
Sybase, Inc.
One Sybase Drive
Dublin, CA 94568
www.sybase.com

®

Sybase Avaki
EII Overture
Release 7.0

August 24, 2006

DOCUMENT ID: DC00572-01-0700-01

LAST REVISED: August 2006

Copyright © 2002 – 2006 Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes. Information in this document is subject
to change without notice. The software described herein is furnished under a license agreement, and it may be used or copied only in accordance with the terms of that
agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other international customers should contact their
Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or
translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, SYBASE (logo), ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive
Server Enterprise Monitor, Adaptive Server Enterprise Replication, Adaptive Server Everywhere, Advantage Database Server, Afaria, Answers Anywhere, Applied Meta, Applied Metacomputing,
AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Translator, APT-Library, ASEP, Avaki, Avaki (Arrow Design), Avaki Data Grid, AvantGo, Backup Server, BayCam, Beyond
Connected, Bit-Wise, BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional Logo, ClearConnect, Client-Library, Client Services, CodeBank,
Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Data Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer, DataWindow,
DataWindow .NET, DB-Library, dbQueue, Dejima, Dejima Direct, Developers Workbench, DirectConnect Anywhere, DirectConnect, Distribution Director, Dynamic Mobility Model, e-ADK,
E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway, ECMAP, ECRTP, eFulfillment Accelerator, EII Plus, Electronic Case Management, Embedded SQL, EMS, Enterprise Application Studio,
Enterprise Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise Portal (logo), Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work
Designer, Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works Together, EWA, ExtendedAssist, Extended Systems, ExtendedView, Financial
Fusion, Financial Fusion (and design), Financial Fusion Server, Formula One, Fusion Powered e-Finance, Fusion Powered Financial Destinations, Fusion Powered STP, Gateway Manager, GeoPoint,
GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, InstaHelp, Intelligent
Self-Care, InternetBuilder, iremote, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Legion, Logical Memory Manager, lrLite, M2M Anywhere, Mach Desktop, Mail Anywhere Studio,
Mainframe Connect, Maintenance Express, Manage Anywhere Studio, MAP, M-Business Anywhere, M-Business Channel, M-Business Network, M-Business Suite, MDI Access Server, MDI Database
Gateway, media.splash, Message Anywhere Server, MetaWorks, MethodSet, mFolio, Mirror Activator, ML Query, MobiCATS, MobileQ, MySupport, Net-Gateway, Net-Library, New Era of Networks,
Next Generation Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS logo, ObjectConnect, ObjectCycle, OmniConnect, OmniQ, OmniSQL Access Module, OmniSQL Toolkit,
OneBridge, Open Biz, Open Business Interchange, Open Client, Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open
Solutions, Optima++, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, Pharma Anywhere, PhysicalArchitect, Pocket PowerBuilder, PocketBuilder, Power++, Power
Through Knowledge, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, Powering the New Economy, PowerScript,
PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst, Pylon, Pylon
Anywhere, Pylon Application Server, Pylon Conduit, Pylon PIM Server, Pylon Pro, QAnywhere, Rapport, Relational Beans, RemoteWare, RepConnector, Report Workbench, Report-Execute, Replication
Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit, Resource Manager, RFID Anywhere, RW-DisplayLib, RW-Library, SAFE, SAFE/PRO, Sales Anywhere,
Search Anywhere, SDF, Search Anywhere, Secure SQL Server, Secure SQL Toolset, Security Guardian, ShareLink, ShareSpool, SKILS, smart.partners, smart.parts, smart.script, SOA Anywhere
Trademark,SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server
Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL Station, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, S.W.I.F.T.
Message Format Libraries, Sybase Central, Sybase Client/Server Interfaces, Sybase Development Framework, Sybase Financial Server, Sybase Gateways, Sybase Learning Connection, Sybase MPP,
Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase Virtual Server Architecture, Sybase User Workbench, SybaseWare, Syber Financial, SyberAssist,
SybFlex, SybMD, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, The Enterprise Client/Server Company, The Extensible Software Platform, The Future Is Wide
Open, The Learning Connection, The Model For Client/Server Solutions, The Online Information Center, The Power of One, TotalFix, TradeForce, Transact-SQL, Translation Toolkit, Turning
Imagination Into Reality, UltraLite, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viafone, Viewer, VisualWriter, VQL, WarehouseArchitect, Warehouse
Control Center, Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server,
XA-Library, XA-Server, XcelleNet, XP Server, XTNDAccess and XTNDConnect are trademarks of Sybase, Inc. or its subsidiaries. 07/06

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013 for the DOD and as set forth in FAR
52.227-19(a)-(d) for civilian agencies.

Set in Arial, Courier New, and Times New Roman. Stanley Morison, the creator of Times New Roman, said of it: “By the vice of Mammon and the misery of the machine,
it is bigoted and narrow, mean and puritan.”

Credits
This product includes software developed by the Apache Software Foundation (http://www. apache.org). This product includes Hypersonic SQL and ANTLR. This product
includes code licenses from RSA Security, Inc. Some portions licensed from IBM are available at http://oss.software.ibm.com/icu4j/. Contains IBM® 64-bit Runtime
Environment for AIX™, Java™ 2 Technology Edition Version 1.4 Modules © Copyright IBM Corporation 1999, 2000 All Rights Reserved. Contains the SAXON XSLT
Processor from Michael Kay, which is available at http://saxon.sourceforge.net. This product includes software developed by the Proxool Project
(http://proxool.sourceforge.net).

Sybase Avaki EII Overture
Written by Beth Thoenen, Cheryl Magadieu, Stephanos Bacon, and Linda Thorsen

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Table of contents

 Preface v
Organization vi
Related documentation vi
How to contact Avaki support at Sybase, Inc. vii

Chapter 1 Introduction to Avaki 1
The distributed data challenge 2
Data provisioning and integration 3

The Avaki solution 4
Data access 5
Data catalog entries 7
Application data 9
Integration made easy 9
Protecting production databases 9
Ensuring data security 10
Data representation 11
Reusing provisioning work 11

Data access 12
The Avaki solution 12

Real-time access 12
Data access for users 13
Data access for applications 13
Searching and metadata 13
Caching in a nutshell 14
Auditing and compliance 15

Create a scalable solution architecture 15
The Avaki solution 15

Adding capacity 16
Ease of administration 16

Supported platforms 16
A typical Avaki deployment 17

Getting started 17
Sybase Avaki EII Overture i

Avaki servers 18
Clients 19

Chapter 2 Database tools 21
Provisioning 22

Provisioning database-resident information:
Database connectors, SQL views, and database operations 22

Integration 23
The Avaki data catalog viewed through ODBC/JDBC 24
Processing distributed data via XSLT, JavaScript, and Java:
Advanced data services 24
Generating data snapshots as files: Avaki view generators 25

Chapter 3 Browsing the data catalog 27
The data catalog: What is it and what’s in it? 28
What is a data catalog name? 30
Qualified names: shorthand for paths 30
Top-level Avaki directories 33
Organizing your data catalog 36

Using links 36
Data categories 37
Organizing shared files 38
How is the data catalog distributed among Avaki servers? 38

Chapter 4 Authentication and access control in Avaki domains 41
Authentication 41

Authentication of login access to Avaki domains 41
Authentication of file access via DGAS 42
Authentication of database access 43

User accounts and groups 43
Default grid groups 43

Access control lists 45
How Avaki permissions work 45
Ownership 46
Permission settings 47
Interpreting permissions 48
Permissions in directories and categories 49
ii Sybase Avaki EII Overture

Permissions on new files 49
Permissions on cached objects: using groups 51

Chapter 5 Caching 53
Using cache services to improve performance 55
Configuring clients and Avaki servers to use cache services 56
Configuring caching for files 56

On-demand caching 56
Pinning files in a cache 57
Permissions and access control 57

Configuring caching for database operations and data services 58
On-demand caching 58
Scheduled caching 59
Remote/local caching interactions 59
Permissions and access control 60

 Glossary 61
Sybase Avaki EII Overture iii

iv Sybase Avaki EII Overture

Preface
Just as an operatic overture introduces themes that are repeated later in the opera, this
manual introduces ideas that you will encounter in your work with Sybase Avaki EII
software. The Sybase Avaki EII Overture explains concepts you’ll need to understand
to use, install, or administer an Avaki domain. It also describes the components and
structure of an Avaki domain, including the roles of the various Avaki servers, the pur-
pose of Avaki Studio, and the contents of the Avaki data catalog. Read the Overture
before using Avaki software or reading other books in the documentation set.

This book is intended for everyone who uses or administers an Avaki system.

Note This book and the product’s user interfaces refer to Sybase Avaki EII soft-
ware as Avaki or Avaki Data Grid.
Sybase Avaki EII Overture v

Preface
Organization
The Sybase Avaki EII Overture is organized as follows:

Related documentation
These manuals make up the Avaki documentation set:

• Sybase Avaki EII Overture

• Sybase Avaki EII Administration Guide (includes installation instructions)

• Data Integration with Sybase Avaki Studio

• Sybase Avaki EII Provisioning and Advanced Data Integration Guide

• Sybase Avaki EII API Guide

• Sybase Avaki EII Command Reference

The manuals are included, in PDF format, on the CD with Avaki software. They are
stored in the docs subdirectory of the Avaki installation directory.

To access the manuals via Avaki’s web user interface, log in to your Avaki domain and
click the Help link at the top right corner of any page of the web UI.

Chapter 1
Introduction to Avaki

Provides an overview of the purpose and structure of the
Avaki solution.

Chapter 2
Database tools

Introduces tools for provisioning and integrating database
data.

Chapter 3
Browsing the data catalog

Describes the data catalog, discusses the names used to
address objects in the catalog, and summarizes the contents
and purpose of the default top-level Avaki directories.

Chapter 4
Authentication and access con-
trol in Avaki domains

Explains how login and permissions work.

Chapter 5
Caching

Describes how Avaki cache services work.

Glossary Defines terms used in this guide.
vi Sybase Avaki EII Overture

How to contact Avaki support at Sybase, Inc.
How to contact Avaki support at Sybase, Inc.
For general information about Sybase technical support, see the Customer Service Ref-
erence Guide at

http://www.sybase.com/support/aboutsupport/guide/csrg

Please contact us with any questions or difficulties you encounter.

By telephone

In North America, call toll free: 1-800-8SYBASE

Outside North America, follow the link below to see a list of Sybase offices and phone
numbers around the world.

http://www.sybase.com/contactus/support

On the web

If you are a designated contact for a technical support plan, you can log and track cases
on the web using the Case Express application. At www.sybase.com, mouse over the
Support and Services tab and select Case Management from the dropdown list. Use
the email address and password for your mysybase account to log in.
Sybase Avaki EII Overture vii

http://www.sybase.com/support/aboutsupport/guide/csrg
http://www.sybase.com/contactus/support
www.sybase.com

Preface
viii Sybase Avaki EII Overture

Chapter 1

Introduction to Avaki
Sybase Avaki Enterprise Information Integration (EII) software simplifies provision-
ing, access, and integration of distributed data—for one group or across the extended
enterprise. You can integrate relational data, XML documents, files, and application
data across departments, locations, and companies and allow access to authorized
users via a number of protocols and interfaces including transparent file access, ODBC,
JDBC and SOAP.

Not a replication solution, Avaki EII links existing data into a data catalog, where—
subject to fine-grained access controls—it can be accessed from anywhere in the
enterprise.

This chapter covers the following topics:

• “The distributed data challenge,” below

• “Data provisioning and integration” on page 3

• “Data access” on page 12

• “Create a scalable solution architecture” on page 15

• “Supported platforms” on page 16

• “A typical Avaki deployment” on page 17
Sybase Avaki EII Overture 1

Introduction to Avaki
The distributed data challenge
Today’s companies need data to execute cross-functional or cross-location workflows,
accelerate product innovation and development, and analyze business trends to
respond swiftly to changing market conditions. As a result they spend too much time
and money to accomplish one very simple goal: give users, developers, and applica-
tions secure, real-time access to heterogeneous distributed data. For global, distributed
organizations, the challenge—and corresponding costs—are magnified by mergers,
acquisitions, and reorganizations, heterogeneous technology infrastructures, and the
sheer number and diversity of data sources.

Sybase Avaki EII software helps companies provide more data to more people faster
and at lower cost. With Avaki, IT managers can reduce the backlog of data requests
while implementing a simple, secure, and uniform approach to provisioning, access,
and integration of distributed data. And they can do so in an incremental, nondisrup-
tive way that lets everyone involved work the way they want to work.

Avaki is a different kind of information integration software. Other integration solu-
tions might address only a single group’s need for data, yet require significant time and
effort to deploy and maintain. Avaki gives your organization a single, unified frame-
work—a data grid, supporting a data services layer that provides a set of reusable ser-
vices for accessing data across the organization, without regard to what the data is,
where it resides, or how to access it.

Owners of data sources—be they packaged applications, databases or file systems—
can provision data and control access to it by setting the appropriate permissions. This
provisioned data is accessible and re-usable as named services. Data architects, appli-
cation developers or anyone with the appropriate permissions can then use a number
of techniques and technologies to register services that combine and transform the pro-
visioned data. End users and consuming applications can access this data using stan-
dard interfaces and protocols.

For many organizations, Avaki offers breakthrough reductions in cost and
time-to-solution compared with alternatives such as centralized information integra-
tion solutions. A solution with a federated approach that leaves data in place, under
control of local owners, Avaki can be deployed easily without disrupting users, appli-
cations, or data management procedures. Avaki creates a linked data layer rather than
copying source data. Its pluggable, distributed architecture lets partners create a
secure, streamlined infrastructure for sharing only the data they want to share—a
major advantage over centrally-controlled solutions.
2 Sybase Avaki EII Overture

Data provisioning and integration
Avaki can provide budget relief for projects such as delivering data to business intelli-
gence applications, corporate dashboards, or portals, creating a single view of the cus-
tomer, or making distributed data available for analytical applications in product
design, drug development, or risk management. Once projects are complete it can
reduce cost of ownership while enabling the work to be reused elsewhere in the organi-
zation. This chapter provides a conceptual overview of Avaki software.

Data provisioning and integration
Data provisioning—the process of making data available in an orderly and secure way
to users, application developers, and applications that need it—is a significant chal-
lenge for large, distributed organizations. With many widely varying demands for
data, geographically distributed users and data sources, production systems that must
be insulated from uncontrolled access, and concerns about intellectual property and
confidential data, careful data provisioning is more important and more difficult than
ever before.

If everyone needed data in the same format from a single data source, and that format
happened to be the way the data is currently stored, there would be no data integration
challenge. But the world is not that simple. Some applications expect relational data.
Others need data in XML form. Still others need to aggregate sales data across multiple
departments, or integrate data from different systems to obtain a single view of the
customer. Data of multiple types must be combined to provide a result.

All this poses significant challenges to application developers, who must spend time
writing code to access and transform data, rather than writing business logic. Develop-
ers also need to know where the data resides, and changes in the location typically
break the application. Avaki EII shields developers from this issue, as only the service
definitions have to be changed when data moves—not the application code.

While many software vendors have turned their attention to data integration, few have
addressed all the challenges, and many are creating solutions that are more complex
than the original challenges. At the same time, many data consumers lack the skills
necessary to take advantage of such solutions, which means involving more people in
each integration project—as well as more time and expense.
Sybase Avaki EII Overture 3

Introduction to Avaki
The Avaki solution
Avaki software implements a federated approach to data provisioning and integration
that leaves distributed data in place and provisions it to users and applications across
the organization. Many companies today prefer federated solutions, which leave data
in place, to “big bang” solutions that require moving data into a central repository.
Federated solutions minimize costs associated with disrupting data, users, applica-
tions, and administrators.

When you install Avaki software you create a unified, low-overhead system for provi-
sioning distributed data across departments, locations, and companies. This system is
called a data services layer or data grid. The data service layer’s scope can be small or
large. It can serve one department or an entire extended enterprise.

FIGURE 1. Avaki retrieves data from multiple sources of different types, tailors it in ways users and
developers need, and makes it available securely across the organization. Users and applications
access data through standard interfaces and do not need to know where data is physically stored.
4 Sybase Avaki EII Overture

Data provisioning and integration
A data grid provides:

• One data services layer where users and applications can access the data they
need—Avaki supports both read and write access to data

• One unified catalog that enables access to multiple types of data: relational data,
XML documents, file data, and application data

• One unified access control mechanism that operates across networks, locations,
departments—even companies

How does it do this? First, you install a set of server components on your existing net-
work, creating a data grid that you can think of as a large catalog you might use to
“shop” for data. At the beginning, the catalog is empty. Then, one by one, individual
data owners “publish” their data for others to use, creating entries in the catalog. At the
same time, they establish access rights for each catalog entry, specifying who can read
the data, who can update the data, and so on.

In creating entries in the data catalog, data owners do not create replicas of their data.
Instead, they create a link from the data catalog entry to data that exists somewhere—
in a production database, an operational data store, a data warehouse, or a file server—
wherever data is currently stored and managed.

The data catalog’s entries are arranged in a hierarchy much like any other directory
structure, with one important difference—the data catalog is location independent.
Users and developers do not need to know where data is physically stored in order to
find and use it. They have one place to go to retrieve all data available to them.

But what about impact on the data source as new users and applications add to its
load? By making explicit which queries are allowed to run against a data store, and by
controlling cache coherence windows or prescheduling queries to run at specific times
or with a certain frequency, data owners can control the load on operational systems.
Avaki has rich caching and scheduling capabilities that make this process easy to
administer and transparent to the consuming users and applications.

Data access
How can a data owner in one location grant access to a user somewhere else? Through
a unified access control mechanism that operates across networks, departments, and
locations. Once we create our catalog, we want to give many different users and appli-
cation developers rights to shop there and find all the data they need.

Avaki integrates with your existing directory services. If users and groups are under
different administrative domains within the organization, you can integrate each local
Sybase Avaki EII Overture 5

Introduction to Avaki
directory service that authenticates those users. A single Avaki domain can integrate
with multiple, heterogeneous directory services including LDAP-based directory ser-
vices (Microsoft Active Directory®, Sun ONE Directory Service®) and Network
Information Service (NIS) directories. Because Avaki can integrate with multiple, het-
erogeneous directory services, you can associate many different users and groups with
an Avaki domain without disrupting local authentication schemes. In this way, you
create a virtual pool of users and groups to whom data owners can grant access to data.
And you do so without having to give remote users accounts on each local system.

For a user to have access to a specific data item, the data owner must establish the
appropriate access rights for that item. The user can then browse the catalog to find the
data available to him or her, and access the data as if it were local.

Consider some important implications of this unified approach:

• Users no longer need to have direct access to multiple networks and databases to
obtain data. Instead, they have a single sign-on for all data, and one place to go to
get that data.

• Users and applications do not have to know or specify where data is physically
located in order to access that data. They only have to know how it is named in the
catalog.

• Users can search across the entire catalog to find the data they need, regardless of
how many data owners or locations are involved in provisioning data, or how many
data sources are involved.

• Applications have one place to access any data they need, and one standard set of
interfaces for doing so, regardless of the specifics of the data source.

• There is no disruption to local security practices. When users access Avaki, they
will continue to be authenticated by their local networks, and their local administra-
tors will still have responsibility for them.

• Because existing data has not moved or changed in any way, existing applications
that access local data do not need to change.

• Because Avaki links to original data rather than copying it, data is always up to
date, never out of sync—and storage costs are reduced.

data catalogs provide a logical representation of a physical data source or data service.
6 Sybase Avaki EII Overture

Data provisioning and integration
Data catalog entries
What, exactly, do data catalog entries represent? Each catalog entry is a logical repre-
sentation of a physical data source or data service. There are several types of entries:

• Database operations provide access to some specific data from a relational data-
base.

• Data services give your applications broader access to data from relational data-
bases, files, and HTTP-based data sources such as a CGI scripts, servlets, or web
services—and also perform transformations.

• SQL views, each representing a data service, a database operation, or a table in a
relational database—and like tables, SQL views respond to SQL queries.

• View generators can convert provisioned or transformed data into a formatted out-
put file in the data catalog.

• Files that exist somewhere on a file server—these can be data files, XML docu-
ments, XSLT style sheets used for data processing, and so on.

Database operations. A database operation is the vehicle through which users and
applications have access to data in relational databases. Each database operation
accesses one relational database. The data owner (typically a database administrator
who has responsibility for that database) creates the database operation as an entry in
the catalog, giving it a name and a definition.

The definition can be any SQL statement the database accepts (INSERT, SELECT,
UPDATE, DELETE, CALL). When you define a database operation that contains a SQL
statement and grant access to that database operation, you are granting rights to run
that statement in the database.

Database operations can accept and return parameters as well as SQL result sets. For
example, you could set up a statement that returned order details given a specific order
number, and then supply the order number at runtime.

Avaki supports distributed transactions using the two-phase commit protocol. You can
configure a set of database operations to be executed as a group (using a data service).

A database operation whose source database is the Avaki virtual database is called a
virtual database operation. Use virtual database operations if you want to encapsulate
and reuse SQL SELECT queries against Avaki SQL views.

The results of a database operation can be cached either on-demand or in a scheduled
manner—in one or more caching services—thereby reducing load on back-end data-
Sybase Avaki EII Overture 7

Introduction to Avaki
bases, decreasing latency, and controlling use of network bandwidth. Cache coherence
is controlled with configurable coherence windows.

Data services. Data services are powerful integration tools. Like a database opera-
tion, a data service provides access to data for end users and applications. But it is not
limited to a single database, or even to database sources. A data service can combine
data from multiple sources, including database operations (for database data), files,
HTTP sources, and other data services. Data services can also transform and filter data
using relational operators like select, aggregate, join, and projection. Further, you can
set up a data service that executes several database operations as a single distributed
transaction.

Once set up, a data service is reusable across applications—an important benefit to
development productivity.

There are several ways to set up a data service. The easiest is to use Avaki Studio to
create a view model, which you can deploy as one or more data services. You can also
create a data service by writing a data service plug-in in Java, JavaScript, or XSLT.

Like the results of database operations, the results of data services can be cached
throughout the Avaki domain for improved performance.

SQL views. A SQL view is a virtual table; it’s a data catalog entry that represents a
table in a relational database, an Avaki database operation, or an Avaki data service.
SQL views can be provisioned directly or generated from database operations or data
services. SQL views are treated like relational tables by the Avaki query engine, and
you can execute SQL queries against them. All the SQL views in an Avaki domain
make up the domain’s virtual database.

View generators. In many situations, the ultimate consumer of data that has been pro-
visioned or processed is an application or end user who needs the data accessible as a
flat file in CSV, HTML, or XML format. That function is fulfilled by Avaki views.

Files. A data owner with a set of files can “publish” the files by sharing them with the
Avaki domain, naming them in the data catalog structure, and specifying access rights.
Typically the data owner publishes an entire directory. Applications and users who
need the file can then access it through the data catalog without having to know where
it is located.

Files that can be shared include direct-attached storage, network-attached storage, or
SAN storage. Avaki can handle very large files.
8 Sybase Avaki EII Overture

Data provisioning and integration
Application data
Application data can exist in a variety of forms. For many applications, data can be
made available to the data catalog without programming. Some applications that use
relational data provide an interface with database views that can be accessed using
SQL. Data from these sources can be made available via database operations as
described earlier. Data from many applications with HTTP interfaces can be made
available by creating a data service that references the URL and granting access to it.
Data from applications that have neither a database interface nor a URL-based inter-
face, and that make data available only through a proprietary API, can be provisioned
into Avaki via data services.

Integration made easy
Avaki provides a powerful graphical integration tool: Avaki Studio. Using an intuitive
point-and-click interface, data consumers can identify data sources, build view mod-
els—data flows that specify how to combine and transform data from particular
sources—and deploy view models as data services. No programming is required.

Avaki Studio’s predefined operators let you perform relational operations like select,
join, aggregate, group by, and order by, as well as advanced operations including iter-
ate, which can perform a computation for each input in a specified range; update,
which can insert data into a relational database; and generate, which can create new
result sets. You can define custom operators to provide any further functionality you
need.

In addition to tools for building data services, Avaki Studio provides tools for working
with metadata models. A metadata model represents the schemas (columns and data
types) of one or more database tables. You can use a metadata model to enforce a
schema—a view model derived from a particular metadata model will share the meta-
data model’s schema, and Studio will alert you if the schemas diverge. You can be sure
that any data service deployed from such a view model will conform to the original
schema.

Metadata models also let you create Avaki objects like data services that match data-
base tables not only in schema but in name, so you can easily access the Avaki objects
using the same applications you now use to access database tables.

Protecting production databases
Because users and applications have access to the data from the original source, you
might be concerned about how this will affect production systems. After all, database
administrators need to ensure that production applications they support will perform
Sybase Avaki EII Overture 9

Introduction to Avaki
well. Avaki is specifically designed to help database administrators insulate their pro-
duction databases from risk in several different ways:

• By providing access to data through stored procedures. Stored procedures are
totally under the control of the DBA and have been optimized for the database.

• By limiting access to all but specific, predefined queries. Database administra-
tors provide the queries used by users and application developers, and can define
and test queries that will perform efficiently before making them available.

• By caching results. Access to relational data does not have to be dynamic as long
as users and developers can retrieve reasonably fresh data. Avaki enables database
administrators to cache results—either on-demand or on a pre-determined sched-
ule—so users never need direct access to the database. Results can be cached as fre-
quently as required to meet the needs of data consumers. Avaki caching has no
impact on applications; no special coding is involved in using cached data.

• By enabling access through data services and generated views. When users need
data in other forms, DBAs can provide generated views or data services, then grant
access to those objects. The views or data services can be updated on a schedule, or
updated when the database operation is updated.

• By using two-phase commit for distributed transactions. You can build a data
service that uses the two-phase commit protocol to execute a group of database
operations as a single transaction. This ensures that related operations that perform
work on multiple independent databases will leave all the databases in a consistent
state.

Ensuring data security
Avaki helps protect intellectual property and sensitive data by ensuring that only users
who are authorized to access specific data can access it. With Avaki, you do not have
to give a remote user an account on your network in order for that user to have access
to specific data on that network. In addition, you do not need to tell users where data is
physically located in order to give them access to it. Here are some of the ways Avaki
protects intellectual property and confidential data:

• By providing a consistent, orderly, managed way to access data, which is a great
improvement over ad hoc solutions

• By providing fine-grained controls that implement access policies in a consistent
manner and are modified easily in response to policy changes

• By integrating with directory services for authentication of users

• By integrating with firewalls via HTTPS for secure operation across locations
10 Sybase Avaki EII Overture

Data provisioning and integration
• By encrypting all Avaki communications via SSL

• By giving data owners an SSL-based encryption option for data transmissions

• By providing audit logging capabilities that can be configured to record and/or
issue alerts for events like file accesses, file writes, or data service executions.

