using the data catalog API

import com.avaki.ws.stubs.AvakiAPIRpcEncServiceLocator;
import com.avaki.ws.stubs.AvakiAPIRpcEnc;
import com.avaki.api.common.*;

public class WSSampleDCClient

Element Type Description and Values

fullpath string The data catalog entry that satisfies the search query.

pathType string Avaki directory entry types including directory, file, share, directory and object.

snippet string The term and value that satisfies the search query.

snippetType string The optional kind of the term. Currently, this value is always attribute.

snippetSubType string The optional type of the snippet. Legal types are String, Integer, Float, 
Date, Time, and Timestamp.
18 Sybase Avaki EII API Guide



Data catalog operations
{
AvakiPrincipal principal = new AvakiPrincipal();
principal.setName(...);
principal.setPassword(...);
principal.setAuthService(...);
principal.setAuthServiceType(...);
principal.setDomain(...);
// Look up the service using Axis-generated stubs.
AvakiAPIRpcEncServiceLocator locator =

new AvakiAPIRpcEncServiceLocator();
AvakiAPIRpcEnc remote = locator.getAvakiAPIRpcEnc();
String[] results = remote.whoami(principal);
...

}

accessiblePath
Determines whether the specified catalog entry is accessible to the requesting user 
specified by the AvakiPrincipal.

Request signature
accessiblePath(<principal>, <path>)

Returns
Returns a boolean indicating whether the catalog entry specified by path could be 
accessed. Either a nonexistent catalog entry or insufficient access permissions for the 
supplied principal will return false.

Arguments Type Description

principal AvakiPrincipal Required authentication information.

path string The full pathname of the catalog entry.
Sybase Avaki EII API Guide 19



Web services API reference
chmod
Sets a permission on the data catalog entry. For information about setting the owner of 
a data catalog query, see the “chown” section, below.

Request signature
chmod(<principal>, <path>, <permission>, <recursive>)

Returns
Returns a boolean indicating whether the permission was set successfully.

chown
Sets the owner of a data catalog entry. For information about setting a permission on a 
data catalog entry, see “chmod,” above.

Request signature
chown(<principal>, <path>, <user>, <recursive>)

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

path string The full pathname of the catalog entry.

permission DataCatalog-
Permission

The subject, action and constraint of the permission to set.

recursive boolean Specifies whether to set permissions on directories recursively.

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

path string The full pathname of the catalog entry.

user string The new owner of the catalog entry.

recursive boolean Specifies whether to change ownership on directories recursively.
20 Sybase Avaki EII API Guide



Data catalog operations
Returns
Returns a boolean indicating whether the ownership was changed successfully or not.

fileRead
Reads the specified portion of the file.

Request signature
fileRead(<principal>, <path>, <offset>, <count>)

Returns
Returns a byte-array containing count number of bytes, starting at offset number of 
bytes into the file.

Note When this operation is executed from the rpc/encoded WSDLs (AvakiAPI-
RpcEnc.wsdl and AvakiAPIWithMIMERpcEnc.wsdl), the results are returned as 
a base-64 encoded sequence of bytes. Your client infrastructure must decode 
them in order to view the results. When this operation is executed from the docu-
ment/literal WSDLs (AvakiAPIDocLit.wsdl and AvakiAPIWithMIME-
DocLit.wsdl), each byte of the results is returned in its own tag, thus increasing 
the amount of data transferred greatly.

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

path string The full pathname of the catalog entry.

offset long Index in bytes of the first entry to return. The index is 0-based.

count integer Number of bytes to return.
Sybase Avaki EII API Guide 21



Web services API reference
fileReadAttach
Reads the specified portion of the file and returns the result as a SOAP attachment.

Request signature
fileReadAttach(<principal>, <path>, <offset>, <count>)

Returns
Returns a SOAP attachment containing count number of bytes, starting at offset 
number of bytes into the file.

Note This operation is present only in the WSDLs that support MIME attach-
ments, AvakiAPIWithMIMEDocLit.wsdl and AvakiAPIWithMIMERpcEnc.wsdl.

fileReadString
Reads the specified portion of the file and returns the results as a string.

Request signature
fileReadString(<principal>, <path>, <offset>, <count>)

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

path string The full pathname of the catalog entry.

offset long Index in bytes of the first entry to return. The index is 0-based.

count integer Number of bytes to return.

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

path string The full pathname of the catalog entry.

offset long Index in bytes of the first entry to return. The index is 0-based.

count integer Number of bytes to return.
22 Sybase Avaki EII API Guide



Data catalog operations
Returns
Returns a Unicode character string containing count number of characters, starting at 
offset number of bytes into the file.

fileWrite
Writes to the file from the byte buffer. If the file does not exist it will be created at the 
directory location specified in path.

Request signature
fileWrite(<principal>, <path>, <offset>, <buf>, <count>)

Returns
Returns an integer indicating the number of bytes written to the file. Can be used to 
test whether the fileWrite operation was successful and complete.

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

path string The full pathname of the catalog entry.

offset long Index in bytes of the first location to write into in the target file. The 
index is 0-based.

buf byte-array Buffer containing data to be written to the file.

count integer Number of bytes to write.
Sybase Avaki EII API Guide 23



Web services API reference
getAttributes
Gets the system and user-defined attributes of the specified data catalog entry. System 
attributes are read-only attributes that are provided by default for every object in the 
grid. User attributes are customizable attributes that can be created for a grid file, 
directory, share, server, or service.

Request signature
getAttributes(<principal>, <path>)

Returns
Returns a DataCatalogAttribute[].

getSystemAttributes
Gets only the system-level attributes of the specified data catalog entry.

Request signature
getSystemAttributes(<principal>, <path>)

Returns
Returns a DataCatalogAttribute[].

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

path string The full pathname of the catalog entry.

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

path string The full pathname of the catalog entry.
24 Sybase Avaki EII API Guide



Data catalog operations
getUserAttributes
Gets only the user-level attributes of the specified data catalog entry.

Request signature
getUserAttributes(<principal>, <path>)

Returns
Returns a DataCatalogAttribute[].

listDomains
Lists all the domains linked to the current domain.

Request signature
listDomains(<principal>)

Returns
Returns an array of strings containing the name of each domain.

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

path string The full pathname of the catalog entry.

Arguments Type Description

principal Avaki-
Principal

Required authentication information.
Sybase Avaki EII API Guide 25



Web services API reference
listSearches
Lists all the search services in the specified domain.

Request signature
listSearches(<principal>, <domain>)

Returns
Returns an array of strings containing the name of each search service.

ls
Lists the contents of the grid directory specified in the path argument, inclusive of the 
specified indices.

Request signature
ls(<principal>, <path>, <from>, <to>)

Returns
Returns a DataCatalogEntry[] containing the elements requested.

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

domain string Name of a domain. If this value is null, the current domain is assumed.

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

path string The full pathname of the catalog entry.

from integer Index of the first entry to return. Index is 1-based.

to integer Index of the last entry to return. 
26 Sybase Avaki EII API Guide



Data catalog operations
lsSize
Returns the number of entries in the grid directory specified in the path argument, 
inclusive of the "." and ".." entries.

Request signature
lsSize(<principal>, <path>)

Returns
Returns an integer indicating the number of entries in the requested grid directory.

mkdir
Creates a grid directory.

Request signature
mkdir(<principal>, <path>)

Returns
Returns a boolean indicating whether directory creation was successful. If the grid 
directory already exists, false is returned.

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

path string The full pathname of the catalog entry.

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

path string The full pathname of the directory to create.
Sybase Avaki EII API Guide 27



Web services API reference
mkdirParents
Creates a grid directory and any parent directories required.

Request signature
mkdirParents(<principal>, <path>, <makeParents>)

Returns
Returns a boolean indicating whether directory creation was successful. If the grid 
directory already exists, creation is considered successful and no error is returned.

mkdirParentsServer
Creates a grid directory and any parent directories required on the specified server.

Request signature
mkdirParentsServer(<principal>, <path>, <makeParents>, 

<serverPath>)

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

path string The full pathname of the directory to create.

makeParents boolean Specifies whether to create the parent directory if not present.

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

path string The full pathname of the directory to create.

makeParents boolean Specifies whether to create the parent directory if not present.

serverPath string The full pathname of the server where the directory should be created. 
The pathname format is /System/LocalDomain/Serv-
ers/<grid-server-name>/Server.
28 Sybase Avaki EII API Guide



Data catalog operations
Returns
Returns a boolean indicating whether directory creation was successful. If the grid 
directory already exists, creation is considered successful and no error is returned.

mkdirServer
Creates a grid directory on the specified server.

Request signature
mkdirServer(<principal>, <path>, <serverPath>)

Returns
Returns a boolean indicating whether directory creation was successful. If the grid 
directory already exists, false is returned.

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

path string The full pathname of the directory to create.

serverPath string The full pathname of the server where the directory should be created. 
The pathname format is /System/LocalDomain/Serv-
ers/<grid-server-name>/Server.
Sybase Avaki EII API Guide 29



Web services API reference
mv
Moves an object in the data catalog (a grid directory or a shared file, for example) to 
the specified target directory.

Request signature
mv(<principal>, <srcPath>, <destPath>, <force>)

Returns
Returns a boolean indicating whether the move was successful.

permissions
Gets the permissions on the specified data catalog entry. For information about setting 
a permission on a data catalog entry, see “chmod” on page 20. For information about 
setting the owner of a data catalog query, see “chown” on page 20. 

Request signature
permissions(<principal>, <path>)

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

srcPath string The full pathname of the catalog object to move.

destPath string The full pathname of the destination grid directory. When a file is being 
moved and the filename is included in the destination path, the moved 
file will be renamed.

force boolean Indicates whether to force a move of protected system files or directo-
ries. The operation’s principal must have correct access permissions 
for the operation.

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

path string The full pathname of the catalog entry.
30 Sybase Avaki EII API Guide



Data catalog operations
Returns
Returns a DataCatalogPermission[].

removeAttribute
Removes a user attribute from the specified data catalog entry. For information about 
getting the attributes of a data catalog entry, see “getAttributes” on page 24. For infor-
mation about setting an attribute, see “setAttribute” on page 33.

Request signature
removeAttribute(<principal>, <path>, <attribute>, <recursive>)

Returns
Returns a boolean indicating whether the attribute was removed successfully or not.

rm
Removes the data catalog entry specified in the path argument.

Request signature
rm(<principal>, <path>, <recursive>, <force>)

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

path string The full pathname of the catalog entry.

attribute DataCatalog-
Attribute

The name and type of the attribute to remove.

recursive boolean Specifies whether to set attributes on directories recursively.

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

path string The full pathname of the catalog entry.

recursive boolean Specifies whether to remove directories recursively.
Sybase Avaki EII API Guide 31



Web services API reference
Returns
Returns a boolean indicating whether the data catalog entry was removed successfully. 
When entries are missing or corrupted, the force parameter determines whether the 
operation is considered successful.

search
Invokes a search operation to return the results matching a comparison.

Request signature
search(<principal>, <service>, <query>)

Returns
Returns a SearchResult[] containing a list of matches for the query along with the 
content that satisfies the expression in the query.

force boolean Indicates whether to force a deletion of protected system files or direc-
tories. The operation’s principal must have correct access permis-
sions for the operation. When force is true, catalog entries are ignored 
if nonexistent, and removed if present but corrupted.

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

service string The pathname or qualified name of the search service. The format for 
the qualified name is: 
<domain-name>.<search-service-name>.

query SearchQuery The name, value, type and expression for the search query.

Arguments Type Description
32 Sybase Avaki EII API Guide



Data catalog operations
setAttribute
Sets a user attribute on the specified data catalog entry. For information about getting 
the attributes of a data catalog entry, see “getAttributes” on page 24. For information 
about removing an attribute, see “removeAttribute” on page 31.

Request signature
setAttribute(<principal>, <path>, <attribute>, <recursive>)

Returns
Returns a boolean indicating whether the attribute was set successfully.

tester
An operation that you can use to test whether your web services client is working 
properly independent of any Avaki operations.

Request signature
tester(<in>)

Returns
Echoes the string supplied by the request.

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

path string The full pathname of the catalog entry.

attribute DataCatalo
gAttribute

The name, type and value of the attribute to set.

recursive boolean Specifies whether to set attributes on directories recursively.

Arguments Type Description

in string Any string you want to use for testing.
Sybase Avaki EII API Guide 33



Web services API reference
whoami
Provides standard information about the login represented by the supplied Avaki-
Principal.

Request signature
whoami(<principal>)

Returns
Returns an array of strings containing information about the web services client login, 
including username, groupname, and associated authentication service.

Data service operations
The data services section contains operations that allow you to execute any data ser-
vice that has been defined in a grid. Each operation is described below with its 
expected call signature and return value.

Executing a data service typically consists of the following steps:

Step 1 Run the method executeDS (page 37) and get a token back.

Step 2 (Optional) Run isDSAvakiXML (page 40) on the data service if you need to determine 
whether the result set associated with the token is in the Avaki XML rowset format. 

Step 3 Run one of the following methods:

• getDSOutput (page 37)

• getDSOutputAttach (page 38)

• getDSOutputString (page 39)

Arguments Type Description

principal Avaki-
Principal

Required authentication information.
34 Sybase Avaki EII API Guide



Data service operations
These methods are described in the sections that follow.

Several of the SOAP operations in this section return data using, or require data in, the 
Avaki XML rowset format. For more information on the Avaki XML rowset format and 
data services see the Sybase Avaki EII Provisioning and Advanced Data Integration 
Guide.

Several of the SOAP operations in this section require the dsName argument. The 
dsName argument can be specified as either a full pathname or as a qualified name of 
this form: <domain-name>.<data-service-name>.

Client code sample
This small example is written in Java. It assumes you are using Axis as your web ser-
vices infrastructure on the client side. Specifically, doing so assumes you have taken 
the Avaki WSDL, run Axis’s wsdl2java tool to generate stubs, and written your Java 
client using those stubs. In this example, we assume those stubs are in the package 
com.avaki.ws.stubs.

Using the data service API
import com.avaki.ws.stubs.AvakiAPIRpcEncServiceLocator;
import com.avaki.ws.stubs.AvakiAPIRpcEnc;
import com.avaki.api.common.*;

public class WSSampleDSClient
{

AvakiPrincipal principal = new AvakiPrincipal();
principal.setName(...);
principal.setPassword(...);
principal.setAuthService(...);
principal.setAuthServiceType(...);
principal.setDomain(...);
// Look up the service using Axis-generated stubs.
AvakiAPIRpcEncServiceLocator locator =

new AvakiAPIRpcEncServiceLocator();
AvakiAPIRpcEnc remote = locator.getAvakiAPIRpcEnc();
String dsName = ...;
String[] paramNames = new String[...];
String[] paramStrs = new String[...];
for (int i = 0; i < paramStrs.length; i++)
{

paramNames[i] = ...;
paramStrs[i] = ...;

}
DataServiceExecutionParams params = new DataServiceExecutionParams();
Sybase Avaki EII API Guide 35



Web services API reference
params.setNames(paramNames);
params.setValues(paramStrs);
int token = remote.executeDS(principal, dsName, params);
int maxBytes = 8 * 1024;
int isAvakiXML = remote.isDSAvakiXML(principal, token);
byte[] results = remote.getDSOutput(principal, token, maxBytes,

isAvakiXML);
...

}

accessibleDS
Determines whether the specified data service is accessible to the requesting user 
specified by the AvakiPrincipal.

Request signature
accessibleDS(<principal>, <dsName>)

Returns
Returns a boolean indicating whether the data service specified by dsName could be 
accessed. Either a nonexistent data service or insufficient access permissions for the 
supplied principal will return false.

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

dsName string The full pathname or qualified name of the data service.
36 Sybase Avaki EII API Guide



Data service operations
executeDS
Executes the specified data service.

Request signature
executeDS(<principal>, <dsName>, <parameters>)

Returns
Returns an integer, which is a token or handle to use for obtaining the results of the 
operation.

getDSOutput
Gets the output from the executeDS operation.

Request signature
getDSOutput(<principal>, <token>, <maxRowsBytes>, 

<isDSAvakiXML>)

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

dsName string The full pathname or qualified name of the data service.

parameters DataServiceEx-
ecutionParams

The execution parameters required by this data service.

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

token integer The integer returned by the executeDS operation used as a handle to 
access the results.

maxRowsBytes integer Integer specifying the maximum number of rows or bytes to return. 
When isDSAvakiXML is true, maxRowsBytes refers to rows; when 
isDSAvakiXML is false, maxRowsBytes refers to bytes.

isDSAvakiXML boolean Boolean indicating whether the result set associated with the 
token is in the Avaki XML rowset format.
Sybase Avaki EII API Guide 37



Web services API reference
Returns
Returns a byte-array containing the requested results of the data service operation. 
When isDSAvakiXML is true, returned results will be in valid Avaki XML rowset format 
containing at most the requested number of rows. When isDSAvakiXML is false the 
results will be at most the number of bytes requested. 

getDSOutputAttach
Gets the output from the executeDS operation and returns it as a SOAP attachment.

Request signature
getDSOutputAttach(<principal>, <token>, <maxRowsBytes>, 

<isDSAvakiXML>)

Returns
Returns a SOAP attachment containing the requested results of the data service opera-
tion. When isDSAvakiXML is true, returned results will be in valid Avaki XML rowset 
format containing at most the requested number of rows. When isDSAvakiXML is false 
the results will be at most the number of bytes requested.

Note This operation is present only in the WSDLs that support MIME attach-
ments, AvakiAPIWithMIMEDocLit.wsdl and AvakiAPIWithMIMERpcEnc.wsdl.

Caution Invoke this operation only if you are sure that the results of the opera-
tion will not exhaust memory and network resources on the client or the server.

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

token integer The integer returned by the executeDS operation used as a handle to 
access the results.

maxRowsBytes integer Integer specifying the maximum number of rows or bytes to return. 
When isDSAvakiXML is true, maxRowsBytes refers to rows; 
when isDSAvakiXML is false, maxRowsBytes refers to bytes.

isDSAvakiXML boolean Boolean indicating whether the result set associated with the 
token is in the Avaki XML rowset format.
38 Sybase Avaki EII API Guide



Data service operations
getDSOutputString
Gets the output from the executeDS operation.

Request signature
getDSOutputString(<principal>, <token>, <maxRowsBytes>, 

<isDSAvakiXML>)

Returns
Returns a Unicode character string containing the requested results of the data service 
operation. When isDSAvakiXML is true, returned results will be in valid Avaki XML 
rowset format containing at most the requested number of rows. When isDSAvakiXML is 
false the results will be at most the number of bytes requested.

getDSParameters
Gets the parameters of the specified data service.

Request signature
getDSParameters(<principal>, <dsName>)

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

token integer The integer returned by the executeDS operation used as a handle to 
access the results.

maxRowsBytes integer Integer specifying the maximum number of rows or bytes to return. 
When isDSAvakiXML is true, maxRowsBytes refers to rows; 
when isDSAvakiXML is false, maxRowsBytes refers to bytes.

isDSAvakiXML boolean Boolean indicating whether the result set associated with the 
token is in the Avaki XML rowset format.

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

dsName string The full pathname or qualified name of the data service.
Sybase Avaki EII API Guide 39



Web services API reference
Returns
Returns an array of strings containing the parameter names of the data service.

isDSAvakiXML
Determines whether a data service result is in the Avaki XML rowset format.

Request signature
isDSAvakiXML(<principal>, <token>)

Returns
Returns a boolean indicating whether the result set associated with token is in the 
Avaki XML rowset format.

listDSs
Lists all the data services in the specified domain.

Request signature
listDSs(<principal>, <domain>)

Returns
Returns an array of strings containing the full pathname of each data service.

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

token integer The integer returned by the executeDS operation used as a handle to 
access the results.

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

domain string Name of a domain. If this value is null, the current domain is 
assumed.
40 Sybase Avaki EII API Guide



Database operation operations
Database operation operations
The database operations section contains operations that allow you to execute any 
database operation or ad-hoc query that has been defined in a grid. An ad-hoc query 
works like a database operation that is executed immediately after you define it. Each 
SOAP operation is described below with its expected call signature and return value.

Several of the SOAP operations in this section return data using, or require data in, the 
Avaki XML rowset format. For more information about the Avaki XML rowset format 
and database operations, see the Sybase Avaki EII Provisioning and Advanced Data 
Integration Guide.

Several of the SOAP operations in this section require the dbopName argument. The 
dbopName argument can be specified as either a full pathname or as a JDBC-format 
qualified name, <domain-name>.<dbconn-name>.<dbop-name>.

The typical procedure for executing a database operation or ad-hoc query is as fol-
lows: 

Step 1 Run one of the following methods and get a token back:

• For database operations:

— executeDBOp (page 49)

— executeDBOpWithOutput (page 50)

— executeDBOpWithOutputAttach (page 52) or
executeDBOpWithOutputString (page 53)

• For ad-hoc queries:

— executeAdHocDBOp (page 44)

— executeDBOpBytesInput (page 49)

— executeDBOpGridFileInput (page 50)

— executeAdHocDBOpWithOutput (page 45)

— executeAdHocDBOpWithOutputAttach (page 46) or
executeAdHocDBOpWithOutputString (page 47)

Step 2 Run one of the following methods:

• getDBOpOutput (page 54)
Sybase Avaki EII API Guide 41



Web services API reference
• getDBOpOutputAttach (page 55)

• getDBOpOutputString (page 56)

These methods are described in the sections that follow.

Client code sample
This small example is written in Java. It assumes you are using Axis as your web ser-
vices infrastructure on the client side. Specifically, doing so assumes you have taken 
the Avaki WSDL, run Axis’s wsdl2java tool to generate stubs, and written your Java 
client using those stubs. In this example, we assume those stubs are in the package 
com.avaki.ws.stubs.

Using the database operations API
import com.avaki.ws.stubs.AvakiAPIRpcEncServiceLocator;
import com.avaki.ws.stubs.AvakiAPIRpcEnc;
import com.avaki.api.common.*;

public class WSSampleDBOpClient
{

AvakiPrincipal principal = new AvakiPrincipal();
principal.setName(...);
principal.setPassword(...);
principal.setAuthService(...);
principal.setAuthServiceType(...);
principal.setDomain(...);
// Look up the service using Axis-generated stubs.
AvakiAPIRpcEncServiceLocator locator =

new AvakiAPIRpcEncServiceLocator();
AvakiAPIRpcEnc remote =

locator.getAvakiAPIRpcEnc();
String dbopName = ...;
String[] paramStrs = new String[...];
for (int i = 0; i < paramStrs.length; i++)
{

paramStrs[i] = ...;
}
DBOPExecutionParams params = new DBOPExecutionParams();
params.setValues(paramStrs);
int token = remote.executeDBOp(principal, dbopName, params);
int maxRows = 100;
byte[] results = remote.getDBOpOutput(principal, token, maxRows);
...

}

42 Sybase Avaki EII API Guide



Database operation operations
accessibleDBOp
Determines whether the specified database operation is accessible to the requesting 
user specified by the AvakiPrincipal.

Note The accessibleDBOp operation in the database operations API does not 
work with ad-hoc queries. Use the accessiblePath operation in the data cata-
log section and specify the full pathname to the database connector.

Request signature
accessibleDBOp(<principal>, <dbopName>)

Returns
Returns a boolean indicating whether the database operation specified by dbopName 
could be accessed. Either a nonexistent database operation or insufficient access per-
missions for the supplied principal will return false.

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

dbopName string The full pathname or qualified name of the database operation.
Sybase Avaki EII API Guide 43



Web services API reference
executeAdHocDBOp
Executes the specified ad-hoc query. An ad-hoc query works like a database operation 
that is used immediately after you define it. Therefore, all the information to define a 
database operation must also be provided for an ad-hoc query.

Request signature
executeAdHocDBOp(<principal>, <dbciName>, <parameters>)

Returns
Returns an integer, which is a token or handle to use for obtaining the results of the 
operation.

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

dbciName string The pathname or qualified name of the database connector. The format 
for the qualified name is 
<domain-name>.<dbconnector-name>

parameters AdHocDBOP-
Execution-
Params

The execution parameters required for this ad-hoc query.
44 Sybase Avaki EII API Guide



Database operation operations
executeAdHocDBOpWithOutput
Executes the specified ad-hoc query and returns all of the output. An ad-hoc query is a 
database operation that is executed immediately after you define it. Therefore, all the 
information needed to define a database operation must also be provided here.

Request signature
executeAdHocDBOpWithOutput(<principal>, <dbciName>, 

<parameters>)

Returns
Returns a byte-array containing the requested results of the ad-hoc query. 

