
Sybase, Inc.
One Sybase Drive
Dublin, CA 94568
www.sybase.com

DRAFT

Sybase Avaki EII
Provisioning
and Advanced
Data Integration
Guide
Release 7.0 • August 24, 2006

DOCUMENT ID: DC00575-01-0700-01

LAST REVISED: August 2006

Copyright © 2002 – 2006 Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes. Information in this document is subject
to change without notice. The software described herein is furnished under a license agreement, and it may be used or copied only in accordance with the terms of that
agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other international customers should contact their
Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or
translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, SYBASE (logo), ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive
Server Enterprise Monitor, Adaptive Server Enterprise Replication, Adaptive Server Everywhere, Advantage Database Server, Afaria, Answers Anywhere, Applied Meta, Applied Metacomputing,
AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Translator, APT-Library, ASEP, Avaki, Avaki (Arrow Design), Avaki Data Grid, AvantGo, Backup Server, BayCam, Beyond
Connected, Bit-Wise, BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional Logo, ClearConnect, Client-Library, Client Services, CodeBank,
Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Data Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer, DataWindow,
DataWindow .NET, DB-Library, dbQueue, Dejima, Dejima Direct, Developers Workbench, DirectConnect Anywhere, DirectConnect, Distribution Director, Dynamic Mobility Model, e-ADK,
E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway, ECMAP, ECRTP, eFulfillment Accelerator, EII Plus, Electronic Case Management, Embedded SQL, EMS, Enterprise Application Studio,
Enterprise Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise Portal (logo), Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work
Designer, Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works Together, EWA, ExtendedAssist, Extended Systems, ExtendedView, Financial
Fusion, Financial Fusion (and design), Financial Fusion Server, Formula One, Fusion Powered e-Finance, Fusion Powered Financial Destinations, Fusion Powered STP, Gateway Manager, GeoPoint,
GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, InstaHelp, Intelligent
Self-Care, InternetBuilder, iremote, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Legion, Logical Memory Manager, lrLite, M2M Anywhere, Mach Desktop, Mail Anywhere Studio,
Mainframe Connect, Maintenance Express, Manage Anywhere Studio, MAP, M-Business Anywhere, M-Business Channel, M-Business Network, M-Business Suite, MDI Access Server, MDI Database
Gateway, media.splash, Message Anywhere Server, MetaWorks, MethodSet, mFolio, Mirror Activator, ML Query, MobiCATS, MobileQ, MySupport, Net-Gateway, Net-Library, New Era of Networks,
Next Generation Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS logo, ObjectConnect, ObjectCycle, OmniConnect, OmniQ, OmniSQL Access Module, OmniSQL Toolkit,
OneBridge, Open Biz, Open Business Interchange, Open Client, Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open
Solutions, Optima++, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, Pharma Anywhere, PhysicalArchitect, Pocket PowerBuilder, PocketBuilder, Power++, Power
Through Knowledge, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, Powering the New Economy, PowerScript,
PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst, Pylon, Pylon
Anywhere, Pylon Application Server, Pylon Conduit, Pylon PIM Server, Pylon Pro, QAnywhere, Rapport, Relational Beans, RemoteWare, RepConnector, Report Workbench, Report-Execute, Replication
Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit, Resource Manager, RFID Anywhere, RW-DisplayLib, RW-Library, SAFE, SAFE/PRO, Sales Anywhere,
Search Anywhere, SDF, Search Anywhere, Secure SQL Server, Secure SQL Toolset, Security Guardian, ShareLink, ShareSpool, SKILS, smart.partners, smart.parts, smart.script, SOA Anywhere
Trademark,SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server
Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL Station, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, S.W.I.F.T.
Message Format Libraries, Sybase Central, Sybase Client/Server Interfaces, Sybase Development Framework, Sybase Financial Server, Sybase Gateways, Sybase Learning Connection, Sybase MPP,
Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase Virtual Server Architecture, Sybase User Workbench, SybaseWare, Syber Financial, SyberAssist,
SybFlex, SybMD, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, The Enterprise Client/Server Company, The Extensible Software Platform, The Future Is Wide
Open, The Learning Connection, The Model For Client/Server Solutions, The Online Information Center, The Power of One, TotalFix, TradeForce, Transact-SQL, Translation Toolkit, Turning
Imagination Into Reality, UltraLite, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viafone, Viewer, VisualWriter, VQL, WarehouseArchitect, Warehouse
Control Center, Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server,
XA-Library, XA-Server, XcelleNet, XP Server, XTNDAccess and XTNDConnect are trademarks of Sybase, Inc. or its subsidiaries. 07/06

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013 for the DOD and as set forth in FAR
52.227-19(a)-(d) for civilian agencies.

Set in Arial, Courier New, and Times New Roman. Stanley Morison, the creator of Times New Roman, said of it: “By the vice of Mammon and the misery of the machine,
it is bigoted and narrow, mean and puritan.”

Credits
This product includes software developed by the Apache Software Foundation (http://www. apache.org). This product includes Hypersonic SQL and ANTLR. This product
includes code licenses from RSA Security, Inc. Some portions licensed from IBM are available at http://oss.software.ibm.com/icu4j/. Contains IBM® 64-bit Runtime
Environment for AIX™, Java™ 2 Technology Edition Version 1.4 Modules © Copyright IBM Corporation 1999, 2000 All Rights Reserved. Contains the SAXON XSLT
Processor from Michael Kay, which is available at http://saxon.sourceforge.net. This product includes software developed by the Proxool Project
(http://proxool.sourceforge.net).

Sybase Avaki EII Provisioning and Advanced Data Integration Guide
Written by Cheryl Magadieu, Beth Thoenen, and Ed Blachman

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Table of contents

 Preface vii
Organization viii
Related documentation and online help ix
Conventions xi

Command syntax conventions xi
Conventions for screen examples xii

How to contact Avaki support at Sybase, Inc. xiii

Chapter 1 Managing information from databases 1
Database overview 1

About database operations 1
Uses of database operations 2

Connecting to databases 3
Creating database connectors 3
Viewing and modifying database connectors 8
Viewing database schemas 10
Viewing associated database operations 14
Setting database operation permissions 14
Testing database connectors 20
Managing SQL views 20
Removing database connectors 21

Managing database operations 22
Creating database operations 22
Viewing and modifying database operations 29
Viewing database operation details 29
Managing database operation metadata 31
Executing database operations 36
Removing database operations 38

Managing SQL views 39
Provisioning SQL views 39
Viewing SQL views 43
Modifying SQL views 43
Sybase Avaki EII Provisioning and Advanced Data Integration Guide i

Removing SQL views 44
Configuring SQL view attributes 45
Managing SQL view categories 48

Chapter 2 Basic data integration 49
Virtual database operations 50

Creating virtual database operations 50
Viewing and modifying virtual database operations 56
Managing metadata for virtual database operations 57
Executing virtual database operations 62
Removing virtual database operations 63

Managing virtual database services 64
Browsing virtual database schemas 64
Configuring virtual database access permissions 65
Configuring virtual database service attributes 71
Managing virtual database service ACLs 73

Data services overview 75
About data services 75
Understanding data service components 76
Avaki Studio and data services 78
Data services and distributed transactions 78

Creating data services 81
Getting started 81
Configuring data service plug-ins 82
Configuring data service input parameters 84
Configuring data service output streams 86
Configuring data service input streams 87

Importing data service descriptors 92
Viewing a list of data services 94
Modifying data services 94
Managing data service metadata 97

Viewing data service dependencies 97
Generating a data service’s schema 99
Exposing data service results as a SQL view 101

Testing data services 102
Removing data services 103
ii Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Chapter 3 Managing cache services 105
Configuring clients and Avaki servers to use cache services 106
Configuring caching for files 107

On-demand caching 107
Pinning files for scheduled caching 108
Permissions and access control 108

Configuring caching for database operations and data services 108
On-demand caching 108
Scheduled caching 109
Remote/local caching interactions 110
Permissions and access control 110

Associating Avaki servers with caches 111
Associating grid servers with caches 111
Disassociating grid servers from caches 112
Associating data grid access servers with caches 113
Disassociating data grid access servers from caches 115
Viewing and modifying cache service configuration 116

Overriding cache service default settings 119
Managing caches 120

Managing file or directory caches 120
Managing database caches 139
Managing data service caches 152
Configuring schedule exclusions 166

Chapter 4 Setting up data service plug-ins 175
Overview of data service plug-ins 176
Java, JavaScript, or XSLT 176
Input and output 177

Input sources 177
Parameters 178
Output stream 180

Plug-in files 180
JAR files and manifest files for Java plug-ins 180
JavaScript file for JavaScript plug-ins 180
XSL file for XSLT plug-ins 180

Deployment of plug-ins 180
Creating XSLT plug-ins 181

Specifying parameters 181
Sybase Avaki EII Provisioning and Advanced Data Integration Guide iii

Specifying secondary input sources 181
A sample XSLT plug-in 182

Creating Java plug-ins with the Plug-in Wizard 183
Prerequisites 184
Plug-in Wizard procedure 184
Writing the Java code 185

Creating JavaScript plug-ins 200
Access to Java classes and interfaces 200
Import required packages 201
Methods available on the plug-in object 202
Execute function 203

Chapter 5 Provisioning web services 205
Provisioning web services overview 205
Setting up the data service 206

Getting started 207
Specifying parameters 207
Specifying the output stream 208
Specifying the input streams 208
Specifying a grid server 213

Testing data services 214

Chapter 6 Managing views 217
Managing view generators 218

Setting up file view generators 218
Setting up database operation view generators 221
Setting up data service view generators 225
Displaying view dependencies 228
Modifying view generators 229

Generating views 240
About generated view files 240
Cache interactions 241
View generation procedure 241

Non-XSLT-based view generators 242
The TrAX standard 243
Implementing a Java transformer 243
Installing your Java transformer 245
Using your transformer 245
iv Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Referring to other documents in your transformer 245
Logging errors 246

Appendix A Advanced database management 247
Configuring the JDBC driver JAR file path 247
Restricting database operation output 249
Configuring batch mode settings 250
Configuring SQL calls 251
Configuring database operation timeouts 253
Configuring database operation fetch size 254

Appendix B Data service schema 257

Appendix C Data representation in Avaki 273
Rowset objects 274
Rowsets and XML as inputs 275
Usage scenarios 275

Appendix D Avaki rowset XML 277
Core schema 277
Rowset-specific schema 280
Sample XML schema for a database operation 280

 Glossary 289
Sybase Avaki EII Provisioning and Advanced Data Integration Guide v

vi Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Preface
This Sybase Avaki EII Provisioning and Advanced Data Integration Guide describes
how to use the Sybase Avaki EII web user interface to provision and integrate data
from files and databases. The guide is intended for anyone who exposes, manipulates,
or caches data.

Read the Avaki Overture for an introduction to concepts and tools discussed in this
book, including database connectors, database operations, SQL views, data services,
and cache services. To learn how to use Avaki’s other interfaces (Avaki Studio and the
Avaki command-line interface) for provisioning and integration, read Data Integration
with Sybase Avaki Studio or the Sybase Avaki EII Command Reference.

Note This book and the product’s user interfaces refer to Sybase Avaki EII soft-
ware as Avaki or Avaki Data Grid.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide vii

Preface
Organization
This book is organized as follows:

Chapter 1
Managing information from
databases

Describes how to create and manage database connections,
database operations, and SQL views.

Chapter 2
Basic data integration

Explains how to integrate data from multiple, heteroge-
neous, distributed data sources, such as files, relational
data, XML data, and application data.

Chapter 3
Managing cache services

Explains how to add files to a cache, unpin files, add data-
base operations to a cache, schedule and unschedule data-
base actions, and view caching services.

Chapter 4
Setting up data service plug-ins

Explains how to write data service plug-ins in Java, Java-
Script, or XSLT.

Chapter 5
Provisioning web services

Explains how to provision data from a web service into a
grid.

Chapter 6
Managing views

Describes how to set up and use views that use database
operations and files as input sources.

Appendix A
Advanced database manage-
ment

Describes some advanced settings that you can configure
for database connectors and database operations

Appendix B
Data service schema

Describes the XML schema that specifies the contents of a
data service.

Appendix C
Data representation in Avaki

Describes how Avaki represents data using rowsets and
XML.

Appendix D
Avaki rowset XML

Describes the schema that Avaki rowset XML comprises.

Glossary Defines terms used in this guide.
viii Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Related documentation and online help
Related documentation and online help

Manuals
These manuals make up the Avaki documentation set:
• Sybase Avaki EII Overture

• Sybase Avaki EII Administration Guide (includes installation instructions)

• Data Integration with Sybase Avaki Studio

• Sybase Avaki EII Provisioning and Advanced Data Integration Guide

• Sybase Avaki EII API Guide

• Sybase Avaki EII Command Reference

The manuals are included, in PDF format, on the CD with the Avaki software. They are
stored in the docs subdirectory of the Avaki installation directory.

To access the manuals via Avaki’s web user interface, log in to your Avaki domain and
click the Help link at the top right corner of any page of the web UI.

Online help
In addition to the manuals, Avaki provides online help for commands.

To display a list of Avaki commands with brief descriptions, log in to the Avaki system
and enter avaki help:

% avaki help
List of domain commands:
 attribute
 backup
 cache
 cat
 categories
 cd
 chmod
 chown
 client
 cp
 dataservice
 dbconn
 dbop
 dgas
Sybase Avaki EII Provisioning and Advanced Data Integration Guide ix

Preface
 directory
 domain
 executionservice
 file
 group
 help
 id
 ldap
 ln
 locks
 login
 logout
 ls
 mkdir
 monitor
 mv
 nis
 passwd
 patch
 permissions
 plugin
 proxy
 pwd
 replica
 rm
 scheduleexclusion
 search
 security
 server
 share
 shell
 sqlview
 status
 systemproperty
 upgrade
 user
 view
 virtualdatabase
 virtualschema
 whoami

To display a description of a particular command and the syntax, enter a command of
the form avaki help <command>. For example:

% avaki help mv
usage: avaki mv <source-grid-path> <target-grid-path>

Description: Move or rename a grid directory or a file
in a grid directory. Similar to the Unix mv command.
x Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Conventions
Conventions
This section describes text conventions used in this guide to represent elements of
commands and screen displays.

Command syntax conventions
This table describes conventions that this book uses in command syntax statements.
The “Enter this” column tells you whether you need to enter the characters when you
type a command. The examples in the “Examples” column are not necessarily com-
plete commands.

Convention Description
Enter
this? Examples

[] Square brackets surround optional
arguments.

no avaki login [<user-id>]

{ } Curly brackets surround groups of
required arguments.

no avaki chmod {--allow | --deny |
--unset}

{ | }

[|]

Vertical bars separate alternative
options within square or curly brack-
ets. If the brackets are square, you
need not enter any of the options; if
the brackets are curly, you must
choose one of the options.

no avaki backup {--snapshot |
--recover}

avaki share --create
[--background | --bg]

< > Angle brackets surround placeholder
arguments that you must replace with
a value such as a path or file name.
Square brackets outside the angle
brackets indicate that the placeholder
is optional.

no avaki help [<command-name>]

avaki help share

* An asterisk follows an argument that
can be entered zero or more times.

no avaki plugin --generate
[--input=<stream-spec>*]

avaki plugin --generate
--input="name=input1;type=XML"

+ A plus sign follows an argument that
can be entered one or more times.
Use spaces to separate the values.

no avaki cat <grid-path>+

avaki cat /home/fred/file1
/home/fred/file2
Sybase Avaki EII Provisioning and Advanced Data Integration Guide xi

Preface
Conventions for screen examples
This table describes conventions this book uses in examples of user input and system
output.

- Enter a hyphen or minus sign before
a single-letter command option.

yes avaki mkdir -p

= Enter an equal sign before the value
of an option.

yes avaki login --auth-service=
<auth-service-name>

 (space) A space separates multiple arguments. yes avaki cat file1 file2 file3

Convention Description Example

$ or C:> The command prompt $

< > A placeholder; replace the content
inside the brackets with an option or
value

$ avaki ls
<grid-path>

screen
font

Text that appears on the screen sample text

bold
screen
font

User input—commands that you
enter

$ avaki ls

Convention Description
Enter
this? Examples
xii Sybase Avaki EII Provisioning and Advanced Data Integration Guide

How to contact Avaki support at Sybase, Inc.
How to contact Avaki support at Sybase, Inc.
For general information about Sybase technical support, see the Customer Service Ref-
erence Guide at
http://www.sybase.com/support/aboutsupport/guide/csrg

Please contact us with any questions or difficulties you encounter.

By telephone

In North America, call toll free: 1-800-8SYBASE

Outside North America, follow the link below to see a list of Sybase offices and phone
numbers around the world.
http://www.sybase.com/contactus/support

On the web
If you are a designated contact for a technical support plan, you can log and track cases
on the web using the Case Express application. At www.sybase.com, mouse over
the Support and Services tab and select Case Management from the drop-down list.
Use the email address and password for your mysybase account to log in.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide xiii

http://www.sybase.com/support/aboutsupport/guide/csrg
http://www.sybase.com/contactus/support
http://www.sybase.com

Preface
xiv Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Chapter 1

Managing information
from databases
This chapter describes how to create, view, test, and remove database connectors; how
to create, view, execute, schedule, and remove database operations; and how to provi-
sion, view, and modify SQL views. All these tasks fall under the heading of provision-
ing—getting information into the data grid.
The chapter covers the following topics:
• “Database overview,” below

• “Connecting to databases” on page 3

• “Managing database operations” on page 22

• “Managing SQL views” on page 39

Database overview

About database operations
In Avaki, a database operation is the vehicle through which users, applications, and
Avaki objects such as data services and generated SQL views have access to data in
relational databases. Each database operation accesses one relational database. The
data owner (typically a database administrator who has responsibility for that data-
base) creates the database operation as an entry in the Avaki data catalog, giving it a
name and a definition that is a SQL statement, such as calling a stored procedure. This
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 1

Managing information from databases
can be any SQL statement the database will accept, including row operations (INSERT,
SELECT, UPDATE, DELETE, CALL) or any other SQL, but it is most often a query rep-
resented by a SELECT statement. When you define a database operation that contains a
SQL statement and grant access to that database operation, you are granting rights to
run that statement in the database.
Database operations can accept and return parameters. For example, you can set up a
statement that returns order details given a specific order number, and then supply the
order number at runtime.

The mechanism that enables a database operation to connect with a database is called a
database connector. You create the database connector before creating the database
operation. For more on database connectors, see “Connecting to databases” on page 3.

Uses of database operations
Once you have one or more database operations, you can use them as input sources or
cache the results for later use:

Database operations as input sources. Database operations (including virtual data-
base operations) can be invoked directly via ODBC, JDBC, the Avaki web service
interface or the various Avaki user interfaces. But they can also be used within Avaki
by other Avaki operations:
• Data services. A data service combines and/or transforms data obtained from vari-

ous sources, including database operations. For more on data services, see Chapter
2, “Basic data integration” on page 49.

A special application of data services is to use the two-phase commit protocol to
execute several database operations as a single distributed transaction. For more on
distributed transactions, see “Data services and distributed transactions” on
page 78.

Avaki Studio provides powerful, easy-to-use tools for building and deploying
Avaki data services. For more on Avaki Studio, see Data Integration with Sybase
Avaki Studio.

• View generators. A view generator obtains data from a grid file, a data service, or a
database operation, and saves the results as a file. For more information, see Chap-
ter 6, “Managing views” on page 217.

• SQL views. You can generate a SQL view—a “virtual table”—from a database
operation. This allows the results of that database operation to be accessed via
ODBC or JDBC by applications (or users) that are more comfortable dealing with
2 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Connecting to databases
Avaki as a collection of tables than as a collection of callable procedures. For more
information, see “Managing SQL views” on page 39.

Caching database operations. You can store the results of a database operation or a
virtual database operation in a cache to reduce the load on a back-end data source or
cut down on network congestion and speed up application performance. For details
about caching database operation results, see Chapter 3, “Managing cache services”.

Connecting to databases
A database connector enables one or more database operations or ad-hoc queries to
connect to a relational database. Database connectors contain information about how
to access a particular database. Once you’ve created a database connector, you can cre-
ate database operations that use the database connector to access a database. Database
operations can insert new data into or update or delete existing data in a relational
database. They can also call stored procedures in such a database, or extract data from
the database and deliver it to an Avaki view generator, data service, or application cli-
ent (ODBC/JDBC/SOAP).

This section covers the following topics:
• “Creating database connectors,” below

• “Viewing and modifying database connectors” on page 8

• “Viewing associated database operations” on page 14

• “Setting database operation permissions” on page 14

• “Testing database connectors” on page 20

• “Removing database connectors” on page 21

Creating database connectors
Follow these steps to create a database connector:

Step 1 Log in as a member of the DatabaseAdministrators group.

Step 2 Navigate to the Create Database Connector screen:
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 3

Managing information from databases
Home > Database provisioning > Create database connector

Step 3 Fill in the form:

• Connector name: Enter a name for the database connector. Note: Do not include
any spaces in the name.
4 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Connecting to databases
• Allow ad-hoc queries, schema browsing, and SQL view provisioning: Select this
option if you want to enable users to perform direct SQL queries against the data-
base, browse the database’s metadata, or provision SQL views. Ad-hoc queries
must run through an existing Avaki database connector. Ad-hoc queries can be
thought of as single-use database operations. You can run an ad-hoc query using
either the CLI or the JDBC driver. For information about using the CLI to run an
ad-hoc query, see the Sybase Avaki EII Command Reference. For information about
using a JDBC driver to run an ad-hoc query, see the Sybase Avaki EII API Guide.

• Description (optional): Enter some descriptive information about this database con-
nector.

• Database name (optional): Enter the name of the database.

• Database driver: Enter the class name of your database JDBC driver. For example:

com.sybase.jdbc3.jdbc.SybDriver

oracle.jdbc.driver.OracleDriver

Make sure that the driver that you specify is in the following directory:

<Avaki-install-dir>/drivers

For more information about configuring JDBC drivers, see the Sybase Avaki EII
Administration Guide.

• Default connection username (optional): Enter the name of a user account in the
database. This username will be used to authenticate the database connection. By
default, all database operations associated with this database connector will use this
username when executed.

• Default connection password (optional): Enter the password for the default connec-
tion username.

• Confirm default connection password (optional): Confirm the connection pass-
word. Note: while the password is optional, if you choose to supply one, you must
confirm it here.

• JDBC fetch size: This parameter can be used to fine-tune performance of database
operations. When an application uses the JDBC driver to execute a database opera-
tion, it typically processes the rows that are returned one after another; but the
driver applies a buffering optimization by fetching rows in batches; the fetch size is
the number of rows to be fetched in such a batch. In most circumstances, the
driver’s default fetch size will be optimal, so you’ll want to keep the Default set-
ting. But if you decide that database operations executed through this database con-
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 5

Managing information from databases
nector should generally use a non-default fetch size, enter the relevant number of
rows in the Custom text box. Note: you can also set the fetch size for individual
database operations. See “Configuring database operation fetch size” on page 254.

• Allow database identity mappings: Place a check mark in this box if database iden-
tity mappings are allowed on this database connector. A database identity mapping
is a special-purpose user alias. It allows operations performed by some Avaki user
on a particular database connector to be executed in the name of an alternate
user/password combination. For details about configuring database identity map-
pings, see the Sybase Avaki EII Administration Guide.

• Database administrator’s full name (optional): Enter the database administrator’s
first and last name.

• Database administrator’s email address (optional): Enter the database administra-
tor’s email address.

• Database administrator’s phone number (optional): Enter the database administra-
tor’s telephone number.

• Database administrator’s organization (optional): Enter the organization to which
the database administrator belongs.

• Connection string: Enter the URL for your JDBC driver. For more information, see
the documentation for your database. Here are two sample connection strings:

jdbc:sybase:Tds:gallium:15000/test

jdbc:oracle:thin:@gallium:1521:test1

• Grid server: Select the grid server on which to create the database connector.

• Use Avaki connection pooling: Specify whether to enable Avaki connection pool-
ing. When connection pooling is enabled, database connections can be reused,
which typically improves performance for JDBC applications. By default, Avaki
connection pooling will keep up to 15 connections open to a back-end database. If
your driver has built-in connection pooling, it may not be necessary to use Avaki
connection pooling. Select one of the following options:

— Yes, with the default pool size (15): Enable connection pooling, with a connec-
tion pool size of 15 connections.

— Yes, with a custom pool size: Enable connection pooling and specify the desired
connection pool size.

— No: Do not enable connection pooling.
6 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Connecting to databases
• Connection properties (optional): Specify any properties that are required for your
database. For information about database-specific properties, see your database
documentation.

• XA driver (optional): Specify an XA driver class if you plan to use this database
connector to support distributed transactions. This class must reside in the JAR file
for the database vendor’s JDBC driver. These XA drivers have been tested with
Avaki:

— For Sybase ASE: com.sybase.jdbc3.jdbc.SybXADataSource
(ASE 15.0 with jConnect 6.05)

— For Oracle 10g: oracle.jdbc.xa.client.OracleXADataSource
(Oracle 10g release 10.1.0.2.0 with JDBC driver version 10.2.0.1.0)

— For MySQL: com.mysql.jdbc.jdbc2.optional.MysqlXADataSource
(MySQL 5.0 with MySQL Connector/J 5.0)

• XA connection properties (optional): Some XA connection properties might be
required by your XA driver. Here are some that are typically specified:

— For Sybase ASE:
ServerName=<database-host-name>
PortNumber=<database-port> (e.g. 5000)
ResourceManagerType=2
ResourceManagerName=connection
DatabaseName=<database-name>
NetworkProtocol=Tds
User=<db-user-name>
Password=<db-user’s-password>

— For Oracle 10g:
URL=jdbc:oracle:thin:@<db-host-name>:<db-port>:<db-name>
User=<db-user-name>
Password=<db-user’s-password>

— For MySQL:
URL=jdbc:mysql://<db-host-name>[:<db-port>]/<db-name>
User=<db-user-name>
Password=<db-user’s-password>
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 7

Managing information from databases
Note For details on configuring your XA-compliant JDBC driver, including the
particular XA connection properties to use, refer to the documentation for the
driver.

Step 4 Click Submit. The system displays a confirmation screen.

Step 5 Optional. To ensure that the database connector works, click the Test button. Avaki
tests both the regular JDBC connection to the database and the XA connection, if one is
configured. The system displays a message indicating whether the connector is opera-
tional.

For information about configuring advanced database connector settings, see Appen-
dix A, “Advanced database management”.

Viewing and modifying database connectors
To view a list of the database connectors in the current grid domain, navigate to the
View Database Connectors screen:
Home > Database provisioning > Manage database connectors

The system displays a list of the database connectors in the current Avaki domain.
8 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Connecting to databases
To view details about a database connector, do the following:

Step 1 Navigate to the View Connector Detail screen:

Home > Database provisioning > Manage database connectors

Step 2 Click the View/Edit link beside the name of the database connector whose details you
want to view. The Database Connector Detail screen appears.

Step 3 Optional. Modify the database connector settings as needed, then click Submit to save
your changes.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 9

Managing information from databases
Viewing database schemas
Sometimes it is useful to be able to browse the schema—the set of table definitions—
of the database that underlies a database connector. The pop-up Database Table
Browser allows you to do this.

Database schemas are not all alike. The JDBC standard is written in terms of a
three-level database table hierarchy: catalogs, which contain schemas, which in turn
contain tables. But the standard allows each database to have its own name for the cat-
alog and schema levels. And beyond that, databases differ as well regarding whether
they implement all three levels or just two (and if the latter, whether it’s the catalog or
the schema level that is implemented), and in subtler ways besides. The look and feel
of the Database Table Browser therefore varies subtly as well.

The Database Table Browser can be found in a number of ways. Here’s one:

Step 1 Navigate to the View Connector Detail screen:

Home > Database provisioning > Manage database connectors

Step 2 Click the View/Edit link beside the name of the database connector whose details you
want to view. The Database Connector Detail screen appears.

Step 3 Click the Browse button beside the Source schema field on the Database Connector
Detail page. When you click the Browse button, the Database Table Browser window
appears.

• In the database illustrated above, only two levels are implemented—schemas and
tables. This database uses the word “schema” to correspond to the JDBC schema
concept. The pull-down menu is used to select a particular schema or all schemas.
A database that implements the catalog level rather than the schema level would
look very similar, except that there’s no “all catalogs” choice in a catalogs pull-
10 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Connecting to databases
down. A database that implements all three levels will have two pull-downs rather
than one.

• Even with no schema selected, the database illustrated above returns the list of all
its tables. Not all databases do so; in one that did not, you’d see a message like
No tables can be seen with the current choice of schema.

rather than the list of table name links.

Step 4 Optional but recommended. Use the pull-down menu(s) to select a schema (or catalog,
or combination of catalog and schema) to examine. Again, the result may either be a
list of tables on the left or the “No tables can be seen” message, depending on

• whether the database is willing to show a list of tables (for the case where both cat-
alog and schema levels are implemented but you’ve chosen only one), or
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 11

Managing information from databases
• whether the specified schema (or catalog, or schema-catalog combination) actually
contains tables (it’s quite possible that it does not).
12 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Connecting to databases
Step 5 Click on the name of a table to see details of its definition.

Step 6 When you’re done viewing the Database Table Browser, click Close to close the win-
dow.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 13

Managing information from databases
Viewing associated database operations
To view the database operations that are associated with a particular connection, do the
following:

Step 1 Navigate to the View Database Connectors screen:

Home > Database provisioning > Manage database connectors

Step 2 Click the Operations link for the database connector whose database operations you
want to see. The View Database Operations screen appears, showing the database
operations that are associated with the database connector.

For details about managing database operations, see “Managing database operations”
on page 22.

Setting database operation permissions
Database operations can be created by a database administrator or by another user or
group if the database administrator gives a user or group the appropriate permission.
When a user or group creates a database operation, that database operation is owned
by the database administrator who created the related database connector, so that the
administrator can delete the database operation if necessary.
14 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Connecting to databases
The following sections describe how to set database operation permissions:
• “Allowing users to create database operations,” below

• “Allowing groups to create database operations” on page 16

• “Preventing users from creating database operations” on page 18

• “Preventing groups from creating database operations” on page 19

Allowing users to create database operations
To allow a user to create a database operation that uses a designated database connec-
tion, the owner of the database connection must do the following:

Step 1 Navigate to the View Database Connectors screen:

Home > Database provisioning > Manage database connectors

Step 2 Click the View/Edit link for the database connector that the database operation uses.
The Database Connector Detail screen appears. The Allow/Disallow section is at the
bottom of the screen.

Step 3 To add a user to the list of users who can create a database operation that uses the data-
base connection, click the Add User button. The Add Database Connector User screen
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 15

Managing information from databases
appears.

Step 4 Click boxes in the Add column to select the users you want to add.

Step 5 Click Submit to save your changes. The system displays a list of the users you have
added.

Allowing groups to create database operations
To allow a group to create a database operation that uses a designated database con-
nection, the owner of the database connection must do the following:

Step 1 Navigate to the View Database Connectors screen:

Home > Database provisioning > Manage database connectors
16 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Connecting to databases
Step 2 Click the View/Edit link for the database connector that the database operation uses.
The Database Connector Detail screen appears. The Allow/Disallow section is at the
bottom of the screen.

Step 3 To add a group to the list of groups who can create a database operation that uses the
database connection, click the Add Group button. The Add Database Connector
Group screen appears.

Step 4 Click boxes in the Add column to select the groups you want to add.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 17

Managing information from databases
Step 5 Click Submit to save your changes. The system displays a list of the groups you have
added.

Preventing users from creating database operations
To prevent a user from creating a database operation that uses a designated database
connection, do the following:

Step 1 Navigate to the View Database Connectors screen:

Home > Database provisioning > Manage database connectors

Step 2 Click the View/Edit link for the database connector that the database operation uses.
The Database Connector Detail screen appears The Allow/Disallow section is at the
bottom of the screen.

Step 3 To remove a user from the list of users who can create a database operation that uses
the database connection, click Remove. The system removes the user from the list.
18 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Connecting to databases
Preventing groups from creating database operations
To prevent a group from creating a database operation that uses a designated database
connection, do the following:

Step 1 Navigate to the View Database Connectors screen:

Home > Database provisioning > Manage database connectors

Step 2 Click the View/Edit link for the database connector that the database operation uses.
The Database Connector Detail screen appears The Allow/Disallow section is at the
bottom of the screen.

Step 3 To remove a group from the list of groups that can create a database operation that
uses the database connection, click Remove. The system removes the group from the
list.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 19

Managing information from databases
Testing database connectors
Follow these steps to test whether a database connector is operational:

Step 1 Navigate to the View Database Connectors screen:

Home > Database provisioning > Manage database connectors

Step 2 Click the Test link beside the database connector you want to test. The system displays
a message indicating whether the connector is operational.

Managing SQL views
Follow these steps to manage any SQL views associated with a database connector:

Step 1 Navigate to the View Database Connectors screen:

Home > Database provisioning > Manage database connectors
20 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Connecting to databases
Step 2 Click the SQL Views link beside the database connector whose SQL views you want to
manage. The Manage SQL Views screen appears, showing any SQL views that are
based on the database connector.

For information about managing SQL views, see “Managing SQL views” on page 39.

Removing database connectors
Follow these steps to remove a database connector:

Step 1 Navigate to the View Database Connectors screen:

Home > Database provisioning > Manage database connectors

Step 2 Click the Remove link beside the database connector you want to remove. The system
displays a confirmation screen.

Step 3 Click OK to confirm the operation. The system redisplays the View Database Connec-
tors screen without the connector that you removed.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 21

Managing information from databases
Managing database operations
This section describes how to perform various tasks with database operations, which
extract data from a relational database and deliver it on demand to a view generator, a
data service, or a generated SQL view.

In this section:
• “Creating database operations,” below

• “Viewing and modifying database operations” on page 29

• “Viewing database operation details” on page 29

• “Managing database operation metadata” on page 31

• “Executing database operations” on page 36

• “Removing database operations” on page 38

Creating database operations
To create a database operation, you must have the appropriate permissions for the
related database connector, as follows:
• you must be the owner of a related database connector or the user who created it; or

• your database administrator must modify the permissions for the database connec-
tor that the database operation uses so that you are allowed to create a database
operation (see “Allowing users to create database operations” on page 15).

Note To be capable of participating in a distributed transaction, a database oper-
ation must use a database connector that has been configured with an XA driver.
The database connector configuration procedure, “Creating database connectors”
on page 3, explains how to configure an XA driver.

To create a database operation, do the following:

Step 1 Navigate to the Select Database Connector screen:
22 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing database operations
Home > Database provisioning > Create database operation
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 23

Managing information from databases
Step 2 Select the database connector to use to create the database operation, then click Con-
tinue. The Create Database Operation screen appears.

Step 3 Fill in the form:

• Database connector: Shows the name of the connector on which this database oper-
ation will be defined. Click the connector’s name to view its details, or the View
24 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing database operations
Schema button to examine the catalogs, schemas, and tables in the connected data-
base. For more information about viewing the database schema, see “Viewing data-
base schemas” on page 10.

• Logical name: Enter a name for the database operation. Note: Do not include
spaces in the name.

• Description (optional): Enter some descriptive information about this database
operation.

• SQL statement: Enter the SQL statement that the database operation will execute.
The SQL syntax must be valid for the underlying database, with one exception: Use
a question mark (?) to specify parameters, as specified in the JDBC standard for
specifying parameters in stored procedures. For details about using question marks
to specify parameters, see the JDBC API documentation at:

http://java.sun.com/j2se/1.4.2/docs/guide/jdbc/getstart/
preparedstatement.html

Alternatively, you can import the contents of a file that contains a SQL statement, as
follows:

— Click the Browse button beneath the SQL statement box.

— In the Grid File Browser that appears, navigate to the file and select it.

— Click Continue. The contents of the file are inserted into the SQL statement box.

Note If you enter a SQL statement that involves an aggregate function such as
SUM, you must use aliases for any column names to which the function refers.
The aliases must follow these rules:
— All aliases must begin with a letter, an underscore (_), or a dollar sign ($).

— All characters after the first character may be letters, numbers, an underscore
(_), or a dollar sign ($).

— All characters should be valid ASCII characters.

— An alias cannot be any of the following words:

break enum super

case export switch

catch extends this
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 25

http://java.sun.com/j2se/1.4.2/docs/guide/jdbc/getstart/preparedstatement.html

Managing information from databases
For example, in the following SQL statement, dollarsum is an alias for the col-
umn named DOLLARS.

SELECT sum(DOLLARS) dollarsum, CUSTOMERID FROM sales GROUP
BY CUSTOMERID ORDER BY CUSTOMERID

• Updates database: Select Yes if the database operation’s SQL statement performs an
update (such as INSERT, DELETE, or UPDATE); in this case, the database operation
will not be executed when its schema is generated. Select No if the SQL statement
does not perform an update, to enable the database operation to be executed when
its schema is generated.

• Cached data expiration: Select one of the following to indicate whether the data is
cached and, if so, when the data expires from the cache:
— No caching: The data is not cached.

— Never expires: The data never expires from the cache.

— Expires after n seconds: Specify the interval (in seconds) before the data expires
from the cache.

• Run database operation as: Specify which Avaki user the database operation will be
run as. To run the operation as the current user, click The user running the opera-
tion.
To run the operation as a specific user: click A specific user and enter the qualified
user name. Use the following format:

<user-name>@<authservice>.<authservicetype>.<domain>

class finally throw

comment for try

continue function typeof

const if var

debugger import void

default in while

delete label with

do new

else return
26 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing database operations
For example:
wilma@DefaultAuthService.Grid.Bedrock

Alternatively, you can click the Browse link to open the User Browser window,
then select a user and click Continue.

Note The Avaki web UI employs a special browsing feature when you’re select-
ing the run-as user for a data service, database operation, or view. To make user
browsing work properly, make sure the smooth scrolling option in your web
browser is turned off. In Firefox or Internet Explorer, select Tools > (Internet)
Options > Advanced and uncheck “Use smooth scrolling.”

• Stored procedure? Select Yes if the SQL statement invokes a stored procedure in the
underlying database, or select No if it doesn’t. For the SQL syntax use the standard
JDBC syntax for calling stored procedures via the CallableStatement object. For
details about using CallableStatement, see the JDBC API documentation at:

http://java.sun.com/j2se/1.4.2/docs/guide/jdbc/getstart/
callablestatement.html

• Supports batch: Select Yes if the SQL statement is an update that can be used with
JDBC batch mode.

• Click Continue.

• If the database operation requires parameters, a second Create Database Operation
screen appears.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 27

http://java.sun.com/j2se/1.4.2/docs/guide/jdbc/getstart/callablestatement.html

Managing information from databases
If the database operation accepts input parameters or produces output parameters,
use this option to specify the data type for each input and output. The table below
shows the data types you can use:

If the input or output is a not a parameter but is part of a known operator, select
“Not a parameter” as the data type.

Click Submit to update the database operation.

Step 4 Optional. To test whether a database operation is working properly, click the Test but-
ton. The system displays the Execute Database Operation page. For information about
executing a database operation, see “Executing database operations” on page 36.

For information about configuring advanced database operation settings, see Appen-
dix A, “Advanced database management”.

BIGINT
BINARY
BIT
BOOLEAN
BLOB
CHAR
CLOB
DATE
DECIMAL
DOUBLE
FLOAT
INTEGER
LONGVARBINARY

LONGVARCHAR
NUMERIC
ORACLE_CURSOR
OTHER
REAL
SMALLINT
TIME
TIMESTAMP
TINYINT
VARBINARY
VARCHAR
Not a parameter
28 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing database operations
Viewing and modifying database operations
To view or modify a list of database operations in the current grid domain, navigate to
the View Database Operations screen:
Home > Database provisioning > Manage database operations

The system displays a list of the database operations in the current Avaki domain. By
default, the list is sorted by database operation names. To sort the list by database con-
nector names, select Connector.

Viewing database operation details
To view details about a database operation, do the following:

Step 1 Navigate to the View Database Operations screen:

Home > Database provisioning > Manage database operations

Step 2 Click the View/Edit link beside the name of the database operation whose details you
want to view or modify. The Update Database Operation screen appears, showing the
details for the database operation.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 29

Managing information from databases

Step 3 Modify the fields if desired, then click Continue. A confirmation screen appears when
the update is complete.
30 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing database operations
Managing database operation metadata
You can generate, view, or regenerate a database operation’s schema (and view it if it
has been generated), browse a database operation’s dependencies, and expose the
results of a database operation as a SQL view.

Generating a database operation’s schema
To generate schema information, do the following:

Step 1 Navigate to the View Database Operations screen:

Home > Database provisioning > Manage database operations

Step 2 Click the Metadata link beside the database operation whose metadata you want to
manage. The Manage Metadata screen appears.

Step 3 Optional. To generate schema information, click Generate. You must generate this
database operation’s schema if you want to expose it as a SQL view.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 31

Managing information from databases
Step 4 Optional. To view generated schema information, click View. The Avaki Schema
Viewer appears, showing the table’s schema.

Step 5 Optional. To regenerate schema information, click Refresh. You should regenerate the
schema information if the structure of the database operation’s resultset changes. The
structure will change if either of the following conditions occurs:

• the database operation’s SQL statements changes; or

• the schema of the underlying database table changes.

If the database operation’s resultset structure changes, you should propagate the
change to any data services or SQL views that depend on the database operation. For
information about displaying a list of services or views that depend on the database
operation, see “Viewing database operation dependencies,” below.
32 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing database operations
Viewing database operation dependencies
You can view a list of the data services, SQL views and view generators (if any) that
depend on the database operation. To view these dependencies, do the following:

Step 1 Navigate to the View Database Operations screen:

Home > Database provisioning > Manage database operations

Step 2 Click the Metadata link beside the database operation whose metadata you want to
manage. The Manage Metadata screen appears.

Step 3 To view database operation dependencies, click Browse.

The system lists the data services, SQL views and view generators that depend on the
database operation.

For details about creating data services, see Chapter 2, “Basic data integration” on
page 49. For details about creating view generators, see Chapter 6, “Managing views”
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 33

Managing information from databases
on page 217. For details about exposing database operation results as a SQL view, see
below.

Exposing database operation results as a SQL view
You can expose the database operation results as a SQL view, so that the database oper-
ation resultset can be operated on as a table via JDBC or a virtual database operation.
Such a SQL view is static in two ways: first, if the database operation’s schema
changes, you must regenerate the SQL view accordingly; second, the regeneration of a
database operation’s SQL view can only be done as two separate steps—removing the
old SQL view, followed by generating a new one. Here’s how you manage a database
operation’s SQL view:

Step 1 Navigate to the View Database Operations screen:

Home > Database provisioning > Manage database operations

Step 2 Click the Metadata link beside the database operation whose metadata you want to
manage. The Manage Metadata screen appears.
34 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing database operations
— If there’s not yet a SQL view representing this database operation (but the opera-
tion’s schema has been generated), the screen looks like this:

In the Logical Name box, enter a logical name for the SQL view to be generated.
Do not include any spaces in the name. Click the Generate link.

— If there is a SQL view representing this database operation, the screen displays
the logical name of the SQL view:

Removing SQL views
To remove a SQL view generated from a database operation, do the following:

Step 1 Navigate to the View Database Operations screen:
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 35

Managing information from databases
Home > Database provisioning > Manage database operations

— Click the Metadata link beside the database operation whose metadata you
want to manage. The Manage Metadata screen appears. The screen displays the
logical name of the SQL view:

Step 2 Click the Remove link beside the logical name of the SQL view that you want to
delete.

Executing database operations
You can display the results of a database operation to make sure that the operation is
set up correctly and that the connections are healthy.

To execute a database operation, you must have the appropriate permissions for the
operation, as follows:
• you must be the user who created the related database operation; or
36 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing database operations
• your database administrator must modify the access control list (ACL) for the data-
base operation so that you are allowed to execute it. The database administrator
must give you permission to read and execute the database operation. For details
about configuring ACLs, see the Sybase Avaki EII Administration Guide.

Follow these steps to execute a database operation:

Step 1 Navigate to the View Database Operations screen:

Home > Database provisioning > Manage database operations

Step 2 Click the Execute link beside the name of the database operation you want to execute.
The Execute Database Operation page appears.

Step 3 Optional. If your query requires parameters, enter the parameters, or click the browse
link and navigate to an XML input file that contains the parameters. The XML input
file must conform to the rowset-specific schema described in Appendix D, “Avaki
rowset XML” (see “Rowset-specific schema” on page 280). For each value in the
input file, you must define a matching SQL parameter in the database operation. In the
schema on page 280, for example, you must define parameters for the company name,
for each part of the company’s address, and for the ID number.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 37

Managing information from databases
Step 4 Optional. Select the Generate schema and suppress output option to generate
schema for the database operation. The schema describes the structure of the output of
a database operation.

Step 5 Click Submit. A confirmation screen appears. If you chose to generate schema in the
previous step, you can click View Schema to view the database operation’s schema. If
you chose not to generate schema, the results of the query appear in XML format.

Calling a database operation. You can use ODBC, JDBC, or SOAP procedure calls to
call a database operation in the data catalog. For more information, see the Sybase
Avaki EII API Guide.

Removing database operations
Follow these steps to remove a database operation:

Step 1 Navigate to the View Database Operations screen:

Home > Database provisioning > Manage database operations

Step 2 Click the Remove link beside the database operation you want to remove. The system
displays a confirmation screen.

Step 3 Click OK to confirm the operation. The system redisplays the View Database Opera-
tions screen without the operation that you removed.
38 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing SQL views
Managing SQL views
A SQL view is data that can be accessed using standard SQL statements by connecting
to Avaki with ODBC or JDBC, or via an Avaki virtual database operation. It is a virtual
table and can be made available to applications that issue SQL statements, such as cer-
tain business intelligence and reporting applications, or to business users issuing
ad-hoc queries.

A SQL view or set of SQL views provides a distributed query capability, where Avaki
optimizes execution by delegating processing to the database management systems
where appropriate. The advantage of a SQL view is its flexibility in serving applica-
tions and ad-hoc queries. The disadvantage is that this flexibility sometimes conflicts
with restrictions data owners need to place on how production databases can be used.

Note When you provision a table into Avaki from a relational DBMS, Avaki
uses a default set of mappings between the SQL data types used in the DBMS and
the data types used by Avaki’s query engine. If the default data type mappings
yield unsatisfactory results, you can override them for a particular database con-
nection. For instructions on overriding the default data type mappings, see the
Sybase Avaki EII Command Reference.

The following sections describe how to provision a table as a SQL view, and how to
view and modify SQL views:

• “Provisioning SQL views,” below

• “Viewing SQL views” on page 43

• “Modifying SQL views” on page 43

Provisioning SQL views
When you provision a SQL view, you make a table from a connected database visible
in Avaki.

To provision a database table as a SQL view, do the following:
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 39

Managing information from databases
Step 1 Navigate to the Provision SQL View screen:

Home > Database provisioning > Provision SQL view

Step 2 Click the Browse button beside the Database connector field. The Database Connec-
tion Selector screen appears.

Step 3 Select the database connector that connects to the relational database that contains the
table to provision and click Continue.
40 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing SQL views
Step 4 Click the Browse button beside the Table to be provisioned field. The pop-up Data-
base Table Selector screen appears. The Database Table Selector is a version of the
Database Table Browser (see “Viewing database schemas” on page 10) that allows
you not only to view the schema of the connected database but also to select one of its
tables for provisioning.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 41

Managing information from databases
Step 5 As with the Database Table Browser, you can narrow down (or populate) the list of
tables on the left by choosing a catalog or schema (or both) from the available
pull-down menus, and you can view the schema of a particular table by clicking on its
name in that list:

Step 6 The Database Table Selector also offers a radio button next to each table visible in the
list on the left. To select a table for provisioning, click the radio button beside its name
and click Continue to close the Database Table Selector window.

Step 7 In the Logical name box, enter a name for the SQL view.

Step 8 Optional. In the Description box, enter a description for the SQL view.

Step 9 Click Continue. The system displays a confirmation screen.
42 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing SQL views
Viewing SQL views

Step 1 To list and display information about the SQL views in your Avaki domain, navigate to
the Manage SQL Views screen:

Home > Database provisioning > Manage SQL views

Modifying SQL views

Step 1 To modify a SQL view, navigate to the Manage SQL Views screen:

Home > Database provisioning > Manage SQL views

Step 2 Click on the name of the SQL view to modify.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 43

Managing information from databases
Step 3 The Provision SQL View screen appears.