Data representation
Avaki software has several flexible capabilities, such as data services and view gener-
ators, that let you manipulate data in any format that’s appropriate for your applica-
tion. However, Avaki uses SQL rowsets and XML as the primary means for
representing data. A rowset is a self-describing sequence of rows, or tuples. Each row
consists of several named and typed columns.

If you are accessing Avaki via ODBC, you will work with the corresponding ODBC
abstractions.

Avaki also includes support for representing and manipulating data using XML. In data
services and view generators, for example, you can use XSLT to perform data integra-
tion and transformation operations.

A unique capability of Avaki is the ability to transform rowsets into XML on demand
and to use either rowsets or XML as batch input to database operations. This conver-
sion is on the fly; the XML is produced from the rowset as needed. Thus, a large rowset
rendered in XML does not need to be represented in memory all at once, either as a
rowset or as XML.

Reusing provisioning work
You can see that with Avaki only a small amount of work is needed to make data avail-
able to users and applications. In addition, all the work you do can be reused. If data is
made available for one purpose, and the same data is needed by another group or appli-
cation, the data owner need only change the access rights on the catalog entry.
Sybase Avaki EII Overture 11

Introduction to Avaki
Data access
Applications, application developers, and end users all need access to accurate, consis-
tent, and current data in order to do their jobs. Applications need data to fuel business
processes and provide information to decision-makers. Application developers need to
integrate data into their applications. Knowledge workers need access to data to make
a thousand small and large decisions every day.

Developers and integrators spend countless hours today finding or managing data, and
countless hours writing code to integrate, aggregate, and transform data from multiple
sources around the organization. This time could be spent on more productive activi-
ties if only there were a fast, easy way to get access to data. For developers this means
simple, industry-standard APIs that provide data in the form needed by applications.

The Avaki solution
Avaki software helps you simplify data access by providing one unified data layer with
a single data catalog. With this unified approach:

• Users and developers have one place to go to find what they need, and do not need
to know where data is physically located. Users and developers can search across
the entire data catalog to find the data they need.

• Applications have one way to reference data—by catalog entry. They do not need
to hard code data locations. References to catalog entries are resolved dynamically
at run time.

• Data is available using a number of protocols and interfaces so users and applica-
tions can use the means that is most appropriate for their end.

• Applications have one standard set of interfaces for accessing data (one JDBC
driver, for example) regardless of the specifics of the data source.

Real-time access
Data owners can grant access to original data while using caching and other mecha-
nisms to safeguard production systems. As a result, data can be made available to
users and applications much more efficiently. Data owners can choose the frequency
of cache updates based on the importance of fresh data to the data consumer’s business
goal.
12 Sybase Avaki EII Overture

Data access
Data access for users
Users who will only be accessing data and do not need other Avaki features can have
completely transparent access to Avaki data through standard file system protocols.
They will see only their standard file system and do not even need to know they are
accessing data through Avaki. Users can also take advantage of Avaki’s web user inter-
face for searching and browsing. Though many users will be taking advantage of Avaki
through an application, it is possible for users to access data directly. For example, a
data owner could provide some data from a relational database in a comma-separated
value format that a user could open using Microsoft Excel.

Data access for applications
Applications can access data in a variety of ways depending on their specific need:

• ODBC and JDBC. Database applications accessing relational data will typically use
an ODBC or JDBC interface, making a call to a database operation or a data service
just as they would make a call to a stored procedure in the database, or querying a
SQL view as if it were a table in the database.

• File Read/Write. Applications that expect data in flat file form or XML format can
simply read the file by referencing the appropriate entry in the data catalog. Like
end users, applications can take advantage of standard file system protocols (NFS
for Unix, or CIFS/SMB for Microsoft Windows) to read the files transparently.

• Web Services/SOAP. Applications can make SOAP requests to perform Avaki
actions (for example, requests for data), accompanied by the appropriate user
authentication.

Searching and metadata
One benefit of a unified data catalog is that users can search the entire set of objects or
any meaningful subset. Each data object has attributes that store information such as
the time the object was created, the name of the owner, the last time the object was
modified, and so on. These system attributes are automatically defined for all objects.
In addition, data owners or users can create custom attributes for any data item for
which they have write permission, and specify values for those attributes. Because
users can search the data catalog based on attribute values, you may want to create
attributes that you know users will eventually want to search on. For example, you
could define a Project attribute and assign values for individual projects that would
allow users to search for data associated with a specific project. When users search the
data catalog, they see only data objects for which they have at least read access.
Sybase Avaki EII Overture 13

Introduction to Avaki
Caching in a nutshell
Avaki uses caching to accomplish a few different goals:

• Insulate production data sources from haphazard access

• Maintain good performance for users and applications

• Refresh data in a granular way based on business need

• Ensure maximum data availability

Caching makes remote data access practical by limiting the number of times a data
request requires immediate communication with the original data source. Avaki pro-
vides a variety of different caching options and features to meet diverse performance
requirements. You can specify a different caching strategy for each data item, and
caching options can be used separately or in combination to accomplish your goals.

• Local caching enables caching of frequently requested results near the data source
to reduce load on the back-end data source.

• Remote caching caches data close to the users or applications that will use it. This
cuts down on network congestion and dramatically speeds up application perfor-
mance, because remote data calls are eliminated. Caches can be pre-populated and
updated during off hours when network load is low, and cache configurations can
be established that ensure high availability when a network is congested or unavail-
able for some reason.

Cache update frequency can be specified for a given data item. Database administra-
tors can schedule how often database operations should be re-run and cached, so as to
protect production databases from unexpected load. Cached data can also “expire”
after a set time period, forcing a refresh of the data on the next request.

Avaki’s caching mechanism is efficient and simple to deploy:

• It provides one solution for multiple data types, including multiple heterogeneous
database management systems, files, XML documents, and application data

• No special hardware or network infrastructure is needed

• No additional database licenses are needed

• No application changes are needed to take advantage of the cache

An automated caching approach means fewer data stores to manage. Once you have
set up specified caching options for a given data item, there is very little work to do.
Caches are updated automatically in accordance with your specifications, and the pro-
cess is completely transparent to users and applications.
14 Sybase Avaki EII Overture

Create a scalable solution architecture
Auditing and compliance
Avaki’s superior audit logging capabilities can help ensure the security of your cus-
tomer information and other data while at the same time enabling you to comply with
legal requirements for internal/external control systems. Administrators can use log4j,
an open source logging package, to configure logging of any events that access, exe-
cute, or modify items that have been provisioned into or created in the Avaki data cat-
alog—file accesses, or the execution or creation of database operations or data
services, for example. Events can be logged to files, external databases, or both. You
can even issue alerts (such as e-mails) to notify administrators when particularly sensi-
tive items are accessed. Events logged to databases can be captured with business
intelligence (BI) reporting tools (such as Crystal Reports and BusinessObjects) and
then used to generate documentation that satisfies auditing requirements.

Create a scalable solution architecture
Creating a solution that truly operates across locations and departments—even across
companies—has its challenges, and some of them may not be obvious. The way an
information integration solution is designed can seriously affect its ability to serve an
extended enterprise as well as an individual department.

The Avaki solution
Avaki software provides a flexible and scalable information integration solution based
on a distributed, pluggable architecture. Sybase’s expertise and experience with grid
technology have led to an architecture design that addresses the key challenges thor-
oughly. Grid technology is all about distributed architectures and sharing of resources,
giving Avaki a unique advantage and strength in data provisioning and access across
departments, locations, and companies.

With Avaki, each administrator manages an Avaki domain. While the administrator has
total control over his or her own domain, there is no need for a central administrator
who controls all domains. Instead, administrators can create interfaces between
domains that enable data owners in one domain to grant access to users or groups in
the other. Sharing can be very broad or very limited, depending on business need. This
approach enables sharing of data over an arbitrarily wide area, but maintains local
administrative control over data sources, user management, and administration of the
domain infrastructure.
Sybase Avaki EII Overture 15

Introduction to Avaki
Adding capacity
Avaki administrators can add capacity as needed by plugging in more server compo-
nents. They can address new requirements by adding users, data sources, and integra-
tions to the grid. Software installation is easy. No specialized hardware is required, and
in many cases, server components can be installed on existing infrastructure. Optional
failover configurations make Avaki a resilient solution that provides for maximum
data availability.

Ease of administration
Once installed, Avaki is very easy to administer. A simple web interface lets adminis-
trators perform common administration tasks, including:

• Setup tasks such as proxy server configuration, directory service integration, and
failover configuration

• Data administration tasks such as making data available and setting access rights

• Routine tasks such as monitoring, logging, and backups

While Avaki domains are surprisingly easy to manage, the biggest administrative ben-
efit comes from reduced infrastructure complexity and from all the tasks that no longer
need to be performed.

Supported platforms
Avaki software runs on the hardware/operating system platforms listed below. For
information on supported versions, as well as memory, disk space, and other system
requirements, see the Sybase Avaki EII Administration Guide.

For Avaki servers (all types) and command clients:

• Intel/Red Hat Enterprise Linux ES

• Intel/SuSE Linux

• Intel/Windows 2003 Server, Windows XP Professional

• IBM AIX

• SPARC/Solaris

For Avaki Studio: Windows 2003 Server, Windows XP Professional
16 Sybase Avaki EII Overture

A typical Avaki deployment
For NFS clients: NFS version 2 or version 3 client software

For CIFS clients: Windows 2003 Server, Windows XP Server or Professional

Avaki software is not required for NFS or CIFS clients.

A typical Avaki deployment
An Avaki domain consists of one or more servers that together implement the data cat-
alog and provide Avaki’s data integration framework and its provisioning and access
services.

Avaki domains can be accessed by a number of different clients. In some cases, clients
require no Sybase software installed on their machines. This category includes trans-
parent file access clients that access files in the data catalog via NFS or CIFS and web
service clients that access Avaki via SOAP calls. Clients that require some Sybase soft-
ware installed include ODBC/JDBC clients and machines on which people use the
Avaki command-line interface (CLI) client.

Getting started
Installing and starting a grid domain controller, the first server in an Avaki domain,
takes only a few minutes. Your Avaki deployment architect will help you plan and
deploy additional servers if you need them. (See “Avaki servers,” below, for more
information.) Setting up user accounts is easy—you can create them in the Avaki
domain or import them from an NIS or LDAP-based directory service.

Provisioning: When you’re ready to bring data resources into your Avaki domain,
Avaki’s provisioning tools in the web UI and in Avaki Studio walk you through the
process of creating database operations (SQL queries or stored procedure calls), shar-
ing file data, and provisioning web services for easy access.

Integration: Avaki Studio provides a set of drag-and-drop graphical tools you can use
to design data flows and set up Avaki data services for integration. Even complex
flows with many operations are simple to create. You can pull in data from multiple
database, HTTP, and file sources, and combine and transform the data using a set of
predefined operators such as aggregate, projection, group by, multiplexer, and itera-
tor—or define your own operators.
Sybase Avaki EII Overture 17

Introduction to Avaki
You can also use Avaki Studio to work with metadata models. You can use metadata
models to ensure that new data services you create conform to a particular schema.
Metadata models also let you create Avaki objects like data services that match data-
base tables not only in schema but in name, so you can easily access the Avaki objects
using the same applications you now use to access database tables.

You can even perform some provisioning tasks from within Studio, such as defining
database connectors and database operations.

Avaki servers
A machine that participates in an Avaki domain can host one or more Avaki servers of
several types. Start with a basic Avaki domain and add servers with advanced capabil-
ities or to increase capacity, as required.

Figure 2 shows a typical deployment that uses all server types.

Basic Avaki domain. A basic Avaki domain might contain just one or two grid serv-
ers, one serving as the grid domain controller (GDC). Additional grid servers can be
added to accommodate more data, data services, or additional sites.

• Grid server: hosts the data catalog, provides authorization services for clients
requesting data access, serves files shared from the local file system, and runs data
services, database operations, and queries.

• Grid domain controller (GDC): the grid server on which an Avaki domain is ini-
tially started. The grid domain controller has all the functionality of a grid server.
An Avaki domain must have at least one grid domain controller.

In an Avaki domain that is configured for failover, there are two GDCs: a primary
and a secondary. The secondary GDC is a hot standby that handles requests when
the primary GDC is unreachable.

NFS or Windows file access.

• Data grid access server (DGAS): provides high-performance caching and makes
specified Avaki directories available to NFS and CIFS (Windows) clients in a secure
fashion.

Extended file sharing.

• Share server: makes selected data stored in local file systems visible in the data cat-
alog. Share servers are responsible for file I/O. Each grid server can be associated
with several share servers.
18 Sybase Avaki EII Overture

A typical Avaki deployment
Interconnecting domains.

• Proxy server: allows Avaki domains on opposite sides of a firewall to communicate
securely with one another so that users of each domain can access data in the other.

FIGURE 2. An Avaki domain with primary and secondary GDCs, grid servers, share servers, a proxy
server and a DGAS deployed. Users (lower right) and applications (far right) can access relational
data and web services via Avaki services configured on the grid servers. They can access files via
the DGAS using NFS or CIFS (Windows) clients.

Clients
An Avaki client can be one of the following:

• Command-line client: lets administrators and advanced users issue Avaki com-
mands. A command client provides no storage resources to the domain.

• NFS client: mounts the Avaki data catalog (or a subset of it) as a directory by con-
necting to an Avaki data grid access server.

• CIFS client: accesses Avaki directories that have been shared out by connecting to
an Avaki data grid access server.
Sybase Avaki EII Overture 19

Introduction to Avaki
• ODBC/JDBC client: on a machine where applications need access to database data,
you can configure a Sybase JDBC driver and program the applications to retrieve
the information via JDBC.

• Avaki Studio: lets data architects build and test data flows and deploy them as
Avaki data services.
20 Sybase Avaki EII Overture

Chapter 2

Database tools
This chapter introduces the Avaki tools you’ll use to work with dynamic data. The
tools fall into two areas:

• Provisioning: Getting data into the data catalog (from files, databases, and HTTP
sources such as web services and CGI scripts) and setting appropriate access con-
trols. The section on provisioning, which focuses on extracting data from data-
bases, begins on page 22.

• Integration: Processing, combining, and transforming data into the formats required
by users, applications, and databases. This might involve data provisioned from
multiple data sources as well as data derived from other data integration steps. The
section on integration begins on page 23.

Once the source data and the various integration services have been provisioned and
defined in the data catalog, end users and applications can access or invoke these data
sources and services using several means: Transparent file system access via NFS or
CIFS, web services (SOAP, the Simple Object Access Protocol), Open Database Con-
nectivity (ODBC), or Java Database Connectivity (JDBC). You can also access data
sources through Avaki Studio and use them to create data services. When considering
the various means for provisioning data and implementing integration operations, you
will want to consider which end users or applications will need to access it. One of the
many strengths of Avaki is that you can make the same data accessible via a number of
interfaces or protocols, thereby serving multiple constituents without having to per-
form any extra work.
Sybase Avaki EII Overture 21

Database tools
Provisioning
Avaki database connectors, database operations, and SQL views make database data
accessible to users and applications. These tools are discussed in the subsection that
follows.

Provisioning database-resident information:
Database connectors, SQL views, and database operations

To make relational data accessible to Avaki, you must create an entry in the data cata-
log that represents a connection to a database. This kind of catalog entry is called a
database connector. A database connector encapsulates information such as the JDBC
driver, connect string, and username and password that Avaki will use to connect to
the database, as well as other useful information such as how to contact the appropriate
database administrator.

Once you establish a connection to a database, you can make data from that database
available to Avaki in the following ways:

• Provision SQL views. When you provision a SQL view, you make a table in a provi-
sioned database known to Avaki. Avaki extracts the metadata for the table and uses
it to create an object called a SQL view in the Avaki data catalog. Provisioned SQL
views (or tables) are treated like relational tables by the Avaki virtual database’s
query engine. When you create connectors to one or more databases and provision
SQL views from each of those databases to Avaki, you create a single virtual data-
base: You can execute SQL queries on these tables as if they were tables in a single
database. Avaki’s query engine will analyze these queries, push as much of the
work as possible down to the actual database, and perform the remaining operations
(such as joins across tables from different databases) itself.

• Create database operations. A database operation is the vehicle through which
users and applications have access to data in relational databases. Each database
operation is a data catalog entry that accesses one relational database and encapsu-
lates a single SQL statement, such as CALL (a stored procedure invocation),
SELECT, INSERT, UPDATE, or DELETE. Database operations can take parameters.
When you connect to Avaki through ODBC or JDBC, database operations appear
and can be invoked as stored procedures (using SQL CALL syntax). They can also
be invoked via SOAP.

The output of a database operation is one or more SQL result sets that conform to
the Java rowset abstraction.
22 Sybase Avaki EII Overture

Integration
Avaki will generate a schema that represents the output result set of the operation.
You can view this schema either from the web UI or from Avaki Studio, or you can
access it via JDBC. You can also generate SQL views from database operations that
do not update the underlying database.

Use database operations to encapsulate optimized, reusable queries against an
underlying database. Database operations, in addition to being invocable directly,
can be used as input sources for data services that you model and deploy from
Avaki Studio.

Avaki database connectors, SQL views, and database operations are typically set up by
database administrators. You must be a member of the DatabaseAdministrators group
to set them up.

Integration
Avaki appears to external applications and users as a virtual database when accessed
via JDBC or ODBC. As noted previously, the simplest data integration tasks can be
accomplished simply by using SQL SELECT syntax to run queries against SQL views
that have been provisioned in Avaki.

However, in many cases, access to Avaki will not be entirely ad hoc against “raw” pro-
visioned SQL views. For example, you might want to expose a logical model that
involves creating a combination of procedures and virtual tables that encapsulate oper-
ations against raw provisioned SQL views and database operations. The primary mech-
anisms for building up this logical layer of abstraction in Avaki are as follows:

• You can use Avaki Studio to define view models, and then deploy those view mod-
els as data services within Avaki. Like database operations, data services are acces-
sible as stored procedures via ODBC and JDBC. They are also accessible via SOAP.
In addition, you can generate SQL views from data services that return rowsets, thus
exposing these logical abstractions as tables as well as stored procedures via SQL.

• You can create virtual database operations. A virtual database operation is just like
a regular database operation, except that its source database is Avaki itself. Use vir-
tual database operations if you want to encapsulate and reuse SQL SELECT queries
against SQL views (provisioned or generated from database operations or data ser-
vices) within Avaki.
Sybase Avaki EII Overture 23

Database tools
To cover more advanced situations where you need the full power of Java or you need
to perform XML processing within Avaki, you can also create data services that are
implemented in Java, JavaScript, or XSLT directly without using Avaki Studio.

Finally, if you have data consumers or applications that require flat file output, you can
route the output of database operations or data services to flat files using Avaki view
generators.

The Avaki data catalog viewed through ODBC/JDBC
To refer to an Avaki SQL view (table), database operation, or data service via ODBC or
JDBC, you must know its name. These objects have three-part, qualified names in the
following format:

<catalog>.<schema>.<object>

<catalog> is the name of the Avaki domain in which the object is defined. The
<schema> portion of the name can be one of the following:

• A database connector name. For example, if you establish a database connector
called “CustomerDb,” then all SQL views and database operations defined on that
connector will have CustomerDb as the schema portion of their name.

• The literal “DATASERVICE.” This is the schema in which all data services and SQL
views generated from them are deployed.

• The literal “VirtualDb.” This is the schema in which virtual database operations and
SQL views generated from them are deployed.

<object> is the name of the SQL view, database operation, or data service that you
want to access.

For more on qualified names of Avaki objects, see “Qualified names: shorthand for
paths” on page 30.

Processing distributed data via XSLT, JavaScript, and Java:
Advanced data services

A data service can process data from one or more sources of the following types:

• files (which can be generated views);

• external web services;

• other data services;
24 Sybase Avaki EII Overture

Integration
• Avaki database operations or virtual database operations.

Data services can be invoked via JDBC or SOAP calls, or they can be invoked as input
to other data services and view generators. A data service accepts runtime parameters,
which can be routed to the input sources or to the data service plug-in. The output can
be in rowset, XML, or raw byte stream format; output may also include parameters.

Data services perform their processing in a data service plug-in. A data service plug-in
can be implemented as an XSLT style sheet, as JavaScript, or as Java classes (packaged
in a JAR file). You can use Avaki Studio to generate and deploy data services whose
plug-ins are written in JavaScript; see Data Integration with Sybase Avaki Studio for
details. (Note that when you use Studio to create a data service, you may never see the
plug-in—Studio creates it for you.)

If you want to write your own data service using XSLT or Java, you’ll use a different
set of tools. The style sheet or JAR file must be shared into the data catalog. See the
Sybase Avaki EII Provisioning and Advanced Data Integration Guide for instructions
on creating data service plug-ins in XSLT or Java.

An important application of data services is to support distributed transactions. When
you need several database operations to be treated as a single transaction—that is, all
must succeed, or if any fails, all must be rolled back—you can write a Java plug-in that
uses the two-phase commit protocol, then set up a data service that calls all the data-
base operations. See the Sybase Avaki EII Provisioning and Advanced Data Integra-
tion Guide for instructions.

Data services are configured by members of the DataProviders group.

Generating data snapshots as files: Avaki view generators
In many situations, the ultimate consumer of data that has been provisioned or processed
in the grid is an application or end user that needs the data accessible as a flat file, which
might be in comma-separated values (CSV), HTML, XML, or another format.

Avaki views meet this need. They consist of two parts: the view generator and the gen-
erated view, which is the file that results from view processing. When you configure a
view generator, you name an input source and specify the parameters that the input
source requires, as well as where in the data catalog you would like the generated out-
put to appear. Finally, you configure the kind of transformation that you’d like per-
formed. By default, Avaki can simply pass through the results of the input and
generate a CSV file or an HTML page. If you need customized processing, you can also
specify an XSLT style sheet that will transform the input if it is XML (or rowset data
that Avaki will convert to XML on the fly).
Sybase Avaki EII Overture 25

Database tools
Views can take input from files (including other views), data services, and database
operations.

When generated views are unused for a certain period, they are discarded.

You can configure views to issue update notifications whenever they are regenerated.
Update notifications allow the regeneration of one view to trigger the update of
another.

Views are configured by members of the DataProviders group.
26 Sybase Avaki EII Overture

Chapter 3

Browsing the data catalog
This chapter describes the features, contents, and purpose of the Avaki data catalog.

In this chapter:

• “The data catalog: What is it and what’s in it?,” below

• “What is a data catalog name?” on page 30

• “Qualified names: shorthand for paths” on page 30

• “Top-level Avaki directories” on page 33

• “Organizing your data catalog” on page 36
Sybase Avaki EII Overture 27

Browsing the data catalog
The data catalog: What is it and what’s in it?
The Avaki data catalog is the shared, distributed, hierarchical directory where data
owners and administrators can register their data sources, files, queries and data inte-
gration services and set access control and other policies. Application developers and
end users who need access to data use the data catalog to browse or search for the data
sources or services they need, access the data directly, or invoke data integration ser-
vices, subject to access control policies. The data catalog is distributed and can scale
across an enterprise. By interconnecting Avaki domains, administrators can create data
catalogs that span multiple enterprises while maintaining strict access control policies.

You can view and access the contents of the data catalog in various ways: through
Avaki Studio’s data catalog view pane, through the Avaki web user interface (web UI),
through the Avaki command line interface (CLI), or via web services/SOAP.

Every object in an Avaki domain has an entry in the data catalog. This includes obvi-
ous things like data sources, files, grid directories (folders), database operations, ser-
vice views, data services and view generators. It also includes servers, user accounts,
authentication services, groups and search services. A core catalog structure is created
with each Avaki domain; that structure can be extended and customized to suit your
organization’s needs.

Every object in the system therefore has a catalog name, or path. Avaki’s APIs, com-
mands and user interface also recognize so-called “qualified names” for certain types
of objects—these are merely syntactic shorthand for catalog paths.
28 Sybase Avaki EII Overture

The data catalog: What is it and what’s in it?
You can display the list of top-level Avaki directories (folders) in the web user inter-
face by visiting the Browse Directories screen, shown below.

Home > Data catalog management

Icons
These icons identify different types of objects in the data catalog:

A service (example: a database operation or an authentication

An Avaki directory

service) or an Avaki server

An Avaki share

A file

A category or the link to the category browser
Sybase Avaki EII Overture 29

Browsing the data catalog
What is a data catalog name?
Anyone who has used a Windows or Unix file system is familiar with paths used to
name files, such as:

C:\windows\winnt\pgm.exe
/home/local/jdoe/myfile.txt

The name of an object (file, directory or folder, database operation, etc.) in the Avaki
data catalog is just like a Unix filename—a forward-slash-separated pathname:

/Shares/myShare/myfile.txt
/System/LocalDomain/Services/DatabaseServices/MyDb/Query1

Every object in a data catalog has a single unique pathname that is its primary name.
However, you can use Avaki links to create secondary names for any object. Unlike
hard links in a Unix file system, however, Avaki hard links are not reference
counted—there is a primary link which, when unlinked, causes the underlying object
to be deleted.

Qualified names: shorthand for paths
There are situations where using full pathname syntax to call on a particular object in
the data catalog is either not appropriate or inconvenient. For instance, when you
invoke a database operation via a JDBC driver, JDBC dictates that you use a dot-sepa-
rated three-part name syntax for the database operation. In other situations it’s more
convenient to use an abbreviated syntax to identify users. We refer to these syntaxes as
“qualified names”—an alternative, usually shorter syntax for the full catalog path-
name.