If executing an ad-hoc query results in large amounts of output, the following situa-
tions can occur:
• Your client will have to wait until the last byte of data is extracted from the back end before 

it can receive the first byte, resulting in high latency.

• Your connection from the client to the server may time out if latency is too high.

• Large result sets could exhaust memory on the grid server, resulting in a crash. If a 
crash occurs, you might have to restart the grid server.

• Converting large result sets into XML might cause the convertor to run out of mem-
ory, resulting in a crash.

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

dbciName string The pathname or qualified name of the database connector. The format 
for the qualified name is 
<domain-name>.<dbconnector-name>

parameters AdHocDBOP-
Execution-
Params

The execution parameters required for this ad-hoc query.

Caution Invoke this operation only if you are sure that the results of the opera-
tion will not exhaust memory and network resources on the client or the server.
Sybase Avaki EII API Guide 45



Web services API reference
• The SOAP infrastructure on the server side might run out of memory when it serial-
izes the results, resulting in a crash.

• The SOAP infrastructure on the client side might run out of memory when it parses 
the response and de-serializes the results, resulting in an error.

• The client application might run out of memory when it receives large amounts of 
XML data.

executeAdHocDBOpWithOutputAttach
Executes the specified ad-hoc query and returns all of the output as a SOAP attach-
ment. An ad-hoc query works like a database operation that is executed immediately 
after you define it. Therefore, all the information needed to define a database operation 
must also be provided here.

Request signature
executeAdHocDBOpWithOutputAttach(<principal>, <dbciName>, 

<parameters>)

Returns
Returns a SOAP attachment containing the requested results of the ad-hoc query.

Note This operation is present only in the WSDLs that support MIME attach-
ments, AvakiAPIWithMIMEDocLit.wsdl and AvakiAPIWithMIMERpcEnc.wsdl.

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

dbciName string The pathname or qualified name of the database connector. The format 
for the qualified name is 
<domain-name>.<dbconnector-name>

parameters AdHocDBOP-
Execution-
Params

The execution parameters required for this ad-hoc query.
46 Sybase Avaki EII API Guide



Database operation operations
If executing an ad-hoc query results in large amounts of output, the following situa-
tions can occur:
• Your client will have to wait until the last byte of data is extracted from the back 

end before it can receive the first byte, resulting in high latency.

• Your connection from the client to the server may time out if latency is too high.

• Large result sets could exhaust memory on the grid server, resulting in a crash. If a 
crash occurs, you might have to restart the grid server.

• Converting large result sets into XML might cause the convertor to run out of mem-
ory, resulting in a crash.

• The SOAP infrastructure on the server side might run out of memory when it serial-
izes the results, resulting in a crash.

• The SOAP infrastructure on the client side might run out of memory when it parses 
the response and de-serializes the results, resulting in an error.

• The client application might run out of memory when it receives large amounts of 
XML data.

executeAdHocDBOpWithOutputString
Executes the specified ad-hoc query and returns all of the output as a character string. 
An ad-hoc query works like a database operation that is used immediately after you 
define it. Therefore, all the information to define a database operation must also be 
provided.

Request signature
executeAdHocDBOpWithOutputString(<principal>, <dbciName>, 

<parameters>)

Caution Unrestricted execution of this operation is dangerous.
Invoke this operation only if you are sure that the results of the operation will not 
exhaust memory and network resources on the client or the server.

Arguments Type Description

principal Avaki-
Principal

Required authentication information.
Sybase Avaki EII API Guide 47



Web services API reference
Returns
Returns a Unicode character string containing the requested results of the ad-hoc 
query.

If executing an ad-hoc query results in large amounts of output, the following situa-
tions can occur:
• Your client will have to wait until the last byte of data is extracted from the back 

end before it can receive the first byte, resulting in high latency.

• Your connection from the client to the server may time out if latency is too high.

• Large result sets could exhaust memory on the grid server, resulting in a crash. If a 
crash occurs, you might have to restart the grid server.

• Converting large result sets into XML might cause the convertor to run out of mem-
ory, resulting in a crash.

• The SOAP infrastructure on the server side might run out of memory when it serial-
izes the results, resulting in a crash.

• The SOAP infrastructure on the client side might run out of memory when it parses 
the response and de-serializes the results, resulting in an error.

• The client application might run out of memory when it receives large amounts of 
XML data.

dbciName string The pathname or qualified name of the database connector. The format 
for the qualified name is 
<domain-name>.<dbconnector-name>

parameters AdHocDBOP-
Execution-
Params

The execution parameters required for this ad-hoc query.

Caution Unrestricted execution of this operation is dangerous.
Invoke this operation only if you are sure that the results of the operation will not 
exhaust memory and network resources on the client or the server.

Arguments Type Description
48 Sybase Avaki EII API Guide



Database operation operations
executeDBOp
Executes the specified database operation.

Request signature
executeDBOp(<principal>, <dbopName>, <parameters>)

Returns
Returns an integer, which is a token or handle to use for obtaining the results of the 
operation.

executeDBOpBytesInput
Executes the specified database operation. The parameters for the database operation 
are in the xmlDoc byte-array whose contents must be in Avaki XML rowset format.

Request signature
executeDBOpBytesInput(<principal>, <dbopName>, <xmlDoc>)

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

dbopName string The full pathname or qualified name of the database operation.

parameters DBOPExecu-
tionParams

The execution parameters required for this database operation 

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

dbopName string The full pathname or qualified name of the database operation.

xmlDoc byte-array Byte-array containing parameters for this database operation; this must 
be in Avaki XML rowset format.
Sybase Avaki EII API Guide 49



Web services API reference
Returns
Returns an integer, which is a token or handle to use for obtaining the results of the 
operation.

executeDBOpGridFileInput
Executes the specified database operation. The parameters for the database operation, 
if any, must be in a data catalog file whose contents are in Avaki XML rowset format. 
(For details on Avaki XML rowset format, see the Sybase Avaki EII Provisioning and 
Advanced Data Integration Guide.)

Request signature
executeDBOpGridFileInput(<principal>, <dbopName>, 

<gridFileName>)

Returns
Returns an integer, which is a token or handle to use for obtaining the results of the 
operation.

executeDBOpWithOutput
Executes the specified database operation and returns all of the output.

Request signature
executeDBOpWithOutput(<principal>, <dbopName>, <parameters>)

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

dbopName string The full pathname or qualified name of the database operation.

gridFileName string Pathname of the file in the data catalog containing parameters for this 
database operation. File must be in the Avaki XML rowset format.

Arguments Type Description

principal Avaki-
Principal

Required authentication information.
50 Sybase Avaki EII API Guide



Database operation operations
Returns
Returns a byte-array containing the requested results of the database operation.

Note When this operation is executed from the rpc/encoded WSDLs (Avaki-
APIRpcEnc.wsdl and AvakiAPIWithMIMERpcEnc.wsdl), the results are 
returned as a base-64 encoded sequence of bytes. Your client infrastructure must 
decode them in order to view the results. When this operation is executed from 
the document/literal WSDLs (AvakiAPIDocLit.wsdl and AvakiAPIWithMIME-
DocLit.wsdl), each byte of the results is returned in its own tag, thus increasing 
the amount of data transferred greatly.

If executing a database operation results in large amounts of output, the following situ-
ations can occur: 
• Your client will have to wait until the last byte of data is extracted from the back 

end before it can receive the first byte, resulting in high latency.

• Your connection from the client to the server may time out if latency is too high.

• Large result sets could exhaust memory on the grid server, resulting in a crash. If a 
crash occurs, you might have to restart the grid server.

• Converting large result sets into XML might cause the convertor to run out of mem-
ory, resulting in a crash.

• The SOAP infrastructure on the server side might run out of memory when it serial-
izes the results, resulting in a crash.

• The SOAP infrastructure on the client side might run out of memory when it parses 
the response and de-serializes the results, resulting in an error.

dbopName string The full pathname or qualified name of the database operation.

parameters DBOPExecu-
tionParams

The execution parameters required for this database operation

Caution Unrestricted execution of this operation is dangerous.
Invoke this operation only if you are sure that the results of the operation will not 
exhaust memory and network resources on the client or the server.

Arguments Type Description
Sybase Avaki EII API Guide 51



Web services API reference
• The client application might run out of memory when it receives large amounts of 
XML data.

executeDBOpWithOutputAttach
Executes the specified database operation and returns all of the output as a SOAP 
attachment.

Request signature
executeDBOpWithOutputAttach(<principal>, <dbopName>, 

<parameters>)

Returns
Returns a SOAP attachment containing the requested results of the database operation.

Note This operation is present only in the WSDLs that support MIME attach-
ments, AvakiAPIWithMIMEDocLit.wsdl and AvakiAPIWithMIMERpcEnc.wsdl.

If executing a database operation results in large amounts of output, the following situ-
ations can occur:
• Your client will have to wait until the last byte of data is extracted from the back 

end before it can receive the first byte, resulting in high latency.

• Your connection from the client to the server may time out if latency is too high.

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

dbopName string The full pathname or qualified name of the database operation.

parameters DBOPExecu-
tionParams

The execution parameters required for this database operation

Caution Unrestricted execution of this operation is dangerous.
Invoke this operation only if you are sure that the results of the operation will not 
exhaust memory and network resources on the client or the server.
52 Sybase Avaki EII API Guide



Database operation operations
• Large result sets could exhaust memory on the grid server, resulting in a crash. If a 
crash occurs, you might have to restart the grid server.

• Converting large result sets into XML might cause the convertor to run out of mem-
ory, resulting in a crash.

• The SOAP infrastructure on the server side might run out of memory when it serial-
izes the results, resulting in a crash.

• The SOAP infrastructure on the client side might run out of memory when it parses 
the response and de-serializes the results, resulting in an error.

• The client application might run out of memory when it receives large amounts of 
XML data.

Invoke this operation only if you are sure that the results of the operation will not 
exhaust memory and network resources on the client or the server.

executeDBOpWithOutputString
Executes the specified database operation and returns all of the output as a character 
string.

Request signature
executeDBOpWithOutputString(<principal>, <dbopName>, 

<parameters>)

Returns
Returns a Unicode character string containing the requested results of the database 
operation.

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

dbopName string The full pathname or qualified name of the database operation.

parameters DBOPExecu-
tionParams

The execution parameters required for this database operation
Sybase Avaki EII API Guide 53



Web services API reference
If executing a database operation results in large amounts of output, the following situ-
ations can occur:
• Your client will have to wait until the last byte of data is extracted from the back 

end before it can receive the first byte, resulting in high latency.

• Your connection from the client to the server may time out if latency is too high.

• Large result sets could exhaust memory on the grid server, resulting in a crash. If a 
crash occurs, you might have to restart the grid server.

• Converting large result sets into XML might cause the convertor to run out of mem-
ory, resulting in a crash.

• The SOAP infrastructure on the server side might run out of memory when it serial-
izes the results, resulting in a crash.

• The SOAP infrastructure on the client side might run out of memory when it parses 
the response and de-serializes the results, resulting in an error.

• The client application might run out of memory when it receives large amounts of 
XML data.

getDBOpOutput
Gets the output from a database operation.

Request signature
getDBOpOutput(<principal>, <token>, <maxRows>)

Caution Unrestricted execution of this operation is dangerous.
Invoke this operation only if you are sure that the results of the operation will not 
exhaust memory and network resources on the client or the server.

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

token integer The integer returned by the execute- operation used as a handle to 
access the results.

maxRows integer Integer specifying the maximum number of rows to return.
54 Sybase Avaki EII API Guide



Database operation operations
Returns
Returns a byte-array containing the requested results of the database operation.

Note When this operation is executed from the rpc/encoded WSDLs (Avaki-
APIRpcEnc.wsdl and AvakiAPIWithMIMERpcEnc.wsdl), the results are 
returned as a base-64 encoded sequence of bytes. Your client infrastructure must 
decode them in order to view the results. When this operation is executed from 
the document/literal WSDLs (AvakiAPIDocLit.wsdl and AvakiAPIWithMIME-
DocLit.wsdl), each byte of the results is returned in its own tag, thus increasing 
the amount of data transferred greatly.

getDBOpOutputAttach
Gets the output from a database operation and returns it as a SOAP attachment.

Request signature
getDBOpOutputAttach(<principal>, <token>, <maxRows>)

Returns
Returns a SOAP attachment containing the requested results of the database operation.

Note This operation is present only in the WSDLs that support MIME attach-
ments, AvakiAPIWithMIMEDocLit.wsdl and AvakiAPIWithMIMERpcEnc.wsdl.

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

token integer The integer returned by the execute- operation used as a handle to 
access the results.

maxRows integer Integer specifying the maximum number of rows to return.
Sybase Avaki EII API Guide 55



Web services API reference
getDBOpOutputString
Gets the output from a database operation and returns it as a character string.

Request signature
getDBOpOutputString(<principal>, <token>, <maxRows>)

Returns
Returns a Unicode character string containing the requested results of the database 
operation.

getDBOpParameters
Gets the parameters used by the specified database operation.

Request signature
getDBOpParameters(<principal>, <dbopName>)

Returns
Returns an array of strings containing the parameters of this database operation. For 
example, the first location in the array might contain the string in:VARCHAR and the 
next the string out:BIGINT, and so on.

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

token integer The integer returned by the execute- operation used as a handle to 
access the results.

maxRows integer Integer specifying the maximum number of rows to return.

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

dbopName string The full pathname or qualified name of the database operation.
56 Sybase Avaki EII API Guide



Database operation operations
getDBOpSchema
Executes the specified database operation and returns only its schema.

Request signature
getDBOpSchema(<principal>, <dbopName>, <parameters>)

Returns
Returns a byte-array containing the XML schema for the database operation. 

getDBOpSchemaAttach
Executes the specified database operation and returns only its schema as a SOAP 
attachment.

Request signature
getDBOpSchemaAttach(<principal>, <dbopName>, <parameters>)

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

dbopName string The full pathname or qualified name of the database operation.

parameters DBOPExecu-
tionParams

The execution parameters required for this database operation

Caution Invoke this operation only if you are sure that the results of the opera-
tion will not exhaust memory and network resources on the client or the server.

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

dbopName string The full pathname or qualified name of the database operation.

parameters DBOPExecu-
tionParams

The execution parameters required for this database operation
Sybase Avaki EII API Guide 57



Web services API reference
Returns
Returns a SOAP attachment containing the XML schema for the database operation.

Note This operation is present only in the WSDLs that support MIME attach-
ments, AvakiAPIWithMIMEDocLit.wsdl and AvakiAPIWithMIMERpcEnc.wsdl.

getDBOpSchemaString
Executes the specified database operation and returns only its schema as a character 
string.

Request signature
getDBOpSchemaString(<principal>, <dbopName>, <parameters>)

Returns
Returns a Unicode character string containing the XML schema for the database oper-
ation.

getSQL
Gets the SQL statement defined for this database operation.

Request signature
getSQL(<principal>, <dbopName>)

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

dbopName string The full pathname or qualified name of the database operation.

parameters DBOPExecu-
tionParams

The execution parameters required for this database operation

Arguments Type Description

principal Avaki-
Principal

Required authentication information.
58 Sybase Avaki EII API Guide



Database operation operations
Returns
Returns a Unicode character string containing the SQL statement for this database 
operation.

listDBConns
Lists all the database connectors in the specified domain.

Request signature
listDBConns(<principal>, <domain>)

Returns
Returns an array of strings containing the full pathname of each database connector.

listDBOps
Lists all the database operations in the specified domain.

Request signature
listDBOps(<principal>, <domain>)

dbopName string The full pathname or qualified name of the database operation.

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

domain string Name of a domain. If this value is null, the current domain is 
assumed.

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

domain string Name of a domain. If this value is null, the current domain is 
assumed.

Arguments Type Description
Sybase Avaki EII API Guide 59



Web services API reference
Returns
Returns an array of strings containing the full pathname of each database operation.

listDBOpsByDBConn
Lists all the database operations associated with the specified database connector.

Request signature
listDBOpsByDBConn(<principal>, <dbciName>)

Returns
Returns an array of strings containing the full pathname of each database operation 
associated with the database connector.

 

Arguments Type Description

principal Avaki-
Principal

Required authentication information.

dbciName string The pathname or qualified name of the database connector. The format 
for the qualified name is 
<domain-name>.<dbconnector-name>
60 Sybase Avaki EII API Guide



Chapter 3

Using JDBC drivers
Sybase offers two JDBC (Java Database Connectivity) drivers for use with Avaki EII 
software:
• The Avaki JDBC driver (supplied with Avaki software)

• JConnect, Sybase’s standard JDBC driver (available for download from 
sybase.com)

Either JDBC driver provides the ability, via JDBC, to:
• Call any data service in the Avaki data catalog

• Call any database operation in the data catalog

• Perform SQL select operations against SQL views in the data catalog

Except where noted, the discussions in this chapter apply to both the Avaki JDBC 
driver and jConnect.

The JDBC drivers allow application programmers to access database data shared in the 
data catalog using a method already familiar to them. Using this programmatic access 
you can immediately run further computations or process the data you have retrieved. 
When a JDBC driver accesses data, it returns a JDBC result set that’s immediately 
available to your program.

This chapter explains how to access the JDBC drivers and how to use them when pro-
gramming in your environment. It covers these topics:
• “Caching results of database operations” on page 62
Sybase Avaki EII API Guide 61



Using JDBC drivers
• “Prerequisites for using JDBC drivers” on page 65

• “Setting up your application to use a JDBC driver” on page 68

• “JDBC support” on page 75

• “JDBC driver code example” on page 78

• “Using an ODBC driver” on page 80

It is expected that you already have a basic familiarity with programming using JDBC. 
If you need an introduction to JDBC programming, read the Sun documentation at

http://java.sun.com/j2se/1.4.1/docs/guide/jdbc/getstart/
GettingStartedTOC.fm.html

This web page provides a wider view of Sun’s JDBC resources:
http://java.sun.com/products/jdbc/

Caching results of database operations
The freshness of result set data obtained using JDBC is affected by the Avaki caching 
system. If the results have been previously calculated, the freshness of the data is 
dependent on the coherence window settings for the grid domain controller (GDC) or 
the database operation. See the Sybase Avaki EII Provisioning and Advanced Data 
Integration Guide for details on how cache services work.

A program using a JDBC driver interfaces with the data grid in slightly different ways, 
depending on whether you configure a cache service (by setting the externalCacheSer-
vice property) when connecting the JDBC driver to the data grid.

The figure that follows shows how a Java program using a JDBC driver interfaces with 
the data grid when there is no cache service associated with the Java program. Notice 
that the Java program benefits from the GDC’s cache service.
62 Sybase Avaki EII API Guide

http://java.sun.com/j2se/1.4.1/docs/guide/jdbc/getstart/GettingStartedTOC.fm.html
http://java.sun.com/products/jdbc/


Caching results of database operations
The figure below shows how a Java program using a JDBC driver interfaces with the 
data grid when there is a cache service associated with the program. The cache service 
on the GDC is, in this case, also the cache service associated with the Java program. 
(This is called the remote cache because it’s remote from the data source; the cache 
service on the grid server nearest the data source is called the local cache.) When the 
Java program invokes a database operation, it looks first to its associated cache service 
on the GDC. If that cache doesn’t have the result, the request is passed on to the cache 
service on the grid server where the database operation resides, Grid Server B. If that 
cache doesn’t have the result either, the query runs on the database and the result is 
returned to the Java program and stored in both caches.

Java program
using JDBC 
driver

GDC with

Java program
using JDBC
driver

GDC with
DBOP
 

Database

New result set

Cached result set

Database
database
operation

cache
service
Sybase Avaki EII API Guide 63



Using JDBC drivers
The cache service you associate with your Java program can only be a remote cache. 
(That is, it cannot be local to the data source—it’s ok if the cache is local to your Java 
program.) If the database operation is configured to use its grid server’s local cache, 
this local caching is entirely separate from the Java program’s use of the remote cache. 
If you don’t associate a cache service with your Java program, results will still be 
cached if the database operation is configured to do so.

If your Java program and database operation use the same grid server, configure cach-
ing for the database operation only. There’s no reason to associate a cache with the 
Java program too; the extra level of caching is only helpful when the Java program is 
remote from the database operation.

Java program
using JDBC 
driver

GDC

Java program
using JDBC
 driver

GDC

 

Grid Server B Database
with DBOP
 

New result set

Cached result set

Database

Grid Server B
with DB
operation

remote cache 
     service

local cache 
   service
64 Sybase Avaki EII API Guide



Prerequisites for using JDBC drivers
Prerequisites for using JDBC drivers
Before using a JDBC driver, ensure that the tasks listed in this section have been com-
pleted.

Checking your JRE version
To use a JDBC driver, you must be using the correct version of the Java Runtime Envi-
ronment (JRE). See the Sybase Avaki EII Administration Guide for information on sup-
ported versions.

Completing grid setup tasks
The following tasks, which are typically performed by system, grid, or database 
administrators, must be completed: 

For this task... Look for instructions in...

Install and configure an Avaki domain Sybase Avaki EII Administration Guide

(Optional) Install a JDBC driver for each data-
base you plan to access. Required only if you are 
using a data service that uses a database opera-
tion.

Sybase Avaki EII Administration Guide

(Optional) Set up an Avaki database connector 
for each database you plan to access. Required 
only if you are using a data service that uses a 
database operation.

Data Integration with Sybase Avaki Stu-
dio or Sybase Avaki EII Provisioning and 
Advanced Data Integration Guide

(Optional) Set up at least one of the following to 
access the database:

• One or more Avaki database operations
• One or more Avaki SQL views

This task is required only if you are using a data 
service that uses a database operation.

Data Integration with Sybase Avaki Stu-
dio or Sybase Avaki EII Provisioning and 
Advanced Data Integration Guide
Sybase Avaki EII API Guide 65



Using JDBC drivers
Choosing a JDBC driver
This section helps you decide whether to use jConnect or the Avaki JDBC driver and 
explains where to find the drivers. It also helps you choose which version of the Avaki 
JDBC driver to use.
Use these guidelines in choosing a JDBC driver:
• If you’re connecting to Avaki from another Sybase product such as ASE, ASA, or 

Sybase IQ, we recommend using jConnect. Note that jConnect is required to sup-
port the CIS feature in ASE.

• If you’re not using other Sybase products with Avaki, we recommend using the 
Avaki JDBC driver, which is generally faster.

jConnect
If you choose to use the jConnect driver, download version 6.0 or later from 
sybase.com.

Avaki JDBC driver
In <Avaki-install-dir>/examples/lib, Sybase provides two versions of the Avaki JDBC 
driver JAR file. Both versions include all the support you need to use the Avaki JDBC 
driver. Choose one of the JAR files:

Avaki_JDBCStandAlone.jar. You can use Avaki_JDBCStandAlone.jar as-is; it has no 
external dependencies. It includes additional JAR files that allow you to use some 
third-party software with the Avaki JDBC driver. The third-party JAR files, which are 
distributed in <Avaki-install-dir>/examples/lib/jdbc-sa/, are:
• antlr.jar

• jax-1_1-fr-qname-class.jar

• js.jar

• log4j.jar

• soap.jar

• xercesImpl.jar

• xml-apis.jar

Included with the third-party JARs is a related file, jdbc-log4j.properties, which you 
can use to configure log4j logging for the JDBC driver. For information on using log 
properties files, see the Sybase Avaki EII Administration Guide.
66 Sybase Avaki EII API Guide



Prerequisites for using JDBC drivers
Avaki_JDBCStandAlone_Minus3rd.jar. Use Avaki_JDBCStandAlone_Minus3rd.jar 
only if you find that using the other JAR file, Avaki_JDBCStandalone.jar, results in a 
conflict involving one of the third-party libraries in Avaki_JDBCStandalone.jar and the 
version of that library running in your environment.

Avaki_JDBCStandAlone_Minus3rd.jar does not include the third-party JAR files (or 
the log4j properties file) described above. If you choose this option, you must specify 
in your classpath the location of a JAR for every third-party application you want to 
use with the JDBC driver, whether they are Avaki-provided JARs or your own versions. 
See “Configuring your classpath,” below, for an example.