Step 4 Modify the description as needed, then click Continue to save your changes.

Removing SQL views
Follow these steps to remove a SQL view:

Step 1 Navigate to the Manage SQL Views screen:

Home > Database provisioning > Manage SQL views

Step 2 Click the Remove link beside the database connector you want to remove. The system
displays a confirmation screen.

Step 3 Click OK to confirm the operation. The system redisplays the Manage SQL Views
screen without the SQL view that you removed.
44 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing SQL views
Configuring SQL view attributes
Each SQL view has attributes that store information such as the time at which the SQL
view was created and the name of the user who owns the service.

To view the attributes for a SQL view, do the following:

Step 1 Navigate to the Manage SQL Views screen:

Home > Data integration > Manage SQL views
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 45

Managing information from databases
Step 2 Click the Attributes link. The View Attributes page appears, showing the attributes
for the SQL view.

For details about creating, modifying, and deleting attributes, see the Sybase Avaki EII
Administration Guide.
46 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing SQL views
Managing SQL view ACLs
An access control list (ACL) determines which grid users are allowed to read and
manipulate each SQL view.

To view the ACL for a SQL view, do the following:

Step 1 Navigate to the Manage SQL Views screen:

Home > Data integration > Manage SQL views

Step 2 Click the Security link. The View Security Information appears, showing the users
and groups that have been added to the ACL for the SQL view.

For details about viewing and modifying ACLs, see the Sybase Avaki EII Administra-
tion Guide.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 47

Managing information from databases
Managing SQL view categories
Categories let you classify and organize the contents of your data catalog. To assign a
SQL view to a category, do the following:

Step 1 Navigate to the Manage SQL Views screen:

Home > Data integration > Manage SQL views

Click the Categories link. The View Categories screen appears.

For details about adding objects to categories and removing them from categories, see
the Sybase Avaki EII Administration Guide.
48 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Chapter 2

Basic data integration
There are two mechanisms that you can use, separately or together, to integrate data
from multiple sources within Avaki: Avaki data services, and the Avaki virtual data-
base.

The Avaki virtual database lets you create a special kind of database operation, the vir-
tual database operation, which operates on Avaki SQL views. Once database tables
(and/or database operation results or data service results—see below) are provisioned
into Avaki as SQL views, virtual database operations allow you to use SQL to integrate
those tables and results. And you needn’t stop there: like other database operations,
virtual database operations too can be exposed as SQL views.

Avaki data services go beyond SQL to let you integrate data from multiple heteroge-
neous distributed data sources, including files, relational data, XML data, and applica-
tion data. Data services also give architects and developers maximum flexibility in
packaging and reusing data integration logic. Unlike database operations, which
always return relational data (or Avaki’s XML representation thereof), data services
can produce data in any format desired (albeit perhaps with some programming
required on the part of your developers). Avaki Studio is a graphical tool that goes a
long way toward unlocking the power of data services for you without requiring you to
be a programmer; it is discussed more fully in Data Integration with Sybase Avaki Stu-
dio.

Data services and the virtual database can work together, too. As mentioned above,
data services that return relational data can be exposed as SQL views (just like data-
base operations); and virtual database operations, like all database operations, can be
used as data service inputs.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 49

Basic data integration
This chapter discusses the Avaki virtual database and introduces data services. It cov-
ers the following topics:

• “Virtual database operations,” below

• “Managing virtual database services” on page 64

• “Data services overview” on page 75

• “Creating data services” on page 81

• “Importing data service descriptors” on page 92

• “Viewing a list of data services” on page 94

• “Modifying data services” on page 94

• “Managing data service metadata” on page 97

• “Testing data services” on page 102

• “Removing data services” on page 103

Virtual database operations
A virtual database operation extracts data from SQL views in the virtual database and
delivers it on demand to a view generator or a data service.

Creating virtual database operations
To create a virtual database operation, you must have the appropriate permissions for
any related database connectors or SQL views as well as the virtual database service,
as follows:
• Your database administrator must modify the permissions for any database connec-

tors or SQL views that the virtual database operation uses so that you have read,
write, and execute permission for the database connectors and SQL views (for
information about setting access permissions, see the Sybase Avaki EII Administra-
tion Guide).

• In addition, your database administrator must modify the permissions for the virtual
database service so that you are allowed to create virtual database operations on the
service (see “Allowing users to create virtual database operations” on page 66.)
50 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Virtual database operations
To create a virtual database operation, do the following:

Step 1 Navigate to the Create Virtual Database Operation screen:

Home > Data integration > Create virtual database operation
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 51

Basic data integration
Step 2 Fill in the form:

• Database schema (optional): Click the View Schema button to use the pop-up
Database Table Browser to examine the tables defined in the Avaki virtual data-
base. In JDBC terms, each Avaki domain is a “catalog,” which contains a variable
number of schemas, which in turn may contain table definitions. There are four
kinds of schemas in each domain:

— DATASERVICE: Contains all SQL views generated from data services.

— <Database-Connector-Name>: Contains all SQL views provisioned from the
database to which the given database connector connects or generated from
database operations on this database connector.

— VIRTUALDB: Contains all SQL views generated from virtual database opera-
tions.

— <Metadata-Model-Name>: Contains all the mapped tables deployed from the
given metadata model. Note that if a catalog other than the Avaki domain name
was specified on deployment of a metadata model, that metadata model/schema
and its tables will belong to the specified catalog, not to your domain’s catalog.
For more on metadata models, see Data Integration with Sybase Avaki Studio.

For more information about using the Database Table Browser, see “Viewing data-
base schemas” on page 10.

• Server: From the pull-down list, select the server on which to create the virtual
database operation.

• Logical name: Enter a name for the virtual database operation. Note: Do not
include a space in the name.

• Description (optional): Enter some descriptive information about this virtual data-
base operation.

• SQL statement: Enter the SQL statement that the virtual database operation will
execute. The SQL syntax must be valid for the underlying database, with one excep-
tion: Use a question mark (?) to specify parameters, as specified in the JDBC stan-
dard for specifying parameters in stored procedures. For details about using
question marks to specify parameters, see the JDBC API documentation at:

http://java.sun.com/j2se/1.4.2/docs/guide/jdbc/getstart/
preparedstatement.html
52 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

http://java.sun.com/j2se/1.4.2/docs/guide/jdbc/getstart/preparedstatement.html
http://java.sun.com/j2se/1.4.2/docs/guide/jdbc/getstart/preparedstatement.html

Virtual database operations
Alternatively, you can import the contents of a file that contains a SQL statement, as
follows:
— Click the Browse button beneath the SQL statement box.

— In the Grid File Browser that appears, navigate to the file and select it.

— Click Continue. The contents of the file are inserted into the SQL statement box.

Note If you enter a SQL statement that involves an aggregate function such as
SUM, you must use an alias for any column names to which the function refers.
The alias must follow these rules:
— All aliases must begin with a letter, an underscore (_), or a dollar sign ($).

— All characters after the first character may be letters, numbers, an underscore
(_), or a dollar sign ($).

— All characters should be valid ASCII characters.

— An alias cannot be the same name as any of the following words:

break enum super

case export switch

catch extends this

class finally throw

comment for try

continue function typeof

const if var

debugger import void

default in while

delete label with

do new

else return
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 53

Basic data integration
For example, in the following SQL statement, dollarsum is an alias for the col-
umn named DOLLARS:

SELECT sum(DOLLARS) dollarsum, CUSTOMERID FROM sales GROUP
BY CUSTOMERID ORDER BY CUSTOMERID

• Cached data expiration: Select one of the following to indicate whether the data is
cached and, if so, when the data expires from the cache:
— No caching: The data is not cached.

— Never expires: The data never expires from the cache.

— Expires after n seconds: Specify the interval (in seconds) before the data expires
from the cache.

• Run database operation as: Specify which user the virtual database operation will
be run as. To run the operation as the current user, click The user running the
operation. To run the operation as a specific user, click A specific user and enter
the qualified user name. Use the following format:
<user-name>@<authservice>.<authservicetype>.<domain>

For example:
wilma@DefaultAuthService.Grid.Bedrock

Note The Avaki web UI employs a special browsing feature when you’re select-
ing the run-as user for a data service, database operation, or view. To make user
browsing work properly, make sure the smooth scrolling option in your web
browser is turned off. In Firefox or Internet Explorer, select Tools > (Internet)
Options > Advanced and uncheck “Use smooth scrolling.”
• Click Continue.

• If the database operation requires parameters, another Create Virtual Database
Operation screen appears.
54 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Virtual database operations
If the virtual database operation accepts input parameters or produces output
parameters, use this option to specify the data type for each input and output. The
table below shows the data types you can use:

If the input or output is a not a parameter but is part of a known operator, select
“Not a parameter” as the data type.

Click Submit to update the database operation

Step 3 Optional. To test whether a virtual database operation is working properly, click the
Test button. The system displays the Execute Virtual Database Operation page. For
information about executing a virtual database operation, see “Executing virtual data-
base operations” on page 62.

BIGINT
BINARY
BIT
BOOLEAN
BLOB
CHAR
CLOB
DATE
DECIMAL
DOUBLE
FLOAT
INTEGER
LONGVARBINARY

LONGVARCHAR
NUMERIC
ORACLE_CURSOR
OTHER
REAL
SMALLINT
TIME
TIMESTAMP
TINYINT
VARBINARY
VARCHAR
Not a parameter
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 55

Basic data integration
Viewing and modifying virtual database operations
To view a list of virtual database operations in the current grid domain,

Step 1 Navigate to the View Virtual Database Operations screen:

Home > Data integration > Manage virtual database operations

The system displays a list of the virtual database operations in the current grid domain.
56 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Virtual database operations
Step 2 To view details about a virtual database operation, click the View/Edit link beside the
name of the virtual database operation whose details you want to view. The Update
Virtual Database Operation screen appears, showing details on the database operation.

Step 3 Optional. Modify the fields as desired, then click Continue. A confirmation screen
appears when the update is complete.

Managing metadata for virtual database operations
You can generate or regenerate a virtual database operation’s schema (and view it if it
has been generated), browse the virtual database operation’s dependencies, and expose
the results of the virtual database operation as a SQL view.

Generating a virtual database operation’s schema
To generate schema information, do the following:

Step 1 Navigate to the View Virtual Database Operations screen:
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 57

Basic data integration
Home > Data integration > Manage virtual database operations

Step 2 Click the Metadata link beside the virtual database operation whose metadata you
want to manage. The Manage Metadata screen appears.

Step 3 To generate schema information, click Generate.

Step 4 Optional. To view generated schema information, click View. The Avaki Schema
Viewer appears, showing the table’s schema.
58 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Virtual database operations
Step 5 Optional. To regenerate schema information, click Refresh. You should regenerate the
schema information if the structure of the virtual database operation’s resultset
changes. The structure will change if either of the following conditions occurs:

• the virtual database operation’s SQL statements changes; or

• the SQL view on which the database operation operates changes.

If the virtual database operation’s resultset structure changes, you should propagate the
change to any data services or SQL views that depend on the virtual database opera-
tion. For information about displaying a list of services or views that depend on the
virtual database operation, see “Viewing virtual database operation dependencies,”
below.

Viewing virtual database operation dependencies
You can view a list of the data services, SQL views, and view generators (if any) that
depend on the virtual database operation. To view these dependencies, do the following:

Step 1 Navigate to the View Virtual Database Operations screen:

Home > Data integration > Manage virtual database operations

Step 2 Click the Metadata link beside the virtual database operation that is used as an input
source. The Manage Metadata screen appears.

Step 3 To view database operation dependencies, click Browse.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 59

Basic data integration
Step 4 The system lists the data services, SQL views and view generators that depend on the
virtual database operation.

For details about creating data services, see Chapter 2, “Basic data integration” on
page 49. For details about creating view generators, see Chapter 6, “Managing views”
on page 217. For details about exposing database operation results as a SQL view, see
below.

Exposing virtual database operation results as a SQL view
 You can expose the virtual database operation results as a SQL view, so that the virtual
database operation resultset can be operated on as a table via JDBC or another virtual
database operation. Such a SQL view is static in two ways: first, if the virtual database
operation’s schema changes, you must regenerate the SQL view accordingly; second,
the removal of a virtual database operation’s SQL view can only be done as two sepa-
rate steps—removing the old SQL view, followed by generating a new one. Here’s
how you manage a virtual database operation’s SQL view:

Step 1 Navigate to the View Virtual Database Operations screen:

Home > Data integration > Manage virtual database operations
60 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Virtual database operations
Step 2 Click the Metadata link beside the virtual database operation whose metadata you
want to manage. The Manage Metadata screen appears. If there’s not yet a SQL view
representing this virtual database operation (but the operation’s schema has been gen-
erated), the screen looks like this:

Enter a name for the SQL view to be generated, and click Generate. Note: Do not
include a space in the name.

Step 3 If there is a SQL view representing this database operation, the screen looks like this:

To remove the SQL view, click the Remove link.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 61

Basic data integration
Executing virtual database operations
You can display the results of a virtual database operation to make sure that the opera-
tion is set up correctly and that the connections are healthy.

Follow these steps to execute a virtual database operation:

Step 1 Navigate to the View Virtual Database Operations screen:

Home > Data integration > Manage virtual database operations

Step 2 Click the Execute link beside the name of the database operation you want to execute.
The Execute Database Operation page appears.

Step 3 Optional. If your query requires parameters, enter the parameters.

Step 4 Optional. Select the Generate schema and suppress output option to generate
schema for the virtual database operation. The schema describes the structure of the
output of a virtual database operation.

Step 5 Click Submit. A confirmation screen appears. If you chose to generate schema in the
previous step, you can click View Schema to view the virtual database operation’s
schema. If you chose not to generate schema, the results of the query appear in XML
format.
62 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Virtual database operations
Calling a virtual database operation
You can use ODBC, JDBC, or SOAP procedure calls to call a virtual database operation
in the data catalog. For more information, see the Sybase Avaki EII API Guide.

Removing virtual database operations
Follow these steps to remove a virtual database operation:

Step 1 Navigate to the View Virtual Database Operations screen:

Home > Data integration > Manage virtual database operations

Step 2 Click the Remove link beside the virtual database operation you want to remove. The
system displays a confirmation screen.

Step 3 Click OK to confirm the operation. The system redisplays the View Virtual Database
Operations screen without the operation that you removed.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 63

Basic data integration
Managing virtual database services
The following sections describe how to browse the schemas in a virtual database and
configure the virtual database service’s access permissions.

Browsing virtual database schemas
When you’re deciding which users and groups can create virtual database operations,
it may be helpful to examine the schemas and tables in the virtual database service, as
follows:

Step 1 Navigate to the Manage Virtual Database Service screen:

Home > Data integration > Manage virtual database service

Step 2 Database schema: Click the View Schema button to use the pop-up Database Table
Browser to examine the tables defined in the Avaki virtual database. In JDBC terms,
each Avaki domain is a “catalog,” which contains a variable number of schemas,
which in turn may contain table definitions. There are four kinds of schemas in each
domain:
— DATASERVICE: Contains all SQL views generated from data services.

— <Database-Connector-Name>: Contains all SQL views that are provisioned from
the database to which the given database connector connects or are generated
from database operations on this database connector.
64 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing virtual database services
— VIRTUALDB: Contains all SQL views generated from virtual database opera-
tions.

— <Metadata-Model-Name>: Contains all the mapped tables deployed from the
given metadata model. Note that if a catalog other than the Avaki domain name
was specified on deployment of a metadata model, that metadata model/schema
and its tables will belong to the specified catalog, not to your domain’s catalog.
For more on metadata models, see Data Integration with Sybase Avaki Studio.

For more information about using the Database Table Browser, see “Viewing data-
base schemas” on page 10.

Configuring virtual database access permissions
The following sections describe how to configure access permissions for the Avaki
virtual database service:
• “Allowing users to create virtual database operations,” below

• “Allowing groups to create virtual database operations” on page 67

• “Preventing users from creating virtual database operations” on page 69

• “Preventing groups from creating virtual database operations” on page 70
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 65

Basic data integration
Allowing users to create virtual database operations
To allow a user to create virtual database operations in the Avaki virtual database, do
the following:

Step 1 Navigate to the Manage Virtual Database Service screen:

Home > Data integration > Manage virtual database service

Step 2 To add a user to the list of users who can create virtual database operations in the
Avaki virtual database, click the Add User button. The Add Virtual Database User
screen appears.
66 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing virtual database services
Step 3 Click boxes in the Add column to select the users you want to add.

Step 4 Click Submit to save your changes. The system displays a list of the users you have
added.

Allowing groups to create virtual database operations
To allow a group to create virtual database operations in the Avaki virtual database, do
the following:

Step 1 Navigate to the Manage Virtual Database Service screen:

Home > Data integration > Manage virtual database service
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 67

Basic data integration
Step 2 To add a group to the list of groups who can create virtual database operations in the
Avaki virtual database, click the Add Group button. The Add Virtual Database Group
screen appears.

Step 3 Click boxes in the Add column to select the groups you want to add.

Step 4 Click Submit to save your changes. The system displays a list of the groups you have
added.
68 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing virtual database services
Preventing users from creating virtual database operations
To prevent a user from creating virtual database operations in the Avaki virtual data-
base, do the following:

Step 1 Navigate to the Manage Virtual Database Service screen:

Home > Data integration > Manage virtual database service

Step 2 To remove a user from the list of users who can create virtual database operations in
the Avaki virtual database, click Remove. The system removes the user from the list.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 69

Basic data integration
Preventing groups from creating virtual database operations
To prevent a group from creating virtual database operations in the Avaki virtual data-
base, do the following:

Step 1 Navigate to the Manage Virtual Database Service screen:

Home > Data integration > Manage virtual database service

Step 2 To remove a group from the list of groups that can create virtual database operations in
the Avaki virtual database, click Remove. The system removes the group from the list.
70 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing virtual database services
Configuring virtual database service attributes
The Avaki virtual database service has attributes that store information such as the
time at which the virtual database service was created and the name of the user who
owns the service.

To view the attributes for the virtual database service, do the following:

Step 1 Navigate to the Manage Virtual Database Service screen:

Home > Data integration > Manage virtual database service
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 71

Basic data integration
Step 2 Click the Attributes link. The View Attributes page appears, showing the attributes
for the Avaki virtual database service.

For details about creating, modifying, and deleting attributes, see the Sybase Avaki EII
Administration Guide.
72 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing virtual database services
Managing virtual database service ACLs
An access control list (ACL) determines which grid users are allowed to read and
manipulate the Avaki virtual database service.

To view the ACL for the virtual database service, do the following:

Step 1 Navigate to the Manage Virtual Database Service screen:

Home > Data integration > Manage virtual database service
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 73

Basic data integration
Step 2 Click the Security link. The View Security Information appears, showing the users
and groups that have been added to the ACL for the virtual database service.

For details about viewing and modifying ACLs, see the Sybase Avaki EII Administra-
tion Guide.
74 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Data services overview
Data services overview
This section explains what data services can do for you and how they’re constructed.
In this section:
• “About data services,” below

• “Understanding data service components” on page 76

• “Avaki Studio and data services” on page 78

• “Data services and distributed transactions” on page 78

About data services
A data service provides data to applications or users when they need it. Data services
do the following:
• Data services can be used to integrate data from a variety of sources—flat files

(especially CSV and XML files), databases, HTTP sources generally and web ser-
vices in particular. The complexity of the integration is entirely hidden from appli-
cations using the data.

• Data services allow data to be published in arbitrary formats, with detailed control
over access.

• Data services allow several database operations to be grouped together and exe-
cuted as a single distributed transaction. (See “Data services and distributed trans-
actions” on page 78.)

• Data services extend the benefits of Avaki caching, scheduling, and provisioning to
web services data: they allow the data to be made available to applications in a
timely manner while protecting the web services or the wide-area network from
excessive load.

• As with Avaki database operations, the regular use of Avaki mechanisms to publish
data makes the Avaki data catalog increasingly useful to the organization for find-
ing data that has been made available and for understanding how that data is used.

One way to make data available is to publish data services in the data grid. A data ser-
vice can be set up in any way that makes sense for the consuming application. For a
dashboard application, you might set up one data service that fetches a single value for
a performance metric. For another application, the data service might fetch an entire
table, and in a third case the data service might supply data that’s been combined from
several data sources through an integration tool.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 75

Basic data integration
In addition to relational data, data services can be used with data that is available in
XML files or in flat files. If data is coming into the organization from a partner or ven-
dor, you can integrate it with your own data from relational and non-relational sources.

Data services can transform, integrate, and aggregate data in a number of different
ways. To transform data, you can use Avaki Studio to build a data service, or you can
write your own data service plug-in using XSLT, JavaScript, or Java code.

A data service can be used to create cross-functional applications such as:
• Corporate performance management dashboards, where data must be consolidated

from multiple functional groups and divisions;

• Customer service applications, which consolidate customer data from multiple sys-
tems to create a single view;

• Reporting applications that aggregate data from multiple sources to provide the
right rollups for decision-makers.

You can go to one catalog to retrieve data to pull into these applications—instruct data
owners to publish catalog entries that you can use. Data owners keep control over who
has access to data, and developers need to use only one set of interfaces. Data services
support standard interfaces such as ODBC, JDBC, standard file I/O, and SOAP, so appli-
cation developers don’t have to worry about individual drivers or connections.

The data service feature does not depend on the existence of a Web services architec-
ture. However, if your organization is standardizing on a Web services architecture,
the data service layer can provide its data using SOAP and WSDL.

The Avaki data catalog (comprising data services, database operations, and provisioned
SQL views) can help an organization bring data assets under control and get more use
out of work that has been done in data management and data integration. The catalog
makes visible what data is available, who uses it for what, and where it can be found.

Understanding data service components
A data service is a named data catalog entry that contains the name of a data service
plug-in and an external interface definition of the data service’s input and output.

A data service plug-in is the core of an Avaki data service. A plug-in is a logic module
that can be written in Java, JavaScript, or XSLT. It contains the logic through which the
input data is transformed, integrated, or aggregated. A plug-in defines the data ser-
vice’s requirements for the following:
76 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Data services overview
• Input sources: An input stream can consist of XML, rowset, or raw binary data. The
source can be a grid file, an HTTP source, a web service, or the result of a database
operation or another data service.

Note It’s important to understand your sources and how they are used. Avaki
tracks the ways in which Avaki operations and objects depend on one another,
and makes this information visible to you in a dependencies display; this infor-
mation can be a useful aid to understanding. For information about checking data
service dependencies, see “Viewing data service dependencies” on page 97.

• Runtime parameters: Runtime parameters include parameters required by the data
service plug-in, parameters required by input sources, and parameters required by
the data service.

• Output stream: The plug-in’s output stream may consist of a byte stream (provided
to Java applications as an input stream) or a rowset or XML. A rowset is an Avaki
internal format for relational results. Data services and other Avaki objects accept
rowsets as input.

For more on data service components, see Chapter 4, “Setting up data service plug-ins”.

To create a data service in the Avaki web UI, you specify which data service plug-in to
use. Any existing plug-ins can be made available in the data catalog as files so that
they are readily available to architects or developers creating data services.

Once you have specified which plug-in the new data service will use, Avaki knows
which inputs the plug-in requires and can help you complete the definition of the data
service by specifying the sources of those inputs.

Data services produce their data dynamically when executed. Data resulting from the
execution of data services can be cached using Avaki’s normal caching mechanism.
The results are passed to the calling application, but they are not stored anywhere in
the data grid unless caching is in effect.

You can cache the results of a data service to reduce the load on a back-end data source
or cut down on network congestion and speed up application performance. For details
about caching data services, see Chapter 3, “Managing cache services”.

Data services are run by execution services. There is an execution service on every
grid server, and you can configure a pool of execution services on a grid server. When
a pool is in place, a data service can be run by any execution service in its grid server’s
pool. For more about configuring execution services, see the Sybase Avaki EII Admin-
istration Guide.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 77

Basic data integration
Avaki Studio and data services
Avaki Studio is a graphical tool whose primary purpose is the creation of data services.
In Avaki Studio, you create view models, which (in terms of the preceding discussion)
combine a data service plug-in with the specification of data service inputs and param-
eters; you then deploy those view models in Avaki as data services. Avaki Studio also
lets you manage attributes of and access control for data services (whether or not those
data services originated in Studio). (Scheduling data services, however, can be per-
formed at present only in Avaki’s web and command-line interfaces.)

Because of its graphical nature and rich user interface, Studio is the preferred way to
create many data services. However, data services created in Studio are fundamentally
relational in nature; while they accept nonrelational data, the first step in doing so in
Studio is to set up a transformation on that data that yields a relational result. If you
want your data service to work or produce results outside the relational paradigm,
you’ll need either to use one of the built-in plug-ins or to build one of your own. (You
might use the built-in no-operation plug-in to provision a web service’s data as XML, or
the XSLT plug-in to use XSLT to process one or more XML inputs. For another format—
a data service that does image processing, perhaps—you’d write your own plug-in.)

For more about Avaki Studio, see Data Integration with Sybase Avaki Studio.

Data services and distributed transactions
A distributed transaction is a set of related operations—typically SQL operations such
as SELECT, INSERT, UPDATE, DELETE, and CALL—that
• involve one or more databases, and

• might lead to unwanted results (such as leaving participating databases in an incon-
sistent state or producing inconsistent reads) if some of the operations complete and
others do not, and therefore

• must all be executed at once, as a single transaction.

For example, consider an application that posts credits and debits to customer accounts
in one database and records account balances in another. Clearly, the balances can’t be
allowed to get out of sync with the credit and debit records. In a distributed transac-
tion, all the operations must be completed—committed—or else all the operations are
cancelled—rolled back. This ensures that all the databases involved are always left in
a consistent state.
78 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Data services overview
In Avaki, the individual operations that make up a distributed transaction are per-
formed by database operations that rely on specially configured database connectors,
and all the database operations are executed by a specially configured data service.

Requirements for distributed transactions
Avaki distributed transactions are subject to the following requirements and restric-
tions:
• Distributed transactions have been tested and found to work on these DBMSes:
— Sybase ASE

— Oracle 10g

— MySQL

For a list of tested DBMS versions, see page 7.

• All database operations participating in distributed transactions must use database
connectors that are configured with XA drivers (page 7). (Such database operations
will not use the XA driver when executed outside a distributed transaction data ser-
vice.)

• To execute a distributed transaction, you must write a data service plug-in that uses
Avaki’s transaction API to run the participating database operations (“Writing the
Java code” on page 185).

• The grid server where the data service runs must be able to establish network con-
nections with the participating databases.

Two-phase commit protocol
A distributed transaction is accomplished by a data service that uses the two-phase
commit protocol to execute a group of database operations as a single transaction. The
two-phase commit protocol causes the operations in the transaction to be saved to tem-
porary storage in the various databases (phase 1), then polls all the databases involved
to make sure they’re ready to commit the operations to permanent storage. Only when
all the databases involved have confirmed that they’re ready to commit is the com-
mand issued to complete the distributed transaction by saving the work to permanent
storage (phase 2). If any database fails to confirm that it’s ready, all the databases roll
back their parts of the transaction, nothing is saved to permanent storage, and the data
service returns an error.

This differs from the typical behavior of Avaki database operations. A database opera-
tion that has not been configured as part of a data service designed to perform distrib-
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 79

Basic data integration
uted transactions is set up to auto-commit when its underlying SQL statement is
executed. That means that when multiple database operations execute as part of a sin-
gle data service, each database operation runs its own transaction. As a result, multiple
database operations reading from the same database will not necessarily see the same
view of the data. If one database operation fails, there’s no way to roll back the others,
and the underlying data may be left in an inconsistent state. The distributed transaction
feature has been implemented to solve these kinds of problems.

The two-phase commit protocol is not infallible; for example, if one database involved
in a distributed transaction crashes immediately after confirming that it’s ready to
commit, it will not receive the final command to commit and thus will not save its part
of the transaction. But the other databases will save their parts of the transaction, and
the database that crashed will be out of sync with the others. Similarly, if a crash or
network failure affects the hosting grid server while a data service is running a distrib-
uted transaction, the transaction may be interrupted in a way that leaves the participat-
ing databases in an inconsistent state.

Setting up a distributed transaction
To create a distributed transaction data service, do the following:

1. Configure XA drivers on the database connectors that will be used by the database
operations in the distributed transaction (“Creating database connectors” on page 3).

2. Set up the database operations that will participate in the distributed transaction (“Cre-
ating database operations” on page 22). Note: For purposes of the distributed transac-
tion, any caching configured for participating database operations will be bypassed—
the data service will execute all the database operations to obtain fresh results.

3. Write and deploy a Java data service plug-in that uses Avaki’s transaction API to exe-
cute the database operations (Chapter 4, “Setting up data service plug-ins”).

4. Set up a data service that uses your data service plug-in (“Creating data services” on
page 81).
80 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Creating data services
Creating data services
The following sections describe how to create a data service in the Avaki web UI. In
many cases it’s easier to create data services in Avaki Studio; see Data Integration
with Sybase Avaki Studio.
• “Getting started,” below

• “Configuring data service plug-ins” on page 82

• “Configuring data service input parameters” on page 84

• “Configuring data service output streams” on page 86

• “Configuring data service input streams” on page 87

Note Unless you are planning to use the no-operation plug-in to provision some
data into Avaki without doing any processing on it, you’ll need to create a data
service plug-in (or at least the XSLT input to the XSLT plug-in). For instructions,
see “Setting up data service plug-ins” on page 175.

Getting started
Whatever plug-in you plan to use, you’ll always start as follows:

Step 1 Log in as a member of the DataProviders group.

Step 2 Navigate to the Create Data Service screen:

Home > Data integration > Create data service
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 81

Basic data integration
Configuring data service plug-ins
Before you configure a data service plug-in in the web UI, you must create and deploy
the plug-in. See “Setting up data service plug-ins” on page 175 for instructions on cre-
ating data service plug-ins.
To configure a data service plug-in, do the following:

Step 1 Choose the type of data service plug-in you wish to use: an XSL style sheet, Java-
Script, a custom Java data service plug-in from a JAR file in the data catalog, or the
no-operation plug-in that does not transform data.

Note If you create a data service that uses a JAR file plug-in, the startup perfor-
mance for the data service will be faster if the JAR file is pinned (marked) for
scheduled caching. For information about how to pin files, see Chapter 3, “Man-
aging cache services”.

— If you are using an XSL plug-in, go to Step 2.

— If you are using a JavaScript plug-in, skip to Step 4.

— If you are using a custom plug-in from a JAR file, skip to Step 6.

— If you are using a no-operation plug-in, skip to “Configuring data service input
parameters” on page 84.
82 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Creating data services
Step 2 If you selected the XSL Style Sheet plug-in, fill in the Path to XSL and XSLT Engine
fields:

• Path to XSL File: Enter or browse for the grid path to the style sheet you want to
use.

• XSLT Engine: From the pull-down list, select an XSL engine to use for the data ser-
vice. Avaki provides two engines to choose from: Saxon or Xalan.

Step 3 Click Next and skip to Step 6.

Step 4 If you selected the JavaScript plug-in, enter or browse for the grid path to the Java-
Script file you want to use.

Step 5 Click Next.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 83

Basic data integration
Step 6 In the data catalog, navigate to the JAR file share that contains your data service
plug-in. Select the JAR file.

Step 7 Click Next.

Configuring data service input parameters
After you configure a data service plug-in, you can configure one or more data service
input parameters, as follows:

Step 1 After you configure a data service plug-in, the screen that appears shows the plug-in
that you chose and provides a box where you can specify input streams for the data
service. If you want to view the full path of the data service plug-in, place your mouse
over the name of the plug-in.

If the data service plug-in is an XSL style sheet, you must specify a primary input
stream, and you can specify one or more secondary input streams. If you are using a
84 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Creating data services
JavaScript plug-in or a Java plug-in from a JAR file, you can specify multiple input
streams, and there is no hierarchy among the streams.

Step 2 To specify an input parameter, click on the Edit Parameter link in the box for the
parameter.

Step 3 In the screen that appears, select one of the following options to configure the value
for the input parameter:

• Use this value: Specify a static value to use whenever the data service is executed.

• Use an existing parameter to the data service: This option is available only if
there is already an existing dynamic parameter in the data service. Any existing
parameters appear on the top left of the Create Data Service screen.

• Create a new parameter to the data service: To create a new dynamic parameter,
specify a name and description for a value that the user will specify when the data
service is executed.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 85

Basic data integration
• Do not specify a value for this parameter: Select this option if the user will not
specify a value when the data service is executed.

Step 4 Click Submit. If you specified a static value for the parameter, the parameter appears
in the list of existing parameters at the top left of the Create Data Service screen.

Step 5 Optional. To delete an existing input parameter, click the Remove Parameter link in
the box for the parameter.

Configuring data service output streams
The data service output stream is where the data service writes the results of the data
operation that the plug-in performs. Select the desired output stream from the
pull-down list in the Output Stream box on the Create Data Service screen.

The output stream can be one of the following:
• XML: The output stream contains well-formed XML.

• ByteStream: The output stream contains bytes.
86 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Creating data services
• ResultSet: The output stream contains database results rowsets.

Configuring data service input streams
A data service that is based on an XML style sheet plug-in requires a primary input
stream, and you may also specify secondary input streams. A data service that is based
on a Java plug-in can have any number of input streams, and there is no hierarchy
among the streams.

For the data service’s input stream, specify one of the following:

• the results of another data service;

• the results of a database operation;

• the contents of a file.

To specify the input stream, do the following:

Step 1 On the Create Data Service screen, click the Edit Stream link for the box whose input
stream you want to specify. For example, if the data service uses an XML style sheet
plug-in, click the Edit Stream in the box labeled “Primary Input.”

Step 2 In the screen that appears, select the type of object that will provide the data for the
input stream, then click Next.

Step 3 Select the data service, database operation, or file that provides the data for the input
stream, then click Continue. The screen that appears shows the parameters that the
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 87

Basic data integration
input stream requires. In the following example, the database operation MyDBOpera-
tion requires one SQL input stream parameter, of type VARCHAR.

Step 4 For each input stream parameter, you can specify one of the following:

• a single SQL parameter to pass to the input stream; or

• a grid file that contains several SQL parameters to pass in to the input stream (this
option is available if the database operation supports batch processing; for more
information about batch processing, see “Managing information from databases”
on page 1).

If you are not specifying a single SQL parameter, skip to Step 5.

To specify a single SQL parameter, click the Edit Parameter link in the first Input
Stream Parameter box.

In the screen that appears, select one of the following options to configure the value
for the input stream parameter:

• Use this value: Specify a static value to use whenever the data service is executed.

• Use an existing parameter to the data service: This option is available only if
there is already an existing dynamic parameter in the data service. Any existing
parameters appear on the top left of the Create Data Service screen.

• Create a new parameter to the data service: To create a new dynamic parameter,
specify a name and description for a value that the user will specify when the data
service is executed.
88 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Creating data services
• Do not specify a value for this parameter: Select this option if the user will not
specify a value when the data service is executed.

Click Submit. If you specified a static value for the parameter, the parameter appears
in the list of existing parameters at the top left of the Create Data Service screen.

Step 5 Optional. To specify a grid file that contains several SQL parameters to pass in to the
input stream, click the Edit Parameter link in the Input Stream Parameter box named
“Input File.” In the screen that appears, select one of the following options to config-
ure the value for the input stream parameters:

• Use this value: Specify a static value to use whenever the data service is executed.

• Use an existing parameter to the data service: This option is available only if
there is already an existing dynamic parameter in the data service.

• Create a new parameter to the data service: To create a new dynamic parameter,
specify a name and description for a value that the user will specify when the data
service is executed.

• Do not specify a value for this parameter: Select this option if the user will not
specify a value when the data service is executed.

After you specify the grid file, click Submit. If you specified a static value for any
parameters, the parameters appear in the list of existing parameters at the top left of the
Create Data Service screen.

Step 6 Optional. To configure an additional input stream, do the following:

• If the data service uses an XML style sheet plug-in, click the Add link in the Input
Stream box named Secondary Inputs.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 89

Basic data integration
• If the data service uses a Java or JavaScript plug-in, click the Add link in the Input
Stream box for the input stream you specified in Step 4.

— To specify the grid object that will provide the data for the input stream, click the
Edit Stream link in the Input Stream box.

— In the screen that appears, enter a name for the input stream.

— Select the data service, database operation, or file that provides the data for the
input stream, then click Next.

Step 7 Click Next to continue creating the data service, or click Export Descriptor if you
would like to save a descriptor for an incomplete data service and finish creating the
data service later. If you click Export Descriptor, on the screen that appears, specify a
path where you would like to save a descriptor for this data service. For information
about importing a saved descriptor, see “Importing data service descriptors” on
page 92.
90 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Creating data services
Step 8 On the screen that appears, enter a name for the data service.

Step 9 Optional. In the Description field, enter a description for the data service.

Step 10 Choose the grid server where you would like to create the data service. Specify a value
for the expiration of the data service’s results and the coherence window for the data
service’s plug-in.

• From the grid server pull-down menu, select a grid server for this data service.

• Cached data expiration: Select one of the following to indicate whether the data is
cached and, if so, when the data expires from the cache:

— No caching: The data is not cached.

— Never expires: The data never expires from the cache.

— Expires after n seconds: Specify the interval (in seconds, minutes, hours, or
days) before the data expires from the cache.

• In the plug-in coherence window field, specify the duration (in seconds, minutes,
hours, or days) during which the contents of the data service are assumed to be
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 91

Basic data integration
fresh after the cache service has last inspected the back-end source object for
updates. The default is 5 minutes.

• Select the user to execute the data service as: the user calling the service or a spe-
cific user. If you choose to execute the data service as a specific user, specify the
qualified user name of a grid user who has permission to execute this database ser-
vice. Use the following format:

<user-name>@<authservice>.<authservicetype>.<domain>

Note The Avaki web UI employs a special browsing feature when you’re select-
ing the run-as user for a data service, database operation, or view. To make user
browsing work properly, make sure the smooth scrolling option in your web
browser is turned off. In Firefox or Internet Explorer, select Tools > (Internet)
Options > Advanced and uncheck “Use smooth scrolling.”

For example:

wilma@DefaultAuthService.Grid.Bedrock

Step 11 Click Next or Export Descriptor to finish creating the data service.

Importing data service descriptors
If you have exported a data service descriptor, do the following to resume working
with it:

Step 1 Navigate to the Import Data Service Descriptor screen:

Home > Data integration > Import data service descriptor
92 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Importing data service descriptors
Step 2 Click Browse and navigate to the data service descriptor you want to import, then
select it.

Step 3 Click Continue.

Step 4 Click Import to import the data service descriptor and continue creating it.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 93

Basic data integration
Viewing a list of data services
To view a list of the data services in the current grid domain, navigate to the View Data
Services screen:
Home > Data integration > Manage data services

The system displays a list of the data services in the current Avaki domain.

To view more information about a particular data service, click the View/Edit link
beside the name of the data service whose details you want to view.

Modifying data services
Follow these steps to modify the settings for a data service:

Step 1 Log in as a member of the Administrators or DataProviders group.

Step 2 Navigate to the View Data Services screen:

Home > Data integration > Manage data services
94 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Modifying data services
Step 3 Click the View/Edit link beside the name of the data service whose details you want to
view. The system displays detailed information about the data service.

Step 4 Modify the data service settings as needed.

Step 5 Click Next to continue, or click Export Descriptor to specify a path where you would
like to save a descriptor for an incomplete data service and finish creating the data ser-
vice later.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 95

Basic data integration
Step 6 If you clicked Next in the previous step, the second Update Data Service screen
appears.

Modify the settings as needed.

Step 7 Click Next or Export Descriptor to save the revised data service.
96 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing data service metadata
Managing data service metadata
You can browse a data service’s dependencies. If the data service’s output is a result
set, you can also generate or regenerate its schema (and view it if it has been gener-
ated) and expose the results of the data service as a SQL view.

Viewing data service dependencies
You can view a list that combines the data services, SQL views and view generators (if
any) that depend on some data services and the data services and database operations
that depend on it. To view these dependencies, do the following:

Step 1 Navigate to the View Data Services screen:

Home > Data integration > Manage data services

Step 2 Click the Metadata link beside some data service. The Manage Metadata screen
appears in one of the following two forms. If the data service’s output is not a result
set, its Manage Metadata screen is very limited:
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 97

Basic data integration
If on the other hand the data service’s output is a result set, its Manage Metadata
screen contains more options (like those on the comparable screen for a database oper-
ation):

Step 3 Either way, to view data service dependencies, click Browse.

Step 4 The system lists the data services, SQL views, and view generators that depend on the
data service, as well as the data services and database operations it depends on.

For details about creating view generators, see Chapter 6, “Managing views” on
page 217. For details about generating SQL views from data services, see “Exposing
data service results as a SQL view” on page 101.
98 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing data service metadata
Generating a data service’s schema
To generate schema information for a data service that returns a result set, do the fol-
lowing:

Step 1 Navigate to the View Data Services screen:

Home > Data integration > Manage data services

Step 2 Click the Metadata link beside the data service whose metadata you want to manage.
The Manage Metadata screen appears.

Step 3 To generate schema information, click Generate.

Step 4 The Manage Metadata screen will change to indicate that the schema information has
been generated:
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 99

Basic data integration
Step 5 Optional. To examine the data service’s schema, click View.

Step 6 Optional. To regenerate schema information, click Refresh. You should regenerate the
schema information if the structure of the data service’s output changes. In that case,
you should also propagate the change to any data services or SQL views that depend
on the changed data service. For information about displaying data service dependen-
cies, see “Viewing data service dependencies,” above.
100 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing data service metadata
Exposing data service results as a SQL view
You can expose data service results as a SQL view, so that the resultset can be operated
on as a table via JDBC or a virtual database operation. Such a SQL view (which is
sometimes called a generated SQL view) is static in two ways: first, if the data ser-
vice’s schema changes, you must regenerate the SQL view accordingly; second, the
regeneration of a data service’s SQL view can only be done as two separate steps—
removing the old SQL view, followed by generating a new one.

Here’s how to generate a SQL view from a data service:

Step 1 Navigate to the View Data Services screen:

Home > Data integration > Manage data services

Step 2 Click the Metadata link beside the data service whose metadata you want to manage.
The Manage Metadata screen appears.

Enter a name for the SQL view to be generated, and click Generate. Note: Do not
include spaces in the name.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 101

Basic data integration
Step 3 If there is a SQL view representing this data service, the screen looks like this:

To remove the SQL view, click the Remove link.

Testing data services
Follow these steps to test whether a data service is operational:

Step 1 Navigate to the View Data Services screen:

Home > Data integration > Manage data services
102 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Removing data services
Step 2 Click the Test link beside the data service you want to test. If the data service requires
parameters, specify the values.

Step 3 Click Submit. The system displays a message indicating whether the data service is
operational.

Removing data services
Follow these steps to remove a data service:

Step 1 Navigate to the View Data Services screen:

Home > Data integration > Manage data services

Step 2 Click the Remove link beside the data service you want to remove. The system dis-
plays a confirmation screen.

Step 3 Click OK to confirm the operation. The system redisplays the View Data Services
screen without the data service that you removed.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 103

Basic data integration
104 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Chapter 3

Managing cache services
Each Avaki grid server contains a cache service that can be used to store remote data-
base results, application data, or files that are frequently accessed by users. Avaki uses
caching to accomplish the following goals:
• insulate production data sources from random access;

• maintain good performance for users and applications;

• refresh data in a granular way based on business needs; and

• ensure maximum data availability.

Caching makes remote data access practical by limiting the number of times a data
request requires immediate communication with the original data source. Avaki pro-
vides a variety of different caching options and features to meet diverse performance
requirements. You can specify a different caching strategy for each data item, and the
various caching options can be used separately or in combination to accomplish your
goals.
• Local caching enables caching of frequently requested results near the data source

to reduce load on the back-end data source.

• Remote caching caches data close to the users or applications that will use it. This
cuts down on network congestion and dramatically speeds up application perfor-
mance, because remote data calls are eliminated. Caches can be prepopulated and
updated during off-hours when network load is low, and cache configurations can
be established that ensure high availability when a network is congested or unavail-
able for some reason.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 105

Managing cache services
Cache update frequency can be specified for a given data item. Database administra-
tors can schedule how often data services should be rerun and cached, to protect pro-
duction databases from unexpected load. Cached data can also expire, after a set time
period, forcing a refresh of the data on the next request.

Note A DGAS uses its own internal caches to store copies of the files and direc-
tories it serves to NFS and CIFS clients and other information. The DGAS caches
may get their data directly from the source file systems or from the cache service
associated with the DGAS. For information about configuring a DGAS’s internal
cache, see the Sybase Avaki EII Administration Guide.

The chapter covers the following topics:
• “Configuring clients and Avaki servers to use cache services,” below

• “Configuring caching for files” on page 107

• “Configuring caching for database operations and data services” on page 108

• “Associating Avaki servers with caches” on page 111

• “Overriding cache service default settings” on page 119

• “Managing caches” on page 120

Configuring clients and Avaki servers to use
cache services

Avaki clients (such as command line clients) and applications that use the Avaki JDBC
driver can be enabled to take advantage of cache services. To enable them to take
advantage of remote caching, you must set the cache service that they will use. If you
are using only local caching for database operations and data services, you do not need
to perform any special configuration steps.

For information about configuring remote caching for JDBC programs, see the Sybase
Avaki EII API Guide.

For information about configuring remote caching for Avaki command clients, see the
Sybase Avaki EII Administration Guide or the Sybase Avaki EII Command Reference.
106 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Configuring caching for files
Avaki grid servers and data grid access servers can also be configured to use a particu-
lar cache service in a remote-caching configuration. For information about configuring
remote caching for a grid server or DGAS, see the Sybase Avaki EII Administration
Guide.

Configuring caching for files
There are two modes in which an Avaki cache service can cache the file data and meta-
data for shared files: on-demand caching and scheduled (pinned) caching. Both are
discussed here.

On-demand caching
The cache coherence window determines how frequently a cache service will consult a
file to see if it has changed. For files, this is determined by consulting the modification
time (mtime) for the file or directory.

The cache service’s coherence window controls cache coherence for the on-demand
cached files in the current cache service. This value can be overridden on a per-file
basis by coherence windows set on individual files (either as an attribute on the
back-end file that dictates its coherence for all cache services, or during the tagging
process that dictates its coherence for that file on that particular cache service). For
information on setting coherence windows, see
• “Viewing and modifying cache service configuration” on page 116 (per-cache)

• “Overriding cache service default settings” on page 119 (per-file)

In order for a cache service to cache files on demand, you must specifically identify
the file or files that should be cached on demand. Thus, a cache service will not auto-
matically cache every single file that it may be asked for; it will cache only those that
have been marked for on-demand caching. You can mark individual files or directory
hierarchies of files for on-demand caching (see “Caching files or directories on
demand” on page 130). When you mark a directory (and potentially its subdirectories)
for on-demand caching, the cache service will track the directories and their contents,
but not pull down file content. When a client to the cache service—a DGAS, command
line interface, or SOAP client—asks for file content, the cache service pulls down and
caches file content in blocks as needed.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 107

Managing cache services
Pinning files for scheduled caching
The alternative to on-demand caching is to pin files in a cache service for scheduled
caching. As with on-demand caching, pinning involves marking individual files or
directory hierarchies of files to be pinned. If you specify a schedule, the cache service
pulls down file content during the pinning process and actively keeps the file content
refreshed in the cache according to the schedule. If you do not specify a schedule, the
cache service uses a schedule based on the applicable coherence window for that file.
When the time specified for the coherence window elapses, the cache service consults
the modification time for files and directories and syncs down any changes.

For instructions on pinning files for scheduled caching, see “Caching files or directo-
ries on a schedule” on page 121.

Permissions and access control
Files and directories are pinned using the identity of the individual who marked them.
Like data services and database operations, the cache service caches access control
information and performs local access control checks. ACLs and other metadata is
refreshed according to a cache coherence window interval.

Configuring caching for database operations
and data services

There are two modes in which an Avaki cache service can cache the results-data and
metadata for database operations and data services: on-demand caching and scheduled
caching.