Here’s an example of the qualified name for a database operation; it includes the
names of the Avaki domain, the database operation’s database connector, and the data-
base operation itself:

MyDomain.MyDBconnector.MyDBop

Avaki expands such three-part names into data catalog paths of the form

/System/Domains/MyDomain/services/database services/MyDBconn/MyDBop

If the domain name is omitted from the qualified name, LocalDomain is assumed.
30 Sybase Avaki EII Overture

Qualified names: shorthand for paths
Avaki recognizes qualified names for the following objects:

• Data services
There are two ways to specify a data service for the web services API, the CLI,
ODBC, or JDBC. You can always use this syntax:

<domain name>.dataservice.<data service name>

In addition, a data service that has been mapped to a table in a metadata model in
Avaki Studio can be accessed using the metadata model and table names:

[<domain name>.]<metadata model name>.<table name>

For example, suppose there is a data service called empDS in the Bedrock domain,
and empDS has been mapped to a table called Employee in the HumanResources
metadata model. You can access the empDS data service using either of these
names:

Bedrock.dataservice.empDS

HumanResources.Employee

• Database operations
When you access a database operation through the web services API, the CLI,
ODBC, or JDBC, use the following syntax:

<domain name>.<DB connector name>.<DB operation name>

In addition, as with data services, a database operation that has been mapped to a
table in a metadata model in Avaki Studio can be accessed using the metadata
model and table names:

[<domain name>.]<metadata model name>.<table name>

• Virtual database operations
When you access a virtual database operation through the web services API, the
CLI, ODBC, or JDBC, use the following syntax:

<domain name>.virtualDB.<virtual DB operation name>

• SQL views (tables provisioned or generated in the data catalog)
When you access a SQL view through the web services API, the CLI, ODBC, or
JDBC, use one of the following syntaxes:

— For a SQL view provisioned through a database connector:

<domain name>.<db connector name>.<SQL view name>
Sybase Avaki EII Overture 31

Browsing the data catalog
— For a SQL view generated from a database operation:

<domain name>.<db connector name>.<SQL view name>

— For a SQL view generated from a data service:

<domain name>.dataservice.<SQL view name>

— For a SQL view generated from a virtual database operation:

<domain name>.virtualDB.<SQL view name>

• Tables in relational databases
A database table that has been mapped to a table in an Avaki Studio metadata
model can be accessed using the metadata model and table names:

[<domain name>.]<metadata model name>.<table name>

• Avaki servers
In the CLI, wherever you are asked to provide a server name, you can pass in just
the name—it’s not necessary to give the entire catalog path.

• Users
Instead of the full path to a user account, you can provide a qualified name using
this syntax:

username@<authservice-name>.<authservice-type>.<domain name>

where <authservice-name> is the name of the grid authentication service to which
the user belongs and <authservice-type> is one of Ldap, Grid, Nis. If a domain
name is not provided, LocalDomain is assumed. Qualified names for users expand
to data catalog paths of this form:

/System/<domain>/Services/AuthServices/<auth-service
type>/<authservice-name>/Users/<user-name>
32 Sybase Avaki EII Overture

Top-level Avaki directories
Top-level Avaki directories
When you create an Avaki domain, the system sets up the core directory (folder) struc-
ture of the catalog. This section describes the core structure and its intended use. Note
that members of the Administrators group can create additional top-level directories.

Avaki directory Description

/GeneratedViews The default location for files produced by Avaki view generators. This directory is pro-
vided for convenience; it’s intended to serve as the root directory for generated views, but
you can place generated views elsewhere if you want.

/Interconnects When you interconnect your Avaki domain with another, the other domain’s root direc-
tory—its “/”—is linked into your domain’s /Interconnects directory. (The other domain’s
/System/Domains/<domain name> directory is linked into the same place in your
domain’s catalog.)

/Metadata /Metadata contains generated XML schema documents (.xsd files) that show the XML rep-
resentation of the output schema of your database operations. Do not modify these gener-
ated files or the corresponding directory structure. /Metadata contains these
subdirectories:

/DataService A generated directory containing a subdirectory for each data service
in your domain. Data services that produce resultset output store their
schema documents here. (Running a data service generates its
schema; you can also use Avaki Studio’s generate schema utility.)

/Database A generated directory tree that reflects the structure of the database con-
nectors and database operations in your Avaki domain. The structure is:

/Metadata/Database/<database-connector>/<database-opera-
tion>/<database-operation>.xsd

That is, there is a subdirectory for each database operation, and within
that subdirectory there is an XML schema document that represents
the shape of the information returned by that database operation.

/Relational A generated directory structure where query engines create and
access metadata for SQL views. There is a subdirectory for each SQL
view in your Avaki domain. The metadata stored here is intended to
be understood by query engines only.

/Standard A convenience directory into which you can link other metadata (or
create Avaki shares containing such information).
Sybase Avaki EII Overture 33

Browsing the data catalog
/User A convenience directory into which you can link other metadata
that’s of interest to particular users (or create Avaki shares containing
such information).

/VirtualDatabase A generated directory structure that stores metadata for virtual data-
base operations. The structure is:

Metadata/VirtualDatabase/<grid-server>/<virtual-DBOP>/<virtual-
DBOP>.xsd

The XML schema document (.xsd file) for each virtual database oper-
ation represents the shape of the information returned by that virtual
database operation.

/VirtualSchema A generated directory structure that holds deployed metadata models.

/Shares The default location for Avaki shares in your data catalog. Each Avaki share you create
here appears as a subdirectory. This directory is provided for convenience; you can place
Avaki shares elsewhere.

/System Avaki software uses this portion of the data catalog to keep track of the servers and ser-
vices that comprise an Avaki domain. The structure is controlled by the software—do not
edit files or add, remove, or rename files or subdirectories here unless you’re instructed to
do so by a Sybase representative.

/System contains an authentication service and these subdirectories:

/Domains /System/Domains contains one entry for the current or local domain
(its name is the domain name) and one entry for every domain to
which the local domain has been interconnected.

In each domain directory are subdirectories for servers, services and
views in that domain.

/Interconnects Same as the top-level /Interconnects directory.

/LocalDomain Same as the subdirectory for the current grid domain in Sys-
tem/Domains.

Avaki directory Description
34 Sybase Avaki EII Overture

Top-level Avaki directories
/WSDLs Contains Web Services Description Language descriptions for the Avaki services that you
can invoke via web service calls. These WSDL documents allow you to access Avaki data-
base operations, data services, and data catalog functions via web services.

You can create new subdirectories under /WSDLs to link in other WSDL documents that
you want to share within your organization.

/WSDLs contains these subdirectories:

/AvakiServices Contains the “built-in” services offered by Avaki. Using the web ser-
vices described by the WSDL documents in this directory, you can
access any part of the data catalog, read and write files, set and view
access control lists, and invoke database operations and data ser-
vices. See the Sybase Avaki EII API Guide for more on Avaki’s
WSDLs and web services API. Note: Do not change, move, or delete
this subdirectory or its contents.

/DataServices In subdirectories named for Avaki domains (the local domain plus
any interconnected domains), DataServices contains WSDLs for data
services.

/DatabaseOpera-
tions

In subdirectories named for Avaki domains (the local domain plus
any interconnected domains), DatabaseOperations contains WSDLs
for database operations

/Categories Categories let you classify and organize the contents of your data catalog. Clicking Cate-
gories takes you to the category browser. For more information, see “Data categories” on
page 37.

Avaki directory Description
Sybase Avaki EII Overture 35

Browsing the data catalog
Organizing your data catalog
An appropriately organized data catalog will be a valuable asset to your organization.
By taking advantage of the Avaki data catalog to organize and categorize your data
assets, you will

• Be able to group related queries, data services, files, and other data assets without
having to replicate the data physically.

• Enable users to find relevant information more easily.

• Increase the potential for re-use of provisioned data assets and data integration ser-
vices.

Using the catalog’s directories and categories as grouping and classification mecha-
nisms, you can create arbitrary taxonomies of your provisioned and integrated data
assets. A given item can appear in any number of directories and categories, and you
can build taxonomies of arbitrary depth and breadth.

Using links
Use links when you want an item in the data catalog to appear in more than one direc-
tory. Creating a link to an item in the data catalog does not create a copy or replica of
any data. It simply creates a new catalog entry that points to the same object. There is
no performance penalty for accessing an object via a newly created link. The data cat-
alog supports two kinds of links:

• A hard link is an alternate name for an item in the data catalog. Changes to the
object’s other names have no effect on the hard link: for example, you can move or
change a file’s original name and the hard link will still know where to find the file.
To delete a hard-linked object, you must remove the original name. Because they
are more robust, hard links are used most often; see the Sybase Avaki EII Adminis-
tration Guide for instructions on creating them.

• A soft link is a pointer to a particular location (name) in the data catalog. If the
object at that location is moved, deleted, or renamed, the soft link leads nowhere.
Soft links are used infrequently; see the Sybase Avaki EII Command Reference for
instructions on creating them.
36 Sybase Avaki EII Overture

Organizing your data catalog
Data categories
Use the categories feature to set up taxonomies for data items in the Avaki data cata-
log. Categories can be thought of as a parallel set of Avaki directories into which you
can link objects in the data catalog. You can arrange the category hierarchy in a way
reflects your organization’s taxonomy for provisioned data assets—making database
operations, service views, data services, generated views, files and so on easier to find
and use.

For example, you might set up a taxonomy as follows:

Category: BusinessEntities

Category: Customers
Database operations, service views, data services, etc. relating to customers

Category: Orders
Database operations, service views, data services, etc. relating to orders. Note
that a getOrderInfoGivenCustomerId service view might appear under Custom-
ers as well as Orders.

Category: Products
Items related to products

Category: Shipments
Items related to shipments

Category: Metrics

Category: Order Fulfillment

Category: Sales

Category: ReferenceInformation

Category: HR

Category: Product Briefs

Category: Sales Presentations

Category: Reports

For instructions on setting up categories in Avaki Studio, see Data Integration with
Sybase Avaki Studio. For instructions on setting up categories in the web UI, see the
Sybase Avaki EII Administration Guide.
Sybase Avaki EII Overture 37

Browsing the data catalog
Organizing shared files
When you create Avaki shares to provision files into the data catalog, Sybase recom-
mends that you put these shared directories under /Shares. This is a convention, not a
hard requirement. As with any directory in the data catalog, you can create any kind of
structure that you want under /Shares in order to organize your shared file systems as
you deem appropriate.

Having done so, you can then expose portions of these Avaki shares in categories, as
described in the previous section, or by linking them into a directory structure under
/Shares or elsewhere in the data catalog.

For example, as part of making all of your organization’s data assets available via
Avaki using Avaki software as a uniform data services layer, you might want to create
Avaki shares that contain items like:

• Sales collateral

• Generated reports

• Commonly used spreadsheets

• Commonly used software tools

• FAQs

• HR-related forms

You can share the source directories into the data catalog under /Shares and then create
categories for these file assets that correspond to how you want people to find and
access this information. For instructions on setting up and managing Avaki shares, see
the Sybase Avaki EII Administration Guide.

How is the data catalog distributed among Avaki servers?
Every entry in the Avaki data catalog—whether it’s a database operation, data service,
Avaki directory, file, user, group, authentication service, or other object—has a “home
server.” The home server is the Avaki grid server on which the information that Avaki
maintains about that object resides—its ACL, attributes, etc.

When you first create your Avaki domain, a number of core services and objects are
created on the grid domain controller (GDC) and registered in the data catalog. When
you join a new grid server into an Avaki domain, a number of core services and Avaki
directories are created on that new server and the top level Avaki directories on that
server are linked into the appropriate places on the GDC.
38 Sybase Avaki EII Overture

Organizing your data catalog
In some cases, such as when you create a database connector or a data service, Avaki
gives you the option of choosing the home grid server for that object. In other cases,
the choice is implicit—for example, when you create a database operation, its home
server is the same as the home server of the database connector with which it is associ-
ated.

Thus, the data catalog as well as all the services and objects that it contains are distrib-
uted, not replicated, among the various servers that comprise your Avaki domain.

When you create an Avaki directory in the web UI, the directory is created on the same
grid server as the directory that contains it. Thus, the taxonomies that you create via
the UI will all reside on the GDC, since the root of the data catalog is on the GDC.
Sybase Avaki EII Overture 39

Browsing the data catalog
40 Sybase Avaki EII Overture

Chapter 4

Authentication and access
control in Avaki domains
This chapter discusses the mechanisms that protect an Avaki grid domain from unau-
thorized access. It covers the following topics:

• “Authentication,” below

• “User accounts and groups” on page 43

• “Access control lists” on page 45

Authentication
This section discusses authentication of login access to Avaki, file access via DGAS,
and database access.

Authentication of login access to Avaki domains
Before you can perform administrative tasks or provision or manage data resources,
you must log in to an Avaki domain. The tasks you are allowed to perform depend on
the permissions granted to your user account. (“Access control lists” on page 45 dis-
cusses ACLs and permissions.)
Sybase Avaki EII Overture 41

Authentication and access control in Avaki domains
To log in, you must have a user account that’s known to the Avaki domain. There are
two types of accounts:

• Grid accounts
Administrators create grid accounts directly in the Avaki domain. When a grid user
tries to log in, password checking is performed by the Avaki domain.

• Imported accounts
Administrators can import user accounts from an LDAP or NIS directory into the
Avaki domain. When an imported user tries to log in, the Avaki domain passes the
user name and password to the directory server, which performs the authentication.

Avaki uses three types of authentication services:

• Grid
The Grid authentication service in each Avaki domain, which is called Default-
AuthService, authenticates users whose accounts were created in that domain (grid
accounts).

• Ldap
LDAP authentication services authenticate users whose accounts are imported from
LDAP directory services.

• Nis
NIS authentication services authenticate users whose accounts are imported from
NIS directory services.

Note When you enter authentication service types in Avaki commands or JDBC
connection properties, capitalize the types as show here—Grid, Ldap, and Nis.

To import users from an external LDAP or NIS directory service, an administrator must
first integrate the external directory service into the Avaki domain. During this pro-
cess, you provide information to the Avaki domain about the directory server. This cre-
ates an authentication service, the Avaki representation of the directory service.

The steps for integrating external directory services, importing and creating users and
groups, and related tasks can be found in the Sybase Avaki EII Administration Guide.

Authentication of file access via DGAS
File access via data grid access servers is controlled by Avaki’s authentication system,
plus a mapping scheme that links Avaki user accounts to accounts in the system that
hosts the files. For details, see the Sybase Avaki EII Administration Guide.
42 Sybase Avaki EII Overture

User accounts and groups
Authentication of database access
When you configure a database connector, a database operation, or a Java program to
access a database to read or update data, you either provide a user name and password
for a database account, or specify that the database access should use the credentials of
the user who initiates the execution. The user name and password are passed to the
database, which performs its own authentication.

User accounts and groups
An Avaki user can be a member of one or more groups. A group, which is simply a set
of users, can be added to access control lists and granted or denied permissions just
like a user. When you have several users to whom you want to grant (or deny) access
to a particular resource or set of resources in your Avaki domain, you can save time by
adding all the users to a group.

Avaki supports two types of groups:

• Grid groups
Grid groups exist only in the Avaki domain. Every Avaki domain includes some
default grid groups, which are described below. You can create additional grid
groups as needed.

• Imported groups
You bring imported groups into the Avaki domain from an external authentication
service.

The Sybase Avaki EII Administration Guide includes procedures for managing both
types of groups.

Default grid groups
When you set up a new Avaki domain, it includes several grid groups by default.
Members of these groups have special privileges to facilitate Avaki’s role-based
administration scheme. The default grid groups are as follows:

• Administrators
Members of the Administrators group can perform all administrative tasks, includ-
ing user administration (see UserAdministrators, below) and database administra-
tion (see DatabaseAdministrators, below). Only members of the Administrators
group can add or remove users in the Administrators group, change the ownership
of any Avaki object that belongs to a member of the Administrators group, config-
Sybase Avaki EII Overture 43

Authentication and access control in Avaki domains
ure Avaki servers, and integrate and delete external authentication services. Mem-
bers of the Administrators group can do everything. They are not subject to the
permissions in Avaki access control lists; they can read, write, delete, and change
the ownership and permissions of any object in their Avaki domain. Putting a mem-
ber of the Administrators group on an ACL deny list has no effect. By default, the
Administrators group has one member, Administrator, who can add other users as
needed. It is not possible to remove the Administrator user from the Administrators
group or to delete the Administrator user.

• UserAdministrators
Members of UserAdministrators can create, import, and delete user accounts and
groups, add users to and remove users from groups, and change passwords.

• DatabaseAdministrators
Members of DatabaseAdministrators can create, modify, delete, test, and view
information about database connectors and database operations.

• DataProviders
Members of the DataProviders group can create Avaki shares and CIFS shares; set
up data services; set up generated views based on files, database operations, and
data services; create search services, and create categories.

• DomainUsers
Every user in an Avaki domain is a member of that domain’s DomainUsers group.
Members of DomainUsers have no special privileges by default.

• MessagingUsers
To support messaging between Avaki domains, each domain has a MessagingUsers
group and a MessagingUser user account. To use cross-domain messaging, a
domain in a two-way interconnect must add the other domain’s MessagingUser to
its own MessagingUsers group. This allows the first domain to receive update noti-
fications about changes to generated views from the other domain. (For details on
setting up cross-domain messaging between interconnected domains, see the
Sybase Avaki EII Administration Guide.)

• everyone
This group lets you, in a single action, grant or deny access to a file, directory, or
other resource to everyone who has access to this Avaki domain. (Note that this is
the only group that can be used to deny access.) In effect, adding “everyone” to an
allow list turns off access control—it allows access even to users who have not
logged in. If “everyone” is on an allow list, denying permission to an individual
user has no effect. Conversely, if “everyone” is on a deny list, allowing individual
users or other groups permissions on that object has no effect. Permissions set using
44 Sybase Avaki EII Overture

Access control lists
the everyone group take precedence over all other permissions except those of
administrators.

You can create as many additional grid groups as you need.

You can use groups and user accounts—both imported groups and user accounts and
those created in the data grid—in access control lists (ACLs), which are described in
the section that follows.

Access control lists
This section explains how access control works. It covers the following topics:

• “How Avaki permissions work,” below

• “Ownership” on page 46

• “Permission settings” on page 47

• “Interpreting permissions” on page 48

• “Permissions in directories and categories” on page 49

• “Permissions on new files” on page 49

• “Permissions on cached objects: using groups” on page 51

How Avaki permissions work
Access control lists (ACLs) determine which grid users are allowed to read and manip-
ulate files, directories, categories, Avaki shares, database operations, and other objects
in the data catalog.

Every Avaki object has an ACL that consists of a list of users and groups and the spe-
cific privileges of each user or group to perform actions on the object. The actions are
read, write, execute, and delete. You can allow or deny permission for each action on
each object by each user or group.
Sybase Avaki EII Overture 45

Authentication and access control in Avaki domains
Here’s a sample ACL; it’s for a file called secrethandshake.txt.

Notice that the ACL includes three users—fred, Administrator, and barney—and one
group, WaterBuffaloes. The users fred and barney are both members of the WaterBuf-
faloes group; they are listed separately because their permissions are different from
those of the group.

Ownership
The user fred, listed first in the sample ACL, owns the file. Only the owner of an object
or a member of the Administrators group can change the object’s ACL.

Note Deny permissions set for the owner of an object or for members of the
Administrators group are ignored—that is, you can set an ACL to deny read,
write, execute, or delete permission, but the owner or administrator will still be
46 Sybase Avaki EII Overture

Access control lists
able to perform those actions. The UI lets an owner set deny permissions for her-
self in case she wants to have them in effect after she sets a new owner for the
object.

In Avaki, object owners can be either users or groups. However, ownership by groups
is only partially supported by NFS. An Avaki group that owns an object cannot be
properly mapped to a local user over NFS. (The group will be mapped to a default UID
if one is configured for the object’s authentication service.) Consequently, from an
NFS client, it is not possible to change permissions (chmod), change ownership
(chown), or change group (chgrp) on an object whose owner is a group. We recom-
mend that you avoid assigning Avaki groups as owners of files, directories, and other
objects that will be accessed via NFS—that is, via an Avaki data grid access server
(DGAS).

Over CIFS, you can neither view nor modify object ownership information. (Nor can
you change permissions, change group, or modify attributes.)

When you create a file through a DGAS, your UID and GID are mapped to a user and
group on the file’s home machine if mappings have been configured in the DGAS. That
user and group become the owner and group owner of the file, and if the mappings are
set up correctly, you can view this information through the DGAS. However, nothing
else in Avaki supports the notion of group ownership. For example, an Avaki share
does not import group ownership when it pulls a new file into the data catalog, and
neither the web UI nor the CLI lets you view or manipulate group ownership of shared
files.

Permission settings
For each action (read, write, execute, delete), an ACL can include one of these permis-
sions:

• Unset
Indicates that this value has not been set. When a permission value is Unset, the
user’s or group’s permission for this action (read, write, execute, or delete) may
depend on other permissions (group or individual) for this object. For example, if a
user’s own account has a permission of Unset for reading a file but the user belongs
to a group that is allowed to read the file, the user is allowed to read the file. If the
user’s account has a permission of Unset for reading a file and no group permis-
sions apply, the user is not allowed to read the file.

• Deny
The user or group may not perform this action (read, write, execute, or delete) on
the object. When user and group permissions on an object conflict, Deny generally
Sybase Avaki EII Overture 47

Authentication and access control in Avaki domains
wins—but see “Interpreting permissions,” below, for details. Note that it is not pos-
sible to deny permission to a group, except in the case of the “everyone” group.

• Allow
The user or group may perform this action (read, write, execute, or delete) on the
object unless permission is denied elsewhere. (For example, if a user belongs to a
group that is allowed to read a file, but the user himself is denied permission to read
that file, the user is not able to read the file.)

Interpreting permissions
Some permissions take precedence over others. In cases where two or more permis-
sions disagree (for example, a user belongs to a group that is allowed to read a file but
the user herself is denied permission to read that file), permissions are interpreted as
follows:

1. The owner of an object or a member of the Administrators group can do anything with
the object. Deny permissions for the owner of an object or an administrator have no
effect.

2. Permissions for the “everyone” group take precedence over all other permissions. For
example, if “everyone” is allowed to read an object, denying read permission for an
individual user has no effect. Conversely, if “everyone” is denied permission to read
an object, allowing a user or group has no effect.

Note The “everyone” group is the only group for which deny permissions can
be set.

3. Deny takes precedence over Allow and Unset. (This allows you to use groups effec-
tively by granting a permission to a group, but denying the same permission to a few
members of the group.)

4. User permissions take precedence over group permissions.
5. Permissions for groups other than everyone are effective only when not trumped by

any of the preceding rules.
48 Sybase Avaki EII Overture

Access control lists
Permissions in directories and categories

Using categories to solve access problems. To access an Avaki object, a user
needs permissions not only on the object itself, but on all parent objects in the path to
the target object. For example, to read the file Dinosaurs.doc in the Avaki directory
/Shares/pets, you must have read permission on the root directory /, /Shares,
/Shares/pets, and /Shares/pets/Dinosaurs.doc. This rule applies to categories as well as
Avaki directories.

In some cases, a user might need access to a file (or data service or other object) that
resides in an Avaki directory to which that user should not have access. For example,
suppose you have a /Shares/HR directory that contains both private information about
employees and a public list of telephone numbers. To make the phone list available to
users outside the HR group, you can create a category for it such as /Categories/Pub-
licInfo. Set the permissions so that members of DomainUsers are allowed to read /Cat-
egories, /Categories/PublicInfo, and /Categories/PublicInfo/phonelist.xls. This
arrangement allows all Avaki users in the current domain to read the phone list, no
matter how restrictive the permissions are on the file’s home directory, /Shares/HR.

Hiding objects in directories and categories. If a user has permission to read a
directory or a category, she can list the names of files, subdirectories, and other objects
in that directory or category—even those objects to which she has been specifically
denied read permission. If you need to hide the existence of an object, it is not suffi-
cient to set deny permissions on the object itself. You must also deny read permission
to the directory in which the object resides, to any directories into which the object is
linked, and to any categories to which the object has been added.

Permissions on new files
A newly-created file in an Avaki share can have different permissions depending on
how it was created. Consider two examples, each involving a new file in an Avaki
share; the share appears in the data catalog as /Shares/plans. The physical files in the
share reside on a machine called Granite.

Example 1. First, a user called Wilma creates a file in Granite’s local file system using
an OS tool such as a copy or touch command. This new file appears in the data catalog
the next time the /Shares/plans share is rehashed. In the data catalog, the file inherits
the Avaki ACLs of its parent directory, regardless of the permissions it has in the local
file system. Thus Wilma will not be the owner of the file in the Avaki ACL unless she
is the owner of the parent Avaki directory.
Sybase Avaki EII Overture 49

Authentication and access control in Avaki domains
Example 2. Consider next a file that’s created using Avaki—in an NFS-mounted grid
directory via a data grid access server (DGAS). Like the file in the first example, this
file inherits the Avaki ACLs of its parent directory. However, in addition to the inher-
ited ACLs, the NFS-created file will have ACLs for the grid user and group to which
the creator of the file (logged in to an NFS client) was mapped. The mapped grid user
becomes the owner of the file in the Avaki ACL. In this example, the Avaki ACLs of
the parent grid directory are:

/Shares/plans
owner: barney
ACLs:
barney RWXD
DomainUsers RWXD

Suppose a Unix user called Fflintstone is mapped to a grid user called Fred and to a
grid group called Waterbuffaloes. Fflintstone goes to /Shares/plans, which has been
mounted on his NFS client, and creates a new file:

Fflintstone> cd /mnt/avaki/Shares/plans
Fflintstone> touch myfile

(Avaki ACLs allow Fflintstone to do this because mapped Avaki user Fred is a member
of DomainUsers.)

The new file, myfile, will have not only the permissions inherited from /Shares/plans,
but also permissions for Fred and Waterbuffaloes, to which Fflintstone is mapped. The
ACL for myfile looks like this:

/Shares/plans/myfile
owner: Fred
ACLs:
barney RWXD
DomainUsers RWXD
Fred RW-D
Waterbuffaloes R--D
Everyone R---

For a file created by a mapped user via a DGAS, it is not possible to change the inher-
ited Avaki ACLs by changing file permissions in the operating system. Operating sys-
tem tools (such as chmod) affect only permissions for users and groups that exist in or
map to users and groups in the local file system—in this example, Fred and Waterbuf-
faloes. If you want to change the permissions for barney or DomainUsers, you have to
make the change using the Avaki web UI or CLI—changes to barney’s or Domain-
User’s permissions in the operating system, SOAP, or Avaki Studio will have no effect.
50 Sybase Avaki EII Overture

Access control lists
Permissions on cached objects: using groups
A cache entry—which can contain a file, directory, or the results of a database opera-
tion or data service—includes a copy of the ACL for the object at the time it was
cached. If you add a user to the object’s ACL after the data is cached, the new user
won’t get access until the entry expires out of the cache or an administrator invalidates
it. (For uncached objects, adding a user to the ACL grants immediate access.)

To avoid this problem, we suggest setting permissions for cached objects on a group
basis. When you add a user to a group that already has access to a cached object, the
new user can access the object’s cached copies immediately.
Sybase Avaki EII Overture 51

Authentication and access control in Avaki domains
52 Sybase Avaki EII Overture

Chapter 5

Caching
Each Avaki grid server contains a cache service that can be used to store database
results, application data, or files that are frequently accessed by users. Avaki uses
caching to accomplish the following goals:
• insulate production data sources from haphazard access;

• maintain good performance for users and applications;

• refresh data in a granular way based on business need; and

• ensure maximum data availability.