Configuring your classpath

For jConnect
Include the following in your classpath if you’re using jConnect:
• jconn3.jar

For the Avaki JDBC driver
Include the following in your classpath if you’re using the Avaki JDBC driver:
• avakijdbc.properties (optional). If avakijdbc.properties is present, the JDBC driver 

loads Java system properties from it. A version of this file is provided, packed into 
the JDBC driver itself. If you need to change system properties, you can either mod-
ify the file and repack it into the JAR file, or you can remove it from the JAR file 
and put it in your classpath. Use the same format for avakijdbc.properties as for 
Avaki’s system.properties file. The property settings in avakijdbc.properties are in 
effect on the grid server associated with the JDBC driver when the JDBC driver is in 
use; otherwise the settings in the grid server’s own system.properties file prevail. 
For more information on system properties, including the file format, see the 
Sybase Avaki EII Administration Guide.

• Avaki_JDBCStandAlone.jar or Avaki_JDBCStandAlone_Minus3rd.jar (see “Choos-
ing a JDBC driver,” above). You’ll find both JAR files in 
<Avaki-install-dir>/examples/lib.

If you use Avaki_JDBCStandAlone.jar, you need to include only that JAR file in 
your classpath. If you use Avaki_JDBCStandAlone_Minus3rd.jar, you must include 
both your JARs and those supplied by Avaki in your classpath. In this example, we 
set the classpath on a Windows machine to use a local copy of the Xerces JAR and 
Avaki-supplied copies of the other third-party JARs:
Sybase Avaki EII API Guide 67



Using JDBC drivers
C:\> set CLASSPATH=AVAKI_INSTALL_DIR\examples\lib\
Avaki_JDBCStandAlone_Minus3rd.jar;
AVAKI_INSTALL_DIR\examples\lib\jdbc-sa\antlr.jar;
AVAKI_INSTALL_DIR\examples\lib\jdbc-sa\
jax-1_1-ft-qname-class.jar;
AVAKI_INSTALL_DIR\examples\lib\jdbc-sa\js.jar;
AVAKI_INSTALL_DIR\examples\lib\jdbc-sa\soap.jar;
AVAKI_INSTALL_DIR\examples\lib\jdbc-sa\xml-apis;
AVAKI_INSTALL_DIR\examples\lib\jdbc-sa\log4j.jar;
AVAKI_INSTALL_DIR\examples\lib\jdbc-sa\jdbc-log4j.properties;
E:\dev\lib\xercesImpl.jar

Setting up your application to use a JDBC driver
To use a JDBC driver your program must do the following:

1. Load the JDBC driver class.
2. Specify the relevant properties and their values.

3. Provide a connection string (URL) specifying an Avaki grid domain controller. The 
application passes this string to the JDBC driver, which uses it to connect to the GDC.

4. If your application uses the JDBC driver to execute Avaki database operations or data 
services, use a stored procedure (CallableStatement) pointer to each database 
operation or data service. The application passes these pointers to the GDC, which uses 
them to find the database operation or data service that can provide the requested data.

The sections that follow describe the items above in greater detail. The section at the 
end of this chapter, “JDBC driver code example” on page 78, can serve as a template 
for setting up your own application to use the Avaki JDBC driver.

Loading the JDBC driver
To use a JDBC driver, load one of the following classes within your application:

For the Avaki JDBC driver: com.avaki.sql.Driver

For jConnect: com.sybase.jdbc3.jdbc.SybDriver

Connection properties
Your application will use a connect string (described in “Connection strings” on 
page 71) to acquire a connection to Avaki. In the connect string, you can pass various 
connection properties to the JDBC driver.
68 Sybase Avaki EII API Guide



Setting up your application to use a JDBC driver
For jConnect
See jConnect documentation for information on connection properties.

For the Avaki JDBC driver
The properties are optional except as noted. Login properties (some of which are 
required) are listed first, followed by other properties in alphabetical order. 

Connection property Description

user=<user-name> Specifies the name of the user account you’re using to connect to the data 
grid. Required.

password=<password> Specifies the user’s password. Required.

auth-service=
<auth-service-name>

Specifies the Avaki authentication service that the user account belongs 
to. 
Default value: DefaultAuthService

auth-type=
<auth-service-type>

Specifies the type of the authentication service: Grid, Nis, or Ldap.
Default value: Grid

auth-domain=
<grid-domain-name>

Specifies the name of the Avaki domain to log in to.
Defaults to the local domain of the grid server specified in the connection 
string.

adhoc-dbconn= 
[<grid-domain-name>.]
<dbconn-name>

Puts the JDBC driver in ad hoc mode, in which it sends database queries 
using the database connector you specify here. In this mode, Avaki is 
simply a pass-through to the underlying database. You have no access to 
SQL views, database operations, or data services when you use 
adhoc-dbconn.

domain-dbconn-delimiter=
<delimiter-character>

Specifies the character Avaki uses to separate the two elements of the 
JDBC schema name—the grid domain name and the database connector 
name. The JDBC schema name, which maps the Avaki namespace to the 
JDBC namespace, is returned by DatabaseMetaData.getProce-
dures(). “Bedrock.myDBconn” is an example of a schema name. The 
delimiter, which defaults to . (period), must be a single character that 
does not appear in your domain name.

Note: Some tools don’t properly handle a period delimiter in the schema 
name. If you have trouble viewing or executing Avaki database opera-
tions through a third-party database viewer, use this property to specify a 
different delimiter such as a hyphen.
Sybase Avaki EII API Guide 69



Using JDBC drivers
executionServiceHint=
<grid-server-name-or-
path>

By default, the Avaki JDBC driver directs select statements to the query 
service on the GDC, which load-balances the query execution to any grid 
server that has been pooled with the GDC. If you want to direct which 
grid server’s execution service will execute your queries, use execution-
ServiceHint. The query will be forwarded to that grid server directly for 
processing.

externalCacheService=
<cache-service-path>

Required if you want to use an Avaki cache service. Specify the full path 
in the data catalog for the cache service you want to associate with your 
Java program. For example, /System/LocalDomain/Servers/myGrid-
Server/Services/CacheService.

FAKE_METADATA=
{true | false}

Required if you’re using jConnect 5.x with Sybase ASE; do not use with 
other JDBC driver/RDBMS pairs. Set FAKE_METADATA to true for jCon-
nect 5.x/ASE.

Default value: false

hideCatalogs=
{true | false}

Some packaged applications such as Crystal Reports and BusinessOb-
jects cannot deal with databases that support full three-part names of the 
form <catalog>.<schema>.<table/view/procedure>.

In Avaki, the domain name is mapped to <catalog>, and <schema> maps 
to one of the following:

• The name of a database connector
• The name of a deployed metadata model containing mapped tables
• The literal “dataservice” (for data services and virtual SQL views gen-

erated from them)
• The literal “VirtualDb” (for virtual database operations and virtual 

SQL views generated from them)

If you set hideCatalogs to true, the Avaki JDBC driver returns metadata 
that indicates that Avaki does not support catalogs in its schema. You can 
then use two-part names of the form <schema>.<object> and Avaki 
defaults to the current domain as the catalog.

Default value: false

Connection property Description
70 Sybase Avaki EII API Guide



Setting up your application to use a JDBC driver
You can specify connection properties using a Properties object on the getConnection 
call or in the URL (connection string) itself.

Avaki supports two different syntaxes for DriverManager.getConnection:
DriverManager.getConnection(String url, Properties info)

DriverManager.getConnection(String url, String user, 
String password)

The first syntax is shown in “JDBC driver code example” on page 78.

Connection strings

For jConnect
The syntax of the grid server connect string (also called connection URL) for jConnect 
is

jdbc:sybase:Tds:<GDC-machine>:15000[/<database-name>] 
[?<first-property>=<value>][&<additional-property>=<value>]+

In the syntax above:
<GDC-machine> specifies the DNS name of the machine on which the Avaki 
domain controller is running.

15000 is the default TDS port used by jConnect. If you need to use a different port, 
set the port number with the com.sybase.avaki.tdsPort system property. For instruc-
tions on setting system properties, see the Sybase Avaki EII Administration Guide.

<database-name> specifies the database to connect to. Optional.

queryCacheTTL=
<number-of-milliseconds>

Controls whether the results of SQL queries are cached by the JDBC 
driver and specifies the number of milliseconds after a SQL query is exe-
cuted during which the JDBC driver returns cached results if the exact 
same SQL query is re-executed by the application. (The two queries must 
be identical. Even minor changes that don’t necessarily affect the mean-
ing of the query—such as the addition or removal of spaces, semicolons, 
and parentheses—cause the JDBC driver to re-execute the query in the 
virtual database.) Note that this property does not affect stored procedure 
results, which are not cached.

Default value: 0 (do not cache)

Connection property Description
Sybase Avaki EII API Guide 71



Using JDBC drivers
<first-property>=<value> and <additional-property>=<value> specify connection 
properties and their values. Notice that <first-property> is preceded by ? (question 
mark) and each <additional-property> is preceded by & (ampersand). Optional.

For example:
jdbc:sybase:Tds:myMachine.sybase.com:15000

jdbc:sybase:Tds:myMachine.sybase.com:15000/myDatabase?user=Admini
strator&password=SY4evr

Connection conn = 
DriverManager.getConnection("jdbc:sybase:Tds:localhost:15000", 
"Administrator", "SY4evr");

For the Avaki JDBC driver
The syntax of the grid server connection string (also called connection URL) for the 
Avaki driver is

jdbc:avakisql:@<GDC-machine>[:<grid-port>]
[;<property-name>=<value>]+

In the syntax above:
<GDC-machine> specifies the DNS name of the machine on which the Avaki 
domain controller is running.

<grid-port> specifies the connect (JNDI) port of the GDC. Optional; defaults to 
3099.

<property-name>=<value> specifies a connection property (from “Connection 
properties” on page 68) and its value. Insert a semicolon before each 
property=value pair. Optional.

For example:
jdbc:avakisql:@myMachine.sybase.com

jdbc:avakisql:@myMachine.sybase.com:1017;user=Administrator;passw
ord=SY4evr;auth-domain=Burlington

Connection conn = 
DriverManager.getConnection("jdbc:avakisql:localhost:1017;adhoc-d
bconn=my-db-conn", "Administrator", "SY4evr");
72 Sybase Avaki EII API Guide



Setting up your application to use a JDBC driver
Data services
You can use JDBC’s CallableStatement syntax to call data services via the JDBC 
drivers. Data services are exposed as callable procedures. Results are returned as a 
JDBC result set.
The syntax of the data service pointer is:

CallableStatement stmt = conn.prepareCall(
"{[? =][<grid-domain-name>].dataservice.
<data-service-name> [...]}")

<grid-domain-name> specifies the name of the Avaki domain in which the data ser-
vice is located. This is optional. Specify this if the data service you require is not in the 
same grid domain specified in the connection string.
<data-service-name> specifies the name of the Avaki data service that provides 
the data your application needs.
When you call data services, be sure to pass any parameters in the order in which they 
appear in the data service descriptor, in Avaki Studio, and in the web UI. To display a 
web UI page that includes a properly ordered list of the parameters for a data service, 
log in to the web UI and navigate to the View Data Services screen:
Home > Data source management > View data services

Then click the View/Edit link for the data service of your choice.

Database operations
You can use JDBC’s CallableStatement syntax to call database operations via a 
JDBC driver. Database operations are exposed as callable procedures. Results are 
returned as a JDBC result set.

The syntax of the database operation pointer is: 
CallableStatement stmt = conn.prepareCall(

"{[? =][<grid-domain-name>].<db-connector-name>.
<dbop-name> [...]}")

In the syntax above:
? = is used if the call returns output parameters.

<grid-domain-name> specifies the name of the Avaki domain in which the data-
base operation is located. This is optional. Include this if the database operation you 
require is not in the same grid domain specified in the connection string.
Sybase Avaki EII API Guide 73



Using JDBC drivers
<db-connector-name> specifies the name of the Avaki database connector that 
connects to your database. If you’re calling a virtual database operation, use the 
value “VirtualDb”.

<dbop-name> specifies the name of the Avaki database operation (or virtual data-
base operation) that provides the data your application needs.

Note You cannot call Avaki database operations with the Avaki JDBC driver 
when the driver is in ad-hoc mode (using the adhoc-dbconn property).

Pass-through ad-hoc queries
In ad-hoc mode, the Avaki JDBC driver passes all JDBC operations directly to the 
RDBMS JDBC driver that is running in the grid server. In this mode you can perform 
almost all JDBC operations that the RDBMS driver will support. Using a CallableState-
ment in ad-hoc mode results in a call to a stored procedure or function in the back-end 
RDBMS, and not to a grid operation.

Note Do not specify ad-hoc mode if you want to query SQL views in the Avaki 
virtual database. A regular JDBC connection gives you full access to SQL views 
as well as database operations and stored procedures.

An example of ad-hoc usage:
Connection conn = 

DriverManager.getConnection("jdbc:avakisql:localhost;
adhoc-dbconn=my-dbci",
"Administrator", "Administrator");

Statement s = conn.createStatement();
s.execute("select * from emp");
ResultSet rs = s.getResultSet();

PreparedStatement ps = conn.prepareStatement("select * from
emp where ename = ?");

ps.setString(1, "FRED");
ps.execute();
ResultSet rs = ps.getResultSet();
74 Sybase Avaki EII API Guide



JDBC support
JDBC support
This section briefly describes the scope of JDBC support in Avaki.

DatabaseMetaData
This section provides details on how Avaki uses the java.sql.DatabaseMetaData inter-
face. The following methods get information about the Avaki domain and its data 
resources:
• getCatalogs() returns a single row containing the name of the current Avaki 

domain. (That is, the Avaki domain name maps to “catalog” in JDBC.) If there are 
interconnected domains, getCatalogs() returns a row for each interconnected 
domain as well.

• getCatalogTerm() returns “Domain”

• getSchemaTerm returns “SCHEMA”

• getSchemas() returns the following:
— One row that corresponds to each database connector

— One row containing “dataservice”, which is the schema for all data services

— “VirtualDb”, which is the schema for virtual database operations and SQL views 
generated from them

— One row that corresponds to each deployed metadata model. Model names take 
the form [<catalog>.]<schema>, so if a model is deployed as foo.bar, the schema 
name returned will be “bar.” For a model deployed as foo, the schema name 
returned will be “foo.” (The catalog name is not returned.) For more on metadata 
models, see Data Integration with Sybase Avaki Studio.

As long as table/view names are unique, you don’t need to qualify them with catalog 
and schema names in select statements.

The table type for provisioned SQL views is “TABLE”; for virtual SQL views (that is, 
SQL views generated from database operations or data services) it is “View”.
Sybase Avaki EII API Guide 75



Using JDBC drivers
Supported result set types
Avaki supports the following result set types:

<ResultSetType> only ResultSet.TYPE_FORWARD_ONLY is supported. Avaki 
does not support scrollable result sets.

 <ResultSetConcurrency> only ResultSet.CONCUR_READ_ONLY is sup-
ported. Avaki does not support updatable result sets.

<ResultSetHoldability> only ResultSet.HOLD_CURSORS_OVER_COMMIT 
is supported. Avaki supports only holdable cursors.

Error messages
If your program attempts a JDBC operation not supported by Avaki, Avaki generates 
an exception; the stack trace of the exception will contain an error message explaining 
the problem. For example, if you specify the ResultSetType in prepareCall as 
ResultSet.TYPE_SCROLL_SENSITIVE, which Avaki does not support, you will 
see:

Execution of Avaki DBO failed.

com.avaki.core.sql.SQLKeyedException: Unsupported 
ResultSet type indicated.

Data types
Access to a database through the Avaki JDBC driver supports all the basic JDBC data 
types. These are:

CHAR, VARCHAR, and LONGVARCHAR 
BINARY, VARBINARY, and LONGVARBINARY 
BIT 
TINYINT 
SMALLINT 
INTEGER 
BIGINT 
REAL 
DOUBLE 
FLOAT 
DECIMAL and NUMERIC 
DATE, TIME, and TIMESTAMP 

In addition, the following advanced data types are supported: BLOB and CLOB. 
Because these types are stored in memory as a single atomic unit and not streamed, 
their maximum size depends on your JVM heap space size.
76 Sybase Avaki EII API Guide



JDBC support
The following advanced types are not supported:
ARRAY 
DISTINCT 
STRUCT 
REF 
JAVA_OBJECT 

For a full description of JDBC data types, read the following Sun specification docu-
mentation. This material also explains how JDBC types are mapped on to the underly-
ing database types.

http://java.sun.com/j2se/1.4.1/docs/guide/jdbc/getstart/map
ping.html#996857

Batch mode
Avaki supports JDBC batch mode. To use JDBC batch mode, you first create a callable 
statement, then set parameters for each separate call on that statement and call 
addBatch between sets. Next, call executeBatch, and all of the statements that you 
batched up will get sent out. The following code provides an example:

CallableStatement stmt = connection.prepareCall("{call 
dbci.dbo(?, ?)}");

stmt.setInt(1, 1);
stmt.setString(2, "Tom");
stmt.addBatch();

stmt.setInt(1, 2);
stmt.setString(2, "Dick");
stmt.addBatch();

stmt.setInt(1, 3);
stmt.setString(2, "Harry");
stmt.addBatch();

stmt.executeBatch();

If this callable statement inserts the given data in a table, it creates the following table 
in the database:

Number Name
________________
1 | Tom
2 | Dick
3 | Harry
Sybase Avaki EII API Guide 77

http://java.sun.com/j2se/1.4.1/docs/guide/jdbc/getstart/mapping.html#996857


Using JDBC drivers
JDBC driver code example
The code in this section is a functioning example of how to use the Avaki JDBC driver. 
You can use it as a model to build your own applications.

To run the sample code, you need a database operation that selects rows from a data-
base. If you don’t have such a database operation, see the Sybase Avaki EII Provision-
ing and Advanced Data Integration Guide or Data Integration with Sybase Avaki 
Studio for instructions on setting up database operations.

Follow these steps to run the example:

Step 1 Cut and paste the sample code into a source file named AvakiJDBCExample.java.

Step 2 Edit the file and change the connection properties (starting at the first pointer) to 
match your configuration. Specifically, change the host name in the string URL and in 
the cache service path; also change the user, password, and, if needed, the authentica-
tion service parameters.

Step 3 Change the qualified name of the database operation (at the second pointer) to that of a 
database operation in your system.

Step 4 Compile the program:
javac AvakiJDBCExample.java

Step 5 Set your CLASSPATH to include javaki_JDBCStandAlone.jar (located in the 
<Avaki-install-dir>\examples\lib directory). In Windows:

set CLASSPATH=c:\ADG\examples\lib\javaki_JDBCStandAlone.jar;.

Step 6 Run the program:
java AvakiJDBCExample

The program should display the number of rows returned by your database operation.

Here’s the code example:
import java.sql.*;
import java.util.Properties;

public class AvakiJDBCExample {

  public static void main(String args[]) {
    Connection con = null;
78 Sybase Avaki EII API Guide



JDBC driver code example
    CallableStatement cs;
    ResultSet rs;
    int rows;

// Attempt to load Avaki JDBC driver.
    try {
      String driver = "com.avaki.sql.Driver";

      Class.forName(driver).newInstance();
    }
    catch( Exception e ) {
      System.out.println("Failed to load Avaki JDBC driver.");
      e.printStackTrace();
      return;
    }

//  Attempt connection to Avaki Grid
try {

Properties avakiprops = new Properties();
String url = "jdbc:avakisql:@gridserver1.avaki.com:3099";

avakiprops.setProperty("user", "jdoe");
avakiprops.setProperty("password", "jdoepassword");
avakiprops.setProperty("auth-type", "Grid");
avakiprops.setProperty("auth-service", "DefaultAuthService");
avakiprops.setProperty("auth-domain", "mygrid");
avakiprops.setProperty("externalCacheService",
"/System/LocalDomain/Servers/gridserver2.company.com/
Services/CacheService");
con = DriverManager.getConnection(url, avakiprops);

}
catch ( SQLException e) {

System.out.println("Connection to Avaki Grid failed.");
e.printStackTrace();
return;

}

// Execute Avaki Database Operation via JDBC Driver
try {

cs = con.prepareCall("{call mygrid.mydbconn.mydbo(?)}",
ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_READ_ONLY,
ResultSet.HOLD_CURSORS_OVER_COMMIT);

cs.setString(1, "SCOTT");
rs = cs.executeQuery();

}
catch( SQLException e ) {

System.out.println("Excecution of Avaki DBO failed.");
e.printStackTrace();
Sybase Avaki EII API Guide 79



Using JDBC drivers
return;
}

// Perform simple action (count rows returned in ResultSet rs)
try {

int count = 0;

while (rs.next()) { count++; }
System.out.println(count + " rows returned.");

}
catch( SQLException e ) {

System.out.println("ResultSet traversal failed.");
e.printStackTrace();
return;

}

// Close JDBC connection to Avaki Grid
if ( con != null ) {

try { con.close(); }
catch ( SQLException e ) {

System.out.println("Close of JDBC Connection Failed");
e.printStackTrace();

}
}

}
}

Using an ODBC driver
An ODBC (Open DataBase Connectivity) driver allows Avaki to communicate with 
Windows database applications. Avaki is compatible with and has been tested with the 
Sybase ODBC driver included with ASE 15.0. Instructions on setting up this ODBC 
driver are included in the documentation for Sybase ASE.

When you set up an application to use an ODBC driver to access Avaki data, include 
the following information to identify your data source:
• The name of the Avaki object providing the data—the data service, database opera-

tion, SQL view, or other object

• The name of the grid server machine on which the Avaki data source resides

• The port number for connecting to Avaki: 15000
80 Sybase Avaki EII API Guide



Using an ODBC driver
Here’s a sample Windows configuration screen for the Sybase ODBC driver: 

Naming Avaki objects that will be accessed by BusinessObjects. Don’t use 
underscore characters in the names of any Avaki provisioned tables, database opera-
tions or data services whose results you plan to access using the BusinessObjects 
query and analysis tool. BusinessObjects is not able to browse the columns of Avaki 
objects whose names include underscores.
Sybase Avaki EII API Guide 81



Using JDBC drivers
82 Sybase Avaki EII API Guide



Glossary
Terms printed in italics are defined in the glossary.

access control list
(ACL) A list, for a given file, directory, or other Avaki object, of permissions—read, write, execute, 
delete, and owner—that control which users and groups can view, modify, invoke, and remove the 
object, and edit the object’s ACL.

ACL
See access control list.

ad-hoc query
A mechanism that lets you directly query a database in SQL. The query must run through an existing 
Avaki database connector. You can run an ad-hoc query using either the CLI or a JDBC driver. 
Ad-hoc queries can be thought of as single-use database operations.

attribute
A property of an Avaki directory, file, service, or other object. Each attribute has a name, a type (string, 
integer, float, date, time, or timestamp) and a value. System attributes are read-only; you can change 
the values of other attributes. You can also create new attributes and add them to objects as needed.

authentication service
A service associated with an Avaki domain that authenticates an Avaki user’s identity and provides 
security credentials each time the user logs in. Avaki can be configured to use third-party directory 
services as authentication services for login; for user accounts created directly in the Avaki domain, 
Avaki uses its own default authentication service.
Sybase Avaki EII API Guide 83



Glossary
Avaki directory
Avaki software creates a single, unified namespace that is accessible (subject to Avaki access control 
lists) to all users in the Avaki domain. The namespace, called the data catalog, is arranged as a hierar-
chy of Avaki directories (folders). The catalog directory structure is stored by the domain’s grid serv-
ers and its GDC, while the physical files remain in their original locations in your local file systems. 
When you work with directories, it’s important to distinguish between Avaki directories, which are 
part of the data catalog, and local directories, which reside in your local file system.

Avaki domain
The basic administrative unit of the Avaki EII system. An Avaki domain consists, at a minimum, of 
one grid domain controller and may also include one or more grid servers, share servers, proxy serv-
ers, data grid access servers, and command clients. See also domain name.

Avaki group
A set of users who have the same permissions on one or more Avaki objects. You can use the group 
name in place of a user name when you set permissions or create access control lists.

Avaki installation directory
The directory in your local file system where Avaki software is installed. This is not a data catalog 
directory.

Avaki share
(Also shared directory.) A pointer in the Avaki data catalog to a directory or file in the underlying 
local file system. When you browse the data catalog, Avaki shares look like—and can be accessed 
like—other Avaki directories. Contrast with CIFS share.

Avaki server
A service that starts, stops, and monitors other Avaki services on a particular computer. Every server 
is part of an Avaki domain. A server is permanently attached to the computer where it is started. There 
are several types of server: data grid access servers, grid domain controllers, grid servers, share 
servers, and proxy servers.