On-demand caching
On-demand caching is suitable for grid objects that are rarely accessed or that change
at irregular intervals. When you tag a grid object for on-demand caching, the object is
cached only if it is used—for example, results are cached when a database operation or
a data service is executed, or a file is cached when a user or application reads it.

Cache coherence in Avaki is maintained via coherence window mechanisms. For data-
base operations and data services, you can use the data expiration interval to control
data freshness.
108 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Configuring caching for database operations and data services
The data expiration interval is a settable property for data services and database opera-
tions. You can set the value of this property using either the Web user interface or the
command line interface.

This property determines whether data is cached and, if so, when the data expires from
the cache. You can specify that the data should never expire, or you can specify the
interval before the data expires.

The default data expiration interval for a database operation or data service is no cach-
ing. You can change this data expiration interval when the database operation or data
service is created or at any other time by using the view/edit option when viewing a
list of database operations or data services. When the database operation or data ser-
vice is executed, any results will be held in the cache for a period equal to the data
expiration interval. Caching is keyed by database operation or data service name and
parameter values, so any invocations of the database operation or data service with the
same parameter values will be read from the cache during that time. Note that this
means that multiple results for a particular database operation or data service may be
in the cache at any given time.

When the results of a database operation or data service are being cached on demand,
other metadata for the database operation or data service may be cached as well. This
includes security information and attributes. If these values are changed while data is
being cached, we recommend that you invalidate the database operation or data ser-
vice in the cache service to force a reset of all cached data for that database operation
or data service. Cached data can be invalidated on the View Cache Service UI page.

Scheduled caching
Scheduling is useful if you want a database operation, virtual database operation, or
data service to run at a particular interval (minutes, hours, days, and so on). When a
database operation or data service is scheduled, the results-data stays in the cache until
the next scheduled execution takes place. During this time, the cache service assumes
the content to be fresh and does not check with the source to see if the content has
expired. The scheduling for a database operation or data service applies only to the
cache service on which the schedule was created. The data expiration interval will be
ignored (in the specific cache) for the database operation or data service when it has
been scheduled.

For instructions on configuring scheduled caching:
• For database operations and virtual database operations, see “Caching database

operations on a schedule” on page 139
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 109

Managing cache services
• For data services, see “Caching data services on a schedule” on page 152

Remote/local caching interactions
The simplest caching behavior is when you are using only a local cache and you
invoke a database operation or data service that has a data expiration interval higher
than zero. The first time you invoke such a database operation or data service, a cache
entry will be created. For the duration of the data expiration interval, data will be read
from the cache.

With multiple caches, a user must be a little more careful about applying a strategy.
The simplest scenario is to use on-demand caching only, by controlling the data expi-
ration interval. In this case, the local cache and the remote cache will treat the data in
the same manner. The data will expire in both caches at the same time and will always
be fresh relative to the data expiration interval.

If you are implementing scheduling, you should understand which cache is taking the
direct user requests before deciding on a strategy. The scheduling should be done in
the cache that is taking the user requests—usually the remote cache. If both local and
remote caches are taking user requests, scheduling in both caches may be useful. How-
ever, if you’re using a combination of scheduling and on-demand caching, use sched-
uling in the remote cache only. If you use scheduling in both caches in such a
configuration, the remote cache may not work correctly because it can receive
repeated stale data from scheduled database operations or data services in the local
cache and will never actually cache the data.

Permissions and access control
By default, you need to be a member of the Administrators group in order to configure
cache services.

When you schedule database operations or data services in a particular cache, the user
identity that the cache uses to invoke the database operation or data service is the iden-
tity that was used to create the schedule. So if you are scheduling a database operation
or data service, you must make sure that you have execute permission on it.

When a database operation or data service is accessed via a cache service, the cache
service performs the access control check for the user who is invoking the service. In
order to do this, the cache maintains a cached version of the object’s access control list
(ACL). The cache service will refresh the ACL either on a schedule or according to the
cache coherence window interval.
110 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Associating Avaki servers with caches
For information about configuring caching for database operations, see “Managing
database caches” on page 139. For information about configuring caching for data ser-
vices, see “Managing data service caches” on page 152.

Associating Avaki servers with caches
Grid servers and data grid access servers can be associated with Avaki cache services.
When a server is associated with a cache service, the server uses the pinned directories
or files and scheduled data services that are stored in the cache so they can be accessed
quickly.

Associating grid servers with caches
To associate a grid server with a cache, you must have write permission on the grid
server that you are associating with the cache service.

Follow these steps to associate a grid server with a cache:

Step 1 Navigate to the View Grid Servers screen:

Home > Server management > View grid servers
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 111

Managing cache services
Step 2 Click the View/Edit link beside the grid server that you want to associate with a cache.
The View/Edit Grid Server screen appears.

Step 3 From the “New cache service” pull-down menu, select the name of the cache service
with which this grid server will be associated.

Step 4 Click Submit. The system displays a confirmation screen.

Disassociating grid servers from caches
To disassociate a grid server from a cache, you must have write permission on the
cache service (members of the Administrators group and the DataProviders group
have this permission by default). In addition, you must have write permission on the
grid server that you are disassociating from the cache service.

Follow these steps to disassociate a grid server from a cache:

Step 1 Navigate to the View Grid Servers screen:

Home > Server management > View grid servers
112 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Associating Avaki servers with caches
Step 2 Click the View/Edit link beside the grid server that you want to disassociate from a
cache. The View/Edit Grid Server screen appears.

Step 3 From the “New cache service” pull-down menu, select None.

Step 4 Click Submit. The system displays a confirmation screen.

Associating data grid access servers with caches
Follow these steps to associate a data grid access server with an external cache:

Step 1 Navigate to the View DGASes screen:

Home > Server management > View DGASes
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 113

Managing cache services
Step 2 Click the Cache link beside the data grid access server that you want to associate with
a cache. The Manage DGAS Cache screen appears.

Step 3 Click the Set external cache service link. The Set External Cache Service screen
appears.

Step 4 From the “New cache service” pull-down menu, select the name of the external cache
with which this data grid access server will be associated.

Step 5 Click Submit.
114 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Associating Avaki servers with caches
Disassociating data grid access servers from caches
Follow these steps to associate a data grid access server from an external cache ser-
vice:

Step 1 Navigate to the View DGASes screen:

Home > Server management > View DGASes

Step 2 Click the Cache link beside the data grid access server that you want to disassociate
from a cache. The Manage DGAS Cache screen appears.

Step 3 Click the Set external cache service link. The Set External Cache Service screen
appears.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 115

Managing cache services
Step 4 From the “New cache service” pull-down menu, select None.

Step 5 Click Submit.

Viewing and modifying cache service configuration
To display a list of cache services in the local grid domain, display configuration set-
tings for cache services, or modify configuration settings, follow these steps.

Step 1 To view a list of the cache services in the local grid domain, navigate to the View
Cache Services screen:

Home > Service management > View cache services

The system displays a list of the cache services in the current Avaki domain.

Step 2 Click the View/Edit link beside the name of the cache service whose configuration
you want to view or modify. The View/Edit Cache Service screen appears.
116 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Associating Avaki servers with caches
Step 3 Update the fields as desired, then click Submit. A confirmation screen appears when
the update is complete.

The cache service settings and attributes are as follows:

Option Description

Cache service The name of the cache service.

Default coherence window The duration (in seconds) during which the contents of the
cached entry (such as a file) are assumed to be fresh after
the cache service has last inspected the back-end source
object for updates. The valid values are -1 and 0 to
2147483647 seconds. The default is 86400 (1 day). Set this
attribute to -1 when the cache includes only static objects
that should never expire.

Default offline expiration The time (in seconds) for which content is allowed to
remain valid after its source is determined to be offline. The
valid values are -1 and 0 to 2147483647 seconds. The
default is 36288000 (1 week). A value of -1 means that
cache content is always available for offline access after the
source is determined to be unreachable.

Minimum warming interval Sets a lower boundary for the coherence windows and
scheduling intervals of cached content. Coherence windows
or scheduling intervals smaller than this interval will be
rounded up to this value. The valid values are 0 to
2147483647 seconds. The default is 300 (5 minutes).

Maximum size The maximum size (in bytes) of file content that the cache
service can cache. The valid values are 1 to 2147483647
bytes. The default is 8589934592 bytes (8GB).

Block size The size (in bytes) of the data blocks that cached files are
broken into. For files that are cached on demand, the cache
service caches only blocks that are needed by the clients
that access the cache service. The default block size is 1MB
(which is the default share server I/O protocol transfer
block size).
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 117

Managing cache services
LRU purge threshold A percentage (0.00 -1.00) that is applied to the maximum
size to find the point at which the cache service should start
removing least-recently-used (LRU) blocks to make room
for new blocks. After the cache size reaches the purge
threshold, the cache service makes a best effort to remove
old blocks so that new blocks can be created as needed. The
default purge threshold is 0.96; when the cache size reaches
7.68GB, the cache service starts evicting old cache blocks.
The equilibrium point for the cache size is therefore
7.68GB. If enough requests are being handled (too many
for the purging thread to keep up with), the cache service
starts redirecting clients to the back-end source data when
the hard limit of the maximum size (8GB) is reached.

Current size The current size (in bytes) of the content that has been
cached.

Free space on device The amount of free disk space available on the storage
device on which the cache service resides.

Rejected block requests When a block request is rejected, the cache service has
reached its maximum-size hard limit and is rejecting
requests from cacheable items (such as cached files) to cre-
ate new cache blocks.

A rejected block request is an indication of the following:

• the maximum cache size value is too small; and
• the load on the cache service is high enough that the

best-effort, LRU block-purger inside cannot clear old
blocks fast enough to keep up with the number of read
requests that would like to generate new block files.

The result of a block rejection is that the client for which
the cached file was attempting to create the block will be
forwarded to the back-end source for that piece of informa-
tion because the cache service can't cache the data its
requesting.

Evictions The number of cache blocks that have been evicted by the
LRU-block-purger because of space limitations.

Misses The number of times a user called for a file that is not in the
cache.

Option Description
118 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Overriding cache service default settings
Overriding cache service default settings
In addition to configuring the cache service default settings on a cachewide basis, you
can configure some cache attributes on a per-file basis. If you set the following
attributes on a per-file basis, the settings override the cachewide attributes that appear
on the View/Edit Cache Service Screen (page 116):
• cacheable/CoherenceWindow: The duration (in seconds) during which the contents

of the cached entry (such as a file) are assumed to be fresh after the cache service
has last inspected the back-end source object for updates. The valid values are -1
and 0 to 2147483647 seconds. The default is 86400 (1 day). Set this attribute to -1
when the cache includes only static objects that should never expire.

• cacheable/OfflineExpiration: An integer specifying the time in seconds for which
content is allowed to remain valid after its source is determined to be offline. The
valid values are -1 and 0 to 2147483647 seconds. A value of -1 means that this file
is always available for offline access when its source is determined to be unreach-
able.

For instructions on setting attributes, see the Sybase Avaki EII Administration Guide.

Hits The number of times a user called for a file that is in the
cache.

Ratio of misses to hits The ratio of misses to hits.

Option Description
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 119

Managing cache services
Managing caches
You can cache directories, files, database operation results, and data service results.
When an object is cached, a copy of the object is maintained in the cache and refreshed
according to a schedule or on demand. For more information about how on-demand
and scheduled caching work, see “On-demand caching” on page 108 and “Scheduled
caching” on page 109.

This section covers the following topics:
• “Managing file or directory caches,” below

• “Managing database caches” on page 139

• “Managing data service caches” on page 152

Managing file or directory caches
The following sections describe how to cache files or directories, how to mark a direc-
tory so that it does not get cached, how to view lists of marked files and directories,
and how to unschedule and evict cached files or directories:
• “Caching files or directories on a schedule” on page 121

• “Caching files or directories on demand” on page 130

• “Marking directories for no caching” on page 133

• “Viewing marked items” on page 134

• “Unscheduling/evicting files or directories” on page 136

• “Invalidating cached items” on page 136
120 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing caches
Caching files or directories on a schedule
Follow these steps to pin a file or directory for scheduled caching:

Step 1 Navigate to the Browse Directories screen:

Home > Data catalog management

Step 2 In the Browse Directories area, click on directory names to navigate to the directory or
file you want to add to the cache service.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 121

Managing cache services
Step 3 Click the check box to the left of the file name, then click Update Cache. The Cache
Actions screen appears.

Step 4 Select which cache operation to perform:

• Pin selected files: Pin (mark) the selected files for scheduled caching.

• Pin selected directories only: Pin the selected directories for scheduled caching, but
do not pin the contents of the directories.

• Pin selected directories and all contents: Recursively pin the directories and all their
contents for caching. If you choose this option, the cache service actively caches
the directories in the specified hierarchy and periodically inspects them for new
files to be pinned. When the cache service reinspects the parent directory, it may
repin a previously evicted file or subdirectory. If you want to prevent the cache ser-
vice from repinning the file or directory, mark the item for no caching. See “Mark-
ing directories for no caching” on page 133.

• Pin selected directories and subdirectories, and cache all contained files on
demand: Recursively tag the selected directories and their contents for on-demand
caching. If you choose this option, the cache service actively caches the directories
in the specified hierarchy and periodically inspects them for new files to be tagged
for on-demand caching. When the cache service reinspects the parent directory, it
may retag a previously evicted file or subdirectory. If you want to prevent the cache
122 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing caches
service from retagging the file or directory, mark the item for no caching. See
“Marking directories for no caching” on page 133.

Step 5 From the Cache service pull-down box, select the server that the cache is associated
with.

Step 6 Click Submit.The Enter Caching Info screen appears.

Step 7 (Optional) In the Offline Access section, specify how long a cached file or directory
will continue to be made available once the back-end source file has gone offline.
Choose one of the following options:

• File never expires when source is offline: The cached data will never expire when
the back-end source is offline.

• File is not available for offline access: The cache service is not allowed to return
cached data if the source is offline.

• File observes cache service offline access default: Use the cache service’s default
offline access setting. By default, the cache service returns cached data for one
week after the source goes offline.

• File is available for offline access for n seconds: Specify the interval (in seconds)
before the file or directory expires from the cache.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 123

Managing cache services
Step 8 Click Submit. The Add New Schedule screen appears.

Step 9 Click a tab to choose the type of schedule: One time, Periodic, Calendared, or
Advanced. The Advanced and Calendared options are similar. The Advanced option
lets you use a cron expression—powerful but cryptic—to schedule the recurrence
interval. The Calendared option offers a friendlier interface to a subset of the function-
ality enabled by cron expressions.

Step 10 Go to the appropriate procedure to complete your schedule entry:

• “Configuring one-time refresh schedules” on page 125

• “Configuring calendared refresh schedules” on page 126
124 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing caches
• “Configuring periodic or advanced refresh schedules” on page 128

Configuring one-time refresh schedules. Follow the steps in “Caching files or
directories on a schedule” on page 121 before starting this subprocedure.

Follow these steps:

Step 1 Choose a time zone for this schedule. The schedule can be specified according to the
cache server’s time zone or relative to Greenwich Mean Time (GMT).

Step 2 In the Do once field:

• If you want the one-time cache refresh to occur immediately, click the Now button.

• If you want the cache refresh to occur later, click the lower button. Then use the
pull-down menus to select the time, month, day and year.

Step 3 Click Submit to save your schedule entry. The system displays the new entry on the
Show Pin Schedules screen.

Note For instructions on setting up schedule exclusions—specific times when
the cache is not updated according to the schedule—see “Configuring schedule
exclusions” on page 166.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 125

Managing cache services
Configuring calendared refresh schedules. Follow the steps in “Caching files or
directories on a schedule” on page 121 before starting this subprocedure.

Follow these steps:

Step 1 Choose a time zone for this schedule. The schedule can be specified according to the
cache server’s time zone or relative to Greenwich Mean Time (GMT).

Step 2 In the After field, specify when this schedule entry takes effect:
126 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing caches
• If you want the one-time cache refresh to occur immediately, click the Now button.

• If you want the cache refresh to occur later, click the lower button. Then use the
pull-down menus to select the time, month, day and year.

Step 3 In the Recur at field, use the pull-down menus to specify the time of day at which you
want the cache refresh to take place. (If you want the refresh to occur more than once a
day, you can use a periodic or advanced schedule, or you can create separate schedule
entries for the other refreshes.)

Step 4 In the Days column, choose how you want to specify days in this schedule entry:

• All: every day.

• Of week: Sunday through Saturday—click one or more days.

• Of month: 1, 2, 3...—click one or more days.

• Of week in month: use the pull-down menus to choose the first, second, third,
fourth, fifth, or last occurrence of any day of the week (the first Monday, for exam-
ple).

Step 5 In the Months column, select one or more months during which this schedule entry
will be in effect, or select all for all months. Use Shift-click or Control-click to select
multiple months.

Step 6 In the Years column, select one or more years during which this schedule entry will be
in effect, or select all for all years. Use Shift-click or Control-click to select multiple
years.

Step 7 In the Continue recurring field, specify how long you want this schedule entry to
remain in effect: forever, for a specified number of refreshes, or until a specified date
and time.

Step 8 Click Submit to save your schedule entry. The system displays a summary of the new
entry, including the time of next execution, on the Show Pin Schedules screen.

Note For instructions on setting up schedule exclusions—specific times when
the cache is not refreshed according to the schedule—see “Configuring schedule
exclusions” on page 166.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 127

Managing cache services
Configuring periodic or advanced refresh schedules. Follow the steps in “Cach-
ing files or directories on a schedule” on page 121 before starting this subprocedure.

Follow these steps:

Step 1 Choose a time zone for this schedule. The schedule can be specified according to the
cache server’s time zone or relative to Greenwich Mean Time (GMT).
128 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing caches
Step 2 In the After field, specify when this schedule entry takes effect:

• If you want the one-time cache refresh to occur immediately, click the Now button.

• If you want the cache refresh to occur later, click the lower button. Then use the
pull-down menus to select the time, month, day and year.

Step 3 Use the Recur... field to specify the interval at which this schedule is executed:

• If you’re creating a periodic schedule entry, enter an integer and select from the
pull-down to specify an interval—for example, every 40 minutes, every 5 days, or
every 2 months.

• If you’re creating an advanced schedule entry, you must enter a cron expression of
this form in the Recur... field:

<seconds> <minutes> <hours> <days-of-month> <months>
<days-of-week> [<years>]

See the Sybase Avaki EII Command Reference for details of the cron syntax.

Step 4 In the Continue recurring field, specify how long you want this schedule entry to
remain in effect: forever, for a specified number of refreshes, or until a specified date
and time.

Step 5 Click Submit to save your schedule entry. The system displays a summary of the new
entry, including the time of next execution, on the Show Pin Schedules screen.

Note For instructions on setting up schedule exclusions—specific times when
the cache is not refreshed according to the schedule—see “Configuring schedule
exclusions” on page 166.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 129

Managing cache services
Caching files or directories on demand
Follow these steps to tag a file or directory for on-demand caching:

Step 1 Navigate to the Browse Directories screen:

Home > Data catalog management

Step 2 In the Browse Directories area, click on directory names to navigate to the directory or
file you want to add to the cache service.
130 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing caches
Step 3 Click the check box to the left of the file name, then click Update Cache. The Cache
Actions screen appears.

Step 4 To tag the selected files for on-demand caching, select the option “Cache selected files
on demand.”

Step 5 From the Cache service pull-down box, select the server that the cache is associated
with.

Step 6 Click Submit.The Enter Caching Info screen appears.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 131

Managing cache services
Step 7 (Optional) In the Offline Access section, specify how long a cached file or directory
will continue to be made available once the back-end source file has gone offline.
Choose one of the following options:

• File never expires when source is offline: The cached data will never expire when
the back-end source is offline.

• File is not available for offline access: The cache service is not allowed to return
cached data if the source is offline.

• File observes cache service offline access default: Use the cache service’s default
offline access setting. By default, the cache service returns cached data for one
week after the source goes offline.

• File is available for offline access for n seconds: Specify the interval (in seconds)
before the file or directory expires from the cache.

Step 8 (Optional) In the Coherence Window section, specify how long the cache service will
assume that the cached file contents are fresh. Choose one of the following options:

• File never expires: The cached data never expires.

• File observes cache service coherence window default: Use the cache service’s
default coherence window setting. By default, the cache service returns cached data
for one day.

• File has a coherence window of n seconds: Specify the interval (in seconds) before
the file expires from the cache.

Step 9 Click Submit. The system displays a confirmation screen.
132 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing caches
Marking directories for no caching
If you mark a large directory hierarchy for scheduled or on-demand caching, you can
mark certain subdirectories so that they will not be cached. When a subdirectory is
marked for no caching, the directory and its contents will not be cached when the par-
ent hierarchy is cached.

To mark a directory for no caching, do the following:

Step 1 Navigate to the Browse Directories screen:

Home > Data catalog management

Step 2 In the Browse Directories area, click on directory names to navigate to the directory
you want to mark for no caching.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 133

Managing cache services
Step 3 Click the check box to the left of the directory name, then click Update Cache. The
Cache Actions screen appears.

Step 4 Select the button labeled “Mark selected directories for no caching.”

Step 5 From the Cache service pull-down box, select the server that the cache is associated
with.

Step 6 Click Submit. The system displays a confirmation screen.

Viewing marked items
To view a list of the files or directories that are marked (pinned) for caching in a cache
service, navigate to the View Cache Services screen:

Home > Service management > View cache services
134 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing caches
Click File contents beside the cache service whose contents you want to view. The
system displays a list of items that are pinned in the cache service.

To see more information about any given item, click Show Info next to the item:

To restore the initial view (that is, to hide that extra information), click Hide Info next
to the item.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 135

Managing cache services
Unscheduling/evicting files or directories
When you unschedule or evict a file or directory, the item is purged from the cache
service and unscheduled if it’s pinned.
To unschedule or evict a file or directory from the cache, do the following:

Step 1 Navigate to the View Cache Services screen:

Home > Service management > View cache services

Step 2 Click File contents beside the cache service whose contents you want to unschedule
or evict. The system displays a list of items that are in the cache service.

Step 3 Click boxes in the Select column to choose the items you want to unschedule or evict.

Step 4 Click Evict All Checked. If the file or directory is scheduled, the system unschedules
it. If the file or directory is cached on demand, the system evicts it.

Invalidating cached items
When you mark a file or directory in a cache as invalid, the cached copy of the object
will no longer be used when a user requests the object; the object will be refreshed in
the cache the next time it is accessed or upon its next scheduled refresh.
136 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing caches
To mark a file or directory in a cache as invalid, do the following:

Step 1 Navigate to the Browse Directories screen:

Home > Data catalog management

Step 2 In the Browse Directories area, click on directory names to navigate to the directory or
file you want to remove from the cache service.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 137

Managing cache services
Step 3 Click the check box to the left of the directory or file name, then click Update Cache.
The Cache Actions screen appears.

Step 4 Select which cache operation to perform:

• Invalidate selected items: Flag the selected files or directories (but not the directo-
ries’ contents) as invalid. When a cached copy of an object is invalidated, the
cached data will no longer be used when a user requests the object; the object will
be refreshed in the cache the next time it is accessed or upon its next scheduled
refresh.

• Invalidate selected items and (if the items are directories) their contents: Flag the
selected files or directories (including the directories’ contents) as invalid. When a
cached copy of an object is invalidated, the cached data will no longer be used
when a user requests the object; the object will be refreshed in the cache the next
time it is accessed or upon its next scheduled refresh.

Step 5 From the Cache service pull-down box, select the server that the cache is associated
with.

Step 6 Click Submit. The system displays a confirmation screen.

Note If you invalidate an object that is pinned, the object will be refreshed in the
cache the next time it is accessed or upon its next scheduled refresh.
138 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing caches
Managing database caches
This section covers the following topics:
• “Caching database operations on a schedule,” below

• “Caching database operations on demand” on page 147

• “Viewing cached database operations” on page 149

• “Unscheduling/evicting database operations” on page 151

Caching database operations on a schedule
When you schedule a database operation or a virtual database operation, you can
define a specific calendar-based interval at which a cache entry should be refreshed.

Follow these steps to schedule a database operation or a virtual database operation:

Step 1 To schedule...

• A database operation, navigate to the View Database Operations screen:

Home > Database provisioning > Manage database operations

The system displays a list of the database operations in the current domain.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 139

Managing cache services
• A virtual database operation, navigate to the View Virtual Database Operations
screen:

Home > Data integration > Manage virtual database operations

The system displays a list of the database operations in the current domain.

Step 2 Click the Schedule link beside the database operation or virtual database operation
you want to schedule. The Schedule Database Operation screen appears.

Step 3 Select the cache service to use. If you want to reduce the load on the underlying data-
base, select the server that is local to the operation (the server with an asterisk * before
its name) as the cache service. If you want to cache the results on a remote grid server
(and thereby reduce network traffic when requests are made from that server), select
the cache service for the related grid server.

Step 4 Specify the values of the input parameters for the operation (if there are any).

Step 5 Click Add Schedule.
140 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing caches
Step 6 The Add New Schedule screen appears.

Step 7 Click a tab to choose the type of schedule: One time, Periodic, Calendared, or
Advanced. The Advanced and Calendared options are similar. The Advanced option
lets you use a cron expression—powerful but cryptic—to schedule the recurrence
interval. The Calendared option offers a friendlier interface to a subset of the function-
ality enabled by cron expressions.

Step 8 Go to the appropriate procedure to complete your schedule entry:

• “Configuring one-time refresh schedules” on page 125

• “Configuring calendared refresh schedules” on page 126
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 141

Managing cache services
• “Configuring periodic or advanced refresh schedules” on page 128

Configuring one-time refresh schedules. Follow the steps in “Caching database
operations on a schedule” on page 139 before starting this subprocedure.

Follow these steps:

Step 1 Choose a time zone for this schedule. The schedule can be specified according to the
cache server’s time zone or relative to Greenwich Mean Time (GMT).

Step 2 In the Do once field:

• If you want the one-time cache refresh to occur immediately, click the Now button.

• If you want the cache refresh to occur later, click the lower button. Then use the
pull-down menus to select the time, month, day and year.

Step 3 Click Submit to save your schedule entry. The system displays the new entry on the
Show Database Operations screen.

Note For instructions on setting up schedule exclusions—specific times when
the cache is not updated according to the schedule—see “Configuring schedule
exclusions” on page 166.
142 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing caches
Configuring calendared refresh schedules. Follow the steps in “Caching database
operations on a schedule” on page 139 before starting this subprocedure.

Follow these steps:

Step 1 Choose a time zone for this schedule. The schedule can be specified according to the
cache server’s time zone or relative to Greenwich Mean Time (GMT).

Step 2 In the After field, specify when this schedule entry takes effect:

• If you want the one-time cache refresh to occur immediately, click the Now button.

• If you want the cache refresh to occur later, click the lower button. Then use the
pull-down menus to select the time, month, day and year.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 143

Managing cache services
Step 3 In the Recur at field, use the pull-down menus to specify the time of day at which you
want the cache refresh to take place. (If you want the refresh to occur more than once a
day, you can use a periodic or advanced schedule, or you can create separate schedule
entries for the other refreshes.)

Step 4 In the Days column, choose how you want to specify days in this schedule entry:

• All: every day.

• Of week: Sunday through Saturday—click one or more days.

• Of month: 1, 2, 3...—click one or more days.

• Of week in month: use the pull-down menus to choose the first, second, third,
fourth, fifth, or last occurrence of any day of the week (the first Monday, for exam-
ple).

Step 5 In the Months column, select one or more months during which this schedule entry
will be in effect, or select all for all months. Use Shift-click or Control-click to select
multiple months.

Step 6 In the Years column, select one or more years during which this schedule entry will be
in effect, or select all for all years. Use Shift-click or Control-click to select multiple
years.

Step 7 In the Continue recurring field, specify how long you want this schedule entry to
remain in effect: forever, for a specified number of refreshes, or until a specified date
and time.

Step 8 Click Submit to save your schedule entry. The system displays a summary of the new
entry, including the time of next execution, on the Show Database Operations screen.

Note For instructions on setting up schedule exclusions—specific times when
the cache is not refreshed according to the schedule—see “Configuring schedule
exclusions” on page 166.
144 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing caches
Configuring periodic or advanced refresh schedules. Follow the steps in “Cach-
ing database operations on a schedule” on page 139 before starting this subprocedure.

Follow these steps:

Step 1 Choose a time zone for this schedule. The schedule can be specified according to the
cache server’s time zone or relative to Greenwich Mean Time (GMT).

Step 2 In the After field, specify when this schedule entry takes effect:

• If you want the one-time cache refresh to occur immediately, click the Now button.

• If you want the cache refresh to occur later, click the lower button. Then use the
pull-down menus to select the time, month, day and year.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 145

Managing cache services
Step 3 Use the Recur... field to specify the interval at which this schedule is executed:

• If you’re creating a periodic schedule entry, enter an integer and select from the
pull-down to specify an interval—for example, every 40 minutes, every 5 days, or
every 2 months.

• If you’re creating an advanced schedule entry, you must enter a cron expression of
this form in the Recur... field:

<seconds> <minutes> <hours> <days-of-month> <months>
<days-of-week> [<years>]

See the Sybase Avaki EII Command Reference for details of the cron syntax.

Step 4 In the Continue recurring field, specify how long you want this schedule entry to
remain in effect: forever, for a specified number of refreshes, or until a specified date
and time.

Step 5 Click Submit to save your schedule entry. The system displays a summary of the new
entry, including the time of next execution, on the Show Database Operations screen.

Note For instructions on setting up schedule exclusions—specific times when
the cache is not refreshed according to the schedule—see “Configuring schedule
exclusions” on page 166.
146 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing caches
Caching database operations on demand
Follow these steps to tag database operations or virtual database operations for
on-demand caching:

Step 1 To tag...

• A database operation for on-demand caching, navigate to the View Database Oper-
ations screen:

Home > Database provisioning > Manage database operations

The system displays a list of the database operations in the current domain.

• A virtual database operation for on-demand caching, navigate to the View Virtual
Database Operations screen:

Home > Data integration > Manage virtual database operations

The system displays a list of the virtual database operations in the current domain.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 147

Managing cache services
Step 2 Click the View/Edit link beside the name of the database operation or virtual database
operation to cache on demand. The Update Database Operation screen appears, show-
ing the details for the database operation or virtual database operation.

Step 3 Fill in the form:

• Cached data expiration: Select one of the following to indicate whether the data is
cached and, if so, when the data expires from the cache:

— No caching: The data is not cached.

— Never expires: The data never expires from the cache.

— Expires after n seconds: Specify the interval (in seconds) before the data expires
from the cache.

Step 4 Click Submit. The system displays a confirmation screen.
148 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing caches
Viewing cached database operations
To display a list of the database operations and virtual database operations in a cache
service, do the following:

Step 1 Navigate to the View Cache Services screen:

Home > Service management > View cache services

The system displays a list of the cache services in the current domain.

Step 2 Click the DBOP Contents link beside the name of the cache service whose database
operations you want to view. The View Database Cache screen appears, listing the
database operations in the cache service. The example below shows the four possible
combinations of caching and invalidation conditions:

• CherylDomain.MyDBConnector.MyDBOperation1: This database operation is
scheduled to be executed and its results have been cached. You can invalidate the
current cached results or unschedule the cache schedule.

• CherylDomain.MyDBConnector.MyDBOperation2: The database operation
result is cached on demand. You can invalidate the cached result.

• CherylDomain.MyDBConnector.MyDBOperation3: The cache service contains
an entry for the database operation and its cached metadata, but the cache service
contains no cached results for the database operation. This situation occurs if the
database operation’s result is cached and then later invalidated.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 149

Managing cache services
• CherylDomain.MyDBConnector.MyDBOperation4: The cache service contains
an entry for the database operation and its metadata, but the database operation
results will not be cached.
150 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing caches
Unscheduling/evicting database operations
When you unschedule or evict a database operation or virtual database operation, the
database operation is purged from the cache service and unscheduled if it’s pinned.
To unschedule or evict a scheduled database operation or virtual database operation,
do the following:

Step 1 Navigate to the View Cache Services screen:

Home > Service management > View cache services

The system displays a list of the cache services in the current domain.

Step 2 Click the DBOP Contents link beside the name of the cache service that you want to
unschedule or evict. The View Database Cache screen appears.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 151

Managing cache services
Step 3 (Optional) Click boxes in the Query Name column to choose the database operations
you want to unschedule or evict, then select one of the following:

• To unpin, unschedule, and purge all cached results and metadata for the specified
database operation, click Evict All Checked.

• To invalidate all of the cached results data and metadata for the specified database
operations, click Invalidate All Checked.

Step 4 (Optional) To invalidate a specific cached result set, click the Invalidate link in the
Parameters entry for that result set.

Step 5 (Optional) To unschedule a specific schedule, click the Unschedule link beside the
description of that schedule.

Managing data service caches
This section covers the following topics:
• “Caching data services on a schedule,” below

• “Caching data services on demand” on page 160

• “Viewing data services” on page 163

• “Unscheduling/evicting data services” on page 165

Caching data services on a schedule
When you schedule a data service, you can define a specific calendar-based interval at
which a cache entry should be refreshed.

Follow these steps to schedule a data service:

Step 1 Navigate to the View Data Services screen:

Home > Data integration > Manage data services
152 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing caches
The system displays a list of the data services in the current domain.

Step 2 Click the Schedule link beside the data service you want to schedule. The Schedule
Data Service screen appears.

Step 3 Select the cache service to use. If you want to reduce load on the underlying database,
select the server that is local to the operation (the server with an asterisk * before its
name) as the cache service. If you want to cache the results on a remote grid server
(and thereby reduce network traffic when requests are made from that server), select
the cache service for the related grid server.

Step 4 Click Add Schedule.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 153

Managing cache services
Step 5 The Add New Schedule screen appears.

Step 6 Click a tab to choose the type of schedule: One time, Periodic, Calendared, or
Advanced. The Advanced and Calendared options are similar. The Advanced option
lets you use a cron expression—powerful but cryptic—to schedule the recurrence
interval. The Calendared option offers a friendlier interface to a subset of the function-
ality enabled by cron expressions.

Step 7 Go to the appropriate procedure to complete your schedule entry:

• “Configuring one-time refresh schedules,” below

• “Configuring calendared refresh schedules” on page 126
154 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing caches
• “Configuring periodic or advanced refresh schedules” on page 128

Configuring one-time refresh schedules. Follow the steps in “Caching data ser-
vices on a schedule” on page 152 before starting this subprocedure.

Follow these steps:

Step 1 Choose a time zone for this schedule. The schedule can be specified according to the
cache server’s time zone or relative to Greenwich Mean Time (GMT).

Step 2 In the Do once field:

• If you want the one-time cache refresh to occur immediately, click the Now button.

• If you want the cache refresh to occur later, click the lower button. Then use the
pull-down menus to select the time, month, day and year.

Step 3 Click Submit to save your schedule entry. The system displays the new entry on the
Show Data Service Schedules screen.

Note For instructions on setting up schedule exclusions—specific times when
the cache is not updated according to the schedule—see “Configuring schedule
exclusions” on page 166.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 155

Managing cache services
Configuring calendared refresh schedules. Follow the steps in “Caching data ser-
vices on a schedule” on page 152 before starting this subprocedure.

Follow these steps:

Step 1 Choose a time zone for this schedule. The schedule can be specified according to the
cache server’s time zone or relative to Greenwich Mean Time (GMT).

Step 2 In the After field, specify when this schedule entry takes effect:

• If you want the one-time cache refresh to occur immediately, click the Now button.

• If you want the cache refresh to occur later, click the lower button. Then use the
pull-down menus to select the time, month, day and year.
156 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing caches
Step 3 In the Recur at field, use the pull-down menus to specify the time of day at which you
want the cache refresh to take place. (If you want the refresh to occur more than once a
day, you can use a periodic or advanced schedule, or you can create separate schedule
entries for the other refreshes.)

Step 4 In the Days column, choose how you want to specify days in this schedule entry:

• All: every day.

• Of week: Sunday through Saturday—click one or more days.

• Of month: 1, 2, 3...—click one or more days.

• Of week in month: use the pull-down menus to choose the first, second, third,
fourth, fifth, or last occurrence of any day of the week (the first Monday, for exam-
ple).

Step 5 In the Months column, select one or more months during which this schedule entry
will be in effect, or select all for all months. Use Shift-click or Control-click to select
multiple months.

Step 6 In the Years column, select one or more years during which this schedule entry will be
in effect, or select all for all years. Use Shift-click or Control-click to select multiple
years.

Step 7 In the Continue recurring field, specify how long you want this schedule entry to
remain in effect: forever, for a specified number of refreshes, or until a specified date
and time.

Step 8 Click Submit to save your schedule entry. The system displays a summary of the new
entry, including the time of next execution, on the Show Data Service Schedules
screen.

Note For instructions on setting up schedule exclusions—specific times when
the cache is not refreshed according to the schedule—see “Configuring schedule
exclusions” on page 166.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 157

Managing cache services
Configuring periodic or advanced refresh schedules. Follow the steps in “Cach-
ing data services on a schedule” on page 152 before starting this subprocedure.

Follow these steps:

Step 1 Choose a time zone for this schedule. The schedule can be specified according to the
cache server’s time zone or relative to Greenwich Mean Time (GMT).
158 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing caches
Step 2 In the After field, specify when this schedule entry takes effect:

• If you want the one-time cache refresh to occur immediately, click the Now button.

• If you want the cache refresh to occur later, click the lower button. Then use the
pull-down menus to select the time, month, day and year.

Step 3 Use the Recur... field to specify the interval at which this schedule is executed:

• If you’re creating a periodic schedule entry, enter an integer and select from the
pull-down to specify an interval—for example, every 40 minutes, every 5 days, or
every 2 months.

• If you’re creating an advanced schedule entry, you must enter a cron expression of
this form in the Recur... field:

<seconds> <minutes> <hours> <days-of-month> <months>
<days-of-week> [<years>]

See the Sybase Avaki EII Command Reference for details of the cron syntax.

Step 4 In the Continue recurring field, specify how long you want this schedule entry to
remain in effect: forever, for a specified number of refreshes, or until a specified date
and time.

Step 5 Click Submit to save your schedule entry. The system displays a summary of the new
entry, including the time of next execution, on the Show Data Service Schedules
screen.

Note For instructions on setting up schedule exclusions—specific times when
the cache is not refreshed according to the schedule—see “Configuring schedule
exclusions” on page 166.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 159

Managing cache services
Caching data services on demand
Follow these steps to tag data services for on-demand caching:

Step 1 Navigate to the View Data Services screen:

Home > Data integration > Manage data services

The system displays a list of the data services in the current domain.
160 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing caches
Step 2 Click the View/Edit link beside the name of the data service to cache on demand. The
Update Data Services screen appears, showing the details for the data service.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 161

Managing cache services
Step 3 Click Next. The second Update Data Services screen appears.

• In the Cached data expiration field, select one of the following to indicate whether
the data is cached and, if so, when the data expires from the cache:
— No caching: The data is not cached.

— Never expires: The data never expires from the cache.

— Expires after n seconds: Specify the interval (in seconds, minutes, hours, or
days) before the data expires from the cache.

• In the plug-in coherence window field, specify the duration (in seconds, minutes,
hours, or days) during which the contents of the data service are assumed to be
fresh after the cache service has last inspected the back-end source object for
updates. The default is 5 minutes.

• Select the user to execute the data service as: the user calling the service or a spe-
cific user. If you choose to execute the data service as a specific user, specify the
qualified user name of a grid user who has permission to execute this database ser-
vice. Use the following format:
<user-name>@<authservice>.<authservicetype>.<domain>
162 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing caches
For example:
wilma@DefaultAuthService.Grid.Bedrock

Step 4 Click Next. The system saves the new data expiration value and displays the View
Data Services screen.

Viewing data services
To display a list of the data services in a cache service, do the following:

Step 1 Navigate to the View Cache Services screen:

Home > Service management > View cache services

The system displays a list of the cache services in the current domain.

Step 2 Click the Data Service Contents link beside the name of the cache service whose data
services you want to view. The View Data Service Cache screen appears, listing the
data services in the cache service.The example below shows the four possible combi-
nations of caching and invalidation conditions:

• CherylDomain.MyDataService1: This data service is scheduled to be executed
and its results have been cached. You can invalidate the current cached results or
unschedule the cache schedule.

• CherylDomain.MyDataService2: The data service result is cached on demand.
You can invalidate the cached result.

• CherylDomain.MyDataService3: The cache service contains an entry for the data
service and its cached metadata, but the cache service contains no cached results for
the data service. This situation occurs if the data service’s result is cached and then
later invalidated.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 163

Managing cache services
• CherylDomain.MyDataService4: The cache service contains an entry for the data
service and its metadata, but the data service results will not be cached.
164 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing caches
Unscheduling/evicting data services
When you unschedule or evict a data service, the data service is purged from the cache
service and unscheduled if it’s pinned.
To unschedule or evict a scheduled data service, do the following:

Step 1 Navigate to the View Cache Services screen:

Home > Service management > View cache services

The system displays a list of the cache services in the current domain.

Step 2 Click the Data Service Contents link beside the name of the cache service that you
want to unschedule or evict. The View Database Cache screen appears.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 165

Managing cache services
Step 3 (Optional) Click boxes in the Query Name column to choose the database operations
you want to unschedule or evict, then select one of the following:

• To unpin, unschedule, and purge all cached results and metadata for the specified
database operation, click Evict All Checked.

• To invalidate all of the cached results data and metadata for the specified database
operations, click Invalidate All Checked.

Step 4 (Optional) To invalidate a specific cached result set, click the Invalidate link in the
Parameters entry for that result set.

Step 5 (Optional) To unschedule a specific schedule, click the Unschedule link beside the
description of that schedule.

Configuring schedule exclusions
A schedule exclusion is a named time period that you define. When you apply a sched-
ule exclusion to an entry in a schedule, the exclusion prevents the scheduled activity—
such as a cache refresh, for example—from occurring during the time specified by the
exclusion. A schedule exclusion can be applied to as many schedules as you like, and
it can be applied to schedules for any scheduled activity, including rehashing Avaki
shares, refreshing imported user accounts, and caching files, directories, and the
results of database operations, virtual database operations, data services, and generated
views.

For example, suppose you have a directory whose cache is scheduled to be refreshed
once a day. This works well most of the time, but on the last day of the month, demand
on the network (or the host computer) is very high and you want to reduce traffic. You
can set up a schedule exclusion for the last day of every month and apply it to the
directory’s refresh schedule. If necessary, you can apply the same exclusion to other
schedules to further reduce traffic. You can also configure each schedule so that the
scheduled activity occurs before or after the schedule exclusion period, or not all.

This section includes these procedures:
• “Setting up schedule exclusions” on page 167

• “Applying schedule exclusions to schedule entries” on page 169
166 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing caches
Setting up schedule exclusions
To define or edit a schedule exclusion, you must have write permission on the exclu-
sion. In an out-of-the-box data grid, that means you must be a member of the DataPro-
viders group.

Follow these steps to define a schedule exclusion.

Step 1 Navigate to the Add Schedule Exclusion screen:

Home > Service management > Create schedule exclusion.

Step 1 In the Name field, enter a name to identify this schedule exclusion. (Later, when you
apply this exclusion to a schedule entry, you’ll select this name from a list of exclu-
sions.)

Step 2 (Optional) In the Description field, enter a description of this schedule exclusion.

Step 3 From the Time Zone pull-down, select the time zone in which you’re specifying the
exclusion period.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 167

Managing cache services
Step 4 Under Type of schedule exclusion, click a tab to specify how often you want the exclu-
sion to recur:

• Daily: The exclusion blocks scheduled activities during the specified period every
day. Use the pull-downs in the From and to fields to set the hour and minute at
which the exclusion period begins and ends.

• Weekly: The exclusion blocks scheduled activities during the specified period on
the specified days of every week. To set the duration of the exclusion, click the
Entire day button or click the lower button, then use the pull-downs in the From and
to fields to set the hour and minute at which the exclusion period begins and ends.

To set the days of the week, click the boxes for one or more days.

• Monthly: the exclusion blocks scheduled activities during the specified period on
the specified days of every month. To set the duration of the exclusion, click the
Entire day button or click the lower button, then use the pull-downs in the From and
to fields to set the hour and minute at which the exclusion period begins and ends.

To set the days of the month, click the boxes for one or more days.

• Yearly: the exclusion blocks scheduled activities during the specified period on the
specified days of every year. To set the duration of the exclusion, click the Entire
day button or click the lower button, then use the pull-downs in the From and to
fields to set the hour and minute at which the exclusion period begins and ends.

To set the days of the year, use the month and date pull-downs. Click Add day to
add as many days as you need.

• Custom: the exclusion blocks scheduled activities during one or more periods that
you define using the time, month, day, and year pull-downs. Click Add new range if
you want to define additional time periods. Use the Custom tab to configure
one-time exclusions.

Step 5 Click Submit to save your schedule exclusion.

The procedure that follows explains how to incorporate schedule exclusions into
schedules.
168 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing caches
Applying schedule exclusions to schedule entries
Before you can follow this procedure, at least one schedule exclusion must already be
configured. See “Setting up schedule exclusions,” above, for instructions.

To apply a schedule exclusion, you must have write permission on the object (the
directory, for example) to which the schedule applies.

Follow these steps to apply a schedule exclusion.

Step 1 Navigate to the view screen for the object to which the schedule applies. For example,
for a database operation, navigate to the View Database Operations screen:

Home > Data provisioning > Manage database operations

The system displays a list of the database operations in the current domain.

Step 2 Click the Schedule link beside the database operation you want to schedule. The
Schedule Database Operation screen appears.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 169

Managing cache services
Step 3 Select the cache service to use. If you want to reduce load on the underlying database,
select the server that is local to the operation (the server with an asterisk * before its
name) as the cache service. If you want to cache the results on a remote grid server
(and thereby reduce network traffic when requests are made from that server), select
the cache service for the related grid server.

Step 4 Specify the values of the input parameters for the operation (if there are any).

Step 5 Click Add Schedule.

Step 6 The Add New Schedule screen appears.
170 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing caches
Step 7 Scroll down, if necessary, to expose the Schedule exclusions portion of the Add New
Schedule screen.

Step 8 Select one or more schedule exclusions from the “Apply the following exclusions to
this schedule” list. Use the up and down arrows to scroll if you don’t see the exclusion
you want.

Step 9 Click to specify what should happen when an exclusion prevents the cache from being
refreshed on schedule:

• Cancel the occurrence causes the cache service to skip any scheduled refreshes
that fall within the exclusion period.

• Reschedule causes the system to reschedule any scheduled refreshes that fall
within the exclusion period.

Step 10 If you chose Reschedule, use the pull-downs in the bottom line to specify:

• whether the system should reschedule the refresh for before or after the exclusion
period; and

• how long before or after the exclusion period the system should try to reschedule
the refresh.

For example, if you specify that the cache service should refresh 2 hours before the
exclusion period begins, the system first tries to reschedule the refresh at the 2-hour
point. If that time slot isn’t available, the system tries to reschedule the refresh for 4
hours before the exclusion period, then 6 hours, and so on at 2-hour intervals.

Step 11 Click Submit to apply the specified exclusion and rescheduling policy to the refresh
schedule.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 171

Managing cache services
Step 12 (Optional) To view details about schedule exclusions, do the following:

• Scroll down, if necessary, to the About Schedule Exclusions portion of the Add
New Schedule screen.

• Click View Exclusions to see the list of exclusions currently defined in this
domain. The View Schedule Exclusions screen appears.
172 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing caches
• Optional. To view details about a particular schedule exclusion, click the View/Edit
link beside the schedule exclusion whose details you want to view. The View/Edit
Schedule Exclusion appears, showing details about the exclusion.

• Click Cancel to return to the View Schedule Exclusions screen.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 173

Managing cache services
174 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Chapter 4

Setting up data service plug-ins
This chapter explains how to create and deploy data service plug-ins. It covers the fol-
lowing topics:
• “Overview of data service plug-ins,” below

• “Java, JavaScript, or XSLT” on page 176

• “Input and output” on page 177

• “Plug-in files” on page 180

• “Deployment of plug-ins” on page 180

• “Creating XSLT plug-ins” on page 181

• “Creating Java plug-ins with the Plug-in Wizard” on page 183

• “Creating JavaScript plug-ins” on page 200
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 175

Setting up data service plug-ins
Overview of data service plug-ins
An Avaki data service is a mechanism that can combine file or relational data from
one or more sources. It transforms and/or merges the data and produces output that
you can make available to an application, another data service, or an Avaki view gen-
erator.