Caching makes remote data access practical by limiting the number of times a data
request requires immediate communication with the original data source. Avaki pro-
vides a variety of caching options and features to meet diverse performance require-
ments. You can specify a different caching strategy for each data item, and the various
caching options can be used separately or in combination.
• Local caching enables caching of frequently requested results near the data source.

This reduces the load on the back-end data source.

• Remote caching caches data close to the users or applications that will use it. This
cuts down on network congestion and dramatically speeds up application perfor-
mance, because remote data calls are eliminated. Caches can be prepopulated and
updated during off hours when network load is low, and cache configurations can
be established that ensure high availability when a network is congested or unavail-
able for some reason.
Sybase Avaki EII Overture 53

Caching
Note The terms “local” and “remote” in local caching and remote caching refer
to the proximity of the cache service to the data source.

Cache update frequency can be specified for a given data item. To protect production
databases from unexpected load, database administrators can schedule how often data
services should be rerun and cached. Cached data can also expire after a set time
period, forcing a refresh of the data on the next request.
In this chapter:
• “Using cache services to improve performance,” below

• “Configuring clients and Avaki servers to use cache services” on page 56

• “Configuring caching for files” on page 56

• “Configuring caching for database operations and data services” on page 58

For more information on caching. This chapter provides an overview of the caching
performed by the cache services on grid servers. More information is available:
• For instructions on configuring Avaki cache services, see the Sybase Avaki EII Pro-

visioning and Advanced Data Integration Guide.

• Caching in Avaki is not restricted to the cache services on grid servers; caching is
also performed on data grid access servers (DGASes). A DGAS uses its own internal
caches to store copies of the files and directories it serves to NFS and CIFS clients.
The DGAS caches may get their data directly from the source file systems or from
the cache service associated with the DGAS. For information about configuring
DGAS internal caches, see the Sybase Avaki EII Administration Guide.
54 Sybase Avaki EII Overture

Using cache services to improve performance
Using cache services to improve performance
You can use caching to make the contents of a directory or the results of database oper-
ations and data services available on demand. Caching is an important component in
staging and delivering provisioned/processed data efficiently to users and applications.
This section discusses how cache services can be used to protect back-end data
sources and network resources and reduce latency for data access operations.

Files and directories can be pinned explicitly in a cache (that is, marked for caching) or
fetched on demand. The results of data services and database operations can be cached
on demand. They can also be scheduled to run and have their results stored in one or
more caches.

Ultimately, the benefit of caching data is performance; the aspect of performance that
you want to optimize determines how you set up your caching services.

If you have a widely distributed Avaki deployment, you will probably want to cache
files and the results of data services and database operations close to their consuming
users and applications. We refer to this as remote caching; it reduces latency caused by
network delays and can improve the overall performance of your corporate network—
either because repeated requests for on-demand data can be addressed locally or
because you stage the results by scheduling a database operation or data service to run
at particular times.

Many database administrators will also want to manage the load on their databases.
They can do this using local caching. By scheduling database operation results to be
cached in the cache service that is on the same grid server as the database connector, or
by allowing such database operations to be cached on demand in that cache service,
you can prevent queries from hitting an operational data store each time a database
operation is executed.

The results of complex data processing computations in data services can also be
cached, either in an on-demand fashion or following a schedule.
Sybase Avaki EII Overture 55

Caching
Configuring clients and Avaki servers to use
cache services

Avaki clients (such as command line clients) and JDBC applications that use the Avaki
JDBC driver can be configured to take advantage of cache services. To enable them to
take advantage of remote caching, you must set the cache service that they will use. If
you are using only local caching for database operations and data services, you do not
need to perform any special configuration steps.

For information about configuring remote caching for JDBC programs, see the Sybase
Avaki EII API Guide.

For information about configuring remote caching for Avaki command clients, see the
Sybase Avaki EII Command Reference and the Sybase Avaki EII Administration Guide.

Avaki grid servers and data grid access servers (DGASes) can also be configured to use
a particular cache service in a remote-caching configuration. To learn how to config-
ure remote caching for a grid server or DGAS, see the Sybase Avaki EII Administration
Guide.

Configuring caching for files
There are two modes in which an Avaki cache service can cache the file data and meta-
data for shared files: on-demand caching and scheduled (pinned) caching.

On-demand caching
The cache service coherence window controls cache coherence for files that are
cached on demand. This value can be overridden on a per-file basis by coherence win-
dows set on individual files (either as an attribute on the back-end file, which dictates
its coherence for all cache services, or during the tagging process, which dictates the
coherence for that file on that particular cache service).

The cache coherence window determines how frequently a cache service will consult a
file to see if it has changed. For files, this is determined by consulting the modification
time (mtime) for the file or directory.
56 Sybase Avaki EII Overture

Configuring caching for files
In order for a cache service to cache files on demand, you must specifically identify
the file or files that should be cached on demand. Thus, a cache service will not auto-
matically cache every single file that it may be asked for; it will cache only those that
have been marked for on-demand caching. You can mark individual files or directory
hierarchies of files for on-demand caching. When you mark a directory (and poten-
tially its subdirectories) for on-demand caching, the cache service will track the direc-
tories and their contents, but not cache the file content. When a client of the cache
service—a DGAS, command line interface, or SOAP client—asks for file content, the
cache service pulls down and caches that file content in blocks as needed.

Pinning files in a cache
The alternative to on-demand caching is to pin files in a cache service for scheduled
caching. As with on-demand caching, pinning involves marking individual files or
directory hierarchies of files to be cached. If you specify a schedule, the cache service
pulls down file content during the pinning process and actively keeps the file content
refreshed in the cache according to the schedule. If you do not specify a schedule, the
cache service uses a schedule based on the applicable coherence window for that file.
When the time specified for the coherence window elapses, the cache service consults
the modification time for files and directories and syncs down any changes.

Permissions and access control
Files and directories are pinned using the identity of the individual who marked them.
Like data services and database operations, the cache service caches access control
information and performs local access control checks. Access control lists (ACLs) and
other metadata are refreshed according to a cache coherence window interval.
Sybase Avaki EII Overture 57

Caching
Configuring caching for database operations
and data services

There are two modes in which an Avaki cache service can cache the results-data and
metadata for database operations and data services: on-demand caching and scheduled
caching.

On-demand caching
On-demand caching is suitable for Avaki objects that are rarely accessed or that
change at irregular intervals. When you tag a database operation or a data service for
on-demand caching, the results are cached only when the database operation or data
service is executed.

Cache coherence in Avaki is maintained via coherence window mechanisms. For data-
base operations and data services, you can use the data expiration interval to control
data freshness. The data expiration interval is a settable property for data services and
database operations. You can set the value of this property using either the web user
interface or the command line interface.

The data expiration interval determines whether data is cached and, if so, when the
data expires from the cache. You can specify that the data should never expire, or you
can specify the interval before the data expires.

The default data expiration interval for a database operation or data service is no cach-
ing. You can change this data expiration interval when the database operation or data
service is created or at any other time by using the view/edit option when viewing a
list of database operations or data services. When the database operation or data ser-
vice is executed, any results will be held in the cache for a period equal to the data
expiration interval. Caching is keyed by database operation or data service name and
parameter values, so any invocations of the database operation or data service with the
same parameter values will be read from the cache during that time. Note that this
means that multiple results for a particular database operation or data service may be
in the cache at any given time.

When a database operation or data service has cached on-demand results-data, other
metadata information about the database operation or data service may be cached as
well. This includes security information and attributes. If these values are changed
while data is being cached, we recommend that you invalidate the database operation
or data service in the cache service to force a reset of all cached data for that database
58 Sybase Avaki EII Overture

Configuring caching for database operations and data services
operation or data service. Cached data can be invalidated on the View Cache Service
UI page.

Scheduled caching
Scheduling is useful if you want the database operation or data service to run at a par-
ticular interval (minutes, hours, days, and so on). When a database operation or data
service is scheduled, the results-data will stay in the cache until the scheduled execu-
tion takes place. During this time, the cache service assumes the content to be fresh
and does not check with the source to see if the content has expired. The scheduling
for a database operation or data service applies only to the cache service on which the
schedule was created. The data expiration interval will be ignored (in the specific
cache) for the database operation or data service when it has been scheduled.

Remote/local caching interactions
The simplest caching behavior is when you are using only a local cache and you
invoke a database operation or data service that has a data expiration interval higher
than zero. The first time you invoke such a database operation or data service, a cache
entry will be created. For the duration of the data expiration interval, data will be read
from the cache.

With multiple caches, a user must be a little more careful about applying a strategy.
The simplest scenario is to use on-demand caching only, by controlling the data expi-
ration interval. In this case, the local cache and the remote cache will treat the data in
the same manner. The data will expire in both caches at the same time and will be
always fresh relative to the data expiration interval.

If you are implementing scheduling, you should understand which cache is taking the
direct user requests before deciding on a strategy. The scheduling should be done in
the cache that is taking the user requests—the remote cache, typically. If both local
and remote caches are taking user requests, then scheduling in both caches may be
useful. If you are using a combination of scheduling and on-demand caching then
scheduling should be in the remote cache only. If not, the remote cache may not work
correctly because it can receive repeated stale data from the scheduled database opera-
tion or data service in the local cache, and will never actually cache it.
Sybase Avaki EII Overture 59

Caching
Permissions and access control
By default, you need to be a member of the Administrators group in order to configure
cache services.

When you schedule database operations or data services in a particular cache, the iden-
tity that the cache uses to invoke the database operation or data service is the identity
that was used to create the schedule. So if you are scheduling a database operation or
data service, you must make sure that you have execute permission on it.

When a database operation or data service is accessed via a cache service, the cache
service performs the access control check for the user who is invoking the service. In
order to do this, the cache maintains a cached version of the object’s access control list
(ACL). The cache service will refresh the ACL either on a schedule or according to the
cache coherence window interval.

For information about configuring caching for database operations and data services,
see the Sybase Avaki EII Provisioning and Advanced Data Integration Guide.
60 Sybase Avaki EII Overture

Glossary
Terms printed in italics are defined in the glossary.

access control list
(ACL) A list, for a given file, directory, or other Avaki object, of permissions—read, write, execute,
delete, and owner—that control which users and groups can view, modify, invoke, and remove the
object, and edit the object’s ACL.

ACL
See access control list.

ad-hoc query
A mechanism that lets you directly query a database in SQL. The query must run through an existing
Avaki database connector. You can run an ad-hoc query using either the CLI or a JDBC driver.
Ad-hoc queries can be thought of as single-use database operations.

attribute
A property of an Avaki directory, file, service, or other object. Each attribute has a name, a type (string,
integer, float, date, time, or timestamp) and a value. System attributes are read-only; you can change
the values of other attributes. You can also create new attributes and add them to objects as needed.

authentication service
A service associated with an Avaki domain that authenticates an Avaki user’s identity and provides
security credentials each time the user logs in. Avaki can be configured to use third-party directory
services as authentication services for login; for user accounts created directly in the Avaki domain,
Avaki uses its own default authentication service.
Sybase Avaki EII Overture 61

Glossary
Avaki directory
Avaki software creates a single, unified namespace that is accessible (subject to Avaki access control
lists) to all users in the Avaki domain. The namespace, called the data catalog, is arranged as a hierar-
chy of Avaki directories (folders). The catalog directory structure is stored by the domain’s grid serv-
ers and its GDC, while the physical files remain in their original locations in your local file systems.
When you work with directories, it’s important to distinguish between Avaki directories, which are
part of the data catalog, and local directories, which reside in your local file system.

Avaki domain
The basic administrative unit of the Avaki EII system. An Avaki domain consists, at a minimum, of
one grid domain controller and may also include one or more grid servers, share servers, proxy serv-
ers, data grid access servers, and command clients. See also domain name.

Avaki group
A set of users who have the same permissions on one or more Avaki objects. You can use the group
name in place of a user name when you set permissions or create access control lists.

Avaki installation directory
The directory in your local file system where Avaki software is installed. This is not a data catalog
directory.

Avaki share
(Also shared directory.) A pointer in the Avaki data catalog to a directory or file in the underlying
local file system. When you browse the data catalog, Avaki shares look like—and can be accessed
like—other Avaki directories. Contrast with CIFS share.

Avaki server
A service that starts, stops, and monitors other Avaki services on a particular computer. Every server
is part of an Avaki domain. A server is permanently attached to the computer where it is started. There
are several types of server: data grid access servers, grid domain controllers, grid servers, share
servers, and proxy servers.

Avaki Studio
A graphical, metadata-based data integration tool that lets you
• Build data flows by dragging and dropping input sources, operators, and output targets. You can

deploy your data flows as Avaki data services.
• Import or create metadata models and apply them to Avaki objects or use them to build new data

services.
62 Sybase Avaki EII Overture

In addition, you can use Studio to perform provisioning tasks (creating database connectors, data-
base operations, virtual database operations, and SQL views), manipulate categories, and edit ad-hoc
queries and attributes.

cache service
(Formerly proxy cache service.) A staging service that stores copies of files, database operation
results, and data service results. Caching improves retrieval performance. To ensure that an object is
stored in the cache, you can pin a file or directory in the data catalog, or schedule a database operation
or data service. A cache service can provide remote caching, local caching, or both. The freshness of
cached data is controlled by a data expiration interval that determines how long cached data is consid-
ered valid and by a cache coherence window that tells the cache service how often to check whether
cached data is still valid. If cached data is too old to satisfy a new request (or is not stored in this
cache), the cache service does one of the following:
• If the database operation or data service that produced the data is local to this cache service, the

cache service triggers execution of the database operation or data service.
• If the database operation or data service that produced the data is remote from this cache service,

this cache service requests the data from the data source’s local cache service.
A cache service can be associated with a data grid access server, a grid server, or a local user in a CLI
session. See also local cache, remote cache, on-demand caching, and scheduled caching.

category
A mechanism for classifying and organizing the contents of the data catalog. Like Avaki directories,
categories serve as containers for objects in the data catalog. Anything in the data catalog—views,
data services, shared files, even Avaki directories themselves—can be assigned to a category. Catego-
ries are hierarchical, they have attributes, and Avaki access control lists regulate access to them.

CIFS client
A machine that mounts files or directories from the Avaki data catalog by connecting to a CIFS share
through an Avaki data grid access server. A CIFS client need not have Avaki software installed.
(CIFS—Common Internet File System—is a file-sharing protocol based on the file system imple-
mented by Windows.)

CIFS share
A directory or file that has been exported (shared) from the Avaki data catalog. A CIFS share can be
mapped into a Windows file system like a network drive. When you browse the Windows file system,
CIFS shares look like—and can be accessed like—other files and directories. CIFS shares are created
through a data grid access server. Contrast with Avaki share.
Sybase Avaki EII Overture 63

Glossary
client
Avaki supports several types of client: Avaki Studio, CIFS clients, command clients, JDBC/ODBC cli-
ents, NFS clients, web clients, and WS clients.

command client
A machine that can issue Avaki commands but does not contribute resources to the Avaki domain.

connect port
The connect port on a grid domain controller, grid server, data grid access server, proxy server, or
share server accesses the JNDI naming service or RMI registry for the underlying application server.
The connect port is one of many ports that a GDC or server uses to communicate with other Avaki
objects. You must supply the connect port number of a target grid server or GDC whenever you con-
nect a new object (another server, a copy of Avaki Studio, or a command client, for example) to an
Avaki domain. When you interconnect two Avaki domains, you must supply each domain’s connect
port number to the other one.

data catalog
A hierarchical structure similar to a file system that encompasses all objects in an Avaki domain. The
data catalog contains Avaki directories and files, Avaki shares, Avaki servers, SQL views, database
operations and data services, and other objects.

data grid access server
(DGAS) An Avaki server that makes Avaki directories and their contents available to CIFS clients and
NFS clients.

data service
An operation that transforms data obtained from sources in the data catalog. Input data can come
from any number of sources, including:
• other data services

• data catalog files (which can be generated views)

• Avaki database operations (which in turn extract the data from relational databases)

• HTTP requests

• Web service invocations
You can generate the code that manipulates the data by creating a view model in Avaki Studio, or by
writing a custom data service plug-in using Java, JavaScript, or XSLT. Data service output can be in
rowset or XML format. Data services are run by the execution services on grid servers, they can be
scheduled, and their results can be cached.
64 Sybase Avaki EII Overture

data service plug-in
The logic for a data service, written in Java, JavaScript, or XSLT. Data service plug-ins are modular—
you can use the same plug-in for multiple data services. Avaki Studio creates data services and
plug-ins simultaneously, so if you use Avaki Studio to create data services, you don’t have to worry
about plug-ins. You can also use the Avaki Plug-in Wizard to create data service plug-ins.

database connector
A mechanism that enables one or more database operations, SQL views, or ad-hoc queries to connect
to a relational database.

database operation
(DBOP) A mechanism that can
• extract data from a relational database and deliver it on demand to a view generator or a data

service, or
• modify data in a relational database.

 A database operation can be a SQL statement or a stored procedure call.

dependency
A relationship in which an Avaki object requires input from other Avaki objects. A data service might
require input from one or more database operations or from other data services. A view generator
might depend on a database operation for input. A database operation can serve as an input source for
one or more data services or view generators. Generated SQL views depend on database operations,
virtual database operations, or data services. You can use Avaki Studio, the web UI, or the CLI to list
input and output dependencies for any data service, database operation, or view.

DGAS
See data grid access server.

distributed transaction
A set of related operations (typically SQL operations such as SELECT, INSERT, UPDATE, DELETE,
and CALL) that
• involve one or more databases, and

• might lead to unwanted results (such as leaving participating databases in an inconsistent state
or producing inconsistent reads) if some of the operations complete and others do not, and there-
fore

• must all be executed at once, as a single transaction.
The individual operations that make up a distributed transaction are performed by database opera-
tions that use database connectors configured with XA-capable JDBC drivers; all the database opera-
Sybase Avaki EII Overture 65

Glossary
tions are executed, using the two-phase commit protocol, by a specially configured data service. The
two-phase commit protocol is designed to ensure that the participating databases will be left in a con-
sistent state—that is, that all the operations in the distributed transaction will be completed, or none of
them will.

domain name
A unique alphanumeric identifier for an Avaki domain. The domain name is assigned by the Avaki
administrator when the Avaki domain is initialized. The domain name has a maximum length of 30
characters.

enterprise information integration
(EII) A software system that
• enables applications and users to access, without replication, both raw and integrated data from

multiple heterogeneous distributed data sources while hiding the complexity of the data sources,
and

• provides tools enabling users and data owners to further integrate and transform data.

exclusion
See schedule exclusion.

execution service
Execution services execute data services. There is an execution service on every grid server, and you
can configure a pool of execution services for load-sharing. When a pool is in place, a data service
can be run by any execution service in its grid server’s pool.

failover
The transition of control from a failing or unreachable primary grid domain controller to a secondary
grid domain controller.

federated data access
A scheme that allows independently controlled elements to be shared into a single namespace. Files,
user accounts, and other objects maintain their separate identities and remain under the control of
their owners, but—subject to access controls—the objects can be accessed, managed, and viewed as
if they were part of a single system.

GDC
See grid domain controller.
66 Sybase Avaki EII Overture

generated view
A file created by a view generator; it may contain data obtained from a database operation, a data
service, a file, or an HTTP source. Like other files, generated views exist in a local file system and are
shared into the data catalog.

grid
A heterogeneous group of networked resources that appears and functions as one operating environ-
ment. A data grid like the Avaki Enterprise Information Integration (EII) system provides secure,
shared access to data.

grid directory
See Avaki directory.

grid domain
See Avaki domain.

grid domain controller
(GDC) The first server in an Avaki domain is the grid domain controller. The GDC maintains a portion
of the Avaki domain’s namespace and provides authentication services. It can also run Avaki com-
mands, share data, and monitor other servers. (That is, the GDC functions as a grid server.) If the
domain is configured for failover, it has both a primary GDC and a secondary GDC; the secondary is
updated at regular intervals and takes over management of the domain if the primary fails. Any Avaki
shares managed by the primary are read-only on the secondary.

grid server
An Avaki server that maintains a portion of the Avaki domain’s namespace, runs Avaki services such
as shares, execution services, caches, and searches, and allows you to run Avaki’s web UI and execute
Avaki commands.

group
See Avaki group.

hard link
Provides an alternate name for an item in the data catalog. Changes to the object’s other names have
no effect on the hard link: you can move or change a file’s original name and the hard link will still
know where to find the file. To delete a hard-linked object, you must remove its original name. Con-
trast with soft link.
Sybase Avaki EII Overture 67

Glossary
interconnect
To create a unidirectional link from one Avaki domain to another. Interconnecting lets an Avaki
domain make its data catalog visible to users in another domain (subject to Avaki access controls).

JDBC driver
JDBC (Java Database Connectivity) drivers allows application programmers to access database data
shared in the data catalog. When a JDBC driver accesses data, it returns a JDBC result set that’s
immediately available to your program. JDBC drivers can:
• Call any data service in the data catalog

• Call any database operation in the data catalog

• Perform SQL select operations against SQL views in the data catalog
Sybase offers three JDBC drivers for use with Avaki EII software:
• The included Avaki JDBC driver

• jConnect, Sybase’s standard JDBC driver

• An XA-capable driver for use with database connectors that support distributed transactions

link
See hard link, soft link.

local cache
A cache service that runs on the same grid server as a database operation or a data service that gen-
erates cachable data. The local cache stores results produced by local database operations and data
services so they don’t have to execute for every new request. See also remote cache.

metadata model
A construct in Avaki Studio that expresses a schema by defining a set of tables. A table in a metadata
model can be mapped (linked) to an Avaki object such as a data service or a database operation, or to
a table in a relational database. The mapping lets you address each mapped object by the name of the
corresponding table in the metadata model. You can also derive a view model schema from a metadata
model. When you do this, you ensure that the results of any data service deployed from the view
model will conform to the metadata model’s schema.

NFS client
A machine that mounts the Avaki data catalog (or a portion of it) as a directory by connecting to an
Avaki data grid access server. An NFS client need not have Avaki software installed. (NFS—Network
File System—lets you add file systems located on a remote computer to the directory structure on
your own computer.)
68 Sybase Avaki EII Overture

ODBC
ODBC (Open DataBase Connectivity) is an API for databases on Windows. An ODBC driver (such as
the the Sybase Organic ODBC driver included with Sybase ASE) allows Avaki to communicate with
Windows database applications.

on-demand caching
A scheme by which an object is cached only if it’s used—for example, results are cached when a
database operation or a data service is executed, or a file is cached when a user or application reads
it. On-demand caching uses a fixed expiration interval to determine data freshness. On-demand cach-
ing is suitable for objects that are rarely accessed or that change at irregular intervals. Contrast with
scheduled caching.

pin
To mark an Avaki directory or file for scheduled caching. See also cache service.

plug-in
See data service plug-in.

primary GDC
See grid domain controller.

proxy server
An Avaki server that allows Avaki domains on opposite sides of a firewall or a Network Address
Translator (NAT) to communicate with one another.

queries
See ad-hoc query.

query engine
An Avaki service that executes SQL queries against the SQL views (tables) that make up the Avaki vir-
tual database. A query engine analyzes queries, pushes as much of the work as possible down to the
underlying relational database (if there is one), and performs the remaining operations (such as joins
across tables from different databases) itself. There is a query engine on each grid server.

remote cache
A cache service that runs on a grid server that is remote from an Avaki service (a database operation
or a data service) that generates cachable data. The remote cache stores results produced by distant
services so the results don’t have to be fetched over the network to satisfy every new request. Users
and applications that access remote data through the cache may have access to cached copies even
when the remote data source is unavailable. See also local cache.
Sybase Avaki EII Overture 69

Glossary
scheduled caching
A scheme by which an object is cached according to a schedule that you create. The schedule specifies
when the object is first cached and how often (or following what trigger event, such as a change to a
file) the cache is refreshed. If the object is a data service or a database operation, the schedule runs it
to put fresh results in the cache. Scheduled caching, which overrides other types of caching, is suitable
for objects that are updated frequently or on a regular basis. Contrast with on-demand caching.

schedule exclusion
A named period of time during which scheduled activities can be prevented from running. You can
apply an exclusion to as many schedules as you want. Scheduled activities include refreshing Avaki
shares and imported user accounts, and caching files, directories, and the results of database opera-
tions, data services, and generated views.

secondary GDC
See grid domain controller.

service
An Avaki object that performs a function in the domain (stores data or authenticates users, for exam-
ple). Services provided in Avaki software include Avaki directories, Avaki shares, Avaki servers,
authentication services, execution services, and user accounts.

share
A point of connection between the Avaki data catalog and a native file system or file system tool.
Avaki supports two kinds of shares: Avaki shares and CIFS shares.

share server
An Avaki server whose only task is to manage Avaki shares—local directories that are exported
(shared) into the data catalog. (Grid servers can also manage shares.)

shared directory
See Avaki share.

soft link
A pointer to a particular location (name) in the Avaki data catalog. If the object at that location is
moved, deleted, or renamed, the soft link leads nowhere. Soft links can be created only in the CLI.
Contrast with hard link.