Avaki Studio
A graphical, metadata-based data integration tool that lets you 
• Build data flows by dragging and dropping input sources, operators, and output targets. You can 

deploy your data flows as Avaki data services.
• Import or create metadata models and apply them to Avaki objects or use them to build new data 

services.
84 Sybase Avaki EII API Guide



In addition, you can use Studio to perform provisioning tasks (creating database connectors, data-
base operations, virtual database operations, and SQL views), manipulate categories, and edit ad-hoc 
queries and attributes.

cache service
(Formerly proxy cache service.) A staging service that stores copies of files, database operation 
results, and data service results. Caching improves retrieval performance. To ensure that an object is 
stored in the cache, you can pin a file or directory in the data catalog, or schedule a database operation 
or data service. A cache service can provide remote caching, local caching, or both. The freshness of 
cached data is controlled by a data expiration interval that determines how long cached data is consid-
ered valid and by a cache coherence window that tells the cache service how often to check whether 
cached data is still valid. If cached data is too old to satisfy a new request (or is not stored in this 
cache), the cache service does one of the following:
• If the database operation or data service that produced the data is local to this cache service, the 

cache service triggers execution of the database operation or data service.
• If the database operation or data service that produced the data is remote from this cache service, 

this cache service requests the data from the data source’s local cache service.
A cache service can be associated with a data grid access server, a grid server, or a local user in a CLI 
session. See also local cache, remote cache, on-demand caching, and scheduled caching.

category 
A mechanism for classifying and organizing the contents of the data catalog. Like Avaki directories, 
categories serve as containers for objects in the data catalog. Anything in the data catalog—views, 
data services, shared files, even Avaki directories themselves—can be assigned to a category. Catego-
ries are hierarchical, they have attributes, and Avaki access control lists regulate access to them.

CIFS client 
A machine that mounts files or directories from the Avaki data catalog by connecting to a CIFS share 
through an Avaki data grid access server. A CIFS client need not have Avaki software installed. 
(CIFS—Common Internet File System—is a file-sharing protocol based on the file system imple-
mented by Windows.)

CIFS share 
A directory or file that has been exported (shared) from the Avaki data catalog. A CIFS share can be 
mapped into a Windows file system like a network drive. When you browse the Windows file system, 
CIFS shares look like—and can be accessed like—other files and directories. CIFS shares are created 
through a data grid access server. Contrast with Avaki share.
Sybase Avaki EII API Guide 85



Glossary
client
Avaki supports several types of client: Avaki Studio, CIFS clients, command clients, JDBC/ODBC cli-
ents, NFS clients, web clients, and WS clients.

command client 
A machine that can issue Avaki commands but does not contribute resources to the Avaki domain.

connect port 
The connect port on a grid domain controller, grid server, data grid access server, proxy server, or 
share server accesses the JNDI naming service or RMI registry for the underlying application server. 
The connect port is one of many ports that a GDC or server uses to communicate with other Avaki 
objects. You must supply the connect port number of a target grid server or GDC whenever you con-
nect a new object (another server, a copy of Avaki Studio, or a command client, for example) to an 
Avaki domain. When you interconnect two Avaki domains, you must supply each domain’s connect 
port number to the other one.

data catalog 
A hierarchical structure similar to a file system that encompasses all objects in an Avaki domain. The 
data catalog contains Avaki directories and files, Avaki shares, Avaki servers, SQL views, database 
operations and data services, and other objects.

data grid access server
(DGAS) An Avaki server that makes Avaki directories and their contents available to CIFS clients and 
NFS clients.

data service
An operation that transforms data obtained from sources in the data catalog. Input data can come 
from any number of sources, including: 
• other data services

• data catalog files (which can be generated views)

• Avaki database operations (which in turn extract the data from relational databases)

• HTTP requests

• Web service invocations
You can generate the code that manipulates the data by creating a view model in Avaki Studio, or by 
writing a custom data service plug-in using Java, JavaScript, or XSLT. Data service output can be in 
rowset or XML format. Data services are run by the execution services on grid servers, they can be 
scheduled, and their results can be cached.
86 Sybase Avaki EII API Guide



data service plug-in
The logic for a data service, written in Java, JavaScript, or XSLT. Data service plug-ins are modular—
you can use the same plug-in for multiple data services. Avaki Studio creates data services and 
plug-ins simultaneously, so if you use Avaki Studio to create data services, you don’t have to worry 
about plug-ins. You can also use the Avaki Plug-in Wizard to create data service plug-ins.

database connector
A mechanism that enables one or more database operations, SQL views, or ad-hoc queries to connect 
to a relational database.

database operation
(DBOP) A mechanism that can
• extract data from a relational database and deliver it on demand to a view generator or a data 

service, or
• modify data in a relational database.

 A database operation can be a SQL statement or a stored procedure call.

dependency
A relationship in which an Avaki object requires input from other Avaki objects. A data service might 
require input from one or more database operations or from other data services. A view generator 
might depend on a database operation for input. A database operation can serve as an input source for 
one or more data services or view generators. Generated SQL views depend on database operations, 
virtual database operations, or data services. You can use Avaki Studio, the web UI, or the CLI to list 
input and output dependencies for any data service, database operation, or view.

DGAS
See data grid access server.

distributed transaction
A set of related operations (typically SQL operations such as SELECT, INSERT, UPDATE, DELETE, 
and CALL) that
• involve one or more databases, and

• might lead to unwanted results (such as leaving participating databases in an inconsistent state 
or producing inconsistent reads) if some of the operations complete and others do not, and there-
fore

• must all be executed at once, as a single transaction.
Sybase Avaki EII API Guide 87



Glossary
The individual operations that make up a distributed transaction are performed by database opera-
tions that use database connectors configured with XA-capable JDBC drivers; all the database opera-
tions are executed, using the two-phase commit protocol, by a specially configured data service. The 
two-phase commit protocol is designed to ensure that the participating databases will be left in a con-
sistent state—that is, that all the operations in the distributed transaction will be completed, or none of 
them will.

domain name
A unique alphanumeric identifier for an Avaki domain. The domain name is assigned by the Avaki 
administrator when the Avaki domain is initialized. The domain name has a maximum length of 30 
characters.

enterprise information integration
(EII) A software system that
• enables applications and users to access, without replication, both raw and integrated data from 

multiple heterogeneous distributed data sources while hiding the complexity of the data sources, 
and

• provides tools enabling users and data owners to further integrate and transform data.

exclusion
See schedule exclusion.

execution service
Execution services execute data services. There is an execution service on every grid server, and you 
can configure a pool of execution services for load-sharing. When a pool is in place, a data service 
can be run by any execution service in its grid server’s pool.

failover
The transition of control from a failing or unreachable primary grid domain controller to a secondary 
grid domain controller.

federated data access
A scheme that allows independently controlled elements to be shared into a single namespace. Files, 
user accounts, and other objects maintain their separate identities and remain under the control of 
their owners, but—subject to access controls—the objects can be accessed, managed, and viewed as 
if they were part of a single system.

GDC
See grid domain controller.
88 Sybase Avaki EII API Guide



generated view
A file created by a view generator; it may contain data obtained from a database operation, a data 
service, a file, or an HTTP source. Like other files, generated views exist in a local file system and are 
shared into the data catalog.

grid
A heterogeneous group of networked resources that appears and functions as one operating environ-
ment. A data grid like the Avaki Enterprise Information Integration (EII) system provides secure, 
shared access to data.

grid directory
See Avaki directory.

grid domain
See Avaki domain.

grid domain controller
(GDC) The first server in an Avaki domain is the grid domain controller. The GDC maintains a portion 
of the Avaki domain’s namespace and provides authentication services. It can also run Avaki com-
mands, share data, and monitor other servers. (That is, the GDC functions as a grid server.) If the 
domain is configured for failover, it has both a primary GDC and a secondary GDC; the secondary is 
updated at regular intervals and takes over management of the domain if the primary fails. Any Avaki 
shares managed by the primary are read-only on the secondary.

grid server
An Avaki server that maintains a portion of the Avaki domain’s namespace, runs Avaki services such 
as shares, execution services, caches, and searches, and allows you to run Avaki’s web UI and execute 
Avaki commands.

group
See Avaki group.

hard link
Provides an alternate name for an item in the data catalog. Changes to the object’s other names have 
no effect on the hard link: you can move or change a file’s original name and the hard link will still 
know where to find the file. To delete a hard-linked object, you must remove its original name. Con-
trast with soft link.
Sybase Avaki EII API Guide 89



Glossary
interconnect
To create a unidirectional link from one Avaki domain to another. Interconnecting lets an Avaki 
domain make its data catalog visible to users in another domain (subject to Avaki access controls).

JDBC driver
JDBC (Java Database Connectivity) drivers allows application programmers to access database data 
shared in the data catalog. When a JDBC driver accesses data, it returns a JDBC result set that’s 
immediately available to your program. JDBC drivers can:
• Call any data service in the data catalog

• Call any database operation in the data catalog

• Perform SQL select operations against SQL views in the data catalog
Sybase offers three JDBC drivers for use with Avaki EII software:
• The included Avaki JDBC driver

• jConnect, Sybase’s standard JDBC driver

• An XA-capable driver for use with database connectors that support distributed transactions

link
See hard link, soft link.

local cache
A cache service that runs on the same grid server as a database operation or a data service that gen-
erates cachable data. The local cache stores results produced by local database operations and data 
services so they don’t have to execute for every new request. See also remote cache.

metadata model
A construct in Avaki Studio that expresses a schema by defining a set of tables. A table in a metadata 
model can be mapped (linked) to an Avaki object such as a data service or a database operation, or to 
a table in a relational database. The mapping lets you address each mapped object by the name of the 
corresponding table in the metadata model. You can also derive a view model schema from a metadata 
model. When you do this, you ensure that the results of any data service deployed from the view 
model will conform to the metadata model’s schema.

NFS client
A machine that mounts the Avaki data catalog (or a portion of it) as a directory by connecting to an 
Avaki data grid access server. An NFS client need not have Avaki software installed. (NFS—Network 
File System—lets you add file systems located on a remote computer to the directory structure on 
your own computer.)
90 Sybase Avaki EII API Guide



ODBC
ODBC (Open DataBase Connectivity) is an API for databases on Windows. An ODBC driver (such as 
the the Sybase Organic ODBC driver included with Sybase ASE) allows Avaki to communicate with 
Windows database applications.

on-demand caching
A scheme by which an object is cached only if it’s used—for example, results are cached when a 
database operation or a data service is executed, or a file is cached when a user or application reads 
it. On-demand caching uses a fixed expiration interval to determine data freshness. On-demand cach-
ing is suitable for objects that are rarely accessed or that change at irregular intervals. Contrast with 
scheduled caching.

pin
To mark an Avaki directory or file for scheduled caching. See also cache service.

plug-in
See data service plug-in.

primary GDC
See grid domain controller.

proxy server
An Avaki server that allows Avaki domains on opposite sides of a firewall or a Network Address 
Translator (NAT) to communicate with one another.

queries
See ad-hoc query.

query engine
An Avaki service that executes SQL queries against the SQL views (tables) that make up the Avaki vir-
tual database. A query engine analyzes queries, pushes as much of the work as possible down to the 
underlying relational database (if there is one), and performs the remaining operations (such as joins 
across tables from different databases) itself. There is a query engine on each grid server.

remote cache
A cache service that runs on a grid server that is remote from an Avaki service (a database operation 
or a data service) that generates cachable data. The remote cache stores results produced by distant 
services so the results don’t have to be fetched over the network to satisfy every new request. Users 
and applications that access remote data through the cache may have access to cached copies even 
when the remote data source is unavailable. See also local cache.
Sybase Avaki EII API Guide 91



Glossary
scheduled caching
A scheme by which an object is cached according to a schedule that you create. The schedule specifies 
when the object is first cached and how often (or following what trigger event, such as a change to a 
file) the cache is refreshed. If the object is a data service or a database operation, the schedule runs it 
to put fresh results in the cache. Scheduled caching, which overrides other types of caching, is suitable 
for objects that are updated frequently or on a regular basis. Contrast with on-demand caching.

schedule exclusion
A named period of time during which scheduled activities can be prevented from running. You can 
apply an exclusion to as many schedules as you want. Scheduled activities include refreshing Avaki 
shares and imported user accounts, and caching files, directories, and the results of database opera-
tions, data services, and generated views.

secondary GDC
See grid domain controller.

service
An Avaki object that performs a function in the domain (stores data or authenticates users, for exam-
ple). Services provided in Avaki software include Avaki directories, Avaki shares, Avaki servers, 
authentication services, execution services, and user accounts.

share
A point of connection between the Avaki data catalog and a native file system or file system tool. 
Avaki supports two kinds of shares: Avaki shares and CIFS shares.

share server
An Avaki server whose only task is to manage Avaki shares—local directories that are exported 
(shared) into the data catalog. (Grid servers can also manage shares.)

shared directory
See Avaki share.

soft link
A pointer to a particular location (name) in the Avaki data catalog. If the object at that location is 
moved, deleted, or renamed, the soft link leads nowhere. Soft links can be created only in the CLI. 
Contrast with hard link.

SQL view
A virtual table—a data catalog entry that represents a table in a relational database, a database oper-
ation, or a data service. SQL views can be created in three ways: 
92 Sybase Avaki EII API Guide



• Provisioned directly from a table in an underlying database

• Generated from a database operation or data service

• Mapped from a database table, a database operation, or a data service, using the Avaki Studio 
metadata model editor

Every SQL view is part of the Avaki virtual database. SQL views are treated as relational tables by the 
Avaki query engine. SQL view data can be accessed using standard SQL statements by connecting to 
Avaki with ODBC or JDBC, or via an Avaki virtual database operation.

update notification
A message issued when a generated view is updated. A view that receives data from another view can 
be configured to regenerate itself (using the new data) upon receipt of an update notification.

view generator
A mechanism that does one of the following: extracts data from a file or an HTTP source, obtains data 
from an Avaki data service, or uses an Avaki database operation to extract data from a relational 
database. The view generator can display the data, perform an XSLT transform, save the data as a gen-
erated view file, and/or update a database. Contrast with data service.

view model
The graphical representation of a data flow that you can build in Avaki Studio. A view model typically 
includes one or more input sources (such as database operations or data services), one or more oper-
ations to combine or transform the data, and an output target. When you deploy a view model, it 
becomes an Avaki data service.

virtual database
The set of all SQL views in an Avaki domain, including those provisioned from external databases and 
those generated from data services and database operations. You can execute SQL queries on the 
SQL views in the virtual database as if they were tables in a single database.

virtual database operation
A database operation whose source database is the Avaki virtual database itself. Use virtual database 
operations if you want to encapsulate and reuse SQL SELECT queries against SQL views (provisioned 
or generated).

web services client
See WS client.
Sybase Avaki EII API Guide 93



Glossary
WS client 
(Also web services client.) A tool or a piece of code that is part of a customer application and that 
makes SOAP calls to web services on an Avaki grid server. The SOAP calls can request data from the 
Avaki data catalog, from a database operation, or from a data service.
94 Sybase Avaki EII API Guide



Master Index
Key

AD:  Administration Guide
API:  API Guide

C:  Command Reference
O:  Overture

P:  Provisioning & Advanced Data Integration Guide
S:  Data Integration with Avaki Studio

In electronic copies of this book, the index links to other 
books in the documentation set work only as long as the 
PDF files are stored in the same directory.
Symbols
* asterisks in command syntax AD:xvi, C:xv, P:xi
- hyphens in command syntax AD:xvi, C:xvi, P:xii
+ plus signs in command syntax AD:xvi, C:xv, P:xi
.amm files S:11
.avm files S:11
.js files S:11
.jsi files S:11, S:75

sample S:115
.NET

AvakiAPI.disco WSDL discovery file API:3
sample web services client API:9
SSL certificates API:9

.project files S:11
< > angle brackets in command syntax AD:xvi, API:vii, C:xv, 

P:xi
= equal signs in command syntax AD:xvi, C:xvi, P:xii
[ ] square brackets in command syntax AD:xv, C:xv, P:xi
_ (underscore) characters in Avaki names API:81
{ } curly brackets in command syntax AD:xv, C:xv, P:xi
| vertical bars in command syntax AD:xv, C:xv, P:xi

A
About My Domain screen AD:98
AbstractTransformer class P:243
AbstractTransformerFactory class P:244
access control in view models S:74
access control lists, See ACLs
accessibleDBOp SOAP operation API:42
accessibleDS SOAP operation API:36
accessiblePath SOAP operation API:19
accounts for grid users, See users AD:167
ACLs

about O:45
adding users and groups AD:243

ACLs (continued)
defined AD:349, API:83, C:307, O:61, P:289, S:175
deny permissions ineffective for owners, admins O:46
displaying AD:237, C:186
for database operations P:22, P:36
for SQL views P:46
granting or denying access to everyone O:44
in grid groups O:43
interpreting O:48
modifying AD:239, C:41, S:97
on cached objects O:50
on new Avaki shares AD:261
on new files O:49
ownership AD:242, O:46
permissions in AD:242, AD:307
removing users and groups from AD:242
sample O:45
setting for a grid object AD:171
setting for database operations P:14
using interconnect IDs to add users and groups to AD:304

Active Directory AD:148
domain users group AD:157, AD:159, C:155
See also authentication services, LDAP AD:148

addInputParameter JavaScript method for data service 
plug-ins P:202

addInputStream JavaScript method for data service 
plug-ins P:202

ad-hoc queries
as web services

AdHocDBOPExecutionParams complex type API:13
executeAdHocDBOp SOAP operation API:43
executeAdHocDBOpWithOutput SOAP operation API:44
executeAdHocDBOpWithOutputAttach SOAP 

operation API:46
executeAdHocDBOpWithOutputString SOAP 

operation API:47
Master Index Index-1



AD: Administration Guide     API: API Guide     C: Command Reference     O: Overture
ad-hoc queries (continued)

code samples API:74
defined AD:349, API:83, C:307, O:61, P:289, S:175
enabling C:66
enabling on a database connector P:4
executing C:63
on virtual database

executing C:282
parameter types, specifying C:283

parameter types, specifying C:65
using JDBC driver to run API:69, API:74

AdHocDBOPExecutionParams complex type API:13
administrative user accounts, setting up AD:44
Administrators group O:43

about AD:45
permissions for AD:240

admission policies AD:332
about AD:85
adding C:91
creating AD:87
deleting AD:88, C:97
displaying C:114
displaying Windows domains for C:114
setting default policies C:112
setting Windows domain info C:111
unsetting Windows domains for C:116

aggregate functions S:110
in SQL statements, aliasing column names for P:25

Aggregate operator S:108
AIX requirements AD:3
algorithms for join operator S:155
aliases

for column names P:25, S:42
aliases for GDC machines AD:10

Allow permission in ACL AD:243, O:48
angle brackets in command syntax AD:xvi, API:vii, C:xv, P:xi
Apache Ant for compiling data service plug-ins P:184
Apache Axis API:5

data catalog example API:18
data service example API:35
database operations example API:42

APIs
data catalog API:18
data services API:34
database operations API:40
for data service plug-ins

about P:185
distributed transaction API P:188
general data service API P:186

TrAX (Transformation API for XML) P:243
web services

about API:2
data service API:35
reference API:11

AROMValue parameters P:212
As is permission in ACL AD:242
ASE, see Sybase ASE

asterisks in command syntax AD:xvi, C:xv, P:xi
attribute --delete command C:19
attribute --list command C:19
attribute --update command C:21
attributes

about AD:245
configuring for SQL views P:44
creating AD:248

and modifying S:100
defined AD:349, API:83, C:307, O:61, P:289, S:175
deleting AD:254, C:19
displaying AD:246
displaying details about C:19
ldap/importOnDemand AD:158
nis/importOnDemand AD:164
of cache services C:291
of grid servers C:290
of patches C:290
searching on AD:233
setting values AD:252, C:21
system attributes AD:248
types of AD:250, C:22, S:101
user-defined attributes AD:248
who can edit S:101

audit logging
about O:14
configuring AD:319
events captured by AD:322

audit logs AD:108
authentication in Avaki O:41

using AvakiPrincipal API:13
authentication services

configuring default groups C:218
configuring default users C:220
configuring GIDs C:217, C:221
configuring UIDs C:219, C:222
defined AD:349, API:83, C:307, O:61, P:289, S:175
deleting AD:166
displaying information about AD:166
grid, creating groups on C:141
LDAP

adding schedule exclusions for refreshing C:152
adding search bases C:160
deleting authentication services C:153
deleting import schedules C:154
deleting search bases C:160
displaying information about C:157
enabling users C:250
importing groups from AD:159, C:155
importing users from AD:157, C:155
integrating into the grid AD:148, C:157
listing import schedules C:158
scheduling refreshes AD:185
scheduling user imports C:149
setting page size for imports AD:145
updating C:160
Index-2 Master Index



P: Provisioning & Advanced Data Integration Guide     S: Data Integration with Avaki Studio
authentication services (continued)

NIS
adding schedule exclusions for refreshing C:180
deleting authentication services C:181
deleting import schedules C:181
displaying info about C:183
enabling users C:250
importing groups from AD:165, C:182
importing users from AD:164, C:182
integrating into the grid AD:162, C:184
listing import schedules C:184
scheduling user imports C:177
updating C:185

refreshing imported accounts AD:185
specifying for JDBC connections API:69
types O:41

specifying for JDBC connections API:69
authentication using AvakiPrincipal API:9
auto-restart

about AD:37, C:5
configuring for a DGAS C:5
configuring for a GDC AD:38, C:9
configuring for a grid server AD:51, C:9
configuring for a proxy server C:12
configuring for a share server C:15

avaki attribute --delete C:19
avaki attribute --list C:19
avaki attribute --update C:21
avaki backup C:23
avaki cache --evict C:24, C:32
avaki cache --evict --all C:25
avaki cache --evict --deleted C:26
avaki cache --get C:27
avaki cache --invalidate C:27
avaki cache --invalidate --all C:28
avaki cache --invalidate-dataservice-results C:29
avaki cache --invalidate-dbop-results C:30
avaki cache --list C:31
avaki cache --set C:33
avaki cache --unset C:34
avaki cat C:35
avaki categories --add-to-category C:35
avaki categories --create C:36
avaki categories --delete C:37
avaki categories --describe C:37
avaki categories --list C:38
avaki categories --remove-from-category C:38, C:40
avaki categories --set-description C:39
avaki cd C:41
avaki chmod C:41
avaki chown C:42
avaki client C:45
avaki client --connect command AD:94
avaki cp C:46
avaki database operation --list-schedules C:88
avaki dataservice --add-schedule C:48
avaki dataservice --create C:52

avaki dataservice --delete C:52
avaki dataservice --delete-schedule C:54
avaki dataservice --depends C:54
avaki dataservice --execute C:55
avaki dataservice --generate-sql view C:56
avaki dataservice --info C:57
avaki dataservice --list-schedules C:58
avaki dataservice --update C:58
avaki dbconn --allow-dbop-creation C:59
avaki dbconn --delete C:61
avaki dbconn --disallow-dbop-creation C:62
avaki dbconn --execute C:63
avaki dbconn --info C:64
avaki dbconn --jdbc C:66
avaki dbconn --provision-tables C:71
avaki dbconn --show-tables C:73
avaki dbconn --test C:72
avaki dbop --add-schedule C:73
avaki dbop --delete C:78
avaki dbop --delete-schedule C:78
avaki dbop --depends C:79
avaki dbop --execute C:80
avaki dbop --generate-sql view C:82
avaki dbop --info C:83
avaki dbop --jdbc C:83
avaki dbop --jdbc --create-virtual-dbop C:87
avaki dgas --add-admission-policy C:91
avaki dgas --add-group-mapping C:92
avaki dgas --add-user-mapping C:94
avaki dgas --cifs-share-info C:95
avaki dgas --clear-cached-credentials C:95
avaki dgas --create-cifs-share C:96
avaki dgas --delete-admission-policy C:97
avaki dgas --delete-cache C:98
avaki dgas --delete-cifs-share C:99
avaki dgas --delete-group-mapping C:99
avaki dgas --delete-user-mapping C:100
avaki dgas --disconnect-cifs-client C:101
avaki dgas --get-cache-size C:101
avaki dgas --get-cache-statistics C:102
avaki dgas --get-free-disk-space C:102
avaki dgas --get-properties C:103
avaki dgas --get-property C:103
avaki dgas --get-property-list C:104
avaki dgas --initialize C:104
avaki dgas --list-cifs-clients C:105
avaki dgas --list-cifs-shares C:105
avaki dgas --list-group-mappings C:106
avaki dgas --list-user-mappings C:106
avaki dgas --modify-cifs-share C:107
avaki dgas --read-log-properties C:107
avaki dgas --reset-cache-statistics C:108
avaki dgas --save-cache C:109
avaki dgas --self-map C:109
avaki dgas --self-unmap C:111
avaki dgas --set-admission-policy-domain C:111
avaki dgas --set-default-admission-policy C:112
avaki dgas --set-property C:113
Master Index Index-3