The heart of a data service is a logic module called a data service plug-in. The logic
can be written in Java or XSLT. Data service plug-ins are modular—you can make one
plug-in serve several purposes by including it in different data services.

For example, suppose Fred has written a plug-in that accepts input from any RSS (Rich
Site Summary or Really Simple Syndication) newsfeed and produces output in an
HTML format of his own design. Fred can create a series of data services, each using
the same RSS plug-in but specifying different inputs—one data service for the Wash-
ington Post, one for the BBC, and one combining material from several blogging sites.
If Fred has other plug-ins, he might also create data services to re-use them. Using one
plug-in, many data services can perform the same transformation on data from many
input sources.

To set up an Avaki data service, you must complete these tasks:
1. Create a data service plug-in as described in this chapter.
2. Deploy the plug-in by sharing it into the Avaki data catalog.

3. Configure the data service in the web UI. For an overview of data services and instruc-
tions on setting them up, see Chapter 2, “Basic data integration”.

Java, JavaScript, or XSLT
A plug-in can be implemented as a Java class, as JavaScript, or as an XSLT stylesheet:
• If your plug-in will be an XSLT stylesheet, you must write the stylesheet and share

it into the data catalog. More information is available in the section “Creating
XSLT plug-ins” on page 181.

• Use Avaki’s Plug-in Wizard to create Java plug-ins. The Plug-in Wizard can help
you create plug-ins with inputs and outputs in any format. However, the Plug-in
Wizard produces only skeleton Java code; you must write the code that performs
176 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Input and output
the plug-in’s key functions. Instructions on creating Java plug-ins appear in “Creat-
ing Java plug-ins with the Plug-in Wizard” on page 183.

• A JavaScript plug-in consists of a single JavaScript file shared into the Avaki data
catalog. Instructions on creating JavaScript plug-ins appear in “Creating JavaScript
plug-ins” on page 200.

Input and output
A data service plug-in, written either in Java or in XSLT, defines the data service’s
requirements for input sources, runtime parameters, and output stream, all of which
are discussed in this section. A plug-in can have:
• Zero or more input sources

• Zero or more runtime parameters

• Zero or one output streams

Input sources
Each input source can consist of XML, rowset data (ResultSet type), or raw binary data
(ByteStream type). (Avaki rowset format is an internal format for relational results.
Data services and other Avaki services accept rowsets as input; data services and data-
base operations produce rowset output.)

An input source can be a grid file or the result of running a database operation, or
another data service. (Note, however, that you don’t need to know the data source
when you write a plug-in; the source is specified in the data service.)

Note If any of the inputs is a rowset—that is, it comes from a database operation
or a data service that produces rowset output—and if the plug-in requires XML
input, Avaki automatically generates an XML representation of the rowset data as
it feeds it into the plug-in. (The XML is generated on the fly, in the JVM as it is
consumed by the plug-in, so XML is not flowing across servers.) The schema for
the generated XML is that which Avaki generates for database operations; a
schema description appears in Appendix D, “Avaki rowset XML”.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 177

Setting up data service plug-ins
If your plug-in is a stylesheet, you will specify exactly two input sources when you set
up a data service for it:
• The primary input

The primary input source for an XSLT plug-in is the document that the style sheet is
applied to. The primary input is defined only in the data service; it does not appear
in the stylesheet. The primary input is a single input stream for which you must
specify a name and a grid source.

• The secondary input
The secondary input is configured in the data service as a list of all input sources
other than the primary input; each item in the list is an input source for which you
must specify a name and a grid source. (There’s nothing special about secondary
inputs; they just need to be specified separately from the primary input.) If your
stylesheet has only one input source, you can leave the secondary input list empty.
To set up secondary inputs in your stylesheet, you use the XPATH document()
function with the avaki:// syntax for referencing grid objects, as described in “Spec-
ifying secondary input sources” on page 181.

If your plug-in is a Java class, you can specify any number of input sources—there is
no notion of primary or secondary. Each input source in available to your plug-in’s
run() method as an instance of an InputSource (see “InputSource interface” on
page 186).

Parameters
Runtime parameters can be divided into three categories:
• Plug-in parameters

Parameters required by the plug-in. When you set up a data service for this plug-in,
you’ll bind each plug-in parameter either to a constant value (so that no value needs
to be provided at run-time) or to a data service parameter.

• Input source parameters
Parameters required by input sources. Suppose you’ve constructed a plug-in whose
input sources include a data service (or a database operation), and that data service
has runtime parameters of its own. Those parameters are input source parameters.
In data services that use your plug-in, you’ll bind each input source parameter either
to a constant value or to a data service parameter.

• Data service parameters
Parameters required by the data service. Values for data service parameters must be
provided at runtime. Data service parameters are typically bound to plug-in param-
eters or input source parameters.
178 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Input and output
In the figure below, Myplugin has three plug-in parameters, A, B, and C. In
Mydataservice, A is bound to a constant value, 42, so it does not require input at
run-time. Mydataservice has an input source called Fredsdataservice, and Freds-
dataservice has parameters of its own, D and E. Parameters B C, D, and E are bound to
corresponding data service parameters in Mydataservice.

Parameter A is a plug-in parameter, but not a data service parameter. B and C are both
plug-in parameters and data service parameters. With respect to Myplugin, D and E
are both input source parameters and data service parameters.

Fredsdataservice has an input source called DBOP that calls for a parameter F. At
run-time, the values for parameters D and E are passed from Mydataservice to Freds-
dataservice; the value for parameter E is passed on to the DBOP, whose parameter F
uses it.

Parameters A, B, C, D, and E must be defined in Mydataservice. Mydataservice makes
no reference to parameter F, but parameter E’s value is passed to F via Fredsdataser-
vice.

To set up Myplugin and Mydataservice, you only need to know about the parameters
required by Fredsdataservice; Fredsdataservice is responsible for collecting any
parameters required by its input sources (in this case, DBOP).

Myplugin

Mydataservice

BC

A B C

DE

42

D E

Fredsdataservice

DBOP

F

Sybase Avaki EII Provisioning and Advanced Data Integration Guide 179

Setting up data service plug-ins
Output stream
The plug-in’s output stream, if it has one, is bound to the data service’s output stream
when the data service is configured. It may consist of XML, rowset data (ResultSet
type), or raw binary data (ByteStream type).

Plug-in files

JAR files and manifest files for Java plug-ins
A data service plug-in written in Java is deployed in a JAR (Java archive) file. The JAR
file must contain:
• The Java code that implements the plug-in

• A manifest file that describes the components of the plug-in, such as required
parameters, input sources, and output streams

The Plug-in Wizard creates the manifest file for you. It also creates build scripts for
compiling the code and setting up the JAR.

JavaScript file for JavaScript plug-ins
A JavaScript plug-in consists of a JavaScript file.

XSL file for XSLT plug-ins
An XSLT plug-in consists of an XSL stylesheet.

Deployment of plug-ins
Once you’ve created the JAR file or the XSLT stylesheet for your plug-in, you’ll create
an Avaki share that imports the plug-in into the grid data catalog, or copy the plug-in
into an existing Avaki share. Your plug-in is then ready to be used in a data service.
Configuring data services in the web UI is covered in Chapter 2, “Basic data integra-
tion”.
180 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Creating XSLT plug-ins
Creating XSLT plug-ins
To set up a data service plug-in that performs XSLT transformations, you must:

1. Write a stylesheet in XSLT. This section explains how to set up parameters and second-
ary input sources in the stylesheet so that they can be configured in a data service later.

2. Share the stylesheet into the grid data catalog. (Instructions on creating Avaki shares
can be found in the Sybase Avaki EII Administration Guide.)

Avaki provides two XSLT engines: Saxon and Xalan. Your stylesheet should be com-
patible with one of these engines.

Specifying parameters
You can use xsl:param elements in your stylesheet to refer to plug-in parameters.
When you create a data service for this plug-in, you’ll be asked to do one of the fol-
lowing for each parameter:
• Specify a constant value for the parameter, or

• Bind the plug-in parameter to a data service parameter, for which a value must be
provided at run time.

Specifying secondary input sources
In your stylesheet, you can use the document() function to refer to secondary input
sources. When you create a data service for this plug-in, you’ll be asked to bind these
named secondary inputs to grid sources.
The document() function fetches and parses XML data from a specified URI. Avaki
allows you to provide the URI in two special formats for sources in the data catalog (in
addition to the usual syntax that allows you to specify local files, HTTP URLs, and so
forth):
• avaki://<full-grid-path>

For example, avaki:///Shares/myfiles/paris.xml. Use this format to specify files
only.

• avaki://<name>
For example, avaki://EmpData. The <name> is an arbitrary name you assign to this
input source. When you create a data service that uses this stylesheet as its plug-in,
you’ll be asked to bind this input source name to a file, a database operation, or
another data service.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 181

Setting up data service plug-ins
A sample XSLT plug-in
The merge.xsl stylesheet describes how to merge a set of photos in .jpg files and text
from a series of XML files to produce a single HTML file. (For more information on
how this merge works, see <avaki-install-dir>/examples/merge/README.txt.) The
merge.xsl file specifies two items of interest, a parameter and an input source:
• An xsl:param tag defines a parameter called title.

• An xsl:apply-templates tag uses a document() function to open and parse a
file. (The file name is ., the value of the current XML element—in this case,
ph:entry.)

The contents of merge.xsl are as follows:
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:ph="http://ananas.org/2003/tips/photo">

<xsl:output method="html" encoding="utf-8" />

<xsl:param name="title"/>

<xsl:template match="ph:index">
<html>

<head>
<title>

<xsl:value-of select="$title" />
</title>

</head>

<xsl:apply-templates />
</html>

</xsl:template>

<xsl:template match="ph:index/ph:title">
<h1>

<xsl:apply-templates />
</h1>

</xsl:template>

<xsl:template match="ph:entry">

<xsl:apply-templates select="document(concat('avaki://', .))" />

<br clear="right" />
</xsl:template>

<xsl:template match="ph:photo/ph:title">
182 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Creating Java plug-ins with the Plug-in Wizard
<h2>
<xsl:apply-templates />

</h2>
</xsl:template>

<xsl:template match="ph:location">
<h3>in
<xsl:apply-templates />
</h3>

</xsl:template>

<xsl:template match="ph:date">
<p>Date:
<xsl:apply-templates />
</p>

</xsl:template>

<xsl:template match="ph:description">
<p>

<xsl:apply-templates />
</p>

</xsl:template>
</xsl:stylesheet>

Creating Java plug-ins with the Plug-in Wizard
You can use the Avaki Plug-in Wizard to generate skeleton Java code and build.xml
and manifest files for a data service plug-in. The skeleton Java code of the plug-in con-
tains a comment at the point where you must insert your own Java code that performs
the merge or transformation.

The Plug-in Wizard runs from the command line in the local directory where Avaki
software is installed.

In this section:
• “Prerequisites,” below

• “Plug-in Wizard procedure” on page 184

• “Writing the Java code” on page 185
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 183

Setting up data service plug-ins
Prerequisites
To prepare to create plug-ins using Avaki’s Plug-in Wizard, you need the following:
• Avaki 5.0 or later installed on at least one machine, with at least a grid domain con-

troller running

• A Java compiler such as Sun JDK 1.4

• Apache Ant 1.5.3.1 or later (required to compile the Java source code for your
plug-ins). Ant is free; you can download it from http://ant.apache.org.

Plug-in Wizard procedure
Follow these steps to create a plug-in using the Plug-in Wizard.

Step 1 Ensure that the software listed under “Prerequisites,” above, is in place and ready to
use.

Step 2 To invoke the Plug-in Wizard, execute the avaki plugin --generate command. (For
details on this command and its options, see the Sybase Avaki EII Command Refer-
ence.) For example, you might enter:

C:\AvakiDataGrid70> avaki plugin --generate
--plugin-name="MyPlugin" --impl-class=MyPluginClass
--method-name=run --parameter="name=p1;type=INTEGER"
--input="name=input1;type=ResultSet"
--input="name=input2;type=ResultSet"
--target-dir="c:\bedrock\wilma\plugins"
--template-dir="c:\bedrock\wilma\Javaki\templates\plugin"
--output="name=output1;type=ResultSet"

The Plug-in Wizard produces skeleton Java source code for the plug-in in a file called
MyPlugin.java; a build.xml file; and a manifest file.

Note When you create a data service for this plug-in, you’ll specify the sources
of the input streams named in the avaki plugin command (input1 and input2 in
the example above). Input1 and input2 above consist of ResultSet data, so their
sources will probably be Avaki database operations or data services. You can also
configure the data service to supply static values for any parameters, or allow the
values to be supplied at run time.

Step 3 In the skeleton code, find the comment that says “put your logic here.” At that point,
insert your own Java code that performs the desired merge or transformation. See
“Writing the Java code” on page 185 for information and examples.
184 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

http://ant.apache.org

Creating Java plug-ins with the Plug-in Wizard
Step 4 Use Ant to compile the Java source code with the build.xml file. (Configure the
build.xml file to point to your ANT_HOME and run it.)

The result will be a JAR file that contains the compiled Java code and the manifest file.
The JAR file is the plug-in.

Step 5 Share the JAR file into the data catalog so that it can be incorporated into a data ser-
vice. You can either copy the JAR into an existing Avaki share or create a new Avaki
share. For instructions on creating Avaki shares, see the Sybase Avaki EII Administra-
tion Guide. For instructions on setting up a data service that uses your new plug-in, see
Chapter 2, “Basic data integration”.

Step 6 To improve performance for data services that use this plug-in, pin the JAR file for
caching. (Executing a data service just once can require multiple reads of the JAR file.
Caching the JAR file can reduce the read time considerably.) For instructions on pin-
ning a file for caching, see “Pinning files for scheduled caching” on page 108.

Writing the Java code
Avaki provides an API that data service plug-ins can use to access their inputs, manip-
ulate their output, and access various services. A second API is provided for building
data services that group database operations to perform distributed transactions. We
assume that users of the data service and transaction APIs have working knowledge of
Java, including, in particular, knowledge of Sun’s JDBC and I/O APIs.

This section describes the interfaces and classes in the Avaki APIs that are most com-
monly used in data services, then provides examples showing how to use them in your
Java code. For further details on the Avaki APIs, see the Javadoc, which you can view
on any machine that has network access to an Avaki installation. To view the Javadoc,
point your browser to <Avaki-install-dir>/docs/api/index.html. For example, you
might enter:

C:\AvakiDataGrid70\docs\api\index.html

On the overview page, click com.avaki.core.services.dataservice.api for the general
data service API, or com.avaki.transaction for the distributed transaction API.

The remainder of this section consists of reference information on the Avaki API inter-
faces and classes that are most commonly used in data service plug-ins, and on related
topics including logging and manifest files:
• “The Avaki Data Service API,” below

• “The Avaki Transaction API” on page 189
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 185

Setting up data service plug-ins
• “Code samples for Java data service plug-ins” on page 191

• “Logging” on page 196

• “Manifest files and build.xml files” on page 197

The Avaki Data Service API
Use the data service API for all Java plug-ins, including those that perform distributed
transactions.

Every Java plug-in must implement the Plugin interface and include a manifest file.

This section includes the following subsections:
• “Plugin interface,” below

• “InputSource interface” on page 186

• “ParameterSpec interface” on page 187

• “StreamingRowSet interface” on page 187

• “RowSetFactory class” on page 188

Note There is no need to close the data service output stream in the code you add to
your plug-in; the data service itself will close the output stream. However, be sure to
close or flush any other streams in your code, such as stream decorators that buffer
output. (Use closeRowSet() for the Avaki StreamingRowSet interface, end-
Document() for org.apache.xml.serialize.XMLSerializer, or flush()
for BufferedWriter.)

Plugin interface. The Plugin interface provides the custom data transformation
logic for the data service. Plugin has one method, run. For more information on
Plugin, see the Javadoc for the data service API.

InputSource interface. The InputSource interface of the data service API provides
the abstraction for invoking and accessing the results of database operations and data
services, as well as accessing file content, from within a data service plug-in. “Exam-
ple: Rowset input, rowset output” on page 192 uses InputSource to get input from a
database operation. “Example: Merge a DBOP result and a CSV file to produce XML
output” on page 194 uses InputSource to access both the results of a database oper-
ation and the contents of a file.
186 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Creating Java plug-ins with the Plug-in Wizard
The table that follows lists the methods for InputSource. For more information on
InputSource, see the Javadoc for the data service API.

ParameterSpec interface. When parameters are specified in the avaki plugin com-
mand, the Plug-in Wizard generates skeleton code using the ParameterSpec inter-
face, so there’s typically no need to add it to the plug-in yourself. The
ParameterSpec interface of the data service API provides the abstraction for manip-
ulating parameters to your plug-in and to its input sources. You can retrieve Parame-
terSpecs for parameters passed to your plug-in as well as for parameters that have
been configured for the various input sources. You can also set and modify parameters
to input sources before invoking them using the ParameterSpec abstraction. For
more information on ParameterSpec, see the Javadoc for the data service API.

StreamingRowSet interface. StreamingRowSet, which implements the
javax.sql.RowSet interface, lets you construct an Avaki rowset for the output of your
data service. StreamingRowSet writes directly to an output stream; it does not allow

void execute()
Executes the underlying InputSource.

StreamType getDataType()
Returns the type of the data this stream will provide.

Object getInputParameter(ParameterSpec param)
Returns an input parameter of this input source.

InputStream getInputStream()
Returns a stream for reading data from.

ResultSet getResultSet()
Returns the data as a result set.

Set getSupportedInputParams()
Returns a set of ParameterSpecs representing the input parameters this
input source expects.

Object getTarget()
Returns the target of this input source, either as a String (if it’s set directly)
or as a ParameterSpec (if it’s a reference to a data service parameter).

String resolveTarget()
Returns the path to the target of this input source, resolving a parameter if
it’s set to one.

void setInputParameter(ParameterSpec param, Object value)
Sets an input parameter on this input source.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 187

Setting up data service plug-ins
iteration over the set. To populate the rowset, you can use methods on
javax.sql.RowSet (see Sun’s Javadoc at http://java.sun.com/j2se/) as well as
Avaki’s extensions, below. Note that when you’re finished writing to the rowset, you
must use the closeRowSet() method. “Example: Rowset input, rowset output” on
page 192 uses StreamingRowSet.

The table that follows lists the methods for StreamingRowSet. For more informa-
tion on StreamingRowSet, see the Javadoc for the data service API.

RowSetFactory class. The RowSetFactory class of the data service API creates
Avaki rowsets. Use this class to implement a plug-in whose output is in rowset format.
Rowset output is useful as input to other data services. You can use RowSetFactory
to create both in-memory rowsets (which allow you to iterate over the data) and
streaming rowsets (for which iteration is not possible).

When you create a rowset, you must pass in an array of integers from the class
java.sql.Types. The integers correspond to the types of the columns in the rowset.
After creating the rowset, you might want to add more detailed rowset metadata. You
can do so by calling the method getMetaData, casting the results to the
javax.sql.rowsetMetaData method, then using setter methods to add the addi-
tional metadata to the rowset.

“Example: Rowset input, rowset output” on page 192 uses RowSetFactory to create
streaming rowsets.

The table that follows lists the methods for RowSetFactory. For more information
on RowSetFactory, see the Javadoc for the data service API.

void addRow()
Adds a new row to the end of this rowset.

void closeRowSet()
(Required.) Closes the rowset and flushes all data to the stream.

static
MemoryRowSet

createMemoryRowSet(int[] sqlTypes)
Generates an in-memory rowset that can be streamed at any time.

static
Streaming-
RowSet

createStreamingRowSet(int[] sqlTypes)
Generates a streaming rowset backed by a temporary file.

static
Streaming-
RowSet

createStreamingRowSet(int[] sqlTypes, OutputStream os)
Generates a streaming rowset backed by a user-specified stream.
188 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

http://java.sun.com/j2se/

Creating Java plug-ins with the Plug-in Wizard
The Avaki Transaction API
Use the transaction API along with the data service API for Java plug-ins that execute
distributed transactions.

Here’s how to execute a distributed transaction using the transaction API:

Step 1 Create an instance of the XAWorkUnit interface that describes the work to be done.
You can write your own, or use one of the implementations provided in the transaction
API: DbopGroupWorkUnit or DbopPipeWorkUnit.

Step 2 Create an instance of the XAWorkHandler class (passing it the XAWorkUnit from
Step 1) and call its execute method.

Step 3 If you need to look at transaction by-products (such as ResultSets from database oper-
ations), query your XAWorkUnit (using its custom accessor methods) for any data that
was stored during the transaction execution. Process this data in whatever way you
like; for example, you might write the data to the plug-in’s output stream.

Step 4 If your XAWorkUnit supplies a method for cleaning up its stored results, call this
cleanup method.

XAWorkUnit interface. XAWorkUnit describes the work to be done in the distributed
transaction, including the data sources that will participate in the transaction and the
logic to be performed on the data sources.

The table that follows lists the methods for XAWorkUnit. For more information on
XAWorkUnit, see the Javadoc for the transaction API.

XAWorkHandler class. XAWorkHandler executes a distributed transaction
described by XAWorkUnit. XAWorkHandler has one method, execute().

DistributedAction getAction()
Returns the logic to be performed inside the distributed
transaction.

XADataSource getDataSources()
Returns the data sources that will participate in the distributed
transaction.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 189

Setting up data service plug-ins
DbopGroupWorkUnit class. DbopGroupWorkUnit executes a set of database oper-
ations in one distributed transaction.

The table that follows lists the methods for DbopGroupWorkUnit. For more informa-
tion on DbopGroupWorkUnit, see the Javadoc for the transaction API.

DbopPipeWorkUnit class. DbopPipeWorkUnit executes one source database oper-
ation and passes the results to one or more target database operations, which it also
executes, all within one distributed transaction. “Example: Distributed transaction” on
page 191 uses DbopPipeWorkUnit.

The table that follows lists the methods for DbopPipeWorkUnit. For more informa-
tion on DbopPipeWorkUnit, see the Javadoc for the transaction API.

void cleanup()
Cleans up any results that were stored during exe-
cution.

DistributedAction getAction()
Returns the DistributedAction in this work unit.

XADataSource[] getDataSources()
Returns an array of XADataSources corresponding
to the database operations in this work unit.

com.avaki.core.services.data-
base.JDBCExecutionOutput[]

getExecutionOutputs()
Returns an array of JDBCExecutionOutput objects
containing the results of executing the database
operations in this DbopGroupWorkUnit.

void cleanup()
Cleans up any results that were stored during execu-
tion.

DistributedAction getAction()
Returns the logic to be performed inside the distrib-
uted transaction.

XADataSource[] getDataSources()
Returns the data sources that will participate in the
distributed transaction.

com.avaki.core.services.data-
base.JDBCExecutionOutput

getSourceExecutionOutput()
Returns a JDBCExecutionOutput object containing
the result of executing the source database operation
in this DbopPipeWorkUnit.
190 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Creating Java plug-ins with the Plug-in Wizard
Code samples for Java data service plug-ins
In this section:
• “Example: Distributed transaction,” below

• “Example: Rowset input, rowset output” on page 192

• “Example: Merge a DBOP result and a CSV file to produce XML output” on
page 194

Example: Distributed transaction. The example that follows shows the run method
of a data service plug-in that expects three DbopInputSources. The plug-in constructs
and executes a DbopPipeWorkUnit that copies data from the first database operation
into the second and third. Note that when this plug-in is deployed, the input sources
must be mapped to appropriate database operations—not every database operation
will be compatible with the operation being performed. All the database operations
must use XA-enabled database connectors and each of the back-end databases must be
reachable from the grid server where the data service runs. The second and third data-
base operations must be update DBOPs (that is, they must write to the database) and
must expect parameters that correspond exactly (in number and type) to the output col-
umns of the first database operation.

Here’s the code to be added to the plugin() method of the skeleton plug-in:
 public void runThreeDBOPpipe(InputSource dbop1, InputSource dbop2, InputSource
dbop3, OutputStream XMLOutput) throws Exception {

 DbopPipeWorkUnit work = new DbopPipeWorkUnit((DbopInputSource)dbop1, new
DbopInputSource[] {(DbopInputSource)dbop2, (DbopInputSource)dbop3});

 // If you want to use your own TransactionManager implementation,
 // pass it in here when creating the XAWorkHandler
 XAWorkHandler handler = new XAWorkHandler(work);

 try {
 handler.execute();

 JDBCExecutionOutput sourceOutput = work.getSourceExecutionOutput();
 JDBCExecutionOutput[] targetOutputArray =
work.getTargetExecutionOutputs();

com.avaki.core.services.data-
base.JDBCExecutionOutput[]

getTargetExecutionOutputs()
Returns an array of JDBCExecutionOutput objects
containing the results of executing the target data-
base operations in this DbopPipeWorkUnit.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 191

Setting up data service plug-ins
 // Add header to output
 String obj = "<?xml version=\"1.0\" encoding=\"UTF-8\" ?>";
 byte[] header = obj.getBytes();
 XMLOutput.write(header, 0, header.length);

 // Add root tag to output
 obj = "<allResultSets>";
 byte[] rootTag = obj.getBytes();
 XMLOutput.write(rootTag, 0, rootTag.length);

 // Add all result set data to output
 sourceOutput.toXML(XMLOutput);
 for (int i = 0; i < targetOutputArray.length; i++)
 {
 targetOutputArray[i].toXML(XMLOutput);
 }

 // Close root tag
 obj = "</allResultSets>";
 byte[] endRootTag = obj.getBytes();
 XMLOutput.write(endRootTag, 0, endRootTag.length);

 } finally {
 work.cleanup();
 }
 }

Example: Rowset input, rowset output. The example that follows shows how to do
a simple rowset (ResultSet) to rowset conversion. It takes input from a database opera-
tion and produces another rowset. This example uses the RowSetFactory class and
the StreamingRowSet and InputSource interfaces from Avaki’s data services API.
Notice that the code portion of the example begins with imports required to compile.

Here’s the avaki plugin command that generates the skeleton of the plug-in:
C:\AvakiDataGrid70> avaki plugin --generate
--plugin-name=ResultSetCopy
--package=com.avaki.plugin.sample
--input="name=resultSetInput;type=ResultSet"
--output="name=resultSetOutput;type=ResultSet"
--target-dir="c:\plugins\plugin1"

Here’s the code to be added to the plugin() method of the skeleton plug-in:
// Added imports
import java.sql.ResultSet;
import java.sql.Types;
192 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Creating Java plug-ins with the Plug-in Wizard
import javax.sql.RowSetMetaData;
import java.sql.ResultSetMetaData;
import com.avaki.core.services.dataservice.api.

RowSetFactory;
import com.avaki.core.services.dataservice.api.

StreamingRowSet;

/**
* This method implements the user-defined plug-in
* logic.
*
* This logic does a simple ResultSet conversion
* performing a numerical operation
*/

public void plugin(InputSource resultSetInput,
OutputStream resultSetOutput) throws Exception {

// Grab the input result set. The hypothetical format
// for this rowset is (VARCHAR(10), DOUBLE)
ResultSet rs = resultSetInput.getResultSet();

// Capture the input metadata
ResultSetMetaData inputMetaData = rs.getMetaData();

// Create a streaming rowset for the output
int[] types = new int[2];
types[0] = Types.VARCHAR;
types[1] = Types.DOUBLE;
StreamingRowSet rowSet = RowSetFactory.

createStreamingRowSet(types, resultSetOutput);
// Add some more metadata information. Note the cast
// here.
RowSetMetaData outputMetaData = (RowSetMetaData)

rowSet.getMetaData();
for (int i = 1; i <= 2; i++) {

outputMetaData.setPrecision(i, inputMetaData.
getPrecision(i));

outputMetaData.setScale(i, inputMetaData.
getScale(i));

}
// Copy the rows doing a simple transformation
while (rs.next()) {

rowSet.addRow();
rowSet.setString(1, rs.getString(1));
rowSet.setDouble(2, rs.getDouble(2) * 365);

}
// Make sure to close the rowset
rowSet.closeRowSet();

}

Sybase Avaki EII Provisioning and Advanced Data Integration Guide 193

Setting up data service plug-ins
Example: Merge a DBOP result and a CSV file to produce XML output. The next
example shows plug-in code that takes two inputs and merges them. The first input
source is a result set; the second is a flat CSV file. (The result set might come from a
database operation; the file might be in the data grid or a local file system—the
sources are specified in the data service.) The inputs are merged into an XML output
file. Two parameters, col1name and col2name, define the column names for the CSV
input. This example uses the InputSource interface from Avaki’s data services API.

The command to generate the skeleton of the plug-in looks like this:
C:\AvakiDataGrid70> avaki plugin --generate
--plugin-name=CSVMerge --package=com.avaki.plugins.samples
--parameter="name=col1name;type=VARCHAR"
--parameter="name=col2name;type=VARCHAR"
--input="name=DBOPInput;type=ResultSet"
--input="name=CSVInput;type=XSL"
--output="name=XMLOutput;type=XML"
--target-dir="f:\plugins\CSVMerge"

Here’s the code to be added to the plugin() method of the skeleton plug-in:
// Added imports
import java.sql.*;
import java.io.*;
import java.util.StringTokenizer;

// Used to build XML
import org.apache.xml.serialize.XMLSerializer;
import org.apache.xml.serialize.OutputFormat;
import org.xml.sax.helpers.AttributesImpl;

/**
* This plug-in takes two inputs. First is a result set
* that comes from a DBOP. Second is a flat file CSV
* from a grid file. The inputs are merged into an XML
* output. There are two parameters that define the
* column names for the CSV input.
*/

public void plugin(java.lang.String col1name,
java.lang.String col2name, InputSource DBOPInput,
InputSource CSVInput, OutputStream XMLOutput) throws
Exception {

// Grab the input result set. The hypothetical format
// for this rowset is (VARCHAR(10), DOUBLE)
ResultSet rs = DBOPInput.getResultSet();

// Capture the input metadata
ResultSetMetaData resultSetMetaData =

rs.getMetaData();
194 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Creating Java plug-ins with the Plug-in Wizard
// Set up a reader for the input file
BufferedReader reader = new BufferedReader(new

InputStreamReader(CSVInput.getInputStream()));

// Set up XML serializer for output
OutputFormat outputFormat = new OutputFormat("xml",

"UTF-8", true);
OutputStreamWriter writer = new

OutputStreamWriter(XMLOutput, "UTF-8");
XMLSerializer xmlSerializer = new

XMLSerializer(writer, outputFormat);
AttributesImpl emptyAttributeList = new

AttributesImpl();

// Create a root tag
xmlSerializer.startDocument();
xmlSerializer.startElement("", "", "rowset",

emptyAttributeList);
// Iterate through the result set
while (rs.next()) {

// Grab a row from the CSV
String csvLine = reader.readLine();

// If we have no more data then break
if (csvLine == null) {

break;
}

// Create a tag for the row
xmlSerializer.startElement("", "", "row",

emptyAttributeList);

// Output the result set data
for (int i = 1; i <= resultSetMetaData.

getColumnCount(); i++) {

// Get the column name to use as a tag name
String colName = resultSetMetaData.
getColumnName(i);

xmlSerializer.startElement("", "", colName,
emptyAttributeList);

// Output the column data
Object obj = rs.getObject(i);

// Handle null columns
if (obj == null) {

obj = new String("null");

}
char[] colData = obj.toString().toCharArray();
xmlSerializer.characters(colData, 0,
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 195

Setting up data service plug-ins
colData.length);

// Close the column data
xmlSerializer.endElement("", "", colName);

}

// Output the CSV data
int i = 0;
StringTokenizer tokenizer = new StringTokenizer

(csvLine, ",");
while (tokenizer.hasMoreTokens())
{

i++;
String colName = (i == 1) ? col1name : col2name;
xmlSerializer.startElement("", "", colName,
emptyAttributeList);

char[] colData = tokenizer.nextToken().
toCharArray();

xmlSerializer.characters(colData, 0,
colData.length);

// Close the column data
xmlSerializer.endElement("", "", colName);

}

// Create a tag for the row
xmlSerializer.endElement("", "", "row");

}

// Close root tag
xmlSerializer.endElement("", "", "rowset");
xmlSerializer.endDocument();

}

Logging
Avaki uses log4j for logging. If a plug-in throws an exception, a log4j event is raised
on the grid server where the data service is executing; the log properties file
(log4j.xml) on that grid server determines how the message is logged. Under the
default log4j configuration, a message is written to the grid server’s log file—
<Avaki-install-dir>/jboss/server/grid-server/log/server.log. However, you can config-
ure a log4j appender to send you e-mail when errors related to your plug-in occur, or to
write messages to some central place.
196 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Creating Java plug-ins with the Plug-in Wizard
You can use log4j from within your plug-in to log messages in some category of your
choosing, then configure log4j to do special things with messages in that category. The
code might look something like this:

Logger myLogger = Logger.getLogger("plugins.MyPlugin");
myLogger.info ("Here’s an info message");
myLogger.error ("Here’s a more severe error");

You can then edit the log4j.xml file on the Avaki server where your data service runs
to configure special rules for your category (plugins.MyPlugin) and for different
severity levels. See the Sybase Avaki EII Administration Guide for information on
log4j.xml files.

Note If you’re using pooled execution services, your data service may run on
any grid server in the pool, and it may run on a different server each time it runs.
In this situation, configure log4j on all the grid servers in the pool to log mes-
sages from your plug-in in the same way—for example, by writing them to your
home directory.

Manifest files and build.xml files
This section describes fields used in both the manifest file and the build.xml file for a
data service Java plug-in.

Fields. The manifest file specifies the required parameters, input sources, and output
streams for the data service. The fields that specify parameters, inputs, and output are
described in the table below. (These fields work in both manifest files and in build.xml
files, though in build.xml files the fields are embedded in XML.) Sample manifest and
build.xml files follow the table.

Note Three sets of fields in the table end with numbers: the input fields, the out-
put fields, and the parameter fields. Use an appropriate set of fields to describe
each of your plug-in’s input streams, each of its parameters, and its output
stream. All the fields in a set that end with the same number describe the same
object. For example, fields that begin with “input” and end with 0—inputname-0,
inputtype-0, inputislist-0, and inputdesc-0—all describe the same input stream.
The numbering sequence for each set of fields must start with 0.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 197

Setting up data service plug-ins

Field Value Example

Name (Required) The name of the section of the
manifest file that defines the plug-in. The
value of this field must be Avaki-plugin.

Name: Avaki-plugin

plugin-name (Required) Supply a name for the data ser-
vice plug-in. The default is myplugin.

plugin-name: myplugin

plugin-class (Required) The name of the class that
implements the plug-in.

plugin-class:
com.avaki.AvakiMapping

plugin-desc (Optional) A description of this plug-in. plugin-desc: Departmental
expense reports

inputname-<#>

Note: The names of all
fields relating to a given
input stream must end
with the same number.

A unique name for an input stream. inputname-0:
mf_ExReport.Main1

inputtype-<#> The input stream type, which can be XML
(for custom data in XML format),
ResultSet (for database result rowsets), or
ByteStream (for raw binary data).

inputtype-0: XML

inputislist-<#> Indicate whether this input stream is a list
or a singleton. The possible values are
true or false. The default is false.

inputislist-0: false

inputdesc-<#> (Optional) A description of the input
stream.

inputdesc-0: Expense data
from travel database

outputname-0 A unique name for the output stream. outputname-0:
ExpReport_Target.Main1

outputtype-0 The output stream type, which can be
XML (for custom data in XML format),
ResultSet (for database result rowsets), or
ByteStream (for raw binary data).

outputtype-0: XML

outputislist-0 Indicate whether the output stream is a list
or a singleton. The possible values are
true or false. The default is false.

outputislist-0: false
198 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Creating Java plug-ins with the Plug-in Wizard
Sample manifest file. Here is an example of a manifest file. Note that no blank lines
are allowed within the section of the manifest file that defines the plug-in. (Blank lines
within the plug-in section cause the manifest file to be parsed incorrectly.)

Manifest-version: 1.0
Created-By: 1.4.1_03-b02 (Sun Microsystems Inc.)

Ant-Version: Apache Ant 1.5.3
Name: Avaki-plugin
plugin-name: myplugin
plugin-desc: Departmental expense reports
plugin-class: com.avaki.AvakiMapping
inputname-0: mf_ExReport.Main1
inputtype-0: XML
inputislist-0: false
inputdesc-0: Expense data from travel database
outputname-0: ExpReport_Target.Main1
outputtype-0: XML
outputislist-0: false
outputdesc-0: Not specified

outputdesc-0 (Optional) A description of the output
stream.

outputdesc-0: Not specified

paramname-<#>

Note: All the fields
relating to this parame-
ter stream must end
with the same number.

A unique name for a plug-in parameter. paramname-0: DeptName

paramtype-<#> The type of the plug-in parameter, which
must be one of the following:

ARRAY, BIGINT, BINARY, BIT, BOOLEAN,
BLOB, CHAR, CLOB, DATE, DECIMAL, DOU-
BLEFLOAT, INTEGER, JAVA_OBJECT,
LONGVARCHAR, NUMERIC, REAL, SMALL-
INT, TIME, TIMESTAMP, TINYINT, VARBI-
NARY, VARCHAR

paramtype-0: VARCHAR

paramislist-<#> Indicate whether this parameter’s value is
a list or a singleton. The possible values
are true or false. The default is false.

paramislist-0: false

paramdesc-<#> A description of this plug-in parameter. paramdesc-0: The department
running the expense report

Field Value Example
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 199

Setting up data service plug-ins
paramname-0: DeptName
paramtype-0: VARCHAR
paramislist-0: false
paramdesc-0: The department running the expense report
paramname-1: Month
paramtype-1: DATE
paramislist-1: true
paramdesc-1: The month(s) the expense report should cover

Creating JavaScript plug-ins
Avaki Studio is the preferred method for creating data services, so it is unlikely that
you will have to write a JavaScript plug-in manually. For situations in which you need
to perform some kind of operation that isn’t supported by Studio and you want a very
simple and efficient way to create a data service, a JavaScript plug-in is the preferred
choice.

Like Java, JavaScript gives you access to all the Java classes and interfaces available
within an Avaki grid server without having to compile or create a JAR file. In fact, the
inputs and outputs of your JavaScript plug-in are the same as those for a Java plug-in.
For more information about input and output sources, see “Input and output” on
page 177.

A JavaScript plug-in consists of a single JavaScript file shared into the Avaki data cat-
alog. The Avaki runtime requires that you define two JavaScript functions:
defineIO() and execute(). The remainder of this section describes how to create
a JavaScript plug-in.

Access to Java classes and interfaces
Within your JavaScript plug-in, you have access to any Java class whose package you
include via a top-level call to importPackage(), as described in “Import required
packages,” below. Refer to “Creating Java plug-ins with the Plug-in Wizard” on
page 183 for details on how to use Avaki rowset implementations such as Memory-
RowSet and StreamingRowSet.
200 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Creating JavaScript plug-ins
Import required packages
You will need to import the package com.avaki.core.service.dataservice.api, as well as
any Java packages from which you intend to use classes or interfaces (such as java.sql,
javax.sql, and java.io). In JavaScript, you do this as follows:

importPackage(Package.com.avaki.core.services.dataservice.
api);

importPackage(Package.java.sql);
importPackage(Package.javax.sql);
importPackage(Package.java.io);

defineIO Function

The defineIO function consists of a sequence of calls that let the Avaki runtime
know about the input sources, parameters, and output results of your plug-in. The
Avaki runtime invokes defineIO() with an object of type
com.avaki.core.services.dataservice.api.PluginSpec bound to the variable “plugin.”
Here is an example of a defineIO function:

function defineIO()
{
plugin.addInputStream("InputSource_01", "ResultSet", false,

"Input stream for: InputSource_01");
plugin.setOutputStream("OutputStream", "ResultSet",

"Model output stream");
plugin.addInputParameter("AccountNumber", Types.VARCHAR,
false,

"The account number");
}

Sybase Avaki EII Provisioning and Advanced Data Integration Guide 201

Setting up data service plug-ins
Methods available on the plug-in object
These methods are available on the plug-in object:

addInputStream
Include one call for each input source that the plug-in expects.

setOutputStream
Include one call to describe the output that the plug-in will produce.

Parameters Description

InputSource-
Name

This is the name to which the input source will be bound to in the exe-
cute() method. For example, given the defineIO() function above, the exe-
cute() function will have access to an instance of
com.avaki.core.services.dataservice.api.InputSource bound to the variable
InputSource_01.

Type The allowed types are ResultSet, XML, and ByteStream.

isList True or false, depending on whether the parameter is a list of input
streams (typically, the value is false for JavaScript plug-ins).

Description A string description of the input source.

Parameters Description

OutputStream-
Name

This is the name to which the output stream will be bound in the execute()
method.

Type The allowed types are ResultSet, XML, ByteStream.

Description A string description of the output stream.
202 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Creating JavaScript plug-ins
addInputParameter
Include once call for each input parameter that your plug-in expects.

Execute function
The execute function takes no parameters, but all the input sources, the output stream,
and the input parameters are bound as global variables when the Avaki runtime
invokes it.

Function execute()
{

// Your plug-in logic goes here.
}

Parameters Description

Name This is the name to which the input parameter will be bound in the execute
method.

Type The type of the input parameter. This must be one of the types from
java.sql.Type.

Description A string description of the input parameter.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 203

Setting up data service plug-ins
204 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Chapter 5

Provisioning web services
This chapter covers the following topics:
• “Provisioning web services overview,” below

• “Setting up the data service” on page 206

• “Testing data services” on page 214

Provisioning web services overview
Web services are a source of data that can be provisioned into a grid. You can provi-
sion data from many kind of web services, such as real-time stock quotes.

Web services are represented by web services description language (WSDL) docu-
ments. A WSDL document is a formal statement of the contract between a SOAP client
and a SOAP server. It is a platform- and language-independent XML document that
describes the format of the SOAP requests expected by the server and the SOAP
responses it generates. In addition, the WSDL specifies the name of the web service
and the grid server and port where the service can be reached. You can provision
third-party web services into an Avaki grid so that the results of the web service opera-
tion can be used and transformed by data services.

The sections that follow describe how to use the web UI to provision data from a web
service into Avaki. (This can also be done with Avaki Studio; for details, see Data
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 205

Provisioning web services
Integration with Sybase Avaki Studio.) As an example, we will provision data from a
web service from Google, a third-party web service provider. The web service can be
used in a search application. This chapter assumes that you are familiar with the proce-
dure for creating a data service, as described in Chapter 2, “Basic data integration”.

Google’s Web API service is available at the following location:
http://www.google.com/apis

To start using the Google web service, you must download the Google Web API
Developer’s Kit from this location. The developer’s kit includes a WSDL file that
describes the Web service, and examples of accessing the Google Web Service in both
Java and VB.NET/C#.

After you download the Google Web API Developer’s Kit, you must create an account
with Google. To create an account, go to:

https://www.google.com/accounts/NewAccount?continue=
http://api.google.com/createkey

Once you create one of these free accounts, you will be assigned a unique license num-
ber. This license number must be used whenever a Google Web service method is
called. The purpose of this license is to limit the number of calls to the Google Web
service to 1,000 invocations per license key per day.

Setting up the data service
To provision a web service and use it in a data service, you must complete the follow-
ing tasks:

1. Give the data service a name and, optionally, a description.
2. Configure a plug-in for the data service.

3. Configure the data service’s output stream.

4. Configure the data service’s input streams.

5. Choose a grid server for the data service.

The sections that follow provide instructions for these tasks.
206 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

http://www.google.com/apis
https://www.google.com/accounts/NewAccount?continue=http://api.google.com/createkey

Setting up the data service
Getting started
To begin creating the data service in which the web service will be used, do the follow-
ing:

Step 1 Log in as a member of the DataProviders group.

Step 2 Navigate to the Create Data Service screen:

Home > Data integration > Create data service

The Google search service does not require transformation of data, so choose the data
service plug-in option labeled “Use a no-operation plugin that does not transform
data.”

Specifying parameters
After you configure a data service plug-in, the screen that appears shows the plug-in
that you chose and provides a box where you can specify input streams for the data
service. The no-operation plug-in does not require any input parameters, so skip to
“Specifying the output stream,” below.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 207

Provisioning web services
Specifying the output stream
In the Output Stream section, the Name field is already set to the only output stream
that is valid for a no-operation plug-in: Result: ByteStream. Skip to “Specifying the
input streams,” below.

Specifying the input streams
To specify the input stream, do the following:

Step 1 Click the Edit Stream link in the box labeled “Primary Input.”

Step 2 For our Google example, the data for the Primary Input stream will be provided by
external web service data. Select “External web service data.”

Step 3 Click Next.

Step 4 In the URI text box, specify the Uniform Resource Indicator (URI) of the WSDL file
that defines the web service that provides data for the stream named Primary Input, or
click the Browse... button and navigate to a shared WSDL file. Some examples of URIs
are HTTP URLs, URLs pointing into your local file system, and URLs of files previ-
ously provisioned into Avaki. For our Google example, specify the following URI:

http://api.google.com/GoogleSearch.wsdl
208 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

http://api.google.com/GoogleSearch.wsdl

Setting up the data service
Step 5 (Optional) Place a check mark next to the option “Use wrapped mode for processing
document/literal operations” if you want the SOAP binding style to be wrapped, a doc-
ument literal variation that wraps parameters as children of the root element.

Step 6 Click Next.

Step 7 On the Create Data Service screen, select a web service operation to provide the data
for the stream’s primary input. The Google Web APIs service package provides the fol-
lowing operations for the Google database:

• doGoogleSearch: perform a Google search and return the results programmatically;

• doGetCachedPage: get access to the cached version of a page from the last time
Google’s crawlers last visited it; and

• doSpellingSuggestion: submit a query to the Google Web APIs service and receive
in return a suggested spelling correction for the query (if a correction is available).

For our Google example, select the operation doSpellingSuggestion.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 209

Provisioning web services
Step 8 The following options specify how much of the SOAP response the web service will
return:

• Return the entire SOAP response: The web service returns the SOAP message and
any attachments.

• Return only the SOAP part: The web service returns the SOAP message but not
any attachments.

• Return only attachment indexed (zero-based): Return a specified attachment but
not the SOAP message. If the web service returns multiple attachments, you can
enter a number in the text box to specify the zero-based index number of the attach-
ment to return. For example, if the web service returns four attachments but you
only want the fourth, enter 3 in the text box.

For our Google example, select “Return the entire SOAP response.”

Step 9 Click Next.

Step 10 The screen that appears shows the parameters that the input stream requires. In our
Google example, the web service operation doSpellingSuggestion requires two
AROMValue input stream parameters of type string. AROMValue is a proprietary
Avaki data structure.
210 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Setting up the data service
For each required parameter, you must specify how the value for the stream parameter
will be obtained. For our Google example, do the following:

• Click on the Edit Parameter link for the input parameter named “key.”

• For each parameter, you can select one of the following to specify how the value for
the stream parameter should be obtained:

— Use this value: Specify a static value to use whenever the data service is exe-
cuted.

— Use an existing parameter to the data service: This option is available only if
there is already an existing dynamic parameter in the data service. Any existing
parameters appear on the top left of the Create Data Service screen.

— Create a new AROMValue parameter to the data service: To create a new
dynamic AROMValue parameter, specify a name and description for a value that
the user will specify when the data service is executed.

For our Google example, select “Use this value.” In the Value text box, enter the
license key that you received from Google. For more about the other options, see
“On AROMValues as runtime parameters” below.

• Click Submit.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 211

Provisioning web services
• Click on the Edit Parameter link for the input parameter named “phrase.”

• For our Google example, select Use this value to specify how the value for the
stream parameter should be obtained. In the Value text box, enter the word or
phrase to for which you want Google to return a suggested spelling correction, such
as “spinaker.”

• Click Submit.

• On the screen that appears, click Next.

On AROMValues as runtime parameters
For most data service parameters, the value you’d supply under “Use this value” is the
same as that you’d be prompted for at runtime if you associated the stream or plug-in
parameter with a data service parameter. For AROMValues, however, this is not the
case. Even a simple AROMValue (like “phrase”, above) is transformed by Avaki from
the simple value you’d enter in the text box to a lengthy fragment of XML; but that
only happens when you enter a fixed “Use this value” value. If you make the parame-
ter dynamic by associating it with a data service parameter, it’s that lengthy fragment
of XML that must be entered manually at runtime.