SQL view
A virtual table—a data catalog entry that represents a table in a relational database, a database oper-
ation, or a data service. SQL views can be created in three ways:
70 Sybase Avaki EII Overture

• Provisioned directly from a table in an underlying database

• Generated from a database operation or data service

• Mapped from a database table, a database operation, or a data service, using the Avaki Studio
metadata model editor

Every SQL view is part of the Avaki virtual database. SQL views are treated as relational tables by the
Avaki query engine. SQL view data can be accessed using standard SQL statements by connecting to
Avaki with ODBC or JDBC, or via an Avaki virtual database operation.

update notification
A message issued when a generated view is updated. A view that receives data from another view can
be configured to regenerate itself (using the new data) upon receipt of an update notification.

view generator
A mechanism that does one of the following: extracts data from a file or an HTTP source, obtains data
from an Avaki data service, or uses an Avaki database operation to extract data from a relational
database. The view generator can display the data, perform an XSLT transform, save the data as a gen-
erated view file, and/or update a database. Contrast with data service.

view model
The graphical representation of a data flow that you can build in Avaki Studio. A view model typically
includes one or more input sources (such as database operations or data services), one or more oper-
ations to combine or transform the data, and an output target. When you deploy a view model, it
becomes an Avaki data service.

virtual database
The set of all SQL views in an Avaki domain, including those provisioned from external databases and
those generated from data services and database operations. You can execute SQL queries on the
SQL views in the virtual database as if they were tables in a single database.

virtual database operation
A database operation whose source database is the Avaki virtual database itself. Use virtual database
operations if you want to encapsulate and reuse SQL SELECT queries against SQL views (provisioned
or generated).

web services client
See WS client.
Sybase Avaki EII Overture 71

Glossary
WS client
(Also web services client.) A tool or a piece of code that is part of a customer application and that
makes SOAP calls to web services on an Avaki grid server. The SOAP calls can request data from the
Avaki data catalog, from a database operation, or from a data service.
72 Sybase Avaki EII Overture

Master Index
Key

AD: Administration Guide
API: API Guide

C: Command Reference
O: Overture

P: Provisioning & Advanced Data Integration Guide
S: Data Integration with Avaki Studio

In electronic copies of this book, the index links to other
books in the documentation set work only as long as the
PDF files are stored in the same directory.
Symbols
* asterisks in command syntax AD:xvi, C:xv, P:xi
- hyphens in command syntax AD:xvi, C:xvi, P:xii
+ plus signs in command syntax AD:xvi, C:xv, P:xi
.amm files S:11
.avm files S:11
.js files S:11
.jsi files S:11, S:75

sample S:115
.NET

AvakiAPI.disco WSDL discovery file API:3
sample web services client API:9
SSL certificates API:9

.project files S:11
< > angle brackets in command syntax AD:xvi, API:vii, C:xv,

P:xi
= equal signs in command syntax AD:xvi, C:xvi, P:xii
[] square brackets in command syntax AD:xv, C:xv, P:xi
_ (underscore) characters in Avaki names API:81
{ } curly brackets in command syntax AD:xv, C:xv, P:xi
| vertical bars in command syntax AD:xv, C:xv, P:xi

A
About My Domain screen AD:98
AbstractTransformer class P:243
AbstractTransformerFactory class P:244
access control in view models S:74
access control lists, See ACLs
accessibleDBOp SOAP operation API:42
accessibleDS SOAP operation API:36
accessiblePath SOAP operation API:19
accounts for grid users, See users AD:167
ACLs

about O:45
adding users and groups AD:243

ACLs (continued)
defined AD:349, API:83, C:307, O:61, P:289, S:175
deny permissions ineffective for owners, admins O:46
displaying AD:237, C:186
for database operations P:22, P:36
for SQL views P:46
granting or denying access to everyone O:44
in grid groups O:43
interpreting O:48
modifying AD:239, C:41, S:97
on cached objects O:50
on new Avaki shares AD:261
on new files O:49
ownership AD:242, O:46
permissions in AD:242, AD:307
removing users and groups from AD:242
sample O:45
setting for a grid object AD:171
setting for database operations P:14
using interconnect IDs to add users and groups to AD:304

Active Directory AD:148
domain users group AD:157, AD:159, C:155
See also authentication services, LDAP AD:148

addInputParameter JavaScript method for data service
plug-ins P:202

addInputStream JavaScript method for data service
plug-ins P:202

ad-hoc queries
as web services

AdHocDBOPExecutionParams complex type API:13
executeAdHocDBOp SOAP operation API:43
executeAdHocDBOpWithOutput SOAP operation API:44
executeAdHocDBOpWithOutputAttach SOAP

operation API:46
executeAdHocDBOpWithOutputString SOAP

operation API:47
Master Index Index-1

AD: Administration Guide API: API Guide C: Command Reference O: Overture
ad-hoc queries (continued)

code samples API:74
defined AD:349, API:83, C:307, O:61, P:289, S:175
enabling C:66
enabling on a database connector P:4
executing C:63
on virtual database

executing C:282
parameter types, specifying C:283

parameter types, specifying C:65
using JDBC driver to run API:69, API:74

AdHocDBOPExecutionParams complex type API:13
administrative user accounts, setting up AD:44
Administrators group O:43

about AD:45
permissions for AD:240

admission policies AD:332
about AD:85
adding C:91
creating AD:87
deleting AD:88, C:97
displaying C:114
displaying Windows domains for C:114
setting default policies C:112
setting Windows domain info C:111
unsetting Windows domains for C:116

aggregate functions S:110
in SQL statements, aliasing column names for P:25

Aggregate operator S:108
AIX requirements AD:3
algorithms for join operator S:155
aliases

for column names P:25, S:42
aliases for GDC machines AD:10

Allow permission in ACL AD:243, O:48
angle brackets in command syntax AD:xvi, API:vii, C:xv, P:xi
Apache Ant for compiling data service plug-ins P:184
Apache Axis API:5

data catalog example API:18
data service example API:35
database operations example API:42

APIs
data catalog API:18
data services API:34
database operations API:40
for data service plug-ins

about P:185
distributed transaction API P:188
general data service API P:186

TrAX (Transformation API for XML) P:243
web services

about API:2
data service API:35
reference API:11

AROMValue parameters P:212
As is permission in ACL AD:242
ASE, see Sybase ASE

asterisks in command syntax AD:xvi, C:xv, P:xi
attribute --delete command C:19
attribute --list command C:19
attribute --update command C:21
attributes

about AD:245
configuring for SQL views P:44
creating AD:248

and modifying S:100
defined AD:349, API:83, C:307, O:61, P:289, S:175
deleting AD:254, C:19
displaying AD:246
displaying details about C:19
ldap/importOnDemand AD:158
nis/importOnDemand AD:164
of cache services C:291
of grid servers C:290
of patches C:290
searching on AD:233
setting values AD:252, C:21
system attributes AD:248
types of AD:250, C:22, S:101
user-defined attributes AD:248
who can edit S:101

audit logging
about O:14
configuring AD:319
events captured by AD:322

audit logs AD:108
authentication in Avaki O:41

using AvakiPrincipal API:13
authentication services

configuring default groups C:218
configuring default users C:220
configuring GIDs C:217, C:221
configuring UIDs C:219, C:222
defined AD:349, API:83, C:307, O:61, P:289, S:175
deleting AD:166
displaying information about AD:166
grid, creating groups on C:141
LDAP

adding schedule exclusions for refreshing C:152
adding search bases C:160
deleting authentication services C:153
deleting import schedules C:154
deleting search bases C:160
displaying information about C:157
enabling users C:250
importing groups from AD:159, C:155
importing users from AD:157, C:155
integrating into the grid AD:148, C:157
listing import schedules C:158
scheduling refreshes AD:185
scheduling user imports C:149
setting page size for imports AD:145
updating C:160
Index-2 Master Index

P: Provisioning & Advanced Data Integration Guide S: Data Integration with Avaki Studio
authentication services (continued)

NIS
adding schedule exclusions for refreshing C:180
deleting authentication services C:181
deleting import schedules C:181
displaying info about C:183
enabling users C:250
importing groups from AD:165, C:182
importing users from AD:164, C:182
integrating into the grid AD:162, C:184
listing import schedules C:184
scheduling user imports C:177
updating C:185

refreshing imported accounts AD:185
specifying for JDBC connections API:69
types O:41

specifying for JDBC connections API:69
authentication using AvakiPrincipal API:9
auto-restart

about AD:37, C:5
configuring for a DGAS C:5
configuring for a GDC AD:38, C:9
configuring for a grid server AD:51, C:9
configuring for a proxy server C:12
configuring for a share server C:15

avaki attribute --delete C:19
avaki attribute --list C:19
avaki attribute --update C:21
avaki backup C:23
avaki cache --evict C:24, C:32
avaki cache --evict --all C:25
avaki cache --evict --deleted C:26
avaki cache --get C:27
avaki cache --invalidate C:27
avaki cache --invalidate --all C:28
avaki cache --invalidate-dataservice-results C:29
avaki cache --invalidate-dbop-results C:30
avaki cache --list C:31
avaki cache --set C:33
avaki cache --unset C:34
avaki cat C:35
avaki categories --add-to-category C:35
avaki categories --create C:36
avaki categories --delete C:37
avaki categories --describe C:37
avaki categories --list C:38
avaki categories --remove-from-category C:38, C:40
avaki categories --set-description C:39
avaki cd C:41
avaki chmod C:41
avaki chown C:42
avaki client C:45
avaki client --connect command AD:94
avaki cp C:46
avaki database operation --list-schedules C:88
avaki dataservice --add-schedule C:48
avaki dataservice --create C:52

avaki dataservice --delete C:52
avaki dataservice --delete-schedule C:54
avaki dataservice --depends C:54
avaki dataservice --execute C:55
avaki dataservice --generate-sql view C:56
avaki dataservice --info C:57
avaki dataservice --list-schedules C:58
avaki dataservice --update C:58
avaki dbconn --allow-dbop-creation C:59
avaki dbconn --delete C:61
avaki dbconn --disallow-dbop-creation C:62
avaki dbconn --execute C:63
avaki dbconn --info C:64
avaki dbconn --jdbc C:66
avaki dbconn --provision-tables C:71
avaki dbconn --show-tables C:73
avaki dbconn --test C:72
avaki dbop --add-schedule C:73
avaki dbop --delete C:78
avaki dbop --delete-schedule C:78
avaki dbop --depends C:79
avaki dbop --execute C:80
avaki dbop --generate-sql view C:82
avaki dbop --info C:83
avaki dbop --jdbc C:83
avaki dbop --jdbc --create-virtual-dbop C:87
avaki dgas --add-admission-policy C:91
avaki dgas --add-group-mapping C:92
avaki dgas --add-user-mapping C:94
avaki dgas --cifs-share-info C:95
avaki dgas --clear-cached-credentials C:95
avaki dgas --create-cifs-share C:96
avaki dgas --delete-admission-policy C:97
avaki dgas --delete-cache C:98
avaki dgas --delete-cifs-share C:99
avaki dgas --delete-group-mapping C:99
avaki dgas --delete-user-mapping C:100
avaki dgas --disconnect-cifs-client C:101
avaki dgas --get-cache-size C:101
avaki dgas --get-cache-statistics C:102
avaki dgas --get-free-disk-space C:102
avaki dgas --get-properties C:103
avaki dgas --get-property C:103
avaki dgas --get-property-list C:104
avaki dgas --initialize C:104
avaki dgas --list-cifs-clients C:105
avaki dgas --list-cifs-shares C:105
avaki dgas --list-group-mappings C:106
avaki dgas --list-user-mappings C:106
avaki dgas --modify-cifs-share C:107
avaki dgas --read-log-properties C:107
avaki dgas --reset-cache-statistics C:108
avaki dgas --save-cache C:109
avaki dgas --self-map C:109
avaki dgas --self-unmap C:111
avaki dgas --set-admission-policy-domain C:111
avaki dgas --set-default-admission-policy C:112
avaki dgas --set-property C:113
Master Index Index-3

AD: Administration Guide API: API Guide C: Command Reference O: Overture
avaki dgas --show-admission-policies C:114
avaki dgas --show-admission-policy-domain C:114
avaki dgas --sync-cache C:115
avaki dgas --unset-admission-policy-domain C:116
avaki dgas --unset-property C:117
Avaki directories, See directories, Avaki
avaki directory --add-schedule C:117
avaki directory --cache C:122
avaki directory --delete-schedule C:122
avaki directory --do-not-cache C:126
avaki directory --list-schedules C:126
avaki domain --create C:127
avaki domain --disconnect C:127
avaki domain --info C:128
avaki domain --interconnect C:128
Avaki domains, See domains, Avaki
Avaki EII software

overview O:1
typical deployment O:17

avaki executionservice --info C:129
avaki executionservice --set C:129
avaki file --add-schedule C:130
avaki file --cache-on-demand C:134
avaki file --delete-schedule C:135
avaki file --do-not-cache C:136
avaki file --list-schedules C:136
avaki file --pin C:137
Avaki functions S:73
Avaki Functions menu S:74
avaki group --add --user C:138
avaki group --create C:141
avaki group --delete C:143
avaki group --delete --user C:144
avaki group --info C:145
avaki group --list-user C:147
avaki help C:148
avaki id C:149
Avaki installation directory AD:350, API:84, C:308, O:62,

P:290, S:176
avaki ldap --add-schedule C:149
avaki ldap --delete C:153
avaki ldap --delete-schedule C:154
avaki ldap --import C:155
avaki ldap --info C:157
avaki ldap --integrate C:157
avaki ldap --list-schedules C:158
avaki ldap --searchbase C:160
avaki ldap --update C:160
avaki ln C:161
avaki locks --clear C:163
avaki locks --list C:164
avaki login C:164
avaki logout C:165
avaki ls C:166
avaki mkdir C:167
avaki monitor --add C:167
avaki monitor --clear C:168
avaki monitor --create C:170

avaki monitor --delete C:171
avaki monitor --list C:172
avaki monitor --result C:172
avaki monitor --start C:173
avaki monitor --stop C:174
avaki mv command C:176
avaki nis --add-schedule C:177
avaki nis --delete C:181
avaki nis --delete-schedule C:181
avaki nis --import C:182
avaki nis --info C:183
avaki nis --integrate C:184
avaki nis --list-schedules C:184
avaki nis --update C:185
avaki passwd C:185
avaki permissions C:186
Avaki perspective in Studio S:13
avaki plugin command P:184
avaki plugin --generate C:187
avaki proxy --add C:191
avaki proxy --delete C:191
avaki proxy --list C:192
avaki pwd C:193
avaki replica --add C:193
avaki replica --config command C:193
avaki replica --delete C:194
avaki replica --info C:194
avaki replicate --synch C:195
avaki rm C:195
Avaki rowset XML

class-name element P:279
column-display-size element P:279
column-index element P:279
core schema P:277
rowset-specific schema P:279
sample schema P:280
schema overview P:277

avaki schedule --delete C:196
avaki schedule --info C:197
avaki schedule --list C:197
avaki schedule --print-iterations C:198
avaki scheduleexclusion --create --custom C:198
avaki scheduleexclusion --create --daily C:199
avaki scheduleexclusion --create --monthly C:201
avaki scheduleexclusion --create --weekly C:203
avaki scheduleexclusion --create --yearly C:205
avaki scheduleexclusion --delete C:207
avaki scheduleexclusion --info C:208
avaki scheduleexclusion --list C:209
avaki search (execute) C:211
avaki search --create command C:209
avaki search --delete C:210
avaki search --get-rehash-level C:212
avaki search --info C:214
avaki search --rehash C:215
avaki search --set-rehash-level C:215
avaki security --config C:216
avaki security --default-gid C:217
Index-4 Master Index

P: Provisioning & Advanced Data Integration Guide S: Data Integration with Avaki Studio
avaki security --default-group C:218
avaki security --default-uid C:219
avaki security --default-user C:220
avaki security --gid C:221
avaki security --info C:222
avaki security --uid C:222
avaki server --dgas --connect C:223
avaki server --dgas --destroy C:224
avaki server --dgas --stop C:225
avaki server --grid --connect C:225
avaki server --grid --destroy C:226
avaki server --grid --stop C:227
avaki server --proxy C:228
avaki server --share --connect C:228
avaki server --share --disconnect C:229
avaki server --share --stop C:230
Avaki servers

distribution of data catalog among O:38
hardware and operating system requirements for O:16
qualified names for O:32

avaki share --add-rehash-schedule C:231
avaki share --add-share-servers C:232
avaki share --create C:235
avaki share --delete-rehash-schedule C:236
avaki share --disconnect C:238
avaki share --get-local-path C:238
avaki share --get-status C:239
avaki share --list-rehash-schedules C:239
avaki share --list-share-servers C:240
avaki share --rehash C:240
avaki share --remove-share-servers C:241
avaki share --set-local-path C:241
avaki share --set-share-servers C:242
avaki share --set-status C:243
avaki share --update-share-servers C:244
Avaki shares

about AD:257
adding schedule exclusions for rehashes C:234
adding share servers C:232
behavior during failover AD:112
bringing on line AD:286
changing configuration of AD:266
changing encryption levels AD:279
changing permissions AD:239
changing the owner AD:261
configuring exclusions for refresh schedules AD:274
copying into, out of, and within AD:213
creating AD:258, C:235
defined AD:350, API:84, C:308, O:62, P:290, S:176
deleting C:195
disconnecting C:238
disconnecting permanently AD:287
forcing refresh AD:262
icon for O:29
linking AD:217
local paths for, obtaining C:238
modifying load balance factor C:244
moving AD:210

Avaki shares (continued)
moving source directories AD:283
naming of files and directories in AD:207
online status, setting C:243
organizing O:37
permissions on new files in O:49
refresh schedules

adding C:231
deleting C:236
listing C:239

refresh schedules for AD:266
refreshing C:240
removing entries from refresh schedules AD:278
removing share servers from AD:265
renaming AD:212
setting load balancing factor AD:280
setting local paths C:241
setting names AD:260
share servers

listing C:240
removing C:241
replacing C:242

shutting down AD:287, C:238
status, displaying C:239
taking off line AD:285
uploading files to AD:282
with multiple share servers AD:263
write access and user accounts AD:12
See also share servers

avaki shell C:245
avaki sql view --delete C:246
avaki sql view --get-description C:246
avaki sql view --set-description C:247
avaki status C:248
Avaki Studio

about O:9, O:17, S:1
Avaki perspective, about S:16
defined AD:350, API:84, C:308, O:62, P:290, S:176
getting started S:9
installing in Windows AD:24
limitations of data services created in P:78, S:3
log properties file for AD:317
metadata models, See metadata models
operators S:5, S:107
projects, creating S:13
requirements for running AD:3
setting system properties for AD:129
starting S:9
time required to upgrade AD:341
view models

about S:2
configuring input sources S:43
creating S:29
deploying as data services S:50
sample workflow for S:29
testing S:49

workflow S:25
Master Index Index-5

AD: Administration Guide API: API Guide C: Command Reference O: Overture
avaki upgrade C:249
avaki upgrade --info C:250
avaki user C:250
avaki user --create C:251
avaki user --db-mapping --add C:252
avaki user --db-mapping --delete C:253
avaki user --db-mapping --list C:255
avaki user --delete C:257
avaki user --info C:258
avaki user --list-group C:258
avaki view --add-schedule C:259
avaki view --create --database C:263
avaki view --create --data-service C:266
avaki view --create --file C:267
avaki view --delete C:272
avaki view --delete-schedule C:272
avaki view --depends C:272
avaki view --garbage-collect C:273
avaki view --info C:274
avaki view --list-schedules C:274
avaki view --regenerate C:273
avaki view --set-property C:275
avaki view --update C:279
avaki virtualdatabase --allow-dbop-creation C:280
avaki virtualdatabase --disallow-dbop-creation C:281
avaki virtualdatabase --execute C:282
avaki virtualdatabase --show-tables C:283
avaki virtualschema --deploy C:285
avaki virtualschema --undeploy C:286
avaki whoami C:286
Avaki_JDBCStandAlone.jar file API:66
Avaki_JDBCStandAlone_Minus3rd.jar file API:66
AvakiAPI.disco file API:3
AvakiAPIDocLit.wsdl file API:3
AvakiAPIRpcEnc.wsdl file API:3
AvakiAPIWithMIMEDocLit.wsdl file API:3
AvakiAPIWithMIMERpcEnc.wsdl file API:3
avakijdbc.properties file API:67
AvakiPrincipal complex type API:13
Axis, See Apache Axis

B
backup command C:23
backups on Avaki servers AD:113
batch mode, JDBC API:77

configuring database operations for P:27, P:250
bindings.xml file

copying during upgrade AD:344
on grid servers AD:50
on proxy servers AD:300
on share servers AD:59

block size file attribute C:290
blocks file attribute C:290
bootstrapping

in Unix AD:16
in Windows AD:23

brackets, See curly brackets, square brackets, angle brackets

browsers, See web browsers
build.xml file for data service plug-ins P:184, P:197
BusinessObjects software unable browse Avaki objects with

underscores API:81

C
cache --evict --all command C:25
cache --evict command C:24, C:32
cache --evict --deleted command C:26
cache --get command C:27
cache --invalidate --all command C:28
cache --invalidate command C:27
cache --invalidate-dataservice-results command C:29
cache --invalidate-dbop-results command C:30
cache --list command C:31
cache services

about P:119
associating with data grid access servers P:113
associating with grid servers P:111
coherence windows P:107
configuring P:116
configuring per file P:117
defined AD:351, API:85, C:309, O:63, P:291, S:177
disassociating from data grid access servers P:114
disassociating from grid servers P:112
evicting cached files and directories P:135
invalidating cached items P:136
listing P:116
listing cached data services P:163
listing cached database operations P:148
listing cached virtual database operations P:148
listing pinned files and directories P:134
on-demand caching P:119
on-demand caching of database operation and data service

results P:108
on-demand caching of files P:107
overriding default settings P:117
pinning data services P:152
pinning database operations P:139
pinning files and directories P:120
pinning virtual database operations P:139
scheduled caching P:119
scheduled caching of database operation and data service

results P:109
scheduled caching of files P:107
tagging files and directories P:129
unmarking cached items P:135
unscheduling cached files and directories P:135
viewing details about P:116
See also caches and caching

cache --set command C:33
cache --unset command C:34
caches

adding schedules for data services C:48
adding schedules for database operations C:73
adding schedules for directories C:117
adding schedules for files C:130
Index-6 Master Index

P: Provisioning & Advanced Data Integration Guide S: Data Integration with Avaki Studio
caches (continued)

bad port, properties for AD:141
configuring associated server or user C:33
configuring threads for AD:131
data service plug-in, properties for AD:137
deleting schedules for data services C:54
deleting schedules for database operations C:78
deleting schedules for directories C:122
deleting schedules for files C:135
DGAS

clearing user credentials AD:117
clearing user credentials from C:95
configuring block size for reads AD:81
configuring frags per block for reads AD:81
configuring location of AD:73
controlling cache size AD:124
deleting files and directories AD:119
deleting objects from C:98
displaying cache statistics C:102
displaying current size C:101
displaying free disk space on cache machine C:102
forcing a refresh AD:121
managing AD:117
mapping cache AD:336
resetting statistics C:108
saving a copy C:109
saving copies AD:120
setting remote caches for AD:90
syncing AD:121
viewing and resetting statistics AD:123
warming and updating C:115

displaying associated server or user C:27
displaying tagging information C:31
for tables in virtual database, property for AD:144
listing schedules for data services C:58
listing schedules for database operations C:88
listing schedules for directories C:126
listing schedules for files C:136
local S:182
local and remote API:63
marking directories for no caching C:126
marking files for no caching C:136
remote object stub, properties for AD:144
schedule exclusion, properties for AD:144
scheduled caching S:184
settable attributes of C:291
setting invalidate queue for AD:135
setting local directory for AD:135
setting remote caches for command clients AD:95
uncoupling associated server or user C:34
See also cache services and caching

caching
about O:13
and JDBC programs O:55
benefits to performance O:54
configuring ACLs for O:50

caching (continued)
configuring Avaki clients for O:55
data service results P:108, S:51

tagging for on-demand caching P:159
database operations P:108
defined AD:351, API:85, C:309, O:63, P:291, S:177
files O:56, P:107
JDBC and caching of database operation results API:62
local AD:356, API:90, C:314, O:14, O:53, O:68
local vs. remote O:59
local, defined P:296
of data service results O:57
of database operation results O:57
on DGAS O:54
on-demand AD:357, API:91, C:315, O:69, P:296, S:183
permissions and access control O:59
remote O:14, O:53

defined AD:357, API:91, C:315, O:69, P:297, S:184
scheduled AD:357, API:91, C:315, O:69
scheduled, defined P:297
turning off for specified files and directories P:132
See also caches and cache services

callable statements API:72, API:73
case sensitivity in Avaki naming AD:206
cat command C:35
catalog browser S:18
categories

about AD:221
adding objects to AD:226, C:35, S:105
adding SQL views P:47
and permissions AD:222–AD:223
browsing AD:222
contents of S:18
creating AD:224, C:36
default, contents of S:18
defined AD:351, API:85, C:309, O:63, P:291, S:177
deleting AD:230, C:37, S:106
displaying S:104
for logging AD:318
icon for O:29
listing categories in domain C:38
managing S:103
permissions in O:48
removing objects from AD:228, C:38, C:40, S:106
setting descriptions for C:39
showing descriptions C:37
using to organize data O:36
using to solve access problems O:49

categories --add-to-category command C:35
categories --create command C:36
categories --delete command C:37
categories --describe command C:37
Categories directory O:35
categories --list command C:38
categories --remove-from-category command C:38, C:40
categories --set-description command C:39
cd command C:41
certificates, SSL, See SSL certificates
Master Index Index-7

AD: Administration Guide API: API Guide C: Command Reference O: Overture
change time file attribute C:290
characters

in column aliases in database operations S:42
in command syntax AD:xv, C:xv
in cron schedules C:298
in domain names, restrictions on AD:41
in JavaScript identifiers S:42
in metadata model names, restrictions on S:91
in names of Avaki objects, restrictions on AD:207
wildcards in searches AD:235

CHARSET JDBC property for ASE and IQ AD:7
chmod command C:41
chmod SOAP operation API:19
chown command C:42
chown SOAP operation API:20
chunk size for sorting, controlling AD:139, S:76
CIFS

accessing data grid through AD:338
releasing CIFS ports on a DGAS AD:66

CIFS clients
defined AD:351, API:85, C:309, O:63, P:291, S:177
disconnecting C:101
displaying connected clients C:105
requirements for O:17
setting up AD:93