AD: Administration Guide     API: API Guide     C: Command Reference     O: Overture
avaki dgas --show-admission-policies C:114
avaki dgas --show-admission-policy-domain C:114
avaki dgas --sync-cache C:115
avaki dgas --unset-admission-policy-domain C:116
avaki dgas --unset-property C:117
Avaki directories, See directories, Avaki
avaki directory --add-schedule C:117
avaki directory --cache C:122
avaki directory --delete-schedule C:122
avaki directory --do-not-cache C:126
avaki directory --list-schedules C:126
avaki domain --create C:127
avaki domain --disconnect C:127
avaki domain --info C:128
avaki domain --interconnect C:128
Avaki domains, See domains, Avaki
Avaki EII software

overview O:1
typical deployment O:17

avaki executionservice --info C:129
avaki executionservice --set C:129
avaki file --add-schedule C:130
avaki file --cache-on-demand C:134
avaki file --delete-schedule C:135
avaki file --do-not-cache C:136
avaki file --list-schedules C:136
avaki file --pin C:137
Avaki functions S:73
Avaki Functions menu S:74
avaki group --add --user C:138
avaki group --create C:141
avaki group --delete C:143
avaki group --delete --user C:144
avaki group --info C:145
avaki group --list-user C:147
avaki help C:148
avaki id C:149
Avaki installation directory AD:350, API:84, C:308, O:62, 

P:290, S:176
avaki ldap --add-schedule C:149
avaki ldap --delete C:153
avaki ldap --delete-schedule C:154
avaki ldap --import C:155
avaki ldap --info C:157
avaki ldap --integrate C:157
avaki ldap --list-schedules C:158
avaki ldap --searchbase C:160
avaki ldap --update C:160
avaki ln C:161
avaki locks --clear C:163
avaki locks --list C:164
avaki login C:164
avaki logout C:165
avaki ls C:166
avaki mkdir C:167
avaki monitor --add C:167
avaki monitor --clear C:168
avaki monitor --create C:170

avaki monitor --delete C:171
avaki monitor --list C:172
avaki monitor --result C:172
avaki monitor --start C:173
avaki monitor --stop C:174
avaki mv command C:176
avaki nis --add-schedule C:177
avaki nis --delete C:181
avaki nis --delete-schedule C:181
avaki nis --import C:182
avaki nis --info C:183
avaki nis --integrate C:184
avaki nis --list-schedules C:184
avaki nis --update C:185
avaki passwd C:185
avaki permissions C:186
Avaki perspective in Studio S:13
avaki plugin command P:184
avaki plugin --generate C:187
avaki proxy --add C:191
avaki proxy --delete C:191
avaki proxy --list C:192
avaki pwd C:193
avaki replica --add C:193
avaki replica --config command C:193
avaki replica --delete C:194
avaki replica --info C:194
avaki replicate --synch C:195
avaki rm C:195
Avaki rowset XML

class-name element P:279
column-display-size element P:279
column-index element P:279
core schema P:277
rowset-specific schema P:279
sample schema P:280
schema overview P:277

avaki schedule --delete C:196
avaki schedule --info C:197
avaki schedule --list C:197
avaki schedule --print-iterations C:198
avaki scheduleexclusion --create --custom C:198
avaki scheduleexclusion --create --daily C:199
avaki scheduleexclusion --create --monthly C:201
avaki scheduleexclusion --create --weekly C:203
avaki scheduleexclusion --create --yearly C:205
avaki scheduleexclusion --delete C:207
avaki scheduleexclusion --info C:208
avaki scheduleexclusion --list C:209
avaki search (execute) C:211
avaki search --create command C:209
avaki search --delete C:210
avaki search --get-rehash-level C:212
avaki search --info C:214
avaki search --rehash C:215
avaki search --set-rehash-level C:215
avaki security --config C:216
avaki security --default-gid C:217
Index-4 Master Index



P: Provisioning & Advanced Data Integration Guide     S: Data Integration with Avaki Studio
avaki security --default-group C:218
avaki security --default-uid C:219
avaki security --default-user C:220
avaki security --gid C:221
avaki security --info C:222
avaki security --uid C:222
avaki server --dgas --connect C:223
avaki server --dgas --destroy C:224
avaki server --dgas --stop C:225
avaki server --grid --connect C:225
avaki server --grid --destroy C:226
avaki server --grid --stop C:227
avaki server --proxy C:228
avaki server --share --connect C:228
avaki server --share --disconnect C:229
avaki server --share --stop C:230
Avaki servers

distribution of data catalog among O:38
hardware and operating system requirements for O:16
qualified names for O:32

avaki share --add-rehash-schedule C:231
avaki share --add-share-servers C:232
avaki share --create C:235
avaki share --delete-rehash-schedule C:236
avaki share --disconnect C:238
avaki share --get-local-path C:238
avaki share --get-status C:239
avaki share --list-rehash-schedules C:239
avaki share --list-share-servers C:240
avaki share --rehash C:240
avaki share --remove-share-servers C:241
avaki share --set-local-path C:241
avaki share --set-share-servers C:242
avaki share --set-status C:243
avaki share --update-share-servers C:244
Avaki shares

about AD:257
adding schedule exclusions for rehashes C:234
adding share servers C:232
behavior during failover AD:112
bringing on line AD:286
changing configuration of AD:266
changing encryption levels AD:279
changing permissions AD:239
changing the owner AD:261
configuring exclusions for refresh schedules AD:274
copying into, out of, and within AD:213
creating AD:258, C:235
defined AD:350, API:84, C:308, O:62, P:290, S:176
deleting C:195
disconnecting C:238
disconnecting permanently AD:287
forcing refresh AD:262
icon for O:29
linking AD:217
local paths for, obtaining C:238
modifying load balance factor C:244
moving AD:210

Avaki shares (continued)
moving source directories AD:283
naming of files and directories in AD:207
online status, setting C:243
organizing O:37
permissions on new files in O:49
refresh schedules

adding C:231
deleting C:236
listing C:239

refresh schedules for AD:266
refreshing C:240
removing entries from refresh schedules AD:278
removing share servers from AD:265
renaming AD:212
setting load balancing factor AD:280
setting local paths C:241
setting names AD:260
share servers

listing C:240
removing C:241
replacing C:242

shutting down AD:287, C:238
status, displaying C:239
taking off line AD:285
uploading files to AD:282
with multiple share servers AD:263
write access and user accounts AD:12
See also share servers

avaki shell C:245
avaki sql view --delete C:246
avaki sql view --get-description C:246
avaki sql view --set-description C:247
avaki status C:248
Avaki Studio

about O:9, O:17, S:1
Avaki perspective, about S:16
defined AD:350, API:84, C:308, O:62, P:290, S:176
getting started S:9
installing in Windows AD:24
limitations of data services created in P:78, S:3
log properties file for AD:317
metadata models, See metadata models
operators S:5, S:107
projects, creating S:13
requirements for running AD:3
setting system properties for AD:129
starting S:9
time required to upgrade AD:341
view models

about S:2
configuring input sources S:43
creating S:29
deploying as data services S:50
sample workflow for S:29
testing S:49

workflow S:25
Master Index Index-5



AD: Administration Guide     API: API Guide     C: Command Reference     O: Overture
avaki upgrade C:249
avaki upgrade --info C:250
avaki user C:250
avaki user --create C:251
avaki user --db-mapping --add C:252
avaki user --db-mapping --delete C:253
avaki user --db-mapping --list C:255
avaki user --delete C:257
avaki user --info C:258
avaki user --list-group C:258
avaki view --add-schedule C:259
avaki view --create --database C:263
avaki view --create --data-service C:266
avaki view --create --file C:267
avaki view --delete C:272
avaki view --delete-schedule C:272
avaki view --depends C:272
avaki view --garbage-collect C:273
avaki view --info C:274
avaki view --list-schedules C:274
avaki view --regenerate C:273
avaki view --set-property C:275
avaki view --update C:279
avaki virtualdatabase --allow-dbop-creation C:280
avaki virtualdatabase --disallow-dbop-creation C:281
avaki virtualdatabase --execute C:282
avaki virtualdatabase --show-tables C:283
avaki virtualschema --deploy C:285
avaki virtualschema --undeploy C:286
avaki whoami C:286
Avaki_JDBCStandAlone.jar file API:66
Avaki_JDBCStandAlone_Minus3rd.jar file API:66
AvakiAPI.disco file API:3
AvakiAPIDocLit.wsdl file API:3
AvakiAPIRpcEnc.wsdl file API:3
AvakiAPIWithMIMEDocLit.wsdl file API:3
AvakiAPIWithMIMERpcEnc.wsdl file API:3
avakijdbc.properties file API:67
AvakiPrincipal complex type API:13
Axis, See Apache Axis

B
backup command C:23
backups on Avaki servers AD:113
batch mode, JDBC API:77

configuring database operations for P:27, P:250
bindings.xml file

copying during upgrade AD:344
on grid servers AD:50
on proxy servers AD:300
on share servers AD:59

block size file attribute C:290
blocks file attribute C:290
bootstrapping

in Unix AD:16
in Windows AD:23

brackets, See curly brackets, square brackets, angle brackets

browsers, See web browsers
build.xml file for data service plug-ins P:184, P:197
BusinessObjects software unable browse Avaki objects with 

underscores API:81

C
cache --evict --all command C:25
cache --evict command C:24, C:32
cache --evict --deleted command C:26
cache --get command C:27
cache --invalidate --all command C:28
cache --invalidate command C:27
cache --invalidate-dataservice-results command C:29
cache --invalidate-dbop-results command C:30
cache --list command C:31
cache services

about P:119
associating with data grid access servers P:113
associating with grid servers P:111
coherence windows P:107
configuring P:116
configuring per file P:117
defined AD:351, API:85, C:309, O:63, P:291, S:177
disassociating from data grid access servers P:114
disassociating from grid servers P:112
evicting cached files and directories P:135
invalidating cached items P:136
listing P:116
listing cached data services P:163
listing cached database operations P:148
listing cached virtual database operations P:148
listing pinned files and directories P:134
on-demand caching P:119
on-demand caching of database operation and data service 

results P:108
on-demand caching of files P:107
overriding default settings P:117
pinning data services P:152
pinning database operations P:139
pinning files and directories P:120
pinning virtual database operations P:139
scheduled caching P:119
scheduled caching of database operation and data service 

results P:109
scheduled caching of files P:107
tagging files and directories P:129
unmarking cached items P:135
unscheduling cached files and directories P:135
viewing details about P:116
See also caches and caching

cache --set command C:33
cache --unset command C:34
caches

adding schedules for data services C:48
adding schedules for database operations C:73
adding schedules for directories C:117
adding schedules for files C:130
Index-6 Master Index



P: Provisioning & Advanced Data Integration Guide     S: Data Integration with Avaki Studio
caches (continued)

bad port, properties for AD:141
configuring associated server or user C:33
configuring threads for AD:131
data service plug-in, properties for AD:137
deleting schedules for data services C:54
deleting schedules for database operations C:78
deleting schedules for directories C:122
deleting schedules for files C:135
DGAS

clearing user credentials AD:117
clearing user credentials from C:95
configuring block size for reads AD:81
configuring frags per block for reads AD:81
configuring location of AD:73
controlling cache size AD:124
deleting files and directories AD:119
deleting objects from C:98
displaying cache statistics C:102
displaying current size C:101
displaying free disk space on cache machine C:102
forcing a refresh AD:121
managing AD:117
mapping cache AD:336
resetting statistics C:108
saving a copy C:109
saving copies AD:120
setting remote caches for AD:90
syncing AD:121
viewing and resetting statistics AD:123
warming and updating C:115

displaying associated server or user C:27
displaying tagging information C:31
for tables in virtual database, property for AD:144
listing schedules for data services C:58
listing schedules for database operations C:88
listing schedules for directories C:126
listing schedules for files C:136
local S:182
local and remote API:63
marking directories for no caching C:126
marking files for no caching C:136
remote object stub, properties for AD:144
schedule exclusion, properties for AD:144
scheduled caching S:184
settable attributes of C:291
setting invalidate queue for AD:135
setting local directory for AD:135
setting remote caches for command clients AD:95
uncoupling associated server or user C:34
See also cache services and caching

caching
about O:13
and JDBC programs O:55
benefits to performance O:54
configuring ACLs for O:50

caching (continued)
configuring Avaki clients for O:55
data service results P:108, S:51

tagging for on-demand caching P:159
database operations P:108
defined AD:351, API:85, C:309, O:63, P:291, S:177
files O:56, P:107
JDBC and caching of database operation results API:62
local AD:356, API:90, C:314, O:14, O:53, O:68
local vs. remote O:59
local, defined P:296
of data service results O:57
of database operation results O:57
on DGAS O:54
on-demand AD:357, API:91, C:315, O:69, P:296, S:183
permissions and access control O:59
remote O:14, O:53

defined AD:357, API:91, C:315, O:69, P:297, S:184
scheduled AD:357, API:91, C:315, O:69
scheduled, defined P:297
turning off for specified files and directories P:132
See also caches and cache services

callable statements API:72, API:73
case sensitivity in Avaki naming AD:206
cat command C:35
catalog browser S:18
categories

about AD:221
adding objects to AD:226, C:35, S:105
adding SQL views P:47
and permissions AD:222–AD:223
browsing AD:222
contents of S:18
creating AD:224, C:36
default, contents of S:18
defined AD:351, API:85, C:309, O:63, P:291, S:177
deleting AD:230, C:37, S:106
displaying S:104
for logging AD:318
icon for O:29
listing categories in domain C:38
managing S:103
permissions in O:48
removing objects from AD:228, C:38, C:40, S:106
setting descriptions for C:39
showing descriptions C:37
using to organize data O:36
using to solve access problems O:49

categories --add-to-category command C:35
categories --create command C:36
categories --delete command C:37
categories --describe command C:37
Categories directory O:35
categories --list command C:38
categories --remove-from-category command C:38, C:40
categories --set-description command C:39
cd command C:41
certificates, SSL, See SSL certificates
Master Index Index-7



AD: Administration Guide     API: API Guide     C: Command Reference     O: Overture
change time file attribute C:290
characters

in column aliases in database operations S:42
in command syntax AD:xv, C:xv
in cron schedules C:298
in domain names, restrictions on AD:41
in JavaScript identifiers S:42
in metadata model names, restrictions on S:91
in names of Avaki objects, restrictions on AD:207
wildcards in searches AD:235

CHARSET JDBC property for ASE and IQ AD:7
chmod command C:41
chmod SOAP operation API:19
chown command C:42
chown SOAP operation API:20
chunk size for sorting, controlling AD:139, S:76
CIFS

accessing data grid through AD:338
releasing CIFS ports on a DGAS AD:66

CIFS clients
defined AD:351, API:85, C:309, O:63, P:291, S:177
disconnecting C:101
displaying connected clients C:105
requirements for O:17
setting up AD:93

CIFS shares
accessing AD:203
creating AD:125, C:96
defined AD:351, API:85, C:309, O:63, P:291, S:177
deleting C:99
displaying connected clients C:105
displaying information about C:95
listing C:105
managing AD:125
mapping to a network drive AD:204
modifying C:107

class element P:261
class-name element P:279
classpath, configuring for JDBC drivers API:67
client attribute caching AD:336
client command C:45
client system properties AD:128
clients

about O:17
hardware and operating system requirements for O:16
message timeout properties for AD:133
setting size of write invalidation queue of cache for AD:136
setting system properties for AD:129
See also Avaki Studio, CIFS clients, command clients, NFS 

clients, web clients, WS clients
code samples

ad-hoc queries API:74
data catalog API API:18
data services API API:35
database operations API API:42
Java data service plug-ins P:190
JDBC batch mode API:77
using JDBC drivers API:77

coherence window cache attribute C:291
coherence window property, remote AD:141
coherence windows for caching P:107
coherenceWindow element P:261
colors in Studio display, setting S:23
column-display-size element P:279
column-index element P:279
columns

aliasing P:25
combining with Projection operator S:46
from input elements, menus of S:71
from input result sets, accessing S:68
name property S:60
precision property S:61
scale property S:61
type property S:61

com.avaki.badPortCacheSize system property AD:141
com.avaki.badPortExpiration system property AD:141
com.avaki.cache.cacheDir system property AD:135
com.avaki.cache.maxReaderThreads system property AD:131
com.avaki.cache.writeInvalidationQueueSize system 

property AD:136
com.avaki.content.encryptionLevel system property AD:139
com.avaki.dataservice.pluginCacheSize system 

property AD:137
com.avaki.dataservice.styleSheetCachePoolSize system 

property AD:137
com.avaki.dataservice.styleSheetCacheSize system 

property AD:137
com.avaki.DBOProtocolSoTimeout system property AD:134
com.avaki.generatedXMLIndentSize AD:142
com.avaki.HttpPort system property AD:140
com.avaki.HttpsPort system property AD:140
com.avaki.jobStatusExpiration system property AD:145
com.avaki.lasInvoker.cacheSize system property AD:144
com.avaki.lasInvoker.poolSize system property AD:144
com.avaki.ldap.resultPageSize system property AD:145
com.avaki.maxActiveCachables system property AD:136
com.avaki.mux.channelSoTimeout system property AD:135
com.avaki.mux.connectTimeout system property AD:134
com.avaki.mux.maxParallelChannels system property AD:142
com.avaki.mux.maxWriteChunk system property AD:142
com.avaki.mux.sendBufferSize system property AD:143
com.avaki.proxy.retryDelay system property AD:133
com.avaki.proxy.retryTimeout system property AD:133
com.avaki.proxyIOProtocolSoTimeout system property AD:134
com.avaki.proxyKeepAliveParams system property AD:140
com.avaki.queryEngine.sortChunkSize AD:139
com.avaki.remoteconfig.coherenceWindow system 

property AD:141
com.avaki.result.gcInterval system property AD:136
com.avaki.retryDelay system property AD:133
com.avaki.retryTimeout property AD:133
com.avaki.rmiRegistrySoTimeout system property AD:134
com.avaki.rpcTimeout system property AD:134
com.avaki.scheduleExclusionCacheExpiration system 

property AD:145
Index-8 Master Index



P: Provisioning & Advanced Data Integration Guide     S: Data Integration with Avaki Studio
com.avaki.scheduleExclusionCacheSize system 

property AD:145
com.avaki.shareIOProtocolSoTimeout system property AD:134
com.avaki.shareReadBufferSize system property AD:138
com.avaki.shareReadbufPoolSize system property AD:138
com.avaki.shareServerCircularLinkChecking system 

property AD:138
com.avaki.shareServerThreadPoolSize system property AD:138
com.avaki.vaultStateCacheSize system property AD:137
com.avaki.VirtualDbTableCacheSize system property AD:144
com.sybase.avaki.tdsPort system property AD:50, AD:145, 

API:71
command clients

connecting C:45
defined AD:352, API:86, C:310, O:64, P:292, S:178
disconnecting C:45
installing in Windows AD:24
installing on Unix AD:18
obtaining information about C:45
setting up AD:94

commands
listing C:148
syntax conventions for AD:xv, C:xiv, P:x
viewing online usage information C:148

compatibility properties, setting for Windows 2003 AD:22
complex types API:12

AdHocDBOPExecutionParams API:13
AvakiPrincipal API:13
DataCatalogAttribute API:14
DataCatalogEntry API:15
DataCatalogPermission API:15
DataServiceExecutionParams API:16
DBOPExecutionParams API:16
SearchQuery API:17
SearchResult API:17

condition field for Iterator operators S:151
connect ports

default AD:6, AD:9, AD:10
defined AD:352, API:86, C:310, O:64, P:292, S:178
for DGAS C:224

changing AD:74
for GDCs C:127

changing AD:50
for grid servers C:226

changing AD:50
for proxy servers C:228

changing AD:300
for share servers C:229

changing AD:60
connectinfo.txt file AD:131
connection pooling S:36
connection properties

for JDBC drivers API:68
for XA drivers C:70, P:7, S:37

connection strings 
for databases AD:3
for JDBC drivers API:71

connections in view models, creating S:57
console view S:22, S:50
conventions

for command syntax C:xiv
for commands AD:xv
for screen examples AD:xv, API:vi, C:xv, P:xi

cp command C:46
cron expressions in schedules AD:185, AD:267, AD:273
cron schedules

configuring C:297
values for C:298

cross-domain messaging
disabling AD:313
enabling AD:311

curly brackets in command syntax AD:xv, C:xv, P:xi
CurrentUser functions S:74
Custom operator S:111

example S:114
custom types API:12

D
data access O:11

using WS API API:2
data catalog

about O:27
defined AD:352, API:86, C:310, O:64, P:292, S:178
distribution among Avaki servers O:38
names of objects in O:24
organizing O:33

Avaki shares O:37
using categories O:36
using links O:36

ownership of objects in O:46
top-level directories O:32
types of entries O:6

data catalog API API:18
data catalog SOAP operations API:18

accessiblePath API:19
chmod API:19
chown API:20
fileRead API:21
fileReadAttach API:21
fileReadString API:22
fileWrite API:23
getAttributes API:23
getSystemAttributes API:24
getUserAttributes API:24
listDomains API:25
listSearches API:25
ls API:26
lsSize API:26
mkdir API:27
mkdirParents API:27
mkdirParentsServer API:28
mkdirServer API:29
mv API:29
permissions API:30
Master Index Index-9



AD: Administration Guide     API: API Guide     C: Command Reference     O: Overture
data catalog SOAP operations (continued)

removeAttribute API:31
rm API:31
search API:32
setAttribute API:32
tester API:33
whoami API:33

data catalog view S:18
data expiration intervals P:108, S:51
data grid access servers

associating with cache services P:113
disabling auto-restart C:8
disassociating from cache services P:114
enabling auto-restart C:5
registering C:5
starting C:5, C:6
stopping C:7, C:8
unregistering C:8
See also DGAS

data grids
about O:1
defined AD:355, API:89, C:313, O:67, P:294, S:181
typical deployment O:17

data integration O:21, O:23
data integrity and HTTPS API:8
data representation O:11
data security O:10
data service plug-ins

about P:76, P:175
addInputParameter JavaScript method P:202
addInputStream JavaScript method P:202
build.xml file P:184, P:197
choice of Java, JavaScript, or XSLT P:176
closing streams P:186
command for generating C:187
configuring P:81
creating in Java with the Plug-in Wizard P:183
creating in JavaScript P:200
creating in XSLT P:180
DbopGroupWorkUnit class P:189
DbopPipeWorkUnit class P:190
defined AD:352, API:86, C:310, O:64, P:292, S:179
examples

DBOP and CSV merge Java plug-in P:193
distributed transaction Java plug-in P:191
rowset input and output Java plug-in P:192

Execute JavaScript function P:203
input sources and output streams P:177
InputSource interface P:186
JAR files for P:180
logging errors P:196
manifest files for P:180, P:197
modularity and reusability of P:175
parameters

about P:178
specifying for Java plug-ins C:188
specifying for XSLT plug-ins P:181

data service plug-ins (continued)
ParameterSpec interface P:187
Plugin interface P:186
prerequisites for writing in Java P:183
relationship to .js files in Studio S:11
RowSetFactory class P:188
setOutputStream JavaScript method P:202
StreamingRowSet interface P:187
using Java classes and interfaces in JavaScript plug-ins P:200
when to use P:78, S:3
XAWorkHandler class P:189
XAWorkUnit interface P:189

data service XML schema
class element P:261
coherenceWindow element P:261
dataService element P:262
description element P:263
initParameter element P:263
inputParameter element P:264
inputSource element P:265
inputStream element P:266
isList element P:266
jarurl element P:267
logicBox element P:268
name element P:269
outputStream element P:269
ref element P:270
target element P:270
type element P:270
urlLogicBox element P:271
value element P:272
values element P:272

data services
about O:8, O:23, P:49, P:74
adding schedule exclusions C:51
and distributed transactions P:78
caching of results O:57, P:77

permissions O:50
caching results S:51
calling via JDBC API:72
components of P:76
configuring caching P:108
created in Avaki Studio, limitations of P:78, S:3
creating C:52, P:80, P:207
defined AD:352, API:86, C:310, O:64, P:292, S:178
deleted, purging from cache C:26
deleting schedules C:54
dependencies for S:22
deploying from view models in Avaki Studio S:50
displaying dependency lists C:54
displaying information about C:57, S:20
displaying status of C:248
evicting from cache P:164
execution services, configuring AD:109
generating schema for C:55, P:98
generating SQL views from C:56, P:100
importing descriptors P:92
input parameters, configuring P:84
Index-10 Master Index