This limitation does not apply to web service data services defined in Avaki Studio.
Therefore, if you want your web service data service to have dynamic parameters,
you’re usually best off defining that data service in Studio. For more information on
Studio and its use of web service data, see Data Integration with Sybase Avaki Studio.
212 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Setting up the data service
Specifying a grid server
On the screen that appears, enter a name for the data service and choose the grid server
where you would like to create it. Specify a value for the expiration of the data ser-
vice’s results and the coherence window for the data service’s plug-in.

Step 1 Enter a name for this data service.

Step 2 (Optional) Enter a description of this data service.

Step 3 From the grid server pull-down menu, select a grid server for this data service.

Step 4 Cached data expiration: Select one of the following to indicate whether the data is
cached and, if so, when the data expires from the cache:

• No caching: The data is not cached.

• Never expires: The data never expires from the cache.

• Expires after n seconds: Specify the interval (in seconds, minutes, hours, or days)
before the data expires from the cache.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 213

Provisioning web services
Step 5 In the plug-in coherence window field, specify the duration (in seconds, minutes,
hours, or days) during which the contents of the data service are assumed to be fresh
after the cache service has last inspected the back-end source object for updates. The
default is 5 minutes.

Step 6 Select the user to execute the data service as: the user calling the service or a specific
user. If you choose to execute the data service as a specific user, specify the qualified
user name of a grid user who has permission to execute this database service. Use the
following format:

<user-name>@<authservice>.<authservicetype>.<domain>

For example:

wilma@DefaultAuthService.Grid.Bedrock

Step 7 Click Next or Export Descriptor to finish creating the data service. The View Data
Services screen appears, listing the new data service.

Testing data services

Follow these steps to test whether the data service is operational:

Step 1 Navigate to the View Data Services screen:

Home > Data integration > Manage data services
214 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Testing data services
Step 2 Click the Test link beside the data service you want to test. The Test Data Service
screen appears.

Step 3 If the data service required parameters, you would specify the values in the Value box.
Our Google example does not require input parameters, so click Submit. The system
displays a message indicating whether the data service is operational. For our Google
example, the system returns the following output, which includes a suggestion for the
correct spelling of “spinnaker.”

<?xml version="1.0" encoding="UTF-8" ?>
- <SOAP-ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema">
- <SOAP-ENV:Body>

- <ns1:doSpellingSuggestionResponse xmlns:ns1="urn:GoogleSearch" SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<return xsi:type="xsd:string">spinnaker</return>
</ns1:doSpellingSuggestionResponse>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 215

Provisioning web services
216 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Chapter 6

Managing views
This chapter explains how to set up, modify, and run Avaki views. A view consists of a
view generator and a generated view file. The view generator gets input from a file, a
database operation or a data service, transforms the data, then saves the results as a
generated view file.

View generators create files that typically represent the output of a data service or a
database operation. View generators come in three types: those that take input data
from data services, those that take input data from database operations, and those that
take input data from files. You can configure a view generator simply to pass its input
untransformed into the output file; to transform rowset input to CSV or HTML format;
or to apply an XSLT style sheet to the input to produce XML output. (If you wish to
transform a large data set into an output format that isn’t supported by Avaki, XSLT
might not be the right option because the result set might not fit in memory. In those
cases, you can implement the transformation logic you need in a Java class that imple-
ments the TrAX interface; see “Non-XSLT-based view generators” on page 242.)

A generated view is a transactionally consistent snapshot of the results of its input.
That is, if a view generator is running while a user or program is reading its generated
view, that user or program continues to read the version that they were reading. At the
same time, however, a new snapshot appears in the data catalog in place of the old one.
Anyone who attempts to read the view after the run has completed sees the new snap-
shot. When generated views are unused for a certain period, they are discarded.

In this chapter:
• “Managing view generators” on page 218
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 217

Managing views
• “Generating views” on page 240

• “Non-XSLT-based view generators” on page 242

Managing view generators
This section covers the following topics:
• “Setting up file view generators” on page 218

• “Setting up database operation view generators” on page 221

• “Setting up data service view generators” on page 225

• “Modifying view generators” on page 229

Setting up file view generators
A file view generator:
• extracts data from a file;

• transforms the data, if configured to do so; and

• stores the data in a generated view file.

Follow these steps to set up a file view generator:

Step 1 Log in to Avaki as a member of the DataProviders group.

Step 2 Navigate to the Create View Generator screen:

Home > Data integration > Create view generator

Step 3 Select File.
218 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing view generators
Step 4 Click Continue. The Browse Directories screen appears.

Step 5 Click on directory names (Shares, for example) to navigate to the file for which you
want to create a view generator. When you reach the file, click the box to its left to
select it.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 219

Managing views
Step 6 Near the bottom of the screen, click Create View Generator. The Create View screen
appears.

Step 7 In the Output file name field, enter a name for the generated view file that this view
generator will produce.

Step 8 In the Output directory field, leave the default directory in place, or enter or browse for
a grid directory in which to place the generated view file.

Step 9 In the Description field, enter a description of this view generator. (This is recom-
mended.)

Step 10 In the Output format field, select an output format for the generated view. If you select
Unmodified, skip to Step 12.

Step 11 If you selected the Style Sheet output format, fill in the Engine, Path, and Parameters
fields:

• Engine: Select a style sheet engine to use for the transform. You can select Saxon or
Xalan, the style sheet engines provided by Avaki, or you can provide your own
engine. If you are providing your own style sheet engine, set the pull-down to Other
and enter your engine’s TransformerFactoryImpl class name in the field to the right.
You can find the name in your XSLT processor’s JAR files. Here are some common
ones:
— Saxon 6.5.2: com.icl.saxon.TransformerFactoryImpl

— Saxon 7: net.sf.saxon.TransformerFactoryImpl
220 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing view generators
— Xalan: org.apache.xalan.processor.TransformerFactoryImpl

— jd.xslt: jd.xml.xslt.trax.TransformerFactoryImpl

• Path: Enter or browse for the grid path to the style sheet you want to use.

• Parameters: If your style sheet requires output parameters, click the link Set Output
Parameters. The Enter XSLT Parameters screen appears. On it, you can enter name
and value pairs of parameters. Click Submit or Done to return to the Create View
screen.

Step 12 From the Grid server pull-down list, select a grid server for this view generator.

Step 13 Click Submit to create the view generator. The system displays a confirmation page
that shows details pertaining to the new view generator.

If you’re ready to run the view generator, click Test. The system attempts to run the
view generator and displays a screen reporting success or failure. Note: Do not
attempt to test your view generator yet if you are providing your own style sheet
engine (Step 11 above).

Step 14 If you are providing your own style sheet engine, do the following to hot-deploy the
JAR file for your XSLT processor:

• Log in to the machine on which the view generator will run.

• Put the JAR file in this directory:

<Avaki-install-dir>/jboss/server/grid-server/deploy

Setting up database operation view generators
A database operation view generator:
• calls a database operation and receives its results,

• transforms the data, if configured to do so, and

• stores the data in a generated view file.

Note Before you can set up a database operation view generator, you must cre-
ate a database connector and a database operation as described in Chapter 1,
“Managing information from databases”.

Follow these steps to set up a database operation view generator:

Step 1 Log in to Avaki as a member of the DataProviders group.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 221

Managing views
Step 2 Navigate to the Create View Generator screen:

Home > Data integration > Create view generator

Step 3 Select Database operation.

Step 4 Click Continue. The Create Database View Generator screen appears.
222 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing view generators
Step 5 Click in the Select column to choose a database operation for your view generator,
then click Continue. The Create View screen appears.

Step 6 If the SQL parameters required by your database operation are in a file, select “Obtain
from the following XML input file” in the SQL parameters field. Then click the
Browse link, find the file, and select it. (When you finish selecting the file, you’ll be
returned to this Create View screen.)

Step 7 In the Output file name field, enter a name for the generated view file that this view
generator will produce.

Step 8 In the Output directory field, leave the default directory in place, or enter or browse for
a grid directory in which to place the generated view file.

Step 9 In the Description field, enter a description of this view generator. (This is recom-
mended.)
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 223

Managing views
Step 10 In the Run view as area, specify which user the view will be run as. To run the view as
the current user, click The user running the view. To run the view as a specific user,
click A specific user and enter the qualified user name. Use the following format:

<user-name>@<authservice>.<authservicetype>.<domain>

For example:
wilma@DefaultAuthService.Grid.Bedrock

Note The Avaki web UI employs a special browsing feature when you’re select-
ing the run-as user for a data service, database operation, or view. To make user
browsing work properly, make sure the smooth scrolling option in your web
browser is turned off. In Firefox or Internet Explorer, select Tools > (Internet)
Options > Advanced and uncheck “Use smooth scrolling.”

Step 11 In the Output format field, select an output format for the generated view. If you do not
select Style Sheet, skip to Step 13.

Step 12 If you selected the Style Sheet output format, fill in the Engine, Path, and Parameters
fields:

• Engine: Select a style sheet engine to use for the transform. You can select Saxon or
Xalan, the style sheet engines provided by Avaki, or you can provide your own
engine. If you are providing your own style sheet engine, set the pull-down to Other
and enter your engine’s TransformerFactoryImpl class name in the field to the right.
You can find the name in your XSLT processor’s JAR files. Here are some common
ones:
— Saxon 6.5.2: com.icl.saxon.TransformerFactoryImpl

— Saxon 7: net.sf.saxon.TransformerFactoryImpl

— Xalan: org.apache.xalan.processor.TransformerFactoryImpl

— jd.xslt: jd.xml.xslt.trax.TransformerFactoryImpl

• Path: Enter or browse for the grid path to the style sheet you want to use.

• Parameters: If your style sheet requires output parameters, click the link Set Output
Parameters. The Enter XSLT Parameters screen appears. On it, you can enter name
and value pairs of parameters. Click Submit or Done to return to the Create View
screen.

Step 13 In the Grid server pull-down, select a grid server for this view generator.
224 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing view generators
Step 14 Click Continue. The Enter View Parameters screen appears. If your database opera-
tion requires input parameters, enter them here.

Step 15 Click Submit to create the view generator. The system displays a confirmation page
that shows details pertaining to the new view generator.

If you’re ready to run the view generator, click Test. The system attempts to run the
view generator and displays a screen reporting success or failure. Note: Do not
attempt to test your view generator yet if you are providing your own style sheet
engine (Step 12 above).

Step 16 If you are providing your own style sheet engine, do the following to hot-deploy the
JAR file for your XSLT processor:

• Log in to the machine on which the view generator will run.

• Put the JAR file in this directory:

<Avaki-install-dir>/jboss/server/grid-server/deploy

Setting up data service view generators
A data service view generator:
• calls an Avaki data service and receives its results,

• transforms the data, if configured to do so, and

• stores the data in a generated view file.

Note Before you can set up a data service view generator, you must create a data
service as described in “Basic data integration” on page 49.

Follow these steps to set up a data service view generator:

Step 1 Log in to Avaki as a member of the DataProviders group.

Step 2 Navigate to the Create View Generator screen:
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 225

Managing views
Home > Data integration > Manage view generators

Step 3 Select Data service.

Step 4 Click Continue.

Step 5 Select the data service to use.

Step 6 Click Continue.The Create View screen appears.

Step 7 In the Output file name field, enter a name for the generated view file that this view
generator will produce.
226 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing view generators
Step 8 In the Output directory field, leave the default directory in place, or enter or browse for
a grid directory in which to place the generated view file.

Step 9 In the Description field, enter a description of this view generator. (This is recom-
mended.)

Step 10 In the Run view as area, specify which user the view will be run as. To run the view as
the current user, click The user running the view. To run the view as a specific user,
click A specific user and enter the qualified user name. Use the following format:

<user-name>@<authservice>.<authservicetype>.<domain>

For example:
wilma@DefaultAuthService.Grid.Bedrock

Note The Avaki web UI employs a special browsing feature when you’re select-
ing the run-as user for a data service, database operation, or view. To make user
browsing work properly, make sure the smooth scrolling option in your web
browser is turned off. In Firefox or Internet Explorer, select Tools > (Internet)
Options > Advanced and uncheck “Use smooth scrolling.”

Step 11 In the Output format field, select an output format for the generated view. If you do not
select Style Sheet, skip to Step 13.

Step 12 If you selected the Style Sheet output format, fill in the Engine, Path, and Parameters
fields:

• Engine: Select a style sheet engine to use for the transform. You can select Saxon or
Xalan, the style sheet engines provided by Avaki, or you can provide your own
engine. If you are providing your own style sheet engine, set the pull-down to Other
and enter your engine’s TransformerFactoryImpl class name in the field to the right.
You can find the name in your XSLT processor’s JAR files. Here are some common
ones:
— Saxon 6.5.2: com.icl.saxon.TransformerFactoryImpl

— Saxon 7: net.sf.saxon.TransformerFactoryImpl

— Xalan: org.apache.xalan.processor.TransformerFactoryImpl

— jd.xslt: jd.xml.xslt.trax.TransformerFactoryImpl

• Path: Enter or browse for the grid path to the style sheet you want to use.

• Parameters: If your style sheet requires output parameters, click the link Set Output
Parameters. The Enter XSLT Parameters screen appears. On it, you can enter name
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 227

Managing views
and value pairs of parameters. Click Submit or Done to return to the Create View
screen.

Step 13 In the Grid server pull-down, select a grid server for this view generator.

Step 14 Click Continue. The Enter Data Service View screen appears. If your data service
requires input parameters, enter them here.

Step 15 Click Submit to create the view generator. The system displays a confirmation page
that shows details pertaining to the new view generator.

If you’re ready to run the view generator, click Test. The system attempts to run the
view generator and displays a screen reporting success or failure. Note: Do not
attempt to test your view generator yet if you are providing your own style sheet
engine (Step 12 above).

Step 16 If you are providing your own style sheet engine, do the following to hot-deploy the
JAR file for your XSLT processor:

• Log in to the machine on which the view generator will run.

• Put the JAR file in this directory:

<Avaki-install-dir>/jboss/server/grid-server/deploy

Displaying view dependencies
To display a list of any database operations that a view depends on or data services that
depend on a view, do the following:

Step 1 Navigate to the Display View Generators screen:

Home > Data integration > Manage view generators
228 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing view generators
The system displays a list of the views in the current grid domain.

Step 2 Click the Dependencies link beside the name of the view.

The system displays a list of database operations that the view depends on or data ser-
vices that depend on the view.

Modifying view generators
The procedures in this section explain how to modify view generators of all types. You
can perform any of the following tasks:
• “Editing a view generator,” below

• “Scheduling updates for views” on page 232

• “Configuring update notifications for views” on page 238
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 229

Managing views
Editing a view generator
Follow these steps to change the description or output format for a view generator.

Step 1 Log in to Avaki as a member of the DataProviders group.

Step 2 Navigate to the Display View Generators screen:

Home > Data integration > Manage view generators
230 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing view generators
Step 3 Click the Edit link for the view generator you want to change. The View/Edit View
screen appears.

Step 4 You can edit the text in the Description field, change the user that the view is run as,
and change the output format. If the Style Sheet output format is selected, you can also
change the stylesheet engine, add or change the path, and change the output parame-
ters (by clicking on the link).

Step 5 Click Continue when you’re done modifying the view generator. The Update View
Parameters screen appears.

Step 6 If your view generator includes parameters, you can modify them.

Step 7 Click Submit when you’re done. The system saves the changes to your view generator
and displays a confirmation page.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 231

Managing views
Scheduling updates for views
When you schedule a view, you specify the interval at which the view generator will
run and the time at which the schedule will start. For example, you might schedule
your view to run every 90 minutes starting now, or every seven days starting next
Monday. You can configure multiple schedules for each view generator.

Follow these steps to schedule a view generator.

Step 1 Log in to Avaki as a member of the DataProviders group.

Step 2 Navigate to the Display View Generators screen:

Home > Data integration > Manage view generators

Step 3 Click the Schedule link for the view generator you want to change. The Show View
Schedules screen appears.
232 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing view generators
Step 4 Click the Add Schedule button. The Add New Schedule screen appears.

Step 5 Click a tab to choose the type of schedule: One time, Periodic, Calendared, or
Advanced. The Advanced and Calendared options are similar. The Advanced option
lets you use a cron expression—powerful but cryptic—to schedule the recurrence
interval. The Calendared option offers a friendlier interface to a subset of the function-
ality enabled by cron expressions.

Step 6 Go to the appropriate procedure to complete your schedule entry:

• “Configuring one-time view generation schedules,” below

• “Configuring calendared view generation schedules” on page 235

• “Configuring periodic or advanced view generation schedules” on page 237
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 233

Managing views
Configuring one-time view generation schedules. Follow the steps in “Scheduling
updates for views” on page 232 before starting this subprocedure.

Follow these steps:

Step 1 Choose a time zone for this schedule. The schedule can be specified according to the
grid server’s time zone or relative to Greenwich Mean Time (GMT).

Step 2 In the Do once field:

• If you want the one-time view generation to occur immediately, click the Now but-
ton.

• If you want the view generation to occur later, click the lower button. Then use the
pull-down menus to select the time, month, day and year.

Step 3 Click Submit to save your schedule entry. The system displays the new entry on the
Show Pin Schedules screen.

Note For instructions on setting up schedule exclusions—specific times when
the view is not generated according to the schedule—see “Configuring schedule
exclusions” on page 166.
234 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing view generators
Configuring calendared view generation schedules. Follow the steps in “Schedul-
ing updates for views” on page 232 before starting this subprocedure.

Follow these steps:

Step 1 Choose a time zone for this schedule. The schedule can be specified according to the
grid server’s time zone or relative to Greenwich Mean Time (GMT).

Step 2 In the After field, specify when this schedule entry takes effect:

• If you want the one-time view generation to occur immediately, click the Now but-
ton.

• If you want the view generation to occur later, click the lower button. Then use the
pull-down menus to select the time, month, day and year.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 235

Managing views
Step 3 In the Recur at field, use the pull-down menus to specify the time of day at which you
want the view generation to take place. (If you want the view generation to occur more
than once a day, you can use a periodic or advanced schedule, or you can create sepa-
rate schedule entries for the other view generations.)

Step 4 In the Days column, choose how you want to specify days in this schedule entry:

• All: every day.

• Of week: Sunday through Saturday—click one or more days.

• Of month: 1, 2, 3...—click one or more days.

• Of week in month: use the pull-down menus to choose the first, second, third,
fourth, fifth, or last occurrence of any day of the week (the first Monday, for exam-
ple).

Step 5 In the Months column, select one or more months during which this schedule entry
will be in effect, or select all for all months. Use Shift-click or Control-click to select
multiple months.

Step 6 In the Years column, select one or more years during which this schedule entry will be
in effect, or select all for all years. Use Shift-click or Control-click to select multiple
years.

Step 7 In the Continue recurring field, specify how long you want this schedule entry to
remain in effect: forever, for a specified number of refreshes, or until a specified date
and time.

Step 8 Click Submit to save your schedule entry. The system displays a summary of the new
entry, including the time of next execution, on the Show Pin Schedules screen.

Note For instructions on setting up schedule exclusions—specific times when
the view is not generated according to the schedule—see “Configuring schedule
exclusions” on page 166.
236 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing view generators
Configuring periodic or advanced view generation schedules. Follow the steps
in “Scheduling updates for views” on page 232 before starting this subprocedure.

Follow these steps:

Step 1 Choose a time zone for this schedule. The schedule can be specified according to the
grid server’s time zone or relative to Greenwich Mean Time (GMT).

Step 2 In the After field, specify when this schedule entry takes effect:

• If you want the one-time view generation to occur immediately, click the Now but-
ton.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 237

Managing views
• If you want the view generation to occur later, click the lower button. Then use the
pull-down menus to select the time, month, day and year.

Step 3 Use the Recur... field to specify the interval at which this schedule is executed:

• If you’re creating a periodic schedule entry, enter an integer and select from the
pull-down to specify an interval—for example, every 40 minutes, every 5 days, or
every 2 months.

• If you’re creating an advanced schedule entry, you must enter a cron expression of
this form in the Recur... field:

<seconds> <minutes> <hours> <days-of-month> <months>
<days-of-week> [<years>]

See the Sybase Avaki EII Command Reference for details of the cron syntax.

Step 4 In the Continue recurring field, specify how long you want this schedule entry to
remain in effect: forever, for a specified number of refreshes, or until a specified date
and time.

Step 5 Click Submit to save your schedule entry. The system displays a summary of the new
entry, including the time of next execution, on the Show View Schedules screen.

Note For instructions on setting up schedule exclusions—specific times when
the view is not generated according to the schedule—see “Configuring schedule
exclusions” on page 166.

Configuring update notifications for views
You can configure a view generator (call it fredsform) to issue a notification every
time it updates its generated view. The notification enables other views that rely on
fredsform to regenerate their generated views, keeping their data current. This feature
provides notification on change only.

Note If you want to send update notifications to another grid domain or receive
update notifications from another grid domain, the two grid domains must be
interconnected and cross-domain messaging must be configured for both
domains. See the Sybase Avaki EII Administration Guide for instructions on set-
ting up cross-domain messaging.
238 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Managing view generators
Follow these steps to configure update notifications from one view generator to
another.

Step 1 Log in to Avaki as a member of the DataProviders group.

Step 2 Navigate to the Display View Generators screen:

Home > Data integration > Manage view generators

Step 3 Click the Notifications link for the view generator that will receive the update notifica-
tions. The Update View Notification List screen appears.

Step 4 Click the Browse link. On the Browse Directories screen, navigate to the view file
whose changes will kick off an update notification. (You can select either a generated
view or a view generator.)

Step 5 When you find the file, click the button to the left of the file name to select it, then
click Continue. The system redisplays the Update View Notification List showing the
file you selected as a notification source.

Step 6 Click Submit to save the notification list.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 239

Managing views
Deleting views
Follow these steps to delete a view generator.

Step 1 Log in to Avaki as a member of the DataProviders group.

Step 2 Navigate to the Display View Generators screen:

Home > Data integration > Manage view generators

Step 3 Click the Remove link for the view generator you want to delete.

Step 4 Click OK in the confirmation window. The system removes the view generator and
redisplays the Display View Generators screen without it.

Generating views
You can run a view generator manually, as described in this section, or you can sched-
ule the view to run automatically, as described in “Scheduling updates for views” on
page 232.

About generated view files
Each time a view generator runs, it replaces the existing generated view with a new
file. Do not rename or delete a generated view. If you want to change the location
where a view will be generated, you must reconfigure the view generator.
240 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Generating views
Similarly, do not create hard links to generated views; these hard links will no longer
function when a view is updated and the generated view is replaced. If you need to cre-
ate a link to a generated view, use the avaki ln -s command in the CLI to create a soft
link.

Cache interactions
Like other files in the data catalog, the files used by file-based view generators (input
files and style sheets) may be cached. If you modify an input file or style sheet but see
no corresponding change in the generated view when you run your view generator, it’s
likely that the view generator is using cached copies of one or both files. To correct the
problem, invalidate the cached copies of the input file and style sheet (see “Invalidat-
ing cached items” on page 136) and run the view generator again.

View generation procedure
Follow these steps to run a view generator and update its generated view.

Step 1 Log in to Avaki as a member of the DataProviders group.

Step 2 Navigate to the Display View Generators screen:

Home > Data integration > Manage view generators
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 241

Managing views
Step 3 Click the Run link for the view generator you want to run. The Regenerate View
screen appears.

Step 4 (Optional.) Click the View Results button to display the results (the contents of the
generated view file).

Non-XSLT-based view generators
Data integration and complex transformation logic should be deployed in data ser-
vices. You can use Avaki Studio to create and deploy data services (see Data Integra-
tion with Sybase Avaki Studio), or you can write your own data services, as described
in Chapter 4, “Setting up data service plug-ins”. Use the method described in this sec-
tion only if you can’t accomplish what you need using data services.

In some situations, the transformation options offered by standard Avaki view genera-
tors may not be sufficient. In particular, if you wish to transform a large data set to an
output format that isn’t supported by Avaki, XSLT might not be the right option
because the result set might not fit in memory. In those situations, you can implement
the transformation logic that you need in a Java class that implements the TrAX inter-
face, using a SAX filter to perform the transformation function in a scalable manner.
TrAX transformers accept XML input from a single source (no integration) and allow
integration with third-party applications.

This section describes how to implement and deploy TrAX transformers for view gen-
erators in Avaki. These topics are covered:

• “The TrAX standard,” below

• “Implementing a Java transformer” on page 243

• “Installing your Java transformer” on page 245

• “Referring to other documents in your transformer” on page 245

• “Logging errors” on page 246
242 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Non-XSLT-based view generators
The TrAX standard
TrAX (Transformation API for XML) is a collection of APIs for transforming XML
files. TrAX is a subset of the JAXP (Java API for XML Processing) standard.

Use the TrAX API classes defined in JRE 1.4.1. For more information on the TrAX API,
see:

http://java.sun.com/j2se/1.4.1/docs/api/javax/xml/transform
/package-summary.html

Implementing a Java transformer
To create a Java formatter you must implement the following TrAX interfaces:

javax.xml.transform.TransformerFactory
javax.xml.transform.Templates
javax.xml.transform.Transformer

You can write Java classes to implement these interfaces from scratch. To make it eas-
ier for you to implement the interfaces, Avaki provides some base classes that you can
extend to make the required TrAX classes. These are:

com.avaki.trax.AbstractTransformer
com.avaki.trax.AbstractTransformerFactory

The Templates interface is relatively simple, so Avaki does not provide an extensible
base class. You can find these classes in
<Avaki-install-dir>/examples/trax/avaki_trax.jar. Put this JAR in your classpath when
you compile.

There is a simple example of a custom Java transformer in
<Avaki-install-dir>/examples/trax.

The Transformer class
When you extend AbstractTransformer, your subclass must include a method like this:

public void transform(Source xmlSource, Result outputTarget)
throws TransformerException

{
// TO DO:
// Add your Java code here to transform xmlSource

as you like.
}

Sybase Avaki EII Provisioning and Advanced Data Integration Guide 243

http://java.sun.com/j2se/1.4.1/docs/api/javax/xml/transform/package-summary.html

Managing views
Note The AbstractTransformer class includes two methods for retrieving infor-
mation about stylesheet properties: getOutputProperties, which returns a
list of properties as a java.util.Properties object, and getOutputProp-
erty, which returns a property value.

The TransformerFactory class
If you want an Avaki view to use a custom transformation, the class you specify for the
view’s style sheet must be an extension of AbstractTransformerFactory.

When you extend AbstractTransformerFactory, your subclass must include a method
like this:

public Templates newTemplates(Source source)
throws TransformerConfigurationException

{
// TO DO:
// return an instance of your implementation of

Templates here
}

The Templates class
When you implement Templates, you need a method like this:

public synchronized Transformer newTransformer()
throws TransformerConfigurationException

{
// TO DO:
// return an instance of your AbstractTransformer

subclass here
}

Once you have implemented these classes, the grid server instantiates your trans-
former using the following algorithm:

• First the grid server reflectively instantiates the transformer factory from the sup-
plied class name. Note that your Factory class must have a no argument constructor.

• Next, the grid server calls factory.newTemplates(Source), passing in a
StreamSource to the styleSheet.

• The grid server calls the templates.getTransfomer() to get an instance of the
transformer.
244 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Non-XSLT-based view generators
• Finally, the grid server calls transformer.transform(Source, Result)
with a reference using a StreamSource to the input document and StreamRe-
sult to the output document.

Installing your Java transformer
To install your Java transformer take the following steps:

Step 1 Create a jar file with your transformer.

Step 2 Make sure you have write permission to the install directory.

Step 3 Place your jar in
<Avaki-install-dir>/jboss/server/grid-server/deploy

/<mytransformer.jar>

The jar hot-deploys—that is, the grid server immediately detects and loads the new jar.

Using your transformer
Once you have installed your transformer, you will use it by providing the name of the
transformer factory class (your extension of AbstractTransformerFactory) to an Avaki
view generator whose generated view you wish to transform. For more about views,
see the Sybase Avaki EII Provisioning and Advanced Data Integration Guide.

Referring to other documents in your transformer
In addition to the style sheet and the input document, a transformer may refer to addi-
tional sources thought the URIResolver interface. The grid server will set a URIRe-
solver on the TransformerFactory and the Transformer that can be used to get
references to other documents in the data grid. It will resolve absolute file paths and
URIs starting with the avaki scheme. In addition you can resolve relative URIs by
using the base argument. For example, all of the following will return a StreamSource
to the grid file /Shares/xml/colors.xml.

uriResolver.resolve
("avaki:///Shares/xml/colors.xml", null);

uriResolver.resolve
("colors.xml", "avaki:///Shares/xml/fabrics.xml");

uriResolver.resolve("/Shares/xml/colors.xml", null);
uriResolver.resolve("colors.xml"

"/Shares/xml/fabrics.xml");
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 245

Managing views
Logging errors
The grid server sets an ErrorListener on the TransformerFactory and the
Transformer. This object can be used to report errors that will be logged to the grid
server log. (The grid server log is in <avaki-install-directory>/jboss/server/grid-server/
log/server.log.)

The ErrorListener interface provides three logging levels: warn, error, and fatal
error. These levels correspond the grid server logging levels WARN, ERROR, and
FATAL. Errors are logged to the category io.view.update.stylesheet.

For more on logging, see the Sybase Avaki EII Administration Guide.
246 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Appendix A

Advanced database
management
This appendix describes advanced settings that you can configure for database connec-
tors and database operations. These sections explain how to create attributes that spec-
ify advanced settings:
• “Configuring the JDBC driver JAR file path,” below

• “Restricting database operation output” on page 249

• “Configuring batch mode settings” on page 250

• “Configuring SQL calls” on page 251

• “Configuring database operation timeouts” on page 253

• “Configuring database operation fetch size” on page 254

For detailed information about creating attributes, see the Sybase Avaki EII Adminis-
tration Guide.

Configuring the JDBC driver JAR file path
If you need two versions of the same JDBC driver on a grid server, you must create an
attribute that specifies the path to a JDBC driver JAR file that the database connector
will use to get the driver classes. Do not put the second JDBC driver’s JAR file in the
<Avaki-install-dir>/drivers directory. Instead, put the JAR file in any location on the
file system that is local to the grid server.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 247

Advanced database management
To create an attribute that specifies a path to an additional JDBC driver JAR file, do the
following:

Step 1 Navigate to the View Database Connectors screen:

Home > Database provisioning > Manage database connectors

The system displays a list of the database connectors in the current grid domain.

Step 2 Click the Attributes link to the right of the database connector for which you want to
create a new attribute. The system displays the attributes for the database connector.

Step 3 Create the following attribute:

• Name: dbconn/DriverJarPath

• Type: String

• Value: Specify the local path to the JDBC driver JAR file.
248 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Restricting database operation output
Restricting database operation output
You can restrict the maximum number of rows that a database operation will return
from a back-end database.

To restrict a database operation’s row output, create an attribute that specifies the max-
imum number of rows returned, as follows:

Step 1 Navigate to the View Database Operations screen:

Home > Database provisioning > Manage database operations

Step 2 Click the Attributes link to the right of the database operation for which you want to
create a new attribute. The system displays the attributes for the database operation.

Step 3 Create the following attribute:

• Name: dbop/MaxRowsReturned
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 249

Advanced database management
• Type: Integer

• Value: Specify a positive integer to configure the maximum number of rows that
the database operation will return.

Configuring batch mode settings
If a database operation is configured to perform bulk batch updates from XML or result
set input, you can create an attribute that sets the update batch size or specifies the
number of individual updates to be added before the JDBC driver calls the execute-
Batch() method to send out any batched-up callable statements (see the Sybase Avaki
EII API Guide for details about the executeBatch() method). Each time the speci-
fied number of updates are processed, the JDBC executeBatch() method will be
invoked. The default is to process all the updates in a single large batch.

To create an attribute that specifies the batch update size for a database operation, do
the following:

Step 1 Navigate to the View Database Operations screen:

Home > Database provisioning > Manage database operations
250 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Configuring SQL calls
Step 2 Click the Attributes link to the right of the database operation for which you want to
create a new attribute. The system displays the attributes for the database operation.

Step 3 Create the following attribute:

• Name: dbop/BatchSize

• Type: Integer

• Value: Specify a positive integer to configure the update batch size or the number
of individual updates to be added before calling the executeBatch() method.

Configuring SQL calls
By default, Avaki uses the JDBC Statement.execute() method to run SQL
through a JDBC driver. If the JDBC driver does not support this method or if it is not
efficient to call this method, you can configure Avaki to call one of the following
methods:
• Statement.executeQuery(): Call this method if your SQL performs a query,

and set the attribute to “query”.

• Statement.executeUpdate(): Call this method if your SQL performs an
update, and set the attribute to “update”.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 251

Advanced database management
To create an attribute that configures Avaki to call Statement.executeQuery() or
Statement.executeUpdate(), do the following:

Step 1 Navigate to the View Database Operations screen:

Home > Database provisioning > Manage database operations

Step 2 Click the Attributes link to the right of the database operation for which you want to
create a new attribute. The system displays the attributes for the database operation.

Step 3 Create the following attribute:

• Name: dbop/ExecutionType

• Type: String

• Value: Specify one of the following values:
252 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Configuring database operation timeouts

Configuring database operation timeouts
You can configure a value that specifies how much time (in seconds) a database should
spend trying to execute a database operation. If the database operation is not executed
during that period, the execution attempt is aborted. If you set a value for this attribute,
the database operation calls the Statement.setQueryTimeout() method with the
specified value before executing any SQL statements. For detailed information about
Statement.setQueryTimeout(), see the Java API documentation or the docu-
mentation for your JDBC driver.

To create an attribute that specifies the database operation timeout settings, do the fol-
lowing:

Step 1 Navigate to the View Database Operations screen:

Home > Database provisioning > Manage database operations

Value Description

query Call Statement.executeQuery() if your SQL performs a query.

update Call Statement.executeUpdate() if your SQL performs an update.

generic Call Statement.execute(), the default method.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 253

Advanced database management
Step 2 Click the Attributes link to the right of the database operation for which you want to
create a new attribute. The system displays the attributes for the database operation.

Step 3 Create the following attribute:

• Name: dbop/BackendQueryTimeout

• Type: Integer

• Value: Specify an integer for the maximum time (in seconds) before the attempt to
execute the database operation is terminated.

Configuring database operation fetch size
To improve performance, JDBC drivers generally buffer the results they return to
applications that invoke database operations on them. The application processes one
row at a time, but when the driver gets rows from the database, it gets several at once.
The number of rows retrieved is called the fetch size. In most circumstances, the
driver’s default fetch size will be optimal; you also have the ability to configure a data-
base connector to use a different default for all of its database operations (see the
“JDBC fetch size” bullet item on page 5). But if you want a particular database opera-
tion to use a non-default fetch size, you can configure it accordingly.
254 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Configuring database operation fetch size
To create an attribute that specifies the fetch size for a particular database operation,
do the following:

Step 1 Navigate to the View Database Operations screen:

Home > Database provisioning > Manage database operations

Step 2 Click the Attributes link to the right of the database operation for which you want to
create a new attribute. The system displays the attributes for the database operation.

Step 3 Create the following attribute:

• Name: dbop/FetchSize

• Type: Integer

• Value: Specify an integer for the number of rows to be used by the driver as the
buffer size for this database operation.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 255

Advanced database management
256 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Appendix B

Data service schema
This appendix describes the XML schema that specifies the contents of an Avaki data
service. For details about creating data services, see Chapter 2, “Basic data integra-
tion”.

The data service description schema is as follows:
<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSPY v2004 rel. 3 U
(http://www.xmlspy.com) by William Tam (Avaki Corp) -->
<!--W3C Schema generated by XMLSPY v2004 rel. 3 U
(http://www.xmlspy.com)-->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">

<xs:element name="class" type="xs:string"/>
<xs:element name="dataService">

<xs:complexType>
<xs:sequence>
<xs:element ref="name"/>
<xs:element ref="description"/>
<xs:element ref="inputParameter" minOccurs="0"

maxOccurs="unbounded"/>
<xs:element ref="inputSource" minOccurs="0"

maxOccurs="unbounded"/>
<xs:element ref="outputStream" minOccurs="0"/>
<xs:element ref="urlLogicBox" minOccurs="0"/>
<xs:element ref="logicBox" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="description" type="xs:string"/>
<xs:element name="inputParameter">

<xs:complexType>
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 257

Data service schema
<xs:sequence>
<xs:element ref="name"/>
<xs:element ref="description" minOccurs="0"/>
<xs:element ref="type" minOccurs="0"/>
<xs:element ref="isList" minOccurs="0"/>
<xs:element ref="ref" minOccurs="0"/>
<xs:element ref="value" minOccurs="0"/>
<xs:element ref="values" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="inputSource">

<xs:complexType>
<xs:sequence>
<xs:element ref="name"/>
<xs:element ref="description"/>
<xs:element ref="type"/>
<xs:element ref="inputStream"

maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="inputStream">

<xs:complexType>
<xs:sequence>
<xs:element ref="name"/>
<xs:element ref="class" minOccurs="0"/>
<xs:element ref="target" minOccurs="0"/>
<xs:element ref="ref" minOccurs="0"/>
<xs:element ref="inputParameter" minOccurs="0"

maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="isList" type="xs:boolean"/>
<xs:element name="jarurl" type="xs:string"/>
<xs:element name="name" type="xs:string"/>
<xs:element name="outputStream">

<xs:complexType>
<xs:sequence>
<xs:element ref="name"/>
<xs:element ref="description" minOccurs="0"/>
<xs:element ref="type" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="ref" type="xs:string"/>
<xs:element name="target">

<xs:complexType>
<xs:sequence>
<xs:element ref="ref" minOccurs="0"/>
<xs:element ref="value" minOccurs="0"/>

</xs:sequence>
258 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

</xs:complexType>
</xs:element>
<xs:element name="type" type="xs:string"/>
<xs:element name="value" type="xs:string"/>
<xs:element name="logicBox">

<xs:complexType>
<xs:sequence>
<xs:element ref="class"/>
<xs:element ref="initParameter" minOccurs="0"

maxOccurs="unbounded"/>
<xs:element ref="inputStream" minOccurs="0"

maxOccurs="unbounded"/>
<xs:element ref="outputStream" minOccurs="0"

maxOccurs="unbounded"/>
<xs:element ref="inputParameter" minOccurs="0"

maxOccurs="unbounded"/>
<xs:element ref="coherenceWindow" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="urlLogicBox">

<xs:complexType>
<xs:sequence>
<xs:element ref="jarurl"/>
<xs:element ref="inputStream" minOccurs="0"

maxOccurs="unbounded"/>
<xs:element ref="outputStream" minOccurs="0"/>
<xs:element ref="inputParameter" minOccurs="0"

maxOccurs="unbounded"/>
<xs:element ref="initParameter" minOccurs="0"

maxOccurs="unbounded"/>
<xs:element ref="coherenceWindow" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="initParameter">

<xs:complexType>
<xs:sequence>
<xs:element ref="name"/>
<xs:element ref="value" minOccurs="0"/>
<xs:element ref="values" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="values">

<xs:complexType>
<xs:sequence>
<xs:element ref="value" minOccurs="0"

maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 259

Data service schema
<xs:element name="coherenceWindow" type="xs:integer"/>
</xs:schema>

The following sections describe the components of the schema.
Elements:
• class

• coherenceWindow

• dataService

• description

• initParameter

• inputParameter

• inputSource

• inputStream

• isList

• jarurl

• logicBox

• name

• outputStream

• ref

• target

• type

• urlLogicBox

• value

• values
260 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Element: class

Element: coherenceWindow

Type: xs:string

Used by: elements inputStream, logicBox

Source: <xs:element name="class" type="xs:string"/>

Type: xs:integer

Used by: elements logicBox, urlLogicBox

Source: <xs:element name="coherenceWindow" type="xs:integer"/>
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 261

Data service schema
Element: dataService

Children: name, description, inputParameter, inputSource, outputStream,
urlLogicBox, logicBox

Source: <xs:element name="dataService">
<xs:complexType>

<xs:sequence>
<xs:element ref="name"/>
<xs:element ref="description"/>
<xs:element ref="inputParameter" minOccurs="0"

maxOccurs="unbounded"/>
<xs:element ref="inputSource" minOccurs="0"

maxOccurs="unbounded"/>
<xs:element ref="outputStream" minOccurs="0"/>
<xs:element ref="urlLogicBox" minOccurs="0"/>
<xs:element ref="logicBox" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:element>
262 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Element: description

Element: initParameter

Type: xs:string

Used by: elements dataService, inputParameter, inputSource, outputStream

Source: <xs:element name="description" type="xs:string"/>

Children: name, value, values

Used by: elements logicBox, urlLogicBox

Source: <xs:element name="initParameter">
<xs:complexType>

<xs:sequence>
<xs:element ref="name"/>
<xs:element ref="value" minOccurs="0"/>
<xs:element ref="values" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:element>
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 263

Data service schema
Element: inputParameter

Children: name, description, type, isList, ref, value, values

Used by: elements dataService, inputStream, logicBox, urlLogicBox

Source: <xs:element name="inputParameter">
<xs:complexType>

<xs:sequence>
<xs:element ref="name"/>
<xs:element ref="description" minOccurs="0"/>
<xs:element ref="type" minOccurs="0"/>
<xs:element ref="isList" minOccurs="0"/>
<xs:element ref="ref" minOccurs="0"/>
<xs:element ref="value" minOccurs="0"/>
<xs:element ref="values" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:element>
264 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Element: inputSource

Children: name, description, type, inputStream

Used by: element dataService

Source: <xs:element name="inputSource">
<xs:complexType>

<xs:sequence>
<xs:element ref="name"/>
<xs:element ref="description"/>
<xs:element ref="type"/>
<xs:element ref="inputStream"

maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 265

Data service schema
Element: inputStream

Element: isList

Children: name. class, target, ref, inputParameter

Used by: elements inputSource, logicBox, urlLogicBox

Source: <xs:element name="inputStream">
<xs:complexType>

<xs:sequence>
<xs:element ref="name"/>
<xs:element ref="class" minOccurs="0"/>
<xs:element ref="target" minOccurs="0"/>
<xs:element ref="ref" minOccurs="0"/>
<xs:element ref="inputParameter" minOccurs="0"

maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>

Type: xs:boolean

Used by: element inputParameter

Source: <xs:element name="isList" type="xs:boolean"/>
266 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Element: jarurl

Type: xs:string

Used by: element urlLogicBox

Source: <xs:element name="jarurl" type="xs:string"/>
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 267

Data service schema
Element: logicBox

Children: class, initParameter, inputStream, outputStream, inputParameter, coher-
enceWindow

Used by: element dataService

Source: <xs:element name="logicBox">
<xs:complexType>

<xs:sequence>
<xs:element ref="class"/>
<xs:element ref="initParameter" minOccurs="0"

maxOccurs="unbounded"/>
<xs:element ref="inputStream" minOccurs="0"

maxOccurs="unbounded"/>
<xs:element ref="outputStream" minOccurs="0"
maxOccurs="unbounded"/>

<xs:element ref="inputParameter" minOccurs="0"
maxOccurs="unbounded"/>

<xs:element ref="coherenceWindow" minOccurs="0"/>
</xs:sequence>

</xs:complexType>
</xs:element>
268 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Element: name

Element: outputStream

Type: xs:string

Used by: elements dataService, initParameter, inputParameter, inputSource, input-
Stream, outputStream

Source: <xs:element name="name" type="xs:string"/>

Children: name, description, type

Used by: elements dataService, logicBox, urlLogicBox

Source: <xs:element name="outputStream">
<xs:complexType>

<xs:sequence>
<xs:element ref="name"/>
<xs:element ref="description" minOccurs="0"/>
<xs:element ref="type" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:element>
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 269

Data service schema
Element: ref

Element: target

Element: type

Type: xs:string

Used by: elements inputParameter, inputStream, target

Source: <xs:element name="ref" type="xs:string"/>

Children: ref, value

Used by: element inputStream

Source: <xs:element name="target">
<xs:complexType>

<xs:sequence>
<xs:element ref="ref" minOccurs="0"/>
<xs:element ref="value" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:element>

Type: xs:string

Used by: elements inputParameter inputSource outputStream

Source: <xs:element name="type" type="xs:string"/>
270 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Element: urlLogicBox

Children: jarurl, inputStream, outputStream, inputParameter, initParameter, coher-
enceWindow

Used by: element dataService

Source: <xs:element name="urlLogicBox">
<xs:complexType>

<xs:sequence>
<xs:element ref="jarurl"/>
<xs:element ref="inputStream" minOccurs="0"

maxOccurs="unbounded"/>
<xs:element ref="outputStream" minOccurs="0"/>
<xs:element ref="inputParameter" minOccurs="0"

maxOccurs="unbounded"/>
<xs:element ref="initParameter" minOccurs="0"

maxOccurs="unbounded"/>
<xs:element ref="coherenceWindow" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:element>
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 271

Data service schema
Element: value

Element: values

Type: xs:string

Used by: elements initParameter, inputParameter, target, values

Source: <xs:element name="value" type="xs:string"/>

Children: value

Used by: elements initParameter, inputParameter

Source: <xs:element name="values">
<xs:complexType>

<xs:sequence>
<xs:element ref="value" minOccurs="0"

maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>
272 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Appendix C

Data representation in Avaki
Avaki software has several flexible capabilities, such as data services and view gener-
ators, that allow users to manipulate data in any format that is appropriate for their
application. However, Avaki uses SQL rowsets and XML as the primary means for rep-
resenting data.

A rowset is a self-describing sequence of rows. Each row consists of several named
and typed columns. Specifically, a rowset is an implementation of either the
java.sql.RowSet interface or the java.sql.ResultSet interface. Avaki uses implementa-
tions of both interfaces for data transfer and data manipulation. These implementations
are available via published interfaces—either the JDBC driver or the interfaces avail-
able to the developer of a data service.

If you are accessing Avaki via an ODBC/JDBC bridge, you will work with the corre-
sponding ODBC abstractions.

Avaki also includes support for representing and manipulating data using XML. In data
services and view generators, for example, you can use XSLT to perform data integra-
tion and transformation operations.

A unique capability of Avaki is the ability to transform rowsets into XML on demand
and to use either rowsets or XML as batch input to database operations. This conver-
sion is on the fly; the XML is produced from the rowset as needed. Thus, a large rowset
rendered in XML does not need to be represented in memory all at once, either as a
rowset or as XML. As a result, Avaki dovetails well with streaming approaches to
XML processing (such as those built around SAX parsing). Of course, if your approach
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 273

Data representation in Avaki
to XML processing involves representing the document in memory all at once (build-
ing a DOM, for instance), you can do that too.

The sections that follow describe how rowsets and XML can be used in a data grid.

Rowset objects
You can use the following objects to produce rowsets:

Object Description

Database operations When you execute a database operation, the rowset returned from
the back-end database is transformed into an Avaki implementa-
tion, routed through the local cache service, and made available to
the caller. In this case, the Avaki rowset implementation that is
used does not require that the whole rowset be resident in mem-
ory, which allows for very large rowsets to be returned.

The rowset is streamed back to the program that invoked the data-
base operation, which could be a client application running the
Avaki JDBC driver, a data service, or a view generator. Results
start streaming back to the caller as soon as the database operation
reads the first row produced by the back-end database.

Data services If you create a data service in Avaki Studio, a rowset is transpar-
ently created for you; it represents the Result operator. If you
write your own data service plug-in in Java, you can use the
com.avaki.core.services.dataservice.api.RowSetFactory class to
create rowsets. Data services that produce rowsets can be used as
input to other data services that expect rowsets as input.

Data services can also produce and consume XML. See below.
274 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Rowsets and XML as inputs
Rowsets and XML as inputs
You can use the following objects as inputs:

Usage scenarios
Here are some examples of ways you can use data services and view generators:
• You have a file in CSV format that contains information that needs to be joined with

data from a relational database. One approach is to create a data service that uses a
plug-in that converts a CSV file into a result set. The plug-in reads the CSV file that
has been made available via an Avaki share and produces a rowset. You then use
Avaki Studio to create a database operation to encapsulate the query that will
retrieve the necessary data from your relational database and combine the two
rowsets. For more information on how this plug-in works, see
<avaki-install-dir>/examples/plugins/CSVToResultSet/readme.txt.For information
about using Avaki Studio to create database operations and join rowsets, see Data
Integration with Sybase Avaki Studio.