CIFS shares
accessing AD:203
creating AD:125, C:96
defined AD:351, API:85, C:309, O:63, P:291, S:177
deleting C:99
displaying connected clients C:105
displaying information about C:95
listing C:105
managing AD:125
mapping to a network drive AD:204
modifying C:107

class element P:261
class-name element P:279
classpath, configuring for JDBC drivers API:67
client attribute caching AD:336
client command C:45
client system properties AD:128
clients

about O:17
hardware and operating system requirements for O:16
message timeout properties for AD:133
setting size of write invalidation queue of cache for AD:136
setting system properties for AD:129
See also Avaki Studio, CIFS clients, command clients, NFS

clients, web clients, WS clients
code samples

ad-hoc queries API:74
data catalog API API:18
data services API API:35
database operations API API:42
Java data service plug-ins P:190
JDBC batch mode API:77
using JDBC drivers API:77

coherence window cache attribute C:291
coherence window property, remote AD:141
coherence windows for caching P:107
coherenceWindow element P:261
colors in Studio display, setting S:23
column-display-size element P:279
column-index element P:279
columns

aliasing P:25
combining with Projection operator S:46
from input elements, menus of S:71
from input result sets, accessing S:68
name property S:60
precision property S:61
scale property S:61
type property S:61

com.avaki.badPortCacheSize system property AD:141
com.avaki.badPortExpiration system property AD:141
com.avaki.cache.cacheDir system property AD:135
com.avaki.cache.maxReaderThreads system property AD:131
com.avaki.cache.writeInvalidationQueueSize system

property AD:136
com.avaki.content.encryptionLevel system property AD:139
com.avaki.dataservice.pluginCacheSize system

property AD:137
com.avaki.dataservice.styleSheetCachePoolSize system

property AD:137
com.avaki.dataservice.styleSheetCacheSize system

property AD:137
com.avaki.DBOProtocolSoTimeout system property AD:134
com.avaki.generatedXMLIndentSize AD:142
com.avaki.HttpPort system property AD:140
com.avaki.HttpsPort system property AD:140
com.avaki.jobStatusExpiration system property AD:145
com.avaki.lasInvoker.cacheSize system property AD:144
com.avaki.lasInvoker.poolSize system property AD:144
com.avaki.ldap.resultPageSize system property AD:145
com.avaki.maxActiveCachables system property AD:136
com.avaki.mux.channelSoTimeout system property AD:135
com.avaki.mux.connectTimeout system property AD:134
com.avaki.mux.maxParallelChannels system property AD:142
com.avaki.mux.maxWriteChunk system property AD:142
com.avaki.mux.sendBufferSize system property AD:143
com.avaki.proxy.retryDelay system property AD:133
com.avaki.proxy.retryTimeout system property AD:133
com.avaki.proxyIOProtocolSoTimeout system property AD:134
com.avaki.proxyKeepAliveParams system property AD:140
com.avaki.queryEngine.sortChunkSize AD:139
com.avaki.remoteconfig.coherenceWindow system

property AD:141
com.avaki.result.gcInterval system property AD:136
com.avaki.retryDelay system property AD:133
com.avaki.retryTimeout property AD:133
com.avaki.rmiRegistrySoTimeout system property AD:134
com.avaki.rpcTimeout system property AD:134
com.avaki.scheduleExclusionCacheExpiration system

property AD:145
Index-8 Master Index

P: Provisioning & Advanced Data Integration Guide S: Data Integration with Avaki Studio
com.avaki.scheduleExclusionCacheSize system

property AD:145
com.avaki.shareIOProtocolSoTimeout system property AD:134
com.avaki.shareReadBufferSize system property AD:138
com.avaki.shareReadbufPoolSize system property AD:138
com.avaki.shareServerCircularLinkChecking system

property AD:138
com.avaki.shareServerThreadPoolSize system property AD:138
com.avaki.vaultStateCacheSize system property AD:137
com.avaki.VirtualDbTableCacheSize system property AD:144
com.sybase.avaki.tdsPort system property AD:50, AD:145,

API:71
command clients

connecting C:45
defined AD:352, API:86, C:310, O:64, P:292, S:178
disconnecting C:45
installing in Windows AD:24
installing on Unix AD:18
obtaining information about C:45
setting up AD:94

commands
listing C:148
syntax conventions for AD:xv, C:xiv, P:x
viewing online usage information C:148

compatibility properties, setting for Windows 2003 AD:22
complex types API:12

AdHocDBOPExecutionParams API:13
AvakiPrincipal API:13
DataCatalogAttribute API:14
DataCatalogEntry API:15
DataCatalogPermission API:15
DataServiceExecutionParams API:16
DBOPExecutionParams API:16
SearchQuery API:17
SearchResult API:17

condition field for Iterator operators S:151
connect ports

default AD:6, AD:9, AD:10
defined AD:352, API:86, C:310, O:64, P:292, S:178
for DGAS C:224

changing AD:74
for GDCs C:127

changing AD:50
for grid servers C:226

changing AD:50
for proxy servers C:228

changing AD:300
for share servers C:229

changing AD:60
connectinfo.txt file AD:131
connection pooling S:36
connection properties

for JDBC drivers API:68
for XA drivers C:70, P:7, S:37

connection strings
for databases AD:3
for JDBC drivers API:71

connections in view models, creating S:57
console view S:22, S:50
conventions

for command syntax C:xiv
for commands AD:xv
for screen examples AD:xv, API:vi, C:xv, P:xi

cp command C:46
cron expressions in schedules AD:185, AD:267, AD:273
cron schedules

configuring C:297
values for C:298

cross-domain messaging
disabling AD:313
enabling AD:311

curly brackets in command syntax AD:xv, C:xv, P:xi
CurrentUser functions S:74
Custom operator S:111

example S:114
custom types API:12

D
data access O:11

using WS API API:2
data catalog

about O:27
defined AD:352, API:86, C:310, O:64, P:292, S:178
distribution among Avaki servers O:38
names of objects in O:24
organizing O:33

Avaki shares O:37
using categories O:36
using links O:36

ownership of objects in O:46
top-level directories O:32
types of entries O:6

data catalog API API:18
data catalog SOAP operations API:18

accessiblePath API:19
chmod API:19
chown API:20
fileRead API:21
fileReadAttach API:21
fileReadString API:22
fileWrite API:23
getAttributes API:23
getSystemAttributes API:24
getUserAttributes API:24
listDomains API:25
listSearches API:25
ls API:26
lsSize API:26
mkdir API:27
mkdirParents API:27
mkdirParentsServer API:28
mkdirServer API:29
mv API:29
permissions API:30
Master Index Index-9

AD: Administration Guide API: API Guide C: Command Reference O: Overture
data catalog SOAP operations (continued)

removeAttribute API:31
rm API:31
search API:32
setAttribute API:32
tester API:33
whoami API:33

data catalog view S:18
data expiration intervals P:108, S:51
data grid access servers

associating with cache services P:113
disabling auto-restart C:8
disassociating from cache services P:114
enabling auto-restart C:5
registering C:5
starting C:5, C:6
stopping C:7, C:8
unregistering C:8
See also DGAS

data grids
about O:1
defined AD:355, API:89, C:313, O:67, P:294, S:181
typical deployment O:17

data integration O:21, O:23
data integrity and HTTPS API:8
data representation O:11
data security O:10
data service plug-ins

about P:76, P:175
addInputParameter JavaScript method P:202
addInputStream JavaScript method P:202
build.xml file P:184, P:197
choice of Java, JavaScript, or XSLT P:176
closing streams P:186
command for generating C:187
configuring P:81
creating in Java with the Plug-in Wizard P:183
creating in JavaScript P:200
creating in XSLT P:180
DbopGroupWorkUnit class P:189
DbopPipeWorkUnit class P:190
defined AD:352, API:86, C:310, O:64, P:292, S:179
examples

DBOP and CSV merge Java plug-in P:193
distributed transaction Java plug-in P:191
rowset input and output Java plug-in P:192

Execute JavaScript function P:203
input sources and output streams P:177
InputSource interface P:186
JAR files for P:180
logging errors P:196
manifest files for P:180, P:197
modularity and reusability of P:175
parameters

about P:178
specifying for Java plug-ins C:188
specifying for XSLT plug-ins P:181

data service plug-ins (continued)
ParameterSpec interface P:187
Plugin interface P:186
prerequisites for writing in Java P:183
relationship to .js files in Studio S:11
RowSetFactory class P:188
setOutputStream JavaScript method P:202
StreamingRowSet interface P:187
using Java classes and interfaces in JavaScript plug-ins P:200
when to use P:78, S:3
XAWorkHandler class P:189
XAWorkUnit interface P:189

data service XML schema
class element P:261
coherenceWindow element P:261
dataService element P:262
description element P:263
initParameter element P:263
inputParameter element P:264
inputSource element P:265
inputStream element P:266
isList element P:266
jarurl element P:267
logicBox element P:268
name element P:269
outputStream element P:269
ref element P:270
target element P:270
type element P:270
urlLogicBox element P:271
value element P:272
values element P:272

data services
about O:8, O:23, P:49, P:74
adding schedule exclusions C:51
and distributed transactions P:78
caching of results O:57, P:77

permissions O:50
caching results S:51
calling via JDBC API:72
components of P:76
configuring caching P:108
created in Avaki Studio, limitations of P:78, S:3
creating C:52, P:80, P:207
defined AD:352, API:86, C:310, O:64, P:292, S:178
deleted, purging from cache C:26
deleting schedules C:54
dependencies for S:22
deploying from view models in Avaki Studio S:50
displaying dependency lists C:54
displaying information about C:57, S:20
displaying status of C:248
evicting from cache P:164
execution services, configuring AD:109
generating schema for C:55, P:98
generating SQL views from C:56, P:100
importing descriptors P:92
input parameters, configuring P:84
Index-10 Master Index

P: Provisioning & Advanced Data Integration Guide S: Data Integration with Avaki Studio
data services (continued)

input streams, configuring P:87
invalidating all in cache C:28
invalidating one in cache C:27
invalidating results in cache C:29
listing P:93
listing caching schedules for C:58
listing in cache P:163
location in categories S:18
marking for scheduled caching P:152
modifying C:58
modifying permissions AD:239
modifying settings P:94
names in data catalog O:24
nesting operations S:149
output streams, configuring P:86
provisioning web services as P:205
purging all from cache and unscheduling C:25
purging one from cache and unpinning C:24
qualified names for O:31
refreshing cached results C:32
removing P:103
rowsets as input of P:275
rowsets as output of P:274
running C:55
sample workflow for S:29
scheduling for caching C:48
schema P:257
searching for AD:233
setting cache sizes for plug-ins AD:137
setting up to run distributed transactions P:80
specifying grid servers P:213
specifying input parameters P:207
specifying input streams P:208
specifying output streams P:208
specifying plug-ins P:207
tagging for on-demand caching P:159
testing P:102, P:214
unscheduling P:164
using for distributed transactions O:25
viewing P:98
viewing dependencies P:97
writing your own vs. using Avaki Studio O:24
See also data service plug-ins
See also view models

data services API API:34
data services SOAP operations API:34

accessibleDS API:36
executeDS API:36
getDSOutput API:37
getDSOutputAttach API:38
getDSOutputString API:38
getDSParameters API:39
isDSAvakiXML API:40
listDSs API:40

data structures, SOAP complex types API:12
data type mappings for SQL views P:39

data types
for JDBC API:76
mapping

about type mapping files C:301
command to specify mapping file C:68
format of type mapping files C:301
inconsistencies C:302
logging of mapping decisions C:304
setting source data type C:302

specifying for ad-hoc query parameters C:65
specifying for database operation parameters C:85
specifying for parameters for ad-hoc queries on the virtual

database C:283
specifying for virtual database operation parameters C:88
See also type

database connectors
about O:22, P:3
adding groups P:16
adding users P:15
configuring advanced settings P:247
configuring JDBC driver JAR file path P:247
configuring permissions C:59, C:62
creating C:66, P:3, S:31
data type mappings for P:39
defined AD:353, API:87, C:311, O:65, P:293, S:179
deleting C:61
displaying information about C:64
displaying SQL views provisioned from C:73
editing S:38
executing ad-hoc queries C:63, C:66
finding in catalog S:38
getting information about through JDBC API:75
JDBC fetch size P:5
location in categories S:18
managing SQL views P:20
modifying C:66, P:8
provisioning SQL views from C:71
removing P:21
removing groups P:18
removing users P:18
searching for AD:233
setting JDBC fetch size S:36
testing C:72, P:19
viewing P:8
viewing associated database operations P:13

database drivers
copying during upgrade AD:341
tested with Avaki AD:3

database identity mappings P:6, S:36
about AD:176
adding C:252
deleting AD:183, C:253
displaying AD:180
listing C:255
modifying AD:182
setting up AD:177

database operation --list-schedules command C:88
Master Index Index-11

AD: Administration Guide API: API Guide C: Command Reference O: Overture
database operation SOAP operations API:40
database operations

about O:7, O:22, P:1
access permissions P:22
adding schedule exclusions C:76
allowing groups to create P:16
allowing users to create P:15
caching of results API:62, O:57

permissions O:50
calling with JDBC API:73
calling with ODBC, JDBC, or SOAP P:38
configuring advanced settings P:247
configuring batch mode settings P:250
configuring caching P:108
configuring permissions C:59, C:62
configuring SQL calls P:251
configuring timeouts P:253
creating C:83, P:22, S:38
defined AD:353, API:87, C:311, O:65, P:293, S:179
deleted, purging from cache C:26
deleting C:78
deleting schedules C:78
dependencies for S:22
displaying dependency lists C:79
displaying information about C:83, S:20
displaying status of C:248
evicting from cache P:150
executing P:36
exposing results as SQL view P:34
generating schema for C:80, P:31
generating SQL views from C:82
invalidating all in cache C:28
invalidating one in cache C:27
invalidating results in cache C:30
listing caching schedules for C:88
listing in cache P:148
location in categories S:18
managing P:21
managing metadata P:30
marking for scheduled caching P:139
modifying C:83, P:28
modifying permissions AD:239
names in data catalog O:24
parameter types, specifying C:85, C:88
preventing groups from creating P:18
preventing users from creating P:18
purging all from cache and unscheduling C:25
purging one from cache and unpinning C:24
qualified names for O:31
refreshing cached results C:32
removing P:38
removing SQL views generated from P:35
restricting row output P:248
rowsets as output of P:274
running C:80
sample XML schema P:280
scheduling for caching C:73
searching for AD:233

database operations (continued)
setting JDBC fetch size for P:254
setting permissions P:14
SQL statements in C:86
tagging for on-demand caching P:146
transactional behavior of P:79
unscheduling P:150
uses of P:2
viewing P:13, P:28
viewing dependencies P:32
viewing details about P:29
See also virtual database operations

database operations API API:40
database service SOAP operations

accessibleDBOp API:42
executeAdHocDBOp API:43
executeAdHocDBOpWithOutput API:44
executeAdHocDBOpWithOutputAttach API:46
executeAdHocDBOpWithOutputString API:47
executeDBOp API:48
executeDBOpBytesInput API:49
executeDBOpGridFileInput API:50
executeDBOpWithOutput API:50
executeDBOpWithOutputAttach API:52
executeDBOpWithOutputString API:53
getDBOpOutput API:54
getDBOpOutputAttach API:55
getDBOpParameters API:56
getDBOpSchema API:56
getDBOpSchemaAttach API:57
getDBOpSchemaString API:58
getOutputString API:55
getSQL API:58
listDBConns API:59
listDBOps API:59
listDBOpsByDBConn API:60

database, virtual, See virtual database
DatabaseAdministrators group O:44
DatabaseMetaData interface API:75
databases

Avaki tools for working with O:21
connecting to P:3
for Avaki servers, backing up C:23
protecting O:9
schemas, viewing P:9
supported for connecting to Avaki AD:3, AD:5

DataCatalogAttribute complex type API:14
DataCatalogEntry complex type API:15
DataCatalogPermission complex type API:15
DataProviders group O:44
dataservice --add-schedule command C:48
dataservice --create command C:52
dataservice --delete command C:52
dataservice --delete-schedule command C:54
dataservice --depends command C:54
dataService element P:262
dataservice --execute command C:55
dataservice --generate-sql view command C:56
Index-12 Master Index

P: Provisioning & Advanced Data Integration Guide S: Data Integration with Avaki Studio
dataservice --info command C:57
dataservice --list-schedules command C:58
dataservice --update command C:58
DataServiceExecutionParams complex type API:16
DB2, versions and JDBC drivers for use with Avaki AD:6
dbconn --allow-dbop-creation command C:59
dbconn --delete command C:61
dbconn --disallow-dbop-creation command C:62
dbconn --execute command C:63
dbconn --info command C:64
dbconn --jdbc command C:66
dbconn --provision-tables command C:71
dbconn --show-tables command C:73
dbconn --test command C:72
DBOPs, See database operations
dbop --add-schedule command C:73
dbop --delete command C:78
dbop --delete-schedule command C:78
dbop --depends command C:79
dbop --execute command C:80
dbop --generate-sql view command C:82
dbop --info command C:83
dbop --jdbc command C:83
dbop --jdbc --create-virtual-dbop command C:87
DBOPExecutionParams complex type API:16
DbopGroupWorkUnit class for data services P:189
DbopPipeWorkUnit class for data services P:190
db-path option (DGAS) AD:74
debug mode, enabling in an Avaki shell C:245
delimiter character for JDBC schema names API:69
Deny permission in ACL AD:243, O:47
dependencies S:22

defined AD:353, API:87, C:311, O:65, P:293, S:179
listing for data services C:54, P:97
listing for database operations C:79, P:32
listing for view generators C:272, P:228
listing for virtual database operations P:59

description element P:263
descriptors for data services P:92
development tools for web services

Apache Axis API:5
Microsoft Visual Studio API:5
SOAP::Lite API:5
VB .NET API:5

DGAS
about AD:62
adding user self mappings C:109
admission policies AD:332

about AD:85
adding AD:87, C:91
deleting AD:88, C:97
displaying C:114
displaying Windows domains for C:114

admission policies
setting defaults C:112
setting Windows domains for C:111
unsetting Windows domains for C:116

DGAS (continued)
changing permissions and ownership AD:334
CIFS access to data grid AD:338
clearing cached credentials AD:117, C:95
configuring associated cache service C:33
configuring location of internal caches AD:73
configuring to use nondefault ports AD:74, AD:75
configuring users and groups AD:67
connect port C:224
connecting to a domain AD:79, C:223
controlling cache size AD:124
create CIFS shares C:96
default name for AD:73
default users, groups, UIDs and GIDs AD:333
defined AD:352, API:86, C:310, O:64, P:292, S:178
deleting cached objects C:98
deleting CIFS shares C:99
deleting files and directories from cache AD:119
deleting user mappings C:111
destroying C:224
disconnecting CIFS clients C:101
displaying associated cache C:27
displaying cache size C:101
displaying cache statistics C:102
displaying connected CIFS clients C:105
displaying free disk space on cache machine C:102
displaying information about CIFS shares C:95
displaying property descriptions C:104
displaying property values C:103
dynamic and nondynamic properties AD:83
file locking in Unix, interference with AD:64
forcing cache to refresh AD:121
installing in Unix AD:18
installing in Windows AD:24
listing CIFS shares C:105
listing properties and their values C:103
managing cache AD:117
mappings

default, adding and displaying AD:71
for groups, adding AD:70, C:92
for groups, deleting C:99
for groups, displaying C:106
for users, adding AD:70, C:94
for users, deleting C:100
for users, displaying C:106
users and groups, per-DGAS AD:88
users, groups, and defaults, domain-wide AD:68

modifying CIFS shares C:107
NFS clients, not running with AD:64
NFS daemons, shutting down before running DGAS AD:66
per-DGAS user mappings AD:333
ports used by AD:9
preparing to start AD:65
properties file for AD:76, C:293
reading log properties C:107
releasing CIFS ports before running AD:66
resetting cache statistics C:108
Master Index Index-13

AD: Administration Guide API: API Guide C: Command Reference O: Overture
DGAS (continued)

restarting AD:84
saving a copy of the cache C:109
saving copies of cache AD:120
server logs AD:317
setting a cache service AD:90
setting location of state database AD:74
setting properties AD:82, C:113
setting up NFS clients AD:91
starting AD:73, C:104
stopping C:225
syncing cache AD:121
time required to upgrade AD:341
uncoupling associated cache C:34
unsetting properties C:117
viewing and resetting cache statistics AD:123
warming and updating the cache C:115
See also data grid access servers

dgas --add-admission-policy command C:91
dgas --add-group-mapping command C:92
dgas --add-user-mapping command C:94
dgas --cifs-share-info command C:95
dgas --clear-cached-credentials command C:95
dgas command

example AD:74
syntax AD:73

dgas --create-cifs-share command C:96
dgas --delete-admission-policy command C:97
dgas --delete-cache command C:98
dgas --delete-cifs-share command C:99
dgas --delete-group-mapping command C:99
dgas --delete-user-mapping command C:100
dgas --disconnect-cifs-client command C:101
dgas --get-cache-size command C:101
dgas --get-cache-statistics command C:102
dgas --get-free-disk-space command C:102
dgas --get-properties command C:103
dgas --get-property command C:103
dgas --get-property-list command C:104
dgas --initialize command C:104
dgas --list-cifs-clients command C:105
dgas --list-cifs-shares command C:105
dgas --list-group-mappings command C:106
dgas --list-user-mappings command C:106
dgas --modify-cifs-share command C:107
dgas --read-log-properties command C:107
dgas --register command C:5
dgas --reset-cache-statistics command C:108
dgas --save-cache command C:109
dgas --self-map C:109
dgas --self-unmap C:111
dgas --set-admission-policy-domain command C:111
dgas --set-default-admission-policy command C:112
dgas --set-property command C:113
dgas --show-admission-policies command C:114
dgas --show-admission-policy-domain command C:114
dgas --start command C:6

dgas --stop command C:7
dgas --sync-cache command C:115
dgas --unregister command C:8
dgas --unset-admission-policy-domain command C:116
dgas --unset-property command C:117
directories

adding schedule exclusions for caching C:121, C:125
adding to cache service C:122
Avaki directories, defined AD:349, API:83, C:307, O:61,

P:289, S:175
Avaki installation API:84, P:290, S:176
Avaki installation directory AD:350, C:308, O:62
changing C:41
changing ownership C:42
changing permissions for AD:239
copying AD:213, C:46
creating AD:208, C:167
deleted, purging from cache C:26
deleting AD:219, C:195
deleting caching schedules C:122
displaying name of current directory C:193
evicting from cache P:135
exporting from the data grid AD:125
home, creating AD:169
icon for O:29
invalidating all in cache C:28
invalidating from cache P:136
invalidating in cache C:27
linking AD:217, C:161
listing C:166
listing schedules C:126
listing those pinned for caching P:134
marking for no caching C:126, P:132
marking for scheduled caching P:120
moving AD:210, C:176
NFS-mounting AD:92
permissions in O:48
purging all from cache and unpinning C:25
purging from cache and unpinning C:24
refreshing in cache C:32
renaming AD:212
scheduling for caching C:117
searching for AD:233
setting ACLs for AD:171
shared, See Avaki shares
tagging for on-demand caching P:129
temp, setting for grid servers AD:135
top-level, described O:32
unscheduling from cache P:135

directory --add-schedule command C:117
directory --cache command C:122
directory --delete-schedule command C:122
directory --do-not-cache command C:126
directory --list-schedules command C:126
disk space

available, displaying for DGAS cache C:102
requirements for Avaki software AD:4, AD:16
Index-14 Master Index

P: Provisioning & Advanced Data Integration Guide S: Data Integration with Avaki Studio
distributed transactions

about O:25, P:78
API for executing P:188
configuring database connectors for P:7, S:36
defined AD:353, API:87, C:311, O:65, P:293, S:180
requirements for P:79
setting up P:80
supported DBMSes P:79
two-phase commit protocol P:79

DNS aliases for GDC machines AD:10
DNS name, setting for a server AD:32
document/literal web services API:3, API:5
documentation

Avaki, list of AD:xii, API:vi, C:xii, O:vi, P:viii, S:viii
for Eclipse Workbench S:12

domain --create command C:127
domain --disconnect command C:127
domain --info command C:128
domain --interconnect command C:128
domain names, defined AD:354, API:88, C:312, O:66, P:294,

S:180
Domain Users group in Active Directory C:155
domains, Avaki

creating C:127
defined AD:350, API:84, C:308, O:62, P:290, S:176
disconnecting C:127
displaying information about AD:98
getting information about through JDBC API:75
interconnecting AD:289, C:128
joining together AD:289
naming AD:41, AD:354, API:88, C:312, O:66, P:294, S:180
obtaining information about C:128
planning before install AD:1
providers and consumers AD:289
remote, logging in to AD:201
specifying for JDBC connections API:69

DomainUsers group O:44
downstream variables menu S:71
downstream, defined S:3
drivers, See JDBC drivers
drivers directory AD:341
dynamic and nondynamic properties (DGAS) AD:83
dynamic user mappings

creating C:109
deleting C:111

E
Eclipse Workbench S:12
EII, See enterprise information integration
elements

connecting S:57
descriptions of S:59
Input Source S:125
moving S:56

elements (continued)
names of S:58
operators S:5
properties dialogs S:58
Result S:164
selecting S:56
with red borders S:60

encryption and HTTPS API:8
encryption levels for Avaki shares

changing AD:279
displaying C:222
setting at share creation AD:261

encryption of grid objects AD:139
enterprise information integration, defined AD:354, API:88,

C:312, O:66, P:294, S:180
equal signs in command syntax AD:xvi, C:xvi, P:xii
error handling S:143
errors in view models S:60
everyone group O:44, O:48
examples

conventions used in C:xv
data catalog web service API:18
data services API API:35
database operations API API:42
web services clients

Java API:9
Perl API:9
VB .NET API:9

exclusions, See schedule exclusions
execute inputs in parallel field for Iterator operators S:151
Execute JavaScript function for data service plug-ins P:203
executeAdHocDBOp SOAP operation API:43
executeAdHocDBOpWithOutput SOAP operation API:44
executeAdHocDBOpWithOutputAttach SOAP

operation API:46
executeAdHocDBOpWithOutputString SOAP operation API:47
executeDBOp SOAP operation API:48
executeDBOpBytesInput SOAP operation API:49
executeDBOpGridFileInput SOAP operation API:50
executeDBOpWithOutput SOAP operation API:50
executeDBOpWithOutputAttach SOAP operation API:52
executeDBOpWithOutputString SOAP operation API:53
executeDS SOAP operation API:36
execution services

about AD:109, P:77, S:51
configuring AD:109, C:129
configuring threads for AD:131
defined AD:354, API:88, C:312, O:66, P:294, S:180
displaying information about C:129

executionservice --info command C:129
executionservice --set command C:129
executionServiceHint JDBC property API:70
exiting from an Avaki session C:165
expressions in operators S:4
expressions menu, using S:71
externalCacheService JDBC property API:62, API:70
Master Index Index-15

AD: Administration Guide API: API Guide C: Command Reference O: Overture

F
failover

defined AD:354, API:88, C:312, O:66, P:294, S:180
managing AD:112
setting up a secondary GDC AD:43

fake_metadata JDBC connection property for ASE API:70
FAKE_METADATA JDBC property for ASE AD:7
federated data access AD:354, API:88, O:66, P:294, S:181
fetch size, See JDBC fetch size
file --add-schedule command C:130
file --cache-on-demand command C:134
file --delete-schedule command C:135
file --do-not-cache command C:136
file --list-schedules command C:136
file locking AD:64

suppressing in NFS mount command AD:93
file --pin command C:137
file size attribute C:290
fileRead SOAP operation API:21
fileReadAttach SOAP operation API:21
fileReadString SOAP operation API:22
files