P: Provisioning & Advanced Data Integration Guide     S: Data Integration with Avaki Studio
data services (continued)

input streams, configuring P:87
invalidating all in cache C:28
invalidating one in cache C:27
invalidating results in cache C:29
listing P:93
listing caching schedules for C:58
listing in cache P:163
location in categories S:18
marking for scheduled caching P:152
modifying C:58
modifying permissions AD:239
modifying settings P:94
names in data catalog O:24
nesting operations S:149
output streams, configuring P:86
provisioning web services as P:205
purging all from cache and unscheduling C:25
purging one from cache and unpinning C:24
qualified names for O:31
refreshing cached results C:32
removing P:103
rowsets as input of P:275
rowsets as output of P:274
running C:55
sample workflow for S:29
scheduling for caching C:48
schema P:257
searching for AD:233
setting cache sizes for plug-ins AD:137
setting up to run distributed transactions P:80
specifying grid servers P:213
specifying input parameters P:207
specifying input streams P:208
specifying output streams P:208
specifying plug-ins P:207
tagging for on-demand caching P:159
testing P:102, P:214
unscheduling P:164
using for distributed transactions O:25
viewing P:98
viewing dependencies P:97
writing your own vs. using Avaki Studio O:24
See also data service plug-ins
See also view models

data services API API:34
data services SOAP operations API:34

accessibleDS API:36
executeDS API:36
getDSOutput API:37
getDSOutputAttach API:38
getDSOutputString API:38
getDSParameters API:39
isDSAvakiXML API:40
listDSs API:40

data structures, SOAP complex types API:12
data type mappings for SQL views P:39

data types
for JDBC API:76
mapping

about type mapping files C:301
command to specify mapping file C:68
format of type mapping files C:301
inconsistencies C:302
logging of mapping decisions C:304
setting source data type C:302

specifying for ad-hoc query parameters C:65
specifying for database operation parameters C:85
specifying for parameters for ad-hoc queries on the virtual 

database C:283
specifying for virtual database operation parameters C:88
See also type

database connectors
about O:22, P:3
adding groups P:16
adding users P:15
configuring advanced settings P:247
configuring JDBC driver JAR file path P:247
configuring permissions C:59, C:62
creating C:66, P:3, S:31
data type mappings for P:39
defined AD:353, API:87, C:311, O:65, P:293, S:179
deleting C:61
displaying information about C:64
displaying SQL views provisioned from C:73
editing S:38
executing ad-hoc queries C:63, C:66
finding in catalog S:38
getting information about through JDBC API:75
JDBC fetch size P:5
location in categories S:18
managing SQL views P:20
modifying C:66, P:8
provisioning SQL views from C:71
removing P:21
removing groups P:18
removing users P:18
searching for AD:233
setting JDBC fetch size S:36
testing C:72, P:19
viewing P:8
viewing associated database operations P:13

database drivers
copying during upgrade AD:341
tested with Avaki AD:3

database identity mappings P:6, S:36
about AD:176
adding C:252
deleting AD:183, C:253
displaying AD:180
listing C:255
modifying AD:182
setting up AD:177

database operation --list-schedules command C:88
Master Index Index-11



AD: Administration Guide     API: API Guide     C: Command Reference     O: Overture
database operation SOAP operations API:40
database operations

about O:7, O:22, P:1
access permissions P:22
adding schedule exclusions C:76
allowing groups to create P:16
allowing users to create P:15
caching of results API:62, O:57

permissions O:50
calling with JDBC API:73
calling with ODBC, JDBC, or SOAP P:38
configuring advanced settings P:247
configuring batch mode settings P:250
configuring caching P:108
configuring permissions C:59, C:62
configuring SQL calls P:251
configuring timeouts P:253
creating C:83, P:22, S:38
defined AD:353, API:87, C:311, O:65, P:293, S:179
deleted, purging from cache C:26
deleting C:78
deleting schedules C:78
dependencies for S:22
displaying dependency lists C:79
displaying information about C:83, S:20
displaying status of C:248
evicting from cache P:150
executing P:36
exposing results as SQL view P:34
generating schema for C:80, P:31
generating SQL views from C:82
invalidating all in cache C:28
invalidating one in cache C:27
invalidating results in cache C:30
listing caching schedules for C:88
listing in cache P:148
location in categories S:18
managing P:21
managing metadata P:30
marking for scheduled caching P:139
modifying C:83, P:28
modifying permissions AD:239
names in data catalog O:24
parameter types, specifying C:85, C:88
preventing groups from creating P:18
preventing users from creating P:18
purging all from cache and unscheduling C:25
purging one from cache and unpinning C:24
qualified names for O:31
refreshing cached results C:32
removing P:38
removing SQL views generated from P:35
restricting row output P:248
rowsets as output of P:274
running C:80
sample XML schema P:280
scheduling for caching C:73
searching for AD:233

database operations (continued)
setting JDBC fetch size for P:254
setting permissions P:14
SQL statements in C:86
tagging for on-demand caching P:146
transactional behavior of P:79
unscheduling P:150
uses of P:2
viewing P:13, P:28
viewing dependencies P:32
viewing details about P:29
See also virtual database operations

database operations API API:40
database service SOAP operations

accessibleDBOp API:42
executeAdHocDBOp API:43
executeAdHocDBOpWithOutput API:44
executeAdHocDBOpWithOutputAttach API:46
executeAdHocDBOpWithOutputString API:47
executeDBOp API:48
executeDBOpBytesInput API:49
executeDBOpGridFileInput API:50
executeDBOpWithOutput API:50
executeDBOpWithOutputAttach API:52
executeDBOpWithOutputString API:53
getDBOpOutput API:54
getDBOpOutputAttach API:55
getDBOpParameters API:56
getDBOpSchema API:56
getDBOpSchemaAttach API:57
getDBOpSchemaString API:58
getOutputString API:55
getSQL API:58
listDBConns API:59
listDBOps API:59
listDBOpsByDBConn API:60

database, virtual, See virtual database
DatabaseAdministrators group O:44
DatabaseMetaData interface API:75
databases

Avaki tools for working with O:21
connecting to P:3
for Avaki servers, backing up C:23
protecting O:9
schemas, viewing P:9
supported for connecting to Avaki AD:3, AD:5

DataCatalogAttribute complex type API:14
DataCatalogEntry complex type API:15
DataCatalogPermission complex type API:15
DataProviders group O:44
dataservice --add-schedule command C:48
dataservice --create command C:52
dataservice --delete command C:52
dataservice --delete-schedule command C:54
dataservice --depends command C:54
dataService element P:262
dataservice --execute command C:55
dataservice --generate-sql view command C:56
Index-12 Master Index



P: Provisioning & Advanced Data Integration Guide     S: Data Integration with Avaki Studio
dataservice --info command C:57
dataservice --list-schedules command C:58
dataservice --update command C:58
DataServiceExecutionParams complex type API:16
DB2, versions and JDBC drivers for use with Avaki AD:6
dbconn --allow-dbop-creation command C:59
dbconn --delete command C:61
dbconn --disallow-dbop-creation command C:62
dbconn --execute command C:63
dbconn --info command C:64
dbconn --jdbc command C:66
dbconn --provision-tables command C:71
dbconn --show-tables command C:73
dbconn --test command C:72
DBOPs, See database operations
dbop --add-schedule command C:73
dbop --delete command C:78
dbop --delete-schedule command C:78
dbop --depends command C:79
dbop --execute command C:80
dbop --generate-sql view command C:82
dbop --info command C:83
dbop --jdbc command C:83
dbop --jdbc --create-virtual-dbop command C:87
DBOPExecutionParams complex type API:16
DbopGroupWorkUnit class for data services P:189
DbopPipeWorkUnit class for data services P:190
db-path option (DGAS) AD:74
debug mode, enabling in an Avaki shell C:245
delimiter character for JDBC schema names API:69
Deny permission in ACL AD:243, O:47
dependencies S:22

defined AD:353, API:87, C:311, O:65, P:293, S:179
listing for data services C:54, P:97
listing for database operations C:79, P:32
listing for view generators C:272, P:228
listing for virtual database operations P:59

description element P:263
descriptors for data services P:92
development tools for web services

Apache Axis API:5
Microsoft Visual Studio API:5
SOAP::Lite API:5
VB .NET API:5

DGAS
about AD:62
adding user self mappings C:109
admission policies AD:332

about AD:85
adding AD:87, C:91
deleting AD:88, C:97
displaying C:114
displaying Windows domains for C:114

admission policies
setting defaults C:112
setting Windows domains for C:111
unsetting Windows domains for C:116

DGAS (continued)
changing permissions and ownership AD:334
CIFS access to data grid AD:338
clearing cached credentials AD:117, C:95
configuring associated cache service C:33
configuring location of internal caches AD:73
configuring to use nondefault ports AD:74, AD:75
configuring users and groups AD:67
connect port C:224
connecting to a domain AD:79, C:223
controlling cache size AD:124
create CIFS shares C:96
default name for AD:73
default users, groups, UIDs and GIDs AD:333
defined AD:352, API:86, C:310, O:64, P:292, S:178
deleting cached objects C:98
deleting CIFS shares C:99
deleting files and directories from cache AD:119
deleting user mappings C:111
destroying C:224
disconnecting CIFS clients C:101
displaying associated cache C:27
displaying cache size C:101
displaying cache statistics C:102
displaying connected CIFS clients C:105
displaying free disk space on cache machine C:102
displaying information about CIFS shares C:95
displaying property descriptions C:104
displaying property values C:103
dynamic and nondynamic properties AD:83
file locking in Unix, interference with AD:64
forcing cache to refresh AD:121
installing in Unix AD:18
installing in Windows AD:24
listing CIFS shares C:105
listing properties and their values C:103
managing cache AD:117
mappings

default, adding and displaying AD:71
for groups, adding AD:70, C:92
for groups, deleting C:99
for groups, displaying C:106
for users, adding AD:70, C:94
for users, deleting C:100
for users, displaying C:106
users and groups, per-DGAS AD:88
users, groups, and defaults, domain-wide AD:68

modifying CIFS shares C:107
NFS clients, not running with AD:64
NFS daemons, shutting down before running DGAS AD:66
per-DGAS user mappings AD:333
ports used by AD:9
preparing to start AD:65
properties file for AD:76, C:293
reading log properties C:107
releasing CIFS ports before running AD:66
resetting cache statistics C:108
Master Index Index-13



AD: Administration Guide     API: API Guide     C: Command Reference     O: Overture
DGAS (continued)

restarting AD:84
saving a copy of the cache C:109
saving copies of cache AD:120
server logs AD:317
setting a cache service AD:90
setting location of state database AD:74
setting properties AD:82, C:113
setting up NFS clients AD:91
starting AD:73, C:104
stopping C:225
syncing cache AD:121
time required to upgrade AD:341
uncoupling associated cache C:34
unsetting properties C:117
viewing and resetting cache statistics AD:123
warming and updating the cache C:115
See also data grid access servers

dgas --add-admission-policy command C:91
dgas --add-group-mapping command C:92
dgas --add-user-mapping command C:94
dgas --cifs-share-info command C:95
dgas --clear-cached-credentials command C:95
dgas command

example AD:74
syntax AD:73

dgas --create-cifs-share command C:96
dgas --delete-admission-policy command C:97
dgas --delete-cache command C:98
dgas --delete-cifs-share command C:99
dgas --delete-group-mapping command C:99
dgas --delete-user-mapping command C:100
dgas --disconnect-cifs-client command C:101
dgas --get-cache-size command C:101
dgas --get-cache-statistics command C:102
dgas --get-free-disk-space command C:102
dgas --get-properties command C:103
dgas --get-property command C:103
dgas --get-property-list command C:104
dgas --initialize command C:104
dgas --list-cifs-clients command C:105
dgas --list-cifs-shares command C:105
dgas --list-group-mappings command C:106
dgas --list-user-mappings command C:106
dgas --modify-cifs-share command C:107
dgas --read-log-properties command C:107
dgas --register command C:5
dgas --reset-cache-statistics command C:108
dgas --save-cache command C:109
dgas --self-map C:109
dgas --self-unmap C:111
dgas --set-admission-policy-domain command C:111
dgas --set-default-admission-policy command C:112
dgas --set-property command C:113
dgas --show-admission-policies command C:114
dgas --show-admission-policy-domain command C:114
dgas --start command C:6

dgas --stop command C:7
dgas --sync-cache command C:115
dgas --unregister command C:8
dgas --unset-admission-policy-domain command C:116
dgas --unset-property command C:117
directories

adding schedule exclusions for caching C:121, C:125
adding to cache service C:122
Avaki directories, defined AD:349, API:83, C:307, O:61, 

P:289, S:175
Avaki installation API:84, P:290, S:176
Avaki installation directory AD:350, C:308, O:62
changing C:41
changing ownership C:42
changing permissions for AD:239
copying AD:213, C:46
creating AD:208, C:167
deleted, purging from cache C:26
deleting AD:219, C:195
deleting caching schedules C:122
displaying name of current directory C:193
evicting from cache P:135
exporting from the data grid AD:125
home, creating AD:169
icon for O:29
invalidating all in cache C:28
invalidating from cache P:136
invalidating in cache C:27
linking AD:217, C:161
listing C:166
listing schedules C:126
listing those pinned for caching P:134
marking for no caching C:126, P:132
marking for scheduled caching P:120
moving AD:210, C:176
NFS-mounting AD:92
permissions in O:48
purging all from cache and unpinning C:25
purging from cache and unpinning C:24
refreshing in cache C:32
renaming AD:212
scheduling for caching C:117
searching for AD:233
setting ACLs for AD:171
shared, See Avaki shares
tagging for on-demand caching P:129
temp, setting for grid servers AD:135
top-level, described O:32
unscheduling from cache P:135

directory --add-schedule command C:117
directory --cache command C:122
directory --delete-schedule command C:122
directory --do-not-cache command C:126
directory --list-schedules command C:126
disk space

available, displaying for DGAS cache C:102
requirements for Avaki software AD:4, AD:16
Index-14 Master Index



P: Provisioning & Advanced Data Integration Guide     S: Data Integration with Avaki Studio
distributed transactions

about O:25, P:78
API for executing P:188
configuring database connectors for P:7, S:36
defined AD:353, API:87, C:311, O:65, P:293, S:180
requirements for P:79
setting up P:80
supported DBMSes P:79
two-phase commit protocol P:79

DNS aliases for GDC machines AD:10
DNS name, setting for a server AD:32
document/literal web services API:3, API:5
documentation

Avaki, list of AD:xii, API:vi, C:xii, O:vi, P:viii, S:viii
for Eclipse Workbench S:12

domain --create command C:127
domain --disconnect command C:127
domain --info command C:128
domain --interconnect command C:128
domain names, defined AD:354, API:88, C:312, O:66, P:294, 

S:180
Domain Users group in Active Directory C:155
domains, Avaki

creating C:127
defined AD:350, API:84, C:308, O:62, P:290, S:176
disconnecting C:127
displaying information about AD:98
getting information about through JDBC API:75
interconnecting AD:289, C:128
joining together AD:289
naming AD:41, AD:354, API:88, C:312, O:66, P:294, S:180
obtaining information about C:128
planning before install AD:1
providers and consumers AD:289
remote, logging in to AD:201
specifying for JDBC connections API:69

DomainUsers group O:44
downstream variables menu S:71
downstream, defined S:3
drivers, See JDBC drivers
drivers directory AD:341
dynamic and nondynamic properties (DGAS) AD:83
dynamic user mappings

creating C:109
deleting C:111

E
Eclipse Workbench S:12
EII, See enterprise information integration
elements

connecting S:57
descriptions of S:59
Input Source S:125
moving S:56

elements (continued)
names of S:58
operators S:5
properties dialogs S:58
Result S:164
selecting S:56
with red borders S:60

encryption and HTTPS API:8
encryption levels for Avaki shares

changing AD:279
displaying C:222
setting at share creation AD:261

encryption of grid objects AD:139
enterprise information integration, defined AD:354, API:88, 

C:312, O:66, P:294, S:180
equal signs in command syntax AD:xvi, C:xvi, P:xii
error handling S:143
errors in view models S:60
everyone group O:44, O:48
examples

conventions used in C:xv
data catalog web service API:18
data services API API:35
database operations API API:42
web services clients

Java API:9
Perl API:9
VB .NET API:9

exclusions, See schedule exclusions
execute inputs in parallel field for Iterator operators S:151
Execute JavaScript function for data service plug-ins P:203
executeAdHocDBOp SOAP operation API:43
executeAdHocDBOpWithOutput SOAP operation API:44
executeAdHocDBOpWithOutputAttach SOAP 

operation API:46
executeAdHocDBOpWithOutputString SOAP operation API:47
executeDBOp SOAP operation API:48
executeDBOpBytesInput SOAP operation API:49
executeDBOpGridFileInput SOAP operation API:50
executeDBOpWithOutput SOAP operation API:50
executeDBOpWithOutputAttach SOAP operation API:52
executeDBOpWithOutputString SOAP operation API:53
executeDS SOAP operation API:36
execution services

about AD:109, P:77, S:51
configuring AD:109, C:129
configuring threads for AD:131
defined AD:354, API:88, C:312, O:66, P:294, S:180
displaying information about C:129

executionservice --info command C:129
executionservice --set command C:129
executionServiceHint JDBC property API:70
exiting from an Avaki session C:165
expressions in operators S:4
expressions menu, using S:71
externalCacheService JDBC property API:62, API:70
Master Index Index-15



AD: Administration Guide     API: API Guide     C: Command Reference     O: Overture

F
failover

defined AD:354, API:88, C:312, O:66, P:294, S:180
managing AD:112
setting up a secondary GDC AD:43

fake_metadata JDBC connection property for ASE API:70
FAKE_METADATA JDBC property for ASE AD:7
federated data access AD:354, API:88, O:66, P:294, S:181
fetch size, See JDBC fetch size
file --add-schedule command C:130
file --cache-on-demand command C:134
file --delete-schedule command C:135
file --do-not-cache command C:136
file --list-schedules command C:136
file locking AD:64

suppressing in NFS mount command AD:93
file --pin command C:137
file size attribute C:290
fileRead SOAP operation API:21
fileReadAttach SOAP operation API:21
fileReadString SOAP operation API:22
files

.amm files S:11

.avm files S:11

.js JavaScript files S:11

.jsi JavaScript include files S:11, S:75
sample S:115

adding schedule exclusions for caching C:133, C:140
Avaki_JDBCStandAlone.jar API:66
Avaki_JDBCStandAlone_Minus3rd.jar API:66
avaki_studio.properties AD:129
AvakiAPI.disco WSDL discovery file API:3
AvakiAPIDocLit.wsdl API:3
AvakiAPIRpcEnc.wsdl API:3
AvakiAPIWithMIMEDocLit.wsdl API:3
AvakiAPIWithMIMERpcEnc.wsdl API:3
avakijdbc.properties API:67
bindings.xml

copying during upgrade AD:344
on grid servers AD:50
on proxy servers AD:300
on share servers AD:59

build.xml for data service plug-ins P:184, P:197
cached, permissions on O:50
caching of O:56
changing ownership C:42
changing permissions for AD:239
clearing locks C:163
configuring caching P:107
configuring encryption level C:216
connectinfo.txt AD:131
copying AD:213, C:46
copying locally AD:215
data type mapping

about C:301
command to specify location C:68
format of C:301

deleted, purging from cache C:26
deleting AD:219, C:195
deleting pin schedules for C:135
DGAS properties AD:76
dgas_log.xml, DGAS log properties file AD:317
displaying C:35
evicting from cache P:135
for data service plug-ins P:180
icon for O:29
in the data grid O:8
install.exe AD:22, AD:24
invalidating all in cache C:28
invalidating one in cache C:27, P:136
JAR files for data service plug-ins P:180
jboss-service.xml, request log properties file AD:328
jdbc-log4j.properties API:66
join.properties file on proxy servers AD:300
krb5.conf AD:152
linking AD:217, C:161
listing C:166
listing locks C:164
listing schedules C:136
listing those pinned for caching P:134
log4j.xml, 

Avaki Studio log properties file AD:317
server log properties file AD:317

manifest files for data service plug-ins P:180, P:197
marking for no caching C:136, P:132
marking for scheduled caching P:120
moving AD:210, C:176
permissions on new files O:49
pinning for scheduled caching C:137
properties files for DGAS C:293
purging all from cache and unpinning C:25
purging from cache and unpinning C:24
readme AD:12, AD:15, AD:339
refreshing in cache C:32
renaming AD:212
rendering results into O:25
scheduling for caching C:130
searching for AD:233
shareserver.ports

on grid servers AD:50
on share servers AD:60

system.properties AD:129
tagging for on-demand caching C:134, P:129
temporary, for sorting large result sets S:76
unscheduling cached files P:135
uploading to the data catalog AD:282
Workbench .project S:11

fileWrite SOAP operation API:23
Firefox

version requirements AD:5
setting for selecting run-as users P:27, P:54, P:92, P:224, 

P:227
fonts in Studio display, setting S:23
Index-16 Master Index



P: Provisioning & Advanced Data Integration Guide     S: Data Integration with Avaki Studio
functions

in expressions S:73
used with Aggregate operator S:110

G
garbage collection for views C:273
GDCs, See grid domain controllers
generated views

about O:25, P:217, P:240
defined AD:354, API:88, C:312, O:66, P:294, S:181
running P:240
scheduling updates P:231
transactional consistency of P:217

GeneratedViews directory O:33
generating schemas S:19
Generator operator S:117
getAttributes SOAP operation API:23
getCatalogs method API:75
getCatalogTerm method API:75
getDBOpOutput SOAP operation API:54
getDBOpOutputAttach SOAP operation API:55
getDBOpParameters SOAP operation API:56
getDBOpSchema SOAP operation API:56
getDBOpSchemaAttach SOAP operation API:57
getDBOpSchemaString SOAP operation API:58
getDSOutput SOAP operation API:37
getDSOutputAttach SOAP operation API:38
getDSOutputString SOAP operation API:38
getDSParameters SOAP operation API:39
getOutputString SOAP operation API:55
getSchemas method API:75
getSchemaTerm method API:75
getSQL SOAP operation API:58
getSystemAttributes SOAP operation API:24
getUserAttributes SOAP operation API:24
GIDs, configuring AD:68, C:217, C:221
Global Parameters menu S:71
grid directories, See directories, Avaki
grid domain controllers

backing up and restoring AD:113
creating C:127
defined AD:355, API:89, C:313, O:67, P:295, S:181
DNS aliases for AD:10
loading AD:14
ports used by AD:6, AD:8
primary AD:355, API:89, C:313, O:67, P:295, S:181
secondary AD:43
starting AD:14
stopping AD:38, C:11
stopping and restarting GDCs registered as services AD:39

grid domains
See domains, Avaki

grid servers
associating with caches P:111
backing up and restoring AD:113
choosing for web services API:5
configuring AD:48, AD:52

grid servers (continued)
configuring associated cache service C:33
configuring cache service threads AD:131
configuring nondefault ports AD:50
connecting C:225
connection info, setting S:23
defined AD:355, API:89, C:313, O:67, P:295, S:181
destroying C:226
disabling auto-restart on C:12
disassociating from caches P:112
displaying associated cache C:27
displaying status of operations on C:248
enabling auto-restart C:9
finding connect ports AD:53
finding server names AD:53
installing JDBC drivers on AD:49
monitoring AD:99
obtaining upgrade information C:250
ports used by AD:6, AD:8
registering C:9
request logs for AD:327
server logs AD:317
settable attributes of C:290
setting location of temp directory for AD:135
setting plug-in cache size properties AD:137
setting up command clients on AD:94
starting AD:50, C:9, C:10
stopping AD:51, C:11, C:12, C:227
stopping and restarting AD:52
time required to upgrade AD:340
uncoupling associated cache C:34
unregistering C:12
upgrading C:249

grid user accounts, See users
grid-server --register command C:9
grid-server --start command C:10
grid-server --stop command C:11
grid-server --unregister command C:12
group --add --user command C:138
Group By operator S:76, S:121
group --create command C:141
group --delete command C:143
group --delete --user command C:144
group --info command C:145
group --list-user command C:147
group mappings, adding for a particular DGAS C:92
groups

about O:43
activating privileges for newly added users AD:192, AD:243
adding to ACLs AD:243, S:97
adding users to AD:191, C:138
Administrators AD:45, O:43
configuring default mappings C:218
creating AD:191, C:141
DatabaseAdministrators O:44
DataProviders O:44
default grid groups O:43
default groups for DGAS AD:333
Master Index Index-17