• You have to generate a CSV file that contains the results of a data service or data-
base operation. To do this, you can use an Avaki view generator that takes the data

Object Description

Data services A data service can use a database operation, other data service, or any
grid file as an input source. If you write your own data service plug-in
in Java, the plug-in can handle rowset input (from database operations
and data services) in two ways:

• As rowsets, by calling InputSource.getResultSet(), or
• As XML, by calling InputSources.getInputStream().

In the latter case, the returned stream object will transform the rows in
the rowset to their corresponding XML representation (see Appendix
D, “Avaki rowset XML”) as bytes are read from the stream.

View generators View generators always treat input as XML or as a raw stream. If the
input comes into the view generator as a rowset, it is transformed into
the corresponding XML on the fly.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 275

Data representation in Avaki
service or database operation as input and uses the built-in CSV transformation
capability.

• You need to move some data from a database operation or from a data service that
produces rowsets (or XML) into another relational store. To do this, create a data-
base operation that performs the insert or update function, and then create a data
service that takes the source data (database operation or data service) and the
update database operation as input sources. Within the data service plug-in, create a
streaming rowset (using RowSetFactory.createStreamingRowSet(int[]
sqlTypes). You will then need to downcast the InputSource object for the update
database operation to DbopInputSource and invoke the execute() method pass-
ing the rowset as a parameter.
276 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Appendix D

Avaki rowset XML
Avaki converts rowsets into an XML representation that contains all the rowset meta-
data as well as the row and column data. The schema for this representation has two
parts as well: the core schema, which is the same for all rowsets, and the rowset-spe-
cific schema, in which the element names correspond to the actual column names in
the rowset.

In this appendix:
• “Core schema,” below

• “Rowset-specific schema” on page 280

• “Sample XML schema for a database operation” on page 280

Core schema
The core schema defines the overall structure of the XML document plus the structure
of the metadata. A portion of a sample document is included below.

<?xml version="1.0" encoding="UTF-8" ?>
<results
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<rowset>
<metadata>
<column-count>9</column-count>
<column-definition>
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 277

Avaki rowset XML
<column-index>1</column-index>
<class-name>java.lang.String</class-name>
<column-display-size>16</column-display-size>
<column-label>SIC</column-label>
<column-name>SIC</column-name>
<column-type>VARCHAR</column-type>
<column-type-name>VARCHAR</column-type-name>
<column-precision>0</column-precision>
<column-scale>0</column-scale>
<auto-increment>false</auto-increment>
<case-sensitive>false</case-sensitive>
<currency>false</currency>
<nullable>columnNullable</nullable>
<read-only>false</read-only>
<signed>false</signed>
<searchable>true</searchable>

</column-definition>
...

</metadata>
<data>
<row>

This is where result-set-specific elements are found.
</row>
...

</data>
</rowset>

The core schema allows for multiple rowsets to be returned.
<update-count> </update-count>

</results>

The root element is <results>. Within <results>, there can be any number of <rowset>
elements, followed by a single <update-count> element. The update count is relevant
for database operations that perform insert and update operations and reflects the num-
ber of rows updated by the operation.

The bulk of the document comprises one or more <rowset>s. A rowset comprises two
subelements: <metadata> and <data>.

The structure of <metadata> is as follows:
• A single <column-count> element that contains the number of columns in the

rowset
278 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Core schema
• One or more <column-definition> elements (the number corresponding to <col-
umn-count>) that describe the individual columns in each row. Each column defini-
tion contains the following elements:

The structure of the <data> element is simple. It consists of one or more <row> ele-
ments. The row element is where the generic schema ends and the rowset-specific
schema begins.

Element Description

<column-index> The ordinal position of the column in the row

<class-name> The java class that you should use when retrieving this column
via JDBC.

<column-display-size> The column’s maximal width in characters

<column-type> The SQL type of the column

<column-type-name> The SQL type name of the column

<column-precision> The column’s number of decimal digits

<column-scale> The number of digits to the right of the decimal point

<auto-increment> Indicates whether the column is automatically numbered and
therefore read-only (true/false)

<case-sensitive> Indicates whether or not the column is case sensitive (true/false)

<currency> Indicates whether or not the column represents a currency value
(true/false)

<nullable> Indicates whether or not the column allows nulls. Values are one
of columnNoNulls, columnNullable, or columnNullableUnknown

<read-only> Indicates whether the column is read-only (true/false)

<signed> Indicates whether column values are signed numbers (true/false)

<searchable> Indicates whether the column can be used in a where clause
(true/false)
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 279

Avaki rowset XML
Rowset-specific schema
The rowset-specific schema describes the elements within a row. Each column is rep-
resented by an element that has the same name as the column. If the value of the col-
umn is null, then the attribute “xsi:nil” is true for that element.
Here is an example row:

<row>
<SIC>3441</SIC>
<COMPANY>Nisshin Steel</COMPANY>
<ADDRESS1>Shinkokusai Building</ADDRESS1>
<ADDRESS2>-1, Marunouchi 3-chome</ADDRESS2>
<CITY>Tokyo</CITY>
<STATE xsi:nil="true" />
<ZIP>100-8366</ZIP>
<COUNTRY>JAPAN</COUNTRY>
<ID>109</ID>

</row>

Sample XML schema for a database operation
This section gives the XML schema generated by Avaki for a database operation
whose SQL statement is:

SELECT SIC,COMPANY, ADDRESS1, ADDRESS2, CITY, STATE, ZIP,
COUNTRY, ID

from demo.CUSTOMER_SOR

Note that the generated schema includes, as annotations, a lot of information about the
database operation itself. The idea is that XML schema is used as a convenient, stan-
dard grammar for describing the “shape” of data regardless of whether it is used and
manipulated as XML or as native sets.

Sample XML schema:
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<!-- GENERAL DEFINITIONS -->
<xs:simpleType name="update-countType">

<xs:restriction base="xs:string"/>
</xs:simpleType>

<xs:simpleType name="column-countType">
280 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Sample XML schema for a database operation
<xs:restriction base="xs:string"/>
</xs:simpleType>

<xs:simpleType name="column-indexType">
<xs:restriction base="xs:string"/>

</xs:simpleType>

<xs:simpleType name="class-nameType">
<xs:restriction base="xs:string"/>

</xs:simpleType>

<xs:simpleType name="column-display-sizeType">
<xs:restriction base="xs:string"/>

</xs:simpleType>

<xs:simpleType name="column-labelType">
<xs:restriction base="xs:string"/>

</xs:simpleType>

<xs:simpleType name="column-nameType">
<xs:restriction base="xs:string"/>

</xs:simpleType>

<xs:simpleType name="column-typeType">
<xs:restriction base="xs:string"/>

</xs:simpleType>

<xs:simpleType name="column-type-nameType">
<xs:restriction base="xs:string"/>

</xs:simpleType>

<xs:simpleType name="column-precisionType">
<xs:restriction base="xs:string"/>

</xs:simpleType>

<xs:simpleType name="column-scaleType">
<xs:restriction base="xs:string"/>

</xs:simpleType>

<xs:simpleType name="auto-incrementType">
<xs:restriction base="xs:string"/>

</xs:simpleType>

<xs:simpleType name="case-sensitiveType">
<xs:restriction base="xs:string"/>

</xs:simpleType>

<xs:simpleType name="currencyType">
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 281

Avaki rowset XML
<xs:restriction base="xs:string"/>
</xs:simpleType>

<xs:simpleType name="nullableType">
<xs:restriction base="xs:string"/>

</xs:simpleType>

<xs:simpleType name="read-onlyType">
<xs:restriction base="xs:string"/>

</xs:simpleType>

<xs:simpleType name="signedType">
<xs:restriction base="xs:string"/>

</xs:simpleType>

<xs:simpleType name="searchableType">
<xs:restriction base="xs:string"/>

</xs:simpleType>

<xs:complexType name="column-definitionType">
<xs:sequence>
<xs:element name="column-index" type="column-indexType"

minOccurs="0" maxOccurs="1"/>
<xs:element name="class-name" type="class-nameType"

minOccurs="0" maxOccurs="1"/>
<xs:element name="column-display-size" type="column-display-sizeType"

minOccurs="0" maxOccurs="1"/>
<xs:element name="column-label" type="column-labelType"

minOccurs="0" maxOccurs="1"/>
<xs:element name="column-name" type="column-nameType"

minOccurs="0" maxOccurs="1"/>
<xs:element name="column-type" type="column-typeType"

minOccurs="0" maxOccurs="1"/>
<xs:element name="column-type-name" type="column-type-nameType"

minOccurs="0" maxOccurs="1"/>
<xs:element name="column-precision" type="column-precisionType"

minOccurs="0" maxOccurs="1"/>
<xs:element name="column-scale" type="column-scaleType"

minOccurs="0" maxOccurs="1"/>
<xs:element name="auto-increment" type="auto-incrementType"

minOccurs="0" maxOccurs="1"/>
<xs:element name="case-sensitive" type="case-sensitiveType"

minOccurs="0" maxOccurs="1"/>
<xs:element name="currency" type="currencyType"

minOccurs="0" maxOccurs="1"/>
<xs:element name="nullable" type="nullableType"

minOccurs="0" maxOccurs="1"/>
<xs:element name="read-only" type="read-onlyType"
282 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Sample XML schema for a database operation
minOccurs="0" maxOccurs="1"/>
<xs:element name="signed" type="signedType"

minOccurs="0" maxOccurs="1"/>
<xs:element name="searchable" type="searchableType"

minOccurs="0" maxOccurs="1"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="dataType">
<xs:sequence>
<xs:element name="row" type="rowType"

minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="metadataType">
<xs:sequence>
<xs:element name="column-count" type="column-countType"/>
<xs:element name="column-definition" type="column-definitionType"

minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="rowsetType">
<xs:sequence>
<xs:element name="metadata" type="metadataType"

minOccurs="0" maxOccurs="1"/>
<xs:element name="data" type="dataType"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="resultsType">
<xs:sequence>
<xs:element name="rowset" type="rowsetType"/>
<xs:element name="update-count" type="update-countType" />

</xs:sequence>
</xs:complexType>

<xs:element name="results" type="resultsType"/>

<!-- DBOP SPECIFIC DEFINITIONS -->

<xs:annotation>
<xs:appinfo>
<qualifiedDBOPName>mydom.CUSTOMER_SOR.All_Customers</qualifiedDBOPName>
<SQLStatement>SELECT SIC,COMPANY, ADDRESS1, ADDRESS2, CITY, STATE, ZIP,

COUNTRY, ID from demo.CUSTOMER_SOR</SQLStatement>
<parameters>
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 283

Avaki rowset XML
</parameters>
</xs:appinfo>

</xs:annotation>

<xs:complexType name="rowType">
<xs:sequence>
<xs:element name="SIC" type="xs:string" nillable="true">

<xs:annotation>
<xs:appinfo>

<column-index>1</column-index>
<class-name>java.lang.String</class-name>
<column-display-size>16</column-display-size>
<column-label>SIC</column-label>
<column-name>SIC</column-name>
<column-type>VARCHAR</column-type>
<column-type-name>VARCHAR</column-type-name>
<column-precision>0</column-precision>
<column-scale>0</column-scale>
<auto-increment>false</auto-increment>
<case-sensitive>false</case-sensitive>
<currency>false</currency>
<nullable>columnNullable</nullable>
<read-only>false</read-only>
<signed>false</signed>
<searchable>true</searchable>

</xs:appinfo>
</xs:annotation>

</xs:element>
<xs:element name="COMPANY" type="xs:string" nillable="true">

<xs:annotation>
<xs:appinfo>

<column-index>2</column-index>
<class-name>java.lang.String</class-name>
<column-display-size>64</column-display-size>
<column-label>COMPANY</column-label>
<column-name>COMPANY</column-name>
<column-type>VARCHAR</column-type>
<column-type-name>VARCHAR</column-type-name>
<column-precision>0</column-precision>
<column-scale>0</column-scale>
<auto-increment>false</auto-increment>
<case-sensitive>false</case-sensitive>
<currency>false</currency>
<nullable>columnNullable</nullable>
<read-only>false</read-only>
<signed>false</signed>
<searchable>true</searchable>

</xs:appinfo>
284 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Sample XML schema for a database operation
</xs:annotation>
</xs:element>
<xs:element name="ADDRESS1" type="xs:string" nillable="true">

<xs:annotation>
<xs:appinfo>

<column-index>3</column-index>
<class-name>java.lang.String</class-name>
<column-display-size>64</column-display-size>
<column-label>ADDRESS1</column-label>
<column-name>ADDRESS1</column-name>
<column-type>VARCHAR</column-type>
<column-type-name>VARCHAR</column-type-name>
<column-precision>0</column-precision>
<column-scale>0</column-scale>
<auto-increment>false</auto-increment>
<case-sensitive>false</case-sensitive>
<currency>false</currency>
<nullable>columnNullable</nullable>
<read-only>false</read-only>
<signed>false</signed>
<searchable>true</searchable>

</xs:appinfo>
</xs:annotation>

</xs:element>
<xs:element name="ADDRESS2" type="xs:string" nillable="true">

<xs:annotation>
<xs:appinfo>

<column-index>4</column-index>
<class-name>java.lang.String</class-name>
<column-display-size>64</column-display-size>
<column-label>ADDRESS2</column-label>
<column-name>ADDRESS2</column-name>
<column-type>VARCHAR</column-type>
<column-type-name>VARCHAR</column-type-name>
<column-precision>0</column-precision>
<column-scale>0</column-scale>
<auto-increment>false</auto-increment>
<case-sensitive>false</case-sensitive>
<currency>false</currency>
<nullable>columnNullable</nullable>
<read-only>false</read-only>
<signed>false</signed>
<searchable>true</searchable>

</xs:appinfo>
</xs:annotation>

</xs:element>
<xs:element name="CITY" type="xs:string" nillable="true">

<xs:annotation>
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 285

Avaki rowset XML
<xs:appinfo>
<column-index>5</column-index>
<class-name>java.lang.String</class-name>
<column-display-size>64</column-display-size>
<column-label>CITY</column-label>
<column-name>CITY</column-name>
<column-type>VARCHAR</column-type>
<column-type-name>VARCHAR</column-type-name>
<column-precision>0</column-precision>
<column-scale>0</column-scale>
<auto-increment>false</auto-increment>
<case-sensitive>false</case-sensitive>
<currency>false</currency>
<nullable>columnNullable</nullable>
<read-only>false</read-only>
<signed>false</signed>
<searchable>true</searchable>

</xs:appinfo>
</xs:annotation>

</xs:element>
<xs:element name="STATE" type="xs:string" nillable="true">

<xs:annotation>
<xs:appinfo>

<column-index>6</column-index>
<class-name>java.lang.String</class-name>
<column-display-size>2</column-display-size>
<column-label>STATE</column-label>
<column-name>STATE</column-name>
<column-type>CHAR</column-type>
<column-type-name>CHAR</column-type-name>
<column-precision>0</column-precision>
<column-scale>0</column-scale>
<auto-increment>false</auto-increment>
<case-sensitive>false</case-sensitive>
<currency>false</currency>
<nullable>columnNullable</nullable>
<read-only>false</read-only>
<signed>false</signed>
<searchable>true</searchable>

</xs:appinfo>
</xs:annotation>

</xs:element>
<xs:element name="ZIP" type="xs:string" nillable="true">

<xs:annotation>
<xs:appinfo>

<column-index>7</column-index>
<class-name>java.lang.String</class-name>
<column-display-size>10</column-display-size>
286 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Sample XML schema for a database operation
<column-label>ZIP</column-label>
<column-name>ZIP</column-name>
<column-type>VARCHAR</column-type>
<column-type-name>VARCHAR</column-type-name>
<column-precision>0</column-precision>
<column-scale>0</column-scale>
<auto-increment>false</auto-increment>
<case-sensitive>false</case-sensitive>
<currency>false</currency>
<nullable>columnNullable</nullable>
<read-only>false</read-only>
<signed>false</signed>
<searchable>true</searchable>

</xs:appinfo>
</xs:annotation>

</xs:element>
<xs:element name="COUNTRY" type="xs:string" nillable="true">

<xs:annotation>
<xs:appinfo>

<column-index>8</column-index>
<class-name>java.lang.String</class-name>
<column-display-size>32</column-display-size>
<column-label>COUNTRY</column-label>
<column-name>COUNTRY</column-name>
<column-type>VARCHAR</column-type>
<column-type-name>VARCHAR</column-type-name>
<column-precision>0</column-precision>
<column-scale>0</column-scale>
<auto-increment>false</auto-increment>
<case-sensitive>false</case-sensitive>
<currency>false</currency>
<nullable>columnNullable</nullable>
<read-only>false</read-only>
<signed>false</signed>
<searchable>true</searchable>

</xs:appinfo>
</xs:annotation>

</xs:element>
<xs:element name="ID" type="xs:string" nillable="true">

<xs:annotation>
<xs:appinfo>

<column-index>9</column-index>
<class-name>java.lang.String</class-name>
<column-display-size>8</column-display-size>
<column-label>ID</column-label>
<column-name>ID</column-name>
<column-type>VARCHAR</column-type>
<column-type-name>VARCHAR</column-type-name>
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 287

Avaki rowset XML
<column-precision>0</column-precision>
<column-scale>0</column-scale>
<auto-increment>false</auto-increment>
<case-sensitive>false</case-sensitive>
<currency>false</currency>
<nullable>columnNullable</nullable>
<read-only>false</read-only>
<signed>false</signed>
<searchable>true</searchable>

</xs:appinfo>
</xs:annotation>

</xs:element>
</xs:sequence>

</xs:complexType>

</xs:schema>
288 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Glossary
Terms printed in italics are defined in the glossary.

access control list
(ACL) A list, for a given file, directory, or other Avaki object, of permissions—read, write, execute,
delete, and owner—that control which users and groups can view, modify, invoke, and remove the
object, and edit the object’s ACL.

ACL
See access control list.

ad-hoc query
A mechanism that lets you directly query a database in SQL. The query must run through an existing
Avaki database connector. You can run an ad-hoc query using either the CLI or a JDBC driver.
Ad-hoc queries can be thought of as single-use database operations.

attribute
A property of an Avaki directory, file, service, or other object. Each attribute has a name, a type (string,
integer, float, date, time, or timestamp) and a value. System attributes are read-only; you can change
the values of other attributes. You can also create new attributes and add them to objects as needed.

authentication service
A service associated with an Avaki domain that authenticates an Avaki user’s identity and provides
security credentials each time the user logs in. Avaki can be configured to use third-party directory
services as authentication services for login; for user accounts created directly in the Avaki domain,
Avaki uses its own default authentication service.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 289

Glossary
Avaki directory
Avaki software creates a single, unified namespace that is accessible (subject to Avaki access control
lists) to all users in the Avaki domain. The namespace, called the data catalog, is arranged as a hierar-
chy of Avaki directories (folders). The catalog directory structure is stored by the domain’s grid serv-
ers and its GDC, while the physical files remain in their original locations in your local file systems.
When you work with directories, it’s important to distinguish between Avaki directories, which are
part of the data catalog, and local directories, which reside in your local file system.

Avaki domain
The basic administrative unit of the Avaki EII system. An Avaki domain consists, at a minimum, of
one grid domain controller and may also include one or more grid servers, share servers, proxy serv-
ers, data grid access servers, and command clients. See also domain name.

Avaki group
A set of users who have the same permissions on one or more Avaki objects. You can use the group
name in place of a user name when you set permissions or create access control lists.

Avaki installation directory
The directory in your local file system where Avaki software is installed. This is not a data catalog
directory.

Avaki share
(Also shared directory.) A pointer in the Avaki data catalog to a directory or file in the underlying
local file system. When you browse the data catalog, Avaki shares look like—and can be accessed
like—other Avaki directories. Contrast with CIFS share.

Avaki server
A service that starts, stops, and monitors other Avaki services on a particular computer. Every server
is part of an Avaki domain. A server is permanently attached to the computer where it is started. There
are several types of server: data grid access servers, grid domain controllers, grid servers, share
servers, and proxy servers.

Avaki Studio
A graphical, metadata-based data integration tool that lets you
• Build data flows by dragging and dropping input sources, operators, and output targets. You can

deploy your data flows as Avaki data services.
• Import or create metadata models and apply them to Avaki objects or use them to build new data

services.
290 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

In addition, you can use Studio to perform provisioning tasks (creating database connectors, data-
base operations, virtual database operations, and SQL views), manipulate categories, and edit ad-hoc
queries and attributes.

cache service
(Formerly proxy cache service.) A staging service that stores copies of files, database operation
results, and data service results. Caching improves retrieval performance. To ensure that an object is
stored in the cache, you can pin a file or directory in the data catalog, or schedule a database operation
or data service. A cache service can provide remote caching, local caching, or both. The freshness of
cached data is controlled by a data expiration interval that determines how long cached data is consid-
ered valid and by a cache coherence window that tells the cache service how often to check whether
cached data is still valid. If cached data is too old to satisfy a new request (or is not stored in this
cache), the cache service does one of the following:
• If the database operation or data service that produced the data is local to this cache service, the

cache service triggers execution of the database operation or data service.
• If the database operation or data service that produced the data is remote from this cache service,

this cache service requests the data from the data source’s local cache service.
A cache service can be associated with a data grid access server, a grid server, or a local user in a CLI
session. See also local cache, remote cache, on-demand caching, and scheduled caching.

category
A mechanism for classifying and organizing the contents of the data catalog. Like Avaki directories,
categories serve as containers for objects in the data catalog. Anything in the data catalog—views,
data services, shared files, even Avaki directories themselves—can be assigned to a category. Catego-
ries are hierarchical, they have attributes, and Avaki access control lists regulate access to them.

CIFS client
A machine that mounts files or directories from the Avaki data catalog by connecting to a CIFS share
through an Avaki data grid access server. A CIFS client need not have Avaki software installed.
(CIFS—Common Internet File System—is a file-sharing protocol based on the file system imple-
mented by Windows.)

CIFS share
A directory or file that has been exported (shared) from the Avaki data catalog. A CIFS share can be
mapped into a Windows file system like a network drive. When you browse the Windows file system,
CIFS shares look like—and can be accessed like—other files and directories. CIFS shares are created
through a data grid access server. Contrast with Avaki share.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 291

Glossary
client
Avaki supports several types of client: Avaki Studio, CIFS clients, command clients, JDBC/ODBC cli-
ents, NFS clients, web clients, and WS clients.

command client
A machine that can issue Avaki commands but does not contribute resources to the Avaki domain.

connect port
The connect port on a grid domain controller, grid server, data grid access server, proxy server, or
share server accesses the JNDI naming service or RMI registry for the underlying application server.
The connect port is one of many ports that a GDC or server uses to communicate with other Avaki
objects. You must supply the connect port number of a target grid server or GDC whenever you con-
nect a new object (another server, a copy of Avaki Studio, or a command client, for example) to an
Avaki domain. When you interconnect two Avaki domains, you must supply each domain’s connect
port number to the other one.

data catalog
A hierarchical structure similar to a file system that encompasses all objects in an Avaki domain. The
data catalog contains Avaki directories and files, Avaki shares, Avaki servers, SQL views, database
operations and data services, and other objects.

data grid access server
(DGAS) An Avaki server that makes Avaki directories and their contents available to CIFS clients and
NFS clients.

data service
An operation that transforms data obtained from sources in the data catalog. Input data can come
from any number of sources, including:
• other data services

• data catalog files (which can be generated views)

• Avaki database operations (which in turn extract the data from relational databases)

• HTTP requests

• Web service invocations
You can generate the code that manipulates the data by creating a view model in Avaki Studio, or by
writing a custom data service plug-in using Java, JavaScript, or XSLT. Data service output can be in
rowset or XML format. Data services are run by the execution services on grid servers, they can be
scheduled, and their results can be cached.
292 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

data service plug-in
The logic for a data service, written in Java, JavaScript, or XSLT. Data service plug-ins are modular—
you can use the same plug-in for multiple data services. Avaki Studio creates data services and
plug-ins simultaneously, so if you use Avaki Studio to create data services, you don’t have to worry
about plug-ins. You can also use the Avaki Plug-in Wizard to create data service plug-ins.

database connector
A mechanism that enables one or more database operations, SQL views, or ad-hoc queries to connect
to a relational database.

database operation
(DBOP) A mechanism that can
• extract data from a relational database and deliver it on demand to a view generator or a data

service, or
• modify data in a relational database.

 A database operation can be a SQL statement or a stored procedure call.

dependency
A relationship in which an Avaki object requires input from other Avaki objects. A data service might
require input from one or more database operations or from other data services. A view generator
might depend on a database operation for input. A database operation can serve as an input source for
one or more data services or view generators. Generated SQL views depend on database operations,
virtual database operations, or data services. You can use Avaki Studio, the web UI, or the CLI to list
input and output dependencies for any data service, database operation, or view.

DGAS
See data grid access server.

distributed transaction
A set of related operations (typically SQL operations such as SELECT, INSERT, UPDATE, DELETE,
and CALL) that
• involve one or more databases, and

• might lead to unwanted results (such as leaving participating databases in an inconsistent state
or producing inconsistent reads) if some of the operations complete and others do not, and there-
fore

• must all be executed at once, as a single transaction.
The individual operations that make up a distributed transaction are performed by database opera-
tions that use database connectors configured with XA-capable JDBC drivers; all the database opera-
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 293

Glossary
tions are executed, using the two-phase commit protocol, by a specially configured data service. The
two-phase commit protocol is designed to ensure that the participating databases will be left in a con-
sistent state—that is, that all the operations in the distributed transaction will be completed, or none of
them will.

domain name
A unique alphanumeric identifier for an Avaki domain. The domain name is assigned by the Avaki
administrator when the Avaki domain is initialized. The domain name has a maximum length of 30
characters.

enterprise information integration
Execution services execute data services. There is an execution service on every grid server, and you
can configure a pool of execution services for load-sharing. When a pool is in place, a data service
can be run by any execution service in its grid server’s pool.

exclusion
See schedule exclusion.

execution service
Execution services execute data services. There is an execution service on every grid server, and you
can configure a pool of execution services for load-sharing. When a pool is in place, a data service
can be run by any execution service in its grid server’s pool.

failover
The transition of control from a failing or unreachable primary grid domain controller to a secondary
grid domain controller.

federated data access
A scheme that allows independently controlled elements to be shared into a single namespace. Files,
user accounts, and other objects maintain their separate identities and remain under the control of
their owners, but—subject to access controls—the objects can be accessed, managed, and viewed as
if they were part of a single system.

GDC
See grid domain controller.

generated view
A file created by a view generator; it may contain data obtained from a database operation, a data
service, a file, or an HTTP source. Like other files, generated views exist in a local file system and are
shared into the data catalog.
294 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

grid
A heterogeneous group of networked resources that appears and functions as one operating environ-
ment. A data grid like the Avaki Enterprise Information Integration (EII) system provides secure,
shared access to data.

grid directory
See Avaki directory.

grid domain
See Avaki domain.

grid domain controller
(GDC) The first server in an Avaki domain is the grid domain controller. The GDC maintains a portion
of the Avaki domain’s namespace and provides authentication services. It can also run Avaki com-
mands, share data, and monitor other servers. (That is, the GDC functions as a grid server.) If the
domain is configured for failover, it has both a primary GDC and a secondary GDC; the secondary is
updated at regular intervals and takes over management of the domain if the primary fails. Any Avaki
shares managed by the primary are read-only on the secondary.

grid server
An Avaki server that maintains a portion of the Avaki domain’s namespace, runs Avaki services such
as shares, execution services, caches, and searches, and allows you to run Avaki’s web UI and execute
Avaki commands.

group
See Avaki group.

hard link
Provides an alternate name for an item in the data catalog. Changes to the object’s other names have
no effect on the hard link: you can move or change a file’s original name and the hard link will still
know where to find the file. To delete a hard-linked object, you must remove its original name. Con-
trast with soft link.

interconnect
To create a unidirectional link from one Avaki domain to another. Interconnecting lets an Avaki
domain make its data catalog visible to users in another domain (subject to Avaki access controls).
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 295

Glossary
JDBC driver
JDBC (Java Database Connectivity) drivers allows application programmers to access database data
shared in the data catalog. When a JDBC driver accesses data, it returns a JDBC result set that’s
immediately available to your program. JDBC drivers can:
• Call any data service in the data catalog

• Call any database operation in the data catalog

• Perform SQL select operations against SQL views in the data catalog
Sybase offers three JDBC drivers for use with Avaki EII software:
• The included Avaki JDBC driver

• jConnect, Sybase’s standard JDBC driver

• An XA-capable driver for use with database connectors that support distributed transactions

link
See hard link and soft link.

local cache
A cache service that runs on the same grid server as a database operation or a data service that gen-
erates cachable data. The local cache stores results produced by local database operations and data
services so they don’t have to execute for every new request. See also remote cache.

metadata model
A construct in Avaki Studio that expresses a schema by defining a set of tables. A table in a metadata
model can be mapped (linked) to an Avaki object such as a data service or a database operation, or to
a table in a relational database. The mapping lets you address each mapped object by the name of the
corresponding table in the metadata model. You can also derive a view model schema from a metadata
model. When you do this, you ensure that the results of any data service deployed from the view
model will conform to the metadata model’s schema.

NFS client
A machine that mounts the Avaki data catalog (or a portion of it) as a directory by connecting to an
Avaki data grid access server. An NFS client need not have Avaki software installed. (NFS—Network
File System—lets you add file systems located on a remote computer to the directory structure on
your own computer.)

ODBC
ODBC (Open DataBase Connectivity) is an API for databases on Windows. An ODBC driver (such as
the the Sybase Organic ODBC driver included with Sybase ASE) allows Avaki to communicate with
Windows database applications.
296 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

on-demand caching
A scheme by which an object is cached only if it’s used—for example, results are cached when a
database operation or a data service is executed, or a file is cached when a user or application reads
it. On-demand caching uses a fixed expiration interval to determine data freshness. On-demand cach-
ing is suitable for objects that are rarely accessed or that change at irregular intervals. Contrast with
scheduled caching.

pin
To mark an Avaki directory or file for scheduled caching. See also cache service.

plug-in
See data service plug-in.

primary GDC
See grid domain controller.

proxy server
An Avaki server that allows Avaki domains on opposite sides of a firewall or a Network Address
Translator (NAT) to communicate with one another.

queries
See ad-hoc query.

query engine
An Avaki service that executes SQL queries against the SQL views (tables) that make up the Avaki vir-
tual database. A query engine analyzes queries, pushes as much of the work as possible down to the
underlying relational database (if there is one), and performs the remaining operations (such as joins
across tables from different databases) itself. There is a query engine on each grid server.

remote cache
A cache service that runs on a grid server that is remote from an Avaki service (a database operation
or a data service) that generates cachable data. The remote cache stores results produced by distant
services so the results don’t have to be fetched over the network to satisfy every new request. Users
and applications that access remote data through the cache may have access to cached copies even
when the remote data source is unavailable. See also local cache.

scheduled caching
A scheme by which an object is cached according to a schedule that you create. The schedule specifies
when the object is first cached and how often (or following what trigger event, such as a change to a
file) the cache is refreshed. If the object is a data service or a database operation, the schedule runs it
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 297

Glossary
to put fresh results in the cache. Scheduled caching, which overrides other types of caching, is suitable
for objects that are updated frequently or on a regular basis. Contrast with on-demand caching.

schedule exclusion
A named period of time during which scheduled activities can be prevented from running. You can
apply an exclusion to as many schedules as you want. Scheduled activities include refreshing Avaki
shares and imported user accounts, and caching files, directories, and the results of database opera-
tions, data services, and generated views.

secondary GDC
See grid domain controller.

service
An Avaki object that performs a function in the domain (stores data or authenticates users, for exam-
ple). Services provided in Avaki software include Avaki directories, Avaki shares, Avaki servers,
authentication services, execution services, and user accounts.

share
A point of connection between the Avaki data catalog and a native file system or file system tool.
Avaki supports two kinds of shares: Avaki shares and CIFS shares.

share server
An Avaki server whose only task is to manage Avaki shares—local directories that are exported
(shared) into the data catalog. (Grid servers can also manage shares.)

shared directory
See Avaki share.

soft link
A pointer to a particular location (name) in the Avaki data catalog. If the object at that location is
moved, deleted, or renamed, the soft link leads nowhere. Soft links can be created only in the CLI.
Contrast with hard link.

SQL view
A virtual table—a data catalog entry that represents a table in a relational database, a database oper-
ation, or a data service. SQL views can be created in three ways:
• Provisioned directly from a table in an underlying database

• Generated from a database operation or data service
298 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

• Mapped from a database table, a database operation, or a data service, using the Avaki Studio
metadata model editor

Every SQL view is part of the Avaki virtual database. SQL views are treated as relational tables by the
Avaki query engine. SQL view data can be accessed using standard SQL statements by connecting to
Avaki with ODBC or JDBC, or via an Avaki virtual database operation.

update notification
A message issued when a generated view is updated. A view that receives data from another view can
be configured to regenerate itself (using the new data) upon receipt of an update notification.

view generator
A mechanism that does one of the following: extracts data from a file or an HTTP source, obtains data
from an Avaki data service, or uses an Avaki database operation to extract data from a relational
database. The view generator can display the data, perform an XSLT transform, save the data as a gen-
erated view file, and/or update a database. Contrast with data service.

view model
The graphical representation of a data flow that you can build in Avaki Studio. A view model typically
includes one or more input sources (such as database operations or data services), one or more oper-
ations to combine or transform the data, and an output target. When you deploy a view model, it
becomes an Avaki data service.

virtual database
The set of all SQL views in an Avaki domain, including those provisioned from external databases and
those generated from data services and database operations. You can execute SQL queries on the
SQL views in the virtual database as if they were tables in a single database.

virtual database operation
A database operation whose source database is the Avaki virtual database itself. Use virtual database
operations if you want to encapsulate and reuse SQL SELECT queries against SQL views (provisioned
or generated).

web services client
See WS client.

WS client
(Also web services client.) A tool or a piece of code that is part of a customer application and that
makes SOAP calls to web services on an Avaki grid server. The SOAP calls can request data from the
Avaki data catalog, from a database operation, or from a data service.
Sybase Avaki EII Provisioning and Advanced Data Integration Guide 299

Glossary
300 Sybase Avaki EII Provisioning and Advanced Data Integration Guide

Master Index
Key

AD: Administration Guide
API: API Guide

C: Command Reference
O: Overture

P: Provisioning & Advanced Data Integration Guide
S: Data Integration with Avaki Studio

In electronic copies of this book, the index links to other
books in the documentation set work only as long as the
PDF files are stored in the same directory.
Symbols
* asterisks in command syntax AD:xvi, C:xv, P:xi
- hyphens in command syntax AD:xvi, C:xvi, P:xii
+ plus signs in command syntax AD:xvi, C:xv, P:xi
.amm files S:11
.avm files S:11
.js files S:11
.jsi files S:11, S:75

sample S:115
.NET

AvakiAPI.disco WSDL discovery file API:3
sample web services client API:9
SSL certificates API:9

.project files S:11
< > angle brackets in command syntax AD:xvi, API:vii, C:xv,

P:xi
= equal signs in command syntax AD:xvi, C:xvi, P:xii
[] square brackets in command syntax AD:xv, C:xv, P:xi
_ (underscore) characters in Avaki names API:81
{ } curly brackets in command syntax AD:xv, C:xv, P:xi
| vertical bars in command syntax AD:xv, C:xv, P:xi

A
About My Domain screen AD:98
AbstractTransformer class P:243
AbstractTransformerFactory class P:244
access control in view models S:74
access control lists, See ACLs
accessibleDBOp SOAP operation API:42
accessibleDS SOAP operation API:36
accessiblePath SOAP operation API:19
accounts for grid users, See users AD:167
ACLs

about O:45
adding users and groups AD:243

ACLs (continued)
defined AD:349, API:83, C:307, O:61, P:289, S:175
deny permissions ineffective for owners, admins O:46
displaying AD:237, C:186
for database operations P:22, P:36
for SQL views P:46
granting or denying access to everyone O:44
in grid groups O:43
interpreting O:48
modifying AD:239, C:41, S:97
on cached objects O:50
on new Avaki shares AD:261
on new files O:49
ownership AD:242, O:46
permissions in AD:242, AD:307
removing users and groups from AD:242
sample O:45
setting for a grid object AD:171
setting for database operations P:14
using interconnect IDs to add users and groups to AD:304

Active Directory AD:148
domain users group AD:157, AD:159, C:155
See also authentication services, LDAP AD:148

addInputParameter JavaScript method for data service
plug-ins P:202

addInputStream JavaScript method for data service
plug-ins P:202

ad-hoc queries
as web services

AdHocDBOPExecutionParams complex type API:13
executeAdHocDBOp SOAP operation API:43
executeAdHocDBOpWithOutput SOAP operation API:44
executeAdHocDBOpWithOutputAttach SOAP

operation API:46
executeAdHocDBOpWithOutputString SOAP

operation API:47
Master Index Index-1

AD: Administration Guide API: API Guide C: Command Reference O: Overture
ad-hoc queries (continued)

code samples API:74
defined AD:349, API:83, C:307, O:61, P:289, S:175
enabling C:66
enabling on a database connector P:4
executing C:63
on virtual database

executing C:282
parameter types, specifying C:283

parameter types, specifying C:65
using JDBC driver to run API:69, API:74

AdHocDBOPExecutionParams complex type API:13
administrative user accounts, setting up AD:44
Administrators group O:43

about AD:45
permissions for AD:240

admission policies AD:332
about AD:85
adding C:91
creating AD:87
deleting AD:88, C:97
displaying C:114
displaying Windows domains for C:114
setting default policies C:112
setting Windows domain info C:111
unsetting Windows domains for C:116

aggregate functions S:110
in SQL statements, aliasing column names for P:25

Aggregate operator S:108
AIX requirements AD:3
algorithms for join operator S:155
aliases

for column names P:25, S:42
aliases for GDC machines AD:10

Allow permission in ACL AD:243, O:48
angle brackets in command syntax AD:xvi, API:vii, C:xv, P:xi
Apache Ant for compiling data service plug-ins P:184
Apache Axis API:5

data catalog example API:18
data service example API:35
database operations example API:42

APIs
data catalog API:18
data services API:34
database operations API:40
for data service plug-ins

about P:185
distributed transaction API P:188
general data service API P:186

TrAX (Transformation API for XML) P:243
web services

about API:2
data service API:35
reference API:11

AROMValue parameters P:212
As is permission in ACL AD:242
ASE, see Sybase ASE

asterisks in command syntax AD:xvi, C:xv, P:xi
attribute --delete command C:19
attribute --list command C:19
attribute --update command C:21
attributes

about AD:245
configuring for SQL views P:44
creating AD:248

and modifying S:100
defined AD:349, API:83, C:307, O:61, P:289, S:175
deleting AD:254, C:19
displaying AD:246
displaying details about C:19
ldap/importOnDemand AD:158
nis/importOnDemand AD:164
of cache services C:291
of grid servers C:290
of patches C:290
searching on AD:233
setting values AD:252, C:21
system attributes AD:248
types of AD:250, C:22, S:101
user-defined attributes AD:248
who can edit S:101

audit logging
about O:14
configuring AD:319
events captured by AD:322

audit logs AD:108
authentication in Avaki O:41

using AvakiPrincipal API:13
authentication services

configuring default groups C:218
configuring default users C:220
configuring GIDs C:217, C:221
configuring UIDs C:219, C:222
defined AD:349, API:83, C:307, O:61, P:289, S:175
deleting AD:166
displaying information about AD:166
grid, creating groups on C:141
LDAP

adding schedule exclusions for refreshing C:152
adding search bases C:160
deleting authentication services C:153
deleting import schedules C:154
deleting search bases C:160
displaying information about C:157
enabling users C:250
importing groups from AD:159, C:155
importing users from AD:157, C:155
integrating into the grid AD:148, C:157
listing import schedules C:158
scheduling refreshes AD:185
scheduling user imports C:149
setting page size for imports AD:145
updating C:160
Index-2 Master Index

P: Provisioning & Advanced Data Integration Guide S: Data Integration with Avaki Studio
authentication services (continued)

NIS
adding schedule exclusions for refreshing C:180
deleting authentication services C:181
deleting import schedules C:181
displaying info about C:183
enabling users C:250
importing groups from AD:165, C:182
importing users from AD:164, C:182
integrating into the grid AD:162, C:184
listing import schedules C:184
scheduling user imports C:177
updating C:185

refreshing imported accounts AD:185
specifying for JDBC connections API:69
types O:41

specifying for JDBC connections API:69
authentication using AvakiPrincipal API:9
auto-restart

about AD:37, C:5
configuring for a DGAS C:5
configuring for a GDC AD:38, C:9
configuring for a grid server AD:51, C:9
configuring for a proxy server C:12
configuring for a share server C:15

avaki attribute --delete C:19
avaki attribute --list C:19
avaki attribute --update C:21
avaki backup C:23
avaki cache --evict C:24, C:32
avaki cache --evict --all C:25
avaki cache --evict --deleted C:26
avaki cache --get C:27
avaki cache --invalidate C:27
avaki cache --invalidate --all C:28
avaki cache --invalidate-dataservice-results C:29
avaki cache --invalidate-dbop-results C:30
avaki cache --list C:31
avaki cache --set C:33
avaki cache --unset C:34
avaki cat C:35
avaki categories --add-to-category C:35
avaki categories --create C:36
avaki categories --delete C:37
avaki categories --describe C:37
avaki categories --list C:38
avaki categories --remove-from-category C:38, C:40
avaki categories --set-description C:39
avaki cd C:41
avaki chmod C:41
avaki chown C:42
avaki client C:45
avaki client --connect command AD:94
avaki cp C:46
avaki database operation --list-schedules C:88
avaki dataservice --add-schedule C:48
avaki dataservice --create C:52

avaki dataservice --delete C:52
avaki dataservice --delete-schedule C:54
avaki dataservice --depends C:54
avaki dataservice --execute C:55
avaki dataservice --generate-sql view C:56
avaki dataservice --info C:57
avaki dataservice --list-schedules C:58
avaki dataservice --update C:58
avaki dbconn --allow-dbop-creation C:59
avaki dbconn --delete C:61
avaki dbconn --disallow-dbop-creation C:62
avaki dbconn --execute C:63
avaki dbconn --info C:64
avaki dbconn --jdbc C:66
avaki dbconn --provision-tables C:71
avaki dbconn --show-tables C:73
avaki dbconn --test C:72
avaki dbop --add-schedule C:73
avaki dbop --delete C:78
avaki dbop --delete-schedule C:78
avaki dbop --depends C:79
avaki dbop --execute C:80
avaki dbop --generate-sql view C:82
avaki dbop --info C:83
avaki dbop --jdbc C:83
avaki dbop --jdbc --create-virtual-dbop C:87
avaki dgas --add-admission-policy C:91
avaki dgas --add-group-mapping C:92
avaki dgas --add-user-mapping C:94
avaki dgas --cifs-share-info C:95
avaki dgas --clear-cached-credentials C:95
avaki dgas --create-cifs-share C:96
avaki dgas --delete-admission-policy C:97
avaki dgas --delete-cache C:98
avaki dgas --delete-cifs-share C:99
avaki dgas --delete-group-mapping C:99
avaki dgas --delete-user-mapping C:100
avaki dgas --disconnect-cifs-client C:101
avaki dgas --get-cache-size C:101
avaki dgas --get-cache-statistics C:102
avaki dgas --get-free-disk-space C:102
avaki dgas --get-properties C:103
avaki dgas --get-property C:103
avaki dgas --get-property-list C:104
avaki dgas --initialize C:104
avaki dgas --list-cifs-clients C:105
avaki dgas --list-cifs-shares C:105
avaki dgas --list-group-mappings C:106
avaki dgas --list-user-mappings C:106
avaki dgas --modify-cifs-share C:107
avaki dgas --read-log-properties C:107
avaki dgas --reset-cache-statistics C:108
avaki dgas --save-cache C:109
avaki dgas --self-map C:109
avaki dgas --self-unmap C:111
avaki dgas --set-admission-policy-domain C:111
avaki dgas --set-default-admission-policy C:112
avaki dgas --set-property C:113
Master Index Index-3

AD: Administration Guide API: API Guide C: Command Reference O: Overture
avaki dgas --show-admission-policies C:114
avaki dgas --show-admission-policy-domain C:114
avaki dgas --sync-cache C:115
avaki dgas --unset-admission-policy-domain C:116
avaki dgas --unset-property C:117
Avaki directories, See directories, Avaki
avaki directory --add-schedule C:117
avaki directory --cache C:122
avaki directory --delete-schedule C:122
avaki directory --do-not-cache C:126
avaki directory --list-schedules C:126
avaki domain --create C:127
avaki domain --disconnect C:127
avaki domain --info C:128
avaki domain --interconnect C:128
Avaki domains, See domains, Avaki
Avaki EII software

overview O:1
typical deployment O:17

avaki executionservice --info C:129
avaki executionservice --set C:129
avaki file --add-schedule C:130
avaki file --cache-on-demand C:134
avaki file --delete-schedule C:135
avaki file --do-not-cache C:136
avaki file --list-schedules C:136
avaki file --pin C:137
Avaki functions S:73
Avaki Functions menu S:74
avaki group --add --user C:138
avaki group --create C:141
avaki group --delete C:143
avaki group --delete --user C:144
avaki group --info C:145
avaki group --list-user C:147
avaki help C:148
avaki id C:149
Avaki installation directory AD:350, API:84, C:308, O:62,

P:290, S:176
avaki ldap --add-schedule C:149
avaki ldap --delete C:153
avaki ldap --delete-schedule C:154
avaki ldap --import C:155
avaki ldap --info C:157
avaki ldap --integrate C:157
avaki ldap --list-schedules C:158
avaki ldap --searchbase C:160
avaki ldap --update C:160
avaki ln C:161
avaki locks --clear C:163
avaki locks --list C:164
avaki login C:164
avaki logout C:165
avaki ls C:166
avaki mkdir C:167
avaki monitor --add C:167
avaki monitor --clear C:168
avaki monitor --create C:170

avaki monitor --delete C:171
avaki monitor --list C:172
avaki monitor --result C:172
avaki monitor --start C:173
avaki monitor --stop C:174
avaki mv command C:176
avaki nis --add-schedule C:177
avaki nis --delete C:181
avaki nis --delete-schedule C:181
avaki nis --import C:182
avaki nis --info C:183
avaki nis --integrate C:184
avaki nis --list-schedules C:184
avaki nis --update C:185
avaki passwd C:185
avaki permissions C:186
Avaki perspective in Studio S:13
avaki plugin command P:184
avaki plugin --generate C:187
avaki proxy --add C:191
avaki proxy --delete C:191
avaki proxy --list C:192
avaki pwd C:193
avaki replica --add C:193
avaki replica --config command C:193
avaki replica --delete C:194
avaki replica --info C:194
avaki replicate --synch C:195
avaki rm C:195
Avaki rowset XML

class-name element P:279
column-display-size element P:279
column-index element P:279
core schema P:277
rowset-specific schema P:279
sample schema P:280
schema overview P:277

avaki schedule --delete C:196
avaki schedule --info C:197
avaki schedule --list C:197
avaki schedule --print-iterations C:198
avaki scheduleexclusion --create --custom C:198
avaki scheduleexclusion --create --daily C:199
avaki scheduleexclusion --create --monthly C:201
avaki scheduleexclusion --create --weekly C:203
avaki scheduleexclusion --create --yearly C:205
avaki scheduleexclusion --delete C:207
avaki scheduleexclusion --info C:208
avaki scheduleexclusion --list C:209
avaki search (execute) C:211
avaki search --create command C:209
avaki search --delete C:210
avaki search --get-rehash-level C:212
avaki search --info C:214
avaki search --rehash C:215
avaki search --set-rehash-level C:215
avaki security --config C:216
avaki security --default-gid C:217
Index-4 Master Index