.amm files S:11

.avm files S:11

.js JavaScript files S:11

.jsi JavaScript include files S:11, S:75
sample S:115

adding schedule exclusions for caching C:133, C:140
Avaki_JDBCStandAlone.jar API:66
Avaki_JDBCStandAlone_Minus3rd.jar API:66
avaki_studio.properties AD:129
AvakiAPI.disco WSDL discovery file API:3
AvakiAPIDocLit.wsdl API:3
AvakiAPIRpcEnc.wsdl API:3
AvakiAPIWithMIMEDocLit.wsdl API:3
AvakiAPIWithMIMERpcEnc.wsdl API:3
avakijdbc.properties API:67
bindings.xml

copying during upgrade AD:344
on grid servers AD:50
on proxy servers AD:300
on share servers AD:59

build.xml for data service plug-ins P:184, P:197
cached, permissions on O:50
caching of O:56
changing ownership C:42
changing permissions for AD:239
clearing locks C:163
configuring caching P:107
configuring encryption level C:216
connectinfo.txt AD:131
copying AD:213, C:46
copying locally AD:215
data type mapping

about C:301
command to specify location C:68
format of C:301

deleted, purging from cache C:26
deleting AD:219, C:195
deleting pin schedules for C:135
DGAS properties AD:76
dgas_log.xml, DGAS log properties file AD:317
displaying C:35
evicting from cache P:135
for data service plug-ins P:180
icon for O:29
in the data grid O:8
install.exe AD:22, AD:24
invalidating all in cache C:28
invalidating one in cache C:27, P:136
JAR files for data service plug-ins P:180
jboss-service.xml, request log properties file AD:328
jdbc-log4j.properties API:66
join.properties file on proxy servers AD:300
krb5.conf AD:152
linking AD:217, C:161
listing C:166
listing locks C:164
listing schedules C:136
listing those pinned for caching P:134
log4j.xml,

Avaki Studio log properties file AD:317
server log properties file AD:317

manifest files for data service plug-ins P:180, P:197
marking for no caching C:136, P:132
marking for scheduled caching P:120
moving AD:210, C:176
permissions on new files O:49
pinning for scheduled caching C:137
properties files for DGAS C:293
purging all from cache and unpinning C:25
purging from cache and unpinning C:24
readme AD:12, AD:15, AD:339
refreshing in cache C:32
renaming AD:212
rendering results into O:25
scheduling for caching C:130
searching for AD:233
shareserver.ports

on grid servers AD:50
on share servers AD:60

system.properties AD:129
tagging for on-demand caching C:134, P:129
temporary, for sorting large result sets S:76
unscheduling cached files P:135
uploading to the data catalog AD:282
Workbench .project S:11

fileWrite SOAP operation API:23
Firefox

version requirements AD:5
setting for selecting run-as users P:27, P:54, P:92, P:224,

P:227
fonts in Studio display, setting S:23
Index-16 Master Index

P: Provisioning & Advanced Data Integration Guide S: Data Integration with Avaki Studio
functions

in expressions S:73
used with Aggregate operator S:110

G
garbage collection for views C:273
GDCs, See grid domain controllers
generated views

about O:25, P:217, P:240
defined AD:354, API:88, C:312, O:66, P:294, S:181
running P:240
scheduling updates P:231
transactional consistency of P:217

GeneratedViews directory O:33
generating schemas S:19
Generator operator S:117
getAttributes SOAP operation API:23
getCatalogs method API:75
getCatalogTerm method API:75
getDBOpOutput SOAP operation API:54
getDBOpOutputAttach SOAP operation API:55
getDBOpParameters SOAP operation API:56
getDBOpSchema SOAP operation API:56
getDBOpSchemaAttach SOAP operation API:57
getDBOpSchemaString SOAP operation API:58
getDSOutput SOAP operation API:37
getDSOutputAttach SOAP operation API:38
getDSOutputString SOAP operation API:38
getDSParameters SOAP operation API:39
getOutputString SOAP operation API:55
getSchemas method API:75
getSchemaTerm method API:75
getSQL SOAP operation API:58
getSystemAttributes SOAP operation API:24
getUserAttributes SOAP operation API:24
GIDs, configuring AD:68, C:217, C:221
Global Parameters menu S:71
grid directories, See directories, Avaki
grid domain controllers

backing up and restoring AD:113
creating C:127
defined AD:355, API:89, C:313, O:67, P:295, S:181
DNS aliases for AD:10
loading AD:14
ports used by AD:6, AD:8
primary AD:355, API:89, C:313, O:67, P:295, S:181
secondary AD:43
starting AD:14
stopping AD:38, C:11
stopping and restarting GDCs registered as services AD:39

grid domains
See domains, Avaki

grid servers
associating with caches P:111
backing up and restoring AD:113
choosing for web services API:5
configuring AD:48, AD:52

grid servers (continued)
configuring associated cache service C:33
configuring cache service threads AD:131
configuring nondefault ports AD:50
connecting C:225
connection info, setting S:23
defined AD:355, API:89, C:313, O:67, P:295, S:181
destroying C:226
disabling auto-restart on C:12
disassociating from caches P:112
displaying associated cache C:27
displaying status of operations on C:248
enabling auto-restart C:9
finding connect ports AD:53
finding server names AD:53
installing JDBC drivers on AD:49
monitoring AD:99
obtaining upgrade information C:250
ports used by AD:6, AD:8
registering C:9
request logs for AD:327
server logs AD:317
settable attributes of C:290
setting location of temp directory for AD:135
setting plug-in cache size properties AD:137
setting up command clients on AD:94
starting AD:50, C:9, C:10
stopping AD:51, C:11, C:12, C:227
stopping and restarting AD:52
time required to upgrade AD:340
uncoupling associated cache C:34
unregistering C:12
upgrading C:249

grid user accounts, See users
grid-server --register command C:9
grid-server --start command C:10
grid-server --stop command C:11
grid-server --unregister command C:12
group --add --user command C:138
Group By operator S:76, S:121
group --create command C:141
group --delete command C:143
group --delete --user command C:144
group --info command C:145
group --list-user command C:147
group mappings, adding for a particular DGAS C:92
groups

about O:43
activating privileges for newly added users AD:192, AD:243
adding to ACLs AD:243, S:97
adding users to AD:191, C:138
Administrators AD:45, O:43
configuring default mappings C:218
creating AD:191, C:141
DatabaseAdministrators O:44
DataProviders O:44
default grid groups O:43
default groups for DGAS AD:333
Master Index Index-17

AD: Administration Guide API: API Guide C: Command Reference O: Overture
groups (continued)

defined S:176
deleting AD:198, C:143
deleting users from C:144
displaying information about AD:195, C:145
enabling interconnection access AD:304
everyone group O:44
imported groups O:43

from LDAP AD:159
from NIS AD:165
refreshing AD:195

in Avaki, defined AD:350, API:84, C:308, O:62, P:290
listing C:144
listing users in C:147
making account changes take effect immediately for DGAS

access AD:117
MessagingUsers O:44
modifying AD:195
removing from ACLs AD:242
removing users from AD:193
setting up for DGAS AD:67
UserAdministrators AD:45, O:44
using in ACLs for cached objects O:50

H
hard links

about O:36
broken, to generated views P:240
creating AD:217, C:161
defined AD:355, API:89, C:313, O:67, P:295, S:182

hardware requirements for Avaki AD:2
help command C:148
help, online, for command line AD:xiii, C:xiii, P:ix
hideCatalogs JDBC property API:70
home directories AD:169
host names

aliasing for GDCs AD:10
setting for servers AD:32

HTTP and HTTPS ports
default AD:8, AD:9, AD:10
properties for AD:140

HTTP and web services API:7, API:8
HTTP POST problem in web browsers AD:5
HTTP request logs, See request logs
HTTPS and web services API:7, API:8
hyphens in command syntax AD:xvi, C:xvi, P:xii

I
IATEMPDIR environment variable AD:16
IBM AIX O:16
IBM AIX requirements AD:3
IBM DB2, versions and JDBC drivers for use with Avaki AD:6
icons for grid objects in the data catalog O:29
id command C:149
identity mapping P:6, S:36
imported groups, See groups

imported user accounts AD:167
increment field for Iterator operators S:151
indent size property for XML files AD:142
initialize field for Iterator operators S:151
initParameter element P:263
inner join S:156
input parameters

creating P:88
for data services

configuring P:84
deleting P:86

Input Source element S:125
input sources

accessing columns from S:68
browsing for in data catalog view S:18
configuring for view models in Avaki Studio S:43
creating S:55
error handling S:143
finding S:18

input streams, for data services, configuring P:87
inputParameter element P:264
inputSource element P:265
InputSource interface for data services P:186
inputStream element P:266
installation directory AD:350, API:84, C:308, O:62, P:290,

S:176
installing Avaki

about AD:13
in Unix AD:16
in Windows AD:23
preparation and planning AD:1
system requirements AD:2

integration, See data integration
interconnection IDs

creating AD:295, C:149
using in permissions AD:304, C:43
using to provide cross-domain data access AD:295

interconnections between grid domains
about AD:289
breaking C:127
creating AD:291
defined AD:355, API:89, C:313, O:67, P:295, S:182
disconnecting domains AD:314
enabling access AD:299
prerequisites for AD:94
setting up C:128
two-way, exposing users AD:308
user access methods AD:294
viewing interconnected domains AD:310

Interconnects directory O:33
Internet Explorer

Avaki version requirements AD:5
setting for selecting run-as users P:27, P:54, P:92, P:224,

P:227
Intersection operator S:148

performance S:76
IP address, setting for a server AD:32
isDSAvakiXML SOAP operation API:40
Index-18 Master Index

P: Provisioning & Advanced Data Integration Guide S: Data Integration with Avaki Studio
isList element P:266
Iterator operator S:149

example S:152

J
JAR files

for Avaki JDBC driver API:66
configuring path for second JAR on one grid server P:247

for data service plug-ins P:180
for jConnect API:67

jarurl element P:267
Java

data service plug-in code samples P:190
sample web services client API:9
writing data service plug-ins in P:183

Java transformers
error logging P:246
implementing P:243
installing P:245
referring to other documents P:245
using P:245

java.io.tmpdir system property AD:135
java.protocol.handler.pkgs system property AD:141
java.rmi.server.hostname system property AD:32
java.security.krb5.conf system property AD:143, AD:153
java.security.krb5.kdc system property AD:153
java.security.krb5.realm system property AD:153
java.sql.DatabaseMetaData interface API:75
Javadoc, Avaki, accessing P:185
JavaScript

files S:11
include files S:11, S:75

sample S:115
methods on data service plug-in objects P:201
resources for learning about S:67
using Java classes and interfaces in data service plug-

ins P:200
writing data service plug-ins in P:200

JavaScript expressions
about S:4, S:66
menu for constructing S:71
uses of in Avaki Studio S:vii

jConnect, See JDBC drivers
JDBC

accessing data catalog through O:24
and caching of database operation results API:62
connection properties API:68
data types API:76
directing queries to a particular grid server API:70
result set types API:75

JDBC drivers
about API:61
Avaki

choosing version of API:66
connection properties API:68
JAR files for API:66

JDBC drivers (continued)
Avaki

setting classpath for API:67
when to use API:65

batch mode API:77
choosing API:65
configuring for a database connector P:5
configuring two versions on one grid server P:247
connection strings API:71
defined AD:356, API:90, C:314, O:68, P:295, S:182
for supported DBMSes AD:3
installing AD:49
jConnect

changing default port API:71
setting classpath for API:67
using with Sybase databases AD:6
when to use API:65

loading API:68
prerequisites for using API:64
sample code API:77
setting system properties for API:67
supported features API:74

JDBC fetch size
setting for database connectors P:5, S:36
setting for database operations P:254

JDBC schema names API:69
jdbc-log4j.properties file API:66
join algorithms S:155
Join operator S:154

in tutorial S:44
performance S:76

join types S:156
join.properties file on proxy servers AD:300
JRE versions supported by Avaki AD:5

K
keepalive properties for HTTP ports AD:140
Kerberos

configuring with LDAP authentication services AD:152
system properties for AD:143

krb5.conf Kerberos configuration file AD:152

L
last access time file attribute C:290
LBF AD:280
LDAP

authentication services AD:148
See also authentication services, LDAP

authentication through DGAS AD:86
configuring for Kerberos access AD:152
disabling import on login AD:157
host port, default and nondefault AD:149
importing users on login AD:157
specifying a nondefault host port C:158

ldap --add-schedule command C:149
Master Index Index-19

AD: Administration Guide API: API Guide C: Command Reference O: Overture
ldap --delete command C:153
ldap --delete-schedule command C:154
ldap --import command C:155
ldap --info command C:157
ldap --integrate command C:157
ldap --list-schedules command C:158
ldap --searchbase command C:160
ldap --update command C:160
links

command for creating C:161
uses of in data catalog O:36
See also hard links, soft links

Linux requirements AD:3
listDBConns SOAP operation API:59
listDBOps SOAP operation API:59
listDBOpsByDBConn SOAP operation API:60
listDomains SOAP operation API:25
listDSs SOAP operation API:40
listSearches SOAP operation API:25
ln command C:161
load balancing factor for share servers AD:280, C:244
local caches AD:356, API:90, C:314, O:14, O:68, P:296, S:182
locks command C:163
locks on files

clearing C:163
obtaining a list C:164

log properties file, sample AD:323
log4j AD:318, P:196
logging

audit logs AD:108
categories of loggable events AD:318
configuring audit logging AD:319
for data service plug-ins P:196
for JDBC API:66
for TrAX transformers P:246
for type mapping C:304
HTTP request logs AD:108
log4j properties files for servers and Studio AD:317
properties files for request logs AD:327
viewing the server log AD:107

logging in AD:199, C:164
logical operators S:72
logical operators in searches AD:234
logicBox element P:268
login command C:164
login info, setting S:23
logout command C:165
ls command C:166
ls SOAP operation API:26
lsSize SOAP operation API:26

M
manifest files for data service plug-ins P:180, P:197
mappings

between Avaki and local users/groups for DGAS AD:68
between Avaki users and database users, See database identity

mappings

mappings (continued)
database identity

adding C:252
deleting C:253
listing C:255

default, setting up AD:71
DGAS default AD:69, C:220
DGAS domain-wide

for groups, setting up AD:70
for users, setting up AD:70
users, groups, and defaults AD:68

DGAS dynamic C:109
for data types in SQL views C:68, C:301
for users and groups for DGAS C:94, C:109
per-DGAS

adding for groups C:92
adding for users C:94
deleting C:100
deleting for groups C:99

per-DGAS, users and groups AD:88
self mappings for users C:109
See also data type mappings

maximum concurrent data services setting for execution
services AD:109

memory requirements for Avaki software AD:3
message tests in monitor services AD:101
message timeout properties for Avaki servers and

clients AD:133
MessagingUsers group and user accounts O:44
metadata O:13, S:3
Metadata directory O:33
metadata models

about S:77
creating S:84
defined AD:356, API:90, C:314, O:68, P:296, S:182
deleting S:94
deploying C:285, S:91
deriving S:92
editing S:84
files associated with S:11
importing S:79
mapping to Avaki objects S:88
naming scheme S:91
undeploying C:286, S:94

Microsoft SQL Server, versions and JDBC drivers for use with
Avaki AD:6

Microsoft Visual Studio API:5
MicroSoft Windows O:16
MIME in Avaki web services API:3
minus signs in command syntax AD:xvi, C:xvi, P:xii
mkdir command C:167
mkdir SOAP operation API:27
mkdirParents SOAP operation API:27
mkdirServer SOAP operation API:29
mkdorParentsServer SOAP operation API:28
models, See metadata models and view models
modification time file attribute C:290
Index-20 Master Index

P: Provisioning & Advanced Data Integration Guide S: Data Integration with Avaki Studio
monitor --add command C:167
monitor --clear command C:168
monitor --create command C:170
monitor --delete command C:171
monitor --list command C:172
monitor --result command C:172
monitor services
monitor --start command C:173
monitor --stop command C:174
monitoring

about AD:99
adding tests C:167
configuring AD:101
creating monitor services C:170
deleting monitor services AD:106, C:171
deleting tests AD:105
disabling and enabling tests AD:104
listing active tests C:172
logging AD:107
message tests AD:101
ping tests AD:100
removing tests C:168
restarting tests AD:105, C:173
stopping tests AD:105, C:174
viewing results AD:103, C:172

mount port for DGAS AD:81
mount protocol port, default AD:9
Mozilla, Avaki version requirements AD:5
Multiplexer operator S:157
multiplexing socket properties AD:142
mv command C:176
mv SOAP operation API:29
MySQL

configuring XA driver for P:7, S:36
versions and JDBC drivers for use with Avaki AD:6

N
name element P:269
name property for columns S:61
names of Avaki objects

about O:29
avoiding underscores in when using BusinessObjects API:81
case sensitivity and restrictions AD:206
changing AD:212
metadata models and mapped tables S:91
of elements S:58
qualified names O:30
restrictions on AD:41
three-part O:24

navigator in Studio S:17
nesting operations in data services S:149
.NET, See .NET under Symbols at the beginning of the index
Netscape requirements AD:5
NFS

and permissions AD:12
configuring NFS port for DGAS AD:81

NFS (continued)
port, default AD:9
shutting down before starting a DGAS AD:65

NFS clients
attribute caching for AD:336
defined AD:356, API:90, C:314, O:68, P:296, S:183
older, accessing data grid through AD:337
requirements for O:16
setting up AD:91

NFS URLs AD:93
NIS

disabling import on login AD:163
importing users on login AD:163
See also authentication services, NIS

nis --add-schedule command C:177
nis --delete command C:181
nis --delete-schedule command C:181
nis --import command C:182
nis --info command C:183
nis --integrate command C:184
nis --list-schedules command C:184
nis --update command C:185
NLM AD:64
NLM protocol port, default AD:9
notifications, See update notifications

O
object host name grid server attribute C:290
octothorpe AD:33, AD:129
ODBC

accessing data catalog through O:24
defined AD:356, API:90, C:314, O:68, P:296, S:183
support for API:80

ODBC drivers, using with Avaki API:80
offline expiration cache attribute C:291
on-demand caching

about P:119
defined AD:357, API:91, C:315, O:69, P:296, S:183
of database operation and data service results O:57, P:108
of files O:56, P:107

online help for command line AD:xiii, C:xiii, P:ix
operating systems supported by Avaki O:16
operations, monitoring AD:99
operators

about S:5
adding to a view model S:55
Aggregate S:108
connecting S:57
Custom S:111
descriptions of S:59
Generator S:117
Group By S:121
in searches AD:234
Input Source S:125
Intersection S:148
Iterator S:149
Join S:154
Master Index Index-21

AD: Administration Guide API: API Guide C: Command Reference O: Overture
operators (continued)

logical, in expressions S:72
moving S:56
Multiplexer S:157
names of S:58
Order By S:159
performance considerations S:5
Projection S:161
properties dialogs S:58
Result S:164
Select S:165
selecting S:56
sort-based, performance of S:76
Splitter S:166
Union S:168
Update S:169
with red borders S:60

Oracle 10g
configuring XA driver for P:7, S:36
versions and JDBC drivers for use with Avaki AD:6

Order By operator S:159
performance S:76

os arch grid server attribute C:290
os name grid server attribute C:290
outer-full join S:156
outer-left join S:156
outer-right join S:156
output streams, for data services, configuring P:86
outputStream element P:269
ownership of objects in the data catalog

about O:46
setting AD:242

P
palette in Avaki Studio view model editor S:20, S:54
parameters

accessing in expressions S:71
adding S:64
deleting S:65
displaying S:63
for data service plug-ins

about P:178
specifying for Java plug-ins C:188
specifying for XSLT plug-ins P:181

for testing view models S:50
in Avaki Studio, about S:4
input, for data services, configuring P:84
mapping input parameters S:144
modifying S:65
reordering S:65
validating S:64

ParameterSpec interface for data services P:187
passwords

changing AD:175, C:185
specifying for JDBC connections API:69

patches, settable attributes of C:290

performance S:5, S:76
benefits of caching O:54
tracking, enabling in an Avaki shell C:245

Perl, sample web services client API:9
permissions

about O:45
changing AD:239, C:41
granted by grid groups O:43
hiding objects with O:49
on new Avaki shares AD:261
on shared data AD:12
setting in ACLs S:97
values for AD:242, O:47
viewing for Avaki services C:186
See also ACLs

permissions command C:186
permissions SOAP operation API:30
perspectives in Avaki Studio

Avaki S:13
defined S:12
Resource S:11

pin for caching, defined AD:357, API:91, C:315, O:69, P:297,
S:183

ping tests in monitor services AD:100
planning an Avaki deployment AD:1
platforms supported by Avaki O:16
plugin command P:184
plugin --generate command C:187
Plugin interface for data services P:186
Plug-in Wizard and creating data service plug-ins P:183
plug-ins, See data service plug-ins
plus signs in command syntax AD:xvi, C:xv, P:xi
ports

bad port cache AD:141
changing, See ports, nondefault
CIFS, releasing before running a DGAS AD:66
default, for Avaki servers AD:6
HTTP and HTTPS, See HTTP and HTTPS ports
LDAP host

default and nondefault AD:149
specifying C:158

NFS, default AD:9
nondefault

configuring for DGAS AD:74, AD:75
configuring for grid servers AD:50
configuring for proxy servers AD:300
configuring for share servers AD:59

RMI, See RMI ports
SMB, default AD:9
specifying in WSDL API:6
SSL, See SSL ports
TDS AD:8, AD:50, AD:145, API:71

ports, connect, See connect ports
POST problem in web browsers AD:5
precision property for columns S:61
preferences for Avaki Studio, setting S:23
primary GDCs AD:357, C:315, O:69
Index-22 Master Index

P: Provisioning & Advanced Data Integration Guide S: Data Integration with Avaki Studio
privacy and HTTPS API:8
Projection operator S:161

in tutorial S:46
projects

creating S:13
defined S:12

properties
cache sizes for data service plug-ins AD:137
DGAS

configuring AD:82
controlling cache size AD:124
displaying AD:124, C:103
displaying descriptions C:104
listing C:103
properties file C:293
setting C:113
unsetting C:117

for cache services AD:135
for encryption of grid objects AD:139
for HTTP and HTTPS ports AD:140
for HTTP keepalives on proxy servers AD:140
for JDBC clients AD:128
for JDBC connections API:68
for Kerberos AD:143
for multiplexing sockets AD:142
for remote object stub cache AD:144
for schedule exclusion cache AD:144
for server request logs AD:327
for servers acting as clients AD:128
for share servers AD:138
for virtual database table cache size AD:144
for XA connections C:70, P:7, S:37
Java system properties, providing to JDBC driver API:67
JDBC, specifying for a database connector C:67
Kerberos default realm AD:153
Kerberos key distribution center AD:153
location of Kerberos configuration file AD:153
message timeouts for Avaki servers and clients AD:133
remote coherence window for configurations AD:141
setting server’s host name or IP address AD:33
system. See system properties.
views

displaying C:274
setting C:275

XML indent size AD:142
properties dialog boxes S:58
provisioning data O:21
proxy --add command C:191
proxy --delete command C:191
proxy --list command C:192
proxy routing tables

about AD:289
configuring AD:292, C:191
displaying C:192

proxy servers
about AD:289
configuring AD:299
configuring nondefault ports AD:300
connecting C:228
defined AD:357, API:91, C:315, O:69, P:297, S:183
deleting from the routing table C:191
destroying C:228
disabling auto-restart C:14
enabling auto-restart AD:300, C:12
finding connect port numbers AD:303
finding server names AD:303
installing in Windows AD:24
installing in Unix AD:18
ports used by AD:10
registering for auto-restart AD:302, C:12
request logs for AD:327
server logs for AD:317
setting HTTP keepalive properties for AD:140
setting up C:191
starting AD:301, C:12, C:13
stopping C:14, C:228
stopping and restarting AD:301
time required to upgrade AD:341
unregistering C:14
when to deploy AD:290

proxy-server --register command AD:302, C:12
proxy-server --start command C:13
proxy-server --stop command C:14
proxy-server --unregister command C:14
pwd command C:193

Q
qualified names

about O:30
for data services, specifying API:35, C:51, C:267
for database connectors, specifying C:254
for database operations, specifying C:25, C:264
for groups, specifying C:43, C:142, C:145, C:147, C:148
for users, specifying C:42, C:53, C:60, C:86, C:89, C:141,

C:145, C:165, C:251, C:266, C:280
queries, See ad-hoc queries
query engine

defined AD:357, API:91, C:315, O:69, P:297, S:184
mapping data types for C:301
sort chunk size property AD:139

queryCacheTTL JDBC property API:71

R
RAM requirements for Avaki software AD:3
range input for Iterator operators S:151
readme file AD:12, AD:15, AD:339
red borders on operators in Studio S:60
Red Hat Linux requirements AD:3
ref element P:270
Master Index Index-23

AD: Administration Guide API: API Guide C: Command Reference O: Overture
refresh schedules

for Avaki shares AD:266, C:231
advanced AD:272
calendared AD:271
exclusions for AD:274
listing C:239
one-time AD:269
periodic AD:270
removing AD:278, C:236

for data services P:152
advanced P:157
calendared P:155
one-time P:155
periodic P:157

for database operations P:139
advanced P:144
calendared P:142
one-time P:142
periodic P:144

for files or directories P:120
advanced P:127
calendared P:125
one-time P:125
periodic P:127

for generated views P:231
advanced P:236
calendared P:234
one-time P:233
periodic P:236

for LDAP authentication services AD:185
for virtual database operations P:139

advanced P:144
calendared P:142
one-time P:142
periodic P:144

refreshing users on login AD:149
reindex interval for search services AD:232
remote caches AD:357, API:91, C:315, O:14, O:69, P:297,

S:184
removeAttribute SOAP operation API:31
replica --add command C:193
replica --config command C:193
replica --delete command C:194
replica --info command C:194
replica --synch command C:195
request logs

configuring AD:327
viewing AD:108

requirements, pre-installation AD:2
Result element S:164
result sets

accessor functions S:73
combining S:44
large, providing space for sorting S:76
types in JDBC API:75

rm command C:195
rm SOAP operation API:31
RMI ports

default AD:8, AD:9, AD:10
linked to grid server connect ports AD:50
linked to share server connect ports AD:60

routing tables, configuring AD:292, C:191
row-level access control S:74
RowSetFactory class for data services P:188
rowsets O:11, P:273
rpc/encoded web services API:3, API:5
rpcinfo command AD:66
Rudi port AD:352, C:310, O:64
run-as users, See users and user accounts

S
Saxon C:265, C:268, C:271, P:220, P:224, P:227
scale property for columns S:61
schedule --delete command C:196
schedule exclusions

about AD:274, P:166
adding for Avaki share rehashes C:234
adding for data services C:51
adding for directories C:125
adding for files C:133, C:140
adding for LDAP authentication services C:152
adding for NIS authentication services C:180
adding for views C:262
adding to Avaki directories C:121
adding to database operations C:76
applying to schedule entries P:168
caching properties for AD:144
configuring AD:274, P:166
creating custom C:198
creating daily C:199
creating monthly C:201
creating weekly C:203
creating yearly C:205
defined AD:358, API:92, C:316, O:70, P:298, S:184
deleting C:207
displaying information about C:208, P:171
listing names C:209

schedule --info command C:197
schedule --list command C:197
schedule --print-iterations command C:198
scheduled caching

about P:119
defined AD:357, API:91, C:315, O:69, P:297, S:184
of database operation and data service results O:59, P:109
of files O:57, P:107

scheduleexclusion --create --custom command C:198
scheduleexclusion --create --daily command C:199
scheduleexclusion --create --monthly command C:201
scheduleexclusion --create --weekly command C:203
scheduleexclusion --create --yearly command C:205
scheduleexclusion --delete command C:207
scheduleexclusion --info command C:208
Index-24 Master Index