AD: Administration Guide     API: API Guide     C: Command Reference     O: Overture
groups (continued)

defined S:176
deleting AD:198, C:143
deleting users from C:144
displaying information about AD:195, C:145
enabling interconnection access AD:304
everyone group O:44
imported groups O:43

from LDAP AD:159
from NIS AD:165
refreshing AD:195

in Avaki, defined AD:350, API:84, C:308, O:62, P:290
listing C:144
listing users in C:147
making account changes take effect immediately for DGAS 

access AD:117
MessagingUsers O:44
modifying AD:195
removing from ACLs AD:242
removing users from AD:193
setting up for DGAS AD:67
UserAdministrators AD:45, O:44
using in ACLs for cached objects O:50

H
hard links

about O:36
broken, to generated views P:240
creating AD:217, C:161
defined AD:355, API:89, C:313, O:67, P:295, S:182

hardware requirements for Avaki AD:2
help command C:148
help, online, for command line AD:xiii, C:xiii, P:ix
hideCatalogs JDBC property API:70
home directories AD:169
host names

aliasing for GDCs AD:10
setting for servers AD:32

HTTP and HTTPS ports
default AD:8, AD:9, AD:10
properties for AD:140

HTTP and web services API:7, API:8
HTTP POST problem in web browsers AD:5
HTTP request logs, See request logs
HTTPS and web services API:7, API:8
hyphens in command syntax AD:xvi, C:xvi, P:xii

I
IATEMPDIR environment variable AD:16
IBM AIX O:16
IBM AIX requirements AD:3
IBM DB2, versions and JDBC drivers for use with Avaki AD:6
icons for grid objects in the data catalog O:29
id command C:149
identity mapping P:6, S:36
imported groups, See groups

imported user accounts AD:167
increment field for Iterator operators S:151
indent size property for XML files AD:142
initialize field for Iterator operators S:151
initParameter element P:263
inner join S:156
input parameters

creating P:88
for data services

configuring P:84
deleting P:86

Input Source element S:125
input sources

accessing columns from S:68
browsing for in data catalog view S:18
configuring for view models in Avaki Studio S:43
creating S:55
error handling S:143
finding S:18

input streams, for data services, configuring P:87
inputParameter element P:264
inputSource element P:265
InputSource interface for data services P:186
inputStream element P:266
installation directory AD:350, API:84, C:308, O:62, P:290, 

S:176
installing Avaki

about AD:13
in Unix AD:16
in Windows AD:23
preparation and planning AD:1
system requirements AD:2

integration, See data integration
interconnection IDs

creating AD:295, C:149
using in permissions AD:304, C:43
using to provide cross-domain data access AD:295

interconnections between grid domains
about AD:289
breaking C:127
creating AD:291
defined AD:355, API:89, C:313, O:67, P:295, S:182
disconnecting domains AD:314
enabling access AD:299
prerequisites for AD:94
setting up C:128
two-way, exposing users AD:308
user access methods AD:294
viewing interconnected domains AD:310

Interconnects directory O:33
Internet Explorer

Avaki version requirements AD:5
setting for selecting run-as users P:27, P:54, P:92, P:224, 

P:227
Intersection operator S:148

performance S:76
IP address, setting for a server AD:32
isDSAvakiXML SOAP operation API:40
Index-18 Master Index



P: Provisioning & Advanced Data Integration Guide     S: Data Integration with Avaki Studio
isList element P:266
Iterator operator S:149

example S:152

J
JAR files

for Avaki JDBC driver API:66
configuring path for second JAR on one grid server P:247

for data service plug-ins P:180
for jConnect API:67

jarurl element P:267
Java

data service plug-in code samples P:190
sample web services client API:9
writing data service plug-ins in P:183

Java transformers
error logging P:246
implementing P:243
installing P:245
referring to other documents P:245
using P:245

java.io.tmpdir system property AD:135
java.protocol.handler.pkgs system property AD:141
java.rmi.server.hostname system property AD:32
java.security.krb5.conf system property AD:143, AD:153
java.security.krb5.kdc system property AD:153
java.security.krb5.realm system property AD:153
java.sql.DatabaseMetaData interface API:75
Javadoc, Avaki, accessing P:185
JavaScript

files S:11
include files S:11, S:75

sample S:115
methods on data service plug-in objects P:201
resources for learning about S:67
using Java classes and interfaces in data service plug-

ins P:200
writing data service plug-ins in P:200

JavaScript expressions
about S:4, S:66
menu for constructing S:71
uses of in Avaki Studio S:vii

jConnect, See JDBC drivers
JDBC

accessing data catalog through O:24
and caching of database operation results API:62
connection properties API:68
data types API:76
directing queries to a particular grid server API:70
result set types API:75

JDBC drivers
about API:61
Avaki

choosing version of API:66
connection properties API:68
JAR files for API:66

JDBC drivers (continued)
Avaki

setting classpath for API:67
when to use API:65

batch mode API:77
choosing API:65
configuring for a database connector P:5
configuring two versions on one grid server P:247
connection strings API:71
defined AD:356, API:90, C:314, O:68, P:295, S:182
for supported DBMSes AD:3
installing AD:49
jConnect

changing default port API:71
setting classpath for API:67
using with Sybase databases AD:6
when to use API:65

loading API:68
prerequisites for using API:64
sample code API:77
setting system properties for API:67
supported features API:74

JDBC fetch size
setting for database connectors P:5, S:36
setting for database operations P:254

JDBC schema names API:69
jdbc-log4j.properties file API:66
join algorithms S:155
Join operator S:154

in tutorial S:44
performance S:76

join types S:156
join.properties file on proxy servers AD:300
JRE versions supported by Avaki AD:5

K
keepalive properties for HTTP ports AD:140
Kerberos

configuring with LDAP authentication services AD:152
system properties for AD:143

krb5.conf Kerberos configuration file AD:152

L
last access time file attribute C:290
LBF AD:280
LDAP

authentication services AD:148
See also authentication services, LDAP

authentication through DGAS AD:86
configuring for Kerberos access AD:152
disabling import on login AD:157
host port, default and nondefault AD:149
importing users on login AD:157
specifying a nondefault host port C:158

ldap --add-schedule command C:149
Master Index Index-19



AD: Administration Guide     API: API Guide     C: Command Reference     O: Overture
ldap --delete command C:153
ldap --delete-schedule command C:154
ldap --import command C:155
ldap --info command C:157
ldap --integrate command C:157
ldap --list-schedules command C:158
ldap --searchbase command C:160
ldap --update command C:160
links

command for creating C:161
uses of in data catalog O:36
See also hard links, soft links

Linux requirements AD:3
listDBConns SOAP operation API:59
listDBOps SOAP operation API:59
listDBOpsByDBConn SOAP operation API:60
listDomains SOAP operation API:25
listDSs SOAP operation API:40
listSearches SOAP operation API:25
ln command C:161
load balancing factor for share servers AD:280, C:244
local caches AD:356, API:90, C:314, O:14, O:68, P:296, S:182
locks command C:163
locks on files

clearing C:163
obtaining a list C:164

log properties file, sample AD:323
log4j AD:318, P:196
logging

audit logs AD:108
categories of loggable events AD:318
configuring audit logging AD:319
for data service plug-ins P:196
for JDBC API:66
for TrAX transformers P:246
for type mapping C:304
HTTP request logs AD:108
log4j properties files for servers and Studio AD:317
properties files for request logs AD:327
viewing the server log AD:107

logging in AD:199, C:164
logical operators S:72
logical operators in searches AD:234
logicBox element P:268
login command C:164
login info, setting S:23
logout command C:165
ls command C:166
ls SOAP operation API:26
lsSize SOAP operation API:26

M
manifest files for data service plug-ins P:180, P:197
mappings

between Avaki and local users/groups for DGAS AD:68
between Avaki users and database users, See database identity 

mappings

mappings (continued)
database identity

adding C:252
deleting C:253
listing C:255

default, setting up AD:71
DGAS default AD:69, C:220
DGAS domain-wide

for groups, setting up AD:70
for users, setting up AD:70
users, groups, and defaults AD:68

DGAS dynamic C:109
for data types in SQL views C:68, C:301
for users and groups for DGAS C:94, C:109
per-DGAS

adding for groups C:92
adding for users C:94
deleting C:100
deleting for groups C:99

per-DGAS, users and groups AD:88
self mappings for users C:109
See also data type mappings

maximum concurrent data services setting for execution 
services AD:109

memory requirements for Avaki software AD:3
message tests in monitor services AD:101
message timeout properties for Avaki servers and 

clients AD:133
MessagingUsers group and user accounts O:44
metadata O:13, S:3
Metadata directory O:33
metadata models

about S:77
creating S:84
defined AD:356, API:90, C:314, O:68, P:296, S:182
deleting S:94
deploying C:285, S:91
deriving S:92
editing S:84
files associated with S:11
importing S:79
mapping to Avaki objects S:88
naming scheme S:91
undeploying C:286, S:94

Microsoft SQL Server, versions and JDBC drivers for use with 
Avaki AD:6

Microsoft Visual Studio API:5
MicroSoft Windows O:16
MIME in Avaki web services API:3
minus signs in command syntax AD:xvi, C:xvi, P:xii
mkdir command C:167
mkdir SOAP operation API:27
mkdirParents SOAP operation API:27
mkdirServer SOAP operation API:29
mkdorParentsServer SOAP operation API:28
models, See metadata models and view models
modification time file attribute C:290
Index-20 Master Index



P: Provisioning & Advanced Data Integration Guide     S: Data Integration with Avaki Studio
monitor --add command C:167
monitor --clear command C:168
monitor --create command C:170
monitor --delete command C:171
monitor --list command C:172
monitor --result command C:172
monitor services
monitor --start command C:173
monitor --stop command C:174
monitoring

about AD:99
adding tests C:167
configuring AD:101
creating monitor services C:170
deleting monitor services AD:106, C:171
deleting tests AD:105
disabling and enabling tests AD:104
listing active tests C:172
logging AD:107
message tests AD:101
ping tests AD:100
removing tests C:168
restarting tests AD:105, C:173
stopping tests AD:105, C:174
viewing results AD:103, C:172

mount port for DGAS AD:81
mount protocol port, default AD:9
Mozilla, Avaki version requirements AD:5
Multiplexer operator S:157
multiplexing socket properties AD:142
mv command C:176
mv SOAP operation API:29
MySQL

configuring XA driver for P:7, S:36
versions and JDBC drivers for use with Avaki AD:6

N
name element P:269
name property for columns S:61
names of Avaki objects

about O:29
avoiding underscores in when using BusinessObjects API:81
case sensitivity and restrictions AD:206
changing AD:212
metadata models and mapped tables S:91
of elements S:58
qualified names O:30
restrictions on AD:41
three-part O:24

navigator in Studio S:17
nesting operations in data services S:149
.NET, See .NET under Symbols at the beginning of the index
Netscape requirements AD:5
NFS

and permissions AD:12
configuring NFS port for DGAS AD:81

NFS (continued)
port, default AD:9
shutting down before starting a DGAS AD:65

NFS clients
attribute caching for AD:336
defined AD:356, API:90, C:314, O:68, P:296, S:183
older, accessing data grid through AD:337
requirements for O:16
setting up AD:91

NFS URLs AD:93
NIS

disabling import on login AD:163
importing users on login AD:163
See also authentication services, NIS

nis --add-schedule command C:177
nis --delete command C:181
nis --delete-schedule command C:181
nis --import command C:182
nis --info command C:183
nis --integrate command C:184
nis --list-schedules command C:184
nis --update command C:185
NLM AD:64
NLM protocol port, default AD:9
notifications, See update notifications

O
object host name grid server attribute C:290
octothorpe AD:33, AD:129
ODBC

accessing data catalog through O:24
defined AD:356, API:90, C:314, O:68, P:296, S:183
support for API:80

ODBC drivers, using with Avaki API:80
offline expiration cache attribute C:291
on-demand caching

about P:119
defined AD:357, API:91, C:315, O:69, P:296, S:183
of database operation and data service results O:57, P:108
of files O:56, P:107

online help for command line AD:xiii, C:xiii, P:ix
operating systems supported by Avaki O:16
operations, monitoring AD:99
operators

about S:5
adding to a view model S:55
Aggregate S:108
connecting S:57
Custom S:111
descriptions of S:59
Generator S:117
Group By S:121
in searches AD:234
Input Source S:125
Intersection S:148
Iterator S:149
Join S:154
Master Index Index-21



AD: Administration Guide     API: API Guide     C: Command Reference     O: Overture
operators (continued)

logical, in expressions S:72
moving S:56
Multiplexer S:157
names of S:58
Order By S:159
performance considerations S:5
Projection S:161
properties dialogs S:58
Result S:164
Select S:165
selecting S:56
sort-based, performance of S:76
Splitter S:166
Union S:168
Update S:169
with red borders S:60

Oracle 10g
configuring XA driver for P:7, S:36
versions and JDBC drivers for use with Avaki AD:6

Order By operator S:159
performance S:76

os arch grid server attribute C:290
os name grid server attribute C:290
outer-full join S:156
outer-left join S:156
outer-right join S:156
output streams, for data services, configuring P:86
outputStream element P:269
ownership of objects in the data catalog

about O:46
setting AD:242

P
palette in Avaki Studio view model editor S:20, S:54
parameters

accessing in expressions S:71
adding S:64
deleting S:65
displaying S:63
for data service plug-ins

about P:178
specifying for Java plug-ins C:188
specifying for XSLT plug-ins P:181

for testing view models S:50
in Avaki Studio, about S:4
input, for data services, configuring P:84
mapping input parameters S:144
modifying S:65
reordering S:65
validating S:64

ParameterSpec interface for data services P:187
passwords

changing AD:175, C:185
specifying for JDBC connections API:69

patches, settable attributes of C:290

performance S:5, S:76
benefits of caching O:54
tracking, enabling in an Avaki shell C:245

Perl, sample web services client API:9
permissions

about O:45
changing AD:239, C:41
granted by grid groups O:43
hiding objects with O:49
on new Avaki shares AD:261
on shared data AD:12
setting in ACLs S:97
values for AD:242, O:47
viewing for Avaki services C:186
See also ACLs

permissions command C:186
permissions SOAP operation API:30
perspectives in Avaki Studio

Avaki S:13
defined S:12
Resource S:11

pin for caching, defined AD:357, API:91, C:315, O:69, P:297, 
S:183

ping tests in monitor services AD:100
planning an Avaki deployment AD:1
platforms supported by Avaki O:16
plugin command P:184
plugin --generate command C:187
Plugin interface for data services P:186
Plug-in Wizard and creating data service plug-ins P:183
plug-ins, See data service plug-ins
plus signs in command syntax AD:xvi, C:xv, P:xi
ports

bad port cache AD:141
changing, See ports, nondefault
CIFS, releasing before running a DGAS AD:66
default, for Avaki servers AD:6
HTTP and HTTPS, See HTTP and HTTPS ports
LDAP host

default and nondefault AD:149
specifying C:158

NFS, default AD:9
nondefault

configuring for DGAS AD:74, AD:75
configuring for grid servers AD:50
configuring for proxy servers AD:300
configuring for share servers AD:59

RMI, See RMI ports
SMB, default AD:9
specifying in WSDL API:6
SSL, See SSL ports
TDS AD:8, AD:50, AD:145, API:71

ports, connect, See connect ports
POST problem in web browsers AD:5
precision property for columns S:61
preferences for Avaki Studio, setting S:23
primary GDCs AD:357, C:315, O:69
Index-22 Master Index



P: Provisioning & Advanced Data Integration Guide     S: Data Integration with Avaki Studio
privacy and HTTPS API:8
Projection operator S:161

in tutorial S:46
projects

creating S:13
defined S:12

properties
cache sizes for data service plug-ins AD:137
DGAS

configuring AD:82
controlling cache size AD:124
displaying AD:124, C:103
displaying descriptions C:104
listing C:103
properties file C:293
setting C:113
unsetting C:117

for cache services AD:135
for encryption of grid objects AD:139
for HTTP and HTTPS ports AD:140
for HTTP keepalives on proxy servers AD:140
for JDBC clients AD:128
for JDBC connections API:68
for Kerberos AD:143
for multiplexing sockets AD:142
for remote object stub cache AD:144
for schedule exclusion cache AD:144
for server request logs AD:327
for servers acting as clients AD:128
for share servers AD:138
for virtual database table cache size AD:144
for XA connections C:70, P:7, S:37
Java system properties, providing to JDBC driver API:67
JDBC, specifying for a database connector C:67
Kerberos default realm AD:153
Kerberos key distribution center AD:153
location of Kerberos configuration file AD:153
message timeouts for Avaki servers and clients AD:133
remote coherence window for configurations AD:141
setting server’s host name or IP address AD:33
system. See system properties.
views

displaying C:274
setting C:275

XML indent size AD:142
properties dialog boxes S:58
provisioning data O:21
proxy --add command C:191
proxy --delete command C:191
proxy --list command C:192
proxy routing tables

about AD:289
configuring AD:292, C:191
displaying C:192

proxy servers
about AD:289
configuring AD:299
configuring nondefault ports AD:300
connecting C:228
defined AD:357, API:91, C:315, O:69, P:297, S:183
deleting from the routing table C:191
destroying C:228
disabling auto-restart C:14
enabling auto-restart AD:300, C:12
finding connect port numbers AD:303
finding server names AD:303
installing in Windows AD:24
installing in Unix AD:18
ports used by AD:10
registering for auto-restart AD:302, C:12
request logs for AD:327
server logs for AD:317
setting HTTP keepalive properties for AD:140
setting up C:191
starting AD:301, C:12, C:13
stopping C:14, C:228
stopping and restarting AD:301
time required to upgrade AD:341
unregistering C:14
when to deploy AD:290

proxy-server --register command AD:302, C:12
proxy-server --start command C:13
proxy-server --stop command C:14
proxy-server --unregister command C:14
pwd command C:193

Q
qualified names

about O:30
for data services, specifying API:35, C:51, C:267
for database connectors, specifying C:254
for database operations, specifying C:25, C:264
for groups, specifying C:43, C:142, C:145, C:147, C:148
for users, specifying C:42, C:53, C:60, C:86, C:89, C:141, 

C:145, C:165, C:251, C:266, C:280
queries, See ad-hoc queries
query engine

defined AD:357, API:91, C:315, O:69, P:297, S:184
mapping data types for C:301
sort chunk size property AD:139

queryCacheTTL JDBC property API:71

R
RAM requirements for Avaki software AD:3
range input for Iterator operators S:151
readme file AD:12, AD:15, AD:339
red borders on operators in Studio S:60
Red Hat Linux requirements AD:3
ref element P:270
Master Index Index-23



AD: Administration Guide     API: API Guide     C: Command Reference     O: Overture
refresh schedules

for Avaki shares AD:266, C:231
advanced AD:272
calendared AD:271
exclusions for AD:274
listing C:239
one-time AD:269
periodic AD:270
removing AD:278, C:236

for data services P:152
advanced P:157
calendared P:155
one-time P:155
periodic P:157

for database operations P:139
advanced P:144
calendared P:142
one-time P:142
periodic P:144

for files or directories P:120
advanced P:127
calendared P:125
one-time P:125
periodic P:127

for generated views P:231
advanced P:236
calendared P:234
one-time P:233
periodic P:236

for LDAP authentication services AD:185
for virtual database operations P:139

advanced P:144
calendared P:142
one-time P:142
periodic P:144

refreshing users on login AD:149
reindex interval for search services AD:232
remote caches AD:357, API:91, C:315, O:14, O:69, P:297, 

S:184
removeAttribute SOAP operation API:31
replica --add command C:193
replica --config command C:193
replica --delete command C:194
replica --info command C:194
replica --synch command C:195
request logs

configuring AD:327
viewing AD:108

requirements, pre-installation AD:2
Result element S:164
result sets

accessor functions S:73
combining S:44
large, providing space for sorting S:76
types in JDBC API:75

rm command C:195
rm SOAP operation API:31
RMI ports

default AD:8, AD:9, AD:10
linked to grid server connect ports AD:50
linked to share server connect ports AD:60

routing tables, configuring AD:292, C:191
row-level access control S:74
RowSetFactory class for data services P:188
rowsets O:11, P:273
rpc/encoded web services API:3, API:5
rpcinfo command AD:66
Rudi port AD:352, C:310, O:64
run-as users, See users and user accounts

S
Saxon C:265, C:268, C:271, P:220, P:224, P:227
scale property for columns S:61
schedule --delete command C:196
schedule exclusions

about AD:274, P:166
adding for Avaki share rehashes C:234
adding for data services C:51
adding for directories C:125
adding for files C:133, C:140
adding for LDAP authentication services C:152
adding for NIS authentication services C:180
adding for views C:262
adding to Avaki directories C:121
adding to database operations C:76
applying to schedule entries P:168
caching properties for AD:144
configuring AD:274, P:166
creating custom C:198
creating daily C:199
creating monthly C:201
creating weekly C:203
creating yearly C:205
defined AD:358, API:92, C:316, O:70, P:298, S:184
deleting C:207
displaying information about C:208, P:171
listing names C:209

schedule --info command C:197
schedule --list command C:197
schedule --print-iterations command C:198
scheduled caching

about P:119
defined AD:357, API:91, C:315, O:69, P:297, S:184
of database operation and data service results O:59, P:109
of files O:57, P:107

scheduleexclusion --create --custom command C:198
scheduleexclusion --create --daily command C:199
scheduleexclusion --create --monthly command C:201
scheduleexclusion --create --weekly command C:203
scheduleexclusion --create --yearly command C:205
scheduleexclusion --delete command C:207
scheduleexclusion --info command C:208
Index-24 Master Index



P: Provisioning & Advanced Data Integration Guide     S: Data Integration with Avaki Studio
scheduleexclusion --list command C:209
schedules

adding for data services C:48, P:152
adding for database operations C:73, P:139
adding for directories C:117
adding for files C:130
adding for LDAP user importation C:149
adding for NIS user importation C:177
adding for views C:259
adding for virtual database operations P:139
creating cron specifications C:297
creating custom exclusions C:198
creating daily exclusions C:199
creating monthly exclusions C:201
creating weekly exclusions C:203
creating yearly exclusions C:205
cron expressions in AD:185, AD:273
deleting C:196
deleting exclusions C:207
deleting for data services C:54
deleting for database operations C:78
deleting for directories C:122
deleting for files C:135
deleting for LDAP user importation C:154
deleting for NIS user importation C:181
deleting for views C:272
displaying exclusion information C:208
displaying information about C:197
exclusions, see also schedule exclusions
execute permissions required O:59
for refreshing LDAP authentication services AD:185
for view generators and generated views P:231
listing C:197
listing execution times C:198
listing for data services C:58
listing for database operations C:88
listing for directories C:126
listing for files C:136
listing for LDAP authentication services C:158
listing for NIS authentication services C:184
listing for views C:274
listing names of exclusions C:209
refresh, See refresh schedules
types of AD:185, AD:267

schemas
about S:3, S:60
enabling browsing on a database connector P:4
expressed in metadata models S:77
for Avaki data services API:75
for operators, column properties of S:60
for virtual database operations and their SQL views API:75
for virtual database operations, generating P:57
generating S:19
generating for data services C:55, P:98
generating for database operations C:80, P:31
getting information about through JDBC API:75
getting via JDBC API:75

schemas (continued)
JDBC schema names API:69
modifying S:161
types in Avaki domains P:51, P:64
viewing for databases P:9
See also metadata models

search (execute) command C:211
search --create command C:209
search --delete command C:210
search --get-rehash-level command C:212
search --info command C:214
search --rehash command C:215
search --set-rehash-level command C:215
search SOAP operation API:32
searches O:13

configuring rehash intervals C:215
creating search services AD:231, C:209
deleting AD:236
deleting search services C:210
displaying search service information C:214
performing AD:233, C:211
rehashing search services C:215
reindex interval, setting AD:232
viewing rehash intervals C:212

SearchQuery complex type API:17
SearchResult complex type API:17
secondary GDCs AD:43

adding C:193
deleting C:194
forcing updates C:195
setting refresh intervals C:193
setting update interval C:195
viewing C:194
See also grid domain controllers

security
.NET API:9
about O:10
ACLs O:45
authentication O:41
configuring encryption levels C:216
displaying encryption levels C:222
for web clients API:8
HTTPS API:8
setting permissions C:41
SSL certificates API:8
user accounts and groups O:43
viewing permissions C:186

security --config command C:216
security --default-gid command C:217
security --default-group command C:218
security --default-uid command C:219
security --default-user command C:220
security --gid command C:221
security --info command C:222
security --uid command C:222
Select operator S:165
server connect ports, See connect ports
server --dgas --connect command C:223
Master Index Index-25