P: Provisioning & Advanced Data Integration Guide S: Data Integration with Avaki Studio
avaki security --default-group C:218
avaki security --default-uid C:219
avaki security --default-user C:220
avaki security --gid C:221
avaki security --info C:222
avaki security --uid C:222
avaki server --dgas --connect C:223
avaki server --dgas --destroy C:224
avaki server --dgas --stop C:225
avaki server --grid --connect C:225
avaki server --grid --destroy C:226
avaki server --grid --stop C:227
avaki server --proxy C:228
avaki server --share --connect C:228
avaki server --share --disconnect C:229
avaki server --share --stop C:230
Avaki servers

distribution of data catalog among O:38
hardware and operating system requirements for O:16
qualified names for O:32

avaki share --add-rehash-schedule C:231
avaki share --add-share-servers C:232
avaki share --create C:235
avaki share --delete-rehash-schedule C:236
avaki share --disconnect C:238
avaki share --get-local-path C:238
avaki share --get-status C:239
avaki share --list-rehash-schedules C:239
avaki share --list-share-servers C:240
avaki share --rehash C:240
avaki share --remove-share-servers C:241
avaki share --set-local-path C:241
avaki share --set-share-servers C:242
avaki share --set-status C:243
avaki share --update-share-servers C:244
Avaki shares

about AD:257
adding schedule exclusions for rehashes C:234
adding share servers C:232
behavior during failover AD:112
bringing on line AD:286
changing configuration of AD:266
changing encryption levels AD:279
changing permissions AD:239
changing the owner AD:261
configuring exclusions for refresh schedules AD:274
copying into, out of, and within AD:213
creating AD:258, C:235
defined AD:350, API:84, C:308, O:62, P:290, S:176
deleting C:195
disconnecting C:238
disconnecting permanently AD:287
forcing refresh AD:262
icon for O:29
linking AD:217
local paths for, obtaining C:238
modifying load balance factor C:244
moving AD:210

Avaki shares (continued)
moving source directories AD:283
naming of files and directories in AD:207
online status, setting C:243
organizing O:37
permissions on new files in O:49
refresh schedules

adding C:231
deleting C:236
listing C:239

refresh schedules for AD:266
refreshing C:240
removing entries from refresh schedules AD:278
removing share servers from AD:265
renaming AD:212
setting load balancing factor AD:280
setting local paths C:241
setting names AD:260
share servers

listing C:240
removing C:241
replacing C:242

shutting down AD:287, C:238
status, displaying C:239
taking off line AD:285
uploading files to AD:282
with multiple share servers AD:263
write access and user accounts AD:12
See also share servers

avaki shell C:245
avaki sql view --delete C:246
avaki sql view --get-description C:246
avaki sql view --set-description C:247
avaki status C:248
Avaki Studio

about O:9, O:17, S:1
Avaki perspective, about S:16
defined AD:350, API:84, C:308, O:62, P:290, S:176
getting started S:9
installing in Windows AD:24
limitations of data services created in P:78, S:3
log properties file for AD:317
metadata models, See metadata models
operators S:5, S:107
projects, creating S:13
requirements for running AD:3
setting system properties for AD:129
starting S:9
time required to upgrade AD:341
view models

about S:2
configuring input sources S:43
creating S:29
deploying as data services S:50
sample workflow for S:29
testing S:49

workflow S:25
Master Index Index-5

AD: Administration Guide API: API Guide C: Command Reference O: Overture
avaki upgrade C:249
avaki upgrade --info C:250
avaki user C:250
avaki user --create C:251
avaki user --db-mapping --add C:252
avaki user --db-mapping --delete C:253
avaki user --db-mapping --list C:255
avaki user --delete C:257
avaki user --info C:258
avaki user --list-group C:258
avaki view --add-schedule C:259
avaki view --create --database C:263
avaki view --create --data-service C:266
avaki view --create --file C:267
avaki view --delete C:272
avaki view --delete-schedule C:272
avaki view --depends C:272
avaki view --garbage-collect C:273
avaki view --info C:274
avaki view --list-schedules C:274
avaki view --regenerate C:273
avaki view --set-property C:275
avaki view --update C:279
avaki virtualdatabase --allow-dbop-creation C:280
avaki virtualdatabase --disallow-dbop-creation C:281
avaki virtualdatabase --execute C:282
avaki virtualdatabase --show-tables C:283
avaki virtualschema --deploy C:285
avaki virtualschema --undeploy C:286
avaki whoami C:286
Avaki_JDBCStandAlone.jar file API:66
Avaki_JDBCStandAlone_Minus3rd.jar file API:66
AvakiAPI.disco file API:3
AvakiAPIDocLit.wsdl file API:3
AvakiAPIRpcEnc.wsdl file API:3
AvakiAPIWithMIMEDocLit.wsdl file API:3
AvakiAPIWithMIMERpcEnc.wsdl file API:3
avakijdbc.properties file API:67
AvakiPrincipal complex type API:13
Axis, See Apache Axis

B
backup command C:23
backups on Avaki servers AD:113
batch mode, JDBC API:77

configuring database operations for P:27, P:250
bindings.xml file

copying during upgrade AD:344
on grid servers AD:50
on proxy servers AD:300
on share servers AD:59

block size file attribute C:290
blocks file attribute C:290
bootstrapping

in Unix AD:16
in Windows AD:23

brackets, See curly brackets, square brackets, angle brackets

browsers, See web browsers
build.xml file for data service plug-ins P:184, P:197
BusinessObjects software unable browse Avaki objects with

underscores API:81

C
cache --evict --all command C:25
cache --evict command C:24, C:32
cache --evict --deleted command C:26
cache --get command C:27
cache --invalidate --all command C:28
cache --invalidate command C:27
cache --invalidate-dataservice-results command C:29
cache --invalidate-dbop-results command C:30
cache --list command C:31
cache services

about P:119
associating with data grid access servers P:113
associating with grid servers P:111
coherence windows P:107
configuring P:116
configuring per file P:117
defined AD:351, API:85, C:309, O:63, P:291, S:177
disassociating from data grid access servers P:114
disassociating from grid servers P:112
evicting cached files and directories P:135
invalidating cached items P:136
listing P:116
listing cached data services P:163
listing cached database operations P:148
listing cached virtual database operations P:148
listing pinned files and directories P:134
on-demand caching P:119
on-demand caching of database operation and data service

results P:108
on-demand caching of files P:107
overriding default settings P:117
pinning data services P:152
pinning database operations P:139
pinning files and directories P:120
pinning virtual database operations P:139
scheduled caching P:119
scheduled caching of database operation and data service

results P:109
scheduled caching of files P:107
tagging files and directories P:129
unmarking cached items P:135
unscheduling cached files and directories P:135
viewing details about P:116
See also caches and caching

cache --set command C:33
cache --unset command C:34
caches

adding schedules for data services C:48
adding schedules for database operations C:73
adding schedules for directories C:117
adding schedules for files C:130
Index-6 Master Index

P: Provisioning & Advanced Data Integration Guide S: Data Integration with Avaki Studio
caches (continued)

bad port, properties for AD:141
configuring associated server or user C:33
configuring threads for AD:131
data service plug-in, properties for AD:137
deleting schedules for data services C:54
deleting schedules for database operations C:78
deleting schedules for directories C:122
deleting schedules for files C:135
DGAS

clearing user credentials AD:117
clearing user credentials from C:95
configuring block size for reads AD:81
configuring frags per block for reads AD:81
configuring location of AD:73
controlling cache size AD:124
deleting files and directories AD:119
deleting objects from C:98
displaying cache statistics C:102
displaying current size C:101
displaying free disk space on cache machine C:102
forcing a refresh AD:121
managing AD:117
mapping cache AD:336
resetting statistics C:108
saving a copy C:109
saving copies AD:120
setting remote caches for AD:90
syncing AD:121
viewing and resetting statistics AD:123
warming and updating C:115

displaying associated server or user C:27
displaying tagging information C:31
for tables in virtual database, property for AD:144
listing schedules for data services C:58
listing schedules for database operations C:88
listing schedules for directories C:126
listing schedules for files C:136
local S:182
local and remote API:63
marking directories for no caching C:126
marking files for no caching C:136
remote object stub, properties for AD:144
schedule exclusion, properties for AD:144
scheduled caching S:184
settable attributes of C:291
setting invalidate queue for AD:135
setting local directory for AD:135
setting remote caches for command clients AD:95
uncoupling associated server or user C:34
See also cache services and caching

caching
about O:13
and JDBC programs O:55
benefits to performance O:54
configuring ACLs for O:50

caching (continued)
configuring Avaki clients for O:55
data service results P:108, S:51

tagging for on-demand caching P:159
database operations P:108
defined AD:351, API:85, C:309, O:63, P:291, S:177
files O:56, P:107
JDBC and caching of database operation results API:62
local AD:356, API:90, C:314, O:14, O:53, O:68
local vs. remote O:59
local, defined P:296
of data service results O:57
of database operation results O:57
on DGAS O:54
on-demand AD:357, API:91, C:315, O:69, P:296, S:183
permissions and access control O:59
remote O:14, O:53

defined AD:357, API:91, C:315, O:69, P:297, S:184
scheduled AD:357, API:91, C:315, O:69
scheduled, defined P:297
turning off for specified files and directories P:132
See also caches and cache services

callable statements API:72, API:73
case sensitivity in Avaki naming AD:206
cat command C:35
catalog browser S:18
categories

about AD:221
adding objects to AD:226, C:35, S:105
adding SQL views P:47
and permissions AD:222–AD:223
browsing AD:222
contents of S:18
creating AD:224, C:36
default, contents of S:18
defined AD:351, API:85, C:309, O:63, P:291, S:177
deleting AD:230, C:37, S:106
displaying S:104
for logging AD:318
icon for O:29
listing categories in domain C:38
managing S:103
permissions in O:48
removing objects from AD:228, C:38, C:40, S:106
setting descriptions for C:39
showing descriptions C:37
using to organize data O:36
using to solve access problems O:49

categories --add-to-category command C:35
categories --create command C:36
categories --delete command C:37
categories --describe command C:37
Categories directory O:35
categories --list command C:38
categories --remove-from-category command C:38, C:40
categories --set-description command C:39
cd command C:41
certificates, SSL, See SSL certificates
Master Index Index-7

AD: Administration Guide API: API Guide C: Command Reference O: Overture
change time file attribute C:290
characters

in column aliases in database operations S:42
in command syntax AD:xv, C:xv
in cron schedules C:298
in domain names, restrictions on AD:41
in JavaScript identifiers S:42
in metadata model names, restrictions on S:91
in names of Avaki objects, restrictions on AD:207
wildcards in searches AD:235

CHARSET JDBC property for ASE and IQ AD:7
chmod command C:41
chmod SOAP operation API:19
chown command C:42
chown SOAP operation API:20
chunk size for sorting, controlling AD:139, S:76
CIFS

accessing data grid through AD:338
releasing CIFS ports on a DGAS AD:66

CIFS clients
defined AD:351, API:85, C:309, O:63, P:291, S:177
disconnecting C:101
displaying connected clients C:105
requirements for O:17
setting up AD:93

CIFS shares
accessing AD:203
creating AD:125, C:96
defined AD:351, API:85, C:309, O:63, P:291, S:177
deleting C:99
displaying connected clients C:105
displaying information about C:95
listing C:105
managing AD:125
mapping to a network drive AD:204
modifying C:107

class element P:261
class-name element P:279
classpath, configuring for JDBC drivers API:67
client attribute caching AD:336
client command C:45
client system properties AD:128
clients

about O:17
hardware and operating system requirements for O:16
message timeout properties for AD:133
setting size of write invalidation queue of cache for AD:136
setting system properties for AD:129
See also Avaki Studio, CIFS clients, command clients, NFS

clients, web clients, WS clients
code samples

ad-hoc queries API:74
data catalog API API:18
data services API API:35
database operations API API:42
Java data service plug-ins P:190
JDBC batch mode API:77
using JDBC drivers API:77

coherence window cache attribute C:291
coherence window property, remote AD:141
coherence windows for caching P:107
coherenceWindow element P:261
colors in Studio display, setting S:23
column-display-size element P:279
column-index element P:279
columns

aliasing P:25
combining with Projection operator S:46
from input elements, menus of S:71
from input result sets, accessing S:68
name property S:60
precision property S:61
scale property S:61
type property S:61

com.avaki.badPortCacheSize system property AD:141
com.avaki.badPortExpiration system property AD:141
com.avaki.cache.cacheDir system property AD:135
com.avaki.cache.maxReaderThreads system property AD:131
com.avaki.cache.writeInvalidationQueueSize system

property AD:136
com.avaki.content.encryptionLevel system property AD:139
com.avaki.dataservice.pluginCacheSize system

property AD:137
com.avaki.dataservice.styleSheetCachePoolSize system

property AD:137
com.avaki.dataservice.styleSheetCacheSize system

property AD:137
com.avaki.DBOProtocolSoTimeout system property AD:134
com.avaki.generatedXMLIndentSize AD:142
com.avaki.HttpPort system property AD:140
com.avaki.HttpsPort system property AD:140
com.avaki.jobStatusExpiration system property AD:145
com.avaki.lasInvoker.cacheSize system property AD:144
com.avaki.lasInvoker.poolSize system property AD:144
com.avaki.ldap.resultPageSize system property AD:145
com.avaki.maxActiveCachables system property AD:136
com.avaki.mux.channelSoTimeout system property AD:135
com.avaki.mux.connectTimeout system property AD:134
com.avaki.mux.maxParallelChannels system property AD:142
com.avaki.mux.maxWriteChunk system property AD:142
com.avaki.mux.sendBufferSize system property AD:143
com.avaki.proxy.retryDelay system property AD:133
com.avaki.proxy.retryTimeout system property AD:133
com.avaki.proxyIOProtocolSoTimeout system property AD:134
com.avaki.proxyKeepAliveParams system property AD:140
com.avaki.queryEngine.sortChunkSize AD:139
com.avaki.remoteconfig.coherenceWindow system

property AD:141
com.avaki.result.gcInterval system property AD:136
com.avaki.retryDelay system property AD:133
com.avaki.retryTimeout property AD:133
com.avaki.rmiRegistrySoTimeout system property AD:134
com.avaki.rpcTimeout system property AD:134
com.avaki.scheduleExclusionCacheExpiration system

property AD:145
Index-8 Master Index

P: Provisioning & Advanced Data Integration Guide S: Data Integration with Avaki Studio
com.avaki.scheduleExclusionCacheSize system

property AD:145
com.avaki.shareIOProtocolSoTimeout system property AD:134
com.avaki.shareReadBufferSize system property AD:138
com.avaki.shareReadbufPoolSize system property AD:138
com.avaki.shareServerCircularLinkChecking system

property AD:138
com.avaki.shareServerThreadPoolSize system property AD:138
com.avaki.vaultStateCacheSize system property AD:137
com.avaki.VirtualDbTableCacheSize system property AD:144
com.sybase.avaki.tdsPort system property AD:50, AD:145,

API:71
command clients

connecting C:45
defined AD:352, API:86, C:310, O:64, P:292, S:178
disconnecting C:45
installing in Windows AD:24
installing on Unix AD:18
obtaining information about C:45
setting up AD:94

commands
listing C:148
syntax conventions for AD:xv, C:xiv, P:x
viewing online usage information C:148

compatibility properties, setting for Windows 2003 AD:22
complex types API:12

AdHocDBOPExecutionParams API:13
AvakiPrincipal API:13
DataCatalogAttribute API:14
DataCatalogEntry API:15
DataCatalogPermission API:15
DataServiceExecutionParams API:16
DBOPExecutionParams API:16
SearchQuery API:17
SearchResult API:17

condition field for Iterator operators S:151
connect ports

default AD:6, AD:9, AD:10
defined AD:352, API:86, C:310, O:64, P:292, S:178
for DGAS C:224

changing AD:74
for GDCs C:127

changing AD:50
for grid servers C:226

changing AD:50
for proxy servers C:228

changing AD:300
for share servers C:229

changing AD:60
connectinfo.txt file AD:131
connection pooling S:36
connection properties

for JDBC drivers API:68
for XA drivers C:70, P:7, S:37

connection strings
for databases AD:3
for JDBC drivers API:71

connections in view models, creating S:57
console view S:22, S:50
conventions

for command syntax C:xiv
for commands AD:xv
for screen examples AD:xv, API:vi, C:xv, P:xi

cp command C:46
cron expressions in schedules AD:185, AD:267, AD:273
cron schedules

configuring C:297
values for C:298

cross-domain messaging
disabling AD:313
enabling AD:311

curly brackets in command syntax AD:xv, C:xv, P:xi
CurrentUser functions S:74
Custom operator S:111

example S:114
custom types API:12

D
data access O:11

using WS API API:2
data catalog

about O:27
defined AD:352, API:86, C:310, O:64, P:292, S:178
distribution among Avaki servers O:38
names of objects in O:24
organizing O:33

Avaki shares O:37
using categories O:36
using links O:36

ownership of objects in O:46
top-level directories O:32
types of entries O:6

data catalog API API:18
data catalog SOAP operations API:18

accessiblePath API:19
chmod API:19
chown API:20
fileRead API:21
fileReadAttach API:21
fileReadString API:22
fileWrite API:23
getAttributes API:23
getSystemAttributes API:24
getUserAttributes API:24
listDomains API:25
listSearches API:25
ls API:26
lsSize API:26
mkdir API:27
mkdirParents API:27
mkdirParentsServer API:28
mkdirServer API:29
mv API:29
permissions API:30
Master Index Index-9

AD: Administration Guide API: API Guide C: Command Reference O: Overture
data catalog SOAP operations (continued)

removeAttribute API:31
rm API:31
search API:32
setAttribute API:32
tester API:33
whoami API:33

data catalog view S:18
data expiration intervals P:108, S:51
data grid access servers

associating with cache services P:113
disabling auto-restart C:8
disassociating from cache services P:114
enabling auto-restart C:5
registering C:5
starting C:5, C:6
stopping C:7, C:8
unregistering C:8
See also DGAS

data grids
about O:1
defined AD:355, API:89, C:313, O:67, P:294, S:181
typical deployment O:17

data integration O:21, O:23
data integrity and HTTPS API:8
data representation O:11
data security O:10
data service plug-ins

about P:76, P:175
addInputParameter JavaScript method P:202
addInputStream JavaScript method P:202
build.xml file P:184, P:197
choice of Java, JavaScript, or XSLT P:176
closing streams P:186
command for generating C:187
configuring P:81
creating in Java with the Plug-in Wizard P:183
creating in JavaScript P:200
creating in XSLT P:180
DbopGroupWorkUnit class P:189
DbopPipeWorkUnit class P:190
defined AD:352, API:86, C:310, O:64, P:292, S:179
examples

DBOP and CSV merge Java plug-in P:193
distributed transaction Java plug-in P:191
rowset input and output Java plug-in P:192

Execute JavaScript function P:203
input sources and output streams P:177
InputSource interface P:186
JAR files for P:180
logging errors P:196
manifest files for P:180, P:197
modularity and reusability of P:175
parameters

about P:178
specifying for Java plug-ins C:188
specifying for XSLT plug-ins P:181

data service plug-ins (continued)
ParameterSpec interface P:187
Plugin interface P:186
prerequisites for writing in Java P:183
relationship to .js files in Studio S:11
RowSetFactory class P:188
setOutputStream JavaScript method P:202
StreamingRowSet interface P:187
using Java classes and interfaces in JavaScript plug-ins P:200
when to use P:78, S:3
XAWorkHandler class P:189
XAWorkUnit interface P:189

data service XML schema
class element P:261
coherenceWindow element P:261
dataService element P:262
description element P:263
initParameter element P:263
inputParameter element P:264
inputSource element P:265
inputStream element P:266
isList element P:266
jarurl element P:267
logicBox element P:268
name element P:269
outputStream element P:269
ref element P:270
target element P:270
type element P:270
urlLogicBox element P:271
value element P:272
values element P:272

data services
about O:8, O:23, P:49, P:74
adding schedule exclusions C:51
and distributed transactions P:78
caching of results O:57, P:77

permissions O:50
caching results S:51
calling via JDBC API:72
components of P:76
configuring caching P:108
created in Avaki Studio, limitations of P:78, S:3
creating C:52, P:80, P:207
defined AD:352, API:86, C:310, O:64, P:292, S:178
deleted, purging from cache C:26
deleting schedules C:54
dependencies for S:22
deploying from view models in Avaki Studio S:50
displaying dependency lists C:54
displaying information about C:57, S:20
displaying status of C:248
evicting from cache P:164
execution services, configuring AD:109
generating schema for C:55, P:98
generating SQL views from C:56, P:100
importing descriptors P:92
input parameters, configuring P:84
Index-10 Master Index

P: Provisioning & Advanced Data Integration Guide S: Data Integration with Avaki Studio
data services (continued)

input streams, configuring P:87
invalidating all in cache C:28
invalidating one in cache C:27
invalidating results in cache C:29
listing P:93
listing caching schedules for C:58
listing in cache P:163
location in categories S:18
marking for scheduled caching P:152
modifying C:58
modifying permissions AD:239
modifying settings P:94
names in data catalog O:24
nesting operations S:149
output streams, configuring P:86
provisioning web services as P:205
purging all from cache and unscheduling C:25
purging one from cache and unpinning C:24
qualified names for O:31
refreshing cached results C:32
removing P:103
rowsets as input of P:275
rowsets as output of P:274
running C:55
sample workflow for S:29
scheduling for caching C:48
schema P:257
searching for AD:233
setting cache sizes for plug-ins AD:137
setting up to run distributed transactions P:80
specifying grid servers P:213
specifying input parameters P:207
specifying input streams P:208
specifying output streams P:208
specifying plug-ins P:207
tagging for on-demand caching P:159
testing P:102, P:214
unscheduling P:164
using for distributed transactions O:25
viewing P:98
viewing dependencies P:97
writing your own vs. using Avaki Studio O:24
See also data service plug-ins
See also view models

data services API API:34
data services SOAP operations API:34

accessibleDS API:36
executeDS API:36
getDSOutput API:37
getDSOutputAttach API:38
getDSOutputString API:38
getDSParameters API:39
isDSAvakiXML API:40
listDSs API:40

data structures, SOAP complex types API:12
data type mappings for SQL views P:39

data types
for JDBC API:76
mapping

about type mapping files C:301
command to specify mapping file C:68
format of type mapping files C:301
inconsistencies C:302
logging of mapping decisions C:304
setting source data type C:302

specifying for ad-hoc query parameters C:65
specifying for database operation parameters C:85
specifying for parameters for ad-hoc queries on the virtual

database C:283
specifying for virtual database operation parameters C:88
See also type

database connectors
about O:22, P:3
adding groups P:16
adding users P:15
configuring advanced settings P:247
configuring JDBC driver JAR file path P:247
configuring permissions C:59, C:62
creating C:66, P:3, S:31
data type mappings for P:39
defined AD:353, API:87, C:311, O:65, P:293, S:179
deleting C:61
displaying information about C:64
displaying SQL views provisioned from C:73
editing S:38
executing ad-hoc queries C:63, C:66
finding in catalog S:38
getting information about through JDBC API:75
JDBC fetch size P:5
location in categories S:18
managing SQL views P:20
modifying C:66, P:8
provisioning SQL views from C:71
removing P:21
removing groups P:18
removing users P:18
searching for AD:233
setting JDBC fetch size S:36
testing C:72, P:19
viewing P:8
viewing associated database operations P:13

database drivers
copying during upgrade AD:341
tested with Avaki AD:3

database identity mappings P:6, S:36
about AD:176
adding C:252
deleting AD:183, C:253
displaying AD:180
listing C:255
modifying AD:182
setting up AD:177

database operation --list-schedules command C:88
Master Index Index-11

AD: Administration Guide API: API Guide C: Command Reference O: Overture
database operation SOAP operations API:40
database operations

about O:7, O:22, P:1
access permissions P:22
adding schedule exclusions C:76
allowing groups to create P:16
allowing users to create P:15
caching of results API:62, O:57

permissions O:50
calling with JDBC API:73
calling with ODBC, JDBC, or SOAP P:38
configuring advanced settings P:247
configuring batch mode settings P:250
configuring caching P:108
configuring permissions C:59, C:62
configuring SQL calls P:251
configuring timeouts P:253
creating C:83, P:22, S:38
defined AD:353, API:87, C:311, O:65, P:293, S:179
deleted, purging from cache C:26
deleting C:78
deleting schedules C:78
dependencies for S:22
displaying dependency lists C:79
displaying information about C:83, S:20
displaying status of C:248
evicting from cache P:150
executing P:36
exposing results as SQL view P:34
generating schema for C:80, P:31
generating SQL views from C:82
invalidating all in cache C:28
invalidating one in cache C:27
invalidating results in cache C:30
listing caching schedules for C:88
listing in cache P:148
location in categories S:18
managing P:21
managing metadata P:30
marking for scheduled caching P:139
modifying C:83, P:28
modifying permissions AD:239
names in data catalog O:24
parameter types, specifying C:85, C:88
preventing groups from creating P:18
preventing users from creating P:18
purging all from cache and unscheduling C:25
purging one from cache and unpinning C:24
qualified names for O:31
refreshing cached results C:32
removing P:38
removing SQL views generated from P:35
restricting row output P:248
rowsets as output of P:274
running C:80
sample XML schema P:280
scheduling for caching C:73
searching for AD:233

database operations (continued)
setting JDBC fetch size for P:254
setting permissions P:14
SQL statements in C:86
tagging for on-demand caching P:146
transactional behavior of P:79
unscheduling P:150
uses of P:2
viewing P:13, P:28
viewing dependencies P:32
viewing details about P:29
See also virtual database operations

database operations API API:40
database service SOAP operations

accessibleDBOp API:42
executeAdHocDBOp API:43
executeAdHocDBOpWithOutput API:44
executeAdHocDBOpWithOutputAttach API:46
executeAdHocDBOpWithOutputString API:47
executeDBOp API:48
executeDBOpBytesInput API:49
executeDBOpGridFileInput API:50
executeDBOpWithOutput API:50
executeDBOpWithOutputAttach API:52
executeDBOpWithOutputString API:53
getDBOpOutput API:54
getDBOpOutputAttach API:55
getDBOpParameters API:56
getDBOpSchema API:56
getDBOpSchemaAttach API:57
getDBOpSchemaString API:58
getOutputString API:55
getSQL API:58
listDBConns API:59
listDBOps API:59
listDBOpsByDBConn API:60

database, virtual, See virtual database
DatabaseAdministrators group O:44
DatabaseMetaData interface API:75
databases

Avaki tools for working with O:21
connecting to P:3
for Avaki servers, backing up C:23
protecting O:9
schemas, viewing P:9
supported for connecting to Avaki AD:3, AD:5

DataCatalogAttribute complex type API:14
DataCatalogEntry complex type API:15
DataCatalogPermission complex type API:15
DataProviders group O:44
dataservice --add-schedule command C:48
dataservice --create command C:52
dataservice --delete command C:52
dataservice --delete-schedule command C:54
dataservice --depends command C:54
dataService element P:262
dataservice --execute command C:55
dataservice --generate-sql view command C:56
Index-12 Master Index

P: Provisioning & Advanced Data Integration Guide S: Data Integration with Avaki Studio
dataservice --info command C:57
dataservice --list-schedules command C:58
dataservice --update command C:58
DataServiceExecutionParams complex type API:16
DB2, versions and JDBC drivers for use with Avaki AD:6
dbconn --allow-dbop-creation command C:59
dbconn --delete command C:61
dbconn --disallow-dbop-creation command C:62
dbconn --execute command C:63
dbconn --info command C:64
dbconn --jdbc command C:66
dbconn --provision-tables command C:71
dbconn --show-tables command C:73
dbconn --test command C:72
DBOPs, See database operations
dbop --add-schedule command C:73
dbop --delete command C:78
dbop --delete-schedule command C:78
dbop --depends command C:79
dbop --execute command C:80
dbop --generate-sql view command C:82
dbop --info command C:83
dbop --jdbc command C:83
dbop --jdbc --create-virtual-dbop command C:87
DBOPExecutionParams complex type API:16
DbopGroupWorkUnit class for data services P:189
DbopPipeWorkUnit class for data services P:190
db-path option (DGAS) AD:74
debug mode, enabling in an Avaki shell C:245
delimiter character for JDBC schema names API:69
Deny permission in ACL AD:243, O:47
dependencies S:22

defined AD:353, API:87, C:311, O:65, P:293, S:179
listing for data services C:54, P:97
listing for database operations C:79, P:32
listing for view generators C:272, P:228
listing for virtual database operations P:59

description element P:263
descriptors for data services P:92
development tools for web services

Apache Axis API:5
Microsoft Visual Studio API:5
SOAP::Lite API:5
VB .NET API:5

DGAS
about AD:62
adding user self mappings C:109
admission policies AD:332

about AD:85
adding AD:87, C:91
deleting AD:88, C:97
displaying C:114
displaying Windows domains for C:114

admission policies
setting defaults C:112
setting Windows domains for C:111
unsetting Windows domains for C:116

DGAS (continued)
changing permissions and ownership AD:334
CIFS access to data grid AD:338
clearing cached credentials AD:117, C:95
configuring associated cache service C:33
configuring location of internal caches AD:73
configuring to use nondefault ports AD:74, AD:75
configuring users and groups AD:67
connect port C:224
connecting to a domain AD:79, C:223
controlling cache size AD:124
create CIFS shares C:96
default name for AD:73
default users, groups, UIDs and GIDs AD:333
defined AD:352, API:86, C:310, O:64, P:292, S:178
deleting cached objects C:98
deleting CIFS shares C:99
deleting files and directories from cache AD:119
deleting user mappings C:111
destroying C:224
disconnecting CIFS clients C:101
displaying associated cache C:27
displaying cache size C:101
displaying cache statistics C:102
displaying connected CIFS clients C:105
displaying free disk space on cache machine C:102
displaying information about CIFS shares C:95
displaying property descriptions C:104
displaying property values C:103
dynamic and nondynamic properties AD:83
file locking in Unix, interference with AD:64
forcing cache to refresh AD:121
installing in Unix AD:18
installing in Windows AD:24
listing CIFS shares C:105
listing properties and their values C:103
managing cache AD:117
mappings

default, adding and displaying AD:71
for groups, adding AD:70, C:92
for groups, deleting C:99
for groups, displaying C:106
for users, adding AD:70, C:94
for users, deleting C:100
for users, displaying C:106
users and groups, per-DGAS AD:88
users, groups, and defaults, domain-wide AD:68

modifying CIFS shares C:107
NFS clients, not running with AD:64
NFS daemons, shutting down before running DGAS AD:66
per-DGAS user mappings AD:333
ports used by AD:9
preparing to start AD:65
properties file for AD:76, C:293
reading log properties C:107
releasing CIFS ports before running AD:66
resetting cache statistics C:108
Master Index Index-13

AD: Administration Guide API: API Guide C: Command Reference O: Overture
DGAS (continued)

restarting AD:84
saving a copy of the cache C:109
saving copies of cache AD:120
server logs AD:317
setting a cache service AD:90
setting location of state database AD:74
setting properties AD:82, C:113
setting up NFS clients AD:91
starting AD:73, C:104
stopping C:225
syncing cache AD:121
time required to upgrade AD:341
uncoupling associated cache C:34
unsetting properties C:117
viewing and resetting cache statistics AD:123
warming and updating the cache C:115
See also data grid access servers

dgas --add-admission-policy command C:91
dgas --add-group-mapping command C:92
dgas --add-user-mapping command C:94
dgas --cifs-share-info command C:95
dgas --clear-cached-credentials command C:95
dgas command

example AD:74
syntax AD:73

dgas --create-cifs-share command C:96
dgas --delete-admission-policy command C:97
dgas --delete-cache command C:98
dgas --delete-cifs-share command C:99
dgas --delete-group-mapping command C:99
dgas --delete-user-mapping command C:100
dgas --disconnect-cifs-client command C:101
dgas --get-cache-size command C:101
dgas --get-cache-statistics command C:102
dgas --get-free-disk-space command C:102
dgas --get-properties command C:103
dgas --get-property command C:103
dgas --get-property-list command C:104
dgas --initialize command C:104
dgas --list-cifs-clients command C:105
dgas --list-cifs-shares command C:105
dgas --list-group-mappings command C:106
dgas --list-user-mappings command C:106
dgas --modify-cifs-share command C:107
dgas --read-log-properties command C:107
dgas --register command C:5
dgas --reset-cache-statistics command C:108
dgas --save-cache command C:109
dgas --self-map C:109
dgas --self-unmap C:111
dgas --set-admission-policy-domain command C:111
dgas --set-default-admission-policy command C:112
dgas --set-property command C:113
dgas --show-admission-policies command C:114
dgas --show-admission-policy-domain command C:114
dgas --start command C:6

dgas --stop command C:7
dgas --sync-cache command C:115
dgas --unregister command C:8
dgas --unset-admission-policy-domain command C:116
dgas --unset-property command C:117
directories

adding schedule exclusions for caching C:121, C:125
adding to cache service C:122
Avaki directories, defined AD:349, API:83, C:307, O:61,

P:289, S:175
Avaki installation API:84, P:290, S:176
Avaki installation directory AD:350, C:308, O:62
changing C:41
changing ownership C:42
changing permissions for AD:239
copying AD:213, C:46
creating AD:208, C:167
deleted, purging from cache C:26
deleting AD:219, C:195
deleting caching schedules C:122
displaying name of current directory C:193
evicting from cache P:135
exporting from the data grid AD:125
home, creating AD:169
icon for O:29
invalidating all in cache C:28
invalidating from cache P:136
invalidating in cache C:27
linking AD:217, C:161
listing C:166
listing schedules C:126
listing those pinned for caching P:134
marking for no caching C:126, P:132
marking for scheduled caching P:120
moving AD:210, C:176
NFS-mounting AD:92
permissions in O:48
purging all from cache and unpinning C:25
purging from cache and unpinning C:24
refreshing in cache C:32
renaming AD:212
scheduling for caching C:117
searching for AD:233
setting ACLs for AD:171
shared, See Avaki shares
tagging for on-demand caching P:129
temp, setting for grid servers AD:135
top-level, described O:32
unscheduling from cache P:135

directory --add-schedule command C:117
directory --cache command C:122
directory --delete-schedule command C:122
directory --do-not-cache command C:126
directory --list-schedules command C:126
disk space

available, displaying for DGAS cache C:102
requirements for Avaki software AD:4, AD:16
Index-14 Master Index

P: Provisioning & Advanced Data Integration Guide S: Data Integration with Avaki Studio
distributed transactions

about O:25, P:78
API for executing P:188
configuring database connectors for P:7, S:36
defined AD:353, API:87, C:311, O:65, P:293, S:180
requirements for P:79
setting up P:80
supported DBMSes P:79
two-phase commit protocol P:79

DNS aliases for GDC machines AD:10
DNS name, setting for a server AD:32
document/literal web services API:3, API:5
documentation

Avaki, list of AD:xii, API:vi, C:xii, O:vi, P:viii, S:viii
for Eclipse Workbench S:12

domain --create command C:127
domain --disconnect command C:127
domain --info command C:128
domain --interconnect command C:128
domain names, defined AD:354, API:88, C:312, O:66, P:294,

S:180
Domain Users group in Active Directory C:155
domains, Avaki

creating C:127
defined AD:350, API:84, C:308, O:62, P:290, S:176
disconnecting C:127
displaying information about AD:98
getting information about through JDBC API:75
interconnecting AD:289, C:128
joining together AD:289
naming AD:41, AD:354, API:88, C:312, O:66, P:294, S:180
obtaining information about C:128
planning before install AD:1
providers and consumers AD:289
remote, logging in to AD:201
specifying for JDBC connections API:69

DomainUsers group O:44
downstream variables menu S:71
downstream, defined S:3
drivers, See JDBC drivers
drivers directory AD:341
dynamic and nondynamic properties (DGAS) AD:83
dynamic user mappings

creating C:109
deleting C:111

E
Eclipse Workbench S:12
EII, See enterprise information integration
elements

connecting S:57
descriptions of S:59
Input Source S:125
moving S:56

elements (continued)
names of S:58
operators S:5
properties dialogs S:58
Result S:164
selecting S:56
with red borders S:60

encryption and HTTPS API:8
encryption levels for Avaki shares

changing AD:279
displaying C:222
setting at share creation AD:261

encryption of grid objects AD:139
enterprise information integration, defined AD:354, API:88,

C:312, O:66, P:294, S:180
equal signs in command syntax AD:xvi, C:xvi, P:xii
error handling S:143
errors in view models S:60
everyone group O:44, O:48
examples

conventions used in C:xv
data catalog web service API:18
data services API API:35
database operations API API:42
web services clients

Java API:9
Perl API:9
VB .NET API:9

exclusions, See schedule exclusions
execute inputs in parallel field for Iterator operators S:151
Execute JavaScript function for data service plug-ins P:203
executeAdHocDBOp SOAP operation API:43
executeAdHocDBOpWithOutput SOAP operation API:44
executeAdHocDBOpWithOutputAttach SOAP

operation API:46
executeAdHocDBOpWithOutputString SOAP operation API:47
executeDBOp SOAP operation API:48
executeDBOpBytesInput SOAP operation API:49
executeDBOpGridFileInput SOAP operation API:50
executeDBOpWithOutput SOAP operation API:50
executeDBOpWithOutputAttach SOAP operation API:52
executeDBOpWithOutputString SOAP operation API:53
executeDS SOAP operation API:36
execution services

about AD:109, P:77, S:51
configuring AD:109, C:129
configuring threads for AD:131
defined AD:354, API:88, C:312, O:66, P:294, S:180
displaying information about C:129

executionservice --info command C:129
executionservice --set command C:129
executionServiceHint JDBC property API:70
exiting from an Avaki session C:165
expressions in operators S:4
expressions menu, using S:71
externalCacheService JDBC property API:62, API:70
Master Index Index-15

AD: Administration Guide API: API Guide C: Command Reference O: Overture

F
failover

defined AD:354, API:88, C:312, O:66, P:294, S:180
managing AD:112
setting up a secondary GDC AD:43

fake_metadata JDBC connection property for ASE API:70
FAKE_METADATA JDBC property for ASE AD:7
federated data access AD:354, API:88, O:66, P:294, S:181
fetch size, See JDBC fetch size
file --add-schedule command C:130
file --cache-on-demand command C:134
file --delete-schedule command C:135
file --do-not-cache command C:136
file --list-schedules command C:136
file locking AD:64

suppressing in NFS mount command AD:93
file --pin command C:137
file size attribute C:290
fileRead SOAP operation API:21
fileReadAttach SOAP operation API:21
fileReadString SOAP operation API:22
files

.amm files S:11

.avm files S:11

.js JavaScript files S:11

.jsi JavaScript include files S:11, S:75
sample S:115

adding schedule exclusions for caching C:133, C:140
Avaki_JDBCStandAlone.jar API:66
Avaki_JDBCStandAlone_Minus3rd.jar API:66
avaki_studio.properties AD:129
AvakiAPI.disco WSDL discovery file API:3
AvakiAPIDocLit.wsdl API:3
AvakiAPIRpcEnc.wsdl API:3
AvakiAPIWithMIMEDocLit.wsdl API:3
AvakiAPIWithMIMERpcEnc.wsdl API:3
avakijdbc.properties API:67
bindings.xml

copying during upgrade AD:344
on grid servers AD:50
on proxy servers AD:300
on share servers AD:59

build.xml for data service plug-ins P:184, P:197
cached, permissions on O:50
caching of O:56
changing ownership C:42
changing permissions for AD:239
clearing locks C:163
configuring caching P:107
configuring encryption level C:216
connectinfo.txt AD:131
copying AD:213, C:46
copying locally AD:215
data type mapping

about C:301
command to specify location C:68
format of C:301

deleted, purging from cache C:26
deleting AD:219, C:195
deleting pin schedules for C:135
DGAS properties AD:76
dgas_log.xml, DGAS log properties file AD:317
displaying C:35
evicting from cache P:135
for data service plug-ins P:180
icon for O:29
in the data grid O:8
install.exe AD:22, AD:24
invalidating all in cache C:28
invalidating one in cache C:27, P:136
JAR files for data service plug-ins P:180
jboss-service.xml, request log properties file AD:328
jdbc-log4j.properties API:66
join.properties file on proxy servers AD:300
krb5.conf AD:152
linking AD:217, C:161
listing C:166
listing locks C:164
listing schedules C:136
listing those pinned for caching P:134
log4j.xml,

Avaki Studio log properties file AD:317
server log properties file AD:317

manifest files for data service plug-ins P:180, P:197
marking for no caching C:136, P:132
marking for scheduled caching P:120
moving AD:210, C:176
permissions on new files O:49
pinning for scheduled caching C:137
properties files for DGAS C:293
purging all from cache and unpinning C:25
purging from cache and unpinning C:24
readme AD:12, AD:15, AD:339
refreshing in cache C:32
renaming AD:212
rendering results into O:25
scheduling for caching C:130
searching for AD:233
shareserver.ports

on grid servers AD:50
on share servers AD:60

system.properties AD:129
tagging for on-demand caching C:134, P:129
temporary, for sorting large result sets S:76
unscheduling cached files P:135
uploading to the data catalog AD:282
Workbench .project S:11

fileWrite SOAP operation API:23
Firefox

version requirements AD:5
setting for selecting run-as users P:27, P:54, P:92, P:224,

P:227
fonts in Studio display, setting S:23
Index-16 Master Index

P: Provisioning & Advanced Data Integration Guide S: Data Integration with Avaki Studio
functions

in expressions S:73
used with Aggregate operator S:110

G
garbage collection for views C:273
GDCs, See grid domain controllers
generated views

about O:25, P:217, P:240
defined AD:354, API:88, C:312, O:66, P:294, S:181
running P:240
scheduling updates P:231
transactional consistency of P:217

GeneratedViews directory O:33
generating schemas S:19
Generator operator S:117
getAttributes SOAP operation API:23
getCatalogs method API:75
getCatalogTerm method API:75
getDBOpOutput SOAP operation API:54
getDBOpOutputAttach SOAP operation API:55
getDBOpParameters SOAP operation API:56
getDBOpSchema SOAP operation API:56
getDBOpSchemaAttach SOAP operation API:57
getDBOpSchemaString SOAP operation API:58
getDSOutput SOAP operation API:37
getDSOutputAttach SOAP operation API:38
getDSOutputString SOAP operation API:38
getDSParameters SOAP operation API:39
getOutputString SOAP operation API:55
getSchemas method API:75
getSchemaTerm method API:75
getSQL SOAP operation API:58
getSystemAttributes SOAP operation API:24
getUserAttributes SOAP operation API:24
GIDs, configuring AD:68, C:217, C:221
Global Parameters menu S:71
grid directories, See directories, Avaki
grid domain controllers

backing up and restoring AD:113
creating C:127
defined AD:355, API:89, C:313, O:67, P:295, S:181
DNS aliases for AD:10
loading AD:14
ports used by AD:6, AD:8
primary AD:355, API:89, C:313, O:67, P:295, S:181
secondary AD:43
starting AD:14
stopping AD:38, C:11
stopping and restarting GDCs registered as services AD:39

grid domains
See domains, Avaki

grid servers
associating with caches P:111
backing up and restoring AD:113
choosing for web services API:5
configuring AD:48, AD:52

grid servers (continued)
configuring associated cache service C:33
configuring cache service threads AD:131
configuring nondefault ports AD:50
connecting C:225
connection info, setting S:23
defined AD:355, API:89, C:313, O:67, P:295, S:181
destroying C:226
disabling auto-restart on C:12
disassociating from caches P:112
displaying associated cache C:27
displaying status of operations on C:248
enabling auto-restart C:9
finding connect ports AD:53
finding server names AD:53
installing JDBC drivers on AD:49
monitoring AD:99
obtaining upgrade information C:250
ports used by AD:6, AD:8
registering C:9
request logs for AD:327
server logs AD:317
settable attributes of C:290
setting location of temp directory for AD:135
setting plug-in cache size properties AD:137
setting up command clients on AD:94
starting AD:50, C:9, C:10
stopping AD:51, C:11, C:12, C:227
stopping and restarting AD:52
time required to upgrade AD:340
uncoupling associated cache C:34
unregistering C:12
upgrading C:249

grid user accounts, See users
grid-server --register command C:9
grid-server --start command C:10
grid-server --stop command C:11
grid-server --unregister command C:12
group --add --user command C:138
Group By operator S:76, S:121
group --create command C:141
group --delete command C:143
group --delete --user command C:144
group --info command C:145
group --list-user command C:147
group mappings, adding for a particular DGAS C:92
groups

about O:43
activating privileges for newly added users AD:192, AD:243
adding to ACLs AD:243, S:97
adding users to AD:191, C:138
Administrators AD:45, O:43
configuring default mappings C:218
creating AD:191, C:141
DatabaseAdministrators O:44
DataProviders O:44
default grid groups O:43
default groups for DGAS AD:333
Master Index Index-17

AD: Administration Guide API: API Guide C: Command Reference O: Overture
groups (continued)

defined S:176
deleting AD:198, C:143
deleting users from C:144
displaying information about AD:195, C:145
enabling interconnection access AD:304
everyone group O:44
imported groups O:43

from LDAP AD:159
from NIS AD:165
refreshing AD:195

in Avaki, defined AD:350, API:84, C:308, O:62, P:290
listing C:144
listing users in C:147
making account changes take effect immediately for DGAS

access AD:117
MessagingUsers O:44
modifying AD:195
removing from ACLs AD:242
removing users from AD:193
setting up for DGAS AD:67
UserAdministrators AD:45, O:44
using in ACLs for cached objects O:50

H
hard links

about O:36
broken, to generated views P:240
creating AD:217, C:161
defined AD:355, API:89, C:313, O:67, P:295, S:182

hardware requirements for Avaki AD:2
help command C:148
help, online, for command line AD:xiii, C:xiii, P:ix
hideCatalogs JDBC property API:70
home directories AD:169
host names

aliasing for GDCs AD:10
setting for servers AD:32

HTTP and HTTPS ports
default AD:8, AD:9, AD:10
properties for AD:140

HTTP and web services API:7, API:8
HTTP POST problem in web browsers AD:5
HTTP request logs, See request logs
HTTPS and web services API:7, API:8
hyphens in command syntax AD:xvi, C:xvi, P:xii

I
IATEMPDIR environment variable AD:16
IBM AIX O:16
IBM AIX requirements AD:3
IBM DB2, versions and JDBC drivers for use with Avaki AD:6
icons for grid objects in the data catalog O:29
id command C:149
identity mapping P:6, S:36
imported groups, See groups

imported user accounts AD:167
increment field for Iterator operators S:151
indent size property for XML files AD:142
initialize field for Iterator operators S:151
initParameter element P:263
inner join S:156
input parameters

creating P:88
for data services

configuring P:84
deleting P:86

Input Source element S:125
input sources

accessing columns from S:68
browsing for in data catalog view S:18
configuring for view models in Avaki Studio S:43
creating S:55
error handling S:143
finding S:18

input streams, for data services, configuring P:87
inputParameter element P:264
inputSource element P:265
InputSource interface for data services P:186
inputStream element P:266
installation directory AD:350, API:84, C:308, O:62, P:290,

S:176
installing Avaki

about AD:13
in Unix AD:16
in Windows AD:23
preparation and planning AD:1
system requirements AD:2

integration, See data integration
interconnection IDs

creating AD:295, C:149
using in permissions AD:304, C:43
using to provide cross-domain data access AD:295

interconnections between grid domains
about AD:289
breaking C:127
creating AD:291
defined AD:355, API:89, C:313, O:67, P:295, S:182
disconnecting domains AD:314
enabling access AD:299
prerequisites for AD:94
setting up C:128
two-way, exposing users AD:308
user access methods AD:294
viewing interconnected domains AD:310

Interconnects directory O:33
Internet Explorer

Avaki version requirements AD:5
setting for selecting run-as users P:27, P:54, P:92, P:224,

P:227
Intersection operator S:148

performance S:76
IP address, setting for a server AD:32
isDSAvakiXML SOAP operation API:40
Index-18 Master Index

P: Provisioning & Advanced Data Integration Guide S: Data Integration with Avaki Studio
isList element P:266
Iterator operator S:149

example S:152

J
JAR files

for Avaki JDBC driver API:66
configuring path for second JAR on one grid server P:247

for data service plug-ins P:180
for jConnect API:67

jarurl element P:267
Java

data service plug-in code samples P:190
sample web services client API:9
writing data service plug-ins in P:183