P: Provisioning & Advanced Data Integration Guide S: Data Integration with Avaki Studio
scheduleexclusion --list command C:209
schedules

adding for data services C:48, P:152
adding for database operations C:73, P:139
adding for directories C:117
adding for files C:130
adding for LDAP user importation C:149
adding for NIS user importation C:177
adding for views C:259
adding for virtual database operations P:139
creating cron specifications C:297
creating custom exclusions C:198
creating daily exclusions C:199
creating monthly exclusions C:201
creating weekly exclusions C:203
creating yearly exclusions C:205
cron expressions in AD:185, AD:273
deleting C:196
deleting exclusions C:207
deleting for data services C:54
deleting for database operations C:78
deleting for directories C:122
deleting for files C:135
deleting for LDAP user importation C:154
deleting for NIS user importation C:181
deleting for views C:272
displaying exclusion information C:208
displaying information about C:197
exclusions, see also schedule exclusions
execute permissions required O:59
for refreshing LDAP authentication services AD:185
for view generators and generated views P:231
listing C:197
listing execution times C:198
listing for data services C:58
listing for database operations C:88
listing for directories C:126
listing for files C:136
listing for LDAP authentication services C:158
listing for NIS authentication services C:184
listing for views C:274
listing names of exclusions C:209
refresh, See refresh schedules
types of AD:185, AD:267

schemas
about S:3, S:60
enabling browsing on a database connector P:4
expressed in metadata models S:77
for Avaki data services API:75
for operators, column properties of S:60
for virtual database operations and their SQL views API:75
for virtual database operations, generating P:57
generating S:19
generating for data services C:55, P:98
generating for database operations C:80, P:31
getting information about through JDBC API:75
getting via JDBC API:75

schemas (continued)
JDBC schema names API:69
modifying S:161
types in Avaki domains P:51, P:64
viewing for databases P:9
See also metadata models

search (execute) command C:211
search --create command C:209
search --delete command C:210
search --get-rehash-level command C:212
search --info command C:214
search --rehash command C:215
search --set-rehash-level command C:215
search SOAP operation API:32
searches O:13

configuring rehash intervals C:215
creating search services AD:231, C:209
deleting AD:236
deleting search services C:210
displaying search service information C:214
performing AD:233, C:211
rehashing search services C:215
reindex interval, setting AD:232
viewing rehash intervals C:212

SearchQuery complex type API:17
SearchResult complex type API:17
secondary GDCs AD:43

adding C:193
deleting C:194
forcing updates C:195
setting refresh intervals C:193
setting update interval C:195
viewing C:194
See also grid domain controllers

security
.NET API:9
about O:10
ACLs O:45
authentication O:41
configuring encryption levels C:216
displaying encryption levels C:222
for web clients API:8
HTTPS API:8
setting permissions C:41
SSL certificates API:8
user accounts and groups O:43
viewing permissions C:186

security --config command C:216
security --default-gid command C:217
security --default-group command C:218
security --default-uid command C:219
security --default-user command C:220
security --gid command C:221
security --info command C:222
security --uid command C:222
Select operator S:165
server connect ports, See connect ports
server --dgas --connect command C:223
Master Index Index-25

AD: Administration Guide API: API Guide C: Command Reference O: Overture
server --dgas --destroy command C:224
server --dgas --stop command C:225
server --grid --connect command C:225
server --grid --destroy command C:226
server --grid --stop command C:227
server logs

configuring AD:317
viewing AD:107

server --proxy command C:228
server --share --connect command C:228
server --share --disconnect command C:229
server --share --stop command C:230
servers, backing up databases for C:23
servers, Avaki

defined AD:350, API:84, C:308, O:62, P:290, S:176
displaying software version of AD:99
finding names of AD:131
in a typical deployment O:18
monitoring AD:99
ports used by AD:6
problems communicating with AD:32
setting cache service properties for AD:135
setting host name or IP address to advertise AD:32
setting message timeout properties for AD:133
See also DGAS, grid domain controllers, grid servers, share

servers, and proxy servers
servers, proxy, See proxy servers
services, Avaki

copying C:46
defined AD:358, API:92, C:316, O:70, P:298, S:184
icon for O:29

setAttribute SOAP operation API:32
setOutputStream JavaScript method for data service plug-

ins P:202
share --add-rehash-schedule command C:231
share --add-share-servers command C:232
share --create command C:235
share --delete-rehash-schedule command C:236
share --disconnect command C:238
share --get-local-path command C:238
share --get-status command C:239
share --list-rehash-schedules command C:239
share --list-share-servers command C:240
share --rehash command C:240
share --remove-share-servers command C:241
share servers

about AD:54
adding to Avaki shares AD:263
backing up and restoring AD:115
before disconnecting AD:54, C:230
configuring a machine with one share server AD:55
configuring multiple share servers on one machine AD:59
configuring to use nondefault ports AD:59
connecting to grid servers C:228
defined AD:358, API:92, C:316, O:70, P:298, S:184
disabling auto-restart C:17
disconnecting from grid servers C:229

share servers (continued)
enabling auto-restart C:15
finding connect ports AD:59
finding server names AD:59
installing in Windows AD:24
installing on Unix AD:18
local path AD:261
modifying load balance factor C:244
multiple AD:55, AD:263
obtaining upgrade information C:250
ports used by AD:9
registering C:15
registering for auto-restart AD:57
removing from Avaki shares C:241
removing from shares AD:265
replacing for Avaki shares C:242
server logs for AD:317
setting for Avaki shares AD:260
setting load balancing factor AD:280
setting system properties for AD:138
starting AD:56, C:15, C:16
stopping C:17, C:230
stopping and restarting AD:57
time required to upgrade AD:341
unregistering C:17
upgrading C:249
write access and user accounts AD:12

share --set-local-path command C:241
share --set-share-servers command C:242
share --set-status command C:243
share --update-share-servers command C:244
shared directories, See Avaki shares
shares, See Avaki shares and CIFS shares
Shares directory O:34
shares, CIFS AD:125
share-server --register command AD:57, C:15
share-server --start command C:16
share-server --stop command C:17
share-server --unregister command C:17
shareserver.ports file

on grid servers AD:50
on share servers AD:60

shell command C:245
shells, Avaki, accessing C:245
shortcuts created in Windows installations AD:27
SMB ports, default AD:9
SOAP

formal definition API:1
learning about API:1
over HTTP API:8
over HTTPS API:8
standards compliance API:1

SOAP clients, See web services clients
SOAP complex types API:12

AdHocDBOPExecutionParams API:13
AvakiPrincipal API:13
DataCatalogAttribute API:14
Index-26 Master Index

P: Provisioning & Advanced Data Integration Guide S: Data Integration with Avaki Studio
SOAP complex types (continued)

DataCatalogEntry API:15
DataCatalogPermission API:15
DataServiceExecutionParams API:16
DBOPExecutionParams API:16
SearchQuery API:17
SearchResult API:17

SOAP operations
accessibleDBOp API:42
accessibleDS API:36
accessiblePath API:19
chmod API:19
chown API:20
components of web service API:4
data catalog API:18
data services API:34
database operations API:40
executeAdHocDBOp API:43
executeAdHocDBOpWithOutput API:44
executeAdHocDBOpWithOutputAttach API:46
executeAdHocDBOpWithOutputString API:47
executeDBOp API:48
executeDBOpBytesInput API:49
executeDBOpGridFileInput API:50
executeDBOpWithOutput API:50
executeDBOpWithOutputAttach API:52
executeDBOpWithOutputString API:53
executeDS API:36
fileRead API:21
fileReadAttach API:21
fileReadString API:22
fileWrite API:23
getAttributes API:23
getDBOpOutput API:54
getDBOpOutputAttach API:55
getDBOpParameters API:56
getDBOpSchema API:56
getDBOpSchemaAttach API:57
getDBOpSchemaString API:58
getDSOutput API:37
getDSOutputAttach API:38
getDSOutputString API:38
getDSParameters API:39
getOutputString API:55
getSQL API:58
getSystemAttributes API:24
getUserAttributes API:24
isDSAvakiXML API:40
listDBConns API:59
listDBOps API:59
listDBOpsByDBConn API:60
listDomains API:25
listDSs API:40
listSearches API:25
ls API:26
lsSize API:26
mkdir API:27
mkdirParents API:27

SOAP operations (continued)
mkdirParentsServer API:28
mkdirServer API:29
mv API:29
permissions API:30
removeAttribute API:31
rm API:31
search API:32
setAttribute API:32
tester API:33
whoami API:33

SOAP::Lite API:5
sockets, multiplexing AD:142

setting maximum channels AD:142
setting maximum write AD:142
setting send buffer size for AD:143

soft links
about O:36
creating AD:217, C:161
defined AD:358, API:92, C:316, O:70, P:298, S:185
not used in searches AD:233

software requirements for Avaki AD:2
Solaris requirements AD:3
sort chunk size

controlling S:76
for query engine AD:139

spaces
in Windows install pathnames, avoiding AD:26
to separate arguments in Avaki commands AD:xvi, C:xvi,

P:xii
SPARC/Solaris requirements AD:3
Splitter operator S:166
SQL

aggregate functions and aliasing columns S:42
as prerequisite for Avaki Studio users S:vii
statements

in database operations C:86, P:251
in virtual database operations C:90

SQL Server, versions and JDBC drivers for use with
Avaki AD:6

sql view --delete command C:246
sql view --get-description command C:246
sql view --set-description command C:247
SQL views

about O:8, O:22, P:38
adding to categories P:47
configuring attributes P:44
data type mappings for C:68, C:301, P:39
defined AD:358, API:92, C:316, O:70, P:298, S:185
deleting C:246
displaying descriptions C:246
displaying tables provisioned from database connectors C:73
enabling provisioning on a database connector P:4
from data service results, generating P:60, P:100
generated from database operations, removing P:35
generating from data services C:56
generating from database operations C:82, P:34
location in categories S:18
Master Index Index-27

AD: Administration Guide API: API Guide C: Command Reference O: Overture
SQL views (continued)

managing P:20
modifying P:43
modifying descriptions C:247
names in data catalog O:24
provisioning P:39
provisioning from database connectors C:71
qualified names for O:31
removing P:44
schema types for P:51, P:64
schemas for S:22
searching for AD:233
table types for API:75
viewing P:42
viewing and modifying ACLs P:46

square brackets in command syntax AD:xv, C:xv, P:xi
SSL certificates

about API:8
generating AD:33
installing AD:39
planning for AD:8

SSL ports, default AD:8, AD:9, AD:10
status command C:248
status of grid operations, monitoring AD:99
stored procedures API:73
StreamingRowSet interface for data services P:187
streams, closing in data service plug-ins P:186
Studio, See Avaki Studio
style sheet engines

for data service view generators P:227
for database operation view generators P:224
for file view generators P:220

style sheet engines for database view generators C:265, C:268
style sheet engines for file view generators C:271
Sun JDK for compiling data service plug-ins P:184
Sun ONE Directory Server AD:148

See also authentication services, LDAP AD:148
Sun Solaris requirements AD:3
SuSE Linux requirements AD:3
Sybase ASA, versions and JDBC drivers for use with

Avaki AD:6
Sybase ASE

configuring XA driver for P:7, S:36
connection property required for API:70
versions and JDBC drivers for use with Avaki AD:7

Sybase contact information AD:xvi, API:vii, C:xvi, O:vi, P:xii,
S:ix

Sybase IQ, versions and JDBC drivers for use with Avaki AD:7
syntax conventions for commands AD:xv, C:xiv, P:x
system attributes AD:248, S:101
System directory O:34
system properties

about AD:128
descriptions of AD:131
setting on Avaki Studio AD:129
setting on clients AD:129
setting on servers AD:129
using with JDBC driver API:67

system requirements for Avaki software AD:2, O:16
system.properties file AD:33, AD:129

T
table schema view S:22
table types for SQL views API:75
tables

deleting SQL views C:246
displaying descriptions C:246
generating from data services C:56
generating from database operations C:82
in metadata models S:77

arranging in editor S:84
making accessible via JDBC S:91
mapping to Avaki objects S:88
naming scheme for S:91

in virtual database, displaying C:283
mapping data types for C:301
modifying descriptions C:247
provisioned from database connectors, displaying C:73
provisioning as SQL views O:22
provisioning from database connectors C:71
qualified names for O:32
schemas for, displaying S:22
See also SQL views

tabs for view models S:21
target element P:270
TCP channel sockets AD:142
TDS port

changing AD:50, AD:145, API:71
default AD:8

technical support contact information AD:xvi, API:vii, C:xvi,
O:vi, P:xii, S:ix

temp directories for grid servers, setting AD:135
Templates class P:244
tester SOAP operation API:33
testing an upgraded grid domain AD:346
testing function for WS clients API:33
text conventions C:xiv
timeout properties for Avaki server communications AD:133
timeouts, configuring for database operations P:253
transactions, See distributed transactions P:78
TrAX API P:243
two-phase commit protocol P:79
type element P:270
type mapping, See data types, mapping
type property for columns S:61
TypeMapping log4j category C:304
types for variables S:70

U
UID attribute in LDAP authentication services AD:150
UIDs, configuring AD:68, C:219, C:222
underscore characters in Avaki names API:81
Union operator S:168
Unix file mode semantics, setting AD:337
Index-28 Master Index

P: Provisioning & Advanced Data Integration Guide S: Data Integration with Avaki Studio
Unset permission in ACL AD:242, O:47
update intervals for GDCs, setting C:195
update notifications

configuring P:238
defined AD:359, API:93, C:317, O:71, P:299, S:185
enabling AD:311

Update operator S:169
upgrade command C:249
upgrade --info command C:250
upgrading Avaki software

interoperability of different versions AD:339
preparation steps AD:341
upgrade planning AD:340
upgrade steps AD:342

upstream, defined S:3
urlLogicBox element P:271
user attributes AD:248, S:101
user command C:250
user --create command C:251
user --db-mapping --add command C:252
user --db-mapping --delete command C:253
user --db-mapping --list command C:255
user --delete command C:257
user groups, See groups
user --info command C:258
user --list-group command C:258
UserAdministrators group AD:45, O:44
users and user accounts

about O:43
adding database identity mappings C:252
adding to ACLs AD:243, S:97
adding to groups AD:191, C:138
administrative accounts, setting up AD:44
changing passwords AD:175, C:185
clearing credentials from DGAS cache AD:117
configuring associated cache service C:33
configuring default mappings C:220
configuring dynamic mappings C:109
configuring self mappings C:109
creating accounts AD:168, C:251
creating home directories AD:169
default users for DGAS AD:333
deleting accounts AD:189, C:257
deleting database identity mappings C:253
deleting from groups C:144
disabling import on login (LDAP) AD:157
disabling import on login (NIS) AD:163
displaying and changing account information AD:187
displaying associated cache C:27
displaying full names and contact information C:258
displaying names C:286
enabling interconnection access AD:304
enabling on authentication services C:250
exposing in a two-way interconnect AD:308
giving access to other domains AD:294
grid accounts AD:167
imported accounts AD:167

users and user accounts (continued)
importing from LDAP services AD:157
importing from NIS services AD:164
importing on login (LDAP) AD:157
importing on login (NIS) AD:163
listing database identity mappings C:255
listing group membership for C:258
logging in AD:199
logging out when newly added to groups AD:192, AD:243
making account changes take effect immediately for DGAS

access AD:117
managing AD:167
mapping Avaki users to database users, See database identity

mappings
MessagingUser O:44
qualified names for O:32
querying whether enabled in LDAP AD:151
refreshing imported accounts AD:185
refreshing on login (LDAP) AD:149
removing from ACLs AD:242
removing from groups AD:193
roles for O:43
run-as users

browser setting for selecting P:27, P:54, P:92, P:224, P:227
for data service views P:227
for data services P:92
for database operation views P:223
for database operations P:26
for virtual database operations P:54

setting run-as user for views C:279
setting up for DGAS AD:67
setting up local accounts for Avaki AD:11
specifying for JDBC connections API:69
uncoupling associated cache C:34

V
validation error expressions S:65
validation expressions S:64
value element P:272
values element P:272
variables

about S:69
allowed types for S:70
downstream, menu of S:71
in Avaki Studio, about S:4
updating S:69

VB .NET, See .NET
versions

of Avaki software, displaying AD:99, C:148, C:250
SOAP API:1
TrAX P:243
WSDL API:1

vertical bars in command syntax AD:xv, C:xv, P:xi
view --add-schedule command C:259
view --create --database command C:263
view --create --data-service command C:266
Master Index Index-29

AD: Administration Guide API: API Guide C: Command Reference O: Overture
view --create --file command C:267
view --delete command C:272
view --delete-schedule command C:272
view --depends command C:272
view --garbage-collect command C:273
view generators

about O:8, O:25, P:217
caching of input files P:241
configuring update notifications for P:238
defined AD:359, API:93, C:317, O:71, P:299, S:185
for data services

setting up P:225
specifying a style sheet engine P:227

for database operations
setting up P:221
specifying a style sheet engine P:224

for files
setting up P:218
specifying a style sheet engine P:220

for large data sets and unsupported formats P:242
listing dependent operations P:228
modifying P:229
non-XSLT-based P:242
removing P:239
rowsets as inputs of P:275
running P:240
scheduling updates P:231
troubleshooting P:240
using TrAX transformers P:242

view --info command C:274
view --list-schedules command C:274
view models

about O:23, S:2
configuring input sources S:43
creating S:42
defined AD:359, API:93, C:317, O:71, P:299, S:185
deploying as data services S:50
error handling S:143
files associated with S:11
opening, saving and closing S:17
red borders showing errors S:60
sample workflow for S:29
schemas S:3
tabs for, in a project S:21
testing S:49
view model editor S:20

view --regenerate command C:273
view --set-property command C:275
view --update command C:279
ViewLibrary category, contents of S:18
views

adding generation schedules C:259
adding schedule exclusions C:262
configuring values for SQL parameters C:275
configuring with database sources C:263
configuring with data-service sources C:266
configuring with file sources C:267

views (continued)
deleting C:272
deleting generation schedules C:272
listing generation schedules for C:274
obtaining information about C:274
regenerating C:273
removing old results C:273
setting run-as user C:279
showing dependencies C:272
specifying a style sheet engine C:265, C:268, C:271
updating C:279
See also generated views, SQL views, view generators, view

models
virtual database

about O:22
configuring attributes P:70
defined AD:359, API:93, C:317, O:71, P:299, S:185
displaying SQL views C:283
executing ad-hoc queries on C:282
schema

browsing catalogs P:64
browsing schemas P:64
browsing tables P:64

table cache size system property AD:144
types of schemas P:51, P:64
viewing and modifying ACLs P:72

virtual database operations
about O:23, P:49
access permissions P:50
allowing creation of C:280
allowing groups to create P:67
allowing users to create P:65
creating C:87, P:50
defined AD:359, API:93, C:317, O:71, P:299, S:186
evicting from cache P:150
executing P:61
generating SQL views from P:60
listing in cache P:148
location in categories S:18
managing P:50
marking for scheduled caching P:139
modifying P:55
preventing creation of C:281
preventing groups from creating P:69
preventing users from creating P:68
qualified names for O:31
removing P:63
schemas for, generating P:57
SQL statements in C:90
tagging for on-demand caching P:146
unscheduling P:150
viewing P:55, P:57, P:59
viewing dependencies P:59
viewing details P:56

virtual database service, configuring access permissions P:65
virtualdatabase --allow-dbop-creation command C:280
virtualdatabase --disallow-dbop-creation command C:281
virtualdatabase --execute command C:282
Index-30 Master Index

P: Provisioning & Advanced Data Integration Guide S: Data Integration with Avaki Studio
virtualdatabase --show-tables command C:283
virtualschema --deploy command C:285
virtualschema --undeploy command C:286
virutal schema models, See metadata models

W
web browsers

requirements for Avaki software AD:5
setting for selecting run-as users P:27, P:54, P:92, P:224,

P:227
web services API:2, API:8

about API:2
access permissions API:9
client examples API:9
data catalog API:18
data services API:34
database operations API:40
development framework API:5
document/literal API:3, API:5
provisioning, about P:205
rpc/encoded API:3, API:5
security API:8
with MIME API:3

web services clients
defined AD:359, API:93, C:317, O:71, P:299, S:186
requirements for API:4

web services description language, See WSDLs
whoami command C:286
whoami SOAP operation API:33
wildcard characters in searches AD:235
Windows

avoiding install pathnames with spaces AD:26
installing Avaki in AD:23
installing on Windows 2003 AD:22
requirements for AD:3
services, running under avaki local user account AD:11
shortcuts for AD:27
update for HTTP POST problem in web browsers AD:5
versions supported by Avaki O:16

Windows domains
displaying for DGAS admission policies C:114
setting for DGAS admission policies C:111
unsetting for DGAS admission policies C:116

Windows Services list C:5
Workbench S:12
workspace directory for Avaki Studio

described S:12
setting S:10

WS API
accessibleDBOp API:42
accessibleDS API:36
accessiblePath API:19
authentication API:9
authorization API:9
chmod API:19
chown API:20
data access API:2

WS API (continued)
data services SOAP operations API:34
executeAdHocDBOp API:43
executeAdHocDBOpWithOutput API:44
executeAdHocDBOpWithOutputAttach API:46
executeAdHocDBOpWithOutputString API:47
executeDBOp API:48
executeDBOpBytesInput API:49
executeDBOpGridFileInput API:50
executeDBOpWithOutput API:50
executeDBOpWithOutputAttach API:52
executeDBOpWithOutputString API:53
executeDS API:36
fileRead API:21
fileReadAttach API:21
fileReadString API:22
fileWrite API:23
getAttributes API:23
getDBOpOutput API:54
getDBOpOutputAttach API:55
getDBOpParameters API:56
getDBOpSchema API:56
getDBOpSchemaAttach API:57
getDBOpSchemaString API:58
getDSOutput API:37
getDSOutputAttach API:38
getDSOutputString API:38
getDSParameters API:39
getOutputString API:55
getSQL API:58
getSystemAttributes API:24
getUserAttributes API:24
grid server API:6
HTTP API:7, API:8
HTTPS API:7, API:8
isDSAvakiXML API:40
listDBConns API:59
listDBOps API:59
listDBOpsByDBConn API:60
listDomains API:25
listDSs API:40
listSearches API:25
ls API:26
lsSize API:26
mkdir API:27
mkdirParents API:27
mkdirParentsServer API:28
mkdirServer API:29
mv API:29
permissions API:30
ports API:6
removeAttribute API:31
rm API:31
search API:32
setAttribute API:32
tester API:33
whoami API:33

WS clients, See web services clients
Master Index Index-31

AD: Administration Guide API: API Guide C: Command Reference O: Overture
WSDLs

about API:2
as SOAP contracts API:3
AvakiAPI.disco discovery file for .NET clients API:3
AvakiAPIDocLit.wsdl API:3
AvakiAPIRpcEnc.wsdl API:3
AvakiAPIWithMIMEDocLit.wsdl API:3
AvakiAPIWithMIMERpcEnc.wsdl API:3
choosing API:5
document/literal API:3
editing API:6
locations of API:6
provided by Avaki API:11
rpc/encoded API:3
standards compliance API:1

WSDLs directory O:35

X
X Window System libraries required for Avaki install on

Unix AD:16
XA drivers, configuring for database connectors C:69, P:7, S:36
Xalan C:265, C:268, C:271, P:220, P:224, P:227
XAWorkHandler class for data services P:189
XAWorkUnit interface for data services P:189
XML data in Avaki O:11, P:273
XML indent size property AD:142
XML schema

Avaki rowset
class-name element P:279
column-display-size element P:279
column-index element P:279

XML schema (continued)
core schema P:277
overview P:277
rowset-specific schema P:279
sample schema P:280

data service
class element P:261
coherenceWindow element P:261
dataService element P:262
description element P:263
initParameter element P:263
inputParameter element P:264
inputSource element P:265
inputStream element P:266
isList element P:266
jarurl element P:267
logicBox element P:268
name element P:269
outputStream element P:269
ref element P:270
target element P:270
type element P:270
urlLogicBox element P:271
value element P:272
values element P:272

XSLT
in view generators, when not to use P:242
using in data service plug-ins P:180
See also Xalan, Saxon
Index-32 Master Index

	Sybase Avaki EII Overture
	Table of contents
	Preface
	Organization
	Related documentation
	How to contact Avaki support at Sybase, Inc.

	Chapter 1 Introduction to Avaki
	The distributed data challenge
	Data provisioning and integration
	The Avaki solution
	Data access
	Data catalog entries
	Application data
	Integration made easy
	Protecting production databases
	Ensuring data security
	Data representation
	Reusing provisioning work

	Data access
	The Avaki solution
	Real-time access
	Data access for users
	Data access for applications
	Searching and metadata
	Caching in a nutshell
	Auditing and compliance

	Create a scalable solution architecture
	The Avaki solution
	Adding capacity
	Ease of administration

	Supported platforms
	A typical Avaki deployment
	Getting started
	Avaki servers
	Clients

	Chapter 2 Database tools
	Provisioning
	Provisioning database-resident information: Database connectors, SQL views, and database operations

	Integration
	The Avaki data catalog viewed through ODBC/JDBC
	Processing distributed data via XSLT, JavaScript, and Java: Advanced data services
	Generating data snapshots as files: Avaki view generators

	Chapter 3 Browsing the data catalog
	The data catalog: What is it and what’s in it?
	What is a data catalog name?
	Qualified names: shorthand for paths
	Top-level Avaki directories
	Organizing your data catalog
	Using links
	Data categories
	Organizing shared files
	How is the data catalog distributed among Avaki servers?

	Chapter 4 Authentication and access control in Avaki domains
	Authentication
	Authentication of login access to Avaki domains
	Authentication of file access via DGAS
	Authentication of database access

	User accounts and groups
	Default grid groups

	Access control lists
	How Avaki permissions work
	Ownership
	Permission settings
	Interpreting permissions
	Permissions in directories and categories
	Permissions on new files
	Permissions on cached objects: using groups

	Chapter 5 Caching
	Using cache services to improve performance
	Configuring clients and Avaki servers to use cache services
	Configuring caching for files
	On-demand caching
	Pinning files in a cache
	Permissions and access control

	Configuring caching for database operations and data services
	On-demand caching
	Scheduled caching
	Remote/local caching interactions
	Permissions and access control

	Glossary

	Master Index