AD: Administration Guide     API: API Guide     C: Command Reference     O: Overture
server --dgas --destroy command C:224
server --dgas --stop command C:225
server --grid --connect command C:225
server --grid --destroy command C:226
server --grid --stop command C:227
server logs

configuring AD:317
viewing AD:107

server --proxy command C:228
server --share --connect command C:228
server --share --disconnect command C:229
server --share --stop command C:230
servers, backing up databases for C:23
servers, Avaki

defined AD:350, API:84, C:308, O:62, P:290, S:176
displaying software version of AD:99
finding names of AD:131
in a typical deployment O:18
monitoring AD:99
ports used by AD:6
problems communicating with AD:32
setting cache service properties for AD:135
setting host name or IP address to advertise AD:32
setting message timeout properties for AD:133
See also DGAS, grid domain controllers, grid servers, share 

servers, and proxy servers
servers, proxy, See proxy servers
services, Avaki

copying C:46
defined AD:358, API:92, C:316, O:70, P:298, S:184
icon for O:29

setAttribute SOAP operation API:32
setOutputStream JavaScript method for data service plug-

ins P:202
share --add-rehash-schedule command C:231
share --add-share-servers command C:232
share --create command C:235
share --delete-rehash-schedule command C:236
share --disconnect command C:238
share --get-local-path command C:238
share --get-status command C:239
share --list-rehash-schedules command C:239
share --list-share-servers command C:240
share --rehash command C:240
share --remove-share-servers command C:241
share servers

about AD:54
adding to Avaki shares AD:263
backing up and restoring AD:115
before disconnecting AD:54, C:230
configuring a machine with one share server AD:55
configuring multiple share servers on one machine AD:59
configuring to use nondefault ports AD:59
connecting to grid servers C:228
defined AD:358, API:92, C:316, O:70, P:298, S:184
disabling auto-restart C:17
disconnecting from grid servers C:229

share servers (continued)
enabling auto-restart C:15
finding connect ports AD:59
finding server names AD:59
installing in Windows AD:24
installing on Unix AD:18
local path AD:261
modifying load balance factor C:244
multiple AD:55, AD:263
obtaining upgrade information C:250
ports used by AD:9
registering C:15
registering for auto-restart AD:57
removing from Avaki shares C:241
removing from shares AD:265
replacing for Avaki shares C:242
server logs for AD:317
setting for Avaki shares AD:260
setting load balancing factor AD:280
setting system properties for AD:138
starting AD:56, C:15, C:16
stopping C:17, C:230
stopping and restarting AD:57
time required to upgrade AD:341
unregistering C:17
upgrading C:249
write access and user accounts AD:12

share --set-local-path command C:241
share --set-share-servers command C:242
share --set-status command C:243
share --update-share-servers command C:244
shared directories, See Avaki shares
shares, See Avaki shares and CIFS shares
Shares directory O:34
shares, CIFS AD:125
share-server --register command AD:57, C:15
share-server --start command C:16
share-server --stop command C:17
share-server --unregister command C:17
shareserver.ports file

on grid servers AD:50
on share servers AD:60

shell command C:245
shells, Avaki, accessing C:245
shortcuts created in Windows installations AD:27
SMB ports, default AD:9
SOAP

formal definition API:1
learning about API:1
over HTTP API:8
over HTTPS API:8
standards compliance API:1

SOAP clients, See web services clients
SOAP complex types API:12

AdHocDBOPExecutionParams API:13
AvakiPrincipal API:13
DataCatalogAttribute API:14
Index-26 Master Index



P: Provisioning & Advanced Data Integration Guide     S: Data Integration with Avaki Studio
SOAP complex types (continued)

DataCatalogEntry API:15
DataCatalogPermission API:15
DataServiceExecutionParams API:16
DBOPExecutionParams API:16
SearchQuery API:17
SearchResult API:17

SOAP operations
accessibleDBOp API:42
accessibleDS API:36
accessiblePath API:19
chmod API:19
chown API:20
components of web service API:4
data catalog API:18
data services API:34
database operations API:40
executeAdHocDBOp API:43
executeAdHocDBOpWithOutput API:44
executeAdHocDBOpWithOutputAttach API:46
executeAdHocDBOpWithOutputString API:47
executeDBOp API:48
executeDBOpBytesInput API:49
executeDBOpGridFileInput API:50
executeDBOpWithOutput API:50
executeDBOpWithOutputAttach API:52
executeDBOpWithOutputString API:53
executeDS API:36
fileRead API:21
fileReadAttach API:21
fileReadString API:22
fileWrite API:23
getAttributes API:23
getDBOpOutput API:54
getDBOpOutputAttach API:55
getDBOpParameters API:56
getDBOpSchema API:56
getDBOpSchemaAttach API:57
getDBOpSchemaString API:58
getDSOutput API:37
getDSOutputAttach API:38
getDSOutputString API:38
getDSParameters API:39
getOutputString API:55
getSQL API:58
getSystemAttributes API:24
getUserAttributes API:24
isDSAvakiXML API:40
listDBConns API:59
listDBOps API:59
listDBOpsByDBConn API:60
listDomains API:25
listDSs API:40
listSearches API:25
ls API:26
lsSize API:26
mkdir API:27
mkdirParents API:27

SOAP operations (continued)
mkdirParentsServer API:28
mkdirServer API:29
mv API:29
permissions API:30
removeAttribute API:31
rm API:31
search API:32
setAttribute API:32
tester API:33
whoami API:33

SOAP::Lite API:5
sockets, multiplexing AD:142

setting maximum channels AD:142
setting maximum write AD:142
setting send buffer size for AD:143

soft links
about O:36
creating AD:217, C:161
defined AD:358, API:92, C:316, O:70, P:298, S:185
not used in searches AD:233

software requirements for Avaki AD:2
Solaris requirements AD:3
sort chunk size

controlling S:76
for query engine AD:139

spaces
in Windows install pathnames, avoiding AD:26
to separate arguments in Avaki commands AD:xvi, C:xvi, 

P:xii
SPARC/Solaris requirements AD:3
Splitter operator S:166
SQL

aggregate functions and aliasing columns S:42
as prerequisite for Avaki Studio users S:vii
statements

in database operations C:86, P:251
in virtual database operations C:90

SQL Server, versions and JDBC drivers for use with 
Avaki AD:6

sql view --delete command C:246
sql view --get-description command C:246
sql view --set-description command C:247
SQL views

about O:8, O:22, P:38
adding to categories P:47
configuring attributes P:44
data type mappings for C:68, C:301, P:39
defined AD:358, API:92, C:316, O:70, P:298, S:185
deleting C:246
displaying descriptions C:246
displaying tables provisioned from database connectors C:73
enabling provisioning on a database connector P:4
from data service results, generating P:60, P:100
generated from database operations, removing P:35
generating from data services C:56
generating from database operations C:82, P:34
location in categories S:18
Master Index Index-27



AD: Administration Guide     API: API Guide     C: Command Reference     O: Overture
SQL views (continued)

managing P:20
modifying P:43
modifying descriptions C:247
names in data catalog O:24
provisioning P:39
provisioning from database connectors C:71
qualified names for O:31
removing P:44
schema types for P:51, P:64
schemas for S:22
searching for AD:233
table types for API:75
viewing P:42
viewing and modifying ACLs P:46

square brackets in command syntax AD:xv, C:xv, P:xi
SSL certificates

about API:8
generating AD:33
installing AD:39
planning for AD:8

SSL ports, default AD:8, AD:9, AD:10
status command C:248
status of grid operations, monitoring AD:99
stored procedures API:73
StreamingRowSet interface for data services P:187
streams, closing in data service plug-ins P:186
Studio, See Avaki Studio
style sheet engines

for data service view generators P:227
for database operation view generators P:224
for file view generators P:220

style sheet engines for database view generators C:265, C:268
style sheet engines for file view generators C:271
Sun JDK for compiling data service plug-ins P:184
Sun ONE Directory Server AD:148

See also authentication services, LDAP AD:148
Sun Solaris requirements AD:3
SuSE Linux requirements AD:3
Sybase ASA, versions and JDBC drivers for use with 

Avaki AD:6
Sybase ASE

configuring XA driver for P:7, S:36
connection property required for API:70
versions and JDBC drivers for use with Avaki AD:7

Sybase contact information AD:xvi, API:vii, C:xvi, O:vi, P:xii, 
S:ix

Sybase IQ, versions and JDBC drivers for use with Avaki AD:7
syntax conventions for commands AD:xv, C:xiv, P:x
system attributes AD:248, S:101
System directory O:34
system properties

about AD:128
descriptions of AD:131
setting on Avaki Studio AD:129
setting on clients AD:129
setting on servers AD:129
using with JDBC driver API:67

system requirements for Avaki software AD:2, O:16
system.properties file AD:33, AD:129

T
table schema view S:22
table types for SQL views API:75
tables

deleting SQL views C:246
displaying descriptions C:246
generating from data services C:56
generating from database operations C:82
in metadata models S:77

arranging in editor S:84
making accessible via JDBC S:91
mapping to Avaki objects S:88
naming scheme for S:91

in virtual database, displaying C:283
mapping data types for C:301
modifying descriptions C:247
provisioned from database connectors, displaying C:73
provisioning as SQL views O:22
provisioning from database connectors C:71
qualified names for O:32
schemas for, displaying S:22
See also SQL views

tabs for view models S:21
target element P:270
TCP channel sockets AD:142
TDS port

changing AD:50, AD:145, API:71
default AD:8

technical support contact information AD:xvi, API:vii, C:xvi, 
O:vi, P:xii, S:ix

temp directories for grid servers, setting AD:135
Templates class P:244
tester SOAP operation API:33
testing an upgraded grid domain AD:346
testing function for WS clients API:33
text conventions C:xiv
timeout properties for Avaki server communications AD:133
timeouts, configuring for database operations P:253
transactions, See distributed transactions P:78
TrAX API P:243
two-phase commit protocol P:79
type element P:270
type mapping, See data types, mapping
type property for columns S:61
TypeMapping log4j category C:304
types for variables S:70

U
UID attribute in LDAP authentication services AD:150
UIDs, configuring AD:68, C:219, C:222
underscore characters in Avaki names API:81
Union operator S:168
Unix file mode semantics, setting AD:337
Index-28 Master Index



P: Provisioning & Advanced Data Integration Guide     S: Data Integration with Avaki Studio
Unset permission in ACL AD:242, O:47
update intervals for GDCs, setting C:195
update notifications

configuring P:238
defined AD:359, API:93, C:317, O:71, P:299, S:185
enabling AD:311

Update operator S:169
upgrade command C:249
upgrade --info command C:250
upgrading Avaki software

interoperability of different versions AD:339
preparation steps AD:341
upgrade planning AD:340
upgrade steps AD:342

upstream, defined S:3
urlLogicBox element P:271
user attributes AD:248, S:101
user command C:250
user --create command C:251
user --db-mapping --add command C:252
user --db-mapping --delete command C:253
user --db-mapping --list command C:255
user --delete command C:257
user groups, See groups
user --info command C:258
user --list-group command C:258
UserAdministrators group AD:45, O:44
users and user accounts

about O:43
adding database identity mappings C:252
adding to ACLs AD:243, S:97
adding to groups AD:191, C:138
administrative accounts, setting up AD:44
changing passwords AD:175, C:185
clearing credentials from DGAS cache AD:117
configuring associated cache service C:33
configuring default mappings C:220
configuring dynamic mappings C:109
configuring self mappings C:109
creating accounts AD:168, C:251
creating home directories AD:169
default users for DGAS AD:333
deleting accounts AD:189, C:257
deleting database identity mappings C:253
deleting from groups C:144
disabling import on login (LDAP) AD:157
disabling import on login (NIS) AD:163
displaying and changing account information AD:187
displaying associated cache C:27
displaying full names and contact information C:258
displaying names C:286
enabling interconnection access AD:304
enabling on authentication services C:250
exposing in a two-way interconnect AD:308
giving access to other domains AD:294
grid accounts AD:167
imported accounts AD:167

users and user accounts (continued)
importing from LDAP services AD:157
importing from NIS services AD:164
importing on login (LDAP) AD:157
importing on login (NIS) AD:163
listing database identity mappings C:255
listing group membership for C:258
logging in AD:199
logging out when newly added to groups AD:192, AD:243
making account changes take effect immediately for DGAS 

access AD:117
managing AD:167
mapping Avaki users to database users, See database identity 

mappings
MessagingUser O:44
qualified names for O:32
querying whether enabled in LDAP AD:151
refreshing imported accounts AD:185
refreshing on login (LDAP) AD:149
removing from ACLs AD:242
removing from groups AD:193
roles for O:43
run-as users

browser setting for selecting P:27, P:54, P:92, P:224, P:227
for data service views P:227
for data services P:92
for database operation views P:223
for database operations P:26
for virtual database operations P:54

setting run-as user for views C:279
setting up for DGAS AD:67
setting up local accounts for Avaki AD:11
specifying for JDBC connections API:69
uncoupling associated cache C:34

V
validation error expressions S:65
validation expressions S:64
value element P:272
values element P:272
variables

about S:69
allowed types for S:70
downstream, menu of S:71
in Avaki Studio, about S:4
updating S:69

VB .NET, See .NET
versions

of Avaki software, displaying AD:99, C:148, C:250
SOAP API:1
TrAX P:243
WSDL API:1

vertical bars in command syntax AD:xv, C:xv, P:xi
view --add-schedule command C:259
view --create --database command C:263
view --create --data-service command C:266
Master Index Index-29



AD: Administration Guide     API: API Guide     C: Command Reference     O: Overture
view --create --file command C:267
view --delete command C:272
view --delete-schedule command C:272
view --depends command C:272
view --garbage-collect command C:273
view generators

about O:8, O:25, P:217
caching of input files P:241
configuring update notifications for P:238
defined AD:359, API:93, C:317, O:71, P:299, S:185
for data services

setting up P:225
specifying a style sheet engine P:227

for database operations
setting up P:221
specifying a style sheet engine P:224

for files
setting up P:218
specifying a style sheet engine P:220

for large data sets and unsupported formats P:242
listing dependent operations P:228
modifying P:229
non-XSLT-based P:242
removing P:239
rowsets as inputs of P:275
running P:240
scheduling updates P:231
troubleshooting P:240
using TrAX transformers P:242

view --info command C:274
view --list-schedules command C:274
view models

about O:23, S:2
configuring input sources S:43
creating S:42
defined AD:359, API:93, C:317, O:71, P:299, S:185
deploying as data services S:50
error handling S:143
files associated with S:11
opening, saving and closing S:17
red borders showing errors S:60
sample workflow for S:29
schemas S:3
tabs for, in a project S:21
testing S:49
view model editor S:20

view --regenerate command C:273
view --set-property command C:275
view --update command C:279
ViewLibrary category, contents of S:18
views

adding generation schedules C:259
adding schedule exclusions C:262
configuring values for SQL parameters C:275
configuring with database sources C:263
configuring with data-service sources C:266
configuring with file sources C:267

views (continued)
deleting C:272
deleting generation schedules C:272
listing generation schedules for C:274
obtaining information about C:274
regenerating C:273
removing old results C:273
setting run-as user C:279
showing dependencies C:272
specifying a style sheet engine C:265, C:268, C:271
updating C:279
See also generated views, SQL views, view generators, view 

models
virtual database

about O:22
configuring attributes P:70
defined AD:359, API:93, C:317, O:71, P:299, S:185
displaying SQL views C:283
executing ad-hoc queries on C:282
schema

browsing catalogs P:64
browsing schemas P:64
browsing tables P:64

table cache size system property AD:144
types of schemas P:51, P:64
viewing and modifying ACLs P:72

virtual database operations
about O:23, P:49
access permissions P:50
allowing creation of C:280
allowing groups to create P:67
allowing users to create P:65
creating C:87, P:50
defined AD:359, API:93, C:317, O:71, P:299, S:186
evicting from cache P:150
executing P:61
generating SQL views from P:60
listing in cache P:148
location in categories S:18
managing P:50
marking for scheduled caching P:139
modifying P:55
preventing creation of C:281
preventing groups from creating P:69
preventing users from creating P:68
qualified names for O:31
removing P:63
schemas for, generating P:57
SQL statements in C:90
tagging for on-demand caching P:146
unscheduling P:150
viewing P:55, P:57, P:59
viewing dependencies P:59
viewing details P:56

virtual database service, configuring access permissions P:65
virtualdatabase --allow-dbop-creation command C:280
virtualdatabase --disallow-dbop-creation command C:281
virtualdatabase --execute command C:282
Index-30 Master Index



P: Provisioning & Advanced Data Integration Guide     S: Data Integration with Avaki Studio
virtualdatabase --show-tables command C:283
virtualschema --deploy command C:285
virtualschema --undeploy command C:286
virutal schema models, See metadata models

W
web browsers

requirements for Avaki software AD:5
setting for selecting run-as users P:27, P:54, P:92, P:224, 

P:227
web services API:2, API:8

about API:2
access permissions API:9
client examples API:9
data catalog API:18
data services API:34
database operations API:40
development framework API:5
document/literal API:3, API:5
provisioning, about P:205
rpc/encoded API:3, API:5
security API:8
with MIME API:3

web services clients
defined AD:359, API:93, C:317, O:71, P:299, S:186
requirements for API:4

web services description language, See WSDLs
whoami command C:286
whoami SOAP operation API:33
wildcard characters in searches AD:235
Windows

avoiding install pathnames with spaces AD:26
installing Avaki in AD:23
installing on Windows 2003 AD:22
requirements for AD:3
services, running under avaki local user account AD:11
shortcuts for AD:27
update for HTTP POST problem in web browsers AD:5
versions supported by Avaki O:16

Windows domains
displaying for DGAS admission policies C:114
setting for DGAS admission policies C:111
unsetting for DGAS admission policies C:116

Windows Services list C:5
Workbench S:12
workspace directory for Avaki Studio

described S:12
setting S:10

WS API
accessibleDBOp API:42
accessibleDS API:36
accessiblePath API:19
authentication API:9
authorization API:9
chmod API:19
chown API:20
data access API:2

WS API (continued)
data services SOAP operations API:34
executeAdHocDBOp API:43
executeAdHocDBOpWithOutput API:44
executeAdHocDBOpWithOutputAttach API:46
executeAdHocDBOpWithOutputString API:47
executeDBOp API:48
executeDBOpBytesInput API:49
executeDBOpGridFileInput API:50
executeDBOpWithOutput API:50
executeDBOpWithOutputAttach API:52
executeDBOpWithOutputString API:53
executeDS API:36
fileRead API:21
fileReadAttach API:21
fileReadString API:22
fileWrite API:23
getAttributes API:23
getDBOpOutput API:54
getDBOpOutputAttach API:55
getDBOpParameters API:56
getDBOpSchema API:56
getDBOpSchemaAttach API:57
getDBOpSchemaString API:58
getDSOutput API:37
getDSOutputAttach API:38
getDSOutputString API:38
getDSParameters API:39
getOutputString API:55
getSQL API:58
getSystemAttributes API:24
getUserAttributes API:24
grid server API:6
HTTP API:7, API:8
HTTPS API:7, API:8
isDSAvakiXML API:40
listDBConns API:59
listDBOps API:59
listDBOpsByDBConn API:60
listDomains API:25
listDSs API:40
listSearches API:25
ls API:26
lsSize API:26
mkdir API:27
mkdirParents API:27
mkdirParentsServer API:28
mkdirServer API:29
mv API:29
permissions API:30
ports API:6
removeAttribute API:31
rm API:31
search API:32
setAttribute API:32
tester API:33
whoami API:33

WS clients, See web services clients
Master Index Index-31



AD: Administration Guide     API: API Guide     C: Command Reference     O: Overture
WSDLs

about API:2
as SOAP contracts API:3
AvakiAPI.disco discovery file for .NET clients API:3
AvakiAPIDocLit.wsdl API:3
AvakiAPIRpcEnc.wsdl API:3
AvakiAPIWithMIMEDocLit.wsdl API:3
AvakiAPIWithMIMERpcEnc.wsdl API:3
choosing API:5
document/literal API:3
editing API:6
locations of API:6
provided by Avaki API:11
rpc/encoded API:3
standards compliance API:1

WSDLs directory O:35

X
X Window System libraries required for Avaki install on 

Unix AD:16
XA drivers, configuring for database connectors C:69, P:7, S:36
Xalan C:265, C:268, C:271, P:220, P:224, P:227
XAWorkHandler class for data services P:189
XAWorkUnit interface for data services P:189
XML data in Avaki O:11, P:273
XML indent size property AD:142
XML schema

Avaki rowset
class-name element P:279
column-display-size element P:279
column-index element P:279

XML schema (continued)
core schema P:277
overview P:277
rowset-specific schema P:279
sample schema P:280

data service
class element P:261
coherenceWindow element P:261
dataService element P:262
description element P:263
initParameter element P:263
inputParameter element P:264
inputSource element P:265
inputStream element P:266
isList element P:266
jarurl element P:267
logicBox element P:268
name element P:269
outputStream element P:269
ref element P:270
target element P:270
type element P:270
urlLogicBox element P:271
value element P:272
values element P:272

XSLT
in view generators, when not to use P:242
using in data service plug-ins P:180
See also Xalan, Saxon
Index-32 Master Index


	Sybase Avaki EII API Guide
	Table of contents
	Preface
	Organization
	Related documentation
	Conventions
	How to contact Avaki support at Sybase, Inc.

	Chapter 1 Using the web services API
	Web services overview
	The Avaki web services and their WSDL documents

	Web service client considerations
	Choose a web service development framework
	Choose the appropriate WSDL document
	Choose a grid server
	Locate the WSDL
	Edit the WSDL to add port and grid server information

	Security with web services
	Privacy and integrity
	Authentication and authorization


	Web services client examples

	Chapter 2 Web services API reference
	Using this reference
	Complex type descriptions
	AdHocDBOPExecutionParams
	AvakiPrincipal
	DataCatalogAttribute
	DataCatalogEntry
	DataCatalogPermission
	DataServiceExecutionParams
	DBOPExecutionParams
	SearchQuery
	SearchResult

	Data catalog operations
	Client code sample
	Using the data catalog API

	accessiblePath
	chmod
	chown
	fileRead
	fileReadAttach
	fileReadString
	fileWrite
	getAttributes
	getSystemAttributes
	getUserAttributes
	listDomains
	listSearches
	ls
	lsSize
	mkdir
	mkdirParents
	mkdirParentsServer
	mkdirServer
	mv
	permissions
	removeAttribute
	rm
	search
	setAttribute
	tester
	whoami

	Data service operations
	Client code sample
	Using the data service API

	accessibleDS
	executeDS
	getDSOutput
	getDSOutputAttach
	getDSOutputString
	getDSParameters
	isDSAvakiXML
	listDSs

	Database operation operations
	Client code sample
	Using the database operations API

	accessibleDBOp
	executeAdHocDBOp
	executeAdHocDBOpWithOutput
	executeAdHocDBOpWithOutputAttach
	executeAdHocDBOpWithOutputString
	executeDBOp
	executeDBOpBytesInput
	executeDBOpGridFileInput
	executeDBOpWithOutput
	executeDBOpWithOutputAttach
	executeDBOpWithOutputString
	getDBOpOutput
	getDBOpOutputAttach
	getDBOpOutputString
	getDBOpParameters
	getDBOpSchema
	getDBOpSchemaAttach
	getDBOpSchemaString
	getSQL
	listDBConns
	listDBOps
	listDBOpsByDBConn


	Chapter 3 Using JDBC drivers
	Caching results of database operations
	Prerequisites for using JDBC drivers
	Checking your JRE version
	Completing grid setup tasks
	Choosing a JDBC driver
	jConnect
	Avaki JDBC driver

	Configuring your classpath
	For jConnect
	For the Avaki JDBC driver


	Setting up your application to use a JDBC driver
	Loading the JDBC driver
	Connection properties
	For jConnect
	For the Avaki JDBC driver

	Connection strings
	For jConnect
	For the Avaki JDBC driver

	Data services
	Database operations
	Pass-through ad-hoc queries

	JDBC support
	DatabaseMetaData
	Supported result set types
	Error messages
	Data types
	Batch mode

	JDBC driver code example
	Using an ODBC driver

	Glossary

	Master Index