Java transformers
error logging P:246
implementing P:243
installing P:245
referring to other documents P:245
using P:245

java.io.tmpdir system property AD:135
java.protocol.handler.pkgs system property AD:141
java.rmi.server.hostname system property AD:32
java.security.krb5.conf system property AD:143, AD:153
java.security.krb5.kdc system property AD:153
java.security.krb5.realm system property AD:153
java.sql.DatabaseMetaData interface API:75
Javadoc, Avaki, accessing P:185
JavaScript

files S:11
include files S:11, S:75

sample S:115
methods on data service plug-in objects P:201
resources for learning about S:67
using Java classes and interfaces in data service plug-

ins P:200
writing data service plug-ins in P:200

JavaScript expressions
about S:4, S:66
menu for constructing S:71
uses of in Avaki Studio S:vii

jConnect, See JDBC drivers
JDBC

accessing data catalog through O:24
and caching of database operation results API:62
connection properties API:68
data types API:76
directing queries to a particular grid server API:70
result set types API:75

JDBC drivers
about API:61
Avaki

choosing version of API:66
connection properties API:68
JAR files for API:66

JDBC drivers (continued)
Avaki

setting classpath for API:67
when to use API:65

batch mode API:77
choosing API:65
configuring for a database connector P:5
configuring two versions on one grid server P:247
connection strings API:71
defined AD:356, API:90, C:314, O:68, P:295, S:182
for supported DBMSes AD:3
installing AD:49
jConnect

changing default port API:71
setting classpath for API:67
using with Sybase databases AD:6
when to use API:65

loading API:68
prerequisites for using API:64
sample code API:77
setting system properties for API:67
supported features API:74

JDBC fetch size
setting for database connectors P:5, S:36
setting for database operations P:254

JDBC schema names API:69
jdbc-log4j.properties file API:66
join algorithms S:155
Join operator S:154

in tutorial S:44
performance S:76

join types S:156
join.properties file on proxy servers AD:300
JRE versions supported by Avaki AD:5

K
keepalive properties for HTTP ports AD:140
Kerberos

configuring with LDAP authentication services AD:152
system properties for AD:143

krb5.conf Kerberos configuration file AD:152

L
last access time file attribute C:290
LBF AD:280
LDAP

authentication services AD:148
See also authentication services, LDAP

authentication through DGAS AD:86
configuring for Kerberos access AD:152
disabling import on login AD:157
host port, default and nondefault AD:149
importing users on login AD:157
specifying a nondefault host port C:158

ldap --add-schedule command C:149
Master Index Index-19

AD: Administration Guide API: API Guide C: Command Reference O: Overture
ldap --delete command C:153
ldap --delete-schedule command C:154
ldap --import command C:155
ldap --info command C:157
ldap --integrate command C:157
ldap --list-schedules command C:158
ldap --searchbase command C:160
ldap --update command C:160
links

command for creating C:161
uses of in data catalog O:36
See also hard links, soft links

Linux requirements AD:3
listDBConns SOAP operation API:59
listDBOps SOAP operation API:59
listDBOpsByDBConn SOAP operation API:60
listDomains SOAP operation API:25
listDSs SOAP operation API:40
listSearches SOAP operation API:25
ln command C:161
load balancing factor for share servers AD:280, C:244
local caches AD:356, API:90, C:314, O:14, O:68, P:296, S:182
locks command C:163
locks on files

clearing C:163
obtaining a list C:164

log properties file, sample AD:323
log4j AD:318, P:196
logging

audit logs AD:108
categories of loggable events AD:318
configuring audit logging AD:319
for data service plug-ins P:196
for JDBC API:66
for TrAX transformers P:246
for type mapping C:304
HTTP request logs AD:108
log4j properties files for servers and Studio AD:317
properties files for request logs AD:327
viewing the server log AD:107

logging in AD:199, C:164
logical operators S:72
logical operators in searches AD:234
logicBox element P:268
login command C:164
login info, setting S:23
logout command C:165
ls command C:166
ls SOAP operation API:26
lsSize SOAP operation API:26

M
manifest files for data service plug-ins P:180, P:197
mappings

between Avaki and local users/groups for DGAS AD:68
between Avaki users and database users, See database identity

mappings

mappings (continued)
database identity

adding C:252
deleting C:253
listing C:255

default, setting up AD:71
DGAS default AD:69, C:220
DGAS domain-wide

for groups, setting up AD:70
for users, setting up AD:70
users, groups, and defaults AD:68

DGAS dynamic C:109
for data types in SQL views C:68, C:301
for users and groups for DGAS C:94, C:109
per-DGAS

adding for groups C:92
adding for users C:94
deleting C:100
deleting for groups C:99

per-DGAS, users and groups AD:88
self mappings for users C:109
See also data type mappings

maximum concurrent data services setting for execution
services AD:109

memory requirements for Avaki software AD:3
message tests in monitor services AD:101
message timeout properties for Avaki servers and

clients AD:133
MessagingUsers group and user accounts O:44
metadata O:13, S:3
Metadata directory O:33
metadata models

about S:77
creating S:84
defined AD:356, API:90, C:314, O:68, P:296, S:182
deleting S:94
deploying C:285, S:91
deriving S:92
editing S:84
files associated with S:11
importing S:79
mapping to Avaki objects S:88
naming scheme S:91
undeploying C:286, S:94

Microsoft SQL Server, versions and JDBC drivers for use with
Avaki AD:6

Microsoft Visual Studio API:5
MicroSoft Windows O:16
MIME in Avaki web services API:3
minus signs in command syntax AD:xvi, C:xvi, P:xii
mkdir command C:167
mkdir SOAP operation API:27
mkdirParents SOAP operation API:27
mkdirServer SOAP operation API:29
mkdorParentsServer SOAP operation API:28
models, See metadata models and view models
modification time file attribute C:290
Index-20 Master Index

P: Provisioning & Advanced Data Integration Guide S: Data Integration with Avaki Studio
monitor --add command C:167
monitor --clear command C:168
monitor --create command C:170
monitor --delete command C:171
monitor --list command C:172
monitor --result command C:172
monitor services
monitor --start command C:173
monitor --stop command C:174
monitoring

about AD:99
adding tests C:167
configuring AD:101
creating monitor services C:170
deleting monitor services AD:106, C:171
deleting tests AD:105
disabling and enabling tests AD:104
listing active tests C:172
logging AD:107
message tests AD:101
ping tests AD:100
removing tests C:168
restarting tests AD:105, C:173
stopping tests AD:105, C:174
viewing results AD:103, C:172

mount port for DGAS AD:81
mount protocol port, default AD:9
Mozilla, Avaki version requirements AD:5
Multiplexer operator S:157
multiplexing socket properties AD:142
mv command C:176
mv SOAP operation API:29
MySQL

configuring XA driver for P:7, S:36
versions and JDBC drivers for use with Avaki AD:6

N
name element P:269
name property for columns S:61
names of Avaki objects

about O:29
avoiding underscores in when using BusinessObjects API:81
case sensitivity and restrictions AD:206
changing AD:212
metadata models and mapped tables S:91
of elements S:58
qualified names O:30
restrictions on AD:41
three-part O:24

navigator in Studio S:17
nesting operations in data services S:149
.NET, See .NET under Symbols at the beginning of the index
Netscape requirements AD:5
NFS

and permissions AD:12
configuring NFS port for DGAS AD:81

NFS (continued)
port, default AD:9
shutting down before starting a DGAS AD:65

NFS clients
attribute caching for AD:336
defined AD:356, API:90, C:314, O:68, P:296, S:183
older, accessing data grid through AD:337
requirements for O:16
setting up AD:91

NFS URLs AD:93
NIS

disabling import on login AD:163
importing users on login AD:163
See also authentication services, NIS

nis --add-schedule command C:177
nis --delete command C:181
nis --delete-schedule command C:181
nis --import command C:182
nis --info command C:183
nis --integrate command C:184
nis --list-schedules command C:184
nis --update command C:185
NLM AD:64
NLM protocol port, default AD:9
notifications, See update notifications

O
object host name grid server attribute C:290
octothorpe AD:33, AD:129
ODBC

accessing data catalog through O:24
defined AD:356, API:90, C:314, O:68, P:296, S:183
support for API:80

ODBC drivers, using with Avaki API:80
offline expiration cache attribute C:291
on-demand caching

about P:119
defined AD:357, API:91, C:315, O:69, P:296, S:183
of database operation and data service results O:57, P:108
of files O:56, P:107

online help for command line AD:xiii, C:xiii, P:ix
operating systems supported by Avaki O:16
operations, monitoring AD:99
operators

about S:5
adding to a view model S:55
Aggregate S:108
connecting S:57
Custom S:111
descriptions of S:59
Generator S:117
Group By S:121
in searches AD:234
Input Source S:125
Intersection S:148
Iterator S:149
Join S:154
Master Index Index-21

AD: Administration Guide API: API Guide C: Command Reference O: Overture
operators (continued)

logical, in expressions S:72
moving S:56
Multiplexer S:157
names of S:58
Order By S:159
performance considerations S:5
Projection S:161
properties dialogs S:58
Result S:164
Select S:165
selecting S:56
sort-based, performance of S:76
Splitter S:166
Union S:168
Update S:169
with red borders S:60

Oracle 10g
configuring XA driver for P:7, S:36
versions and JDBC drivers for use with Avaki AD:6

Order By operator S:159
performance S:76

os arch grid server attribute C:290
os name grid server attribute C:290
outer-full join S:156
outer-left join S:156
outer-right join S:156
output streams, for data services, configuring P:86
outputStream element P:269
ownership of objects in the data catalog

about O:46
setting AD:242

P
palette in Avaki Studio view model editor S:20, S:54
parameters

accessing in expressions S:71
adding S:64
deleting S:65
displaying S:63
for data service plug-ins

about P:178
specifying for Java plug-ins C:188
specifying for XSLT plug-ins P:181

for testing view models S:50
in Avaki Studio, about S:4
input, for data services, configuring P:84
mapping input parameters S:144
modifying S:65
reordering S:65
validating S:64

ParameterSpec interface for data services P:187
passwords

changing AD:175, C:185
specifying for JDBC connections API:69

patches, settable attributes of C:290

performance S:5, S:76
benefits of caching O:54
tracking, enabling in an Avaki shell C:245

Perl, sample web services client API:9
permissions

about O:45
changing AD:239, C:41
granted by grid groups O:43
hiding objects with O:49
on new Avaki shares AD:261
on shared data AD:12
setting in ACLs S:97
values for AD:242, O:47
viewing for Avaki services C:186
See also ACLs

permissions command C:186
permissions SOAP operation API:30
perspectives in Avaki Studio

Avaki S:13
defined S:12
Resource S:11

pin for caching, defined AD:357, API:91, C:315, O:69, P:297,
S:183

ping tests in monitor services AD:100
planning an Avaki deployment AD:1
platforms supported by Avaki O:16
plugin command P:184
plugin --generate command C:187
Plugin interface for data services P:186
Plug-in Wizard and creating data service plug-ins P:183
plug-ins, See data service plug-ins
plus signs in command syntax AD:xvi, C:xv, P:xi
ports

bad port cache AD:141
changing, See ports, nondefault
CIFS, releasing before running a DGAS AD:66
default, for Avaki servers AD:6
HTTP and HTTPS, See HTTP and HTTPS ports
LDAP host

default and nondefault AD:149
specifying C:158

NFS, default AD:9
nondefault

configuring for DGAS AD:74, AD:75
configuring for grid servers AD:50
configuring for proxy servers AD:300
configuring for share servers AD:59

RMI, See RMI ports
SMB, default AD:9
specifying in WSDL API:6
SSL, See SSL ports
TDS AD:8, AD:50, AD:145, API:71

ports, connect, See connect ports
POST problem in web browsers AD:5
precision property for columns S:61
preferences for Avaki Studio, setting S:23
primary GDCs AD:357, C:315, O:69
Index-22 Master Index

P: Provisioning & Advanced Data Integration Guide S: Data Integration with Avaki Studio
privacy and HTTPS API:8
Projection operator S:161

in tutorial S:46
projects

creating S:13
defined S:12

properties
cache sizes for data service plug-ins AD:137
DGAS

configuring AD:82
controlling cache size AD:124
displaying AD:124, C:103
displaying descriptions C:104
listing C:103
properties file C:293
setting C:113
unsetting C:117

for cache services AD:135
for encryption of grid objects AD:139
for HTTP and HTTPS ports AD:140
for HTTP keepalives on proxy servers AD:140
for JDBC clients AD:128
for JDBC connections API:68
for Kerberos AD:143
for multiplexing sockets AD:142
for remote object stub cache AD:144
for schedule exclusion cache AD:144
for server request logs AD:327
for servers acting as clients AD:128
for share servers AD:138
for virtual database table cache size AD:144
for XA connections C:70, P:7, S:37
Java system properties, providing to JDBC driver API:67
JDBC, specifying for a database connector C:67
Kerberos default realm AD:153
Kerberos key distribution center AD:153
location of Kerberos configuration file AD:153
message timeouts for Avaki servers and clients AD:133
remote coherence window for configurations AD:141
setting server’s host name or IP address AD:33
system. See system properties.
views

displaying C:274
setting C:275

XML indent size AD:142
properties dialog boxes S:58
provisioning data O:21
proxy --add command C:191
proxy --delete command C:191
proxy --list command C:192
proxy routing tables

about AD:289
configuring AD:292, C:191
displaying C:192

proxy servers
about AD:289
configuring AD:299
configuring nondefault ports AD:300
connecting C:228
defined AD:357, API:91, C:315, O:69, P:297, S:183
deleting from the routing table C:191
destroying C:228
disabling auto-restart C:14
enabling auto-restart AD:300, C:12
finding connect port numbers AD:303
finding server names AD:303
installing in Windows AD:24
installing in Unix AD:18
ports used by AD:10
registering for auto-restart AD:302, C:12
request logs for AD:327
server logs for AD:317
setting HTTP keepalive properties for AD:140
setting up C:191
starting AD:301, C:12, C:13
stopping C:14, C:228
stopping and restarting AD:301
time required to upgrade AD:341
unregistering C:14
when to deploy AD:290

proxy-server --register command AD:302, C:12
proxy-server --start command C:13
proxy-server --stop command C:14
proxy-server --unregister command C:14
pwd command C:193

Q
qualified names

about O:30
for data services, specifying API:35, C:51, C:267
for database connectors, specifying C:254
for database operations, specifying C:25, C:264
for groups, specifying C:43, C:142, C:145, C:147, C:148
for users, specifying C:42, C:53, C:60, C:86, C:89, C:141,

C:145, C:165, C:251, C:266, C:280
queries, See ad-hoc queries
query engine

defined AD:357, API:91, C:315, O:69, P:297, S:184
mapping data types for C:301
sort chunk size property AD:139

queryCacheTTL JDBC property API:71

R
RAM requirements for Avaki software AD:3
range input for Iterator operators S:151
readme file AD:12, AD:15, AD:339
red borders on operators in Studio S:60
Red Hat Linux requirements AD:3
ref element P:270
Master Index Index-23

AD: Administration Guide API: API Guide C: Command Reference O: Overture
refresh schedules

for Avaki shares AD:266, C:231
advanced AD:272
calendared AD:271
exclusions for AD:274
listing C:239
one-time AD:269
periodic AD:270
removing AD:278, C:236

for data services P:152
advanced P:157
calendared P:155
one-time P:155
periodic P:157

for database operations P:139
advanced P:144
calendared P:142
one-time P:142
periodic P:144

for files or directories P:120
advanced P:127
calendared P:125
one-time P:125
periodic P:127

for generated views P:231
advanced P:236
calendared P:234
one-time P:233
periodic P:236

for LDAP authentication services AD:185
for virtual database operations P:139

advanced P:144
calendared P:142
one-time P:142
periodic P:144

refreshing users on login AD:149
reindex interval for search services AD:232
remote caches AD:357, API:91, C:315, O:14, O:69, P:297,

S:184
removeAttribute SOAP operation API:31
replica --add command C:193
replica --config command C:193
replica --delete command C:194
replica --info command C:194
replica --synch command C:195
request logs

configuring AD:327
viewing AD:108

requirements, pre-installation AD:2
Result element S:164
result sets

accessor functions S:73
combining S:44
large, providing space for sorting S:76
types in JDBC API:75

rm command C:195
rm SOAP operation API:31
RMI ports

default AD:8, AD:9, AD:10
linked to grid server connect ports AD:50
linked to share server connect ports AD:60

routing tables, configuring AD:292, C:191
row-level access control S:74
RowSetFactory class for data services P:188
rowsets O:11, P:273
rpc/encoded web services API:3, API:5
rpcinfo command AD:66
Rudi port AD:352, C:310, O:64
run-as users, See users and user accounts

S
Saxon C:265, C:268, C:271, P:220, P:224, P:227
scale property for columns S:61
schedule --delete command C:196
schedule exclusions

about AD:274, P:166
adding for Avaki share rehashes C:234
adding for data services C:51
adding for directories C:125
adding for files C:133, C:140
adding for LDAP authentication services C:152
adding for NIS authentication services C:180
adding for views C:262
adding to Avaki directories C:121
adding to database operations C:76
applying to schedule entries P:168
caching properties for AD:144
configuring AD:274, P:166
creating custom C:198
creating daily C:199
creating monthly C:201
creating weekly C:203
creating yearly C:205
defined AD:358, API:92, C:316, O:70, P:298, S:184
deleting C:207
displaying information about C:208, P:171
listing names C:209

schedule --info command C:197
schedule --list command C:197
schedule --print-iterations command C:198
scheduled caching

about P:119
defined AD:357, API:91, C:315, O:69, P:297, S:184
of database operation and data service results O:59, P:109
of files O:57, P:107

scheduleexclusion --create --custom command C:198
scheduleexclusion --create --daily command C:199
scheduleexclusion --create --monthly command C:201
scheduleexclusion --create --weekly command C:203
scheduleexclusion --create --yearly command C:205
scheduleexclusion --delete command C:207
scheduleexclusion --info command C:208
Index-24 Master Index

P: Provisioning & Advanced Data Integration Guide S: Data Integration with Avaki Studio
scheduleexclusion --list command C:209
schedules

adding for data services C:48, P:152
adding for database operations C:73, P:139
adding for directories C:117
adding for files C:130
adding for LDAP user importation C:149
adding for NIS user importation C:177
adding for views C:259
adding for virtual database operations P:139
creating cron specifications C:297
creating custom exclusions C:198
creating daily exclusions C:199
creating monthly exclusions C:201
creating weekly exclusions C:203
creating yearly exclusions C:205
cron expressions in AD:185, AD:273
deleting C:196
deleting exclusions C:207
deleting for data services C:54
deleting for database operations C:78
deleting for directories C:122
deleting for files C:135
deleting for LDAP user importation C:154
deleting for NIS user importation C:181
deleting for views C:272
displaying exclusion information C:208
displaying information about C:197
exclusions, see also schedule exclusions
execute permissions required O:59
for refreshing LDAP authentication services AD:185
for view generators and generated views P:231
listing C:197
listing execution times C:198
listing for data services C:58
listing for database operations C:88
listing for directories C:126
listing for files C:136
listing for LDAP authentication services C:158
listing for NIS authentication services C:184
listing for views C:274
listing names of exclusions C:209
refresh, See refresh schedules
types of AD:185, AD:267

schemas
about S:3, S:60
enabling browsing on a database connector P:4
expressed in metadata models S:77
for Avaki data services API:75
for operators, column properties of S:60
for virtual database operations and their SQL views API:75
for virtual database operations, generating P:57
generating S:19
generating for data services C:55, P:98
generating for database operations C:80, P:31
getting information about through JDBC API:75
getting via JDBC API:75

schemas (continued)
JDBC schema names API:69
modifying S:161
types in Avaki domains P:51, P:64
viewing for databases P:9
See also metadata models

search (execute) command C:211
search --create command C:209
search --delete command C:210
search --get-rehash-level command C:212
search --info command C:214
search --rehash command C:215
search --set-rehash-level command C:215
search SOAP operation API:32
searches O:13

configuring rehash intervals C:215
creating search services AD:231, C:209
deleting AD:236
deleting search services C:210
displaying search service information C:214
performing AD:233, C:211
rehashing search services C:215
reindex interval, setting AD:232
viewing rehash intervals C:212

SearchQuery complex type API:17
SearchResult complex type API:17
secondary GDCs AD:43

adding C:193
deleting C:194
forcing updates C:195
setting refresh intervals C:193
setting update interval C:195
viewing C:194
See also grid domain controllers

security
.NET API:9
about O:10
ACLs O:45
authentication O:41
configuring encryption levels C:216
displaying encryption levels C:222
for web clients API:8
HTTPS API:8
setting permissions C:41
SSL certificates API:8
user accounts and groups O:43
viewing permissions C:186

security --config command C:216
security --default-gid command C:217
security --default-group command C:218
security --default-uid command C:219
security --default-user command C:220
security --gid command C:221
security --info command C:222
security --uid command C:222
Select operator S:165
server connect ports, See connect ports
server --dgas --connect command C:223
Master Index Index-25

AD: Administration Guide API: API Guide C: Command Reference O: Overture
server --dgas --destroy command C:224
server --dgas --stop command C:225
server --grid --connect command C:225
server --grid --destroy command C:226
server --grid --stop command C:227
server logs

configuring AD:317
viewing AD:107

server --proxy command C:228
server --share --connect command C:228
server --share --disconnect command C:229
server --share --stop command C:230
servers, backing up databases for C:23
servers, Avaki

defined AD:350, API:84, C:308, O:62, P:290, S:176
displaying software version of AD:99
finding names of AD:131
in a typical deployment O:18
monitoring AD:99
ports used by AD:6
problems communicating with AD:32
setting cache service properties for AD:135
setting host name or IP address to advertise AD:32
setting message timeout properties for AD:133
See also DGAS, grid domain controllers, grid servers, share

servers, and proxy servers
servers, proxy, See proxy servers
services, Avaki

copying C:46
defined AD:358, API:92, C:316, O:70, P:298, S:184
icon for O:29

setAttribute SOAP operation API:32
setOutputStream JavaScript method for data service plug-

ins P:202
share --add-rehash-schedule command C:231
share --add-share-servers command C:232
share --create command C:235
share --delete-rehash-schedule command C:236
share --disconnect command C:238
share --get-local-path command C:238
share --get-status command C:239
share --list-rehash-schedules command C:239
share --list-share-servers command C:240
share --rehash command C:240
share --remove-share-servers command C:241
share servers

about AD:54
adding to Avaki shares AD:263
backing up and restoring AD:115
before disconnecting AD:54, C:230
configuring a machine with one share server AD:55
configuring multiple share servers on one machine AD:59
configuring to use nondefault ports AD:59
connecting to grid servers C:228
defined AD:358, API:92, C:316, O:70, P:298, S:184
disabling auto-restart C:17
disconnecting from grid servers C:229

share servers (continued)
enabling auto-restart C:15
finding connect ports AD:59
finding server names AD:59
installing in Windows AD:24
installing on Unix AD:18
local path AD:261
modifying load balance factor C:244
multiple AD:55, AD:263
obtaining upgrade information C:250
ports used by AD:9
registering C:15
registering for auto-restart AD:57
removing from Avaki shares C:241
removing from shares AD:265
replacing for Avaki shares C:242
server logs for AD:317
setting for Avaki shares AD:260
setting load balancing factor AD:280
setting system properties for AD:138
starting AD:56, C:15, C:16
stopping C:17, C:230
stopping and restarting AD:57
time required to upgrade AD:341
unregistering C:17
upgrading C:249
write access and user accounts AD:12

share --set-local-path command C:241
share --set-share-servers command C:242
share --set-status command C:243
share --update-share-servers command C:244
shared directories, See Avaki shares
shares, See Avaki shares and CIFS shares
Shares directory O:34
shares, CIFS AD:125
share-server --register command AD:57, C:15
share-server --start command C:16
share-server --stop command C:17
share-server --unregister command C:17
shareserver.ports file

on grid servers AD:50
on share servers AD:60

shell command C:245
shells, Avaki, accessing C:245
shortcuts created in Windows installations AD:27
SMB ports, default AD:9
SOAP

formal definition API:1
learning about API:1
over HTTP API:8
over HTTPS API:8
standards compliance API:1

SOAP clients, See web services clients
SOAP complex types API:12

AdHocDBOPExecutionParams API:13
AvakiPrincipal API:13
DataCatalogAttribute API:14
Index-26 Master Index

P: Provisioning & Advanced Data Integration Guide S: Data Integration with Avaki Studio
SOAP complex types (continued)

DataCatalogEntry API:15
DataCatalogPermission API:15
DataServiceExecutionParams API:16
DBOPExecutionParams API:16
SearchQuery API:17
SearchResult API:17

SOAP operations
accessibleDBOp API:42
accessibleDS API:36
accessiblePath API:19
chmod API:19
chown API:20
components of web service API:4
data catalog API:18
data services API:34
database operations API:40
executeAdHocDBOp API:43
executeAdHocDBOpWithOutput API:44
executeAdHocDBOpWithOutputAttach API:46
executeAdHocDBOpWithOutputString API:47
executeDBOp API:48
executeDBOpBytesInput API:49
executeDBOpGridFileInput API:50
executeDBOpWithOutput API:50
executeDBOpWithOutputAttach API:52
executeDBOpWithOutputString API:53
executeDS API:36
fileRead API:21
fileReadAttach API:21
fileReadString API:22
fileWrite API:23
getAttributes API:23
getDBOpOutput API:54
getDBOpOutputAttach API:55
getDBOpParameters API:56
getDBOpSchema API:56
getDBOpSchemaAttach API:57
getDBOpSchemaString API:58
getDSOutput API:37
getDSOutputAttach API:38
getDSOutputString API:38
getDSParameters API:39
getOutputString API:55
getSQL API:58
getSystemAttributes API:24
getUserAttributes API:24
isDSAvakiXML API:40
listDBConns API:59
listDBOps API:59
listDBOpsByDBConn API:60
listDomains API:25
listDSs API:40
listSearches API:25
ls API:26
lsSize API:26
mkdir API:27
mkdirParents API:27

SOAP operations (continued)
mkdirParentsServer API:28
mkdirServer API:29
mv API:29
permissions API:30
removeAttribute API:31
rm API:31
search API:32
setAttribute API:32
tester API:33
whoami API:33

SOAP::Lite API:5
sockets, multiplexing AD:142

setting maximum channels AD:142
setting maximum write AD:142
setting send buffer size for AD:143

soft links
about O:36
creating AD:217, C:161
defined AD:358, API:92, C:316, O:70, P:298, S:185
not used in searches AD:233

software requirements for Avaki AD:2
Solaris requirements AD:3
sort chunk size

controlling S:76
for query engine AD:139

spaces
in Windows install pathnames, avoiding AD:26
to separate arguments in Avaki commands AD:xvi, C:xvi,

P:xii
SPARC/Solaris requirements AD:3
Splitter operator S:166
SQL

aggregate functions and aliasing columns S:42
as prerequisite for Avaki Studio users S:vii
statements

in database operations C:86, P:251
in virtual database operations C:90

SQL Server, versions and JDBC drivers for use with
Avaki AD:6

sql view --delete command C:246
sql view --get-description command C:246
sql view --set-description command C:247
SQL views

about O:8, O:22, P:38
adding to categories P:47
configuring attributes P:44
data type mappings for C:68, C:301, P:39
defined AD:358, API:92, C:316, O:70, P:298, S:185
deleting C:246
displaying descriptions C:246
displaying tables provisioned from database connectors C:73
enabling provisioning on a database connector P:4
from data service results, generating P:60, P:100
generated from database operations, removing P:35
generating from data services C:56
generating from database operations C:82, P:34
location in categories S:18
Master Index Index-27

AD: Administration Guide API: API Guide C: Command Reference O: Overture
SQL views (continued)

managing P:20
modifying P:43
modifying descriptions C:247
names in data catalog O:24
provisioning P:39
provisioning from database connectors C:71
qualified names for O:31
removing P:44
schema types for P:51, P:64
schemas for S:22
searching for AD:233
table types for API:75
viewing P:42
viewing and modifying ACLs P:46

square brackets in command syntax AD:xv, C:xv, P:xi
SSL certificates

about API:8
generating AD:33
installing AD:39
planning for AD:8

SSL ports, default AD:8, AD:9, AD:10
status command C:248
status of grid operations, monitoring AD:99
stored procedures API:73
StreamingRowSet interface for data services P:187
streams, closing in data service plug-ins P:186
Studio, See Avaki Studio
style sheet engines

for data service view generators P:227
for database operation view generators P:224
for file view generators P:220

style sheet engines for database view generators C:265, C:268
style sheet engines for file view generators C:271
Sun JDK for compiling data service plug-ins P:184
Sun ONE Directory Server AD:148

See also authentication services, LDAP AD:148
Sun Solaris requirements AD:3
SuSE Linux requirements AD:3
Sybase ASA, versions and JDBC drivers for use with

Avaki AD:6
Sybase ASE

configuring XA driver for P:7, S:36
connection property required for API:70
versions and JDBC drivers for use with Avaki AD:7

Sybase contact information AD:xvi, API:vii, C:xvi, O:vi, P:xii,
S:ix

Sybase IQ, versions and JDBC drivers for use with Avaki AD:7
syntax conventions for commands AD:xv, C:xiv, P:x
system attributes AD:248, S:101
System directory O:34
system properties

about AD:128
descriptions of AD:131
setting on Avaki Studio AD:129
setting on clients AD:129
setting on servers AD:129
using with JDBC driver API:67

system requirements for Avaki software AD:2, O:16
system.properties file AD:33, AD:129

T
table schema view S:22
table types for SQL views API:75
tables

deleting SQL views C:246
displaying descriptions C:246
generating from data services C:56
generating from database operations C:82
in metadata models S:77

arranging in editor S:84
making accessible via JDBC S:91
mapping to Avaki objects S:88
naming scheme for S:91

in virtual database, displaying C:283
mapping data types for C:301
modifying descriptions C:247
provisioned from database connectors, displaying C:73
provisioning as SQL views O:22
provisioning from database connectors C:71
qualified names for O:32
schemas for, displaying S:22
See also SQL views

tabs for view models S:21
target element P:270
TCP channel sockets AD:142
TDS port

changing AD:50, AD:145, API:71
default AD:8

technical support contact information AD:xvi, API:vii, C:xvi,
O:vi, P:xii, S:ix

temp directories for grid servers, setting AD:135
Templates class P:244
tester SOAP operation API:33
testing an upgraded grid domain AD:346
testing function for WS clients API:33
text conventions C:xiv
timeout properties for Avaki server communications AD:133
timeouts, configuring for database operations P:253
transactions, See distributed transactions P:78
TrAX API P:243
two-phase commit protocol P:79
type element P:270
type mapping, See data types, mapping
type property for columns S:61
TypeMapping log4j category C:304
types for variables S:70

U
UID attribute in LDAP authentication services AD:150
UIDs, configuring AD:68, C:219, C:222
underscore characters in Avaki names API:81
Union operator S:168
Unix file mode semantics, setting AD:337
Index-28 Master Index

P: Provisioning & Advanced Data Integration Guide S: Data Integration with Avaki Studio
Unset permission in ACL AD:242, O:47
update intervals for GDCs, setting C:195
update notifications

configuring P:238
defined AD:359, API:93, C:317, O:71, P:299, S:185
enabling AD:311

Update operator S:169
upgrade command C:249
upgrade --info command C:250
upgrading Avaki software

interoperability of different versions AD:339
preparation steps AD:341
upgrade planning AD:340
upgrade steps AD:342

upstream, defined S:3
urlLogicBox element P:271
user attributes AD:248, S:101
user command C:250
user --create command C:251
user --db-mapping --add command C:252
user --db-mapping --delete command C:253
user --db-mapping --list command C:255
user --delete command C:257
user groups, See groups
user --info command C:258
user --list-group command C:258
UserAdministrators group AD:45, O:44
users and user accounts

about O:43
adding database identity mappings C:252
adding to ACLs AD:243, S:97
adding to groups AD:191, C:138
administrative accounts, setting up AD:44
changing passwords AD:175, C:185
clearing credentials from DGAS cache AD:117
configuring associated cache service C:33
configuring default mappings C:220
configuring dynamic mappings C:109
configuring self mappings C:109
creating accounts AD:168, C:251
creating home directories AD:169
default users for DGAS AD:333
deleting accounts AD:189, C:257
deleting database identity mappings C:253
deleting from groups C:144
disabling import on login (LDAP) AD:157
disabling import on login (NIS) AD:163
displaying and changing account information AD:187
displaying associated cache C:27
displaying full names and contact information C:258
displaying names C:286
enabling interconnection access AD:304
enabling on authentication services C:250
exposing in a two-way interconnect AD:308
giving access to other domains AD:294
grid accounts AD:167
imported accounts AD:167

users and user accounts (continued)
importing from LDAP services AD:157
importing from NIS services AD:164
importing on login (LDAP) AD:157
importing on login (NIS) AD:163
listing database identity mappings C:255
listing group membership for C:258
logging in AD:199
logging out when newly added to groups AD:192, AD:243
making account changes take effect immediately for DGAS

access AD:117
managing AD:167
mapping Avaki users to database users, See database identity

mappings
MessagingUser O:44
qualified names for O:32
querying whether enabled in LDAP AD:151
refreshing imported accounts AD:185
refreshing on login (LDAP) AD:149
removing from ACLs AD:242
removing from groups AD:193
roles for O:43
run-as users

browser setting for selecting P:27, P:54, P:92, P:224, P:227
for data service views P:227
for data services P:92
for database operation views P:223
for database operations P:26
for virtual database operations P:54

setting run-as user for views C:279
setting up for DGAS AD:67
setting up local accounts for Avaki AD:11
specifying for JDBC connections API:69
uncoupling associated cache C:34

V
validation error expressions S:65
validation expressions S:64
value element P:272
values element P:272
variables

about S:69
allowed types for S:70
downstream, menu of S:71
in Avaki Studio, about S:4
updating S:69

VB .NET, See .NET
versions

of Avaki software, displaying AD:99, C:148, C:250
SOAP API:1
TrAX P:243
WSDL API:1

vertical bars in command syntax AD:xv, C:xv, P:xi
view --add-schedule command C:259
view --create --database command C:263
view --create --data-service command C:266
Master Index Index-29

AD: Administration Guide API: API Guide C: Command Reference O: Overture
view --create --file command C:267
view --delete command C:272
view --delete-schedule command C:272
view --depends command C:272
view --garbage-collect command C:273
view generators

about O:8, O:25, P:217
caching of input files P:241
configuring update notifications for P:238
defined AD:359, API:93, C:317, O:71, P:299, S:185
for data services

setting up P:225
specifying a style sheet engine P:227

for database operations
setting up P:221
specifying a style sheet engine P:224

for files
setting up P:218
specifying a style sheet engine P:220

for large data sets and unsupported formats P:242
listing dependent operations P:228
modifying P:229
non-XSLT-based P:242
removing P:239
rowsets as inputs of P:275
running P:240
scheduling updates P:231
troubleshooting P:240
using TrAX transformers P:242

view --info command C:274
view --list-schedules command C:274
view models

about O:23, S:2
configuring input sources S:43
creating S:42
defined AD:359, API:93, C:317, O:71, P:299, S:185
deploying as data services S:50
error handling S:143
files associated with S:11
opening, saving and closing S:17
red borders showing errors S:60
sample workflow for S:29
schemas S:3
tabs for, in a project S:21
testing S:49
view model editor S:20

view --regenerate command C:273
view --set-property command C:275
view --update command C:279
ViewLibrary category, contents of S:18
views

adding generation schedules C:259
adding schedule exclusions C:262
configuring values for SQL parameters C:275
configuring with database sources C:263
configuring with data-service sources C:266
configuring with file sources C:267

views (continued)
deleting C:272
deleting generation schedules C:272
listing generation schedules for C:274
obtaining information about C:274
regenerating C:273
removing old results C:273
setting run-as user C:279
showing dependencies C:272
specifying a style sheet engine C:265, C:268, C:271
updating C:279
See also generated views, SQL views, view generators, view

models
virtual database

about O:22
configuring attributes P:70
defined AD:359, API:93, C:317, O:71, P:299, S:185
displaying SQL views C:283
executing ad-hoc queries on C:282
schema

browsing catalogs P:64
browsing schemas P:64
browsing tables P:64

table cache size system property AD:144
types of schemas P:51, P:64
viewing and modifying ACLs P:72

virtual database operations
about O:23, P:49
access permissions P:50
allowing creation of C:280
allowing groups to create P:67
allowing users to create P:65
creating C:87, P:50
defined AD:359, API:93, C:317, O:71, P:299, S:186
evicting from cache P:150
executing P:61
generating SQL views from P:60
listing in cache P:148
location in categories S:18
managing P:50
marking for scheduled caching P:139
modifying P:55
preventing creation of C:281
preventing groups from creating P:69
preventing users from creating P:68
qualified names for O:31
removing P:63
schemas for, generating P:57
SQL statements in C:90
tagging for on-demand caching P:146
unscheduling P:150
viewing P:55, P:57, P:59
viewing dependencies P:59
viewing details P:56

virtual database service, configuring access permissions P:65
virtualdatabase --allow-dbop-creation command C:280
virtualdatabase --disallow-dbop-creation command C:281
virtualdatabase --execute command C:282
Index-30 Master Index

P: Provisioning & Advanced Data Integration Guide S: Data Integration with Avaki Studio
virtualdatabase --show-tables command C:283
virtualschema --deploy command C:285
virtualschema --undeploy command C:286
virutal schema models, See metadata models

W
web browsers

requirements for Avaki software AD:5
setting for selecting run-as users P:27, P:54, P:92, P:224,

P:227
web services API:2, API:8

about API:2
access permissions API:9
client examples API:9
data catalog API:18
data services API:34
database operations API:40
development framework API:5
document/literal API:3, API:5
provisioning, about P:205
rpc/encoded API:3, API:5
security API:8
with MIME API:3

web services clients
defined AD:359, API:93, C:317, O:71, P:299, S:186
requirements for API:4

web services description language, See WSDLs
whoami command C:286
whoami SOAP operation API:33
wildcard characters in searches AD:235
Windows

avoiding install pathnames with spaces AD:26
installing Avaki in AD:23
installing on Windows 2003 AD:22
requirements for AD:3
services, running under avaki local user account AD:11
shortcuts for AD:27
update for HTTP POST problem in web browsers AD:5
versions supported by Avaki O:16

Windows domains
displaying for DGAS admission policies C:114
setting for DGAS admission policies C:111
unsetting for DGAS admission policies C:116

Windows Services list C:5
Workbench S:12
workspace directory for Avaki Studio

described S:12
setting S:10

WS API
accessibleDBOp API:42
accessibleDS API:36
accessiblePath API:19
authentication API:9
authorization API:9
chmod API:19
chown API:20
data access API:2

WS API (continued)
data services SOAP operations API:34
executeAdHocDBOp API:43
executeAdHocDBOpWithOutput API:44
executeAdHocDBOpWithOutputAttach API:46
executeAdHocDBOpWithOutputString API:47
executeDBOp API:48
executeDBOpBytesInput API:49
executeDBOpGridFileInput API:50
executeDBOpWithOutput API:50
executeDBOpWithOutputAttach API:52
executeDBOpWithOutputString API:53
executeDS API:36
fileRead API:21
fileReadAttach API:21
fileReadString API:22
fileWrite API:23
getAttributes API:23
getDBOpOutput API:54
getDBOpOutputAttach API:55
getDBOpParameters API:56
getDBOpSchema API:56
getDBOpSchemaAttach API:57
getDBOpSchemaString API:58
getDSOutput API:37
getDSOutputAttach API:38
getDSOutputString API:38
getDSParameters API:39
getOutputString API:55
getSQL API:58
getSystemAttributes API:24
getUserAttributes API:24
grid server API:6
HTTP API:7, API:8
HTTPS API:7, API:8
isDSAvakiXML API:40
listDBConns API:59
listDBOps API:59
listDBOpsByDBConn API:60
listDomains API:25
listDSs API:40
listSearches API:25
ls API:26
lsSize API:26
mkdir API:27
mkdirParents API:27
mkdirParentsServer API:28
mkdirServer API:29
mv API:29
permissions API:30
ports API:6
removeAttribute API:31
rm API:31
search API:32
setAttribute API:32
tester API:33
whoami API:33

WS clients, See web services clients
Master Index Index-31

AD: Administration Guide API: API Guide C: Command Reference O: Overture
WSDLs

about API:2
as SOAP contracts API:3
AvakiAPI.disco discovery file for .NET clients API:3
AvakiAPIDocLit.wsdl API:3
AvakiAPIRpcEnc.wsdl API:3
AvakiAPIWithMIMEDocLit.wsdl API:3
AvakiAPIWithMIMERpcEnc.wsdl API:3
choosing API:5
document/literal API:3
editing API:6
locations of API:6
provided by Avaki API:11
rpc/encoded API:3
standards compliance API:1

WSDLs directory O:35

X
X Window System libraries required for Avaki install on

Unix AD:16
XA drivers, configuring for database connectors C:69, P:7, S:36
Xalan C:265, C:268, C:271, P:220, P:224, P:227
XAWorkHandler class for data services P:189
XAWorkUnit interface for data services P:189
XML data in Avaki O:11, P:273
XML indent size property AD:142
XML schema

Avaki rowset
class-name element P:279
column-display-size element P:279
column-index element P:279

XML schema (continued)
core schema P:277
overview P:277
rowset-specific schema P:279
sample schema P:280

data service
class element P:261
coherenceWindow element P:261
dataService element P:262
description element P:263
initParameter element P:263
inputParameter element P:264
inputSource element P:265
inputStream element P:266
isList element P:266
jarurl element P:267
logicBox element P:268
name element P:269
outputStream element P:269
ref element P:270
target element P:270
type element P:270
urlLogicBox element P:271
value element P:272
values element P:272

XSLT
in view generators, when not to use P:242
using in data service plug-ins P:180
See also Xalan, Saxon
Index-32 Master Index

	Sybase Avaki EII Provisioning and Advanced Data Integration Guide
	Table of contents
	Preface
	Organization
	Related documentation and online help
	Manuals
	Online help

	Conventions
	Command syntax conventions
	Conventions for screen examples

	How to contact Avaki support at Sybase, Inc.

	Chapter 1 Managing information from databases
	Database overview
	About database operations
	Uses of database operations

	Connecting to databases
	Creating database connectors
	Viewing and modifying database connectors
	Viewing database schemas
	Viewing associated database operations
	Setting database operation permissions
	Allowing users to create database operations
	Allowing groups to create database operations
	Preventing users from creating database operations
	Preventing groups from creating database operations

	Testing database connectors
	Managing SQL views
	Removing database connectors

	Managing database operations
	Creating database operations
	Viewing and modifying database operations
	Viewing database operation details
	Managing database operation metadata
	Generating a database operation’s schema
	Viewing database operation dependencies
	Exposing database operation results as a SQL view
	Removing SQL views

	Executing database operations
	Removing database operations

	Managing SQL views
	Provisioning SQL views
	Viewing SQL views
	Modifying SQL views
	Removing SQL views
	Configuring SQL view attributes
	Managing SQL view ACLs

	Managing SQL view categories

	Chapter 2 Basic data integration
	Virtual database operations
	Creating virtual database operations
	Viewing and modifying virtual database operations
	Managing metadata for virtual database operations
	Generating a virtual database operation’s schema
	Viewing virtual database operation dependencies
	Exposing virtual database operation results as a SQL view

	Executing virtual database operations
	Calling a virtual database operation

	Removing virtual database operations

	Managing virtual database services
	Browsing virtual database schemas
	Configuring virtual database access permissions
	Allowing users to create virtual database operations
	Allowing groups to create virtual database operations
	Preventing users from creating virtual database operations
	Preventing groups from creating virtual database operations

	Configuring virtual database service attributes
	Managing virtual database service ACLs

	Data services overview
	About data services
	Understanding data service components
	Avaki Studio and data services
	Data services and distributed transactions
	Requirements for distributed transactions
	Two-phase commit protocol
	Setting up a distributed transaction

	Creating data services
	Getting started
	Configuring data service plug-ins
	Configuring data service input parameters
	Configuring data service output streams
	Configuring data service input streams

	Importing data service descriptors
	Viewing a list of data services
	Modifying data services
	Managing data service metadata
	Viewing data service dependencies
	Generating a data service’s schema
	Exposing data service results as a SQL view

	Testing data services
	Removing data services

	Chapter 3 Managing cache services
	Configuring clients and Avaki servers to use cache services
	Configuring caching for files
	On-demand caching
	Pinning files for scheduled caching
	Permissions and access control

	Configuring caching for database operations and data services
	On-demand caching
	Scheduled caching
	Remote/local caching interactions
	Permissions and access control

	Associating Avaki servers with caches
	Associating grid servers with caches
	Disassociating grid servers from caches
	Associating data grid access servers with caches
	Disassociating data grid access servers from caches
	Viewing and modifying cache service configuration

	Overriding cache service default settings
	Managing caches
	Managing file or directory caches
	Caching files or directories on a schedule
	Caching files or directories on demand
	Marking directories for no caching
	Viewing marked items
	Unscheduling/evicting files or directories
	Invalidating cached items

	Managing database caches
	Caching database operations on a schedule
	Caching database operations on demand
	Viewing cached database operations
	Unscheduling/evicting database operations

	Managing data service caches
	Caching data services on a schedule
	Caching data services on demand
	Viewing data services
	Unscheduling/evicting data services

	Configuring schedule exclusions
	Setting up schedule exclusions
	Applying schedule exclusions to schedule entries

	Chapter 4 Setting up data service plug-ins
	Overview of data service plug-ins
	Java, JavaScript, or XSLT
	Input and output
	Input sources
	Parameters
	Output stream

	Plug-in files
	JAR files and manifest files for Java plug-ins
	JavaScript file for JavaScript plug-ins
	XSL file for XSLT plug-ins

	Deployment of plug-ins
	Creating XSLT plug-ins
	Specifying parameters
	Specifying secondary input sources
	A sample XSLT plug-in

	Creating Java plug-ins with the Plug-in Wizard
	Prerequisites
	Plug-in Wizard procedure
	Writing the Java code
	The Avaki Data Service API
	The Avaki Transaction API
	Code samples for Java data service plug-ins
	Logging
	Manifest files and build.xml files

	Creating JavaScript plug-ins
	Access to Java classes and interfaces
	Import required packages
	Methods available on the plug-in object
	addInputStream
	setOutputStream
	addInputParameter

	Execute function

	Chapter 5 Provisioning web services
	Provisioning web services overview
	Setting up the data service
	Getting started
	Specifying parameters
	Specifying the output stream
	Specifying the input streams
	On AROMValues as runtime parameters

	Specifying a grid server

	Testing data services

	Chapter 6 Managing views
	Managing view generators
	Setting up file view generators
	Setting up database operation view generators
	Setting up data service view generators
	Displaying view dependencies
	Modifying view generators
	Editing a view generator
	Scheduling updates for views
	Configuring update notifications for views
	Deleting views

	Generating views
	About generated view files
	Cache interactions
	View generation procedure

	Non-XSLT-based view generators
	The TrAX standard
	Implementing a Java transformer
	The Transformer class
	The TransformerFactory class
	The Templates class

	Installing your Java transformer
	Using your transformer
	Referring to other documents in your transformer
	Logging errors

	Appendix A Advanced database management
	Configuring the JDBC driver JAR file path
	Restricting database operation output
	Configuring batch mode settings
	Configuring SQL calls
	Configuring database operation timeouts
	Configuring database operation fetch size

	Appendix B Data service schema
	Element: class
	Element: coherenceWindow
	Element: dataService
	Element: description
	Element: initParameter
	Element: inputParameter
	Element: inputSource
	Element: inputStream
	Element: isList
	Element: jarurl
	Element: logicBox
	Element: name
	Element: outputStream
	Element: ref
	Element: target
	Element: type
	Element: urlLogicBox
	Element: value
	Element: values

	Appendix C Data representation in Avaki
	Rowset objects
	Rowsets and XML as inputs
	Usage scenarios

	Appendix D Avaki rowset XML
	Core schema
	Rowset-specific schema
	Sample XML schema for a database operation

	Glossary

	Master Index

